INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

ANALYTICAL CHEMISTRY DIVISION COMMISSION ON SOLUBILITY DATA

SOLUBILITY DATA SERIES

Volume 40

•

HALIDES, OXYHALIDES AND SALTS OF HALOGEN COMPLEXES OF TITANIUM, ZIRCONIUM, HAFNIUM, VANADIUM, NIOBIUM AND TANTALUM

SOLUBILITY DATA SERIES

Editor-in-Chief J. W. LORIMER University of Western Ontario London, Ontario, Canada

M. Salomon (USA) Sub-editor, Solid/Liquid Systems C. L. Young (Australia) Sub-editor, Indexes

EDITORIAL BOARD

H. Akaiwa (Japan) B. Allard (France) A. F. M. Barton (Australia) K. R. Bulloch (USA) M.-T. Saugier Cohen-Adad (France) R. Cohen-Adad (France) J.-J. Counioux (France) A. F. Danil de Namor (UK) W. Davison (UK) T. P. Dirkse (USA) H. Einaga (Japan) J. Eysseltová (Czechoslovakia) Fu Jufu (China) F. W. Getzen (USA) L. H. Gevantman (USA) C. Kalidas (India) I. Lambert (France) S. L. Phillips (USA) J. A. Rard (USA) D. G. Shaw (USA) V. M. Valyashko (USSR) J. Vanderdeelen (Belgium) W. E. Waghorne (Ireland)

Managing Editor P. D. GUJRAL IUPAC Secretariat, Oxford, UK

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY IUPAC Secretariat, Bank Court Chambers, 2-3 Pound Way, Cowley Centre, Oxford OX4 3YF, UK

SOLUBILITY DATA SERIES

Volume 40

HALIDES, OXYHALIDES AND SALTS OF HALOGEN COMPLEXES OF TITANIUM, ZIRCONIUM, HAFNIUM, VANADIUM, NIOBIUM AND TANTALUM

Volume Editor JIRI HÁLA J. E. Purkyne University Brno, Czechoslovakia

Co-Editors

SUSAN A. JOHNSON Emory University Atlanta, GA USA H. LAWRENCE CLEVER Emory University Atlanta, GA USA

Contributors

TAKASHI OSHIBA Showa Denko Co., Ltd. Tokyo, JAPAN MARK SALOMON US Army ERADCOM Fort Monmouth, NJ USA

PERGAMON PRESS

Member of Maxwell Macmillan Pergamon Publishing Corporation

OXFORD · NEW YORK · BEIJING · FRANKFURT SÃO PAULO · SYDNEY · TOKYO · TORONTO

U.K.	Pergamon Press plc, Headington Hill Hall, Oxford OX3 0BW, England			
U.S.A.	Pergamon Press, Inc., Maxwell House, Fairview Park, Elmsford, New York 10523, U.S.A.			
PEOPLE'S REPUBLIC OF CHINA	Pergamon Press, Room 4037, Qianmen Hotel, Beijing, People's Republic of China			
FEDERAL REPUBLIC OF GERMANY	Pergamon Press GmbH, Hammerweg 6, D-6242 Kronberg, Federal Republic of Germany			
BRAZIL	Pergamon Editora Ltda, Rua Eça de Queiros, 346, CEP 04011, Paraiso, São Paulo, Brazil			
AUSTRALIA	Pergamon Press Australia Pty Ltd., P.O. Box 544, Potts Point, N.S.W. 2011, Australia			
JAPAN	Pergamon Press, 5th Floor, Matsuoka Central Building, 1-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160, Japan			
CANADA	Pergamon Press Canada Ltd., Suite No. 271, 253 College Street, Toronto, Ontario, Canada M5T 1R5			
·				

Copyright © 1989 International Union of Pure and Applied Chemistry

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the copyright holders.

First edition 1989

The Library of Congress has catalogued this serial title as follows:

Solubility data series.—Vol. 1—Oxford; New York; Pergamon, c 1979v.; 28 cm. Separately catalogued and classified in LC before no. 18. ISSN 0191-5622 = Solubility data series. 1. Solubility—Tables—Collected works. QD543.S6629 541.3'42'05-dc19 85-641351 AACR 2 MARC-S

British Library Cataloguing in Publication Data

Halides, oxyhalides, and salts of halogen complexes of titanium, zirconium, hafnium, vanadium, niobium and tantalum. 1. Halogenated compounds. Solubility

I. Hala, Jiri II. Johnson, Susan A. III. Clever, H. Lawrence IV. Series 547'.0204542

ISBN 0-08-036239-7

A complete list of volumes published in the Solubility Data Series will be found on p. 327.

CONTENTS

CONTENTS					
Foreword	vii				
Preface	ix				
Aviezer Stevan Kertes: A Personal Appreciation Y. Marcus	x				
Publications of A. S. Kertes					
Introduction to the Solubility of Solids in Liquids					
Acknowledgement					
Note that the first page of each section below gives the system contents by formula.					
<pre>1. The solubility of titanium halide and oxyhalide substances 1.1 Titanium fluoride 1.2 Salts of hexafluorotitanate(2-) Evaluation of K₂TiF₆ + H₂O system</pre>	' 1 2 4 13				
<pre>1.3 Titanium chloride, dichloride trichloride tetrachlodide 1.4 Dichlorooxotitanium 1.5 Salts of pentachlorotitanate(2-)</pre>	26 28 33 40 42				
l.6 Salts of hexachlorotitanate(2-) l.7 Titanium bromide l.8 Titanium iodide	46 51 58				
2. The solubility of zirconium halide and oxyhalide substances 2.1 Zirconium fluoride Evaluation of ZrF ₄ + HF + H ₂ O system	59 60 61				
2.2 Salts of pentafluorozirconate(1-) 2.3 Salts of hexafluorozirconate(2-) Evaluation of K ₂ ZrF ₆ + HF + H ₂ O system	74 81 84				
2.4 Salts of heptafluorozirconate(3-) Evaluation of (NH ₄) ₃ ZrF ₇ + H ₂ O system	99 99				
Evaluation of $(NH_4)_3 ZrF_7 + NH_4F + H_2O$ system	102				
2.5 Zirconium chloride 2.6 Dichlorooxozirconium Evaluation of ZrOCl ₂ + HCl + H ₂ O system	107 111 112				
2.7 Salts of hexachlorozirconate(2-) 2.8 Zirconium bromide 2.9 Dibromooxozirconium	142 146 148				
3. The solubility of hafnium halide and oxyhalide substances 3.1 Hafnium fluoride Evaluation of HfF ₄ + HF + H ₂ O system	149 150 150				
3.2 Salts of pentafluorohafnate(1-) 3.3 Salts of hexafluorohafnate(2-) Evaluation of K ₂ HfF ₆ + H ₂ O system	159 162 163				
Evaluation of Rb_2HfF_6 + H_2O system	168				
Evaluation of Cs ₂ HfF ₆ + H ₂ O system	171				
<pre>3.4 Salts of heptafluorohafnate(3-) 3.5 Hafnium chloride 3.6 Dichlorooxohafnium Evaluation of HfOCl₂ + HCl + H₂O system</pre>	174 176 178 180				
3.7 Salts of hexachlorohafnate(2-) 3.8 Hafnium bromide 3.9 Dibromooxohafnium	209 213 216				
Continued on next page					

Contents

 4. The solubility of vanadium halide and oxyhalide substances 4.1 Vanadium fluoride 4.2 Difluorooxovanadium 4.3 Trifluorooxovanadium 4.4 Vanadium chloride, dichloro trichloro 	217 218 219 221 223 224
5. The solubility of niobium halide and oxyhalide substances 5.1 Niobium fluoride 5.2 Niobium fluoride oxide Evaluation of NbO ₂ F + HF + H ₂ O system	225 226 230 230
<pre>5.3 Salts of hexafluoroniobate(1-) 5.4 Salts of heptafluoroniobate(2-) 5.5 Salts of hexafluorooxoniobate(2-) 5.6 Salts of hexachloroniobate(1-) 5.7 Niobium chloride, tetrachloro</pre>	237 239 244 245 247 248 253
5.8 Niobium chloride oxide Evaluation of NbOCl ₃ + NbCl ₅ system	260 260
5.9 Niobium bromide	264
 6. The solubility of tantalum halide and oxyhalide substances 6.1 Tantalum fluoride 6.2 Salts of hexafluorotantalate(1-) 6.3 Salts of heptafluorotantalate(2-) Evaluation of K₂TaF₇ + HF + H₂O system 	265 266 270 272 272
6.4 Salts of octafluorotantalate(3-) 6.5 Tantalum chloride, tetrachloro pentachloro Evaluation of TaCl ₅ + TiCl ₄ system	285 286 287 298
6.6 Salts of hexachlorotantalate(1-) 6.7 Tantalum bromide 6.8 Tantalum iodide	306 308 311
System index	312
Registry number index	320
Author index	324
Note that the first page of each section above gives the system contents by formula.	
Solubility Data Series: Published and Forthcoming Volumes	327

FOREWORD

If the knowledge is undigested or simply wrong, more is not better.

The Solubility Data Series is a project of Commission V.8 (Solubility Data) of the International Union of Pure and Applied Chemistry (IUPAC). The project had its origins in 1973, when the Analytical Chemistry Division of IUPAC set up a Subcommission on Solubility Data under the chairmanship of the late Prof. A.S. Kertes. When publication of the Solubility Data Series began in 1979, the Committee became a full commission of IUPAC, again under the chairmanship of Prof. Kertes, who also became *Editor-in-Chief* of the Series. The Series has as its goal the preparation of a comprehensive and critical compilation of data on solubilities in all physical systems, including gases, liquids and solids.

The motivation for the Series arose from the realization that, while solubility data are of importance in a wide range of fields in science and technology, the existing data had not been summarized in a form that was at the same time comprehensive and complete. Existing compilations of solubility data indeed existed, but they contained many errors, were in general uncritical, and were seriously out-of-date.

It was also realized that a new series of compilations of data gave educational opportunities, in that careful compilations of existing data could be used to demonstrate what constitutes data of high and lasting quality. As well, if the data were summarized in a sufficiently complete form, any individual could prepare his or her own evaluation, independently of the published evaluation. Thus, a special format was established for each volume, consisting of individual data sheets for each separate publication, and critical evaluations for each separate system, provided sufficient data from different sources were available for comparison. The compilations and, especially, the evaluations were to be prepared by active scientists who were either involved in producing new data, or were interested in using data of high quality. With minor modifications in format, this strategy has continued throughout the Series.

In the standard arrangement of each volume, the Critical Evaluation gives the following information:

(i) A text which discusses the numerical solubility information which has been abstracted from the primary sources in the form of compilation sheets. The text concerns primarily the quality of the data, after consideration of the purity of the materials and their characterization, the experimental method used, the uncertainties in the experimental values, the reproducibility, the agreement with accepted test values, and, finally, the fitting of the data to suitable functions, along with statistical tests of the fitted data.

(*ii*) A set of recommended data, whenever possible, including weighted averages and estimated standard deviations. If applicable, one or more smoothing equations which have been computed or verified by the evaluator are also given.

(111) A graphical plot of the recommended data, in the form of phase diagrams where appropriate.

The Compilation part consists of data sheets which summarize the experimental data from the primary literature. Here much effort is put into obtaining complete coverage; many good data have appeared in publications from the late nineteenth and early twentieth centuries, or in obscure journals. Data of demonstrably low precision are not compiled, but are mentioned in the Critical Evaluation. Similarly, graphical data, given the uncertainty of accurate conversion to numerical values, are compiled only where no better data are available. The documentation of data of low precision can serve to alert researchers to areas where more work is needed.

A typical data sheet contains the following information:

- (i) list of components: names, formulas, Chemical Abstracts Registry Numbers;
- (11) primary source of the data;
- (iii) experimental variables;
- (iv) compiler's name; (v) experimental values as they appear in the primary source, in modern units with explanations if appropriate;
- (vi) experimental methods used;
- (viii) apparatus and procedure used; (viii) source and purity of materials used;
 - (ix) estimated error, either from the primary source or estimated by the compiler;
 - (x) references relevant to the generation of the data cited in the primary source.

Each volume also contains a general introduction to the particular type of system, such as solubility of gases, of solids in liquids, etc., which contains a discussion of the nomenclature used, the principles of accurate determination of solubilities, and related thermodynamic principles. This general introduction is followed by a specific introduction to the subject matter of the volume itself.

The Series embodies a new approach to the presentation of numerical data, and the details continue to be influenced strongly by the perceived needs of prospective users. The approach used will, it is hoped, encourage attention to the quality of new published work, as authors become more aware that their work will attain permanence only if it meets the standards set out in these volumes. If the Series succeeds in this respect, even partially, the Solubility Data Commission will have justified the labour expended by many scientists throughout the world in its production.

January, 1989

J.W. Lorimer, London, Canada

1

PREFACE

This volume presents solubility data of the halides, oxyhalides and halogen complexes of groups four and five metals of the periodic table, titanium, zirconium, hafnium, vanadium, niobium and tantalum. The literature for binary and multicomponent systems has been covered up to the end of 1986. There was a great effort to have the literature survey as complete as possible, however, the editors will be grateful to have any ommissions brought to their attention.

Except for the fluorides, the binary halides are predominantly covalent compounds highly susceptible to hydrolysis. No data on the solubility of the binary metal chlorides, bromides or iodides in water exists. The solubilities of these compounds in non-aqueous solvents are included. The oxyhalides and the salts of the halogen complexes solubilities are mainly studied in water and in aqueous solutions.

Phase diagrams are included for many of the multicomponent systems. For the simple eutonic systems phase diagrams were included only in the cases where no numerical data were reported in the origninal document, and the phase diagrams were the sole source of information.

Only those published results that report meaningful numerical data were considered for the volume. Papers that reported qualitative results with statements like "sparingly soluble", "insoluble", etc. were not considered. Papers in which the investigators failed to specify conditions such as temperature, equilibrium time, or methods of analysis were sometimes included. They were considered for the volume either if no other data were available for the system, or if the data were published in difficult to obtain older literature. The same criteria led the compiler to include estimates from a few graphically presented results.

The volume contains data on almost two hundred systems. Relatively few of the systems were studied over common ranges of temperature by more than one laboratory. Thus the opportunity to carry out evaluations is limited, and only sixteen systems are evaluated. When an evaluation was prepared the data were first compared by plotting them graphically to observe general agreement among the values from the various publications. Regression analysis was carried out in a few cases where the agreement among the various groups of investigators seemed to be good, using various polynomial functions. This was not done for systems where the data from different laboratories differed considerably and the reasons for the discrepancies were not clear.

The editors greatfully acknowledge advice and comments from members of the IUPAC Commission on Solubility Data, particullary the Chairman, Professor A. S. Kertes and the Coordinator for Solid/Liquid Systems, Dr. Mark Salomon. We thank Dr. Kurt Loening, Chemical Abstracts Service for providing Chemical Abstracts Regisry Numbers. We thank Ms. Laura Johnson and Ms. Carolyn Dowie for typing the final camera ready manuscript.

The editors acknowledge the cooperation of the American Chemical Society, VAAP, the copyright agency of the USSR, and Pergamon Press for their permission to reproduce figures from their publications.

> J. Hála J. E. Purkyne University Brno, Czechoslovakia

Susan A. Johnson H. Lawrence Clever Emory University Atlanta, GA, USA

1987, October

A check of *Chomical Abstracts* through 1988, June did not find any additional papers on the solubility of these systems.

1989, January

AVIEZER STEVAN KERTES

May 11, 1922 - July 8, 1988

Professor of Chemistry

The Hebrew University of Jerusalem

THE SCIENTIFIC CAREER OF AVIEZER STEVAN KERTES: A PERSONAL APPRECIATION

Aviezer Stevan Kertes, known as Steve to his friends outside Israel, was a leading figure in the community of researchers on solvent extraction chemistry and the initiator and leader of the Solubility Data Project of IUPAC. He left us suddenly on July 8, 1988 at the age of sixty-six, in the midst of what were always hectic but highly efficient activities in his many fields of endeavor.

Steve Kertes was born in Szeged, Hungary, near the Yugoslav border, on May 11, 1922. This circumstance led to his fluency in both Hungarian and Serbian, to which languages he added in due course French, English and Hebrew. His scientific and technological education began at the University of Belgrade in Yugoslavia, where he obtained his M.S. degree in chemical technology in 1949. In this year he emigrated to Israel, where in Jerusalem he started and conducted his scientific career, except for a postdoctoral fellowship, periods of sabbatical leave and summer vacations spent at various institutes all over the world.

As a result of his training in chemical technology, Steve started his career at the laboratories of the Dead Sea Works, Ltd. which at that time were located in temporary accommodations in Jerusalem. It was also at this time that I first made his acquaintance, which slowly grew into a lasting friendship. In 1950 Steve quit that job and enrolled as a doctoral student at the Hebrew University of Jerusalem, under the supervision of the late Prof. Mordecai Max Bobtelsky. His Ph.D. thesis dealt with metal superphosphates and their complexes, and made extensive use of a solubility method. Later on, although Steve did not value his thesis greatly, he returned to the general problem of solubility with contributions of large scale and enormous impact. He obtained his doctoral degree in 1953, and continued for a time as an assistant in Prof. Bobtelsky's department.

The scientific career of Steve Kertes really took off once he accepted a postdoctoral fellowship with Prof. Michael Lederer at the Institut du Radium in Paris, where he stayed from 1955 to 1957. He learned there the use of radioactive tracers and came into contact with radiochemistry and nuclear technology, areas with which he maintained contact in later years. Steve's research in Paris concerned the use of paper chromatography for the study of metal complexes in aqueous organic - mineral acid solutions. When he was appointed a lecturer at the Hebrew University in Jerusalem in 1957 he continued this kind of research for some time with his first graduate student, Anna Beck. Soon Steve decided that the key to the understanding of metal complexation in aqueous organic - mineral acid solutions was a deep knowledge of the physical chemistry of these solvent systems. He therefore started a series of studies with his wife, Vera, and graduate students Anna Beck, Jacob Elhanan-Habousha and Mordecai Halpern that dealt with these systems, in particular those in which the organic solvent was tri-n-butyl phosphate. This solvent, of prime importance in the reprocessing of spent nuclear fuel, was at that time under intensive study all over the world, but Steve found important aspects that became his domain, in particular the formation of three liquid phases in systems involving it. To be sure, this again is a solubility phenomenon, a subject that was not left alone by Steve throughout his career. Besides three-phase formation, Steve's team also studied the properties of extraction systems with tri-n-butyl phosphate and its degradation product, di-n-butyl phosphate, as applied to hydrochloric, hydrobromic, and perchloric acids, uranyl chloride and perrhenate salts. With these studies Steve joined the community of researchers dealing with solvent extraction, and he eventually became a leader in this community.

Extraction by means of these phosphate esters occupied Steve's attention during the late 1950's, but in the early 1960's he turned towards a new class of extractants: long-chain substituted ammonium salts. By 1962 a few publications with his students and coworkers Anna Beck, Jacob Elhanan-Habousha and Isaac Platzner concerned these extractants. At that time, I was doing radiochemical research at the Soreq Nuclear Research Center, and contact between Steve and myself was renewed, with farreaching consequences.

In 1962 Steve went for his first sabbatical leave, which he spent at M.I.T. in Cambridge, Massachusetts with John W. Irvine, staying there till 1964. That was the time when Steve began to forge lasting friendships with a great number of colleagues whom he met at M.I.T. or elsewhere in the United States. These friendships later helped him to find collaborators for the Solubility Data Project and to find places to spend summer vacations where he could engage in scientific activities with others besides his students and colleagues in Jerusalem. His chemical research at M.I.T. concerned long-chain substituted ammonium salts in nonpolar organic diluents, a subject that continued to be in the center of his interest all through the 1960's.

The collaboration between Steve Kertes and myself crystallized in 1962 with a contract with John Wiley & Sons Ltd., then in London, to write a monograph on Ion Exchange and Solvent Extraction of Metal Complexes. This task took us more than four years, and it was not until February, 1967 that we could take out our wives for a dinner to celebrate having sent the completed manuscript to the publisher. These years were not easy for us. I was appointed in 1965 as a professor at the Hebrew University and became the head of the department at which Steve taught. There were periods of despair and tensions between us, but our satisfaction with the finished work - a book of 1050 pages published in 1969 and with the impact it had on the scientific community overcame them all. Our names became household words in all the laboratories where ion exchange or solvent extraction were used to separate metal ions, and we received numerous invitations to lecture at conferences, symposia, universities and research institutes. Steve's contributions to our book were essential to its success and to the impact it had, so that my own career was much enhanced by this partnership with him. When Steve Kertes returned in 1964 from M.I.T. to his position in Jerusalem he dealt throughout the remaining 1960's and the early 1970's, together with his graduate students George Y. Markovits, Oscar Levy and Hilda Gutmann, with the behavior of long-chain substituted ammonium salts in organic solvents and in particular with their aggregation. A wide variety of physicochemical methods served for this purpose. X-rays were used for structure determination of the solid salts (in collaboration with Prof. I. Mayer) and studies of their infrared spectra established their hydrogen-bonding properties. The viscosity, conductivity, dielectric constant and in particular the vapor pressure, measured by a thermal osmometric method, helped to elucidate the aggregation of these substances in solution. A long series of publications reported on these studies. Steve's diversity of interests were shown during another sabbatical leave in 1968/69 with Dr. Leonard Katzin at the Argonne National Laboratory in Argonne, Illinois, where he also collaborated with Dr. John Ferraro in studies of some chelate complexes. With another graduate student, Freddy Kassierer, he studied at that time the synergistic extraction with chelating extractants, and he also collaborated on this subject with Dr. Mendel Zangen of the Soreq Nuclear Research Center in Israel. The late 1960's and early 1970's constituted the peak of Steve's activities in the field of solvent extraction chemistry. He co-organized with me ISEC '68 (the 1968 International Solvent Extraction Conference) in Jerusalem and we co-edited its proceedings. At ISEC '74 in Lyon, France, he was elected to the international steering committee for these series of conferences, a position he held till 1986. His many contributions to this field were further recognized with a citation of merit at the ISEC '83 in Denver, Colorado, and finally, but alas posthumously, with the Carl Hanson medal at the recent ISEC '88 in Moscow.

The early 1970's were also an extremely fruitful period of Steve's research with his graduate students. Hilda Gutmann completed her work on the aggregation of long-chain substituted amines and their salts in nonpolar solvents, and she and Steve arrived at quite unconventional conclu-sions. These were that in these systems aggregation proceeded to yield a series of rather small oligomers, and that neither inverted micelles were formed, nor was the concept of critical micelle concentration valid for them. Fernanda Grauer and Liliane Tsimering measured, under Steve's su-pervision, the heats of mixing and dissolution of extractants in various diluents by means of precise calorimetry, and contributed thereby a new dimension to the thermodynamics of solvent extraction. Steve's summerlong stay in 1970 with Prof. Robert Guillaumont in his radiochemical laboratory of the University of Paris in Orsay brought him into contact with the field of molten salt chemistry. He then collaborated with Dr. Zangen at Soreq in the supervision of another graduate student, Judith David-Auslaender, studying extraction from molten salts with organic sol-vents. In another summer, 1977, at the City University of New York with Prof. Harmon Finston, Steve participated in work on the homogeneous liquid-liquid extraction of metal thenoyltrifluoroacetonates. Again, the diversity of Steve's interests and his ability to collaborate with others are hereby exemplified.

All through the 1970's publications appeared in the field of solvent extraction chemistry by Steve with his students and former students Markovits, Levy, Gutmann, Grauer and Tsimering. However, his main interest was diverted in the early 1970's in other directions. Two factors contributed mainly to this development. One arose from the work on the long-chain amines and the question of their micellization, the other from his election in 1967 to the Commission on Equilibrium Data of IUPAC (the International Union of Pure and Applied Chemistry), to deal initially with liquid-liquid distribution constants. The work on the aggregation and eventual micellization of the salts of long-chain substituted amines led naturally to Steve's interest in colloid chemistry, surface active substances, and microemulsions. The summer of 1973 that he spent in the Institute for Surface Chemistry in Stockholm and the subsequent sabbatical leave as a visiting professor during 1973/74 in McGill University in Montreal, Canada consolidated Steve's interaction with these fields that were up to then new to him. As a consequence he was able to act as a consultant in an industrial firm, Armac in Chicago, where he spent another sabbatical leave in 1979/80. The questions that he investigated concerned the formation of inverted micelles and microemulsions in systems involving polar solvents. Other problems that he investigated concerned the formation of inverted micelles and microemulsions in systems. Experimental studies on such systems were conducted in his laboratory by Lilian Tsimering (in collaboration with Prof. N. Garti of the Hebrew University) and a new graduate student, Wen-Chao Lai, in the late 1970's and early 1980's. Steve's stay in the summer of 1982 at Drexel University in Philadelphia was in this connection. His reputation in this field caused him to be nominated to the editorial boards of two scientific journals in the fields of colloid and surface chemistry, and to his chairing the 4th International Conference on Surface

After election to IUPAC's Commission on Equilibrium Data in 1967, Steve started on projects of compilation and critical evaluation of equilibrium constants pertinent to solvent extraction together with Dr. Eytan Yanir and myself. He soon realized the importance of accurate data and their efficient transfer from the primary scientific literature to secon-dary and tertiary sources. He therefore found his way to CODATA dary and tertiary sources. He therefore found his way to CODATA (Committee on Data for Science and Technology), and became in 1972 a member and, since 1977, the chairman of the Israel National Committee for CODATA. This activity culminated in the organization by Steve of the 9th International CODATA Conference in Jerusalem in 1984, and his acting as its chairman. He continued with work for CODATA as a member of its task groups on the accessibility and dissemination of data and of education in the use of data. Within the IUPAC Commission on Equilibrium Data (Commission V.6) Steve sought for an activity that would fit his abilities and interests but would also have far-reaching consequences. He came to the conclusion that existing data on solubilities, which are fundamental not only to chemistry and chemical technology but also to many other branches of science and engineering, were in poor shape, being neither comprehensive nor particularly reliable. He therefore proposed to the Commission on Equilibrium Data of IUPAC that it should engage in a project of compilation and critical evaluation of solubility data. This proposal led to the creation within the commission in 1971 of a task group (consisting first of D.N. Hume, A.S. Kertes and F.J.C. Rossotti; later G.H. Nancollas replaced F.J.C. Rossotti). This task group examined the feasibility of such a project, and recommended that the Commission should undertake it under a subcommittee of Commission V.6. This was, indeed, authorized by IUPAC in 1973, and Subcommission V.6.1, under the chairmanship of Steve Kertes, was created.

The task of Subcommission V.6.1 was to formulate the scope of the project, establish the mechanism of the work of compilation and evaluation, define the format of the output, and find the means for its publi-Steve was the ideal person to handle both the organizational and cation. scientific details of this task. His superb social qualifications per-mitted him to enlist hundreds of volunteers to work on the *Solubility Data Project*. He was very particular regarding who would be qualified to help. He wanted professional chemists who had experience in chemical research involving solubilities and had a stake in the accuracy of such data. Such people would naturally have interests in restricted areas of the whole field of solubility, and this meant that the project would have to be subdivided into many small sub-tasks. The overall picture would then be in the hands of topic editors and the editor-in-chief. Extended guidelines were prepared for compilers and evaluators, and sample com-pilations and evaluations were solicited from highly qualified colleagues. The scientific organization in topics and sub-topics was agreed on in many meetings, both at IUPAC General Assemblies and otherwise. In this connection, Steve stayed for a summer with Prof. Larry Clever at Emory University in Atlanta, Georgia. The onerous task of finding a pub-lisher for the project fell to Steve, who travelled far and wide and had discussions with numerous potential publishers till one was found that finally took upon itself the financial risks (and eventual profits), Pergamon Press of Oxford, UK.

Thus, as in 1979 the first volumes of the Solubility Data Project were published, the time was ripe to remove the project from under the auspices of Commission V.6, and IUPAC authorized the creation of the new full-fledged Commission on Solubility, V.8, under the chairmanship of Steve Kertes. According to IUPAC's rules Steve had to relinquish this chairmanship after eight years, in 1987, and this retirement was celebrated at a memorable dinner at the Boston General Assembly of IUPAC. Steve retained the position of Editor-in-Chief, and within IUPAC's Analytical Chemistry Division Committee, to which he was elected in 1987, he continued to make Commission V.8 aware of his concerns and to provide it with advice. By now 40 volumes of the Solubility Data Project have been published, and more are in various stages of preparation, the project being viable and of lasting value and service to the chemical and other scientific communities. Steve Kertes was also instrumental in calling into being a new series of international conferences, the International Symposia on Solubility Phenomena, the third of which took place in Guildford, UK after Steve's death. But while most of Steve's seemingly unlimited energy was channeled into organizational and editorial activities, he did not relinquish original scientific research in the field towards which most of his career was directed: solvent extraction chemistry. The opportunity for this arose from Steve's last sabbatical leave, which he spent with Prof. C. Judson King at the University of California in Berkeley in 1984/85, plus an additional summer in 1987. He supplemented Prof. King, who was busy with administrative duties, as the supervisor and counsellor of a number of graduate students. The team studied the solvent extraction of carboxylic acids and the other on the extraction of alcohols. The original research results will have to be published without Steve's very critical and painstaking evaluation. A further aspect of solvent extraction to which Steve returned in recent years was the behavior of tri-n-butyl phosphate as an extractant of acids, a subject that he studied experimentally some thirty years previously, and which was the subject of a volume that Steve co-edited a few years ago.

The very active career in science pursued by Steve Kertes, consisting of a harmonious mixture of teaching, original research in solvent extraction and surface chemistry, and organizational and editing activities, particularly in the field of solubilities, did not seem to affect Steve's health or diminish his energies. Despite quitting smoking a few years ago, he did suffer from shortness of breath, but otherwise did not appear to be approaching the age of retirement from his professorship at the Hebrew University or from his numerous other activities. He was full of plans for the near and far future, ranging from what he was going to do at the Catholic University of Leuven during his visit with Prof. Pierre Huyskens this past summer and his invited contributions to the ISEC '88 in Moscow and the 26th ICCC (International Conference on Coordination Chemistry) in Porto, Portugal, to his research with graduate students in Berkeley plus other old and new projects. These plans will never be realized now, and the scientific community of which he was such an active member will have to learn to do without him.

But it is not only projects that Steve's early demise leaves unfinished, nor not only colleagues that it leaves without a dedicated collaborator. Steve left Vera, his wife and lifelong companion and helper on voyages around the world, his daughter Tamar and son Amnon and their spouses and his two grandchildren in want of a devoted husband, father and grandfather. He left his very numerous friends on all continents the memory of a man of a charming and warm personality, who would always stand by them with advice and help if need be. Steve Kertes has left his mark not only on the fields of science in which he was active, but also on the minds and hearts of all of us, his friends.

Yizhak Marcus

Jerusalem, November, 1988

xiv

PUBLICATIONS OF A. S. KERTES

1. Bloch, M.R.; Kertes, S.; Schnerb, I. Microdetermination of bromides. Bull. Res Counc. Isr. <u>1952</u>, 1, 82-83.

2. Yaron, F.; Kertes, S.; Heitner, M. The chloride-bromide ratio of the water sources of the Eastern Emek Yezreel and of the Beisan Valley. Bull. Res. Counc. Isr. <u>1952</u>, 2, 118-120, corr. <u>1952</u>, 2, 332.

3. Bobtelsky, M.; Kertes, S. Etude spectrophotometrique de l'orthonitrophenol et son comportement envers les cations. I. Bull. Soc. Chim. Fr. <u>1954</u>, 143-147.

4. Bobtelsky, M.; Kertes, S. Complexes metalliques de orthonitrophenol, leurs composition, comportement et stabilite. Une etude spectrophotometrique. Bull. Soc. Chim. Fr. <u>1954</u>, 148-151.

5. Bobtelsky, M.; Kertes, S. The polyphosphates of calcium, strontium, barium and magnesium, their complex character, composition and behavior. J. Appl. Chem. <u>1954</u>, 4, 419-429.

6. Bobtelsky, M.; Kertes, S. The polyphosphates of cadmium, zinc and lead: the character, composition and behavior of their complexes. J. Appl. Chem. <u>1955</u>, 5, 125-133.

7. Bobtelsky, M.; Kertes, S. Etude spectrophotometrique de pnitrophenol, 2,4-dinitrophenol et acide picrique et de leurs complexes metalliques. Bull. Soc. Chim. Fr. <u>1955</u>, 325-327.

8. Bobtelsky, M.; Kertes, S. Les complexes metalliques de l'acide picrique, 2,4-dinitro et p-nitrophenol. Bull. Soc. Chim. Fr. 1955, 328-334.

9. Kertes, S. Thermodynamic indicator constants of dinitrophenols in dioxan-water mixtures. J. Chem. Soc. <u>1955</u>, 1386-1388.

10. Bobtelsky, M.; Kertes, S. The polyphosphates of manganese, cobalt, nickel and copper, their complex character, composition and behavior. J. Appl. Chem. <u>1955</u>, 5, 675-686.

11. Kertes, S.; Goldschmidt, J.M.E. A spectrophotometric study of hexanitrodiphenylamine. I. The molecular and ionic forms in dioxan. J. Chem. Soc. <u>1956</u>, 401-404.

12. Kertes, S. Relation between R_f values and dielectric constant in paper chromatography. Res. Corresp. 1956, 9, S5-S9.

13. Kertes, S. The determination of organic bases with hexanitrodiphenylamine. I. General study. Anal. Chim. Acta <u>1956</u>, 15, 73-76.

14. Kertes, S.; Kertes, V. The determination of organic bases with hexanitrodiphenylamine. II. The determination of pyridine with special reference to the determination of pyridine in alcohol. *Anal. Chim. Acta* 1956, 15, 154-157.

15. Lederer, M.; Kertes, S. Chromatography on paper impregnated with ion-exchange resins. II. Separation of selenite and tellurite. *Anal. Chim. Acta* <u>1956</u>, *15*, 226-231.

16. Kertes, S.; Lederer, M. Paper chromatography of inorganic ions. XV. R_f values in mixtures of butanol and hydrobromic acid. Anal. Chim. Acta 1956, 15, 543-547.

17. Kertes, S.; Lederer, M.; Lefort, M. Effets chimiques des rayonnements nucleaires sur la 8-hydroxyquinoleine en solution aqueuse. J. Chim. Phys. Phys.-Chim. Biol. <u>1956</u>, 959-962.

18. Kertes, S.; Lederer, M. A study of chromium(III) sulphate complexes by electrophoresis on filter paper. Anal. Chim. Acta <u>1957</u>, 16, 40-43.

19. Kertes, A.S. Effects of acid strength upon the R_f values using acidified eluants. Res. Corresp. <u>1957</u>, 10, 451-452.

20. Kertes, A.S. Paper chromatography of metal complexes. II. Replacement ability of the ligands. Anal. Chim. Acta 1957, 17, 470-475. 21. Kertes, A.S. Paper chromatography of metal complexes. III. Relationship between the R_f and the stability of metal complexes. *Anal.* Chim. Acta 1957, 17, 570-574. 22. Kertes, A.S.; Goldschmidt, J.M.E. Acid titrants and indicators in organic solvent water (9:1) mixtures. Bull. Res. Counc. Isr., Sect. A 1957, 7, 29-34. 23. Kertes, A.S. Metallic nitrates in the methylisobutylketone - nitric acid system. A paper chromatographic study. J. Chromatogr. 1958, 1, 62-66. 24. Kertes, A.S.; Ben-Bassat, A.H.I. Metallic nitrates in paper chromatography. II. The system methylisobutylketone - nitric acid lithium nitrate - water. J. Chromatogr. 1958, 1, 489-495. 25. Kertes, A.S.; Beck, A. Metallic nitrates in paper chromatography. III. The system diisopropylether - nitric acid - water. J. Chromatogr. 1958, 1, 496-500. 26. Kertes, A.S.; Beck, A. Metallic nitrates in the system isoamyl-alcohol - nitric acid - water. IV. A paper chromatographic study. *Bull. Res. Counc. Isr., Sect. A* <u>1958</u>, 7, 138-146. 27. Kertes, A.S. Separation of gadolinium from ²³⁵ U fission product rare earths. J. Inorg. Nucl. Chem. 1959, 10, 161-163. 28. Heitner-Wirguin, C.; Kertes, A.S. Inorganic and Analytical Chemistry in Semimicro Experiments. (Hebrew). Kiriat-Sepher. Jerusalem. 1959. 256 pp. 29. Kertes, A.S.; Beck, A. Metallic nitrates in paper chromatography. V. Systems containing ammonium thiocyanate. J. Chromatogr. 1959, 2, 362-371. 30. Kertes, A.S.; Beck, A. Metallic nitrates in paper chromatography. VI. Systems containing tributylphosphate and nitric acid. J. Chromatogr. <u>1960</u>, 3, 195-196. 31. Kertes, A.S. Unstable hydration of hydrochloric acid in tributylphosphate. J. Inorg. Nucl. Chem. 1960, 12, 377-378. 32. Kertes, A.S. Solute-solvent interaction in the system hydrochloric acid - water - tributylphosphate. J. Inorg. Nucl. Chem. 1960, 14, 104-113. 33. Kertes, A.S.; Kertes, V. Solvent extraction of mineral acids. III. Solute-solvent interaction in the system hydrobromic acid - water tributylphosphate. Can. J. Chem. 1960, 38, 612-619. 34. Kertes, A.S.; Kertes, V. Solvent extraction of mineral acids. IV. Solute-solvent interaction in the system hydrobromic acid - water tributylphosphate. J. Appl. Chem. 1960, 10, 287-292. 35. Kertes, A.S.; Halpern, M. Extraction equilibria in the system aqueous hydrochloric acid - uranyl chloride - tributylphosphate. J. Inorg. Nucl. Chem. 1961, 16, 308-322. 36. Kertes, A.S.; Beck, A. Solvent extraction of septivalent rhenium. I. Heterogeneous equilibria in the system aqueous nitric acid - potassium perrhenate - tributylphosphate. J. Chem. Soc. 1961, 1921-1926. 37. Kertes, A.S.; Beck, A. Solvent extraction of septivalent rhenium. II. Heterogeneous equilibria in the system aqueous nitric acid - potassium perrhenate - triisooctylamine. J. Chem. Soc. 1961, 1926-1930. 38. Kertes, A.S.; Halpern, M. Hydrolytic and photolytic reactions in the system: water - hydrochloric acid - UO_2Cl_2 - butylphosphoric esters. J. Inorg. Nucl. Chem. <u>1961</u>, 19, 359-362.

39. Kertes, A.S.; Halpern, M. Hydrochloric acid promoted hydrolysis of tributylphosphate. J. Inorg. Nucl. Chem. <u>1961</u>, 20, 117-126.

40. Kertes, A.S.; Beck, A.; Habousha, Y. Heterogeneous equilibria in the system water - nitric acid - dibutylphosphate. J. Inorg. Nucl. Chem. 1961, 21, 108-123.

41. Kertes, A.S.; Beck, A. Solvent extraction of septivalent rhenium. III. Heterogeneous equilibria in the system aqueous nitric acid - potassium perrhenate - dibutylphosphate. J. Chem. Soc. <u>1961</u>, 5046-5048.

42. Kertes, A.S.; Platzner, I.T. Distribution of nitric acid between water and Amberlite LA-1 liquid anion exchanger. *J. Inorg. Nucl. Chem.* 1962, 24, 1417-1428.

43. Kertes, A.S.; Elhanan-Habousha, Y. On the third phase formation in extraction systems involving amine hydrochlorides. *J. Inorg. Nucl. Chem.* <u>1963</u>, 25, 1531-1533.

44. Kertes, A.S. Solubility parameters of long-chain alkylamines and their activities in organic solvents. J. Inorg. Nucl. Chem. <u>1964</u>, 26, 1764-1766.

45. Halpern, M.; Kim, T.; Kertes, A.S.; Li, N.C. Studies on the uranium extraction equilibria. Photolytic and hydrolytic reactions in systems containing tributoxyethylphosphate. *Can. J. Chem.* <u>1964</u>, 42, 878-884.

46. Kertes, A.S.; Lloyd, P.J.; Kimura, K.; Byrum, J.F.; Irvine, J.W., Jr. Identification of anionic complexes in aqueous solution by solvent extraction using long-chain amines. USAEC Report TID-20451. April, <u>1964</u>. 9 pp.

47. Kertes, A.S.; Habousha, Y.E. Miscibility gap in extraction systems involving alkylamines. *Third Intern. Conf. Peaceful Uses of Atomic Energy*. Geneva, Switzerland. Vol. 10. pp. 392-397, <u>1964</u>.

48. Kertes, A.S. Solubility and activity of high-molecular weight amine hydrochlorides in organic solvents. J. Inorg. Nucl. Chem. <u>1965</u>, 27, 209-217.

49. Kertes, A.S.; Lloyd, P.J. The viscosities of solutions of acids in tributylphosphate. J. Chem. Soc. <u>1965</u>, 3477-3478.

50. Scibona, G.; Nathan, R.A.; Kertes, A.S.; Irvine, J.W., Jr. Distribution of single anions between carbon tetrachloride solutions of highmolecular weight tertiary ammonium salts and aqueous lithium chloride solutions. J. Phys. Chem. <u>1966</u>, 70, 375-382.

51. Kertes, A.S. The chemistry of the formation and elimination of a third phase in organophosphorus and amine extraction systems. In *Solvent Extraction Chemistry of Metals*. Eds. McKay, H.A.C. et al. Macmillan Co., London. pp. 377-401, <u>1966</u>.

52. Markovits, G.; Kertes, A.S. Association of long-chain tertiary amine salts in hydrocarbons. In *Solvent Extraction Chemistry*. Dyrssen, D., et al., eds. North-Holland. Amsterdam. pp. 390-397, <u>1967</u>.

53. Kertes, A.S.; Markovits, G. Activity coefficient of long-chain alkylammonium extracts in nonpolar solvents. In *Thermodynamics of Nuclear Materials*. *IAEA*. Vienna. pp. 227-235, <u>1967</u>.

54. Mayer, I.; Markovits, G.; Kertes, A.S. X-ray study of solid trilaurylamine salts. J. Inorg. Nucl. Chem. <u>1967</u>, 29, 1377-1380.

55. Kertes, A.S.; Markovits, G. Activity coefficients. Aggregation and thermodynamics of tridodecylammonium salts in nonpolar solvents. J. Phys. Chem. <u>1968</u>, 72, 4202-4210.

56. Mayer, I.; Gutmann, H.; Kertes, A.S. X-ray study of long-chain secondary ammonium halides. J. Appl. Crystallogr. <u>1968</u>, 1, 323-326.

57. Kertes, A.S.; Gutmann, H.; Levy, O.; Markovits, G. The strength of the hydrogen bond in long-chain normal aliphatic amine salts. *Isr. J. Chem.* <u>1968</u>, *6*, 463-468.

58. Gutmann, H.; Kertes, A.S. Thermal stability of long-chain aliphatic amine salts. J. Inorg. Nucl. Chem. 1969, 31, 205-211. 59. Levy, O.; Kertes, A.S. Preparation and identification of long-chain alkylammonium tetrahaloferrates. J. Inorg. Nucl. Chem. 1969, 31, 888-890. 60. Marcus, Y.; Kertes, A.S. Ion Exchange and Solvent Extraction of Metal Comlexes. Wiley-Interscience. New York. 1969. 1050 pp. 61. Kertes, A.S.; Marcus, Y., eds. Solvent Extraction Research. New York. 1969. 439 pp. 62. Kertes, A.S.; Levy, O.; Markovits, G. Dielectric constant measurements of long-chain alkylammonium salts in benzene. Proc. Int. Conf. Solvent Extr. Chem., 5th, <u>1968</u> Kertes, A.S.; Marcus, Y., eds. Wiley-Interscience. New York. pp. 177-83, <u>1969</u>. 63. Kassierer, F.; Kertes, A.S. Infrared spectra of solid synergistic adducts. *Proc. Int. Conf. Solvent Extr. Chem.*, 5th, <u>1968</u> Kertes, A.S.; Marcus, Y., eds. Wiley-Interscience. New York. pp. 305-312, <u>1969</u>. 64. Mayer, I.; Gutmann, H.; Kertes, A.S. X-ray study of long-chain nor-mal alkylammonium salts. Proc. Int. Conf. Solvent Extr. Chem., 5th, 1968 Kertes, A.S.; Marcus, Y., eds. Wiley- Interscience. New York. pp. 195-200, <u>1969</u>. 65. Lobel, E.; Zangen, M.; Kertes, A.S. Mixed complexes of gallium. I. With thenoyltrifluoroacetone and bromide. J. Inorg. Nucl. Chem. <u>1970</u>, 32, 483-491. 66. Ferraro, J.B.; Kertes, A.S.; Siegel, S.; Tani, B. Bis(L-alpha-alaninato) nickel(II) tetrahydrate. J. Inorg. Nucl. Chem. <u>1970</u>, 32, 2784-2788. 67. Kertes, A.S.; Levy, O.; Markovits, G. Aggregation of alkylammonium tetrahaloferrates in benzene. J. Phys. Chem. <u>1970</u>, 74, 3568-3571. 68. Kertes, A.S. The Chemistry of Solvent Extraction. In Recent Advances in Liquid-Liquid Extraction. Hanson, C., ed. Pergamon Press. Oxford. <u>1970</u>, pp. 16-92. 69. Kassierer, F.; Kertes, A.S. Mixed complexes in solvent extraction. Synergistic adducts of lanthanides with two bidentate ligands. Proc. Symp. Coord. Chem., 3rd, <u>1970</u> Beck, M.T., ed. Akademiai Kiado. Budapest. <u>1970</u>, pp. 119-132. 70. Kertes, A.S.; Levy, O.; Markovits, G. Molecular association and the dielectric constant of long-chain alkylammonium salts in benzene. J. Phys. Chem. 1971, 75, 542-547. 71. Gutmann, H.; Kertes, A.S. Conductance and association of secondary and tertiary alkylammonium salts in organic solvents. *Isr. J. Chem.* <u>1971</u>, 8, 947-950. 72. Kertes, A.S. Complexes of actinides in molten salts. Actinides Rev. 1971, 1, 371-407. 73. Kertes, A.S.; Gutmann, H.; Mayer, I. X-ray study of primary longchain alkylammonium halides. J. Appl. Crystallogr. 1971, 93-95. 74. Levy, O.; Markovits, G.; Kertes, A.S. Aggregation equilibria in solvent extraction of iron (III) halides. J. Inorg. Nucl. Chem. <u>1971</u>, 33, 551-557. 75. Marcus, Y.; Hoffman, E.; Kertes, A.S. Abbreviations for commonly used non-chelating extractants. J. Inorg. Nucl. Chem. 1971, 33, 863-867. 76. Kertes, A.S. Correlation of heat of formation data for organophosphorus and alkylamine extractants. J. Inorg. Nucl. Chem. 1972, 34, 796-800.

77. Kertes, A.S.; Foos, J.; Levy, O.; Guillaumont, R. Redox extraction in liquid metal (Pb-Bi), molten salt (AlCl₃-LiCl) systems. J. Inorg. Nucl. Chem. <u>1972</u>, 34, 321-327.

78. Kassierer, E.F.; Kertes, A.S. Displacement of water in synergic extraction systems. J. Inorg. Nucl. Chem. <u>1972</u>, 34, 778-780.

79. Kassierer, E.F.; Kertes, A.S. Synergic extraction of some lanthanides and transition metals by two bidentate chelating agents. J. Inorg. Nucl. Chem. <u>1972</u>, 34, 3221-3231.

80. Kertes, A.S.; Kassierer, E.F. Thermochemistry of lanthanide complexes in thenoyltrifluoroacetone-bipyridyl system. *Inorg. Chem.* <u>1972</u>, 11, 2108-2111.

81. Kassierer, E.F.; Kertes, A.S. Thermodynamics of solvent extraction processes. Synergic adducts of copper and zinc diketonates with bidentate nitrogen bases. J. Inorg. Nucl. Chem. <u>1972</u>, 34, 3209-3214.

82. Grauer, F.; Kertes, A.S. Heats of mixing of tri-n-dodecylamine with n-octane, benzene or chlorobenzene. J. Chem. Eng. Data <u>1973</u>, 18, 405-407.

83. Kertes, A.S.; Grauer, F. Effect of chain length on heats of mixing in tri-*n*-alkylamine-benzene systems. *J. Phys. Chem.* <u>1973</u>, 77, 3107-3110.

84. Kertes, A.S.; Gutmann, H.; Levy, O.; Markovits, G.Y. Aggregation of cationic amphiphiles in organic solvents. *Chemie Physikalische Chemie und Anwendungstechnick der grenzflächenaktiven Stoffe*. Carl Hansen Verlag. Munich. pp. 1023-1033, <u>1973</u>.

85. Grauer, F.; Kertes, A.S. Formation of trialkylammonium chlorides in dry and wet benzene. *Proceedings*, *ISEC* <u>1974</u>. Soc. Chem. Ind. London. pp. 1441-1450, <u>1974</u>.

86. David-Auslaender, J.; Zangen, M.; Kertes, A.S. Solvent extraction from molten salts. X. Extraction of perrhenate by alkylammonium salts. J. Inorg. Nucl. Chem. <u>1974</u>, 36, 425-430.

87. Zangen, M.; David-Auslaender, J.; Kertes, A.S. Solvent extraction from molten salts. XI. Extraction of cobalt(II) by di-n-dodecylammonium thiocyanate. J. Inorg. Nucl. Chem. <u>1974</u>, 36, 218-220.

88. David-Auslaender, J.; Gutmann, H.; Kertes, A.S.; Zangen, M. Nonideal behavior of alkylammonium salts in organic solvents at elevated temperatures. J. Solution Chem. <u>1974</u>, 3,251-260.

39. Foos, J.; Kertes, A.S.; M. Peleg. Spectra of neodymium(III) in nitrate-water and nitrate-chloride melts. J. Inorg. Nucl. Chem. <u>1974</u>, 36, 837-840.

90. Markovits, G.Y.; Levy, O.; Kertes, A.S. Cationic surfactants in organic solvents. II. Viscosity and conductance of trilaurylammonium salts in carbon tetrachloride and benzene. *J. Colloid Interface Sci.* <u>1974</u>, 47, 424-430.

91. Tsimering, L.; Kertes, A.S. Excess enthalpies of tri-nbutylphosphate + hydrocarbons. J. Chem. Thermodyn. <u>1974</u>, 6, 411-415.

92. Tsimering, L.; Kertes, A.S. Correlation of excess enthalpies of mixing in the tributyl phosphate-n-alkane system. *Proc. Int. Solvent Extr. Conf.* <u>1974</u>, 2, 1433-1440. Geffreys, G.V., ed. Soc. Chem. Ind. London.

93. Marcus, Y.; Kertes, A.S.; Yanir, E. IUPAC Chemical Data Series. No. 15. Pt. 1. Equilibrium Constants of Liquid-Liquid Distribution Reactions. Organophosphorus Extractants. Butterworths. London. <u>1974</u>. 85 pp.

94. Kertes, A.S.; Marcus, Y.; Yanir, E. IUPAC Chemical Data Series. No. 15. Pt. 2. Equilibrium Constants of Liquid-Liquid Distribution Reactions. Alkylammonium Extractants. Butterworths. London. <u>1974</u>. 85 pp.

95. Kertes, A.S.; Gutmann, H. Surfactants in Organic Solvents: The Physical Chemistry of Aggregation and Micellization. In Surface and Col-loid Science. Matijevic, E., ed. Wiley-Interscience. New York. Vol. 8, Chapter 3. pp. 193-295, <u>1975</u>. 96. Kertes, A.S.; Levy, O.; Markovits, G. Solubility. In *Experimental Thermodynamics*. Le Neindre, B.; Vodar, B., eds. Butterworths. London. Vol. II, Chapter 15, pp. 725-748, <u>1975</u>. 97. Kertes, A.S.; Levy, O.; Markovits, G.Y. Aggregation of alkylam-monium bisulfate in benzene. In *Proceedings*. *Colloid and Surface Science*. Wolfram, E., ed. Akademiai Kiado. Budapest. pp. 497-500, <u>1975</u>. 98. Gutmann, H.; Kertes, A.S. Cationic surfactants in organic solvents. III. Critical micelle concentration of dodecylammonium halides in benzene and toluene. J. Colloid Interface Sci. 1975, 51, 406-411. 99. Tsimering, L.; Kertes, A.S. Correlation of excess enthalpies of mixing in tributyl-phosphate-n-alkane system. Thermochim. Acta 1975, 12, 206-208. 100. Kertes, A.S.; Jernstrom, B.; Friberg, S. Solubilization in the four-component system: water - alkali soap - fatty acid - carbon tetrachloride. J. Colloid Interface Sci. <u>1975</u>, 52, 122-128. 101. David-Auslaender, J.; Zangen, M.; Kertes, A.S. Solvent extraction from molten salts. XII. Extraction of lutetium by dialkylammonium thiocyanates. *Bull. Soc. Chim. Belg.* <u>1975</u>, *84*, 541-547. 102. Kertes, A.S. Excess enthalpy. Tri-n-dodecylamine-n-octane system. Int. Data Ser., Sel. Data Mixtures, Ser. A. <u>1974</u> (pub. <u>1975</u>), (2), 151. 103. Kertes, A.S. Excess enthalpy. Tri-n-dodecylamine-benzene system. Int. Data Ser., Sel. Data Mixtures, Ser. A. <u>1974</u> (pub. <u>1975</u>), (2), 152. 104. Kertes, A.S. Excess enthalpy. Tri-n-dodecylamine-chlorobenzene sys-Int. Data Ser., Sel. Data Mixtures, Ser. A. 1974 (pub. 1975), (2), tem. 153. 105. Kertes, A.S. Excess enthalpy. Tributylamine-benzene system. Int. Data Ser., Sel. Data Mixtures, Ser. A. <u>1974</u> (pub. <u>1975</u>), (3), 209. 106. Kertes, A.S. Excess enthalpy. Tri-n-octylamine-benzene system. Int. Data Ser., Sel. Data Mixtures, Ser. A. <u>1974</u> (pub. <u>1975</u>), (3), 210. Excess enthalpy. Tributylphosphate-n-hexane system. 107. Kertes, A.S. Int. Data Ser., Sel. Data Mixtures, Ser. A. <u>1974</u> (pub. <u>1975</u>), (3), 211. 108. Kertes, A.S. Excess enthalpy. Tributylphosphate-n-dodecane system. Int. Data Ser., Sel. Data Mixtures, Ser. A. <u>1974</u> (pub. <u>1975</u>), (3), 212. 109. Kertes, A.S. Excess enthalpy. Tributylphosphate-benzene system. Int. Data Ser., Sel. Data Mixtures, Ser. A. <u>1974</u> (pub. <u>1975</u>), (3), 213. 110. Kertes, A.S.; Tsimering, L.; Grauer, F. Heat of solution of extractants in hydrocarbon solvents. J. Inorg. Nucl. Chem. 1975, 38, 867-869. 111. Gilson, D.F.R.; Kertes, A.S.; Manley, R. St. J.; Tsau, J.; G. Don-nay. Polymorphism in n-alkylammonium chlorieds: X-ray powder diffraction studies. Can. J. Chem. 1976, 54, 765-768. 112. Grauer, F.; Kertes, A.S. Thermodynamics of neutralization of alkylamines by hydrogen halides in benzene. J. Phys. Chem. <u>1976</u>, 80, 1937-1941. 113. Kertes, A.S. Aggregation of surfactants in hydrocarbons. Incom-patibility of the critical micelle concentration concept with experimen-tal data. In Micellization. Solubilization and Microemulsions. Mittal, K.L., ed. Plenum Publ. Co. New York, Vol. 1. pp. 445-454, 1977. 114. Kertes, A.S. Critical Evaluation of Some Equilibrium Constants Involving Alkylammonium Extractants. Pergamon. Oxford. 1977. 46 pp.

115. Marcus, Y.; Yanir, E.; Kertes, A.S. IUPAC Chemical Data Series. No. 15. Pt. 3. Equilibrium Constants of Liquid-Liquid Distribution Reactions, Compound Forming Extractants, Solvating Solvents, and Inert Solvents. Pergamon. Oxford. <u>1977</u>. 46 pp.

116. Kertes, A.S.; Battino, R.; Clever, H.L.; Davis, S.S.; Gerrard, W.; Sigworth, G.K.; Young, C.L. Solubility Data Project. Compilation and critical evaluation of solubility data in all physical systems. Proc. Bienn. CODATA Conf., 5th, 1976. Dreyfus, B., ed. Pergamon Press. Oxford. pp. 217-225, 1977; CODATA Bull. 1976, 21, 74-81.

117. Kertes, A.S.; Tsimering, L. Enthalpies of mixing and solution in trialkyl phosphate-water systems. J. Phys. Chem. <u>1977</u>, 81, 120-125.

118. Tsimering, L.; Kertes, A.S. Enthalpies of mixing of tributylphosphate with hydrogen-bonding solvents. *J. Chem. Eng. Data* <u>1977</u>, 22, 163-164.

119. Kertes, A.S.; Tsimering, L. Thermodynamics of solvent extraction processes. Heat capacities. heats of mixing and solution of organophosphorus extractants in dodecane. J. Inorg. Nucl. Chem. <u>1977</u>, 39, 649-651.

120. Kertes, A.S.; Grauer, F. Enthalpy of formation of tridodecylammonium chloride and its enthalpy of solution in benzene. *J. Chem. Thermodyn.* <u>1977</u>, 9, 507-510.

121. Kertes, A.S. Barriers in the flow of numerical data from primary to secondary to tertiary literature. A case history. In *Scientific Information Transfer*. *The Editor's Role*. Balaban. M. ed. D. Reidel. Dordrecht. Holland. pp. 329-336, <u>1978</u>.

122. Kertes, A.S.; Grauer, F. Thermodynamics of solvent extraction processes. Effect of diluent on the enthalpy of formation of tri-n-octylammonium chloride. J. Inorg. Nucl. Chem. <u>1978</u>, 40, 1781-1782.

123. Hong, Chia-Swee; Finston, H.L.; Williams, E.T.; Kertes, A.S. Homogenous liquid-liquid extraction of metal thenoyltrifluoroacetonates. J. Inorg. Nucl. Chem. <u>1979</u>, 41, 420-421.

124. Kertes, A.S.; Davies, S.S. Intellectual and scholarly judgement in critical evaluation of numerical data. A case history. In *Proc. 6th CODATA Conf.* Dreyfus, B., ed. Pergamon Press. Oxford. pp. 189-196, 1979.

125. Kertes, A.S. Tar recovery from tar sands. <u>Israeli</u> <u>47,818</u>, 30 Nov. <u>1979</u>.

126. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Helium and Neon. Vol. 1. Clever, H.L., ed. IUPAC-Pergamon Press. Oxford. <u>1979</u>. 393 pp.

127. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Krypton, Xenon and Radon. Vol. 2. Clever, H.L., ed. IUPAC-Pergamon Press. Oxford. 1979. 357 pp.

128. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Silver Azide, Cyanide, Cyanamides, Cyanate, Selenocyanate and Thiocyanate. Vol. 3. Salomon, M., ed. IUPAC-Pergamon Press. Oxford. <u>1979</u>. 247 pp.

129. Kertes, A.S.; Chaston, S.; Lai, Wen Chao. Thermodynamics of microemulsion systems. I. Enthalpies of solution in binary and ternary systems of octane. octanol and octanoic acid. *J. Colloid Interface Sci.* 1980, 73, 94-104.

130. Kertes, A.S.; Lai, Wen Chao. Thermodynamics of microemulsion systems. II. Enthalpies of solution in aqueous sodium chloride & 2 propanol systems. *J. Colloid Interface Sci.* <u>1980</u>, *76*, 48-54.

131. Kertes, A.S.; Lai, Wen Chao. Thermodynamics of microemulsion systems. III. Enthalpies of transfer of alcohol cosurfactants in aqueous electrolyte-hydrocarbon systems. *Colloids Surf.* <u>1980</u>, *1*, 197-208.

Kertes, A.S., Editor-in-Chief. Solubility Data Series. Argon. Vol.
 Clever, H.L., ed. IUPAC-Pergamon Press. Oxford. <u>1980</u>. 331 pp.

133. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Alkali Metal, Alkaline-Earth Metal and Ammonium Halides, Amide Solvents. Vol. 11. Scrosati, B.; Vincent, C.A.; eds. IUPAC-Pergamon Press. Oxford. 1980. 354 pp. 134. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Hydrogen and Deuterium. Vol. 5/6. Young, C.L., ed. IUPAC-Pergamon Press. Oxford. 1981. 646 pp. 135. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Oxygen and Ozone. Vol. 7. Battino, R., ed. IUPAC-Pergamon Press. Oxford. 1981. 519 pp. 136. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Tetraphenyl-borates. Vol. 18. Popovych, O., ed. IUPAC-Pergamon Press. Oxford. <u>1981</u>. 242 pp. 137. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Oxides of Nitrogen. Vol. 8. Young, C.L., ed. IUPAC-Pergamon Press. Oxford. <u>1981</u>. 369 pp. 138. Kertes, A.S.; M. Folman, eds. Proc. Fouth Intern. Conf. Surface and Colloid Science. Pure Applied Chem. 1981, 53, 2023-2282. 139. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Ethane. Vol. 9. Hayduk, W., ed. IUPAC-Pergamon Press. Oxford. 1982. 263 pp. 140. Kertes, A.S.; Lai, W.C. Enthalpies of solution of benzene, trich-loromethane and tetrachloromethane in liquid carboxylic acids. J. Chem. Thermodyn. 1982, 14, 601-602. 141. Lai, W.C.; Kertes, A.S. Thermodynamics of microemulsion systems. IV. Enthalpies of solution of fatty acid cosurfactants in hydrocarbon oils. *Colloids Surf.* <u>1982</u>, 4, 379-387. 142. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Nitrogen and Air. Vol. 10. Battino, R., ed. IUPAC-Pergamon Press. Oxford. 1982. 570 pp. 143. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Sulfur Dioxide, Chlorine, Fluorine and Chlorine Oxides. Vol. 12. Young, C.L., ed. IUPAC-Pergamon Press. Oxford. 1983. 477 pp. 144. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Scandium, Yttrium, Lanthanum and Lanthanide Nitrates. Vol. 13. Siekierski, S.; Mioduski, T.; Salomon, M., eds. IUPAC-Pergamon Press. Oxford. 1983. 490 pp. 145. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Alkaline Earth Metal Halates. Vol. 14. Miyamoto, H.; Salomon, M.; Clever, H.L., eds. IUPAC-Pergamon Press. Oxford. <u>1983</u>. 332 pp. 146. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Alcohols with Water. Vol. 15. Barton, A.F.M., ed. IUPAC-Pergamon Press. Oxford. <u>1984</u>. 438 pp. 147. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Antibiotics: I. β -Lactam Antibiotics. Vols. 16/17. Tomlinson, E.; Regosz, A., eds. IUPAC-Pergamon Press. Oxford. 1984. 790 pp. 148. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Cumulative Index. Vols. 1 - 18. Vol. 19. Young, C.L., ed. IUPAC-Pergamon Press. Oxford. <u>1985</u>. 300 pp. 149. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Halogenated Benzenes, Toluenes and Phenols with Water. Vol. 20. Horvath, A.L.; Getzen, F.W., eds. IUPAC-Pergamon Press. Oxford. 1985. 266 pp. 150. Kertes, A.S.; Wolman, Y. Continuous and current updating of numerical databases. In The Role of Data in Scientific Progress. Glaesser, P.S., ed. Elsevier Science Publishers. Amsterdam. pp. 481-483, 1985.

151. Kertes, A.S.; Tsimering, L.; Garti, N. Enthalpies of solution in sodium octanoate, water and alcohol mixtures. *Colloid Polym. Sci.* <u>1985</u>, 263, 67-74. 152. Kertes, A.S.; Guillaumont, R. Solubility of Uranium(IV) Oxide. comparative review. Nucl. Chem. Waste Manage. <u>1985</u>, 51, 215-219. Α 153. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Ammonia, Amines, Phosphine, Arsine, Stibine, Silane, Germane and Stannane in Or-ganic Solvents. Vol. 21. eds. Young, C.L.; Fogg, P.G.T., eds. IUPAC-Pergamon Press. Oxford. 1985. 344 pp. 154. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Scandium, Yttrium, Lanthanum and Lanthanide Halides in Nonaqueous Solvents. Vol. 22. Mioduski, T.; Salomon, M., eds. IUPAC-Pergamon Press. Oxford. 1985. 398 ag. 155. Kertes, A.S.; King, C.J. Extraction chemistry of fermentation-product carboxylic acids. *Biotechnol. Bioeng.* <u>1986</u>, 2, 269-282. 156. Kertes, A.S.; King, C.J. Extraction chemistry of low molecularweight aliphatic alcohols. Lawrence Berkeley Laboratory Report. LBL-21210. March, 1986. 102 pp.; Chem. Rev. 1987, 87, 687-710. 157. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Copper, Silver, Gold and Zinc, Cadmium and Mercury Oxides and Hydroxides. Vol. 23. Dirkse, T.P., ed. IUPAC-Pergamon Press. Oxford. <u>1986</u>. 360 pp. 158. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Propane, Butane and 2-Methypropane. Vol. 24. Hayduk, W., ed. IUPAC-Pergamon Press. Oxford. 1986. 447 pp. 159. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Metals in Mercury. Vol. 25. Hirayama, C.; Galus, Z.; Guminski, C., eds. IUPAC-Pergamon Press. Oxford. <u>1986</u>. 451 pp. 160. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Sulfites, Selenites and Tellurites. Vol. 26. Masson, M.R.; Lutz, H.D.; Engelen, B., eds. IUPAC-Pergamon Press. Oxford. <u>1986</u>. 451 pp. 161. Kertes, A.S. Accessibility and Retrieval of Data in Separation Chemistry and Technology. In *Chemical Separations*. Vol. I. Principles. Accessibility and Retrieval of Data in Separation King, C.J.; Navratil, J.D., eds. Litarvan Literature. Denver. 1986. 162. Mackay, R.A.; Dixit, N.S.; Hermansky, C.; Kertes, A.S.; Conductivity and Diffusion measurements in Micellar and O/W Microemulsion Systems. A Comparative Study. Colloids Surf. 1986, 21, 27-39. 163. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Methane. Vol. 27/28. Clever, H.L.; Young, C.L., eds. IUPAC-Pergamon Press. Oxford. 1987. 783 pp. 164. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Mercury in Liquids, Compressed Gases, Molten Salts and Other Elements. Vol. 29. Clever, H.L., ed. IUPAC-Pergamon Press. Oxford. 1987. 255 pp. 165. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Alkali Metal Halates, Ammonium Iodate and Iodic Acid. Vol. 30. Miyamoto, H.; Salomon, M., eds. IUPAC-Pergamon Press. Oxford. 1988. 510 pp. 166. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Alkali Metal Orthophosphates. Vol. 31. Eysseltová, J.; Dirkse, T.P., eds. IUPAC-Pergamon Press, Oxford, 1988, 348 pp. 167. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Hydrogen Sulfide, Deuterium Sulfide and Hydrogen Selenide. Vol. 32. Fogg, P.G.T.; Young, C.L., eds. IUPAC-Pergamon Press. Oxford. 1988. 352 pp. 168. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Molten Alkali Metal Alkanoates. Vol. 33. Franzosini, P., ed. IUPAC-Pergamon Press. Oxford. <u>1988</u>. 348 pp.

169. Kertes, A.S., Editor-in-Chief. Solubility Data Series. 4-Aminobenzenesulfonamides. Part I. Non-cyclic Substituents. Vol. 34. Paruta, A.N.; Piekos, R., eds. IUPAC-Pergamon Press. Oxford. <u>1988</u>. 347 pp.

170. Kertes, A.S., Editor-in-Chief. Solubility Data Series. 4-Aminobenzenesulfonamides. Part II. 5-Membered Heterocyclic Substituents. Vol. 35. Paruta, A.N.; Piekos, R., eds. IUPAC-Pergamon Press. Oxford. 1988. 343 pp.

171. Kertes, A.S., Editor-in-Chief. Solubility Data Series. 4-Aminobenzenesulfonamides. Part III. 6-Membered Heterocyclic Substituents and Miscellaneous Systems. Vol. 36. Paruta, A.N.; Piekos, R., eds. IUPAC-Pergamon Press. Oxford. <u>1988</u>. 528 pp.

172. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Hydrocarbons with Water and Seawater. Part I: Hydrocarbons C_5 to C_7 . Vol. 37. Shaw, D.G., ed. IUPAC-Pergamon Press. Oxford. <u>1988</u>. 527 pp.

173. Kertes, A.S., Editor-in-Chief. Solubility Data Series. Hydrocarbons with Water and Seawater. Part I: Hydrocarbons C_8 to C_{36} . Vol. 38. Shaw, D.G., ed. IUPAC-Pergamon Press. Oxford. <u>1988</u>. 560 pp.

INTRODUCTION TO THE SOLUBILITY OF SOLIDS IN LIQUIDS

Nature of the Project

The Solubility Data Project (SDP) has as its aim a comprehensive search of the literature for solubilities of gases, liquids, and solids in liquids or solids. Data of suitable precision are compiled on data sheets in a uniform format. The data for each system are evaluated, and where data from different sources agree sufficiently, recommended values are proposed. The evaluation sheets, recommended values, and compiled data sheets are published on consecutive pages.

Definitions

A mixture (1, 2) describes a gaseous, liquid, or solid phase containing more than one substance, when the substances are all treated in the same way.

A solution (1, 2) describes a liquid or solid phase containing more than one substance, when for convenience one of the substances, which is called the solvent, and may itself be a mixture, is treated differently than the other substances, which are called solutes. If the sum of the mole fractions of the solutes is small compared to unity, the solution is called a dilute solution.

The solubility of a substance B is the relative proportion of B (or a substance related chemically to B) in a mixture which is saturated with respect to solid B at a specified temperature and pressure. Saturated implies the existence of equilibrium with respect to the processes of dissolution and precipitation; the equilibrium may be stable or metastable. The solubility of a substance in metastable equilibrium is usually greater than that of the corresponding substance in stable equilibrium. (Strictly speaking, it is the activity of the substance in metastable equilibrium that is greater.) Care must be taken to distinguish true metastability from supersaturation, where equilibrium does not exist.

Either point of view, mixture or solution, may be taken in describing solubility. The two points of view find their expression in the quantities used as measures of solubility and in the reference states used for definition of activities, activity coefficients and osmotic coefficients.

The qualifying phrase "substance related chemically to B" requires comment. The composition of the saturated mixture (or solution) can be described in terms of any suitable set of thermodynamic components. Thus, the solubility of a salt hydrate in water is usually given as the relative proportion of anhydrous salt in solution, rather than the relative proportions of hydrated salt and water.

Quantities Used as Measures of Solubility

1. Mole fraction of substance B, x_B:

$$x_{B} = n_{B} / \sum_{s=1}^{C} n_{s}$$
 [1]

where $n_{\rm S}$ is the amount of substance of s, and c is the number of distinct substances present (often the number of thermodynamic components in the system). Mole per cent of B is 100 $x_{\rm B}$.

2. Mass fraction of substance B, w_B:

$$w_{B} = m_{B}' / \sum_{s=1}^{C} m_{s}'$$
 [2]

where m_g is the mass of substance s. Mass per cent is 100 wg. The equivalent terms weight fraction and weight per cent are not used.

3. Solute mole (mass) fraction of solute B (3, 4):

 $x_{s,B} = m_B / \sum_{g=1}^{C} m_g = x_B / \sum_{g=1}^{C} x_s$ [3]

$$w_{s,B} = m_{B}' / \sum_{s=1}^{C} m_{s}' = w_{B} / \sum_{s=1}^{C} w_{s}$$
 [3a]

where the summation is over the solutes only. For the solvent A, $x_{S,A}$ $x_A/(1 - x_A)$, $w_{S,A} = w_A/(1 - w_A)$. These quantities are called Jänecke mole (mass) fractions in many papers.

4. Molality of solute B (1, 2) in a solvent A:

 $m_B = n_B/n_A M_A$ SI base units: mol kg⁻¹ [4]

where M_A is the molar mass of the solvent.

5. Concentration of solute B (1, 2) in a solution of volume V:

SI base units: mol m⁻³ $C_{R} = [8] = n_{R}/V$

The symbol c_B is preferred to [B], but both are used. The terms molarity and molar are not used.

[5]

Mole and mass fractions are appropriate to either the mixture or the solution point of view. The other quantities are appropriate to the solution point of view only. Conversions among these quantities can be carried out using the equations given in Table I-1 following this Introduction. Other useful quantities will be defined in the prefaces to individual volumes or on specific data sheets.

In addition to the quantities defined above, the following are useful in conversions between concentrations and other quantities.

SI base units: kg m⁻³ 6. Density: $\rho = m/V$ [6]

7. Relative density: d; the ratio of the density of a mixture to the density of a reference substance under conditions which must be specified for both (1). The symbol d_{L} will be used for the density of a mixture at t°C, 1 bar divided by the density of water at t°C, 1 bar. (In some cases 1 atm = 101.325 kPa is used instead of 1 bar = 100 kPa.)

8. A note on nomenclature. The above definitions use the nomenclature of the IUPAC Green Book (1), in which a solute is called B and a solvent A In compilations and evaluations, the first-named component (component 1) is the solute, and the second (component 2 for a two-component system) is the solvent. The reader should bear these distinctions in nomenclature in mind when comparing nomenclature and theoretical equations given in this Introduction with equations and nomenclature used on the evaluation and compilation sheets.

Thermodynamics of Solubility

The principal aims of the Solubility Data Project are the tabulation and evaluation of: (a) solubilities as defined above; (b) the nature of the saturating phase. Thermodynamic analysis of solubility phenomena has two aims: (a) to provide a rational basis for the construction of functions to represent solubility data; (b) to enable thermodynamic quantities to be extracted from solubility data. Both these are difficult to achieve in many cases because of a lack of experimental or theoretical information concerning activity coefficients. Where thermodynamic quantities can be found, they are not evaluated critically, since this task would involve critical evaluation of a large body of data that is not directly relevant to solubility. The following is an outline of the principal thermodynamic relations encountered in discussions of solubility. For more extensive discussions and references, see books on thermodynamics, e.g., (5-12).

Activity Coefficients (1)

(a) Mixtures. The activity coefficient
$$f_B$$
 of a substance B is given

by

RT ln
$$(f_B x_B) = \mu_B - \mu_B^*$$
 [7]

where $\mu_B\star$ is the chemical potential of pure B at the same temperature and pressure. For any substance B in the mixture,

$$\lim_{x_B \to 1} f_B \sim 1$$
 [8]

(b) Solutions.

(1) Solute B. The molal activity coefficient γ_B is given by [9]

RT ln($\gamma_B m_B$) = μ_B - (μ_B - RT ln m_B)^{∞}

where the superscript $^{\infty}$ indicates an infinitely dilute solution. For any solute B,

$$\gamma_{\rm B}^{\rm ev} = 1$$
 [10]

The Solubility of Solids in Liquids Activity coefficients y_B connected with concentrations c_B , and $f_{x,B}$ (called the rational activity coefficient) connected with mole fractions x_B are defined in analogous ways. The relations among them are (1, 9), where ρ^* is the density of the pure solvent: $f_{B} = (1 + M_{A_{a}} \sum_{m_{s}}) \gamma_{B} = [\rho + \sum_{m_{s}} (M_{A} - M_{s})c_{s}] y_{B} / \rho^{*}$ [11] $\gamma_B = (1 - \sum_{\mathbf{s}} x_{\mathbf{s}}) f_{\mathbf{X},B} = (\rho - \sum_{\mathbf{s}} M_{\mathbf{s}} c_{\mathbf{s}}) y_B / \rho^*$ [12] $y_B = \rho^* f_{x,B} [1 + \sum_{n} (M_s/M_A - 1)x_B] / \rho = \rho^* (1 + \sum_{n} M_s m_s) y_B / \rho$ [13] For an electrolyte solute $B = C_{\nu+}A_{\nu-}$, the activity on the molality scale is replaced by (9) $\gamma_{B}m_B = \gamma_{\pm}\nu_{m_B}\nu_Q\nu$ [14] where $\nu = \nu_{+} + \nu_{-}$, $Q = (\nu_{+}^{\nu_{+}}\nu_{-}^{\nu_{-}})^{1/\nu}$, and ν_{\pm} is the mean ionic activity coefficient on the molality scale. A similar relation holds for the concentration activity, y_{BCB} . For the mole fractional activity, $f_{\mathbf{X},\mathbf{B}\mathbf{X}\mathbf{B}} = Q^{\nu}f_{\pm}^{\nu}x_{\pm}^{\nu}$ [15] where $x_{\pm} = (x_{\pm}x_{\pm})^{1/\nu}$. The quantities x_{\pm} and x_{\pm} are the ionic mole fractions (9), which are $x_{+} = \nu_{+} x_{B} / [1 + \sum_{a} (\nu_{s} - 1) x_{s}]; \quad x_{-} = \nu_{-} x_{B} [1 + \sum_{a} (\nu_{s} - 1) x_{s}]$ [16] where ν_{S} is the sum of the stoichiometric coefficients for the ions in a salt with mole fraction x_s . Note that the mole fraction of solvent is now $x_{A}' = (1 - \sum_{a} \nu_{s} x_{s}) / [1 + \sum_{a} (\nu_{s} - 1) x_{s}]$ [17] so that $x_A' + \sum v_s x_s - 1$ [18] The relations among the various mean ionic activity coefficients are:

$$f_{\pm} = (1 + M_{A}) v_{g} m s) v_{\pm} = [\rho + \sum_{g} (v_{g} M_{A} - M_{g}) c_{g}] y_{\pm} / \rho^{*}$$
[19]

$$\gamma_{\pm} = \frac{(1 - \sum_{s} x_{s})f_{\pm}}{1 + \sum_{s} (v_{s} - 1)x_{s}} = (\rho - \sum_{s} M_{s}c_{s})y_{\pm}/\rho^{*}$$
[20]

$$y_{\pm} = \frac{\rho^{*}[1 + \sum_{g}(M_{g}/M_{A} - 1)x_{g}]f_{\pm}}{\rho[1 + \sum_{g}(\nu_{g} - 1)x_{g}]} = \rho^{*}(1 + \sum_{g}M_{g}m_{g})^{\gamma}_{\pm}/\rho \qquad [21]$$

(11) Solvent, A:

The osmotic coefficient, ϕ , of a solvent A is defined as (1):

$$\phi = (\mu_A^* - \mu_A) / RT M_A \sum_{m_B} [22]$$

where μ_A^* is the chemical potential of the pure solvent.

The rational osmotic coefficient, ϕ_X , is defined as (1):

 $\phi_{X} = (\mu_{A} - \mu_{A}^{*})/RT \ln x_{A} = \phi M_{A} \sum_{m_{S}} \ln(1 + M_{A} \sum_{m_{S}})$ [23]

The activity, a_A , or the activity coefficient, f_A , is sometimes used for the solvent rather than the osmotic coefficient. The activity coefficient is defined relative to pure A, just as for a mixture.

For a mixed solvent, the molar mass in the above equations is replaced by the average molar mass; i.e., for a two-component solvent with components J, K, MA becomes

$$M_A = M_J + (M_K - M_J) x_{V,K}$$
 [24]

where $x_{V,K}$ is the solvent mole fraction of component K.

The osmotic coefficient is related directly to the vapor pressure, p, of a solution in equilibrium with vapor containing A only by (12, p.306):

$$\delta M_{A} \sum v_{s} m_{s} = -\ln(p/p_{A}^{*}) + (V_{m,A}^{*} - B_{AA})(p - p_{A}^{*})/RT$$
 [25]

where p_A^* , $V_{m,A}^*$ are the vapor pressure and molar volume of pure solvent A, and B_{AA} is the second virial coefficient of the vapor.

The Liquid Phase

A general thermodynamic differential equation which gives solubility as a function of temperature, pressure and composition can be derived. The approach is similar to that of Kirkwood and Oppenheim (7); see also (11, 12). Consider a solid mixture containing c thermodynamic components i. The Gibbs-Duhem equation for this mixture is:

$$\sum_{i=1}^{C} x_{i}'(S_{i}'dT - V_{i}'dp + d\mu_{i}') = 0$$
 [26]

A liquid mixture in equilibrium with this solid phase contains c' thermodynamic components i, where $c' \ge c$. The Gibbs-Duhem equation for the liquid mixture is:

$$\sum_{i=1}^{C} x_i (S_1 dT - V_1 dp + d\mu_i') + \sum_{i=C+1}^{C'} x_i (S_i dT - V_i dp + d\mu_i) = 0 \quad [27]$$

Subtract [26] from [27] and use the equation

$$d\mu_{1} = (d\mu_{i})_{T,p} - S_{1}dT + V_{i}dp$$
 [28]

and the Gibbs-Duhem equation at constant temperature and pressure:

$$\sum_{i=1}^{C} x_{1}(d\mu_{1}')_{T,p} + \sum_{i=C+1}^{C} x_{1}(d\mu_{i})_{T,p} = 0$$
[29]

The resulting equation is:

$$RT\sum_{i=1}^{C} x_{i}'(dlna_{1})_{T,p} = \sum_{i=1}^{C} x_{i}'(H_{i} - H_{i}')dT/T - \sum_{i=1}^{C} x_{i}'(V_{i} - V_{1}')dp \quad [30]$$

where

$$H_1 - H_i' = T(S_i - S_i')$$
 [31]

is the enthalpy of transfer of component 1 from the solid to the liquid phase at a given temperature, pressure and composition, with H_i and S_1 the partial molar enthalpy and entropy of component i.

Use of the equations

$$H_i - H_i^0 = -RT^2(\partial \ln a_i/\partial T)_{\mathbf{X},\mathbf{p}}$$
[32]

and

$$V_i - V_i^{p} = RT(\partial \ln a_i / \partial p)_{X,T}$$
[33]

where superscript o indicates an arbitrary reference state gives:

$$RT \sum_{i=1}^{C} x_{i}' dlna_{i} = \sum_{i=1}^{C} x_{i}' (H_{1}^{0} - H_{i}') dT/T - \sum_{i=1}^{C} x_{i}' (V_{i}^{0} - V_{i}') dp \quad [34]$$

where

 $dlna_{i} = (dlna_{i})_{T,p} + (\partial lna_{i}/\partial T)_{X,p} + (\partial lna_{i}/\partial p)_{X,T}$ [35]

The terms involving enthalpies and volumes in the solid phase can be written as:

$$\sum_{i=1}^{C} x_{i}' H_{i}' = H_{s}^{*} \qquad \sum_{i=1}^{C} x_{i}' V_{i}' = V_{s}^{*} \qquad [36]$$

With eqn [36], the final general solubility equation may then be written:

$$\sum_{i=1}^{C} x_{i}' dlna_{i} = (H_{s}^{*} - \sum_{i=1}^{C} x_{i}' H_{i}^{0}) d(1/T) - (V_{s}^{*} - \sum_{i=1}^{C} x_{i}' V_{i}^{0}) dp/T \quad [37]$$

Note that those components which are not present in both phases do not appear in the solubility equation. However, they do affect the solubility through their effect on the activities of the solutes.

Several applications of eqn [37] (all with pressure held constant) will be discussed below. Other cases will be discussed in individual evaluations.

(a) Solubility as a function of temperature.

Consider a binary solid compound $A_n B$ in a single solvent A. There is

no fundamental thermodynamic distinction between a binary compound of A and B which dissociates completely or partially on melting and a solid mixture of A and B; the binary compound can be regarded as a solid mixture of constant composition. Thus, with c = 2, $x_A' = n/(n + 1)$, $x_B' = 1/(n + 1)$, eqn [37] becomes:

$$dln(a_A^n a_B) = -\Delta H_{AB}^{0} d(1/RT)$$
[38]

where

$$\Delta H_{AB}^{0} = nH_{A} + H_{B} - (n + 1)H_{S}^{*}$$
^[39]

is the molar enthalpy of melting and dissociation of pure solid $A_{n}B$ to form A and B in their reference states. Integration between T and T_{0} , the melting point of the pure binary compound $A_{n}B$, gives:

$$\ln(a_{A}^{n}a_{B}) = \ln(a_{A}^{n}a_{B})_{T=T_{0}} - \int_{T_{0}}^{T} \Delta H_{AB}^{0}d(1/RT)$$
 [40]

(1) Non-electrolytes

In eqn [32], introduce the pure liquids as reference states. Then, using a simple first-order dependence of ΔH_{AB}^* on temperature, and assuming that the activitity coefficients conform to those for a simple mixture (6):

$$RT \ln f_A = wx_B^2 \qquad RT \ln f_B = wx_A^2 \qquad [41]$$

then, if w is independent of temperature, eqn [32] and [33] give:

$$\ln\{x_B(1-x_B)^n\} + \ln\left\{\frac{n^n}{(1+n)^{n+1}}\right\} = G(T)$$
[42]

where

$$G(T) = -\left[\frac{\Delta H_{AB}^{*} - T^{*} \Delta C_{P}^{*}}{R}\right] \left[\frac{1}{T} - \frac{1}{T^{*}}\right] + \frac{\Delta C_{P}^{*}}{R} \ln(T/T^{*}) - \frac{w}{R} \left[\frac{x_{A}^{2} + nx_{B}^{2}}{T} - \frac{n}{(n+1)T^{*}}\right]$$
[43]

where ΔC_p^* is the change in molar heat capacity accompanying fusion plus decomposition of the pure compound to pure liquid A and B at temperature T^* , (assumed here to be independent of temperature and composition), and ΔH_{AB}^* is the corresponding change in enthalpy at T - T^{*}. Equation [42] has the general form:

$$\ln\{x_B(1-x_B)^n\} = A_1 + A_2/(T/K) + A_3\ln(T/K) + A_4(x_A^2 + nx_B^2)/(T/K)$$
[44]

If the solid contains only component B, then $n \neq 0$ in eqn [42] to [44].

If the infinite dilution reference state is used, then:

RT
$$\ln f_{X,B} = w(x_A^2 - 1)$$
 [45]

and [39] becomes

$$\Delta H_{AB}^{\infty} = nH_{A}^{*} + H_{B}^{\infty} - (n+1)H_{S}^{*}$$
^[46]

where ΔH_{AB}^{∞} is the enthalpy of melting and dissociation of solid compound $A_{\Omega}B$ to the infinitely dilute reference state of solute B in solvent A; H_A^* and H_B^{∞} are the partial molar enthalpies of the solute and solvent at infinite dilution. Clearly, the integral of eqn [32] will have the same form as eqn [35], with ΔH_{AB}^{∞} replacing ΔH_{AB}^* , ΔC_p^{∞} replacing ΔCp^* , and $x_A^2 - 1$ replacing x_A^2 in the last term.

See (5) and (11) for applications of these equations to experimental data.

(11) Electrolytes

(a) Mole fraction scale

If the liquid phase is an aqueous electrolyte solution, and the solid is a salt hydrate, the above treatment needs slight modification. Using rational mean activity coefficients, eqn [34] becomes:

$$\ln\left\{\frac{\mathbf{x}_{B}^{\nu}(1-\mathbf{x}_{B})^{n}}{(1+(\nu-1)\mathbf{x}_{B})^{n+\nu}}\right\} - \ln\left\{\frac{n^{n}}{(n+\nu)^{n+\nu}}\right\} + \ln\left\{\left[\frac{f}{f}_{B}^{*}\right]^{\nu}\left[\frac{f}{f}_{A}^{*}\right]^{n}\right\}$$
$$- - \left\{\frac{\Delta H_{AB}^{*} - T^{*}\Delta C_{D}^{*}}{R}\right\}\left\{\frac{1}{T} - \frac{1}{T^{*}}\right\} + \frac{\Delta CD^{*}}{R}\ln(T/T^{*})$$

$$(47)$$

where superscript * indicates the pure salt hydrate. If it is assumed that the activity coefficients follow the same temperature dependence as the right-hand side of eqn [47] (13-16), the thermochemical quantities on the right-hand side of eqn [47] are not rigorous thermodynamic enthalpies and heat capacities, but are apparent quantities only. Data on activity coefficients (9) in concentrated solutions indicate that the terms involving these quantities are not negligible, and their dependence on temperature and composition along the solubility-temperature curve is a subject of current research.

A similar equation (with $\nu = 2$ and without the heat capacity terms or activity coefficients) has been used to fit solubility data for some MOH-H₂O systems, where M is an alkali metal (13); enthalpy values obtained agreed well with known values. The full equation has been deduced by another method in (14) and applied to MCl₂-H₂O systems in (14) and (15). For a summary of the use of equation [47] and similar equations, see (14).

(2) Molality scale

Substitution of the mean activities on the molality scale in eqn [40] gives:

$$\nu \ln \left[\frac{\gamma_{\pm} m_{B}}{\gamma_{\pm}^{*} m_{B}^{*}} \right] - \nu (m_{B}/m_{B}^{*} - 1) - \nu \{m_{B}(\phi - 1)/m_{B}^{*} - \phi^{*} + 1\}$$

$$= G(T)$$
[48]

where G(T) is the same as in eqn [47], $m_B^* = 1/nM_A$ is the molality of the anhydrous salt in the pure salt hydrate and γ_{\pm} and ϕ are the mean activity coefficient and the osmotic coefficient, respectively. Use of the osmotic coefficient for the activity of the solvent leads, therefore, to an equation that has a different appearance to [47]; the content is identical. However, while eqn [47] can be used over the whole range of composition ($0 \le x_B \le 1$), the molality in eqn [48] becomes infinite at x_B = 1; use of eqn [48] is therefore confined to solutions sufficiently dilute that the molality is a useful measure of composition. The essentials of eqn [48] were deduced by Williamson (17); however, the form used here appears first in the Solubility Data Series. For typical applications (where activity and osmotic coefficients are not considered explicitly, so that the enthalpies and heat capacities are apparent values, as explained above), see (18).

The above analysis shows clearly that a rational thermodynamic basis exists for functional representation of solubility-temperature curves in two-component systems, but may be difficult to apply because of lack of experimental or theoretical knowledge of activity coefficients and partial molar enthalpies. Other phenomena which are related ultimately to the stoichiometric activity coefficients and which complicate interpretation include ion pairing, formation of complex ions, and hydrolysis. Similar considerations hold for the variation of solubility with pressure, except that the effects are relatively smaller at the pressures used in many investigations of solubility (5).

(b) Solubility as a function of composition.

Δ

At constant temperature and pressure, the chemical potential of a saturating solid phase is constant:

$$\mu_{A_{n}B}^{*} = \mu_{A_{n}B}(sln) = n\mu_{A} + \mu_{B}$$
 [49]

=
$$(n\mu_A^* + \nu_+\mu_+^\infty + \nu_-\mu_-^\infty) + nRT \ln f_A x_A$$

+ $\nu RT \ln(\gamma_{\pm}m_{\pm}Q)$

for a salt hydrate $A_{D}B$ which dissociates to water (A), and a salt (B), one mole of which ionizes to give ν_{+} cations and ν_{-} anions in a solution in which other substances (ionized or not) may be present. If the saturated solution is sufficiently dilute, $f_{A} = x_{A} = 1$, and the quantity K_{S} in

$$G^{\infty} = (\nu_{+}\mu_{+}^{\infty} + \nu_{-}\mu_{-}^{\infty} + n\mu_{A}^{*} - \mu_{AB}^{*})$$

= -RT ln K_B

$= -\nu RT \ln(Q\gamma_{\pm}m_B)$

[50]

is called the solubility product of the salt. (It should be noted that it is not customary to extend this definition to hydrated salts, but there is no reason why they should be excluded.) Values of the solubility product are often given on mole fraction or concentration scales. In dilute solutions, the theoretical behaviour of the activity coefficients as a function of ionic strength is often sufficiently well known that reliable extrapolations to infinite dilution can be made, and values of $K_{\rm S}$ can be determined. In more concentrated solutions, the same problems with activity coefficients that were outlined in the section on variation of solubility with temperature still occur. If these complications do not arise, the solubility of a hydrate salt $C_{\nu}A_{\nu} \cdot nH_2O$ in the presence of other solutes is given by eqn [50] as

 $\nu \ln\{m_{\rm H}/m_{\rm H}(0)\} \sim -\nu \ln\{\gamma_{\pm}/\gamma_{\pm}(0)\} - n \ln\{a_{\rm H}/a_{\rm H}(0)\}$

[51]

where a_A is the activity of water in the saturated solution, m_B is the molality of the salt in the saturated solution, and (0) indicates absence of other solutes. Similar considerations hold for non-electrolytes.

Consideration of complex mixed ligand equilibria in the solution phase are also frequently of importance in the interpretation of solubility equilibria. For nomenclature connected with these equilibria (and solubility equilibria as well), see (19, 20).

The Solid Phase

The definition of solubility permits the occurrence of a single solid phase which may be a pure anhydrous compound, a salt hydrate, a nonstoichiometric compound, or a solid mixture (or solid solution, or "mixed crystals"), and may be stable or metastable. As well, any number of solid phases consistent with the requirements of the phase rule may be present. Metastable solid phases are of widespread occurrence, and may appear as polymorphic (or allotropic) forms or crystal solvates whose rate of transition to more stable forms is very slow. Surface heterogeneity may also give rise to metastability, either when one solid precipitates on the surface of another, or if the size of the solid particles is sufficiently small that surface effects become important. In either case, the solid is not in stable equilibrium with the solution. See (21) for the modern formulation of the effect of particle size on solubility. The stability of a solid may also be affected by the atmosphere in which the system is equilibrated.

Many of these phenomena require very careful, and often prolonged, equilibration for their investigation and elimination. A very general analytical method, the "wet residues" method of Schreinemakers (22), is often used to investigate the composition of solid phases in equilibrium with salt solutions. This method has been reviewed in (23), where [see also (24)] least-squares methods for evaluating the composition of the solid phase from wet residue data (or initial composition data) and solubilities are described. In principle, the same method can be used with systems of other types. Many other techniques for examination of solids, in particular X-ray, optical, and thermal analysis methods, are used in conjunction with chemical analyses (including the wet residues method).

COMPILATIONS AND EVALUATIONS

The formats for the compilations and critical evaluations have been standardized for all volumes. A brief description of the data sheets has been given in the FOREWORD; additional explanation is given below.

Guide to the Compilations

The format used for the compilations is, for the most part, selfexplanatory. The details presented below are those which are not found in the FOREWORD or which are not self-evident.

Components. Each component is listed according to IUPAC name, formula, and Chemical Abstracts (CA) Registry Number. The formula is given either in terms of the IUPAC or Hill (25) system and the choice of formula is governed by what is usual for most current users: i.e., IUPAC for inorganic compounds, and Hill system for organic compounds. Components are ordered according to:

- (a) saturating components;
- (b) non-saturating components in alphanumerical order;
- (c) solvents in alphanumerical order.

The saturating components are arranged in order according to a 18-column periodic table with two additional rows: Columns 1 and 2: H, alkali elements, ammonium, alkaline earth elements

- 3 to 12: transition elements 13 to 17: boron, carbon, nitrogen groups; chalcogenides, halogens
 - 18: noble gases Row 1: Ce to Lu
 - Row 2: Th to the end of the known elements, in order of atomic number.

Salt hydrates are generally not considered to be saturating components since most solubilities are expressed in terms of the anhydrous salt. The existence of hydrates or solvates is carefully noted in the text, and CA Registry Numbers are given where available, usually in the critical evaluation. Mineralogical names are also quoted, along with their CA Registry Numbers, again usually in the critical evaluation.

Original Measurements. References are abbreviated in the forms given by Chemical Abstracts Service Source Index (CASSI). Names originally in other than Roman alphabets are given as transliterated by Chemical Abstracts.

Experimental Values. Data are reported in the units used in the original publication, with the exception that modern names for units and quantities are used; e.g., mass per cent for weight per cent; mol dm⁻³ for molar; etc. Both mass and molar values are given. Usually, only one type of value (e.g., mass per cent) is found in the original paper, and the compiler has added the other type of value (e.g., mole per cent) from computer calculations based on 1983 atomic weights (26).

Errors in calculations and fitting equations in original papers have been noted and corrected, by computer calculations where necessary.

Method. Source and Purity of Materials. Abbreviations used in Chemical Abstracts are often used here to save space.

Estimated Error. If these data were omitted by the original authors, and if relevant information is available, the compilers have attempted to estimate errors from the internal consistency of data and type of apparatus used. Methods used by the compilers for estimating and and reporting errors are based on the papers by Ku and Eisenhart (27).

Comments and/or Additional Data. Many compilations include this section which provides short comments relevant to the general nature of the work or additional experimental and thermodynamic data which are judged by the compiler to be of value to the reader.

References. See the above description for Original Measurements.

Guide to the Evaluations

The evaluator's task is to check whether the compiled data are correct, to assess the reliability and quality of the data, to estimate errors where necessary, and to recommend "best" values. The evaluation takes the form of a summary in which all the data supplied by the compiler have been critically reviewed. A brief description of the evaluation sheets is given below.

Components. See the description for the Compilations.

Evaluator. Name and date up to which the literature was checked.

Critical Evaluation

(a) Critical text. The evaluator produces text evaluating all the published data for each given system. Thus, in this section the evaluator reviews the merits or shortcomings of the various data. Only published data are considered; even published data can be considered only if the experimental data permit an assessment of reliability.

(b) Pitting equations. If the use of a smoothing equation is justifiable the evaluator may provide an equation representing the solubility as a function of the variables reported on all the compilation sheets.

(c) Graphical summary. In addition to (b) above, graphical summaries are often given.

(d) Recommended values. Data are recommended if the results of at least two independent groups are available and they are in good agreement, and if the evaluator has no doubt as to the adequacy and reliability of the applied experimental and computational procedures. Data are considered as tentative if only one set of measurements is

available, or if the evaluator considers some aspect of the computational or experimental method as mildly undesirable but estimates that it should cause only minor errors. Data are considered as doubtful if the evaluator considers some aspect of the computational or experimental method as undesirable but still considers the data to have some value in those instances where the order of magnitude of the solubility is needed. Data determined by an inadequate method or under ill-defined conditions are rejected. However references to these data are included in the evaluation together with a comment by the evaluator as to the reason for their rejection.

(e) References. All pertinent references are given here. References to those data which, by virtue of their poor precision, have been rejected and not compiled are also listed in this section.

(f) Units. While the original data may be reported in the units used by the investigators, the final recommended values are reported in S.I. units (1, 28) when the data can be accurately converted.

References

- 1. Whiffen, D.H., ed., Manual of Symbols and Terminology for Physicochemical Quantities and Units. Pure Applied Chem. 1979, 51, No. 1.
- 2. McGlashan, M.L. Physicochemical Quantities and Units. 2nd ed.

- Royal Institute of Chemistry. London. <u>1971</u>.
 Jänecke, E. Z. Anorg. Chem. <u>1906</u>, 51, 132.
 Friedman, H.L. J. Chem. Phys. <u>1960</u>, 32, 1351.
 Prigogine, I.; Defay, R. Chemical Thermodynamics. D.H. Everett, transl. Longmans, Green. London, New York, Toronto. <u>1954</u>.
 Guggenheim, E.A. Thermodynamics. North-Holland. Amsterdam.
- 1959. 4th ed.
- Kirkwood, J.G.; Oppenheim, I. Ch New York, Toronto, London. 1961. Chemical Thermodynamics. McGraw-Hill.
- Lewis, G.N.; Randall, M. (rev. Pitzer, K.S.; Brewer, L.). Thermodynamics. McGraw Hill. New York, Toronto, London. <u>1961</u>. 2nd. ed.
- 9. Robinson, R.A.; Stokes, R.H. Electrolyte Solutions. Butterworths.
- London. <u>1959</u>. 2nd ed. 10. Harned, H.S.; Owen, B.B. The Physical Chemistry of Electrolytic Solutions. Reinhold. New York. 1958. 3rd ed.
- 11. Haase, R.; Schonert, H. Solid-Liquid Equilibrium. E.S. Halberstadt, trans. Pergamon Press, London, 1969.
- 12. McGlashan, M.L. Chemical Thermodynamics. Academic Press. London. 1979. 13. Cohen-Adad, R.; Saugier, M.T.; Said, J. Rev. Chim. Miner. 1973, 10, 631.
- 14. Counioux, J.-J.; Tenu, R. J. Chim. Phys. <u>1981</u>, 78, 815. 15. Tenu, R.; Counioux, J.-J. J. Chim. Phys. <u>1981</u>, 78, 823. 16. Cohen-Adad, R. Pure Appl. Chem. <u>1985</u>, 57, 255.

- Williamson, A.T. Faraday Soc. Trans. <u>1944</u>, 40, 421.
 Siekierski, S.; Mioduski, T.; Salomon, M. Solubility Data Series. Vol. 13. Scandium, Yttrium, Lanthanum and Lanthanide Nitrates. Pergamon Press. 1983.
- Marcus, Y., ed. Pure Appl. Chem. <u>1969</u>, 18, 459.
 IUPAC Analytical Division. Proposed Symbols for Metal Complex Mixed Ligand Equilibria (Provisional). IUPAC Inf. Bull. <u>1978</u>, No. 3, 229.
- 21. Enüstün, B.V.; Turkevich, J. J. Am. Chem. Soc. <u>1960</u>, 82, 4502. 22. Schreinemakers. F.A.H. Z. Phys. Chem., Stoechiom. Verwandschaftsl. <u>1893</u>, 11, 75.

- Lorimer, J.W. Can. J. Chem. 1981, 59, 3076.
 Lorimer, J.W. Can. J. Chem. 1982, 60, 1978.
 Lorimer, J.W. Can. J. Chem. 1982, 60, 1978.
 Hill, E.A. J. Am. Chem. Soc. 1900, 22, 478.
 IUPAC Commission on Atomic Weights. Pure Appl. Chem. 1984, 56, 653.
 Ku, H.H., p. 73; Eisenhart, C., p. 69; in Ku, H.H., ed. Precision Measurement and Calibration. NBS Special Publication 300. Vol. 1.
- Washington. 1969.
- The International System of Units. Engl. transl. approved by the BIPM of Le Système International d'Unités. H.M.S.O. London. <u>1970</u>. 28. The International System of Units.

September, 1986

- R. Cohen-Adad, Villeurbanne, France
- J. W. Lorimer, London, Ontario, Canada
- M. Salomon, Pair Haven, New Jersey, U.S.A.

Table I-1 Quantities Used as Measures of Solubility of Solute B								
Conversion Table for Multicomponent Systems Containing Solvent A and Solutes s								
	mole fraction x _B =	mass fraction $w_B =$	molality mg =	concentration cg =				
хB		$\frac{M_{\rm B} x_{\rm B}}{+ \sum_{\rm S} (M_{\rm S} - M_{\rm A}) x_{\rm S}}$	$\frac{x_{B}}{M_{A}(1-\sum_{g} x_{g})}$	$\frac{\rho x_{B}}{M_{A} + \sum_{S} (M_{S} - M_{A}) x_{S}}$				
wB	$\frac{W_{\rm B}/M_{\rm B}}{1/M_{\rm A} + \sum_{\rm S} (1/M_{\rm S} - 1)}$	1/M _A)w _B w _B	$\frac{w_B}{M_B(1 - \sum_{s} w_s)}$	ρw _B /M _B				
mB	$\frac{M_A m_B}{1 + M_A \sum_{g} m_B}$	$\frac{M_{\rm B}m_{\rm B}}{1 + \sum_{\rm S} m_{\rm S} M_{\rm S}}$	mB	$\frac{\rho m_{\rm B}}{1 + \sum_{\rm S} M_{\rm S} m_{\rm S}}$				
с _В	$\frac{M_{A}c_{B}}{\rho + \sum_{g}(M_{A} - M_{g})c_{g}}$	- M _B c _B /ρ	$\frac{c_{\rm B}}{\rho - \sum_{\rm S} M_{\rm S} c_{\rm S}}$	c _B				

 ρ = density of solution M_A , M_B , M_S = molar masses of solvent, solute B, other solutes s Formulas are given in forms suitable for rapid computation; all calculations should be made using SI base units.

ACKNOWLEDGEMENTS

The following figures are reprinted with the permission of the copyright owner, the American Chemical Society. Bond, P. A.; Stephens, W. R. J. Am. Chem. Soc. 1929, 51, 2910-22. Figure 1. Miscibility of titanium tetrachloride with liquid sulfur dioxide. 39 Bond, P. A.; Crone, E. B. J. Am. Chem. Soc. <u>1934</u>, 56, 2038-31. Figure 1. Miscibility of titanium tetrabromide with liquid sulfur dioxide. 57 Ferris, L. N. J. Chem. Eng. Data <u>1966</u>, 11, 343-6. Figure 1. Solubility of niobium in hydrofluoric acid solutions at 25 ⁶C. 234 Figure 2. Portion of the niobium oxide-hydrofluoric acid-water system at 25 °C. 234 The following figure is reprinted with the permission of the copyright owner, Pergamon Press. Larsen, E. M.; Trevorrow, I. R. J. Inorg. Nucl. Chem. 1956, 2, 254-9. Figure 2. The zirconium tetrachloride-acetonitrile-109, 177 isoamyl ether system. The following figures are reprinted with the permission of the copyright owners, VAAP, The Copyright Agency of the USSR. Tananaev, I. V.; Nikolaev, N. S.; Buslaev, Yu. A. 2h. Neorg. Khim. <u>1956</u>, 1, 274-81. Figure 1. Solubility in the ZrF_4 -HF-H₂O system. 64 Nikolaev, N. S.; Buslaev, Yu. A. Zh. Neorg. Khim. 1959, 4, 205-12. Figure 3. Solubility in the HF-NbF5-H2O system. 227 Buslaev, Yu. A.; Nikolaev, N. S. Zh. Neorg. Khim. <u>1959</u>, 4, 465-71. Figure 3. Solubility in the TaF_5-H_2O system at 20 °C. 267 Goroschenko, Ya. G.; Spasibenko, T. P. Zh. Neorg. Khim. <u>1962</u>, 7, 1159-68. Figure 1. Solubility isotherms in the ZrO₂-HCl-H₂O system 118 Nikolaev, N. S.; Buslaev, Yu. A.; Gustyakova, M. P. Zh. Neorg. Khim. <u>1962</u>, 7, 1685-92. Figure 1. Solubility in the $\rm HF-2rF_4$ -H₂O system at 25 C. 66 Kamaeva, I. G.; Serebrennikov, V. V. Zh. Neorg. Khim. 1963, 8, 2151-4. Figure, page 2154. Acid free projection of the ZrOCl₂ CaCl₂-HCl-H₂O isotherm at 25 C. Barskaya, I. B.; Morozov, I. S. *Zh. Neorg. Khim.* <u>1968</u>, *13*, 1408-11. Figure la-f. Solubilities at 25 °C in various systems. la 198 lb 202 lc 199 ld 190 le 201 lf 200 Figure 2b-d. Solubilities at 25 °C in various systems. 2b 191 196 2c 197 2d Continued on the next page . . .

T.

The following figures are reprinted with the permission of the copyright owners, VAAP, the Copyright Agency of the USSR. Baraskaya, I. B.; Toptygin, G. M. Zh. Neorg. Khim. <u>1970</u>, 15, 2572-3. Figures a and b. Solubilities at 25 °C in various systems. a 121 ь 203 Blinova, Z. N.; Komissarova, L. N. *Zh. Neorg. Khim.* <u>1972</u>, *17*, 2520-5. Figures 2a and b. Solubility isotherms of HfOCl₂-HCl solutions at 0 (a) and 25 C (b). 189 Tsurik, L. A.; Kamaeva, I. G.; Serebrennikov, V. V. Zh. Neorg. Khim. <u>1977</u>, 22, 1366-71. Figure 1. Acid free projection of the isotherm $(HfOCl_2-CaCl_2-HCl-H_2O)$ at 25 °C. 195 Meerson, G. A.; Zverev, G. L.; Zubkova, F. M. Tsvetnye Metal (Non-ferrous metals) <u>1939</u>, No. 8, 97-101. Figure 2. Phase diagram of the $K_2NbOF_5-K_2TaF_7-H_2O$ system. 275 Figure 3. Salting out of K₂TaF₇ by K₂NboF₅. 283 Delarova, N. I.; Zavaritskaya, T. A.; Zevakin, I. A. Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Metall. Topl. 1960, No. 4, 33-8. Figure 2. Solubility of zirconium oxychloride. 40 Buslaev, Yu. A.; Nikolaev, N. S. Dokl. Akad. Nauk SSSR 1960, 135, 1385-7. Figure 1. The $\mathrm{HF}-\mathrm{HfF}_4-\mathrm{H}_2\mathrm{O}$ system (isotherm at 25 °C). 153 Buslaev, Yu. A.; Gustuakova, M. P. Izv. Akad. Nauk. SSSR, Ser. Khim. <u>1963</u>, 1533-7. Figure 1. Solubility in the $HF-VO_2-H_2O$ system at 25 °C. 220

1. The solubility of titanium-containing substances. System Pages $TiF_4 + KF + H_2O$ 2 ____ + ^{UF}6 3 $(NH_4)_2 TiF_6 + H_2 O$ 4 $----+ (NH_4)_2 NbOF_5 + HF + H_2 O$ 5,6 _____ + с₂н₅он 7 8, 9 $Li_2TiF_6 + H_2O$ ____ + с₂н₅он 10 $Na_2TiF_6 + H_2O$ 11 12 ____ + с₂н₅он $K_2 TiF_6 + H_2 O$ 13 -17 . $-----+ Ca(NO_3)_2 + H_2O$ 18 $-----+ sr(NO_3)_2 + H_2O$ 19 _____ + С₂н₅Он 20 21, 22 $Rb_2TiF_6 + H_2O$ $Cs_2TiF_6 + H_2O$ 23, 24 + C₂H₅OH 25 $TiCl_2 + NaBr + NaHg_x + NH_3$ 26, 27 $TiCl_3 + HCl + H_2O$ 28, 29 + NH₄Cl + H₂O 30 ____ + NaBr + NH₃ 31, 32 $TiCl_4 + HCl + H_2O$ 33 _____ + NH₄Cl + NH₃ 34 _____ + NaCl + NH₃ 35 _____ + NaBr + NH₃ 36, 37 ____ + so₂ 38, 39 40, 41 $TiOCl_2 + TiCl_4$ 42 $(NH_4)_{2}TiCl_5 + HCl + H_{2}O$ $K_2 TiCl_5 + HCl + H_2O$ 43 $Rb_2TiCl_5 + HCl + H_2O$ 44 45 $Cs_2TiCl_5 + HCl + H_2O$ $(NH_4)_2 TiCl_6 + HC1 + H_2O$ 46 + NH₄Cl + HCl + H₂O 47 $K_2 TiCl_6 + HCl + H_2O$ 48 49 $Rb_2TiCl_6 + HCl + H_2O$ $Cs_2TiCl_6 + HCl + H_2O$ 50 51 $TiBr_4 + C_2H_5OH$ _____ + (C₂H₅)₂O 52 _____ + CHCl₃ 53 54 _____ + CCl₄ _____+ CH2C1CH2C1 55 ----- + so₂ 56, 57 58 $TiI_4 + C_6H_6$

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Titanium(IV) fluoride; TiF₄; [7783-63-3]</pre>	Bamburov, V.G.; Demenev, Polyakova, V.M.	N.V.;
<pre>(2) Potassium fluoride; KF; [7789-23-3]</pre>	Izv. Sib. Otd. Akad. Nauk <u>1962</u> , (4), 73-80.	SSS R
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = 293	J. Hála	
Composition		
EXPERIMENTAL VALUES:		
Composition of Saturated Solutions,		Nature of the Solid
<u> </u>	<u>4</u>	Phaseb
mass% m ₂ /mol kg ^{-la}	mass% m _l /mol kg ^{-la}	
.211 .0369	.948 .0778	С
.652 .118 .735 .131	4.880 .417 2.825 .236	B B
.830 .154	6.36 .553	A
1.050 .213	13.950 1.325	A
1.551 .272 2.937 .521	.169 .0139 .087 .00724	A A
6.750 1.25	.052 .00450	D
11.020 2.13	.041 .00372	D
a. Calculated by compiler		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Isothermal method used. To a constant amount of TiF_4 solution,	(1)A solution of TiF ₄ prepresent reaction of TiO ₂ with essent of the source and purity of th	
increasing amounts of $\vec{R}F$ and water were added to vary the TiF4/KF mole ratio while keeping the total mass of the mixture at 100g. K determined gravimetrically as K ₂ SO ₄ , Ti colorimetrically, and F ⁻ either titrimetrically with Th (NO ₃) ₄ against alizarine sulfonate or gravimetrically as CaF ₂ . The composition of the solid phases	not specified. (2)KF, reagent grade, recr lized twice from water.	excess HF. Memicals Tystal-
were added to vary the TiF_4/KF mole ratio while keeping the total mass of the mixture at 100g. K determined gravimetrically as K_2SO_4 , Ti colorimetrically, and F ⁻ either titrimetrically with Th (NO ₃) ₄ against alizarine sulfonate	not specified. (2)KF, reagent grade, recr lized twice from water.	excess HF. Memicals Tystal-
were added to vary the TiF4/KF mole ratio while keeping the total mass of the mixture at 100g. K determined gravimetrically as K_2SO_4 , Ti colorimetrically, and F ⁻ either titrimetrically with Th (NO ₃) ₄ against alizarine sulfonate or gravimetrically as CaF ₂ . The composition of the solid phases	not specified. (2)KF, reagent grade, recr lized twice from water.	excess HF. Memicals Tystal-
were added to vary the TiF_4/KF mole ratio while keeping the total mass of the mixture at 100g. K determined gravimetrically as K_2SO_4 , Ti colorimetrically, and F ⁻ either titrimetrically with Th (NO ₃) ₄ against alizarine sulfonate or gravimetrically as CaF ₂ . The composition of the solid phases was deduced from the solubility	not specified. (2) KF, reagent grade, recr lized twice from water. ESTIMATED ERROR: Temp: precision ± 0.1 K.	excess HF. Memicals Tystal-

COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Titanium fluoride; TiF₄; [7783-63-3]</pre>	Nikolaev, N. S.; Sadikova, A. T.	
(2) (OC-6-11)-Uranium flouride; UF ₆ ;	At. Ener. <u>1975</u> , 39, 338-43.	
[7783-81-5]	Sov. At. Energy (Engl. Tranel.) <u>1975</u> , 39, 338-43.	
VARIABLES:	PREPARED BY:	
T/K = 373	J. Hála	
EXPERIMENTAL VALUES:		
$h = 100^{\circ}C$ the solubility of	Tip in UP is reported	
At 100° C the solubility of TiF ₄ in UF ₆ is reported		
to be 0.063 mol kg^{-1} (0.78	mass %).	
1		
	INFORMATION	
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Solu-	SOURCE AND PURITY OF MATERIALS: The fluorides were prepared by the	
bility was determined in a Cu auto-	authors. No details were specified	
clave placed in a crucible furnace. Excess solid was equilibrated under	except for the fact that the products were strictly anhydrous.	
constant mixing with 6 ml UF ₆ for		
30-40 h, and then allowed to stand for another 40 h which exceeded 3-4		
times the time necessary to reach the equilibrium. After that the		
autoclave was rapidly cooled in		
liquid N. From the frozen sample, UF ₆ was pumped off <i>in vacuo</i> at		
80-90°C and Ti was determined in the	ESTIMATED ERROR:	
residue. The method of analysis was not mentioned.	Temp: precision ± 5 K.	
	Soly: precision ± 5 %.	
1	REFERENCES :	
1		

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Ammonium hexafluorotitanate(IV);</pre>	Ginsberg, H.; Holder, G. Z. Anorg. Allg. Chem. <u>1931</u> , 201, 193-206.
(2) water; h20; [//32-16-5]	193-200.
VARIABLES:	PREPARED BY:
<i>T</i> /K = 298	J. Hála
EXPERIMENTAL VALUES:	
The solubility at 25°C of $(NH_4)_2$ TiF	6 was reported to be 26 g/100 ml
water (1.31 mol kg^{-1a}).	
a. Calculated by compiler	
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. No details were given.	(1) $(NH_4)_2TiF_6$ was prepared from H_2TiF_6 , NH_3 , and NH_4F . Source and purity of chemicals not specified.
	ESTIMATED ERROR:
	The temperature error is not specified.
	Soly: precision ± 1.0 g/100 ml.
	REFERENCES :

ORIGINAL MEASUREMENTS:
Skabichevskii, P. A.
Zh. Neorg. Khim. <u>1966</u> , 11, 675-7.
Russ. J. Inorg. Chem. (Engl.Transl.) 1966, 11, 366-7.

EXPERIMENTAL VALUES:

Temper	ature	HF^{a}	(NH ₄) 2NbOF5		(NH ₄) ₂ TiF ₆		Nature
t∕°C	T/K	mass%	mass*	m_2/m_2 mol kg ^{-1b}	mass%	m_1/m_1 kg ⁻¹ b	of Solid Phase ^C
25	298	1.51	0	0	24.7	1.691	
		1.48	4.0	0.230	22.0	1.532	
		1.44	7.8	0.463	20.5	1.474	
		1.39	11.7	0.714	18.6	1.375	
		1.35	15.3	0.964	17.2	1.313	ĺ
		1.29	20.5	1,347	14.8	1.179	l I
		1.26	24.0	1.625	13.2	1.083	A
		1.20	28.4	2.009	11.5	0.986	1
		1.13	33.2	2.494	10.2	0.929	
		1.13	34.5	2.596	9.0	0.821	
		1.02	42.0	3.488	6.8	0.685	
		0.96	45.8	4.066	6.3	0.678	
		0.87	51.5	5.022	4.9	0.579	
		0.79	56.2	6.066	4.4	0.576	
		0.75	59.6	6.740	2.8	0.384	А
		0.75	60.0	6.841	2.7	0.373	В
		0.73	63.0	7.383	0.71	0.101	
		0.73	63.5	7.398	0	0	В
50	323	1.36	0	0	32.2	2.448)
		1.30	3.29	0.215	31.5	2.490	
		1.26	9.25	0.620	27.3	2.217	ļ
		1.18	17.2	1.237	23.7	2.067)
		1.18	17.6	1.273	23.6	2.069	1
		1.17	20.5	1.493	21.1	1.862	
		1.13	23.5	1.765	19.9	1.812	Í
		1.12	25.9	1.963	18.0	1.654	A
		1.12	26.1	1.978	17.8	1.635	(
		1.03	34.1	2.827	14.6	1.467	
		0.94	41.5	3.738	11.3	1.234	1
		0.94	42.8	3.881	10.3	1.132	
		0.82	51.0	5.316	8.2	1.036	
		0.66	61.8	7.963	5.2	0.812	J
		0.60	66.2	9.320	3.6	0.614	А
		0.59	67.0	9.521	3.3	0.573	В
		0.60	68.7	9.672	1.1	0.188	_
		0.61	69.3	9.597	0	0	в

^a The initial solvent was 2 mass% HF in water. Compiler calculated the actual HF concentration in the saturated solution which varied with increasing amount of salts dissolved.

^b Calculated by compiler

^c Solid phases: A: (NH₄)₂^{TiF}₆; [16962-40-6]

B: (NH₄)₂NbOF₅; [17871-12-4]

Continued on the next page . . .

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) (OC-6-11)-Diammonium hexafluoro-	Skabichevskii, P. A.
titanate(2-); (NH ₄) ₂ TiF ₆ ; [16962-40-6]	Zh. Neorg. Khim. 1966, 11, 675-7.
(2) Diammonium pentafluorooxoniobate;	
(NH ₄) ₂ NbOF ₅ ; [17871-12-4] (3) Hydrogen fluoride;HF; [7664-39-3]	Russ. J. Inorg. Chem. (Engl. Transl.) 1966, 11, 366-7.
(4) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298, 323	7
Composition and HF molality	J. Hála
EXPERIMENTAL VALUES:	
	•
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. To prevent	
hydrolysis of the complex fluorides, the solubilities were determined in	evaporation of HF solutions of the corresponding metal oxide and NH ₄ F in
water containing 2 mass HF. Equi-	the stoichiometric ratio. The salts
librium was attained within 3-4 h. Saturated solution and solid phases	<pre>were 3-times recrystallized. Analysis (mass%, found/calculated):</pre>
were analyzed for Ti and Nb spectro-	(NH4) ₂ TiF ₆ , Ti 24.19/24.20,
photometrically. The samples were evaporated with H ₂ SO ₄ to remove F ⁻	NH ₄ 17.95/18.18; (NH4)2NbOF5, Nb 38.78/38.72, NH ₄ 14.85/15.0.
and in the residue Ti and Nb were	Source and purity of TiO_2 , Nb_2O_5 ,
determined with H ₂ O ₂ and SCN ⁻ methods, respectively. Solid phases were also	
characterized by optical microscopy	Specified.
and the method of wet residues.	Temp: precision ± 0.01 K.
	The solubility error is not specified
	REFERENCES :
	1

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Ammonium hexafluorotitanate(IV);</pre>	Ginsberg, H. Z. Anorg. Allg. Chem. <u>1932</u> , 204, 225-31.
VARIABLES:	PREPARED BY:
T/K = 294	J. Hála
EXPERIMENTAL VALUES:	
The solubility at 21°C of $(NH_4)_2$ TiF	was reported to be 0.004 g salt
/100 cm ³ ethanol (0.00025 mol kg ^{-la}).
a Calculated by compiler by using density of 98% ethanol at 20°C.	the value of 0.799 g cm^{-3} for the
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. No details were given.	(1) $(NH_4)_2TiF_6$ prepared from H_2TiF_6 , NH_3 , and NH_4F according to ref 1.
	(2) Ethanol, 98%. Source and purity of chemicals not specified.
	ESTIMATED ERROR:
	Temp: precision ± 1 K. The solubility error is not specified.
	REFERENCES :
	<pre>1. Ginsberg, H.; Holder, G. 2. Anorg. Allg. Chem. <u>1931</u>, 201, 193.</pre>

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Lithium hexafluorotitanate(IV);</pre>	Ginsberg, H; Holder, G.
Li ₂ TiF ₆ ; [19193-50-1]	Z. Anorg. Allg. Chem. <u>1931</u> , 201,
(2) Water; H ₂ O; [7732-18-5]	193-206.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The solubility at 25°C of Li ₂ TiF ₆ was	s reported to be 32 g/100 ml water
(1.82 mol kg ^{-1a}). The authors stated	d that this solubility value held
only for freshly prepared salt. On	aging, solubility decreased and an
insoluble residue consisting of TiO ₂	
a. Calculated by compiler	2
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;
Isothermal method used. No details were given.	(1) $\text{Li}_2 \text{TiF}_6 \cdot 2\text{H}_2 \text{O}$ was prepared from
	$H_2 TiF_6$ and $Li_2 CO_3$. Source and
	purity of chemicals not speci-
	fied.
	ESTIMATED ERROR:
	Temp: not specified Soly: precision ± 0.5 g/100 ml.
1	REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Lithium hexafluorotitanate(IV);</pre>	Ginsberg, H.
Li ₂ TiF ₆ ; [19193-50-1]	Z. Anorg. Allg. Chem. 1932, 204,
(2) Water; H ₂ O; [7732-18-5]	225-31.
VARIABLES:	PREPARED BY:
T/K = 294	J. Hála
EVERTMENTAL VALUES.	
EXPERIMENTAL VALUES:	
The solubility at 21° of $\text{Li}_2 \text{TiF}_6$ was	
(2.73 mol kg ^{-la}). The author stated	
given in an earlier paper (1) was er	roneous since hydrolysis of the
salt had been neglected.	
a. Calculated by compiler	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. No details were given.	(1) Li_2TiF_6 was prepared from H_2TiF_6 and Li_2CO_3 according to ref 1. Source and purity of chemicals not specified.
	ESTIMATED ERROR:
	Temp: precision ± 1 K. The solubility value is approximate (author).
	REFERENCES :
	<pre>1. Ginsberg, H.; Holder, G. Z. Anorg. Allg. Chem. <u>1931</u>, 201, 193.</pre>

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Lithium hexafluorotitanate(IV); Li₂TiF₆; [19193-50-1]</pre>	Ginsberg, H.	
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	Z. Anorg. Allg. Chem. <u>1932</u> , 204, 225-31.	
VARIABLES:	PREPARED BY:	
T/K = 294	J. Hála	
EXPERIMENTAL VALUES:		
The solubility at 21°C of Li ₂ TiF ₆ was	reported to be 0.030 g salt/100 cm^3	
ethanol (0.00214 mol kg^{-la}).		
a Calculated by compiler by using the density of 98% ethanol at 20°C.	he value of 0.799 gcm^{-3} for the	
AUXILIARY	INFORMATION	
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
Isothermal method used. No details	(1) Li ₂ TiF ₆ prepared from Li ₂ CO ₃	
were given.	and H ₂ TiF ₆ according to ref 1.	
	(2) Ethanol, 98%. Source and purity of chemicals not specified.	
	ESTIMATED ERROR:	
1	Temp: precision ± 1 K.	
	The solubility error is not specified.	
	REFERENCES :	
	1. Ginsberg, H.; Holder, G. Z. Anorg. Allg. Chem. <u>1931</u> , 201, 193.	

.

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Sodium hexafluorotitanate(IV); NacTiFe: (17116-13-1)</pre>	Ginsberg, G.; Holder, G.
Na ₂ TiF ₆ ; [17116-13-1] (2) Water; H ₂ O; [7732-18-5]	Z. Anorg. Allg. Chem. <u>1931</u> , 201, 193-206.
	±>0 ±00.
VARIABLES:	
T/K = 298	PREPARED BY: J. Hála
	o. natu
EXPERIMENTAL VALUES:	
The solubility at 25°C of Na ₂ TiF ₆ was	s reported to be 7 g/100 ml water
(0.33 mol kg ^{-la}).	· · ·
a Calculated by compiler	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. No details	(1) Na_2TiF_6 was prepared from
were given.	(1) Na ₂ TiF ₆ was prepared from H ₂ TiF ₆ and Na ₂ CO ₃ , and contained 1% water. Source
	and purity of chemicals not
	specified.
	ESTIMATED ERROR:
	The temperature error is not specified.
	Temp: precision ± 0.5 g/100 ml.
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Sodium hexafluorotitanate(IV); Na₂TiF₆; [17116-13-1]</pre>	Ginsberg, H.
(2) Ethanol; C_2H_60 ; [64-17-5]	Z. Anorg. Allg. Chem. <u>1932</u> , 204, 225-31.
VARIABLES: T/K = 294	PREPARED BY: J. Hála
1/1 - 254	J. nala
EXPERIMENTAL VALUES:	
The solubility at 21° of Na ₂ TiF ₆ was	reported to be 0.003 g salt/100cm ³
ethanol (0.00018 mol kg ^{-la}).	
	2
a Calculated by compiler by using the density of 98% ethanol at 20°C.	he value of 0.799 g cm ⁻³ for the
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. No details were given.	(1) Na_2TiF_6 prepared from H_2TiF_6 and Na_2CO_3 according to ref 1.
	(2) Ethanol, 98%. Source and purity of chemicals not specified.
	-
	ESTIMATED ERROR:
	Temp: precision ± 1 K The solubility error is not specified.
	REFERENCES :
	1. Ginsberg, H.; Holder, G. Z. Anorg. Allg. Chem. 1931, 201, 193.

COMPONENTS:	EVALUATOR:
 (1) (OC-6-11)-Dipotassium hexafluoro- titanate(2-); K₂TiF₆; [16919-27-0] (2) Water; H₂O; [7732-18-5] 	J. Hála Department of Inorganic Chemistry J. E. Purkyne University 611 37 Brno, Czechoslovakia October, 1984

CRITICAL EVALUATION:

The solubility of dipotassium hexafluorotitanate(2-) in water.

The solubility of $K_2 TiF_6$ in water has been reported in four publications (ref 1-4). Marignac (ref 1) reports six values over the 273 to 293 K temperature interval. Weiss and Kaiser (ref 2) report values at temperatures of 293 and 371 K, and the others (ref 3 and 4) report a value at one temperature each. The Marignac (ref 1) data were published in a footnote with no experimental details or precision of measurement. However, the Marignac value at 293 K is identical to the 293 K value of Ginsberg and Holder (ref 3), and in good agreement with the value of Weiss and Kaiser (ref 2). All of the available data are summarized in Table 1. The molalities were calculated from the original solubility data.

Table 1. Tentative values of the solubility of K₂TiF₆ in water.

Temperature	Solubility		Reference
Т/К	$m_1/mol kg^{-1}$	$c_1/mol dm^{-3}$	
273	0.0235	-	1
276	0.0269	-	1
279	0.0323	-	1
283	0.0379	~	1
287	0.0434	-	1
293	0.0534 0.0534 0.050	- - -	1 3 2
298	-	0.0595	4
371	0.445	-	2

REFERENCES:

 Marignac, M. C. Ann. Chim. Phys. <u>1866</u>, 8[4], 5.

- Weiss, L.; Kaiser, H.
 Z. Anorg. Allg. Chem. <u>1910</u>, 65, 345.
- Ginsburg, H.; Holder, G.
 Z. Anorg. Allg. Chem. <u>1931</u>, 201, 193.
- 4. Schmitt, R. H.; Grove, E. L.; Brown, R. D. J. Am. Chem. Soc. <u>1960</u>, 82, 5292

[16919-27-0]	COMPONENTS: (1) Dipotassium (OC-6-11)-hexa- fluorotitanate(2-); K ₂ TiF ₆ ; [16919-27-0]		REMENTS: . C. Phys. <u>1866</u> , 8[4]	, 5-75.
(2) Water; H ₂ O; [7732-18	-5]			
VARIABLES:		PREPARED BY:	<u> </u>	
T/K = 273 - 293			J. Hála	
EXPERIMENTAL VALUES:	<u></u>			
Temperature	······································	K2 ^{TiF} 6		~
t/ ^o c t/K	Parts of Wat to Dissolve K ₂ Ti	l part of	m ₁ /mol kg ^{-la}	
0 273 3 276 6 279 10 283 14 287 20 293	177 155 129 110 96 78		0.0235 0.0269 0.0323 0.0379 0.0434 0.0534	
AUXILIARY INFORMATION				
	AUXILIARY			
METHOD/APPARATUS/PROCEDURE: No details reported. (T appeared in the original in the footnote on p. 65	he data document		RITY OF MATERIALS:	
No details reported. (T appeared in the original	he data document	SOURCE AND PUI	or:	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Potassium hexafluorotitanate(IV)	Weiss, L.; Kaiser, H.
K ₂ TiF ₆ ; [16919-27-0]	Z. Anorg. Chem. <u>1910</u> , 65,
(2) Water; H ₂ O; [7732-18-5]	345-402.
VARIABLES:	PREPARED BY:
T/K = 293 and 371	J. Hála
EXPERIMENTAL VALUES:	
Composition of Sa	turated Solutions
Potassium Hexafl	uorotitanate (IV)
t/°C	$w_1/g kg^{-1} a m_1/mol kg^{-1} a$
20 lgin 78 ml H ₂ O 98 l.1862 gin 11.1 ml H 1.3652 gin 12.8 ml H	12.82 0.0534 20 106.86 0.445
Calculated by compiler	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
To a flask containing a known amount of K ₂ TiF ₆ , water was	(1) K ₂ TiF ₆ containing 19.79% Ti was prepared by dissolving
gradually added until the salt dissolved completely. Measure-	TiO, in HF (reagent grade, Kahlbaum). On addition of
ments at 98° were carried out	an excess of K_2CO_3 solution,
in a boiling water bath in a flask equipped with a reflux	K ₂ TiF ₆ crystals were obtained. The solid was dried at 100°C.
condenser. Solid phase was not examined.	TiO ₂ was prepared from Brazil- ian rutile by fusion with KHSO
	and leaching the melt with ⁴ water; it contained only traces
	of Fe.
	ESTIMATED ERROR: Nothing specified.
	Nothing specified.
	REFERENCES
	REFERENCES :
	REFERENCES :
	REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
 Potassium hexafluorotitanate; 	
$K_2 \text{TiF}_6$; [16919-27-0]	Ginsberg, H.; Holder, G. Z.Anorg. Allg. Chem. <u>1931</u> , 201,
(2) Water; H ₂ O; [7732-18-5]	193-206.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The solubility at 25°C of K ₂ TiF ₆ wa	s reported to be 1.2 g/100 mi water
(0.050 mol kg ^{-la}).	
a. Calculated by compiler	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. No details	Nothing specified.
were given.	
	ESTIMATED ERROR:
	The temperature error is not
1	specified.
}	Soly: precision ± 0.1 g/100 ml.
	REFERENCES :
1	
1	
1	1

(1) Potassium hexafluorotitanate; KgTiF; [16919-27-0] Schmit, R. H.; Grove, E. L.; Brown, R. D. (2) Water; H_2O; [7732-18-5] J. Am, Chem. Soc. <u>1960</u> , 82, 5292-5. VARIABLES: T/K = 298.15 J. Hala EXFERIMENTAL VALUES: J. Hala EXFERIMENTAL VALUES: J. Hala EXFERIMENTAL VALUES: J. Hala EXFERIMENTAL VALUES: J. Hala The solubility of K ₂ TiF ₆ at 25 °C in water is reported to be o ₂ /mol dm ⁻¹ = 0.0595. The solubility is assumed to be the average of four measurements. Neither individual values nor a standard deviation are reported. MULLIARY INFORMATION METHOD/AFFARATUS/FROCEDURE: Isothermal method used. Two satd. solutions were brought to 25 °C with do constant stirring. After attaining equilibrium, known volumes of the satd. solutions were evaporated to dryness at 70 °C, weighed, kept our pred. 3 dicsolving vory pure pred. according to (ref 1), in excess HF. SOURCE AND PURITY OF MATERIALS: References: Nothing specified. Se statement above. SOURCE AND PURIT	
VARIABLES: 5292-5. T/K = 298.15 J. Hala EXPERIMENTAL VALUES: J. Hala EXPERIMENTAL VALUES: The solubility of K ₂ TiF ₆ at 25 °C in water is reported to be $\sigma_1/mol dm^{-1} = 0.0595$. The solubility is assumed to be the average of four measurements. Neither individual values nor a standard deviation are reported. METHOD/APPARATUS/FROCEDURE: SOURCE AND PURITY OF MATERIALS: (cont: toonstant stirring. After attaining equilibrium, known volumes of the satd, solutions were treated in poly- ethylene ware. SOURCE AND PURITY OF MATERIALS: to reagent grade KCl to a soln. to reagent grade KCl to a soln. to reagent grade KCl to a soln. the solutions were treated in poly- ethylene ware. STIMATED ERRON: Temp: accuracy ± 0.005 K. Soly: Nothing specified. Se statement above. SOURCE AND PURITY OF MATERIALS: manual constant starring. The salt was filtered, yashid, and recrytallized several times, Pt or polyethylene containers REFERENCES: 1. Brauer, G. Ann. Mumes. 1859, 15, 221.	E. L.;
J. Hala EXPERIMENTAL VALUES: The solubility of K2TIF6 at 25 °C in water is reported to be o1/mol dm ⁻¹ = 0.0595. The solubility is assumed to be the average of four measurements. Neither individual values nor a standard deviation are reported. AUXILIARY INFORMATION MUNILIARY	, 82,
J. Hala EXPERIMENTAL VALUES: The solubility of K2TIF6 at 25 °C in water is reported to be a1/mol dm ⁻¹ = 0.0595. The solubility is assumed to be the average of four measurements. Neither individual values nor a standard deviation are reported. AUXILIARY INFORMATION MUNILIARY	
EXPERIMENTAL VALUES: The solubility of K2TiF6 at 25 °C in water is reported to be $\sigma_1/mol dm^{-1} = 0.0595$. The solubility is assumed to be the average of four measurements. Neither individual values nor a standard deviation are reported. METHOD/APPARATUS/PROCEDURE: Tsothermal method used. Two satd. solutions of K2TiF6 were prepared at 40 °C, another two below 20 °C, All solutions were brought to 25 °C with constant stirring. After attaining equilibrium, know volumes of the satd. solutions were evaporated to dryness at 70 °C, weighed, kept over P205 for several days and reweighed. All solutions were treated in poly- ethylene ware. SOURCE AND PURITY OF MATERIALS: K2TiF6 was prepd. by adding concd. soln, of reagent grade KC1 to a soln. of H2TiF2. The salt was filtered, wash6d, and recrytallized several times. Pt or polyethylene containers EFTEMATED ERROR: 1. Brauer, G. Ann. Minnes. 1859, 15, 221.	
The solubility of K2TIF6 at 25 °C in water is reported to be o1/main of the individual values nor a standard deviation are reported. AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: Source AND PURITY OF MATERIALS: (cont: K2TIF6 showed only traced inpurities. The H3TIF soln. w prepd. according to (ref 1), in excess HF. SOURCE AND PURITY OF MATERIALS: (cont: K2TIF6 was prepd. by adding concd. solutions were treated in poly- ethylene ware. SOURCE AND PURITY OF MATERIALS: K2TIF6 was prepd. by adding concd. soln. of reagent grade KC1 to a soln. of H7TIF7. The salt was filtered, washed, and recrytallized several times. Pt or polybylene containers	
The solubility of K2TIF6 at 25 °C in water is reported to be o1/main of the individual values nor a standard deviation are reported. AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: Source AND PURITY OF MATERIALS: (cont: K2TIF6 showed only traced inpurities. The H3TIF soln. w prepd. according to (ref 1), in excess HF. SOURCE AND PURITY OF MATERIALS: (cont: K2TIF6 was prepd. by adding concd. solutions were treated in poly- ethylene ware. SOURCE AND PURITY OF MATERIALS: K2TIF6 was prepd. by adding concd. soln. of reagent grade KC1 to a soln. of H7TIF7. The salt was filtered, washed, and recrytallized several times. Pt or polybylene containers	
AUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION METHOD/AFPARATUS/PROCEDURE: Isothermal method used. Two satd. SOURCE AND PURITY OF MATERIALS: (cont: SOURCE AND PURITY OF MATERIALS: SOURCE AND PURITY OF MATERIALS: SOURCE AND PURITY OF MATERIALS: K2TIFG was prepd. by adding concd. SOURCE AND PURITY OF MATERIALS: K2TIFG was prepd. by adding concd. SOURCE AND PURITY OF MATERIALS: K2TIFG was prepd. by adding concd. SOURCE AND PURITY OF MATERIALS: K2TIFG was prepd. by adding concd. SOURCE AND PURITY OF MATERIALS: K2TIFG was prepd. by adding concd. SOURCE AND PURITY OF MATERIALS: K2TIFG was prepd. by adding concd. SOURCE AND PURITY OF MATE	·····
AUXILIARY INFORMATION METHOD/AFPARATUS/FROCEDURE: Isothermal method used. Two satd. solutions of KyTiF ₆ were prepared at 0 °C, another 'two below 0 °C, all solutions were treated in poly- ethylene ware. SOURCE AND FURITY OF MATERIALS: KZTIF ₆ was prepd. by adding concd. solu, of reagent grade KCL to a soln. of HyTiF ₂ . The salt was filtered, washEd, and recrytallized several times. Te or polyethylene containers	1
AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: Isothermal method used. Two satd. Solutions of KyTif were prepared at 40 °C, another two below 20 °C, All Solutions were brought to 25 °C with constant stirring. After attaining equilibrium, known volumes of the solutions were evaporated to dryness at 70 °C, weighed, kept over P2O5 for several days and reweighed. All solutions were treated in poly- ethylene ware. SOURCE AND PURITY OF MATERIALS: K2TiF ₆ was prepd. by adding concd. soln. of reagent grade KCl to a soln. of HyTiF ₀ . The salt was filtered, washed, and recrytallized several times. P tor polyethylene containers	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: (cont: K_2 TiF6 showed only traced impurities. The H_2 TiF6 soln. we prepd. by dissolving very pure prepd. by dissolving to (ref 1), in excess HF.SOURCE AND PURITY OF MATERIALS: References at 70 °C, weighed, kept over P_2O_5 for several days and reweighed. All solutions were treated in poly- ethylene ware.SOURCE AND PURITY OF MATERIALS: REFERENCES: K2TIF6 was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H_2 TiF6. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containersSOURCE AND PURITY OF MATERIALS: REFERENCES:References: Ann. Minnes. 1859, 15, 221.	1
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: (cont: K_2 TiF6 showed only traced impurities. The H_2 TiF6 soln. we prepd. by dissolving very pure prepd. by dissolving to (ref 1), in excess HF.Source AND PURITY OF MATERIALS: References at 70 °C, weighed, kept over P_2O_5 for several days and reweighed. All solutions were treated in poly- ethylene ware.Source AND PURITY OF MATERIALS: REFERENCES: K2TIF6 was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H_2 TiF6. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containersSource AND PURITY OF MATERIALS: REFERENCES:References: Ann. Minnes. 1859, 15, 221.	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: (cont: K2TiF6 showed only traced impurities. The H2TiF6 soln. way prepd. by dissolving very pure prepd. by dissolving to (ref 1), in excess HF.SOURCE AND PURITY OF MATERIALS: Refer attaining equilibrium, known volumes of the satd. solutions were evaporated to dryness at 70 °C, weighed, kept over P2O5 for several days and reweighed. All solutions were treated in poly- ethylene ware.SOURCE AND PURITY OF MATERIALS: REFERENCES: K2TiF6 was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H2TiF6. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containersSOURCE AND PURITY OF MATERIALS: REFERENCES: Ann. Minnes. 1859, 15, 221.	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: (cont: K_2 TiF6 showed only traced impurities. The H_2 TiF6 soln. we prepd. by dissolving very pure prepd. by dissolving to (ref 1), in excess HF.Source AND PURITY OF MATERIALS: References at 70 °C, weighed, kept over P_2O_5 for several days and reweighed. All solutions were treated in poly- ethylene ware.Source AND PURITY OF MATERIALS: REFERENCES: K2TIF6 was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H_2 TiF6. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containersSource AND PURITY OF MATERIALS: REFERENCES:References: Ann. Minnes. 1859, 15, 221.	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: (cont: K_2 TiF6 showed only traced impurities. The H_2 TiF6 soln. we prepd. by dissolving very pure prepd. by dissolving to (ref 1), in excess HF.Source AND PURITY OF MATERIALS: References at 70 °C, weighed, kept over P_2O_5 for several days and reweighed. All solutions were treated in poly- ethylene ware.Source AND PURITY OF MATERIALS: REFERENCES: K2TIF6 was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H_2 TiF6. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containersSource AND PURITY OF MATERIALS: REFERENCES:References: Ann. Minnes. 1859, 15, 221.	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: (cont: K_2 TiF6 showed only traced impurities. The H_2 TiF6 soln. we prepd. by dissolving very pure prepd. by dissolving to (ref 1), in excess HF.Source AND PURITY OF MATERIALS: References at 70 °C, weighed, kept over P_2O_5 for several days and reweighed. All solutions were treated in poly- ethylene ware.Source AND PURITY OF MATERIALS: REFERENCES: K2TIF6 was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H_2 TiF6. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containersSource AND PURITY OF MATERIALS: REFERENCES:References: Ann. Minnes. 1859, 15, 221.	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: (cont: K_2 TiF6 showed only traced impurities. The H_2 TiF6 soln. we prepd. by dissolving very pure prepd. by dissolving to (ref 1), in excess HF.Source AND PURITY OF MATERIALS: References at 70 °C, weighed, kept over P_2O_5 for several days and reweighed. All solutions were treated in poly- ethylene ware.Source AND PURITY OF MATERIALS: REFERENCES: K2TIF6 was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H_2 TiF6. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containersSource AND PURITY OF MATERIALS: 	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: (cont: K_2 TiF6 showed only traced impurities. The H_2 TiF6 soln. we prepd. by dissolving very pure prepd. by dissolving to (ref 1), in excess HF.SOURCE AND PURITY OF MATERIALS: References at 70 °C, weighed, kept over P_2O_5 for several days and reweighed. All solutions were treated in poly- ethylene ware.SOURCE AND PURITY OF MATERIALS: REFERENCES: K2TIF6 was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H_2 TiF6. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containersSOURCE AND PURITY OF MATERIALS: REFERENCES:References: Ann. Minnes. 1859, 15, 221.	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: (cont: K_2 TiF6 showed only traced impurities. The H_2 TiF6 soln. we prepd. by dissolving very pure prepd. by dissolving to (ref 1), in excess HF.SOURCE AND PURITY OF MATERIALS: References at 70 °C, weighed, kept over P_2O_5 for several days and reweighed. All solutions were treated in poly- ethylene ware.SOURCE AND PURITY OF MATERIALS: REFERENCES: K2TIF6 was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H_2 TiF6. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containersSOURCE AND PURITY OF MATERIALS: REFERENCES:References: Ann. Minnes. 1859, 15, 221.	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: (cont: K_2 TiF6 showed only traced impurities. The H_2 TiF6 soln. we prepd. by dissolving very pure prepd. by dissolving to (ref 1), in excess HF.SOURCE AND PURITY OF MATERIALS: References at 70 °C, weighed, kept over P_2O_5 for several days and reweighed. All solutions were treated in poly- ethylene ware.SOURCE AND PURITY OF MATERIALS: REFERENCES: K2TIF6 was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H_2 TiF6. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containersSOURCE AND PURITY OF MATERIALS: REFERENCES:References: Ann. Minnes. 1859, 15, 221.	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: (cont: K_2 TiF6 showed only traced impurities. The H_2 TiF6 soln. we prepd. by dissolving very pure prepd. by dissolving to (ref 1), in excess HF.SOURCE AND PURITY OF MATERIALS: References at 70 °C, weighed, kept over P_2O_5 for several days and reweighed. All solutions were treated in poly- ethylene ware.SOURCE AND PURITY OF MATERIALS: REFERENCES: K2TIF6 was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H_2 TiF6. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containersSOURCE AND PURITY OF MATERIALS: REFERENCES:References: Ann. Minnes. 1859, 15, 221.	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: (cont: K_2 TiF6 showed only traced impurities. The H_2 TiF6 soln. we prepd. by dissolving very pure prepd. by dissolving to (ref 1), in excess HF.SOURCE AND PURITY OF MATERIALS: References at 70 °C, weighed, kept over P_2O_5 for several days and reweighed. All solutions were treated in poly- ethylene ware.SOURCE AND PURITY OF MATERIALS: REFERENCES: K2TIF6 was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H_2 TiF6. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containersSOURCE AND PURITY OF MATERIALS: REFERENCES:References: Ann. Minnes. 1859, 15, 221.	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: (cont: K_2 TiF6 showed only traced impurities. The H_2 TiF6 soln. we prepd. by dissolving very pure prepd. by dissolving to (ref 1), in excess HF.SOURCE AND PURITY OF MATERIALS: References at 70 °C, weighed, kept over P_2O_5 for several days and reweighed. All solutions were treated in poly- ethylene ware.SOURCE AND PURITY OF MATERIALS: REFERENCES: K2TIF6 was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H_2 TiF6. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containersSOURCE AND PURITY OF MATERIALS: REFERENCES:References: Ann. Minnes. 1859, 15, 221.	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: (cont: K_2 TiF6 showed only traced impurities. The H_2 TiF6 soln. we prepd. by dissolving very pure prepd. by dissolving to (ref 1), in excess HF.SOURCE AND PURITY OF MATERIALS: References at 70 °C, weighed, kept over P_2O_5 for several days and reweighed. All solutions were treated in poly- ethylene ware.SOURCE AND PURITY OF MATERIALS: REFERENCES: K2TIF6 was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H_2 TiF6. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containersSOURCE AND PURITY OF MATERIALS: REFERENCES:References: Ann. Minnes. 1859, 15, 221.	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: (cont: K_2 TiF6 showed only traced impurities. The H_2 TiF6 soln. we prepd. by dissolving very pure prepd. by dissolving to (ref 1), in excess HF.SOURCE AND PURITY OF MATERIALS: References at 70 °C, weighed, kept over P_2O_5 for several days and reweighed. All solutions were treated in poly- ethylene ware.SOURCE AND PURITY OF MATERIALS: REFERENCES: K2TIF6 was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H_2 TiF6. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containersSOURCE AND PURITY OF MATERIALS: REFERENCES:References: Ann. Minnes. 1859, 15, 221.	
Isothermal method used. Two satd. solutions of K ₂ TiF ₆ were prepared at 40 °C, another two below 20 °C. All solutions were brought to 25 °C with constant stirring. After attaining equilibrium, known volumes of the satd. solutions were evaporated to dryness at 70 °C, weighed, kept over P ₂ O ₅ for several days and reweighed. All solutions were treated in poly- ethylene ware. SOURCE AND PURITY OF MATERIALS: K ₂ TiF ₆ was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H ₂ TiF ₆ . The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containers	
Isothermal method used. Two satd. solutions of K ₂ TiF ₆ were prepared at 40 °C, another two below 20 °C. All solutions were brought to 25 °C with constant stirring. After attaining equilibrium, known volumes of the satd. solutions were evaporated to dryness at 70 °C, weighed, kept over P ₂ O ₅ for several days and reweighed. All solutions were treated in poly- ethylene ware. SOURCE AND PURITY OF MATERIALS: K ₂ TiF ₆ was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H ₂ TiF ₆ . The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containers	S: (continued)
 Isothermal method used. Two satd. solutions of K₂TiF₆ were prepared at 40 °C, another two below 20 °C. All solutions were brought to 25 °C with constant stirring. After attaining equilibrium, known volumes of the satd. solutions were evaporated to dryness at 70 °C, weighed, kept over P₂O₅ for several days and reweighed. All solutions were treated in polyethylene ware. SOURCE AND PURITY OF MATERIALS: K₂TiF₆ was prepd. by adding concd. soln. of reagent grade KCl to a soln. of the solves for the solve	traces of
 40 °C, another two below 20 °C. All solutions were brought to 25 °C with constant stirring. After attaining equilibrium, known volumes of the satd. solutions were evaporated to dryness at 70 °C, weighed, kept over P₂O₅ for several days and reweighed. All solutions were treated in polyethylene ware. SOURCE AND PURITY OF MATERIALS: K₂TiF₆ was prepd. by adding concd. soln. of reagent grade KCl to a soln. of reagent grade KCl to a soln. of H₂TiF₆. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containers prepd. by dissolving very pure prepd. according to (ref 1), in excess HF. prepd. by dissolving very pure pred. according to (ref 1), in excess HF. ESTIMATED ERROR: Temp: accuracy ± 0.005 K. Soly: Nothing specified. Se statement above. 	soln. was
 constant stirring. After attaining equilibrium, known volumes of the satd. solutions were evaporated to dryness at 70 °C, weighed, kept over P₂O₅ for several days and reweighed. All solutions were treated in polyethylene ware. ESTIMATED ERROR: Temp: accuracy ± 0.005 K. Soly: Nothing specified. Se statement above. SOURCE AND PURITY OF MATERIALS: K₂TiF₆ was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H₂TiF₆. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containers EXCESS HF. excess HF. excess HF. 	ery pure TiO ₂ ,
<pre>equilibrium, known volumes of the satd. solutions were evaporated to dryness at 70 °C, weighed, kept over P₂O₅ for several days and reweighed. All solutions were treated in poly- ethylene ware. Solutions were treated in poly- ethylene ware. SOURCE AND PURITY OF MATERIALS: K₂TiF₆ was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H₂TiF₆. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containers</pre>	er 1), 11
dryness at 70 °C, weighed, kept over P ₂ O ₅ for several days and reweighed. All solutions were treated in poly- ethylene ware. ESTIMATED ERROR: Temp: accuracy ± 0.005 K. Soly: Nothing specified. Se statement above. SOURCE AND PURITY OF MATERIALS: K ₂ TiF ₆ was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H ₂ TiF ₆ . The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containers	
P ₂ O ₅ for several days and reweighed. All solutions were treated in poly- ethylene ware. ESTIMATED ERROR: Temp: accuracy ± 0.005 K. Soly: Nothing specified. Se statement above. SOURCE AND PURITY OF MATERIALS: K ₂ TiF ₆ was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H ₂ TiF ₆ . The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containers	
All solutions were treated in poly- ethylene ware. SOURCE AND PURITY OF MATERIALS: K ₂ TiF ₆ was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H ₂ TiF ₆ . The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containers	
<pre>ethylene ware. Estimated ERROR: Temp: accuracy ± 0.005 K. Soly: Nothing specified. Se statement above. SOURCE AND PURITY OF MATERIALS: K₂TiF₆ was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H₂TiF₆. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containers</pre> REFERENCES: Estimated ERROR: Temp: accuracy ± 0.005 K. Soly: Nothing specified. Se statement above. REFERENCES: 1. Brauer, G. Ann. Minnes. <u>1859</u> , 15, 221.	
Temp: accuracy ± 0.005 K. Soly: Nothing specified. Se statement above.SOURCE AND PURITY OF MATERIALS: K2TiF6 was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H2TiF6. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containersREFERENCES: 1. Brauer, G. Ann. Minnes. 1859, 15, 221.	
SOURCE AND PURITY OF MATERIALS: K ₂ TiF ₆ was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H ₂ TiF ₆ . The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containers	005 K.
 K2TiF₆ was prepd. by adding concd. soln. of reagent grade KCl to a soln. of H2TiF₆. The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containers 	fied. See
soln. of reagent grade KCl to a soln. of H ₂ TiF ₆ . The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containers	<u></u>
soln. of reagent grade KCl to a soln. of H ₂ TiF ₆ . The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containers	
of H ₂ TiF ₆ . The salt was filtered, washed, and recrytallized several times. Pt or polyethylene containers	5, 221.
times. Pt or polyethylene containers	
land deionized water were used in all	
steps. Spectrographic analysis of	
later due stud month a publication of	-,

		·
COMPONENTS :		ORIGINAL MEASUREMENTS:
(1) Potassium hexafluo K ₂ TiF ₆ ; [16919-27-		Voitko, I. I.; Rozhenko, S.P.; Kvashenko, A.P.
(2) Calcium nitrate; C [10124-37-5]	a(NO3)2;	*Ukr. Khim. Zh. (Russ. Ed.) <u>1975</u> , 41, 754-6; Sov. Prog. Chem. (Engl. Transl.) <u>1975</u> , 41(7), 76-8.
(3) Water; H ₂ O; [7732-	18-5]	
VARIABLES:		PREPARED BY:
T/K = 293 $c_2/mol dm^{-3} = 0.0127$	- 1.018	J. Hála
EXPERIMENTAL VALUES:		
	<u>Initial</u> Calcium Nitrate	Saturated Solution Potassium Hexafluorotitanate(IV)
t∕°C	$c_2/mol dm^{-3}$	$c_1/mol dm^{-3}$
20 Over the whole seri	0.0127 0.0254 0.0509 0.102 0.254 0.509 1.018	0.0577 0.0622 0.0650 0.0735 0.0945 0.124 0.148
K ₂ TiF ₆ [16919-27-0] increased solubility increasing acidity.	, K ₂ Ti(OH) _X F6-x y of K ₂ TiF6 in (Due to the hyd	ase was composed of a mixture of , and CaF_2 , [7789-75-5]. The $Ca(NO_3)_2$ solutions was ascribed to drolytic equilibrium:
$K_2^{\text{TiF}_6} + \frac{x}{2} Ca(NO_3)_2$	+ x H ₂ O ‡ K ₂ Ti	$(OH)_{x}F_{6-x} + \frac{x}{2}CaF_{2} + x HNO_{3}$
to 1.018 mol dm ⁻³ C	a (NO ₃) ₂ .	3.15 to 1.36 on going from 0.0127
	AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	·····	SOURCE AND PURITY OF MATERIALS;
Isothermal method use removal of F^- by evap H_2SO_4 and leaching Ti Ti was determined gra as TiO ₂ via hydroxide In the filtrate K was gravimetrically as K ₂ content not determine phases were identifie X-ray diffraction.	oration with with water, vimetrically or cupferrate. determined SO ₄ . Ca d. Solid	 K₂TiF₆, 99% purity, recrystal- lized in the presence of HF. Ca(NO₃)₂, reagent grade. Source and purity of water not specified.
		ESTIMATED ERROR:
		The temperature error is not speci- fied. Soly: Precision ± 2-5 % (compiler).
		REFERENCES :

COMPONENTS -	OPTOTNAL WEACUPENERS
Components :	ORIGINAL MEASUREMENTS:
<pre>(1) Potassium hexafluorotitanate(IV); K₂TiF₆; [16919-27-0]</pre>	Voitko, I.I.; Rozhenko, S.P.; Kvashenko, A.P.
(2) Strontium nitrate; Sr(NO ₃) ₂ ; [10042-76-9]	*Ukr. Khim. Zh. (Russ. Ed.) <u>1975</u> , 41, 754-6; Sov. Prog. Chem. (Engl. Transl.) 1975, 41(7), 76-8.
(3) Water; H ₂ O; [7732-18-5]	<u> </u>
VARIABLES:	PREPARED BY:
T/K = 293	J. Hála
$c_2/\text{mol } \text{dm}^{-3} = 0 - 2.84$	
EXPERIMENTAL VALUES:	L
$t/^{\circ}C = 2$	20
Initial Composition of Satura	ated Solutions Nature of Solid Phase ^a
Strontium Strontium Nitrate Nitrate Hexaf	Potassium luorotitanate(TV)
$c_2/\text{mol dm}^{-3}$ $c_2/\text{mol dm}^{-3}$	$c_1/mol dm^{-3}$
0 0	0.0484 }
0.0121 0.0072	0.0513
0.0242 0.0484 0.0423	0.0528 0.0588
0.0968 0.0897	0.0660 A+B+C
0.244 0.232	0.0865
0.488 0.468	0.113
0.977 0.836	0.118) 0.128 A+B+C+D
The increased solubility of K ₂ TiF ₆ to increasing acidity. Due to the l	in Sr(NO ₃) ₂ solutions was ascribed hydrolytic equilibrium:
$K_{2} \text{TiF}_{6} + \frac{x}{2} \text{ sr}(\text{NO}_{3})_{2} + x H_{2} \text{O} \neq K_{2} \text{Ti}(0)$	_
the pH of solutions decreased from to 2.84 mol dm^{-3} Sr(NO ₃) ₂ .	3.62 to 0.6 on going from 0.0121
^a A: K ₂ TiF ₆ [16919-27-0]; B: K ₂ '	Ti(OH) _x F _{6-x} ; C: SrF ₂ [7783-48-4];
D. unspecificu phase k	
AUXILIARY	INFORMATION
ME THOD / AP PARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. After removal of F ⁻ by evaporating with	(1) K ₂ TiF ₆ , 99% purity, recrystal- lized in the presence of HF.
H_2SO_4 and leaching Ti with water, Ti was determined as TiO ₂ via	(2) Sr(NO ₃) ₂ , reagent grade.
hydroxide or cupferrate. In the filtrate K was determined	(3) Source and purity of water not
gravimetrically as K_2SO_4 . Sr	specified.
was determined gravimetrically as $SrSO_4$ in the residue remaining	
after léaching of Ti. Solid	1
phases were identified by means	
of X-ray diffraction.	ESTIMATED ERROR:
	The temperature error is not
	specified. Soly: precision ± 2-5 % (compiler).
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Potassium hexafluorotitanate(IV); K₂TiF₆; [16919-27-0]</pre>	Ginsberg, H.
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	Z. Anorg. Allg. Chem. <u>1932</u> , 204, 225-31.
VARIABLES :	PREPARED BY:
T/K = 294	J. Hála
EXPERIMENTAL VALUES:	
The solubility at 21°C of K ₂ TiF ₆ was	s reported to be 0.0045 g
salt/100 cm ³ ethanol (0.000235 mol)	(g ^{-la}).
a Calculated by compiler by using density of 98% ethanol at 20°C.	the value of 0.799 g cm^{-3} for the
	TURODUARTOU
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. No details were given.	(1) No details given for $K_2 TiF_6$.
	(2) Ethanol, 98%.
	ESTIMATED ERROR:
	Temp: precision ± 1 K. The solubility error is not specified.
	REFERENCES :
1	1

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Rubidium hexafluorotitanate; Rb₂TiF₆; [16962-41-7]</pre>	Ginsberg, H.; Holder, G.
(2) Water; H ₂ O; [7732-18-5]	Z. Anorg. Allg. Chem. <u>1931</u> , 201, 193-206.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The solubility at 25°C of Rb ₂ TiF ₆ w	as reported to be 0.8 g/l00 ml
water $(0.024 \text{ mol } \text{kg}^{-1a})$.	
water (0.024 mor kg -).	
a Calculated by compiler	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. No details were given.	(1) Rb ₂ TiF ₆ was prepared from Rb ₂ CO ₃ (Kahlbaum) and H ₂ TiF ₆ . Source and purity of the latter not specified.
	ESTIMATED ERROR:
	The temperature error is not
	specified. Soly: precision ± 0.1 g/100 ml.
	REFERENCES :
1	

2 litanium Halides and Oxyhalides		
COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Rubidium hexafluorotitanate; Rb₂TiF₆; [16962-41-7]</pre>	Schmitt, R. H.; Grove, E. L.; Brown, R. D.	
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1960</u> , 82, 5292-5.	
VARIABLES:	PREPARED BY:	
T/K = 298	J. Hála	
EXPERIMENTAL VALUES:		
The solubility of Rb	TiF ₆ at 25℃ is reported to	
be $0.0248 \text{ mol } \text{dm}^{-3}$.	0	
De 0.0248 mot am ² .		
	JIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Two satu	SOURCE AND PURITY OF MATERIALS:	
rated solutions of Rb2TiF6 were p	re- concentrated solution of RbF to	
pared at 40°, another two below 2 All solutions were brought to equ	0°. a solution of H ₂ TiF ₆ . The salt	
librium at 25° with constant stir	- crystallized several times. Pt	
ring. After attaining equilibriu known volumes of the saturated so		
tions were evaporated to dryness	at steps. Spectrographic analysis	
70°, weighed, kept over P_2O_5 for several days, and reweighed. All	of Rb ₂ TiF ₆ showed only minor traces of impurities. The	
solutions were treated in poly-	H ₂ TiF ₆ solution was prepared	
ethylene ware.	by dissolving very pure TiO ₂ , prepared according to ref (1),	
ESTIMATED ERROR:	in excess HF.	
Temp: accuracy ± 0.005 K.	(2) Deionized water was used.	
The solubility error is not speci		
fied. The solubility value repor is a result of 4 independent meas		
ments (individual values not	1. Brauer, G. Ann. Minnes.	
reported).	$\frac{1859}{15}$, 15, 221.	

	20
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Cesium hexafluorotitanate(IV); Cs₂TiF₆; [16919-28-1]</pre>	Ginsberg, H.; Holder, G.
(2) Water; H ₂ O; [7732-18-5]	Z. Anorg. Allg. Chem. <u>1931</u> , 201, 193-206.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The solubility at 25°C of Cs ₂ TiF ₆ w	as reported to be 2.5 g/100 ml
water (0.0585 mol kg ^{-la}).	· ·
a Calculated by compiler	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. No details	(1) Cs ₂ TiF ₆ was prepared from Cs ₂ CO ₃
were given.	and $H_2 TiF_6$. Source and purity of chemicals not specified.
	ESTIMATED ERROR:
	The temperature error is not specified.
1	Soly: precision ± 0.1 g/100 ml.
	REFERENCES :
1	1

Titanium Halides and Oxyhalides

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Cesium hexafluorotitanate; Cs₂TiF₆; [16919-28-1]</pre>	Schmitt, R. H.; Grove, E. L.; Brown, R. D.
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1960</u> , 82, 5292–5.
VARIABLES:	PREPARED BY:
VARIABED.	TREFARED DI:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The solubility of Cs ₂ TiF ₆	at 25° is reported to
be 0.0551 mol dm ⁻³ .	
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Two satu-	(1) Cs ₂ TiF ₆ was prepared by adding
rated solutions of Cs_2TiF_6 were prepared at 40°, another two below 20°.	concentrated solution of an un- specified Cs halide to a solution
All solutions were brought to equi-	of H ₂ TiF ₆ . The salt was fil-
librium at 25° with constant stir- ring. After attaining equilibrium,	tered, washed, and recrystallized several times. Pt or poly-
known volumes of the saturated solu-	ethylene containers and deionized
tions were evaporated to dryness at 70° , weighed, kept over P ₂ O ₅ for	water were used in all steps. Spectrographic analysis of
several days, and reweighed. All	Cs_2TiF_6 showed only minor traces
solutions were treated in poly- ethylene ware.	of impurities. The H ₂ TiF ₆ solu-
chylene wale.	tion was prepared by dissolving very pure TiO ₂ , prepared accord-
ESTIMATED ERROR:	ing to ref (1) , in excess HF.
Temp: accuracy ± 0.005 K.	(2) Deionized water was used.
The solubility error is not speci- fied. The solubility value reported	
is a result of 4 independent measure-	REFERENCES:
ments (individual values not reported).	 Brauer, G. Ann. Minnes. 1859, 15, 221.
• •= • ••• •	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Cesium hexafluorotitanate(IV); Cs₂TiF₆; [16919-28-1]</pre>	Ginsberg, H.
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	Z. Anorg. Allg. Chem. <u>1932</u> , 204, 225-31.
VARIABLES:	PREPARED BY:
T/K = 294	J. Hála
EXPERIMENTAL VALUES:	
The solubility at 21°C of Cs ₂ TiF ₆ w	as reported to be 0.002 g
salt/100 cm ³ ethanol (0.000058 mol)	kg ^{-la}).
a Calculated by compiler by using density of 98% ethanol at 20°C.	the value of 0.799 g cm^{-3} for the
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. No details were given.	(1) Cs_2TiF_6 prepared from H_2TiF_6 and Cs_2CO_3 according to ref1.
	(2) Ethanol, 98%. Source and purity of chemicals not specified.
	ESTIMATED ERROR:
	Temp: precision ± 1 K
	The solubility error is not specified.
	REFERENCES :
	<pre>1. Ginsberg, H.; Holder, G. Z. Anorg. Allg. Chem. <u>1931</u>, 201, 193.</pre>

COMPONENTS : ORIGINAL MEASUREMENTS (1) Titanium(II) chloride; TiCl₂; Oshiba, T. [10049-06-6] (2) Sodium bromide; NaBr; [7647-15-6]
 (3) Sodium amalgam; NaHg,
 (4) Ammonia; NH₃; [7664-41-7]
 Kogyo Kagaku Zasshi <u>1959</u>, 62, 985-92. EXPERIMENTAL VALUES Composition of Saturated Solutions TiCl₂ NaBr Тi $g/100g \text{ NH}_3 m_2/\text{mol kg}^{-1a} g/100g \text{ NH}_3 g/100g \text{ NH}_3^b m_1/\text{mol kg}^{-1a}$ t∕°C 5 .224 47.35 4.60 1.07 2.66 50.13 4.87 1.17 2.91 .245 49.45 4.81 1.19 2.95 .248 50.14 .284 15 4.87 1.36 3.37 49.06 4.77 .274 1.31 3.26 50.20 4.88 1.28 3.18 .268 .751 .12 .31 .0261 25 7.73 .715 7.36 .10 .25 .0210 .12 .30 .742 .0252 7.63 .33 .82 .0690 1.54 15.86 .19 .47 .0396 16.05 1.56 2.80 .85 28.78 .177 .80 .167 2.83 29.17 1.99 3.04 .205 31.30 .98 2.44 3.13 .78 1.94 .163 32.17 1.36 .284 42.84 4.163 3.38 4.165 1.33 3.31 .279 42.86 .306 48.25 4.69 1.41 3.64 .94 1.22 .198 4.98 51.21 2.35 58.71 5.71 3.02 .254 5.65 58.18 1.12 .233 2.77 .93 .196 71.00 6.90 2.33 .93 68.97 6.70 .195 2.32 7.65 1.00 78.75 .209 2.48 .93 .195 78.44 7.62 2.32 .99 7.43 76.53 .206 2.45 1.19 .249 85.24 8.28 2.96 84.88 8.25 1.20 2.98 .251 .247 8.54 87.91 1.18 2.93 .70 119.70 11.63 .147 1.75 .71 121.30 11.79 1.78 .150 123.20 11.97 .72 1.79 .151 $TiCl_{x}Br_{(2-x)}$ '4NH₃ was assumed to be the equilibrium solid phase a Calculated by compiler (J.H.) b It was estimated that the following displacement reaction takes place in solution: $TiCl_2 + n NaBr \ddagger TiCl_x Br_{(2-x)} + (2-x)NaCl + (n-2+x)NaBr$ Continued on the next page. . .

Titanium Halides and Oxyhalides		
COMPONENTS :	ORIGINAL MEASUREMENTS:	
 Titanium(II) chloride; TiCl₂; [10049-06-6] Sodium bromide; NaBr; [7647-15-6] Sodium amalgam; NaHg_x Ammonia; NH₃; [7664-41-7] 	Oshiba, T. <i>Kogyo Kagaku Zasshi</i> <u>1959</u> , 62, 985-92.	
VARIABLES:	PREPARED BY:	
T/K = 278-298 $m_2/mo1 kg^{-1} = 0.715-5.71$	T. Oshiba and J. Hála	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: A glass pressure vessel, in which sedimentation, decantation, and filtration of the TiCl ₂ ammoniate could be done, was used. A small glass ampoule with TiCl ₄ , 0.2-0.3% Na amalgam containing excess Na, and NaBr was introduced into the vessel; the latter was evacuated and shaken vigorously to crush the ampoule, and then shaken slowly until all TiCl ₄ was reduced, as indicated by no further increase in temperature. Then NH ₃ gas was introduced at ordinary pressure until formation of the ammoniate was completed. The vessel was cooled, liquid NH ₃ distilled into it, and the vessel kept in a thermostat for some hours with occasional shaking. Finally a portion of the saturated solution was poured out through an auxiliary glass tube with glass filter into another cooled vessel, and weighed. NH ₃ was all- owed to evaporate at room temp. and	<pre>SOURCE AND PURITY OF MATERIALS: (1) TiCl4 distilled in the presence of Cu powder. (2) NaBr, reagent grade, was dried at 500-600°C and treated with a solu- tion of Na in NH₃ to remove traces of water. (3) Na-amalgam was prepared either by electrolysis of aqueous solution of NaCl or NaOH, or by direct reaction of Na metal with Hg. (4) NH₃ distilled in the presence of metallic Na. ESTIMATED ERROR: Temp: precision ± 0.5 K Soly: precision ± 5 %.</pre>	

COMPONENTS: ORIGINAL MEASUREMENTS Titanium(III) chloride; TiCl₂; Morozov, I.S.; Toptygina, G.M. [7705-07-9] *2h. Neorg. Khim. <u>1957</u>, 2, 1629-38; J. Inorg. Chem. (USSR) <u>1957</u>, 2(7), 286-300. (2) Hydrogen chloride; HCl; [7647-01-0](3) Water; H₂O; [7732-18-5] EXPERIMENTAL VALUES: The solubility of TiCl₃ in aqueous HCl at 0°C TiCl₃ HC1 m_l/mol kg^{-la} m₂/mol kg^{-la} mass% mass% 32.90 2.98 1.27 3.33 4.11 1.75 31.60 3.19 4.32 1.84 31.15 3.13 7.25 27.90 3.07 2.79 8.79 3.73 26.65 2.68 4.36 10.40 24.20 2.40 12.75 5.31 21.45 2.11 14.80 6.08 18.40 1.79 15.20 18.30 7.55 1.48 19.70 8.18 14.25 1.40 10.66 7.47 0.727 25.90 .334 32.20 13.70 3.32 34.40 15.06 2.96 .306 .257 36.70 16.53 2.41 37.45 17.16 2.59 .280 .322 40.60 19.68 2.81 42.10 21.26 3.60 .428 .409 21.90 42.90 3.39 42.95 43.00^b .498 22.23 4.07 22.12 .450 3.7 0 22.57 0 45.14 The solid phase was TiCl₃.6H₂O throughout the whole HCl concentration range. The increase in solubility at HCl concentrations above 37 mass% was ascribed to the formation of anionic complexes in the solution, e.g. H₂[TiCl₅]. a. Calculated by compiler b. Eutonic point Continued on next page ...

28

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Titanium(III) chloride; TiCl₃; [7705-07-9]</pre>	Morozov, I.S.; Toptygina, G.M.
<pre>(2) Hydrogen chloride; HCl; [7647-01-0]</pre>	*2h. Neorg. Khim. <u>1957</u> , 2, 1629-38; J. Inorg. Chem. (USSR) <u>1957</u> , 2(7), 286-300.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
$\frac{T/K}{m_2/mol kg^{-1}} = 1.27-22.57$	J. Hála
EXPERIMENTAL VALUES:	

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: Isothermal method used. HCl solu- tions containing excess solid were mixed for 6 h. Solutions contain- ing more than 37 mass% HCl were prepared from dilute solution by saturating them with HCl gas. The solutions were analyzed for Ti(III) and Cl ⁻ content but the methods used were not given. The composi- tion of the solid phase was deter- mined from chemical analysis and graphically by Schreinemakers' method. Also determined were partial pressures of HCl over TiCl ₂	SOURCE AND PURITY OF MATERIALS: (1) TiCl ₃ ·6H ₂ O was prepared by precipitation from HCl solution of TiCl ₃ . The product was stored in argon atmosphere over concen- trated H ₂ SO ₄ or KOH. Source and purity of TiCl ₃ and HCl not specified. ESTIMATED ERROR: Temp: precision ± 0.2 K.		
solutions in HCl at 0°C.	The solubility error is not specified. REFERENCES:		

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Titanium(III) chloride; TiCl₃; [7705-07-9]</pre>	Morozov, I.S.; Toptygina, G.M.
<pre>(2) Ammonium chloride; NH₄Cl; [12125-02-9]</pre>	*Zh. Neorg. Khim. <u>1960</u> , 5, 1637-8; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1960</u> , 5, 794-5.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 273 Composition	J. Hála
EXPERIMENTAL VALUES:	
Composition of Saturated Solutions,	t/°C = 0 Nature of the Splid
<u>NH4Cl</u>	Phase ^D
mass% m ₂ /mol kg ^{-la}	masst m _l /mol kg ^{-la}
0 0 2.13 0.614	36.00 3.65 A
3.50 1.027	34.20 3.482 A 33.98 3.523 A
4.68 ^C 1.401	34.03 3.599 A+B
5.01 1.425 5.91 1.613	30.47 3.06 B 26.85 2.59 B
5.91 1.613 6.16 1.552	26.85 2.59 B 21.02 1.87 B
8.25 2.01	16.64 1.44 B
14.15 3.35 22.9 5.55	8.38 0.701 B 0 0 B
	V O B
a Calculated by compiler	
b A: TiCl ₃ ·6H ₂ O; [19114-57-9] B	: NH ₄ Cl; [12125-02-9]
a Putenia noint	•
c Eutonic point	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions	(1) TiCl ₃ .6H ₂ O dried in argon
containing excess solid were	atmosphere, its source and
mixed for 6 h under argon atmo-	purity not specified.
sphere. Cl was determined by	(2)NH.Cl. reagent grade.
Volhard's method, NH_4^+ by Kjeldahl's method, and Ti^{3+} titrimetrically	(2) m ₄ ory reagent grade.
with KMnO,. Compositions of the	
solid phašes were determined	
graphically by Schreinemakers' method.	
	ESTIMATED ERROR:
1	Temp: precision ± 0.05 K
	The temperature error is not
	specified.
	REFERENCES:

СОМРО	NENTS:		ORIGINAL MEASU	JREMENTS
(1)	Titanium(III) chlor [7705-07-9]	ide; TiCl ₃ ;	Oshiba, T.	
(2)	Sodium bromide; NaBr [7647-15-6]	;	<i>Kogyo Kagaku</i> 985 - 92.	Zasshi <u>1959</u> , 62,
(3)	Ammonia; NH3; [7664-	41-7]		
	RIMENTAL VALUES:	A		· · · · · · · · · · · · · · · · · · ·
	omposition of Saturat	d Colutions		
	Miposicion of Sacuracy			
	NaBr	Ti		TiCl ₃
t/°0	g/100g NH ₃ m ₂ /mo	l kg ^{-la} g/100g	NH ₃ g/100g	$NH_3^b m_1/mol kg^{-la}$
5	47.63 4.6 46.70 4.5			
15	46.15 4.4			
	45.73 4.4 46.21 4.4			
25	7.45 .7 6.73 .6			
	7.37 .7	.07	.23	
	16.02 1.5 15.63 1.5			
	15.90 1.5			
	22.27 2.1 22.20 2.1			
	31.14 3.0		1.36	.0882
	33.07 3.2			.0875
	31.65 3.0 40.95 3.9		2.76	.179
	41.07 3.9 40.56 3.9		-	
	52.79 5.1			
	53.05 5.1 52.81 5.1			
	46.64 4.5			
	57.69 5.6 53.87 5.2			
	53.87 5.2 49.87 4.8			
	85.22 8.2			
	85.35 8.2 86.22 8.3			
	119.57 11.6	2 1.36	4.38	.284
	119.58 11.6 TiCl _x Br _(3-x) .6NH ₃			
	a Calculated by com		-	-
	b It was estimated place in solution		wing displacer	ment reaction takes
	TiCl ₃ + n NaBr ≵ '	FiCl _x Br _(3-x) +	(3-x)NaCl +	(n-3+x)NaBr
	Continued on the nex	t page		
1				

•

ORIGINAL MEASUREMENTS:
Oshiba, T.
Kogyo Kagaku Zasshi <u>1959</u> , 62, 985-92.
PREPARED BY:
T. Oshiba and J. Hála
INFORMATION
<pre>Source AND PURITY OF MATERIALS: (1) TiCl₃ was prepared by reduction of TiCl₄ with Ti metal at about 600°. TiCl₄ was purified by distillation in the presence of Cu powder. (2) NaBr, reagent grade, was dried at 500-600°C and treated with a solution of Na in NH₃ to remove traces of water. (3) NH₃ was distilled in the presence of metallic Na. ESTIMATED ERROR: Temp: precision ± 0.5 K. Soly: precision ± 5 %. REFERENCES:</pre>

<pre>(1) Titanium (IV) chloride; TiCl₄; [7550-45-0] (2) Hydrogen chloride; HCl; [7647-01-0] (3) Water; H₂O; [7732-18-5]</pre> Toptygina, G.M.; Morozov, I.S. *Zh. Neorg. Khim. <u>1961</u> , 6, 1685-92; Russ. J. Inorg. Chem. (Engl. Transl 1961, 6, 861-4.							
<pre>(7550-45-0] (21Wydrogen chloride; HC1; (7647-01-0] (3)Water; H_20; (7732-18-5) ARIALLS: 7/K = 273, 223 m_2/mol kg⁻¹ = 0.773 - 5.45 XFFRIMENTAL VALUES: Composition of Saturated Solutions HC1 20 27.74 0.773 0.018 0.0427 1.00232 4.69 1.35 0.055 1.10 0.00259 5.61 1.63 0.055 1.10 0.00259 5.61 1.63 0.055 1.10 0.00259 1.6.20 5.45 0.30 1.14 0.00259 1.6.20 5.45 0.30 2.208 1.143 0 36.74 30.28 71.89 bc 37.49 27.62 65.58 bc 38.17 27.62 65.58 bc 40.12 23.73 56.34 bc 41.74 23.64 56.13 bc 41.74 23.64 56.13 bc 42.59 24.73 58.72 bc 44.012 23.73 56.34 bc 41.74 23.64 56.13 bc 42.59 24.73 58.72 bc 44.012 23.73 56.34 bc 44.174 23.64 56.13 bc 42.59 24.73 58.72 bc 44.012 23.73 56.34 bc 44.174 23.64 56.13 bc 38.17 27.10 64.34 bc 42.59 24.73 58.72 bc 44.012 23.73 56.34 bc 41.74 23.64 56.13 bc 42.59 24.73 58.72 bc 44.012 4.59 59.00 bc 3. Calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c). c. The sum (mass% TiCl₄ + mass% HCl)>100.</pre>	COMPONENTS	:			ORIGINA	L MEASUREMENTS:	
<pre>(7550-45-0] (21Wydrogen chloride; HC1; (7647-01-0] (3)Water; H_20; (7732-18-5) ARIALLS: 7/K = 273, 223 m_2/mol kg⁻¹ = 0.773 - 5.45 XFFRIMENTAL VALUES: Composition of Saturated Solutions HC1 20 27.74 0.773 0.018 0.0427 1.00232 4.69 1.35 0.055 1.10 0.00259 5.61 1.63 0.055 1.10 0.00259 5.61 1.63 0.055 1.10 0.00259 1.6.20 5.45 0.30 1.14 0.00259 1.6.20 5.45 0.30 2.208 1.143 0 36.74 30.28 71.89 bc 37.49 27.62 65.58 bc 38.17 27.62 65.58 bc 40.12 23.73 56.34 bc 41.74 23.64 56.13 bc 41.74 23.64 56.13 bc 42.59 24.73 58.72 bc 44.012 23.73 56.34 bc 41.74 23.64 56.13 bc 42.59 24.73 58.72 bc 44.012 23.73 56.34 bc 44.174 23.64 56.13 bc 42.59 24.73 58.72 bc 44.012 23.73 56.34 bc 44.174 23.64 56.13 bc 38.17 27.10 64.34 bc 42.59 24.73 58.72 bc 44.012 23.73 56.34 bc 41.74 23.64 56.13 bc 42.59 24.73 58.72 bc 44.012 4.59 59.00 bc 3. Calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c). c. The sum (mass% TiCl₄ + mass% HCl)>100.</pre>	(1) Titar	ium (I	V) chloride:	; TiCl.;	Toptv	gina, G.M.; Mo	prozov, I.S.
[7647-01-0] Rues. J. Inorg. Chem. (Engl. Transl (3)Water; H_20; [7732-18-5] Rues. J. Inorg. Chem. (Engl. Transl ARMANLES: T/K = 273, 293 Is61, 6, 861-4. TYK = 273, 293 Ti0, (soly) TiC1, (soly) Nature of the Solid Phase */*C mass m/2/mol kg ⁻¹ = 0.773 - 5.45 Ti0, (soly) TiC1, (soly) Nature of the Solid Phase */*C mass m/2/mol kg ⁻¹ 0.773 0.761 0.0027 10.00232 0 2.74 0.773 0.611 0.0055 1.10 0.0055 5.61 1.63 0.55 1.30 0.0027 0.0028 Ti02'nH20 12.04 3.78 .250 .594 0.0358 Ti02'nH20 1.62.0 14.12 4.59 .601 1.427 .0891 1.62.0 1.63.0 1.62.0 .545 .930 2.208 143.1 10.2 1.62.0 .74.3 .71.2	[7550	-45-0]		4'	11	,,,,	
<pre>(3)Water; H_20; [7732-18-5] MAIABLES: T/K = 273, 293 m2/mol kg⁻¹ = 0.773 - 5.45 TREENEMATAL VALUES: Composition of Saturated Solutions Nature of the HC1 TIO, (Solv) TiCl4(Solv) Solid Phase TiCl4(Solv) - 100 kg⁻¹ = 0.773 - 5.45 Treating the second secon</pre>	(2)Hydro	ogen ch	loride; HCl;	;	*Zh.	Neorg. Khim.]	961, 6, 1685-92;
ARIABLES: 7/K = 273, 293 m2/mol kg ⁻¹ = 0.773 - 5.45 XYERNEWIN WAUKS: Composition of Saturated Solutions Nature of the HC1 TiO ₄ (soly) TiCl ₄ (soly) Solid Phase HC1 TiO ₄ (soly) TiCl ₄ (soly) Solid Phase HC1 TiCl ₄ (soly) TiCl ₄ (soly) TiCl ₄ (soly) Solid Phase HC1 TiCl ₄ (soly) TiCl ₄ (soly) TiCl ₄ (soly) Solid Phase HC1 TiCl ₄ (soly) TiCl ₄ (soly) TiCl ₄ (soly) Solid Phase HC1 TiCl ₄ (soly) Solid Phase HC1 TiCl ₄ (soly)					Rus	es. J. Inorg. d	Chem.(Engl. Transl,
T/K = 273, 293 J. Hala J. Hala J. Hala J. WPERIMENTAL VALUES: Composition of Saturated Solutions Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% no/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% no/mol kg ⁻¹ a Nature of the Solid Phase f/°C mol kg ⁻¹ 3.78 .250 .594 f/°C mol kg ⁻¹ 30.28 71.89 bc g/C mol kg ⁻¹ 30.28 71.89 bc g/C mol kg ⁻¹ 21.73 56.34 bc g/C mol kg ⁻¹ 21.73 56.34 bc g/C mol kg ⁻¹	(3)Water	; H ₂ 0;	[7732-18-5]		196	1, 6, 861-4.	
T/K = 273, 293 J. Hala J. Hala J. Hala J. WPERIMENTAL VALUES: Composition of Saturated Solutions Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% no/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% no/mol kg ⁻¹ a Nature of the Solid Phase f/°C mol kg ⁻¹ 3.78 .250 .594 f/°C mol kg ⁻¹ 30.28 71.89 bc g/C mol kg ⁻¹ 30.28 71.89 bc g/C mol kg ⁻¹ 21.73 56.34 bc g/C mol kg ⁻¹ 21.73 56.34 bc g/C mol kg ⁻¹		-					
T/K = 273, 293 J. Hala J. Hala J. Hala J. WPERIMENTAL VALUES: Composition of Saturated Solutions Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% mo/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% no/mol kg ⁻¹ a Nature of the Solid Phase f/°C mass% no/mol kg ⁻¹ a Nature of the Solid Phase f/°C mol kg ⁻¹ 3.78 .250 .594 f/°C mol kg ⁻¹ 30.28 71.89 bc g/C mol kg ⁻¹ 30.28 71.89 bc g/C mol kg ⁻¹ 21.73 56.34 bc g/C mol kg ⁻¹ 21.73 56.34 bc g/C mol kg ⁻¹					1 I		
T/K = 273, 293 J. Hala XPERIMENTAL VALUES: Composition of Saturated Solutions Nature of the Solid Phase 1/2 TaiCl ₄ (soly) TaiCl ₄ (soly) Solid Phase 2/0 Taick mass% mass% mass% Mass% Solid Phase 2/0 Taick mass% mass% mass% Mass% Nature of the Solid Phase 2/0 Taick mass% mass% mass% Mass% Nature of the Solid Phase 2/0 Taick mass% mass% mass% Mass% Solid Phase 2/0 Taick Mass% mass% mass% mass% Mass% Solid Phase Solid Phase 2/0 Taick 1.35 .050 .110 .00659 Taick Taick Solid Phase Taick	VARIABLES :	:			PREPARE	D BY:	
<pre>m2/mol kg⁻¹ = 0.773 - 5.45 EXPERIMENTAL VALUES: Composition of Saturated Solutions Nature of the HC1 TiO₂(soly) TiCl4(soly) Solid Phase 20 2.74 0.0773 0.018 0.0047 TiO₁000232 4.69 1.35 0.55 1.19 0.00659 5.61 1.63 0.55 1.10 0.00727 6.72 1.98 1.125 0.297 0.018 10.32 3.17 2.200 4.75 0.281 12.04 3.78 2.250 5.54 0.0358 14.12 4.59 6.01 1.427 0.091 16.20 5.45 9.930 2.200 1.43 0 36.74 30.28 71.89 bc 37.07 2.8.61 67.93 bc 38.17 2.7.10 64.34 bc 41.74 2.3.64 56.13 bc 44.01 2.21.73 56.34 b 41.74 2.3.64 55.12 bc 38.17 2.7.10 64.34 bc 44.01 2.24.85 59.00 a. Calculated by compiler b. The mol kg⁻¹ values referred to H₂O as the solvent could not be calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c). c. The sum (mass% TiCl₄ + mass% HCl)>100. EXTINOMAPPARATUS/PROCEDURE: Isothermal method used. Measurements started with supersaturated solutions of TiCl₄ in ice-cooled ICl. For HCl concentrations above 36 mass%, solu- theremoth for several days. Mix- tures containing less than 16 mass% Werte alto? c. At 26-36 mass%, HCl, viscosity of the solutions was so high that the solid phase settled mith supersaturated Solutions was so high that the Solid phase wetch and for centrifuging at 3500 rgm. therefore the system could not be studied with the Solid concentra- tion range. At HCl concentrations</pre>	T/K = 2	73 20	3		1		
<pre>ZETENDEWIAL VALUES: Composition of Saturated Solutions Nature of the HCl TiO_(Soly) TiCl_(Soly) TiCl_(Soly) Solid Phase f/0 Z TA 0.774 0.773 0.018 0.0232 4.69 1.35 0.050 1.19 0.0053 5.61 1.63 0.055 1.30 0.0727 6.72 1.98 1.25 2.297 0.168 10.32 3.17 2.00 4.475 0.201 12.04 3.78 2.50 5.54 0.358 14.12 4.59 6.601 1.427 0.891 16.20 5.45 9.30 2.208 1.43 0 36.74 30.28 71.89 bc 37.79 28.61 67.93 bc 37.49 27.62 65.58 bc 38.17 27.10 64.34 bc 40.12 23.73 56.34 b 41.74 23.64 56.13 b 42.59 24.73 58.72 bc 44.01 24.85 59.00 bc</pre> a. Calculated by compiler b. The mol kg ⁻¹ values referred to H ₂ O as the solvent could not be calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c). c. The sum (mass% TiCl ₄ + mass% HCl)>100. MAXILLANY INFORMATION METHOD/APPARATUS/PROCEDURE: Isothermal method used. Measurements started with supersaturated Solutions of the equilibrium solid phase, and kept in theremostat for several weeks to allow for precipitation of the equilibrium solid phase, and kept in theremostat for several weeks to allow for precipitation of the equilibrium solid phases theld on carbing less than 16 mass% WCl with water of dilute HCL. Since solutions oculd not be reached even minations at less than 16 mass% HCl viscosity of the solutions was so high that the solid phase settled meither after several weeks standing nor after 2 moths, solubility deter- minations at less than 16 mass% WCl bigh that the solid phase settled meither after several weeks standing nor after 2 moths, solubility deter- minations at less than 16 mass% WCl and for mass. At KCl concentra- tion range. At KCl concentrations to range. At KCl	mo/mol	$k_{\alpha} - 1 =$	0.773 - 5.4	15	0. 114	114	
<pre>HCl Comparing Tide(Goly) Tide(Goly) Solid Phase 5olid Phase 7icl4(Gily) 7</pre>		5					
<pre>HCl Comparing Tide(Goly) Tide(Goly) Solid Phase 5olid Phase 7icl4(Gily) 7</pre>	EVDEDIMENT	TAT WATE	FQ.				
$ \frac{t}{20} \frac{27.74}{20} \frac{10.733}{7.74} \frac{10.733}{10.733} \frac{10.018}{10.018} \frac{10.0427}{10.0232} \frac{10.0232}{10.0232} \frac{11.63}{10.0232} \frac{10.0232}{10.0232} \frac{11.63}{10.32} \frac{10.13}{11.7} \frac{10.0047}{10.0232} \frac{10.0232}{10.0232} \frac{11.98}{10.32} \frac{11.7}{10.2} \frac{10.0232}{10.0232} \frac{11.98}{10.20} \frac{11.12}{10.000} \frac{11.12}{10.0000} \frac{11.12}{10.0000} \frac{11.12}{10.0000} \frac{11.12}{10.0000} \frac{11.12}{10.0000} \frac{11.12}{10.0000} \frac{11.12}{10.00000} \frac{11.12}{10.00000} \frac{11.12}{10.000000} \frac{11.12}{10.000000000} \frac{11.12}{10.00000000000000000000000000000000000$	CALENTENI		Compos	sition of a	saturated	Solutions	
<pre>20 2.74 0.773 0.01B 0.0427 0.00222 4.69 1.35 0.50 1.19 0.0659 5.61 1.63 0.55 1.30 0.0727 6.72 1.98 1.25 297 0.168 TiO₂'nH₂O 10.32 3.17 2.00 .475 0.281 12.04 3.78 2.50 .594 0.358 14.12 4.59 6.61 1.427 0.691 16.20 5.45 9.30 2.208 1.13) 0 36.74 30.28 71.89 bc 37.07 28.61 67.93 bc 38.17 2.7.10 64.34 bc 41.74 23.64 56.13 b 41.74 23.64 56.13 b 42.59 24.73 58.72 bc 44.01 24.85 59.00 bc) a. Calculated by compiler b. The mol kg⁻¹ values referred to H₂O as the solvent could not be calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c). c. The sum (mass% TiCl₄ + mass% HCl)>100. METHOD/AFPARATUS/PROCEDURE: Isothermal method used. Measurements started with supersaturated solutions of TiCl₄ in ice-cooled HCl. For HCl to allow for precipitation of the equilibrium solid phase, and kept in thermost at less than 16 mass% store is attract for several days. Mix- tures containing less than 16 mass% HCl were prepared from the super- saturated for several days. Mix- tures containing less than 16 mass% HCl Viscosity of the solutions was so to allow c2. A for 36 mass% HCl Viscosity of the solutions was so thigh that the solid phase settled neither after z morths, solubility deter- minations at less than 16 mass% HCl Viscosity of the solutions was so thigh that the solid phase settled neither after several weeks standig nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. A tHCl concentrations to get gets were obtained. Ti build by thin this HCl concentra- tion range. A tHCl concentrations to range. A tHCl concentrations to allow fight experimental. Ti build by the solution by addia to analysis and microscopy.</pre>	t/°C ma	пс 2229	$m_{\rm m}/m_{\rm ol}$ kg ⁻¹	1102(SOL)	macesa	$m^{4}/mol^{1}ka^{-1}a$	Solid Phase
4.69 1.35 .050 .119 .00659 5.61 1.63 .055 .130 .00727 6.72 1.98 .125 .297 .0168 Ti02'nH20 10.32 3.17 .200 .475 .0281 Ti02'nH20 12.04 3.78 .250 .594 .0338 Ti02'nH20 14.12 4.59 .601 1.427 .0891 .00659 .037.07 .208 .143 .141 <td></td> <td>$\frac{1338}{2.74}$</td> <td>$\frac{27.01}{0.773}$</td> <td>$\frac{11238}{0.018}$</td> <td>$\frac{11233}{0.0427}$</td> <td>$\frac{1}{0.00232}$</td> <td></td>		$\frac{1338}{2.74}$	$\frac{27.01}{0.773}$	$\frac{11238}{0.018}$	$\frac{11233}{0.0427}$	$\frac{1}{0.00232}$	
 5.61 1.63 .055 .130 .00727 6.72 1.98 .125 .297 .0168 TiO₂*nH₂O 10.32 3.17 .200 .475 .0281 12.04 3.78 .250 .594 .0358 14.12 4.59 .601 1.427 .0391 16.20 5.45 .930 2.208 .143 } 36.74 30.28 71.89 bc 37.49 27.62 65.58 bc 40.12 23.73 56.34 b 41.74 23.64 56.13 bc 42.59 24.73 58.72 bc 44.01 24.85 59.00 bc a. Calculated by compiler b. The mol kg⁻¹ values referred to H₂O as the solvent could not be calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c). c. The sum (mass% TiCl₄ + mass% HCl)>100. AUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION ETHOD/AFPARATUS/PROCEDURE: Isothermal to allow for precipitation of the equilibrium solid phase, and kept in thermost at less than 16 mass% WCl with water or dilute HCl. Since at 0°C, equilibrium state in these solutions could not be reached even after 2 months, solubility deter- minations at less than 16 mass% WCl wiscosity of the solutions was so thigh that the solid phase settled neither after several weeks standign neither after several weeks standign around 258 gels were obtained. Ti	20			.050	.119		•
6.72 1.98 .125 .297 .0168 TiO ₂ 'nH ₂ O 10.32 3.17 .200 .475 .0281 TiO ₂ 'nH ₂ O 12.04 3.78 .250 .594 .0358 14.12 4.59 .601 1.427 .0891 16.20 5.45 .930 2.208 .143 } 0 36.74 30.28 71.89 bc 37.07 28.61 67.93 bc 38.17 27.10 64.34 bc H ₂ Ti(OH) ₃ Cl ₃ 40.12 23.73 56.34 b 41.74 23.64 56.13 bc 44.01 24.85 59.00 bc $\end{bmatrix}$ a. Calculated by compiler b. The mol kg ⁻¹ values referred to H ₂ O as the solvent could not be calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c). c. The sum (mass% TiCl ₄ + mass% HCl)>100. AUXILIARY INFORMATION AUXILIARY INFORMA				.055	.130		
<pre>10.32 3.17 .200 .475 .0281 12.04 3.78 .250 .594 .0358 14.12 4.59 .601 1.427 .0891 16.20 5.45 .930 2.208 .143 0 36.74 30.28 71.89 bc 37.07 28.61 67.93 bc 37.49 27.62 65.58 bc 38.17 27.10 64.34 bc 40.12 23.73 56.34 bc 41.74 23.64 56.13 bc 44.01 24.85 59.00 bc 34.401 24.85 59.00 bc 34.401 24.85 59.00 bc 34.401 24.85 59.00 bc 36. Calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c). c. The sum (mass% TiCl₄ + mass% HCl)>100.</pre>		6.72	1.98	.125	.297		TiO ₂ nH ₂ O
<pre>12.04 3.78 .250 .594 .0358 14.12 4.59 .601 1.427 .0091 16.20 5.45 .930 2.208 .143</pre> 0 36.74 30.28 71.89 bc 37.07 28.61 67.93 bc 37.07 28.61 67.93 bc 38.17 27.10 64.34 b 40.12 23.73 56.34 b 41.74 23.64 56.13 b 42.59 24.73 58.72 bc 44.01 24.85 59.00 bc a. Calculated by compiler b. The mol kg ⁻¹ values referred to H ₂ O as the solvent could not be calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c). c. The sum (mass% TiCl ₄ + mass% HCl)>100. ETHOD/APPARATUS/PROCEDURE: Isothermal method used. Measurements started with supersaturated solutions of TiCl ₄ in ice-cooled HCL. For HCl concentrations above 36 mass%, solu- tions were mixed for several weeks to allow for precipitation of the equilibrium solid phase, and kept in thermostat for several weeks to allow for precipitation of the solutions could not be reached even after 2 months, solubility deter- minations at less than 16 mass% HCl were orgenard from the super- saturated TiCl ₄ solution by diluting if with water or dilute HCL. Since af 0°C, equilibrium state in these solutions could not be reached even after 2 months, solubility deter- done at 20°C. At 26-36 mass%, HCl, viscosity of the solution was so high that the solid phase settled neither after several weeks standing nor after 2 months, HCl concentra- tion range. At HCl concentrations around 25% gels were containde. Ti	1	.0.32	3.17	.200	.475		4 Z
14.124.59.6011.427.089116.205.45.9302.208.143036.7430.2871.89bc37.0728.6167.93bc37.4927.6265.58bc40.1223.7356.34b41.7423.6456.13bc44.0124.8559.00bca. Calculated by compilerb. The mol kg ⁻¹ values referred to H ₂ O as the solvent could not be calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c).c. The sum (mass% TiCl ₄ + mass% HCl)>100.AUXILIARY INFORMATIONNETHOD/APPARATUS/PROCEDURE: Isothermal method used. Measurements started with supersaturated solutions of TiCl ₄ in ice-cooled HCl. For HCl concentrations above 36 mass% solutions were mixed for several weeks to allow for precipitation of the equilibrium solid phase, and kept in thermostat for several days. Mix-tures containing less than 16 mass% tCl were prepared from the super-saturated TiCl ₂ solution by diluting it with water or dilute HCl. Since at 0°C, equilibrium state in these solutions at less than 16 mass% tCl were prepared from the super-fore the solution was so high that the solid phase settled meither after several weeks standing nor after 2 months, solubility deter-fore the system could not be solutions was so high that the solid phase settled meither after several weeks standing nor after centrifuging at 3500 rpm.Tio, or colorimetrically with H ₂ 0, colorimetrically with H ₂ 0, solid phases were characterized by chemical analysis and microscopy.TiO ₂ or colorimetrically with H ₂ 0, solid phases were characte	1	.2.04	3.78	.250	.594	.0358	
<pre>0 36.74 30.28 71.89 bc 37.07 28.61 67.93 bc 38.17 27.10 64.34 bc 40.12 23.73 56.34 b 41.74 23.64 56.13 bc 42.59 24.73 58.72 bc 44.01 24.85 59.00 bc</pre> a. Calculated by compiler b. The mol kg ⁻¹ values referred to H ₂ O as the solvent could not be calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c). c. The sum (mass% TiCl ₄ + mass% HCl)>100. METHOD/APPARATUS/PROCEDURE: Isothermal method used. Measurements started with supersaturated solutions of TiCl ₄ in ice-cooled HCl. For HCl concentrations above 36 mass%, solu- tions were mixed for several weeks to allow for precipitation of the equilibrium solid phase, and kept in thermostat for several weeks to allow for precipitation of the solutions to be reached even first 2 months, solubility deter- dene at 20°C. At 26-36 mass%, KCl, viscosity of the solution was so high that the solid phase settled meither after several weeks standing nor after 2 months, solubility deter- dene at 20°C. At 26-36 mass%, KCl, viscosity of the solution was so high that the solid phase settled meither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% cels were obtained. Ti]	4.12	4.59	.601	1.427		
 b) 30.7% 30.20 71.09 bc 37.49 27.62 65.58 bc 42.33 42.59 27.10 64.34 bc H₂Ti (OH)₃Cl₃ 40.12 23.73 56.34 bc H₂Ti (OH)₃Cl₃ 41.74 23.64 56.13 bc 42.59 24.73 58.72 bc 44.01 24.85 59.00 a. Calculated by compiler b. The mol kg⁻¹ values referred to H₂O as the solvent could not be calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c). c. The sum (mass% TiCl₄ + mass% HCl)>100. AUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION BUTHOD/APPARATUS/PROCEDURE: Tsothermal method used. Measurements started with supersaturated solutions of TiCl ₄ in ice-cooled HCl. For HCl concentrations above 36 mass%, solutions were mixed for several weeks to allow for precipitation of the equilibrium solid phase, and kept in thermostat for several weeks to allow for precipitation of the super-saturated TiCl ₃ solubility determinations at less than 16 mass% HCl were prepared from the super-saturated TiCl ₃ solubility determinations at less than 16 mass% HCl viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. Therefore the system could not be studied within this HCl concentrations and microscopy. TiO ₂ or colorimetrically with H ₂ O ₂ , Cl ⁻² determined by Volhard's method. Solid phases were characterized by chemical analysis and microscopy.	נ	.6.20	5.45	.930	2.208	.143 }	
 b) 30.7% 30.20 71.09 bc 37.49 27.62 65.58 bc 42.33 42.59 27.10 64.34 bc H₂Ti (OH)₃Cl₃ 40.12 23.73 56.34 bc H₂Ti (OH)₃Cl₃ 41.74 23.64 56.13 bc 42.59 24.73 58.72 bc 44.01 24.85 59.00 a. Calculated by compiler b. The mol kg⁻¹ values referred to H₂O as the solvent could not be calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c). c. The sum (mass% TiCl₄ + mass% HCl)>100. AUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION BUTHOD/APPARATUS/PROCEDURE: Tsothermal method used. Measurements started with supersaturated solutions of TiCl ₄ in ice-cooled HCl. For HCl concentrations above 36 mass%, solutions were mixed for several weeks to allow for precipitation of the equilibrium solid phase, and kept in thermostat for several weeks to allow for precipitation of the super-saturated TiCl ₃ solubility determinations at less than 16 mass% HCl were prepared from the super-saturated TiCl ₃ solubility determinations at less than 16 mass% HCl viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. Therefore the system could not be studied within this HCl concentrations and microscopy. TiO ₂ or colorimetrically with H ₂ O ₂ , Cl ⁻² determined by Volhard's method. Solid phases were characterized by chemical analysis and microscopy.						bc .	
37.49 27.62 65.58 bc bc 38.17 27.10 64.34 bc bc H2Ti(OH)3Cl3 40.12 23.73 56.34 b bc H2Ti(OH)3Cl3 41.74 23.64 56.13 b bc H2Ti(OH)3Cl3 44.01 24.85 59.00 bc H2Ti(OH)3Cl3 a. Calculated by compiler b. The mol kg ⁻¹ values referred to H,0 as the solvent could not be calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c). c. The sum (mass% TiCl4 + mass% HCl)>100. AUXILIARY INFORMATION MAXILIARY INFORMATION M							
 38.17 27.10 64.34 bc H₂Ti (OH)₃Cl₃ 40.12 23.73 56.34 bc H₂Ti (OH)₃Cl₃ 41.74 23.64 56.13 bc dc dc							
40.12 23.73 56.34 b 41.74 23.64 56.13 bc 42.59 24.73 58.72 bc 44.01 24.85 59.00 bc a. Calculated by compiler b. bc bc b. The mol kg ⁻¹ values referred to H ₂ O as the solvent could not be calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c). c. The sum (mass% TiCl ₄ + mass% HCl)>100. AUXILIARY INFORMATION MUXILIARY INFORMATION MUX							H TTi (OH) - Cl
 41.74 23.64 56.13 Bc 42.59 24.73 58.72 bc a. Calculated by compiler b. The mol kg⁻¹ values referred to H₂O as the solvent could not be calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c). c. The sum (mass% TiCl₄ + mass% HCl)>100. AUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION Source AND PURITY OF MATERIALS: Nothing specified. Source AND PURITY OF MATERIALS: Nothing specified. Source and for several weeks to allow for precipitation of the equilibrium solid phase, and kept in thermostat for several weeks Kit allow for precipitation of the equilibrium solid phase, and kept in thermostat for several days. Mix- tures containing less than 16 mass% HCl were prepared from the super- saturated TiCl ₄ solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentra- tion range. At HCl concentrations				27.10			ⁿ 2 ¹¹ (0 ⁿ / ₃ ^{c1} ₃
 42.59 24.73 58.72 bc 44.01 24.85 59.00 bc a. Calculated by compiler b. The molk g⁻¹ values referred to H₂O as the solvent could not be calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c). c. The sum (mass% TiCl₄ + mass% HCl)>100. AUXILIARY INFORMATION AUXILIARY INFORMATION BUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION BUXICIA MACTOR EXAMPLE AND ADD ADD ADD ADD ADD ADD ADD ADD ADD							
 44.01 24.85 59.00 bc / a. Calculated by compiler b. The mol kg⁻¹ values referred to H₂O as the solvent could not be calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c). c. The sum (mass% TiCl₄ + mass% HCl)>100. C. The sum (mass% TiCl ₄ + mass% HCl)>100. AUXILIARY INFORMATION AUXILIARY							
 a. Calculated by compiler b. The mol kg⁻¹ values referred to H₂O as the solvent could not be calculated since the water content in these solutions is very low and for most data points the experimental data are inconsistent (see footnote c). c. The sum (mass% TiCl₄ + mass% HCl)>100. AUXILIARY INFORMATION AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: Isothermal method used. Measurements started with supersaturated solutions of TiCl ₄ in ice-cooled HCl. For HCl concentrations above 36 mass%, solutions were mixed for several weeks to allow for precipitation of the equilibrium solid phase, and kept in thermostat for several days. Mix-tures containing less than 16 mass% HCl, viscosity of the solutions wat so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentrations and microscopy. TiO ₂ or colorimetrically with H ₂ O ₂ , Cl ⁻ determined by Volhard's method. Solid phases were characterized by chemical analysis and microscopy.						bc)	
<pre>METHOD/APPARATUS/PROCEDURE: Isothermal method used. Measurements started with supersaturated solutions of TiCl₄ in ice-cooled HCl. For HCl concentrations above 36 mass%, solu- tions were mixed for several weeks to allow for precipitation of the equilibrium solid phase, and kept in thermostat for several days. Mix- tures containing less than 16 mass% HCl were prepared from the super- saturated TiCl₄ solution by diluting it with water or dilute HCl. Since after 2 months, solubility deter- minations at less than 16 mass% HCl, viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti Source AND PURITY OF MATERIALS: Nothing specified. Nothing specified. Temp: precision ± 0.5 K. Soly: precision ± 0.5 K. Soly: precision ± 0.5 K. Solid phases were characterized by chemical analysis and microscopy.</pre>	c. The	e sum (mass% TiCl ₄	+ mass% H	21)>100.		
<pre>method used. Measurements started with supersaturated solutions of TiCl₄ in ice-cooled HCl. For HCl concentrations above 36 mass%, solu- tions were mixed for several weeks to allow for precipitation of the equilibrium solid phase, and kept in thermostat for several days. Mix- tures containing less than 16 mass% HCl were prepared from the super- saturated TiCl₄ solution by diluting it with water or dilute HCl. Since at 0°C, equilibrium state in these solutions could not be reached even after 2 months, solubility deter- minations at less than 16 mass% were done at 20°C. At 26-36 mass%, HCl, viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti </pre> Nothing specified. Nothing specified. Nothing specified. Nothing specified.				AUXILIA	RY INFORMA	TION	
<pre>method used. Measurements started with supersaturated solutions of TiCl₄ in ice-cooled HCl. For HCl concentrations above 36 mass%, solu- tions were mixed for several weeks to allow for precipitation of the equilibrium solid phase, and kept in thermostat for several days. Mix- tures containing less than 16 mass% HCl were prepared from the super- saturated TiCl₄ solution by diluting it with water or dilute HCl. Since at 0°C, equilibrium state in these solutions could not be reached even after 2 months, solubility deter- minations at less than 16 mass% were done at 20°C. At 26-36 mass%, HCl, viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti </pre> Nothing specified. Nothing specified. Nothing specified. Nothing specified.	METHOD /API	PARATUS	PROCEDURE: Is	sothermal	SOURCE	AND PURITY OF MAT	TERIALS:
TiCl ₄ in ice-cooled HCl. For HCl concentrations above 36 mass%, solu- tions were mixed for several weeks to allow for precipitation of the equilibrium solid phase, and kept in thermostat for several days. Mix- tures containing less than 16 mass% HCl were prepared from the super- saturated TiCl ₄ solution by diluting it with water or dilute HCl. Since at 0°C, equilibrium state in these solutions could not be reached even after 2 months, solubility deter- minations at less than 16 mass% were done at 20°C. At 26-36 mass%, HCl, viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti	method u	ised. M	leasurements				
<pre>concentrations above 36 mass%, solu- tions were mixed for several weeks to allow for precipitation of the equilibrium solid phase, and kept in thermostat for several days. Mix- tures containing less than 16 mass% HCl were prepared from the super- saturated TiCl₄ solution by diluting it with water or dilute HCl. Since at 0°C, equilibrium state in these solutions could not be reached even after 2 months, solubility deter- minations at less than 16 mass% were done at 20°C. At 26-36 mass%, HCl, viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti</pre>					Nothi	.ng specified.	
<pre>tions were mixed for several weeks to allow for precipitation of the equilibrium solid phase, and kept in thermostat for several days. Mix- tures containing less than 16 mass% HCl were prepared from the super- saturated TiCl₄ solution by diluting it with water or dilute HCl. Since at 0°C, equilibrium state in these solutions could not be reached even after 2 months, solubility deter- minations at less than 16 mass% were done at 20°C. At 26-36 mass%, HCl, viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti</pre>	TICL ₄ in	1 1Ce-C	bored HC1.	FOR HCL			
to allow for precipitation of the equilibrium solid phase, and kept in thermostat for several days. Mix- tures containing less than 16 mass% HCl were prepared from the super- saturated TiCl ₄ solution by diluting it with water or dilute HCl. Since at 0°C, equilibrium state in these solutions could not be reached even after 2 months, solubility deter- minations at less than 16 mass% were done at 20°C. At 26-36 mass%, HCl, viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti							
equilibrium solid phase, and kept in thermostat for several days. Mix- tures containing less than 16 mass% HCl were prepared from the super- saturated TiCl ₄ solution by diluting it with water or dilute HCl. Since at 0°C, equilibrium state in these solutions could not be reached even after 2 months, solubility deter- minations at less than 16 mass% were done at 20°C. At 26-36 mass%, HCl, viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti							
thermostat for several days. Mix- tures containing less than 16 mass% HCl were prepared from the super- saturated TiCl ₄ solution by diluting it with water or dilute HCl. Since at 0°C, equilibrium state in these solutions could not be reached even after 2 months, solubility deter- minations at less than 16 mass% were done at 20°C. At 26-36 mass%, HCl, viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti					n		
<pre>tures containing less than 16 mass% HCl were prepared from the super- saturated TiCl₄ solution by diluting it with water or dilute HCl. Since at 0°C, equilibrium state in these solutions could not be reached even after 2 months, solubility deter- minations at less than 16 mass% were done at 20°C. At 26-36 mass%, HCl, viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti</pre>							
 saturated TiCl₄ solution by diluting it with water or dilute HCl. Since at 0°C, equilibrium state in these solutions could not be reached even after 2 months, solubility determinations at less than 16 mass% were done at 20°C. At 26-36 mass%, HCl, viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentrations around 25% gels were obtained. Ti ESTIMATED ERROR: Temp: precision ± 0.5 K. Soly: precision ± 5 %. Soly: precision ± 5 %. Soly: precision ± 0.5 K. Soly: precision ± 5 %. Soly: precision ± 0.5 K. Soly: precision ± 5 %. Soly: precision ± 0.5 K. Soly: precision ± 5 %. Soly: precision ± 0.5 K. Soly: precision ± 0.5 K. Soly: precision ± 5 %. 					{		
it with water or dilute HCl. Since at 0°C, equilibrium state in these solutions could not be reached even after 2 months, solubility deter- minations at less than 16 mass% were done at 20°C. At 26-36 mass%, HCl, viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti	HCl were	e prepa	red from the	e super-			
at 0°C, equilibrium state in these solutions could not be reached even after 2 months, solubility deter- minations at less than 16 mass% were done at 20°C. At 26-36 mass%, HCl, viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti							
solutions could not be reached even after 2 months, solubility deter- minations at less than 16 mass% were done at 20°C. At 26-36 mass%, HCl, viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti	it with	water	or dilute H	CL. Since			
after 2 months, solubility deter- minations at less than 16 mass% were done at 20°C. At 26-36 mass%, HCl, viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti	at 0°C,	equili	orium state	in these	ESTIMAT	TED ERROR:	
minations at less than 16 mass% were done at 20°C. At 26-36 mass%, HCl, viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti	after 2	nontha	a not de rea colubilita	/ deter-).5 K.
done at 20°C. At 26-36 mass%, HCl, viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti	mination		ess than 16	mass% wer			
viscosity of the solutions was so high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti							
high that the solid phase settled neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti							
neither after several weeks standing nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti	high tha	it the	solid phase	settled	TiO	or colorimetr	ically with Holo
nor after centrifuging at 3500 rpm. therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti	neither	after	several week	s standin			
therefore the system could not be studied within this HCl concentra- tion range. At HCl concentrations around 25% gels were obtained. Ti	nor afte	er cent	rifuging at	3500 rpm.			
studied within this HCL concentra- tion range. At HCL concentrations around 25% gels were obtained. Ti	therefor	e the	system could	l not be			
around 25% gels were obtained. Ti	studied	within	this HCl co	oncentra-		•	
was determined gravimetrically as	tion ran	nge. A	t HCL concer	itrations			
was decermined dravimeerscarry as	around 2	son del	s were opta:	allv ag			
		i the contraction of the contrac	. 9-48-556				

34 I Itanium Halides	and Oxynalides	
COMPONENTS :	ORIGINAL MEASUREMEN	NTS:
<pre>(1) Titanium(IV) chloride; TiCl₄; [7550-45-0]</pre>	Oshiba, T.	
<pre>(2) Ammonium chloride; NH₄Cl; [12125-02-9]</pre>	Kogyo Kagaku Za 985 - 92.	1959, 62,
(3) Ammonia; NH ₃ ; [7664-41-7]		
VARIABLES:	PREPARED BY:	
T/K = 298	T. Oshiba and	l J. Hála
EXPERIMENTAL VALUES:		
Composition of Saturated Solutions a		
Ammonium Chloride	Titanium(IV)	
	/100 g NH ₃	m _l /mol kg ^{-la}
14.412 2.69 24.086 4.50	0.523	0.0276 0.0343
37.010 6.92	0.650 0.833	0.0343
40.582 7.59	1.003	0.0529
52.239 9.77	1.423	0.0750
60.622 11.33	1,185	0.0625
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY	OF MATERIALS:
A glass pressure vessel, in which sedimentation, decantation, and filtration of TiCl ₄ ammonate could be done, was used. A small glass ampoule with TiCl ₄ and NH ₄ Cl was introduced into the vessel; the latter was evacuated and shaken vigorously to crush the ampoule. Then NH ₃ gas was introduced at ordinary pressure until the forma- tion of the ammonate was completed. The vessel was then cooled, liquid NH ₃ distilled into it, and the vessel was kept in a thermostat for some hours with occasional shaking until equilibrium was attained. Finally a portion of the saturated solution was poured out through an auxilliary glass tube with glass filter into another cooled vessel,	with Cu powd (2)NH ₄ Cl reagen 100-200°C at (3)NH ₃ distille of metallic ESTIMATED ERROR:	at grade, sublimed at reduced pressure. ed in the presence Na.
and weighed. NH ₃ was allowed to evaporate at room temp. and its content was obtained from loss of weight. The residue was analyzed		

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Titanium(IV) chloride; TiCl₄; [7550-45-0]</pre>	Oshiba, T.
<pre>(2) Sodium chloride; NaCl; [7647-14-5]</pre>	Kogyo Kagaku Zasshi <u>1959</u> , 62, 985-92.
(3) Ammonia; NH ₃ ; [7664-41-7]	
VARIABLES:	PREPARED BY:
T/K = 298 Composition	T. Oshiba and J. Hála
EXPERIMENTAL VALUES:	······································

Composition of Saturated Solutions

Sodium Chloride

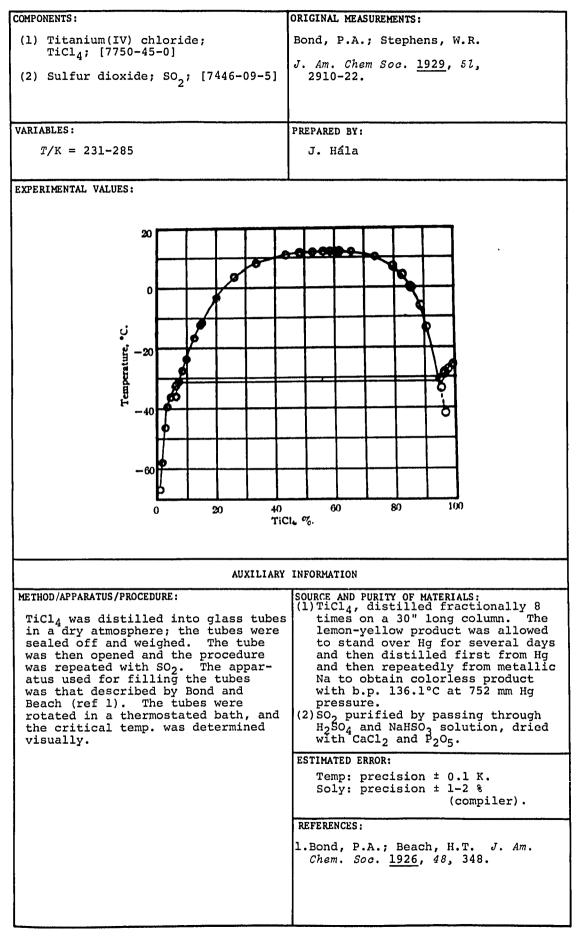
Titanium(IV) Chloride

g/100 g NH ₃	^m 2/mol kg ^{-la}	g/100 g NH ₃	m _l /mol kg ^{-la}
2.40	0.411	0.082	0.00432
5.39	0.922	0.141	0.00743
7.44	1.273	0.123	0.00648
7.46	1.276	0.124	0.00654

 $TiCl_4$ ·xNaCl·6NH₃ was assumed to be the equilibrium solid phase.

a. Calculated by compiler (J.H.)

AUXILIARY INFORMATION						
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:					
A glass pressure vessel, in which sedimentation, decantation, and filtration of TiCl ₄ ammonate could be done, was used. A small glass	(1)TiCl ₄ purified by distillation with Cu powder.					
ampoule with TiCl, and NaCl was introduced into the vessel; the latter was evacuated and shaken	(2)NaCl, reagent grade.					
vigorously to crush the ampoule. Then NH, gas was introduced at ordinary pressure until the forma- tion of the ammonate was completed. The vessel was then cooled, liquid	(3)NH ₃ distilled in the presence of metallic Na.					
NH ₃ distilled into it, and the	ESTIMATED ERROR:					
vessel was kept in a thermostat for some hours with occasional sha- king until equilibrium was attained. Finally a portion of the saturated	Temp: precision ± 0.5 K. Soly: precision ± 5 %.					
solution was poured out through an auxilliary glass tube with glass filter into another cooled vessel, and weighed. NH ₃ was allowed to evaporate at room temp. and its content was obtained from loss of weight. The residue was analyzed for remaining components by standard methods.	REFERENCES :					


COMPONENTS:			ORIGINAL MEASUREMENTS				
(1)	Titanium(IV) chloride; TiCl ₄ ; [7550-45-0]		Oshiba, T.				
(2)	Sodium bromi [7647-15-6]	ide; NaBr;		Kogyo Kagaku Zasshi <u>1959</u> , 62, 985-92.			
(3)	Ammonia; NH-	3; [7664-41-7]	i				
	IMENTAL VALU						
Comparition of Columbial Columbians							
	Composition of Saturated Solutions						
						IV) chloride	
t∕°C		$m_2/mol kg^{-la}$					
5	48.66 49.06	4.73 4.77	1.32		5.26 5.40	0.277 0.285	
15.5	45.23 44.85	4.40 4.36	1.23 1.16		4.89 4.60	0.258 0.242	
	45.31	4.40	1.21		4.81	0.254	
25	8.35	0.811	0.04		0.18	0.00949	
ļ	8.50	0.826	0.03		0.14	0.00738	
1	8.48	0.824	0.03		0.15	0.00790	
	15.67 15.83	1.52 1.54	0.13 0.14		0.51 0.58	0.02688 0.03057	
	18.99	1.85	0.14		0.72	0.03795	
1	21.06	2.05	0.34		1.24	0.06536	
l	21.28	2.07	0.27		1.20	0.06325	
1	30.47	2.96	0.67		2.68	0.141	
ļ	30.00	2.92	0.65		2.58 3.93	0.136 0.207	
1	40.18 40.34	3.90 3.92	0.99 1.00		3.95	0.209	
	49.56	4.82	1.30		5.17	0.273	
1	48.37	4.70	1.33		5.30	0.279	
	49.50	4.81	1.30		5.16	0.272	
	50.19	4.88	1.28		5.10	0.269	
}	56.59	5.50	1.29		5.13	0.270	
	58.67 63.15	5.70 6.14	1.31 1.30		5.22 5.18	0.275 0.273	
1	70.62	6.86	1.30		5.18	0.274	
	63.86	6.21	1.45		5.77	0.304	
	68.50	6.66	1.75		6.94	0.366	
	67.34	6.54	2.29		9.07	0.478	
1	65.22	6.34	1.96		7.79 7.14	0.411 0.376	
	77.18 76.10	7.50 7.40	1.80 1.75		6.94	0.366	
	76.93	7.48	1.75		6.94	0.366	
ļ	102.91	10.00	1.01		4.03	0.212	
	107.50	10.45	1.00		3.98	0.210	
105.99 10.30 1.00 3.98 0.210 TiCl ₄ ·×NaBr·6NH ₃ was assumed to be the equilibrium solid phase.							
a Calculated by compiler (J.H.)							
,					lignlagement	action takes	
b Analysis showed that the following displacement reaction takes place in solution: TiCl ₄ + n NaBr ₹ TiCl ₄ Br _{4-x} + (4-x)NaCl + (n-4+x)NaBr.							
With increasing NaBr concentration, x gradually diminished and NaCl precipitated. The values g TiCl ₄ /100g NH ₃ were calculated by the author assuming that only TiCl ₄ existed in solution.							
	Continued on the next page						

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Titanium(IV) chloride; TiCl₄; [7550-45-0]</pre>	Oshiba, T.
(2) Sodium bromide; NaBr; [7647-15-6]	Kogyo Kagaku Zasshi <u>1959</u> , 62, 985-92.
(3) Ammonia; NH ₃ ; [7664-41-7]	
VARIABLES:	PREPARED BY:
T/K = 278-298 Composition	T. Oshiba and J. Hála
EXPERIMENTAL VALUES:	1

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS; A glass pressure vessel, in which (1) TiCl₄ distilled in the presence sedimentation, decantation, and filtration of TiCl₄ ammonate could be done, was used. A small glass of Cu powder. (2) NaBr, reagent grade, was dried ampoule with TiCl₄ and NaBr was at 500-600°C and treated with a solution of Na in NH3 to remove introduced into the vessel; the latter was evacuated and shaken traces of moisture. vigorously to crush the ampoule. Then NH3 gas was introduced at or-(3) NH3 distilled in the presence of metallic Na. dinary pressure until the formation The of the ammonate was completed. vessel was then cooled, liquid $\rm NH_3$ distilled into it, and the vessel ESTIMATED ERROR: Temp: precision ± 0.5 K. was kept in a thermostat for some Soly: precision ± 5 %. hours with occasional shaking until Finally equilibrium was attained. a portion of the saturated solution **REFERENCES:** was poured out through an auxilliary glass tube with glass filter into another cooled vessel, and weighed. NH3 was allowed to evaporate at room temp. and its content was obtained from loss of weight. The residue was analyzed for remaining components by standard methods.

COMPONENTS:		ORIGINAL	MEASURE	MENTS	·		
(l) Titanium(IV) chlorid TiCl ₄ ; [7750-45-0]	le;	Bond, P	Bond, P.A.; Stephens, W.R.				
-	2) Sulfur dioxide; SO ₂ ; [7446-09-5]			J. Am. Chem. Soc. <u>1929</u> ; 51, 2910-22.			
}							
EXPERIMENTAL VALUES							
	Comp	osition of Satu	urated S	olutions			
Critical Temperature	TiCl ₄ -	TiCl ₄ rich Phase	T SO ₂ -ri	iCl ₄ ch Phase			
t/°C	mass%	m _l /mol kg ^{-la}	mass%	m _l /mol kg ^{-la}			
-42 -36.1	96.31	137.5	- 6.44	0.363			
-33.7	94.95	99.1	~	-			
-31.4	-		7.05	0.400			
-27.9	-	-	8.23				
-23.7	-	-	9.53	0.555			
-16.8	-		12.26				
-13.7	90.65	51.1	1	-			
-12.2 -11.2		-	14.44				
- 6.3	88.66	41.2	15.02	0.931			
- 3.3		41.2		1.31			
- 1.5	-	-	21.09	1.41			
- 0.3	85.35	30.7					
+ 0.1	85.16	30.2	-	-			
1.5	-		23.56				
3.5			26.17	1.87			
4.0	82.43	24.7		~			
6.5 6.8	- 79.35	20.3	30.47	2.31			
8.3	-	∠∪.J _	_ 33.87	2.70			
9.6	-	-	37.67	3.18			
10.2	73.26	14.44	-	-			
11.0	-		43.69				
11.5	68.08	11.24	48.20				
11.8	65.40	9.96	52.82	5.90			
11.9	61.80	8.53	56.23	6.77			
12.0 ^b	60.46	8.06	58.05	7.29			
a Calculated by com	piler						
b A third value, 58	.40 mass	& TiCl. also	jven.				
			520000				
Continued on next	page						

COMPONENTS: (1) Titanium dichloroo [13780-39	xotitar			ORIGINAL MEASUREMENTS: Zavaritskaya, T. A.; Pustovalova,S.S. <i>Tsvetn. Met. (Moscow)</i> (Non-Ferrous Metals) <u>1958</u> , No. 10, 50-3.		
<pre>(2) Titanium chloride; TiCl₄; [7550-45-0]</pre>			;	Delarova, N. I.; Zavaritskaya, T. A.; Zevakin, I.A.; Tsechovolskaya, Z. I. Izv. Akad. Nauk SSSR, Otd. Tekh.Nauk, Metall. Topl. <u>1960</u> , No. 4, 33-8.		
VARIABLES: T/K	VARIABLES: T/K = 253, 293, 409			Zavaritskaya, T. A.; Zevakin, I. A. Tr. Vses. Nauchuo-Issled. Proektn. Inst. Alyum., Magnievoi Elektrodnoi Prom-st. <u>1961</u> , No. 47, 85-90.		
EXPERIMENTAL VALU	ES:			PREPARED BY: J. Hála		
	0					
		···		rated solutions.		
	Temper			iocl ₂		
	t/°C	<i>T</i> /K	mass %	$m_1/mol kg^{-1}$		
	-20	253	0.17	0.0126		
	20	293	0.43	0.0320		
	136	409	3.5	0.27		
	^a Calc	ulated b	y compile	r. 4		
		nphical f	ere prese form only.	nted &		
				0 40 80 120		
				temperature , °C		
			AUXILIARY	INFORMATION		
METHOD/APPARATUS/	PROCEDUR	Æ:		SOURCE AND PURITY OF MATERIALS:		
Isothermal TiOCl. was st				(1) TiOCl ₂ was prepared by partial		
$TiOCl_2$ was stirred with $TiCl_4$ for at least 10 h in a thermostated bath. The equilibrium saturated solutions were transfered into a sampling ves- sel, weighed, $TiCl_4$ removed by vacuum distillation at 30-40 °C, and the residue was vacuum dried and weighed. In some cases the saturated solu- tions were analyzed for TiOCl ₂ con- tent spectroscopically from the IR absorption at 1356 cm ⁻¹ . Prelim- inary experiments confirmed that $TiOCl_2$ did not change on prolonged refluxing in $TiCl_4$. A pronounced tendency of $TiOCl_2$ to form super- saturated solutions in $TiCl_4$ was mentioned.			a bath. blutions ling ves- by vacuum ad the a weighed. ad solu- cl, con- the IR Prelim- that blonged anced super-	<pre>hydrolysis of TiCl₄. The TiCl₄ was removed from the reaction mixture by vacuum distillation, and the product was vacuum dried. Its density was ρ/g cm⁻³ = 2.46- 2.49, and molecular weight, as determined ebulioscopically, varied within the range 132-137; calculated 134.8. ESTIMATED ERROR: Temp: precision ± 1 K. Soly: precision ± 3-7 %. REFERENCES:</pre>		

COMPONENTS :		<u></u>		ORTGINAL M	EASUREMENTS:	
	ah louido	auida				
(1) Titanium di TiOCl ₂ ; [13			;;	ENTILC	h, P.; Engel, W.	
(2) Titanium ch [7550-45-0]				Z. Ano 21-4.	rg. Allg. Chem. <u>1962</u> , 317,	
VARIABLES:				PREPARED I		
T/K =	T/K = 298 - 403				J. Hála	
EXPERIMENTAL VALUES	: Compos	ition	of satur	ated sol	utions. ^a	
_	Tempera	ture		TiOC	4	
	t∕°C	Т/К	mass %	mol %	$m_1/\text{mol kg}^{-1D}$	
	25	298	2.5	3.5	0.190	
	50	323	3.2	4.4	0.245	
	75 100	348 373	4.0 5.1	5.6 7.0	0.309 0.399	
	110		5.1	7.0	0.399	
	120	393	5.3	7.3	0.415	
	130	403	5.6	7.65	0.440	
the measureme compiler calc 0.12 mol kg ⁻¹ b Calculated by METHOD/APPARATU	AUXILIARY INFORMATION					
Saturated solut TiCl ₄ were prep As ₂ O ₃ with exce	ared by	reacti	ng	Nothing specified.		
flask equipped	with a c	ondens	er,	REFEREN	CES.	
stirrer, and a which samples f						
withdrawn. 150				1. Kaye, G. W. C.; Leby, T. H. Tables of Physical and		
tilled onto 3 g and TiOCl ₂ prec pale yellow sol	As ₂ O ₃ i ipitated	n the out a	flask s a	Cher	mical Constants, 14th Ed., 8, p. 166, Longman, London.	
As ₂ 0 ₃ + 3 TiC	1 ₄ → Ti	0C1 ₂ +	2 AsCl ₃	•		
As ${}_{2}O_{3} + 3 \text{ TiCl}_{4} + \text{TiOCl}_{2} + 2 \text{ AsCl}_{3}$. AsCl ₃ produced, which is miscible with TiCl ₄ , was not separated from the mixture and consequently all solutions contained identical concentration of AsCl ₃ corresponding to the amount of As ₂ O ₃ used. The slurry was stirred for 2-3 h at each temperature after which pressure was applied through the condenser to withdraw a 10 cm ³ sample of the saturated solution with a pipette equipped with a glass filter. All procedures were carried out with exclusion of air moisture. The samples were added dropwise to ice-cooled H ₂ SO ₄ solution, and Ti was determined by titration with Fe(III) against KSCN indicator after reduction to Ti(III) in Jones reductor. Cl was determined by titration with AgNO ₃ , and As by titration with NaBrO ₃ . From the concentrations of Ti, Cl, and As the content of oxygen in the saturated solution was obtained by difference, and used to calculate the solubility of TiOCl ₂ . The equilibrium solid phase was confirmed by chemical analysis to be TiOCl ₂ .						
ESTIMATED ERROR	:					
Nothing specif	ied.					

OMPONENTS:		ORIGINA	L MEASU	REMENTS :		
(NH _A) ₂ TiCl ₅ ; [100)): Morozo	Morozov, I. S.; Toptygina, G. M.; Lipatova, N. P.				
<pre>(2) Hydrogen chloride; HCl; [7647-01-0]</pre>			Zh. Neorg. Khim. <u>1961</u> , 6, 2528-35.			
(3) Water; H ₂ O; [7732-18-5]				org. Chem. (E 79 - 82.	ngl. Transl.)	
ARIABLES:	PREPARE	D BY:		······		
T/K = 273 $m_g/mol kg^{-1} = 10.49 - 22.48$			J	. Hála		
EXPERIMENTAL VALUES: CON	mposition of th	e satura	ted s	olutions at 0	°C	
нсі	TiCl ₃			NH4C1	Nature of the Solid	
mass* m ₂ /mol kg ^{-1a}	mass% m/mol	kg ^{-1a} n	ass%	m/mol kg ^{-1a}	h	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-9]; B: TiCl	о 8 3 0 2 2 2 8 3 7 7 7 3 0 4 9 7 7 3 0 4	2.07 4.68 3.76 1.67 2.84 1.41 1.24 0.73 0.75 0.65 0.57 0.46	1.537 1.178 0.526 0.907 0.445 0.403 0.234 0.244 0.214 0.196 0.158	A + B A + B A + C A + C A + C A + C C C C C C	
	AUXILIA	Y INFORMA	TION			

COMPONENTS :	ORIGINAL MEASUREMENTS:
 (1) Dipotassium pentachloro- titanate(2-); K₂TiCl₅; [12200-03-2]. (2) Hydrogen chloride; HCl; [7647-01-0] 	 Morozov, I. S.; Toptygina, G. M.; Lipatova, N. P. Zh. Neorg. Khim. <u>1961</u>, 6, 2528-35. Russ. J. Inorg. Chem. (Engl.Transl.) 1961, 6, 1279-82.
(3) Water; H ₂ O; [7732-18-5]	<u>1901</u> , °, 1279-02.
VARIABLES: T/K = 273 $m_2/mol kg^{-1} = 12.82 - 22.69$	PREPARED BY: J. Hála

	HCl		TiCl ₃		Nature of	
mass%	$m_2/mol kg^{-1}a$	masst	<i>m/</i> mol kg ⁻¹ a	mass*	m/mol kg ⁻¹ a	the Solid Phases
30.76	12.82	2.260	0.223	1.17	0.238	A
35.33	16.19 16.27	3.601 3.436	0.390 0.372	1.20 1.16	0.269 0.260	A A
35.91	16.60	3.560	0.389	1.20	0.271	A + B
38.83	18.67	2.840	0.323	1.30	0.306	A + B
42.06	21.01 21.16	1.809 1.764	0.214	1.23	0.301	A + B
42.20	21.16	1.764	0.209 0.209	$1.15 \\ 1.12$	0.281 0.276	A + B
42.87	21.67	1.702	0.203	1.12 1.16	0.278	A + B A + B
43.93	22.69	1.501	0.183	1.46	0.369	B

a Calculated by the compiler.

.

b Solid phases: A: KCl; [7447-40-7]

B: K₂TiCl₅·H₂O; [23969-67-7]

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Excess of either $K_2TiCl_{5}.H_2O$ or a mixture of KCl and TiCl_3.6H_2O was equilibrated with HCl solutions of the desired concentration at 0° in argon atmo- sphere for 6-8 h. Solutions with high HCl concentrations were pre- pared by saturating the solutions with HCl gas at 0°. In the samples of the saturated solutions and the solid phases Ti(III) was determined by titration with KMnO4 after reacting the sample with excess KFe(SO4) ₂ , Cl ⁻ by Volhard method, and K ⁺ gravimetrically as K ₂ SO4. To check for the presence of Ti(IV), the total Ti content was determined gravimetrically as TiO ₂ . HCl concen-	(1) Attempts at preparation of pure K2TiCl ₅ .H ₂ O by precipitation from a solution of TiCl ₃ .6H ₂ O and KCl (reagent grade) in concentrated HCl at 0° by gaseous HCl failed. The product always contained vari- able amount of KCl and was used as such. TiCl ₃ .6H ₂ O used was prepared by dissolving Ti metal, obtained by iodide method, in concentrated HCl and saturating the solution with HCl gas at 0°. The crystals were dried in a stream of Ar+HCl gases.
tration was obtained as the differ- ence of total Cl and the Cl content combined with Ti(III) and K ⁺ . Solid phases were also characterized by microscopic analysis and the method of wet residues.	ESTIMATED ERROR: Temperature was kept within the range of 0 - 0.5°C. The solubility error is not specified.

COMPONENTS :				ORIGIN	AL MEASURE	MENTS:	
	um pentachlo 1 ₅ ; [100656-		te(III):	Morozov, I. S.; Toptygina, G. M.; Lipatova, N. P.			
-	en chloride;			Zh. N	leorg. Kh	im. <u>1961</u> , 6,	2528-35.
(3) Water; H ₂ O; [7732-18-5]					J. Inor 6, 1279	g. Chem. (Eng)-82.	l. Transl.)
VARIABLES :					ED BY:		
T/1	$x_{1} = 273$ $x_{2} = 9.71 - 2$				т	Hála	
<i>m₂/</i> mol kg ⁻	' = 9.71 - 2	2.30			0.		
EXPERIMENTAL	VALUES: Comp	osition	of the s	satura	ted solu	tions at 0°C	
H(<u></u>	7	riCl ₃			RbC1	Nature of the Solid
mass% m	2/mol kg-1 ^a	mass%	m/mol }	(g-1a	mass%	m/mol kg ^{-1a}	Phasesb
21.76 24.60 27.90 29.85 30.26 30.42 30.91 32.59 33.92 34.87 37.68 37.72 38.74 41.38	9.709 10.55 11.81 12.39 12.59 12.78 13.07 13.88 14.57 15.26 16.88 16.92 17.70 19.56	8.061 4.498 3.598 ^c 1.847 1.629 1.686 1.660 1.176 0.865 0.960 0.429 0.439 0.470 0.227	0.04	56 50 31 50 57 56 18 378 993 454 465 507	8.71 6.96 3.69 ^C 2.24 2.19 2.60 2.59 1.84 1.36 1.50 0.67 0.69 0.75 0.36	1.172 0.900 0.471 0.280 0.275 0.329 0.330 0.236 0.176 0.198 0.0905 0.0933 0.103 0.0513	A + B B
42.38 20.41 0.261 0.0297 0.41 0.0595 42.64 20.64 0.270 0.0309 0.42 0.0613 44.54 22.30 0.265 0.0314 0.42 0.0634 a Calculated by compiler. b A: RbC1, [7791-11-9] B: Rb2TiCl ₅ .H ₂ O; [107944-13-8] C Two identical measurements with different compositions of the corresponding solid phases given in the original document.					cor-		
			AUXILIARY	INFORM	ATION		
METHOD /APPARA	TUS/PROCEDURE .			SOURCE	AND PHPT	TY OF MATERIALS:	
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Excess Rb ₂ TiCl ₅ .H ₂ O was equilibrated with HCI solutions of the desired concen- tration in argon atmosphere for 6-8 h Solutions with high HCl concentra- tions were prepared by saturating the solutions with HCl gas at 0°. In the samples of the saturated solutions and the solid phases Ti(III) was determined by titration with KMnO ₄ after reacting the sample with excess KFe(SO ₄) ₂ , Cl ⁻ by Volhard method, Rb gravimetrically as Rb ₂ SO ₄ after removal of Ti by precipitation with NH ₄ OH. To check for the presence of Ti(IV), total Ti content was deter- mined gravimetrically as TiO ₂ . HCl concentration was obtained as the difference of total Cl and the Cl combined with Ti(III) and Rb(I). Solid phases were also characterized by microscopic analysis and the method of wet residues.			(1) F C T C C T S S S F F C C T T S S S T F C C T T S S S T T T S S S S T T T T S	Ab2TiCl5. pitatic viCl3 and concentra ating th the cryst tream of sis, in m ab 39.87/ cl 43.72/ viCl3.6H2 lissolvir codide me ACL, and vith HCl vere drie at + HCl of HATED ERF erature vere manuel and the cryst codide me at + HCl of the cryst codide me at + HCl of the cryst the cryst codide me the cryst the cry	H ₂ O was prepared on from a solut RbCl (reager ated HCl at 0° te solution was cals were drive Ar+ HCl gase tass% (found/o (41.28, Ti 11. (42.81, H ₂ O 4. to used was pr ig Ti metal, c thod, in conc saturating th gas at 0°. The ed in a stream gases.	ared by pre- ation of at grade) in by satu- th HCl gas. ed in a es. Analy- calculated) 76/11.57, 51/4.34. repared by obtained by rentrated be solution the crystals a of	

COMPONENTS :	ORIGINAL MEASUREMENTS:					
(1) Cesium pentachlorot Cs ₂ TiCl ₅ ; [100656-7		Morc	Morosov, I. S.; Toptygina, G. M.; Lipatova, N. P.			
(2) Hydrogen chloride; [7647-01-0]		Zh. Neorg. Khim. <u>1961</u> , 6, 2528-35.				
(3) Water; H ₂ O; [7732-3	18-5]	Russ 1961	Russ. J. Inorg. Chem. (Engl. Transl.) <u>1961</u> , 6, 1279-82.			
VARIABLES:		PREPA	RED BY:	·····		
T/K = 273			т	. Hála		
T/K = 273 $m_2/mol kg^{-1} = 3.355 - 2$	21.93		υ.	, nata		
EXPERIMENTAL VALUES: Comp	position of the	e satu	rated so	olutions at 0	°C	
нсі	TiCl ₃			CsCl	Nature of the Solid	
$\frac{\text{mass}}{2} \frac{m_2/\text{mol kg}^{-1a}}{2}$	mass% m/mol }	(g-1a	mass%	<pre>m/mol kg^{-1a}</pre>	Phasesb	
19.80 8.229 20.33 8.602 25.81 10.95 25.81 10.82 27.07 11.60 28.96 12.14 29.84 ^C 12.93 31.14 13.49 33.06 14.40 34.18 15.06 35.04 15.55 35.51 15.78 36.11 16.21 41.00 19.62 41.17 19.762 41.32 19.765 43.93 21.93 a Calculated by compile b A: CsCl, [7647-17-8] c Two identical measure compositions of the of METHOD/APPARATUS/PROCEDURE: Isothermal method us Cs ₂ TiCl ₅ .H ₂ O was equil: HCl solutions of the de	4.740 0.46 4.960 0.49 3.040 0.30 2.880 0.26 2.760 0.27 2.040 0.20 2.222C 0.22 1.749 0.17 1.166 0.12 1.053 0.12 0.988 0.10 0.868 0.09 0.473	96 95 95 97 92 28 79 92 92 92 92 92 92 92 92 92 9	0.77 19114-5 original phases. MATION CE AND PUR Cs2TiCla cipitati TiCl3 ar	0.571 0.325 0.437 0.356 0.239 0.238 0.208 0.183 0.186 0.126 0.127 0.0953 0.0832 7-9] C: Cs2T [107 1 document wi 	944-14-9] th different S: pared by pre- lution of ent grade) in	
Cs ₂ TiCl ₅ .H ₂ O was equilibrated with HCl solutions of the desired concen- tration in argon atmosphere for 6-8 h. Solutions with high HCl concentra- tions were prepared by saturating the solutions with HCl gas at 0°. In the samples of the saturated solutions and the solid phases Ti(III) was determined by titration with KMnO4 after reacting the sample with excess KFe(SO4) ₂ , Cl by Volhard method, Cs gravimetrically as Cs ₂ SO ₄ after removal of Ti by precipitation with NH ₄ OH. To check for the presence of Ti(IV), total Ti content was deter- mined gravimetrically as TiO ₂ . HCl concentration was obtained as the difference of total Cl and the Cl combined with Ti(III) and Cs(I). Solid phases were also character- ized by microscopic analysis and			TiCl ₃ ar concentr rating of The crys stream of sis, in Cs 52.32 Cl 35.50 TiCl ₃ .60 dissolv iodide r HCl and with HCl were dr gases.	nd CsCl (reag rated HCl at the solution stals were dr of Ar+ HCl ga mass% (found 2/52.22, Ti 9 6/34.83, H ₂ O H ₂ O used was ing Ti metal, method, in co saturating t l gas at 0°. ied in a stre RROR: was kept cor e of 0 - 0.5°	ent grade) in 0° by satu- with HCl gas. Fied in a less. Analy- l/calculated): 0.49/9.41, 3.60/3.54. prepared by obtained by obtained by obtained by oncentrated the solution The crystals pam of Ar+ HCl stant within C.	
the method of wet resid		Solu	IDILITY (error is not	specified.	

omponents :			ORIGINAL MEASUREMENTS:			
<pre>(1) Ammonium hexachlorotitanate(IV); (NH₄)2^{TiCl}6; [21439-26-9]</pre>						
<pre>(2) Hydrogen chloride; HCl; [7647-01-0]</pre>); Russ. (J . In org	. Chem.	
(3) Water; H ₂ O; [7732-18-5]						
_		PREPARED BY:				
= 7.91-22.30		J. Hála	·····			
Saturated Solution	ns at	0°C			Nature of the Solid	
TiO ₂ TiOCl ₂	TiCl4	NH4C1	(NH ₄)	2 ^{TiCl} 6	Phase ^b	
-la mass %	mass	t mass t	mass & <u>m</u>	<mark>1∕mol kg</mark>	-la	
.324 .436 - .352 - .257 - .199 - .086 - d by compiler. The % TiO ₂ . Similar of sults. : [12125-02-9] B:	1.032 0.837 .611 .474 .204 e valu calcul	2 .584 7 .471 L .266 4 .228 4 .118 1es mass % Lations fro	1.62 1.31 0.954 .738 .319 (NH ₄) ₂ Ti om mass %	.0896 .0733 .0537 .0422 .0196 C1 ₆ were NH ₄ C1 y	C C C C C calculated ielded	
AUXI	LIARY	INFORMATION				
PROCEDURE :		SOURCE AND PURITY OF MATERIALS:				
Isothermal method used. Solutions containing excess solid were shaken for several hours. Solutions containing more than 37% HCl were prepared by saturating with HCl gas. Ti was determined gravimetri- cally as TiO ₂ or colorimetrically at low Ti concentrations, Cl ⁻ determined by Volhard's method. No method given for NH ⁴ determin- ation. HCl content found by diff- erence. Solid phases were ident- ified by microscopy and chemical analysis.			ğ stoichī and TiCl l through eam of HC tored ove . Source cals not	ometric 4 in a s which w 1 gas. r concen and pur	amounts of olution as passed The product trated ity of	
		REFERENCES :				
	<pre>16; [21439-26-9] chloride; HCl; 0] 0; [7732-18-5] = 7.91-22.30 25: Saturated Solution TiO₂ TiOCl₂ -1a 5.834 9.842 7.840 13.226 5.218 8.803 3.810 6.428 1.499 2.529 1.337 2.256 1.359 2.293 1.033 1.743 0.563 0.949 0.269 .454 1.254 - .524 - .436 - .352 - .257 - .199 - .086 - d by compiler. The % TiO₂. Similar of sults. ; [12125-02-9] B: -9]. AUXI PROCEDURE: thod used. Solutions re than 37% HCl were aturating with HCl determined gravimet or colorimetrical: centrations, Cl⁻ Volhard's method. en for NH⁴ determin ontent found by dii d phases were iden</pre>	<pre>16; [21439-26-9] chloride; HCl; 0] 0; [7732-18-5] = 7.91-22.30 25: Saturated Solutions at TiO₂ TiOCl₂ TiCl₄ <u>mass % mass % mass -1a</u> 5.834 9.842 - 7.840 13.226 - 5.218 8.803 - 3.810 6.428 - 1.499 2.529 - 1.337 2.256 - 1.359 2.293 - 1.033 1.743 - 0.563 0.949 - 0.269 .454 - 1.254 - 2.981 .524 - 1.246 .436 - 1.032 .352 - 0.833 .257612 .199474 .086204 d by compiler. The valu % TiO₂. Similar calcu sults. ; [12125-02-9] B: 3NH, -9]. AUXILIARY PROCEDURE: thod used. Solutions re than 37% HCl were aturating with HCl determined gravimetri- or colorimetrically centrations, Cl⁻ Volhard's method. en for NH₄ determin- ontent found by diff- d phases were ident-</pre>	hexachlorotitanate(IV); Morozov, 1_6 ; $[21439-26-9]$ *Zh. Neop chloride; HCl; 2518-25 0] (Frigl.) 0; $[7732-18-5]$ PREPARED BY: J. Hála J. Hála 5.834 9.842 J. S. 1.499 2.529 J. S. 1.31 1.433 L. R. 1.254 L. 9.810 J. R.	hexachlorotitanate(IV); Morozov, I.S.; To 1_6 ; [21439-26-9] *Zh. Neorg. Khim. chloride; HCl; 2518-29; Russ. 0] (Engl. Transl.) 0; [7732-18-5] PREPARED BY: J. Hála J. Hála = 7.91-22.30 J. Hála 25: Saturated Solutions at 0°C TiO2 TiOC12 TiC14 NH4C1 (NH4) -1a mass % mass % mass % mass % mass % mass % mass % 5.834 9.842 - 3.79 21.66 7.840 13.226 - 3.80 29.11 5.218 8.033 - 5.29 19.38 3.810 6.428 - 5.16 14.15 1.499 2.529 - 3.53 5.57 1.337 2.266 - 2.75 4.96 1.359 2.293 - 2.40 2.09 0.269 .454 - 1.82 1.00 1.254 - 2.981 0.861 4.66 .524 - 2.02 .5	hexachlorotitanate(IV); Morozov, I.S.; Toptygina, 16; [21439-26-9] *2h. Neorg. Khim. 1960, 5 chloride; HCl; $5218-29;$ Ruse. J. Integration integratic integration integrate	

	· · · · · · · · · · · · · · · · · · ·
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Ammonium hexachlorotitanate(IV); $(NH_4)_2TiCl_6$; [21439-26-9] (2) Ammonium chloride; NH_4Cl ; [12125-02-9] (3) Hydrogen chloride; HCl ; [7647-01-0]	Seidel, W.; Fischer, W. 2. Anorg. Allg. Chem. <u>1941</u> , 247, 367-83.
(4) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 273 $c_2/mol dm^{-3} = 0.0275 - 0.734$	J. Hála
EXPERIMENTAL VALUES:	Solubility b
	Ammonium (IV)
Ammonium Chloride g/100ml soln c ₂ /mol dm-3a	$\frac{\text{Titanium}}{\text{mg/100 ml soln}} \frac{\text{Hexachlorotitanate}}{10^3 c_1/\text{mol dm}^{-3a}}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. NH_4Cl solutions in concentrated HCl were saturated with HCl gas at 0°C and equilibrated with excess $(NH_4)_2TiCl_6$ for 1 h. Ti determined gravimet- rically as TiO ₂ via hydroxide; NH_4Cl concentration in saturated solutions was obtained as the sum of initial NH_4Cl amount and the NH_4^+ content of the dissolved $(NH_4)_2TiCl_6$. HCl concentration not specified.	and purity of chemicals not specified.
	ESTIMATED ERROR: Soly: precision ± 2-5 % (compiler). The temperature error is not specified.
	REFERENCES :

48 Litanium Halides	and Oxyhalides
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Potassium hexachlorotitanate(IV); K ₂ TiCl ₆ ; [16918-46-0]	
<pre>(2) Hydrogen chloride; HCl; [7647-01-0]</pre>	*Zh. Neorg. Khim. <u>1960</u> , 5, 2518–29; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1960</u> , 5, 1218–24.
(3) Water; H ₂ 0; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 273	J. Hála
m_2 /mol kg ⁻¹ = 15.93 - 21.71	
EXPERIMENTAL VALUES:	
Composition of Saturated Solutions at	Solid Phase ^D
HCl TiO ₂ TiCl ₄	KCL K ₂ TiCl ₆
mass% m ₂ /mol kg ⁻¹ a mass% mass%	mass% mass% m ₁ /mol kg ^{-la}
26.08 15.76 6.738 16.016 35.51 16.86 1.590 3.779 41.80 19.98 0.195 0.461 42.61 20.50 .092 .219 44.06 21.71 .064 .152	se was K ₂ TiCl ₆ .
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess solid were shaken for 3-4 h. Solutions containing > 37% HCl were prepared by saturating with HCl gas. Ti was determined gravimetrically as TiO ₂ or, at low Ti concentrations, colorimetrically. K was deter- mined gravimetrically as KClO ₄ or K_2SO_4 , Cl ⁻ determined by Volhard's method. Solid phases were iden- tified by microscopy and chemical analysis.	 (1) K₂TiCl₆·H₂O was prepared by passing HCl gas through a solution of TiCl₄ in HCl which was in contact with stoichio- metric amount of KCl. The product was stored over concentrated H₂SO₄. Source and purity of chemicals not specified.
	Temp: precision ± 0.5 K. Soly: precision ± 2-5 % (compiler).
	REFERENCES :

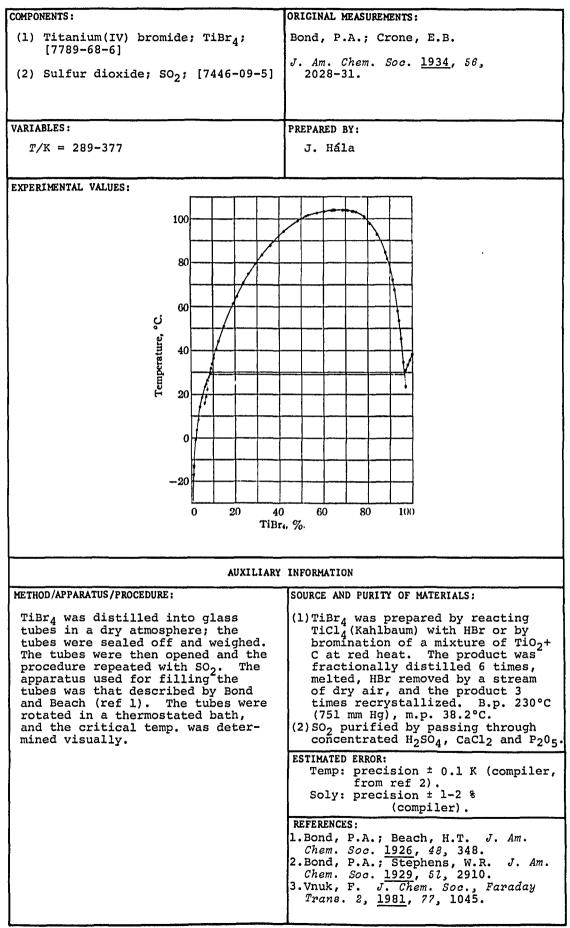
COMPONENTS:				ORIGINAL MEAS	UREMENTS:		
(1) Rubidium Rb ₂ TiCl ₆ ;	hexachlorot [16902-24-		:e(IV);		-		
(2) Hydrogen [7647-01-		IC1;		Russ. J	g. Khim. . Inorg.) <u>1960</u> , 5	Chem. (, 2518-29; Engl. 24.
(3) Water; H ₂	0; [7732-18	-5]					
VARIABLES:				PREPARED BY:			
T/K = 273 $m_2/mol kg^{-1}$	= 9.07-21.9	9		J. Hála			
EXPERIMENTAL VALU	ES:						
Composition of	Saturated	Soluti	ons at	0°C			Nature of
HC1	2	liocl ₂	TiCl ₄	RbCl	Rb2Ti	<u>Cl</u> 6	the Solid Phase ^b
mass % m2/mol }	-la g_mass % n	ass 8	mass	t mass %	mass % n	nl/mol k	g ^{-la}
14.79 9.07	7.501 1	.2.654	-	12.30	40.51	2.10	A+B
16.19 8.20 21.39 9.65	5.49 3.302 3.55 2.016 1.266 0.956 430	9.261	-	12.43	29.65 17.84	1.27	A+B B
21.67 10.05	3.55	5.989	-	10.34	19.17	.751	В
24.84 10.60	2.016	3.401	-	6.00	10.89	. 393	В
28.19 11.90	1.266	2.136	-	3.87	6.84	.244	В
29.90 12.63	0.956	1.612	-	3.00	5.16	.184	В 8 С
30.92 12.78	.430	-	1,196	1.51	2.32	.075	0 C
35.52 15.12	.013	-	0.031	0.04	0.0702	.002	52 Č
36.25 15.60	.010		.024	0.030	.540	.001	96 C
30.35 12.36 30.92 12.78 35.52 15.12 36.25 15.60 42.29 20.10 44.50 21.99	.003 .002	-	.007	.009	.0162 .0108	.000	651 C 451 C
 a. Calculated by compiler. The values from mass % TiO₂. Similar calculati both sets of results agreed only for the equilibrium solid phase was Rb₂T b. A: RbCl [7791-11-9]; B: Rb₂TiOCl₄ C: Rb₂TiCl₆ [16902-24-2]. 			ations from For high HC 2 ^{TICL} 6•	mass % R l concent	bCl sho rations	wed that	
AUXILIARY INFORMATION							
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Solutions containing excess solid were shaken for 3-4 h (solid phase Rb ₂ TiCl ₆) or several weeks (solid phase Rb ₂ TiOCl ₄ ·H ₂ O). Solutions contain- ing more than 37% HCl were prepared by saturating with HCl gas. Ti was determined gravimetrically as TiO ₂ or colorimetrically at low Ti concentrations, Rb determined gravimetrically as RbClO ₄ , or Rb ₂ SO ₄ , and Cl ⁻ determined by Volhard's method. HCl content found by difference. Solid phases were identified by microscopy and chemical analysis.		ating and R Sourc not s ESTIMATED ER Temp:	Cl ₆ was p a soluti bCl in HC e and pur pecified. ROR: precisio precisio	n of T l with ity of	HCl ⁻ gas. chemicals K %.		

	- <u></u>						
COMPONENTS:			ORIG	INAL MEASU	REMENTS:		
	lum hexachlorotit FiCl ₆ ; [16919-28-		1		.S.; Topt		
	cogen chloride; H 17-01-0]	iCl;	1 1	Russ. J.	. Khim. 1 Inorg. 0 1960, 5	Chem. (En	2518-29; ngl. 4.
(3) Wate	er; H ₂ O; [7732-18	3-5]					
VARIABLES:			PREP	ARED BY:			
T/K = 2	273		ј	Hála			
m2/mol	$kg^{-1} = 4.03 - 22.0$)4					
EXPERIMENTA	L VALUES:		- I				
Composit	ion of Saturated	l Solutions a	it 0°C	:			Nature of the Solid
нс	21	<u></u>		CsCl	Cs2TiC	²¹ 6 — . –	Phase
mass ⁸	™2/mol kg ^{-la}						
10.59	4.03	4.150 7,	001	17.49	27.34	0.721	1 _
13.13 16.77	5.53 6.94	3.303 5.	572	13.92	21.76	.635	Cs
16.77	6.94	2.508 4.	231	10.58	16.52	.473	
25.20 25.45	9.89 9.96	0.746 1.	258	3.14	4.91 4.46	.133	1 iii
25.45	9.96	.677 1.	143	2.85	4.46	.121	2 ^{Tiocl} 4.H20
25.54	10.04 10.25	.714 1. .586 0.	242	3.00	4.70 3.86	.128	14 4
26.16	10.25	.586 0.	388 234	2.47	3.80	.105 .0984	·H
26.72	10.52	.548 .	924	2.31	3.01	.0984	2
27.72	11.00	•480 •	510 757	2.02	2 96	.0813	Ŭ
27.92	10.52 11.00 11.08 11.30	.449 ·	744	1 86	2.90	.0804)
20.33	11 70	.586 0. .548 . .480 . .449 . .441 . .302 . .226 .	718	1.27	1.99	.0550	,
30.05	11.70 12.04	.226	537	0.95	1.49	.0413	
31.70	12.93	.159	378	.67	1.05	.0297	Cs2TiCl6
32.20	13.17	.159 . .109 .	259	.46	1.05 0.718	.0203	[16919-
33.85	14.10	.044 .	105	.18	.290	.00836	28-1]
34.78	14.69	.042	100	.18	.290 .277	.00810	
35.20 39.97	14.95	.035 .	083	.15	.231 .0659	.00680	-
39.97	18.28	.010 .	024	.04	.0659	.00209	}
44.20	21.75	.010 .		.04	.0659	.00225	1
44.53	22.04	.009 .	021	.04			
a Calculated by compiler. The values mass% Cs ₂ TiCl ₆ were calculated from mass% TiO ₂ . Similar calculations from mass% CsCl yielded higher result			ated from er results.				
AUXILIARY INFORMATION				· · · · · · · · · · · · · · · · · · ·			
METHOD/APPA	ARATUS/PROCEDURE:		SOUR	CE AND PU	RITY OF MAT	TERIALS:	
Isother	nal method used.	Solutions	1 11) Csamic	1 ₆ was p	repared	by sat-
	ing excess solid				g a solu		
	h (solid phase (1		Cl in HC		
	weeks (solid pha		a •		Source an		
	olutions contain:		1		als not a		
than 379	HC1 were prepar	red by	1				
•	ing with HCl gas						
	ned gravimetrica						
	imetrically at 1						
	cations, Cs deter						
and Cl	crically as CsClo determined by Vo	Thard's	′ L				
method	HCl content for	ind by	ESTI	MATED ERR	OR:		
differer			1	Temp:	precisio	n ± 0.5	К
	led by microscopy		1	Solv:	precisio	n ± 2-5	8.
ical ana				4		compiler	
1							
1			REFI	ERENCES :			
Note: 0	$Cs_2TiOCl_4 \cdot H_2O;$ [2	24419-02-11					
	-2		1				
1			í				
1							
1			1				

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Titanium(IV) bromide; TiBr₄; [7789-68-6]</pre>	Olsen, J.C.; Ryan, E.P.
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	J. Am. Chem. Soc. <u>1932</u> , 54, 2215-8.
VARIABLES:	PREPARED BY:
T/K = 293	J. Hála and M. Salomon
EXPERIMENTAL VALUES:	
	n(IV) Bromide, $t/^{\circ}C = 20$
Reported value $m_1/mol \ kg^{-2}$	$c_1/mol dm^{-3b}$
287 g/100 cm ³ C ₂ H ₅ OH 9.89	4.89
a Calculated by compilers by using the density of ethanol at 20°C	the value of 0.7894 g $\rm cm^{-3}$ for
b Calculated by compilers by using density of the saturated solution	the value of 2.29 g cm^{-3} for the reported in the original document
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
TiBr ₄ was distilled in a stream of dry CO_2 into a small flask and the solvent was added. The flask was allowed to stand overnight and then shaken 2 hr at 20°C. A portion of the supernatant liquid was weighed and analyzed for Br ⁻ content The method of analysis not men- tioned.	 (1) TiBr₄ was prepared by bromination of a mixture of TiO₂ and either C or TiC, or by reacting TiCl₄ with HBr. TiBr₄ was then twice distilled under dry CO₂, and the fraction b. at 228°C was collected. Source and purity of chemicals not specified. (2) Absolute ethanol
	ESTIMATED ERROR:
	Nothing specified.
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Titanium(IV) bromide; TiBr₄; [7789-68-6]</pre>	Olsen, J.C.; Ryan, E.P.
(2) Diethyl ether; C ₄ H ₁₀ 0; [60-29-7]	J. Am. Chem. Soc. <u>1932</u> , 54, 2215-8.
VARIABLES:	PREPARED BY:
T/K = 293	J. Hála and M. Salomon
EXPERIMENTAL VALUES:	
	3
The solubility of TiBr ₄ at 20°C is	reported to be 3.6 g/100 cm
diethyl ether (0.137 mol kg ⁻¹). ^a	
a Calculated by compilers by using the density of diethyl ether at	the value of 0.7135 g cm ⁻³ for 20°C
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
TiBr ₄ was distilled in a stream of dry CO_2 into a small flask and the solvent was added. The flask was allowed to stand overnight and then shaken 2 hr at 20°C. A portion of the supernatant liquid was weighed and analyzed for Br ⁻ content. The method of analysis not mentioned.	 (1) TiBr₄ was prepared by bromination of a mixture of TiO₂ and either C or TiC, or by reacting TiCl₄ with HBr. TiBr₄ was then twice distilled under dry CO₂, and the fraction b. at 228°C was collected. Chemicals not speci- fied. (2) Absolute diethyl ether
	-
	ESTIMATED ERROR:
	Nothing specified.
	REFERENCES :
	j

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Titanium bromide; TiBr ₄ ; [7789-68-6]	Berdonosov, S. S.; Lapitskii, A. V. Vlasov, L. G.
<pre>(2) Trichloromethane (chloroform); CHCl₃; [67-66-3]</pre>	Vestn. Mosk. Univ., Ser. 2: Khim. <u>1963</u> , 18 (1), 38-9.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The original document preser	,
value in a graph. From it t	
solubility of TiBr ₄ at 25°C	to be approximately
42 mass% (1.97 mol kg ⁻¹). E	Based on spectrophotometric
measurements the authors ass	sumed the existence of a
molecular complex TiBr ₄ .CHC	, in the saturated solution.
	-
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Excess TiBr4 was agitated with 5 cm ³ of the	(1) TiBr ₄ was prepared by bromination of a mixture of TiO ₂ (source and
solvent in a stoppered test-tube in	purity not specified) with char- coal. The product was purified
a thermostated bath for three hours, which was found sufficient to reach	by vacuum distillation at 230°C.
equilibrium.	Analysis (mass%, found/calcu- lated): Ti 13.08-13.11/13.04,
After centrifugation, a 1.0-1.5 g sample of the saturated solution was	Br 87.00-87.18/86.96.
hydrolyzed in water in a crucible at	(2) Trichloromethane (chloroform) (source and purity not specified)
50-60°C and then ignited to TiO ₂ .	was purified and dried by standrad methods.
All procedures were carried out in a dry box.	ESTIMATED ERROR:
_	Nothing specified.
	REFERENCES:
1	


.

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Titanium bromide; TiBr₄; [7789-68-6]</pre>	Berdonosov, S. S.; Lapitskii, A. V. Vlasov, L. G.
<pre>(2) Tetrachloromethane; CCl₄; [56-23-5]</pre>	Vestn. Mosk. Univ., Ser. 2: Khim. <u>1963</u> , 18 (1), 38-9.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The original document presen	ted only one experimental
value in a graph. From it t	he compiler estimated the
solubility of TiBr _A at 25°C	
	to be approximately
30 mass $ (1.17 \text{ mol } \text{kg}^{-1}). $	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Excess TiBr ₄ was agitated with 5 cm^3 of the	(1) TiBr ₄ was prepared by bromination of a mixture of TiO ₂ (source and
solvent in a stoppered test-tube in	purity not specified) with char-
a thermostated bath for three hours, which was found sufficient to reach	coal. The product was purified by vacuum distillation at 230°C.
equilibrium.	Analysis (mass%, found/calcu- lated): Ti 13.08-13.11/13.04,
After centrifugation, a 1.0-1.5 g	Br 87.00-87.18/86.96.
sample of the saturated solution was hydrolyzed in water in a crucible at	(2) Tetrachloromethane (source and
$50-60^{\circ}$ C and then ignited to TiO ₂ .	purity not specified) was puri- fied and dried by standard
All procedures were carried out in	methods
a dry box.	Nothing specified.
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Titanium bromide; TiBr₄; [7789-68-6]</pre>	Berdonosov, S. S.; Lapitskii, A. V. Vlasov, L. G.
(2) 1,2-Dichloroethane; C ₂ H ₄ Cl ₂ ; [107-06-2]	Vestn. Mosk. Univ., Ser. 2: Khim. 1963, 18 (1), 38-9.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The original document presenvalue in a graph. From it t solubility of TiBr ₄ at 25 ^o C 31 mass% (1.22 mol kg ⁻¹).	he compiler estimated the
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;
Isothermal method used. Excess TiBr ₄ was agitated with 5 cm ³ of the solvent in a stoppered test-tube in a thermostated bath for three hours, which was found sufficient to reach equilibrium. After centrifugation, a 1.0-1.5 g sample of the saturated solution was hydrolyzed in water in a crucible at 50-60°C and then ignited to TiO ₂ . All procedures were carried out in a dry box.	 (1) TiBr₄ was prepared by bromination of a mixture of TiO₂ (source and purity not specified) with char- coal. The product was purified by vacuum distillation at 230°C. Analysis (mass%, found/calcu- lated): Ti 13.08-13.11/13.04, Br 87.00-87.18/86.96. (2) 1,2-Dichloroethane (source and purity not specified) was puri- fied and dried by standard methods

		Halldes and Uxyna	nues	
COMPONENTS:		ORIGINAL	MEASUREMEN	ITS
<pre>(1) Titanium(IV) bromi [7789-68-6]</pre>	.de; TiBr ₄	; Bond, P.	A.; Crone,	E.B.
(2) Sulfur dioxide; SC	0 ₂ ; [7446-	09-5] J. Am. C 2028-3	hem. Soc. 1.	<u>1934</u> , 56,
EXPERIMENTAL VALUES	Con	position of Satu	rated Solu	ltions
Critical Temperature	m ! b	TiBr ₄	T SO ₂ -ri	liBr ₄
t∕°C	TIBE 4		-	
	mass%	m _l /mol kg ^{-la}	mass%	m1/mol kg ^{-la}
16.0	-	-	6.36	0.185
18.8		-	7.05	
22.0	07 03	88.9	7.45	0.219
23.5 29.0	97.03		8 94	0.267
31.6	-		9.20	
33.8	-	-	9.88	
34.5	95.95	64.5	-	-
36.1	-	-	10.66	
40.3	-	-	11.47	0.352
44.0	-	-	12.52	0.389
45.3	95.14	53.2	15 00	~ ~ = 1 =
50.8		42 4	15.92	0.515
53.4	94.10	43.4	_	-
57.8 61.2	93.20	37.3	19.24	0.648
64.7	_	-	21.06	0.726
67.6	91.96	31.1	-	
70.8	-	~	24.22	0.870
72.0	91.43	29.0	-	-
74.9	-	-	26.28	.970
79.9	-	-	29.33	1.13
81.4	88.73	21.4	-	-
83.3	-		32.46	1.31
84.5	88.05	20.0	36.46	1.56
87.6 92.6	84.23	14.5	50.40	-
94.1	-	-	42.28	1.99
97.8	80.82	11.5	-	_
98.9	-		48.58	2.57
100.4		-	51.61	2.90
100.8	78.54	9.96	52.24	2.98
101.4	-	-	53.18	3.09
102.4		-	57.20	3.64
102.9	74.90	8.12	<u> </u>	4 10
103.0	- 73.57	- 7.57	60.63	4.19
103.2 103.3	71.97	6.99	63.78	4.79
103.5	71.08	6.69		-
103.7	70.05	6.36	-	_
103.8 ^{bc}	68.87	6.02	64.53	4.95
^a Calculated by con	piler			
^b A third value, 65		TiBr ₄ , was also	given.	
<pre>Critical temperat 377.65K (ref 3)].</pre>		95K; compare wit	h the calc	ulated value

Continued on the next page ...

COMPONENTS :		ORIGINAL MEASUREMENTS:
(1) Titanium(IV) iodide; TiI ₄ ; [7720-83-4]		Krichevskii, I.R.; Ivanovskii, G.F.; Safronov, E.K.
(2) Benzene; C ₆ H ₆ ; [71-43-2]		*Zh. Fiz. Khim. <u>1965</u> , 39, 2684; Russ. J. Phys. Chem. (Engl. Transl.) <u>1965</u> , 39, 1436.
VARIABLES:		PREPARED BY:
<i>T/</i> K = 292-351		J. Hála
EXPERIMENTAL VALUES:		
Composition of	Saturated Solutio	ons
		/) Iodide
t∕°C	mol fraction	m ₁ /mol kg ^{-la}
19.0 31.2 39.2 50.1 60.3 70.9 78.0 a. Calculated by co	0.0041 0.0077 0.0103 0.0151 0.0209 0.0302 0.0393 mpiler	0.0527 0.0993 0.133 0.196 0.273 0.399 0.524
		INFORMATION
METHOD /APPARATUS / PROCEDU		
METHOD/APPARATUS/PROCEDUA Isothermal method u atus consisting of one of which contai C ₆ H ₆ , was shaken, e allowed to settle, solution transferre empty ampoule which by liquid N. In a ampoule was attache line, benzene was c trap cooled with li weighed. TiI ₄ was residue in the ampo	sed. An appar- 2 ampoules, ned TiI ₄ and xcess TiI ₄ and the saturated d in to the was then cooled dry box the d to a vacuum ondensed in a quid N and weighed as the	<pre>SOURCE AND PURITY OF MATERIALS: (1) TiI₄ prepared by direct synthesis from Ti and I₂, and sublimed in vacuo. Source and purity of chemicals not specified. ESTIMATED ERROR: The temperature error is not specified. Soly: precision ± 1-2 % (compiler). REFERENCES:</pre>

System Pages $2rr_4 + HF$ 60	2. The solubility of zirconium-containing substances.	
$ \begin{array}{c} 2rF_4 + HF & 60 \\ \hline + HF + H_2O & 61-66 \\ \hline + HF + N_2O_4 & 67 \\ \hline + HNO_3 + H_2O & 68, 69 \\ \hline + NAF + H_2O & 71 \\ \hline + KF + H_2O & 72 \\ \hline + KF + H_2O & 73 \\ \hline + KF + H_2O & 73 \\ \hline + KF + H_2O & 75 \\ \hline KZFF_5 + H_2O & 75 \\ \hline KZFF_5 + H_2O & 76 \\ \hline KZFF_5 + H_2O & 76 \\ \hline KZZF_5 + H_2O & 76 \\ \hline KZZF_5 + H_2O & 76 \\ \hline KH_4 2ZF_6 + H_2O & 80 \\ \hline (NH_4 2ZF_6 + H_2O & 80 \\ \hline (NH_4 2ZF_6 + H_2O & 81 \\ \hline K_2ZF_6 + H_2O & 83 \\ \hline K_2ZF_6 + H_2O & 83 \\ \hline K_2ZF_6 + H_2O & 83 \\ \hline K_2ZF_6 + H_2O & 93, 94 \\ \hline K_2ZF_6 + H_2O & 97, 98 \\ \hline Cc_5ZEF_5 + H_2O & 97, 98 \\ \hline Cc_5ZEF_5 + H_2O & 97, 98 \\ \hline (NH_4)_3ZF7_7 + H_2O & 99-101 \\ \hline \hline + HF + H_2O & 99-101 \\ \hline \hline K_3ZFF_7 + H_2O & 102-104 \\ \hline \hline K_3ZFF_7 + H_2O & 106 \\ \hline ZrCl_4 + CH_2CLCOH & 107 \\ \hline \hline K_3ZLF_7 + H_2O & 108, 109 \\ \hline \hline + SO_2 & 110 \\ \hline ZrCCl_2 + H_2O & 122 \\ \hline + CH_3)_SNHCl + H_2O & 122 \\ \hline + CH_3)_SNHCl + H_2O & 122 \\ \hline \hline + CCL_2 + H_2O & 123 \\ \hline + CCL_2 + H_2O & 124 \\ \hline + CCL_2 + H_2O & 131 \\ \hline \end{bmatrix} \begin{array}{c} - + CCL_2 + H_2O & 132 \\ \hline + CCL_2 + H_2O & 132 \\ \hline - + CCL_2 + H_2O & 134 \\ \hline - + CCL_2 + H_2O & 134 \\ \hline - + CCL_2 + H_2O & 134 \\ \hline - + CCL_2 + H_2O & 134 \\ \hline - + CCL_2 + H_2O & 134 \\ \hline - + CCL_2 + H_2O & 134 \\ \hline - + CCL_2 + H_2O & 134 \\ \hline - + CCL_2 + H_2O & 134 \\ \hline - + CCL_2 + H_2O & 134 \\ \hline - + CCL_2 + H_2O & 134 \\ \hline - + CCL_2 + H_2O & 134 \\ \hline - + CCL_2 + H_2O & 134 \\ \hline - + CCL_2 + H_2O & 134 \\ \hline - + CCL_2 + H_2O & 134 \\ \hline - + CCL_2 + H_2O & 134 \\ \hline - + CCL_2 + H_2O & 144 \\ \hline - + CCLCCL_2 + H_1 + H_2O & 144 \\ \hline + CCLCL_2 + H_2O & 145 \\ \hline + CCLCCL_2 + H_2 & 147 \\ \hline \end{array}$		Pages
$ \begin{array}{c} + HF + H_{2}O & 61-66 \\ + HF + H_{2}O & 68, 69 \\ + NAF + H_{2}O & 70 \\ + NAF + H_{2}O & 71 \\ + NF + H_{2}O & 72 \\ + LSF + H_{2}O & 73 \\ NAZF5 + H_{2}O & 73 \\ NAZF5 + H_{2}O & 76 \\ NAZF5 + H_{2}O & 76 \\ RDZF5 + H_{2}O & 76 \\ RDZF5 + H_{2}O & 78 \\ RDZF5 + H_{2}O & 79 \\ CSZF5 + H_{2}O & 79 \\ CSZF5 + H_{2}O & 80 \\ (NH_{4}) 2ZF6 + H_{2}O & 81 \\ \hline mag 2ZF6 + H_{2}O & 83 \\ K_2ZF76 + H_{2}O & 84-92 \\ \hline mag 2ZF6 + H_{2}O & 97, 98 \\ Rb_2ZF6 + H_{2}O & 97, 98 \\ Rb_2ZF6 + H_{2}O & 97, 98 \\ (NH_{4}) 3ZF7 + H_{2}O & 99-101 \\ \hline mag 2ZF7 + H_{2}O & 99-101 \\ \hline mag 2ZF7 + H_{2}O & 99-101 \\ \hline mag 2ZF7 + H_{2}O & 106 \\ ZCC1_4 + CI_{2}CIOOH & 107 \\ \hline mag 2ZF7 + H_{2}O & 106 \\ ZCC1_4 + CI_{2}CIOOH & 107 \\ \hline mag 2TC1_4 + CI_{2}CIOH & 107 \\ \hline mag 2TC1_2 + H_{2}O & 112-119 \\ \hline mag 4RC1 + H_{2}O & 122 \\ \hline mag 4RC1 + H_{2}O & 123 \\ \hline mag 4RC1 + H_{2}O & 124 \\ \hline mag 4RC1 + H_{2}O & 131 \\ \hline mag 4RC1 + H_{2}O & 131 \\ \hline mag 4RC1 + H_{2}O & 132 \\ \hline mag 4RC1 + H_{2}O & 134 \\ \hline mag 4RC1 + H_{2}O & 134 \\ \hline mag 4RC1 + H_{2}O & 136 \\ \hline mag 4RC1 + H_{2}O & 136 \\ \hline mag 4RC1 + H_{2}O & 137 \\ \hline mag 4RC1 + H_{2}O & 136 \\ \hline mag 4RC1 + H_{2}O & 136 \\ \hline mag 4RC1 + H_{2}O & 137 \\ \hline mag 4RC1 + H_{2}O & 136 \\ \hline mag 4RC1 + H_{2}O & 144 \\ \hline mag 4RC1 + H_{2}O & 144 \\ \hline mag 4RC2 + H_{2}O & 144 \\ \hline mag 4RC2 + H_{2}O & 144 \\ \hline mag 4RC1 + H_{2}O & 144 \\ \hline mag 4RC1 + H_{2}O & 144 \\ \hline mag 4RC1 + H_{2}O & 145 \\ \hline mag 4RC1 + H_{2}O & 146 \\ \hline mag 4RC1 + H_{2$	_	-
$ \begin{array}{c} \begin{array}{c} + HP + N_2 O_4 & 67 \\ + HN + H_2 O & 66 & 69 \\ + NAP + H_2 O & 70 \\ + KP + H_2 O & 71 \\ + KP + H_2 O & 72 \\ + CF + H_2 O & 73 \\ \hline \\ HF + KP + H_2 O & 73 \\ \hline \\ NH_2 ZF F_5 + HF + H_2 O & 74 \\ \hline \\ NAZ F_5 + H_2 O & 76 & 77 \\ \hline \\ - + HF + H_2 O & 76 & 77 \\ \hline \\ SZ F_5 + H_2 O & 78 \\ \hline \\ Rb ZZ F_5 + H_2 O & 79 \\ \hline \\ CS ZF F_5 + H_2 O & 80 \\ \hline \\ (NH_4) 2ZF F_6 + H_2 O & 81 \\ \hline \\ \\ Rb ZZ F_6 + H_2 O & 83 \\ \hline \\ K_2 ZF F_6 + H_2 O & 83 \\ \hline \\ K_2 ZF F_6 + H_2 O & 97 & 98 \\ \hline \\ NH_3 ZF F_7 + H_2 O & 93 & 94 \\ \hline \\ Rb ZF F_6 + H_2 O & 97 & 98 \\ \hline \\ (NH_4) 3ZF F_7 + H_2 O & 97 & 99 \\ \hline \\ \\ SZ CL_7 + HZ O & 97 & 98 \\ \hline \\ (NH_4) 3ZF F_7 + H_2 O & 97 & 98 \\ \hline \\ (NH_4) 3ZF F_7 + H_2 O & 102 \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	+ HF $+$ N ₂ O ₄	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	+ HNO ₂ + H ₂ O	68, 69
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	+ NaF + H ₂ O	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$+ KF + H_2O$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	+ RbF + H_2O	
$\begin{split} & \text{NH}_{4} 2z F_5 + \text{H}_{2} 0 & 74 \\ & \text{Na} 2z F_5 + \text{H}_{2} 0 & 76, 77 \\ & \hline \\ & - + \text{HF} + \text{H}_{2} 0 & 78 \\ & \hline \\ & \overline{\text{Pb}} 2z F_5 + \text{H}_{2} 0 & 80 \\ & (\text{NH}_{4}) 2z F_6 + \text{H}_{2} 0 & 81 \\ & \hline \\ & - + \text{HF} + \text{H}_{2} 0 & 82 \\ & \hline \\ & - + \text{HF} + \text{H}_{2} 0 & 83 \\ & \text{K}_{2} Zz F_6 + \text{H}_{2} 0 & 93, 94 \\ & \text{Rb}_{2} \overline{z} \overline{z} F_6 + \text{H}_{2} 0 & 93, 94 \\ & \text{Rb}_{2} \overline{z} \overline{z} F_6 + \text{H}_{2} 0 & 93, 94 \\ & \text{Rb}_{2} \overline{z} \overline{z} F_6 + \text{H}_{2} 0 & 93, 94 \\ & \text{Rb}_{2} \overline{z} \overline{z} F_6 + \text{H}_{2} 0 & 97, 98 \\ & (\text{NH}_{4}) 3z \overline{z} \overline{z} 7 + \text{H}_{2} 0 & 99 - 101 \\ \hline & - + \text{NH}_{4} F + \text{H}_{2} 0 & 102 - 104 \\ \hline & - + \text{NH}_{4} F + \text{H}_{2} 0 & 105 \\ & \text{K}_{3} \overline{z} \overline{z} \overline{r}_{7} + \text{H}_{2} 0 & 106 \\ & \overline{z} \overline{z} \overline{c} C_{1} + \overline{c} + C_{1} C C O H & 107 \\ \hline & - + c (H_{3} c C n + (C_{5} H_{1}) 2 0 & 116 \\ \hline & \overline{z} \overline{c} c C_{1} + H_{2} 0 & 111 \\ \hline & - + H c 1 + H_{2} 0 & 112 \\ \hline & + c (C_{1} 2 + \text{H}_{2} 0 & 111 \\ \hline & - + c (C_{1} 2 + \text{H}_{2} 0 & 122 \\ \hline & + c (C_{1} 2 + \text{H}_{2} 0 & 121 \\ \hline & + c (C_{1} 2 + \text{H}_{2} 0 & 123 \\ \hline & - + c (C_{1} 2 + \text{H}_{2} 0 & 123 \\ \hline & - + c (C_{1} 2 + \text{H}_{2} 0 & 123 \\ \hline & - + c (C_{1} 2 + \text{H}_{2} 0 & 124 \\ \hline & + \frac{1}{8} \overline{c} C_{1} 2 + \text{H}_{2} 0 & 134 \\ \hline & - + \frac{1}{8} \overline{c} C_{1} 2 + \text{H}_{2} 0 & 134 \\ \hline & - + \frac{1}{8} \overline{c} C_{1} 2 + \text{H}_{2} 0 & 134 \\ \hline & - + \frac{1}{8} \overline{c} C_{1} 2 + \text{H}_{2} 0 & 134 \\ \hline & - + \frac{1}{8} \overline{c} C_{1} 2 + \text{H}_{2} 0 & 134 \\ \hline & - + \frac{1}{8} \overline{c} C_{1} 2 + \text{H}_{2} 0 & 134 \\ \hline & - + \frac{1}{8} \overline{c} C_{1} + \text{H}_{2} 0 & 136 \\ \hline & - + \frac{1}{8} \overline{c} C_{1} + \text{H}_{2} 0 & 136 \\ \hline & - + \frac{1}{8} \overline{c} C_{1} + \text{H}_{2} 0 & 136 \\ \hline & - + \frac{1}{8} \overline{c} C_{1} + \text{H}_{2} 0 & 136 \\ \hline & - + \frac{1}{8} \overline{c} C_{1} + \text{H}_{2} 0 & 136 \\ \hline & - + \frac{1}{8} \overline{c} C_{1} + \text{H}_{2} 0 & 136 \\ \hline & - + \frac{1}{8} \overline{c} C_{1} + \text{H}_{2} 0 & 143 \\ \hline & - \frac{1}{8} \overline{c} C_{1} + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	$+ CsF + H_2O$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$KZrF_5 + H_2O$	76, 77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ HF + H ₂ O	78
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$RbZrF_5 + H_2O$	79 .
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(NH_4)_2 ZrF_6 + H_2O$	81
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+ HF + H_2O$	82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Na_2ZrF_6 + H_2O$	83
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$K_2 ZrF_6 + H_2 O$	84-92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$+ HF + H_2O$	93, 94
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		95, 96
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Cs_2 ZrF_6 + H_2 O$	97, 98
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		102-104
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ NH_4NO_3 + H_2O	105
$ \begin{array}{c} 2rcl_4 + cH_2clcooH & 107 \\ + cH_3cN + (c_5H_{11})_{2}O & 108, 109 \\ + so_2 & 110 \\ 2rocl_2 + H_2O & 111 \\ \hline + Hcl + H_2O & 112-119 \\ + NH_4cl + H_2O & 120 \\ \hline + (cH_3)_{3}NHcl + H_2O & 121 \\ \hline + zcl_2 + H_2O & 123 \\ + cdcl_2 + H_2O & 124 \\ \hline + Mgcl_2 + H_2O & 125 \\ \hline + cacl_2 + H_2O & 126, 127 \\ \hline + cacl_2 + H_2O & 126, 127 \\ \hline + srcl_2 + H_2O & 131 \\ \hline + srcl_2 + H_2O & 131 \\ \hline + srcl_2 + H_2O & 132, 133 \\ \hline + srcl_2 + H_2O & 132, 133 \\ \hline + srcl_2 + H_2O & 134 \\ \hline + bacl_2 + H_2O & 136 \\ \hline + sccl_1 + H_2O & 136 \\ \hline + sccl_2 + H_2O & 136 \\ \hline + sccl_1 + H_2O & 137 \\ \hline + sccl_1 + H_2O & 136 \\ \hline + sccl_1 + H_2O & 137 \\ \hline + sccl_1 + H_2O & 138 \\ \hline + cscl_1 + H_2O & 140, 141 \\ \hline (NH_4)_2zcl_6 + Hcl_1 + H_2O & 143 \\ Rb_2zrcl_6 + Hcl_1 + H_2O & 143 \\ Rb_2zrcl_6 + Hcl_1 + H_2O & 144 \\ cs_2zrcl_6 + Hcl_1 + H_2O & 144 \\ cs_2zrcl_6 + Hcl_1 + H_2O & 144 \\ cs_2zrcl_6 + Hcl_1 + H_2O & 144 \\ cscl_2rcl_6 + Hcl_1 + H_2O & 144 \\ cscl_2rcl_6 + Hcl_1 + H_2O & 144 \\ \hline - cscl_2rcl_6 + Hcl_1 + H_2O & 144 \\ \hline - cscl_2rcl_6 + Hcl_1 + H_2O & 144 \\ \hline - cscl_2rcl_6 + Hcl_1 + H_2O & 144 \\ \hline - cscl_2rcl_6 + Hcl_1 + H_2O & 144 \\ \hline - cscl_2rcl_6 + Hcl_1 + H_2O & 144 \\ \hline - cscl_2rcl_6 + Hcl_1 + H_2O & 144 \\ \hline - cscl_2rcl_6 + Hcl_1 + H_2O & 144 \\ \hline - cscl_2rcl_6 + Hcl_1 + H_2O & 144 \\ \hline - cscl_2rcl_6 + Hcl_1 + H_2O & 145 \\ \hline - cscl_2rcl_6 + Hcl_1 + H_2O & 145 \\ \hline - cscl_2rcl_6 + Hcl_1 + H_2O & 145 \\ \hline - cscl_2rcl_6 + Hcl_1 + H_2O & 145 \\ \hline - cscl_2rcl_6 + Hcl_1 + H_2O & 145 \\ \hline - cscl_2rcl_6 + Hcl_1 + H_2O & 145 \\ \hline - cscl_2rcl_6 + Hcl_1 + H_2O & 146 \\ \hline - cscl_2rcl_6 + Hcl_1 + H_2O & 146 \\ \hline - cscl_2rcl_6 + Hcl_1 + H_2O & 146 \\ \hline - cscl_2rcl_6 + Hcl_1 + H_2O & 147 \\ \hline - cscl_2rcl_6 + Hcl_2rcl_2rcl_1 & 147 \\ \hline - cscl_2rcl_6 + Hcl_2rcl_2rcl_1 & 147 \\ \hline - cscl_2rcl_6 + Hcl_2rcl_2rcl_2rcl_2rcl_2rcl_2rcl_2rcl_2r$		106
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		107
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} + \ & \mathrm{So}_2 \\ 2\mathrm{rrOCl}_2 + \mathrm{H}_2\mathrm{O} \\ & 111 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} + \ & \mathrm{HCl} + \mathrm{H}_2\mathrm{O} \\ & 112 \\ - 119 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{HCl} + \mathrm{H}_2\mathrm{O} \\ & 120 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{CH}_3 \ & \mathrm{NHGl} + \mathrm{H}_2\mathrm{O} \\ & 121 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} + \ & \mathrm{CH}_2 + \mathrm{H}_2\mathrm{O} \\ & 122 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{CdCl}_2 + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{CdCl}_2 + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 123 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{CdCl}_2 + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 126 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{CdCl}_2 + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 126 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{CdCl}_2 + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 126 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{CdCl}_2 + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 126 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{CdCl}_2 + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 128 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{CdCl}_2 + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 128 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{CdCl}_2 + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 131 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{CdCl}_2 + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 131 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{CdCl}_2 + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 132 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{SrCl}_2 + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 136 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{Kcl} + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 136 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{Kcl} + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 136 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{Kcl} + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 138 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{CsCl} + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 138 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{CsCl} + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 138 \\ \mathrm{Sh}_2\mathrm{ZrCl}_6 + \mathrm{HCl} + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 142 \\ \mathrm{K}_2\mathrm{ZrCl}_6 + \mathrm{HCl} + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 143 \\ \mathrm{Rb}_2\mathrm{ZrCl}_6 + \mathrm{HCl} + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 144 \\ \mathrm{Cs}_2\mathrm{ZrCl}_6 + \mathrm{HCl} + \mathrm{H}_2\mathrm{O} \\ \end{array} \\ \begin{array}{c} 146 \\ \end{array} \\ \begin{array}{c} + \ & \mathrm{CH}_2\mathrm{ClCl}_2\mathrm{Cl} \\ \end{array} \end{array} $		108, 109
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+ SO_2$	•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		111
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c}+ cdcl_{2}^{2} + H_{2}O & 123 \\ + cucl_{2} + H_{2}O & 124 \\ + Mgcl_{2} + H_{2}O & 125 \\ + cacl_{2} + H_{2}O & 126, 127 \\ ++ + Hcl + H_{2}O & 128-130 \\ + srcl_{2} + H_{2}O & 131 \\ ++ + Hcl + H_{2}O & 132, 133 \\ + srcl_{2} + H_{2}O & 134 \\ ++ + Hcl + H_{2}O & 135 \\ + Hacl_{2} + H_{2}O & 136 \\ + cccl + H_{2}O & 136 \\ + cccl + H_{2}O & 137 \\ + Rbcl + H_{2}O & 138 \\ + cscl + H_{2}O & 138 \\ + cscl + H_{2}O & 139 \\ + cscl + H_{2}O & 140, 141 \\ (NH_{4})_{2}zrcl_{6} + Hcl + H_{2}O & 142 \\ K_{2}zrcl_{6} + Hcl + H_{2}O & 143 \\ Rb_{2}zrcl_{6} + Hcl + H_{2}O & 144 \\ cs_{2}zrcl_{6} + Hcl + H_{2}O & 145 \\ zrBr_{4} + cHcl_{3} & 146 \\+ cH_{2}clcH_{2}cl & 147 \\ \end{array}$		
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} + \ \mathrm{Cucl}_2 \ + \ \mathrm{H}_2\mathrm{O} & 124 \\ + \ \mathrm{MgCl}_2 \ + \ \mathrm{H}_2\mathrm{O} & 125 \\ + \ \mathrm{Cacl}_2 \ + \ \mathrm{H}_2\mathrm{O} & 126, 127 \\ + \ - \ + \ \mathrm{Hcl} \ + \ \mathrm{H}_2\mathrm{O} & 128-130 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} + \ + \ \mathrm{SrCl}_2 \ + \ \mathrm{H}_2\mathrm{O} & 131 \\ + \ - \ + \ \mathrm{Hcl} \ + \ \mathrm{H}_2\mathrm{O} & 132, 133 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} + \ + \ \mathrm{Hcl} \ + \ \mathrm{H}_2\mathrm{O} & 134 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} + \ + \ \mathrm{Hcl} \ + \ \mathrm{H}_2\mathrm{O} & 134 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} - \ + \ \mathrm{Hcl} \ + \ \mathrm{H}_2\mathrm{O} & 136 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} - \ + \ \mathrm{Hcl} \ + \ \mathrm{H}_2\mathrm{O} & 136 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} - \ + \ \mathrm{Hcl} \ + \ \mathrm{H}_2\mathrm{O} & 136 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} - \ + \ \mathrm{Hcl} \ + \ \mathrm{H}_2\mathrm{O} & 137 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} - \ + \ \mathrm{Hcl} \ + \ \mathrm{H}_2\mathrm{O} & 137 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} - \ + \ \mathrm{Hcl} \ + \ \mathrm{H}_2\mathrm{O} & 138 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} - \ + \ \mathrm{Hcl} \ + \ \mathrm{H}_2\mathrm{O} & 138 \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} - \ + \ \mathrm{Hcl} \ + \ \mathrm{H}_2\mathrm{O} & 138 \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} - \ + \ \mathrm{Hcl} \ + \ \mathrm{H}_2\mathrm{O} & 138 \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} - \ + \ \mathrm{Licl} \ + \ \mathrm{H}_2\mathrm{O} & 138 \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} - \ + \ \mathrm{Licl} \ + \ \mathrm{H}_2\mathrm{O} & 138 \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} - \ \mathrm{Hcl} \ + \ \mathrm{Licl} \ + \ \mathrm{H}_2\mathrm{O} & 140, 141 \\ \end{array} \\ \begin{array}{c} (\mathrm{NH}_4 \ \mathrm{J}_2 \ \mathrm{ZrCl}_6 \ + \ \mathrm{Hcl} \ + \ \mathrm{H}_2\mathrm{O} & 143 \\ \end{array} \\ \begin{array}{c} \mathrm{Rb}_2 \ \mathrm{ZrCl}_6 \ + \ \mathrm{Hcl} \ + \ \mathrm{Hcl} \ + \ \mathrm{H}_2\mathrm{O} & 144 \\ \end{array} \\ \begin{array}{c} \mathrm{Cs}_2 \ \mathrm{ZrCl}_6 \ + \ \mathrm{Hcl} \ + \ \mathrm{H}_2\mathrm{O} & 145 \\ \end{array} \\ \begin{array}{c} \mathrm{Idf} \ \mathrm{Idf} \ \mathrm{Idf} \ + \ \mathrm{CH}_2 \ \mathrm{Idf} \ \mathrm{Idf} \ \end{array} \\ \end{array} \\ \begin{array}{c} \mathrm{Idf} \ \mathrm{Idf} \ \mathrm{Idf} \ \mathrm{Idf} \ \mathrm{Idf} \ \mathrm{Idf} \ \end{array} \\ \end{array}$		
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ $		
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \hline \\ \\ \\ \\$		
$\begin{array}{c}+ ++ + HC1 + H_2O & 128-130 \\+ + SrC1_2 + H_2O & 131 \\+ + HC1 + H_2O & 132, 133 \\+ + BaC1_2 + H_2O & 134 \\+ + LiC1 + H_2O & 135 \\+ + LiC1 + H_2O & 136 \\+ + KC1 + H_2O & 136 \\+ + KC1 + H_2O & 137 \\+ + RbC1 + H_2O & 138 \\+ + CsC1 + H_2O & 138 \\+ + CsC1 + H_2O & 140, 141 \\ (NH_4)_2ZrC1_6 + HC1 + H_2O & 142 \\ K_2ZrC1_6 + HC1 + H_2O & 143 \\ Rb_2ZrC1_6 + HC1 + H_2O & 144 \\ Cs_2ZrC1_6 + HC1 + H_2O & 144 \\ Cs_2ZrC1_6 + HC1 + H_2O & 144 \\ Cs_2ZrC1_6 + HC1 + H_2O & 145 \\ ZrBr_4 + CHC1_3 & 146 \\+ CH_2C1CH_2C1 & 147 \\ \end{array}$		
$ \begin{array}{c}+ SrCl_{2} + H_{2}O & 131 \\+ HCl + H_{2}O & 132, 133 \\+ HCl + H_{2}O & 134 \\+ LiCl + H_{2}O & 135 \\+ Kcl + H_{2}O & 136 \\+ Kcl + H_{2}O & 137 \\+ Rbcl + H_{2}O & 138 \\+ Cscl + H_{2}O & 139 \\+ ZrO(NO_{3})_{2} + HCl + HNO_{3} + H_{2}O & 140, 141 \\ \hline (NH_{4})_{2}ZrCl_{6} + Hcl + H_{2}O & 142 \\ K_{2}ZrCl_{6} + Hcl + H_{2}O & 143 \\ Rb_{2}Zrcl_{6} + Hcl + H_{2}O & 144 \\ Cs_{2}Zrcl_{6} + Hcl + H_{2}O & 144 \\ Cs_{2}Zrcl_{6} + Hcl + H_{2}O & 145 \\ ZrBr_{4} + CHcl_{3} & 146 \\+ CH_{2}ClCH_{2}Cl & 147 \\ \end{array} $	$+ CaCl_2 + H_2O$	
$\begin{array}{c}+ ++ + HC1 + H_20 & 132, 133 \\+ + BaCl_2 + H_20 & 134 \\+ + BaCl_2 + H_20 & 135 \\+ + H_20 & 136 \\+ + RbC1 + H_20 & 137 \\+ + RbC1 + H_20 & 138 \\+ + CsC1 + H_20 & 139 \\+ + CsC1 + H_20 & 140, 141 \\ \hline (NH_4)_2 ZrCl_6 + HC1 + H_20 & 142 \\ K_2 ZrCl_6 + HC1 + H_20 & 143 \\ Rb_2 ZrCl_6 + HC1 + H_20 & 144 \\ Cs_2 ZrCl_6 + HC1 + H_20 & 144 \\ Cs_2 ZrCl_6 + HC1 + H_20 & 144 \\ Cs_2 ZrCl_6 + HC1 + H_20 & 144 \\ Cs_2 ZrCl_6 + HC1 + H_20 & 144 \\ Cs_2 ZrCl_6 + HC1 + H_20 & 144 \\ Cs_2 ZrCl_6 + HC1 + H_20 & 145 \\ ZrBr_4 + CHCl_3 & 146 \\+ CH_2 ClCH_2 Cl & 147 \\ \end{array}$	+++++++++++++++++++++++++++++++++	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c} + \text{LiCl} + \text{H}_2\text{O} & 135 \\ + \text{NaCl} + \text{H}_2\text{O} & 136 \\ + \text{KCl} + \text{H}_2\text{O} & 137 \\ + \text{RbCl} + \text{H}_2\text{O} & 138 \\ + \text{CsCl} + \text{H}_2\text{O} & 139 \\ + \text{CsCl} + \text{H}_2\text{O} & 139 \\ + 2\text{rO}(\text{NO}_3)_2 + \text{HCl} + \text{HNO}_3 + \text{H}_2\text{O} & 140, 141 \\ \hline (\text{NH}_4)_2\text{ZrCl}_6 + \text{HCl} + \text{H}_2\text{O} & 142 \\ \text{K}_2\text{ZrCl}_6 + \text{HCl} + \text{H}_2\text{O} & 143 \\ \text{Rb}_2\text{ZrCl}_6 + \text{HCl} + \text{H}_2\text{O} & 144 \\ \text{Cs}_2\text{ZrCl}_6 + \text{HCl} + \text{H}_2\text{O} & 144 \\ \text{Cs}_2\text{ZrCl}_6 + \text{HCl} + \text{H}_2\text{O} & 144 \\ \text{Cs}_2\text{ZrCl}_6 + \text{HCl} + \text{H}_2\text{O} & 145 \\ \text{ZrBr}_4 + \text{CHCl}_3 & 146 \\ + \text{CH}_2\text{ClCH}_2\text{Cl} & 147 \end{array}$	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	
$\begin{array}{c} + \operatorname{NaCl} + \operatorname{H}_2 O & 136 \\ + \operatorname{KCl} + \operatorname{H}_2 O & 137 \\ + \operatorname{RbCl} + \operatorname{H}_2 O & 138 \\ + \operatorname{CsCl} + \operatorname{H}_2 O & 139 \\ + \operatorname{CsCl} + \operatorname{H}_2 O & 140, 141 \\ \hline & (\operatorname{NH}_4)_2 \operatorname{ZrCl}_6 + \operatorname{HCl} + \operatorname{H}_2 O & 142 \\ \operatorname{K}_2 \operatorname{ZrCl}_6 + \operatorname{HCl} + \operatorname{H}_2 O & 143 \\ \operatorname{Rb}_2 \operatorname{ZrCl}_6 + \operatorname{HCl} + \operatorname{H}_2 O & 144 \\ \operatorname{Cs}_2 \operatorname{ZrCl}_6 + \operatorname{HCl} + \operatorname{H}_2 O & 144 \\ \operatorname{Cs}_2 \operatorname{ZrCl}_6 + \operatorname{HCl} + \operatorname{H}_2 O & 144 \\ \operatorname{Cs}_2 \operatorname{ZrCl}_6 + \operatorname{HCl} + \operatorname{H}_2 O & 144 \\ \operatorname{Cs}_2 \operatorname{ZrCl}_6 + \operatorname{HCl} + \operatorname{H}_2 O & 144 \\ \operatorname{Cs}_2 \operatorname{ZrCl}_6 + \operatorname{HCl} + \operatorname{H}_2 O & 145 \\ \operatorname{ZrBr}_4 + \operatorname{CHCl}_3 & 146 \\ + \operatorname{CH}_2 \operatorname{ClCH}_2 \operatorname{Cl} & 147 \end{array}$	$ + BaCl_2 + H_2O$	
$\begin{array}{c} + \text{ KCl} + \text{ H}_2\text{O} & 137 \\ + \text{ RbCl} + \text{ H}_2\text{O} & 138 \\ + \text{ CsCl} + \text{ H}_2\text{O} & 139 \\ + \text{ CsCl} + \text{ H}_2\text{O} & 140, 141 \\ \hline & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\$	$+ LiCl + H_2O$	
$\begin{array}{c} + RbCl + H_2O & 138 \\ + CsCl + H_2O & 139 \\ + ZrO(NO_3)_2 + HCl + HNO_3 + H_2O & 140, 141 \\ \hline (NH_4)_2ZrCl_6 + HCl + H_2O & 142 \\ K_2ZrCl_6 + HCl + H_2O & 143 \\ Rb_2ZrCl_6 + HCl + H_2O & 144 \\ Cs_2ZrCl_6 + HCl + H_2O & 144 \\ Cs_2ZrCl_6 + HCl + H_2O & 145 \\ ZrBr_4 + CHCl_3 & 146 \\ + CH_2ClCH_2Cl & 147 \end{array}$		136
$\begin{array}{c}+ \operatorname{CsCl} + \operatorname{H}_2 O & 139 \\ \hline & + \operatorname{ZrO}(\operatorname{NO}_3)_2 + \operatorname{HCl} + \operatorname{HNO}_3 + \operatorname{H}_2 O & 140, 141 \\ \hline & (\operatorname{NH}_4)_2 \operatorname{ZrCl}_6 + \operatorname{HCl} + \operatorname{H}_2 O & 142 \\ \operatorname{K}_2 \operatorname{ZrCl}_6 + \operatorname{HCl} + \operatorname{H}_2 O & 143 \\ \operatorname{Rb}_2 \operatorname{ZrCl}_6 + \operatorname{HCl} + \operatorname{H}_2 O & 144 \\ \operatorname{Cs}_2 \operatorname{ZrCl}_6 + \operatorname{HCl} + \operatorname{H}_2 O & 144 \\ \operatorname{Cs}_2 \operatorname{ZrCl}_6 + \operatorname{HCl} + \operatorname{H}_2 O & 145 \\ \operatorname{ZrBr}_4 + \operatorname{CHCl}_3 & 146 \\+ \operatorname{CH}_2 \operatorname{ClCH}_2 \operatorname{Cl} & 147 \end{array}$		137
$\begin{array}{c} \begin{array}{c} \begin{array}{c} & + \ ZrO(NO_3)_2 + HCl + HNO_3 + H_2O & 140, 141 \\ \hline \\ \hline (NH_4)_2 ZrCl_6 + HCl + H_2O & 142 \\ \hline \\ K_2 ZrCl_6 + HCl + H_2O & 143 \\ \hline \\ Rb_2 ZrCl_6 + HCl + H_2O & 144 \\ \hline \\ Cs_2 ZrCl_6 + HCl + H_2O & 145 \\ \hline \\ ZrBr_4 + CHCl_3 & 146 \\ \hline \\ + CH_2 ClCH_2 Cl & 147 \end{array}$	+ RbCl + H_2O	138
$\begin{array}{c} (\text{NH}_4)_2 \text{ZrCl}_6 + \text{HCl} + \text{H}_2 \text{O} & 142 \\ \text{K}_2 \text{ZrCl}_6 + \text{HCl} + \text{H}_2 \text{O} & 143 \\ \text{Rb}_2 \text{ZrCl}_6 + \text{HCl} + \text{H}_2 \text{O} & 144 \\ \text{Cs}_2 \text{ZrCl}_6 + \text{HCl} + \text{H}_2 \text{O} & 145 \\ \text{ZrBr}_4 + \text{CHCl}_3 & 146 \\ \underline{\qquad} + \text{CH}_2 \text{ClCH}_2 \text{Cl} & 147 \end{array}$	$ + CsCl + H_2O$	139
$K_2 ZrCl_6 + HCl + H_2O$ 143 $Rb_2 ZrCl_6 + HCl + H_2O$ 144 $Cs_2 ZrCl_6 + HCl + H_2O$ 145 $ZrBr_4 + CHCl_3$ 146	$_{}$ + ZrO(NO ₃) ₂ + HCl + HNO ₃ + H ₂ O	140, 141
$K_2 ZrCl_6 + HCl + H_2O$ 143 $Rb_2 ZrCl_6 + HCl + H_2O$ 144 $Cs_2 ZrCl_6 + HCl + H_2O$ 145 $ZrBr_4 + CHCl_3$ 146		142
$Rb_2ZrCl_6 + HCl + H_2O$ 144 $Cs_2ZrCl_6 + HCl + H_2O$ 145 $ZrBr_4 + CHCl_3$ 146 + CH_2ClCH_2Cl 147	• • • •	143
$Cs_2 ZrCl_6 + HCl + H_2O$ $ZrBr_4 + CHCl_3$ $+ CH_2 ClCH_2 Cl$ 145 146 147		
$ \frac{\text{ZrBr}_4 + \text{CHCl}_3}{\text{+ CH}_2\text{ClCH}_2\text{Cl}} $ $ 146 $ $ 147 $		
$ + CH_2C1CH_2C1 $ 147	— — —	
	• •	
$2rOBr_2 + HBr + H_2O $ 148		
	$2rOBr_2 + HBr + H_2O$	148

COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Zirconium(IV) fluoride; ZrF₄; [7783-64-4] (2) Hydrogen fluoride; HF; [7664-39-3] 	Jache, A.W.; Cady, G.H. J. Phys. Chem. <u>1952</u> , 56, 1106-9.
VARIABLES:	PREPARED BY:
T/K = 250-285	J. Hála
EXPERIMENTAL VALUES:	
Composition of Saturated Soluti	ons
Zirconium(I	V) fluoride
t/°C g ZrF ₄ /100 g HF	m _l /mol kg ^{-la}
12.4 0.009 - 8.3 0.015 -23.1 0.023	0.00054 0.00090 0.00138
Calculated by compiler	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Liquid HF was mixed with excess $2rF_4$ in polyethylene bottles for several days. Before mixing diluted F_2 was bubbled through the solution for 1 h to remove traces of water. Samples for analysis were taken into a teflon sampling bottle by using a hypodermic needle with a teflon adapter. The sample was weighed and evaporated to dryness in a Pt crucible. The residue, $2rF_4$ was dried at 110° and weighed. The authors do not report on the com- position of the solid phases.	ESTIMATED ERROR: The temperature error is not specified. The solubility error is ± 0.002 g ZrF ₄ /100 g HF (precision). REFERENCES:
	<pre>1.Simons, J.H. Inorganic Synthesis, Vol. 1, McGraw-Hill Book Comp., Inc., New York, <u>1939</u>, p. 134.</pre>

COMPONENTS :	EVALUATOR:
<pre>(1) Zirconium fluoride; ZrF₄; [7783-64-4]</pre>	J. Hála Department of Inorganic Chemistry J. E. Purkyne University
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>	J. E. Purkyne University 61137 Brno, Czechoslovakia
(3) Water; H ₂ O; [7732-18-5]	June 1985

CRITICAL EVALUATION:

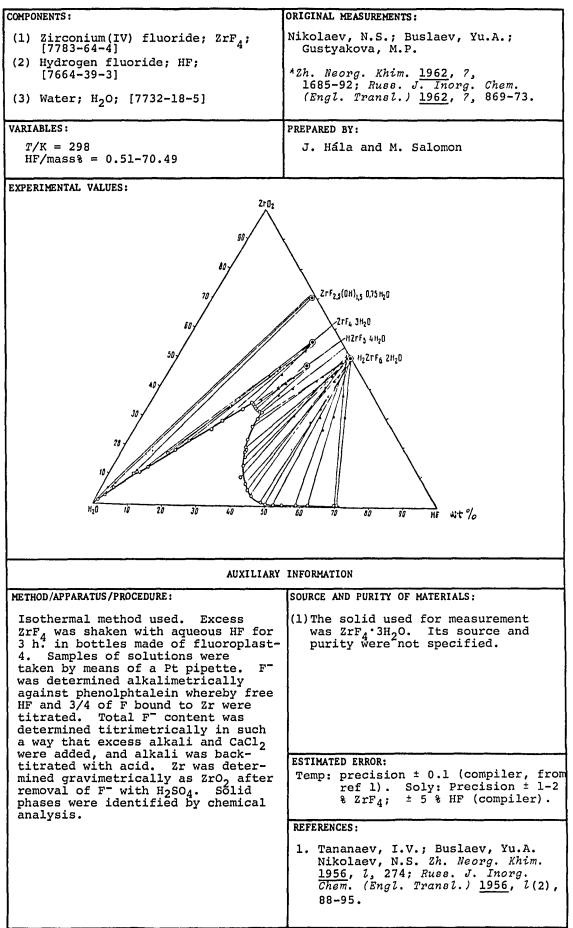
The solubility of zirconium fluoride in aqueous hydrogen fluoride.

Of the three documents which report solubility measurements of ${\tt ZrF}_4$ as a function of HF concentration those of Hevesy and Wagner (ref 1) and Nikolaev et al. (ref 2) at 298 K can be compared. In the third paper the solubility at $0.5^{\circ}C$ is reported (ref 3). Even a brief inspection of the molal $(m_1/mol kg^{-1})$ data in the compilations shows that the data of Hevesy and Wagner (1) and Nikolaev et al. (ref 2) differ greatly, those of (ref 1) being much higher especially for low HF concentration. Only the value of 3.62 mol ZrF_A/kg for 18.76 mol HF/kg (ref 1) seems to approach the solubility isotherm of Nikolaev et al. (ref 2). The reason for this discrepancy is not clear. It should be noted that the same solid was used for the solubility measurements in both i.e. $ZrF_4 \cdot 3H_2O$, although Hevesy and Wagner (ref 1) studies, gave the older formula for it $(2rOF_2 \cdot H_2F_2 \cdot 2H_2O)$ (ref 4). The sharp decrease of $2rF_4$ solubility at high HF concentrations (ref 2) is in agreement with the solubility of $2rF_A$ in nonaqueous HF (ref 5), i.e. $0.00054 \text{ mol kg}^{-1}$ at 285.6K.

Due to the lack of agreement in the published data the evaluator cannot recommend any data. For tentative values the evaluator suggests the data of Nikolaev et al. (ref 2) for 298 K to be used (see the compilation for numerical data). **REFERENCES:**

- (1) von Hevesy, G.; Wagner, O. H. Z. Anorg. Allgem. Chem. 1930, 191, 194.
- (2) Nikolaev, N. S.; Buslaev, Yu. A.; Gustyakova, M. P. *Zh. Neorg. Khim.* <u>1962</u>, 7, 1685.
 (3) Tananaev, I. V.; Nikolaev, N. S.; Buslaev, Yu. A. *Zh. Neorg. Khim.* <u>1956</u>, 1, 274.
 (4) Buslaev, Yu. A.; Nikolaev, N. S. Dokl. Akad. Nauk SSSR
- <u>1960, 135, 1385.</u> (5) Jache, A. W.; Cady, G. H. J. Phys. Chem. <u>1952</u>, 56, 1106.

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Zirconium(IV) fluoride; ZrF₄; [7783-64-4]</pre>	von Hevesy, G.; Wagner, O.H. Z. Anorg. Allg. Chem. 1930, 191,	
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>	194-200.	
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = 298	J. Hála	
$c_2/\text{mol } dm^{-3} = 0 - 20.09$		
EXPERIMENTAL VALUES:		
	ity, 25°C C Density of	
HF $2rO_2$	ZrF ₄ Solutions	
$\frac{\text{HF}}{c_2/\text{mol dm}^{-3}} \frac{2rO_2}{m_2/\text{mol kg}^{-1a}} \text{g dm}^{-3} c_1$	/mol dm ⁻³ m_1 /mol kg ^{-la} g cm ⁻³	
1 0 0 406.3	3.300 3.52 1.488 3.332 3.57 1.490	
1.06 1.24 502.2	4.078 4.76 1.559	
1.06 1.16 496.5	4.030 4.41 1.608	
6.03 7.39 571.8 6.03 7.40 571.7	4.639 5.69 1.712 4.639 5.69 1.711	
10.05 13.60 548.5	4.455 6.03 1.685	
10.05 13.52 549.6	4.459 6.00 1.690	
15.05 21.63 444.3 20.09 ^b 31.55 288.3	3.608 5.19 1.600 2.340 3.67 1.430	
^a Calculated by compiler by usi		
the reported solubility is th	ducibility at this HF concentration; e mean value of 6 determinations ZrO ₂ /dm ³ (the other 4 values not OF ₂ ·H ₂ F ₂ ·2H ₂ O (see below).	
AUXILIARY	INFORMATION	
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
Isothermal method used. Excess solid was shaken for unspecified period of time with aqueous HF. Method of analysis not specified. The composition of solid phases was not reported.	<pre>(1) The solid used for measurements was prepared by dissolving ZrO2 in aqueous HF. The composition of the solid obtained by crys- tallization from 5-20 mol HF/dm³ was constant, and according to Chauvenet (ref 1) who obtained a compound with identical composi- tion, was written as ZrOF2[*] H2F2[*]2H2O.</pre> ESTIMATED ERROR: Nothing specified. REFERENCES: 1. Chauvenet, E. C.R. Hebd. Seances Acad. Sci. 1916, 164, 727.	

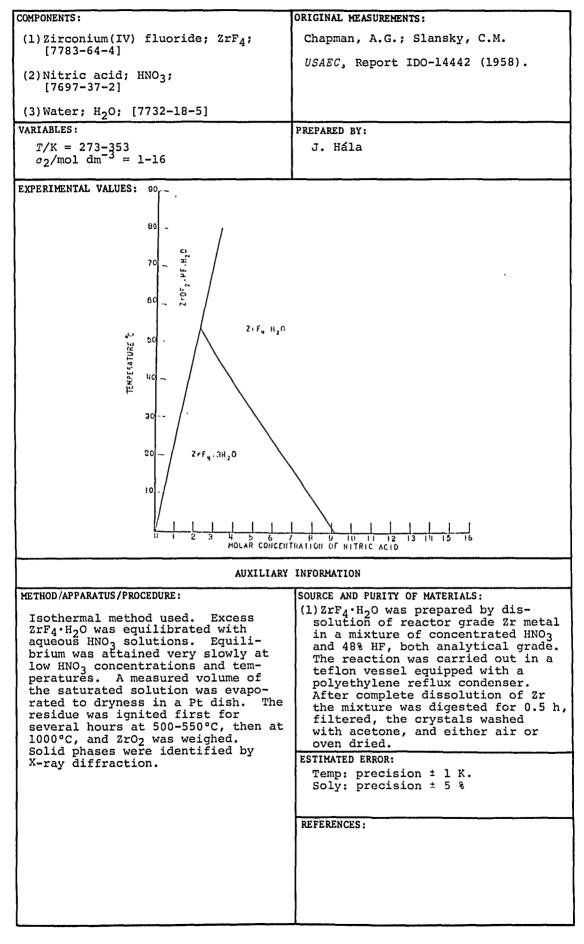

COMPONENTS	:		ORIGINAL MEASU	UREMENTS
(1) Zirc [778	conium(IV) fluoride; 3-64-4]	ZrF ₄ ;	Tananaev, I.V. Buslaev, Yu	.; Nikolaev, N.S.; .A.
	ogen fluoride; HF; [4-39-3]		*Zh. Neorg. Ki	him. <u>1956</u> , 1, 274-81.
(3) Wate	er; H ₂ O; [7732-18-5]		J. Inorg. Che 1956, l (2),	em. USSR (Engl. Transl.) 88-95.
EXPERIMEN	TAL VALUES			
Compo	sition of Saturated	Solutions	at 0.5°C	Nature of
HF	ZrO2_		ZrF ₄ ^a	the Solid Phase ^D
mass%	mass%	mass% ^m l/	mol kg ⁻¹	
2.21 2.80 3.95 5.84 6.01 6.79 10.10 12.34 16.06 18.97 22.43 25.42 30.00 31.63 32.81 33.98 34.37 35.61 36.85 38.41 39.92 39.67 40.41 44.14 44.42 46.15 54.11 60.35 70.12 79.31 82.05 84.35 85.81 92.59 96.47 99.98 a. Ca b. A: B: C: D: C. Uni	3.14 4.37 6.19 7.92 8.35 8.30 13.05 15.41 19.73 23.21 26.42 29.11 32.37 31.95 30.41 24.71 19.83 12.58 10.68	4.26 5.93 8.40 10.75 11.33 11.26 17.71 20.91 26.77 31.50 35.85 39.50 43.92 14.27 33.53 26.90 17.07 14.49 13.20 9.87 6.61 5.77 3.19 2.06 1.42 0.123 .0651 .0231 .0204 .0204 .0204 .0204 .0204 .0204 .0204 .0204 .0204 .0204 .0204 .0204 .0204 .0217 .0204 .0217 .0204 .0204 .0217 .0204 .0214 .0145 .0145	0.272 .386 .573 .771 .820 .822 1.47 1.87 2.80 3.80 5.14 6.73 0.07 0.37 9.52 6.17 4.15 2.16 1.77 1.63 1.175 0.736 .641 .362 .230 .159 .0161 .00983 .00463 .00628 .00680 .00780 .00780 .00861 .0114 .0251 (8.67) C	A A A B B B B B B B C C C C C C C C C C
Contir	nued on the next pag	e		

ŝ,

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Zirconium(IV) fluoride; ZrF₄; [7783-64-4]</pre>	Tananaev, I.V.; Nikolaev, N.S.; Buslaev, Yu.A.
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>	* Zh. Neorg. Khim. <u>1956</u> , l, 274-81. J. Inorg. Chem. USSR (Engl. Transl.) <u>1956</u> , l (2), 88-95
(3) Water; H ₂ O; [7732-18-5]	12ngt. 11anst., <u>1550</u> , t (2,, 66-55
VARIABLES:	PREPARED BY:
T/K = 274 HF/mass% = 2.21-99.98	J. Hála and M. Salomon
EXPERIMENTAL VALUES:	
20 50 50 50 50 50 50 50 50 50 5	System: $2rO_2 + HF + H_2O_273.7 \text{ K}$ 1. von Hevesy and Wagner (ref 1) results 2. Authors' results $i = \frac{1}{2} $
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Excess $2rF_4$ was shaken with aqueous HF for 3 h. in bottles made of fluoro- plast-4. Samples of solutions were taken by means of a Pt pipette. F ⁻ in solutions containing Zr was determined alkalimetrically against phenolphthalein whereby free HF and 3/4 of F bound to Zr were titrated. Total F ⁻ content was determined titrimetrically in such a way that excess alkali and CaCl ₂	<pre>(1) ZrF₄ was prepared from ZrCl₄ or ZrOCl₂·8H₂O and liquid HF. Source and purity of starting materials not specified.</pre>
were added, and alkali excess was ² back-titrated with acid. Zr was determined gravimetrically as ZrO ₂ after removal of F ⁻ with H ₂ SO ₄ . Solid phases were identified by chemical analysis.	ESTIMATED ERROR: Temp: precision ± 0.1 K. Soly: precision ± 1-2 % ZrF ₄ ; precision ± 5 % HF. REFERENCES: 1. von Hevesy, G.; Wagner, O. H.
	Z. Anorg. Allgem. <u>1960</u> , 191, 194.

ſ

COMPONENTS :	ORIGINAL MEASUREMENTS			
<pre>(1) Zirconium(IV) fluoride; ZrF₄; [7783-64-4]</pre>	Nikolaev, N.S.; Buslaev, Yu.A. Gustyakova, M.P.			
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>	*Zh. Neorg. Khim. <u>1962</u> , 7, 1685–92; Russ. J. Inorg. Chem. (Engl. Transl.) 1962, 7, 869–73.			
(3) Water; H ₂ O; [7732-18-5]				
EXPERIMENTAL VALUES				
Composition of Saturated Solutions <u>HF</u> <u>ZrO₂</u> Zr	at 25°C Nature of the Solid F_A^{a} Phase ^b			
	•			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	63 C 50 C 58 C 88 C 87 C 19 C 46 C+D 93 D 26 D 86 D 10 D 94 D 76 D 18 D 55 D 590 D 173 D 0948 D 0406 D 0397 D 0152 D 00936 D			
Continued on the next page				



COMPONENT	S:				ORIGINAL MI	EASUREMENTS:	
	rconium f: 783-64-4]	nium fluoride; ZrF ₄ ; -64-4]		Tarnero	, M.		
(2) Nit [1(trogen ox: 0544-72-6	oxide; N ₂ 0 ₄ ; 2-6]		[Centre	CEA-R 3205, <u>1967</u> , 77 pp. D'etudes Nucleaires enay-aux-Roses, France]		
(3) Hyd) Hydrogen fluoride;HF; [7664-39-3]			64-39-3]	Chem. A	<i>bstr.</i> <u>1969</u> , 70, 23527m.	
VARIABLES	RIABLES: T/K = 295, 333 $m_2/mol = 0 - 14.3 \text{ at } 295 \text{ K}$ 0 - 14.1 at 333 K			295 K 333 K	PREPARED BY	Y: J. Hála	
EXPERIMEN	TAL VALUES:	:					
	Compos	ition o	of Satur	ated Sol	utions.		
	Temper	ature	N204	Zr		ZrF4 ^a	
	t/ C	T/K	mol%	mg		g	
				100 g s	olution	100 g solution	
			·····				
	22	295	0 3.1 7.7 11.5 14.3	נ נ	5 .85 .70 .65 .35	0.0092 0.339 0.312 0.302 0.247	

ATIXTLARY	INFORMATION
NOVITIUUT	INCOMMITON

METHOD/APPARATUS/PROCEDURE: Isothermal method used. The N_2O_4 -HF solutions were prepared in a vacuum line made of monel, Kel-F, and teflon parts. It contained 2 Kel-F burettes connected to reservoirs with freshly distilled solvents. From the burettes the solvents were introduced onto excess $2rF_4$ in a Kel-F dissolution vessel by applying N gas pressure under cooling. The mixtures were then brought to the desired tempera- ture and agitated with a magnetic stirrer in a thermostated glycol bath for 1000-1300 min, although equilib- rium results were obtained after 360 min. After another 360-400 min	 SOURCE AND PURITY OF MATERIALS: (1) ZrF4, purity 99.5%, source not specified. (2) N2O4 was prepared either by dehydration of HNO3 with P2O5 and decomposition of the N2O5 obtained at 260°, or by thermal decomposition of Pb(NO3)2. Occasionally, a 99.5% product of Societé L'Air Liquide was also used. It was distilled over a column of P2O5 to obtain the anhydrous product (white when solid). (3) HF of high purity (Societé Ugine) was distilled before use to yield a product with specific
Isothermal method used. The N2O4-HF	 ZrF4, purity 99.5%, source not specified.
connected to reservoirs with freshly	
	decomposition of Pb(NO ₃)2.
excess ZrF ₄ in a Kel-F dissolution	Occasionally, a 99.5% product of
vessel by applying N gas pressure	
under cooling. The mixtures were	
then brought to the desired tempera-	
ture and agitated with a magnetic	anhydrous product (white when
stirrer in a thermostated glycol bath	solid).
for 1000-1300 min, although equilib-	(3) HF of high purity (Societé Ugine)
rium results were obtained after	was distilled before use to
	yield a product with specific
standing, an aliquot of the saturated	conductivity of (2-9)x10 ⁻³
solution was withdrawn, evaporated to	
dryness and Zr determined gravimetri-	tivity was reported to increase
cally in the residue. (The formula	slightly on storing in Monel
of Zr compound weighed not reported.)	containers.
Solid phases were not investigated.	ESTIMATED ERROR:
borra buases were not fureborgabeat	Error in composition of the solvent:
	15% (the accuracy with which the
	Kel-F burettes could be operated.)
	Temperature and solubility error were
	not reported.

					
COMPONENTS :			ORIGINAL MEASI		
(1) Zirconi [7783-6	um(IV) fluoride; [4-4]	ZrF ₄ ;	Chapman, A.G.		
(2) Nitria	add. UNO		USAEC, Report	E IDO-14442	(1928).
(2) NILFIC [7697-3	acid; HNO ₃ ; 37-2]		Chem. Abstr.	<u>1958</u> , <i>52</i> ,	17904b.
<pre>(3) Water;</pre>	H ₂ O; [7732-18-5]				
EXPERIMENTAL VALUES Solubility at					
	0°c		25°C	40	°c
HNO ₃ b			(IV) fluoride		
$c_2/mo1 dm^{-3}$	g dm ⁻³ c1/mol dm	-3a gdm	$^{-3}c_1/\text{mol dm}^{-3a}$	g dm ⁻³ c ₁	/mol dm ^{-3a}
1	83.95 0.502	132.		200.4	1.20
2 4	50.55 0.302 23.47 0.140	88. 41	47 0.529 ^A 53_ 0.248	142.6 70.4	0.853 0.421
6	12.64 0.0756	25.	27 ^A 0.151	37.9	0.227
8	7.58 ^A 0.0453	17.		20.8	0.124
10 12	5.69 0.0340 2.71 0.0162		67 0.0518 97 0.0297	9.93 6.32 ^B	0.0593 0.0378
16	0.54 0.0032		72 0.0103	2.35	0.0140
	50°C		55°C	60	°C
	$g dm^{-3}c_1/mo1 dm$	-3a g dm	$^{-3}c_1/mol dm^{-3a}$	g dm ⁻³ cl	/mol dm ^{-3a}
1 1	262 ^C 1.57	290	1.73	297	1.78
2	189.5 ^C 1.13	216	1.29	248	1.48
4	110.1 ^B 0.658	110.		108 _B	0.646
6 8	45.1 0.270 23.5 ^B 0.141	47. 23.		26.2	0.157
10	12.64 0.0756			14.4	0.0861
12	6.95 0.0416	8.	12 0.0456	9.45	0.0565
16	3.43 0.0205	3.		3.43	0.0205
	70°C		80°C	_	
	$g dm^{-3} c_1/mol$	dm ^{-3a} gdm	$-3 c_1/\text{mol dm}^{-3}$	3a	
1	294 1.76	291	1.74		
2	243 1.45 111 0.664	239 113	1.43 0.678		
6	53.5 0.319	58.			
8	28.9 0.173	31.	6 0.189		
10	17.1 0.102	18.			
12 16	10.2 0.0610 4.06 0.0243		7 0.0700 78 0.0286		
	culated by compi		,0 0,0200		
			B: ZrF ₄ •H ₂ O	C: ZrOF ₂ .	
			9] [14596-11.	1	ximately)
^b Init	ial HNO ₃ concent	ration.			
Cont	inued on the nex	t page			
}					
]					
1					

HUE-D

Zirconium Halides and Oxyhalides

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Zirconium(IV) fluoride; ZrF_A;</pre>	Tananaev, I.V.; Guzeeva, L.S.
[7783-64-4]	*Zh. Neorg. Khim. 1966, 11,
<pre>(2) Sodium fluoride; NaF; [7681-49-4]</pre>	1096-1102; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1966</u> , 11, 590-3.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 Composition	J. Hála and M. Salomon
EXPERIMENTAL VALUES:	
Composition of Saturated Solutions	at 25°C Nature of the Solid Phase ^b
<u>Sodium Fluoride</u> Zirconium(IV) Fluoride
mass% m2/mol kg ^{-la} mass% mass%	n _l /mol kg ^{-la}
0.104 0.0259 4.29	0.268 A
0.12 0.030 4.00 0.21 0.051 1.56	0.249 A 0.0950 B
	0.0618 B
0.465 0.111 0.054	0.00325 C
0.815 0.196 0.046	0.00277 C
1.18 0.284 0.046 2.36 0.576 0.034	0.00278 C 0.00208 D
1 3 37 0 831 0 016	0.00208 D 0.00099 D
3.85 0.954 0.016 4.04 1.00 0.016	0.00099 D
4.04 1.00 0.016	0.0010 D
a. Calculated by compilers	
AUXILIARY	INFORMATION
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. Overnight mixing was carried out in teflon bottles. The systems were prepared either by mixing ZrF4 and NaF solutions or by dissolving sodium fluorozirconates in NaF solutions. Zr was detd. gravimetrically as ZrO2 after the removal of F ⁻ by evaporation with H ₂ SO4. Na deter- mined gravimetrically as Na ₂ SO4 after the precipitation of Zr hydroxide. Solid phases were identified by Schreinemakers' method and by chemical analysis.	<pre>INFORMATION SOURCE AND FURITY OF MATERIALS: (1) ZrF4 was prepared by reacting ZrOCl2.8H20 with liquid HF and heating the product to 300-400°C. Source and purity of starting materials and of water not spec- ified. (2) NaF reagent grade. ESTIMATED ERROR: Temp: precision ± 0.1 K. Soly: precision ± 1 - 2 % (compiler). REFERENCES:</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Zirconium(IV) fluoride; ZrF₄; [7783-64-4]</pre>	Bamburov, V.G.; Demenev, N.V.; Polyakova, V.M.
<pre>(2) Potassium fluoride; KF; [7789-23-3]</pre>	Izv. Sib. Otd. Akad. Nauk SSSR 1962, (5), 70-5.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES :	PREPARED BY:
T/K = 293 Composition	J. Hála
EXPERIMENTAL VALUES:	
Composition of Saturated Solutions	Solid Phase ^D
Potassium Fluoride Zirconium(I	
	l/mol kg ^{-la}
0.630 0.112 2.600 0.642 0.114 2.250 0.786 0.139 1.565 1.700 0.299 0.306 2.300 0.406 0.262 4.665 0.843 0.100 7.520 1.400 0.065	0.379 A 0.161 A 0.139 B+A 0.0955 B 0.0187 B 0.0161 B+C 0.00628 C 0.00421 C 0.00164 C
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. The solutions were prepared so that water and increasing amounts of KF were added to a constant amount of ZrF_4 · $3H_2O$ while keeping the total weight of the mixture at 100 g. K was determined gravimetrically as K ₂ SO ₄ , F ⁻ determined titrimetrically with Th(NO ₃) ₄ against alizarine sulfonate as indicator, or gravimetrically as CaF ₂ . No method was given for Zr determination. The composition of solid phases was deduced from the solubility isotherm.	 (1) ZrF₄·3H₂O was prepared by dissol- ving ZrO₂ in HF and subsequent evaporation. Source and purity of starting materials and of water not specified. (2) KF, reagent grade, recrystal- lized twice from water. ESTIMATED ERROR: Temp: precision ± 0.1 K. The solubility error is not specified. REFERENCES:

72 Zirconium Halide	s and Oxyhalides			
COMPONENTS:	ORIGINAL MEASUREMENTS:			
<pre>(1) Zirconium(IV) fluoride; ZrF₄; [7783-64-4]</pre>	Tananaev, I.V.; Guzeeva, L.S.			
(2) Rubidium fluoride; RbF; [13446-74-7]	*Zh. Neorg. Khim. <u>1966</u> , <i>ll</i> , 1096-1102; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1966</u> , <i>ll</i> , 590-3.			
(3) Water; H ₂ O; [7732-18-5]				
VARIABLES:	PREPARED BY: J. Hála and M. Salomon			
T/K = 298 Composition	J. Hala and M. Salomon			
EXPERIMENTAL VALUES:				
Composition of Saturated Solutions at 25°C Nature of the				
Rubidium Fluoride Zirconium(I	Solid Phase ^D V) Fluoride			
mass% m ₂ /mol kg ^{-la} mass% m	1/mol kg ^{-la}			
	0.0848 A			
1.8 0.178 1.66	0.0998 A 0.103 A			
3.05 0.310 2.65	0.168 A+B 0.11 B			
4.99 0.512 1.65	0.1006 B			
0.41 0.666 1.52	0.9987 B 0.0934 B			
10.58 1.14 0.58	0.039 В			
	0.064 B 0.102 B+C			
21.9 2.72 1.02	0.0791 C			
25.9 3.37 0.6 29.64 4.05 0.36	0.05 C 0.031 C			
a Calculated by compiler				
b A: RbZrF ₅ ·H ₂ O, [20982-60-9]; B: Rb ₂ ZrF ₆ , [16962-10-0];				
C: Rb ₃ ZrF ₇ , [20449-70-1].				
AUXILIARY	INFORMATION			
ME THOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:			
Isothermal method used. Overnight mixing was carried out in teflon bottles. The systems were prepared either by mixing ZrF_4 and RbF solutions or by dissolving rubidium fluorozirconates in RbF solutions. Zr was detd. gravimetrically as	(1) ZrF ₄ was prepared by reacting ZrOCl ₂ ·8H ₂ O with liquid HF and heating the product to 300-400°C. Source and purity of starting materials and of water not specified.			
ZrO ₂ after the removal of F^- by evaporation with H_2SO_4 . Rb determined gravimetrically as Rb ₂ SO ₄ after the precipitation of	(2)RbF reagent grade.			
Zr [*] hydroxide. Solid phases were identified by Schreinemakers'	ESTIMATED ERROR:			
method and by chemical analysis.	Temp: precision ± 0.1 K. Soly: precision ± 1 - 2 %			
	REFERENCES:			
	l			

	ORIGINAL MEASURE	MENTS:
zrf ₄ ;	Tananaev, I.	V.; Guzeeva, L.S.
	1096-1102;	Khim. <u>1966</u> , <i>ll</i> , Russ. J. Inorg. Chem. msl.) <u>1966</u> , <i>ll</i> , 590-3.
	PREPARED BY:	
	J. Hála and	M. Salomon
Solutions	at 25°C	Nature of the Solid Phase ^b
Zirconium	(IV) Fluoride	
mass% n	a _l /mol kg ^{-la}	
3.68 3.16 3.20 3.50 2.20 0.77 0.52 0.40 0.36 0.30 0.20 0.11 rs 82-59-6] 30-5]	0.232 .200 .206 .230 .144 .0510 .0359 .0290 .0277 .0249 .0210 .0191	A A A+B B B B B B B B B B B B B
AUXILIARY	INFORMATION	
	SOURCE AND PURI	TY OF MATERIALS:
vernight n teflon r ere ZrF4 and ving Cs lutions. d within y suc- etd. ter the on with imet- e preci- Solid Schrein- mical	<pre>(1) ZrF₄ was p ZrOCl₂•8H₂ heating th Source and materials specified. Found: 2 Calcd: Zr (2) CsF prepar bidistille ESTIMATED ERROR Temp: prec</pre>	prepared by reacting 0 with liquid HF and 1 product to 300-400°C. 1 purity of starting and of water not 2 Analysis of ZrF ₄ : 2 54.33, F 45.04 5 54.55, F 45.45 red from Cs ₂ CO ₃ and ed HF.
	Solutions Zirconium mass% 7 3.68 3.16 3.20 3.50 2.20 0.77 0.52 0.40 0.30 0.20 0.11 rs 82-59-6] 30-5] AUXILIARY vernight n teflon r ere ZrF4 and ving Cs lutions. d within y suc- etd. ter the on with imet- e preci- Solid Schrein-	$2rF_4$;Tananaev, I.* $2h.$ Neorg. 1096-1102; (Engl. Trader)PREPARED BY: J. Hála andJ. Hála andSolutions at $25^{\circ}C$ Zirconium(IV) Fluoride mass% $m_1/mol kg^{-1a}$ 3.680.2323.16.2003.20.2063.50.2302.20.1440.77.05100.52.03590.40.02900.36.02770.30.02490.20.02100.11.0191rsSource AND FURT82-59-6]30-5]Source and materials specified. Found: 2AUXILIARY INFORMATIONvernight n teflon r ere ZrF4 and wing Cs lutions. d within y suc- etd. ter the on with imet- e preci- Solid Schrein- micalESTIMATED ERROR Temp: precessolid Soly: precessolid Soly: precessolid

i.

COMPONENTS :	
	ORIGINAL MEASUREMENTS:
<pre>(1) Ammonium pentafluorozirconate(IV); NH₄ZrF₅; [13859-62-6]</pre>	Nıkolaev, N.S.; Buslaev, Yu.A.; Gustyakova, M.P.
(2) Hydrogen fluoride; HF; [7664-39-3]	
(3) Water; H ₂ O; [7732-18-5]	2577-9; Russ. J. Inorg. Chem. (Engl. Transl.) 1965, l0, 1401-2.
VARIABLES:	PREPARED BY:
T/K = 293	J. Hála
$m_2/mol \ kg^{-1} = 0-11.35$	
EXPERIMENTAL VALUES:	
Solubility of NH ₄ ZrF ₅ in aqueous HF	
Hydrogen Fluoride	Ammonium Pentafluorozirconate(IV)
mass % m ₂ /mol kg ^{-la}	mass % m _l /mol kg ^{-la}
0 0 0 100	
0.22 0.123 0.39 0.220	10.95 0.600 11.15 0.643
1.63 0.965	13.92 0.803
2.13 1.30 3.39 2.21	16.23 0.969 20.04 1.275
3.45 2.26	20.27 1.295
4.43 3.03	22.58 1.507
5.55 3.83 6.10 4.25	22.06 1.485 22.14 1.503
8.04 5.68	21.20 1.460
14.70 11.35	20.54 1.545
a Calculated by compiler	
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess solid were shaken for several days. Zr was deter- mined gravimetrically as ZrO_2 after removal of HF with H_2SO_4 . HF determined by potentiometric titration with alkali in the presence of KF (ref 1). The authors do not report on the composition of the solid phases.	(1) NH_4ZrF_5 was prepared from ZrF_4 . $3H_2O$ by heating it with water and a stoichiometric amount of NH_4F . NH_4ZrF_5 crystallized on cooling. Source and purity of chemicals not given except for the Hf con- tent (0.05%) of ZrF_4 . $3H_2O$.
	ESTIMATED ERROR:
	Temp: precision ± 0.1 K. Soly: precision ± 1 % NH ₄ ZrF ₅ ; precision ± 2 % HF.
	REFERENCES :
	l. Nikolaev, N.S.; Buslaev, Yu.A.
	Zh. Neorg. Khim. <u>1959</u> , 4, 543; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1959</u> , 4, 246-9.

COMPONENTS :	ORIGINAL MEASUREMENTS:
 (1) Sodium pentafluorozirconate(IV); NaZrF₅; [13871-10-8] (2) Water; H₂O; [7732-18-5] 	<pre>Tananaev, I.V.; Guzeeva, L.S. *Zh. Neorg. Khim. <u>1966</u>, 11, 1096-1102; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1966</u>, 11, 590-3.</pre>
VARIABLES:	PREPARED BY:
<i>T/</i> K = 298	J. Hála

The solubility at 25°C of $NaZrF_5 \cdot H_2O$ [20982-58-5] was reported as 0.37

mass %.

AUXILIARY INFORMATION

	أخصيا الشميسية والمستريبين والتلبية ويروي والمتحد والمستريبين والمتحد المتحد والمحد والمحد والمحد والمحد والمحد
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess NaZrF ₅ ·H ₂ O were shaken overnight in teflon bottles. Zr was determined gravimetrically as ZrO ₂ after the removal of F ⁻ by evaporation with H ₂ SO ₄ . Na determined gravimetrically as Na ₂ SO ₄ after the precipitation of Zr hydroxide. NaZrF ₅ ·H ₂ O dissolves congruently, and can be recrystallized from water.	(1) NaZrF ₅ ·H ₂ O prepared by equilibrating ZrF ₄ with solutions containing 0.10-0.12 mass % NaF. Under these conditions NaZrF ₅ ·H ₂ O is obtained as the equilibrium solid phase, as follows from the measurement of the ZrF ₄ -NaF- H ₂ O system studied in the same document. ZrF ₄ was prepared by reacting ZroCl ₂ ·8H ₂ O with liquid HF and heating the product to 300-400°C. Source and purity of ZrOCl ₂ ·8H ₂ O and HF not specified; NaF was reagent grade.
	ESTIMATED ERROR:
	Temp: precision ± 0.1 K. Soly: precision ± 1-2 % (compiler)

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Potassium pentafluorozirconate- (IV); KZrF₅; [13782-18-8]</pre>	Bamburov, V.C.; Demenev, N.V.; Polyakova, V.M.	
(2) Water; H ₂ O; [7732-18-5]	Izv. Sib. Otd. Akad. Nauk SSSR <u>1962</u> , (5), 70-5.	
VARIABLES:	PREPARED BY:	
T/K = 293	J. Hála	
-,		
EXPERIMENTAL VALUES:		
The solubility at 20°C of KZrF ₅ is i	reported as 0.94 mass?	
(0.0421 mol kg ^{-la}).		
a Calculated by compiler		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Isothermal method used. Solutions containing excess KZrF ₅ were shaken until equilibrium was reached. K was determined gravimetrically as K ₂ SO ₄ , F ⁻ determined titrimetri- cally with Th(NO ₃) ₄ against alizarine sulfonate as indicator, or gravimetrically as CaF ₂ . No method was mentioned for Zr deter- mination.	(1) KZrF ₅ was prepared by equili- brating $ZrF_4 \cdot 3H_2O$ with solutions containing >0.63 wt% KF. Under these conditions KZrF ₅ is obtained as the equilibrium solid phase, as follows from the study of the ZrF_4-KF-H_2O system carried out in the same document. KF, reagent grade. $ZrF_4 \cdot 3H_2O$ prepared by dis- solving ZrO_2 in HF and subsequent evaporation. Source and purity of starting materials not specified.	
	ESTIMATED ERROR:	
	Temp: precision ± 0.1 K. The solubility error is not specified.	
	REFERENCES :	

COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Potassium pentafluorozirconate(IV KZrF₅; [13782-18-8] (2) Water; H₂0; [7732-18-5] 	<pre>Tananaev, I.V.; Guzeeva, L.S. *Zh. Neorg. Khem. <u>1966</u>, 11, 1096-1102; Russ. J. Inorg. Chem. Engl. Transl.) <u>1966</u>, 11, 590-3.</pre>
VARIABLES: T/K = 298	PREPARED BY: J. Hála

The solubility at 25°C of $\text{KZrF}_5\cdot\text{H}_2\text{O}$ [20982-57-4] was reported as 1.13

mass %.

e

ì

AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess $KZrF_5 \cdot H_2O$ were shaken overnight in teflon bottles. Zr was determined gravimetrically as ZrO ₂ after the removal of F ⁻ with H_2SO_4 . K determined gravimetrically as K_2SO_4 after precipitation of Zr hydroxide. $KZrF_5 \cdot H_2O$ dissolves congruently and can be recrystal- lized from water.	(1) KZrF ₅ ·H ₂ O prepared by equilibra- ting ZrF ₄ with solutions contain- ing such an amount of KF as to yield KZrF ₅ ·H ₂ O as the equili- brium solid phase. ZrF ₄ was prepared by reacting ZrOCl ₂ ·8H ₂ O with liquid HF and heating the product to 300-400°C. Source and purity of ZrOCl ₂ ·8H ₂ O and HF not specified; KF was reagent grade.
	ESTIMATED ERROR:
	Temp: precision ± 0.1 K. Soly: precision ± 1-2 % (compiler)
	REFERENCES :

	e and explanaee	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Potassium pentafluorozirconate(IV) KZrF₅; [13782-18-8]</pre>	Nikolaev, N.S.; Buslaev, Yu.A.; Gustyakova, M.P.	
(2) Hydrogen fluoride; HF; [7664-39-3]		
(3) Water; H ₂ O; [7732-18-5]	2577-9; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1965</u> , l0, 1401-2.	
VARIABLES:	PREPARED BY:	
T/K = 293 $m_2/mol kg^{-1} = 0-21.82$	J. Hála	
EXPERIMENTAL VALUES:	\$	
Solubility of KZrF ₅ in aqueous HF at 20°C		
Hydrogen Fluoride Pot	tassium Pentafluorozirconate(IV) $^{ m b}$	
mass % m ₂ /mol kg ^{-la}	mass % m _l /mol kg ^{-la}	
0 0	2.05 0.093	
1.41 0.758	5.58 .266	
1.50 0.810 2.67 1.49	5.92 .284	
2.67 1.49 3.02 1.71	7.70 .381 8.65 .435	
4.09 2.39	10.37 .538	
5.74 3.51	12.49 .678	
7.67 4.78	12.09 .669	
15.45 10.68	12.21 .749	
25.98 21.82	14.50 1.08	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Isothermal method used. Solutions containing excess solid were shaken for several days. Zr was determined gravimetrically as ZrO ₂ after removal of HF with H ₂ SO ₄ . HF determined by poten- tiometric titration with alkali in the presence of KF (ref 1). The authors do not report on the composition of the solid phases.	(1) KZrF ₅ ·H ₂ O was prepared from ZrF ₄ · 3H ₂ O by heating it with water and a stoichiometric amount of KF. KZrF ₅ ·H ₂ O crystallized on cooling. Source and purity of chemicals not given except for the Hf content (0.05%) of ZrF ₄ ·3H ₂ O.	
	ESTIMATED ERROR: Temp: precision ± 0.1 K. Soly: precision ± 1 % KZrF ₅ . Conc: precision ± 2 % HF. REFERENCES: 1. Nikolaev, N.S.; Buslaev, Yu.A. Zh. Neorg. Khim. <u>1959</u> , 4, 543; Russ. J. Inorg. Chem. (Engl. Transl.) 1959, 4, 246-9.	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Rubidium pentafluorozirconate(IV);	
RbZrF ₅ ; [13782-19-9] (2) Water; H ₂ O; [7732-18-5]	*Zh. Neorg. Khim. <u>1966</u> , ll, 1096-1102; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1966</u> , ll, 590-3.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The solubility at 25°C of RbZrF ₅ ·H ₂ (0 [20982-60-9] is reported as
2.48 mass %.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess $RbZrF_5$ ·H ₂ O were shaken overnight in teflon bottles. Zr was determined gravimetrically as ZrO ₂ after removal of F ⁻ by evaporation with H ₂ SO ₄ . Rb determined gravimetrically as Rb_2SO_4 after the precipitation of Zr hydroxide. $RbZrF_5$ ·H ₂ O dissolves congruently, and can be recrystal- lized from water.	(1) RbZrF ₅ ·H ₂ O prepared by equilibrating ZrF ₄ with solutions containing less than 1.8 mass% RbF. Under these conditions RbZrF ₅ ·H ₂ O is obtained as the equilibrium solid phase, as follows from the measurement of the ZrF ₄ -NaF-H ₂ O system studied in the same document. ZrF ₄ was prepared by reacting ZrOCl ₂ ·8H ₂ O with liquid HF and heating the product to 300-400°C. Source and purity of ZrOCl ₂ ·8H ₂ O and HF not specified, RbF was reagent grade.
	ESTIMATED ERROR:
	Temp: precision ± 0.1 K. Soly: precision ± 1-2 % (compiler).

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Cesium pentafluorozirconate(IV); CsZrF₅; [13782-20-2]</pre>	Tananaev, I.V.; Guzeeva, L.S.
(2) Water; H ₂ O; [7732-18-5]	*Zh. Neorg. Khim. <u>1966</u> , ll, 1096-1102; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1966</u> ; ll, 590-3.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The solubility at 25°C of CsZrF ₅ ·H ₂	0 [20982-59-6] is reported as 3.58
mass %.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess CsZrF ₅ ·H ₂ O were shaken overnight in teflon bottles. Zr was determined gravimetrically as ZrO ₂ after removal of F ⁻ by evaporation with H ₂ SO ₄ . Cs deter- mined gravimetrically as Cs ₂ SO ₄ after the precipitation of Zr hydroxide. CsZrF ₅ ·H ₂ O dissolves congruently, and Can be recrys- tallized from water.	(1) CsZrF ₅ ·H ₂ O prepared by equilib- rating ZrF ₄ with solutions con- taining less than 2.50 mass % CsF. Under these conditions CsZrF ₅ · H ₂ O is obtained as the equilibrium solid phase, as follows from the measurement of the ZrF ₄ -CsF- H ₂ O system studied in the same document. ZrF ₄ was prepared by reacting ZrOCl ₂ ·8H ₂ O with liquid HF and heating the product to 300-400°C. Source and purity of ZrOCl ₂ ·8H ₂ O and HF not speci- fied, CsF was prepared from Cs ₂ CO ₃ and twice distilled HF.
	ESTIMATED ERROR:
	Temp: precision ± 0.1 K. Soly: precision ± 1-2 % (compiler).

s and Oxynalides 8
ORIGINAL MEASUREMENTS:
 von Hevesy, G.; Christiansen, J.A.; Berglund, V. <i>Anorg. Allg. Chem.</i> <u>1925</u>, 144, 69-74. von Hevesy, G. <i>MatFys. MeddK. Dan. Vidensk</i> Selsk. <u>1925</u>, 6, 1-149.
PREPARED BY:
J. Hála
<u> </u>
xafluorozirconate(IV)
p/g cm ⁻³
_ 1.154 _
INFORMATION
SOURCE AND PURITY OF MATERIALS:
(1) (NH ₄) ₂ ZrF ₆ was prepared by dis- solution of ZrO ₂ in concentrated HF, and by adding a stoichio- metric amount of NH ₄ F. Source and purity of chemicals not specified.
ESTIMATED ERROR:
Temp: precision \pm 0.01 K (T ² 293). precision \pm 0.1 K (T ² 293). Soly: precision \pm 1-2 % (compiler).
REFERENCES:

.

	•	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Ammonium hexafluorozirconate(IV) (NH₄)₂ZrF₆; [16919-31-6]</pre>); Nikolaev, N.S.; Buslaev, Yu.A.; Gustyakova, M.P.	
(2) Hydrogen fluoride; HF; [7664-39-	-3] *Zh. Neorg. Khim. <u>1965</u> , 10, 2577-9; Russ. J. Inorg. Chem.	
(3) Water; H ₂ O; [7732-18-5]	(Engl. Transl.) <u>1965</u> , 10, 1401-2.	
VARIABLES:	PREPARED BY:	
T/K = 293 $m_2/mol kg^{-1} = 0-25.82$	J. Hála	
EXPERIMENTAL VALUES:		
Composition of Saturated Solutions, $t/^{\circ}C = 20$		
Hydrogen Fluoride	Ammonium Hexafluorozirconate(IV)	
mass % m ₂ /mol kg ^{-la}	mass % m1/mol kg ^{-la}	
0 0	23.71 1.277	
5.85 3.92 20.30 16.67	19.48 1.072 18.84 1.272	
27.56 25.82	19.09 1.471	
AUXILIARY INFORMATION		
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
Isothermal method used. Solutions containing excess solid were shaked for several days. Zr was deter- mined gravimetrically as ZrO_2 after removal of HF with H_2SO_4 . Hi determined by potentiometric titration with alkali in the presence of KF (ref 1). The authors do not report on the com- position of the solid phases.	n $2rF_4^4 \cdot 3H_2O$ by heating it with water and a stoichiometric amount of NH ₄ F. (NH ₄) ₂ ZrF ₆ crystallized	
	ESTIMATED ERROR:	
	Temp: precision \pm 0.1 K. Soly: precision \pm 1 % (NH ₄) $_2$ ^{ZrF} ₆ . Conc: precision \pm 2 % HF.	
	REFERENCES:	
	<pre>1. Nikolaev, N.S.; Buslaev, Yu.A. Zh. Neorg. Khim. 1959, 4, 543; Russ. J. Inorg. Chem. (Engl. Transl.) 1959, 4 246-9.</pre>	

COMPONENTS :	ORIGINAL MEASUREMENTS:
 (1) Sodium hexafluorozirconate(IV); Na₂ZrF₆; [16925-26-1] (2) Water; H₂O; [7732-18-5] 	<pre>Tananaev, I.V.; Guzeeva, L.S. *Zh. Neorg. Khim. <u>1966</u>, 11, 1096-1102; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1966</u>, 11, 590-3.</pre>
VARIABLES: T/K = 298	PREPARED BY: J. Hála

4

L

The solubility at 25°C of ${\rm Na}_2{\rm ZrF}_6$ is reported as 0.58 g/100 g water (0.0231 mol kg^-1a)

a. Calculated by compiler

.

AUXILIARY INFORMATION

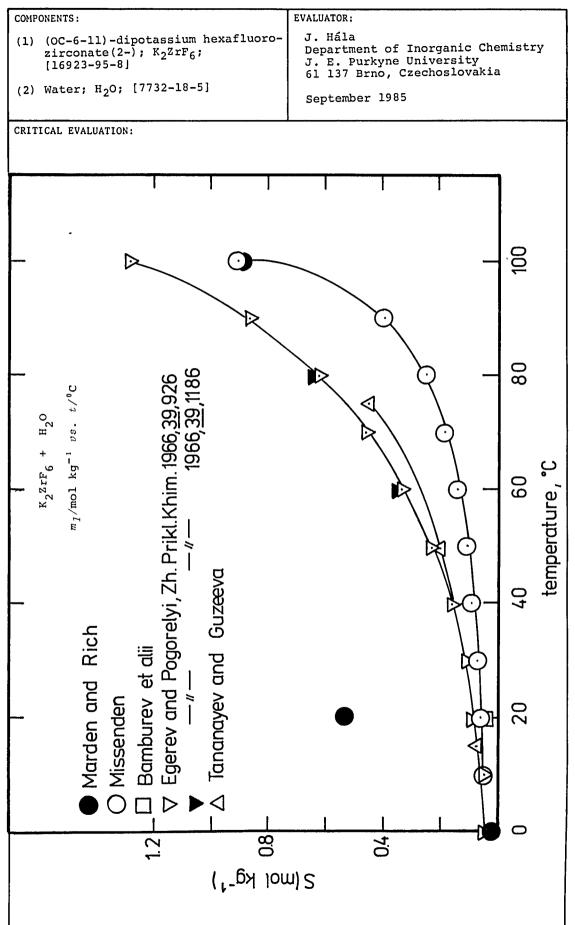
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess Na ₂ ZrF ₆ were shaken overnight in teflon bottles. Zr was determined gravimetrically as ZrO ₂ after removal of F ⁻ by evaporation with H ₂ SO ₄ . Na deter- mined gravimetrically as Na ₂ SO ₄ after the precipitation of Zr hydroxide. Na ₂ ZrF ₆ dissolves congruently, and can be recrystal- lized from water.	(1) Na ₂ ZrF ₆ was prepared by equilibrating ZrF ₄ with solutions containing 0.21-0.32 mass % NaF. Under these conditions Na ₂ ZrF ₆ is obtained as the equilibrium solid phase, as follows from the measurement of the ZrF ₄ -NaF-H ₂ O system studied in the same document. ZrF ₄ was prepared by reacting ZrOCl ₂ ·8H ₂ O with liquid HF and heating the product to 300-400°C. Source and purity of ZrOCl ₂ ·8H ₂ O and HF not specified; NaF was reagent grade.
	ESTIMATED ERROR: Temp: precision ± 0.1 K. Soly: precision ± 1-2 % (compiler).

Zirconium Halides and Oxyhalides

COMPONENTS:	EVALUATOR:
 (OC-6-11)-Dipotassium hexafluoro- zirconate(2-); K2^{ZrF}6; [16923-95-8] Water; H20; [7732-18-5] 	J. Hála Department of Inorganic Chemistry J. E. Purkyne University 6l 137 Brno, Czechoslovakia
	September 1985
CRITICAL EVALUATION:	

An evaluation of the solubility of $K_2 ZrF_6$ in water.

Seven literature sources of the solubility of K₂ZrF₆ in H₂O are


available (ref 1 - 7). Of these the results of six are compared in Figure 1. The data of Egerev and Pogorelyi (ref 5, 6) and Missenden (ref 2) present the solubilities over wide temperature ranges. At 10 °C the two data sets agree exactly, but at the higher temperatures they differ considerably,the data of Egerev and Pogorelyi (ref 5) being much higher. Egerev and Pogorelyi (ref 5) state that insufficiently pure $K_2 ZrF_6$ was used in the older studies (ref 1, 2). This statement should be taken as only an assumption since Missenden (ref 2) reported on neither the analytical method nor the purity of the $K_2 ZrF_6$ used. It is possible that the preparations of $K_2 ZrF_6$ used in these studies may have been contaminated with some isomorphous hafnium salt.

At 0 $^{\circ}$ C (273.15 K) the two available experimental values (ref 1, 5) agree within 10 %. At 10 $^{\circ}$ C (283.15 K) the values from papers (ref 2, 5) agree exactly at a value of 0.043 mol kg⁻¹. The value of Marden (ref 1) for 20 $^{\circ}$ C is obviously in error. Egerev and Pogorelyi report two sets of data (ref 5, 6). The later data (ref 6) are consistently 2.5 - 4.2 % higher than the data reported only a couple of month earlier (ref 5). Only two of the values from ref 6 are shown in the figure. The single value of Schmitt *et al.* (ref 3) at 25 $^{\circ}$ C (298.15 K) (0.0812 mol dm⁻³) appears to fit the overall pattern well, but it cannot be compared directly because it is in a different unit than the other data. Tananaev and Guzeeva (ref 7) carried out a detailed study of the $2rF_4$ + KF + H₂O system. They report solubility values of K₂ZrF₆ under conditions that K₂ZrF₆ is the equilibrium solid that follow closely the values reported by Egerev and Pogorelyi (ref 5, 6).

Tentative values: Due to the lack of agreement in the published data, the evaluator cannot recommend any data. For tentative values, the evaluator suggests the data of Egerev and Pogorelyi (ref 5) be used (see the compilation for numerical values).

REFERENCES:

- 1. Marden, J. W. J. Ind. Eng. Chem. <u>1920</u>, 12, 651.
- 2. Missenden, J. Chem. News <u>1922</u>, 124, 326.
- Schmitt, R. H.; Grove, E. L.; Brown, R. D. J. Am. Chem. Soc. <u>1960</u>, 82, 5292.
- Bamburov, V. G.; Demenev, N. V.; Polyakova, V. M. Izv. Sibirsk. Otdel. Akad. Nauk SSSR <u>1962</u>, No. 5, 70.
- 5. Egerev, O. I.; Pogorelyi, A. D. Zh. Prikl. Khim. <u>1966</u>, 39, 926.
- Egerev, O. I.; Pogorelyi, A. D. *Zh. Prikl. Khim.* <u>1966</u>, 39, 1186.
- 7. Tananaev, I. V.; Guzeeva, L. S. Zh. Neorg. Khim. <u>1966</u>, 11, 1096.

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Potassium hexafluorozirconate(IV K₂ZrF₆; [16923-95-8]</pre>	
(2) Water; H ₂ O; [7732-18-5]	651-6.
VARIABLES:	BERIND BU.
T/K = 273 - 373	PREPARED BY: J. Hála
EXPERIMENTAL VALUES:	
Composition of Saturated Solutions	
t/°CPotas	sium Hexafluorozirconate(IV)
g/100 g water	m _l /mol kg ^{-la}
0 0.78	0.0275
20 15.0 100 25.0	0.529 0.882
100 23.0	0.002
a Calculated by compiler	
AUXILIARY	INFORMATION
ME THOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Isothermal method used but no	(1)K ₂ ZrF ₆ was prepared by dissolution
details were given. Methods of analysis and equilibrium solid	of ZrO, (98% purity) in HF and neutralizing the solution with
phases were not reported.	K ₂ CO ₂ (C.P.) until a slight
	excess of acid remained. Pb vessels were used. After cooling,
	K ₂ ZrF ₆ crystals were seperated
	and $3\tilde{x}$ recrystallized from water. Purity of $K_2 ZrF_6$ was estimated
	to be greater than 99.99%. Source and purity of water and HF not
	and purity of water and HF not specified. ESTIMATED ERROR:
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Potassium hexafluorozirconate(IV); K₂ZrF₆; [16923-95-8]</pre>	Missenden, J.
(2) Water; H ₂ O; [7732-18-5]	Chem. News J. Ind. Sci. <u>1922</u> , 124, 326-7.
VARIABLES:	PREPARED BY:
T/K = 283 - 373	J. Hála
EXPERIMENTAL VALUES:	
Composition of Saturated Solutions	
Potassium Hexaflu	prozirconate(IV)
t/°C g/100 g water	m _l /mol kg ^{-la}
10 1.22	0.0430
20 1.55	0.0547
30 1.92 40 2.37	0.0677 0.0836
50 2.94	0.104
	0.134
70 5.06 80 6.90	0.179 0.243
90 11.11 100 25.53	0.392 0.901
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Apparently isothermal method was used but no details were given. Methods of analysis and equilib- rium solid phases not reported.	(1) Although two methods for the preparation of K ₂ ZrF ₆ were mentioned, i.e. dissolution of ZrF ₄ ·3H ₂ O in KF solution, and fusion of zircon (ZrSiO ₄) with KHF ₂ , it was not specified which one was used for the solubility measurements.
	ESTIMATED ERROR:
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) (OC-6-11)-Dipotassium hexafluoro- zirconate(2-); K₂ZrF₆; [16923-95-8]</pre>	
(2) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The solubility of $K_2 ZrF_6$ a	
$c_1/\text{mol dm}^{-3} = 0.0812$. The	value is the average of
four measurements, but nei	ther the individual values
or standard deviation are	reported.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	· · ·
TETROD/ALTARATUS/FROCEDORE:	SOURCE AND PURITY OF MATERIALS:(continued)
Isothermal method. Two saturated	The H ₂ ZrF ₆ solution was prepared by dissolving ZrO ₂ (source not
solutions of K ₂ ZrF ₆ were prepared at 40 °C and another two were prepared	specified) in excess HF. The ZrO ₂
at 20 °C. All solutions were brought	was not purified since its chief
to equilibrium at 25 °C with constant stirring. After attaining equilibrium	
known volumes of the saturated solu- tions were evaporated to dryness at	Spectrographic analysis of the
70 °C, weighed, kept over P ₂ O ₅ for	K ₂ ZrF ₆ showed only minor traces of impurities. The Hf content
several days and reweighed. All work was carried out in polyethylene	was not reported.
ware.	(2) Deionized water was used.
	(2) Delonized water was used.
SOURCE AND PURITY OF MATERIALS:	
(1) $K_2^{ZrF_6}$ was prepared by adding a	
concentrated solution of reagent	ESTIMATED ERROR:
grade KCl to a solution of $H_2^{ZrF}_6$	• Temp: accuracy ± 0.005 K.
The salt was filtered, washed, and recrytallized several times.	The solubility error is not specified.
Either Pt or polyethylene con-	sheettee.
tainers and deionized water were used in all steps.	

ł

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Potassium hexafluorozirconate(IV) K₂ZrF₆; [16923-95-8]</pre>	Bamburov, V.G.; Demenev, N.V.; Polyakova, V.M.
(2) Water; H ₂ 0; [7732-18-5]	Izv. Sib. Otd. Akad. Nauk SSSR <u>1962</u> , 5, 70-5.
VARIABLES:	DEDADYD DV.
T/K = 293	PREPARED BY: J. Hála
EXPERIMENTAL VALUES:	
The solubility at 20°C of K ₂ ZrF ₆ is a	reported as 1.48 mass %
(0.0530 mol kg ^{-la}).	
a Calculated by compiler	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess $K_2 ZrF_6$ were shaken until equilibrium was reached. K was determined grav- imetrically as K_2SO_4 , F ⁻ determined titrimetrically with Th(NO ₃) ₄ against alizarine sulfonate as indicator, or gravimetrically as CaF ₂ . No method was mentioned for Zr determination.	(1) K_2ZrF_6 was prepared by equilib- rating $ZrF_4 \cdot 3H_20$ with solutions containing 0.78-1.7 mass % KF. Under these conditions K_2ZrF_6 is obtained as the equilibrium solid phase, as follows from the study of the ZrF_4 -KF-H ₂ O system carried out in the same document. KF, reagent grade. $ZrF_4 \cdot 3H_2O$ prepared by dissolving ZrO_2 in HF and sub- sequent evaporation. Source and purity of materials not specified.
	ESTIMATED ERROR:
	Temp: precision ± 0.1 K. The solubility error is not specified.
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
 (1) Potassium hexafluorozirconate(IV); K₂ZrF₆; [16923-95-8] (2) Water; H₂O; [7732-18-5] 	Egerev, O.I.; Pogorelyi, A.D. *Zh. Prikl. Khim. (Leningrad) <u>1966</u> , 39, 926-8; J. Appl. Chem. <u>USSR</u> (Engl. Transl.) <u>1966</u> , 39, 866-7.
VARIABLES:	PREPARED BY:
T/K = 273 - 373	J. Hála
EXPERIMENTAL VALUES:	
Composition of Saturated Solutions	
Potassium	Hexafluorozirconate(IV)
<i>T/K</i> g/100 g H ₂ O	ml/mol kg ⁻¹
273.16 0.936 283.16 1.219 293.16 1.822 303.16 2.776 313.16 4.222 323.16 6.349 333.16 9.336 343.16 12.853 353.16 17.404 363.16 24.42 373.16 36.2 Least squares treatment of the data for the	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Each measurement was repeated 2-6 times. Samples of saturated solutions were taken by means of a pipette heated to the corresponding temperature. The samples were weighed, evapor- ated, and the residue dried at 105°C and weighed. The authors do not report on the equilibrium solid phases.	(1) K ₂ ZrF ₆ was prepared from Zr metal obtained by thermal decom- position of ZrI ₄ . Zr contained less than 0.1% Hf and 10 ⁻² % Si, Fe, Al, and Ti. Source and purity of other chemicals not specified.
	ESTIMATED ERROR: Temp: precision ± 0.1 K. The arithmetic mean solubility varied from 0.07 to 2.35% depending on the number of determinations. REFERENCES:

ł

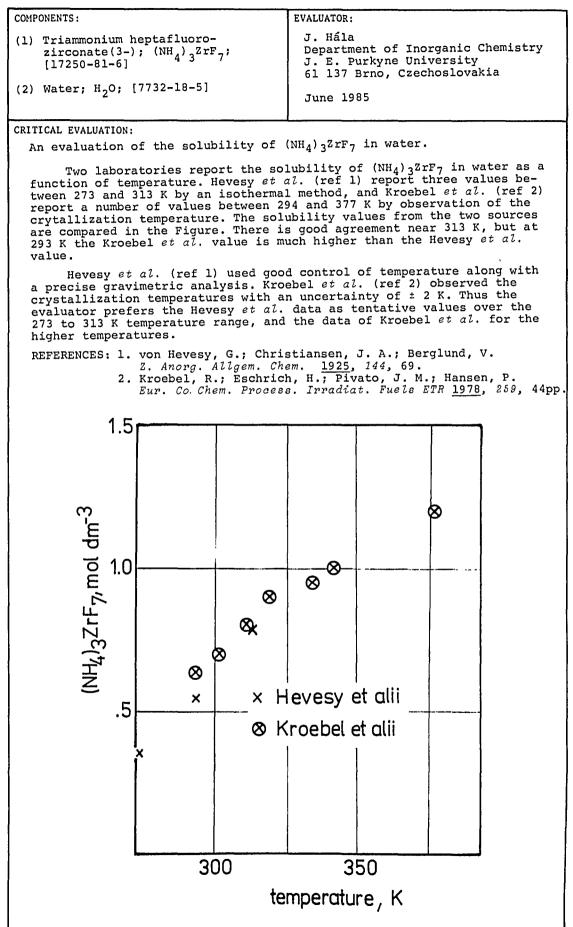
1

		······································	ORIGIN	AL MEASUREMENTS:
(1) (OC-6-11)-Di fluorozircon [16923-95-8]	ate(2-); K,		-	rev, O. I.; Pogorelyi, A. D. Prikl. Khim. <u>1966</u> , 39, 1186-7.
(2) Water; H ₂ O;	[7732-18-5]			Appl. Chem. USSR (Engl.Transl.) <u>6</u> , 39, 1110-1.
VARIABLES:			PREPAR	RED BY:
T/K = 2	93 - 353			J. Hála
EXPERIMENTAL VALUES:	<u></u>		L	
	Composition	of satura	ted so	olutions.
	Temperature	2	K2	ZrF ₆
	t/°CK	g/100 g	н ₂ 0	$m_1/mol kg^{-1a}$
	20 ^b 293 40 313 60 333 80 353	9.66	39 20	0.0660 0.154 0.341 0.641
a	Calculated	by compile	r	
	other measu	rements su this tempe	ch as ratur	ork (ref 1) and also separation factors e are reported for
<u></u>		AUXILIARY	INFORM	LATION
METHOD/APPARATUS/PRO	CEDURE .			E AND PURITY OF MATERIALS:
Nothing is speci the same method previous work (r After isothermal not specified) o water, samples o were withdrawn u heated to the co ture, evaporated was dried at 105	fied but pr as in the a ef 1) was u equilibrat of excess K2 of saturated sing a pipe prresponding 1, and the r	uthors' sed. ion (time 2rF ₆ with solutions tte pre- tempera- esidue	(1) H	Presumably, as in the authors' previous work, K2ZrF6 was pre- pared from Zr metal obtained by thermal decomposition of ZrI4. It contained 0.1% Hf and 10-*% Si, Fe, Al, and Ti.
			ESTIM	ATED ERROR:
			REFER 1. Eq	ENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Potassium hexafluorozirconate(IV); K₂ZrF₆; [16923-95-8]</pre>	
(2) Water; H ₂ O; [7732-18-5]	*Zh. Neorg. Khim. <u>1966</u> , 11, 1096-1102; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1966</u> , 11, 590-3.
VARIABLES:	PREPARED BY:
T/K = 298-348	J. Hála
EXPERIMENTAL VALUES:	
Composition of Saturated Solutions	
Potassium He	exafluorozirconate(IV)
t/°C g/100 g water	m _l /mol kg ^{-la}
25 2.16 50 5.85 75 12.60	0.0762 0.206 0.445
a Calculated by compiler	
	INFORMATION
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Solutions containing excess K ₂ ZrF ₆ were shaken overnight in teflon bottles. Zr was determined gravimetrically as ZrO ₂ after removal of F ⁻ by evaporation with H ₂ SO ₄ . K deter- mined gravimetrically as K ₂ SO ₄ after the precipitation of Zr hydroxide. K ₂ ZrF ₆ dissolved congruently, and could be recrys- tallized from water.	 SOURCE AND PURITY OF MATERIALS: (1) K₂ZrF₆ was prepared by equilibrating ZrF₄ with solutions containing such an amount of KF as to yield K₂ZrF₆ as the equilibrium solid phase. ZrF₄ was prepared by reacting ZrOCI₂. 8H₂O with liquid HF and heating the product to 300-400°C. Source and purity of ZrOCI₂.*8H₂O and HF not specified; KF was reagent grade.
	ESTIMATED ERROR: Temp: precision ± 0.1 K. Soly: precision ± 1-2 % (compiler).
	REFERENCES :

COMPONENTS :	OPICINAL MEASUREMENTS.
COMPONENTS:	ORIGINAL MEASUREMENTS: 1. von Hevesy, G.; Christiansen, J.A.;
<pre>(1) Potassium hexafluorozirconate(IV); K₂ZrF₆; [16923-95-8]</pre>	Berglund, V. Z. Anorg. Allg. Chem. <u>1925</u> , 144, 69-74.
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>	2. von Hevesy. G. MatFys. MeddK. Dan. Vidensk.
(3) Water; H ₂ O; [7732-18-5]	Selsk. <u>1925</u> , 6, 1-149.
VARIABLES:	PREPARED BY:
T/K = 293 $c_2/mol \ dm^{-3} = 0.125-5.89$	J. Hála
EXPERIMENTAL VALUES:	
Solubility of K ₂ ^{ZrF} 6 in aqueous H	F at 20°C
Hydrogen Fluoride Potassiu	ım Hexafluorozirconate(IV)
$c_2/mol dm^{-3}$	$c_1/mol dm^{-3}$.
0.125 5.89	0.0655 0.1297
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess solid were shaken in ebonite bottles for several hours. Zr was determined gravimetrically as ZrO ₂ but no details were reported. The authors do not report on the composition of solid phases.	Nothing specified.
	ESTIMATED ERROR: Temp: precision ± 0.01 K. The solubility error is not specified. REFERENCES:

<pre>(1) Potassium hexafluorozirconate(IV); K₂ZrF₆; [16923-95-8]</pre>	ORIGINAL MEASUR	CREWIS.
26, (Nikolaev, N Gustyakova	.S.; Buslaev, Yu.A.; a, M.P.
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>	Russ. J. 1	Khim. <u>1965</u> , 10, 2577-9; Inorg. Chem. (Engl. 1965, 10, 1401-2.
(3) Water; H ₂ O; [7732-18-5]	11 ^u not.,	<u>1905</u> , 20, 1401-2.
VARIABLES:	PREPARED BY:	
T/K = 293 $m_2/mol kg^{-1} = 0.0868-31.24$	J. Hála	
EXPERIMENTAL VALUES:	_	
Solubility of K ₂ ZrF ₆ in aqueous HF a	t 20°C	
Hydrogen Fluoride Po	tassium Hexa	fluorozirconate(IV)
mass % m ₂ /mol kg ^{-la}	mass %	m _l /mol kg ^{-la}
$\begin{array}{cccccc} 0.17 & 0.0868 \\ 3.85 & 2.05 \\ 8.41 & 4.75 \\ 11.84 & 7.03 \\ 15.65 & 9.96 \\ 25.96 & 19.74 \\ 33.87 & 31.24 \end{array}$	1.91 2.39 3.06 4.02 5.77 8.35 11.94	0.0688 .0899 .122 .169 .259 .448 .777
	INFORMATION	
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. Solutions containing excess solid were shaken for several days. Zr was determined gravimetrically as ZrO ₂ after removal of HF with H ₂ SO ₄ . HF determined by potentiometric titration with alkali in the presence of KF (ref 1). The authors do not report on the composition of the solid phases.	SOURCE AND PURN (1) $K_2 2rF_6 W$ $3H_2 0 by J$ and a st of KF. cooling. of chemi	Try OF MATERIALS: as prepared from $2rF_4$. heating it with water oichiometric amount $K_2 2rF_6$ crystallized on Source and purity cals not given except Hf content (0.05%) $3H_2O$.



COMPONENTS: (1) (OC-6-11)-Dirubidium hexafluoro- zirconate(2-); Rb ₂ ^{ZrF} ₆ ; [16962-10-0]	<pre>ORIGINAL MEASUREMENTS: Schmitt, R. H.; Grove, E. L.; Brown, R. D. J. Am. Chem. Soc. 1960, 82, 5292-5.</pre>
(2) Water; H ₂ O; [7732-18-5]	<u> </u>
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The solubility of Rb2 ^{ZrF} 6	at 25°C is reported to
be $c_1/mol dm^{-3} = 0.0848$.	The value is the average
of four measurements, but	
values or standard deviati	on are reported.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Isothermal method. Two saturated solutions of Rb_2ZrF_6 were prepared at 40°C and another two were prepared at 20°C. All solutions were brought to equilibrium at 25°C with constant stirring. After attaining equilib- rium known volumes of the saturated solutions were evaporated to dryness at 70°C, weighed, kept over P ₂ O ₅ for several days and reweighed. All work was carried out in polyethylene ware.	<pre>removed by the recrystallization of the Rb2ZrF6. Spectrographic analysis of the Rb2ZrF6 showed only minor traces of impurities. The Hf content was not reported. (2) Deionized water was used.</pre>
SOURCE AND PURITY OF MATERIALS:	ESTIMATED ERROR: Temp: accuracy ± 0.005
(1) Rb_2ZrF_6 was prepared by adding concentrated solution of RbF to a solution of H_2ZrF_6 . The salt was filtered, washed, and re-	<pre>K. (NBS calibration). The solubility error is not specified.</pre>
crystallized several times. Either Pt or polyethylene con- tainers and deionized water were used in all steps. The $H_2 ZrF_6$ solution was pre- pared by dissolving ZrO_2 (source not specified) in excess HF.	REFERENCES :
1	4

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Rubidium hexafluorozirconate(IV);</pre>	<pre>Tananaev, I.V.; Guzeeva, L.S. *Zh. Neorg. Khim. 1966, ll, 1096-1102; Russ. J. Inorg. Chem. (Engl. Transl.) 1966, ll, 590-3.</pre>
VARIABLES:	PREPARED BY:
T/K = 298 - 348	J. Hála
EXPERIMENTAL VALUES:	
Composition of Saturated Solutions	
Rubidiu	m Hexafluorozirconate(IV)
<i>t/</i> °C g/100 g wate	r m _l /mol kg ^{-la}
	-
25 4.16 50 9.92	0.111 0.264
75 18.16	0.483
^a Calculated by compiler	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess Rb ₂ ZrF ₆ were shaken overnight in teflon bottles. Zr was determined gravimetrically as ZrO ₂ after removal of F ⁻ by evaporation with H ₂ SO ₄ . Rb deter- mined gravimetrically as RbSO ₄ after the precipitation of Zr hydroxide. Rb ₂ ZrF ₆ dissolves congruently, and can be recrys- tallized from water.	<pre>(1) Rb₂ZrF₆ was prepared by equilib- rating ZrF₄ with solutions con- taining 3.54-12.65 mass % RbF. Under these conditions Rb₂ZrF₆ is obtained as the equilibrium solid phase, as follows from the measurement of the ZrF₄-RbF-H₂O system studied in the same doc- ument. ZrF₄ was prepared by reacting ZrOCl₂.8H₂O with liquid HF and heating the product to 300-400°C. Source and purity of ZrOCl₂.8H₂O and HF not specified; RbF was reagent grade.</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Cesium hexafluorozirconate; Cs₂^{ZrF}₆; [16919-30-5]</pre>	Schmitt, R. H.; Grove, E. L.; Brown, R. D.	
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1960</u> , 82, 5292-5.	
VARIABLES:	PREPARED BY:	
T/K = 298	J. Hála	
EXPERIMENTAL VALUES:		
The solubility of Cs ZrF	at 25°C is reported to be	
_ ~		
$c_1 / \text{mol dm}^{-3} = 0.112$. The		
four measurements, but ne	ither the individual values	
or standard deviation are	reported.	
	INFORMATION	
	SOURCE AND PURITY OF MATERIALS:	
METHOD/APPARATUS/PROCEDURE: Isothermal method. Two saturated	The H_2ZrF_6 solution was prepared	
solutions of $Cs_2 ZrF_6$ were prepared at $40^{\circ}C$ and another two were prepared at	by dissolving ZrO ₂ (source not	
20°C. All solutions were brought to equilibrium at 25°C with constant	ZrO ₂ was not purified since its	
stirring. After attaining equilib-	chief impurity, Hf, was removed by the recrystallization of the	
rium, known volumes of the saturated solutions were evaporated to dryness	Cs ₂ ZrF ₆ .	
at 70°C, weighed, kept over P ₂ O ₅ for several days and reweighed. All work	Spectrographic analysis of the Cs ₂ ZrF ₆ showed only minor traces	
was carried out in polyethylene ware.		
SOURCE AND PURITY OF MATERIALS:	(2) Deionized water was used.	
(1) Cs ₂ ZrF ₆ was prepared by adding concentrated solution of an un- specified Cs halide to a solution of H ₂ ZrF ₆ .		
The salt was filtered, washed, and recrystallized several times.	ESTIMATED ERROR:	
Either Pt or polyethylene con-	Temp: accuracy ± 0.005 K. (NBS calibration).	
tainers and deionized water were used in all steps.	The solubility error is not	
	specified.	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Cesium hexafluorozirconate(IV); Cs₂ZrF₆; [16919-30-5]</pre>	Tananaev, I.V.; Guzeeva, L.S.
(2) Water; H ₂ O; [7732-18-5]	*2h. Neorg. Khim. <u>1966</u> , <i>ll</i> , 1096-1102; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1966</u> , <i>ll</i> , 590-3.
VARIABLES:	PREPARED BY:
T/K = 298-348	J. Hála
EXPERIMENTAL VALUES:	
Composition of Saturated Solutions	
Cesium	Hexafluorozirconate(IV)
t/°C g/100 g water	m _l /mol kg ^{-la}
25 6.45	0.137
50 14.38 75 25.60	0.305 0.542
a Calculated by compiler	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions	(1)Cs ₂ ZrF ₆ was prepared by equilib- rating ZrF ₄ with solutions con-
containing excess Cs ₂ ZrF ₆ were shaken overnight in teflon bottles.	rating ZrF ₄ with solutions con- taining more than 5.30 mass % CsF.
Zr was determined gravimetrically	Under these conditions Cs ₂ ZrF ₆
as $2rO_2$ after removal of F ⁻ by evaporation with H_2SO_4 . Cs deter-	is obtained as the equilibrium solid phase, as follows from the
mined gravimetrically as Cs ₂ SO ₄ after the precipitation of Zr	measurement of the $2rF_4$ -CsF-H ₂ O system studied in the same doc-
hydroxide. Cs ₂ ZrF ₆ dissolves	ument. ZrF ₄ was prepared by
congruently, and can be recrys- tallized from water.	reacting ZrOCl ₂ ·8H ₂ O with liquid HF and heating the product to
	300-400°C. Source and purity of ZrOCl ₂ ·8H ₂ O and HF not specified,
	CsF prepared from Cs ₂ CO ₃ and
	twice distilled HF.
	ESTIMATED ERROR:
	Temp: precision ± 0.1 K.
	Soly: precision ± 1-2 % (compiler).

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Ammonium heptafluorozirconate(IV);</pre>	Berglund, V. Z. Anorg. Allg. Chem. <u>1925</u> , 144, 69-74. 2. von Hevesy, G. MatFys. MeddK. Dan. Vidensk. Selsk. <u>1925</u> , 6, 1-149.
VARIABLES:	PREPARED BY:
T/K = 273 - 313	J. Hála
EXPERIMENTAL VALUES:	
Composition of Saturated Solutions	
Ammonium H	eptafluorozirconate(IV)
$t/^{\circ}C$ $c_1/\text{mol dm}^{-3}$	$\rho/g \text{ cm}^{-3}$
↓	py s cm
0 0.360 20 0.551	1.086
40 0.788	-
, ,	
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess solid were shaken in ebonite bottles for several hours. Zr was determined grav- imetrically as ZrO_2 after evapor- ation with H_2SO_4 and ignition of the residue of an aliquot from the saturated solution. The authors do not report on the composition of the solid phases.	<pre>(1) (NH₄)₃ZrF₇ was prepared by dis- solution of ZrO₂ in concentrated HF, and by adding an excess of NH₄F. Source and purity of chemicals not specified.</pre>
	ESTIMATED ERROR: Temp: precision ± 0.01 (T=273,293K). precision ± 0.1 (T= 313 K). Soly: precision ± 1-2 % (compiler).
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Ammonium heptafluorozirconate(IV);</pre>	<pre>Kroebel, R.; Eschrich, R.; Pivato, J.M.; Hansen, P.</pre>
(2) Water; H ₂ O; [7732-18-5]	Eur. Co Chem. Process. Irradiat. Fuels [Eurochemic Tech. Rep.] ETR <u>1978</u> , ETR 259, 44 pp; Chem. Abstr. 1979, 91, 98625j.
VARIABLES:	PREPARED BY:
T/K = 294-377	J. Hála

Composition of Saturated Solutions

Ammonium Heptafluorozirconate(IV)

t∕°C	$c_1/mol dm^{-3}$
21	0.64
28	0.70
38	0.80
46	0.90
61	0.95
69	1.0
104	1.2

AUXILIARY	INFORMATION

SOURCE AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: Solubilities were obtained from Nothing specified. crystallization temperatures. Dry solid was shaken with an appropriate NH F solution in a thermostat until it dissolved completely. It was then allowed to crystallize, and the temperature of crystallization was read. Several cycles of dissolution and crystallization were repeated, and temperature values averaged. The authors did not report on the composition of ESTIMATED ERROR: the equilibrium solid phases. Temp: precision ± 2 K. The solubility error is not specified. **REFERENCES:**

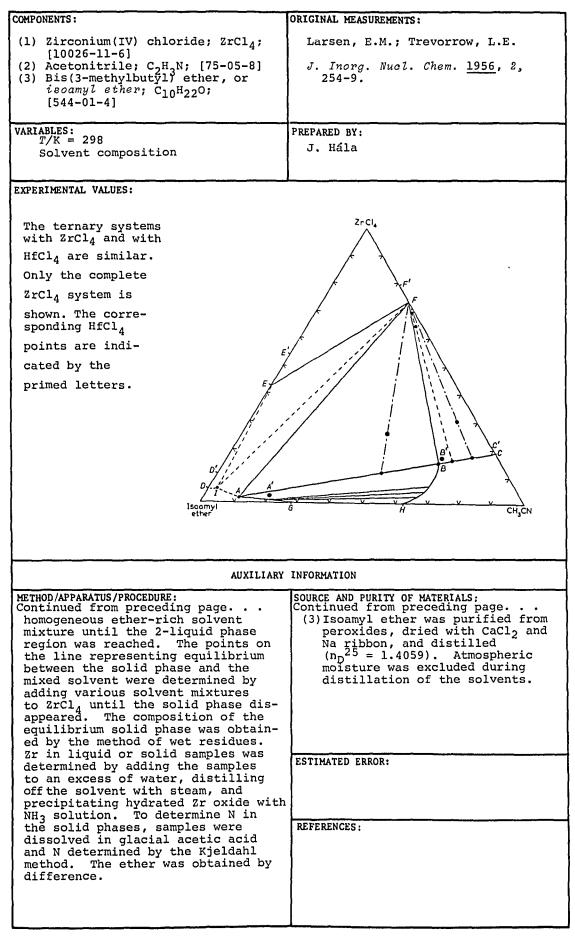
COMPONENTS :	EVALUATOR:	
<pre>(1) Triammonium heptafluoro- zirconate(3-); (NH₄)₃ZrF₇; [17250-81-6]</pre>	J. Hála Department of Inorganic Chemistry J. E. Purkyne University	
<pre>(2) Ammonium fluoride; NH₄F; [12125-01-8]</pre>	61 137 Brno, Czechoslovakia June 1985	
(3) Water; H ₂ O; [7732-18-5]	5 une 1985	
CRITICAL EVALUATION:		
An evaluation of the solubility of $(NH_4)_3 ZrF_7$ in aqueous ammonium fluoride solutions.		
Two laboratories report the solubility of $(NH_4)_3 2rF_7$ as a function of ammonium fluoride concentration in aqueous solution. Hevesy <i>et al.</i> (ref 1) report values at 293 K for solutions up to 9.72 mol dm ⁻³ NH_4F . Kroebel <i>et al.</i> (ref 2) report solubility values at 294, 314, and 337 K for solutions up to 4.5 mol dm ⁻³ NH_4F . The solubility values at 293/ 294 K from the two groups are compared in the Figure. The agreement is not good, the solubility values differ by a factor of 2 in 2.0 mol dm ⁻³ NH_4F . The values of Kroebel <i>et al.</i> are higher than those of Hevesy <i>et al.</i> at all NH_4F concentrations and tend to level off at a constant value above 2.0 mol dm ⁻³ NH_4F at this and the other temperatures.		
Hevesy <i>et al.</i> (ref 1) used good temperature control (± 0.01 - 0.1 K) along with a precise gravimetric analysis. Kroebel <i>et al.</i> (ref 2) observed crystallization temperatures with an uncertainty of ± 2 K. The evaluator prefers the use of Hevesy <i>et al.</i> data as the tentative values at 293 K. Hevesy <i>et al.</i> identified the solid phase as		
(NH ₄) ₃ ZrF ₇ .		
REFERENCES:	J. A.: Berglund. V.	
<pre>1. von Hevesy, G.; Christiansen, J. A.; Berglund, V. Z. Anorg. Allgem. Chem. <u>1925</u>, 144, 69.</pre>		
 Kroebel, R.; Eschrich, H.; Pivato, J. M.; Hansen, P. Eur. Co. Chem. Process. Irradiat. Fuels [Eurochemic Tech. Rep.] 1978, ETR 259, 44 pp.; Chem. Abstr. 1979, 91, 98625j. 		
	_	
.6		
× He	evesy et alii	
∞ \mathbb{N}	•	
	oebel et alii	
ළ .4 \ ⊗		
i ×		
(NH ^r , ² ZrF ₇ , mol d		
≝ .2 \-⊗-⊗		
	r	
	,	
× ×	· · · · · · · · · · · · · · · · · · ·	
	×	
1 2	3 4 5	
· 2	-	
	NH ₄ F, mol dm ⁻³	

COMPONENTS :	ORIGINAL MEASUREMENTS:
 (1) Ammonium heptafluorozirconate(IV); (NH₄)₃ZrF₇; [17250-81-6] (2) Ammonium fluoride; NH₄F; [12125-01-8] 	 von Hevesy, G.; Christiansen, J.A.; Berglund, V. Anorg. Allg. Chem. <u>1925</u>, 144, 69-74. von Hevesy, G. MatFys. MeddK. Dan. Vidensk.
(3) Water; H ₂ O; [7732-18-5]	Selsk. <u>1925</u> , 6, 1-149.
VARIABLES:	PREPARED BY:
T/K = 293 $c_2/mol dm^{-3} - 0.002-9.721$	J. Hála
EXPERIMENTAL VALUES:	
Solubility of (NH ₄) ₃ ZrF ₇ in aqueous	Nature of
Ammonium Fluoride Ammonium Heptafluo	rozirconate(IV) Solid Phase ^a
$c_2/mol dm^{-3}$ c_1/mol	dm^{-3} $\rho/g cm^{-3}$
0.002 0.551 0.462 0.375 0.966 0.242 1.941 0.097 4.872 0.022 9.721 0.017	- A - A 2 - A 6 1.068 A
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess solid were shaken in ebonite bottles for several hours. Zr was determined grav- imetrically as ZrO_2 after evap- oration with H_2SO_4 and ignition of the residue of an aliquot from the saturated solution. NH_4^+ concentration determined by Kjeldahl's method. The composition of the solid phase was determined by chemical analysis.	(1) (NH ₄) ₃ ZrF ₇ was prepared by dissolution of ZrO ₂ in concen- trated HF, and by adding an excess of NH ₄ F. Source and purity of chemicals not specified.
_	ESTIMATED ERROR: Temp: precision ± 0.01 K.
	Soly: precision ± 1-2 % (compiler).
	REFERENCES:

104 Zirconium Halides and Oxynalides		
COMPONENTS :		ORIGINAL MEASUREMENTS:
(1) Ammoniu (NH ₄)3 ^Z	um Heptafluorozirconate(IV); ZrF ₇ ; [17250-81-6]	<pre>Kroebel, R.; Eschrich, H.; Pivato, J.M.; Hansen, P.</pre>
	um fluoride; NH ₄ F; -01-8]	Eur. Co. Chem. Process. Irradiat. Fuels [Eurochemic Tech. Rep.] 1978, ETR 259, 44 pp.
(3) Water; VARIABLES:	H ₂ O; [7732-18-5]	PREPARED BY:
	-337	J. Hála
c ₂ /mol dm ⁻	$^{-337}_{-3} = 0.40 - 4.5$	
EXPERIMENTAL		
Solubil	Lity of (NH ₄) ₃ ^Z rF ₇ in aqueou	is NH ₄ F at 21, 41, and 64° C
	Ammonium Fluoride	Ammonium Heptafluorozirconate(IV)
t∕°C	$c_2/mol dm^{-3}$	$c_1/mol dm^{-3}$
21	0.40 0.70 1.0 1.60 2.0	0.50 0.40 0.30 0.20 0.20
41	0.8 1.2 1.4 2.0 3.15	0.60 0.50 0.45 0.35 0.20
64	0.6 1.4 2.0 2.5 3.8 4.5	0.85 0.65 0.50 0.40 0.30 0.20
	AUXILIARY	INFORMATION
METHOD/APPARA	TUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
crystalliz solid was riate NH4F until it c was then a and the te lization w of dissolu were repea values ave not report	les were obtained from zation temperatures. Dry shaken with an approp- F solution in a thermostat dissolved completely. It allowed to crystallize, emperature of crystal- vas read. Several cycles ation and crystallization ated, and the temperature eraged. The authors did c on the composition milibrium solid phase.	Nothing specified. ESTIMATED ERROR: Temp: precision ± 2 K. The solubility error is not specified.
		REFERENCES :

Zirconium Halide	is and Oxynalides 105
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Ammonium heptafluorozirconate(IV); (NH₄)₃ZrF₇; [17250-81-6]</pre>	Kroebel, R.; Eschrich, H.; Pivato, J.M.; Hansen, P.
(2) Ammonium nitrate; NH ₄ NO ₃ ; [6484-52-2]	Eur. Co. Chem. Process. Irradiat. Fuels [Eurochemic Tech.Rep.] ETR 1978, ETR 259, 44 pp.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 296-316 $c_2/mol dm^{-3} = 0.4-0.8$	J. Hála
EXPERIMENTAL VALUES:	
Solubility of $(NH_4)_3^{ZrF_7}$ in aqueo	us NH_4NO_3 at 23 and 43°C
Ammonium Nitrate	Ammonium Heptafluorozirconate(IV)
t/°C $c_2/mol dm^{-3}$	$c_1/mol dm^{-3}$
23 0.4 43 0.8	0.50 0.60
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Solubilities were obtained from crystallization temperatures. Dry solid was shaken with an approp- riate NH ₄ F solution in a thermostat until it dissolved completely. It was then allowed to crystallize, and the temperature of crystal- lization was read. Several cycles of dissolution and crystallization were repeated, and the temperature values averaged. The authors did not report on the composition of	Nothing specified.
not report on the composition of the equilibrium solid phase.	ESTIMATED ERROR: Temp: precision ± 2 K. The solubility error is not specified.
	REFERENCES :

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Potassium heptafluorozirconate(IV) K ₃ ZrF ₇ ; [17442-97-6]	Bamburov, V.G.; Demenev, N.V.; Polyakova, V.M.
(2) Water; H ₂ O; [7732-18-5]	Izv. Sib. Otd. Akad. Nauk SSSR, 1962, (5), 70-5.
VARIABLES :	PREPARED BY:
<i>T/K</i> = 293	J. Hála
EXPERIMENTAL VALUES:	
The solubility at 20°C of K ₃ ZrF ₇ is	reported as 1.31 mass %
(0.0389 mol kg ^{-la}).	
a Calculated by compiler	
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess $K_3 ZrF_7$ were shaken until equilibrium was reached. K was determined grav- imetrically as K_2SO_4 , F ⁻ deter- mined titrimetrically with Th (NO ₃) ₄ against alizarine sulf- onate as indicator, or gravimet- rically as CaF ₂ . No method was mentioned for Zr determination.	(1) $K_3 ZrF_7$ was prepared by equilibra- ting $ZrF_4 \cdot 3H_20$ with solutions containing>4.66 mass % KF. Under these conditions $K_3 ZrF_7$ is obtained as the equilibrium solid phase, as follows from the study of the ZrF_4 -KF-H ₂ O system carried out in the same document. KF, reagent grade. $ZrF_4 \cdot 3H_2O$ prepared by dissolving ZrO_2 in HF and subsequent evaporation. Source and purity not specified. ESTIMATED ERROR:
	Temp: precision ± 0.1 K.
	The solubility error is not specified.
	REFERENCES :


L

COMPONENTS:	OPTCINAL MEASUREMENTS.
<pre>(1) Zirconium(IV) chloride; ZrCl₄;</pre>	ORIGINAL MEASUREMENTS: Malhotra, K.C.; Sud, R.G.
[10026-11-6]	J. Inorg. Nucl. Chem. <u>1974</u> , 36,
<pre>(2) Chloroacetic acid; C₂H₃ClO₂; [79-11-8]</pre>	3767-72.
VARIABLES:	PREPARED BY:
T/K = 367	J. Hála
EXPERIMENTAL VALUES:	
The solubility of ZrCl ₄ at 93.5°C was	s reported to be 4.62g/100g
$C_{2}H_{3}ClO_{2}$ (0.198 mol kg ^{-la}).	
a Calculated by compiler	
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. ClCH ₂ COOH	(1) Source and purity of ZrCl ₄ not
was placed in a dried ampoule containing a sufficient amount of	specified.
$ZrCl_4$. The ampoule was sealed and	(2) ClCH ₂ COOH, B.D.H., purified by
shaken for 24 h. The ampoule was then broken, the contents filtered	distillation under reduced pres- sure and recrystallization from
quickly through sintered glass in dry atmosphere, and a sample of	benzene.
known weight was taken. Method for	
Zr determination not specified.	
	ESTIMATED ERROR:
1	Temp: precision ± 0.5 K.
	The solubility error is not specified.
	REFERENCES :

-

COMPONENTS: (1) Zirconium(IV) chloride; ZrCl ₄ ;		
(1) Zirconium(IV) chloride: ZrCl.:	ORIGINAL MEASUREMENTS:	
<pre>[10026-11-6] (2) Acetonitrile; C₂H₃N; [75-05-8] (3) Bis(3-methylbutyl) ether, or</pre>	Larsen, E.M.; Trevorrow, L.E. J. Inorg. Nucl. Chem., <u>1956</u> , 2, 254-9.	
VARIABLES:	DEDANED NV-	
T/K = 298 Solvent composition	PREPARED BY: J. Hála	
EXPERIMENTAL VALUES:		
Experimental data were given in graphical form as the phase diagram for the $2rCl_4/CH_3CN/isoamyl$ ether system at $25^{\circ}C^{*}$. The solubility line AB represents the solubility of the solid phase in liquid mixtures of varying composition. The solid phase existing in equilibrium with the solutions along the entire ABC line was $2rCl_4 \cdot 2CH_3CN$. Numerical data were given for the following points of the diagram:		
Point CH ₃ CN Isoam	vlether ZrCl ₄	
masst m	asse masse	
	2.4 1.6	
C 81.9±0.8	9 15 - 18.1±0.8 4.5±0.9 5.50±0.9	
AUXILIARY	INFORMATION	
AUXILIARY METHOD/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS;	

ï

COMPONENTS :		ORIGINAL MEASURE	ÆNTS:		
<pre>(1) Zirconium(IV) chloride; ZrCl₄;</pre>		Bond, P.A.; Stephens, W.R.			
(1) 211contam(1V) entoride; 21c1 ₄ ; [10026-11-6]			_		
(2) Sulfur dioxide; SO ₂ ; [7446-09-5]		2910-22.	Soc. <u>1929</u> , 52,		
VARIABLES:					
T/K = 273 - 293		PREPARED BY: J. Hála and J			
1/K - 275-295		J. HALA ANG	M. Salomon		
EXPERIMENTAL VALUES:					
Composition of Satur	ated Solutio	ons			
so ₂	Zi	rconium(IV) ch	loride		
t∕°C g	g	mole %	^m l/mol kg ^{-la}		
0 5.3286	0.2742	1.39	0.218		
0 5.2905 10 5.8132	0.2667 0.4247	1.37 1.95	0.317		
10 6.4758 20 5.8122	0.4815 0.5649	2.00 2.60	0.317		
20 4.1985	0.4011	2.57	0.413		
a Average values calc	alated by co	ompilers			
	AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:	AUXILIARY	INFORMATION SOURCE AND PURIT	Y OF MATERIALS:		
METHOD/APPARATUS/PROCEDURE: Isothermal method used. metal bomb with two chambe nected with a needle valve In the upper compartment SO ₂ were equilibrated for A sample of the saturated was taken through the need into the lower compartment After cleaning the upper of tment the bomb was weighed needle valve loosened and the sample allowed to vape a dessicator under a curre dry air. The residue was out and analyzed for Zr by phosphate method (ref 1). of the solid at or below analyzed as ZrCl ₄ ·SO ₂ .	A monel ers con- e was used. ZrCl ₄ and 12-I4 h. solution dle valve t. compar- d, the SO ₂ from prize in ent of washed y the Samples	SOURCE AND PURIT (1) ZrOCl ₂ ·8H ₂ lized, was chlorinate purity of specified. (2) SO ₂ , comme by passing H ₂ SO ₄ and and dried P ₂ O ₅ . ESTIMATED ERROR: The temper specified. Soly: prec. 1. Lundell,	O repeatedly recrystal- ignited to ZrO ₂ and d to ZrCl ₄ . Source and starting material not rcial grade, purified it through concentrated Na bisulfite solution, by means of CaCl ₂ and		

.

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Zirconium dichloride oxide; ZrOCl₂; [7699-43-6]</pre>	Komissarova, L.N.; Plyushchev, V.E.; Kremenskaya, I.N.	
(2) Water; H ₂ O; [7732-18-5]	*Zh. Neorg. Khim. <u>1960</u> , 5, 586-92; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1960</u> , 5, 281-4.	
VARIABLES:	PREPARED BY:	
T/K = 271 - 378	J. Hála	
EXPERIMENTAL VALUES:		
Composition of Saturated Solutions		
ZrOCl ₂	ZrOC12	
t/°C mass% m _l /mol kg ^{-la}	H	
	T, T	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	60 45.34 4.66 65 51.17 5.88	
5 34.30 2.94	70 60.02 8.43	
10 35.26 3.06	70.5 60.74 8.69	
15 36.15 3.21	72 57.72 7.66	
20 36.69 3.25 25 37.07 3.30	75 53.24 6.39 80 49.90 5.59	
30 37.65 3.38	85 48.32 5.24	
35 38.55 3.52	90 47.64 5.10	
40 38.69 3.54	95 47.15 5.01	
45 38.98 3.59 50 39.95 3.73	100 46.66 4.91 105 46.58 4.89	
55 41.83 4.04	100 40000 4000	
a. Calculated by compiler		
Up to 72° the solid phase is zirconium dichloride oxide octahydrate ZrOCl_'8H ₂ O [13520-92-8]. Above 72°, due to partial hydrolysis of Zr(IV), the solid phase contained less Cl ⁻ than would correspond to ZrOCl ₂ '8H ₂ O. The decrease in solubility above 72° was accordingly explained by lower solubility of the hydrolyzed species.		
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;	
Isothermal method used. Solutions containing excess solid were mixed for 24 h (2 h were necessary to reach equilibrium). Up to 50°, samples for analysis were taken by means of a pipette with a ther-	<pre>(1) Specpure ZrOCl_*8H₂O was purified by ion-exchange chromatography to reduce Hf content to < 0.01%, and then 5-times recrystallized from 6 mol dm⁻³ HCl.</pre>	
mostated jacket. Above 50° samples were sucked into a weighed glass tube. Zr was determined gravimet- rically as ZrO ₂ , Cl ⁻ gravimetrically as AgCl.	(2)Source and purity of water not specified.	
	ESTIMATED ERROR:	
	Temp: precision ± 0.05 K. Soly: precision ± 1-2 % (compiler).	
	REFERENCES :	
	<u> </u>	

COMPONENTS:	EVALUATOR:
<pre>(1) Zirconium chloride oxide or di- chlorooxozirconium; ZrOCl₂; [7699-43-6]</pre>	J. Hála Department of Inorganic Chemistry
<pre>(2) Hydrogen chloride; HCl; [7647-01-0]</pre>	J. E. Purkyne University 61 137 Brno, Czechoslovakia
(3) Water; H ₂ O; [7732-18-5]	June 1985

CRITICAL EVALUATION:

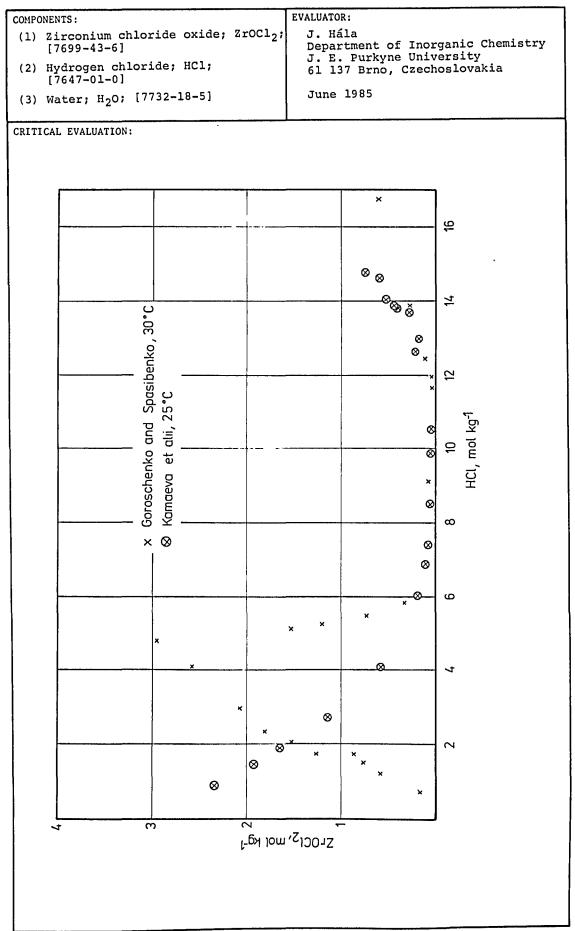
An evaluation of the solubility of ${\rm ZrOCl}_2$ in aqueous hydrogen chloride solutions.

Although four literature sources (ref 1-4) on the ZrOCl_2 + HCl + H₂O

system are available their data are not strictly comparable. The work of Hevesy (ref 1) gives the solubility in mol dm^{-3} at 20 °C whereas the other three sources give the solubility in mol kg^{-1} . Of the later three, the data of Schmid (ref 2) cannot be used for comparison because the equilibrium concentration of HCl was not given. Schmid's results are based on a solution that was initially 37% HCl. He used the solid $ZrOCl_2 \cdot 8H_2O$ and, as he mentions himself, he did not take into account the dilution of the system by the dissolved water of crystallization.

In comparing the data published by Goroshchenko and Spasibenko (ref 3) for 0, 30, 50 and 70 $^{\circ}$ C and by Kamaeva *et al*. (ref 4) at 25 $^{\circ}$ C the regions for low and high HCl concentration should be considered separately. The data of Kamaeva *et al*. (ref 4) for 25 $^{\circ}$ C are compared with the 30 $^{\circ}$ C data of Goroshchenko and Spasibenko (ref 3) in Figure 1. At low HCl concentrations the two data sets differ considerably. The most obvious reason for the difference is that Goroshchenko and Spasibenko started with solid hydrated $2rO_2$ rather than $2rOCl_2$. A comparison of the

data at high acidities is not possible because of the difference in temperature used by the two laboratories. Another discrepancy is that although Goroshchenko and Spasibenko clearly show that the solubility increases with temperature, the data of Kamaeva *et al.* at 25 °C are higher than the Goroshchenko *et al.* data at 30 °C. A possible reason for the difference may be in the method of determination of the equilibrium HCl concentration. Kamaeva *et al.* used titration with alkali in hot solutions while the other workers (ref 3) did not mention the analytical method used.


The features in which the papers (ref 1, 3, 4) agree is the increase of $2rOCl_2$ solubility in the high acidity range. This is caused by anionic chloro-complexes of 2r(IV).

Tentative values: Due to the lack of agreement among the published data, the evaluator cannot recommend any data. For tentative values, the evaluator suggests the 298 K data of Kamaeva *et al.* (ref 4) and the 293 K data of Hevesy (ref 1) be used for the mol kg⁻¹ and mol dm⁻³ scales, respectively (see the compilations for the numerical values).

REFERENCES:

 von Hevesy, G. Kgl. Danske Videnskab. Selskab. <u>1925</u>, 6, No. 7

- Schmid, P.
 Z. Anorg. Allgem. Chem. <u>1927</u>, 167, 369.
- Goroshchenko, Ya. G.; Spasibenko, T. P. Zh. Neorg. Khim. <u>1962</u>, 7, 1159.
- Kamaeva, I. G.; Melnik, V. V.; Serebrennikov, V. V. Zh. Neorg. Khim. <u>1968</u>, 13, 1974.

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Zirconium dichloride oxide; ZrOCl₂; [7699-43-6]</pre>	von Hevesy, G.
<pre>2 (2) Hydrogen chloride; HCl; [7647-01-0]</pre>	MatFys. MeddK. Dan. Vidensk. Selsk. <u>1925</u> , 6, 1–149.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 293 $c_2/mol dm^{-3} = 0.2-11.61$	J. Hála
EXPERIMENTAL VALUES:	
Solubility of ZrOCl ₂ in aqueous HC	L at 20°C
нсі	Zrocl ₂
$\sigma_2/mol dm^{-3}$ $\sigma_1/$	/mol dm ⁻³
0.2 1.47 3.72 4.97 5.81 6.35 8.72 10.14 10.94 11.61	2.91 2.14 0.832 0.329 0.157 0.1037 0.0547 0.00988 0.205 0.334
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. The solid used for the solubility measurements was $2rOCl_2 \cdot 3H_2O$. Zr was determined gravimetrically as $2rO_2$ after evaporation of the samples with H_2SO_4 . Total Cl ⁻ content determined by Volhard's method; HCl concen- tration found by difference. The author does not report on the composition of solid phases.	8H ₂ O which was heated in a stream of HCl to yield ZrOCl ₂ . 3H ₂ O.
	ESTIMATED ERROR: Temp: precision ± 0.01 K. Soly: precision ± 1-2 % (compiler).
	REFERENCES :

Zirconium Halide	s and Oxyhalides	115
COMPONENTS :	ORIGINAL MEASUREMENTS:	•
<pre>(1) Zirconium dichloride oxide; ZrOCl₂; [7699-43-6]</pre>	Schmid, P.	1
(2) Hydrogen chloride; HCl; [7647-01-0]	Z. Anorg. Allg. Chem. <u>1927</u> , 167, 369-84.	
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = 273-341 HCl /mass % = 30.3-33.4	J. Hála	
EXPERIMENTAL VALUES:		
Solubility of ZrOCl ₂ in aqueous HCl	between 0 and 68°C	
Zrocl ₂ ·8H ₂ O Zrocl ₂	HCL	
t/°C mass% mass% ^{a m} l/mol	kg ^{-la} mass ^b m ₂ /mol kg ^{-la} .	
20 4.51 2.49 .2 30 6.42 3.55 .3 40 9.67 5.35 .4	50 33.1 13.93 16 32.9 13.97 08 31.8 13.49 76 31.6 13.75 12 30.3 13.43	
AUXILIARY	INFORMATION	
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
Isothermal method used. Zr deter- mined gravimetrically as ZrO ₂ . The author does not report on the com- position of the solid phases. Dissolution of ZrOCl ₂ ·8H ₂ O was carried out in 37.05 (mass)% HCl. Due to the dilution of HCl with crystal water from the dissolved salt the equilibrium HCl concen- tration was not constant (see Experimental Values).	Not specified. ESTIMATED ERROR: The temperature error is not specified. Soly: precision ± 1-2 % REFERENCES:	

COMPONENTS:			ORIGINAL MEASURE	MENTS
	um dichlorid [7699-43-6]		Goroshchenko,Ya	.G.; Spasibenko, T. P.
(2) Hydroge [7647-0	n chloride; 1-0]	HCl;	*Zh. Neorg. Khim 1159-68; Russ	. J. Inorg. Chem.
(3) Water;	H ₂ O; [7732-1	.8-5]		.) <u>1962</u> , 7,595-9.
EXPERIMENTA	L VALUES			
Composit	ion of Satur	ated Solution	s at 0°C	Nature of the Solid Phase ^b
нсі	Zr02	Z	rocl ₂ ^a	
mass%	mass%	mass% m _l /m	ol kg ⁻¹	
1.87 3.26 5.11 7.09 8.73 9.59 11.13 12.50 13.00 14.00 14.48 14.99 15.57 18.73 21.24 23.95 26.90 28.34 30.14 32.67 33.95 37.14	$\begin{array}{c} 0.86\\ 1.44\\ 4.29\\ 6.45\\ 8.37\\ 10.61\\ 12.35\\ 14.45\\ 18.25\\ 19.21\\ 23.60\\ 14.41\\ 5.32\\ 1.75\\ .81\\ .61\\ .31\\ .29\\ .41\\ .78\\ .83\\ 2.24 \end{array}$	17.85 20.89 26.38	.0718 .123 .392 .626 .856 1.15 1.41 1.76 2.44 2.68 3.73 1.82 .565 .180 .125 .0659 .0346 .0330 .0477 .0944 .104 .305	A A A A A A A A A A B B B B B B B B B B
39.53	2.97	4.29 ated Solution	.429	C Nature of the
				Solid Phase ^D
2.56 4.21 5.17 5.85 5.93 7.00 7.81 9.75 13.00 14.82 15.73 16.06 16.59 17.51 21.46 24.92 29.81 30.32 31.20 33.58 37.90	1.96 6.66 8.64 9.41 13.19 15.95 18.23 20.31 24.10 26.69 16.05 12.98 8.23 3.92 1.20 .96 .55 .61 .53 3.42 6.87	2.83 9.62 12.49 13.60 19.07 23.05 26.35 29.36 34.84 38.58 23.20 18.76 11.90 5.67 1.73 1.39 .795 .882 .766 4.94 9.93	.168 .627 .852 .948 1.43 1.85 2.25 2.71 3.75 4.55 2.13 1.62 .934 .414 .126 .106 .0643 .0720 .0632 .451 1.07	A A A A A A A A A A A B B B B B B B B B
Continue	1	1		

Continued on the next page. . .

COMPONENTS:	ORIGINAL MEASUREMENTS
<pre>(1) Zirconium dichloride oxide; ZrOCl₂; [7699-43-6]</pre>	Goroshchenko,Ya.G.; Spasibenko, T.P.
<pre>(2) Hydrogen chloride; HCl; [7647-01-0]</pre>	* Zh. Neorg. Khim. <u>1962</u> , 7, 1159-68; Russ. J. Inorg. <u>Chem.</u> (Engl. Transl.) <u>1962</u> , 7, 595-9.
(3) Water; H ₂ O; [7732-18-5]	
EXPERIMENTAL VALUES	
Composition of Saturated Solutions	at 50°C Nature of the Solid Phase ^D
-	cl ₂ ^a
mass% mass% mass% mass% mass%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	227 A 521 A 864 A 27 A 68 A 56 A 64 A 72 A 46 A 69 A 87 A+B 47 B 19 B 60 B 725 B 332 B 147 B 195 B 504 B 963 B 04 B
Composition of Saturated Solutions	at 75°C Solid Phase ^D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	195 A 826 A 61 A 64 A 37 A 50 A 42 A 79 A 12 A+B 61 B 56 B 46 B 654 B 929 B 14 B
Continued on the next page	

-		
1	1	8

ORIGINAL MEASUREMENTS:
Goroshchenko, Ya.G.; Spasibenko, T.P.
*Zh. Neorg. Khim. <u>1962</u> , 7, 1159-68; Russ. J. Inorg. Chem. (Engl. Transl.) 1962, 7, 595-9.
PREPARED BY:
J. Hála
$\frac{101}{90}$ $\frac{50}{100}$ 5
INFORMATION
SOURCE AND PURITY OF MATERIALS:
<pre>(1) ZrOCl₂·8H₂O prepared from tech. grade ZrO₂ and purified from Hf by ferrocyanide method and by cyclohexanone extraction. After recrystallization from aqueous HCl its Hf content was less than 0.02%. Zr hydroxide was prepared by passing a ZrOCl₂ solution through an anion exchange resin in OH⁻ form to remove free HCl. Neutral ZrOCl₂ solution was then mixed with anion exchange resin, and Zr hydroxide was obtained by hydrolysis. It was washed with water and dried at 100°. The product contained 44.46% ZrO₂ 3.67% HCl and 51.87% H₂O.</pre>
(2)Source and purity of HCl not specified.(3)Distilled water.

COMPONENTS:			ORIGINAL MEASUREMENTS:	
	onium dichloride o 1 ₂ ; [7699-43-6]	xide;	Kamaeva, I.G.; Mel Serebrennikov, V	
	<pre>(2) Hydrogen chloride; HCl; [7647-01-0]</pre>		*Zh. Neorg. Khim.] Russ. J. Inorg. Transl.) 1968, 1	Chem. (Engl.
(3) Water	r; H ₂ O; [7732-18-5]		-
VARIABLES:			PREPARED BY:	
$\frac{T/K}{m_2/mol}$	298 kg ⁻¹ = 0-18.06		J. Hála and M. S	Salomon
EXPERIMENTA	AL VALUES: Solubility		in aqueous HCl at 2 DCl ₂ lo	25 C Nature of the Solid Phase ^b
mass%	m ₂ /mol kg ^{-la}	mass%	m_1 /mol kg ^{-la}	
0	0	39.69	3.69	А
3.21		29.35	2.44	A
5.01	1.98	25.51	2.06	A
6.50 9.03	2.51 3.34	22.59 16.85	1.79 1.28	A A
12.93	4.62	16.85 9.37	.686	AA
18.09	4.02	3.27	.233	A
20.06	7.05	1.91	.137	A
21.32	7.58	1.50	.109	A
23.72	8.65	1.07	.0798	A
26.47	10.01	1.03	.0797	А
27.78	10.67	0.80	.0629	A
31.54	13.38	3.79	.329	A
32.17	13.62	3.06		B
33.28	14.72	4.71	.426	В
33.50	15.32	6.54	.612	B B
33.58	15.45 15.60	6.83 7.29	.643 .693	В
33.92	16.19	8.61	.841	B
34.78	17.42	10.50	1.08	B
35.01	18.06	11.82	1.25	B
a. Cal	culated by compile	ers		
b. A:	ZrOCl ₂ •8H ₂ O [135	20-92-8] B:	zrocl ₂ ·2HCl·10 H	20 (H2ZrOC14.10H2O)
	<u> </u>	AUXILIARY	INFORMATION	
METHOD/APP.	ARATUS/PROCEDURE:		SOURCE AND PURITY OF	MATERIALS:
Isothermal method used as described previously. Solutions containing excess solid were mechanically		(1)ZrOCl ₂ ·8H ₂ O, re recrystallized HCl.	eagent grade, twice from aqueous	
to be ret	mixed, and equilibrium was assumed to be reached in 8 days by analogy to previous results (ref 1). Zr determined by compolexometric titration using Xylenol Orange as an indicator. HCl determined by titration with NaOH against Methyl		(2) HCl prepared f: and H ₂ SO ₄ .	rom cp grade NaCl
titratio an indio			(3)Distilled wate:	r was used.
	in heated solution			
phases	were identified by	the method		
	einemakers and by		ESTIMATED ERROR:	
			Temp: precision Soly: precision	
			REFERENCES :	11777 in an ann an Anna
			1. Kamaeva, I.G. V.V. Zh. Neo 8, 2151; Russ	; Serebrennikov, rg. Khim. <u>1963</u> , . J. Inorg. Chem. .) <u>1963</u> , 8, 1124.

.

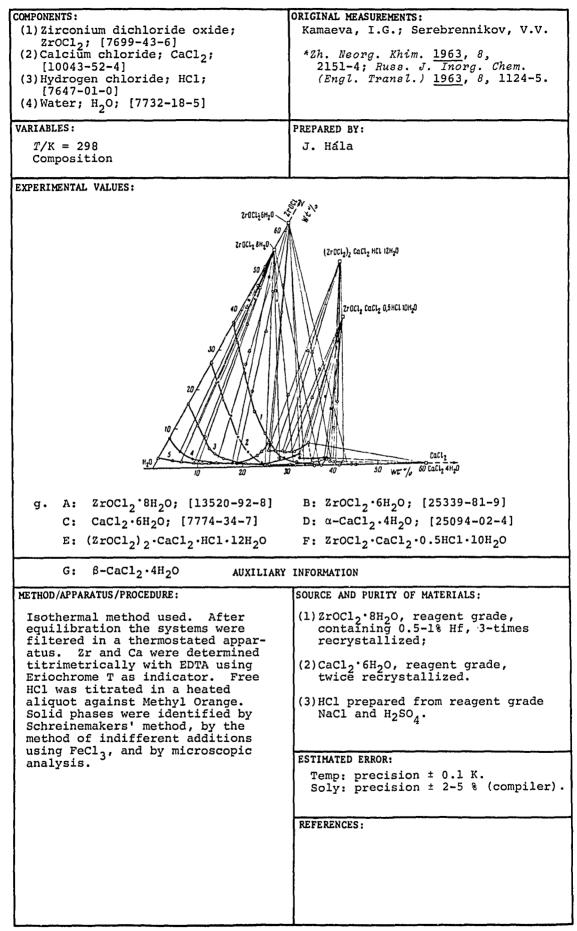
MPONENTS:		ORIGINAL MEASUREMENTS:	
<pre>1) Zirconium dichloride oxide; ZrOC1₂; [7699-43-6]</pre>		Belyaev, I.N.;	
(2) Ammonium chloride; NH ₄ Cl; [12125-02-9]	<pre>?) Ammonium chloride; NH₄Cl; [12125-02-9]</pre>		phebn. Zaved. K <i>him.</i> 51. <u>1967</u> , 10, 255-8.
(3) Water; H ₂ O; [7732-18-5]			
VARIABLES:		PREPARED BY:	
T/K = 298 $m_2/mol kg^{-1} = 0-7.31$		J. Hála	
EXPERIMENTAL VALUES:			
Composition of Saturated Sol			Nature of the Solid Phase ^b
NH4CI	ZrOC.	¹ 2	
mass% m2/mol kg ^{-la} n	nass% m	_l /mol kg ^{-la}	
	37.60	3.38	A
5.68 1.74 3	34.90 33.20	3.17 3.05	A A
6.70 2.08 3	32.96	3.07	В
7.64 2.35 3 8.66 2.62 2	31.55 29.57	2.91 2.69	B B
10.80 3.18 2	25.75	2.28	В
	23.22	2.02	В
	21.59 L7.50	1.86 1.48	BB
20.12 5.49 1	1.35	0.930	B
20.12 5.49 1 23.89 6.32 28.12 7.31	5.43 0	0.431 0	B C
a. Calculated by compiler			
b. A: ZrOCl ₂ ·8H ₂ O [13520-92-8]; B: solid solution of ZrOCl ₂ in NH ₄ Cl; C: NH ₄ Cl [12125-02-9]			on of ZrOCl ₂ in
······································	AUXILIARY	INFORMATION	
METHOD / APPARATUS / PROCEDURE :		SOURCE AND PURITY	OF MATERIALS:
Isothermal method used. Solutions containing excess solid were mixed for 10-12 h. Total C1 ⁻ content determined by Volhard's method; Zr determined gravimet- rically as ZrO ₂ . NH ₄ Cl concen- tration found by difference. Solid		(1)ZrOCl ₂ ·8H ₂ C recrystalli HCl.), reagent grade, zed from 6 mol dm ⁻³
		(2)NH ₄ Cl, reac tallized fr	gent grade, recrys- com water.
phases were identified by Sch makers' method.	reine-	(3)Source and specified.	purity of water not
		ESTIMATED ERROR:	
		Temp: precisi	on \pm 0.1 K. on \pm 1-2 % (compiler).
		REFERENCES:	·····
		1	

Zirconium Halide	s and Oxyhalides 121
Components :	ORIGINAL MEASUREMENTS:
<pre>(1) Zirconium dichloride oxide; ZrOCl₂; [7699-43-6]</pre>	Barskaya, I.B.; Toptygina, G.M.
<pre>(2) Trimethylammonium chloride; (CH₃)₃NHCl; [593-81-7]</pre>	*Zh. Neorg. Khim. <u>1970</u> , 15, 2572-3; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1970</u> , 15, 1333.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 Composition	J. Hála and M. Salomon
EXPERIMENTAL VALUES:	
The authors report numerical values at the eutonic points. The remaining graphically.	for only two saturated solutions, ng solubility data were presented
	Composition at the Eutonic Points
(CH.)3NHC1	(CH ₃) 3NHCl ZrOCl ₂
	mass% m_2 /mol kg ^{-la} mass% m_1 /mol kg ^{-la}
RO TOCLZ S(CH3)3NHCL	60.30 27.61 16.85 4.140
A Lington	51.50 18.68 19.65 3.824
60 · 8 34	a. Calculated by compilers
40 -	
20 H ₂ C 20 D 40 60 80 ZrOCL ₂ ZrOCL 8H30	
·	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Equilibrium solid phases were studies by X-ray diffraction, thermal analysis, crystal-optical analysis, and infrared spectros- copy. No other details were given, but the isothermal method was probably used as in earlier work (ref 1).	Nothing specified.
	ESTIMATED ERROR: Temp: precision 0.1 K (ref 1). Soly: precision 1-2 % (compiler, ref 1).
	REFERENCES: 1. Barskaya, I.B.; Morozov, I.S. Zh. Neorg. Khim. 1968, 13, 1408; Russ. J. Inorg. Chem. (Engl. Transl.) 1968, 13, (For details see the compi- lations for this paper.)

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Zirconium dichloride oxide; ZrOCl₂; [7699-43-6]</pre>	Belyaev, I.N.; Lobas, L.M.; Efimushkhina, L.I.
(2) Zinc Chloride; ZnCl ₂ ; [7646-85-7]	*Zh. Prikl. Khim. (Leningrad) 1977, 50, 1233-7; J. Appl. Chem. USSR (Engl. Transl.) 1977, 50,
(3) Water; H ₂ O; [7732-18-5]	1188-91.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
Composition	
EXPERIMENTAL VALUES: Composition of ZnCl ₂ In ZrOCl ₂	
$\begin{bmatrix} 2nCl_2 & ZrOCl_2 \\ mass & m_2/mol kg^{-1a} & mass & m_1/mol \\ \end{bmatrix}$	l kg ^{-la} g cm ⁻³
37.70 3	.40 1.492 A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.28 1.555 A .76 1.685 A
20.03 3.12 32.82 3	.91 1.755 A
25.17 4.33 32.17 4	.23 1.775 A .66 1.805 A
29.16 5.53 32.13 4 32.20 6.57 31.85 4	.97 1.9000 A+B
34.49 6.71 27.81 4	.14 1.891 B
38.45 7.23 22.55 3 42.98 8.15 18.32 2	.25 1.854 B
1 47 97 9 14 13 51 1	.66 1.876 B .97 1.904 B
54.86 11.16 9.08 1	.41 1.950 B
58,93 12,55 6,60 1	.075 2.025 B
	.653 2.085 B .545 2.150 B
64.50 14.79 3.50 0	.545 2.150 B .614 2.205 B
71.20 21.59 4.60 1 74.87 28.66 5.96 1	.067 2.285 B
71.20 21.59 4.60 1 74.87 28.66 5.96 1 75.28 28.50 5.34 1 75.25 27.93 4.98 1	.745 2.350 B+C .547 2.307 C
75.28 28.50 5.34 1 75.25 27.93 4.98 1	.547 2.307 C .414 2.255 C
74.50 23.65 2.38 0 76.95 24.50 -	.578 2.050 C
76.95 24.50 -	- 2.066 C
a. Calculated by compiler b. A: ZrOCl ₂ .8H ₂ O [13520-92-8]; B:	ZrOCl ₂ ·ZnCl ₂ ·6.5H ₂ O (to which the
structure of $[Zr_4(OH)_8(H_2O)_{20}][Zn_4(OH)_8(H_2O)_{20}]$	$2rOCl_{2} \cdot 2nCl_{2} \cdot 6 \cdot 5H_{2}O$ (to which the $Cl_{4}]_{4} \cdot 2H_{2}O$ was ascribed);
C: $2nCl_2[7646-85-7]$	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions	(1) Not enceified Dregumphly
containing excess solid were mixed	(1)Not specified. Presumably ZrOCl ₂ ·8H ₂ O was reagent grade
for 15-30 h. Zr and Zn were	and récrystallized from 6 mol dm ⁻³ HCl as in the authors'
determined titrimetrically with EDTA, total Cl ⁻ content determined	mol dm ⁻⁹ HCl as in the authors' earlier work (ref 1).
by Volhard's method. Solid phases	earrier work (rer i).
were identified by Schreinemakers'	
method. Viscosities and electrical	
conductivities also reported for the saturated solutions.	
	ESTIMATED ERROR:
	Temp: precision ± 0.1 K (compiler,
	from ref 1). Soly: precision ± 2-5 % (compiler).
	bory: precision 1 2-3 % (compiler).
	REFERENCES :
	l. Belyaev, I.N.; Lobas, L.M. Zh.
	Neorg. Khim. 1965, 10, 946;
	Russ. J. Inor <u>g. C</u> hem.(Engl. Transl.) 1965, 10, 512.
}	,,

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Zirconium dichloride oxide; ZrOCl₂; [7699-43-6]</pre>	Belyaev, I.N.; Lobas, L. M.; Efimushkhina, L.I.	
<pre>(2) Cadmium chloride; CdCl₂; [10108-64-2]</pre>	*Zh. Neorg. Khim. <u>1972</u> , 17, 3075-8; Russ. J. Inorg. Chem. (Engl. Transl.) 1972, 17, 1617-9.	
(3) Water; H ₂ O; [7732-18-5]	(1.), 1.), <u>1.),</u> (1.), <u>1.),</u>	
VARIABLES:	PREPARED BY:	
T/K = 298 Composition	J. Hála	
	Saturated Solutions Nature of the = 25 Solid Phase ^b	
4.03 0.355 34.11 3	.383 1.492 A .096 1.527 A	
8.53 0.794 32.88 3 14.73 1.50 31.65 3	.150 1.600 A . .314 1.700 A	
19.35 2.10 30.48 3	.411 1.747 A	
23.72 2.72 28.67 3	.381 1.771 A .476 1.820 A+B	
29.04 3.54 26.20 3	.286 1.825 B	
29.07 3.45 24.96 3 33.52 3.93 20.00 2	.048 1.827 B .416 1.843 B	
38.08 4.56 16.39 2	.021 1.871 B .825 1.873 B	
40.10 4.86 14.89 1	.857 1.892 B+C	
	.861 1.889 C .16 1.817 C	
46.87 6.36 4.91 0	.685 1.745 C	
49.74 6.77 2.21 0 53.05 6.16 0 0	.310 1.731 C 1.757 C	
a. Calculated by compiler		
b. A: ZrOCl ₂ ·8H ₂ O [13520-92-8]; B: 1.75CdCl ₂ ·ZrOCl ₂ ·10H ₂ O; C: CdCl ₂ ·2.5H ₂ O [7790-78-5].		
AUXILIARY	INFORMATION	
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
Isothermal method used. Solutions containing excess solid were mixed	(1)Not specified. Presumably ZrOCl ₂ •8H ₂ O was reagent grade	
for unspecifed period of time. Zr and Cd were determined tit-	and récrystallized from 6 mol dm ⁻³ HCl as in the authors' pre-	
rimetrically with EDTA, total Cl-	vious work (ref 1).	
content determined by Volhard's method. The source paper also		
lists electrical conductivities and viscosities of each of the		
saturated solutions.		
	ESTIMATED ERROR:	
	Temp: precision ± 0.1 K (compiler, from ref 1). Soly: precision ± 2-5 % (compiler).	
	REFERENCES:	
	<pre>I.Belyaev, I.N.; Lobas, L.M. Zh. Neorg. Khim. <u>1965</u>, 10, 946; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1965</u>, 10, 512.</pre>	

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Zirconium dichloride oxide; ZrOCl₂; [7699-43-6]</pre>	Belyaev, I.N.; Lobas, L.M.; Efimushkina, L.I.; Dvoskina, V.N.		
(2) Copper(II) chloride; CuCl ₂ ; [7447-39-4]	*Zh. Neorg. Khim. <u>1971</u> , 16, 3392-3; Russ. J. Inorg. Chem. (Engl. Transl.) 1971, 16, 1795-7.		
(3) Water; H ₂ O; [7732-18-5]			
VARIABLES:	PREPARED BY:		
T/K = 298 Composition	J. Hála		
EXPERIMENTAL VALUES:a			
Composition of Saturated Solution	Solid Phase ^C		
CuCl ₂	ZrOCl ₂		
mass% m ₂ /mol kg ^{-1b} mas	Τ, 2		
0 0 37. 3.27 0.393 34.			
6.39 0.774 32.	19 2.94 A		
10.80 1.34 28.	10 2.62 A		
16.46 2.10 25. 21.17 2.79 22.			
22 40 2 99 21	R5 2 20 A+B		
25.22 3.34 18. 30.64 4.08 13.	58 1.87 B		
30.64 4.08 13. 35.52 4.67 7.	47 1.37 8 8		
40.50 5.43 3. 43.50 5.73 0	0.306 B		
b. Calculated by compiler c. ZrOCl ₂ ·8H ₂ O [13520-92-8]; B: CuCl ₂ ·2H ₂ O [10125-13-0].			
AUXILIAR	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Isothermal method used. Solutions	Nothing specified.		
containing excess solid were shaken for unspecified period of time. Zr was determined titrimetrically with EDTA against Xylenol Orange, Cu was titrated with EDTA against Murexide in the filtrate after precipitation of Zr hydroxide. Cl ⁻ determined by Volhard's method. Solid phases were identified by chemical analysis and by Schreine- maker's method.	ESTIMATED ERROR: The temperature error is not specified. Soly: precision ± 2-5 % (compiler). REFERENCES:		


f			
COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Zirconium dichloride oxide; ZrOCl₂; [7699-43-6]</pre>	Belyaev, I.N.; Lobas, L.M. *Zh. Neorg. Khim. 1968, 13,		
<pre>(2) Magnesium chloride; MgCl₂; [7786-30-3]</pre>	(Engl. Transl.) <u>1968</u> , 13, 1185-7.		
(3) Water; H ₂ O; [7732-18-5]	1103-7.		
VARIABLES:	PREPARED BY:		
T/K = 298 Composition	J. Hàla and M. Salomon		
EXPERIMENTAL VALUES:			
Composition of Saturated Solutions	Solid Phase ^D		
MgCl ₂ ZrOCl ₂	Density		
mass% m ₂ /mol kg ^{-la} mass% m ₁ /mol :			
0 0 37.60 3.3 4.00 0.457 28.97 2.4			
11.08 1.202 18.36 1.4			
15.50 1.614 11.01 0.8	41 1.297 A		
18.64 1.912 6.74 0.5 20.02 2.045 5.07 0.3			
	576 1.241 A		
29.70 3.254 0.45 0.0	362 1.278 A		
35.08 4.135 0 0	173 1.332 A+B 1.333 B		
a. Calculated by compilers			
b. A: ZrOCl ₂ ·8H ₂ O [13520-92-8];	B: MgCl. 6H.O [7791-18-6]		
c. Eutonic point			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Experimental details stated to be	(1)ZrOCl ₂ ·8H ₂ O was recrystallized		
similar to those reported in ear- lier work (refs 1,2). Isothermal	from 6 mol dm ⁻³ HCl (refs 1,2).		
method was used. Solutions with excess solid were stirred for 8-10 h at 25°C. Total Cl content	(2)Reagent grade MgCl ₂ ·6H ₂ O was recrystallized from water.		
determined by Volhard's method, Zr determined by chelatometric tit-	(3) Sources and purities of water and HCl were not specified.		
ration in 5 mol dm ⁻³ HCl. Method for analysis of Mg not given. Solid phases were analysed using			
the Schreinemakers' method of wet			
residues.	ESTIMATED ERROR:		
In the source paper, the authors also report the viscosities (n)	Temp: precision ± 0.1 K (compiler, refs 1, 2). Soly: precision ± 2-5 % (compiler).		
and electrical conductivities (K)			
for each of the saturated solutions.			
	 Belyaev, I.N.; Lobas, L.M. Zh. Neorg. Khim. <u>1965</u>, 20, 946. Russ. J. Inorg. Chem. (Engl. 		
	Transl.) 1965, 10, 512. 2. Belyaev, I.N.; Lobas, L.M. Izv.		
	Vyssh. Uchebn. Zaved., Khim.Khim. Tekhnol. <u>1967</u> , 3, 285.		

<u> </u>		r	ARTATUSE	
COMPONENTS:		ł	ORIGINAL MEASUREME	
	ium dichloride oxide; ; [7699-43-6]		Kamaeva, I.C.; Se Tr. Tomsk. Gos. U	rebrennikov, V.V.
(2)Calciu [10043	m chloride; CaCl ₂ ; 3-52-4]		131-4.	<i></i>
(3)Water;	H ₂ O; [7732-18-5]			
EXPERIMENT	AL VALUES			
Composi	tion of Saturated Solu	utions a	at 25°C	Nature of the
c	CaCl ₂	:	ZrOCl ₂	Solid Phase ^D
mass&	m ₂ /mol kg ^{-la}	masst	m _l /mol kg ^{-la}	
0	0	36.96		А
0.21		36.50		А
3.19 7.78	0.443 1.064	31.95 26.34		A
8.70	1.166	20.34		A A
12.61	1.67	19.31		A
15.80	2.03	14.10	1.13	A
20.75	2.65	8.60		A
23.94	3.11	6.68		A
26.91	3.46	3.04		A
31.16	4.15	1.11		A
36.47 44.20	5.20 7.14	0.33		A
44.20	7.44	0.07 0	0.00705 0	A+B B
Composi	tion of Saturated Solu	utions a	at 50°C	Nature of the Solid Phase ^b
. c	aCl ₂	:	Zrocl,	
1	m ₂ /mol kg ^{-la}		m _l /mol kg ^{-la}	
0	0	39.98	3.73	А
6.56	0.945	31.50		А
11.04	1.57	25.58		A
23.03	3.12	10.55	• • • •	A
27.24	3.70	6.47		A
30.56 33.80	4.23 4.77	4.35 2.40		A
47.00	8.10	0.71		A A
54.85	11.10	0.64	0.0807	A+B
56.95	11.92	0	_	В
a. Calc	ulated by compiler			
b. A:	zrocl ₂ ·8H ₂ 0 [13520-92	2-8]; B	: CaCl ₂ •6H ₂ O [777	4-34-7]
1				
Continu	ed on the next page.			
Concrito	ica on the next paye.	•••		
1				

Zirconium Halides and Oxyhalides		
ORIGINAL MEASUREMENTS:		
Kamaeva, I.C.; Serebrennikov, V.V.		
Tr. Tomsk. Gos. Univ. <u>1963</u> , 157, 131-4.		
PREPARED BY:		
J. Hála		
INFORMATION		
SOURCE AND PURITY OF MATERIALS:		
 ZrOCl₂·8H₂O, reagent grade, containing 0.5-1% Hf, 3-times recrystallized from water. CaCl₂·6H₂O, reagent grade. Source and purity of water not specified. 		
ESTIMATED ERROR: Temp: precision ± 0.5 K. Soly: precision ± 2-5 % (compiler). REFERENCES:		

					
COMPONENTS: (1)Zirconium dichloride oxide; ZrOCl ₂ ; [7699-43-6]			ORIGINAL MEASUREMENTS Kamaeva, I.G.; Serebrennikov, V.V.		
(2)Calcium chloride; CaCl ₂ ; [10043-52-4]		*2h. Neorg. Khim. <u>1963</u> , 8, 2151-4; Russ. J. Inorg. Chem. (Engl.			
(3) Hydrogen chloride	e; HCl;			.) <u>1963</u> , <i>8</i> , 1	
[7647-01-0] (4)Water; H ₂ O; [7732	2-18-5]				
EXPERIMENTAL VALUES:		l			
Composition of Satu	rated Solu	tions at	25°C		Nature of the
CaCl ₂	HCL		Z	rocl ₂	Solid Phase ^g
mass% m2/mol kg ^{-la}	mass% m ₃ /	'mol kg ^{-l}	a mass%	m _l /mol kg ^{-la}	
0 0	0		36.96	3.29	А
0.24 .0342	0		36.50	3.24	A
3.19 .443	0		31.95	2.77 2.24	A
7.78 1.06 8.70 1.17	0 0		26.34	2.24 2.01	A A
12.61 1.67	ŏ		19.31	1.59	Ā
15.80 2.03	0		14.10	1.13	A
20.75 2.65	0		8.60	.683	A
26.91 3.42 31.16 4.15	0		2.10	.166	A
31.16 4.15 36.47 5.20	0 0		1.11 .33	.0920 .0293	A A
44.20 7.15	õ		.07	.00705	A A+C
45.23 7.44	0		0	0	c
0 ^b 0	5.00 1	.97	25.51	2.06	А
3.73 .476		.91	20.75	1.65	A
6.83 .855		.81	16.44	1.28	А
10.47 1.30		.80	12.49	.970	A
14.18 1.74 18.06 2.22		.79 .82	7.42 3.76	.566 .288	A A
22.33 2.81		.88	.92	.0721	Â
26.55 3.15	5.06 2	.04	.29	.0239	A
27.88 3.77		.11	.35	.0295	A
29.74 4.13 31.92 4.59		.16 .28	.26	.0225 .0233	A
34.09 5.05		.28	.20	.0157	B B
41.18 6.90		.40	.37	.0386	B+D
43.10 7.49		.66	0	0	D
0 ^C 0	10.00 3	.64	14.70	1.10	А
4.18 .494		.53	9.76	.719	A
7.05 .836	9.78 3	.53	7.21	.533	A
9.13 1.08	10.20 3	.67	4.41	.325	A
10.87 1.29 12.77 1.54		.66	3.17	.235 .181	A A
12.77 1.54 13.13 1.59		.63 .79	2.42 2.11	.159	A A
18.12 2.30		.89	.78	.0617	A
22.35 3.00		.01	.59	.0493	A
		.04	.52	.0438	B B
27.16 3.87 31.58 4.92		.38 .67	.46 .75	.0408 .0728	B
32.75f 5.26		.96	1.04	.104	B
33.90 5.60	9.92 4	.98	1.60	.165	В
34.73 5.82		.07	1.57	.164	B+E F
34.93 5.82 35.46 5.94		.06 .04	1.04 .91	.108 .0950	E
36.02 6.07		.97	.80	.0840	Ē
37.54 6.55	10.14 5	.38	.66	.0717	E+D
37.30 6.38	10.00 5	.20	0	0	D
g. A: ZrOCl ₂ .8H ₂ O	[13520-92	-8]: B:	ZrOCl. 6	H ₂ O; C: CaCl	-*6H-O
[7774-34-7] D:	α -CaCl ₂ ·4H	,0; E:	$(\operatorname{ZrOCl}_2)_2$	•CaCl2•HC1•12	H ₂ O;
F: ZrOCl ₂ CaCl ₂	•0.5HC1•10	∄ ₂ 0; G:	β-CaCÍ2		6
Continued on the nex	t page.			β -CaCl ₂ ·4H ₂ O	
	e paye	- 2r0	Ст2.0н20	[25339-81-9]	

f			
COMPONENTS: (1)Zirconium dichlori ZrOCl ₂ ; [7699-43-6		ORIGINAL MEASUREMENTS Kamaeva, I.G.; Sereb	orennikov, V.V.
<pre>(2)Calciúm chloride; [10043-52-4] (3)Hydrogen chloride;</pre>	CaCl ₂ ;	*Zh. Neorg. Khim. 19 2151-4; Russ. J. (Engl. Transl.) 19	Inorg. Chem.
[7647-01-0] (4)Water; H ₂ O; [7732-	-18-5]		
EXPERIMENTAL VALUES		• · · · · · · · · · · · · · · · · · · ·	
Composition of Satu	rated Solutions	at 25°C	Nature of the Solid
CaCl ₂	нсі	ZroCl ₂	Phase ^g
	mass% m ₃ /mol kg	-la mass% m _l /mol kg ⁻¹	la
0 ^d 0 3.42 .396	15.00 5.25 15.16 5.34	6.60 .473 3.54 .255	A A
6.67 .787	15.00 5.39	1.97 .145	A
10.28 1.26	14.90 5.55 15.15 5.77 14.70 5.76	1.13 .0861	A
11.88 1.49 14.45 1.86	15.15 5.77 14.70 5.76	.94 .0733 .83 .0665	A A
15.28 2.00	15.20 6.06	.71 .0580	В
20.35 2.85		.72 .0629	В
23.66 3.60	14.70 6.28 15.30 7.08	1.75 .166	В
25.64 4.04 26.21 4.19	14.94 7.16 14.70 7.15	2.17 .213	B B+F
26.21 4.19 26.59 4.24	14.70 7.15 15.25 7.40	2.72 .271 1.66 .165	F
29.20 4.88	15.25 7.75	1.60 .166	F
31.30 5.43	15.01 7.93 14.70 7.82	1.75 .189	F
32.00 5.89	14.70 7.82	1.72 .187	F+D+G
31.80 5.39		-	D+G
0 ^e 0 2.60 .309	20.00 7.03 20.10 7.28	2.00 .144 1.60 .119	A
4.47 .541	19.88 7.32	1.18 .0890	A A
6.77 .843	19.93 7.56	1.01 .0784	A
7.46 .943	20.30 7.81	.98 .0772	A+B
8.28 1.05	19.75 7.63	.98 .0775	В
9.62 1.24 10.99 1.44	19.75 7.77 19.70 7.88	.88 .0708 .75 .0614	B B
14.10 1.94	19.70 8.27	.87 .0748	B
17.38 2.59	19.88 9.00	2.20 .204	В
17.52 2.66	20.00 9.25	3.20 .303	В
17.90 2.71 18.18 2.88	19.77 9.13 20.10 9.70	2.92 .276 4.90 .484	B B
18.42 2.93	19.86 9.61	5.04 .499	B
18.85 2.94	20.00 9.48	3.30 .320	Е
20.08 3.19	20.16 9.75	3.06 .303	E
20.16 3.20 21.36 3.49	20.10 9.72 20.19 10.03	3.05 .302 3.25 .331	E E
21.70 3.55	20.20 10.05	2.96 .301	F
22.97 3.81	19.70 9.94	2.98 .308	F
23.72 4.00	19.73 10.12	3.08 .323	F
25.28 4.54 28.80 5.07	19.80 10.84 20.00 10.71	4.84 .543 0 0	F+D+G D+G
a. Calculated by compiler			
b. Initial HCl concentration 5 mass% for this and the following 13 data points			
c. Initial HCl conce data points	ntration 10 mass	% for this and the fol	llowing 19
d. Initial HCl conce data points	ntration 15 mass	% for this and the fol	llowing 15
e. Initial HCl conce data points	ntration 20 mass	<pre>% for this and the fol</pre>	llowing 22
this experimental	point the sum o	s% H_2O obtained by different f mass% (HCl+CaCl ₂ +ZrC s% H_2O . Continued on the second	OClo) was

COMPONENTS:	ODICINAL WEACHDENEDURG.		
	ORIGINAL MEASUREMENTS:		
<pre>(1) Zirconium dichloride oxide; ZrOCl₂; [7699-43-6]</pre>	Belyaev, I.N.; Lobas, L.M. <i>Zh. Neorg. Khim.</i> 1968, <i>13</i> , 2295-9;		
<pre>(2) Strontium chloride; SrCl₂; [10476-85-4]</pre>	Russ. J. Inorg. Chem. (Engl. Transl.) <u>1968</u> , 13, 1185-7.		
(3) Water; H ₂ O; [7732-18-5]			
VARIABLES:	PREPARED BY:		
T/K = 298 Composition	J. Hála		
EXPERIMENTAL VALUES:			
Composition of Saturated Solutions a	at 25°C Nature of the Solid Phase ^b		
SrCl ₂ ZrOCl ₂	Density		
mass% m2/mol kg ^{-la} mass% m1/mol }	(g ^{-la} g cm ⁻³ ,		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1.484 A 5 1.483 A 9 1.479 A 1 1.470 A 2 1.474 A 0 1.475 A+B		
26.94 2.65 8.99 .78 28.35 2.78 7.40 .64 34.54 3.33 0 0	38 1.454 B 47 1.431 B 1.382 B		
a. Calculated by compiler			
b. A: ZrOCl ₂ ·8H ₂ O [13520-92-8]; B	- CHC1 - CH C [10025 70 4]		
c. Eutonic point			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Experimental details stated to be similar to those reported in earlier work (refs 1,2). Isothermal method was used. Solutions with excess solid were stirred for 8-10 h at 25°C. Total Cl content	 (1) ZrOCl₂·8H₂O, reagent grade, recrystallized from 6 mol dm⁻³ HCl. (2) SrCl₂·6H₂O, reagent grade, recrystallized from water. 		
determined by Volhard's method, Zr determined by chelatometric tit- ration in 5 mol dm ⁻³ HCl. Method for analysis of Sr not given. Solid phases were analyzed using the Schreinemakers' method of	(3) Source and purity of water and HCl not specified.		
wet residues.	ESTIMATED ERROR:		
In the source paper, the authors also report the viscosities (n)	Temp: precision ± 0.1 K (compiler, refs 1, 2). Soly: precision ± 2-5 % (compiler).		
and electrical conductivities (κ) for each of the saturated solutions.	REFERENCES :		
	 Belyaev, I.N.; Lobas, L.M. Zh. Neorg. Khim. 1965, 10, 946, Russ. J. Inorg. Chem. (Engl. Transl.) 1965, 10, 512. Belyaev, T.N.; Lobas, L.M. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 1967, 3, 285. 		

.

ORIGINAL MEASUREMENTS: **COMPONENTS:** Belyaev, I.N.; Lobas, L.M.; (1) Zirconium dichloride oxide; ZrOCl₂; [7699-43-6] Efimushkina, L.I. Kantserova, L.V. (2) Strontium chloride; SrCl₂; [10476-85-4] *Zh. Neorg. Khim. 1973, 18, 544-6; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1973</u>, 18, 285-6. (3) Hydrogen chloride; HCl; [7647-01-0] (4) Water; H₂O; [7732-18-5] EXPERIMENTAL VALUES: Composition of Saturated Solutions at 25°C Nature of the Solid ZrOCl, srcl, HCl Density Phase^f mass $m_2/mol kg^{-la} mass m_3/mol kg^{-la} mass m_1/mol kg^{-la} g cm^{-3}$ 0p 2.734 0 2.42 1.011 31.96 1.439 А 1.438 0.117 28.48 1.27 1.68 0.672 2.332 А 2.90 25.40 0.264 2.31 0.913 2.055 1.432 А 19.92 4.75 0.427 5.22 2.042 1.595 1.425 Α 14.26^e 1.236 2.729 7.24 5.73 0.442 1.410 Ά 18.34 2.85 0.224 1.618 7.31 2.804 А 25.70^C 2.401 0.398 1.411 0.813 4.79 A+B 2.00 2.04 2.76 0.228 27.16 2.518 0.822 1.404 в 29.66 2.804 2.25 0.925 1.37 0.115 1.367 R 32.49 0^d,e 3.098 1.35 0.560 0 0 1.374 в 21.66 1.717 7.52 2.912 1.258 А 5.46 0.462 5.89 2.172 14.29 1.079 А 1.289 11.93 0.050 3.307 7.78 1.286 8.64 0.610 Α 3.951 1.97 16.39 1.449 10.28 0.155 1.295 Α 20.68^C 1.882 7.33 2.901 2.69 0.217 1.320 A+B 21.39^e 1.937 7.08 2.787 1.86 0.150 1.315 B 21.48^e 1.982 8.51 1.63 0.134 1.318 в 3.413 23.87 2.217 7.62 3.077 0.58 0.048 1.308 В 6.50 24.40 2.227 2.580 0 ٥ 1.297 в a. Calculated by compilers b. Initial [HC1] = 1.0 mol dm⁻³ for first 10 data points. c. Eutonic points: each eutonic point was measured twice with identical results. d. Initial [HC1] = 3.0 mol dm^{-3} for the last 9 data points. e. The original paper reports mass% of HCl, SrCl₂, ZrOCl₂ and H₂O, with H₂O obtained by difference; the sum of mass% for these points does not equal 100, and the compilers assume that a typographical error (an average of + 2%) is associated with the concentration of HCl, $SrCl_2$, or $ZrOCl_2$, in addition to the estimated experimental precision of $\pm 2-5$ %. f. A: ZrOCl₂·8H₂O [13520-92-8]; B: SrCl₂·6H₂O [10025-70-4] Continued on the next page. . .

COMPONENTS :	ORIGINAL MEASUREMENTS:
 Zirconium dichloride oxide; ZrOCl₂; [7699-43-6] Strontium chloride; SrCl₂; [10476-85-4] Hydrogen chloride; HCl; [7647-01-0] Water; H₂O; [7732-18-5] 	 Belyaev, I.N.; Lobas, L.M.; Efimushkina, L.I. Kantserova, L.V. *Zh. Neorg. Khim. <u>1973</u>, 18, 544-6; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1973</u>, 18, 285-6.
VARIABLES: T/K = 298 Composition $m_3/mol \ kg^{-1} = 0.560-3.951$ EXPERIMENTAL VALUES:	PREPARED BY: J. Hála and M. Salomon

AUXILIARY	INFORMA	TION	
	SOURCE	AND	PURITY

OF MATERIALS:

METHOD/APPARATUS/PROCEDURE:

Isothermal method. Solutions containing excess solid were equilib-rated for 20-25 h. Zr determined (1)Not specified, but presumably same as in earlier work, (ref 1), by EDTA titration with Xylenol i.e., ZrOCl₂·8H₂O (reagent grade) recrystallized from 6 mol dm-3 Orange indicator, and Sr by EDTA titration in the presence of tar-HCl. taric acid; Cl content by Volhard's method. Solid phases were determined by Schreinemakers' method of wet residues. In the source paper, the authors also report the viscosities (η) and electrical conductivities (K) for ESTIMATED ERROR: each of the saturated solutions. Temp: precision ± 0.1 K (compiler, from ref 1). Soly: precision ± 2-5 % (compiler). **REFERENCES:** 1. Belyaev, I.M.; Lobas, L.M. Zh. Neorg. Khim. <u>1965</u>, 10, 946; Russ. J. Inorg. Chem. (Engl. Transl.) 1965, 10, 512.

134 Zirconium Haildes	and Oxynandes		
COMPONENTS :	ORIGINAL MEASUREMENTS:		
ZrOCl ₂ ; [7699-43-6]	Belyaev, I.N.; Lobas, L.M.		
(2) Barium chloride; BaCl ₂ ; [10361-37-2]	*Zh. Neorg. Khim. <u>1968</u> , 13, 2295-9. Russ. J. Inorg. Chem. (Engl. Transl.) <u>1968</u> , 13, 1185-7.		
(3) Water; H ₂ O; [7732-18-5]			
VARIABLES:	PREPARED BY:		
T/K = 298 Composition	J. Hála		
EXPERIMENTAL VALUES:			
Composition of Saturated Solutions a	t 25°C Nature of the		
BaCl ₂ ZrOCl ₂	Solid phase ^b Density		
mass% m_2 /mol kg ^{-la} mass% m_1 /mol k	g ^{-la} g cm ⁻³		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.480 A+B 1.472 A+B 1.453 A+B 1.426 A+B 1.344 A+B 1.310 A+B		
a. Calculated by compiler			
b. A: ZrOCl ₂ ·8H ₂ O [13520-92-8]; B:	BaCl ₂ ·2H ₂ O [10326-27-9]		
c. Eutonic point	2 2		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Experimental details stated to be similar to those reported in earlier work (refs 1,2). Isothermal method was used. Solutions with excess solid were stirred for 8-10	<pre>(1)ZrOCl₂·8H₂O, reagent grade, recrystallized from 6 mol dm⁻³ HCl. (2)BaCl₂·2H₂O, reagent grade,</pre>		
h at 25°C. Total Cl content deter- mined by chelatometric titration in 5 mol dm ⁻³ HCl. Method for analysis of Ba not given. Solid phases were analyzed using the	 (3) Source and purity of water not specified. 		
Schreinemakers' method of wet			
residues.	ESTIMATED ERROR:		
In the source paper, the authors also report the viscosities (n) and electrical conductivities (K) for each of the saturated solutions.	Temp: precision ± 0.1 K (compiler, refs 1, 2). Soly: precision ± 2-5 % (compiler).		
	REFERENCES :		
	 Belyaev, I.N.; Lobas, L.M. 2h. Neorg. Khim. <u>1965</u>, 10, 946, Russ. J. Inorg. Chem. (Engl. Transl.) <u>1965</u>, 10, 512. Belaev, I.N.; Lobas, L.M. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. makhwal 1967 2, 285 		
	REFERENCES: 1. Belyaev, I.N.; Lobas, L.M. 2h. Neorg. Khim. 1965, 10, 946, Russ. J. Inorg. Chem. (Engl. Transl.) 1965, 10, 512. 2. Belaev, I.N.; Lobas, L.M. Izv.		

Zirconium Hallo	as and Oxynalides 135
Components :	ORIGINAL MEASUREMENTS:
<pre>(1) Zirconium dichloride oxide; ZrOCl₂; [7699-43-6]</pre>	Belyaev, I.N.; Lobas, L.M. Izv. Vyssh. Uchebn. Zaved., Khim.
(2) Lithium chloride; LiCl; [7447-41-8]	Khim. Tekhnol. <u>1967</u> , 10, 255-8.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
Composition	
EXPERIMENTAL VALUES:	•••••••••••••••••••••••••••••••••••••••
Composition of Saturated Solutions	at 25°C Nature of the Solid Phase ^D
LiCl Zro	DCl ₂
mass% m ₂ /mol kg ^{-la} mass% m	/mol kg ^{-la} .
0 0 37.60 2.07 0.748 32.62	
2.07 0.748 $32.822.87$ 1.02 30.95	2.63 A
5.54 1.90 25.76	2.11 A
10.03 3.32 18.65 13.67 4.40 12.97	
13.67 4.40 12.97 19.88 6.31 5.77 27.80 9.23 1.12	0.436 A
30.22 10.29 0.50 33.41 11.98 0.80	0.0405 A 0.0683 A
37.70 14.47 0.84 39.00 15.33 1.00	0.0767 A
43.80 18.77 1.16 44.25 19.14 1.20	
44.25 19.14 1.20	0.125 A,B
45.87 19.99 0	0 В
a. Calculated by compiler	
b. A: ZrOCl ₂ ·8H ₂ O [13520-92-8] H	3: LiCl·H ₂ O [16712-20-2]
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess solid were mixed	(1) ZrOCl ₂ [•] 8H ₂ O, reagent grade, recrystallized from 6 mol dm ⁻³
for 10-12 h. Total Cl ⁻ content determined by Volhard's method;	HC1.
Zr determined gravimetrically as ZrO ₂ ; LiCl concentration found by	(2)LiCl, reagent grade, recrystal- lized from water.
difference. Solid phases were identified by chemical analysis and by Schreinemakers' method.	(3)Source and purity of water and HCl not specified.
	ESTIMATED ERROR:
	Temp: precision \pm 0.1 K. Soly: precision \pm 1-2 $\%$ (compiler).
	REFERENCES :

•

		· · · · · · · · · · · · · · · · · · ·			
COMPONENTS :		ORIGINAL ME	ASUREMENTS:		
<pre>(1) Zirconium dichloride ZrOCl₂; [7699-43-6]</pre>	ZrOCl ₂ ; [7699-43-6]		Belyaev, I.N.; Lobas, L.M.		
(2) Sodium chloride; NaCl [7647-14-5]	2) Sodium chloride; NaCl; [7647-14-5]		g. Khim. <u>1965</u> Russ. J. <u>Ino</u> z Transl.) <u>1965</u>	g. Chem.	
(3) Water; H ₂ O; [7732-18-	-5]	512-4.			
VARIABLES:		PREPARED BY	;		
T/K = 298 Composition	J. Hála	J. Hála			
EXPERIMENTAL VALUES:					
Composition of Saturate		at 25°C		Nature of the Solid	
NaCl	Zrocl ₂		Density	Phase ^b	
mass% m ₂ /mol kg ^{-la}	mass% m _l /mo	l kg ^{-la}	g cm ⁻³		
0 0 2.81 0.761 5.52 1.49 7.00 1.868 7.08c 1.886 7.51 2.01 8.08 2.15 12.50 3.17 13.06 3.30 16.51 4.07 20.63 4.93 26.71 6.24 a. Calculated by compi b. A: ZrOCl ₂ .8H ₂ O [] c. Eutonic point	34.00 3 31.00 2 28.90 2 28.70 2 28.53 2 27.66 2 20.02 1 19.26 1 14.14 1 7.82 0 -	.505 .416 .67 .60 .14 .614	1.492 1.455 1.449 1.432 1.421 1.388 1.345 1.330 1.296 1.247 1.195	A A A A+B B B B B B B B B B B	
	AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:		SOURCE AND	PURITY OF MATER	IALS;	
Isothermal method used. containing excess solid for 8-10 h. Total Cl ⁻ of determined by Volhard's determined gravimetrical NaCl concentration found ference. Solid phases v tified by Schreinemakers The original paper also electrical conductivitie viscosities of saturated	were mixed content method, Zr Lly as ZrO ₂ . d by dif- were iden- s' method. gives es and	<pre>(1) ZrOCl2 rystal HCl. (2) NaCl, from w (3) Source HCl no ESTIMATED F Temp: p</pre>	*8H ₂ O, reagen lized from 6 reagent grade ater. and purity o t specified. ERROR: recision ± 0 recision ± 1	nt grade, rec- mol dm ⁻³ > recrystallized of water and	

				137	
COMPONENTS:	ORIGINAL MEASUREMENTS:				
<pre>(1) Zirconium dichloride ZrOCl₂; [7699-43-6]</pre>	oxide;		Belyaev, I.N.; Lobas, L.M.		
<pre>(2) Potassium chloride; KCl; [7447-40-7]</pre>		Russ. J.	*Zh. Neorg. Khim. <u>1965</u> , l0, 946-9; Russ. J. Inorg. <u>Chem</u> . (Engl. Transl.) <u>1965</u> , l0, 512-4.		
(3) Water; H ₂ O; [7732-18-	-5]				
VARIABLES:		PREPARED BY:	······································		
T/K = 298 Composition	J. Hála				
EXPERIMENTAL VALUES:					
Composition of Saturat	ed Solutions:	at 25°C		Nature of the Solid Phase ^D	
KCl	Zrocl ₂		Density		
mass% m ₂ /mol kg ^{-la}	mass% <i>m</i> 1/m	ol kg ^{-la}	g cm ⁻³		
0 0 3.07 0.664 3.92 0.857 4.16c 0.908 4.20 0.904 4.45 0.937 7.12 1.456 8.85 1.778 11.89 2.31 12.16 2.36 16.11 3.04 19.50 3.59 26.80 4.91 a. Calculated by compi b. A: ZrOCl ₂ ·8H ₂ O [] c. Eutonic point	34.90 34.71 34.40 33.47 31.85 27.27 24.37 19.19 18.64 12.83 7.60	3.38 3.158 3.175 3.143 3.014 2.81 2.33 2.05 1.56 1.51 1.01 0.585 -	1.4916 1.4916 1.4870 1.4891 1.454 1.399 1.354 1.303 1.258 1.200 1.1775	A A A+B B B B B B B B B B B B B B B B B	
	AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:		SOURCE AND F	URITY OF MATER	IALS:	
METHOD/APPARATOS/PROCEDURE: Isothermal method used. containing excess solid for 8-10 h. Total Cl ⁻ of determined by Volhard's Zr determined gravimetri ZrO ₂ . KCl concentration difference. Solid phase identified by Schreinema method. The original pa gives electrical conduct and viscosities of satur tions.	were mixed content method, cally as found by es were kers' uper also civities	 (1) ZrOCl₂· recryst HCl. (2) KCl, re from wat (3) Source HCl not ESTIMATED EN Temp: pr 	8H ₂ O, reagen callized from eagent grade ter. and purity of specified. RROR: cecision ± 0 cecision ± 1	nt grade, m 6 mol dm ⁻³ , recrystallized of water and	

Zirconium Halides and Oxyhalides

COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Zirconium dichloride oxide; ZrOCl₂; [7699-43-6]</pre>	Belyaev, I.N.; Lobas, L.M.		
<pre>(2) Rubidium chloride; RbCl; [7791-11-9]</pre>	*Zh. Neorg. Khim. <u>1968</u> , 13, 1149-54; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1968</u> , 13, 601-4.		
(3) Water; H ₂ O; [7732-18-5]			
VARIABLES:	PREPARED BY:		
T/K = 298 Composition	J. Hála		
EXPERIMENTAL VALUES:			
Composition of Saturated Solutions a	at 25°C Nature of the Solid Phase ^b		
RbCl ZrOCl ₂	Density		
mass% m ₂ /mol kg ^{-la} mass% m ₁ /mol	kg ^{-la} g cm ⁻³		
3.920.53835.80312.311.8231.84315.892.4731.01319.223.1029.51320.61c3.3228.13320.803.3527.80322.143.5225.78228.284.3718.181	.036 1.631 B .779 1.625 B .906 1.564 B .161 1.531 B 1.487 B		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Solutions containing excess solid were mixed for 8-10 h. Total Cl ⁻ content deter- mined by Volhard's method. Zr deter- mined gravimetrically as ZrO ₂ . RbCl content found by difference. Solid phases were identified by Schreine- makers' method. The source paper also lists viscosities and electrical conductivities of saturated solu- tions.	 (1) ZrOC1, 8H₂O reagent grade, recrystallized from 6 mol dm⁻³ HC1. (2) RbC1, reagent grade, recrystallized from water. (3) Source and purity of water and HC1 not specified. 		

COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) Zirconium dichloride oxide; ZrOCl ₂ ; [7699-43-6]	Belyaev, I.N.; Lobas, L.M. *Zh. Neorg. Khim. 1968, 13,		
(2) Cesium chloride; CsCl; [7647-17-8]	1149-54; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1968</u> , 13,		
(3) Water; H ₂ O; [7732-18-5]	601-4.		
VARIABLES:	PREPARED BY:		
T/K = 298 Composition	J. Hála		
EXPERIMENTAL VALUES: Composition of	Saturated Solutions Nature of the		
$\begin{array}{c} \text{CsCl} \\ \text{mass} & m_2/\text{mol} & \text{kg}^{-1a} \\ \end{array} \qquad \begin{array}{c} \text{mass} & m_1/\text{mol} \\ \text{mass} & m_1/\text{mol} \\ \end{array}$	l kg ^{-la} Density Solid Phase ^b l kg ^{-la} g cm ⁻³		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.279 1.631 A .332 1.642 A,B .253 1.664 B .129 1.687 B		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.909 1.725 B .758 1.778 B .713 1.820 B .513 1.861 B .490 1.866 B .361 1.897 B		
57.47 10.06 5.52 61.73 11.03 1.81	.837 1.932 C .279 1.918 C 1.912 C		
AUXILIARY	INFORMATION		
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
Isothermal method used. Solutions containing excess solid were mixed for 8-10 h. Total Cl ⁻ content determined by Volhard's method, Zr determined gravimetrically as ZrO ₂ . CsCl concentration found by differ- ence. Solid phases were identified	 (1) ZrOCl₂·8H₂O, reagent grade, recrystallized from 6 mol dm⁻³. (2) CsCl, reagent grade, recrystal- lized from water. (3) Source and purity of water not 		
by Schreinemakers' method. The source paper also lists viscosities and electrical conductivities of saturated solutions.	specified.		
	ESTIMATED ERROR:		
	Temp: precision ± 0.1 K. Soly: precision ± 1-2 % (compiler).		
	REFERENCES:		
	L		

•

COMPONENTS:		onido	do.	ORIGINA	L MEASURE	MENTS:	
<pre>(1) Zirconium dichloride oxide; ZrOCl₂; [7699-43-6]</pre>							
(2) Zirconi ZrO(NO	lum dinit 3 ⁾ 2; [138		e;	ļ	, F. M.; i m. Eng. D		
(3) Hydroge [7647-(de; HCl;		446-8.		<i>aca</i> <u>1970</u>	ر <i>1</i> ت و
(4) Nitric	acid; HN	0 ₃ ; [7697	-37-2]				
(5) Water;	н ₂ 0; [77	32-18-5]					
EXPERIMENT	AL VALUES	:					
Compositio	n of the	saturated	solution	s at 0°C			
Initial Total Acidity ^a	Nitrat	e, NO ₃	Chlorid	e, C1 ⁻	Zirco	nium	Density
$\frac{(c_3 + c_4)}{\text{mol dm}^{-3}}$	mass % ^b	mass %C	mass % ^b	mass % ^C	mass % ^b	mass % ^C	ρ∕ g cm ⁻³ d
7.94	16.8 17.6 18.3	17.6 18.2 18.9	9.16 8.7 8.2	8.4 7.9 7.6	16.25 16.24 16.24	13.95 14.29 14.46	
	19.1	19.7	7.7	7.0	16.20		
8.4	19.45 20.26 21	20.6 21.6 22.3	9.2 8.7 8.2	8.1 7.6 7.1	14.7 14.7 14.65	14.48 11.51 11.88	1.481
	21.8 22.6	22.6 23.5	7.7 7.25	7.0 6.5	14.63 14.60	12.86 12.88	
	24.2 25.0	24.2 25.1	6.27 5.8	6.1 5.6	14.55 14.52	13.2 13.4	
	25.8	26.1	5.3	4.7	14.49	11.52	
	26.5	26.6	4.8	4.4	14.47	12.2	1.507
^a Total acid dissolve free acid 8.0 ± 0.2 ^b Initial co	ZrO ₂ and s. Equil mol dm ⁻³ oncentrat	make up t ibrium to ion.	he soluti	on. It i	ncludes b	oth combi	ned and
^d At 25°C.							
to 1	be solid	rated sol solutions of ZrOCl ₂	formed b	equilibr y inclusi	ium solid on of ZrC	phases w (NO ₃) ₂ .5H	ere found 20 into
Continued of	on the ne	xt page .	•••				

<pre>COMPONENTS: (1) Zirconium dichloride oxide; ZrOCl₂; [7699-43-6] (2) Zirconium dinitrate oxide; ZrO(NO₃)₂; [13826-66-9] (3) Hydrogen chloride; HCl; [7647-01-0] (4) Nitric acid; HNO₃; [7697-37-2] (5) Water; H₂O; [7732-18-5] VARIABLES: T/K = 273 c(NO₃)/c(Cl⁻) ratio METHOD/APPARATUS/PROCEDURE: Isothermal method used. Aliquots Zr(IV) in a mixture of HCl and HN solutions of acids to obtain solu acidity at 25°. These solutions conical stoppered flasks for 100- times were needed for crystalliza Crystallization times were invers Cl⁻/NO₃ ratios, and seeding with crystals was not effective in acc When the amount of crystals seeme were filtered and washed with die Solid phases and saturated soluti NO₃, and Zr. Cl⁻ was titrated by alkalimetrically after reduction determined gravimetrically as ZrO were also calculated from molarit values were reported to be in goo results. Total acidity was obtai trations. Solid phases were also diffraction.</pre>	O3 were mixed with 10 mol dm ⁻³ tions with the desired total were equilibrated at 0° in 350 days since long waiting tion to take place. ely proportional to the ZrOCl ₂ ·8H ₂ O or Zr(NO3) ₂ ·5H ₂ O elerating crystallization. d to remain unchanged they thylether cooled to 0°C. ons were analyzed for Cl ⁻ , Volhard method, NO3 determined to NH ₃ by Dewarda alloy, and Zr 2. For each solution mass% y and density data. Calculated d agreement with analytical ned from Cl ⁻ and NO3 concen-	
AUXILIARY	INFORMATION	
SOURCE AND PURITY OF MATERIALS:	SOURCE AND PURITY OF MATERIALS:	
All chemicals used were reagent grade (their source was not specified). Solutions containing high Zr concen- trations were prepared from partially dehydrated hydrous Zr oxide. The latter was prepared by precipitating Zr hydroxide with NH ₄ OH, washing it with water, and dehydrating the paste (containing 80% H ₂ O) by heterogeneous distillation with toluene. The product contained 19% H ₂ O and was dissolved by gentle heating in a mixture of concentrated HNO ₃ and HCl to obtain a stock solution containing (in mol dm ⁻³) 3.01 ZrO ²⁺ , 5.70 NO ₃ , and 2.30 Cl ⁻ .	ESTIMATED ERROR:	

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Ammonium hexachlorozirconate(IV); (NH₄)₂ZrCl₆; [19381-66-9]</pre>	Toptygina, G.M.; Barskay	a, I.B.	
<pre>(2) Hydrogen chloride; HCl; [7647-01-0]</pre>	*Zh. Neorg. Khim. <u>1965</u> , 10, 2254-61; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1965</u> , 10,		
(3) Water; H ₂ O; [7732-18-5]	1226-30.		
VARIABLES:	PREPARED BY:		
T/K = 298	J. Hála	[
$m_2/mol \ kg^{-1} = 14.30 - 18.91$			
EXPERIMENTAL VALUES:			
Solubility of (NH ₄) ₂ ^Z rCl ₆ in aqueous	HCl at 25°C Na So	ture of the lid Phase ^b	
HCl ZrO2 NH4Cl	<u>(NH</u> 4)2 ^{ZrCl} 6		
masst m ₂ /mol kg ^{-la} masst masst			
32.0214.302.3802.2632.5814.472.0501.52	6.57 .315	A	
32.0214.302.3802.2632.5814.472.0501.5233.5615.282.2502.48	5.66 .270 6.21 .303	A+B	
33.56 15.28 2.250 2.48 34.78 15.96 1.980 1.76		A+B	
34.78 15.96 1.980 1.76 35.81 16.21 1.300 1.15 36.92 17.20 1.525 1.34 37.48 17.41 1.260 1.115	5.46 .269 3.59 .174	B B	
36.92 17.20 1.525 1.34	4.21 .210	B	
36.92 17.20 1.525 1.34 37.48 17.41 1.260 1.115	3.48 .173	B	
39.24 18.63 1.085 .94	2.99 .152	в	
39.49 18.91 1.170 1.03	3.23 .166	в (
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS	:	
Isothermal method used. Solutions containing excess $(NH_4)_2ZrCl_6$ were shaken for several days. Zr was determined gravimetrically as ZrO_2 , NH_4^+ by Kjeldahl method, and Cl^- by Volhard's method. Solid phases were identified by chemical and microscopic analysis, and by Schreinemakers' method.	(1) (NH ₄) ₂ ZrCl ₆ was prepar saturation with HCl ga solution of NH ₄ Cl and 8H ₂ O. Source and puri starting materials not	ns of a hot ZrOCl ₂ • .ty of	
1	ESTIMATED ERROR:		
	The temperature error i specified. Soly: precision ± 2-5 %		
	REFERENCES :		

ORIGINAL MEASUREMENTS:
Toptygina, G.M.; Barskaya, I.B.
*Zh. Neorg. Khim. <u>1965</u> , 10, 2254-61; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1965</u> , 10, 1226-30.
1220-30.
PREPARED BY:
J. Hála

EXPERIMENTAL VALUES:

Compos	ition of Saturat	of Saturated Solutions at 25°C				
	нсі	ZrO2_	KCl	K	2 ^{ZrCl} 6	the Solid Phase ^b
mass%	^m 2/mol kg ^{-la}	mass%	mass%	mass ^{ga}	m _l /mol kg ^{-la}	•
32.71 34.01 34.24 35.83 37.00	16.72 17.06 17.68 18.17 19.34	4.40 3.65 4.08 3.25 3.40	2.16 1.92 2.92 3.40 2.10	13.65 11.32 12.65 10.08 10.54	.662 .542 .623 .488 .526	A+B A+B A+B B+C B+C
36.60 38.00 38.70	19.35 19.29 19.77	3.71 2.57 2.455	3.79 3.11 2.97	11.51 7.97 7.61	.580 .386 .371	B+C D D

a. Calculated by compiler. The values of mass% K_2rCl₆ were calculated from mass% $2rO_2$. Similar calculations from mass% KCl showed that both sets of results agreed only for 2 highest mass% HCl values where K_2rCl₆ is the equilibrium solid phase. At lower HCl concentrations the mass% KCl data yielded lower mass% K_2rCl₆ values.

C: ZrOCl₂·3H₂O [66905-82-6]; D: K₂ZrCl₆ [18346-99-1]

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess K ₂ ZrCl ₆ were shaken for several days. Zr and K were determined gravimetrically as ZrO ₂ and K ₂ SO ₄ , respectively; Cl ⁻ determined by Volhard's method. Solid phases were identified by chemical and microscopic analysis, and by Schreinemakers' method.	(1) K ₂ ZrCl ₆ was prepared by saturation with HCl gas of a solution of ZrOCl ₂ '8H ₂ O and KCl in aqueous HCl. The solid was dried under dry HCl gas. Source and purity of starting materials not speci- fied.
	ESTIMATED ERROR:
	The temperature error is not specified.
	Soly: precision 2-5 % (compiler).
	REFERENCES :

b. A: ZrOCl₂·8H₂O [13520-92-8]; B: KCl [7447-40-7]

Zirconium Halides and Oxyhalides

COMPONENTS :			ORIGINAL MEAS	UREMENTS :	
(1) Rubidium hexachlorozirconate(IV);					
Rb ₂ ZrCl ₆ ; [19381-65-8]			Toptygina, G.M.; Barskaya, I.B. *Zh. Neorg. Khim. 1965, 10,		
<pre>(2) Hydrogen chloride; HCl [7647-01-0]</pre>			2254-61	; Russ. J. 1 Transl.) <u>19</u> (norg. Chem.
(3) Water; H ₂ O; [773	2-18-5]		1220-30	•	
VARIABLES:			PREPARED BY:		
T/K = 298 $m_2/mol kg^{-1} = 10.8$	4-18.44		J. Hála		
EXPERIMENTAL VALUES:					
Composition of Sat					Nature of the Solid Phase ^b
HCl	Zr02	RbCl	R	2ZrCl ₆	
mass% m ₂ /mol kg					
27.48 10.84			3.02		
28.25 11.28 28.26 11.25	./90 732	2.10 2.42	3.04 2.82	.0932 .0862	A+B A+B
28.87 11.64	.802	1.77	3.09	.0956	
30.01 12.19	.645	1.06	2.49	.0777	A
31.03 12.61	.389	0.73	3.09 2.49 1.50 1.05	.0468 .0331 .0260	A
32.07 13.15	.272	.52	1.05	.0331	A
33.64 14.08 35.17 15.02	.210	.42	.809	.0260 .0205	A
36.10 15.65	.168	.30	.647	.0215	A A
36.30 15.78	.152	.30	.809 .624 .647 .586	.0196	A
38.47 17.29	.135	.27	.520	.0179	A
40.02 18.44	.120	.24	.462	.0163	A
b. A: Rb ₂ ZrCl ₆ [19381-65-8]	; B: 2	2roc12.8H20	[13520-92-8	8]
 	AU	XILIARY	INFORMATION		<u></u>
METHOD/APPARATUS/PROCEDU				JRITY OF MATER	TALS:
Isothermal method u containing excess R shaken for several Rb were determined as ZrO ₂ and Rb ₂ SO ₄ , Cl ⁻ determined by W Solid phases were i chemical and micros and by Schreinemake	b ₂ ZrCl ₆ werd days. Zr a gravimetric respective olhard's me dentified b copic analy	e nd ally ly. thod. y	a dilute and RbC period o	ed solution l over H ₂ SO of time. ² So of starting	A for a lõng
			ESTIMATED ER	ROR:	
1					or is not
			The temper specified Soly: pre	1.	
			specified	1.	-5 % (compiler)
			specified Soly: pre	1.	
			specified Soly: pre	1.	

Encoman	nanue	s and Oxynalic	103	145
COMPONENTS :	ORIGINAL MEASUREMENTS:			
<pre>(1) Cesium hexachlorozirconate(I Cs₂ZrCl₆; [16918-86-8]</pre>	Toptygina, G.M.; Barskaya, I.B. *Zh. Neorg. Khim. 1965, 10,			
<pre>(2) Hydrogen chloride; HCl; [7647-01-0]</pre>	(2) Hydrogen chloride; HCl;			norg. Chem. 5, 10, 1226-30.
(3) Water; H ₂ O; [7732-18-5]				
VARIABLES:		PREPARED BY:		
T/K = 298 m_2 / mol kg ⁻¹ = 7.80-16.60		J. Hála		
EXPERIMENTAL VALUES:				
Composition of Saturated Solut				Nature of the Solid Phase ^b
_		Cs	- •	
mass% m ₂ /mol kg ^{-la} mass%				.a `
22.25 8.29 .903 25.00 9.39 .430 25.40 9.58 .405 25.60 9.65 .360 30.80 12.24 .043 31.08 12.40 .040	.36 .07 .08 .96 .12 .11 .09 .08 .05 .00 .05 .00 .05 .00 .05 .00 .05 .00	ues of mass ^s ations from for HCl com	.0451 .0400 .00506 .00472 .00415 .00381 .00285 .000392 & Cs_ZrCl6 W mass% CsCl mcentrations	showed that greater than
KUA	KILIARY	INFORMATION	<u></u>	
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PL	JRITY OF MATER	IALS:
Isothermal method used. Solutions containing excess Cs_2ZrCl_6 were shaken for several days. Zr and Cs were determined gravimetrically as ZrO_2 and Cs_2SO_4 , respectively. Cl ⁻ determined by Volhard's method. Solid phases were identified by chemical and microscopic analysis, and by Schreinemakers' method.		solution CsCl in saturat boiling	 Source ar 	8H ₂ O and
		specifie	erature erro d.	or is not -5 % (compiler).

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Zirconium bromide; ZrBr₄; [13777-25-8]</pre>	Berdonosov, S. S.; Lapitskii, A. V. Vlasov, L. G.
<pre>(2) Trichloromethane (chloroform); CHCl₃; [67-66-3]</pre>	Vestn. Mosk. Univ., Ser. 2: Khim. <u>1963</u> , 18 (1), 38-9.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The original document presen	ted only one experimental
value in a graph. From it t	he compiler estimated the
solubility of $2rBr_A$ at $25^{O}C$	to be approximately
2.1 mass% (0.0522 mol kg ⁻¹).	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Excess	(1) $ZrBr_{A}$ was prepared by bromination
HfBr ₄ was agitated with 5 cm^3 of the solvent in a stoppered test-tube in	of a mixture of ZrO2 (source and purity not specified) and char-
a thermostated bath for three hours, which was found sufficient to reach	coal. The product was purified by vacuum distillation at 250°.
equilibrium.	Analysis (mass%, found/calcu-
After centrifugation, a 1.0-1.5 g	lated): Zr 22.41-22.52/22.20, Br 77.85-77.95/77.80.
sample of the saturated solution was hydrolyzed in water in a crucible at	(2) Trichloromethane (chloroform)
$50-60^{\circ}C$ and then ignited to $2rO_2$.	(source and purity not specified) was purified and dried by
All procedures were carried out in	
a dry box.	
	ESTIMATED ERROR:
	Nothing specified.
	Nothing spectree.

Zirconium Halide	s and Oxynalides 147
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Zirconium bromide; ZrBr₄; [13777-25-8]</pre>	Berdonosov, S. S.; Lapitskii, A. V. Vlasov, L. G.
(2) 1,2-Dichloroethane; C ₂ H ₄ Cl ₂ ; [107-06-2]	Vestn. Mosk. Univ., Ser. 2: Khim. <u>1963</u> , 18 (1), 38-9.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	L
The original document preser value in a graph. From it t solubility of ZrBr ₄ at 25 ^o C 4.1 mass% (0.104 mol kg ⁻¹).	the compiler estimated the
	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Excess ZrBr4 was agitated with 5 cm ³ of the solvent in a stoppered test-tube in a thermostated bath for three hours, which was found sufficient to reach equilibrium. After centrifugation, a 1.0-1.5 g sample of the saturated solution was hydrolyzed in water in a crucible at 50-60°C and then ignited to ZrO ₂ . All procedures were carried out in a dry box.	 (1) ZrBr₄ was prepared by bromination of a mixture of ZrO₂ (source and purity not specified) with char- coal. The product was purified by vacuum distillation at 250°C. Analysis (mass%, found/calcu- lated): Zr 22.41-22.52/22.20, Br 77.85-77.95/77.80. (2) 1,2 Dichloroethane (source not specified) was purified and dried by standard methods.
	REFERENCES :

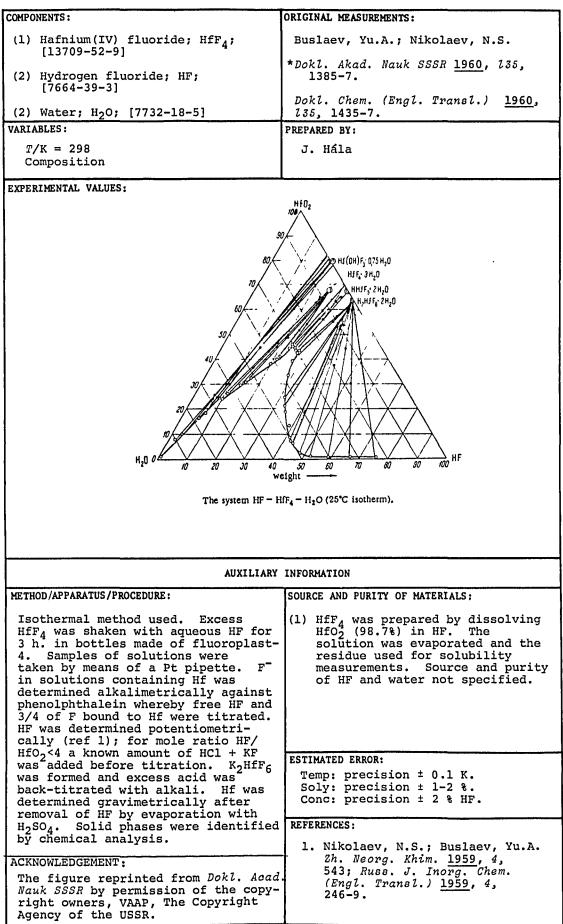
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Zirconium dibromide oxide; ZrOBr₂; [33712-61-7]</pre>	von Hevesy, G.; Wagner, O.H.
(2) Hydrogen bromide; HBr; [10035-10-6]	Z. Anorg. Allg. Chem. <u>1930</u> , 191, 194-200.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 $c_2/mol dm^{-3} = 1.046-13.17$	J. Hála
EXPERIMENTAL VALUES:	
Solubility of ZrOBr ₂ in aqueous HB:	r at 25°C
HBr ZrO ₂ ZrOBr ₂	Density
$c_2/mol dm^{-3}$ g dm ⁻³ $c_1/mol dm^{-3}$	g cm ⁻³
1.046 355.7 2.886	1.7488
1.301 344.5 2.795 1.485 329.6 2.674 2.485 1.00.5 1.465	1.7343 1.7139
3.488 190.5 1.546	1.5606
3.663 180.2 1.319 4.500 125.3 1.017	1.5525 1.4900
6.44 26.80 0.2176	1.4060
8.72 3.654 0.0297 9.09 3.656 0.0298	1.4836 1.4861
13.17 2.11 0.0172	-
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess ZrOBr ₂ ^{.8H₂O were mixed for several days. Methods of analysis and equilibrium solid phases not specified.}	(1) ZrOBr ₂ ·8H ₂ O was prepared by dissolving Zr hydroxide in HBr, and by subsequent careful evaporation. Source and purity of starting materials not specified.
	ESTIMATED ERROR:
	Nothing specified.
	REFERENCES:

з.	The solubility of hafnium-containing substances.	
	Systems	Pages
	$HfF_4 + HF + H_2O$	150-153
	$_{}$ + KF + H ₂ O	154
	+ + Сн ₃ соон	155
	+ RbF + H ₂ O	156
	$ + CsF + H_2^{-0}$	157
	+ + сн _з соон	158
	$\frac{1}{1}$ KHfF ₅ + H ₂ O	159
	$RbhfF_5 + H_2O$	160
	$C_{sHfF_5} + H_2^{0}$	161
	$(NH_4)_2 HfF_6 + H_2O$	162
	$K_2 H f F_6 + H_2 O$	163-166
	$+ HF + H_2O$	167
	$Rb_2HfF_6 + H_2O$	168-170
	$Cs_2HfF_6 + H_2O$	171-173
	$(NH_4)_3HfF_7 + H_2O$	174
	$+ NH_4F + H_2O$	175
	$HfCl_4 + CH_3CN + (C_5H_{11})_2O$	176, 177
	$Hfocl_2 + H_2O$	178, 179
	$+ HC1 + H_20$	180-189
	+ NH ₄ Cl + H ₂ O	190
	$ + MgCl_2 + H_2O$	191
		192
		193-195
	$\frac{1}{1} + \frac{1}{3rCl_2} + \frac{1}{H_2O}$	196
	+ BaCl ₂ + H ₂ O	197
	\pm + LiCl + H ₂ O	198
	+ NaCl + H ₂ O	199
	$+ \text{ KCl} + \text{ H}_2 \text{ O}$	200
	\pm RbCl + $\overline{\mu}_2$ O	201
	+ CsCl + H_2O	202, 203
	$Hfocl_2 \cdot 8H_2O + CH_3OH$	204
	+ C ₂ H ₅ OH	205
	+ 1-C ₆ H ₁₃ OH	206
	+ 1-C ₇ H ₁₅ OH	207
	+ 1-С ₈ н ₁₇ он	208
	$(NH_4)_2HfCl_6 + HCl + H_2O$	209
	$K_2HfCl_6 + HCl + H_2O$	210
	$Rb_2HfCl_6 + HCl + H_2O$	211
	$Cs_2HfCl_6 + HCl + H_2O$	212
	HfBr ₄ + CHCl ₃	213
	+ ccl ₄	214
	+ CH ₂ ClCH ₂ Cl	215
	$HfOBr_2 + HBr + H_2O$	216

COMPONENTS :	EVALUATOR:
<pre>(1) Hafnium fluoride; HfF₄; [13709-52-9]</pre>	J. Hála Department of Inorganic Chemistry J. E. Purkyne University
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>	61137 Brno, Czechoslovakia
(3) Water; H ₂ O; [7732-18-5]	June 1985

The solubility of hafnium fluoride in aqueous hydrogen fluoride.

The solubility of HfF_4 was determined at 298 K as a function of HF concentration by Hevesy and Wagner (ref 1) and Buslaev and Nikolaev (ref 2). An inspection of the molal $(m_1/mol kg^{-1})$ solubility data in the compilations shows that at low HF concentrations the two data sets differ greatly. The reason for the discrepancy is not clear. The two values of Hevesy and Wagner (ref 1) agree well with the isotherms of Buslaev and Nikolaev (ref 2) at the highest HF concentrations.


Due to the lack of agreement in the published values in the low HF concentration range the evaluator cannot recommend any data. For tentative values the evaluator suggests the data of Buslaev and Nikolaev (ref 2) for 298 K to be used (see the compilation for the numerical data).

REFERENCES:

- 1. von Hevesy, G.; Wagner, O. H. Z. Anorg. Allgem. Chem. <u>1930</u>, 191, 194.
- Buslaev, Yu. A.; Nikolaev, N. S. Dokl. Akad. Nauk SSSR <u>1960</u>, 135, 1385.

Hafnium Halides and Oxyhalides				151		
COMPONENTS:			ORIGINAL M	ORIGINAL MEASUREMENTS:		
<pre>(1) Hafnium(IV) fluoride; HfF₄; [13709-52-9]</pre>		von Hevesy, G.; Wagner, O.H.				
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>			Z. Anorg. Allg. Chem. <u>1930</u> , 191, 194-200.			
(3) Water;	H ₂ O; [7732-18-	5]				
VARIABLES:			PREPARED B	Y:		
$\frac{T/K}{c_2/mol} dm$	-3 = 0 - 20.09		J. Hála			
EXPERIMENTAL V	ALUES:					
Solubili	ty of HfF_4 in .	aqueous HF a	at 25°C		Density	
	HF	HfO ₂	Hf	F ₄		
$c_2/mol dm^{-3}$	HF m ₂ /mol kg ^{-la}	$g dm^{-3} c_{1}$	_l /mol dm ⁻³	m _l /mol kg ^{-la}	g cm ⁻³	
0	0	413.6	1.964 2.258	1.82	1.577 1.537	
0 1.06	0 1.12	457.6 568.3	2.258	2.35 2.86	1.654	
1.06		571.2	2.711	2.87	1.655	
6.03 6.03	7.20	892.1	4.235 4.260	5.06	2.036 2.040	
10.05	7.22 13.27 21 14	897.1 903.9	4.290	5.10 5.67	2.050	
15.05	21.14	733.6	3.481	4.72	1.899	
15.03	21.33 29.14	/41.0	3.323	5.00	1.902 1.394	
20.09 20.09	29.14	250.6 258.9	1.190 1.229	1.73 1.78	1.404	
		AUXILIAR	INFORMATIO	N		
METHOD/APPARA	TUS/PROCEDURE:		SOURCE AND	PURITY OF MATER	IALS:	
solid was period of Method of	shaken for uns time with aque analysis not s ition of solid	ous HF. pecified.	was in a of t tall	solid used for prepared by di queous HF. Th he solid obtai ization from 5 HfOF ₂ ·H ₂ F ₂ ·2H ₂	ssolving HfO ₂ e composition ned by crys- -20 mol HF/dm ³	
			ESTIMATED	ERROR:		
1			Noth	ing specified.		
			REFERENCE	S:	······	

······································	
COMPONENTS :	ORIGINAL MEASUREMENTS
<pre>(1) Hafnium(IV) fluoride; HfF₄; [13709-52-9]</pre>	Buslaev, Yu.A.; Nikolaev, N.S.
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>	Dokl. Akad. Nauk SSSR <u>1960</u> , 135, 1385-7. Dokl. Chem. (Engl. Trans.) <u>1960</u> ,
(3) Water; H ₂ O; [7732-18-5]	135, 1435-7.
EXPERIMENTAL VALUES	•
Composition of Saturated Solutions	at 25°C Nature of the Solid Phase ^D
HF HfO ₂ HfF ₄ ^a	
mass% mass% mass% m _l /mol	kg ⁻¹
	129 A
	93 A 20 A
6.09 16.00 19.34 1.0	
6.68 18.32 22.15 1.2	
8.93 24.32 29.40 1.8	7 A
9.97 24.29 29.37 1.9	0 В
11.16 25.83 31.23 2.1	
13.91 29.33 35.46 2.7	
14.78 30.24 36.56 2.9	
15.88 32.31 39.06 3.4	
21.83 39.78 48.09 6.2 21.96 40.67 49.17 6.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-
$\begin{bmatrix} 23.27 & 44.30 & 53.56 & 9.0 \\ 24.68 & 45.10 & 54.53 & 10.3 \end{bmatrix}$	-
25.36 44.00 53.20 9.7	
26.40 43.15 52.17 9.5	
27.62 38.98 47.13 7.3	C C
28.90 33.17 40.10 5.0	8 D
32.42 24.20 29.25 3.0	
33.68 21.06 25.46 2.4	
35.03 18.26 22.07 2.0	
38.33 13.20 15.96 1.4	
	283 D 192 D
	92 D 669 D
	206 D
	531 D
	200 D
a. Calculated by compiler	
b. A: Hf(OH)F ₃ .0.75H ₂ O; [107983-43	-7]
B: HfF ₄ ·3H ₂ O; [14929-53-4]	
C: H(HfF ₅)·2H ₂ O; [13864-14-7]	
D: H ₂ HfF ₆ ·2H ₂ O; [107944-17-2]	
Continued on the next page	

COMPONENTS -		OPICINAL MACUPELEN	ng .	
		ORIGINAL MEASUREMENTS:		
<pre>(1) Hafnium(IV) fluoride; HfF; [13709-52-9]</pre>		Tananaev, I.V.; Guzeeva, L.S. *Zh. Neorg. Khim. 1966, 11,		
<pre>(2) Potassium fluoride; KF; [7789-23-3]</pre>			(Engl. Transl.) <u>1966</u> , 11, 587-9.	
(3) Water; H ₂ O; [7732-18-5]				
VARIABLES:		PREPARED BY:		
T/K = 298 Composition		J. Hála		
EXPERIMENTAL VALUES:				
Composition of Saturated So			Nature of the Solid Phase ^b	
KF	Hfl	F4		
mass% m2/mol kg ^{-la}	mass% /	n _l /mol kg ^{-la}		
0.11 0.0191	0.74	0.0293	A	
0.45 .0796 0.62 .110	2.28 2.45	.0921 .0993	A B	
	2.05	.0831	В	
	1.74	.0712	В	
	0.98 0.38	.0399 .0155	C C	
7.41 1.38	0.051	.00217	c	
15.41 3.13	0.011	.00051	с	
a. Calculated by compiler b. A: KHfF ₅ ·H ₂ O; [20910-2	4-1] B:	K ₂ HfF ₆ ; [16871-8	6-6] C: K ₃ HfF ₇ ;	
Composition at the Eutonic	Point:		[17169-17-4]	
KF HfF ₄				
mass% m ₂ /mol kg ^{-la}	masst m ₁	/mol kg ^{-la}		
0.66 0.117 2.49 0.101				
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY O	F MATERIALS:	
Isothermal method used. Mi was carried out in teflon b overnight. Hf determined g metrically as HfO ₂ after re	ottles ravi- moval of	HfO ⁴ in bidi and purity c	d by dissolution of stilled HF. Source of HfO ₂ not given.	
F by evaporation ² with H ₂ SC determined gravimetrically sulfate in the filtrate aft precipitation of Hf hydroxi	ās er de.	(2) KF reagent o	grade.	
Solid phases were identifie chemical analysis and by Sc emakers' method.				
		ESTIMATED ERROR:		
		Temp: precisio	$m \pm 0.1 K$.	
		Soly: precisio	on ± 1-2 %.	
		REFERENCES :		
j -				

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Hafnium fluoride; HfF₄; [13709-52-9]</pre>	Opalovskii, A.A.; Gudimovich, T.F. Akhmadeev, N.Kh.; Ishkova, L.D.		
<pre>(2) Potassium fluoride; KF; [7789-23-3]</pre>	2h. Neorg. Khim. <u>1982</u> , 27, 1183-5.		
(3) Acetic acid; C ₂ H ₄ O ₂ ; [64-19-7]	Russ. J. Inorg. Chem. (Engl. Transl.) <u>1982</u> , 27, 664-5.		
VARIABLES:	PREPARED BY:		
T/K = 298 Composition	J. Hála		
EXPERIMENTAL VALUES: Composition of saturated solutions	$t = t/{}^{\circ}C = 25.$		
KF ^{a,b} KHfF ₅ HfF ₄	CH ₃ COOH Nature of the Solid		
	masst		
mass% $m_1/$ mass% mass% $m_1/$ mol kg ⁻¹ mol	kg ⁻¹		
$1.39 0.245 0.99 0.80^{b}_{1} 0.00$	321 97.81)		
	458 94.33		
7.90 1.507 2.29 1.86 ^b 0.0	90.24 KHfF ₅ .CH ₃ COOH		
	925 87.50 5 .04 84.12		
	595 83.87 K ₂ HfF ₆ ; [16871-86-6]		
18.86 4.053 - 1.05 0.0	1515 80.09 ² ² ² 6 ⁷ 1 ² 6 ⁷		
21.38 4.731 - 0.84 0.0	424 77.78		
21.8 ° 4.798	- 78.2 ^b Not reported		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Isothermal method used. Equi-			
libration time and details of the	(1) HfF ₄ was prepared by thermal decomposition of (NH ₄) ₂ HfF ₆		
method not specified. Saturated	(ref 1). Source and purity of		
solutions were analyzed for HfF4	the ammonium salt used not		
gravimetrically by an unspecified	specified.		
method and for CH ₃ COOH by alka- limetric titration. The composition of the solid phases was found by	(2) Anhydrous KF prepared by pro- longed drying of KF.2H ₂ O over		
Schreinemakers method and by chemical	P ₂ 05 in vacuum. Source and purity not specified.		
and x-ray diffraction analysis.	(3) Acetic acid (source and purity not specified) was dried by		
ESTIMATED ERROR:	distillation over P205.		
Nothing specified.			
	REFERENCES: 1. Blumenthal, W. B. The Chemical		
	 Blumenthal, W. B. The Chemical Behaviour of Zirconium, Russian Translation, Moscow 1963, 		

ORIGINAL MEASUREMENTS: COMPONENTS: Tananaev, I.V.; Guzeeva, L.S. (1) Hafnium(IV) fluoride; HfF₄; [13709-52-9] *Zh. Neorg. Khim. <u>1966</u>, *ll*, 1091-5; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1966</u>, *ll*, (2) Rubidium fluoride; RbF; [13446-74-7] 587-9. (3) Water; H₂O; [7732-18-5] VARIABLES: PREPARED BY: T/K = 298J. Hála Composition **EXPERIMENTAL VALUES:** Nature of the Composition of Saturated Solutions Solid Phaseb RbF HfF⊿ mass% m2/mol kg^{-la} mass% m1/mol kg^{-la} 1.38 0.138 2.67 0.109 А .158 .115 1.58 2.81 Α .272 2.66 3.75 .157 A+B .280 .151 2.74 3.60 B .301 .146 2.94 3.47 B .424 .139 В 4.10 3.28 .0630 1.025 9.94 1.42 в 15.20 1.73 0.66 .0308 В 2.03 .0569 17.28 С 1.18 Ĉ 25.41 3.28 0.50 .0265 С 3.96 0.47 29.13 .0262 a. Calculated by compiler b. A: Rbhff5.H2O; [20910-25-2] B: Rb2hff6; [16962-20-2] C: Rb3hff7; [20450-14-0] Composition at the Eutonic Point RbF HfF_A mass% m2/mol kg^{-la} mass% m_l/mol kg^{-la} 2.61 0.267 3.68 0.154 AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: (1) HfF_4 prepared by dissolution of HfO_2 in bidistilled HF. Isothermal method used. Mixing was carried out in teflon bottles overnight. Hf determined gravimetrically as HfO_2 after removal of F by evaporation with H_2SO_4 . (2) RbF prepared from Rb₂CO₃ and HF. Source and purity of Rb determined gravimetrically as chemicals not specified. sulfate in the filtrate after precipitation of Hf hydroxide. The composition of solid phases was deduced from chemical analysis and by Schreinemakers' method. ESTIMATED ERROR: Temp: precision ± 0.1 K. Soly: precision ± 1-2 % (compiler). REFERENCES :

156

Hafnium Halides and Oxyhalides					
COMPONENTS :	ORIGINAL MEASUREMENTS:				
<pre>(1) Hafnium(IV) fluoride; HfF₄; [13709-52-9]</pre>	Tananaev, I.V.; Guzeeva, L.S.				
<pre>(2) Cesium fluoride; CsF; [13400-13-0]</pre>	*Zh. Neorg. Khim. <u>1966</u> , 11, 1091-5; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1966</u> , 11, 587-9.				
(3) Water; H ₂ O; [7732-18-5]					
VARIABLES:	PREPARED BY:				
T/K = 298 Composition	J. Hála				
EXPERIMENTAL VALUES:					
Composition of Saturated Solutions	Nature of the Solid Phase ^b				
CsF	HfF ₄				
mass% m ₂ /mol kg ^{-la} mass%	m _l /mol kg ^{-la}				
1.51 0.104 2.74	0.112 A				
2.5 .174 2.94 4.11 .293 3.52	.122 A .150 A+B				
6.41 .459 1.72	.0736 B				
	0306 B				
19 24 1.58 0.57	0279 B				
32.34 3.17 0.40	.0237 B				
40.25 4.45 0.21 48.56 6.24 0.18	.0139 B .0138 B				
48.56 6.24 0.18 62.52 11.02 0.14					
b. A: CsHfF ₅ ·H ₂ O; [19400-30-7] <u>Composition at the Eutonic Point</u> : CsF HfF ₄	CsF HfF ₄ mass% m_2 /mol kg ^{-la} mass% m_1 /mol kg ^{-la}				
AUXILIARY	INFORMATION				
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:				
Isothermal method used. Mixing was carried out in teflon bottles overnight. Hf determined gravi- metrically as sulfate in the filtrate after precipitation of Hf hydroxide. The composition of solid phases was deduced from chemical analysis and by Schreine- makers' method.	 (1) HfF₄ prepared by dissolution of HfO₂ in bidistilled HF. (2) CsF prepared from Cs₂CO₃ and HF. Source and purity of chemicals not specified. 				
	ESTIMATED ERROR: Temp: precision ± 0.1 K. Soly: precision ± 1-2 %.				
	REFERENCES :				

COMPONENTS: (1) Hafnium fluoride; HfF ₄ ; [13709-52-9]			ORIGINAL MEASUREMENTS: Opalovskii, A. A.; Gudimovich, T. F. Akhmadeev, N. Kh.; Ishkova, L. D.			
<pre>(2) Cesium fluoride; CsF; [13400-13-0]</pre>		Zh. Neorg. Khim. <u>1983</u> , 28, 1876-8.				
(3) Aceti	c acid; C ₂ H ₄	0 ₂ ; [64·	-19-7]		88. J. In 83, 28, 1	org. Chem. (Engl. Transl.) 065-6.
VARIABLES:				PRE	PARED BY:	
	T/K = 298					J. Hála
	omposition					
EXPERIMENTAL	VALUES:					
Compos	ition of sat	urated a	solutions			
CsF	a,b	Hf	F4		сн _з соон	Nature of the Solid
masst	m ₂ /	masst	m ₁ /	h	mass%	Phase
	mol kg ⁻¹		$\frac{m_1}{mol \ kg^{-1}}$	_		
0	0	0.73 ^C	0.0289		99.27 ^b	Not reported
2.28	0.154 0.391	0.51 0.87	0.0206 0.0365		97.21 93.57	CsHfF ₅ ;[15803-64-2]
9.84	0.727	1.11	0.0490		89.05	5, 10000 01 11
10.51	0.785	1.36	0.0606		88.13)
14.82 21.23	1.159 1.795	1.01 0.93	0.0472 0.0469		84.17 77.84	
29.26		0.81	0.0455		69.93	
35.16	3.605		0.0386		64.21	Cs ₂ HfF ₆ ;[16919-32-7]
41.44	4.698 5.936	0.49 0.41	0.0332		58.07 52.37	
50.44	6.759	0.41	0.0328		49.13	
51.6 ^C	7.018	-	-		48.6b	Not reported
 ^a No data given for CsF. Apparently the saturated solutions were analyzed for HfF₄ and acetic acid only. ^b Calculated by compiler. ^c Value given in the original document in the text. 						
					ORMATION	
MINING (ADDA)						
	ATUS/PROCEDURE	_	******	1		RITY OF MATERIALS:
	rmal method is of the lid			(1) HfF ₄ , source and purity not specified, dried over P ₂ O ₅ .		
reported 1	but apparent	ly Hf wa	as	10		urce and purity not
	d gravimetrio				specifi	ed, dried over P ₂ O ₅ .
in the au	CH_COOH by alkalimetric titration, as in ³ the authors previous work (ref 1). Equilibration time and conditions not		(3) Anhydrous acid used, source and purity not specified.			
	. Composition found by a					
method.	-					
1						
		ESTIMATED ERROR:				
					Nothing	specified.
		REFERENCES: 1. Opalovskii, A.A.; Gudimovich,T.F.; Akhmadeev, N.Kh.; Ishkova, L.D.				
						g. Khim. <u>1982</u> , 27, 1183.
L				1		

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Potassium pentafluorohafnate(IV); KHfF₅; [13815-25-3]</pre>	Tananaev, I.V.; Guzeeva, L.S. *Zh. Neorg. Khim. <u>1966</u> , 11,
(2) Water; H ₂ O; [7732-18-5]	1091-5; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1966</u> , 11, 587-9.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála

The solubility at 25°C of $\rm KHfF_5\cdot H_2O$ [20910-24-1] is reported as 0.1087 mol $\rm dm^{-3}.$

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess $KHfF_5 \cdot H_2O$ were shaken overnight in teflon bottles. Hf was determined gravimetrically as HfO_2 after removal of F ⁻ by evaporation with H_2SO_4 . K determined gravimetrically as K_2SO_4 after the precipitation of Hf hydroxide. $KHfF_5 \cdot H_2O$ dissolved congruently and could be recrys- tallized from water.	(1) KHfF ₅ ·H ₂ O was prepared by equilibrating HfF ₄ with solutions containing 0.11-0.45% KF. Under these conditions KHfF ₅ ·H ₂ O is obtained as the equilibrium solid phase, as follows from the measurement of the HfF ₄ -KF-H ₂ O system studied in the same document. HfF ₄ was prepared by dissolution of HfO ₂ in HF. KF reagent grade, source and purity of other chemicals not specified. ESTIMATED ERROR: Temp: precision \pm 0.1 K.
	Soly: precision ± 1-2 % (compiler).
	REFERENCES :

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Rubidium pentafluorohafnate(IV); RbHfF₅; [13844-79-6]</pre>	Tananaev, I.V.; Guzeeva, L.S. *Zh. Neorg. Khim. 1966, 11,
(2) Water; H ₂ O; [7732-18-5]	1091-5; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1966</u> , ll, 587-9.
VARIABLES:	PREPARED BY:
<i>T</i> /K = 298	J. Hála
EXPERIMENTAL VALUES:	
The solubility at 25°C of $RbHfF_5 \cdot H_2($ 0.1115 mol dm ⁻³ .	0 [20910-25-2] is reported as
0.1115 mol dm ".	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess $RbHfF_5 \cdot H_2O$ were shaken overnight in teflon bottles. Hf was determined gravimetrically as HfO_2 after removal of F^- by evaporation with H_2SO_4 . Rb deter- mined gravimetrically as Rb_2SO_4 after the precipitation of Hf hydroxide. $RbHfF_5 \cdot H_2O$ dissolved congruently, and could be recrys- tallized from water.	(1) RbHfF ₅ ·H ₂ O was prepared by equil- ibrating HfF ₄ with solutions containing 1.38-1.58 mass% RbF. Under these conditions RbHfF ₅ ·H ₂ O is obtained as the equilibrium solid phase, as follows from the measurement of the HfF ₄ -RbF-H ₂ O system studied in the same docu- ment. HfF ₄ was prepared by disso- lution of HfO ₂ in HF. KF reagent grade, source and purity of other chemicals not specified. ESTIMATED ERROR:
	Temp: precision ± 0.1 K. Soly: precision ± 1-2 % (compiler).
	REFERENCES :

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Cesium pentafluorohafnate; CsHfF5 [15803-64-2]</pre>	Tananaev, I.V.; Guzeeva, L.S. *Zh. Neorg. Khim. <u>1966</u> , 11,
(2) Water; H ₂ O; [7732-18-5]	1091-5; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1966</u> , ll, 587-9.
VARIABLES :	PREPARED BY:
T/K = 298	J. Hála

ł

The solubility at 25°C of ${\rm CsHfF}_5\cdot{\rm H_2O}$ [19400-30-7] is reported as 0.112 mol dm^-3.

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Solutions containing excess CSHFF ₅ ·H ₂ O were shaken overnight in teflon bottles. Hf was determined gravimetrically as HfO ₂ after removal of F ⁻ by evaporation with H ₂ SO ₄ . Cs determined gravimetrically as Cs ₂ SO ₄ after the precipitation of Hf hydroxide. CSHFF ₅ ·H ₂ O dissolved congruently, and could be recrys- tallized from water.	<pre>SOURCE AND PURITY OF MATERIALS: (1)CsHfF₅·H₂O was prepared by equil- ibrating HfF₄ with solutions con- taining 1.51 mass% CsF. Under these conditions CsHfF₅·H₂O is obtained as the equilibrium solid phase, as follows from the meas- urement of the HfF₄-CsF-H₂O system studied in the same docu- ment. HfF₄ was prepared by dis- solution of HfO₂ in HF. CsF prepared from Cs₂CO₃ and HF. Source and purity not specified. ESTIMATED ERROR: Temp: precision ± 0.1 K. Soly: precision ± 1-2 %.</pre>

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Ammonium hexafluorohafnate(IV); (NH₄)₂HfF₆; [16925-24-9]</pre>	<pre>1.von Hevesy, G.; Christiansen, J.A.; Berglund, V. Z. Anorg. Allg. Chem. 1925, 144,</pre>
(2) Water; H ₂ O; [7732-18-5]	69-74. 2.von Hevesy, G. MatFys. MeddK. Dan. Vidensk. Selsk. <u>1925</u> , 6, 1-149.
VARIABLES:	PREPARED BY:
T/K = 273 - 293	J. Hála
EXPERIMENTAL VALUES:	
Composition of Saturated Solutions	
	ium Hexafluorohafnate(IV)
t/°C	$c_1/mol dm^{-3}$
0 20	0.890 1.425
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess solid were shaken in ebonite bottles for several hours. Hf was determined grav-imetrically as HfO_2 after evaporation with H_2SO_4 and ignition of the residue of an aliquot from the saturated solution. The authors do not report on the composition of the solid phase.	(1) (NH ₄) ₂ HfF ₆ was prepared by dissolution of HfO ₂ in con- centrated HF, and by adding a stoichiometric amount of NH ₄ F. Source and purity of chemicals not specified.
	ESTIMATED ERROR: Temp: precision ± 0.01 K.
	Soly: precision ± 1-2 % (compiler).
	REFERENCES :
1	

	COMPONENTS :	EVALUATOR:
	<pre>(1) (OC-6-11)-Dipotassium hexafluoro- hafnate(2-); K2HfF6; [16871-86-6]</pre> (2) Water; H20; [7732-18-5]	J. Hála Department of Inorganic Chemistry J. E. Purkyne University 61 137 Brno, Czechoslovakia
1		June 1985

The solubility of potassium hexafluorohafnate in water.

Egerev and Pogorelyi (ref 1) report the solubility of K_2HfF_6 in water at ten degree intervals between 273.16 and 373.16 K. They fitted their data by the method of least squares to the equation $\log S = -(1637.5)/(T/K) + 3.6512$, where S is mol/lo0 g H₂O. The regression line fits the experimental values at 273 and 373 poorly, but appears to be satisfactory at the other temperatures.

Single solubility values are reported at 298.15 K by Tananaev and Guzeeva (ref 2), 0.1244 mol dm⁻³, and Schmitt *et al.* (ref 3), 0.128 mol dm⁻³. The average of (0.126 \pm 0.002) mol dm⁻³ is recommended. The recommended value and several values from the equation of Egerev and Pogorelyi are given below.

Table 1. The solubility of K₂HfF₆ in water.

T/K	$m_1/mol kg^{-1}$	$c_1/mol dm^{-3}$
	(ref 1)	(ref 2,3)
283.15 298.15 323.15 363.15	0.0738 0.144 0.384 1.387	0.126 ± 0.002

REFERENCES:

- Egerev, O. I.; Pogorelyi, A. D. *Zh. Prikl. Khim.* <u>1966</u>, *39*, 926-8. *J. Appl. Chem. USSR (Engl. Transl.)* <u>1966</u>, *39*, 866-7.
- 2. Tananaev, I. V.; Guzeeva, L. S. Zh. Neorg. Khim. <u>1966</u>, 11, 1091. Russ. J. Inorg. Chem. (Engl. Transl.) <u>1966</u>, 11, 587.
- 3. Schmitt, R. H.; Grove, E. L.; Brown, R. D. J. Am. Chem. Soc. <u>1960</u>, 82, 5292.

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Potassium hexafluorohafnate; K₂^{HfF}₆; [16871-86-6]</pre>	Schmitt, R. H.; Grove, E. L.; Brown, R. D.	
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1960</u> , 82, 5292-5.	
VARIABLES:	PREPARED BY:	
T/K = 298	J. Hála	
EXPERIMENTAL VALUES:		
The solubility of K2 ^{HfF} 6	at 25°C is reported to be	
$c_1 / \text{mol dm}^{-3} = 0.128$. The	value is the average of	
four measurements, but ne	ither the individual values	
or standard deviation are	reported.	
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Isothermal method. Two saturated solutions of K_2HfF_6 were prepared at 40°C and another two were prepared at 20°C. All solutions were brought to equilibrium at 25°C with constant stirring. After attaining equilibrium, known volumes of the saturated solutions were evaporated to dryness at 70°C, weighed, kept over P ₂ O ₅ for several days and reweighed. All work was carried out in polyethylene ware.	The H2HfF ₆ solution was prepared by dissolving HfO ₂ (source not specified) in excess HF. The HfO ₂ was not purified since its chief impurity, Zr, was removed by the recrystallization of the H2HfF ₆ . Spectrographic analysis of the H2HfF ₆ showed only minor traces of impurities. The content was not reported.	
SOURCE AND PURITY OF MATERIALS:	(2) Deionized water was used.	
(1) K ₂ HfF ₆ was prepared by adding a concentrated solution of reagent grade KCl to a solution of		
H ₂ HfF ₆ .	ESTIMATED ERROR:	
The salt was filtered, washed, and recrystallized several times. Either Pt or polyethylene con- tainers and deionized water were used in all steps.	Temp: accuracy ± 0.005 K, (NBS calibration). The solubility error is not specified.	

	and Oxyhalides 165
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Potassium hexafluorohafnate; K₂HfF₆; [16871-86-6]</pre>	Egerev, O.I.; Pogorelyi, A.D.
(2) Water; H ₂ O; [7732-18-5]	*Zh. Prikl. Khim. <u>1966</u> , 39, 926-8; J. Appl. Chem. USSR (Engl. Transl.) <u>1966</u> , 39, 866-7.
VARIABLES:	PREPARED BY:
T/K = 273 - 373	J. Hála
EXPERIMENTAL VALUES:	1
Composition of Saturated Solutions	
Potassi	um Hexafluorohafnate(IV)
<i>т/</i> к g/100 g H ₂ O	$m_1/mol kg^{-1}$
2	-
273.16 2.254 283.16 2.896	0.06079 0.07811
293.16 4.308	0.11619
303.16 6.336 313.16 9.584	0.17087 0.25845
323.16 14.361	0.38729
333.15 20.757	0.55980
343.16 27.743 353.16 37.231	0.74818 1.00407
363.16 51.32	1.38410
373.16 74.1	1.99950
log S = -(1637.5/T) + 3.6	512
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Each measurement was repeated 2-6 times. Samples of saturated solutions were taken by means of a pipette heated to the corresponding temperature. The samples were weighed and evaporated, the residue dried at 105°C and weighed. The authors do not report on the equilibrium solid phases.	<pre>(1)K₂HfF₆ was prepared from Hf metal obtained by thermal decom- position of HfI₄. Hf contained less than 1% Zr and 10⁻²% Si, Fe, Al, and Ti. Source and purity of other chemicals not specified.</pre>
	ESTIMATED ERROR: Temp: precision ± 0.1 K The error of the arithmetic mean solubility varied from 0.04 to 1.1% depending on the number of measure- ments. REFERENCES:

. .. .

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Potassium hexafluorohafnate(IV); 	Tananaev, I.V.; Guzeeva, L.S.
K ₂ HfF ₆ ; [16871-86-6] (2) Water; H ₂ O; [7732-18-5]	*Zh. Neorg. Khim. <u>1966</u> , <i>ll</i> , 1091-5; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1966</u> , <i>ll</i> , 587-9.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The solubility at 25°C of K ₂ HfF ₆ is a	reported as 0.1244 mol dm ".
	1
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions	(1)K ₂ HfF ₆ was prepared by equilibra-
containing excess K ₂ HfF ₆ were shaken overnight in teflon bottles.	ting HfF ₄ with solutions contain- ing 0.62-2.23 mass% KF. Under
Hf was determined gravimetrically	these conditions K2HfF6 is ob-
as HfO_2 after removal of F ⁻ by evaporation with H_2SO_4 . K deter-	tained as the equilibrium solid phase, as follows from the meas-
mined gravimetrically as K ₂ SO ₄ after	urement of the HfF ₄ -KF-H ₂ O system
the precipitation of Hf hydroxide. K ₂ HfF ₆ dissolved congruently, and	studied in the same document. HfF ₄ was prepared by dissolution
could be recrystallized from water.	of HfO ₂ in HF. KF reagent grade,
	source and purity of other chem-
	ESTIMATED ERROR: Temp: precision ± 0.1 K.
	Soly: precision ± 1-2 % (compiler).
	REFERENCES:

|

Hafnium Halides and Oxyhalides 16	
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Potassium hexafluorohafnate(IV); K₂HfF₆; [16871-86-6]</pre>	<pre>l.von Hevesy, G.; Christiansen, J.A.; Berglund, V. Z. Anorg. Allg. Chem. 1925,</pre>
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>	144, 69-74. 2.von Hevesy, G. MatFys. MeddK. Dan. Vidensk.
(3) Water; H ₂ O; [7732-18-5]	Selsk. <u>1925</u> , 6, 1-149.
VARIABLES:	PREPARED BY:
T/K = 293 $c_2/mol dm^{-3} = 0.125-5.89$	J. Hála
EXPERIMENTAL VALUES:	
Composition of Saturated Solutions at	£ 20°C
Hydrogen Fluoride	Potassium Hexafluorohafnate(IV)
$c_2/mol dm^{-3}$	$c_1/mol dm^{-3}$
0.125 5.89	0.1008 0.1942
	TNEODMATION
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Solutions containing excess solid were shaken in ebonite bottles for several hours. Hf was determined grav- imetrically as HfO ₂ but no details were given. The authors do not report on the composition of the solid phases.	SOURCE AND PURITY OF MATERIALS: Nothing specified.
	ESTIMATED ERROR: Temp: precision ± 0.01 K. The solubility error is not specified. REFERENCES:

CONDONENTE -	EVALUATOR:			
COMPONENTS:				
<pre>(1) (OC-6-11)-Dirubidium hexafluoro- hafnate (2-); Rb₂HfF₆; [16962-20-2]</pre>	J. Hála Department of Inorganic Chemistry J. E. Purkyne University 61137 Brno, Czechoslovakia			
(2) Water; H ₂ O; [7732-18-5]	October 1985			
CRITICAL EVALUATION:				
The solubility of dirubidium he	exafluorohafnate(2-) in water.			
Two laboratories report the solubility of Rb ₂ HfF ₆ in				
water at 298 K. Schmitt <i>et al</i> .	(ref 1) report a value of 0.186			
mol dm^{-3} as a mean of four meas	surements. The system was			
brought to equilibrium from bot	th lower and higher temperatures			
with a high precision of temperature control (± 0.005 K)				
followed by direct gravimetry of the evaporated residue.				
Tananaev and Guzeeva (ref 2) report a value of 0.1519 mol dm ⁻³				
with a temperature error of \pm 0.1 K. The evaluator prefers the				
value of Schmitt et al., and suggests its use as the tentative				
value.				
REFERENCES:				
<pre>1. Schmitt, R. H.; Grove, E. L.; Brown, R. D. J. Am. Chem. Soc. <u>1960</u>, 82, 5292.</pre>				
 Tananaev, I. V.; Guzeeva, J. Zh. Neorg. Khim <u>1966</u>, 11, Russ. J. Inorg. Chem. (Engl 	1091;			

Hatnium Halides	and Oxyhalides 169
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Rubidium hexafluorohafnate; Rb₂HfF₆; [16962-20-2]</pre>	Schmitt, R. H.; Grove, E. L.; Brown, R. D.
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1960</u> , 82, 5292-5.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The solubility of Rb ₂ HfF	$_{6}^{\circ}$ at 25°C is reported to
be c_1 /mol dm ⁻³ = 0.186.	The value is the average
of four measurements, bu	t neither the individual
values or standard devia	tion are reported.
	INFORMATION
METHOD/APPARATUS/PROCEDURE: Isothermal method. Two saturated solutions of Rb2HfF ₆ were prepared at 40°C and another two were prepared at 20°C. All solutions were brought to equilibrium at 25°C with constant stirring. After attaining equilib- rium, known volumes of the saturated solutions were evaporated to dryness at 70°C, weighed, kept over P ₂ O ₅ for several days and reweighed. All work was carried out in polyethylene ware.	<pre>specified) in excess HF. The HfO₂was not purified since its chief impurity, ²r, was removed by the recrystallization of the H₂HfF₆. Spectrographic analysis of the Rb₂HfF₆ showed only minor traces of impurities The ²r content</pre>
<pre>SOURCE AND PURITY OF MATERIALS: (1) Rb₂HfF₆ was prepared by adding a concentrated solution of reagent grade RbF to a solution of H₂HfF₆.</pre>	(2) Deionized water was used.
The salt was filtered, washed, and recrystallized several times. Either Pt or polyethylene con- tainers and deionized water were used in all steps.	ESTIMATED ERROR: Temp: accuracy ± 0.005 K, (NBS calibration). The solubility error is not specified.

70 Hafnium Halides and Oxyhalides				
COMPONENTS:		ORIGINAL MEASUREMENTS:		
<pre>(1) Rubidium hexafluo Rb2HfF₆; [16962-2</pre>		Tananaev, I.V.; Guzeeva, L.S.		
(2) Water; H ₂ O; [7732	-18-5]	*Zh. Neorg. Khim. <u>1966</u> , <i>ll</i> , 1091-5; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1966</u> , <i>ll</i> , 587-9.		
VARIABLES:		PREPARED BY:		
T/K = 298		J. Hála		
EXPERIMENTAL VALUES:	<u> </u>			
		s reported as 0.1519 mol dm^{-3} .		
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDUR	E:	SOURCE AND PURITY OF MATERIALS:		
Isothermal method u	used. Solutions	(1) Rb ₂ HfF ₆ was prepared by equilib rating HfF ₄ with solutions con-		
containing excess F shaken overnight ir	$b_2 HfF_6$ were teflon bottles.	taining 2.74-15.2 mass% RbF.		
Hf was determined o	gravimetrically	Under these conditions Rb ₂ HfF ₆ is obtained as the equilibrium		
as HfO ₂ after remove evaporation with H ₂	val of F^- by $_{5}SO_{4}$. Rb	solid phase, as follows from th		
determined gravimet	rically as	measurement of the HfF ₄ -RbF-H ₂ C system studied in the same doc-		
Rb ₂ SO ₄ after the pr	ecipitation of	ument. HfF ₄ was prepared by di		
congruently, and co	IFE diagolyod			
	HfF ₆ dissolved buld be recrys-	solution of HfO ₂ in HF. RbF		
tallized from water	ould be recrys-	solution of HfO ₂ in HF. RbF reagent, source and purity of other chemicals not specified.		
	ould be recrys-	reagent, source and purity of		
	ould be recrys-	reagent, source and purity of other chemicals not specified. ESTIMATED ERROR: Temp: precision ± 0.1 K.		
	ould be recrys-	reagent, source and purity of other chemicals not specified. ESTIMATED ERROR: Temp: precision ± 0.1 K.		
	ould be recrys-	reagent, source and purity of other chemicals not specified. ESTIMATED ERROR: Temp: precision ± 0.1 K. Soly: precision ± 1-2 % (compile		
	ould be recrys-	reagent, source and purity of other chemicals not specified. ESTIMATED ERROR: Temp: precision ± 0.1 K. Soly: precision ± 1-2 % (compile		
	ould be recrys-	reagent, source and purity of other chemicals not specified. ESTIMATED ERROR: Temp: precision ± 0.1 K. Soly: precision ± 1-2 % (compile		

COMPONENTS:	EVALUATOR:
<pre>(1) (OC-6-11)-Dicesium hexfluoro- hafnate(2-); Cs₂HfF₆; [16919-32-7]</pre> (2) Water; H ₂ O; [7732-18-5]	J. Hála Department of Inorganic Chemistry J. E. Purkyne University 61 137 Brno, Czechoslovakia October 1985

Two values of the solubility of Cs_2HfF_6 at 298 K have been reported. Schmitt *et al.* (ref 1) report a value of 0.174 mol dm⁻³ obtained by direct gravimetry of the evaporated residue as a mean of four measurements in which the system was brought to equilibrium from both lower and higher temperatures in an experiment of high precision temperature control. Tananaev and Guzeeva (ref 2) report a value of 0.1641 mol dm⁻³ obtained with a temperature uncertainty of \pm 0.1 degree. The evaluator prefers the value of Schmitt *et al.*, and classes it as the tentative value.

REFERENCES:

- Schmitt, R. H.; Grove, E. L.; Brown, R. D. J. Am. Chem. Soc. <u>1960</u>, 82, 5292.
- Tananaev I. V.; Guzeeva, L. S. Zh. Neorg. Khim. <u>1966</u>, 11, 1091; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1966</u>, 11, 587.

	·			
Components :	ORIGINAL MEASUREMENTS:			
<pre>(1) Cesium hexafluorohafnate; Cs₂HfF₆; [16919-32-7]</pre>	Schmitt, R. H.; Grove, E. L.; Brown, R. D.			
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1960</u> , 82, 5292-5			
RIABLES: PREPARED BY:				
<i>T</i> /K = 298	J. Hála			
EXPERIMENTAL VALUES:				
EAFENINE VALUES.				
The solubility of Cs_2HfF_6 at $25^{\circ}C$ is reported to be $c_1^{\prime}/mol dm^{-3} = 0.174$. The value is the average of four measurements, but neither the individual values				
or standard deviation are				
	-			
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
Isothermal method. Two saturated solutions of Cs_2HFF_6 were prepared at 40°C and another two were prepared at 20°C. All solutions were brought to equilibrium at 25°C with constant stirring. After attaining equilib- rium, known volumes of the saturated solutions were evaporated to dryness at 70°C, weighed, kept over P ₂ O ₅ for several days and reweighed. All work was carried out in polyethylene ware.	 specified) in excess HF. The HfO₂ was not purified since its chief impurity, Zr, was removed by the recrystallization of the Cs₂HfF₆. Spectrographic analysis of the Cs₂HfF₆ showed only minor traces of impurities The Zr content 			
SOURCE AND PURITY OF MATERIALS:	(2) Deionized water was used.			
(1) Cs ₂ HfF ₆ was prepared by adding a concentrated solution of an un- specified Cs halide to a solu- tion of H ₂ HfF ₆ .				
The salt was filtered, washed,	ESTIMATED ERROR:			
and recrystallized several times. Either Pt or polyethylene con- tainers and deionized water were used in all steps.	Temp: accuracy ± 0.005 K, (NBS calibration). The solubility error is not specified.			

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Cesium hexafluorohafnate(IV); Cs₂HfF₆; [16919-32-7] (2) Water; H₂O; [7732-18-5]</pre>	<pre>Tananaev, I.V.; Guzeeva, L.S. *Zh. Neorg. Khim. <u>1966</u>, 11, 1091-5; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1966</u>; 11, 587-9.</pre>
VARIABLES: T/K = 298	PREPARED BY: J. Hála

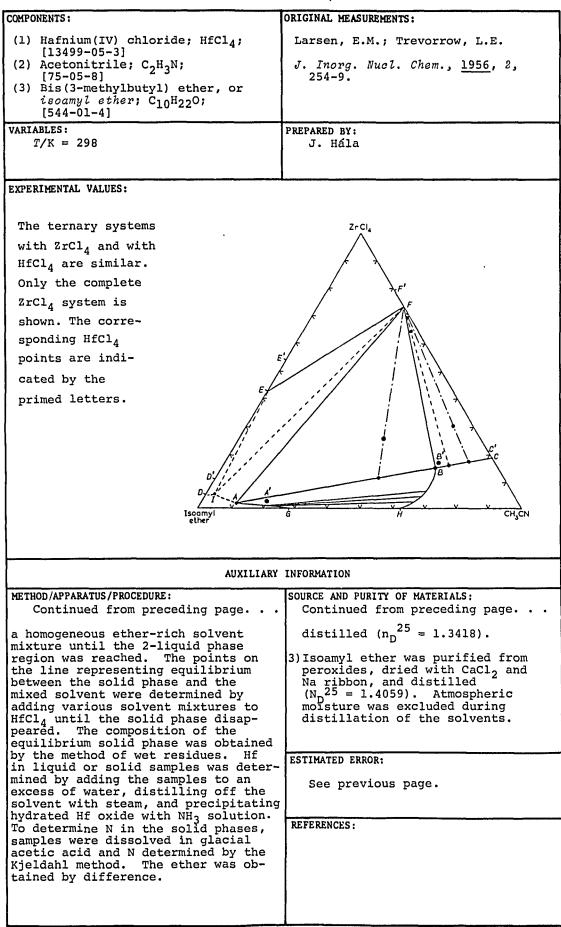
l

ţ

.

The solubility at 25°C of Cs_2HfF_6 is reported as 0.1641 mol dm⁻³.

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Solutions containing excess Cs ₂ HfF ₆ were shaken overnight in teflon bottles. Hf was determined gravimetrically as HfO ₂ after removal of F ⁻ by evaporation with H ₂ SO ₄ . Cs deter- mined gravimetrically as Cs ₂ SO ₄ after the precipitation of Hf hydroxide. Cs ₂ HfF ₆ dissolved congruently, and could be recrys- tallized from water.	<pre>SOURCE AND PURITY OF MATERIALS: (1) Cs₂HfF₆ was prepared by equilib- rating HfF₄ with solutions con- taining less than 6.4 mass% CsF. Under these conditions Cs₂HfF₆ is obtained as the equilibrium solid phase, as follows from the measurement of the HfF₄-CsF-H₂O system studied in the same docu- ment. HfF₄ was prepared by dis- solution of HfO₂ in HF, CsF pre- pared from Cs₂CO₃ and HF. Source and purity not specified. ESTIMATED ERROR: Temp: precision ± 0.1 K. Soly: precision ± 1-2 % (compiler).</pre>


Components :	ORIGINAL MEASUREMENTS:
 Ammonium heptafluorohafnate(IV); 	1.von Hevesy, G.; Christiansen, J.A.;
(NH ₄) ₃ HfF ₇ ; [17169-53-8]	Berglund, V. Z. Anorg. Allg. Chem. <u>1925</u> , 144,
- ,	69-74.
(2) Water; H ₂ O; [7732-18-5]	2.von Hevesy, G. MatFys. MeddK. Dan. Vidensk.
	Selsk. <u>1925</u> , 6, 1-149.
VARIABLES:	PREPARED BY:
T/K = 273-293	J. Hála
EXPERIMENTAL VALUES:	
Composition of Saturated Solutions	
Ammoniur	n Heptafluorohafnate(IV)
t/°C	$c_1/mo1 dm^{-3}$
0	0.425
20	0.588
	ĺ
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions	(1) (NH) HEF, was propared by dis-
containing excess solid were shaken	<pre>(1) (NH₄) 3HfF₇ was prepared by dis- solution of HfO₂ in concentrated</pre>
in ebonite bottles for several	HF, and by adding an excess of
hours. Hf was determined grav- imetrically as HfO ₂ after evapor-	NH ₄ F. Source and purity of chemicals not specified.
ation with H_2SO_A and ignition of	
the residue of an aliquot from the saturated solution. The	
authors do not report on the com-	
position of the solid phases.	
	ESTIMATED ERROR:
	Temp: precision ± 0.01 K.
	Soly: precision ± 1-2 % (compiler).
	REFERENCES :

174

.

Hafnium Halides and Oxyhalides			
COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Ammonium heptafluorohafnate(IV); (NH₄)₃HfF₇; [17169-53-8]</pre>	von Hevesy, G.		
(2) Ammonium fluoride; NH ₄ F; [12125-01-8]	MatFys. MeddK. Dan. Vidensk. Selsk. <u>1925</u> , 6, 1–149.		
(3) Water; H ₂ O; [7732-18-5]			
VARIABLES :	PREPARED BY:		
T/K = 293 $c_2/mol dm^{-3} = 0.5.01$	J. Hála		
EXPERIMENTAL VALUES:			
Solubility of (NH ₄) ₃ HfF ₇ in aqueous	NH4F at 20°C		
Ammonium Fluoride	Ammonium Heptafluorohafnate(IV)		
$c_2/mol dm^{-3}$	$c_1/mol dm^{-3}$		
0	0.588		
0.992 1.971 5.01	0.261 0.108 0.0258		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Isothermal method used. Solutions containing excess solid were shaken in ebonite bottles for several hours. Hf was determined grav- imetrically as HfO_2 after evapor- ation with H_2SO_4 and ignition of the residue of an aliquot from the saturated solution. NH_4^+ concentration determined by Kjeldahl's method. The author does not report on the composition	(1) (NH ₄) ₃ HfF ₇ was prepared by dis- solution of HfO ₂ in concentrated HF, and by adding an excess of NH ₄ F. Source and purity of chemicals not specified.		
of the solid phases.	ESTIMATED ERROR:		
	Temp: precision ± 0.01 K. Soly: precision ± 1-2 % (compiler).		
	REFERENCES:		

RIGINAL MEASUREMENTS:		
Larsen, E.M.; Trevorrow, L.E.		
J. Inorg. Nucl. Chem., <u>1956</u> , 2, 254-9.		
REPARED BY:		
J. Hála		
nical form as the phase diagram stem at 25°C, with the correspon- rimed letters.* The solubility of the solid phase in liquid e solid phase existing in equilibrium A'B'C' line was HfCl ₄ ·2CH ₃ CN. llowing points:		
ion Solubility		
ether HfCl ₄		
st masst		
2.0		
16 20.4±0.4		
20.4±0.4 .5 10.5		
.5 IO.5		
NFORMATION		
SOURCE AND PURITY OF MATERIALS:		
<pre>(1) HfCl₄ was prepared by passing Cl₂ gas over a mixt. of HfO₂ (containing 1 or 2% ZrO₂) and charcoal at 600°C, and purified by first subliming in an atmos- phere of H₂ and then resubliming several times <i>in vacuo</i>. It was kept in sealed ampoules. The atomic mass of Hf was corrected for the Zr content. (2) CH₃CN was dried over P₂O₅ and <u>Continued on the next page.</u> ESTIMATED ERROR: Temp: precision ± 0.01 K. Soly: precision ± 1-2 % (compiler). REFERENCES:</pre>		

Ł

COMPONENTS :	ORIGINAL MEASUREMENTS:
 (1) Hafnium dichloride oxide; HfOCl₂; [13759-17-6] (2) Water; H₂O; [7732-18-5] 	Blinova, Z. N.; Komissarova, L. N. Zh. Neorg. Khim. <u>1972</u> , 17, 2520-5. Russ. J. Inorg. Chem. (Engl.Transl.) <u>1972</u> , 17, 1318-21.

Composition of the staurated solutions.

Temperature		Hf02	C1-	HfOCl ₂		Cl ⁻ Hfocl ₂	!
t∕°C	<i>T</i> /K	mass %	mass %	mass ^{ga}	mass % ^b	$m_1/mol kg^{-1C}$	
0	273	35.05	11.85	44.21	44.35	2.994	
15	288	35.70	12.23	45.03	45.76	3.132	
25	298	36.25	12.46	45.73	46.64	3.234	
40	313	37.64	12.84	47.48	48.06	3.446	
50	323	38.85	13.13	49.01	49.14	3.631	
60	333	39.50	13.20	49.83	49.41	3.711	
70	343	40.36	13.89	50.91	51.99	3.993	
80	353	42.57	14.23	53.70	53.26	4.332	
90 ^d	363	44.17	14.75	55.72	55.21	4.693	
100 ^d	373	44.55	-	56.20	-	4.835	
110 ^d	383	47.77	-	60.26	-	5.714	
120 ^d	393	51.55	-	65.03	-	7.007	

Calculated by compiler:

a from mass% HfO2

- b from mass% Cl
- $^{\rm c}$ from the average of the calculated mass% ${\rm HfOCl}_2$
- d The solubility value reported as being average of several measurements but the individual data were not given.
- NOTE: In the temperature range of 0-80°C the Hf:Cl ratio in saturated solutions and solid phases varied within 1:1.98 - 1:2.04 and 1:1.89 - 1:1.97, respectively. The smooth inflection at 90-100°C on the solubility versus temperature plot was ascribed by the authors to increasing hydrolysis and polymerization with the formation of a new compound whose solubility also increases with increasing temperature. Increasing hydrolysis of HfOCl₂ at high temperatures was indicated by appreciable loss of HCl through the seal of the vessels. Although not stated explicitly the data suggest that the solid phase at <80°C was apparently the hydrate HfOCl₂·8H₂O.

Continued on the next page . . .

Hafnium Halides and Oxyhalides 179	
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hafnium dichloride oxide; HfOCl₂: [13759-17-6]</pre>	Blinova, Z. N.; Komissarova, L. N.
(2) Water; H ₂ O; [7732-18-5]	Zh. Neorg. Khim. <u>1972</u> , 17, 2520-5.
	Russ. J. Inorg. Chem. (Engl.Transl.) <u>1972</u> , 17, 1318-21.
VARIABLES:	PREPARED BY:
T/K = 273 - 393	J. Hála
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Excess HfOCl ₂ ·8H ₂ O was equilibrated with water at the desired temperature for l-2 h in glass vessels with liquid paraffine hydraulic seal. The ves- sels were thermostated in water (15-60°), in glycerine above 60°, or in ice at 0°. Samples of the satu- rated solutions and solid phases were analyzed for Hf and Cl gravimetric- ally as HfO ₂ and AgCl, respectively. At higher temperatures samples of saturated solutions were withdrawn with a heated pipette. Samples of solid phases were taken only from measurements at <80° since at higher temperatures the mother liquor crystallized rapidly. The solid phases were also characterized by a polarizing microscope.	<pre>(1) HfOCl₂·8H₂O was prepared from HfO₂ (99.33 mass% Hf, 0.55 mass% Zr). HfO₂ was heated with a mixture of (NH₄)₂SO₄ and con- centrated H₂SO₄ to 300-450°, the melt was dissolved in distilled water, and Hf was precipitated with concentrated NH₄OH. Hf hydroxide was washed free from sulfate by decantation, dissolve in concentrated HCl, and HfOCl₂·8H₂O obtained by crystal- lization. HCl used was reagent grade.</pre>

COMPONENTS :	EVALUATOR:
<pre>(1) Hafnium oxide chloride; HfOCl₂; [13759-17-6]</pre>	J. Hála Department of Incurring Chemistury
<pre>(2) Hydrogen chloride; HCl; [7647-01-0]</pre>	Department of Inorganic Chemistry J. E. Purkyne University 61 137 Brno, Czechoslovakia
(3) Water; H ₂ O; [7732-18-5]	February 1985

An evaluation of the solubility of ${\rm HfOCl}_2$ in aqueous hydrogen chloride solutions.

There are four literature sources on the HfOCl₂ + HCl + H₂O system

available (ref 1 - 4). The work of Hevesy (ref 1) gives the solubility in mol dm⁻³ at 293 K whereas in the other documents the solubility was presented in mass of either HfOCl₂ (ref 3), or HfO₂ (ref 2, 4) from which the solubilities were calculated in mol kg⁻¹.

There are great differences in the solubilities at low acidities between the data of Goroshchenko and Spasibenko (ref 2) and the data in the other papers (ref 3, 4). In (ref 3, 4) the HfOCl₂ solubility decreases as the HCl solubility increases while the solubilities reported by Goroshchenko and Spasibenko increase with HCl concentration. The reason is that they started with hydrated HfO₂ as the solid. Thus, the low acidity region of paper (ref 2) has been disregarded.

There are two general features of the solubility of HfOCl₂ in HCl solutions. They are (*i*) an increase in the solubility with increasing temperature, and (*ii*) the appearance of a shallow minimum (at 25-30 mass HCl in solution) on the solubility *vs*. *m*HCl plot (ref 1-4). The increase in the solubility of HfOCl₂ at acidities > 30 mass HCl is caused by the formation of anionic chlorocomplexes of Hf(IV) in solution.

The data sets of Kamaneva *et al.* (ref 3) and Blinova and Komissarova (ref 4) are compared for 298 K and the data sets of Goroshchenko and Spasibenko (ref 2) and Blinova and Komissarova (ref 4) are compared for 273 K (see Figures 1 and 2). For both temperatures a reasonable agreement of data is observed at acidities > 18 mass HCl, although there is some discrepabcy for the solubility increase above 30 mass at 273 K.

Both sets of data were smoothed by a linear regression of the data to a fifth order polynomial in HCl mass %. At 298 K (Figure 1) the equation for the HCl mass % range of 18 to 39 is [Eqn (1)]

 $(m_1/\text{mol kg}^{-1}) = 11.9049 - 1.5070(100w_2) + 6.5960 \times 10^{-2}(100w_2)^2$

- 9.0494 x 10⁻⁴ ($100w_2$)³ - 9.4593 x 10⁻⁶ ($100w_2$)⁴ + 2.5099x10⁻⁷ (+)⁵ 100 w_2

At 273 K there is a disagreement in the data above 32 mass % HCl (Figure 2). The data of Blinova and Komissarova (ref 4) show the generally accepted increase in solubility of HfOCl₂ with increasing HCl mass %. The data of Goroshchenko and Spasibenko (ref²) do not show the expected increase. The evaluator believes the data of Blinova and Komissarova should be given preferance in the high HCl region. The smoothing equation below was prepared by a linear regression which did not include the three experimental points of Goroshchenko and Spasibenko above 31.5 mass % HCl.

 $(m_1/\text{mol kg}^{-1}) = 5.7634 - 0.63134(100w_2) + 2.0545 \times 10^{-2}(100w_2)^2 +$

7.5962x10⁻⁵ ($100w_2$)³ - 1.5377x10⁻⁵ ($100w_2$)⁴ + 2.1147x10⁻⁷ ($100w_2$)⁵

The solid line of Figure 2 was calculated from the above equation [Eqn(2)]. The equation below [Eqn (3)] was obtained from a linear regression which included the Goroshchenko and Spasibenko data above 31.5 mass % HCl. The equation is:

 $(m_1/\text{mol kg}^-) = 6.2671 - 0.68204(100w_2) + 2.1591 \times 10^{-2}(100w_2)^2 +$

 $1.0237 \times 10^{-4} (100 w_2)^3 - 1.6081 \times 10^{-5} (100 w_2)^4 + 2.0871 \times 10^{-7} (100 w_2)^5$

See the dashed line in Figure 2, which show a deviation from [Eqn (2)] at high HCl concentrations.

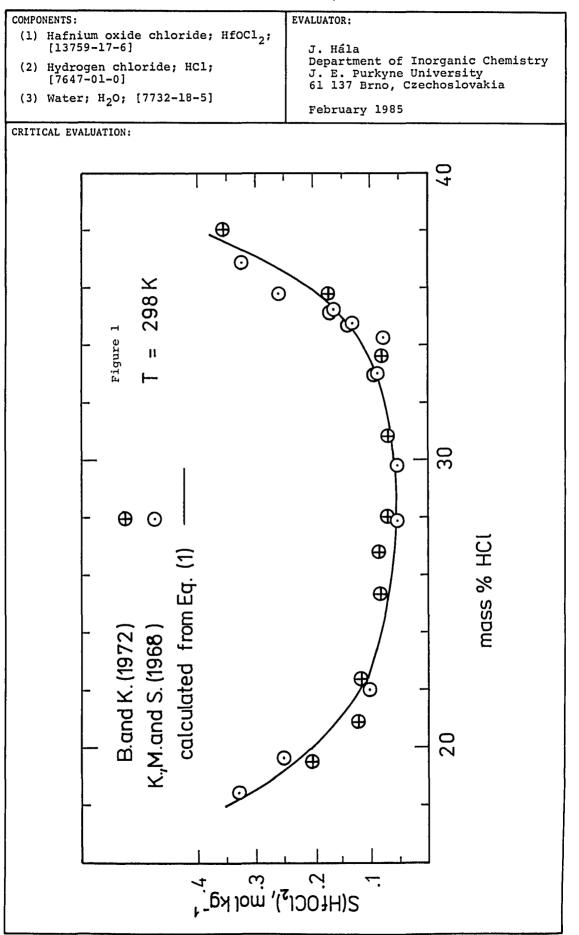
COMPONENTS:	EVALUATOR:
<pre>(1) Hafnium oxide chloride; HfOCl₂; [13759-17-6]</pre>	J. Hála
<pre>(2) Hydrogen chloride; HCl; [7647-01-0]</pre>	Department of Inorganic Chemistry J. E. Purkyne University 61 137 Brno, Czechoslovakia
(3) Water; H ₂ O; [7732-18-5]	February 1985

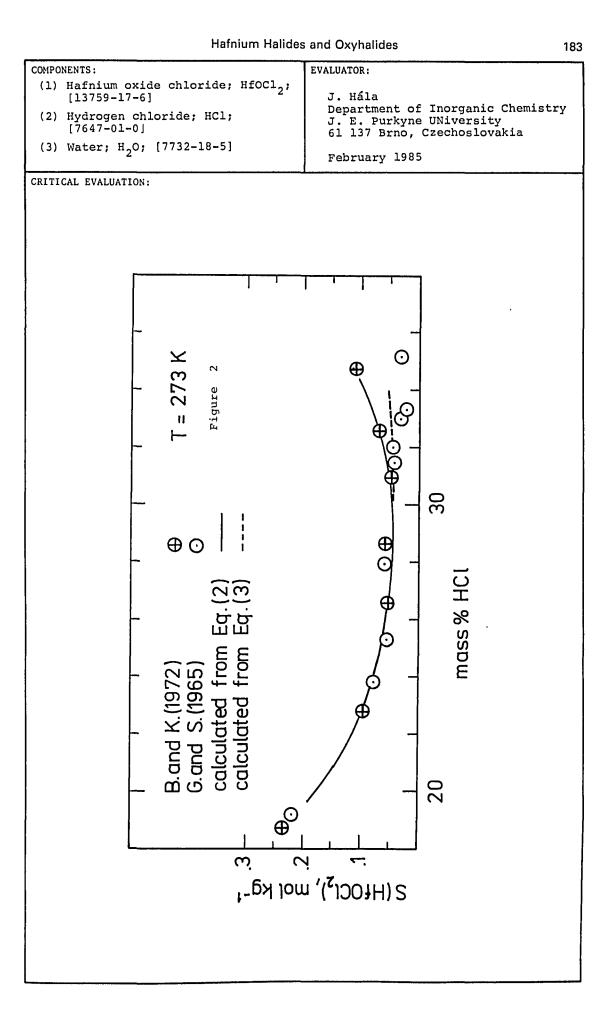
CRITICAL EVALUATION:

An evaluation of the solubility of HfOCl₂ in aqueous hydrogen chloride solutions (continued).

Additional discrepancies can be noted for the higher temperature data. The values of Kamaeva *et al.* (ref 3) at 298 K are higher than the Goroshchenko and Spasibenko values at 303 K in the high acidity region, although it is known that the solubility increases with temperature. The data of Blinova and Komissarova (ref 4) for 12 to 14.15 mass HCl appear to be unreasonably high, and correspond to values for low acidities in other documents (ref 2, 3). The reason for this is not clear, although supersaturated solutions are a possibility. The evaluator suggests these data be classed as doubtful.

The molalities of HCl calculated from the mass % HCl data of (ref 4) pass through a minimum in spite of the increasing HCl concentration (the water concentration increases in the system along with that of HCl). A similar, but less pronounced effect, is observed for the HCl molalities calculated from the data of (ref 2). Therefore the mass % HCl rather than the mol kg⁻¹ scale has been chosen for the graphical comparisons of data in Figures 1 and 2.


Tentative values: The evaluator suggests the following be used as tentative values. At 273 K use values calculated from [Eqn (2)].


At 298 K use values calculated from [Eqn (1)].

At 303 and 323 K use the data of Goroshchenko and Spasibenko (ref 2).

REFERENCES:

- von Hevesy, G. Kgl. Danske Videnskab. Selskab. <u>1925</u>, 6, No. 7.
- Goroshchenko, Ya. G.; Spasibenko, T. P. Zh. Neorg. Khim. <u>1965</u>, 10, 2156.
- Kamaeva, I. G.; Melnik, L. A.; Serebrennikov, V. V. Zh. Neorg. Khim. <u>1968</u>, 13, 1974.
- Blinova, Z. N.; Komissarova, L. N. Zh. Neorg. Khim. <u>1972</u>, 17, 2520.

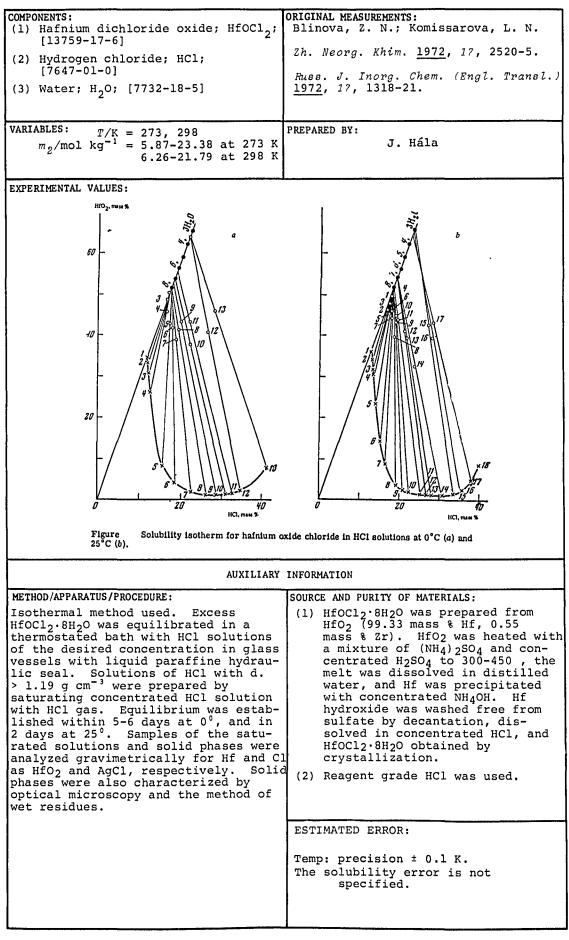
ł

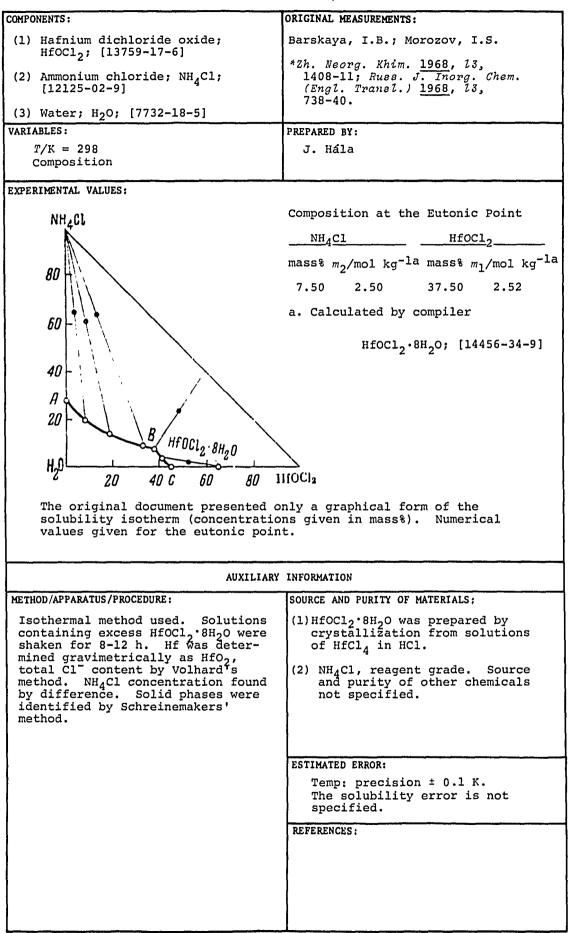
00//D 0//D 0//D 0//	
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hafnium dichloride oxide; HfOCl₂; [13759-17-6]</pre>	von Hevesy, G.
<pre>(2) Hydrogen chloride; HCl; [7647-01-0]</pre>	MatFys. MeddK. Dan. Vidensk. Selsk. <u>1925</u> , 6, 1–149.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 293 $c_2/mol dm^{-3} = 5.64-11.28$	J. Hála
EXPERIMENTAL VALUES:	
Solubility of HfOCl ₂ in aqueous HC	L at 20°C
HCl HfoCl ₂	
$c_2/\text{mol dm}^{-3}$ $c_1/\text{mol dm}^{-3}$	
5.640.1676.480.10309.020.053010.330.066810.560.080111.280.1509	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Hf was determined gravimetrically as HfO_2 after evaporation of the samples with H_2SO_4 . Total Cl ⁻ content determined by Volhard's method, HCl concentration found by dif- ference. The author does not report on the composition of solid phases.	(1) HfO ₂ containing 5% ZrO ₂ was converted to HfOCl ₂ ·8H ₂ O which was heated in a stream of HCl to yield HfOCl ₂ ·3H ₂ O.
	ESTIMATED ERROR:
	Temp: precision \pm 0.01 K. Soly: precision \pm 1-2 % (compiler).
	REFERENCES:

l

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Hafnium dichloride oxide; HfOCl₂ [13759-17-6]</pre>			
<pre>(2) Hydrogen chloride; HCl; [7647-01-0]</pre>	*Zh. Neorg. Khim. <u>1965</u> , 10, 2156-62; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1965</u> , 10, 1173-6.		
(3) Water; H ₂ O; [7732-18-5]			
VARIABLES:	PREPARED BY:		
T/K = 273, 303, 323 HCl/mass% = 0.85-36.60	J. Hála and M. Salomon		
EXPERIMENTAL VALUES:			
Composition of Saturated Solutions	Solid Phase ^b		
4	focl ₂ ^a		
mass% mass% mass% m _l /mo	l kg ⁻¹		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.135 A .191 A .279 A .322 A .615 A .642 A .957 A .75 A .14 A+B .05 B .051 B .0552 B .0557 B .0421 B+C .0271 C .0325 C		
AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Solutions containing excess of either Hf hy- droxide or HfOCl ₂ ·8H ₂ O were mixed for unspecified long period of time. Where Hf hydroxide was used, it was prepared by passing HfOCl ₂ solution through a column of EDE-10P anion exchanger in OH form. The product contained 88.41% HfO ₂ , 0.46% HCl and 11.13% H ₂ O. Analytical methods not specified. The composition of solid phases was determined by chem- ical analysis and X-ray diffraction. Hf hydroxide which was in equilibriu with solutions of low acidity (<13 wt % HCl) was analyzed after drying. The composition of HfOCl ₂ ·3H ₂ O was also confirmed by Schreinemakers' method and by the method of indif- ferent addition.	<pre>twice rećrystallized from aqueous HCl. (2,3)Source and purity of HCl and water not specified. m ESTIMATED ERROR: Temp: precision ± 0.1 K.</pre>		

İ


,


Hafnium Halides and Oxyhalides

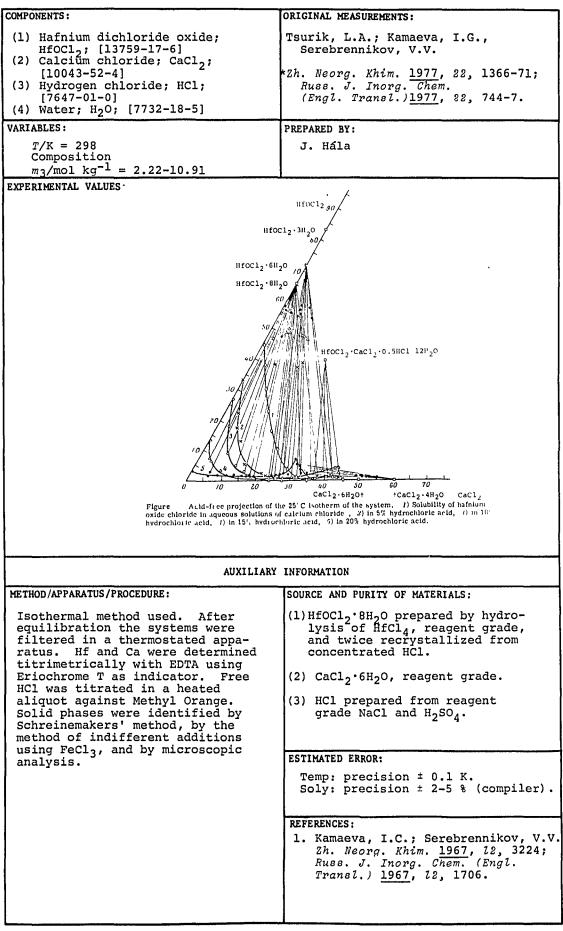
COMPONENTS	:			ORIGINAL MEASU	REMENTS
(1) Hafn Hfoc	ium dichlorid 1 ₂ ; [13759-17	e oxide; -6]			Ya.G.; Spasibenko, T.P.
(2) Hydr	ogen chloride 7-01-0]			2156-62; Rui	him. <u>1965</u> , 10, 38. J. Inorg. Chem. 31.) <u>1965</u> , 10,
(3) Wate	er; H2O; [7732	-18-5]		11/3-0.	
EXPERIMEN	TAL VALUES				
Compos	ition of Satu	rated Sol	utions	at 30°C	Nature of the Solid Phase ^b
HCl	Hf02			focl ₂ a	
mass%	mass*	mass &	m _l /mol	kg ⁻¹	
1.81	3.61	4.55		183	A
2.44	8.20 12.58	10.34 15.87		447 739	A A
3.23	14.69	18.53		898	A
3.68	21.20	26.74		49	Â
6.53	22.07	27.84		60	Â
9.74	25.72	32.44		12	Ä
10.38	26.82	33.83		28	Ä
11.52	28.97	36.54		65	Ä
13.08	30.98	39.08		08	A+B
13.84	25.02	31.56		18	B
14.89	18.73	23.62		45	B
16.11	11.54	14.56		791	В
17.58	7.55	9.52		492	B
20.00	3.35	4.22		210	B
25.13	1.60	2.02		104	B
29.68	1.17	1.48		0810	B
32.75	1.28	1.61		0924	B+C
33.29	1.67	2.10		122	С
36.19	2.30	2.90	•	179	С
36.60	2.39	3.01	•	188	С
Compos	ition of Satu	rated Sol	utions	at 50°C	
.85	2.63	3.31		130	А
1.46	4.57	5.76		234	A
1.65	6.57	8.29		346	A
2.27	10.59	13.36		597	A
2.59	13.83	17.45		822	A
2.61	13.94 14.99	17.58		830 909	A A
2.72		18.91	_		_
3.66	16.80 20.38	21.19 25.72		08 38	A A
4.01	24.00	30.27		76	A
7.50	31.03	39.14		76	A
7.55	31.13	39.27		78	Ä
9.48	36.63	46.20		76	Ā
12.50	38.80	48.94		78	A+B
13.57	31.53	39.77		10	В
15.24	23.08	29.11		97	В
16.03	16.21	20.45		21	В
17.90	10.15	12.80		696	В
19.81	5.97	7.53	•	390	В
23.78	2.87	3.62		188	В
25.52	2.50	3.15		166	В
26.78	1.97	2.48		132	В
29.40	1.85	2.33		129	B
32.48	5.30	6.69		414	B+C
33.06	5.72	7.22	•	456	С
a. Cal	culated by co	-			
b. A:	_			5, $y = 1.41 - 2.79$	ə);
В:	$HfOC1_{2} \cdot 8H_{2}O;$				
C:	HfOC12.3H20;	[107924-	80-1]	······································	

	namum namues		65 107
COMPONENTS :		ORIGINAL MEAS	UREMENTS:
<pre>(1) Hafnium dichloride oxide; HfOCl₂; [13759-17-6]</pre>			I.G.; Melnik, L.A.; nnikov, V.V.
<pre>(2) Hydrogen chloride; HCl; [7647-01-0]</pre>		1974-80	g. Khim. <u>1968</u> , 13, ; Russ. J. Inorg. Chem. Transl.) <u>1968</u> , 13, 1026-9.
(3) Water; H ₂ O; [7732-1	8-5]		<u> </u>
VARIABLES:		PREPARED BY:	
T/K = 298 $m_2/mol kg^{-1} = 0-17.4$	0	J. Hála a	and M. Salomon
EXPERIMENTAL VALUES:			
Composition of Satura			Nature of the Solid Phase ^b
HCl	HfOC:	¹ 2	
mass% m ₂ /mol kg ^{-la}	mass% mj,	/mol kg ^{-la}	
0 0 2.11 1.008	45.60 40.47	3.158 2.656	A A
3.64 1.653	35.98	2.245	A
6.03 2.63 18.40 6.73	31.00 6.62	1.855 .333	A
18.40 6.73 19.59 7.12	4.99	.249	A A
22.03 7.96	2.07	.103	A
27.78 10.70	1.04	.0550	А
29.73 11.77 33.01 13.83	0.99 1.51	.0538 .0869	A B
33.02 13.84	1.54	.0887	B
34.22 14.56	1.30	.0760	В
34.77 15.12	2.16	.129	В
34.90 15.21 35.19 15.53	2.17 2.68	.130 .163	B B
35.21 15.55	2.70	.164	В
	4.12	.258	В
36.92 17.40	4.91	.318	В
a. Calculated by com	-		
b. A: HfOCl ₂ ·8H ₂ O;	[14456-34-9]	B: HfOCl ₂ .	HC1.6.5H20
9	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:		SOURCE AND P	URITY OF MATERIALS:
Isothermal method used		(1) Hfocl ₂ .	8H ₂ 0 prepared by hydrolysis
previously (ref 1). S	olutions	of HfČl	A. The product was twice
containing excess solid mechanically mixed, and was assumed to be read	d equilibrium		allized from aqueous ource and purity of HfCl ₄ cified.
days by analogy to previous results (ref 1). Hf was determined tit- rimetrically with EDTA against Xylenol Orange, HCl was titrated with alkali. Solid phases were		_	pared from CP grade NaCl
		(3)Distilled water was used.	
identified by Schreinemakers' method and by microscopy.			
		ESTIMATED ER	ecision ± 0.05 K.
		Soly: pr	ecision ± 2-5 % (compiler).
		REFERENCES:	
		1. Kamaev Zh. Ne Russ.	a, I.G.; Serebrennikov, V.V. org. Khim. <u>1963</u> , 8, 2151; J. Inorg. Chem. (Engl. .) <u>1963</u> , 8, 1124.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. N.
HfOCl2; [13759-17-6] Zh. Neorg. Khim. <u>1972</u> , 17, 252 (2) Hydrogen chloride; HCl; [7647-01-0] Zh. Neorg. Khim. <u>1972</u> , 17, 252 (3) Water; H ₂ O; [7732-18-5] Zh. Neorg. Chem. (Engl.Trodue) EXPERIMENTAL VALUES: Solubility of HfOCl ₂ in aqueous HCl at 0 and 25°C Image: Shift of the shift of th	. N.
(2) Hydrogen chloride; HCl; [7647-01-0] (3) Water; H ₂ O; $[7732-18-5]$ EXPERIMENTAL VALUES: Solubility of HfOCl ₂ in aqueous HCl at 0 and 25°C Temperature HCl HfO ₂ HfOCl ₂ Nat $t/^{\circ}C$ T/K mass % $m_2/mol \ kg^{-1a}$ mass % $m_1/mol \ kg^{-1a}$ mass % $m_1/mol \ kg^{-1a}$ Mass % $m_1/mol \ kg^{-1a}$ mol kg^{-1a} mol	
(3) Water; H_2O ; $[7732-18-5]$ EXPERIMENTAL VALUES: Solubility of HfOCl ₂ in aqueous HCl at 0 and 25°C Temperature HCl HfO ₂ HfOCl ₂ Nat $t/^{\circ}C$ T/K mass % $m_2/mol \ kg^{-1a}$ mass % mass % $m_1/$ $mol \ kg^{-1a}$ MfO ₂ MfOCl ₂ Nat $mol \ kg^{-1a}$ MfO ₂ HfOCl ₂ Nat $mol \ kg^{-1a}$ MfO ₂ MfOCl ₂ Nat $mol \ kg^{-1a}$ M	
Solubility of $HfOCl_2$ in aqueous HCl at 0 and $25^{\circ}C$ Temperature HCl HfO_2 $HfOCl_2$ $Nator of$ $t/^{\circ}C$ T/K mass % $m_2/mol kg^{-1a}$ mass % $mass %^a$ $m_1/$ of 0 273 11.98 7.52 35.15 44.34 3.825 26.06 12.33 7.39 33.25 41.94 3.456 27.962 27.99 6.58 26.06 32.87 2.288 27.947	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ture
12.33 7.39 33.25 41.94 3.456 41.94 12.52 7.01 30.52 38.50 2.962 41.94 12.52 7.01 30.52 38.50 2.962 41.94 12.99 6.58 26.06 32.87 2.288 41.94 15.84 5.87 8.05 10.15 1.947 41.94	the lid ase ^b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A A A A A A A B B B C D D A A A A A A A A A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A A A A B B B B B E E E E
^a Calculated by compiler.	
Solid phases	
A: HfOCl ₂ ·8H ₂ O; [14456-34-9] B: HfOCl ₂ ·7H ₂ O	
C: $\text{Hfocl}_{2}^{2} \cdot 6 \text{H}_{2}^{2}$; [41468-24-0]	
D: HfOCl ₂ ·3.5H ₂ O	
E: $HfOCl_{2} \cdot (3-3.5)H_{2}O$	
Note: The increase in the solubility of HfOCl ₂ in solutions containing >31 mass % HCl was ascribed by the authors to the formation of	
chlorocomplexes of the type $HfCl_n^{(4-n)+}$.	
Continued on the next page	
	·

Hafnium Halide	s and Oxyhalides 191
COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Hafnium dichloride oxide; HfOCl₂; [13759-17-6] (2) Magnesium chloride; MgCl₂; [7786-30-3] (3) Water; H₂O; [7732-18-5] 	Barskaya, I.B.; Morozov, I.S. *Zh. Neorg. Khim. <u>1968</u> , 13, 1408-11; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1968</u> , 13, 738-40.
VARIABLES:	PREPARED BY:
T/K = 298 Composition	J. Hála
EXPERIMENTAL VALUES:	
McCl	Composition at the Eutonic Point
MgCl ₂	MgCl ₂ HfOCl ₂
	mass% $m_2/mol kg^{-la} mass% m_1/mol kg^{-la}$
l do	34.20 5.55 1.13 0.0658
50	a. Calculated by compiler
40 - H ³⁰	HfOC1 ₂ .8H ₂ O; [14456-34-9]
H ₂ O 2O 4O C 6O 8O HfOCl ₂ The original document presented o solubility isotherm (concentratio values given for the eutonic poin	ns given in mass%). Numerical
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess HfOCl ₂ 8H ₂ O were shaken for 8-12 h. Hf was determined gravimetrically as HfO ₂ , total Cl ⁻ content by Volhard's method. MgCl ₂ concentration found by difference. Solid phases identified by Schreinemakers' method.	 (1) HfOCl₂ · 8H₂O was prepared by crystallization from solutions of HfCl₄ in HCl. (2) MgCl₂ · 6H₂O, reagent grade. Source and purity of other chemicals not specified.
	ESTIMATED ERROR:
	Temp: precision ± 0.1 K. The solubility error is not specified.
	REFERENCES :

COMPONENTS :	
	ORIGINAL MEASUREMENTS:
<pre>(1) Hafnium dichloride oxide; HfOCl₂; [13759-17-6]</pre>	Kamaeva, I.G.; Serebrennikov, V.V.
<pre>(2) Calcium chloride; CaCl₂; [10043-52-4]</pre>	*Zh. Neorg. Khim. <u>1967</u> , 12, 3224-6; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1967</u> , 12, 1706-7. Tr. Tomsk. <u>Gos.</u> Univ. <u>1971</u> , 204,
(3) Water; H ₂ O; [7732-18-5]	66-9
VARIABLES:	PREPARED BY:
T/K = 298, 323 Composition	J. Hála
EXPERIMENTAL VALUES:	
Composition of Saturated Solutions	Solid Phase ^D
CaCl ₂	Hfocl ₂
]	mass% m_1 /mol kg ^{-la}
4.11 0.643 8.02 1.166 12.22 1.698 16.42 2.20 20.85 2.74 28.59 3.69 35.45 4.99 37.21 5.36 43.52 6.95 45.23 7.44 50 0 0 3.81 0.615 8.42 1.258 12.62 1.82 18.29 2.56 26.56 3.59 32.15 4.45 39.49 6.06 54.61 11.02 56.95 11.92 a. Calculated by compiler b. A: HfOC12.8H20; B: CaC12.6H20[] C. Data from the 1971 document AUXILIARY	45.60 3.16 A 38.33 2.51 A 30.01 1.82 A 22.92 1.33 A 16.30 0.913 A 10.53 .578 A 1.69 .0913 A 0.57 .0336 A 0.20 .0120 A 0.99 .00601 A+B(A+C) ^C 0 0 B(C) ^C 47.96 3.47 A 40.44 2.73 A 17.22 1.00 A 24.91 1.50 A 1.76 .113 A 0.75 .0633 A+C 0 0 C 7774-34-7]; C: CaCl ₂ ·2H ₂ O[10035-04-8]
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Solutions containing excess solid were shaken for 8 h. Samples for analysis were taken by means of a pipette heated previously to 25 or 50°C, and filtered through thermostated Schott crucibles. Hf and Ca were determined titrimetrically with EDTA against Xylenol Orange and Murexide respectively as indicators. Solid phases were identified by chemical and microscopic analysis and by Schreinemakers' method. Note: Footnote b. above A: HfOCl ₂ .8H ₂ O; [14456-34-9]	<pre>SOURCE AND PURITY OF MATERIALS: (1)HfOCl₂·8H₂O was prepared from HfO₂ of unspecified purity. The oxide was melted with borax and Na₂CO₃, the melt dissolved in HCl, and the product recrystallized three times. (2)CaCl₂·2H₂O (pure) was recrystal- lized from water. ESTIMATED ERROR: Temp: precision ± 0.05 K. Soly: precision ± 2-5 % (compiler). REFERENCES:</pre>


		Hafnium	Halides an	d Oxyhalides		193
COMPONENTS:		·····	OR	IGINAL MEASUR	EMENTS	
 (1) Hafnium dichloride oxide; HfOCl₂; [13759-17-6] (2) Calcium chloride; CaCl₂; (10043-52-4) 		1	surik, L.A.; Serebrenniko	ov, V.V.		
(3) Hydro [764]	<pre>[10043-52-4] (3) Hydrogen chloride; HCl; [7647-01-0] (4) Water; H₂O; [7732-18-5]</pre>			h. Neorg. Khi 1366-71; Rus (Engl. Trans	s. J. I nor	g. Chem.
	TAL VALUES	<u> </u>				
Compo	sition of Sat	turated Sol	utions a	t 25°C		Nature of
CaO	<u>2</u>	HC1	•	HfOC	<u>1</u>	Phase ^g
mass% n	^{2/mol kg 14}	mass% m ₃	/mol kg ⁻	la mass% m	1/mol kg ⁻¹	.a
d0	0	5.00	2.22	33.09		А
3.55	.458 .778 1.17	5.25	2.06	21.41	1.56	A
6.18	.778	5.11 4.71	1.96	17.14	.902 .596	A N
9.58	1.17	4.71	1.75	11.71	•596	, A
13.65	1.61 2.43	4.93	1.77	5.07 1.93 .87 .25	.250	A A
21 36	2.43	4.83	2 14	1.93	.0990	-
21.30	2.07	5 27	2.14	.07	.0454 .0138	A
20.12 21 21f	J.44 / /1	1 69	2.11	.23	.0159	A
35 49	5 40	5 22	2.02	.11	.00700	
40 17f	5.40	4 90	2.42	.6		A+B
40.17	7 24	5 10	2.47	.40	.0288	
42.05	1.61 2.43 2.67 3.44 4.41 5.40 6.66 7.24 0	3.10	2.07	.40	.0200	_
0 ^{cf}	0 .392 .792	10.00	4.24	25.27	1.47	А
3.06			3.97		.875	A
6.61	.792	9.97	3.64	8.26	.875 .414	A
10.23	1.22 1.63	9.93	3.62 3.64	4.57	.229	A
10.23 13.43 ^f	1.63	9.86	3.64	2.44	.124	A
21.32	2.84	10.20	4.13	.80	.0445	A
24.18	3.35	10.16	4.29	./0	.0400	
32.57		10.02	4.81	.30 .54	.0198	C
36.96	6.35	10.06	5.26	.54	.0388	C
37.62	6.51 6.96	9.69 10.41	5.10	.59	.0427	C
38.87	6.96	10.41	5.67	.3/	.02/2	CTD
40.18	7.24	9.83	5.39	0	0	В
D0	0 .343 .342 .994	15.00 15.71 14.58	5.65	12.20	.631	А
2 87	3/3	15.71	5.71	6.01	.300	A
2.0/f	.343	14.58	5.23	6.01 6.13 3.03	.302	A
8,15	.994	14.91	5.53	3.03	.154	A
15.47	2.03	14.55	5.82	1.40	.0769	A
19.90	2.79	15.03	6.42	.85	.0499	A
20.93	3.03	15.43	6.79	1.3	.0786	A
24.05f	3.59	14.81	6.73	.82	.0512	A
25.53	3.94	15.05	7.06	.99	.0638	A+C
26.68 [±]	4.22	15.25	7.34	1.06	.0701	С
27.50 [±]	4.41	15.22	7.44	1.15	.0772	С
2077	4.84	15.89	8.13	1.74	.122	С
1 20 01 ^I	5.15	15.05	7.88	2.68	.193	D
1 22 26+	5.90	15.25	8.49	3.24	.248	D
1 34 34-	6.60	15.13	8.86	3.67	.295	D
35.28*	6.88	14.81	8.79	3.72	.303	D
36.12	7.27	15.27	9.35	3.82	.321	D+B+E
36.31 37.83 ^f	6.93	14.87	8.64	1.64	.131	B+E
37.83 ¹	7.35	15.39	9.10	.40	.0325	B+E
1						

Continued on the next page. . .

1

Hafnium Halides and Oxyhalides

194	Hatnium Halide	s and Oxyna	llides	
COMPONENTS :		ORIGINAL	MEASUREMENTS	5:
<pre>(1) Hafnium dichloridd HfOCl_; [13759-17- (2) Calcium chloride; [10043-52-4]</pre>	Sereb:	L.A.; Kamaev rennikov, V.V rg. Khim. 197	7.	
(3) Hydrogen chloride [7647-01-0] (4) Water; H ₂ O; [7732-		1366-	71; Russ. J.	Inorg. Chem. 977, 22, 744-7.
EXPERIMENTAL VALUES:				
Composition of Satura	ted Solutions at			Nature of the Solid
CaC1_2	HC1		HfOC12	Phase ^g
mass% m ₂ /mol kg ^{-la}			ss% m _l /mol kç	-la
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19.90 8.19 19.93 8.26 20.61 8.79 19.50 8.30 20.36 9.33 19.69 9.17 20.00 9.51 20.07 9.66 19.80 9.78 20.37 10.88 20.31 10.70 19.90 10.50 19.90 10.27 19.00 10.00	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 5. 4. 3. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A A A A A A A A C C C C C C C C C C C C
a. Calculated by con		• 1	68 .0509	B+E
b. Initial HCl conce data points	entration 5 mass	% for this	s and the fol	llowing ll
c. Initial HCl conce data points	entration 10 mas	st for th	is and the fo	ollowing ll
d. Initial HCl conce data points	entration 15 mas	s% for th	is and the fo	ollowing 18
e. Initial HCl conce data points	entration 20 mas	s% for th	is and the fo	ollowing 21
f. Inconsistent numerical data. The original paper also lists mass% H ₂ O obtained by difference. For this point the sum does not equal 100% which suggests a typographical error (ranging from approx. 0.5 to 9.4%) associated with either the HCl, CaCl ₂ , or ZrOCl ₂ concentrations, in addition to the estimated experimental precision of ±2-5%.				
D: $HfOCl_2 \cdot CaCl_2$ Ca ₂ [$HfOCl_4$] ₂ · HCl E: β -CaCl ₂ · 4H ₂ O		hich could Cl ₃ ·H ₂ O] ₂	d also 5e wr: •CaCl ₂ •HCl•22	itten as 2H ₂ O;
Note registry nu	$HfOCl_2 \cdot 6H$	20; [4146	9-24-0]	- 4]
	u- and B-	^{2•4⁴12}	0; [25094-02-	
Continued on the nex	xt page			

196 Hafnium Halides	s and Oxyhalides
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hafnium dichloride oxide; HfOCl₂; [13759-17-6]</pre>	Barskaya, I.B.; Morozov, I.S.
(2) Strontium chloride; SrCl ₂ ; [10476-85-4]	*Zh. Neorg. Khim. <u>1968</u> , 13, 1408-11; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1968</u> , 13, 738-40.
(3) Water; H ₂ O; [7732-18-5] VARIABLES:	DEED AND AN
T/K = 298	PREPARED BY: J. Hála
Composition	J. Hala
EXPERIMENTAL VALUES:	
	Composition at the Eutonic Point
Srci2	SrCl ₂ HfOCl ₂
	mass m_2 /mol kg ^{-la} mass m_1 /mol kg ^{-la}
80 -	27.55 2.90 12.50 .786
60 c	a. Calculated by compiler
9.2	Equilibrium Solids:
	SrCl ₂ .6H ₂ O; [10025-70-4]
20 - 4500	HfOCl ₂ ·8H ₂ O; [14456-34-9]
$20 \frac{450012}{H_20} \frac{3400}{400} \frac{100012}{50} \frac{3400}{80} \frac{100012}{10000}$ The original document presented o solubility isotherm (concentratio data given for the eutonic point.	ns given in mass%). Numerical
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess HfOCl ₂ ·8H ₂ O were shaken for 8-12 h. Hf was deter- mined gravimetrically as HfO ₂ , total Cl ⁻ content by Volhard's method. SrCl ₂ concentration found by difference. Solid phases were identified by Schreinemakers' method.	 (1) HfOCl₂·8H₂O was prepared by crystallization from solutions of HfCl₄ in HCl. (2) SrCl₂·2H₂O, reagent grade. Source and purity of other chemicals not specified.
	ESTIMATED ERROR: Temp: precision ± 0.1 K. The solubility error is not specified.
	REFERENCES :

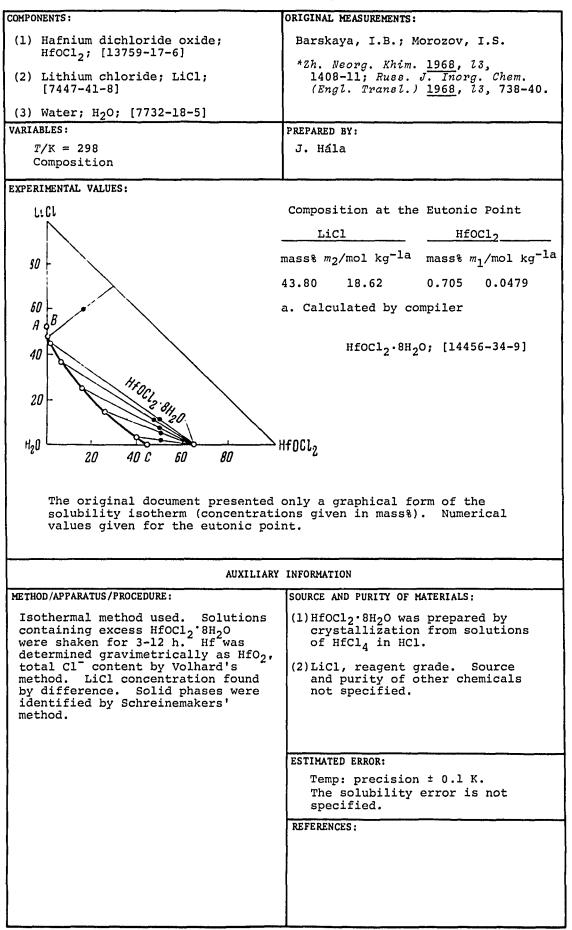
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hafnium dichloride oxide; HfOCl₂; [13759-17-6]</pre>	Barskaya, I.B.; Morozov, I.S.
(2) Barium chloride; BaCl ₂ ; [10361-37-2]	*Zh. Neorg. Khim. <u>1968</u> , 13, 1408-11; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1968</u> , 13, 738-40.
(3) Water; H ₂ O; [7732-18-5]	/ 50-40.
VARIABLES:	PREPARED BY:
T/K = 298 Composition	J. Hála
EXPERIMENTAL VALUES:	
	Composition at the Eutonic Point
Bach	BaCl_2HfOCl_2
	mass% m_2 /mol kg ^{-la} mass% m_1 /mol kg ^{-la}
80 000	3.97 0.367 44.10 3.20
80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a. Calculated by compiler
60 40 30	Equilibrium Solids:
	BaCl ₂ ·2H ₂ O; [10326-27-9]
H 20	HfOCl ₂ ·8H ₂ O; [14456-34-9]

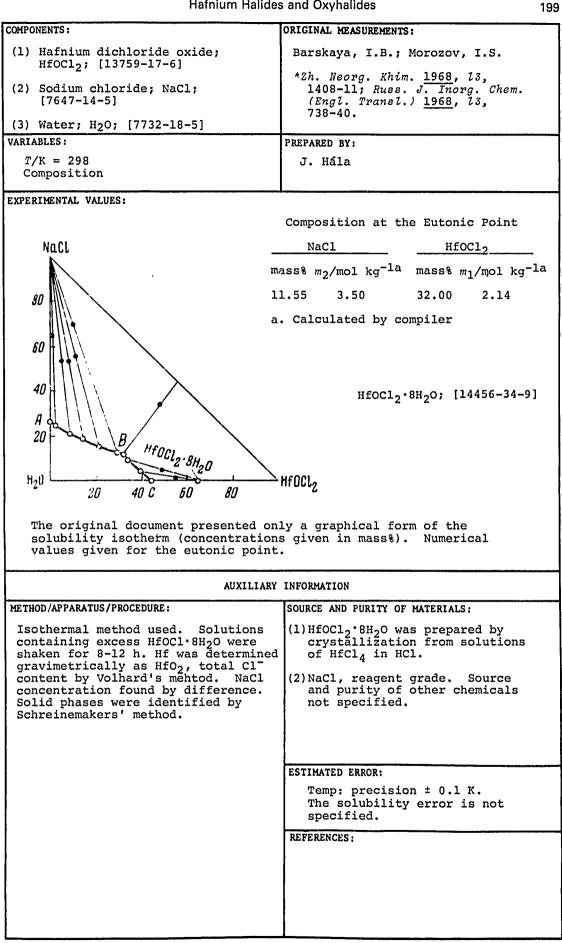
The original document presented only a graphical form of the solubility isotherm (concentrations given in mass%). Numerical values given for the eutonic point.

SH20

HD

ł


2C

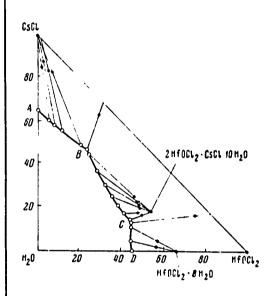

40 C

60

80 HFOCL2

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;
Isothermal method used. Solutions containing excess HfOCl ₂ ·8H ₂ O were shaken for 8-12 h. Hf was deter- mined gravimetrically as HfO ₂ , total Cl ⁻ content by Volhard's method. BaCl ₂ concentration found by difference. Solid phases were identified by Schreinemakers' method.	 (1) HfOCl₂·8H₂O was prepared by crystallization from solutions of HfCl₄ in HCl. (2) BaCl₂·2H₂O reagent grade. Source and purity of other chemicals not specified.
	ESTIMATED ERROR:
	Temp: precision ± 0.1 K. The solubility error is not specified.
	REFERENCES :


```
Hafnium Halides and Oxyhalides
COMPONENTS:
                                                  ORIGINAL MEASUREMENTS:
                                                    Barskaya, I.B.; Morozov, I.S.
 (1) Hafnium dichloride oxide;
      HfOCl<sub>2</sub>; [13759-17-6]
                                                   *Zh. Neorg. Khim. <u>1968</u>, 13,
1408-11, Russ. J. Inorg. Chem.
(Engl. Transl.) <u>1968</u>, 13, 738-40.
 (2) Potassium chloride; KCl;
      [7447-40-7]
 (3) Water; H<sub>2</sub>O; [7732-18-5]
VARIABLES:
                                                   PREPARED BY:
   T/K = 298
                                                    J. Hála
   Composition
EXPERIMENTAL VALUES:
        KCL
                                                   Composition at the Eutonic Point
                                                                               Hfocl,
                                                         KC1
                                                   mass # m2/mol kg-la mass # m1/mol kg-la
     80
                                                   5.05
                                                               1.27
                                                                            41.50
                                                                                        2.93
                                                   a. Calculated by compiler
     60
     40
                                                                    HfOC1, ·8H,0; [14456-34-9]
      R
     20
                              HFOCL, SH20
     H_2 O
                                         80 HIOCI:
                                 60
                20
                        40 C
    The original document presented only a graphical form of the
    solubility isotherm (concentrations given in mass%). Numerical
    values given for the eutonic point.
                                       AUXILIARY INFORMATION
METHOD/APPARATUS/PROCEDURE:
                                                   SOURCE AND PURITY OF MATERIALS:
                                                   (1) HfOCl<sub>2</sub> · 8H<sub>2</sub>O was prepared by crystallization from solutions
 Isothermal method used. Solutions containing excess HfOCl<sub>2</sub>·8H<sub>2</sub>O were shaken for 8-12 h. Hf was deter-
                                                       of HfCl, in HCl.
 mined gravimetrically as HfO2, total C1 content by Volhard's
                                                   (2) KCl, reagent grade. Source and
                                                       purity of other chemicals not specified.
 method. KCl concentration found
 by difference. Solid phases
  identified by Schreinemakers'
 method.
                                                   ESTIMATED ERROR:
                                                       Temp: precision ± 0.1 K.
                                                       The solubility error is not
                                                       specified.
                                                   REFERENCES :
```


Hafnium Halide	s and Oxyhalides 201
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Hafnium dichloride oxide;	Barskaya, I.B.; Morozov, I.S.
<pre>HfOCl₂; [13759-17-6] (2) Rubidium chloride; RbCl; [7791-11-9] (3) Water; H₂O; [7732-18-5]</pre>	*Zh. Neorg. Khim. <u>1968</u> , 13, 1408-11; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1968</u> , 13, 738-40.
(3) WALEEF; 120; [7732-18-5]	PREPARED BY:
T/K = 298 Composition	J. Hála
EXPERIMENTAL VALUES:	
RbCl	Composition at the Eutonic Point
	RbCl HfOCl ₂
<i>so</i> +	mass% $m_2/mol kg^{-la} mass% m_1/mol kg^{-la}$
	20.80 4.18 38.00 3.48
50 - T	a. Calculated by compiler
<i>H</i> 40 - 0	HfOC1 ₂ ·8H ₂ O; [14456-34-9]
$H_{2}0$ H	ns given in mass%). Numerical
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess HfOCl ₂ 8H ₂ O were shaken for 8-12 h. Hf was deter- mined gravimetrically as HfO ₂ , total Cl ⁻ content by Volhard's method. RbCl concentration found by difference. Solid phases were identified by Schreinemakers' method.	 (1) HfOCl₂·8H₂O was prepared by crystallization from solutions of HfCl₄ in HCl. (2) RbCl, reagent grade. Source and purity of other chemicals not specified.
	ESTIMATED ERROR:
	Temp: precision 0.1 K. The solubility error is not specified.
	REFERENCES :
	L

•

202 Hafnium Halide	s and Oxyhalides
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hafnium dichloride oxide; HfOCl₂; [13759-17-6]</pre>	Barskaya, I.B.; Morozov, I.S.
(2) Cesium chloride; CsCl; [7647-17-8]	*Zh. Neorg. Khim. <u>1968</u> , 13, 1408-11; Ruse. J. Inorg. Chem. (Engl. Transl.) <u>1968</u> , 13, 738-40.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 Composition	J. Hála -
EXPERIMENTAL VALUES:	
CSCL	Composition at the Eutonic Point
	CsClHfOCl2
80	mass% m_2 /mol kg ^{-la} mass% m_1 /mol kg ^{-la}
	50.20 9.68 19.00 2.32
A 60	a. Calculated by compiler
40 - 4	HfOC12.8H20; [14456-34-9]
$H_{20} = \frac{1173}{20} + 117$	∠ ⊃Cla
bility isotherm (concentrations given for the eutonic point. A	only a graphical form of the solu- given in mass%). Numerical values later reinvestigation of the system compound 2HfOCl ₂ *CsCl *10H ₂ O (ref 1) (see next page).
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Solutions containing excess HfOCl ₂ ·8H ₂ O were shaken for 8-12 h. Hf was deter- mined gravimetrically as HfO ₂ , total Cl ⁻ content by Volhard's method. CsCl concentration found	 (1) HfOCl₂·8H₂O was prepared by crystallization from solutions of HfCl₄ in HCl. (2) CsCl, reagent grade. Source and purity of other chemicals
by difference. Solid phases were identified by Schreinemakers' method.	not specified.
	ESTIMATED ERROR:
	Temp: precision ± 0.1 K. The solubility error is not specified.
	REFERENCES:
	1. Barskaya, I.B.; Toptygina, G.M. Zh. Neorg. Khim. <u>1970</u> , 15, 2572, Russ. J. Inorg. Chem. (Engl. Transl.) <u>1970</u> , 15, 1333.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hafnium dichloride oxide; HfOCl₂; [13759-17-6]</pre>	Barskaya, I.B.; Toptygina, G.M.
(2) Cesium chloride; CsCl; [7647-17-8]	*Zh. Neorg. Khim. <u>1970</u> , 15, 2572-3; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1970</u> , 15, 1333.
(3) Water; H ₂ O; [7732-18-5]	1999.
VARIABLES:	PREPARED BY:
T/K = 298 Composition	J. Hála

EXPERIMENTAL VALUES:

Composition at the Eutonic Points <u>CsCl</u> <u>HfOCl_2</u> mass% m_2 /mol kg^{-la} mass% m_1 /mol kg^{-la} 13.52 1.805 42.00 3.558 46.20 8.968 23.20 2.857 a. Calculated by compiler Equilibrium Solids: CsCl; [7647-17-8] 2HfOCl_2.CsCl.10H_2O; HfOCl_2.8H_2O; [14456-34-9]

The authors report numerical values for only two saturated solutions, at the eutonic points. The remaining solubility data were presented graphically.

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method (ref 1) used. Solutions containing excess solid were shaken for 8-12 h. Hf was determined gravimetrically as HfO ₂ , total Cl ⁻ content by Volhard's method. CsCl concentration found by difference. Equilibrium solid phases were studied by X-ray diffraction, thermal analysis, microscopy, and IR spectroscopy.	 (1)As in the authors' previous work (ref 1), HfOCl₂'8H₂O was prepared by crystallization from solutions of HfCl₄ in HCl. (2)CsCl, reagent grade, source and purity of other chemicals not specified.
	ESTIMATED ERROR:
	Temp: precision ± 0.1 K. Soly: precision ± 1-2 % (compiler).
	REFERENCES :
	<pre>1. Barskaya, I.B.; Morozov, I.S. Zh. Neorg. Khim. <u>1968</u>, 13, 1408; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1968</u>, 13, 738.</pre>

	s and Oxynandes
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Hafnium dichloride oxide octa- hydrate; HfOCl ₂ ·8H ₂ O; [14456-34-9]	Blinova, Z. N.; Komissarova, L. N.
	Zh. Neorg. Khim. <u>1972</u> , 17, 2520-5.
(2) Methanol; CH ₄ O; [67-56-1]	Russ. J. Inorg. Chem. (Engl. Transl.) 1972, 17, 1318-21.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The solubility of HfOCl ₂ .8H	20 is reported to be
30.12 mass % HfO ₂ or 58.54	
equilibrium solid phase was	-
NOTE: The latter value app	
solubility of the hydrated	
HfO2 the compiler calculate	d the solubility of the
equilibrium solid from the	mass % HfO to be 58.60 $\frac{1}{2}$
mass % or 3.456 mol kg ⁻¹ Hf	OC12.8H20.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Excess HfOCl ₂ ·8H ₂ O was equilibrated in a thermostated bath with the solvent. Equilibrium was established in 12-15 days. Samples of the saturated solu- tions were analyzed for Hf content gravimetrically as HfO ₂ . Solid phase was characterized by chemical and microscopical analysis.	dissolved in water, and Hf was
	(2) Grade "pure" methanol was used. Nothing was mentioned about drying the solvent.
	ESTIMATED ERROR:
	Temp: precision ± 0.1 K. Solubility error is not specified.

Hafnium Halides	s and Oxyhalides	205
COMPONENTS: (1) Hafnium dichloride oxide octa- hydrate; HfOCl ₂ ·8H ₂ O;[14456-34-9]	ORIGINAL MEASUREMENTS: Blinova, Z. N.; Komissarova, L. N. Zh. Neorg. Khim. <u>1972</u> , 17, 2520-5.	
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	Russ. J. Inorg. Chem. (Engl.Transl. <u>1972</u> , 17, 1318-21.)
VARIABLES:	PREPARED BY:	
T/K = 298	J. Hála	
EXPERIMENTAL VALUES:		
The solubility of HfOCl ₂ .8H	2 ⁰ at 25°C is reported to	
be 19.23 mass % HfO ₂ or 37.	40 mass % HfOCl ₂ . The	
equilibrium solid phase was	HfOCl ₂ •8H ₂ O.	
	arently represents the	
solubility of the hydrated a		
	2	
the compiler calculated the	22	
to be 37.41 mass % or 1.460	mol kg ⁻¹ .	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Isothermal method used. Excess HfOCl ₂ ·8H ₂ O was equilibrated in a thermostated bath with the solvent. Equilibrium was established in 12-15 days. Samples of the saturated solu- tions were analyzed for Hf content gravimetrically as HfO ₂ . Solid phase was characterized by chemical and microscopical analysis.	<pre>dissolved in water, and Hf was precipitated with NH₄OH. Hf hydroxide was washed free from sulfate ions, dissolved in con- centrated HCl, and HfOCl₂·8H₂O obtained by crystallization. HCl used was reagent grade.</pre> (2) Grade "pure" ethanol was used.	50° 1 as
	Nothing was mentioned about dry the solvent.	ying
	ESTIMATED ERROR: Temp: precision ± 0.1 K. Solubility error is not specified.	

COMPONENTS: (1) Hafnium dichloride oxide octa-	ORIGINAL MEASUREMENTS: Blinova, Z. N.; Komissarova, L. N.
hydrate; HfOCl ₂ ·8H ₂ O; [14456-34-9]	Zh. Neorg. Khim. <u>1972</u> , 17, 2520-5.
(2) 1-Hexanol; C ₆ H ₁₄ O; [111-27-3]	Russ. J. Inorg. Chem. (Engl. Transl.) <u>1972</u> , 17, 1318-21.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The solubility of HfOCl ₂ •8H	-0 at 25°C is reported to
be 2.46 mass % HfO ₂ or 4.78	-
equilibrium solid phase was	~
NOTE: The latter value app	<i>L L</i>
solubility of the hydrated	4
the compiler calculated the	
to be 4.79 mass % or 0.123	mol kg ⁻¹ .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Excess HfOCl2.8H2O was equilibrated in a thermostated bath with the solvent. Equilibrium was established in 12-15 days. Samples of the saturated solu- tions were analyzed for Hf content gravimetrically as HfO2. Solid phase was characterized by chemical and microscopical analysis.	dissolved in water, and Hf was
	(2) Grade "pure" 1-hexanol was used. Nothing was mentioned about drying the solvent.
	ÉSTIMATED ERROR:
	Temp: precision ± 0.1 K. Solubility error is not specified.

Hafnium Halides	s and Oxyhalides 207
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Hafnium dichloride oxide octa-	Blinova, Z. N.; Komissarova, L. N.
hydrate; HfOCl ₂ ·8H ₂ O; [14456-34-9]	Zh. Neorg. Khim. <u>1972</u> , 17, 2520-5.
(2) l-Heptanol; C ₇ H ₁₆ O; [lll-70-6]	Russ. J. Inorg. Chem. (Engl. Transl.) 1972, 17, 1318-21.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The solubility of HfOCl ₂ .8H be 1.56 mass % HfO ₂ or 3.02 equilibrium solid phase was <i>NOTE</i> : The latter value app solubility of the hydrated the compiler calculated the to be 3.04 mass % or 0.0766	mass % HfOCl ₂ . The HfOCl ₂ .8H ₂ O. arently represents the salt. From the mass % HfO ₂ solubility of HfOCl ₂ .8H ₂ O
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Excess HfOCl ₂ ·8H ₂ O was equilibrated in a thermostated bath with the solvent. Equilibrium was established in 12-15 days. Samples of the saturated solu- tions were analyzed for Hf content gravimetrically as HfO ₂ . Solid phase was characterized by chemical and microscopical analysis.	(1) $HfOCl_2$ $^{8}H_2O$ was prepared from $HfO_2(99.33 \text{ mass} \ Hf$, 0.55 mass ^{8}Zr). HfO_2 was heated to $300-450^{\circ}$ with a mixture of $(NH_4)_2SO_4$ and concentrated H_2SO_4 , the melt was dissolved in water, and Hf was

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Hafnium dichloride oxide octa-	Blinova, Z. N.; Komissarova, L. N.
hydrate; HfOCl ₂ ·8H ₂ O; [14456-34-9]	Zh. Neorg. Khim. <u>1972</u> , 17, 2520-5.
(2) 1-Octanol; C ₈ H ₁₈ O; [111-87-5]	Russ. J. Inorg. Chem. (Engl. Transl.) 1972, 17, 1318-21.
sec-Octanol; C ₈ H ₁₀ O;	<u> </u>
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The solubility of HfOCl ₂ ·8H	$0 \text{ at } 25^{\circ}C$ is reported to
be 1.03 mass % HfO, or 2.00	~
2.	2
equilibrium solid phase was	2 2
Note 1: The latter value a	
solubility of the hydrated	2
the compiler calculated the	2 2
to be 2.00 mass % or 0.0498	mol kg ⁻¹ .
Note 2: sec-octanol (2-oct	anol, 3-octanol, or
4-octanol (not clear)) solu	bility < 0.002 mass % HfO ₂
after 2.5 months (below lim	it of detection of method).
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Excess HfOCl ₂ ·8H ₂ O was equilibrated in a thermostated bath with the solvent. Equilibrium was established in 12-15 days. Samples of the saturated solu- tions were analyzed for Hf content gravimetrically as HfO ₂ . Solid phase was characterized by chemical and microscopical analysis.	dissolved in water, and Hf was

ORIGINAL MEASUREMENTS: Barskaya, I.B.; Toptygina, G.M. *Zh. Neorg. Khim. 1967, 12, 29-33; Russ. J. Inorg. Chem. (Engl. Transl.) 1967, 12, 14-16. PREPARED BY: J. Hála at 25°C Nature of the Solid Cl (NH ₄) ₂ HfCl ₆ Phase ^b st masst ^a m ₁ /mol kg ^{-1a} 0 6.80 .322 A+B 5.24 .258 A .398 .197 A .167 A 0 3.23 .167 A .259 .121 ues of masst (NH ₄) ₂ HfCl ₆ were .103% ilar calculations from masst t for the value for 31.03% t for the value for 31.03% HCl : HfOCl ₂ ·8H ₂ O [14456-34-9]
*Zh. Neorg. Khim. $1967, 12,$ 29-33; Russ. J. Inorg. Chem. (Engl. Transl.) 1967, 12, 14-16. PREPARED BY: J. Hála at $25^{\circ}C$ Nature of the Solid Cl (NH ₄) ₂ HfCl ₆ Phase ^b s% mass% ^a m ₁ /mol kg ^{-1a} 0 6.80 .322 A+B 8 5.24 .258 A 35 5.03 .250 A 0 3.98 .197 A 15 3.25 .167 A 0 3.23 .167 A 65 2.29 .121 A ues of mass% (NH ₄) ₂ HfCl ₆ were ilar calculations from mass% t for the value for 31.03% HCl : HfOCl ₂ .8H ₂ O [14456-34-9] INFORMATION
29-33; Russ. J. Inorg. Chem. (Engl. Transl.) 1967, 12, 14-16. PREPARED BY: J. Hála at 25°C Nature of the Solid Phase ^D s% mass% ^a m1/mol kg ^{-1a} 0 6.80 .322 A+B 8 5.24 .258 A 35 5.03 .250 A 0 3.98 .197 A 15 3.25 .167 A 65 2.29 .121 A ues of mass% (NH ₄) 2HfCl ₆ were ilar calculations from mass% t for the value for 31.03% HCl : HfOCl ₂ .8H ₂ O [14456-34-9] INFORMATION
J. Hála at 25°C Nature of the Solid Cl $(NH_4)_2HfCl_6$ Phase ^b s% mass% ^a m ₁ /mol kg ^{-la} 0 6.80 .322 A+B 8 5.24 .258 A 35 5.03 .250 A 0 3.98 .197 A 15 3.25 .167 A 0 3.23 .167 A 65 2.29 .121 A ues of mass% $(NH_4)_2HfCl_6$ were ilar calculations from mass% t for the value for 31.03% HCl : HfOCl ₂ ·8H ₂ O [14456-34-9] INFORMATION
J. Hála at 25°C Nature of the Solid Cl $(NH_4)_2HfCl_6$ Phase ^b s% mass% ^a m ₁ /mol kg ^{-la} 0 6.80 .322 A+B 8 5.24 .258 A 35 5.03 .250 A 0 3.98 .197 A 15 3.25 .167 A 0 3.23 .167 A 65 2.29 .121 A ues of mass% $(NH_4)_2HfCl_6$ were ilar calculations from mass% t for the value for 31.03% HCl : HfOCl ₂ ·8H ₂ O [14456-34-9] INFORMATION
at 25° C Nature of Cl (NH ₄) ₂ HfCl ₆ Phase ^b s% mass% ^a m ₁ /mol kg ^{-1a} 0 6.80 .322 A+B 8 5.24 .258 A 35 5.03 .250 A 0 3.98 .197 A 15 3.25 .167 A 0 3.23 .167 A 65 2.29 .121 A ues of mass% (NH ₄) ₂ HfCl ₆ were ilar calculations from mass% t for the value for 31.03% HCl : HfOCl ₂ ·8H ₂ O [14456-34-9] INFORMATION
Cl $(NH_4)_2HfCl_6$ The Solid Phase ^b s% mass% ^a m ₁ /mol kg ^{-1a} 0 6.80 .322 A+B 8 5.24 .258 A 35 5.03 .250 A 0 3.98 .197 A 15 3.25 .167 A 0 3.23 .167 A 65 2.29 .121 A ues of mass% $(NH_4)_2HfCl_6$ were ilar calculations from mass% t for the value for 31.03% HCl : HfOCl ₂ ·8H ₂ O [14456-34-9] INFORMATION
Cl $(NH_4)_2HfCl_6$ The Solid Phase ^b s% mass% ^a m ₁ /mol kg ^{-1a} 0 6.80 .322 A+B 8 5.24 .258 A 35 5.03 .250 A 0 3.98 .197 A 15 3.25 .167 A 0 3.23 .167 A 65 2.29 .121 A ues of mass% $(NH_4)_2HfCl_6$ were ilar calculations from mass% t for the value for 31.03% HCl : HfOCl ₂ ·8H ₂ O [14456-34-9] INFORMATION
S% mass% $m_1/mol kg^{-la}$ 0 6.80 .322 A+B 8 5.24 .258 A 35 5.03 .250 A 0 3.98 .197 A 15 3.25 .167 A 0 3.23 .167 A 65 2.29 .121 A ues of mass% (NH ₄) ₂ HfCl ₆ were ilar calculations from mass% t for the value for 31.03% HCl : HfOCl ₂ .8H ₂ O [14456-34-9] INFORMATION
0 6.80 .322 A+B 8 5.24 .258 A 35 5.03 .250 A 0 3.98 .197 A 15 3.25 .167 A 0 3.23 .167 A 65 2.29 .121 A ues of mass% (NH ₄) ₂ HfCl ₆ were ilar calculations from mass% t for the value for 31.03% HCl : HfOCl ₂ .8H ₂ O [14456-34-9] INFORMATION
8 5.24 .258 A 35 5.03 .250 A 0 3.98 .197 A 15 3.25 .167 A 0 3.23 .167 A 65 2.29 .121 A ues of mass% (NH4) 2HfCl 6 were ilar calculations from mass% t for the value for 31.03% HCl : : HfOCl 2.8H20 [14456-34-9]
35 5.03 .250 A 0 3.98 .197 A 15 3.25 .167 A 0 3.23 .167 A 65 2.29 .121 A ues of mass% (NH ₄) ₂ HfCl ₆ were ilar calculations from mass% t for the value for 31.03% HCl : HfOCl ₂ .8H ₂ O [14456-34-9] INFORMATION
15 3.25 .167 A 0 3.23 .167 A 65 2.29 .121 A ues of mass% (NH ₄) 2HfCl ₆ were
<pre>65 2.29 .121 A ues of mass% (NH₄)₂HfCl₆ were ilar calculations from mass% t for the value for 31.03% HCl : HfOCl₂.8H₂O [14456-34-9] INFORMATION</pre>
<pre>65 2.29 .121 A ues of mass% (NH₄)₂HfCl₆ were ilar calculations from mass% t for the value for 31.03% HCl : HfOCl₂.8H₂O [14456-34-9] INFORMATION</pre>
t for the value for 31.03% HCl : HfOCl ₂ .8H ₂ O [14456-34-9] INFORMATION
SOURCE AND PURITY OF MATERIALS:
 (1) (NH₄)₂HfCl₆ was prepared by saturation with HCl gas of a hot solution of HfCl₄ and NH₄Cl. HfCl₄ was prepared by chlorination in the presence of carbon of HfO₂, whose source and purity was not specified. Source and purity of NH₄Cl and HCl were not given. ESTIMATED ERROR: Soly: precision ± 2-5 % (compiler). The temperature error is not specified. REFERENCES: 1. Toptygina, G.M.; Barskaya, I.B. Zh. Neorg. Khim. 1965, 10, 2254; Russ. J. Inorg. Chem. (Engl. Transl.) 1965, 10, 1226.
Zh. Neorg. Khi Russ. J. Inorg

÷

Hafnium Halides and Oxyhalides

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Potassium hexachlorohafnate(IV); K₂HfCl₆; [19381-63-6]</pre>	Barskaya, I.B.; Toptygina, G.M.
(2) Hydrogen Chloride; HCl; [7647-01-0]	*Zh. Neorg. Khim. <u>1967</u> , 12, 29-33; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1967</u> , 12, 14-16.
(3) Water; H ₂ O; [7732-18-5]	· ·
VARIABLES:	PREPARED BY:
T/K = 298 $m_2/mol kg^{-1} = 17.93-19.58$	J. Hála
EXPERIMENTAL VALUES:	
Composition of Saturated Solutions	
HCI HfO ₂ K	2 6
mass% m ₂ /mol kg ^{-la} mass% ma	$\frac{1}{mass} \frac{a_{m_1/mol kg}}{m_1/mol kg}$
36.2317.933.741.39.5219.582.301.	
a. Calculated by compiler. The values of mass% K ₂ HfCl ₆ were calculated from mass% HfO ₂ . Similar calculations from mass% KCl yielded an identical result for 39.52 mass% HCl where K ₂ HfCl ₆ is the equilibrium solid phase. The result for 36.23 mass% HCl was lower than that calculated from mass% HfO ₂ .	
b. A: KCl [7447-40-7]; B: HfOCl ₂ .	8H ₂ 0 [14456-34-9];
C: K ₂ HfCl ₆ [19381-63-6]	
	INFORMATION
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Solutions containing excess of either K ₂ HfCl ₆ or of a mixture of HfCl ₄ and RCl were shaken for several hours to several days. Hf and K were deter- mined gravimetrically as HfO ₂ and K ₂ SO ₄ , respectively, Cl ⁻ determined by Volhard's method. Solid phases were identified by chemical and microscopic analysis and by Schreinemakers' method.	SOURCE AND PURITY OF MATERIALS: (1) K ₂ HfCl ₆ was prepared by satur- ation with HCl gas of a solution of HfCl ₄ and KCl in aqueous HCl. HfCl ₄ was prepared by chlorination in the presence of carbon of HfC ₂ , whose source and purity was not specified. The solid was dried under dry HCl gas (ref 1). Source and purity of HCl and KCl were not given.
	ESTIMATED ERROR: Soly: precision ± 2-5 % (compiler). The temperature error is not specified.
	REFERENCES: 1. Toptygina, G.M.; Barskaya, I.B. Zh. Neorg. Khim. <u>1965</u> , 10, 2254; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1965</u> , 10, 1226.

Hafnium Halide	s and Oxyhalides	211
COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Rubidium hexachlorohafnate(IV); Rb₂HfCl₆; [19276-22-3]</pre>	Barskaya, I.B.; Toptygina,	
<pre>(2) Hydrogen chloride; HCl; [7647-01-0]</pre>	*Zh. Neorg. Khim. <u>1967</u> , 12, Russ. J. Inorg. Chem. (En Transl.) <u>1967</u> , 12, 14-16.	29-33; gl.
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = 298 $m_2/mol kg^{-1} = 10.22-11.39$	J. Hála	
EXPERIMENTAL VALUES:		
Composition of Saturated Solutions	at 25°C	Nature of the Solid
-	1 Rb ₂ HfCl ₆	Phaseb
	st masst ^a m _l /mol kg ^{-la}	
25.8610.221.772.329.3012.021.441.630.1012.25.941.035.4215.24.309.339.9218.39.209.2	6 4.73 .121	A+B
	9 3.85 .102 9 2.51 .0663	A A
35.42 15.24 $.309$ $.3$	31 .825 .0230	A
39.92 18.39 .209 .2	3 .558 .0167	A
b. A: Rb ₂ HfCl ₆ [19276-22-3]; B:		
AUXILIARY	INFORMATION	<u></u>
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	······································
Isothermal method used. Solutions containing excess of either Rb ₂ HfCl ₆ or of a mixture of HfCl ₄ and RbCl were shaken for several hours to several days. Hf and Rb were determined gravimetrically as HfO ₂ and Rb ₂ SO ₄ , respectively. Cl ⁻ determined by Volhard's method. Solid phases were identified by chemical and microscopic analysis and by Schreinemakers' method.	(1) Rb ₂ HfCl ₆ was prepared by a diluted solution of Hf RbCl over H ₂ SO ₄ for a lo period of time (ref 1). was prepared by chlorina the presence of carbon o whose source and purity not specified. Source a of RbCl and HCl not give	Cl ₄ and ng HfCl ₄ tion in f HfO ₂ , were nd purity
	ESTIMATED ERROR:	
	Soly: precision ± 2-5 % The temperature error is specified.	
	REFERENCES :	<u></u>
	 Toptygina, G.M.; Barska <i>Zh. Neorg. Khim.</i> 1965, <i>Russ. J. Inorg. Chem.</i> <i>Transl.</i>) 1965, 10, 1226 	10, 2254; Engl.

÷

Hafnium Halides and Oxyhalides

	des and Oxynalides	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Cesium hexachlorohafnate(IV); Cs₂HfCl₆; [16918-89-7]</pre>	Barskaya, I.B.; Toptygina, G.M.	
<pre>(2) Hydrogen chloride; HCl; [7647-01-0]</pre>	*Zh. Neorg. Khim. <u>1967</u> , 12, 29-33; Russ. J. Inorg. Chem. (Engl. Transl.) 1967, 12, 14-16.	
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = 298 $m_2/mol kg^{-1} = 7.60-18.31$	J. Hála	
EXPERIMENTAL VALUES:		
Composition of Saturated Solution	the Solid	
	SCl CS2HfCl6 Phase ^b	
mass% m ₂ /mol kg ^{-la} mass% m.	- L -	
20.26 7.60 2.11 7 22.19 8.45 1.85 4	.68 6.59 .137 A+B .10 5.77 .122 A+B	
22.19 8.45 1.85 4 25.61 9.90 1.095 1	.70 3.42 .0733 A	
25.62 9.90 1.083 1	.69 3.38 .0725 A	
29.09 11.55 .324 34.70 14.63 .086	.505 1.01 .0220 A .135 .268 .00627 A	
34.70 14.63 .086 39.97 18.31 .053	.69 3.38 .0725 A .505 1.01 .0220 A .135 .268 .00627 A .083 .165 .00420 A	
AUXILIA	RY INFORMATION	
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS;	
Isothermal method used. Solutions containing excess of either Cs ₂ HfCl ₆ or of a mixture of HfCl ₄ and CsCl were shaken for several hours to several days. Hf and Cs determined gravimetrically as HfO ₂ and Cs ₂ SO ₄ , respectively. Cl ⁻ determined by Volhard's method. Solid phases were identified by chemical and microscopic analysis and by Schreinemakers' method.	tion of ⁶ HfCl ₄ and CsCl either by saturating it with HCl gas or by boiling (ref 1). HfCl ₄ was prepared by chlorination in the	
	REFERENCES:	
	1. Toptygina, G.M.; Barskaya, I.B. Zh. Neorg. Khim. <u>1965</u> , 10, 2254; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1965</u> , 10, 1226.	

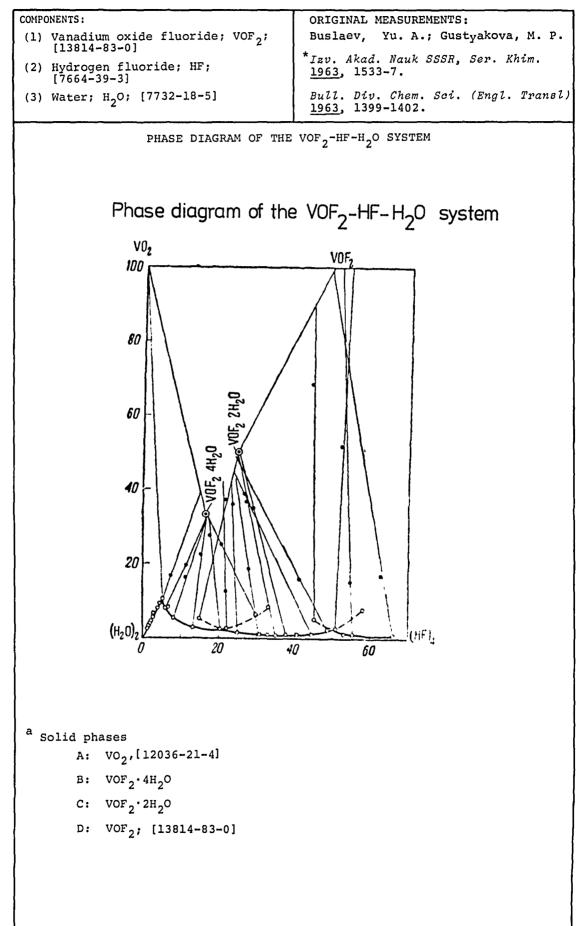
Hafnium Halides and Oxyhalides 2	
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hafnium bromide; HfBr₄; [13777-22-5]</pre>	Berdonosov, S. S.; Lapitskii, A. V. Vlasov, L. G.
<pre>(2) Trichloromethane (chloroform); CHCl₃; [67-66-3]</pre>	V estn. Mosk. U niv., Ser. 2: Khim. <u>1963</u> , 18 (1), 38-9.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The original document presented only one experimental	
value in a graph. From it the compiler estimated the	
solubility of HfBr $_4$ at 25 ^O C to be approximately	
1.5 mass% (0.0306 mol kg ⁻¹).	
AUXILIARY INFORMATION	
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Excess HfBr4 was agitated with 5 cm ³ of the solvent in a stoppered test-tube in a thermostated bath for three hours, which was found sufficient to reach equilibrium. After centrifugation, a 1.0-1.5 g sample of the saturated solution was hydrolyzed in water in a crucible at 50-60°C and then ignited to HfO ₂ . All procedures were carried out in a dry box.	 (1) HfBr₄ was prepared by bromination of a mixture of HfO₂ (source and purity not specified) with charcoal. The product was purified by vacuum distillation at 250°C. Analysis (mass%, found/calculated): Hf 35.68-35.87/35.83, Br 64.25-64.31/64.17. (2) Trichloromethane (chloroform) (source and purity not specified) was purified and dried by standard methods.
	REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hafnium bromide; HfBr₄; [13777-22-5]</pre>	Berdonosov, S. S.; Lapitskii, A. V. Vlasov, L. G.
<pre>(2) Tetrachloromethane; CCl₄; [56-23-5]</pre>	V estn. Mosk. Univ., Ser. 2: Khim. <u>1963</u> , 18 (1), 38-9.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The original document presen	ted only one experimental
value in a graph. From it t	he compiler estimated the
solubility of HfBr ₄ at 25 ⁰ C	
0.2 mass% (0.0040 mol kg ⁻¹).	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Excess	(1) HfBr ₄ was prepared by bromina-
HfBr ₄ was agitated with 5 cm ³ of the solvent in a stoppered test-tube in	tion [*] of a mixture of HfO ₂ (source and purity not
a thermostated bath for three hours,	specified) with charcoal. The
which was found sufficient to reach equilibrium.	product was purified by vacuum distillation at 250°C. Analysis
	(mass%, found/calculated):
After centrifugation, a 1.0-1.5 g sample of the saturated solution was	Hf 35.68-35.87/35.83, Br 64.25-64.31/64.17.
hydrolyzed in water in a crucible at	(2) Tetrachloromethane (source and
$50-60^{\circ}C$ and then ignited to HfO ₂ .	purity not specified) was purified and dried by standard
All procedures were carried out in	
a dry box.	
	REFERENCES:
]

Hafnium Halides and Oxyhalides 215	
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hafnium bromide; HfBr₄; [13777-22-5]</pre>	Berdonosov, S. S.; Lapitskii, A. V. Vlasov, L. G.
(2) 1,2-Dichloroethane; C ₂ H ₄ Cl ₂ ; [107-06-2]	Vestn. Mosk. Univ., Ser. 2: Khim. <u>1963</u> , 18 (1), 38 - 9.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
in a graph. From it the compi	ed only one experimental value ler estimated the solubility eximately 4.1 mass% (0.0858 mol
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Excess HfBr ₄ was agitated with 5 cm ³ of the solvent in a stoppered test-tube in a thermostated bath for three hours, which was found sufficient to reach equilibrium. After centrifugation, a 1.0-1.5 g sample of the saturated solution was hydrolyzed in water in a crucible at 50-60 °C and then ignited to HfO ₂ . All procedures were carried out in a dry box.	<pre>SOURCE AND PURITY OF MATERIALS: (1) HfBr₄ was prepared by bromina- tion of a mixture of HfO₂ (source and purity not specified) with char- coal. The product was purified by vacuum distillation at 250 °C. Anal- ysis (mass%, found /calculated): Hf 35.68-35.87/35.83, Br 64.25-64.31/ 64.17. (2) 1,2-Dichloroethane (source and purity not specified) was puri- fied and dried by standard methods. ESTIMATED ERROR: REFERENCES:</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Hafnium dibromide oxide; HfOBr₂; [14118-72-0]</pre>	von Hevesy, G.; Wagner, O.H.	
<pre>(2) Hydrogen bromide; HBr; [10035-10-6]</pre>	Z. Anorg. Allg. Chem. <u>1930</u> , 191, 194-200.	
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = 298 $c_2/mol dm^{-3} = 0.351-13.36$	J. Hála	
EXPERIMENTAL VALUES:		
Solubility of HfOBr ₂ in aqueous HBr at 25°C		
HBr HfO2	HfOBr ₂ Density	
$c_2/mol dm^{-3}$ g dm ⁻³	$c_1/mol dm^{-3}$ g cm ⁻³	
0.351 694.5 3.620 314.5 6.568 48.90 8.77 10.60 13.36 0.80	3.2992.08381.4931.69890.23211.43480.05031.49840.00381.7157	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Isothermal method used. Solutions containing excess HfOBr ₂ *8H ₂ O were mixed for several days. Methods of analysis and equilibrium solid phases not specified.	<pre>(1) HfOBr₂.8H₂O was prepared by dissolving Hf hydroxide in HBr, and by subsequent careful evaporation. Source and purity of starting materials not specified.</pre>	
	ESTIMATED ERROR:	
	Nothing specified.	
	REFERENCES :	

4. The solubility of vanadium-containing halide and oxyhalide substances. Systems Pages $VF_5 + UF_6$ 218 $VOF_2 + HF + H_2O$ 219, 220 $VOF_3 + HF + H_2O$ 221 $---- + UF_6$ 222


 $VCl_2 + LiCl + (CH_3)_2SO$

 $VCl_3 + LiCl + (CH_3)_2SO$

223

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Vanadium fluoride; VF ₅ ; [7783-72-4]	Mears, W. H.; Townend, R. V.; Broadley, R. D.; Tarissini, A. D.; Stahl, R. F.
(2) Uranium fluoride; UF ₆ ; [7783-81-5]	Ind. Eng. Chem. <u>1958</u> , 50, 1771-3.
VARIABLES:	PREPARED BY:
T/K = 343	J. Hála
EXPERIMENTAL VALUES:	
The solubility of VF ₅ at 70 ⁰ mass %. This corresponds to a > 0.76 as calculated by the c	solubility of m_1 /mol kg ⁻¹
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method. Weighed amounts of UF ₆ and VF ₅ were distilled into Fluorothene tubes under vacuum. A single liquid phase free of any solid was taken as evidence of complete solubility.	between V metal and Fo gas at
	ESTIMATED ERROR:
1	REFERENCES:
	l. Emeleus, H. J.; Gutman, V. J. J. Chem. Soc. <u>1949</u> , 2979.

			s anu Oxynanus		213
COMPONENTS :			ORIGINAL MEASU	REMENTS :	
(1) Vanadium o [13814-83-		-			tyakova, M. P.
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>			* <i>Izv. Akad.</i> <u>1963</u> , 1533-	Nauk SSSR, .7.	Ser. Khim.
(3) Water; H ₂ O; [7732-18-5]			Bull. Div. <u>1963</u> , 1399-	Chem. Sci. 1402.	(Engl.Transl.)
VARIABLES:			PREPARED BY:		
	T/K = 298 Composition			J. Hála	
EXPERIMENTAL VALUE	S:		<u> </u>		
Composition o	f saturated s	olutions			
HF	VO2 Nati	ıre	HF	vo ₂	Nature
mass % n	ass % Sol:		mass %	-	of the Solid Phases ^a
					Flases
		Ą	27.04	9.81	B
		Ą	37.62 42.48	4.22 2.17	B + C
4.62		A A	42.48	2.1/ 1.51	C C
		A.	51.93	1.54	c
		A	54.12	1.58	č
		Α	57.17	1.35	С
		A	59.59	1.71	C
		+ B	63.30	1.77	С
		B B	66.78 71.07	2.99 10.16	C C
		3	62.37	6.76	D
		3	68.45	3.34	D
35.28		3	71.01	1.53	D
		3	73.07	1.35	D
48.40 1	.2.85	3	80.98	0.61	D
	of following			on of the s	solid phases.
		AUXILIARY	INFORMATION		
METHOD/APPARATUS/H Isothermal met HF containing equilibrated f depending on t solid phases i solution. The 5-6 h for syst VO ₂ and VOF ₂ .4 were necessary VOF ₂ .2H ₂ O and dehydration pr ment of equili in solutions w V(IV) in the s	hod used. So excess VOF ₂ . or various to he composition n equilibrium equilibrium ems containin H ₂ O, whereas for those co VOF ₂ due to so ocesses. So brium prevent ith > 81 mass	4H ₂ O were ime periods on of the with the time was by solid 2-3 days ontaining slow ow attain- ced studies s% HF.	solid, VO ₂ (co Source used no	H2O, pale-b. was prepare ontaining < and purity ot specified	lue crystalline ed by dissolving l% V(V)) in HF of materials
determined by F was determi	titration wit	h KMnO4,	Nothing specified.		
potentiometric were identifie	method. So	lid phases			
			REFERENCES:		
			1		

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Vanadium oxide trifluoride; VOF₃;</pre>	Nikolaev, N. S.; Buslaev, Yu. A.
[13709-31-4]	Khim. Redk. Elem., Akad. Nauk SSSR,
<pre>(2) Hydrogen fluoride; HF;</pre>	Inst. Obsh. i Neorg. Khim. <u>1955</u> , 2,
[7664-39-3]	57-63.
(3) Water; H ₂ O; [7732-18-5]	Chem. Abstr. <u>1956</u> , 50, 3056e.
VARIABLES:	PREPARED BY:
T/K = 289, 298	J. Hála
Composition	M. Salomon

i

	<u></u>	Compo	osition of			
Tempe: t/ºC	rature T/K	HF mass%	V205 masst	VOF3 mass ^{& a}	Nature of the Solid Phase ^b	
			· · · · · · · · · · · · · · · · · · ·		,	
16	289	44.2	45.1 45.4	61.47 61.88	A A	
		50.0 53.0	44.6 45.0	60.79 61.34	A A	
		54.5 56.8 61.2	43.5 40.4 35.6	59.29 55.07 48.52	B B B	
		63.0 65.1	33.4 31.4	45.52	B B	
		68.0 71.0	29.8 26.8	40.62	C C	
		75.5	23.4 22.8	31.89 31.08	c	
		78.5	22.7	30.94	c	
25	298	6.7 10.8	10.5 15.9	14.31 21.67	D D	
		15.2 21.5	22.3 30.4	30.39 41.43	ם ס	
		29.0 35.0	32.7 35.1	44.57 47.84	E E	
		38.2 41.3	40.0 46.4	54.52 63.24	E E	
				INFORMATION		
ions of H excess V ₂ 0	mal meth F were e 5 at 25° 16°C (C _H ys. Par Pt vess ts at lo	_	Solu- d with 1.3 ass%) ted and sed for		ITY OF MATERIALS: eagent grade, source	e not
leasuremen	ion rang					
easuremen concentrat amples of nto a wei sel contai letermined itrimetri reduction	the sol ghed par ning wat in the cally wi to V(III	es, respec utions wer affine coa er or ice. presence o th KMnO ₄ a) with Zn	tively. e taken ted ves- V was f F ⁻ fter amalgam	ESTIMATED ERRO	R:	к.
easuremen concentrat amples of nto a wei sel contai letermined citrimetri ceduction n the pre presence o potentiome colid phas	the sol ghed par ning wat in the cally wi to V(III sence of f V was tric tit es were the phas	es, respec utions wer affine coa er or ice. presence o th KMnO ₄ a	tively. e taken ted ves- V was f F ⁻ fter amalgam in the by h NaOH. by chem.	Temp: preci preci)R: sion ± 0.5 K at 298 sion ± 1 at 289 K. ity error is not spe	
easuremen oncentrat amples of nto a wei el contai etermined itrimetri eduction n the pre resence o otentiome olid phas nalysis, icroscopy ootnotes:	the sol ghed par ning wat in the cally wi to V(III sence of f V was tric tit es were the phas a Calc	es, respec utions wer affine coa er or ice. presence o th KMnO ₄ a) with Zn H ₃ BO ₃ . F determined ration wit identified	tively. e taken ted ves- V was f F ⁻ fter amalgam in the by h NaOH. by chem. y	Temp: preci preci	sion \pm 0.5 K at 298 sion \pm 1 at 289 K.	
easuremen concentrat amples of nto a wei el contai letermined citrimetri reduction n the pre presence o octentiome colid phas nalysis, dicroscopy cotnotes: Solid pha	the sol ghed par ning wat in the cally wi to V(III sence of f V was tric tit es were the phas a Calc	es, respec utions wer affine coa er or ice. presence o th $KMnO_4$ a) with Zn H_3BO_3 . F determined determined ration wit identified e B also by ulated by	tively. e taken ted ves- V was f F- fter amalgam in the by h NaOH. by chem. y compiler.	Temp: preci preci	sion ± 0.5 K at 298 sion ± 1 at 289 K. ity error is not spe	C.H ₂ O

222	Vanadium Halides and Oxyhalides		
(1)	ONENTS: Vanadium oxide trifluoride; VOF ₃ ; [13709-31-4] Uranium fluoride; UF ₆ ; [7783-81-5]	<pre>ORIGINAL MEASUREMENTS: Mears, W. H.; Townend, R. V.; Broadley, R. D.; Tarissini, A. D.; Stahl, R. F. Ind. Eng. Chem. <u>1958</u>, 50, 1771-3.</pre>	
VARI	TABLES: T/K = 343, 348	PREPARED BY: J. Hála	
EXPE	$\frac{\text{Temperature}}{t/^{\circ}\text{C}} \qquad \frac{T/\text{K}}{2} \qquad \frac{T/\text{K}}{343}$	lowering h value) measurement.	
	AUXILIARY	INFORMATION	
West VOI tult tult VOI sha all day to que ton rat dro U a giv was liqu liqu	HOD/APPARATUS/PROCEDURE: Method A is an isothermal method. ighed amounts of UF ₆ and excess F ₃ were distilled into Flourothene bes under vacuum. Several such bes were equilibrated with excess F ₃ at 70°C for 1 week with hourly aking each day. The tubes were lowed to stand undisturbed for two ys while any excess VOF ₃ floated the top. Finally the tubes were enched in liquid N, and their bot- m sections, containing the satu- ted solution, were sealed off, opped into water and analyzed for and V. Methods of analysis not ven. Method C: an excess of VOF ₃ is added to pure UF ₆ in a vapor- guid apparatus and brought to illibrium at 75°C. Samples of the guid phase were analyzed for V. thod of analysis not given.	<pre>SOURCE AND PURITY OF MATERIALS: (1) VOF₃ was prepared by the reaction of V₂O₅ with F gas at 450[°] according to ref (1), and de- gassed at liquid N temperature. It contained 40.9 - 41.3% V (calculated: 41.1%). (2) UF₆, specification grade material from U.S.A.E.C., Oak Ridge.</pre> ESTIMATED ERROR: REFERENCES: 1. Haendler, H. M.; Bartram, S. F.; Becker, R. S.; Bernard, W. J.; Bukata, S. W. J. Am. Chem. Soc. 1954, 76, 2177.	

Vanadium Halides and Oxyhalides

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Vanadium chloride; VCl₂; [10580-52-6]</pre>	Melendres, C. A.
(2) Lithium chloride; LiCl; [7447-41-4	U. S. Energy Comm. Report <u>UCRL-</u> 8] <u>16330</u> , <u>1965</u> , 67 pp.(Masters Thesis).
<pre>(3) Sulfinylbismethane or dimethyl- sulfoxide; C₂H₆OS; [67-68-5]</pre>	Chem. Abstr. <u>1966</u> , 64, 10462d.
VARIABLES: $T/K = 298.15$	PREPARED BY:
1/1 - 200.13	M. Salomon
EXPERIMENTAL VALUES: Composition of	saturated solutions, $t/{}^{\circ}C = 25.00$.
Lithium Chloride	Vanadium Chloride Density
$\frac{g/100 g(3) \mod kg^{-1a}}{\qquad \qquad	00 g(3) mol kg ^{-1a} mol dm ^{-3a} ρ/g cm ⁻³
1	.0 1.1666
	.0897 0.00736 0.00863 1.1732
	.1796 ^d 0.01474 0.01615 1.0976 .0 1.0955
analysis.	which is probably an error. uld not be determined after repeated
ADDITIONAL PROPERTIES OF SATURATED SO	LUTIONS:
Composition (g/100 g(3))	Viscosity Electrolytic Conductivity
LiCl VCl ₂	Conductivity n/cP 10 ³ k/ S cm ⁻¹
9.037 0.0	23.158 2.917
16.793 0.0897 0.0 0.1796	31.319 2.365 2.271 0.4875
0.0 0.1798	$1.98 1.5 \times 10^{-4}$
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Isothermal method. Solute and sol- vent combined in a 250 ml flask pro- tected from the atmosphere by argon atmosphere in a dry box and by a buret vacuum system. No thermal effect was observed during solution. The flask was sealed and mechanically agitated for at least one week in a water thermostat. Temperature was measured with a calibrated thermom- eter. Equilibrated solutions were allowed to settle 2-3 days, and the solution then filtered through a fritted glass disc under Ar pressure into a 250 ml flask. Weighed aliquots analyzed for Cl by either AgNO ₃ titration with dichlorofluorescein indicator or potentiometrically. An analysis of the wet residue (dried under 60-70 mmHg) for total C, H, S, and Cl gave an empirical form- ula from which the solvate formula was derived. The VCl ₂ + DMSO system	 VCl₂, anhydrous, 99.9 % purity (K & K Laboratories). Used as received. Dimethylsulfoxide (DMSO) (Crown Zellerbach Corp.) was treated with solid NaOH in a polyethylene
did not give a rational empirical formula. It appears that a solute of unknown composition is present in that equilibrated solid phase.	

à

COMPONENTS :				UREMENTS :	
(1) Vanadium ch [7718-98-1]) Vanadium chloride; VCl ₃ ; [7718-98-1]			, C. A.	
	Lithium chloride; LiCl; [7447-41-8]		U. S. Ener 16330, <u>196</u>	egy Comm. Re 55, 67 pp. (port <u>UCRL</u> - Masters Thesis).
(3) Sulfinylbis sulfoxide;	smethane or C ₂ H ₆ OS; [67	dimethyl- 7-68-5]	Chem. Abst	tr. <u>1966</u> , <i>64</i>	, 10462d.
VARIABLES:		·····	PREPARED BY:		
T/K = 2 Composi				M. Salomon	
EXPERIMENTAL VALUES	S: Compositi	on of satur	ated solution	ons, $t/^{\circ}C =$	25,00,
	hium Chlori			adium Chlori	
g/100 g(3)	mol kg ^{-1a}	mol dm ^{-3a}	g/100 g(3)	mol kg ^{-1a}	mol dm ^{-3a}
9.037 ^b	2.132	2.281 [°]	0.0		
9.929 0.0	2.342	2.500	0.0708 0.2088 ^d	0.00450 0.01327	0.00481 0.01456
ADDITI	ONAL PROPER	TIES OF SAT g(3)) Vis 1 ₂ n 23 708 31 088 2	.158 .681 .169	FIONS, $t/^{\circ}C$	= 25.00.
		AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: Isothermal method. Solute and sol- vent combined in a 250 ml flask pro- tected from the atmosphere by argon atmosphere in a dry box and by a buret vacuum system. No thermal effect was observed during solution. The flask was sealed and mechanically agitated for at least one week in a water thermostat. Temperature was measured with a calibrated thermome- ter. Equilibrated solutions were allowed to settle 2-3 days, and the solution then filtered through a fritted glass disc under Ar pressure into a 250 ml flask. Weighed ali- quots analyzed for Cl by either AgNO3 titration with dichlorofluorescein indicator or potentiometrically. An analysis of the wet residue (dried under 60-70 mmHg) for total C, H, S, and Cl gave an empirical formu- la from which the solvate formula was derived.			<pre>(1) VCl3, a (K & K receive (2) Dimethy Zellerk solid h tle for ecular allowed period: fractic (70-80°C fractic K. Fish water o ESTIMATED F Temp: F Soly: F</pre>	Laboratorie ed. ylsulfoxide bach Corp.) NaOH in a por c 0.5 hour. sieves were d to stand f ic shaking. Dnated at 5 C. The midd on was retainer analysis content of 0 ERROR: precision ± precision ± because d	<pre>9.9% purity es). Used as (DMSO) (Crown was treated with plyethylene bot- Type 4A mol- e added and for 24 hours with The DMSO was mmHg and le 3/5 to 1/2 .ned for use. s gave a maximum 0.01 mass %.</pre>

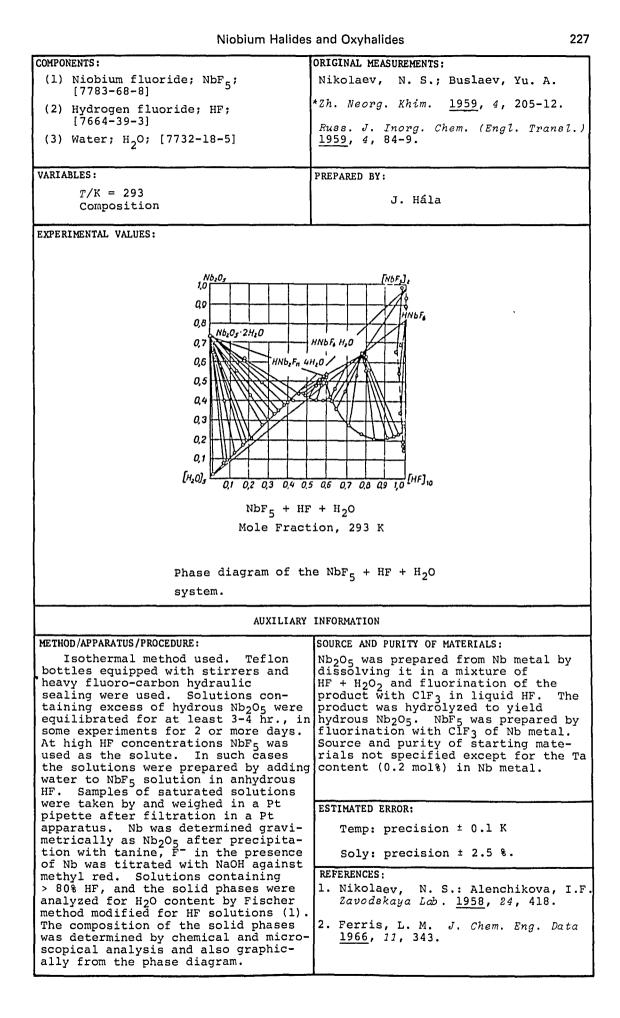
5.	The solubility of niobium-containing halide and oxyha substances.	lide
	Systems	Pages
	$NbF_5 + HF + H_2O$	226, 227
	+ BrF ₃	228
	^{+ UF} 6	229
	$NbO_2F + HF + H_2O$	230-235
	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	236
	AgNbF ₆ + HF	237
	$KNbF_6 + HF + H_2O$	238 .
	$K_2NbF_7 + HF + H_2O$	239-241
	+ KF + H ₂ O	242
	+ + HF + H ₂ O	243
	$K_2 NbOF_5 + H_2 O$	244
	NaNbCl ₆ + CCl ₂ =CClCCl=CCl ₂	245
	KNbCl ₆ + CCl ₂ =CClCCl=CCl ₂	246
	NbCl ₄ + CCl ₂ =CClCCl=CCl ₂	247
	NbCl ₅ + C ₆ H ₆	248
	+ (C ₂ H ₅) ₂ O	249
	+ C ₄ H ₆ O ₃	250
	+ ccl ₂ =cclccl=ccl ₂	251
	+ CH ₂ C1COOH	252
	+ TiCl ₄	253-259
	NbOCl ₃ + NbCl ₅	260-262
	+ TiCl ₄	263
	NbBr ₅ + $(C_2H_5)_2O$	264

20			nanues anu	Oxynancies			
COMPONENTS:			OR	IGINAL MEASU	REMENTS :		
(1) Niobiu [7783-	obium fluoride; NbF ₅ ; 783-68-8]		N:	ikolaev, N.	S.; Buslaev, Yu	. A.	
•	en fluoride	; HF;	R	*Zh. Neorg. Khim. <u>1959</u> , 4, Russ. J. Inorg. Chem. (Engl <u>1959</u> , 4, 84-9.			
(3) Water;) Water; H ₂ O; [7732-18-5]			<u>1939</u> , 4, 64-9.			
XPERIMENTA	L VALUES:						
	Composit	ion of satu	urated so	lutions at t	$/^{0}C = 20.$		
	HF	Nb205	N	b a,b	Nature of Solid		
	mass%	masst	mass%	m/mol kg ⁻¹	Phase C		
	2.89	3.82	2.67	0.304	A		
	13.65	18.05	12.62	1.84	А		
	14.60	21.65	15.14	2.32	А		
	20.56	28.24	19.74	3.56	А		
	26.45	35.26	24.65		A		
	28.81	35.83	25.05		А		
	32.02	43.52	30.43		А		
	33.56	46.30	32.37		A		
	35.62	47.61	33.28		A		
	37.05	49.01	34.26		A		
	38.81	50.50	35.31		A		
	40.01	50.59	35.37		A		
	41.00	51.79	36.21		A		
	41.80	53.65	37.51		A		
	43.60	52.58	36.76		В		
	44.74 45.62	51.82	36.23		В		
	49.60	50.82 47.99	35.53 33.55		B B		
	52.02	47.13	32.95		B		
	53.62	47.43	33.16		B + C		
	54.77	46.24	32.33		D + C C		
	57.32	42.70	29.85		c		
	66.40	32.57	22.77		C		
	71.72	28.21	19.72		č		
	76.41	25.23	17.64		С		
	79.95	24.77	17.32		С		
	80.37	25.87	18.09		С		
	81.41	25.77	18.02		С		
	60.88	57.55	40.23		D		
	61.04	56.48	39.49		D		
	66.15	49.51	34.61		D		
	75.48	35.35	24.71		D		
	80.07	29.51	20.63		D		
	83.58	24.45	17.09		D		
	85.50	21.31	14.90		D		
	86.34 88.28	19.70 17.22	13.77 12.04		D		
	öö.∠ö	11.22	12.04		D		

a Calculated by the compiler.

b The molal values calculated for comparison with the data of Ferris (ref 2) in the low HF concentration range.

^C Solid phases:


A: Nb205 · 2H20

B: HNb₂F₁₁·4H₂O

C: HNbF₆·H₂O

D: NbF₅; [7783-68-8]

Continued on the next page . . .

	T
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Niobium fluoride; NbF₅; [7783-68-8]</pre>	Sheft, I.; Hyman, H. H.; Katz, J. J. J. Am. Chem. Soc. <u>1953</u> , 75, 5221-3.
<pre>(2) Bromine trifluoride; BrF₃; [7787-71-5]</pre>	<i>b.</i> Am. Chem. 500. <u>1955</u> , 75, 5221-5.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The authors report the solub: ⁰ C as (15.7 ± 0.01) g Nb/100 fraction of the species BrF The compiler calculated the s NbF ₅ as 31.75 g/100 g solution	g solution or as the mole $\frac{1}{2}$ NbF ₆ , $x = 0.341$. solubility of the species on or m_1 /mol kg ⁻¹ = 2.476,
and the species $BrF_2^+NbF_6^-$ so: 3.75.	Lubility as m/mol kg ⁻ =
AUXILIA	RY INFORMATION
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Measurements were carried out in a solubility apparatus made of Cu and brass, and consisting of a Cu mixing tube with a fritted Fluorothene filter disc at the bottom end to which a sampling compartment was connected. Excess NbF5 was first mixed with BrF3 in a quartz tube, and Br2 and HF were removed by short evacuation. The slurry was then poured into the Cu mixing tube. The apparatus was assembled in a constant temperature air box which was lying on the rocker platform. The rocker was shaken for about 20 h. The displacement was such that at no time could the liquid come into contact with the filter disc. After equilibrium had been attained the box was turned upright, He pressure applied, and the saturated solution was forced through the filter into the weighed collecting tube. The sampling compartment was opened, the collecting tube sealed with a Fluorothene cap and weighed. The saturated solution was then hydrolyzed, Nb precipitated with cupferron, and ignited to Nb ₂ O ₅ .	<pre>(2) BrF3 (Harshaw Chem. Comp.) was purified from Br2, HBr, BrF5, HF, and nonvolatile fluorides by vacuum distillation in an all- nickel still. The fraction used (b.p. 95-95.5° at 250 mmHg) was pale yellow and was stored in Ni container. It was used in less than 3 days after distilla- tion. ESTIMATED ERROR: Temp: precision ± 0.75 K. Soly: precision ± 0.6 %.</pre>

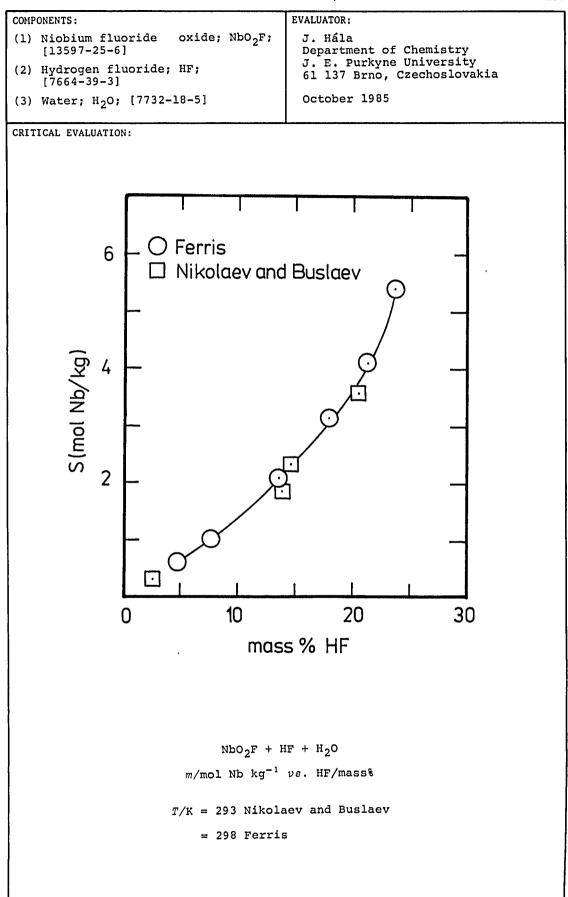
Niobium Halides and Oxyhalides 22				
COMPONENTS:	ORIGINAL MEASUREMENTS:			
<pre>(1) Niobium fluoride; NbF₅; [7783-68-8]</pre>	Nikolaev, N. S.; Sadikova, A. T.			
(2) (OC-6-11)-Uranium fluoride; UF ₆ ;	At. Ener. <u>1975</u> , 39, 338-43.			
[7783-81-5]	Sov. At. Energy (Engl. Transl.) <u>1975</u> , 39, 338-43.			
VARIABLES:	PREPARED BY:			
T/K = 373	J. Hála			
EXPERIMENTAL VALUES:				
At 100 $^{\circ}$ C the solubility of	NbF ₅ in UF ₆ is reported to			
be 0.37 mol kg^{-1} (6.86 mass	; %).			
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
Isothermal method used. Solu- bility was determined in a Cu auto- clave placed in a crucible furnace. Excess solid was equilibrated under constant mixing with 6 ml UF ₆ for 30-40 h, and then allowed to stand	The fluorides were prepared by the authors. No details were specified except for the fact that the products were strictly anhydrous.			
for another 40 h at the desired temperature, which exceeded 3-4 times the time necessary to reach the equilibrium. After that the autoclave was rapidly cooled in liquid N. A sample of the frozen				
saturated solution was transfered to	ESTIMATED ERROR:			
ice to hydrolyze the components, and analyzed. Methods of analysis were not given. All procedures were	Temp: precision ± 5 K.			
carried out in a dry box at -20°C.	Solubility error is not specified.			

REFERENCES:

-

COMPONENTS:	EVALUATOR:
<pre>(1) Niobium fluoride oxide; NbO₂F;</pre>	J. Hála
[13597-25-6]	Department of Inorganic Chemistry
<pre>(2) Hydrogen fluoride; HF;</pre>	J. E. Purkyne University
[7664-39-3]	61 137 Brno, Czechoslovakia
(3) Water; H ₂ O; [7732-18-5]	October 1985

CRITICAL EVALUATION:


An evaluation of the solubility of NbO2F in aqueous HF solutions.

Nikolaev and Buslaev (ref 1) measured the solubility of either $Nb_2O_5 \cdot xH_2O$ or NbF_5 in aqueous HF solutions to nearly 100 % HF at 293 K. Ferris (ref 2) measured the solubility of NbO_2F in aqueous HF solutions up to about 24 mass percent HF at 298 K. Although the data were measured at temperatures that differed by five degrees, the results (Figure 1) agree well enough to believe that the same system is being studied by the two laboratories over the common part of the HF range.

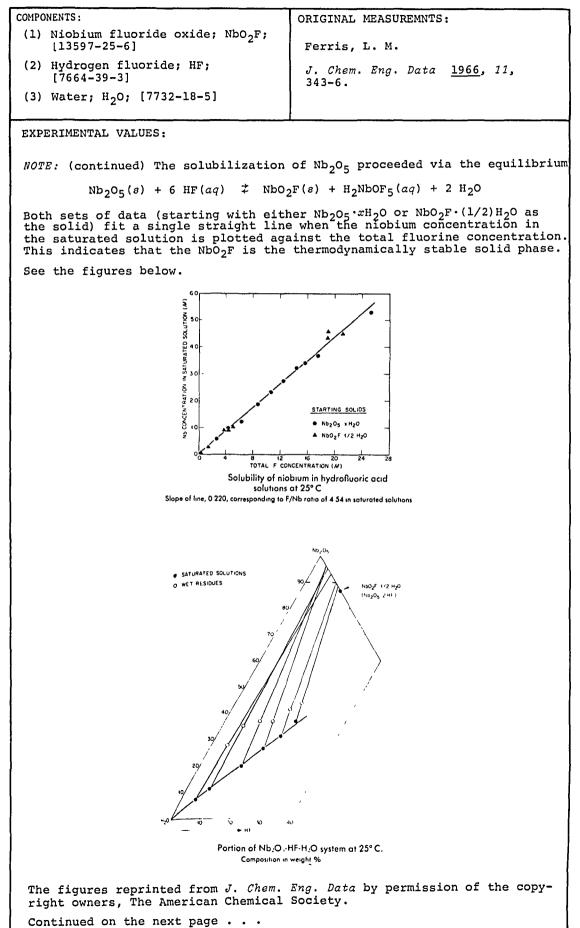
Nikolaev and Buslaev equilibrated their mixtures from 3-4 hours up to two days. They reported the equilibrium solid to be $Nb_2O_5 \cdot 2H_2O$. Ferris equilibrated the system for up to four months. His data shows less scatter than the data of Nikolaev and Buslaev. Ferris carefully characterized the solid as NbO_2F by both chemical analysis and by Xray diffraction. The evaluator accepts what appears to be the more careful work of Ferris that NbO_2F is the thermodynamically stable solid. Ferris' data is preferred over the 0 to 24 mass percent HF range. Ferris points out that if Nikolaev and Buslaev used a very large excess of $Nb_2O_5 \cdot xH_2O$ over HF that all of the HF could have been consumed without markedly depleting the oxide present. This could explain the difference in the identification of the solid phase.

REFERENCES:

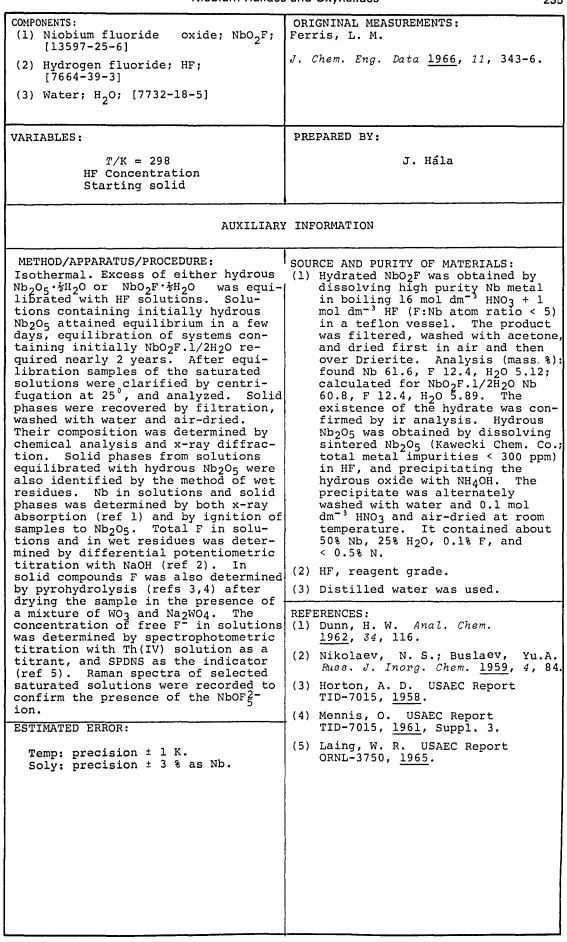
- Nikolaev, N. S.; Buslaev, Yu. A. Zh. Neorg. Khim. <u>1959</u>, 4, 205.
- 2. Ferris, L. M. J. Chem. Eng. Data <u>1966</u>, 11, 343.

	•					
COMPONENTS:	ORIGINAL MEASUREMENTS:					
<pre>(1) Niobium fluoride oxide; NbO₂F; [13597-25-6]</pre>	Nikolaev, N. S.; Buslaev, Yu. A.					
(2) Hydrogen fluoride; HF;	Zh. Neorg. Khim. <u>1959</u> , 4, 205-12.					
[7664-39-3]	Russ. J. Inorg. Chem. (Engl. Transl.) 1959, 4, 84-9.					
(3) Water; H ₂ O; [7732-18-5]						
VARIABLES:	PREPARED BY:					
T/K = 293	J. Hála					
Composition						
EXPERIMENTAL VALUES:						
Nikolaev and Buslaev did not i	ndentify NbO ₂ F as the solid					
phase in this system. Subseq	uent work of Ferris (ref 1)					
strongly indicates the equilib						
and not the Nb ₂ O ₅ ·2H ₂ O identif	-					
For Nikolaev and Buslaev's com						
on the NbF ₅ + HF + H_2O system						
HF Nb ₂ O ₅	Nb ^{a, b}					
mass % mass %	mass % m/mol kg ⁻¹					
2.89 3.82	2.67 0.304					
	12.62 1.84					
14.60 21.65 20.56 28.24	15.14 2.32 19.74 3.56					
^a Calculated by the co	mpiler.					
b The molal values, which could represent NbO ₂ F,						
are compared with the values of Ferris on p. 231.						
AUXILIARY INFORMATION						
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:					
Isothermal method used. Teflon bottles equiped with stirrers and heavy fluoro-carbon hydraulic seals were used. Solutions containing as excess of Nb ₂ O ₅ were equilibrated fo at least 3-4 hr., in some experiment for 2 or more days. Samples were taken by and weighed in a Pt pipette after filtration in a Pt apparatus. Nb was determined gravimetrically as Nb ₂ O ₅ .	s Nb ₂ O ₅ . Source and purity of the starting materials was not specified except for the Ta content (0.2 mol %) in Nb metal.					
2 0	ESTIMATED ERROR:					
	Temp: precision ± 0.1 K.					
	Soly: precision ± 2.5 %					
	REFERENCES:					
	l. Ferris, L. M. J. Chem. Eng. Data <u>1966</u> , 11,343.					

MPONENTS:	lum fluoride oxide; NbO ₂ F			RIGINAL MEASUREMEN	NTS:
[13597-25-6] 2			2 ^F	Ferris, L. M.	
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>				J. Chem. Eng. Dat 343-6.	ta <u>1966</u> , 11,
 Water; 	H ₂ O; [7732-	18-5]	ļ	545-01	
PERIMENTAL	L VALUES:			·	
	(Starting	șolid w	olutions as hydrous for about	at 25°C. 8 NbO ₂ F. The solut 2 two years.) ^a	tions
	Fluorineb	N	iobium	Density	
	c/mol dm ⁻	³ c/1	mol dm ⁻³	$\rho/g \text{ cm}^{-3}$	
	0.41		0.082	1.0144	
	1.47		0.145 0.293	1.0366 1.0448	
			0.932	-	
	4.42 0.921		-	-	
	4.58 1.06 5.01 1.06			-	
	19.0 4.60			-	
	21.2		4.50	-	
5.00, ar	was ide: ^b Total co F/Nb atomic : nd the conce:	ntified oncentra ratio in ntration	as NbO ₂ F・(tion. the satur of free F	ated solutions va ' ions was negliq	aried from 4.1
5.00, ar ilization Composi	was ide: ^b Total co F/Nb atomic : nd the conce of NbO ₂ F pro NbO ₂ F (s NbO ₂ F (s)	ntified a oncentra ratio in ntration oceeded) + 4 HF lutions	as Nb0 ₂ F·(tion. the satur of free F via the eq $(aq) \ddagger F$ at 25°C.	(1/2)H ₂ O rated solutions va ions was neglic uilibrium H ₂ NbOF ₅ (<i>aq</i>) + H ₂ O (Starti	aried from 4.1 gible. The sol
5.00, ar ilization Composi	was ide: ^b Total co F/Nb atomic : nd the concer of NbO ₂ F pro NbO ₂ F (s NbO ₂ F (s ition of So The solution	ntified oncentra ratio in ntration occeeded) + 4 HF lutions ns were o	as Nb0 ₂ F·(tion. the satur of free F via the eq $(aq) \ddagger F$ at 25°C.	(1/2)H ₂ O rated solutions va r ions was neglic uilibrium H ₂ NbOF ₅ (<i>aq</i>) + H ₂ O	aried from 4.1 gible. The sol
Composi Nb ₂ O ₅ .	was ide: ^b Total co F/Nb atomic : nd the concer of NbO ₂ F pro NbO ₂ F (s NbO ₂ F (s ition of So The solution	ntified oncentra ratio in ntration oceeded) + 4 HF lutions ns were o Nb ₂ O ₅	as NbO ₂ F (tion. the satur of free F via the eq (aq) ≠ F at 25°C. equilibrat	<pre>(1/2)H₂O ated solutions va ions was neglic uilibrium 12NbOF₅(aq) + H₂O (Starti ced for about four Niobium</pre>	aried from 4.1 gible. The sol Ing solid was r months.) ^a
Composi Nb ₂ O ₅ .	was ide: ^b Total ca ^c F/Nb atomic : and the concer of NbO ₂ F pro- NbO ₂ F (si ition of So: The solution me ^b HF dm ⁻³ mass%	ntified oncentra ratio in ntration oceeded) + 4 HF lutions ns were o Nb ₂ O ₅	as Nb0 ₂ F·(tion. the satur of free F via the eq $(aq) \ddagger E$ at 25°C. equilibrat	$(1/2) H_2O$ sated solutions vantues ions was neglicy (uilibrium $H_2NbOF_5(aq) + H_2O$ (Startice (Startice Niobium $h^{-3} m/mol kg^{-1}C$	aried from 4.1 gible. The sol ing solid was c months.) ^a Density
Composi Nb ₂ O ₅ . Fluorir c/mol co 0.23 1.06	was ide: ^b Total ca ^c ^c ^c ^c ^b Total ca ^c ^c ^c ^c ^c ^c ^c ^c	ntified oncentra ratio in ntration oceeded) + 4 HF lutions ns were of Nb ₂ O ₅ mass%	as Nb0 ₂ F·(tion. the satur of free F via the eq $(aq) \ddagger E$ at 25°C. equilibrat c/mol dm 0.053 0.237	$(1/2) H_2O$ (ated solutions values of the solution of the s	aried from 4.1 gible. The solution ing solid was c months.) ^a Density $\rho/g \text{ cm}^{-3}$ 1.0079 1.0334
Composi Nb ₂ O ₅ . Fluorin c/mol c 0.23 1.06 2.63	was ide: ^b Total ca ^c ^c ^c ^c ^c ^c ^c ^c	ntified oncentra ratio in ntration oceeded) + 4 HF lutions ns were Nb ₂ O ₅ mass%	as Nb0 ₂ F·(tion. the satur of free F via the eq $(aq) \ddagger F$ at 25°C. equilibrat c/mol dm 0.053 0.237 0.589	$(1/2) H_2O$ (ated solutions values of the second	aried from 4.1 gible. The sol ing solid was c months.) ^a Density <u>p/g cm⁻³</u> <u>1.0079</u> 1.0334 1.0773
composi Nb ₂ O ₅ . Fluorir c/mol c 1.06 4.44 6.26	was ide: ^b Total ca ^c ^c ^c ^c ^c ^c ^c ^c	ntified oncentra ratio in ntration oceeded) + 4 HF lutions ns were of Nb ₂ O ₅ mass%	as Nb0 ₂ F·(tion. the satur of free F via the eq $(aq) \ddagger E$ at 25°C. equilibrat c/mol dm 0.053 0.237	$(1/2) H_2O$ sated solutions variables ions was neglicy (uilibrium $I_2NbOF_5(aq) + H_2O$ (Starticed for about four Niobium n^{-3} m/mol kg ^{-1C} 0.607 1.00	aried from 4.1 gible. The sol ing solid was c months.) ^a Density ρ/g cm ⁻³ 1.0079 1.0334 1.0773 1.1326
Composi Nb ₂ O ₅ . Fluorir c/mol c 0.23 1.06 2.63 4.44 6.26 8.69	was ide: ^b Total ca ^c ^c ^c ^c ^c ^c ^c ^c	ntified oncentra ratio in ntration oceeded) + 4 HF lutions ns were Nb ₂ O ₅ mass%	as NbO ₂ F • (tion. the satur of free F via the eq (aq)	$(1/2) H_2O$ (ated solutions values of the second	aried from 4.1 gible. The sol lng solid was c months.) ^a Density ρ/g cm ⁻³ 1.0079 1.0334 1.0773 1.1326 1.2594
Composi Nb ₂ O ₅ . Fluorir c/mol c 0.23 1.06 2.63 4.44 6.26 8.69 10.6	was ide: ^b Total ca ^c ^b Total ca ^c ^c ^c ^c ^c ^c ^c ^c	ntified oncentra ratio in ntration Deceded) + 4 HF lutions ns were Nb ₂ O ₅ mass% 	as Nb0 ₂ F.(tion. the satur of free F via the eq (aq) ‡ F at 25°C. equilibrat c/mol dm 0.053 0.237 0.589 0.956 1.23 1.88 2.34	$(1/2) H_2O$ sated solutions variants in the second seco	aried from 4.1 gible. The sol lng solid was c months.) ^a Density ρ/g cm ⁻³ 1.0079 1.0334 1.0773 1.1326 1.2594 1.3143
Composi Nb ₂ O ₅ . Fluorir c/mol c 0.23 1.06 2.63 4.44 6.26 8.69 10.6 12.40	was ide: ^b Total ca ^c ^c ^c ^c ^c ^c ^c ^c	ntified oncentra ratio in ntration oceeded) + 4 HF lutions ns were Nb ₂ O ₅ mass% 	as NbO ₂ F • (tion. the satur of free F via the eq (aq)	$(1/2) H_2O$ sated solutions variables ions was neglicy (uilibrium $I_2NbOF_5(aq) + H_2O$ (Starticed for about four Niobium n^{-3} m/mol kg ^{-1C} 0.607 1.00	aried from 4.1 gible. The sol lng solid was c months.) ^a Density ρ/g cm ⁻³ 1.0079 1.0334 1.0773 1.1326 1.2594
Composi Nb ₂ O ₅ . Fluorir c/mol c 0.23 1.06 2.63 4.44 6.26 10.6 12.40 14.3 15.60	was ide: ^b Total co ^c ^c ^c ^c ^c ^c ^c ^c	ntified oncentra ratio in ntration Deceded) + 4 HF lutions ns were Nb ₂ O ₅ mass% 	as NbO ₂ F • (tion. the satur of free F via the eq (aq) ≠ F at 25°C. equilibrat c/mol dm 0.053 0.237 0.589 0.956 1.23 1.88 2.34 2.74 3.23 3.40	$(1/2) H_2O$ sated solutions variants in the second seco	aried from 4.1 gible. The sol and solid was c months.) ^a Density ρ/g cm ⁻³ 1.0079 1.0334 1.0773 1.1326 1.2594 1.3143 1.3805 1.4394 1.4644
Composi Nb ₂ O ₅ . Fluorir c/mol c 0.23 1.06 2.63 4.44 6.26 8.69 10.6 12.40	was ide: ^b Total ca ^c ^c ^c ^c ^c ^c ^c ^c	ntified oncentra ratio in ntration oceeded) + 4 HF lutions ns were Nb ₂ O ₅ mass% 	as NbO ₂ F・(tion. the satur of free F via the eq (aq) ≠ F at 25°C. equilibrat c/mol dm 0.053 0.237 0.589 0.956 1.23 1.88 2.34 2.74 3.23	$(1/2) H_2O$ (ated solutions variable) (ated solutions variable) (uilibrium $I_2NbOF_5(aq) + H_2O$ (Startistics) (Start	aried from 4.1 gible. The sol


b Total concentration.

^C Calculated by the compiler.


^d Free F⁻ ion concentration determined to be <0.003 mol dm^{-3} .

NOTE: The F/Nb atom ratio in the saturated solutions varied from 4.35 to 5.09, and the concentration of free F^- ions was negligible.

Continued on the next page . . .

Ν	iobium	Halides	and Ox	yhalides

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Niobium fluoride oxide; NbO₂F; [13597-25-6]</pre>	Ferris, L. M.
(2) Hydrogen fluoride; HF; [7664-39-3]	J. Chem. Eng. Data <u>1966</u> , 11, 343-6.
(3) Nitric acid; HNO ₃ ; [7697-37-2]	
(4) Water; $H_{2}O$; [7732-18-5]	
VARIABLES: $T/K = 298$	PREPARED BY:
$c_2/\text{mol dm}^{-3} = 0.20 - 5.37$	J. Hála
$c_3/\text{mol dm}^{-3} = 4.42 - 21.3$	
EXPERIMENTAL VALUES: Solubility of Nb0 HNO3 at 25°C	O ₂ F in aqueous HF +
HNO ₃ Fluor	ine ^a Niobium
mol dm ⁻³ mol du	n ⁻³ mol dm ⁻³
5.35 0.35 4.93 0.75	
4.94 1.58	0.449
4.68 5.37	
4.42 5.06	1.02
9.66 0.42	1 0.080
9.62 0.74	
8.89 1.82 9.30 2.68	
8.98 4.74	0.932
12.4 0.20 12.5 1.03	
21.3 0.19	8 0.030
20.6 0.91	
<u> 19.7 1.56</u>	0.243
^a Total concentration	on.
Note: The equilibrium solid phase wa	s NbO ₂ F. $1/2H_2O$ in all solutions. The ed solutions varied within the range
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Excess of hydrous Nb_2O_5 was equilibrated with HF/HNO3 wolutions for about 1 year. After equilibration samples of the saturated solutions were clarified by centrifugation at 25°, and analyzed. Nb was determined by both x-ray	 Hydrous Nb₂O₅ was obtained by dis- solving sintered oxide (Kawecki Chem. Co., total metal impurities < 300 ppm) in HF, and precipi- tating the hydrous oxide with NH₄OH. The precipitate was washed alternately with water and
absorption (ref 1) and by ignition of samples to Nb ₂ O ₅ . Total F content was determined by differential poten- tiometric titration with NaOH (ref 2). Solid phases were identified by x-ray diffraction.	0.1 mol dm ⁻³ HNO ₃ and air-dried at room temperature. It contained about 50% Nb, 25% H ₂ O, 0.1% F, and < 0.5% N.
ESTIMATED ERROR:	(4) Distilled water was used.
Temp: precision ± 1 K.	
Soly: precision ± 3 % as Nb.	REFERENCES: (1) Dunn, H. W. Anal. Chem. <u>1962</u> , 34, 116.
	(2) Nikolaev, N. S.; Buslaev, Yu.A. Russ. J. Inorg. Chem. <u>1959</u> , 4, 84.

Niobium Halides and Oxyhalides			
<pre>COMPONENTS: (1) Silver hexafluoroniobate(1-); AgNbF₆; [12062-11-2] (2) Hydrogen fluoride; HF; [7664-39-3]</pre>	ORIGINAL MEASUREMENTS: Gut, R.; Rueede, J. J. Coord. Chem. <u>1978</u> , 8, 47-53.		
VARIABLES: T/K = 273	PREPARED BY: J. Hála		
EXPERIMENTAL VALUES: Both the solubility and HF at 0 °C are reported in 100 g HF from which the constraint $kg^{-1} = 0.0239$, and $-\log K_{g0}$	ed. The values are 0.752 g ompiler calculated m_1/mol		
AUXILIARY	/ INFORMATION		
METHOD/APPARATUS/PROCEDURE: Solubility was determined by iso- thermal method followed by chemical analysis of saturated solutions. Details were not reported. The solubility product was obtained from titrations of solutions of KNbF ₆ in HF with a AgF solution in HF during which solid AgNbF ₆ was formed. Details of calculations not reported. In the titrations the $[Ag^+]/[NbF_6]$ ratio varied 10-50-fold and the ionic strength varied within 0.15 ± 0.03 mol dm ⁻³ due to changes in supporting electrolyte concentra- tion. The titrations were carried out in a Kel-F apparatus with a burette made of a precision drilled Kel-F rod, using a Ag indicator electrode and Ag/AgBF ₄ (sat)/KBF ₄ (sat) HF or Ag/AgNbF ₆ (sat)/liquid HF sys- tems as reference electrodes. The titration apparatus was handled at 0° in a refrigerator. The Ag elec- trode responded reversibly to the concentration of free Ag ⁺ ions over the range of pAg = 1.5-20. Equi- librium potentials were reached in seconds and were constant over long periods of time.	following way. Excess HF gas was condensed on a wet filter cake of freshly precipitated Ag_{20} and the solution obtained was evaporated to dryness by heating at 150° in a stream of N gas. The residue was dissolved in anhydrous HF, cooled to -78° to obtain crystals of AgF.5HF which decomposed to		

COMPONENTS: (1) Potassium hexafluoroniobate; KNbF ₆ ; [16919-14-5] (2) Hydrogen fluoride; HF; [7664-39-3] (2) KNDF (16919-14-5) (2) Hydrogen fluoride; HF; [7664-39-3] (3) CRIGINAL MEASUREMENTS: Savchenko, G. S.; Tananaev, Zh. Prikl. Khim. <u>1946</u> , 19,	, I. V.
KNbF ₆ ; [16919-14-5] (2) Hydrogen fluoride; HF; Zh. Prikl. Khim. <u>1946</u> , 19,	,
(2) nydrogen rradride, m,	. 1093-1105.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES: PREPARED BY:	
T/K = 298 J. Hala HF/mass % = 40.9-59.0	
EXPERIMENTAL VALUES: Solubility of KNbF6 in aqueous HF at 25°C	
HF NbF ₅ KF KNbF ₆	
masst masst masst masst ^a m ₁ /mol kg ^{-1b}	
40.90 12.07 4.03 15.79 1.482	
45.00 11.88 3.90 15.55 1.602 47.50 11.84 4.00 15.50 1.703	
54.00 11.60 - 15.14 1.994	
57.30 11.30 3.80 14.78 2.152	
59.00 11.25 3.68 14.72 2.277	
^a Calculated by authors from the NbF ₅ data.	
^b Calculated by compiler.	
solutions varied within the range of 1.06-1.09.	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:	
Isothermal method used. Solubility measurements were carried out in a Ag vessel. Mixtures were equilibrated by stirring for 7-10 hours. Four samples were taken from each satu- rated solution. In 2 of them the sum of free HF and Nb was titrated with alkali against methylorange in the presence of CaCl ₂ . In the other 2 samples Nb was determined gravi- metrically as Nb ₂ O ₅ after evaporation of the sample with $H_2SO_4 + H_3BO_3$ mix- ture and hydrolytic precipitation of niobic acid. In the filtrate K was determined gravimetrically as K_2SO_4 after evaporation of the filtrate with HF+H ₂ SO ₄ to remove H_3BO_3 . Free HF content was obtained by difference	and purity. d in HF+ tion was volume and & HF solu- ion was ad- f6 was pre- of a solu- HF. The ized from t reported. tained by ure of
Independent experiments showed that ESTIMATED ERROR: 5 moles of alkali were consumed per	
1 mole Nb. Temp: precision ± 0.1 K. Solubility error is not spe	ecified.

Niobium Halides	and Oxyhalides 239					
COMPONENTS :	ORIGINAL MEASUREMENTS:					
<pre>(1) Dipotassium heptafluoroniobate (2-); K₂NbF₇; [16924-03-1]</pre>	Ruff, O.; Schiller, E.					
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>	Z. Anorg. Chem. <u>1911</u> , 72, 329-57.					
(3) Water; H ₂ O; [7732-18-5]						
VARIABLES: $T/K = 289, 358$	PREPARED BY:					
Composition	J. Hála					
EXPERIMENTAL VALUES: Composition of the s	saturated solutions.					
Temperature HF KF ^a NbF ₅	Nb ^d Salt ^e Nature					
t/°C T/K mass% mass% mass%						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
16 289 4.34 ^b 5.33 7.0 16 289 10.43 ^c 2.32 4.3						
85 358 0.35 ^b 14.68 30.39						
<pre>b K₂NbF₇ equilibrated with water; HF produced by hydrolysis of the salt K₂NbF₇ equilibrated with 10.95 mass% HF solution. d Calculated by compiler. e Calculated by compiler for the salt corresponding to the respective equilibrium solid phase (*K₂NbOF₅; **K₂NbF₇). f A: K₂NbOF₅.H₂O, [19200-74-9]; B: K₂NbF₇; [16924-03-1]; C: unidentified solid phase.</pre>						
AUXILIARY INFORMATION						
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Excess of K ₂ NbF ₇ was shaken in Pt bottles with either water or a HF solution for 3 hours and filtered through a Pt funnel. In one aliquot of the fil- trate, Nb and free HF were determined alkametrically according to ref (1); in another, Nb was determined gravi- metrically as Nb ₂ O ₅ after precipita- tion with NH ₃ solution. Precipita- tion was repeated twice (after dis- solution of hydrous Nb ₂ O ₅ in HF) to remove adsorbed potassium, and in the collected filtrates potassium was determined (method not specified). Solid phases were identified by optical microscopy.	<pre>SOURCE AND PURITY OF MATERIALS: (1) K₂NbF₇ (source or method of preparation not specified) was separated from K₂TaF₇ according to (ref 2), then repeatedly re- crystallized from concentrated HF solution and finally dried at 120° to remove HF. (2) HF solutions were prepared from nonaqueous HF to avoid the presence of H₂SiF₆. ESTIMATED ERROR: Nothing specified. REFERENCES: Nothing specified.</pre>					
	 Winteler, H. Z. Angew. Chem. <u>1902</u>, 15, 33. Marignac, M. C. Ann. Chim. Phys. <u>1866</u>, 9[4], 249. 					

C = 25. 10.44 11.63 11.76 12.33 12.78 13.14 13.70 13.75 13.80 14.16 13.85 11.58	NbF ₇ <u>m₁/mol kg^{-1C}</u> 0.3899 0.4512 0.4597 0.4916 0.5130 0.5364 0.5653 0.5701 0.5741 0.5914	Nature of the Solid <u>Phased</u> A A A A A A B B B
C = 25. 10.44 11.63 11.76 12.33 12.78 13.14 13.70 13.75 13.80 14.16 13.85 11.58	$\begin{array}{r} m_1/mol \ kg^{-1}C\\ 0.3899\\ 0.4512\\ 0.4597\\ 0.4916\\ 0.5130\\ 0.5364\\ 0.5653\\ 0.5701\\ 0.5741\\ 0.5914\\ \end{array}$	of the Solid <u>Phased</u> A A A A A A A A B
C = 25. 10.44 11.63 11.76 12.33 12.78 13.14 13.70 13.75 13.80 14.16 13.85 11.58	0.3899 0.4512 0.4597 0.4916 0.5130 0.5364 0.5653 0.5701 0.5741 0.5914	Phase A A A A A A A A B
10.44 11.63 11.76 12.33 12.78 13.14 13.70 13.75 13.80 14.16 13.85 11.58	0.4512 0.4597 0.4916 0.5130 0.5364 0.5653 0.5701 0.5741 0.5914	А А А А А В
11.63 11.76 12.33 12.78 13.14 13.70 13.75 13.80 14.16 13.85 11.58	0.4512 0.4597 0.4916 0.5130 0.5364 0.5653 0.5701 0.5741 0.5914	А А А А А В
11.76 12.33 12.78 13.14 13.70 13.75 13.80 14.16 13.85 11.58	0.4597 0.4916 0.5130 0.5364 0.5653 0.5701 0.5741 0.5914	A A A A B
12.33 12.78 13.14 13.70 13.75 13.80 14.16 13.85 11.58	0.4916 0.5130 0.5364 0.5653 0.5701 0.5741 0.5914	А А А В
12.78 13.14 13.70 13.75 13.80 14.16 13.85 11.58	0.5130 0.5364 0.5653 0.5701 0.5741 0.5914	A A B
13.14 13.70 13.75 13.80 14.16 13.85 11.58	0.5364 0.5653 0.5701 0.5741 0.5914	A A B
13.70 13.75 13.80 14.16 13.85 11.58	0.5653 0.5701 0.5741 0.5914	A B
13.75 13.80 14.16 13.85 11.58	0.5701 0.5741 0.5914	В
13.80 14.16 13.85 11.58	0.5741 0.5914	
14.16 13.85 11.58	0.5914	в
13.85 11.58		В
11.58	n 5979	B
	0.5828 0.4816	B
8.69	0.3612	B
5.80	0.2450	B
6.19	0.2727	В
6.16	0.2762	B
5.71		B
5.71	0.2816	В
8.11	0.4422	в
12.64	0.8399	В
-		В
-		С
-		С
C = 75.		
12.06		А
		A+B
		В
		В
		В
		B
		B B
		B
		B
27.51	2.326	B
	5.71 8.11 12.64 - C = 75. 12.06 38.47 36.45 30.10 22.33 17.80 18.21 18.94 21.43	5.71 0.2816 8.11 0.4422 12.64 0.8399 C = 75. 12.06 0.4653 38.47 2.238 36.45 2.083 30.10 1.641 26.70 1.418 22.33 1.172 17.80 0.9441 18.21 0.9802 18.94 1.196 21.43 1.516

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Dipotassium heptafluoro- niobate(2-); K₂NbF₂; [16924-03-1]</pre>	Savchenko, G. S.; Tananaev, I. V.
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>	Zh. Prikl. Khim. <u>1946</u> , 19, 1093- 1105 (measurements at 298 K)
(3) Water; H ₂ O; [7732-18-5]	Zh. Prikl. Khim. 1947 , 20, 385-90. (measurements at $3\overline{48}$ K)

EXPERIMENTAL VALUES:

Note:

In experiments with equilibrium HF concentration ≤ 6.60 mass%, HF was not added to the initial mixtures. The increasing HF concentration in these measurements was the result of increasing amount of K2NbF7 introduced into the initial mixture. Increasing solubility of Nb in this region is explained by gradual stabilization of the NbF²₇-ion in the solution on increasing equilibrium HF concentration:

 $K_2NbOF_5 + 2 HF \rightarrow K_2NbF_7 + H_2O$

Another increase in solubility observed at equilibrium HF concentration > 27 mass% was explained by the formation of the NbF $_{6}$ ion in solution, and finally also in the solid phase:

 $K_2NbF_7 + HF \rightarrow KNbF_6 + KHF_2$

The solubility in this region represents the solubility of ${\rm KNbF}_6$ in HF solutions containing ${\rm KHF}_2.$

AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: (1) K₂NbF₇ was prepared by addition of KF to a HF solution of Isothermal method used. Solubility measurements were carried out in a NbF5. Ag vessel. Mixtures were equilib-The product was filtered, rated with stirring for 7-10 hours at 25 °C or for 4 hours at 75 °C. In measurements with equilibrium HF concentration ≤ 6.60 mass*, K₂NbF7 washed with water-alcohol mixture containing HF, then with pure alcohol, and recrystallized from 10% HF, and dried at 110°C. was equilibrated with water only. On drying K2NbF7 lost Samples of saturated solutions were HF continuously turning partly into K₂NbOF₅.H₂O. According to authors this was not important analyzed for Nb, K, and free HF. Nb was determined gravimetrically for the solubility measurements. as Nb₂O₅ after evaporation of the sample with $H_2SO_4 + H_3BO_3$ and hydrolytic precipitation of niobic acid. In the filtrate K was deter-NbF5 was prepared by dissolving Nb metal (unspecified origin and purity) in a mixture of HF + HNO3 and subsequent evapmined gravimetrically as K2SO4 after oration of HNO3. evaporation of the filtrate with $HF + H_2SO_4$ to remove H_3BO_3 . In another aliquot of the saturated (2) HF used for mixtures containing up to 35 mass% HF was prepared solution, the sum of free HF and Nb from 40% acid obtained from the were titrated with alkali against acid doubly distilled in a Pt methyl orange in the presence of apparatus. Mixtures with high HF content were prepared from Mixtures with higher CaCl₂. Free HF content was ob-tained by difference. Independent 60-90 mass% HF obtained by disexperiments showed that 5 moles of tillation of a mixture of equal alkali are consumed per 1 mole of volumes of 40% HF and concen-Nb. K2NbF7 as the solid phase was trated H2SO4. deduced from the fact that the ESTIMATED ERROR: NbF5/KF mole ratio was close to 2 in the corresponding HF concentration ranges. Nothing was men-tioned about the identification of Temp: precision ± 0.1 K. The solubility error is not KNbF6 and K2NbOF5.H20. specified.

~~~								
COMPONENTS:					NAL MEAS	UREMENTS :		
	<pre>1) Dipotassium heptafluoroniobate    (2-); K₂NbF₇; [16924-03-1]</pre>					Schiller, E		
(2) Potassiu	<pre>2) Potassium fluoride; KF; [7789-23-3]</pre>			Ζ.	Anorg.	Chem. <u>1911</u>	<i>, 72</i> , 329	-57.
(3) Water; H ₂ O; [7732-18-5]								
VARIABLES: $T/K = 289, 353$ Composition			PREP	ARED BY:	J. Hála			
EXPERIMENTAL V	ALUES: Co	mpositic	on of the	e satur	ated so	olutions.		
Temperature		۲	NbF ₅	Nb ^C		ibOF ₅ ^C	Nature	
t∕°C T∕K	mass ^a	mass ^b	mass%	mass%		$m_1/m_{ol kg^{-1}d}$	of the Solid Phase ^f	
16 289 16 289	7.41 7.39	5.54 6.04	1.16 2.67	0.573	1.74 e	0.066 e	A A+B	
80 353	4.81			5.765	17.51	0.786	A+C	
<pre>the concentration of KF used initially. The authors explained this by the formation of a new solid phase richer in K than both K2NbF7 and K2NbOF5.H2O which, however, could not be detected by optical microscopy. The value at 80° corresponds to the sum of concentrations of KF used and of K dissociated from the salt dissolved. C Calculated by compiler for the salt corresponding to the equilibrium solid phase (K2NbOF5). d Equilibrium mass% KF corrected for K dissociated from K2NbOF5 dissolved. e Not calculated because of the coexistence of two soluble solid phases. f A: K2NbOF5.H2O; B: K2NbF7 [16924-03-1]; C: unidentified solid phase. Note: There is some uncertainty about the two measurements at 16°. With initially the same KF concentration, different solid phases were reported. For the measurement with 7.39 mass% KF the saturated solution was reported to contain also 5.39 mass% HF although it was stated that K2NbF7 was shaken with solutions containing KF only.</pre>						copy. d and n lved. es. hase. With re d t was		
AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE:								
Isothermal n $K_2NbF_7$ was sfor 3 hours through a Pt Nb was detern Nb ₂ O ₅ after solution. F twice (after Nb ₂ O ₅ in HF) and in the c determined of Solid phases	METHOD/APPARATUS/PROCEDURE: Isothermal method used. Excess K2NbF7 was shaken with KF solutions for 3 hours in Pt bottles and filtere through a Pt funnel. In the filtrate Nb was determined gravimetrically as Nb2O5 after precipitation with NH3			(1) te s ed	K2NbF specif from F and th lized tion a	y (source an Fied) was fi (2TaF7 accor hen repeated from concen and finally hove HF.	d purity rst separ ding to r ly recrys trated HF	not ated ef (1), tal- solu-
Note: Footi A: K		oove. 20; [1920	0-74-9]		ERENCES: Marigna 1866, S	ac, M. C. 0[4], 249.	Ann. Chim	. Phys.

COMPONENTS:(1) Dipotassium heptafluoro- niobate(2-); $K_2NbF_7$ ; [16924-03-1](2) Potassium fluoride; KF; [7789-23-3](3) Hydrogen fluoride; HF; [7664-39-3](4) Water; $H_2O$ ; [7732-18-5]VARIABLES: $2_2/mass \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	. v.				
(3) Hydrogen fluoride; HF; [7664-39-3]       Zh. Prikl. Khim. <u>1947</u> , 20, 3         (4) Water; H ₂ O; [7732-18-5]       Prikl. Khim. <u>1947</u> , 20, 3         VARIABLES: $T/K = 298$ PREPARED BY: $c_2/mass \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $					
(4) Water; H ₂ O; [7732-18-5] VARIABLES: T/K = 298 $c_2/mass \ = 0 - 10$ $c_3/mass \ = 1 - 10$ EXPERIMENTAL VALUES: Solubility of K ₂ NbF ₇ in aqueous KF + HF at 25°C HF KF K ₂ NbF ₇ HF KF K ₂ NbF ₇					
VARIABLES: $T/K = 298$ $c_2/mass & = 0 - 10$ $c_3/mass & = 1 - 10$ PREPARED BY:J. HálaEXPERIMENTAL VALUES:Solubility of K2NbF7 in aqueous KF + HF at 25°CHF KF K2NbF7	85-90.				
$T/K = 298$ $c_2/\text{mass } = 0 - 10$ $c_3/\text{mass } = 1 - 10$ $EXPERIMENTAL VALUES:$ $Solubility of K_2NbF_7 in aqueous KF + HF at 25°C$ $HF KF K_2NbF_7 HF KF K_2NbF_7$					
$c_{2}/\text{mass } = 0 - 10$ $c_{3}/\text{mass } = 1 - 10$ EXPERIMENTAL VALUES: Solubility of K ₂ NbF ₇ in aqueous KF + HF at 25°C HF KF K ₂ NbF ₇ HF KF K ₂ NbF ₇					
Solubility of K ₂ NbF ₇ in aqueous KF + HF at 25°C HF KF K ₂ NbF ₇ HF KF K ₂ NbF ₇					
HF KF K2NbF7 HF KF K2NbF7					
_ · · _ ·					
mass % ^a mass % ^a mass % mass % ^a mass % ^a mass %	,				
	-				
1 0 5.20 5 0 6.35					
1   3.35   1   4.90					
2 3.04 2 4.80 5 2.00 5 3.24					
10 0.25 10 0.81					
2 0 5.95 10 0 6.86					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
5 2.40 5 3.81					
10 0.70 10 1.45					
AUXILIARY INFORMATION					
ETHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: (con stated that on drying K ₂ N	tinued				
(ref 1) isothermal method was used.   lost HF continuously turn Excess K ₂ NbF ₇ was equilibrated with   partly to K ₂ NbOF ₅ .H ₂ O.	bF7 ing				
KF-HF solutions in a Ag vessel by for a first solution of the	۸∩۹				
tions were analyzed for Nb gravi- thetrically as Nb ₂ O ₅ after evaporation of the sample with a mixture of 1 ₂ SO ₄ + H ₃ BO ₃ and hydrolytic pre- cipitation of niobic acid. Solid phases were not investigated.					
SOURCE AND PURITY OF MATERIALS:					
(1) K ₂ NbF ₇ was prepared by addition					
of KF to a HF solution of NbF5 Temp: precision ± 0.1 K. (the latter was prepared by dis- solving Nb metal of unspecified	Temp: precision ± 0.1 K. Solubility error not specified.				
source and purity in a mixture of REFERENCES:					
HF + HNO ₃ and subsequent evapora- tion of HNO ₃ ). The product was 1. Savchenko, G. S.; Tananaev	, I. , 1093				
filtered, washed with water- alcohol mixture containing HF, then with pure alcohol, re-					

······
ORIGINAL MEASUREMENTS:
Marignac, M. C. Ann. Chim. Phys. <u>1866</u> , 8[4], 5-75.
PREPARED BY:
J. Hála
reported to be soluble in $17 - 21^{\circ}C (0.256 - 0.267 \text{ mol kg}^{-1};$ $2^{\text{NbOF}_{5}}$ .
O was reported to increase were given.
INFORMATION
<pre>SOURCE AND PURITY OF MATERIALS: (1) K2NbOF5.H2O was prepared from mixed Nb+Ta oxides obtained from the mineral columbite of dif- ferent localities. From it, a mixture of K2NbOF5.H2O and K2TaF7 was prepared by dis- solving the oxides in a solution of HF and adding KF. The two salts were separated by repeated crystallization making use of the difference in their solu- bilities. Pure K2NbOF5.H2O was obtained as thin rhomboedral plates. Analysis (mass%): found H2O 5.87, Nb 31.12, K 25.92, F 31.72; calculated H2O 5.98, Nb 31.23, K 25.91, F 31.56. ESTIMATED ERROR: Temp: precision ± 2 K.</pre>

Niobium Halides and Oxyhalides 245				
<pre>COMPONENTS:    (1) Sodium hexachloroniobate;     NaNbCl₆; [16920-10-8]    (2) 1,1,2,3,4,4-Hexachloro-1,3-     butadiene; C₄Cl₆; [87-68-3]</pre>	<pre>ORIGINAL MEASUREMENTS: Bolshakov, K. A.; Safronov, V. V.; Kogan, L. M.; Shevtsova, Z. N.; Shadrova, L. G. *Zh. Fiz. Khim. <u>1964</u>, 38, 1305-6. Russ. J. Phys. Chem. (Engl. Transl.) <u>1964</u>, 38, 710-1.</pre>			
VARIABLES:	PREPARED BY:			
T/K = 298.323	J, Hála			
EXPERIMENTAL VALUES:	EXPERIMENTAL VALUES:			
Composition of satu	rated solutions.			
Temperature	NaNbCl ₆			
$\frac{t/{}^{0}C}{T/K}$	$10^{3}c_{1}/mol dm^{-3}$			
25 298	10.59			
50 323	12.62			
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE: Isothermal method. Excess NaNbCl ₆ was introduced to the solvent in a dry box. The mixture was equilib- rated for 5-10 days in a thermostated vessel equipped with a hydraulic stopper to prevent both solvent evaporation and access of atmospheric moisture. Attainment of equilibrium was checked by analyzing the liquid phase for Nb in samples taken peri- odically over 15 days. Nb in the sample was determined gravimetric-	not specified) was purified to obtain a product with $d_{4}^{20} =$			
ally as Nb ₂ O ₅ either after direct ignition of the samples of the saturated solutions or after extrac- tion of Nb into concentrated HCl and subsequent precipitation of the hydrated oxide.	ESTIMATED ERROR: Temp: precision ± 0.1 K. Soly: precision ± 0.2-0.5 %.			
SOURCE AND PURITY OF MATERIALS:	REFERENCES:			
(1) NaNbCl6 was prepared by heating stoichiometric amounts of NaCl and NbCl5 in a sealed ampoule in vacuum at 220-300°. NbCl5 used was prepared by chlorination of Nb metal with Cl gas at 250-500°;				

COMPONENTS: (1) Potassium hexachloroniobate; KNbCl ₆ ; [16919-88-3] (2) 1,1,2,3,4,4-Hexachloro-1,3- butadiene; C ₄ Cl ₆ ; [87-68-3] VARIABLES: T/K = 298, 323 EXPERIMENTAL VALUES:	ORIGINAL MEASUREMENTS: Bolshakov, K. A.; Safronov, V. V.; Kogan, L. M.; Shevtsova, Z. N.; Shadrova, L. G. *Zh. Fiz. Khim. <u>1964</u> , 38, 1305-6. Russ. J. Phys. Chem. (Engl. Transl.) <u>1964</u> , 38, 710-1. PREPARED BY: J. Hála	
$\frac{\text{Composition of satur}}{\text{Temperature}}$ $\frac{t/^{0}\text{C}}{25} \frac{T/\text{K}}{298}$ $50 323$	$\frac{\text{ated solutions.}}{\text{KNbCl}_{6}}$ $\frac{{}^{3}c_{1}/\text{mol dm}^{-3}}{1.94}$ $3.53$	
METHOD/APPARATUS/PROCEDURE: Isothermal method. Excess KNbCl6 was introduced to the solvent in a dry box. The mixture was equilib- rated for 5-10 days in a thermostated vessel equipped with a hydraulic stopper to prevent both solvent evaporation and access of atmospheric moisture. Attainment of equilibrium was checked by analyzing the liquid phase for Nb in samples taken peri- odically over 15 days. Nb in the sample was determined gravimetric- ally as Nb ₂ O ₅ either after direct ignition of the samples of the saturated solutions or after extrac- tion of Nb into concentrated HC1 and subsequent precipitation of the	(2) Hexachloro-1,3-butadiene (source not specified) was purified to	
<ul> <li>hydrated oxide.</li> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>(1) KNbCl₆ was prepared by heating stoichiometric amounts of KCl and NbCl₅ in a sealed ampoule in vacuum at 220-300°. NbCl₅ used was prepared by chlorination of Nb metal with Cl gas at</li> </ul>	K2FERENCES:	

shakov, K. A.; Safronov, V. V.; Shevtsova, L. M.; Shadrova, L. G. Kogan, L. M.
Fiz. Khim. <u>1964</u> , 38, 1305-6. s. J. Phys. Chem. (Engl.Transl.) <u>4</u> , 38, 710-1.
ED BY: J. Hála
_

EXPERIMENTAL VALUES:

Compos	sition of	saturated	solutions.
Tempera	ature	NbC	14
t∕°C	T/K	10 ³ <i>c</i> 1/mol	dm ⁻³
25	298	4.09	
50	323	18.41	

____

AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE: Isothermal method. Excess NbCl ₄ was introduced to the solvent in a dry box. The mixture was equilibrated for 5-10 days in a thermostated vessel equiped with a hydraulic stopper to prevent both solvent evaporation and access of atmos- pheric moisture. Attainment of equilibrium was checked by analyzing the liquid phase for Nb in samples taken periodically over 15 days. Nb in the sample was determined gravi- metrically as Nb ₂ O ₅ either after direct ignition of the samples of the saturated solutions or after extraction of Nb into concentrated HCl and subsequent precipitation of the hydrated oxide.	<pre>(2) Hexachloro-1,3-butadiene (source not specified) was purified to obtain a product with d²⁰ = 1.6807 and n²⁰ = 1.5543. ESTIMATED ERROR: Temp: precision ± 0.1 K. Soly: precision ± 0.2-0.5 %. REFERENCES: 1. Schäfer, H.; Göser, C.; Bayer, L.</pre>		
<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>(1) NbCl₄ was prepared by reduction of NbCl₅ with Nb powder (ref 1). NbCl₅ was prepared by chlorina-</li> </ul>	Z. Anorg. Allgem. Chem. <u>1951</u> , 265, 258.		

COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Niobium chloride; NbCl ₅ ; [10026-12-7]	Fairbrother, F.; Nixon, J. F.; Prophet, H.	
(2) Benzene; C ₆ H ₆ ; [71-43-2]	J. Less-Common Met. <u>1965</u> , 9, 434-6.	
VARIABLES:	PREPARED BY:	
T/K = 292.7 - 323.2	J. Hála	
EXPERIMENTAL VALUES: Composition of saturated solutions.		
Temperature Nick	bium chloride; NbCl ₅	
t/°C T/K ^a g/100 g	solvent m ₁ /mol kg ^{-1a}	
	810 0.0300 879 0.0325	
29.0 302.2 1.	139 0.0422	
36.2 309.4 1.	598         0.0591           710         0.0633	
	640 0.0977	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: The solubility measurements were carried out in a closed system by an isothermal method described earlier by the authors (ref 1). Previously dried pure solvent was pretreated 3-4 times with NbCl ₅ and distilled <i>in vacuo</i> into the solubility apparatus. The procedure removed residual moisture and other impurities which would otherwise react with NbCl ₅ . The method of Niobium analysis was not given.	<pre>SOURCE AND PURITY OF MATERIALS: (1) NbCl₅ was prepared by direct chlorination of Nb metal and purified by fractional sub- limation in vacuo.</pre>	
	ESTIMATED ERROR: Temp: precision ± 0.1 K as specified in earlier work (2) Solubility error is not specified. REFERENCES: 1. Fairbrother, F.; Scott, N.; Prophet, H. J. Chem. Soc. 1056 1164	
	<pre>1956, 1164. 2. Cowley, A.; Fairbrother, F.; Scott, N. J. Chem. Soc. 1958, 3133.</pre>	

Niobium Halides and Oxyhalides 249			
COMPONENTS: (1) Niobium chl [10026-12-7	oride; NbCl ₅ ; ]	ORIGINAL MEASUREMENTS: Cowley, A.; Fairbrothe Scott, N.	r, F.;
(2) 1,1'-Oxybis ether);C ₄ H ₁	ethane (diethyl 0 ^{0;} [60-29-7]	J. Chem. Soc. <u>1958</u> , 31	33-7.
VARIABLES:		PREPARED BY:	
T/K = 275.8 - 298.1		J. Hála	
EXPERIMENTAL VALUES:			
	Composition of	the saturated solutions.	
	Temperature	Niobium chloride; NbCl ₅	
	t/°C T/K g/	.00 g solvent $\frac{m_1/\text{mol kg}^{-1a}}{2}$	
	2.6 275.8 10.1 283.3 15.7 288.9 20.0 293.2 22.6 295.8 24.9 298.1	10.930.40512.990.48114.990.55518.320.67823.370.86524.920.922	
	AUXI	LIARY INFORMATION	
apparatus (ref solvent pretrea ration, and the the pretreatmen was repeatedly sive sublimatio condensation at onto it. Both ferred into the which was conne compartment thr disc. The vess 24 h, the satur into the sampli	od. The Pyrex gla 1) consisted of the tement line, the sampling vessels as sampling vessels t section, the solution pretreated by success ons of the halide as -195°C of the solution components were the saturation vessel seted to the sampli- cough a sintered given as rocked for ated solution filt ng ampoule which the temperature of the solution filt temperature of temperature of temperatu	<pre>metal sheet and dr 300-350°C (ref 2).</pre>	A from pure Ty Cl gas at The product or 6 fractional <i>cuo</i> , and finally gile hook-ended Sthetic) was of its volume er P ₂ O ₅ for at anted, frac- v N gas, and

	·	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Niobium chloride; NbCl₅; [10026-12-7]</pre>	Harris, W. S.	
<pre>(2) 4-Methyl-1,3-dioxalan-2-one (propylene carbonate);C₄H₆O₃;</pre>	U. S. At. Energy Comm. Report <u>UCRL-8381</u> , <u>1958</u> , 77 pp.	
[108-32-7]	Chem. Abstr. <u>1959</u> , 53, 4966b.	
VARIABLES: $T/K = 298$	PREPARED BY: J. Hála	
EXPERIMENTAL VALUES:		
The solubility of NbCl ₅ in propylene carbonate at 25		
$^{\circ}$ C was estimated to be app	roximately 85 g NbCl ₅ /100 g	
of solvent. The compiler c	alcuated a molal solubility	
of $m_1/mol kg^{-1} = 3.15$ .		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS; (continued)	
An isothermal method was used. Saturated solutions were prepared by agitating excess solid with the sol- vent for at least three days in a glass cell shaped in the form of an inverted T with a ball-joint cap. The cell was thermostated in a water bath. Atmospheric moisture was excluded by use of a dry box. The method of Nb determination in the saturated solutions was not specified	50 mmHg and a reflux ratio of 5:1. Small portions containing high and low boiling impurities were re- jected. The remainder was re-frac- tionated at 20 mmHg and a reflux ratio from 15:1 to 25:1. The middle 4/5 of this was used.	
	ESTIMATED ERROR:	
SOURCE AND PURITY OF MATERIALS:	Temp: precision ± 0.01 K. The solubility value reported is considered only an approximate	
(1) NbCl ₅ (Stauffer Chemical Co., purity not specified) was used	estimate. REFERENCES:	
without purification. (2) Propylene carbonate (Jefferson Chemical Co.) was purified by fractionating the solvent twice. The first fractionation was conducted at		

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Niobium chloride; NbCl₅;   [10026-12-7]</pre>	Bolshakov, K. A.; Safronov, V. V.; Kogan, L. M.; Shevtsova, Z. N.; Shadrova, L. G.
(2) 1,1,2,3,4,4-Hexachloro-1,3- butadiene; C ₄ Cl ₆ ; [87-68-3]	*Zh. Fiz. Khim. <u>1964</u> , 38, 1305-6. Russ. J. Phys. Chem. (Engl. Transl.) <u>1964</u> , 38, 710-1.
VARIABLES:	PREPARED BY:
T/K = 298  323	J. Hála

EXPERIMENTAL VALUES:

Composition of saturated solutions.

Temper	ature	NbCl ₅
t/ºC	<i>T</i> /K	$10^{3}c_{1}/mol dm^{-3}$
25	298	45.33
50	323	86.11

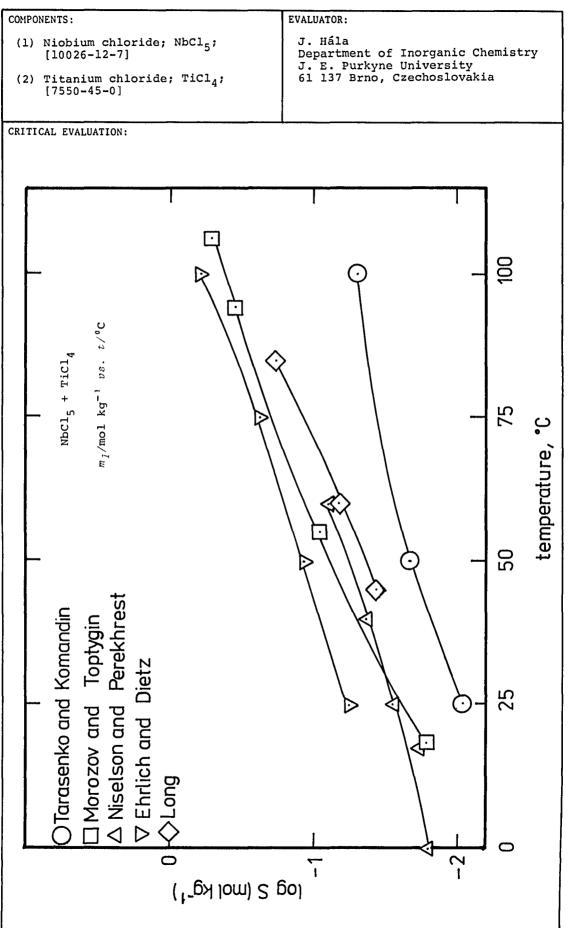
AUXILIARY INFORMATION			
<pre>METHOD/APPARATUS/PROCEDURE: Isothermal method. Excess NbCl₅ was introduced to the solvent in a dry box. The mixture was equilibrated for 5-10 days in a thermostated ves- sel equipped with a hydraulic stopper to prevent both solvent evaporation and access of atmospheric moisture. Attainment of equilibrium was checked by analyzing the liquid phase for Nb in samples taken periodically over 15 days. Nb in the sample was deter- mined gravimetrically as Nb₂O₅ either after direct ignition of the samples of the saturated solutions or after extraction of Nb into concentrated HCl and subsequent precipitation of the hydrated oxide. SOURCE AND PURITY OF MATERIALS: (1) NbCl₅ was prepared by chlorina- tion of Nb metal with Cl gas at 250-500°. M.p. 204°. The product was stored in a dry box. The purity of Nb metal used was 99.0-99.5% as determined by</pre>	1.6807 and $n_D^{20} = 1.5543$ .		

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Niobium chloride; NbCl₅; [10026-12-7]</pre>	Malhotra, K. C.; Sud, R. G.
(2) Chloroacetic acid; C ₂ H ₃ ClO ₂ ; [79-11-8]	J. Inorg. Nucl. Chem. <u>1974</u> , 36, 3767-72.
VARIABLES:	PREPARED BY:
T/K = 366.5	J. Hála
EXPERIMENTAL VALUES:	·····
The solubility of NbCl ₅ is r	eported to be 64.32 g in
5	From the value the compiler
calculated $m_1$ /mol kg ⁻¹ = 6.	67.
	[
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method. Chloroacetic	(1) NbCl ₅ . Source and purity not
acid was added to a dry ampoule	specified.
containing a sufficient amount of NbCl _z . The ampoule was sealed and	(2) Chloroacetic acid, B. D. H.,
shaken for 24 hours. The ampoule was	purified by distillation under
then broken, the contents quickly filtered through a sintered glass in	reduced pressure and recrystal- lized from benzene.
a dry atmosphere, and a sample of	
known weight taken. The method of Nb determination was not given.	
	ESTIMATED ERROR:
	Temp: precision ± 0.5 K. Solubility error is not
	specified.
	REFERENCES :

COMPONENTS:	EVALUATOR:					
<ul> <li>(1) Niobium chloride; NbCl₅; [10026-12-7]</li> <li>(2) Titanium chloride; TiCl₄; [7550-45-0]</li> </ul>	J. Hála Department of Inorganic Chemistry J. E. Purkyne University 61 137 Brno, Czechoslovakia					

CRITICAL EVALUATION:

An evaluation of the solubility of  ${\rm NbCl}_5$  in  ${\rm TiCl}_4$  at temperatures between 273 and 373 K.


Five sets of data are available for the temperature dependence of the solubility of NbCl₅ in TiCl₄ (ref 1-5). In all of the papers the solubility values were determined by an isothermal method and by analysis of the saturated solutions. In two cases (ref 2, 3) a polythermal method was also used in the region of higher solubilities. The solubility values obtained by the isothermal method are compared in Figure 1. Of these, the data of Tarasenkov and Komandin (ref 1) are much lower than the data of the other authors. The authors (ref 1) themselves state the low precision of their data, and these data can be rejected. [The poor quality of their data can be seen in the NbCl₅/TaCl₅ solubility ratio in TiCl₄ they report. Their values show TaCl₅ being 25 to 60 times more soluble than NbCl₅ (in mass  $\mathfrak{E}$ ). The solubility ratio from other workers (ref 2-5) show the two solutes have solubilities of the same order of magnitude, which one would expect from the properties of Nb and Ta.]

It is not possible to give preference to any of the remaining four sets of data. Figure 1 show some regions of fair agreement. The data of Niselson and Perekhrest (ref 3) show fair agreement with the data of Morozov and Toptygin (ref 2) over the temperature range of 15 to 40 °C, and good agreement with the value of Long (ref 5) at 60 °C. It is worth noting that direct, although different, methods of analysis of the solutions were used in (ref 2, 3, 5), but that an indirect analysis (based on the sum of Ti and Nb and the total chloride content) was employed in (ref 4).

The two data sets obtained by the polythermal method (ref 2, 3) differ considerably. The values of Niselson and Perekhrest (ref 3) are 5 to 10 mass% NbCl₅ lower at a given temperature than the values of Morozov and Toptygin (ref 2). There are two possible explanations for the difference. There is a strong tendency to form supersaturated solutions in the NbCl₅ + TiCl₄ systems (ref 3) which prevents the liquidus temperature to be determined from cooling curves with reasonable accuracy. It has also been pointed out (ref 2) that the presence of NbCl₃O in the NbCl₅ could lead to erroneous interpretation of the cooling curves since precipitation of NbCl₃O could be mistakenly taken for the first appearance of crytals of NbCl₅. Morozov and Toptygin (ref 2) took great care to remove NbCl₃O from the NbCl₅ used in their measuremnts.

**REFERENCES:** 

- Tarasenkov, P. N.; Komandin, A. V. Zh. Obsch. Khim. <u>1940</u>, 10, 1319.
- Morozov, I. S.; Toptygin, D. Ya. Zh. Neorg. Khim. <u>1957</u>, 2, 1915.
- Niselson, L. A.; Perekhrest, G. L. *Zh. Neorg. Khim.* <u>1958</u>, 3, 2150.
- Ehrlich, P.; Dietz, G.
   Z. Anorg. Allg. Chem. <u>1960</u>, 305, 158.
- 5. Long, A. M. Aust. J. Chem. <u>1969</u>, 22, 853.



Niobium Halides	s and Oxyhalides 25				
COMPONENTS:	ORIGINAL MEASUREMENTS:				
<pre>(1) Niobium chloride; NbCl₅; [10026-12-7]</pre>	Tarasenkov, P. N.; Komandin, A. V.				
<pre>(2) Titanium chloride; TiCl₄; [7550-45-0]</pre>	Zh. Obshch. Khim. <u>1940</u> , 10, 1319-27.				
VARIABLES:	PREPARED BY:				
T/K = 298 - 373	J. Hála				
EXPERIMENTAL VALUES:					
Composition of sa	turated solutions.				
Temperature	NbCl ₅				
$t/^{\circ}C$ $T/K$ ma	ss % $m_1/\text{mol kg}^{-1a}$				
25 298 0	.24 0.0089				
50 323 0	.58 0.0216				
100 373 1	.32 0.0495				
•					
AUXILIARY	INFORMATION				
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:				
Isothermal method used. TiCl ₄ was distilled onto excess solid NbCl ₅	(1) NbCl ₅ was prepared from K ₂ NbOF ₅ via Nb ₂ O ₅ according to ref (1)				
and the mixture was equilibrated in a tube closed with Hg seal and equipped with a stirrer. Nb content in the saturated solution was deter- mined gravimetrically with tanine method.					
	ESTIMATED ERROR: Temp: precision ± 0.1 K. The authors state low precision of the data and suggest the data be co sidered as qualitative. REFERENCES: 1. Honigschmidt, O.; Winterberger, Z. Anorg. Allg. Chem. 1934, 219, 161.				

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Niobium chloride; NbCl₅; [10026-12-7]</pre>	Morozov, I. S.; Toptygin, D. Ya. Zh. Neorg Khím. 1957, 2, 1915-21.
<pre>(2) Titanium chloride; TiCl₄;   [7550-45-0]</pre>	J. Inorg. Chem. (USSR)(Engl.Transl.) <u>1957</u> , 2(8), 322-33.
VARIABLES:	PREPARED BY:
T/K = 291 - 464	J. Hála

EXPERIMENTAL VALUES:						
	Composi	ltion of	the	satı	arated solutions	
	Temper	ature			NbCl ₅	
	t/°C	<i>T</i> /K	mass	*p	m ₁ /mol kg ⁻¹ a	
	18 55 94 106 114 123	291 328 367 379 387 396	0.4 2.4 8.7 12.2 14.9 21.4		0.0167 0.0910 0.353 0.514	
	145 151 163 165 167 172 175	418 424 436 438 440 445 448 455 464	35.4 39.8 49.2 54.3 60.2 65.3 69.2 79.4 88.1			
^a Calculated by comp					s were reported.	
					MATION	
METHOD/APPARATUS/PROC	EDURE:			SOUR	CE AND PURITY OF MAT	CERIALS :
Solubilities over the temperature range of 18-106° were obtained by isothermal method. Mixtures of TiCl ₄ and NbCl ₅ were distilled into a test- tube with a side arm. The test-tube was sealed off, kept at the desired temperature for 20-40 h, and a part of the saturated solution was poured into the side arm. The latter was then sealed off, cooled, and weighed. Prior to analysis, most of the TiCl ₄ was removed by distillation in the presence of NaCl. The final separa- tion of Nb from the remaining Ti was achieved by means of phenylarsonic acid. The solubilities above 110° were obtained from thermal analysis. The mixtures of TiCl ₄ and NbCl ₅ were			(1)	NbCl ₅ was prepar tion with Cl gar (source and pur The product was in a stream of carbon to conver	red by chlorina- s of Nb metal ity not specified). repeatedly passed Cl gas over heated rt eventual 15, and contained mately 0.01% ailable TiCl4 cified) was . The fraction	
prepared by weigh cooling curves we	eighing, melted, and			EST:	IMATED ERROR: Nothing specific	ed.

		Niobiu	m Halides	and Oxyhalid	es	25	
COMPONENTS :				ORIGINAL MEAS	UREMENTS :	· · · · · ·	
(1) Niobium (	chloride:	chloride; NbCl ₅ ;			L. A.; Perekhrest	, G. L.	
	[10026-12-7]				Khim. <u>1958</u> , 3,		
<pre>(2) Titanium chloride; TiCl₄; [7550-45-0]</pre>			J. Inorg.	Chem. (USSR) (Eng			
(7550 15	•1			<u>1958</u> , 3(9)	, 215-22.		
VARIABLES:				PREPARED BY:	J. Hála	· · · · · · · · · · · · · · · · · · ·	
T	K = 249.0	- 4/7.9			J. Hala		
EXPERIMENTAL VAL	UES:						
	Compos	ition of	satura	ted solutior	ns.		
	Liqu: Tempera	idus ature	Nic	obium Chlori	lde; NbCl ₅		
	t∕°C	T/K ^d	mass %	mol %	m ₁ /mol kg ^{-1d}	•	
	-24.0 ^a	249.2	0	0	0		
	-24.2 ^b	249.0	0.222	0.160	-		
	0.0	273.2	0.425		0.0158		
	17.5	290.7			0.0176 0.0283		
		298.2 313.2	0.758 1.13	0.533	0.0283		
	40.0 60.0	333.2	2.02	1.43	0.0763		
	84.5	357.7		3.47	-		
	114.3	387.5		8.56	-		
	141.5	414.7	25.5	19.4	-		
	157.0	430.2	40.7		-		
	175.0	448.2	59.7	51.2	=		
	179.5	452.7	63.1	56.8	-		
	187.8 204.7 ^C	461.0 477.9	100.0	68.4 100.0	_		
	a _{Taken fr}			<u></u>	<u> </u>		
	-			ted by auth	ors according to	ref. (2)	
	C _{Taken fr}	-					
	^d Calculat						
			AUXILIARY	INFORMATION			
METHOD/APPARATUS					JRITY OF MATERIALS:		
At higher (>	4.87 mass	b) NbCl5	concen-	Source of	TiCl ₄ and NbCl ₅ n	ot	
trations, th	e liquídus	curve	was ob-	specified.	The halides wer	e pull-	
tained by vi	suar polyt	nermal :	into a	fied by rectification and were stored in sealed ampoules.			
NbCl ₅ and Tiglass tube p	cių were v revionely	dried 1	n vacuo				
at 350-400°C	. The tub	be was s	ealed,				
heated in a	furnace to	o melt t	he				
mixture, and	then allo	owed to	cool				
slowly in a	thermostat	ted glyc	erine				
bath under c	onstant re	otation	at				
60 rpm. The	Liquidus	temp. w	as				
taken as the	average o	on cempe	ce of	<u> </u>			
of appearance and disappearance of crystals in the melt recorded at successive cooling and heating of the system. At lower NbCl5 concen-			ESTIMATED ER	ROR:			
			-	specified.			
trations, is	othermal 1	nethod w	as used	ł			
Ampoules con	taining T	iCl4 and	NbC15				
were equilib	rated for	30 h at	: 40 and	REFERENCES:		<b>n</b> m -	
60°C, and fo	or 60 h at	0 and 1	7.5°C.	II. Clabaugi	N, W. S.; Leslie,	K. T.;	
A sample of	the satur	ated sol	ution		st, R. J. <i>Res. No</i>	ic. our.	
was hydrolyz	ed, the p	recipita	ITE		955, 55, 261. E. Z. Anorg. Che	em.	
ignited to c	xides, an	a the NE	o con-	1927, 10		> 111 •	
centration w	as acterm	ectic te	erro- mp. was		, H.; Pietruck, C	. Z. Anor	
graphically.	acordina	+0 (3)			Chem. 1951, 267,		
calculated a	calculated according to (3).			nivyein.	onem. <u>1731</u> , 207,		

COMPONENTS:		ORIGINA	NAL MEASUREMENTS:				
<ol> <li>Niobium chloride; NbCl₅; [10026-12-7]</li> <li>Titanium chloride; TiCl₄; [7550-45-0]</li> </ol>			Ehrlich, P.; Dietz, G. Z. Anorg. Allg. Chem. <u>1960</u> , 305, 158-68.				
VARIABLES:		PREPARE	RED BY:				
T/K = 298 ·	- 373		J. Hála				
EXPERIMENTAL VALUES:	- <u>-</u>	=					
	Composition	of saturated	ed solutions				
	Temperature	NbC	oc1 ₅				
	$\frac{t/C}{T/K}$	mass % m ₁	$n_1/\text{mol kg}^{-1a}$				
	25 298	1.5	0.0564				

a Calculated by compiler.

323

348

50

75

3

6

0.114

0.236

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Distillation of the solvent, dissolution, sampling, and hydrolyzing the saturated solu- tions were carried out in an all-glass apparatus in which transfer of liquids was carried out by means of dry N gas. Samples for analysis were taken from the dissolution vessel through a tube thermostated to a temperature higher by 2°C than that of the vessel, and were hydrolyzed in diluted acid. After hydrolysis, an indirect analysis	<pre>specified. (2) TiCl₄, tech. grade, was purified by refluxing with 1.5 g CuSO₄·5H₂O and 10 g charcoal per 300 ml TiCl₄ for 2 h. A color- less product distilled at 136 °C and showed elec. conductivity of &lt;10⁻⁹ S cm⁻¹.</pre>
was used where the sum of Ti + Nb and total Cl ⁻ were determined.	ESTIMATED ERROR: Temp: precision $\pm$ 0.2 K.
	The solubility error is not specified.
	REFERENCES: 1. Brauer, G. Handbuch der anorganische preparative Chemie <u>1954</u> , F. Enke-Verlag, Stuttgart.

·····			_	-		
COMPONENTS :			ORIGI	NAL MEASUREMENTS:		
(1) Niobium chloride; NbCl ₅ ; [10026-12-7]				g, A. M.		
				tral. J. Chem.	1969, 22,	853-4.
[7550-45-0]	<pre>(2) Titanium chloride; TiCl₄; [7550-45-0]</pre>					
VARIABLES:			PPFP	ARED BY:		·
	250					
T/K = 318 - 100	358			J. Hála		
EXPERIMENTAL VALUES:			ſ			
	Composi	ltion of S	atura	ted Solutions		
	Tempera	iture	- <u>.</u>	NbCl ₅		
	t/°C	T/K mas		m ₁ /mol kg ^{-1a}		
					,	
	45	318 1	.0	0.0374		
	60	333 1	.8	0.0678		
	85	348 4	.8	0.187		
	a coloule	ated by con				
	Calcula	ited by con	npile	r		
		AUXILIARY	INFOF	MATION		
METHOD/APPARATUS/PROCE	DURE:		SOUR	CE AND PURITY OF N	ATERIALS:	
Saturated solutions a sealed, N filled	apparatus	s (1), for		NbCl ₅ , laborat Inorganics) wa	tory grade as used as	e (Alfa s obtained.
21-90 hr. After equ of the filtered sa						
was collected in a Dissolving and samp	detachabl	Le ampoule		purified by to powder and dis	reatment w	ith Cu
were carried out in	n a thermo	ostated		collected in a		
waterbath. Each an sample was broken w						
sealed bottle, and Nb+Ti were precipit						
filtration and ign:	ition at 8	300°C, the				
mixed oxides were analyzed x-ray spectrographically.			ESTIMATED ERROR:			
				Temp: precision Soly: precision	on ± 0.5 K on ± 2 %.	
			REFE	RENCES:	<del> </del>	
				Long, A. M. <i>Ci</i> <u>1968</u> , 50, 1764		
			1			

COMPONENTS:	EVALUATOR:				
<ol> <li>Niobium Chloride oxide; NbCl₃0; [13597-20-1]</li> <li>Niobium chloride; NbCl₅;</li> </ol>	J. Hála Department of Inorganic Chemistry J. E. Purkyne University 61137 Brno, Czechoslovakia				
[10026-12-7]	October 1985				

CRITICAL EVALUATION:

The solubility of niobium chloride oxide in niobium chloride.

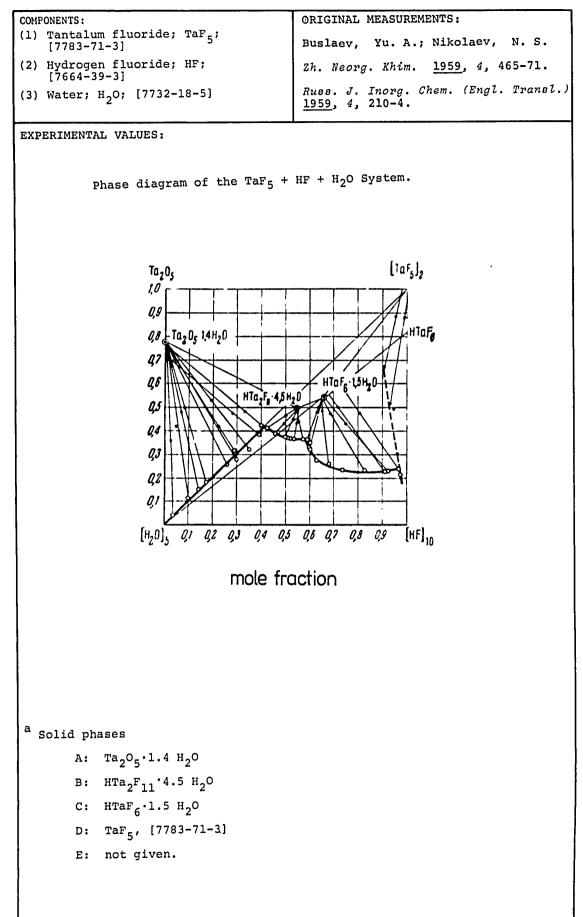
Two papers (ref 1 and 2) report measurements of the solubiltiy of NbCl₃O in NbCl₅ by a polythermal method. The two data sets differ considerably. The liquidus curve of Niselson and Gavrilov (ref 2) is at a much higher temperature than that of Meyer and coworkers (ref 1). The reason for the discrepancy is not clear and it is not possible to give one data set preference over the other. The two papers do agree well on the eutectic temperature which is given as 203.3-203.4 (ref 1) and 203 (ref 2) ⁰C.

### **REFERENCES:**

- 1. Meyer, G.; Oosterom, J. F.; VanOeveren, W. J. *Rec. Trav. Chim.* <u>1961</u>, 80, 502.
- Niselson, L. A.; Gavrilov, O. R. Zh. Neorg. Khim. <u>1967</u>, 12, 3166.

						201
COMPONENTS:			ORIGINAL MEASU	JREMENTS :		
(l) Niobium chlorid [13597-20-1]	de oxide; N	bocl ₃ ;	Meyer, G.; Oosterom, J. F.; Van Oeveren, W. J.			
(2) Niobium chlorid [10026-12-7]	de; NbCl ₅ ;		Recl. Trav 80, 502-12		y <b>8-</b> Ba8.	<u>1961</u> ,
VARIABLES:	· · · · · · · · · · · · · · · · · · ·					
	6 <b>.</b> 8 <del>-</del> 505		PREPARED BY:	J. Hála		
EXPERIMENTAL VALUES:						
	NbC15	NPOC1	Liqu Temper			
	mol %	mol %	t/°C	T/K ^a		
	96.5	3.5	204.5	477.7	•	
	95.6	4.4		477.3		
	95.2 94.9	4.8 5.1		477.1 476.9		
	94.9	5.2	203.6	476.8		
	94.4	5.6	208	481		
	94.1 93.4	5.9 6.6	219 232	492 505		
		0.0	ے ہے۔ 			
	a Calcula	ted by d	compiler.			
eutectic com the eutectic NbCl5 was es	temp. at 2 timated to	203.3 - be (206	203.4°C. Th .8 ± 0.3)°C.	e melting	point of	pure
		AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE: Polythermal method. Mixtures of NbOCl ₃ and NbCl ₅ were condensed into evacuated tubes under exclusion of atm. moisture. The tubes were sealed and slowly warmed up under shaking in a salt bath until the solid phase disappeared. Temperature was measured by using calibrated Anschutz thermometers.			SOURCE AND PU Source of N specified. impurities icals by sp Contrary to was not pos by distn. a The product NbCl ₅ at th NbOCl ₃ .	bCl5 and N Only negl were detec bectrograph other aut sible to c ind subsequ contained	bOCl ₃ wa igible t ted in t ic analy hors (1, btain pu ent subl 97.4 ma	races of the chem- vsis. (2) it the NbCl5 limation. uss %
<ul> <li>(2) Süe, M. P. Bull. Soc. Chim. France 1939, 6, 830.</li> </ul>			ESTIMATED ERF Comp. of th due to the of the star Liquidus te ± 2°C for m content of 5.9 mol %,	e mixture: inaccuracy ting mater emp: ± 0.1 leasurement 3.5 - 5.2,	of the ials. 5°C, ± 1 s with N	analysis 1°C, and NbOCl3

# Niobium Halides and Oxyhalides


COMPONENTS :				ORIGINA	L ME	ASUREMENTS			
					ORIGINAL MEASUREMENTS:				
<pre>(1) Niobium Chloride oxide; NbOCl₃;   [13597-20-1]</pre>				Niselson, L. A.; Gavrilov, O. R. Zh. Neorg. Khim. <u>1967</u> , 12, 3166-71.					
<pre>(2) Niobium chloride; NbCl₅; [10026-12-7]</pre>							ngl. Transl.		
[1002	0-12-7]					2, 1674-		iyi. IPanol.	
VARIABLES:				PREPARI	ED BY	:			
	T/K = 4	75.6 - 70	)1.4			J. 1	Hála		
EXPERIMENTAL	VALUES .			<u> </u>			<u> </u>		
		e satura	ed solution	ns.					
Liqui		NPOC	21 ₃			ldus	NbOC	213	
Tempera			a	-		ature		a	
t/°C	<i>T</i> /K	mass %	a	t/0		T/K	mass %		
204.2 202.4	477.4 475.6 _h	0.0 0.50	0.0 0.00627	295 300	.0	568.2 573.2	6.80 7.57	0.084 0.093	
203.0 204.0	476.2 ^b 477.2	0.84 0.88	0.010 0.011	346 366		619.6 639.2	15.20 22,00	0.183 0.261	
204.0	482.3	0.93	0.012	369		643.1	25.00	0.295	
221.0	494.2	1.58	0.020	385		658.7 663.9	31.00 36.80	0.361 0.422	
225.0 230.0	498.2 503.2	1.78 1.90	0.022 0.024	390 397		670.4	42.50	0.422	
231.0	504.2	2.27	0.028	398	.0	671.2	44.40	0.501	
256.2 264.4	529.4 537.6	3.13 3.90	0.039 0.048	404 413		677.2 686.7	49.10 60.35	0.548 0.656	
267.2	540.4	4.00	0.050	420		693.9	70.00	0.745	
270.0	543.2	4.31	0.054	424		697.4	75.78 84.70	0.797	
280.9 283.6	554.1 556.8	5.00 5.17	0.062 0.064	426	.7	699.9 700.2	84.70 91.67	0.874 0.932	
290.0	563.2	6.40	0.079	428		701.4	100.00	1	
^a Calcula	ted by c	compiler							
^b Eutecti	.c point								
					<u> </u>				
			AUXILIARY	INFORMA	TION		······································		
METHOD/APPAI				SOURCE AND PURITY OF MATERIALS:					
Liquidus t by visual-					(1) NbOCl ₃ was prepared by oxidation of gaseous NbCl ₅ with oxygen at				
Ampoules v	vith the	mixture (	of both					sublimation.	
components salt bath				(2)	ihc1	s sourc	a not sna	cified, was	
			uple (ref 1	) <b>i</b> I	ouri	fied by	distillat	ion and con-	
							3% of uns	pecified	
					.mpu:	rities.			
				1					
]				ESTIMA	TED	ERROR:			
l							ion ± 0.5		
				S S	oly	: Nothin	g specifi	ed.	
				REFERE		-			
				1. N: Z7	isel: n. N	son, L. eorg. Kh	A.; Perek im. <u>1958</u> ,	hrest, G. L. 3, 2150.	
								· · · · · · · · · · · · · · · · · · ·	

Niobium Halides	and Oxyhalides 26
Components :	ORIGINAL MEASUREMENTS:
(1) Niobium chloride oxide; NbCl ₃ O;	Morozov, I. S.; Toptygin, D. Ya.
[13597-20-1]	Zh. Neorg Khim. <u>1957</u> , 2, 1915-21.
<pre>(2) Titanium chloride; TiCl₄; [7550-45-0]</pre>	J. Inorg. Chem. (USSR)(Engl.Transl., <u>1957</u> , 2(8), 322-33.
VARIABLES:	PREPARED BY:
T/K = 553, 573	J. Hála
EXPERIMENTAL VALUES:	L
Composition of the sa	aturated solutions.
Temperature	NbCl ₃ O
$t/{}^{0}C$ $T/K$ mass ²	$m_1/\text{mol kg}^{-1a}$
280 553 0.1-0	.2 0.0047-0.0093
300 573 1.5-2	.0 0.071 -0.095
a Calculated by compile	
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
An isothermal method was used, but no details are given. The procedure was presumably similar to that used in this document for the NbCl ₅ + TiCl ₄ system.	(2) Commercially available TiCl ₄ (source not specified) was distilled twice. The fraction boiling at 136 °C at 760 mmHg was used.
	ESTIMATED ERROR:
	REFERENCES:

		T	
		ORIGINAL MEASUREMENTS:	
<pre>(1) Niobium bromide; NbBr₅;     [13478-45-0]</pre>		Cowley, A.; Fairbrother, F. Scott, N.	• ;
<pre>(2) 1,1'-Oxybisethane (diethyl     ether);C4H10; [60-29-7]</pre>		J. Chem. Soc. <u>1958</u> , 3133-7.	
VARIABLES:		PREPARED BY:	
T/K = 27	75.4 - 294.1	J. Hála	
EXPERIMENTAL VALUES			
_	Composition of the	saturated solutions.	
	Temperature Niob	ium bromide; NbBr ₅	
	<i>t/°C T/K g/100 g</i>	solvent m ₁ /mol kg ^{-1a}	
	2.2       275.4       2.99         5.6       278.8       3.20         10.0       283.2       3.53         14.6       287.8       3.65         17.1       290.3       3.73         20.9       294.1       4.34	0.0650 0.0717 0.0741 0.0757	
	AUXILIARY	INFORMATION	
METHOD APPARATUS /PR	OCEDURE:	SOURCE AND PUBLITY OF MATERIALS.	
METHOD/APPARATUS/PROCEDURE: Isothermal method. The Pyrex glass apparatus (ref 1) consisted of the solvent pretreatment line, the satu- ration, and the sampling vessels. In the pretreatment section, the solute was repeatedly pretreated by succes- sive sublimations of the halide and condensation at -195°C of the solvent onto it. Both components were trans- ferred into the saturation vessel which was connected to the sampling compartment through a sintered glass disc. The vessel was rocked for 24 h, the saturated solution filtered into the sampling ampoule which was then sealed off, weighed, and broken under water to hydrolyze the halide. After standing for 4-5 h, the solu- tion was heated to 90°C, cooled and filtered, and the oxide was ignited and weighed.		<ul> <li>was purified by 5 or 6 is sublimations in vacuo, a sublimed into fragile he ampoule.</li> <li>(2) Diethylether (anesthetic tilled from 1/5 of its value from 1/5 of its value from 1/5 of its value from the declarated f</li></ul>	acting dry in a closed he product fractional and finally pok-ended c) was dis- volume of or at least ionated ored over ecified.

6.	The solubility of tantalum-containing halide and oxyh. substances.	alide
	Systems	Pages
	$TaF_5 + HF + H_2O$	266, 267
	+ ^{UF} 6	268
	$ + C_4 H_6 O_3$	269
	AgTaF ₆ + HF	270
	$\text{KTaF}_6$ + HF + H ₂ O	271
	$K_2TaF_7 + HF + H_2O$	272-280
	+ + KF + H ₂ O	281, 282
	$ + - + \kappa_2^{\text{NbOF}_5} + \kappa_2^{\text{O}}$	283
	$Rb_2TaF_7 + H_2O$	284
	$Na_3TaF_8 + H_2O$	285
	TaCl ₄ + CCl ₂ =CClCCl=CCl ₂	286
	$TaCl_5 + c - C_6H_{12}$	287
	+ C ₆ H ₆	288
	+ C ₇ H ₈	289
	+ C ₈ H ₁₀	290
	$+ c_{9}H_{12}$	291
	$+ (C_2H_5)_2O$	292
	$ + c_4 H_6 O_3$	293
	+ ccl ₄	294, 295
	+ CCl ₂ =CClCCl=CCl ₂	296
	+ cs ₂	297
	+ TiCl ₄	298-305
	NaTaCl ₆ + CCl ₂ =CClCCl+CCl ₂	306
	KTaCl ₆ + CCl ₂ =CClcCl=CCl ₂	307
	$TaBr_{5} + (C_{2}H_{5})_{2}O$	308
	+ CCl ₄	309
	+ C ₂ H ₅ Br	310
	$TaI_5 + (C_2H_5)_2O$	311

COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Tantalum fluoride; TaF₅; [7783-71-3]</pre>	Buslaev, Yu. A.; Nikolaev, N. S.	
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>	Zh. Neorg. Khim. <u>1959</u> , 4, 465-71.	
(3) Water; H ₂ O; [7732-18-5]	Russ. J. Inorg. Chem. (Engl. Transl.) <u>1959</u> , 4, 210-4.	
VARIABLES:	PREPARED BY:	
T/K = 293 Composition	J. Hála	
EXPERIMENTAL VALUES: Composition of satur	ated solutions at 20°C.	
HF Ta205 Nature	HF Ta ₂ O ₅ Nature	
mass % mass % Solid	mass % mass % Solid _	
Phases ^a	Phases ^a	
10.97 23.11	41.62 57.35	
14.95 35.44	42.82 56.02	
18.31 42.55	43.78 54.25	
20.49 46.95 25.38 54.11	44.17 53.84 48.78 48.32	
26.80 56.52 A	52.25 46.43	
25.45 60.23	57.25 42.44 C	
28.86 59.90 29.32 63.62	61.49 40.95 66.38 38.46	
29.10 65.76	66.41 38.92	
30.28 64.68	68.94 38.30 )	
32.58 62.50 35.76 60.50	42.05 70.12 D 60.72 59.21 D	
36.74 59.50 B	51.39 59.55 E	
37.26 59.21	62.80 45.58 E	
38.26 58.72 39.81 58.78	70.70 36.20 E	
The solid phases are identified at the bottom of the following page. Continued on the next page		
AUXILIARY	( INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Isothermal method used. The proce-	(1) $TaF_5$ was prepared by fluorination	
dure was essentially that used for	with ClF ₃ of Ta metal (source and	
the analogous NbF ₅ /HF/H ₂ O system (ref 1). Teflon bottles equipped	purity not specified except for the Nb content, 0.34%). Hydrous	
with stirrers and heavy fluorocarbon	Ta ₂ O ₅ was obtained by hydrolyzing	
hydraulic sealing were used. Solu-	a solution of Ta in liquid HF.	
tions containing excess hydrous $Ta_2O_5$ were equilibrated for at least 3-4 h,	STIMATED ERROR:	
in some experiments for 2 or more	Temp: precision $\pm$ 0.1 K.	
days. At high HF concentrations TaFs was used as the solute. In such	5 Soly: precision ± 1 % in Ta; precision ± 2.5 % in F ⁻ .	
cases the solutions were prepared by	REFERENCES :	
adding water to TaF ₅ solutions in anhydrous HF. Samples of saturated	1. Nikolaev, N. S.; Buslaev, Yu. A.	
solutions were taken by and weighed	Zh. Neorg. Khim. <u>1959</u> , 4, 205.	
in a Pt pipette after filtration in a	2. Nikolaev, N. S.; Alenchikova, I.F.	
Pt apparatus. Ta was determined gravimetrically as Ta ₂ O ₅ , F ⁻ in the	Zavodskaya Lab. <u>1958</u> , 24, 418.	
presence of Ta was titrated with NaOH	I	
against phenolphthaleine. Solutions		
containing high HF concentrations and the solid phases were analyzed for		
H ₂ O by Fischer method modified for		
HF solutions (ref 2). The composition	on of the solid phases was determined	
by chemical and microscopical analysi residues.		
	Continued on the next page	



COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Tantalum fluoride; TaF₅; [7783-71-3]</pre>	Nikolaev, N. S.; Sadikova, A. T.	
(2) (OC-6-11)-Uranium fluoride; UF ₆ ; [7783-81-5]	At. Ener. <u>1975</u> , 39, 338-43. Sov. At. Energy (Engl. Transl.) <u>1975</u> , 39, 338-43.	
VARIABLES:	PREPARED BY:	
T/K = 373	J. Hála	
EXPERIMENTAL VALUES:		
At 100°C the solubility of TaF ₅ in UF ₆ is reported		
to be 0.10 mol $kg^{-1}$ (2.86 m	5 0	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Solu- bility was determined in a Cu auto- clave placed in a crucible furnace. Excess solid was equilibrated under constant mixing with 6 ml UF ₆ for 30-40 h, and then allowed to stand for another 40 h at the desired temperature, which exceeded 3-4 times the time necessary to reach the equilibrium. After that the auto- clave was rapidly cooled in liquid N. A sample of the frozen saturated solution was transfered to ice to hydrolyze the components, and analyzed. Methods of analysis were not given. All procedures were car- ried out in a dry box at -20°C.		

***

<pre>COMPONENTS: (1) Tantalum fluoride; TaF₅; [7783-71-3] (2) Propylene carbonate (4-methyl-1, 3-dioxalan-2-one); C₄^H₆^O₃; [108-32-7]</pre>	ORIGINAL MEASUREMENTS: Fischer, H. W.; Schwabe, K. Korrosion (Dresden) <u>1980</u> , 11, 105-15.		
VARIABLES: T/K = 298	PREPARED BY: J. Hála		
EXPERIMENTAL VALUES:			
The approximate solubilit	cy of TaF ₅ at $t/^{\circ}C = 25$		
is reported to be 12 g Ta	is reported to be 12 g TaF ₅ /100 g solvent.		
The compiler calculates n	$m_1/\text{mol kg}^{-1} = 0.43_5.$		
AUXILIARY			
	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS:		
METHOD/APPARATUS/PROCEDURE: Isothermal method. Although not stated explicitly, the solubility was apparently determined in the apparatus described for the elec- trolysis experiments. The apparatus was connected to a vacuum line, and extreme care was taken to avoid access of air moisture. No details were given about the time of equi- libration or analysis of the satu- rated solutions.	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>(1) TaF₅ (Ferak, West Berlin), 99% purity, was used without further purification.</li> <li>(2) Propylene carbonate (Ferak,</li> </ul>		
Isothermal method. Although not stated explicitly, the solubility was apparently determined in the apparatus described for the elec- trolysis experiments. The apparatus was connected to a vacuum line, and extreme care was taken to avoid access of air moisture. No details were given about the time of equi- libration or analysis of the satu-	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>(1) TaF₅ (Ferak, West Berlin), 99% purity, was used without further purification.</li> <li>(2) Propylene carbonate (Ferak, West Berlin) was distilled before</li> </ul>		
Isothermal method. Although not stated explicitly, the solubility was apparently determined in the apparatus described for the elec- trolysis experiments. The apparatus was connected to a vacuum line, and extreme care was taken to avoid access of air moisture. No details were given about the time of equi- libration or analysis of the satu-	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>(1) TaF₅ (Ferak, West Berlin), 99% purity, was used without further purification.</li> <li>(2) Propylene carbonate (Ferak, West Berlin) was distilled before use.</li> </ul>		

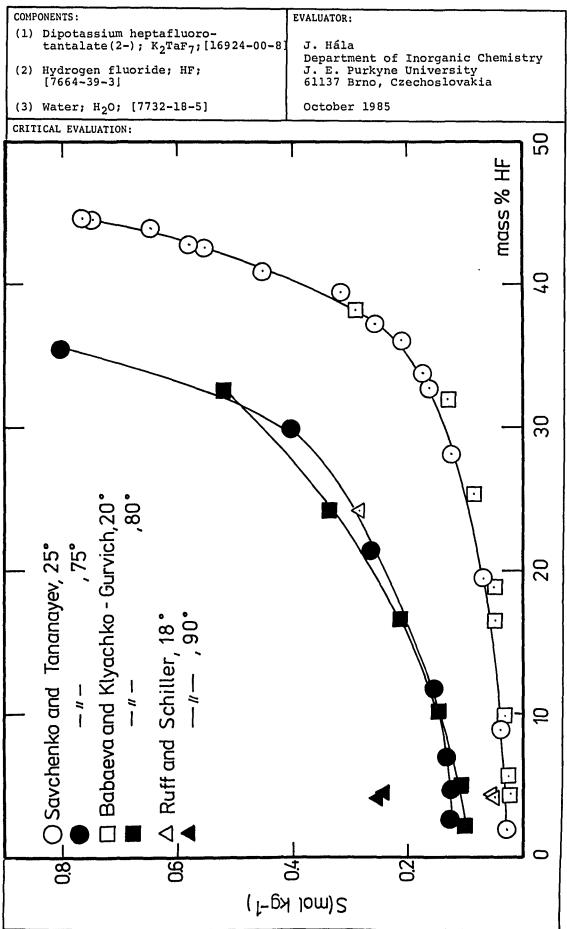
ede, J. em. <u>1978</u> , 8, 47-53.
J. Hála
uct of AgTaF ₆
values are
ler calculated
61.
<u></u>
URITY OF MATERIALS:
<pre>vas prepared from AgF and anhydrous HF and re- lized. TaF₅ used was pre- r condensing excess HF shly sublimed TaCl₅, and ag the crude TaF₅ in AgF used was prepared pration of HF from AgHF₂ a turn was prepared in owing way. Excess HF gas lensed on a wet filter freshly precipitated Ag₂O solution obtained was end to dryness by heating in a stream of N gas. due was dissolved in the HF, cooled to -78° to erystals of AgF.5HF which end to AgHF₂ on heating as HF distilled from com- (source not specified) roduct in steel tanks was led 2-3-times over AgF to traces of H₂S. The con- end to water content hol dm⁻³. ROR: and solubility product og units. and solubility errors are d. The authors stated ubility calculated from ewhat higher than the value, due to the salt</pre>

-

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Potassium hexafluorotantalate; KTaF₆; [20137-53-5]</pre>	Savchenko, G. S.; Tananaev, I. V.
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>	2h. Prikl. Khim. <u>1946</u> , 19, 1093-1105.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES: $T/K = 298$	PREPARED BY:
HF/mass = 42.4 - 65.5	J. Hála
EXPERIMENTAL VALUES: Solubility of KTaF6	in aqueous HF at 25°C
HF TaF ₅ KF	KTaF ₆
mass% mass% mass%	masst ^a m ₁ /mol kg ^{-1b}
42.40 13.98 3.73	16.88 1.241
50.00 13.30 2.94 53.15 13.20 3.06	
56.00 13.20 -	15.93 1.699
59 90 13 70 3 20	16 53 2 0 0 0
63.85 14.26 3.35	17.21 2.720
65.50 14.40 4.07	17.40 3.046
^a Calculated by author	s from the TaF ₅ data.
^b Calculated by compil	er.
solutions varied within the range of	1.00 - 1.11.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Solubility measurements were carried out in a Aq vessel. Mixtures were equilibrated by stirring for 7-10 hours. Four samples were taken from each satu- rated solution. In 2 of them the sum of free HF and Ta was titrated with alkali against methylred in the presence of CaCl ₂ . It was found in independent experiments that 4.4-4.7 moles of alkali were consumed per 1 mole of Ta. In other 2 samples Ta was determined gravimetrically as Ta ₂ O ₅ after precipitation with NH ₄ OH (without removal of HF), and K as K ₂ SO ₄ in the filtrate after the determination of Ta. The content of free HF was obtained by subtraction considering the average value of 4.5 mole alkali per 1 mole Ta.	SOURCE AND PURITY OF MATERIALS: (1) KTaF ₆ was prepared from Ta metal

COMPONENTS :	EVALUATOR:
<pre>(1) Dipotassium heptafluoro- tantalate(2-);K₂TaF₇;[16924-00-8]</pre>	J. Hála
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>	Department of Inorganic Chemistry J. E. Purkyne University 61137 Brno, Czechoslovakia
(3) Water; H ₂ O; [7732-18-5]	October, 1985

CRITICAL EVALUATION:


The solubility of potassium heptafluorotantalate in aqueous hydrogen fluoride.

Six documents (ref 1-6) report the solubility of potassium heptafluorotantalate in this system. Only the documents of Babaeva and Klyachko-Gurvich (ref 1), Savchenko and Tananaev (ref 2 and 3), and Ruff and Schiller (ref 4), which cover a wide range of HF concentration and temperature, need to be considered. The data of Marignac (ref 5) are for the solubility of  $K_2TaF_7$ in water containing a small unspecified concentration of HF. The data of Meerson *et al.* (ref 6) were reported in graphical form only. Therefore, the data from these documents (ref 5 and 6) were not considered further.

The data from documents (ref 1 - 3) agree qualitatively in both the trend of the solubility increasing with HF concentration and with temperature. Some discrepancies can be noted concerning the temperature dependence of the solubility (see Figure on following page). The data of Savchenko and Tananaev (ref 3) for 348 K (75 °C) are higher than those of Babaeva and Klyachko-Gurvich (ref 1) for 353 K (80 °C) at low HF concentration, but the Savchenko and Tananaev values are lower at high HF concentrations. Although less pronounced, a problem also exists between the data for 293 K (20 °C) (ref 1) and for 298 K (25 °C) (ref 2) in that the two data sets almost coincide. There are no reasons to prefer one data set over the other. All (ref 1 - 3) are classed as tentative. The data of Ruff and Schiller (ref 4) seems to be too high and can be rejected.

# **REFERENCES:**

- Babaeva, A. V.; Klyachko-Gurvich, L. L. *Zh. Obsh. Khim.* <u>1935</u>, 5, 220.
- Savchenko, G. S.; Tananaev, I. V. Zh. Prikl. Khim. <u>1946</u>, 19, 1093.
- Savchenko, G. S.; Tananaev, I. V. Zh. Prikl. Khim. <u>1947</u>, 20, 385
- 4. Ruff, O.; Schiller, E. Z. Anorg. Chem. <u>1911</u>, 72, 329.
- 5. Marignac, M. C. Ann. Chim. Phys. <u>1866</u>, 9 [4], 247.
- Meerson, G. A.; Zverev, G. L.; Zubkova, F. M. *Tsvetnye Metally* (Nonferrous Metals) <u>1939</u>, No. 8, 97.



COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Dipotassium heptafluoro- tantalate(2-); K₂TaF₇;</pre>	Marignac, M. C.
tantalate(2-); K ₂ TaF ₇ ; [16924-00-8]	Ann. Chim. Phys. <u>1866</u> , 9[4], 247-76.
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>	
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 288	J. Hála
FYDERTMENTAL VALUES.	
EXPERIMENTAL VALUES:	
The solubility of K ₂ TaF ₇ at	15°C is reported as 1 part
of the salt being soluble in	200 parts of water
$(0.0128 \text{ mol } \text{kg}^{-1}; \text{ compiler}).$	The water was reported to
contain a very small though	
of HF.	
· · · · · · · · · · · · · · · · · · ·	
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
No details reported.	Nothing specified.
	1
	ESTIMATED ERROR:
	Nothing specified.
	REFERENCES :
	l

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Dipotassium heptafluoro- tantalate(2-); K₂TaF₇; [16924-00-8]</pre>	Meerson, G. A.; Zverev, G. L.; Zubkova, F. M.
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>	Tsvetnye Metal. (Nonferrous Metals) 1939, No. 8, 97-101.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 294, 333 HF/mass % = 1	J. Hála

## EXPERIMENTAL VALUES:

The solubility of  $K_2 TaF_7$  in 1 mass percent aqueous HF solution was reported at 21 and 60 °C in graphical form, see Figure to right. The values can be read on the  $H_2O$ (+1 % HF) -  $K_2 TaF_7$  side of the triangular  $H_2O$ (+1% HF) +  $K_2NbOF_5$  +  $K_2 TaF_7$  phase diagram.

To two significant figures the values are 0.68 mass% at 21  $^{\circ}$ C and 2.9 mass % at 60  $^{\circ}$ C.

The compiler calculates solubilities of  $m_1$ /mol kg⁻¹ = 0.021 and 0.093 at 294 and 333 K, respectively.

H₂0 (+1% HF)

upper curve, 21°C lower curve, 60°C

AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Isothermal method used. Excess K ₂ TaF7 was equilibrated with 1 mass % HF solution in ebonite beaker. A weighed portion of the saturated solution was evaporated in a Pt dish and the residue was weighed. The results so obtained were confirmed in measurements where solutions saturated initially at higher temperatures were allowed to cool down and equilibrate at the desired temperature.	(1) K ₂ TaF ₇ (source not specified) was repeatedly recrystallized from 1 mass % HF solution. The product contained 56.4% Ta ₂ O ₅ (calculated 56.34% - compiler), 0.003% Fe, 0.04% Si, 0.01% Ti, and 0.02% Sn.	
	(2) HF was purified from H ₂ SiF ₆ , which suppressed the solubility of K ₂ TaF ₇ , by treating the HF solu- tion with solid K ₂ TaF ₇ to allow for the precipitation of the Si-Ta heteropolyacid. (The authors did not mention the amount of K ₂ TaF ₇ used for this purifica- tion process or eventual K ₂ TaF ₇ concentration present in the purified HF.)	
	ESTIMATED ERROR: Temp: precision ± 0.1 K. The solubility error is not specified.	

COMPONENTS: (1) Dipotassium heptafluorotant-	ORIGINAL MEASUREMENTS: Ruff, O.; Schiller, E.	
alate(2-); $K_2^{TaF_7}$ ; [16924-00-8]		
<pre>(2) Hydrogen fluoride; HF; [7664-39-9]</pre>	2. Anorg. Chem. <u>1911</u> , 72, 329-57.	
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES: T/K = 291-363	PREPARED BY:	
HF/mass = 0.03-24.3	J. Hála	
EXPERIMENTAL VALUES: Composition of the s	aturated solutions.	
Temperature HF KF ^b TaF ₅	$\frac{\text{Ta}^{\text{C}}}{2} \frac{K_2 \text{TaF}_7^{\text{C}}}{2} \text{ Nature of the Solid}$	
t/°C T/K mass% mass% mass%	mass% mass% $m_1/$ Phased mol kg ⁻¹	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.164 0.36 0.00922 A+B	
18.5 291.7 4.2 0.52 1.24	0.813 1.76 0.0477 A	
18         291.2         4.47         0.56         1.33           18         291.2         24.3         2.25         5.35	0.827 1.89 0.0515 A 3.51 7.60 0.285 A	
85 358.2 0.85 ^a 1.69 2.18	1.430 3.10 0.0823 A+B	
90 363.2 4.2 2.52 6.00	3.935 8.53 0.249 A	
90         363.2         4.47         2.41         5.73           90         363.2         24.3         4.59         10.91	3.757 8.14 0.238 A 7.15 15.50 0.657 A	
^d A: $K_2TaF_7$ , [16924-00-8]; B: solid phase of variable composition referred to as $K_xTa_yO_2F_u$ in the original document. Its composition depended on that of the corresponding equilibrium saturated solution and approached that of the Marignac's (ref 2) insoluble salt $K_4Ta_4O_5F_{14}$ on repeated boiling with fresh water.		
<u> </u>	INFORMATION	
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Excess K ₂ TaF ₇ was shaken with either water or a HF solution in Pt bottles for 3 hours and filtered through a Pt funnel. In one aliquot of the fil- trate, Ta and free HF were deter- mined alkalimetrically (ref 1); in another, Ta was determined gravi- metrically as Ta ₂ O ₅ after precipita- tion with NH ₃ solution. Precipita- tion was repeated twice (after dis- solution of hydrous Ta ₂ O ₅ in HF) to remove adsorbed potassium, and in the collected filtrates K was deter- mined by an unspecified method. Solid phases were identified by optical microscopy.	<pre>SOURCE AND PURITY OF MATERIALS: (1) K2TaF7 (source or method of preparation not specified) was first separated from K2NbF7 according to ref (2), then repeatedly recrystallized from concentrated HF solution, and finally dried at 120° to remove HF. (2) HF solutions were prepared from non-aqueous HF to avoid the presence of H2SiF6. ESTIMATED ERROR: Nothing specified. REFERENCES: 1. Winteler, H. Z. Angew. Chem. 1902, 15, 33. 2 Marianan M. C. Ann. Chim. Phys.</pre>	
	2. Marignac, M. C. Ann. Chim. Phys. <u>1866</u> , 9[4], 247.	

COMPONENTS:		ORIGINAL	MEASUREMENTS :	
(1) Dipotassium ho tantalate(2-) [16924-00-8]		l l	A. V.; Klyachko-Gurvi	
(2) Hydrogen fluo: [7664-39-3]	ride; HF;	Zh. Obsh	e. Khim. <u>1935</u> , 5, 220-	3.
(3) Water; H ₂ O; [	7732-18-5]			
EXPERIMENTAL VALU	UES:			
	Solubility of	K ₂ TaF7 in aqueo	ous HF	
-	HF	ĸ	2 ^{TaF} 7	
	mass % m ₂ / mol k	g ^{-1a} mass %	$m_1/m_0$ kg ⁻¹ a	
	Composition at	0°C	Tanan managana kata ang kata dan Sang ka	
	$\begin{array}{cccc} 0.105^{b} & 0.05\\ 0.610 & 0.30\\ 1.757 & 0.89\\ 3.750 & 1.95\\ 6.545 & 3.51\\ 11.207 & 6.35\\ 17.273 & 10.54\\ 24.099 & 16.15\\ 38.366 & 33.57 \end{array}$	75 0.246 66 0.287 5 0.364 8 0.454 0 0.579 0.815 1.326	0.006327 0.007472 0.009680 0.01245 0.01674 0.02537	
	Composition at	20°C		
	$\begin{array}{c} 0.214^{b} & 0.10\\ 0.288^{b} & 0.14\\ 1.223^{c} & 0.62\\ 1.520 & 0.77\\ 1.770 & 0.90\\ 4.234 & 2.22\\ 5.778 & 3.09\\ 9.859 & 5.52\\ 16.520 & 10.06\\ 19.047 & 12.00\\ 25.420 & 17.60\\ 32.025 & 24.95\\ 38.157 & 34.37\end{array}$	48 0.319 24 0.555 64 0.620 66 0.645 8 0.783 2 0.838 9 1.015 5 1.440 1.609 2.368 3.825	0.008185 0.01441 0.01616 0.01686 0.02102 0.02288 0.02904 0.04476 0.05171 0.08362	
	Composition at	80°C		
	2.170       1.14         5.023       2.75         7.550       4.28         10.230       6.02         16.690       10.84         24.233       18.09         32.610       29.14	5 3.843 1 4.305 2 4.863 6.331 8.820	0.1461 0.2097 0.3360	
	a Calculated by	compiler.	and and a second se	
	^b Initial mixtur water, HF form	e contained on ed by hydrolysi the original d	is of the salt.	
except fo	16924-00-8] was r the measurement	the equilibrium ts marked b) wh	n solid phase in all ca here a basic salt existed with K ₂ TaF ₇ .	ises
Continued on the	next page			

COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Dipotassium heptafluoro- tantalate(2-); K₂TaF₇; [16924-00-8]</pre>	Babaeva, A. V.; Klyachko-Gurvich, L. L.	
<pre>(2) Hydrogen fluoride; HF; [7664-39-3]</pre>	2h. Obsh. Khim. <u>1935</u> , 5, 220-3.	
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES: $T/K = 273$ , 293, and 353	PREPARED BY:	
HF/mass = 0.1-38.4  at  273  K,	J. Hála	
0.2-38.2 at 293 K, 2.2-32.6 at 353 K		
METHOD/APPARATUS/PROCEDURE: Isothermal method used. All measurements were carried out in either Pt or bakelite test tubes immersed in a thermostat. Mixtures of K ₂ TaF ₇ and HF solution were stirred until equilibrium was reached. At 0°C the mix- tures were stirred with a vertical stirrer and equilibrium was reached within 3-4 hours. No equilibrium times were reported for measurements at higher temperatures. The mixtures were allowed to stand for 1 hour and samples of saturated solutions were withdrawn by using either a paraffine coated glass pipette (at 0 and 20°C) or a heated rubber pipette (at 80°C). Four samples were taken from each measurements and always weighed into a Pt crucible containing water. In two samples the sum of HF and Ta was determined by titration with NaOH against phenolphthaleine. In the re- maining two samples K ₂ TaF ₇ was decomposed by heating with concentrated H ₂ SO ₄ and then Ta was determined gravimetrically as Ta ₂ O ₅ by precipitatior with ammonia, and K gravimetrically as K ₂ SO ₄ in the filtrate after Ta determination. Composition of the solid phases was determined by chemical analysis and microscopic observation.		
AUXILIARY	INFORMATION	
SOURCE AND PURITY OF MATERIALS:	SOURCE AND PURITY OF MATERIALS:	
(1) K ₂ TaF ₇ was prepared from technical grade mixture of Nb+Ta oxides containing 95.4% oxides. Raw oxide mixture was purified from Fe, Mn, and Sn to obtain a product containing 47.3% Ta ₂ O ₅ , 52.0% Nb ₂ O ₅ , and 0.74% TiO ₂ . This was dissolved in HF, and K ₂ TaF ₇ was separated from double fluorides of Nb and Ti by repeated recrystallization from HF solutions. For some experiments K ₂ TaF ₇ was also prepared from a technical grade product by 5-6 times recrystallizing it from HF solutions. Analysis: found 56.38% Ta ₂ O ₅ , 19.74% K; calculated 56.41% Ta ₂ O ₅ , 19.92% K.	ESTIMATED ERROR: REFERENCES:	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Dipotassium heptafluoro- tantalate(2-); K₂TaF₇; [16924-00-8]</pre>	Savchenko, G. S.; Tananaev, I. V.
(2) Hydrogen fluoride; HF; [7664-39-3]	Zh. Prikl. Khim. <u>1946</u> , 19, 1093-
(3) Water; H ₂ O; [7732-18-5]	Zh. Prikl. Khim. <u>1947</u> , 20, 385-90. (measurements at 348 K)

EXPERIMENTAL VALUES:

Solubility of K₂TaF7 in aqueous HF at 25°C

	HF	$TaF_5$	KF	K	2 ^{TaF} 7
mass%	m ₂ /mol kg ⁻¹ b	mass%	mass%	mass ^{ga}	$m_1/mol kg^{-1b}$
1.979.5119.5428.2032.8233.8636.1437.2639.4940.9042.6442.6442.8044.0044.5644.6445.2946.3246.6647.6049.6251.1252.3660.09	1.014 5.327 12.45 20.58 25.95 27.31 30.61 32.66 36.63 40.71 45.16 45.86 49.18 51.94 52.39	$\begin{array}{c} 0.67\\ 0.89\\ 1.41\\ 2.32\\ 2.78\\ 2.93\\ 3.41\\ 4.02\\ 4.67\\ 6.25\\ 7.15\\ 7.43\\ 7.94\\ 8.84\\ 8.99\\ 10.49\\ 10.30\\ 9.86\\ 9.54\\ 8.49\\ 6.95\\ 8.74 \end{array}$	$\begin{array}{c} 0.22\\ 0.34\\ 0.58\\ 0.93\\ 1.00\\ 1.41\\ 1.61\\ 1.67\\ 2.25\\ 3.06\\ 3.35\\ 4.02\\ 3.87\\ 4.39\\ 4.15\\ 4.93\\ 5.64\\ 6.00\\ 6.45\\ 6.71\\ 9.89\\ 6.00\\ \end{array}$	0.95 1.26 2.00 3.30 3.95 4.16 4.85 5.71 6.63 8.88 10.16 10.55 11.28 12.56 12.77	0.0250 0.0360 0.0650 0.123 0.159 0.171 0.210 0.255 0.314 0.451 0.549 0.577 0.643 0.747 0.765

^a Calculated by authors from the TaF₅ data.

^b Calculated by compiler.

Note: The decrease of the solubility of  $K_2TaF_7$  above 45 mass% HF is caused by the conversion of  $K_2TaF_7$  to  $KTaF_6$ ,

 $K_2 TaF_7 + HF \rightarrow KTaF_6 + KHF_2$ 

The ternary  $K_2TaF_7-HF-H_2O$  system thus turns into a quarternary one,  $KTaF_6-HF-KF-H_2O$ , and the solubility data for  $TaF_5$  correspond to the solubility of  $KTaF_6$  in the presence of  $KHF_2$ . Schreinemakers' method of wet residue did not yield an unequivocal proof for the formation of  $KTaF_6$  (possibly because of incomplete conversion of  $K_2TaF_7$ ) but its existence was proved by the synthesis of  $KTaF_6$  by precipitation with  $KHF_2$  of a solution of Ta metal in 50-60 mass% HF.

Over the concentration range of HF of 1.97 - 44.64 mass% the KF/TaF5 mole ratio in the saturated solutions varied within the range of 1.74 - 2.31 which was taken as evidence for  $K_2TaF_7$  [16924-00-8] being the equilibrium solid phase.

Continued on the following page . . .

(1) Dipotassium hoptafluoro- trantalata(2-); K_TAF,; [16924-00-8] K_TAF,; [7664-39-3] (2) Mydrogen fluoride, HF; [7664-39-3] (3) Water: H_20: (7732-18-5] (measurements at 348 K) WARIABLES: $T/K = 298$ and 348 $m_2/mass8 = 2-66.7 at 298 K;$ 2.7-35.5 at 348 K EXPERIMENTAL VALUES: Solubility of K_2TAF, in aqueous HF at 75°C HF TaF_5 that $m_2/mass8 = 2-66.7 at 298 K;$ 2.7-35.5 at 348 K EXPERIMENTAL VALUES: Solubility of K_2TAF, in aqueous HF at 75°C HF TaF_5 that $m_2/mass8 = m_2/mass8 $	COMPONENTS:			ORIGINAL	MEASUREME	NTS:		
				Savchen	ko, G. S	.; Tananaev, I. V.		
(3) Water; H ₂ O; (7732-18-5) (3) Water; H ₂ O; (7732-18-5) VARIABLES: T/K = 298  and  348 $m_j/\text{mass} = 2-68.7 \text{ at } 298 \text{ K}_2.7-35.5 \text{ at } 348 \text{ K}$ EXPERIMENTAL VALUES: Solubility of $K_2\text{TBF}_7$ in aqueous HF at $75^\circ\text{C}$ HF TaF ₅ KF K2TAF ₇ mass $\frac{m_2}{m_2}/m_01 \text{ kg}^{-5}$ mass $\frac{m_2}{m_2}/m_01 \text{ kg}^{-5}$ 1.52 4.55 0.125 1.52 4.55 0.125 1.52 4.55 0.125 1.52 4.55 0.125 1.52 4.55 0.125 1.52 4.55 0.125 1.52 4.55 0.122 1.1.60 7.065 3.48 1.65 4.95 0.131 1.1.60 7.065 3.48 1.65 4.95 0.131 1.1.80 7.065 3.48 1.65 4.95 0.132 3.5.00 24.62 6.74 - 9.58 0.404 35.50 36.18 10.87 4.69 15.45 0.803 a Calculated by authors from the TaF ₅ data. b Calculated by compiler. Note: The mole ratio of KF/TAF ₅ in the saturated solutions was constant throughout the whole concentration range of HF and varied within the limits of 2.06 - 2.25. This was taken as a proof for $X_7$ TAF ₇ [16924-00-8] being the equilibrium solid phase in all solutions. <b>AUXILIARY INFORMATION</b> <b>METHOD/APPARATUS/PROCEDURE:</b> Isothermal method used. Solubility wessel. Mixtures were equilibriated by complex the acid doubly distilled from a the transples from the ta superimetical from 61 from 60-90 mass HF was prepared from 0 mass HF obtained from the acid doubly distilled from a the acid doubly distilled from the distillation of a mixtures of the acid doubly distilled from the distillation of a mixtures of and the distillation of a mixture of again the order of the He mas of free He acid doubly distilled from the from of the acid doubly distilled from the from of the acid doubly distilled from the from fore HF was obtained for the the superimetical H = 200.48 Higher HF content of free HF was obtained for the from the superimetical to a mixture of again the order H = 2 mined gravimetrically as Tago fatter precipication with NH40H (without removal of HF), and K as K250 (in the filtrate after the determination of the superimetical to a the superimetical. Balant were consume per 1 mos	(2) Hydrogen fluoride; HF;							
VARIABLES:T/K = 298 and 348PREPARED BY: J. Hala $m_1/mass = 2-68.7 at 298 K;2.7-35.5 at 348 KJ. HalaThe solubility of K_2TaF_7 in aqueous HF at 75°CThe solution is a solution in the solution in the solution in and solution$								
$\frac{m_2/\text{mass} = 2-68.7 \text{ at } 298 \text{ K}}{2.7-35.5 \text{ at } 348 \text{ K}}$ EXPERIMENTAL VALUES: Solubility of K_2TaF ₇ in aqueous HF at 75°C $\frac{\text{HF}}{\text{mass} \frac{m_2/\text{mol} \text{ kg}^{-5}} \frac{\text{TaF}_5}{\text{mass} \frac{m_2}{\text{mass} \frac{m_2}{\text{mol} \text{ kg}^{-5}}} \frac{\text{KF}}{\text{mass} \frac{m_2/\text{mol} \text{ kg}^{-5}}} \frac{10.122}{\text{mol} \frac{10.22}} \frac{11.80}{\text{mol} \frac{10.22}} \frac{1.52}{\text{mos} \frac{1.52}{\text{mol} \frac{1.52}{\text{mos} \frac{1.52}{\text{mol} 1.52$	WADTARI FC .	······		PREPARED	BY:			
EXPERIMENTAL VALUES: Solubility of $K_2^{TaF_7}$ in aqueous HF at $75^{\circ}C$ HF TaF ₅ KF K_2TaF ₇ mass% $m_2/mol kg^{-b}$ mass% mass% $mass% m_1/mol kg^{-b}$ 2.70 1.455 3.20 1.52 4.55 0.125 4.86 2.675 3.05 1.37 4.33 0.122 7.12 4.029 3.25 - 4.55 0.131 1.80 7.085 3.48 1.65 4.95 0.152 21.52 15.12 5.15 - 7.32 0.262 30.00 24.82 6.74 - 9.58 0.404 35.50 36.18 10.87 4.69 15.45 0.803 Calculated by authors from the TaF ₅ data. b Calculated by compiler. Note: The mole ratio of KF/TaF ₅ in the saturated solutions was constant throughout the whole concentration range of HF and varied within the limits of 2.08 - 2.25. This was taken as a proof for K2TaF ₇ [16924-00-8] being the equilibrium solid phase in all solutions. METHOD/APPARATUS/FROCEDURE: Tsothermal method used. Solubility reasurements were carried out in a Ag yersel. Mixtures were equilibrated by stirring for 7-10 hours at 25 ⁶ C or for 4 hours at 75 ⁶ C. Four samples of for 4 hours at 75 ⁶ C. Four samples of for 4 hours at 75 ⁶ C. Four samples of for 4 hours at 75 ⁶ C. Four samples of for 4 hours at 75 ⁶ C. Four samples of for 4 hours at 75 ⁶ C. Four samples of for 4 hours at 75 ⁶ C. Four samples of for 4 hours at 75 ⁶ C. Four samples of for 4 hours at 75 ⁶ C. Four samples of for 4 hours at 75 ⁶ C. Four samples of for 4 hours at 75 ⁶ C. Four samples of for 60-90 mass% HF obtained from and the add duby distilled from a Pt apparatus. Mixtures with higher HF content were prepared from 60-90 mass% HF obtained from apt the avertime free HF was obtained from 40 mass% HF was prepared from 60-90 mass% HF obtained from apt and Ta was titrated with alkali against methylred in the presence of alkali were consumed per 1 nule Ta. In the other 2 samples Ta was deter- mined gravimetrically as Ta ₂ 05 after precipitation with NH40H (without filtrate after the determination of Ta. The content of free HF was obtained filtrate after the determination of Ta. The content of free HF was obtained the average value of 4.5 moles alkali	$m_{\star}/mass = 2-68.7$ at 298 K;				J. Hal	a		
$\frac{HF}{mass^{k}} \frac{TaF_{5}}{mass^{k}} \frac{KF}{mass^{k}} \frac{K_{2}TaF_{7}}{mass^{k}} \frac{mass^{k}}{m_{1}/mol kg^{-b}}$ $\frac{HF}{mass^{k}} \frac{TaF_{5}}{mass^{k}} \frac{KF}{m_{1}/mol kg^{-b}} \frac{mass^{k}}{mass^{k}} \frac{m_{1}/mol kg^{-b}}{mass^{k}}$ $\frac{TaF_{5}}{mass^{k}} \frac{M_{1}}{m_{1}/mol kg^{-b}}$ $\frac{1.52}{4.66} \frac{2.675}{3.05} \frac{3.20}{1.52} \frac{1.52}{4.55} \frac{0.125}{0.121}$ $\frac{1.65}{21.52} \frac{1.512}{5.12} \frac{5.15}{5.5} - 7.32} \frac{0.262}{0.262}$ $\frac{30.00}{24.62} \frac{2.4.62}{6.74} - 9.58} \frac{0.404}{35.50}$ $\frac{a}{Calculated by authors from the TaF_{5}} \frac{1}{6}$ $\frac{b}{Calculated by compiler}.$ Note: The mole ratio of KF/TaF_{5} in the saturated solutions was constant throughout the whole concentration range of HF and varied within the limits of 2.08 - 2.25. This was taken as a proof for KyTaF_{7} [16924-00-8] being the equilibrium solid phase in all solutions. $\frac{4000}{16924-00-8} \frac{1}{16924-00-8} \frac{1}{1692$								
mass\$				· · · · · ·				
2.70       1.455       3.20       1.52       4.55       0.125         4.86       2.675       3.05       1.37       4.33       0.122         7.12       4.029       3.25       -       4.55       0.131         11.80       7.085       3.48       1.65       4.95       0.152         21.52       15.12       5.15       -       7.32       0.262         30.00       24.82       6.74       -       9.58       0.404         35.50       36.18       10.87       4.69       15.45       0.803         a Calculated by compiler.         Note: The mole ratio of KF/Targ in the saturated solutions was constant throughout the whole concentration range of HF and varied within the limits of 2.08 - 2.25. This was taken as a proof for K2Targ [16924-00-8] being the equilibrium solid phase in all solutions.         MUXILIARY INFORMATION         MUXILIARY INFORMATION </td <td>masst</td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td>	masst					<u> </u>		
4.86       2.675       3.05       1.37       4.33       0.122         7.12       4.029       3.25       -       4.55       0.131         11.80       7.085       3.48       1.65       4.95       0.152         21.52       15.12       5.15       -       7.32       0.262         30.00       24.82       6.74       -       9.58       0.404 ^a Calculated by compiler.         Note: The mole ratio of KF/TaF5 in the saturated solutions was constant throughout the whole concentration range of HF and varied within the limits of 2.08 - 2.25. This was taken as a proof for K2TAF7         IG924-00-8] being the equilibrium solid phase in all solutions.         MUXILIARY INFORMATION         AUXILIARY INFORMATION         MUXILIARY INFORMATION         AUXILIARY INFORMATION         AUXILIARY INFORMATION         MUXILIARY INFORMATION <td c<="" td=""><td>·····</td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td>·····</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	·····						
11.80       7.085       3.48       1.65       4.95       0.152         21.52       15.12       5.15       -       7.32       0.262         30.00       24.82       6.74       -       9.58       0.404         35.50       36.18       10.87       4.69       15.45       0.803         a Calculated by authors from the TaF5 data.         b Calculated by compiler.         Note: The mole ratio of KF/TaF5 in the saturated solutions was constant throughout the whole concentration range of HF and varied within the limits of 2.08 - 2.25. This was taken as a proof for KgTaF7 [16924-00-8] being the equilibrium solid phase in all solutions.         MUXILIARY INFORMATION         METHOD/AFPARATUS/PROCEDURE:         Source AND FURITY OF MATERIALS:         Isothermal method used. Solubility measurements were carried out in a Ag vessel. Mixtures were equilibrated by stirring for 7-10 hours at 25°C or for 4 hours at 75°C. Four samples were taken from each saturated solution. In two of them the sum of free HF and Ta was tirated with alkali against methylred in the presence of CaCl2. It was found in independent experiments that 4.4-4.7 moles of alkali were consumed per 1 mole Ta. In the other 2 samples Ta was determined gravimetrically as Ta ₂ O ₃ after precipitation with NH ₂ OH (without trated HSO4).       Stillation of a mixture of equal volumes of 40% HF and condent trated HSO4.         Estimate after the determination of Ta. The content of	4.86	2.675	3.05	1.37	4.33	0.122		
21.52       15.12       5.15       -       7.32       0.262         30.00       24.82       6.74       -       9.58       0.404         35.50       36.18       10.87       4.69       15.45       0.803         a       Calculated by authors from the TaF5 data.       b       Calculated by compiler.         Note:       The mole ratio of KF/TaF5 in the saturated solutions was constant throughout the whole concentration range of HF and varied within the limits of 2.08 - 2.25. This was taken as a proof for K2TaF7 [l6924-00-8] being the equilibrium solid phase in all solutions.         AUXILIARY INFORMATION         METHOD/APPA&INS/PROCEDURE:         Isothermal method used. Solubility measurements were carried oulibrated by stirring for 7-10 hours at 25°C or for 4 hours at 75°C. Four samples Yeesel. Mixtures were call bradd by stirring for 7-10 hours at 25°C or for 4 hours at 75°C. Four samples of 40° HF obtained from 40 mass% HF obtained from 40 mass% HF obtained from 40 mass% HF obtained by distillation of a mixture of equal volumes of 40% HF and condentated HS04.         ETH was found in independent experiments that 4.4-4.7 moles of alkali were consumed per 1 mole Ta.         In the other 2 samples Ta was determined gravimetrically as Ta_05 after precipitation with NH40H (without termoval of HF), and K as K2504 in the filtrate after the determination of Ta. The content of free HF was ob-tained by distilled from 4 specified.         The solubility error is not specified.					4.55			
30.00       24.82       6.74       -9.58       0.404         35.50       36.18       10.87       4.69       15.45       0.803         a       Calculated by authors from the TaF5 data.       b       Calculated by compiler.         Note:       The mole ratio of KF/TaF5 in the saturated solutions was constant throughout the whole concentration range of HF and varied within the limits of 2.08 - 2.25. This was taken as a proof for K2TaF7 [16924-00-8] being the equilibrium solid phase in all solutions.         AUXILIARY INFORMATION         METHOD/APPARATUS/PROCEDURE:         Isothermal method used. Solubility measurements were carried out in a Ag vessel. Mixtures were equilibrated from 40 mass% HF obtained by distillation of a mixture of equal volumes of 40% HF and con-tained per 1 mole Ta. The content of free HF was ob-tained method without the with M404 (without tremoval of HF), and K as K2504 in the filtrate after the determination of Ta. The content of free HF was ob-tained by subtraction considering the average value of 4.5 moles alkali       Stillation of a mixture of equal volumes of 40% HF and con-dimixture of equal volumes of 40% HF and con-			5.15	-	7.32			
<ul> <li>^a Calculated by authors from the TaF₅ data.</li> <li>^b Calculated by compiler.</li> <li>Note: The mole ratio of KF/TaF₅ in the saturated solutions was constant throughout the whole concentration range of HF and varied within the limits of 2.08 - 2.25. This was taken as a proof for K₂Ta7 [16924-00-8] being the equilibrium solid phase in all solutions.</li> <li>METHOD/APPARATUS/PROCEDURE: [16924-00-8] being the equilibrium solid phase in all solutions.</li> <li>METHOD/APPARATUS/PROCEDURE: [16924-00-8] being the equilibrium solid phase in all solutions.</li> <li>METHOD/APPARATUS/PROCEDURE: [16924-00-8] being the equilibrium solid phase in all solutions.</li> <li>METHOD/APPARATUS/PROCEDURE: [16924-00-8] being the equilibrium solid phase in all solutions.</li> <li>METHOD/APPARATUS/PROCEDURE: [1000000000000000000000000000000000000</li></ul>			6.74	-	9.58			
<ul> <li>^b Calculated by compiler.</li> <li>Note: The mole ratio of KF/TaF₅ in the saturated solutions was constant throughout the whole concentration range of HF and varied within the limits of 2.08 - 2.25. This was taken as a proof for K2TaF₇ [16924-00-8] being the equilibrium solid phase in all solutions.</li> <li>AUXILIARY INFORMATION</li> <li>METHOD/APPARATUS/PROCEDURE:         <ul> <li>Isothermal method used. Solubility measurements were carried out in a Ag vessel. Mixtures were equilibrated by stirring for 7-10 hours at 25°C or for 4 hours at 75°C. Four samples were taken from each saturated solution. In two of them the sum of free HF and Ta was titrated with alkali against methylred in the presence of CaCl₂. It was found in independent experiments that 4.4-4.7 moles of alkali were consumed per 1 mole Ta. In the other 2 samples Ta was determined gravimetrically as Ta₂O₅ after precipitation with NH4OH (without removal of HF), and K as K₂SO₄ in the solubility error is not specified.</li> </ul> </li> <li>BETIMATED ERROR: Temp: precision ± 0.1 K. The solubility error is not specified.</li> <li>REFRENCES:</li> </ul>	35.50	36.18	10.87	4.69	15.45	0.803		
Note: The mole ratio of KF/TaF5 in the saturated solutions was constant throughout the whole concentration range of HF and varied within the limits of 2.08 - 2.25. This was taken as a proof for K2TaF7 [16924-00-8] being the equilibrium solid phase in all solutions.         METHOD/APPARATUS/PROCEDURE:       Imits of 2.08 - 2.25. This was taken as a proof for K2TaF7 [16924-00-8] being the equilibrium solid phase in all solutions.         METHOD/APPARATUS/PROCEDURE:       SOURCE AND PURITY OF MATERIALS:         Isothermal method used. Solubility measurements were carried out in a Ag vessel. Mixtures were equilibrated by stirring for 7-10 hours at 25°C or for 4 hours at 75°C. Four samples were taken from each saturated solution. In two of them the sum of free HF and Ta was titrated with alkali against methylred in the presence of CaCl2. It was found in independent experiments that 4.4-4.7 moles of alkali were consumed per 1 mole Ta. In the other 2 samples Ta was determined gravimetrically as Ta ₂ O ₅ after precipitation with NH40H (without removal of HF), and K as K2SO ₄ in the filtrate after the determination of Ta. The content of free HF was obtained by subtraction considering the average value of 4.5 moles alkali       SOURCE AND PURITY OF MATERIALS:         (1) K_2TaF7 (Kahlbaum), purity not specified.       (2) HF used for mixtures containing up to 35 mass% HF was prepared from 60-90 mass% HF obtained by distillation of a mixture of equal volumes of 40% HF and concentrated H2SO4.				the TaF	5 ^{data} .			
<ul> <li>METHOD/APPARATUS/PROCEDURE:</li> <li>Isothermal method used. Solubility measurements were carried out in a Ag vessel. Mixtures were equilibrated by stirring for 7-10 hours at 25°C or for 4 hours at 75°C. Four samples were taken from each saturated solu- tion. In two of them the sum of free HF and Ta was titrated with alkali against methylred in the presence of CaCl₂. It was found in independent experiments that 4.4-4.7 moles of alkali were consumed per 1 mole Ta. In the other 2 samples Ta was deter- mined gravimetrically as Ta₂O₅ after precipitation with NH₄OH (without removal of HF), and K as K₂SO₄ in the filtrate after the determination of Ta. The content of free HF was ob- tained by subtraction considering the average value of 4.5 moles alkali</li> <li>SOURCE AND PURITY OF MATERIALS: (1) K₂TaF7 (Kahlbaum), purity not specified.</li> <li>SOURCE AND PURITY OF MATERIALS: (1) K₂TaF7 (Kahlbaum), purity not specified.</li> <li>SOURCE AND PURITY OF MATERIALS: (1) K₂TaF7 (Kahlbaum), purity not specified.</li> <li>SOURCE AND PURITY OF MATERIALS: (1) K₂TaF7 (Kahlbaum), purity not specified.</li> <li>SOURCE AND PURITY OF MATERIALS: (1) K₂TaF7 (Kahlbaum), purity not specified.</li> <li>SOURCE AND PURITY OF MATERIALS: (1) K₂TaF7 (Kahlbaum), purity not specified.</li> <li>SOURCE AND PURITY OF MATERIALS: (1) K₂TaF7 (Kahlbaum), purity not specified.</li> </ul>								
<ul> <li>Isothermal method used. Solubility measurements were carried out in a Ag vessel. Mixtures were equilibrated by stirring for 7-10 hours at 25°C or for 4 hours at 75°C. Four samples were taken from each saturated solution. In two of them the sum of free HF and Ta was titrated with alkali against methylred in the presence of CaCl₂. It was found in independent experiments that 4.4-4.7 moles of alkali were consumed per 1 mole Ta. In the other 2 samples Ta was determined gravimetrically as Ta₂O₅ after precipitation with NH₄OH (without removal of HF), and K as K₂SO₄ in the filtrate after the determination of Ta. The content of free HF was obtained by subtraction considering the average value of 4.5 moles alkali</li> <li>(1) K₂TaF7 (Kahlbaum), purity not specified.</li> <li>(2) HF used for mixtures containing up to 35 mass% HF obtained from 40 mass% HF obtained from a Pt apparatus. Mixtures with higher HF content were prepared from 60-90 mass% HF obtained by distillation of a mixture of equal volumes of 40% HF and concentrated H₂SO₄.</li> <li>ESTIMATED ERROR:</li> <li>Temp: precision ± 0.1 K.</li> <li>The solubility error is not specified.</li> <li>REFERENCES:</li> </ul>	AUXILIARY			INFORMATI	ON			
<ul> <li>measurements were carried out in a Ag vessel. Mixtures were equilibrated by stirring for 7-10 hours at 25°C or for 4 hours at 75°C. Four samples were taken from each saturated solution. In two of them the sum of free HF and Ta was titrated with alkali against methylred in the presence of CaCl₂. It was found in independent experiments that 4.4-4.7 moles of alkali were consumed per 1 mole Ta. In the other 2 samples Ta was determined gravimetrically as Ta₂O₅ after precipitation with NH4OH (without removal of HF), and K as K₂SO₄ in the filtrate after the determination of Ta. The content of free HF was obtained by subtraction considering the average value of 4.5 moles alkali</li> <li>specified.</li> <li>(2) HF used for mixtures containing up to 35 mass% HF obtained from the acid doubly distilled from a Pt apparatus. Mixtures with higher HF content were prepared from 60-90 mass% HF obtained by distillation of a mixture of equal volumes of 40% HF and concentrated H₂SO₄.</li> <li>ESTIMATED ERROR: Temp: precision ± 0.1 K. The solubility error is not specified.</li> <li>REFERENCES:</li> </ul>	METHOD/APPARATUS/PROCEDURE:			SOURCE A	ND PURITY	OF MATERIALS:		
	METHOD/APPARATUS/PROCEDURE: Isothermal method used. Solubility measurements were carried out in a Ag vessel. Mixtures were equilibrated by stirring for 7-10 hours at 25°C or for 4 hours at 75°C. Four samples were taken from each saturated solu- tion. In two of them the sum of free HF and Ta was titrated with alkali against methylred in the presence of CaCl ₂ . It was found in independent experiments that 4.4-4.7 moles of alkali were consumed per 1 mole Ta. In the other 2 samples Ta was deter- mined gravimetrically as Ta ₂ O ₅ after precipitation with NH4OH (without removal of HF), and K as K ₂ SO ₄ in the filtrate after the determination of Ta. The content of free HF was ob- tained by subtraction considering the average value of 4.5 moles alkali			<pre>(1) K2I spe (2) HF up frc the Pt hig frc dis equ</pre>	aF7 (Kał cified. used for to 35 ma acid do apparatu her HF c m 60-90 tillatic	albaum), purity not mixtures containing ass HF was prepared so HF obtained from publy distilled from as. Mixtures with content were prepared mass HF obtained by on of a mixture of ass of 40% HF and con		

$ \begin{array}{c} \mbox{COMPONENTS:} & \mbox{(1) Dipotassium heptafluorotant-alate(2-); K_2TaF_7; [16924-00-8] \\ (2) Hydrogen fluoride; HF; [7664-39-3] \\ (3) Potassium fluoride; KF; \\ [7789-23-3] \\ (4) Water; H_2O; [7732-18-5] \\ \hline \\ \mbox{VARIABLES:} & T/K = 289-353 & J. Hála \\ \hline \\ \mbox{Composition} & J. Hála \\ \hline \\ \mbox{EXPERIMENTAL VALUES: Composition of the saturated solutions.} \\ \hline \\ \mbox{Temperature} & KF & HF & TaF_5 & Ta^d & K_2TaF_7^d, f & Nature of the solutions \\ \hline \\ \mbox{Temperature} & KF & HF & TaF_5 & Ta^d & K_2TaF_7^d, f & Nature of the solutions \\ \hline \\ \mbox{Temperature} & KF & HF & TaF_5 & Ta^d & K_2TaF_7^d, f & Nature of the solutions \\ \hline \\ \mbox{Temperature} & KF & HF & TaF_5 & Ta^d & K_2TaF_7^d, f & Nature of the solid \\ \hline \\ \mbox{Temperature} & KF & HF & TaF_5 & Ta^d & K_2TaF_7^d, f & Nature of the solid \\ \hline \\ \mbox{Temperature} & KF & HF & TaF_5 & Ta^d & K_2TaF_7^d, f & Nature of the solid \\ \hline \\ \mbox{Temperature} & 16 & 289 & 7.35 & 6.73 & 0.015^{C} & 0.09 & 0.0590 & 0.128 & 0.00350 & A+B \\ 18 & 291 & 21.92 & 21.93 & 10.44 & 0.036 & 0.0236 & 0.0512 & 0.00193 & A \\ 18 & 291 & 21.92 & 21.93 & 10.44 & 0.036 & 0.0236 & 0.0512 & 0.00193 & A \\ 10 & 363 & 21.92 & 22.42 & 10.44 & 1.18 & 0.774 & 1.68 & 0.0652 & A \\ \hline \\ \mbox{alignmentation} & found by analysis. \\ \hline \\ \mbox{CFormed during hydrolysis of } K_2TaF_7; see also footnote (e) for the solid phase B. \\ \hline \end{array}$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
VARIABLES: T/K = 289-353PREPARED BY:Linitial concentration used in the measurement.J. HálaEXPERIMENTAL VALUES: TemperatureComposition of the saturated solutions.TemperatureKFHFTaF5TadK2TaF7d, fMature of thet/°CT/Kmass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%mass%ma				
$T/K = 289-353$ $Composition$ $J. Hála$ $EXPERIMENTAL VALUES: Composition of the saturated solutions.$ $Temperature KF HF TaF_5 Ta^{d} K_2TaF7^{d,f} Nature of the solid mol kg^{-1}$ $mol kg^{-1} Phase^{d} Mass^{h} Mass$				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
^b Equilibrium concentration found by analysis. ^C Formed during hydrolysis of K ₂ TaF ₇ ; see also footnote (e) for the solid phase B.				
Formed during hydrolysis of $K_2^{TaF_7}$ ; see also roothote (e) for the solid phase B. ^d Calculated by compiler. ^e A: K_2TaF_7, [16924-00-8]; B: solid phase of variable composition referred to as $K_x Ta_y O_2 F_u$ in the original document. Its composition depended on that of the corresponding equilibrium saturated solution and, on repeated boiling with fresh water, approached that of the Marignac's (ref 2) insoluble salt $K_4 Ta_4 O_5 F_{14}$ . ^f In calculating molalities the experimental KF concentration values were corrected for KF dissociated from $K_2 TaF_7$ .				
AUXILIARY INFORMATION				
METHOD/APPARATUS/PROCEDURE:Isothermal method used. Excess $K_2TaF_7$ was shaken with solutions ofdesired composition in Pt bottles for3 hours and filtered through a Ptfunnel. In one aliquot of the fil-trate, Ta and free HF were deter-mined alkalimetrically (ref 1); inanother, Ta was determined gravi-metrically as Ta205 after precipita-tion with NH3 solution. Precipita-tion was repeated twice (after dis-solution of hydrous Ta205 in HF) toremove adsorbed potassium, and in thecollected filtrates K was determinedby an unspecified method. Solidphases were identified by opticalmicroscopy.REFERENCES:1. Winteler, H. Z. Angew. Chem.1902, 15, 33.				
2. Marignac, M. C. Ann. Chim. Phys. 1866, 9[4], 247.				

COMPONENTS: (1) Dipotassium heptafluorotantalate (2-); $K_2^{TaF}_7$ ; [16924-00-8] (2) Potassium fluoride; KF; [7789-23-3] (3) Hydrogen fluoride; HF; [7664-39-3] (4) Water; H_2O; [7732-18-5] VARIABLES: $T/K = 298$ $c_2/mass = 0-10$ $c_3/mass = 1-10$ EXPERIMENTAL VALUES: Solubility of K ₂ TaF ₇ in aqueous HF KF K ₂ TaF ₇ mass $s^a$ mass $s^a$ mass $s$ m 1 0 0 0.80	HF KF K ₂ TaF ₇ hass % ^a mass % ^a mass %
1 0 0.80 1 0.078 2 0.05 5 0.022 10 0.020	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: As in the authors' previous work (ref 1) isothermal method was used. Excess K2TaF7 was equilibrated by stirring with HF-KF solutions in a Ag vessel for 8 hours. Saturated solutions were analyzed for Ta con- tent gravimetrically as Ta ₂ O ₅ after precipitation with ammonia without removal of HF. Solid phases were not investigated.	<pre>Source AND PURITY OF MATERIALS: (1) K₂TaF₇ (Kahlbaum), purity not specified. (3) HF used was prepared from 40% HF obtained from the doubly distilled acid from a Pt apparatus (ref 1). (2) KF, source and purity not speci- fied. (2) KF, source and purity not speci- fied. ESTIMATED ERROR: Temp: precision ± 0.1 K. Solubility error is not specified. REFERENCES: 1. Savchenko, G. S.; Tananaev, I.V. Zh. Prikl. Khim. <u>1946</u>, 19, 1093.</pre>

Tantalum Halides and Oxyhalides

COMPONENTS: (1) Dipotassium heptafluorotanta- late(2-); $K_2TaF_7$ ; [16924-00-8] (2) (OC-6-21)-Dipotassium penta- fluorooxoniobate(2-); $K_2NbOF_5$ ; [1 (3) Hydrogen fluoride; HF; [7664-39-3] (4) Water; $H_2O$ ; [7732-18-5]	ORIGINAL MEASUREMENTS: Meerson, G. A.; Zverev, G. L.; Zubkova, F. M. 7523-77-2] <i>Tsvetnye Metally (Nonferrous Metals)</i> <u>1939</u> , No. 8, 97-101.
VARIABLES: T/K = 294 - 348 Composition	PREPARED BY: J. Hála
EXPERIMENTAL VALUES:	
The salting out of $K_2 TaF_7$ by $K_2 NbOF_7$ in 1 mass % HF aqueous solutions was reported at 21 and 60 °C in graphical form. See the Figure to the right. Also reported were the solubility ratios, $K_2 TaF_7/K_2 NbOF_5 \cdot H_2 O$ , as a function of temperature. Temperature Solubility ratio $t/°C$ $T/K$ $K_2 TaF_7/K_2 NbOF_5 \cdot H_2 O$	T-10-0-20 T-10-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
21         294         1:11.9           40         313         1:11.6           60         333         1:10.1           75         348         1:11	Nb ₂ 0 ₅ , gl ⁻¹
AUXILIA	RY INFORMATION
METHOD/APPARATUS/PROCEDURE: Isothermal salting-out of K2TaF7 from its saturated solutions by solid K2NbOF5.H2O was used. Known amounts of the latter salt was added to saturated solutions of K2TaF7 at the desired temperature in the pre- sence of 1 mass% HF in paraffine- coated beakers. The mixture was stirred for 40 minutes and then allowed to stand for 20 minutes. The K2TaF7 precipitated out of the solution was filtered, washed with alcohol, dried in a Pt dish, and weighed. ESTIMATED ERROR: Temp: precision ± 0.1 K. The solubility error is not	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>(1) K2TaF7 (source not specified) was repeatedly recrystallized from 1 mass% HF solution. The product contained 56.4% Ta₂O₅ (calculated 56.34% - compiler), 0.003% Fe, 0.04% Si, 0.01% Ti, and 0.02% Sn.</li> <li>(2) K2NbOF5.H2O (source not speci- fied) was repeatedly recrystal- lized from 1 mass% HF. The product contained 51.23% Nb₂O₅ (calculated 44.28% - compiler), 0.09% Fe, 0.01% Si, 0.13% TiO₂, 0.03% Sn, and 0.1-0.2% Ta₂O₅.</li> <li>(3) HF was purified from H₂SiF₆, which suppressed the solubility of K₂TaF7 and K₂NbOF5.H₂O, by treating the HF solution with</li> </ul>
specified. K ₂ NbOF ₅ ·H ₂ O; [19200-74-9]	solid K2TaF7 and K2NbOF5.H2O to allow for the precipitation of Si-Ta and Si-Nb heteropolyacids. (The authors did not mention the amount of salts used in this purification process, or their eventual concentration in the purified HF solution.)

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Rubidium heptafluorotantalate; Rb₂TaF₂; [76056-60-5]</pre>	Balke, C. W.
2 7 (2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1905</u> , 27, 1140-57.
2	
VARIABLES:	PREPARED BY:
<i>T/</i> K = 298	J. Hála
EXPERIMENTAL VALUES:	
The solubility of Rb ₂ TaF ₇ i	
reported to be approximately	
(parts) water. From the va	
calculated the solubility i	n water to be
$m_1/\text{mol kg}^{-1} = 0.052.$	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. Saturated solutions of the salt were obtained by allowing the crystals to remain in contact with the solution for several hours in a rubber beaker with occasional stirring. The clear liquid was decanted into a weighed Pt dish. The solution was evaporated with few drops of HF being added when the evaporation was nearly complete. The dish with the residue was dried and weighed.	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Trisodium octafluoro- tantalate(3-); Na₃TaF₈;</pre>	Balke, C. W.
[17456-13-2]	J. Am. Chem. Soc. <u>1905</u> , 27, 1140-57.
(2) Water; H ₂ O; [7732-18-5]	1140-57.
VARIABLES:	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	I
Two measurements of the solub	pility of $Na_3TaF_0$ in water at
25 °C were reported as 1 g of	
20.5 g (parts) of water. From	n the average value of l g salt
per 20.7 g water the compiler	r calculated the solubility of
$Na_3TaF_8$ in water to be $m_1/mc$	$pl kg^{-1} = 0.120.$
AUXILIAR	Y INFORMATION
	<b></b>
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Saturated	SOURCE AND PURITY OF MATERIALS: (1) The starting material was Ta ₂ O ₅
<pre>solutions of the salt were obtained by allowing the crystals to remain in contact with the solution for several hours in a rubber beaker with occa- sional stirring. The clear liquid was decanted into a weighed Pt dish. The solution was evaporated with few drops of HF being added when the evaporation was nearly complete. The dish with the residue was dried and weighed. ESTIMATED ERROR: The temperature error is not specified. Soly: precision ± 1 % (compiler).</pre>	which was obtained from the columbite of South Dakota. Crude

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Tantalum chloride; TaCl₄; [13569-72-7]</pre>	Bolshakov, K. A.; Safronov, V. V.; Kogan, L. M.; Shevtsova, Z. N.; Shadrova, L. G.
(2) 1,1,2,3,4,4-Hexachloro-1,3-	*Zh. Fiz. Khim. <u>1964</u> , 38, 1305-6.
butadiene; C ₄ Cl ₆ ; [87-68-3]	Russ. J. Phys. Chem. (Engl. Transl.) 1964, 38, 710-1.
VARIABLES:	PREPARED BY:
T/K = 298, 323	J. Hála
EXPERIMENTAL VALUES:	
Composition of sa	turated solutions.
Temperature	TaCl ₄
t/°C T/K	$10^{3}c_{1}/mol dm^{-3}$
25 298	3.13
50 323	54.62
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Isothermal method. Excess TaCl ₄ was introduced to the solvent in a dry	SOURCE AND PURITY OF MATERIALS: (continued) chlorination with Cl gas at 250-500°; m.p. 220°.
box. The mixture was equilibrated for 5-10 days in a thermostated ves- sel equipped with a hydraulic stopper to prevent both solvent evaporation and access of atmospheric moisture. Attainment of equilibrium was checked by analyzing the liquid phase for Ta in samples taken periodically over 15 days. Ta in the sample was deter- mined gravimetrically as Ta ₂ O ₅ either	(2) Hexachloro-1,3-butadiene (source not specified) was purified to obtain a product with $d_4^{20} =$ 1.6807 and $n_D^{20} =$ 1.5543.
after direct ignition of the samples of the saturated solutions or after extraction of Ta into concentrated HCl and subsequent precipitation of the hydrated oxide.	ESTIMATED ERROR: Temp: precision ± 0.1 K. Soly: precision ± 0.2-0.5 %.
SOURCE AND PURITY OF MATERIALS:	REFERENCES:
(1) TaCl ₄ was prepared by reduction of TaCl ₅ with Al powder (ref 1,2) Unreacted TaCl ₅ and AlCl ₃ formed were removed by distillation at	<ol> <li>Schäfer, H.; Bayer, L.; Lehmann, H</li> <li>Z. Anorg. Allgem. Chem. <u>1952</u>, 268, 268.</li> </ol>
210-220°. TaCl ₅ used was pre- pared from 99.99% Ta metal by	2. Ruff, O.; Thomas, F. Z. Anorg. Allgem. Chem. <u>1925</u> , 148, 1.

	and Oxynances 207	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Tantalum chloride; TaCl₅; [7721-01-9]</pre>	Fairbrother, F.; Nixon, J. F.; Prophet, H.	
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	J. Less-Common Met. <u>1965</u> , 9, 434-6.	
VARIABLES:	PREPARED BY:	
	J. Hála	
T/K = 292.8 - 332.4	J. nala	
EXPERIMENTAL VALUES: Composition of satu	irated solutions.	
Temperature Tanta	Lum chloride; TaCl ₅	
$t/^{\circ}C$ $T/K^{a}$ g/100 g s	solvent $m_1/\text{mol kg}^{-1a}$	
19.6292.80.429.9303.10.739.5312.71.149.5322.71.659.2332.42.5	09 0.0198 29 0.0315 56 0.0465	
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: The solubility measurements were carried out in a closed system by an isothermal method described earlier by the authors (ref 1). Previously dried pure solvent was pretreated 3-4 times with TaCl ₅ and distilled <i>in vacuo</i> into the solubility apparatus. The procedure removed residual moisture and other impurities which would otherwise react with TaCl ₅ . The method of tantalum analysis was not given.	<pre>SOURCE AND PURITY OF MATERIALS: (1) TaCl₅ was prepared by direct chlorination of Ta metal, and purified by fractional subli- mation in vacuo.</pre>	
	<pre>ESTIMATED ERROR: Temp: precision ± 0.1 K as in earlier work (ref 2). Solubility error is not specified. REFERENCES: 1. Fairbrother, F.; Scott, N.; Prophet, H. J. Chem. Soc. 1956, 1164.</pre>	
	<ol> <li>Cowley, A.; Fairbrother, F.; Scott, N. J. Chem. Soc. <u>1958</u>, 3133.</li> </ol>	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Tantalum chloride; TaCl₅;     [7721-01-9]</pre>	Fairbrother, F.; Nixon, J. F.; Prophet, H.
(2) Benzene; C ₆ H ₆ ; [71-43-2]	J. Less-Common Met. 1 <u>965</u> , 9, 434-6.
VARIABLES:	PREPARED BY:
T/K = 293.3 - 332.5	J. Hála
EXPERIMENTAL VALUES: Composition of sat	urated solutions.
Temperature Tantal	um chloride; TaCl ₅
t/°C T/K ^a g/100 g	solvent $m_1/mol kg^{-1a}$
20.1293.30.729.8303.01.139.7312.91.849.5322.72.759.3332.54.1	51 0.0321 19 0.0508 33 0.0763
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
	SOURCE AND PURITY OF MATERIALS: (1) TaCl ₅ was prepared by direct
METHOD/APPARATUS/PROCEDURE: The solubility measurements were carried out in a closed system by an isothermal method described earlier by the authors (ref 1). Previously dried pure solvent was pretreated 3-4 times with TaCl ₅ and distilled <i>in vacuo</i> into the solubility appa- ratus. The procedure removed residual moisture and other impuri- ties which would otherwise react with TaCl ₅ . The method of tantalum	SOURCE AND PURITY OF MATERIALS: (1) TaCl ₅ was prepared by direct chlorination of Ta metal, and purified by fractional subli-

 Cowley, A.; Fairbrother, F.; Scott, N. J. Chem. Soc. <u>1958</u>, 3133.

		s and Oxynandes 289
COMPONENTS :		ORIGINAL MEASUREMENTS:
(l) Tantalum chloride; TaC [7721-01-9]	1 ₅ ;	Fairbrother, F.; Nixon, J. F.; Prophet, H.
(2) Toluene; C ₇ H ₈ ; [108-8	8-3]	J. Less-Common Met. <u>1965</u> , 9, 434-6.
VARIABLES:		PREPARED BY:
T/K = 293.1 - 318.7		J. Hála
EXPERIMENTAL VALUES: Compositi	on of satur	rated solutions.
Temperature	Tantalum	n chloride; TaCl ₅
t/°C T/K ^a	g/100 g sc	plvent $m_1/\text{mol kg}^{-1^a}$
19.9 293.1	0.805	5 0.0225
29.3 302.5 39.8 313.0	1.248 1.873	
45.5 318.7	2.338	
^a Calculated b		
	AUXILIARI	INFORMATION
METHOD/APPARATUS/PROCEDURE: The solubility measurements were carried out in a closed system by an isothermal method described earlier by the authors (ref 1). Previously dried pure solvent was pretreated 3-4 times with TaCl ₅ and distilled <i>in vacuo</i> into the solubility apparatus. The procedure removed residual moisture and other impurities which would otherwise react with TaCl ₅ . The method of tantalum analysis was not given.		SOURCE AND PURITY OF MATERIALS: (1) TaCl ₅ was prepared by direct chlorination of Ta metal, and purified by fractional subli- mation in vacuo.
		<pre>ESTIMATED ERROR: Temp: precision ± 0.1 K as in earlier work (ref 2). Solubility error is not specified. REFERENCES: 1. Fairbrother, F.; Scott, N.; Prophet, H. J. Chem. Soc. 1956, 1164.</pre>
		<pre>2. Cowley, A.; Fairbrother, F.; Scott, N. J. Chem. Soc. 1958, 3133.</pre>

289

290	Tantalum Halides and Oxyhalides						
COMPONENTS:	ONENTS:			ORIGINA	L MEASUREMENTS:		
(l) Tantalu [7721-0	<pre>1) Tantalum chloride; TaCl₅; [7721-01-9]</pre>				orother, F.; Nixon, J. F.; cophet, H.		
(2) m-Xylen	(2) m-Xylene; C ₈ H ₁₀ ; [108-38-3]		J, Le 434-6	288-Common Met. <u>1965</u> , 9, 5.			
VARIABLES:				PREPARE	D BY:		
<i>T/</i> K =	293.8 -	332.9			J. Hála		
	Tempe: t/°C 20.6 29.5	rature 	g/100 g so 0.73 1.13	um chlc olvent	pride; TaCl ₅ $\frac{m_1/mol kg^{-1}a}{0.0205}$		
		312.7 322.9 332.9	1.66 2.56 3.56	4	0.0463 0.0716 0.0994		
	a Calcu	lated b	y compiler	•			

AUXILIARY	INFORMATION

------

METHOD/APPARATUS/PROCEDURE: The solubility measurements were carried out in a closed system by an isothermal method described earlier by the authors (ref 1). Previously dried pure solvent was pretreated 3-4 times with TaCl ₅ and distilled <i>in vacuo</i> into the solubility apparatus. The procedure removed residual moisture and other impurities which would otherwise react with TaCl ₅ . The method of tantalum analysis was not given.	<pre>SOURCE AND PURITY OF MATERIALS:  (1) TaCl₅ was prepared by direct     chlorination of Ta metal, and     purified by fractional subli-     mation in vacuo.</pre>
	ESTIMATED ERROR: Temp: precision ± 0.1 K as in earlier work (ref 2). Solubility error is not specified.
	REFERENCES :
	<pre>1. Fairbrother, F.; Scott, N.; Prophet, H. J. Chem. Soc. 1956, 1164.</pre>
	2. Cowley, A.; Fairbrother, F.; Scott, N. J. Chem. Soc. <u>1958</u> , 3133.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Tantalum chloride; TaCl₅; [7721-01-9]</pre>	Fairbrother, F.; Nixon, J. F.; Prophet, H.
(2) Mesitylene; C ₉ H ₁₂ ; [108-67-8]	J. Less-Common Met. <u>1965</u> , 9, 434-6.
VARIABLES:	PREPARED BY:
T/K = 292.8 - 332.7	J. Hála
EXPERIMENTAL VALUES:	
Composition of satu	urated solutions.
Temperature Tanta	lum chloride; TaCl ₅
t/°C T/K ^a g/100 g s	solvent m ₁ /mol kg ^{-1a}
19.6 292.8 0.7 29.7 302.9 1.1	
39.4 312.6 1.6	
50.7 323.9 2.4	
59.5 332.7 3.4	49 0.0963
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility measurements were carried out in a closed system by an isothermal method described earlier by the authors (ref 1). Previously dried pure solvent was pretreated	<ul> <li>(1) TaCl₅ was prepared by direct chlorination of Ta metal, and purified by fractional subli- mation <i>in vacuo</i>.</li> </ul>
3-4 times with TaCl ₅ and distilled in vacuo into the solubility apparatus. The procedure removed residual moisture and other impurities which would otherwise react with TaCl ₅ . The method of	
<i>in vacuo</i> into the solubility apparatus. The procedure removed residual moisture and other impurities which would otherwise	ESTIMATED ERROR: Temp: precision ± 0.1 K as in earlier work (ref 2). Solubility error is not specified
<i>in vacuo</i> into the solubility apparatus. The procedure removed residual moisture and other impurities which would otherwise react with TaCl ₅ . The method of	Temp: precision ± 0.1 K as in earlier work (ref 2).

292	Tantalur	n Halides an	d Oxyhalic	les	
COMPONENTS:		ORI	GINAL MEAS	UREMENTS:	
<pre>(1) Tantalum chloride; TaCl₅;   [7721-01-9]</pre>			owley, A Scott,	.; Fairbrother, F.; N.	
(2) l,l'-Oxybisethane (diethyl ether);C ₄ H ₁₀ O; [60-29-7]		yl .	. Chem.	<i>soc</i> . <u>1958</u> , 3133-7.	
VARIABLES: T/K = 267.4 - 293.7			PARED BY:	J. Hála	
EXPERIMENTAL VALUES	3:				
	Composition c				
-	Temperature	Tanta	um Chlor	ide; TaCl ₅	
	t/°C T/K	g/100 g s	olvent	$m_1/mol kg^{-1a}$	
	-5.8 267.4 1.8 275.0 7.0 280.2 16.3 289.5 18.5 291.7 20.5 293.7	14.7 15.7 18.3	8 8 9 8	0.370 0.413 0.441 0.513 0.588 0.743	
	Α	UXILIARY INF	ORMATION		
METHOD/APPARATUS/PROCEDURE: Isothermal method. The Pyrex glass apparatus (ref 1) consisted of the solvent pretreatment line, the satu- ration, and the sampling vessels. In the pretreatment section, the solute was repeatedly pretreated by succes- sive sublimations of the halide and condensation at -195°C of the solvent onto it. Both components were trans- ferred into the saturation vessel which was connected to the sampling compartment through a sintered glass disc. The vessel was rocked for 24 h, the saturated solution filtered into the sampling ampoule which was then sealed off, weighed, and broken under water to hydrolyze the halide. After standing for 4-5 h, the solu- tion was heated to 90°C, cooled and filtered, and the oxide was ignited and weighed.		glass (1 the satu- ls. In solute ucces- e and solvent trans- sel pling glass or iltered h was	) TaCl5 HCl ga 350-40 fied b tions limed ampoul ) Diethy distil of H2S least tionat	lether (anaesthetic) wa led from 1/5 of its vol 04, kept over P2O5 for a week, decanted, frac- ed under dry N gas, and over Na wire.	t uri- lima- ub- s ume at

COMPONENTS:	ORIGINAL MEASUREMENTS: Fischer, H. W.; Schwabe, K.
<pre>(1) Tantalum chloride; TaCl₅; [7721-01-9]</pre>	Fischer, h. w.; Schwabe, K.
	Korrosion (Dresden) 1980, 11,
(2) Propylene carbonate (4-methyl-1,	105-15.
$3-\text{dioxalan}-2-\text{one}$ ; $C_4H_6O_3$ ;	
[108-32-7]	
VARIABLES :	PREPARED BY:
T/K = 298	J. Hála
EXPERIMENTAL VALUES:	
The approximate solubilit	v of TaCl_ at $t/^{\circ}C = 25$
	•
is reported to be 26 g Ta	Cl ₅ /100 g solvent.
The compiler galaulates -	$(mol ka^{-1} - 0.72)$
The compiler calculates m	$1^{1/101}$ Kg = 0.73.
······································	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method. Although not	(1) TaCl _r (Merck) contained
stated explicitly, the solubility	< 0.003% Nb and $< 0.015$ % of
was apparently determined in the	other metals, and was used
apparatus described for electrolysis	without further purification.
experiments. The apparatus was con- nected to a vacuum line, and extreme	(2) Propylene carbonate (Ferak, West
care was taken to avoid access of air	
moisture. No details were given	distillation.
about the time of equilibration or	E Contraction of the second
the analysis of the saturated	
solutions.	
	ESTIMATED ERROR:
	Neither temperature or solubility
	error were specified.
	REFERENCES:
	1

COMPONENTS: (1) Tantalum ch1			
(1) Tantalum chl		ORIGINAL MEASUREMENTS:	
<pre>(1) Tantalum chloride; TaCl₅; [7721-01-9]</pre>		Namoradze, Z. G.;	Zvyagintsev, O. E.
(2) Tetrachlorom [56-23-5]	ethane; CCl ₄ ;	Zh. Prikl. Khim.	<u>1939</u> , <i>12</i> , 603-8.
VARIABLES:		PREPARED BY:	
T/K =	293-311	J. Hál	a
EXPERIMENTAL VALUES:			
Composition	of the saturated solu	tions.	
Temperature	Ta205 ^a	TaCl ₅	
$\frac{t/^{\circ}C}{T/K}$	g/10 ml satd sln	g/100 ml satd sln	$c_1/\text{mol dm}^{-3b}$
20 293 30 303 38 311	0.0516 0.0770 0.0960	0.8365 1.2494 1.5563	0.02335 0.03489 0.04345
	AUXILIARY	INFORMATION	
METHOD /APPARATUS / PRO		INFORMATION	ATERIALS :

		Tantalu	m Halides	s and Oxyhal	ides	2
COMPONENTS :	DNENTS:			ORIGINAL MEA	ASUREMENTS :	
<pre>(1) Tantalum chloride; TaCl₅;     [7721-01-9]</pre>			Fairbrot Prophe	her, F.; Nixon, J. F.; t, H.		
<pre>(2) Tetrachloromethane; CCl₄; [56-23-5]</pre>			J. Less-Common Met. <u>1965</u> , 9, 434-6.			
VARIABLES:				PREPARED BY	•	
T/K = 291.3 - 322.2			J. Hála			
EXPERIMENTAL VALU	UES:					
	Compos	ition of	saturat	ed solutio	ns.	
	Tempe	rature	Tant	alum chlor	ide; TaCl ₅	
	t/°C	T/K ^a		g solvent	$m_1/\text{mol kg}^{-1a}$	
	18.1	294.3	0	.555	0.0155	
	28.6	301.8	0	.702	0.0196	
	37.9 49.0	311.1 322.2		.061 .360	0.0296 0.0380	
	<u></u>					
	1000000000			INFORMATION		
METHOD/APPARATUS/PROCEDURE: The solubility measurements were carried out in a closed system by an isothermal method described earlier by the authors (ref 1). Previously dried pure solvent was pretreated 3- 4 times with TaCl ₅ and distilled <i>in</i> <i>vacuo</i> into the solubility apparatus. The procedure removed residual mois- ture and other impurities which would otherwise react with TaCl ₅ . The method of tantalum analysis was		(l) TaCl chlc puri mati	PURITY OF MATERIALS: .5 was prepared by direct rination of Ta metal, an .fied by fractional subli .on <i>in vacuo</i> .	d		
not given.						
				ESTIMATED E	RROR:	
				Temp: p	RROR: precision ± 0.1 K as in earlier work (ref 2). ity error is not specifi	.ed
				Temp: p Solubil REFERENCES: 1.Fairbro	precision ± 0.1 K as in earlier work (ref 2). .ity error is not specifi	
				Temp: p Solubil REFERENCES: 1.Fairbro J. Chen 2.Cowley,	precision ± 0.1 K as in earlier work (ref 2). ity error is not specifi other,F.;Scott,N.;Prophet	:,Н

ł

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Tantalum chloride; TaCl₅; [7721-01-9]</pre>	Bolshakov, K. A.; Safronov, V. V.; Kogan, L. M.; Shevtsova, Z. N.; Shadrova, L. G.
(2) 1,1,2,3,4,4-Hexachloro-1,3- butadiene; C ₄ Cl ₆ ; [87-68-3]	*Zh. Fiz. Khim. <u>1964</u> , 38, 1305-6. Russ. J. Phys. Chem. (Engl. Transl.) <u>1964</u> , 38, 710-1.
VARIABLES:	PREPARED BY:
T/K = 298,323	J. Hála

EXPERIMENTAL VALUES:

## Composition of saturated solutions.

Temperature		TaC15
t/°C	T/K	$10^{3}c_{1}/mol dm^{-3}$
25	298	48.7
50	323	117.09

	INFORMATION
METHOD/APPARATUS/PROCEDURE: Isothermal method. Excess TaCl ₅ was introduced to the solvent in a dry box. The mixture was equilibrated for 5-10 days in a thermostated ves- sel equipped with a hydraulic stopper to prevent both solvent evaporation and access of atmospheric moisture. Attainment of equilibrium was checked by analyzing the liquid phase for Ta in samples taken periodically over 15 days. Ta in the sample was deter- mined gravimetrically as Ta ₂ O ₅ either after direct ignition of the samples	
extraction of Ta into concentrated HCl and subsequent precipitation of the hydrated oxide.	Temp: precision ± 0.1 K. Soly: precision ± 0.2-0.5 %.
SOURCE AND PURITY OF MATERIALS: (1) TaCl ₅ was prepared from 99.99% purity Ta metal by chlorination with Cl gas at 250-500°. The product m. at 220° and was stored in a dry box.	REFERENCES :

Tantalum Halides	and Oxyhalides 297
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Tantalum chloride; TaCl₅; [7721-01-9]</pre>	Namoradze, Z. G.; Zvyagintsev, O. E.
(2) Carbon disulphide; CS ₂ ; [75-15-0]	Zh. Prikl. Khim. <u>1939</u> , 12, 603-8.
VARIABLES:	PREPARED BY:
T/K = 273 - 298	J. Hála
EXPERIMENTAL VALUES: Composition of the sate	urated solutions.
Temperature Ta ₂ 05 ^a	TaCl ₅
$t/^{\circ}C$ $T/K$ g/10 ml satd sln g/10	
02730.0793142870.1628202930.1992252980.2308	1.28500.035872.63930.073683.11750.087033.74360.1045
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method was used. Freshly distilled TaCl ₅ was used for all mea- surements. The vessel with collected TaCl ₅ was briefly disconnected from the chlorination app., stoppered, and placed in a thermostat. A portion of the dry solvent was added and the mixture was stirred for 12 hours at the desired temperature. The stirrer was equipped with a Hg seal. After equilibration the mixture was allowed to stand for several hours, and a 10 ml sample was withdrawn with a pipette with a cotton filter. On evaporating the solvent TaCl ₅ hydrolyzed, and Ta content in the sample was determined gravimetrically as Ta ₂ O ₅ .	<pre>The product was twice distilled and collected in the vessel for solubility measurement; m.p. 211.3°. Analysis: found 48.67% Cl, 51.25% Ta; calculated 49.5% Cl, 50.5% Ta. The Ta₂O₅ used was separated from Nb₂O₅ in the mix- ture of Nb and Ta oxides (obtained from ilmenorutile) according to Marignac (ref 1) and Memberg and Winzer (ref 2). (2) CS₂ was purified and dried by standard methods.</pre>
	REFERENCES: 1. Marignac, M. C. Ann. Chim. Phys. <u>1865</u> , 8, 49.

2. Memberg, E.; Winzer, K. Z. Angew. Chem. <u>1913</u>, 26, 157.

.

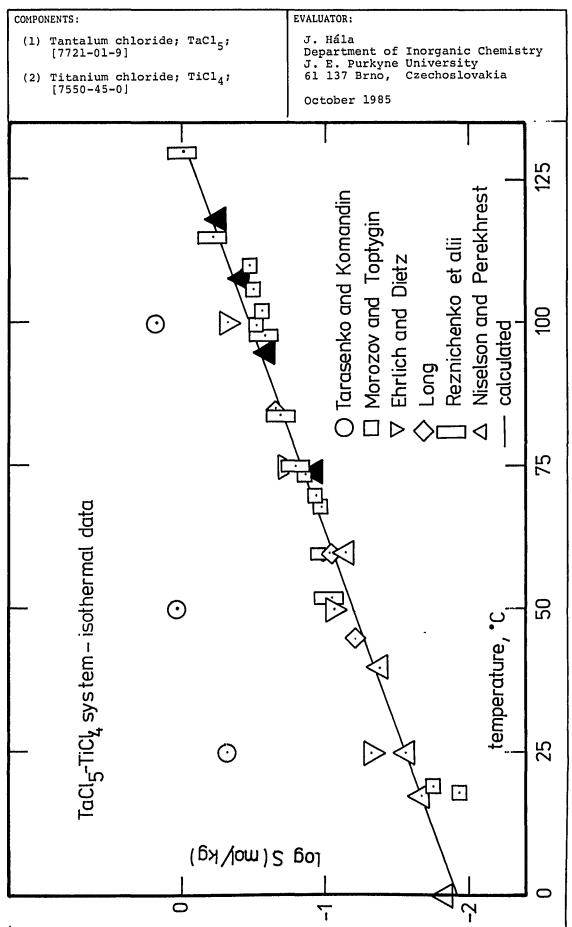
COMPONENTS :	EVALUATOR:
<pre>(1) Tantalum chloride; TaCl₅; [7721-01-9]</pre>	J. Hála Department of Inorganic Chemistry J. E. Purkyne University
<pre>(2) Titanium chloride; TiCl₄; [7550-45-0]</pre>	61 137 Brno, Czechoslovakia October 1985

CRITICAL EVALUATION:

An evaluation of the solubility of  ${\rm TaCl}_5$  in  ${\rm TiCl}_4$  between 273 and 403 K.

Six sets of data are available for the temperature dependence of the solubility of  $TaCl_5$  in  $TiCl_4$  (ref 1-6). In all of the papers the solubilities were determined by an isothermal method and by analysis of the saturated solutions. In two papers (ref 2, 3) a polythermal method was also used in the region of higher solubilities. The solubility values obtained by the isothermal method are compared in Figure 1. Of these, the data of Tarasenkov and Komandin are much higher than the data of the other authors. The authors (ref 1) themselves state the low precision of their data, and these data can be rejected. [The poor quality of their data can be seen in their NbCl₅/TaCl₅ solubility ratio in TiCl₄ which indicates a much larger difference in solubility than expected from the properties of Nb and Ta.]

The remaining five data sets show good agreement, especially those of (ref 4-6). The measurements in these three documents do not extend below 25  $^{\circ}$ C, and they cannot be compared with the data of (ref 2 and 3) which appear to be slightly lower at the higher temperatures. Because of the different temperature ranges studied in these papers it is not possible to give a preference to any of these data. All of the data from (ref 2-6) were treated by a linear regression to obtain the equation


 $\log (m_1/mol kg^{-1}) = -1.919 + 0.014285 (t/^{0}C)$ for the 0 to 130 [°]C temperature interval.

The two data sets obtained by the polythermal method (ref 2 and 3) differ considerably. The values of Niselson and Perekhrest (ref 3) are lower than those of Morozov and Toptygin (ref 2) at a given temperature by 5-10 mass% TaCl₅. The reason may be the strong tendency to form super saturated solutions in the system (ref 3) which makes it difficult to determine the liquidus temperature from cooling curves. The Niselson and Perekherst polythermal values agree well with the isothermal values of other authors (black triangles in Fig 1), and their data should be given preference.

**REFERENCES:** 

1.	Tarasenkov, P. N.; Komandin, A. V.
	Zh. Obsch. Khim. 1940, 10, 1319.
2.	Morozov, I. S.; Toptygin, D. Ya.
	Zh. Neorg. Khim. 1957, 2, 1915.
з.	Niselson, L. A.; Perekhrest, G. L.
	Zh. Neorg. Khim. 1958, 3, 2150.
4.	Ehrlich, P.; Dietz, G.
	Z. Anorg. Allg. Chem. 1960, 305, 158.
5.	Long, A. M.
	Australian J. Chem. <u>1969</u> , 22, 853.
6.	Reznichenko, V. A.; Moinov, S. G.; Egorov, S. I.; Laktyushin, V.S.
	Izv. Akad. Nauk. SSSR, Metally 1969, No. 3, 56.

Tantalum Halides and Oxyhalides



	300			
$T/K = 298 - 415$ $Toposition of saturated solutions.$ $Temperature TaCl_5$ $t/°C T/K mass % m_4/mol kg^{-14}$ $25 298 14.3 0.466$ $50 323 27.1 1.04$ $100 373 33.9 1.43$ $141.8b 415 39.3 1.81$ $a calculated by compiler$ $b B.p. of TiCl_4 saturated with TaCl_5$ $MUXILIARY INFORMATION$ $METHOD/APPARATUS/PROCEDURE:$ Both isothermal and polythermal methods were used. In the isothermal method after hydrolysis of excess TaCl_5 and the mixture was equilibrated in a tube closed with Hig seal and equipped with a stirrer. TaCl_5 content in the saturated solution of Ta metal. The product was stored in sealed ampoules. $(2) TiCl_4 was distilled onto excess TaCl_5 and the isothermal method isothermal method after hydrolysis of the same and removal of the hydrolytic products. In the polythermal metal. The product boiled at 136°/743 mmHg.$ $(2) TiCl_4, tech. grade, was purified by fractional distillation after hydrolysis of the same rade. The product boiled at 136°/743 mmHg.$ $(2) TiCl_4, tech. Grade, was purified by fractional distillation after hydrolysis of the same rade. The product boiled at 136°/743 mmHg.$ $(3) TiCl_4 the temperature of the last crystals and the temperature of the disappearance of the last crystals and the temperature of the isothermal method. The product boiled at 136°/743 mmHg.$ $Temp: precision ± 0.1 K for the isothermal method. The product boiled at 136°/743 mmHg.$	<ul> <li>(1) Tantalum chlorid [7721-01-9]</li> <li>(2) Titanium chlorid</li> </ul>	5	Tarasenkov, P. N.; Komandin, A. V. Zh. Obshch. Khim. <u>1940</u> , 10,	
$\frac{\text{Composition of saturated solutions.}}{\text{Temperature}} = \frac{\text{TaCl}_5}{\text{t}^{9}\text{C}} \frac{t}{25} \frac{298}{298} \frac{14.3}{0.466} \\ 50 323 27.1 1.04 \\ 100 373 33.9 1.43 \\ 141.8^{6} 415 39.3 1.81 \\ \hline \\ $		5		
TemperatureTaCl5 $t/^{0}C$ T/Kmass % $m_{4}/mol kg^{-1}a$ 2529814.30.4665032327.11.0410037333.91.43141.8 ^b 41539.31.81aCalculated by compilerbbB.p. of TiCl4 saturated with TaCl5SOURCE AND PURITY OF MATERIALS:Colspan="2">SOURCE AND PURITY OF MATERIALS:AUXILIARY INFORMATIONAUXILIARY INFORMATION <td colspa<="" td=""><td>EXPERIMENTAL VALUES:</td><td></td><td></td></td>	<td>EXPERIMENTAL VALUES:</td> <td></td> <td></td>	EXPERIMENTAL VALUES:		
25       298       14.3       0.466         50       323       27.1       1.04         100       373       33.9       1.43         141.8 ^b 415       39.3       1.61         a       Calculated by compiler         b       B.p. of TiCl ₄ saturated with TaCl ₅ METHOD/APPARATUS/PROCEDURE:       Boundary of the saturated with TaCl ₅ Both isothermal and polythermal methods were used. In the isothermal method stitled onto excess TaCl ₅ and the mixture was equilibrated in a tube closed with Hg seal and equipped with a stirrer. TaCl ₅ content in the saturated solution was determined from the total Cl ⁻ content as determined by Volhard's method after hydrolysis of the sample and removal of the hydrolytic products. In the polythermal method known amounts of both chlo-rides were slowly heated in a closed vessel and the temperature of the last crystall sation was read. The system was then cooled slowly and the temperature of crystallization was read. The protect was repeated several times and the average temperature was taken. It is not clear from the document which of the method was used to       SUMMENDIAL         Estimate in a closed is a qualitative.       Estimate is a qualitative.	_			
50       323       27.1       1.04         100       373       33.9       1.43         141.8 ^b 415       39.3       1.81         a       Calculated by compiler         b       B.p. of TiCl ₄ saturated with TaCl ₅ METHOD/APPARATUS/PROCEDURE:       Both isothermal and polythermal methods were used. In the isothermal method swere used. In the isothermal method ricl4 was distilled onto excess TaCl ₅ and the mixture was equilibrated in a tube closed with Hg seal and equipped with a stirrer. TaCl ₅ content in the saturated solution of the sample and removal of the hydrolysis of the sample and removal of the hydrolysis of the sample and removal of the hydrolysis of laser slowly heated in a closed vessel and the temperature of crystallization was read. The pyothermal method known amounts of both chlocridis was read. The system was then cooled the average temperature of crystallization was read. The system vas taken. It is not clear from the document which of the methods was used to       SUINCE AND PURITY OF MATERIALS;         100       100       101       TaCl ₅ was prepared by chlorination of the sample and removal of the hydrolysis of the sample and removal of the hydrolysis of bisothermal method known amounts of both chlocrides was read. The product the data and suggest the data be taken as qualitative.         StillAttD ERKOR:       Temp: precision ± 0.1 K for the isothermal method.         The authors state low precision of taken as qualitative.       The authors state low precision of taken as qualitative.		t/°C T/K mass		
100       373       33.9       1.43         141.8 ^b 415       39.3       1.61         a       Calculated by compiler         b       B.p. of TiCl ₄ saturated with TaCl ₅ b       B.p. of TiCl ₄ saturated with TaCl ₅ AUXILIARY INFORMATION         AUXILIARY INFORMATION         MUXILIARY INFORMATION <t< td=""><td></td><td></td><td></td></t<>				
<ul> <li>^a Calculated by compiler</li> <li>^b B.p. of TiCl₄ saturated with TaCl₅</li> <li>^b B.p. of TiCl₄ saturated with TaCl₅</li> <li>^b B.p. of TiCl₄ saturated with TaCl₅</li> <li>^c METHOD/APPARATUS/PROCEDURE:</li> <li>Both isothermal and polythermal methods were used. In the isothermal method TiCl₄ was distilled onto excess TaCl₅ and the mixture was equilibrated in a tube closed with Hg seal and equipped with a stirrer. TaCl₅ content in the saturated solution was determined from the total Cl⁻ content in the saturated solution was determined from the total Cl⁻ content as determined by Volhard's method after hydrolysis of the sample and removal of the hydrolytic products. In the polythermal method known amounts of both chlorides were slowly heated in a closed vessel and the temperature of the last crystals was read. The system was then cooled slowly and the temperature of the last crystals was read. The system was then cooled slowly and the temperature of crystallization was read. The procedure was taken. It is not clear from the document which of the methods was used to</li> </ul>				
<ul> <li>^b B.p. of TiCl₄ saturated with TaCl₅</li> <li>AUXILIARY INFORMATION</li> <li>METHOD/APPARATUS/PROCEDURE:</li> <li>Both isothermal and polythermal methods were used. In the isothermal method swere used. In the isothermal method stilled onto excess TaCl₅ and the mixture was equilibrated in a tube closed with Hg seal and equipped with a stirrer. TaCl₅ content in the saturated solution was determined from the total Cl⁻ content as determined by Volhard's method after hydrolysis of the sample and removal of the hydrolytic products. In the polythermal method known amounts of both chlorrides were slowly heated in a closed vessel and the temperature of the disappearance of the last crystals was read. The product of the sample and the temperature of crystallization was read. The pro- cedure was repeated several times and the average temperature was taken. It is not clear from the document which of the methods was used to</li> </ul>	_	141.8 ^b 415 39.	3 1.81	
<ul> <li>METHOD/APPARATUS/PROCEDURE:</li> <li>Both isothermal and polythermal methods were used. In the isothermal method TiCl4 was distilled onto excess TaCl5 and the mixture was equilibrated in a tube closed with Hg seal and equipped with a stirrer. TaCl5 content in the saturated solu- tion was determined from the total Cl⁻ content as determined by Volhard's method after hydrolysis of the sample and removal of the hydro- lytic products. In the polythermal method known amounts of both chlo- rides were slowly heated in a closed vessel and the temperature of the sizepearance of the last crystals was read. The system was then cooled slowly and the temperature of crystallization was read. The pro- cedure was repeated several times and the average temperature was taken. It is not clear from the document which of the methods was used to</li> <li>SOURCE AND PURITY OF MATERIALS: (1) TaCl5 was prepared by chlorina- tion of Ta metal. The product was stored in sealed ampoules. (2) TiCl4, tech'. grade, was purified by fractional distillation after preliminary treatment with Hg metal. The product boiled at 136°/743 mmHg.</li> <li>ESTIMATED ERROR: Temp: precision ± 0.1 K for the isothermal method.</li> <li>The authors state low precision of the data and suggest the data be taken as qualitative.</li> </ul>				
<ul> <li>Both isothermal and polythermal methods were used. In the isothermal method TiCl4 was distilled onto excess TaCl5 and the mixture was equilibrated in a tube closed with Hg seal and equipped with a stirrer.</li> <li>TaCl5 content in the saturated solution was determined from the total Cl⁻ content as determined by Volhard's method after hydrolysis of the sample and removal of the hydrolytic products. In the polythermal method known amounts of both chlorides were slowly heated in a closed vessel and the temperature of the last crystals was read. The system was then cooled slowly and the temperature of crystallization was read. The procedure was repeated several times and the average temperature was taken. It is not clear from the document which of the methods was used to</li> </ul>		AUXILIARY	INFORMATION	
- 1	Both isothermal and methods were used. method TiCl4 was di excess TaCl5 and the equilibrated in a tr seal and equipped w. TaCl5 content in the tion was determined Cl ⁻ content as dete: Volhard's method af- the sample and remove lytic products. In method known amounts rides were slowly he vessel and the temper disappearance of the was read. The syste slowly and the temper crystallization was cedure was repeated the average temperar It is not clear from which of the methods	polythermal In the isothermal stilled onto e mixture was ube closed with Hg ith a stirrer. e saturated solu- from the total rmined by ter hydrolysis of val of the hydro- the polythermal s of both chlo- eated in a closed erature of the e last crystals em was then cooled erature of read. The pro- several times and ture was taken. m the document s was used to	<ul> <li>(1) TaCl₅ was prepared by chlorination of Ta metal. The product was stored in sealed ampoules.</li> <li>(2) TiCl₄, tech'. grade, was purified by fractional distillation after preliminary treatment with Hg metal. The product boiled at 136°/743 mmHg.</li> <li>ESTIMATED ERROR: Temp: precision ± 0.1 K for the isothermal method.</li> <li>The authors state low precision of the data and suggest the data be taken as qualitative.</li> </ul>	

COMPONENTS:		ORIGINAL	MEASUREMENTS:
			r, I. S.; Toptygin, D. Ya.
(2) mitopium chlorido, miCl.		Zh. Neo	rg Khim. <u>1957</u> , 2, 1915-21.
			g. Chem. (USSR)(Engl.Transl.) (8), 322-33.
VARIABLES:	·····	PREPARED	BY:
T/K = 291 - 470	0		J. Hála
EXPERIMENTAL VALUES: -	······································	L	
	Temperature		TaCl ₅
	<i>t/°C T/K</i>	mass%	$\frac{m_1/\text{mol kg}^{-1}a}{1}$
	Isothermal method		,
1	18	0.40	0.0112
	19 68	0.6 3.6	0.0169 0.104
1	70	3.9	0.113
	74	4.8	0.141
	100	9.6	0.296
	102 106	8.8 10.0	0.269 0.310
	110	10.0	0.334
	Polythermal method 65	7.5	
	88	15.0	
	108 129	21.5 34.8	
	142	44.1	
	145	48.8	
	156	60.2	
	164 180	64.2 73.2	
	192	/3.2	
	197	88.5	
a	Calculated by compi		01
	AUXILIARY	INFORMATI	
METHOD/APPARATUS/PROCED			ND PURITY OF MATERIALS:
of TiCl ₄ and TaCl ₅	al method mixtures were distilled	(1) TaC tio	15 was prepared by chlorina- on of Ta metal with Cl ₂ gas.
into a test-tube wi	ith a side arm.		2
The test-tube was s	_ ·	(2) Com	mercially available TiCl ₄
at the desired temp 20-40 h, and a part			urce not specified) was tilled twice. The fraction
	d into the side arm.		ling at 136°C at 760 mmHg
The latter was ther	sealed off,		used.
cooled, and weighed			
analysis, most of t			
removed by distillation in the presence of NaCl. The final separa-			
tion of Ta from the remaining Ti was		DODTIO	D. EDDOD.
achieved by means of phenylarsonic		ESTIMATE	D ERKOR:
acid. In the polythermal method,			
mixtures of TiCl ₄ a prepared by weighin			
cooling curves were			
		REFERENC	ES:
	a sets do not		
	cause the systems	1	
solutions.	n supersaturated		
j solucions.		1	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Tantalum chloride; TaCl₅; [7721-01-9]</pre>	Niselson, L. A.; Perekhrest, G. L.
	2h. Neorg. Khim. <u>1958</u> , 3, 2150-5.
(2) Titanium chloride; TiCl ₄ ; [7550-45-0]	J. Inorg. Chem. (ISSR) (Engl. Transl.) 1958, 3(9), 215-22.
VARIABLES:	PREPARED BY:
T/K = 249.0 - 489.7	J. Hala
EXPERIMENTAL VALUES: Composition of sa	turated solutions.
Liquidus Tant Temperature	alum chloride; TaCl ₅
t/C T/K ^d mass %	$\frac{\text{mol } \$}{\frac{m_1}{\text{mol } \text{kg}^{-1}}}$
$-24.0^{a}$ 249.2 0	0 0
$\begin{array}{cccc} -24.2^{b} & 249.0 & 0.266 \\ 0 & 293.2 & 0.50 \end{array}$	
17.5 290.7 0.75	0.398 0.0211
25 298.2 0.93 40 313.2 1.41	0.495 0.0262 0.75 0.0399
60 333.2 2.50 74.0 347.2 4.13	1.34 0.0716 2.23 0.120
94.8 368.0 8.02	4.47 0.243
108.0 381.2 11.6 118.0 391.2 16.3	6.52 0.366 9.30 0.544
148.5 421.7 33.4	22.0
182.2 455.4 64.4 204.5 477.7 87.3	48.8 78.6
216.5° 489.7 100.0	100.0
a _{Taken} from ref (1) b _r	
^b Eutectic temperature ca according to ref (2)	liculated by authors
C _{Taken} from ref (3)	
^d Calculated by compiler.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
At higher TaCl ₅ concentrations (>4.13 mass%) the liquidus curve was ob-	Source of TaCl ₅ and TiCl ₄ not speci- fied. Both halides were purified
tained by visual polythermal method.	by rectification and stored in sealed
TaCl ₅ and TiCl ₄ were weighed into a glass tube previously dried <i>in vacuo</i>	ampoules.
at 350-400°. The tube was sealed,	
heated in a furnace to melt the mix- ture, and then allowed to cool slowly	,
in a thermostated glycerine bath	
under constant rotation at 60 rpm. The liquidus temperature was taken as	
the average of temperatures of	
appearance and disappearance of crystals in the melt recorded at	ESTIMATED ERROR:
successive cooling and heating of the	
system. At lower TaCl ₅ concentra- tions, isothermal method was used.	
Ampoules containing TaCl ₅ and TiCl ₄ were equilibrated for 30 h at 40 and	REFERENCES :
$60^{\circ}$ , and for 60 h at 0 and 17.5°. A	1. Clabaugh, W. S.; Leslie, R. T.;
sample of the sautrated solution was hydrolyzed, the precipitate ignited	Gilchrist, R. J. <i>Res. Nat. Bur.</i> <i>Stand</i> <u>1955</u> , <i>55</i> , 261.
to oxides, and the Ta concentration	2. Kordes, E. Z. Anorg. Chem.
was determined spectrographically.	1927, 167, 97. 3. Schafer, H.; Pietruck, C. Z. Anorg.
	Allgem. Chem. <u>1951</u> , 267, 174.

Tantalum Halides	and Oxyhalides 303
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Tantalum chloride; TaCl ₅ ;	Ehrlich, P.; Dietz, G.
<pre>[7721-01-9] (2) Titanium chloride; TiCl₄; [7550-45-0]</pre>	Z. Anorg. Allg. Chem. <u>1960</u> , 305, 158-68.
VARIABLES:	PREPARED BY:
T/K = 298 - 373	J. Hála
EXPERIMENTAL VALUES:	
Composition of Saturate	d Solutions
Temperature Ta	c1 ₅
t/C T/K mass % m	$\frac{1}{2}$ /mol kg ^{-1a}
25 298 1.6	0.0454
50 323 2.9	0.0834
75 348 5.8	0.172
100 373 14.0	0.454
••••••••••••••••••••••••••••••••••••••	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. An all-glass apparatus was used in which the unit for distilling the solvent, equipment for solubility determination, and sampling and hydrolyzing the saturated solutions were coupled together. Transfer of liquids in the system was carried out by means of nitrogen gas pressure. Samples for analysis were taken from the dissolution vessel through an immersed tube thermostated to a temperature higher by 2° than that of the dissolution vessel. The samples were hydrolyzed in diluted acid and Ta was separated from Ti by repeated precipitation with N-benzoyl-N-phenylhydroxylamine (ref 1.).	by refluxing it with 1.5 g CuSO4·5H ₂ O and 10 g charcoal per 300 ml TiCl ₄ for 2 h. A colorless product was obtained, b. 136°, electric conductivity < 10 ⁻⁹ cm ⁻¹ . ESTIMATED ERROR: Temp: precision ± 0.2 K Solubility error not specified. REFERENCES: 1. Moshier, R. W.; Schwarberg, J. E.
	<ul> <li>Anal. Chem. <u>1957</u>, 29, 947.</li> <li>2. Brauer, G. Handbuch der Preparative Anorganische Chemie <u>1954</u>, F. Enke-Verlag, Stuttgart.</li> </ul>

303

304	Tantalum H	lides and Oxyhalides
<pre>COMPONENTS: (1) Tantalum chloride; [7721-01-9] (2) Titanium chloride; [7550-45-0]</pre>	5	ORIGINAL MEASUREMENTS: Long, A. M. Austral. J. Chem. <u>1969</u> , 22, 853-4.
VARIABLES: T/K = 318 - 358		PREPARED BY: J. Hála
EXPERIMENTAL VALUES:	Composition Temperatur	of Saturated Solution e TaCl ₅
	t/°C T/k 45 318 60 333 85 348 ³ Calculated	$\frac{\text{mass } \$}{2.1} \frac{m_1/\text{mol kg}^{-1}a}{0.0599}$ 3.1 0.0893
METHOD/APPARATUS/PROCEDURE: The saturated solutions in a sealed, nitrogen-f (ref 1), for 21-90 hour equilibration a sample tered solution was coll detachable ampoule. Di sampling were carried of stated waterbath. Each the sample was broken u HNO3 in a sealed bottle oxides of Ta and Ti wer by ammonia. After filt ignition at 800° the mi were analyzed by x-ray	s were prepa filled appar s. After of the fil- ected in a ssolving ar but in a the ampoule wi ander 3 mol a, and hydro c, precipita tration and xed oxides	atus grade, was used as obtained. (2) TiCl ₄ was purified by treatment with Cu powder and distillation. It was stored in sealed ampoules. th dm ⁻³ us ted

COMPONENTS:			ORIGINAL MEASUR	EMENTS:	
(1) Tantalum ch [7721-01-9]	loride; Ta	21 ₅ ;			loinov, S. G.; rushin, V. S.
(2) Titanium ch [7550-45-0]		214;	Izv. Akad. M No. 3, 56-60		Metal. <u>1969</u> ,
VARIABLES:			PREPARED BY:		
<i>T/</i> K =	= 325 <b>.</b> 2 <b>-</b> 40	)3.2		J. Há	ila
EXPERIMENTAL VALUES	:		L		
Temperature			TaCl ₅		
t/°C T/K ^C		mass % ^a		mass % ^b	$m_1/mol kg^{-1C}$
60.0 333.2 75.0 348.2 84.0 357.2 97.5 370.9	3.4 2.8 6.6 6.5 6.2 6.9 8.2 9.6 16.5 17.3	4.7 5.6 7.2 6.8	3.2 3.7 5.8 4.6 5.2 6.8 8.3 .7.2 17.3	3.05 3.23 2 5.57 6.78 8.50 17.33 25.33	0.0878 0.0932 0.165 0.203 0.259 0.585 0.947
followi	ng equation lity S expr	for the so essed in mo	the data the lubility of T le fractions) 89/T + 3.336	aCl5 in T	
		AUXILIARY	INFORMATION		
METHOD/APPARATUS/PH Isothermal mething lass vessel eq thermometer and withdrawing the with silicone of system was mixed temperature and at this temperat period of time of were taken at 3 determined grav oxide by preciping after separation oxides in HCl models	od. A ther uipped with a glass pi samples, a il, was use d for 1 h a then allow ture for a during whic h interval imetrically itation wit n of Ti and	mostated a stirrer, pette for nd sealed d. The t a desired ed to stand prolonged h samples s. Ta was as the h ammonia	SOURCE AND PUR (1) TaCl5 of tained ( 0.01 Si, 0.01 Cu, (2) TiCl4 (s purified It conta 0.005 Mn	unspecif in mass % 0.15 Ni, and 0.03 ource not by using ined (in , Si, and R: ion ± 0.2	<pre>ied origin con- ) 0.01 Mn, 0.01 Fe, Nb. specified) was Cu filings. mass %) Mg, and 0.01 Fe. K.</pre>

305

COMPONENTS :		ORIGINAL MEASUREMENTS:
(1) Sodium hexachlord NaTaCl ₆ ; [16920-1		Kogan, L. M.; Shevtsova, Z. N.; Shadrova, L. G.
(2) 1,1,2,3,4,4-Hexad	chloro-1,3-	* Zh. Fiz. Khim. <u>1964</u> , 38, 1305-6.
butadiene; C ₄ Cl ₆	; [87-68-3]	Russ. J. Phys. Chem. (Engl.Transl.) <u>1964</u> , 38, 710-1.
VARIABLES:		PREPARED BY:
T/K = 298,	323	J. Hála
EXPERIMENTAL VALUES:	<u></u>	
	Composition of solutions.	the saturated
_	Temperature	NaTaCl ₆
	<i>t</i> /°C <i>T</i> /K	$\frac{10^{3}c_{1}/\text{mol dm}^{-3}}{2}$
	25 298 50 323	5.56 7.41
	AUXILIA	RY INFORMATION
METHOD/APPARATUS/PROCEDURE		SOURCE AND PURITY OF MATERIALS: (continued)
Isothermal method. Ex introduced to the so		as gas at 250-500°; m.p. 200°. NaCl was recrystallized and
box. The mixture was	s equilibrated	ignited before use.
for 5-10 days in a the sel equipped with a h		
to prevent both solve		I BOL SDECITIEDI WAS DUTITIED TO
and access of atmosp Attainment of equili		$1 6807 \text{ and } n^{20} - 1 5543$
by analyzing the liqu		
in samples taken per 15 days. Ta in the		
mined gravimetrically	y as Ta ₂ 05 eith	ler
after direct ignition of the saturated solu		
extraction of Ta into	o concentrated	Temp: precision $\pm$ 0.1 K.
HCl and subsequent p: the hydrated oxide.	recipitation of	Soly: precision ± 0.2-0.5 %.
SOURCE AND PURITY OF	MATERIALS:	
(1) NaTaCl ₆ was prepa		REFERENCES :
stoichiometric an	nounts of TaCl5	
and NaCl in a sea vacuum at 220-30		
was prepared from	n 99.99% purity	,
Ta metal by chlor	rination with C	· ⊥ F

Т	antalum Halides	and Oxyhalides	307
<pre>COMPONENTS: (1) Potassium hexachlorotantalate;     KTaCl₆; [16918-73-3] (2) 1,1,2,3,4,4-Hexachloro-1,3-     butadiene; C₄Cl₆; [87-68-3]</pre>		<pre>ORIGINAL MEASUREMENTS: Bolshakov, K. A.; Safronov, V. V.; Kogan, L. M.; Shevtsova, Z. N.; Shadrova, L. G. *Zh. Fiz. Khim. <u>1964</u>, 38, 1305-6. Russ. J. Phys. Chem. (Engl. Transl <u>1964</u>, 38, 710-1.</pre>	.)
VARIABLES:		PREPARED BY:	
T/K = 298.323		J. Hála	
EXPERIMENTAL VALUES:			
Compos	sition of sat	urated solutions.	
Tem	perature	KTaCl ₆	
t/°C	С Т/К	$10^{3}c_{7}/\text{mol dm}^{-3}$	
	298	0.99	
50	323	1.87	:
	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: Isothermal method. Excess KTaCl ₆ was introduced to the solvent in a dry box. The mixture was equilibrated for 5-10 days in a thermostated ves- sel equipped with a hydraulic stopper to prevent both solvent evaporation and access of atmospheric moisture. Attainment of equilibrium was checked by analyzing the liquid phase for Ta in samples taken periodically over 15 days. Ta in the sample was deter- mined gravimetrically as Ta ₂ O ₅ either after direct ignition of the samples of the saturated solutions or after extraction of Ta into concentrated HCl and subsequent precipitation of the hydrated oxide.		obtain a product with $d_4^2$ ° = 1.6807 and $n_D^2$ ° = 1.5543.	e ce
		ESTIMATED ERROR: Temp: precision ± 0.1 K. Soly: precision ± 0.2-0.5 %.	
SOURCE AND PURITY OF MATH (1) KTaCl ₆ was prepared H stoichiometric amount and KCl in a sealed a vacuum at 220-300°. was prepared from 99 Ta metal by chlorinat	by heating ts of TaCl5 ampoule in TaCl5 used .99% purity	REFERENCES :	

Cowley, A.; Fairbrother, F.;
Scott, N.
J. Chem. Soc. <u>1958</u> , 3133-7.
PREPARED BY:
J. Hála
saturated solutions.
alum bromide; TaBr ₅
solvent m ₁ /mol kg ^{-1a}
41 0.110
52 0.130 80 0.152
09 0.174
INFORMATION
SOURCE AND PURITY OF MATERIALS:
<pre>purified by 5 or 6 fractional sublimations in vacuo, and finally sublimed into fragile hook-ended ampoule. (2) Diethylether (anesthetic) was distilled from 1/5 of its volume of H₂SO₄, kept over P₂O₅ for at least a week, decanted, frac- tionated under dry N gas, and stored over Na wire. REFERENCES: 1. Fairbrother, F.; Scott, N.; Prophet, H. J. Chem. Soc.</pre>
London <u>1956</u> , 1164.

COMPORENTS:       (1) Tantalum bromide; TaBr ₅ ;         (1) Tantalum bromide; TaBr ₅ ;       (2) Tetrachloromethane; CCl ₄ ;         (2) Tetrachloromethane; CCl ₄ ;       (2) Tetrachloromethane; CCl ₄ ;         (2) Tetrachloromethane; CCl ₄ ;       (2) Tetrachloromethane; CCl ₄ ;         (2) Tetrachloromethane; CCl ₄ ;       (2) Tetrachloromethane; CCl ₄ ;         (2) Tetrachloromethane; CCl ₄ ;       (2) Tetrachloromethane; CCl ₄ ;         (2) Tetrachloromethane; CCl ₄ ;       (2) Tetrachloromethane; CCl ₄ ;         (2) Tetrachloromethane; CCl ₄ ;       (2) Tabr ₂ , (2), (2), (3), (2), (3), (2), (3), (3), (3), (3), (3), (3), (3), (3				
T/K = 293 and 303J. HálaComposition of the saturated solutions.TemperatureTa $_20_5^{a}$ TemperatureTa $_20_5^{a}$ Average from 2 or 3 measurements calculated by authors.Individual measurements not reported.bEquilibrium time 19 hours.CCalculated by compiler.Source And Calculated by compiler.Source And Calculated by compiler.METHOD/APPARATUS/PROCEDURE: Tegetorized and Calculated by compiler.Auxiliary INFORMATIONMETHOD/APPARATUS/PROCEDURE: Tegetorized and the Diagona was below to main the log calculated by compiler.Source And Calculated by compiler.Source And Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="	<pre>[13451-11-1] (2) Tetrachlorome</pre>	5	Namoradze, Z. G.	; Zvyagintsev, O. E.
T/K = 293 and 303J. HálaComposition of the saturated solutions.TemperatureTa $_20_5^{a}$ TemperatureTa $_20_5^{a}$ Average from 2 or 3 measurements calculated by authors.Individual measurements not reported.bEquilibrium time 19 hours.CCalculated by compiler.Source And Calculated by compiler.Source And Calculated by compiler.METHOD/APPARATUS/PROCEDURE: Tegetorized and Calculated by compiler.Auxiliary INFORMATIONMETHOD/APPARATUS/PROCEDURE: Tegetorized and the Diagona was below to main the log calculated by compiler.Source And Calculated by compiler.Source And Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		93 and 303		la
t/°C       T/K       g/10 ml satd sln       g/100 ml satd sln       g_mol dm ^{-3d} 20 ^b 293       0.0242       0.3921       0.006755         30 ^C 303       0.0534       1.4651       0.02524 ^a Average from 2 or 3 measurements calculated by authors. Individual measurements not reported.       b ^b Equilibrium time 19 hours.       C ^C Equilibrium time 10 hours.       d ^d Calculated by compiler.       SOURCE AND PUNITY OF MATENALS: (1) TaBrs was prepared by bromination of a mixture of Tago with chara- the bromination app.; stoppered, and placed in a thermostat. A portion of the dry solvent was added and the mixture was stirred for 10-14 hours at the desired temperature. The stirrer was equipped with a H gseal. After equilibration the mixture was allowed to stand for several hours, and a 10 ml sample was withdrawn with a sTa ₂ O ₅ .       Source AND PUNITY OF MATENALS: (2) CC14 was purified and dried by standard methods.         KEFFENNCES: 1. Marignac, M. C. Ann. Chim. Phys. 1865, 8, 49.       Source , M. C. Ann. Chim. Phys. 1865, 8, 49.		Composition of the s	aturated solution	s
20 ^b 293       0.0242       0.3921       0.006755         30 ^c 303       0.0534       1.4651       0.02524 ^a Average from 2 or 3 measurements Calculated by authors. Individual measurements not reported.       b ^b Equilibrium time 19 hours.       C ^c Equilibrium time 10 hours.       d ^d Calculated by compiler.         Source AND PURITY OF MATERIALS: Toothermal method was used. Freshly distilled TaBr ₅ was used for all mea- surements. The vessel with collected TaBr ₅ was briefly disconnected from the bromination app.; stoppered, and placed in a thermostat. A portion of the dry solvent was added and the mixture was stirred for 10-14 hours at the desired temperature. The stirrer was equipped with a Hg seal. After equilibration the mixture was allowed to stand for several hours, and a 10 ml sample was withdrawn with a specta direction the filter. On evaporating the solvent TaBr ₅ hydrolyzed, and Ta content in the sample was determined gravimetrically as Ta ₂ O ₅ .       Source AND PURITY OF MATERIALS: (1) TaBr ₅ was prepared by bromination of a mixture of Nb and the action filter. On evaporating the solvent TaBr ₅ hydrolyzed, and Ta content in the sample was determined gravimetrically as Ta ₂ O ₅ .         KEFFENNCES: 1. Marignac, M. C. Ann. Chim. Phys. 1865, 8, 49. 2. Memberg, E.; Winzer, K.	-			
30 [°] 303       0.0534       1.4651       0.02524 ^a Average from 2 or 3 measurements calculated by authors. Individual measurements not reported.       b       Equilibrium time 19 hours. ^c Equilibrium time 10 hours.       d       Calculated by compiler. ^d Calculated by compiler.         SOURCE AND PURITY OF MATERIALS: (1) TaBrs was prepared by bromination distilled TaBrs was used or all mea surements. The vessel with collected TaBrs was briefly disconnected from the bromination app.; stoppered, and placed in a thermostat. A portion of the dry solvent was added and the mixture was stirred for 10-14 hours at the desired temperature. The stirrer was equipped with a Hg seal. After equilibration the mixture was allowed to stand for several hours, and a 10 ml sample was withdrawn with a pipette with a cotton filter. On evaporating the solvent TaBrs hydrolyzed, and Ta content in the sample was determined gravimetrically as Ta ₂ O ₅ .       SOURCE AND PURITY OF MATERIALS: (1) TaBrs was prepared by bromination CO ₂ as a carrier gas for bromine. The product was twice distilled and collected in the vessel used for solubility measurements. Analysis: found 67.7-67.8% Br, 32.2-32.5% Ta; calculated 68.9% Dr, 31.1% Ta. The Ta ₂ O ₅ in the mixture of Nb and Ta oxides (ob- tained from Nb ₂ O ₅ in the Memberg and Winzer (ref 2). (2) C(1] was purified and dried by standard methods.         REFFENCES: 1. Marignac, M. C. Ann. Chim. Phys. 1865, 8, 49. 2. Memberg, E.; Winzer, K.	t/°C T/K	g/10 ml satd sln g	/100 ml satd sln	$c_1/\text{mol dm}^{-3d}$
<ul> <li>Average from 2 or 3 measurements calculated by authors. Individual measurements not reported.</li> <li>Equilibrium time 19 hours.</li> <li>Calculated by compiler.</li> <li>AUXILIARY INFORMATION</li> <li>METHOD/APPARATUS/FROCEDURE: Isothermal method was used. Freshly distilled TaBry was used for all mea- surements. The vessel with collected TaBry was briefly disconnected from the Bromination app.; stoppered, and placed in a thermostat. A portion of the dry solvent was added and the mixture was stirrer dor 10-14 hours at the desired temperature. The stirrer was equipped with a Hg seal. After equilibration the mixture was allowed to stand for several hours, and a 10 ml sample was withdrawn with a pipette with a cotton filter. On evaporating the solvent TaBry hydrolyzed, and Ta content in the sample was determined gravimetrically as Ta₂O₅.</li> </ul>		0.0242	0.3921	0.006755
Individual measurements not reported.         b       Equilibrium time 19 hours.         c       Equilibrium time 10 hours.         d       Calculated by compiler.         d       Calculated by compiler.         d       Calculated by compiler.         METHOD/APPARATUS/PROCEDURE:       SOURCE AND PURITY OF MATERIALS:         Isothermal method was used. Freshly       fischermal method was used. Freshly         distilled TaBr5 was used for all mea-       SOURCE AND PURITY OF MATERIALS:         TaBr5 was briefly disconnected from       for a mixture of Ta205 with char-         coal by Br gas at 600-700° using       CO2 as a carrier gas for bromine.         placed in a thermostat. A portion of       The product was twice distilled         nalysis: found 67.7-67.8% Br,       32.2-32.5% Ta: calculated 68.9%         stirrer was equipped with a Hg seal.       After equilibration the mixture was         Allowed to stand for several hours,       mixture of Nb and Ta oxides (ob-         and a 10 ml sample was withdrawn with       a pipette with a cotton filter. On         evaporating the solvent TaBr5       Memberg and Winzer (ref 1) and         standard methods.       REFERENCES:         1. Marignac, M. C. Ann. Chim. Phys.       1865, 8, 49.         2. Memberg, E.; Winzer, K.       2. Memberg, E.; Winzer, K.	30 ^C 303	0.0534	1.4651	0.02524
<ul> <li>METHOD/APPARATUS/PROCEDURE: Isothermal method was used. Freshly distilled TaBr₅ was used for all mea- surements. The vessel with collected TaBr₅ was briefly disconnected from the bromination app.; stoppered, and placed in a thermostat. A portion of the dry solvent was added and the mixture was stirred for 10-14 hours at the desired temperature. The stirrer was equipped with a Hg seal. After equilibration the mixture was allowed to stand for several hours, and a 10 ml sample was withdrawn with a pipette with a cotton filter. On evaporating the solvent TaBr₅ hydrolyzed, and Ta content in the sample was determined gravimetrically as Ta₂O₅.</li> <li>SURCE AND PURITY OF MATERIALS: (1) TaBr₅ was prepared by bromination of a mixture of Ta₂O₅ with char- coal by Br gas at 600-700° using CO₂ as a carrier gas for bromine. The product was twice distilled and collected in the vessel used for solubility measurements. Analysis: found 67.7-67.8% Br, 32.2-32.5% Ta; calculated 68.9% Br, 31.1% Ta. The Ta₂O₅ used was separated from Nb₂O₅ in the mixture of Nb and Ta oxides (ob- tained from ilmenorutile) accord- ing to Marignac (ref 1) and Memberg and Winzer (ref 2).</li> <li>(2) CCl₄ was purified and dried by standard methods.</li> <li>REFERENCES: 1. Marignac, M. C. Ann. Chim. Phys. <u>1865</u>, 8, 49.</li> <li>2. Memberg, E.; Winzer, K.</li> </ul>				
<ul> <li>Isothermal method was used. Freshly distilled TaBr₅ was used for all measurements. The vessel with collected TaBr₅ was briefly disconnected from the bromination app.; stoppered, and placed in a thermostat. A portion of the dry solvent was added and the mixture was stirred for 10-14 hours at the desired temperature. The stirrer was equipped with a Hg seal. After equilibration the mixture was allowed to stand for several hours, and a 10 ml sample was withdrawn with a pipette with a cotton filter. On evaporating the solvent TaBr₅ hydrolyzed, and Ta content in the sample was determined gravimetrically as Ta₂O₅.</li> <li>(1) TaBr₅ was prepared by bromination of a mixture of Ta₂O₅ with charcollected coal by Br gas at 600-700^o using CO₂ as a carrier gas for bromine. The product was twice distilled and collected in the vessel used for solubility measurements. Analysis: found 67.7-67.8% Br, 32.2-32.5% Ta; calculated 68.9% Br, 31.1% Ta. The Ta₂O₅ used was separated from Nb₂O₅ in the mixture of Nb and Ta oxides (obtained from limenorutile) according to Marignac (ref 1) and Memberg and Winzer (ref 2).</li> <li>(2) CCl₄ was purified and dried by standard methods.</li> <li>REFERENCES:</li> <li>1. Marignac, M. C. Ann. Chim. Phys. <u>1865</u>, 8, 49.</li> <li>2. Memberg, E.; Winzer, K.</li> </ul>		AUXILIARY	INFORMATION	<u></u>
	Isothermal method distilled TaBr5 w surements. The v TaBr5 was briefly the bromination a placed in a therm the dry solvent w mixture was stirr at the desired te stirrer was equip After equilibrati allowed to stand and a 10 ml sampl a pipette with a evaporating the s hydrolyzed, and T sample was determ	was used. Freshly as used for all mea- essel with collected disconnected from pp.; stoppered, and ostat. A portion of as added and the ed for 10-14 hours mperature. The ped with a Hg seal. on the mixture was for several hours, e was withdrawn with cotton filter. On olvent TaBr5 a content in the	<pre>(1) TaBr5 was pr of a mixture coal by Br g CO2 as a car The product and collecte for solubili Analysis: f 32.2-32.5% T Br, 31.1% Ta was separate mixture of N tained from ing to Marig Memberg and (2) CCl4 was pur standard met REFERENCES: 1. Marignac, M. <u>1865</u>, 8, 49. 2. Memberg, E.;</pre>	<pre>epared by bromination of Ta₂O₅ with char- as at 600-700[°] using rier gas for bromine. was twice distilled d in the vessel used ty measurements. ound 67.7-67.8% Br, a; calculated 68.9% . The Ta₂O₅ used d from Nb₂O₅ in the b and Ta oxides (ob- ilmenorutile) accord- nac (ref 1) and Winzer (ref 2). ified and dried by hods. C. Ann. Chim. Phys. Winzer, K.</pre>

OMPONENTS :		<u></u>	ORIGINAL MEASUREMENTS	
1) Tantalum	bromid	e; TaBr ₅ ;	Namoradze, Z. G.;	Zvyagintsev, O. E.
[13451-11	-	, , , , , , , , , , , , , , , , , , ,	Zh. Prikl. Khim.	1939, 12, 603-8.
2) Bromoetha [74-96-4]	ine; C ₂	H ₅ Br;		
ARIABLES:			PREPARED BY:	
T/K	x = 273	- 298	J.	Hála
			l	
XPERIMENTAL VA		Composition of the	saturated solution	s.
Temper	ature	Ta ₂ 05 ^a	TaBr ₅	
t∕°C	T/K	g/10 ml satd sln	g/100 ml satd sln	$c_1/mol dm^{-3}f$
0	273	0.0158 ^b	0,2560	0.004410
0	273	0.0162 ^{c,e}	0.2624	0.004520
20	293	0.0246 ^d	0.3985	0.006865
25	298	0.0264 ^C	0.4277	0.007368
Calcul	ated by	y compiler.		
		AUXILIARY	INFORMATION	
ETHOD/APPARATU	S/PROCEL	DURE:	SOURCE AND PURITY OF	MATERIALS:
tilled TaBr5 surements. TaBr5 was br the brominat placed in a the dry solv mixture was at the desir stirrer was After equili allowed to s and a 10 ml a pipette wi evaporating	was us The vestigned The vestigned thermosent was stirred temp equipper bration tand for sample th a co	used. Freshly dis- sed for all mea- ssel with collected disconnected from p.; stoppered, and stat. A portion of s added and the d for 10-14 hours perature. The ed with a Hg seal. n the mixture was or several hours, was withdrawn with otton filter. On	of a mixture coal by Br ga CO ₂ as a carr The product w and collected for solubilit Analysis: fo 32.2-32.5% Ta Br, 31.1% Ta. separated fro ture of Nb an	m Nb ₂ O ₅ in the mix- d Ta oxides (ob- lmenorutile)
sample was d ally as Ta ₂ 0	and Ta letermin		REFERENCES :	nd Winzer (ref 2).

rantalan nanaoo	S dia Oxyrianaes 511
COMPONENTS:	ORIGINAL MEASUREMENTS:
(l) Tantalum iodide; TaI ₅ ; [14693-81-3]	Cowley, A.; Fairbrother, F.; Scott, N.
<pre>(2) 1,1'-Oxybisethane (diethyl     ether);C4H100; [60-29-7]</pre>	J. Chem. Soc. <u>1958</u> , 3133-7.
VARIABLES:	PREPARED BY:
T/K = 276.2 - 293.2	J. Hála
EXPERIMENTAL VALUES:	
Composition of the	saturated solutions.
Temperature Tant	alum iodide; TaI ₅
<i>t/°C T/K g/100 g</i>	solvent m ₁ /mol kg ^{-1a}
3.0 276.2 2.2	0.0281
5.8 279.0 2.4	
9.0 282.2 2.5 15.7 288.9 2.9	
20.0 293.2 3.2	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method. The Pyrex glass apparatus (ref 1) consisted of the solvent pretreatment line, the satu- ration, and the sampling vessels. In the pretreatment section, the solute was repeatedly pretreated by succes- sive sublimations of the halide and condensation at -195°C of the solvent onto it. Both components were trans- ferred into the saturation vessel which was connected to the sampling compartment through a sintered glass disc. The vessel was rocked for 24 h, the saturated solution filtered into the sampling ampoule which was then sealed off, weighed, and broken under water to hydrolyze the halide. After standing for 4-5 h, the solu- tion was heated to 90°C, cooled and filtered, and the oxide was ignited and weighed. ESTIMATED ERROR:	<ul> <li>(1) TaI₅ was prepared from Ta metal heated in an induction furnace in the presence of iodine vapors (ref 2). The product was purified by 5 or 6 fractional sublimations in vacuo, and finally sublimed into fragile hook-ended ampoule.</li> <li>(2) Diethylether (anesthetic) was distilled from 1/5 of its volume of H₂SO₄, kept over P₂O₅ for at least a week, decanted, fractional distinct and the sublimed of H₂SO₄ and the sublimed of the sublimed of H₂SO₄ and the</li></ul>
Temp: precision ± 0.1 K. Solubility error is not specified.	<ol> <li>Alexander, K. M.; Fairbrother, F. J. Chem. Soc., London <u>1949</u>, S 223.</li> </ol>

Page numbers preceded by E refer to evaluation texts whereas those not preceded by E refer to compiled tables. In this index diammonium and dipotassium halates are indexed under ammonium and potassium. + cesium fluoride Acetic acid (aq) 158 + hafnium(IV) fluoride 155, 158 + potassium fluoride 155 Acetic acid, chloro-+ niobium(V) chloride 252 + zirconium(IV) chloride 107 Acetonitrile + bis(3-methylbutyl)ether 108, 109, 176, 177 176, 177 108, 109 + hafnium(IV) chloride + zirconium(IV) chloride + ammonium chloride Ammonia 34 + sodium amalgam 26, 27 + sodium bromide 26, 27, 31, 32, 36, 37 + sodium chloride 35 + titanium(II) chloride 26, 27 + titanium(III) chloride 31, 32 + titanium(IV) chloride 34-37 Ammonium chloride + ammonia 34 + titanium(IV) chloride 34 Ammonium chloride (aq) + ammonium hexachlorotitanate 47 + hafnium dichloride oxide 190 + hydrogen chloride 47 + titanium(III) chloride 30 + zirconium dichloride oxide 120 Ammonium fluoride (aq) + ammonium heptafluorohafnate 175 + triammonium heptafluorozirconate E102, 103, 104 Ammonium heptafluorohafnate + water 174, 175 Ammonium heptafluorohafnate (aq) 175 + ammonium fluoride Ammonium hexachlorohafnate(IV) (aq) 209 + hydrogen chloride Ammonium hexachlorotitanate (aq) + ammonium chloride 47 + hydrogen chloride 46, 47 Ammonium hexachlorozirconate(IV) (aq) + hydrogen chloride 142 Ammonium hexafluorohafnate 162 + water Ammonium hexafluorotitanate + ethanol 7 4 + water Ammonium hexafluorotitanate (ag) + hydrogen fluoride 5, 6 + diammonium pentafluorooxoniobate 5, 6 Ammonium hexafluorozirconate(IV) 81, 82 + water Ammonium hexafluorozirconate(IV) (aq) 82 + hydrogen fluoride Ammonium pentachlorotitanate (aq) 42 + hydrogen chloride Ammonium pentafluorooxoniobate (aq) + ammonium hexafluorotitanate 5,6 + hydrogen fluoride 5, 6 Ammonium pentafluorozirconate(aq) + hydrogen fluoride 74 197 Barium chloride (aq) + hafnium dichloride oxide + zirconium dichloride oxide 134 248 Benzene + niobium(V) chloride + tantalum(V) chloride 288 + titanium(IV) chloride 58 + tantalum(V) bromide 310 Benzene, bromo-Benzene, 1,3-dimethyl-+ tantalum(V) chloride 290 Benzene, methyl-+ tantalum(V) chloride 289 Benzene, 1,3,5-trimethyl-+ tantalum(V) chloride 291 Bromine trifluoride + niobium(V) fluoride 228

Syster	n In	dex
--------	------	-----

	oyotani index	313
Butane, 1,1 -oxybis[3-me	thyl- + acetonitrile	108, 109, 176,
	+ hafnium(IV) chloride	177 176, 177
	+ zirconium(IV) chloride	108, 109
Cadmium chloride (aq)	+ zirconium dichloride oxide	123
Calcium chloride (aq)	+ hafnium dichloride oxide	192-195
	+ hydrogen chloride + zirconium dichloride oxide	128-130, 193-195 126-130
Carbon disulfide	+ tantalum(V) chloride	297
Cesium chloride (aq)	+ hafnium dichloride oxide + zirconium dichloride oxide	202, 203 139
Cesium fluoride	+ acetic acid	158
Cesium fluoride(aq)	+ hafnium(IV) fluoride + hafnium(IV) fluoride	158 157
	+ zirconium(IV) fluoride	73
Cesium hexachlorohafnate	+ hydrogen chloride	212
Cesium hexachlorotitanat		50
Cesium hexachlorozircona		
Cesium hexafluorohafnate	+ hydrogen chloride + water	145 E171, 172, 173
Cesium hexafluorotitanat	e	
	+ ethanol + water	25 23, 24
Cesium hexafluorozircona	te(IV)	
Cesium pentachlorotitana	+ water te (ag)	97, 98
	+ hydrogen chloride	45
Cesium pentafluorohafnat	e + water	161
Cesium pentafluorozircon		
Copper(II) chloride (aq)	+ water + zirconium dichloride oxide	80 124
Cyclohexane	+ tantalum(V) chloride	287
1,3-Dioxalan-2-one, 4-me		
	+ niobium(V) chloride + tantalum(V) chloride	250 293
	+ tantalum(V) fluoride	269
Ethane, 1,2-dichloro-	+ hafnium(IV) bromide + titanium(IV) bromide	215 55
	+ zirconium(IV) bromide	147
Ethane, l,l´-oxybis-	+ niobium(V) bromide + niobium(V) chloride	264 249
	+ tantalum(V) bromide	308
	+ tantalum(V) chloride + tantalum(V) iodide	292 311
Fthanal	+ titanium(IV) bromide	52
Ethanol	+ ammonium hexafluortitanate + cesium hexafluorotitanate	7 25
	+ hafnium dichloride oxide + lithium hexafluorotitanate	205 10
	+ potassium hexafluorotitanate	20
	+ sodium hexafluorotitanate + titanium(IV) bromide	12 51
Hafnium(IV) bromide	+ 1,2-dichloroethane	215
	+ tetrachloromethane + trichloromethane	214 213
Hafnium dibromide oxide	(aq)	
Hafnium(IV) chloride	+ hydrogen bromide + acetonitrile	216 176, 177
Hafnium dichloride oxide	+ l,l'-oxybis(3-methylbutane)	176, 177
nainium dichioride oxide	+ ethanol + l-heptanol	205 207
	+ l-hexanol + methanol	206 204
	+ 1-octanol	204 208
	+ sec-octanol + water	208 178, 179

Hafnium dichloride oxide	(ag)	
	+ ammonium chloride	190
		197
1	+ barium chloride	
1	+ calcium chloride	192-195
	+ cesium chloride	202, 203
	+ hydrogen chloride	E180-E183,
t i i i i i i i i i i i i i i i i i i i		184-189, 193-195
	+ lithium chloride	198
	+ magnesium chloride	191
	+ potassium chloride	200
	+ rubidium chloride	201
	+ sodium chloride	199
	+ strontium chloride	196
Hafnium(IV) fluoride	+ acetic acid	155, 158
	+ cesium fluoride	158
	+ potassium fluoride	155
Hafnium(IV) fluoride (aq	•	+ 5 5
athium(iv) iluoilue (ag		167
]	+ cesium fluoride	157
	+ hydrogen fluoride	E150, 151-153
	+ potassium fluoride	154
1	+ rubidium fluoride	156
1-Heptanol	+ hafnium dichloride oxide	207
1,1,2,3,4,4-Hexachloro-1		
		247
1	+ niobium(IV) chloride	
1	+ niobium(V) chloride	251
!	+ potassium hexachloroniobate	246
1	+ potassium hexachlorotantalate	307
l	+ sodium hexachloroniobate	245
1	+ sodium hexachlorotantalate	306
	+ tantalum(IV) chloride	286
		296
	+ tantalum(V) chloride	
1-Hexanol	+ hafnium dichloride oxide	206
Hydrochloric acid (aq)	+ titanium(III) chloride	28, 29
-	+ titanium(IV) chloride	33
Hydrogen bromide (aq)	+ hafnium dibromide oxide	216
	+ zirconium dibromide oxide	148
Hudrogon chlorido (ag)	+ ammonium chloride	47
Hydrogen chloride (aq)		
	+ ammonium hexachlorohafnate(IV)	209
	+ ammonium hexachlorotitanate	46, 47
	+ ammonium hexachlorozirconate(I	V) 142
	+ ammonium pentachlorotitanate	42
	+ calcium chloride	128-130,193-195
	+ cesium hexachlorohafnate(IV)	212
	+ cesium hexachlorotitanate	50
	+ cesium hexachlorozirconate(IV)	
(	+ cesium pentachlorotitanate	45
	+ dipotassium pentachlorotitanat	e 43
	+ hafnium dichloride oxide E	180-E183, 184-189
1		193-195
l	+ nitric acid	140, 141
1	+ potassium hexachlorohafnate(IV	
1		48
1	+ potassium hexachlorotitanate	
1	+ potassium hexachlorozirconate()	
	+ rubidium hexachlorohafnate(IV)	211
1	+ rubidium hexachlorotitanate	49
l .	+ rubidium hexachlorozirconate(I	V) 144
1	+ rubidium pentachlorotitanate	44
	+ titanium(III) chloride	28, 29
		112, E113, 114-119
1		28-130, 132, 133,
1	1	
1		140, 141
	+ zirconium dinitrate oxide	140, 141
Hydrogen fluoride	+ silver hexafluoroniobate	237
1	+ silver hexafluorotantalate	270
1	+ zirconium(IV) fluoride	60, 67
Hydrogen fluoride (aq)	+ ammonium hexafluorotitanate	5,6
1 "laroden trantine (ad)	+ ammonium hexafluorozirconate(I	
1	+ ammonium pentafluorooxoniobate	
1	+ ammonium pentafluorozirconate	74
1	+ hafnium(IV) fluoride	E150, 151-153
(	+ niobium(V) fluoride	226, 227
1		0, E231, 232-236
1	+ nitric acid	236
	+ potassium fluoride	243, 281, 282
1	· bocapotam tinotine	2757 2017 202
1		

T

System Index

0	1	5
J	ł	Э

Hydrogen fluoride (aq)	+ potassium heptafluoroniobate	239-241, 243
	+ potassium heptafluorotantalate	E272,E273,
		274-283
	+ potassium hexafluorohafnate	167
	+ potassium hexafluoroniobate	238
	+ potassium hexafluorotantalate	271
	+ potassium hexafluorozirconate(IV	
	+ potassium pentafluorooxoniobate	
	+ potassium pentafluorozirconate(I	
	+ tantalum(V) fluoride	266, 267
	+ vanadium fluoride oxide	221
	+ vanadium oxide fluoride	219, 220
	+ zirconium(IV) fluoride	E61, 62-66
Lithium chloride		222 224
	+ sulfinylbismethane	223, 224
	+ vanadium(II) chloride + vanadium(III) chloride	223
	+ hafnium dichloride oxide	224 198
	+ zirconium dichloride oxide	135
Lithium hexafluorotitanat		100
	+ ethanol	10
	+ water	8, 9.
1	· HUUCL	5, J
Magnesium chloride (aq)	+ hafnium dichloride oxide	191
	+ zirconium dichloride oxide	125
	+ lithium chloride	223, 224
	+ vanadium(II) chloride	223
	+ vanadium(III) chloride	224
	+ hafnium(IV) bromide	214
	+ tantalum(V) bromide	309
	+ tantalum(V) chloride	294, 295
	+ titanium(IV) bromide	54
	+ hafnium(IV) bromide	213
	+ titanium(IV) bromide	55
	+ zirconium(IV) bromide	146
Methanol	+ hafnium dichloride oxide	204
	+ 1,1 -oxybisethane	264
	+ 1,1,2,3,4,4-hexachlorobutadiene	
	+ benzene	248
	+ chloroacetic acid	252
		251
	+ 4-methyl-1,3-dioxalan-2-one	250
	+ niobium chloride oxide	E260, 261, 262
	+ 1,1'-oxybisethane	249
		, E254, 255-259
	+ titanium chloride	0, 261, 262
	+ bromine trifluoride	263 228
	+ uranium hexafluoride	229
	+ hydrogen fluoride	226, 227
Niobium fluoride oxide (a	a)	
	+ hydrogen fluoride E230,	E231, 232-236
	+ nitric acid	236
	+ zirconium(IV) fluoride	68, 69
Nitric acid (aq)	+ hydrogen chloride	140, 141
	+ hydrogen fluoride	236
	+ niobium fluoride oxide	236
	+ zirconium dichloride oxide	140, 141
	+ zirconium dinitrate oxide	140, 141
Nitric acid, ammonium sal		
	+ triammonium heptafluorozirconate	105
Nitric acid, calcium salt		1.4
	+ potassium hexafluorotitinate	18
Nitric acid, strontium sa		10
	+ potassium hexafluorotitinate	19
Nitrogen oxide	+ budrogon fluorido	67
	+ hydrogen fluoride + zirconium(IV) fluoride	67
1	+ Zircontum(iv) lluorlae	67
1-Octanol		
	+ hafnium dichloride oxide	208
sec-Octanol	+ hafnium dichloride oxide	208
1		

System Index

Potassium chloride (aq) + hafnium dichloride oxide + zirconium dichloride oxide	200 137
Potassium fluoride + acetic acid	155
+ hafnium(IV) fluoride Potassium fluoride (aq) + hafnium(IV) fluoride	155 154
+ hydrogen fluoride	243, 281, 282
+ potassium heptafluoroniobate + potassium heptafluorotantalate	242, 243
+ titanium(IV) flouride	281, 282 2
+ zirconium(IV) fluoride Potassium heptafluoroniobate (aq)	71
+ hydrogen fluoride	239-241, 243
+ potassium fluoride Potassium heptafluorotantalate (ag)	242, 243
+ hydrogen fluoride E272, + potassium fluoride	E273, 274-283
+ potassium fluoride + potassium pentafluorooxoniobate	
Potassium hexachlorohafnate(IV) (aq)	
+ hydrogen chloride Potassium hexachloroniobate	210
+ 1,1,2,3,4,4-hexachloro-1,3-butad	liene 246
Potassium hexachlorotantalate + 1,1,2,3,4,4-hexachloro-1,3-butad	liene 307
Potassium hexachlorotitanate (aq)	
+ hydrogen chloride Potassium hexachlorozirconate(IV) (aq)	48
+ hydrogen chloride	143
Potassium hexafluorohafnate + water	E163, 164-167
Potassium hexafluorohafnate (aq)	
+ hydrogen fluoride Potassium hexafluoroniobate (ag)	167
+ hydrogen fluoride	238
Potassium hexafluorotantalate (aq) + hydrogen fluoride	271
Potassium hexafluorotitanate	2.0
+ ethanol + water	20 E13, 14-19
Potassium hexafluorotitanate (aq)	
+ nitric acid, calcium salt + nitric acid, strontium salt	18 19
Potassium hexafluorozirconate(IV)	
+ water E Potassium hexafluorozirconate(IV) (aq)	<b>284, E85, 86-94</b>
+ hydrogen fluoride Potassium pentachlorotitanate (aq)	93, 94
+ hydrogen chloride	43
Potassium pentafluorohafnate + water	159
Potassium pentafluorooxoniobate	159
+ water Potassium pentafluorooxoniobate (aq)	244
+ hydrogen fluoride	283
+ potassium heptafluorotantale Potassium pentafluorozirconate(IV)	283
+ water	76-78
Potassium pentafluorozirconate(IV) (aq) + hydrogen fluoride	78
Rubidium chloride (aq) + hafnium dichloride oxide + zirconium dichloride oxide	201 138
Rubidium fluoride (aq) + hafnium(IV) fluoride	156
+ zirconium fluoride Rubidium heptafluorotantalate	72
+ water	284
Rubidium hexachlorohafnate(IV) (aq) + hydrogen chloride	211
Rubidium hexachlorotitanate (aq)	49
+ hydrogen chloride Rubidium hexachlorozirconate(IV) (aq)	47
+ hydrogen chloride Rubidium hexafluorohafnate	144
+ water	E168, 169, 170

Rubidium hexafluorotitana		
Rubidium hexafluorozircon	+ water ate(IV) + water	21, 22 95, 96
Rubidium pentachlorotitan		44
Rubidium pentafluorohafna	te + water	160
Rubidium pentafluorozirco		79
Silver hexafluoroniobate - Silver hexafluorotantalat	+ hydrogen fluoride e	237
Sodium amalgam	+ hydrogen fluoride + ammonia	270 26, 27
	+ sodium bromide + titanium(II) chloride	26, 27 26, 27
Sodium bromide	+ ammonia	26, 27, 31, 32, 36, 37
	+ sodium amalgam + titanium(II) chloride	26, 27 26, 27
	+ titanium(III) chloride + titanium(IV) chloride	31, 32 36, 37
Sodium chloride	+ titanium(IV) chloride + ammonia	36, 37 35
	+ ammonia + titanium(IV) chloride	25
Sodium chloride (aq)	+ hafnium dichloride oxide	199
Sodium fluoride (aq)		136 70
Sodium hexachloroniobate	+ 1,1,2,3,4,4-hexachloro-1,3-buta	
Sodium hexachlorotantalat	8	
Sodium hexafluorotitanate	+ 1,1,2,3,4,4-hexachloro-1,3-buta	adiene 306
	+ ethanol	12
  Sodium hexafluorozirconat	+ water	11
	+ water	83
Sodium pentafluorozircona	te(IV)	
Strontium chloride (ag)	+ water	75
	+ hafnium dichloride oxide + zirconium dichloride oxide + titanium(IV) bromide	196
Sulfur dioxide	+ zirconium dichloride oxide	131-133
	+ titanium(IV) bromide + titanium(IV) chloride	50, 57 38, 39
	+ titanium(IV) chloride + zirconium(IV) chloride + l,l'-oxybisethane	110
	+ bromoethane + tetrachloromethane	310 309
	+ 1,1,2,3,4,4-hexachloro-1,3-buta	
Tantalum(V) chloride	+ benzene	288
	+ carbon disulfide	297
	+ cyclohexane + 1,3-dimethylbenzene	287 290
	+ 1,1,2,3,4,4-hexachloro-1,3-buta	
	+ 1,1'-oxybisethane	292
	+ methylbenzene + 4-methyl-1,3-dioxalan-2-one	289 293
	+ tetrachloromethane	294, 295
		98, E299, 300-305
	+ 1,3,5-trimethylbenzene + 4-methyl-1,3-dioxalan-2-one	291 269
	+ uranium hexafluoride	268
Tantalum(V) fluoride (aq)		266, 267
	+ 1,1´-oxybisethane + 1,2-dichloroethane	311 55
	+ ethanol	55
	+ 1,1 -oxybisethane	52
	+ sulfur dioxide + tetrachloromethane	56, 57 54
	+ trichloromethane	54
Titanium(II) chloride	+ ammonia	26, 27
	+ sodium amalgam + sodium bromide	26, 27
	+ ammonia	26, 27 31, 32
	+ sodium bromide	31, 32

## System Index

516	Bystein maex	
Titanium(IV) chloride	+ ammonia	34-37
	+ ammonium chloride	34
1	+ niobium chloride E253,	E254, 255-259
	+ niobium chloride oxide	263
	+ sodium bromide	36, 37
	+ sodium chloride	35
	+ sulfur dioxide	38, 39
	+ tantalum(V) chloride E298,	E299, 300-305
	+ titanium dichloride oxide	40, 41
Titanium(III) chloride (a	q)	
	+ ammonium chlorıde	30
1	+ hydrochloric acid	28, 29
Titanium(IV) chloride (ac		l l
	+ hydrochloric acid	33
Titanium(IV) fluoride	+ uranium hexafluoride	3
Titanium(IV) fluoride (aq		
	+ potassium fluoride	2
Titanium(IV) iodide		58
Titanium dichloride oxide		
	+ titanium(IV) chloride	40, 41
Triammonium heptafluorozi	rconate	
	+ water	E99, 100, 101
Triammonium heptafluorozi		
	+ ammonium fluoride	E102, 103, 104
	+ nitric acid, ammonium salt	105
Trimethylammonium chlorid		
{	+ zirconium dichloride oxide	121
Tripotassium heptafluoroz		
	+ water	106
Trisodium octafluorotanta		
	+ water	285
Uranium hexafluoride	+ niobium(V) fluoride	229
	+ tantalum fluoride	268
	+ titanium fluoride	3
	+ vanadium fluoride	218
	+ vanadium fluoride oxide	222
Vanadium(II) chloride	+ lithium chloride	223
	+ sulfinylbismethane	223
Vanadium(III) chloride	+ lithium chloride	224
	+ sulfinylbismethane	224
Vanadium(V) fluoride	+ uranium hexafluoride	218
Vanadium fluoride oxide	+ uranıum hexafluoride	222
Vanadium oxide fluoride (		l l
1	+ hydrogen fluoride	219, 220
Vanadium fluoride oxide (		
	+ hydrogen fluoride	221
Zinc chloride (aq)	+ zirconium dichloride oxide	122
Zirconium bromide	+ 1,2-dichloroethane	147
	+ trichloromethane	146
Zirconium(IV) chloride	+ acetonitrile	108, 109
1	+ chloroacetic acid	107
1	+ 1,1 (-oxybis(3-methylbutane)	108, 109
	+ sulfur dioxide	110
Zirconium dibromide oxide		-
	+ hydrogen bromide	148
Zirconium dichloride oxid		
	+ water	111
Zirconium dichloride oxid		
1	+ ammonium chloride	120
4	+ barium chloride	134
4	+ cadmium chloride	123
1	+ calcium chloride	126-130
1	+ cesium chloride	139
1	+ copper(II) chloride	124
1	+ hydrogen chloride Ell2,	
1	128-3	130, 132, 133, 140
1		141
1	+ lithium chloride	135
4	+ magnesium chloride	125
{	+ nitric acid	140, 141
1	+ potassium chloride	137
1		
1		

I

Г

Zirconium dichloride oxide (aq) + rubidium chloride + sodium chloride + strontium chloride + trimethylammonium chloride + zinc chloride + zirconium dinitrate oxide Zirconium dinitrate oxide (aq) + hydrogen chloride	138 136 131-133 121 122 140, 141 140, 141
+ nitric acid	140, 141
+ zirconium dichloride oxide	140, 141
Zirconium(IV) fluoride + hydrogen fluoride	60, 67
+ nitrogen oxide	67
Zirconium(IV) fluoride (aq)	
+ cesium fluoride	73
+ hydrogen fluoride	E61, 62-66
+ nitric acid	68, 69
+ potassium fluoride	71
+ rubidium fluoride	72
+ sodium fluoride	70

Page numbers preceded by E refer to evaluation texts whereas those not preceded by E refer to compiled tables. 54, 214, 294, 295, 309 58-23-5 52, 249, 264, 292, 308, 311 7, 10, 12, 20, 25, 51, 205 60-29-7 64-17-5 64-19-7 155, 158 67-56-1 204 53, 146, 213 67-66-3 67-68-5 223, 224 71-43-2 58, 248, 288 74-96-4 310 75-05-8 108, 109, 176, 177 75-15-0 297 107, 252 79-11-8 87-68-3 245-247, 251, 286, 296, 306 107-06-2 55, 147, 215 250, 269, 293 108-32-7 108-38-3 290 108-67-8 291 108-88-3 289 110-82-7 287 111-27-3 206 207 111-70-6 111-87-5 208 108, 109, 176, 177 544-01-4 593-81-7 121 1314-62-1 221 6484-52-2 105 7446-09-5 38, 39, 56, 57, 110 7447-39-4 124 7447-40-7 43, 48, 137, 143, 200, 210 7447-41-8 135, 198, 223, 224 33-41, E253, E254, 255-259, 263, E298, E299, 300-305 7550-45-0 7646-85-7 122 7647-01-0 28, 29, 33, 42-50, E112, E113, 114-119, 128-130, 132, 133, 140-145, E180-E183, 184-189, 193-195, 209-212 35, 136, 199 26, 27, 31, 32, 36, 37 7647-14-5 7647-15-6 7647-17-8 45, 139, 202, 203 5, 6, 60, E61, 62-67, 74, 78, 82, 93, 94, E150, 151-153, 167, 7664-39-3 219-221, 226, 227, E230, E231, 232-241, 243, 266, 267, 270, 271, E272, E273, 274-283 26, 27, 31, 32, 34-37 7664-41-7 70 7681-49-4 7697-37-2 68, 69, 140, 141, 236 111, E112, E113, 114-141 7699-43-6 7705-07-9 28-32 224 7718-98-1 7720-83-4 58 7721-01-9 287-297, E298,E299, 300-305 2, 4-6, 8, 9, 11, E13, 14-19, 21-24, 28-30, 33, 42-50, E61, 62-66, 68-83, E84, E85, 86-98, E99, 100, 101, E102, 103-106, 111, E112, E113, 114-145, 148, E150, 151-154, 156, 157, 7732-18-5 159-162, E163, 164-167, E168, 169, 170, E171, 172-175, 178, 179, E180-E183, 184-203, 209-212, 216, 219-221, 226, 227, E230, E231, 232-236, 238-244, 266, 267, 271, E272, E273, 274-285 7774-34-7 126, 128, 192 7783-63-3 2, 3 60, E61, 62-73 7783-64-4 226-229 7783-68-8 7783-71-3 266-269

7783-72-4 218 7783-81-5 3, 218, 222, 229, 268 125, 191 7786-30-3 7787-71-5 228 7789-23-3 2, 71, 154, 155, 242, 243, 281, 282 7789-68-6 51-57 7789-75-5 18 7790-78-5 123 7791-11-9 44, 49, 138, 201 7791-18-6 125 10025-70-4 131, 132, 196 107-110 10026-11-6 10026-12-7 248-252, E253, E254, 255-259, E260, 261, 262 10035-04-8 192 10035-10-6 148, 216 10042-76-9 19 10043-52-4 126-130, 192, 193 10049-06-6 26, 27 10108-64-2 123 10124-37-5 18 10125-13-0 124 134, 197 134, 197 10326-27-9 10361-37-2 131-133, 196 10476-85-4 10544-72-6 67 10580-52-6 223 12022-20-7 70 12036-21-4 220 12062-11-2 237 12125-01-8 E102, 103, 104, 175 12125-02-9 30, 34, 42, 46, 47, 120, 190 12200-03-2 43 73, 157, 158 72, 156 13400-13-0 13446-74-7 308-310 13451-11-1 13478-45-0 264 13499-05-3 176, 177 13520-92-8 117-120, 122-139, 142-145 13569-70-5 247 13569-72-7 286 E260, 261-263 E230, E231, 232-236 221, 222 13597-20-1 13597-25-6 13709-31-4 13709-52-9 E150, 151-158 178, 179, E180-E183, 184-203 13759-17-6 13777-22-5 213-215 13777-25-8 146, 147 13780-39-7 40, 41 13782-18-8 71, 76-78 13782-19-9 79 13782-20-2 80 13814-83-0 219, 220 13815-25-3 159 13826-66-9 140, 141 13844-79-6 160 13859-62-6 74 13864-14-7 152 13871-10-8 75 14118-72-0 216 14456-34-9 185-212

14517-16-9 63, 65, 68 14596-11-3 68 14693-81-3 311 14929-53-4 152 15803-64-2 158, 161 16712-20-2 135 16871-86-6 154, 155, E163, 164-167 16902-24-2 49 16918-46-0 48 16918-73-3 307 16918-86-8 145 16918-89-7 212 16919-14-5 238, 240 2, E13, 14-20 16919-27-0 16919-28-1 23-25, 50 73, 97, 98 81, 82 16919-30-5 16919-31-6 16919-32-7 157, 158, E171, 172, 173 16919-88-3 246 16920-10-8 245 16920-14-2 306 16923-95-8 71, E84, E85, 86-94 16924-00-8 E272, E273, 274-283 16924-03-1 239-243 16925-24-9 162 16925-26-1 70, 83 16962-10-0 72, 95, 96 16962-20-2 156, E168, 169, 170 16962-40-6 4-7 16962-41-7 21, 22 16999-41-0 221 17116-13-1 11, 12 17169-17-4 154 17169-53-8 174, 175 17250-81-6 E99, 100, 101, E102, 103-105 17442-97-6 71, 106 17442-98-7 70 17456-13-2 285 17523-77-2 244, 283 17871-12-4 5, 6 18129-16-3 65 18346-99-1 143 19114-57-9 42, 45 19193-50-1 8-10 19200-74-9 239-242, 244, 283 19276-22-3 211 19381-62-5 209 19381-63-6 210 19381-65-8 144 19381-66-9 142 19400-30-7 157, 161 20137-53-5 271 20449-70-1 72 20450-14-0 156 20910-24-1 154, 159 20910-25-2 156, 160 77, 78 70, 75 73, 80 72, 79 20982-57-4 20982-58-5 20982-59-6 20982-60-9

21439-26-9 23969-67-7 24419-02-1 24419-03-2 25094-02-4	50
25339-81-9 33712-61-7 41468-24-0 61104-79-8 66905-82-6	188, 194
76056-60-5 100656-75-5 100656-77-7 100656-87-9 107924-80-1	45 44
107944-09-2 107944-10-5 107944-12-7 107944-13-8 107944-14-9	2 2 42 44 45
107944-15-0 107944-16-1 107944-17-2 107983-43-7 108151-18-4	65 152 152

Author Index

Page numbers preceded by E refer to evaluation texts whereas those not preceded by E refer to compiled tables. Akhmadeev, N. Kh. 155, 158 E272, E273, 277, 278 284, 285 Babaeva, A. V. Balke, C. W. Bamburov, V. G. 2, 71, 76, E84, E85, 89, 106 Barskaya, I. B. 121, 142-145, 190, 191, 196-203, 209-212 120, 122-125, 131-139 Belyaev, I. N. 53-55, 146, 147, 213-215 81, 93, E99, 100, E102, 103, 162, 167, 174 Berdonosov, S. S. Berglund, V. 178, 179, E181-E183, 188, 189, 204-208 245-247, 251, 286, 296, 306, 307 38, 39, 56, 57, 110 Blinova, Z. N. Bolshakov, K. A. Bond, P. A. Broadley, R. D. Brown, R. D. 218, 222 E13, 17, 22, 24, E84, E85, 88, 95, 97, E163, 164, E168, 169, E171, 172 E61, 63-66, 74, 78, 82, 94, E150, 152, 153, Buslaev, Yu. A. 219-221, 226, 227, E230, E231, 232, 266, 267 Cady, G. H. 60, E61 Chapman, A. G. 68, 69 81, 93, E99, 100, E102, 103, 162, 167, 174 Christiansen, J. A. 249, 264, 292, 308, 311 56, 57 Cowley, A. Crone, E. B. Delarova, N. I. 40 2, 71, 76, E84, E85, 89, 106 Demenev, N. V. Dietz, G. E253, E254, 258, E298, E299, 303 Dvoskina, V. N. 124 122-124, 132, 133 E84, E85, 90, 91, E163, 165 E298, E299, 305 Efimushkhina, L. I. Egerev, O. I. Egorov, S. I. Ehrlich, P. 41, E253, E254, 258, E298, E299, 303 Engel, W. 41 Eschrich, H. E99, 101, E102, 104, 105 248, 249, 264, 287-292, 295, 308, 311 Fairbrother, F. Farhan, F. M. 140, 141 Ferris, L. M. E230, E231, 233-236 Fischer, W. 47 Fischer, H. W. 269, 293 Gavrilov, O. R. E260, 262 4, 7-12, E13, 16, 20, 21, 23, 25 E112, E113, 116-118, E181, E183, 185, 186 E13, 17, 22, 24, E84, E85, 88, 95, 97, E163, 164, Ginsberg, H. Goroshchenko, Ya. G. Grove, E. L. E168, 169, E171, 172 Gudimovich, T. F. 155, 158 E61, 65, 66, 74, 78, 82, 94, 219, 220 Gustyakova, M. P. 237, 270 70, 72, 73, 75, 77, 79, 80, 83, E84, E85, 92, 96, 98, 154, 156, 157, 159-161, E163, 166, E168, 170, Gut, R. Guzeeva, L. S. E171, 173 Hansen, P. E99, 101, E102, 104, 105 Harris, W. S. 250 von Hevesy, G. E61, 62, 81, 93, E99, 100, E102, 103, E112, 114, 148, E150, 151, 162, 167, 174, 175, E181, 184, 216 Holder, G. Hyman, H. H. 4, 8, 11, E13, 16, 21, 23 228 Ishkova, L. D. 155, 158 Ivanovskii, G. F. 58 Jache, A. W. 60, E61 Kaiser, H. E13, 15 E112, E113, 119, 126-130, E181-E183, 187, 192-195 Kamaeva, I. G. Kantserova, L. V. 132, 133 Katz, J. J. 228 Klyachko-Gurvich, L. L. E272, E273, 277, 278 Kogan, L. M. 245-247, 251, 286, 296, 306, 307

324

Komandin, A. V. E253, E254, 255, E298, E299, 300 111, 178, 179, E181-E183, 188, 189, 204-208 Komissarova, L. N. Kremenskaya, I. N. 111 Krichevskii, I. R. 58 Kroebel, R. E99, 101, E102, 104, 105 Kvashenko, A. P. 18, 19 E298, E299, 305 53-55, 146, 147, 213-215 Laktyushin, V. S. Lapitskii, A. V. 108, 109, 176, 177 Larsen, E. M. Lipatova, N. P. 42-45 Lobas, L. M. 120, 122-125, 131-139 Long, A. M. E253, E254, 259, E298, E299, 304 107, 252 E84, E85, 86 E13, 14, 244, E272, 274 Malhotra, K. C. Marden, J. W. Marignac, M. C. Mears, W. H. 218, 222 Meerson, G. A. E272, 275, 283 Melendres, C. A. 223, 224 E112, E113, 119, E181-E183, 187 E260, 261 Melnik, V.V. Meyer, G. Missenden, J. E84, E85, 87 E298, E299, 305 Moinov, S. G. 28-30, 33, 42-46, 48-50, 190, 191, 196-202, E253, E254, 256, 263, E298, E299, 301 Morozov, I. S. 294, 297, 309, 310 140, 141 Namoradze, Z. G. Nedjat, H. Nikolaev, N. S. 3, E61, 63-66, 74, 78, 82, 94, E150, 152, 153, 221, 226, 227, 229, E230, E231, 232, 266-268 E253, E254, 257, E260, 262, E298, E299, 302 Niselson, L. A. 248, 287-291, 295 Nixon, J. F. Olsen, J. C. 51, 52 Oosterom, J. F. E260, 261 Opalovskii, A. A. 155, 158 26, 27, 31, 32, 34-37 Oshiba, T. E253, E254, 257, E298, E299, 302 Perekhrest, G. L. E99, 101, E102, 104, 105 Pivato, J. M. Plyushchev, V. E. 111 Pogorelyi, A. D. Polyakova, V. M. E84, E85, 90, 91, E163, 165 2, 71, 76, E84, E85, 89, 106 248, 287-291, 295 Prophet, H. Pustovalova, S. S. 40 E298, E299, 305 Reznichenko, V. A. E84, E85, 86 Rich, N. M. Rozhenko, S. P. 18, 19 237, 270 239, 242, E272, E273, 276, 281 51, 52 Rueede, J. Ruff, O. Ryan, E. P. Sadikova, A. T. 3, 229, 268 Safronov, E. K. Safronov, V. V. 58 245-247, 251, 286, 296, 306, 307 238, 240, 241, 243, 271, E272, E273, 279, 280, Savchenko, G. S. 282 239, 242, E272, E273, 276, 281 Schiller, E. Schmid, P. E112, 115 Schmitt, R. H. E13, 17, 22, 24, E84, E85, 88, 95, 97, E163, 164, E168, 169, E171, 172 269, 293 Schwabe, K. 249, 264, 292, 308, 311 Scott, N. Seidel, W. 47 Serebrennikov, V. V. E112, E113, 119, 126-130, E181-E183, 187, 192-195 Shadrova, L. G. 245-247, 251, 286, 296, 306, 307 Sheft, I. 228 Shevtsova, Z. N. 245-247, 251, 286, 296, 306, 307 Skabichevskii, P. A. 5,6 Slansky, C. M. 68, 69 Eli2, Ell3, 116-118, El81, El83, 185, 186 218, 222 Spasibenko, T. P. Stahl, R. F.

Author Index

38, 39, 110 Stephens, W. R. Sud, R. G. 107, 252 E61, 63, 64, 70, 72, 73, 75, 77, 79, 80, 83, E84, E85, 92, 96, 98, 154, 156, 157, 159-161, E163, 166 E168, 170, E171, 173, 238, 240, 241, 243, 271, E272, E273, 279, 280, 282 E253, E254, 255, E298, E299, 300 218, 222 Tananaev, I. V. Tarasenkov, P. N. Tarissini, A. D. Tarnero, M. 67 E253, E254, 256, 263, E298, E299, 301 28-30, 33, 42-46, 48-50, 121, 142-145, 203,209-212 Toptygin, D. Ya. Toptygina, G. M. 218, 222 Townend, R. V. Trevorrow, L. E. 108, 109, 176, 177 Tsechovolskaya, Z. I. 40 Tsurik, L. A. 193-195 E260, 261 VanOeveren, W. J. 53-55, 146, 147, 213-215 Vlasov, L. G. 18, 19 Voitko, I. I. E61, 62, 148, E150, 151, 216 Wagner, O. H. Weiss, L. E13, 15 40 Zavaritskaya, T. A. Zevakin, I. A. 40 E272, 275, 283 Zubkova, F. M. E272, 275, 283 Zverev, G. L. Zvyagintsev, O. E. 294, 297, 309, 310

## **SOLUBILITY DATA SERIES**

Volume 1	H. L. Clever, Helium and Neon
Volume 2	H. L. Clever, Krypton, Xenon and Radon
Volume 3	M. Salomon, Silver Azide, Cyanide, Cyanamides, Cyanate, Selenocyanate and Thiocyanate
Volume 4	H. L. Clever, Argon
Volume 5/6	C. L. Young, Hydrogen and Deuterium
Volume 7	R. Battino, Oxygen and Ozone
Volume 8	C. L. Young, Oxides of Nitrogen
Volume 9	W. Hayduk, <i>Ethane</i>
Volume 10	R. Battino, Nitrogen and Air
Volume 11	B. Scrosati and C. A. Vincent, <i>Alkali Metal, Alkaline Earth Metal and Ammonium Halides. Amide Solvents</i>
Volume 12	C. L. Young, Sulfur Dioxide, Chlorine, Fluorine and Chlorine Oxides
Volume 13	S. Siekierski, T. Mioduski and M. Salomon, <i>Scandium, Yttrium, Lanthanum and Lanthanıde Nitrates</i>
Volume 14	H. Miyamoto, M. Salomon and H. L. Clever, Alkaline Earth Metal Halates
Volume 15	A. F. M. Barton, Alcohols with Water
Volume 16/17	E. Tomlinson and A. Regosz, Antibiotics: I. β-Lactam Antibiotics
Volume 18	O. Popovych, Tetraphenylborates
Volume 19	C. L. Young, Cumulative Index: Volumes 1–18
Volume 20	A. L. Horvath and F. W. Getzen, Halogenated Benzenes, Toluenes and Phenols with Water
Volume 21	C. L. Young and P. G. T. Fogg, Ammonia, Amines, Phosphine, Arsine, Stibine, Silane, Germane and Stannane in Organic Solvents
Volume 22	T. Mioduski and M. Salomon, <i>Scandium, Yttrium, Lanthanum and Lanthanide Halides in Nonaqueous Solvents</i>
Volume 23	T. P. Dirkse, Copper, Silver, Gold, and Zinc, Cadmium, Mercury Oxides and Hydroxides
Volume 24	W. Hayduk, Propane, Butane and 2-Methylpropane
Volume 25	C. Hirayama, Z. Galus and C. Guminski, Metals in Mercury
Volume 26	M. R. Masson, H. D. Lutz and B. Engelen, Sulfites, Selenites and Tellurites
Volume 27/28	H. L. Clever and C. L. Young, <i>Methane</i>
Volume 29	H. L. Clever, Mercury in Liquids, Compressed Gases, Molten Salts and Other Elements
Volume 30	H. Miyamoto and M. Salomon, Alkali Metal Halates, Ammonium lodate and lodic Acid
Volume 31	J. Eysseltová and T. P. Dirkse, Alkali Metal Orthophosphates
Volume 32	P. G. T. Fogg and C. L. Young, Hydrogen Sulfide, Deuterium Sulfide and Hydrogen Selenide
Volume 33	P. Franzosini, Molten Alkali Metal Alkanoates
Volume 34	A. N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part I: Non-cyclic Substituents
Volume 35	A. N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part II: 5-Membered Heterocyclic Substituents
Volume 36	A. N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part III: 6-Membered Heterocyclic Substituents and Miscellaneous Systems
Volume 37	D. G. Shaw, Hydrocarbons with Water and Seawater. Part I: Hydrocarbons $C_5$ to $C_7$
Volume 38	D. G. Shaw, Hydrocarbons with Water and Seawater. Part II: Hydrocarbons $C_8$ to $C_{36}$
Volume 39	C. L. Young, Cumulative Index: Volumes 20–38
Volume 40	J. Hala, Halides, Oxyhalides and Salts of Halogen Complexes of Titanium, Zirconium, Hafnium, Vanadium, Niobium and Tantalum
Volume 41	CY. Chan, I. N. Lepeshkov and K. H. Khoo, Alkaline Earth Metal Perchlorates

.