INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

ANALYTICAL CHEMISTRY DIVISION COMMISSION ON SOLUBILITY DATA

SOLUBILITY DATA SERIES

Volume 41

ALKALINE EARTH METAL PERCHLORATES

.

SOLUBILITY DATA SERIES

Editor-in-Chief J. W. LORIMER The University of Western Ontario London, Ontario, Canada

M. Salomon (USA) Sub-editor, Solid/Liquid Systems C. L. Young (Australia) Sub-editor, Indexes

EDITORIAL BOARD

H. Akaiwa (Japan)
Ch. Balarew (Bulgaria)
A. F. M. Barton (Australia)
K. R. Bulloch (USA)
H. L. Clever (USA)
R. Cohen-Adad (France)
J.-J. Counioux (France)
A. F. Danil de Namor (UK)
W. Davison (UK)
T. P. Dirkse (USA)
H. Einaga (Japan)
J. Eysseltová (Czechoslovakia)

Fu Jufu (China) F. W. Getzen (USA) L. H. Gevantman (USA) C. Kalidas (India) I. L. Khodakovsky (USSR) I. Lambert (France) S. L. Phillips (USA) J. A. Rard (USA) M. T. Saugier-Cohen Adad (France) D. G. Shaw (USA) V. M. Valyashko (USSR) J. Vanderdeelen (Belgium) W. E. Waghorne (Ireland)

Managing Editor P. D. GUJRAL IUPAC Secretariat, Oxford, UK

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY IUPAC Secretariat, Bank Court Chambers, 2-3 Pound Way, Cowley Centre, Oxford OX4 3YF, UK

SOLUBILITY DATA SERIES

Volume 41

ALKALINE EARTH METAL PERCHLORATES

CHEE-YAN CHAN University of Malaya Kuala Lumpur, Malaysia

4

Volume Editors IVAN N. LEPESHKOV Kurnakov Institute of General & Inorganic Chemistry, Moscow

KEAN H. KHOO University of Malaya Kuala Lumpur, Malaysia

Contributors

CHEE-YAN CHAN, CHEE-CHEONG HO, WEE-LAM NG, KEAN H. KHOO Department of Chemistry, University of Malaya, 59100 Kuala Lumpur, Malaysia

I. N. LEPESHKOV, E. S. GRYZLOVA, I. S. BODNYA, N. A. KOZYREVA, N. A. VASINA Kurnakov Institute of General & Inorganic Chemistry, Academy of Sciences of the USSR, Leninskii Prospekt 31, SU–117071 Moscow, USSR

> TOMASZ MIODUSKI Institute of Nuclear Chemistry & Technology ul. Dorodna 16, PL–03195 Warsaw, Poland

PERGAMON PRESS

Member of Maxwell Macmillan Pergamon Publishing Corporation

OXFORD · NEW YORK · BEIJING · FRANKFURT SÃO PAULO · SYDNEY · TOKYO · TORONTO

U.K.	Pergamon Press plc, Headington Hill Hall, Oxford OX3 0BW, England	
U.S.A.	Pergamon Press, Inc., Maxwell House, Fairview Park, Elmsford, New York 10523, U.S.A.	
PEOPLE'S REPUBLIC OF CHINA	Pergamon Press, Room 4037, Qianmen Hotel, Beijing, People's Republic of China	
FEDERAL REPUBLIC OF GERMANY	Pergamon Press GmbH, Hammerweg 6, D-6242 Kronberg, Federal Republic of Germany	
BRAZIL	Pergamon Editora Ltda, Rua Eça de Queiros, 346, CEP 04011, Paraiso, São Paulo, Brazil	
AUSTRALIA	Pergamon Press Australia Pty Ltd., P.O. Box 544, Potts Point, N.S.W. 2011, Australia	
JAPAN	Pergamon Press, 5th Floor, Matsuoka Central Building, 1-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160, Japan	
CANADA	Pergamon Press Canada Ltd., Suite No. 271, 253 College Street, Toronto, Ontario, Canada M5T 1R5	
<u></u>	Convright @ 1989 International Union of Pure and	

Copyright © 1989 International Union of Pure and Applied Chemistry

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the copyright holders.

First edition 1989

The Library of Congress has catalogued this serial title as follows:

Solubility data series.—Vol. 1—Oxford; New York; Pergamon, c 1979v.; 28 cm. Separately catalogued and classified in LC before no. 18. ISSN 0191-5622 = Solubility data series. 1. Solubility—Tables—Collected works. QD543.S6629 541.3'42'05-dc 19 85-641351 AACR 2 MARC-S

British Library Cataloguing in Publication Data

Alkaline earth metal perchlorates. 1. Alkaline earth metals. Solubility I. Chan, Chee-yan II. Lepeshkov, Ivan N. III. Khoo, Kean H. IV. Series 546'.39

ISBN 0-08-040198-8

A complete list of volumes published in the Solubility Data Series will be found on p. 281.

CONTENTS

.

Forev	vord		vii	
Prefa	Preface ix			
Intro	oductio	on to the Solubility of Solids in Liquids	xiii	
1.	Beryl	llium Perchlorate	1	
	1.1	Evaluation	1	
	1.2	Binary aqueous systems	5	
	1.3	Ternary systems	8	
2.	Magne	esium Perchlorate	14	
	2.1	Evaluation	14	
	2.2	Binary aqueous systems	23	
	2.3	Binary nonaqueous systems	25	
	2.4	Ternary systems	35	
	2.5	More complex systems	88	
з.	Calci	lum Perchlorate	, 110	
	3.1	Evaluation	110	
	3.2	Binary aqueous systems	119	
	3.3	Binary nonaqueous systems	121	
	3.4	Ternary systems	127	
	3.5	More complex systems	165	
4. Strontium Perchlorate		173		
	4.1	Evaluation	173	
	4.2	Binary aqueous systems	180	
	4.3	Binary nonaqueous systems	182	
	4.4	Ternary systems	189	
	4.5	More complex systems	212	
5. Barium Perchlorate		221		
	5.1	Evaluation	221	
	5.2	Binary aqueous systems	231	
	5.3	Binary nonaqueous systems	233	
	5.4	Ternary systems	238	
	5.5	More complex systems	264	
6.	Syste	em Index	269	
7.	Form	ala/Registry Number Index	272	
8.	Regia	stry Number Index	276	
9. Author Index 278				
Solul	oility	Data Series: Published and Forthcoming Volumes	281	

FOREWORD

If the knowledge is undigested or simply wrong, more is not better.

The Solubility Data Series is a project of Commission V.8 (Solubility Data) of the International Union of Pure and Applied Chemistry (IUPAC). The project had its origins in 1973, when the Analytical Chemistry Division of IUPAC set up a Subcommission on Solubility Data under the chairmanship of the late Prof. A.S. Kertes. When publication of the Solubility Data Series began in 1979, the Committee became a full commission of IUPAC, again under the chairmanship of Prof. Kertes, who also became Editor - in - Chief of the Series. The Series has as its goal the preparation of a comprehensive and critical compilation of data on solubilities in all physical systems, including gases, liquids and solids.

The motivation for the Series arose from the realization that, while solubility data are of importance in a wide range of fields in science and technology, the existing data had not been summarized in a form that was at the same time comprehensive and complete. Existing compilations of solubility data indeed existed, but they contained many errors, were in general uncritical, and were seriously out-of-date.

It was also realized that a new series of compilations of data gave educational opportunities, in that careful compilations of existing data could be used to demonstrate what constitutes data of high and lasting quality. As well, if the data were summarized in a sufficiently complete form, any individual could prepare his or her own evaluation, independently of the published evaluation. Thus, a special format was established for each volume, consisting of individual data sheets for each separate publication, and critical evaluations for each separate system, provided sufficient data from different sources were available for comparison. The compilations and, especially, the evaluations were to be prepared by active scientists who were either involved in producing new data, or were interested in using data of high quality. With minor modifications in format, this strategy has continued throughout the Series.

In the standard arrangement of each volume, the Critical Evaluation gives the following information:

(i) A text which discusses the numerical solubility information which has been abstracted from the primary sources in the form of compilation sheets. The text concerns primarily the quality of the data, after consideration of the purity of the materials and their characterization, the experimental method used, the uncertainties in the experimental values, the reproducibility, the agreement with accepted test values, and, finally, the fitting of the data to suitable functions, along with statistical tests of the fitted data.

(*ii*) A set of recommended data, whenever possible, including weighted averages and estimated standard deviations. If applicable, one or more smoothing equations which have been computed or verified by the evaluator are also given.

(*iii*) A graphical plot of the recommended data, in the form of phase diagrams where appropriate.

The Compilation part consists of data sheets which summarize the experimental data from the primary literature. Here much effort is put into obtaining complete coverage; many good data have appeared in publications from the late nineteenth and early twentieth centuries, or in obscure journals. Data of demonstrably low precision are not compiled, but are mentioned in the Critical Evaluation. Similarly, graphical data, given the uncertainty of accurate conversion to numerical values, are compiled only where no better data are available. The documentation of data of low precision can serve to alert researchers to areas where more work is needed.

A typical data sheet contains the following information:

- (i) list of components: names, formulas, Chemical Abstracts Registry Numbers;
- (11) primary source of the data;
- (iii) experimental variables; (iv) compiler's name;
 - - (v) experimental values as they appear in the primary source, in modern units with explanations if appropriate;
 - (vi) experimental methods used;
- (vii) apparatus and procedure used;
- (viii) source and purity of materials used;
 - (ix) estimated error, either from the primary source or estimated by the compiler;
 - (x) references relevant to the generation of the data cited in the primary source.

Each volume also contains a general introduction to the particular type of system, such as solubility of gases, of solids in liquids, etc., which contains a discussion of the nomenclature used, the principles of accurate determination of solubilities, and related thermodynamic prin-ciples. This general introduction is followed by a specific introduction to the subject matter of the volume itself.

The Series embodies a new approach to the presentation of numerical data, and the details continue to be influenced strongly by the perceived needs of prospective users. The approach used will, it is hoped, en-courage attention to the quality of new published work, as authors become more aware that their work will attain permanence only if it meets the standards set out in these volumes. If the Series succeeds in this respect, even partially, the Solubility Data Commission will have jus-tified the labour expended by many scientists throughout the world in its tified the labour expended by many scientists throughout the world in its production.

January, 1989

J.W. Lorimer, London, Canada

PREFACE

This Volume in the IUPAC Solubility Data Series concerns alkaline earth metal perchlorates in aqueous, non-aqueous and mixed solvents systems and follows the objectives and guidelines enunciated in the FOREWORD and INTRODUCTION to the Series.

The first comprehensive review on the manufacture, properties, uses, analytical chemistry of perchloric acid, its salts and derivative and compounds appeared in 1960 in the form of an excellent monograph edited by Schumacher (1), which also included a brief account of the history of the perchlorates. All of the alkaline earth metal perchlorates form several hydrates and ammines (1,2), except perhaps beryllium perchlorate for which only one hydrate, $Be(ClO_4)_2.4H_2O$ has been reported (3). Some of these perchlorates have been used as drying agents and ammonia absorbents, and this usage seems to have been their main focus of commercial interest in the past. Their hygroscopic nature precludes their general use in the manufacture of explosives and rocket propellants, unlike ammonium and potassium perchlorates which do not form hydrates. Their use as catalysts in the polymerization of styrene (4) and as catalytic curing agents in a treatment process for textiles (5) have also been reported. Recent patented literature (6) reports many other new and varied uses. Among these are their uses as heat stabilizers and anti-oxidants for synthetic rubbers and PVC, as discoloration prevention agents for polystyrene, in the treatment of polyimide membranes for water desalination and in mixtures with certain polymers for use as electrolytes in solid-state batteries.

The preparation of the alkaline earth metal perchlorates, with the exception of beryllium perchlorate, was first reported by Serullas (7) in 1831 and the preparation of beryllium perchlorate was first reported in 1873 by Atterberg (8) and de Marignac (9). However, reliable solubility data for these perchorates in water and other solvents were not available before 1923. All of the alkaline earth metal perchlorates are very soluble in water and in alcohols. Much of the data compiled here pertain to aqueous multicomponent systems of these perchlorates and it appears that the primary objective of the authors of the original measurements was to obtain solubility data for the construction of phase diagrams and the characterization of the solid phases in equilibrium with the saturated solutions. Several hydrates for each of the alkaline earth metal perchlorates, except for beryllium perchlorate, have been reported, as well as their solid compounds with other salts and organic compounds. However, except for the more common hydrates, information for confirming the existence of most of these compounds is not available. There are relatively fewer compilations on the non-aqueous systems and studies of the variation of the solubilities of these perchlorates with temperature

(continued next page)

have been limited to the range 273 K to 323 K. No attempt has been made in this Volume to determine thermodynamic solubility products and activity coefficients of the perchlorates in the systems reported here which involve very high ionic strengths. It should also be noted that Chemical Abstracts Registry Numbers, where available, for all compounds not listed in the Components boxes in the Compilations and Evaluations are given only in the Formula / Registry Number Index pages in this Volume.

The primary sources used in the literature survey for relevant information were Chemical Abstracts from 1907 to 1987 and the volumes on Solubilities of Inorganic and Metal Organic Compounds by Linke (10). Other sources include the monographs by Schumacher (1) and Schilt (11), the article by Carlson (12), and the comprehensive treatise by Mellor (13). While the compilers have made their best effort to compile on all relevant and available data published up to 1987, it is possible that certain articles that may be pertinent, but published in obscure journals, have missed No compilations have been prepared for data presented their attention. only in the form of graphs and these involved only a few articles, published in Russian. It is very difficult, if not practically impossible, to communicate with the authors of the original measurements to obtain the numerical data.

This work is the result of several years of joint-effort and close collaboration between the Soviet and Malaysian scientists involved in the Solubility Data Project, with much appreciated help and advice from Dr. M. Salomon (U.S.A.), Prof. J.W. Lorimer (Canada), Prof. R. Cohen-Adad (France), Prof. A.S. Kertes (Israel) and Prof. G.A. Yagodin (U.S.S.R.) in various ways, including liason and literature search. It represents the first successful collaboration of this nature in the Solubility It is worth noting that much of the compilations are on Data Project. original data published in Russian journals which are not readily available outside the U.S.S.R. Most of the calculations (where indicated as compilers' or editors' calculations in footnotes) in all the compilations, the major part of the indexing work, and the preparation of the final camera-ready pages of the entire Volume, except for the Foreword, Introduction, Indexes and Contents CRC pages, were carried out by the Malaysian group in the University of Malaya. The editors and compilers thank the University of Malaya and the Kurnakov Institute of General and Inorganic Chemistry, Moscow for providing facilities used in the preparation of this Volume. They also wish to express their gratitude to all those colleagues in IUPAC Commission V.8 who have helped in one way or another.

Х

.

REFERENCES

-

1.	Schumacher, J.C. PERCHLORATES. Their Properties, Manufacture and
	Uses, Reinhold Publ. Corp., New York, <u>1960</u> .
2.	Smeets, C. Natuurw. Tijdschr. <u>1939</u> , 21, 149.
з.	See Evaluation on beryllium perchlorate in this Volume.
4.	Losev, B.I.; Zakharova, Y.I. Doklady Akad. Nauk S.S.S.R. <u>1957</u> , 116, 609.
5.	Schroeder, C.W. U.S. Patent 2,826,514 (Mar. 11, 1958).
6.	Chemical Abstracts, <u>1982</u> - <u>1988</u> .
7.	Serullas, G.S. Ann. Chim. Phys. <u>1831</u> , 46(2), 304.
8.	Atterberg, A. Ber. Dtsch. Chem. Ges. <u>1873</u> , 7, 472.
9.	de Marignac, J.C.G. Ann. Chim. Phys. <u>1873</u> , 30(4), 45.
10.	Linke, W.F. Solubilities of Inorganic and Metal Organic Compounds Vol.I, 4^{th} ed., Van Nostrand, <u>1958</u> ; Vol.II, 4^{th} ed., Am. Chem. Soc. <u>1965</u> .
11.	Schilt, A.A. Perchloric Acid and Perchlorates, G.F. Smith Chem.
	Co. Publ., <u>1979</u> .
12.	Carlson, B. in Festskrift, ed. P. Klason, Norstedt, Stockholm
	<u>1910</u> , 247.
13,	Mellor, J.W. A Comprehensive Treatise on Inorganic and
	Theoretical Chemistry, Vol.II, 399, Longmans, Green and Co.,
	London <u>1967</u> .
	C.Y. Chan
	K.H. Khoo
Noven	nber, 1988 I.N. Lepeshkov

INTRODUCTION TO THE SOLUBILITY OF SOLIDS IN LIQUIDS

Nature of the Project

The Solubility Data Project (SDP) has as its aim a comprehensive search of the literature for solubilities of gases, liquids, and solids in liquids or solids. Data of suitable precision are compiled on data sheets in a uniform format. The data for each system are evaluated, and where data from different sources agree sufficiently, recommended values are proposed. The evaluation sheets, recommended values, and compiled data sheets are published on consecutive pages.

Definitions

1

A mixture (1, 2) describes a gaseous, liquid, or solid phase containing more than one substance, when the substances are all treated in the same way.

A solution (1, 2) describes a liquid or solid phase containing more than one substance, when for convenience one of the substances, which is called the solvent, and may itself be a mixture, is treated differently than the other substances, which are called solutes. If the sum of the mole fractions of the solutes is small compared to unity, the solution is called a dilute solution.

The solubility of a substance B is the relative proportion of B (or a substance related chemically to B) in a mixture which is saturated with respect to solid B at a specified temperature and pressure. Saturated implies the existence of equilibrium with respect to the processes of dissolution and precipitation; the equilibrium may be stable or metastable. The solubility of a substance in metastable equilibrium is usually greater than that of the corresponding substance in stable equilibrium. (Strictly speaking, it is the activity of the substance in metastable equilibrium that is greater.) Care must be taken to distinguish true metastability from supersaturation, where equilibrium does not exist.

Either point of view, mixture or solution, may be taken in describing solubility. The two points of view find their expression in the quantities used as measures of solubility and in the reference states used for definition of activities, activity coefficients and osmotic coefficients.

The qualifying phrase "substance related chemically to B" requires comment. The composition of the saturated mixture (or solution) can be described in terms of any suitable set of thermodynamic components. Thus, the solubility of a salt hydrate in water is usually given as the relative proportion of anhydrous salt in solution, rather than the relative proportions of hydrated salt and water.

Quantities Used as Measures of Solubility

1. Mole fraction of substance B, xB:

$$x_{B} = n_{B} / \sum_{s=1}^{C} n_{s}$$
 [1]

where n_s is the amount of substance of s, and c is the number of distinct substances present (often the number of thermodynamic components in the system). Mole per cent of B is 100 x_B .

2. Mass fraction of substance B, w_B:

$$w_B = m_B' / \sum_{s=1}^{C} m_s'$$
 [2]

where m_g is the mass of substance s. Mass per cent is 100 w_B . The equivalent terms weight fraction and weight per cent are not used.

3. Solute mole (mass) fraction of solute B (3, 4):

$$x_{s,B} = m_B / \sum_{B=1}^{C} m_B = x_B / \sum_{B=1}^{C} x_B$$
 [3]

$$w_{s,B} = m_{B'} / \sum_{g=1}^{C'} m_{s'} = w_{B} / \sum_{g=1}^{C'} w_{s}$$
 [3a]

where the summation is over the solutes only. For the solvent A, $x_{S,A}$ $x_A/(1 - x_A)$, $w_{S,A} = w_A/(1 - w_A)$. These quantities are called Jänecke mole (mass) fractions in many papers.

4. Molality of solute B (1, 2) in a solvent A:

SI base units: mol kg⁻¹ [4] $m_B = n_B/n_A M_A$

where M_A is the molar mass of the solvent.

5. Concentration of solute B (1, 2) in a solution of volume V:

 $c_B = [B] = n_B/V$ SI base units: mol m⁻³

The symbol cg is preferred to [B], but both are used. The terms molarity and molar are not used.

Mole and mass fractions are appropriate to either the mixture or the solution point of view. The other quantities are appropriate to the solution point of view only. Conversions among these quantities can be carried out using the equations given in Table I-1 following this Introduction. Other useful quantities will be defined in the prefaces to individual volumes or on specific data sheets.

In addition to the quantities defined above, the following are useful in conversions between concentrations and other quantities.

SI base units: kg m⁻³ 6. Density: $\rho = m/V$ 191

7. Relative density: d; the ratio of the density of a mixture to the density of a reference substance under conditions which must be specified for both (1). The symbol d_1 will be used for the density of a mixture at t°C, 1 bar divided by the density of water at t°C, 1 bar. (In some cases 1 atm = 101.325 kPa is used instead of 1 bar = 100 kPa.)

8. A note on nomenclature. The above definitions use the nomenclature of the IUPAC Green Book (1), in which a solute is called B and a solvent A In compilations and evaluations, the first-named component (component 1) is the solute, and the second (component 2 for a two-component system) is the solvent. The reader should bear these distinctions in nomenclature in mind when comparing nomenclature and theoretical equations given in this Introduction with equations and nomenclature used on the evaluation and compilation sheets.

Thermodynamics of Solubility

The principal aims of the Solubility Data Project are the tabulation and evaluation of: (a) solubilities as defined above; (b) the nature of the saturating phase. Thermodynamic analysis of solubility phenomena has two aims: (a) to provide a rational basis for the construction of functions to represent solubility data; (b) to enable thermodynamic quantities to be extracted from solubility data. Both these are difficult to achieve in many cases because of a lack of experimental or theoretical information concerning activity coefficients. Where thermodynamic quantities can be found, they are not evaluated critically, since this task would involve critical evaluation of a large body of data that is not directly relevant to solubility. The following is an outline of the principal thermodynamic relations encountered in discussions of solubility. For more extensive discussions and references, see books on thermodynamics, e.g., (5-12).

Activity Coefficients (1)

(a) Mixtures. The activity coefficient
$$f_B$$
 of a substance B is given

RT ln (
$$f_B x_B$$
) = $\mu_B - \mu_B^*$

where μ_B^* is the chemical potential of pure B at the same temperature and pressure. For any substance B in the mixture,

$$\lim_{X_B \to 1} f_B = 1$$
 [8]

(b) Solutions.

(1) Solute B. The molal activity coefficient
$$\gamma_B$$
 is given by

$$RT \ln(\gamma_B m_B) = \mu_B - (\mu_B - RT \ln m_B)^{\infty}$$

where the superscript " indicates an infinitely dilute solution. For any solute B,

$$\gamma_{\rm B}^{\infty} = 1$$

- .

[9]

[7]

[5]

Activity coefficients y_B connected with concentrations c_B , and $f_{X,B}$ (called the rational activity coefficient) connected with mole fractions x_B are defined in analogous ways. The relations among them are (1, 9), where ρ^* is the density of the pure solvent:

$$f_B = (1 + M_{A_S} m_s) \gamma_B = [\rho + \sum_{s} (M_A - M_s) c_s] y_B / \rho^*$$
 [11]

$$\mathbf{y}_{B} = (1 - \sum_{\mathbf{s}} \mathbf{x}_{\mathbf{s}}) \mathbf{f}_{\mathbf{X},B} = (\rho - \sum_{\mathbf{s}} M_{\mathbf{s}} \mathbf{c}_{\mathbf{s}}) \mathbf{y}_{B} / \rho^{*}$$
^[12]

$$y_{B} = \rho^{*} f_{X,B} [1 + \sum_{a} (M_{g}/M_{A} - 1) x_{B}] / \rho = \rho^{*} (1 + \sum_{g} M_{g} m_{g}) \gamma_{B} / \rho$$
[13]

For an electrolyte solute $B = C_{\nu+}A_{\nu-}$, the activity on the molality scale is replaced by (9)

$$\gamma_{B}m_{B} \neq \gamma_{\pm} \gamma_{m} \beta^{\nu} Q^{\nu} \qquad [14]$$

where $\nu = \nu_{+} + \nu_{-}$, $Q = (\nu_{+}^{\nu_{+}}\nu_{-}^{\nu_{-}})^{1/\nu}$, and ν_{\pm} is the mean ionic activity coefficient on the molality scale. A similar relation holds for the concentration activity, y_{BCB} . For the mole fractional activity,

$$f_{x,B}x_{B} = Q f_{\pm}^{\nu} x_{\pm}^{\nu}$$
 [15]

where $x_{\pm} = (x_{\pm}x_{-})^{1/\nu}$. The quantities x_{\pm} and x_{-} are the ionic mole fractions (9), which are

$$x_{+} = \nu_{+}x_{B}/[1 + \sum_{g}(\nu_{g} - 1)x_{g}]; \quad x_{-} = \nu_{-}x_{B}[1 + \sum_{g}(\nu_{g} - 1)x_{g}] \quad [16]$$

where ν_S is the sum of the stoichiometric coefficients for the ions in a salt with mole fraction x_S . Note that the mole fraction of solvent is now

$$x_{A}' = (1 - \sum_{a} \nu_{s} x_{s}) / [1 + \sum_{a} (\nu_{s} - 1) x_{s}]$$
[17]

so that

$$x_{A}' + \sum \nu_{s} x_{s} = 1$$
 [18]

The relations among the various mean ionic activity coefficients are:

$$f_{\pm} = (1 + M_{A_{\Sigma}} \nu_{s} ms) \gamma_{\pm} = [\rho + \sum_{s} (\nu_{s} M_{A} - M_{s}) c_{s}] y_{\pm} / \rho^{*}$$
[19]

$$\gamma_{\pm} = \frac{(1 - \sum_{s} x_{s})f_{\pm}}{1 + \sum_{s} (\nu_{s} - 1)x_{s}} = (\rho - \sum_{s} M_{s}c_{s})y_{\pm}/\rho^{*}$$
[20]

$$y_{\pm} = \frac{\rho^{*} [1 + \sum_{g} (M_{g}/M_{A} - 1)x_{g}] f_{\pm}}{\rho [1 + \sum_{g} (\nu_{g} - 1)x_{g}]} = \rho^{*} (1 + \sum_{g} M_{g} m_{g})^{\gamma} \pm /\rho \qquad [21]$$

(11) Solvent, A:

The comotic coefficient, ϕ , of a solvent A is defined as (1):

$$\phi = (\mu_A^* - \mu_A) / RT M_A \sum m_B \qquad [22]$$

where μ_A^* is the chemical potential of the pure solvent.

The rational osmotic coefficient, ϕ_X , is defined as (1):

$$\phi_{\mathbf{X}} = (\mu_{\mathbf{A}} - \mu_{\mathbf{A}}^{\star}) / RT \ln \mathbf{x}_{\mathbf{A}} = \phi_{\mathbf{M}_{\mathbf{A}}} \sum_{\mathbf{m}_{\mathbf{S}}} / \ln(1 + M_{\mathbf{A}} \sum_{\mathbf{m}_{\mathbf{S}}})$$
[23]

The activity, a_A , or the activity coefficient, f_A , is sometimes used for the solvent rather than the osmotic coefficient. The activity coefficient is defined relative to pure A, just as for a mixture.

For a mixed solvent, the molar mass in the above equations is replaced by the average molar mass; i.e., for a two-component solvent with components J, K, M_A becomes

$$M_{\rm A} = M_J + (M_K - M_J) \mathbf{x}_{V,K}$$
 [24]

where $x_{V,K}$ is the solvent mole fraction of component K.

The osmotic coefficient is related directly to the vapor pressure, p, of a solution in equilibrium with vapor containing A only by (12, p.306):

$$\phi M_{A} \sum v_{s} m_{s} = -\ln(p/p_{A}^{*}) + (V_{m,A}^{*} - B_{AA})(p - p_{A}^{*})/RT \qquad [25]$$

where p_A^* , $V_{m,A}^*$ are the vapor pressure and molar volume of pure solvent A, and B_{AA} is the second virial coefficient of the vapor.

The Liquid Phase

A general thermodynamic differential equation which gives solubility as a function of temperature, pressure and composition can be derived. The approach is similar to that of Kirkwood and Oppenheim (7); see also (11, 12). Consider a solid mixture containing c thermodynamic components i. The Gibbs-Duhem equation for this mixture is:

$$\sum_{i=1}^{C} x_{i}' (S_{i}' dT - V_{i}' dp + d\mu_{i}') = 0$$
 [26]

A liquid mixture in equilibrium with this solid phase contains c' thermodynamic components *i*, where c' > c. The Gibbs-Duhem equation for the liquid mixture is:

$$\sum_{i=1}^{C} x_{i}(s_{i}dT - V_{i}dp + d\mu_{i}') + \sum_{i=C+1}^{C'} x_{i}(s_{i}dT - V_{i}dp + d\mu_{i}) = 0 \quad [27]$$

Subtract [26] from [27] and use the equation

$$d\mu_i = (d\mu_i)_{T,p} - S_i dT + V_i dp \qquad [28]$$

and the Gibbs-Duhem equation at constant temperature and pressure:

$$\sum_{i=1}^{C} x_{1}(d\mu_{i}')_{T,p} + \sum_{i=C+1}^{C} x_{i}(d\mu_{i})_{T,p} = 0$$
[29]

The resulting equation is:

$$RT\sum_{i=1}^{C} x_{i}'(dlna_{1})_{T,p} = \sum_{i=1}^{C} x_{i}'(H_{1} - H_{i}')dT/T - \sum_{i=1}^{C} x_{i}'(V_{1} - V_{1}')dp \quad [30]$$

where

$$H_1 - H_1' = T(S_1 - S_1')$$
 [31]

is the enthalpy of transfer of component 1 from the solid to the liquid phase at a given temperature, pressure and composition, with H_i and S_1 the partial molar enthalpy and entropy of component 1.

Use of the equations

$$H_i - H_i^0 = -RT^2(\partial \ln a_1/\partial T)_{x,p}$$
 [32]

and

$$V_1 - V_i^0 = RT(\partial \ln a_i / \partial p)_{X,T}$$
[33]

where superscript o indicates an arbitrary reference state gives:

$$RT\sum_{i=1}^{C} x_{i}' dlna_{i} = \sum_{i=1}^{C} x_{i}' (H_{1}^{0} - H_{i}') dT/T - \sum_{i=1}^{C} x_{i}' (V_{i}^{0} - V_{i}') dp \quad [34]$$

where

 $dlna_i = (dlna_i)_{T,p} + (\partial lna_i/\partial T)_{X,p} + (\partial lna_i/\partial p)_{X,T}$ [35]

The terms involving enthalpies and volumes in the solid phase can be written as:

$$\sum_{i=1}^{C} x_{i}' H_{i}' = H_{s}^{*} \qquad \sum_{i=1}^{C} x_{i}' V_{i}' = V_{s}^{*} \qquad [36]$$

With eqn [36], the final general solubility equation may then be written:

$$R_{i=1}^{C} x_{i}' d \ln a_{i} = (H_{s}^{*} - \sum_{i=1}^{C} x_{i}' H_{i}^{0}) d(1/T) - (V_{s}^{*} - \sum_{i=1}^{C} x_{i}' V_{i}^{0}) dp/T \quad [37]$$

Note that those components which are not present in both phases do not appear in the solubility equation. However, they do affect the solubility through their effect on the activities of the solutes.

Several applications of eqn [37] (all with pressure held constant) will be discussed below. Other cases will be discussed in individual evaluations.

(a) Solubility as a function of temperature.

Consider a binary solid compound $A_n B$ in a single solvent A. There is

no fundamental thermodynamic distinction between a binary compound of A and B which dissociates completely or partially on melting and a solid mixture of A and B; the binary compound can be regarded as a solid mixture of constant composition. Thus, with c = 2, $x_A' = n/(n + 1)$, $x_B' = 1/(n + 1)$, eqn [37] becomes:

$$dln(a_A^n a_B) = -\Delta H_{AB}^{0} d(1/RT)$$
[38]

where

$$\Delta H_{AB}^{0} = nH_{A} + H_{B} - (n+1)H_{S}^{*}$$
[39]

is the molar enthalpy of melting and dissociation of pure solid A_nB to form A and B in their reference states. Integration between T and T_0 , the melting point of the pure binary compound A_nB , gives:

$$\ln(a_A^n a_B) = \ln(a_A^n a_B)_{T=T_0} - \int_{T_0}^{T} \Delta H_{AB} d(1/RT)$$
 [40]

(i) Non-electrolytes

In eqn [32], introduce the pure liquids as reference states. Then, using a simple first-order dependence of ΔH_{AB}^* on temperature, and assuming that the activitity coefficients conform to those for a simple mixture (6):

$$RT \ln f_A = w x_B^2 \qquad RT \ln f_B = w x_A^2 \qquad [41]$$

then, if w is independent of temperature, eqn [32] and [33] give:

$$\ln\{x_B(1-x_B)^n\} + \ln\left\{\frac{n^n}{(1+n)^{n+1}}\right\} = G(T)$$
 [42]

where

$$G(T) = -\left\{\frac{\Delta H_{AB}^{*} - T^{*} \Delta C_{p}^{*}}{R}\right\} \left\{\frac{1}{T} - \frac{1}{T^{*}}\right\} + \frac{\Delta C_{p}^{*}}{R} \ln(T/T^{*}) - \frac{w}{R} \left\{\frac{xA^{2} + nxB^{2}}{T} - \frac{n}{(n+1)T^{*}}\right\}$$
[43]

where ΔC_p^* is the change in molar heat capacity accompanying fusion plus decomposition of the pure compound to pure liquid A and B at temperature T^* , (assumed here to be independent of temperature and composition), and ΔH_{AB}^* is the corresponding change in enthalpy at $T = T^*$. Equation [42] has the general form:

$$\ln\{x_B(1-x_B)^n\} = A_1 + A_2/(T/K) + A_3\ln(T/K) + A_4(x_A^2 + nx_B^2)/(T/K)$$
[44]

If the solid contains only component B, then n = 0 in eqn [42] to [44].

If the infinite dilution reference state is used, then:

RT
$$\ln f_{X,B} = w(x_A^2 - 1)$$
 [45]

and [39] becomes

$$\Delta H_{AB}^{m} = nH_{A}^{*} + H_{B}^{m} - (n + 1)H_{S}^{*}$$
[46]

where ΔH_{AB}^{∞} is the enthalpy of melting and dissociation of solid compound $A_{n}B$ to the infinitely dilute reference state of solute B in solvent A; H_{A}^{*} and H_{B}^{∞} are the partial molar enthalpies of the solute and solvent at infinite dilution. Clearly, the integral of eqn [32] will have the same form as eqn [35], with ΔH_{AB}^{∞} replacing ΔH_{AB}^{*} , ΔC_{p}^{∞} replacing ΔCp^{*} , and x_{A}^{2} - 1 replacing x_{A}^{2} in the last term.

See (5) and (11) for applications of these equations to experimental data.

(11) Electrolytes

(a) Mole fraction scale

If the liquid phase is an aqueous electrolyte solution, and the solid is a salt hydrate, the above treatment needs slight modification. Using rational mean activity coefficients, eqn [34] becomes:

$$\ln\left\{\frac{x_{B}^{\nu}(1-x_{B})^{n}}{(1+(\nu-1)x_{B})^{n+\nu}}\right\} - \ln\left\{\frac{n^{n}}{(n+\nu)^{n+\nu}}\right\} + \ln\left\{\left[\frac{f_{B}}{f_{B}^{*}}\right]^{\nu}\left[\frac{f_{A}}{f_{A}^{*}}\right]^{n}\right\}$$
$$- - \left\{\frac{\Delta H_{AB}^{*} - T^{*}\Delta C_{P}^{*}}{R}\right\}\left\{\frac{1}{T} - \frac{1}{T^{*}}\right\} + \frac{\Delta CP^{*}}{R}\ln(T/T^{*})$$

$$(47)$$

where superscript * indicates the pure salt hydrate. If it is assumed that the activity coefficients follow the same temperature dependence as the right-hand side of eqn [47] (13-16), the thermochemical quantities on the right-hand side of eqn [47] are not rigorous thermodynamic enthalpies and heat capacities, but are apparent quantities only. Data on activity coefficients (9) in concentrated solutions indicate that the terms involving these quantities are not negligible, and their dependence on temperature and composition along the solubility-temperature curve is a subject of current research.

A similar equation (with $\nu = 2$ and without the heat capacity terms or activity coefficients) has been used to fit solubility data for some MOH-H₂O systems, where M is an alkali metal (13); enthalpy values obtained agreed well with known values. The full equation has been deduced by another method in (14) and applied to MCl₂-H₂O systems in (14) and (15). For a summary of the use of equation [47] and similar equations, see (14).

(2) Molality scale

Substitution of the mean activities on the molality scale in eqn [40] gives:

$$\nu \ln \left[\frac{\gamma_{\pm} m_{B}}{\gamma_{\pm}^{*} m_{B}^{*}} \right] - \nu (m_{B}/m_{B}^{*} - 1) - \nu \{m_{B}(\phi - 1)/m_{B}^{*} - \phi^{*} + 1\}$$

$$= G(T)$$
[48]

where G(T) is the same as in eqn [47], $m_B^* = 1/nM_A$ is the molality of the anhydrous salt in the pure salt hydrate and γ_{\pm} and ϕ are the mean activity coefficient and the osmotic coefficient, respectively. Use of the osmotic coefficient for the activity of the solvent leads, therefore, to an equation that has a different appearance to [47]; the content is identical. However, while eqn [47] can be used over the whole range of composition ($0 \le x_B \le 1$), the molality in eqn [48] becomes infinite at x_B = 1; use of eqn [48] is therefore confined to solutions sufficiently dilute that the molality is a useful measure of composition. The essentials of eqn [48] were deduced by Williamson (17); however, the form used here appears first in the Solubility Data Series. For typical applications (where activity and osmotic coefficients are not considered explicitly, so that the enthalpies and heat capacities are apparent values, as explained above), see (18).

The above analysis shows clearly that a rational thermodynamic basis exists for functional representation of solubility-temperature curves in two-component systems, but may be difficult to apply because of lack of experimental or theoretical knowledge of activity coefficients and partial molar enthalpies. Other phenomena which are related ultimately to the stoichiometric activity coefficients and which complicate interpretation include ion pairing, formation of complex ions, and hydrolysis. Similar considerations hold for the variation of solubility with pressure, except that the effects are relatively smaller at the pressures used in many investigations of solubility (5).

(b) Solubility as a function of composition.

At constant temperature and pressure, the chemical potential of a saturating solid phase is constant:

$$\mu_{A_{D}B} = \mu_{A_{D}B}(sln) = n\mu_{A} + \mu_{B}$$
[49]

=
$$(n\mu_{A}^{+} + \nu_{+}\mu_{+}^{-} + \nu_{-}\mu_{-}^{-}) + nRT \ln f_{A}X_{A}$$

for a salt hydrate $A_{D}B$ which dissociates to water (A), and a salt (B), one mole of which ionizes to give ν_{+} cations and ν_{-} anions in a solution in which other substances (ionized or not) may be present. If the saturated solution is sufficiently dilute, $f_{A} = x_{A} = 1$, and the quantity K_{B} in

$$\Delta G^{\infty} = (\nu_{+}\mu_{+}^{\infty} + \nu_{-}\mu_{-}^{\infty} + n\mu_{A}^{*} - \mu_{AB}^{*})$$

+ $\nu RT \ln(\gamma_{\pm}m_{\pm}Q)$

 $= -RT \ln K_{S}$

$= -\nu RT \ln(Q\gamma_{\pm}m_B)$

is called the solubility product of the salt. (It should be noted that it is not customary to extend this definition to hydrated salts, but there is no reason why they should be excluded.) Values of the solubility product are often given on mole fraction or concentration scales. In dilute solutions, the theoretical behaviour of the activity coefficients as a function of ionic strength is often sufficiently well known that reliable extrapolations to infinite dilution can be made, and values of K_S can be determined. In more concentrated solutions, the same problems with activity coefficients that were outlined in the section on variation of solubility with temperature still occur. If these complications do not arise, the solubility of a hydrate salt $C_{\nu}A_{\nu} \cdot nH_2O$ in the presence of other solutes is given by eqn [50] as

$$\nu \ln\{m_B/m_B(0)\} \sim -\nu \ln\{\gamma_{\pm}/\gamma_{\pm}(0)\} - n \ln\{a_A/a_A(0)\}$$
 [51]

where a_A is the activity of water in the saturated solution, m_B is the molality of the salt in the saturated solution, and (0) indicates absence of other solutes. Similar considerations hold for non-electrolytes.

Consideration of complex mixed ligand equilibria in the solution phase are also frequently of importance in the interpretation of solubility equilibria. For nomenclature connected with these equilibria (and solubility equilibria as well), see (19, 20).

The Solid Phase

The definition of solubility permits the occurrence of a single solid phase which may be a pure anhydrous compound, a salt hydrate, a nonstoichiometric compound, or a solid mixture (or solid solution, or "mixed crystals"), and may be stable or metastable. As well, any number of solid phases consistent with the requirements of the phase rule may be present. Metastable solid phases are of widespread occurrence, and may appear as polymorphic (or allotropic) forms or crystal solvates whose rate of transition to more stable forms is very slow. Surface heterogeneity may also give rise to metastability, either when one solid precipitates on the surface of another, or if the size of the solid particles is sufficiently small that surface effects become important. In either case, the solid is not in stable equilibrium with the solution. See (21) for the modern formulation of the effect of particle size on solubility. The stability of a solid may also be affected by the atmosphere in which the system is equilibrated.

Many of these phenomena require very careful, and often prolonged, equilibration for their investigation and elimination. A very general analytical method, the "wet residues" method of Schreinemakers (22), is often used to investigate the composition of solid phases in equilibrium with salt solutions. This method has been reviewed in (23), where [see also (24)] least-squares methods for evaluating the composition of the solid phase from wet residue data (or initial composition data) and solubilities are described. In principle, the same method can be used with systems of other types. Many other techniques for examination of solids, in particular X-ray, optical, and thermal analysis methods, are used in conjunction with chemical analyses (including the wet residues method).

COMPILATIONS AND EVALUATIONS

The formats for the compilations and critical evaluations have been standardized for all volumes. A brief description of the data sheets has been given in the FOREWORD; additional explanation is given below.

Guide to the Compilations

The format used for the compilations is, for the most part, selfexplanatory. The details presented below are those which are not found in the FOREWORD or which are not self-evident.

Components. Each component is listed according to IUPAC name, formula, and Chemical Abstracts (CA) Registry Number. The formula is given either in terms of the IUPAC or Hill (25) system and the choice of formula is governed by what is usual for most current users: i.e., IUPAC for inorganic compounds, and Hill system for organic compounds. Components are ordered according to:

- (a) saturating components;
- (b) non-saturating components in alphanumerical order;
- (c) solvents in alphanumerical order.

[50]

The saturating components are arranged in order according to a 18-column periodic table with two additional rows:

- Columns 1 and 2: H, alkali elements, ammonium, alkaline earth elements 3 to 12: transition elements
 - - Row 1: Ce to Lu Row 2: Th to the end of the known elements, in order of atomic number.

Salt hydrates are generally not considered to be saturating components since most solubilities are expressed in terms of the anhydrous salt. The existence of hydrates or solvates is carefully noted in the text, and CA Registry Numbers are given where available, usually in the critical evaluation. Mineralogical names are also quoted, along with their CA Registry Numbers, again usually in the critical evaluation.

Original Measurements. References are abbreviated in the forms given by Chemical Abstracts Service Source Index (CASSI). Names originally in other than Roman alphabets are given as transliterated by Chemical Abstracts.

Experimental Values. Data are reported in the units used in the original publication, with the exception that modern names for units and quantities are used; e.g., mass per cent for weight per cent; mol dm⁻³ for molar; etc. Both mass and molar values are given. Usually, only one type of value (e.g., mass per cent) is found in the original paper, and the compiler has added the other type of value (e.g., mole per cent) from computer calculations based on 1983 atomic weights (26).

Errors in calculations and fitting equations in original papers have been noted and corrected, by computer calculations where necessary.

Method. Source and Purity of Materials. Abbreviations used in Chemical Abstracts are often used here to save space.

Estimated Error. If these data were omitted by the original authors, and if relevant information is available, the compilers have attempted to estimate errors from the internal consistency of data and type of apparatus used. Methods used by the compilers for estimating and and reporting errors are based on the papers by Ku and Eisenhart (27).

Comments and/or Additional Data. Many compilations include this section which provides short comments relevant to the general nature of the work or additional experimental and thermodynamic data which are judged by the compiler to be of value to the reader.

References. See the above description for Original Measurements.

Guide to the Evaluations

The evaluator's task is to check whether the compiled data are correct, to assess the reliability and quality of the data, to estimate errors where necessary, and to recommend "best" values. The evaluation takes the form of a summary in which all the data supplied by the compiler have been critically reviewed. A brief description of the evaluation sheets is given below.

Components. See the description for the Compilations.

Evaluator. Name and date up to which the literature was checked.

Critical Evaluation

(a) Critical text. The evaluator produces text evaluating all the published data for each given system. Thus, in this section the evaluator reviews the merits or shortcomings of the various data. Only published data are considered; even published data can be considered only if the experimental data permit an assessment of reliability.

(b) Fitting equations. If the use of a smoothing equation is justifiable the evaluator may provide an equation representing the solubility as a function of the variables reported on all the compilation sheets.

(c) Graphical summary. In addition to (b) above, graphical summaries are often given.

(d) Recommended values. Data are recommended if the results of at least two independent groups are available and they are in good agreement, and if the evaluator has no doubt as to the adequacy and reliability of the applied experimental and computational procedures. Data are considered as tentative if only one set of measurements is

available, or if the evaluator considers some aspect of the computational or experimental method as mildly undesirable but estimates that it should cause only minor errors. Data are considered as doubtful if the evaluator considers some aspect of the computational or experimental method as undesirable but still considers the data to have some value in those instances where the order of magnitude of the solubility is needed. Data determined by an inadequate method or under ill-defined conditions are rejected. However references to these data are included in the evaluation together with a comment by the evaluator as to the reason for their rejection.

(e) References. All pertinent references are given here. References to those data which, by virtue of their poor precision, have been rejected and not compiled are also listed in this section.

(f) Units. While the original data may be reported in the units used by the investigators, the final recommended values are reported in S.I. units (1, 28) when the data can be accurately converted.

References

- 1. Whiffen, D.H., ed., Manual of Symbols and Terminology for Physicochemical Quantities and Units. Pure Applied Chem. 1979, 51, No. 1.
- 2. McGlashan, M.L. Physicochemical Quantities and Units. 2nd ed. Royal Institute of Chemistry. London. 1971.

- Janecke, E. Z. Anorg. Chem. <u>1906</u>, 51, <u>137</u>.
 Janecke, E. Z. Anorg. Chem. <u>1906</u>, 51, <u>132</u>.
 Friedman, H.L. J. Chem. Phys. <u>1960</u>, 32, 1351.
 Prigogine, I.; Defay, R. Chemical Thermodynamics. D.H. Everett, transl. Longmans, Green. London, New York, Toronto. <u>1954</u>.
 Guggenheim, E.A. Thermodynamics. North-Holland. Amsterdam.
- 1959. 4th ed.
- Kirkwood, J.G.; Oppenheim, I. Cl. New York, Toronto, London. <u>1961</u> Chemical Thermodynamics. McGraw-Hill.
- Lewis, G.N.; Randall, M. (rev. Pitzer, K.S.; Brewer, L.). Thermodynamics. McGraw Hill. New York, Toronto, London. <u>1961</u>. 2nd. ed. Robinson, R.A.; Stokes, R.H. Electrolyte Solutions. Butterworths. London. <u>1959</u>. 2nd ed.
 Harned, H.S.; Owen, B.B. The Physical Chemistry of Electrolytic
- Solutions. Reinhold. New York. 1958. 3rd ed.
- 11. Haase, R.; Schönert, H. Solid-Liquid Equilibrium. trans. Pergamon Press, London, <u>1969</u>. E.S. Halberstadt,
- 12. McGlashan, M.L. Chemical Thermodynamics. Academic Press. London. <u>1979</u>.
- 13. Cohen-Adad, R.; Saugier, M.T.; Said, J. Rev. Chim. Miner. 1973, 10, 631.

- 10, 631.
 14. Counioux, J.-J.; Tenu, R. J. Chim. Phys. <u>1981</u>, 78, 815.
 15. Tenu, R.; Counioux, J.-J. J. Chim. Phys. <u>1981</u>, 78, 823.
 16. Cohen-Adad, R. Pure Appl. Chem. <u>1985</u>, 57, 255.
 17. Williamson, A.T. Faraday Soc. Trans. <u>1944</u>, 40, 421.
 18. Siekierski, S.; Mioduski, T.; Salomon, M. Solubility Data Series. Vol. 13. Scandium, Yttrium, Lanthanum and Lanthanide Nitrates. Pergamon Press. <u>1983</u>. 19. Marcus, Y., ed. Pure Appl. Chem. <u>1969</u>, 18, 459.
- 20. IUPAC Analytical Division. Proposed Symbols for Metal Complex Mixed Ligand Equilibria (Provisional). IUPAC Inf. Bull. <u>1978</u>, No. 3, 229.
- 21. Enüstün, B.V.; Turkevich, J. J. Am. Chem. Soc. 1960, 82, 4502. 22. Schreinemakers. F.A.H. Z. Phys. Chem., Stoechiom. Verwandschaftsl. <u>1893</u>, 11, 75.
- Lorimer, J.W. Can. J. Chem. 1981, 59, 3076.
 Lorimer, J.W. Can. J. Chem. <u>1982</u>, 60, 1978.
 Hill, E.A. J. Am. Chem. Soc. <u>1900</u>, 22, 478.

- IUPAC Commission on Atomic Weights. Pure Appl. Chem. <u>1984</u>, 56, 653.
 Ku, H.H., p. 73; Eisenhart, C., p. 69; in Ku, H.H., ed. Precision Measurement and Calibration. NBS Special Publication 300. Vol. 1. Washington. 1969.
- 28. The International System of Units. Engl. transl. approved by the BIPM of Le Système International d'Unités. H.M.S.O. London. 1970.

September, 1986

- R. Cohen-Adad, Villeurbanne, France
- J. W. Lorimer, London, Ontario, Canada
- M. Salomon, Fair Haven, New Jersey, U.S.A.

Table I-l Quantities Used as Measures of Solubility of Solute B Conversion Table for Multicomponent Systems Containing Solvent A and Solutes s				
	mole fraction ×B =	mass fraction WB =	molality m _B =	concentration cg =
xB	× _B MA	$\frac{M_{\rm B} x_{\rm B}}{+ \sum_{\rm g} (M_{\rm g} - M_{\rm A}) x_{\rm g}}$	$\frac{x_B}{M_A(1-\sum_{s} x_s)}$	$\frac{\rho x_B}{M_A + \sum\limits_{B} (M_B - M_A) x_B}$
wB	$\frac{w_{\rm B}/M_{\rm B}}{1/M_{\rm A} + \sum_{\rm g}(1/M_{\rm g} - $	1/MA)ws wB	$\frac{w_B}{M_B(1 - \sum_{s} w_s)}$	pw _B /M _B
mB	$\frac{M_{A}m_{B}}{1 + M_{A}\sum_{g}m_{g}}$	$\frac{M_B m_B}{1 + \sum_{g} m_g M_g}$	mB	$\frac{\rho m_{B}}{1 + \sum_{s} M_{s} m_{s}}$
cB	$\frac{M_{A}c_{B}}{\rho + \sum_{g}(M_{A} - M_{g})c_{g}}$	M _B c _B ∕ρ	 ρ - Σ ₉ Mgcs	с _В

 ρ = density of solution M_A, M_B, M_S = molar masses of solvent, solute B, other solutes s Formulas are given in forms suitable for rapid computation; all calculations should be made using SI base units.

COMPONENTS:	EVALUATOR:
(1) Beryllium perchlorate; $Be(ClO_4)_2$;	C.Y. Chan
[13597-95-0]	Department of Chemistry
(2) Water; H ₂ O; [7732-18-5]	University of Malaya
	Kuala Lumpur, Malaysia
	March, 1987

CRITICAL EVALUATION:

SOLUBILITY OF BERYLLIUM PERCHLORATE IN WATER

Data for the solubility of $Be(ClO_4)_2$ in water, with its tetrahydrate $Be(ClO_4)_2.4H_2O$ [7787-48-6] as the solid phase have been reported by Lilich and Dzhurinsky (1), Tamm et al (2,3) and Sidgwick and Lewis(4). The value 8.26 mol kg⁻¹ at 298 K reported in (1) agrees with the value 8.22 mol kg⁻¹ (compiler) from the work of Tamm et al within the estimated experimental uncertainties (\pm 0.3% of soly value, compiler). The good agreement between these values from the two independent groups, who used different analytical methods in the solubility determinations, should lend support to the credibility of their other results. The value of 7.07 mol kg⁻¹ calculated from Sidgwick and Lewis' data is too low by comparison, and since no details of salt purity and method of determination were reported by them, their data are probably erroneous.

Recommended value at 298 K

The recommended value for the solubility of beryllium perchlorate in water at 298 K is 8.24 mol kg⁻¹ (12.93 mol %), when the solid phase in equilibrium with the saturated solution is $Be(ClO_4)_2.4H_2O$. The experimental uncertainty is $\pm 0.3\%$ of the solubility value.

Solubility at various temperatures

Only one investigation of the variation of the solubility of $\operatorname{Be}(\operatorname{ClO}_4)_2$ in water with temperature has been reported, that by Lilich and Dzhurinsky (1). They reported a linear plot of log x versus T^{-1} , where x is the mol fraction of $\operatorname{Be}(\operatorname{ClO}_4)_2.4H_2O$ as the solute and T the temperature. Linear regression analysis (evaluator) on their data combined with the data at 298 K from (2,3) gave the following best-fit equation with a regression coefficient of 0.988,

$$\ln x = -94.8 (T/K)^{-1} - 1.725$$
(1)

where x = mol fraction of $\operatorname{Be}(\operatorname{ClO}_4)_2$. The standard errors in the gradient and the intercept are 4.7 and 0.017 respectively. This empirical equation gives values of x to within \pm 0.45 % of the observed values over the temperature range 273 - 323 K, but does not take account of the fact that the electrolyte is dissociated into its ions in solution. Based on a more appropriate theoretical treatment given in (5) and the INTRODUCTION to this Volume, and assuming that terms involving variation of activity

1

(continued next page)

	T	
COMPONENTS:	EVALUATOR:	
(1) Beryllium perchlorate; Be(ClO ₄) ₂ ;	C.Y. Chan	
[13597-95-0]	Department of Chemistry	
(2) Water; H ₂ O; [7732-18-5]	University of Malaya	
	Kuala Lumpur, Malaysia	
	March, 1987	
CRITICAL EVALUATION: (continued)		
coefficients with solubility and ter	mperature have the same form, an	
improved fit can be obtained (evaluato		
$F(x) = a(T/K)^{-1} + b \ln b$	(T/K) + c (2)	
where $F(x) = \ln [x^{V}(1-x)^{n}/(1 + (v-1)x)]$	$()^{n+v}$,	
$a = -[(\Delta H - T^* \Delta C_p^*)/R],$	$b = \Delta C_p^* / R ,$	
$c = \ln [n^n/(n + v)^n + v] - a(T^*/K)$	$^{-1}$ + b ln (T^*/K) $^{-1}$,	
ΔH = composite of the enthalpies of	melting, dissolution and	
dissociation of $Be(ClO_4)_2.4H_2O$	in its infinitely dilute	
aqueous solution,		
T^* = congruent melting-point of the	tetrahydrate, and	
ΔC_p^* = molar heat capacity change acco		
dissociation of the tetrahydrate at the congruent melting-pt.		
For Be(ClO ₄) ₂ , $v=3$, with $n=4$ for the t	etrahydrate. Regression analysis on	
the data from (1) and the values at 29	8 K from $(2,3)$ yielded $a = 285.6$,	
b = 1.2702, and $c = -16.495$, with a regression coefficient of 0.995 and		
the std. error of the Y estimate = 0.0	02. The corresponding equation in	
terms of molality is given by		
$F(m) = \ln m + (1 + n/v) \ln(vM(H_2O) + 1)$		
$= 95.31(T/K)^{-1} + 0.4235$	$\ln (T/K) - 1.4825$ (3)	
with a regression coefficient of 0.995	and std. error of the Y estimate	
being 0.0006. Equations (2) and (3)	can be used to calculate solubility	
in terms of mol fraction of the perchlo	orate and molality, respectively, to	
within about $\pm 0.25\%$ of the observed	d value at the given temperature,	
except for the value at 313 K, but	within the probable experimental	
uncertainties. Table 1 lists tentative smoothed values of solubility of		
beryllium perchlorate (solid phase B	$e(ClO_4)_2.4H_2O$) in water at various	
selected temperatures. The std. deviation of observed values from		

calculated values is 0.02 mol % for soly in mol % and for molality

values $0.014 \text{ mol } \text{kg}^{-1}$.

(continued next page)

COMPONENTS:	EVALUATOR:
(1) Beryllium perchlorate; Be(ClO ₄) ₂ ;	C.Y. Chan
[13597-95-0]	Department of Chemistry
(2) Water; H ₂ O; [7732-18-5]	University of Malaya
	Kuala Lumpur, Malaysia
	March, 1987

CRITICAL EVALUATION: (continued)

Table 1. Tentative smoothed solubility data for $Be(ClO_4)_2$ in water at selected temperatures, based on equation (2).

<u>T/K</u>	Solubility	
	mol %	mol kg ⁻¹
273.15	12.63	8.03
278.15	12.69	8.07
283.15	12.74	8.11
288.15	12.80	8.15
293.15	12.87	8.20
298.15	12.93 <u>+</u> 0.03 ^a	8.24 <u>+</u> 0.02 ^a
303.15	13.01	8.30
308.15	13.08	8.36
313.15	13.16	8.41
318.15	13.25	8.47
323.15	13.33	8.54

a Recommended value.

TERNARY SYSTEMS

$Be(ClO_4)_2 - NH_4ClO_4 - H_2O$:

The only investigation of this system is that reported by Tamm, Serezkina and Novoselova (2) at 298 K. While their soly results for $Be(ClO_4)_2$ and NH_4ClO_4 in water alone are in good agreement with those of other workers, the phase diagram given in Fig. 1 in the Compilation for this system should be considered as tentative only, until such time as when suitable data from other sources are available for comparison. So are the values (compiler) for the isothermal invariant solubilities of beryllium perchlorate and ammonium perchlorate in water at 298 K in the presence of both solids, $Be(ClO_4)_2.4H_2O$ and NH_4ClO_4 , which are 7.89 \pm 0.06 mol kg⁻¹ and 0.792 \pm 0.014 mol kg⁻¹, respectively.

3

COMPONENTS:	EVALUATOR:	
(1) Beryllium perchlorate; Be(ClO ₄) ₂ ;	C.Y. Chan	
[13597-95-0]	Department of Chemistry	
(2) Water; H ₂ O; [7732-18-5]	University of Malaya	
	Kuala Lumpur, Malaysia	
	March, 1987	
CRITICAL EVALUATION: (continued)	+	
$Be(ClO_4)_2-HClO_4-H_2O$:		
The only investigation of this system	was that by Serezkhina et al (3).	
The phase diagram given in Fig. 1		
is incomplete. At the isothermal inv	ariant point, when the solid phases	
in equilibrium with the saturated	solution are $Be(ClO_4)_2.4H_2O$ and	
$\mathrm{HClO}_4.\mathrm{H}_2\mathrm{O}$, the solution composition	(tentative) at 298 K is as follows:	
$Be(ClO_4)_2$ 0.682 ± 0.002 mol kg ⁻¹ and H	$C10_4$ 35.6 ± 0.3 mol kg ⁻¹ (compiler).	
	-	
REFERENCES		
1. Lilich, L.S.; Dzhurinsky, B.F. Zh. J. Gen. Chem. USSR (Engl. Transl.)		
 Tamm, N.S.; Serezhkina, L.B.; Novoselova, A.V. Zh. Neorg. Khim. <u>1971</u>, 16, 571; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1971</u>, 16, 306. 		
3. Serezhkina, L.B.; Tamm, N.S.; Grigorovich, Z.I.; Novoselova, A.V.		
Zh. Neorg. Khim. <u>1973</u> , 18, 513; Russ. J. Inorg. Chem. (Engl. Transl.)		
<u>1973,</u> 18, 269.		
4. Sidwick, N.V.; Lewis, N.B. <i>J. Chem. Soc.</i> <u>1926</u> , 1287.		
5. Cohen-Adad, R.; Saugier, M.T.; Said	, J. Rev. Chim. Miner. <u>1973</u> , 10,	
631.		

Beryllium Perchlorate		
COMPONENTS: (1) Beryllium perchlorate; Be(ClO ₄) ₂ ; [13597-95-0] (2) Water; H ₂ O; [7732-18-5]	ORIGINAL MEASUREMENTS: Lilich, L.S.; Dzhurinsky, B.F. Zh. Obshchei Khim. <u>1956</u> , 26, 1549-53; *J. Gen. Chem. USSR (Engl. Transl.) <u>1956</u> , 26, 1733-7.	
VARIABLES: Temperature: 273 - 323 K	PREPARED BY: C.Y. Chan	
EXPERIMENTAL VALUES: Solubility of beryllium perchlorate the solid phase being $Be(ClO_4)_2.4H_2O$: $t/^{O}C$ mol x^{A} molality/mol kg ⁻¹ 0 12.62 8.02 5 12.71 8.08 10 12.73 8.10 15 12.82 8.16 20 12.87 8.20 25 12.95 8.26 A Compiler's calculations.	in water at various temperatures, $t/^{\circ}C$ mol % ^a molality/mol kg ⁻¹ 30 12.99 8.29 35 13.08 8.35 40 13.21 8.45 45 13.25 8.48 50 13.31 8.52	
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: The solid tetrahydrate was stirred continuously with solvent in the solubilization chamber of the soly apparatus (sketch given in original publication) which was placed in a "Hoppler ultrathermostat". Solution samples were sunction-filtered through a porous filter and forced into small weighed glass containers	SOURCE AND PURITY OF MATERIALS: Be $(ClO_4)_2.4H_2O$ was prepared by dissolving "pure grade" BeCO ₃ in the equivalent amount of HClO ₄ followed by 2-3 recrystal- lizations. Source and purity not stated.	
using a rubber bulb-and-tube arrange- ment. Perchlorate was analysed by	Not stated. Precision in soly probably ± 0.02 mol kg ⁻¹ (compiler).	

REFERENCES:

precipitation as $KClO_4$ in anhy. alcohol (ref.1). The time required for saturation equilibrium was 1-4 h,

as determined by successive with-

drawal of samples at various time

samples were withdrawn from the soly chamber with a glass sleeve, pressed

plates which were heated or cooled to approx. the temperature of the soly determination. The weighed samples were then analysed for perchlorate.

intervals for analysis. Solid

with filter paper between metal

1. Chaney, A.L.; Mann, A.

J. Phys. Chem. <u>1931</u>, 35, 2289.

(continued next page)

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Beryllium perchlorate; Be(ClO₄)₂; [13597-95-0]</pre>	Lilich, L.S.; Dzhurinsky, B.F.
(2) Water; H ₂ O; [7732-18-5]	Zh. Obshchei Khim. <u>1956</u> , 26, 1549-53; *J. Gen. Chem. USSR (Engl. Transl.) <u>1956</u> , 26, 1733-7.

EXPERIMENTAL VALUES:(continued)

COMMENTS AND/OR ADDITIONAL DATA

The authors reported a linear plot of log x versus $(T/K)^{-1}$, where x was the mol fraction of $Be(ClO_4)_2.4H_2O$ as the solute. A linear least squares analysis of their data (compiler) gave a value of -0.9920 for the correlation coefficient and the best-fit equation as follows:

$$\ln x = A (T/K)^{-1} + B$$

where x = mol fraction of $\text{Be}(\text{ClO}_4)_2$, A = -95.0 and B = -1.724. The std. deviations in A and B were 4.0 and 0.014 respectively. Within the temperature range studied, this equation gives calculated solubility values to within $\pm 0.3\%$ of the observed values of x.

COMPONENTS: (1) Beryllium perchlorate; Be(ClO ₄) ₂ ; [13597-95-0]	ORIGINAL MEASUREMENTS: Sidgwick, N.V.; Lewis, N.B.
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Soc. <u>1926</u> , 1287-1302.
VARIABLES: Temperature: 273 - 323 K	PREPARED BY: C.Y. Chan
EXPERIMENTAL VALUES:	
The solubility of beryllium perchlora 59.5 g(1)/100g sln., the solid phase b The corresponding mol% and molality va are 11.30% and 7.07 mol kg ⁻¹ .	eing $Be(ClO_4)_2.4H_2O; [7787-48-6].$
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
No details given.	Not stated.
	ESTIMATED ERROR: Not stated.
	REFERENCES:

:

COMPONENTS: (1) Beryllium perchlorate; Be(ClO ₄) ₂ ; [13597-95-0] (2) Perchloric acid; HClO ₄ ; [7601-90-3] (3) Water; H ₂ O; [7732-18-5]	ORIGINAL MEASUREMENTS: Serezhkina, L.B.; Tamm, N.S.; Grigorovich, Z.I.; Novoselova, A.V. Zh. Neorg. Khim. <u>1973</u> , 18, 513-7;		
-	*Russ. J. Inorg. Chem. (Engl. Transl.) <u>1973</u> , 18, 269-71.		
VARIABLES:	PREPARED BY:		
One temperature: 298 K Composition	C.Y. Chan		

EXPERIMENTAL VALUES:

Solubility system $Be(ClO_4)_2-HClO_4-H_2O$ at $25^{\circ}C$:

Solid phase		tion	e composi	iquid phas	L	
	mol % ^a	Solute	% ^a	mol	s %	mas
	(2)	(1)	(2)	(1)	(2)	(1)
$Be(ClO_4)_2.4H_2$	-	100.00	-	12.900	-	63.09
	22.95	77.05	3.284	11.023	7.92	55.02
**	38.20	61.80	5.859	9.479	14.41	48.25
17	56.01	43.99	10.16	7.982	24.57	39.94
"	81.85	18.15	18.51	4.104	45.27	20.78
**	87.35	12.65	21.17	3.066	51.50	15.44
**	95.45	4.55	25.99	1.238	62.47	6.16
**	97.12	2.88	29.86	0.887	67.69	4.16
*1	98.11	1.89	38.80	0.747	75.80	3.02

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: The "isothermal dissolution" method was used. All operations with (1), (2) and $HClO_4.H_2O$ were carried out in a nitrogen atmosphere in a drybox. The acid was stored at -78°C in jacketted vessels with groundglass stoppers. The soly vessels were specially constructed to exclude atmospheric moisture during dissolution and sampling processes, and 5-7h allowed for attainment of equilibrium. Both liquid and "wet solid" phases were analysed for Be²⁺, determined gravimetrically as $[Co(NH_3)_6]_2[Be_4O(CO_3)_6].10H_2O_1$ (ref. 2,3) and for Clo_4^- by precipitation as nitron perchlorate (ref.4). The compositions of the solid phases were determined using Schreinemakers' method. When anhydrous (2) was used as solvent, saturation was carried

SOURCE AND PURITY OF MATERIALS: Be(ClO₄)₂.4H₂O crystals were obtained by reaction of BeCO₃ with commercial 57% perchloric acid and recrystallization from the acid sln. Analysis of the salt gave : mass % Be 3.20%; ClO₄ 71.30%; H₂O 25.50%. Anhydrous (2) was prepared by vacuum distillation from a mixture of HClO₄.2H₂O and oleum (ref.5) and was $100.00 \pm$ 0.05% pure. The acid dihydrate was prepared by vacuum distillation of the commercial acid; the acid monohydrate prepared from a mixture of the anhy. acid and its dihydrate.

ESTIMATED ERROR: Not stated.

8

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Beryllium perchlorate; $Be(ClO_4)_2$; [13597-95-0] (2) Perchloric acid; $HClO_4$;	Serezhkina, L.B.; Tamm, N.S.; Grigorovich, Z.I.; Novoselova, A.V.
[7601-90-3]	
(3) Water; H ₂ O; [7732-18-5]	Zh. Neorg. Khim. <u>1973</u> , 18, 513-7; *Russ. J. Inorg. Chem. (Engl. Transl.) <u>1973</u> , 18, 269-71.

EXPERIMENTAL VALUES:(continued)

Solubility system $Be(ClO_4)_2-HClO_4-H_2O$ at $25^{\circ}C$:(continued)

	Li	quid phase	e compositi	on		Solid phase
mas	ss %	mol	% ^a	Solut	e mol % ^a	
(1)	(2)	(1)	(2)	(1)		
3.01	75.70	0.742	38.65			$Be(ClO_4)_2.4H_2O$
						+ $HClo_4 \cdot H_2O$
3.00	75.87	0.743	38.88	1.87	98.13	" "
3.00	10.01	0.145	00.00	1.01	20112	
3.01	75.76	0.744	38.73	1.88	98.12	HC104.H20
-	79.00 ^b 92.23 ^b	-	40.29 68.04	-	100.00	29
3.53	92.23 88.25	- 1.256	64.99	1.90	100.00 98.10 97.06	
5.43	86.61	1.963	64.82	2.94	97.06	17
10.78	79.90	3.800	58.29	6.12 10.78	93.88	**
18.03	72.10	6.413	53.07	10.78	89.22	
24.01	64.00	8.143	44.92	15.35	84.65	**
23.87	64.11	8.084	44.94	15.25	84.75	$Be(ClO_4)_2.4H_2O$
						+ $HClo_4 \cdot H_2O$
24.00	62.06	8,127	44 00	15 95	04 65	" "
	63.96		44.82	15.35	84.65	11 11
23.91	64.13	8.114	45.04	15.26	84.74	
24.07	64.01	8.184	45.04	15.38	84.62	$Be(C10_4)_2.4H_2O$
27.27	61.64	8.184 9.642	45.11	15.38 17.61	82.39	
32.24	56.42	11.519	41.72	21.64	78.36	**
34.50	53.53	12.172	39.09	23.75	76.25	11
a Comp:	iler's cal	culations	. b	Wyk's da	ta (ref.1)
	······	AU	JXILIARY IN	FORMATIO	N	
		PROCEDURE:		REFERE		
out in	the pre	sence of	solid	1. Wy	k, H.J	Z. Anorg. Chem.
Be(ClO ₄)) ₂ .4H ₂ O, a	and of its	mixture	<u>19</u>	<u>02</u> , <i>32</i> , 13	15.
with sol	lid HClO ₄ .	H ₂ O. When	n water was	2. Fr	eeth, F.A	. Recl. Trav. Chim.
the solv	vent, satu	ration was	s carried	Pa	ys-Bays.	<u>1924</u> , <i>43</i> , 476.
out in H	$Be(ClO_4)_2$	solutions	s, and vice	3. Pi	rtea, Th.	J.; Michail, J.
versa.	-1 -2				Analyt.	Chem. <u>1958</u> , 159, 205.
						. Z. Analyt. Chem.
					<u>26</u> , <i>68</i> , 3	
					solovskii	
						hlornoi Kisloty,
				Iz	d. Nauka.	, Moscow, <u>1966</u> .
					()	continued next page)
						н од -
				1		

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Beryllium perchlorate; Be(ClO ₄) ₂ ;	Serezhkina, L.B.; Tamm, N.S.;
[13597-95-0]	Grigorovich, Z.I.; Novoselova,
(2) Perchloric acid; HClO ₄ ;	A.V.
[7601-90-3]	Zh. Neorg. Khim. <u>1973</u> , 18, 513-7;
(3) Water; H ₂ O; [7732-18-5]	*Russ. J. Inorg. Chem. (Engl.
	Transl.) <u>1973</u> , 18, 269-71.

EXPERIMENTAL VALUES:(continued)

COMMENTS AND/OR ADDITIONAL DATA

The authors contended that the isothermal phase diagram (Fig.1) for this solubility system consisted of the isotherms of the partial systems $Be(ClO_4)_2.4H_2O-H_3OClO_4-H_2O$ and $Be(ClO_4)_2.4H_2O-H_3OClO_4-HClO_4$. For the first partial system, the solubility of $Be(ClO_4)_2.4H_2O$ in aqueous $HClO_4$ solutions decreased with increase in acid concentration until the isothermal invariant point was reached when the solid phase in equilibrium consisted of the solid tetrahydrate and solid $HClO_4.H_2O$. At this point the solubility of the salt was 0.682 ± 0.002 mol kg⁻¹ while that of the acid monohydrate was 35.6 ± 0.3 mol kg⁻¹ (compiler). For the latter partial system, the authors contended that all the water molecules in solution were bound up in the form of the H_3O^+ and $Be(H_2O)_4^{2+}$ ions. Ion association aspects of the complex species in solution were not considered.

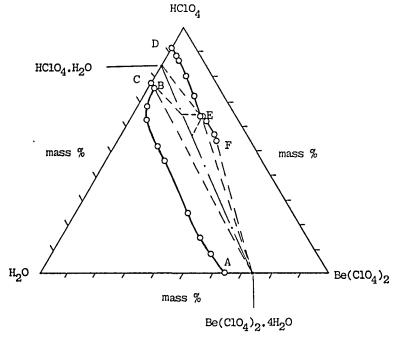


Figure 1. Isothermal phase diagram for the system $Be(ClO_4)_2-HClO_4-H_2O \quad \text{at 298 K.}$ $ABC \quad --- \quad Be(ClO_4)_2.4H_2O-H_3OClO_4-H_2O \quad \text{isotherm.}$ $DEF \quad --- \quad Be(ClO_4)_2.4H_2O-H_3OClO_4-HClO_4 \quad \text{isotherm.}$ $o \quad --- \quad \text{sat. sln.}$

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Beryllium perchlorate; Be(ClO ₄) ₂ ;	Lilich, L.S.; Dzhurinsky, B.F.		
<pre>[13597-95-0] (2) Ammonium perchlorate; NH₄ClO₄;</pre>	Zh. Neorg. Khim. <u>1971</u> , 16, 571-2;		
[7790-98-9]	*Russ. J. Inorg. Chem. (Engl.		
(3) Water; H ₂ O; [7732-18-5]	Transl.) <u>1971</u> , 16, 306-7.		
VARIABLES:	PREPARED BY:		
One temperature: 298 K	C.Y. Chan		
Composition			
EXPERIMENTAL VALUES:			
Solubility system Be(ClO ₄) ₂ -NH ₄ ClO ₄ -H	1 ₂ 0 at 25°C :		
Liquid phase composition	Solid phase		
mass % mol % ^a (1) (2) (3) (1) (2)	molality ^a /mol kg ⁻¹ (1) (2)		
- 19.99 80.01 - 3.69 10.54 11.33 78.13 1.131 2.15	00 - 2.127 NH ₄ ClO ₄		
28.27 4.17 67.56 ^D 3.467 0.90	05 2.013 0.525 "		
37.21 3.93 58.86 5.143 0.96 50.38 4.13 45.49 8.646 1.25	1 3.041 0.568 " 4 5.327 0.773 "		
50.38 4.13 45.49 8.646 1.25 59.16 3.71 37.13 11.970 1.32			
a Compiler's calculations.			
^b Original value was 76.56; value cor	masted (compiler) accuming values		
for (1) and (2) correct.	rected (compiler) assuming values		
for (1) and (2) correct.			
AUXILIARY IN	FORMATION .		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The "isothermal dissolution" method	Hydrated (1) was prepared by		
was used, allowing 70h for attain-	reacting beryllium carbonate with		
ment of equilibrium at 25°C. Samples	57% perchloric acid, followed by		
of the liquid phases were withdrawn	double recrystallization. Purity		
with glass pipettes fitted with	of the acid and carbonate not		
filter nozzles and solid phases were	stated. Analysis of the prepared		
withdrawn with glass filters. These	hydrate gave the composition :		
were analysed for Be gravimetrically	Be 3.20%, Clo_4 71.30%, H_2O 25.5%		
as $[Co(NH_3)_6]_2[Be_4O(CO_3)_6].10H_2O$	(by difference).		
(ref.1-2), and for total perchlorate	(2) was prepared by neutralization		
gravimetrically by precipitation	of the acid with ammonia (purity		
with nitron (ref.3). Solid phases	not stated). Analysis gave :		
were determined using Schreinemakers'	NH ₄ 15.19%, ClO ₄ 84.81%.		
<pre>method and checked by X-ray diffraction (ref.4).</pre>	ESTIMATED ERROR:		
	Compiler's estimate: errors in		
	analyses probably ranged from		
	0.3% - 1%, depending on sample		
	concentration.		
	(continued next page)		

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Beryllium perchlorate; Be(ClO₄)₂; [13597-95-0]</pre>	Lilich, L.S.; Dzhurinsky, B.F.
<pre>(2) Ammonium perchlorate; NH₄ClO₄; [7790-98-9]</pre>	Zh. Neorg. Khim. <u>1971</u> , 16, 571-2; *Russ. J. Inorg. Chem. (Engl.
(3) Water; H ₂ O; [7732-18-5]	Transl.) <u>1971</u> , 16, 306-7.

EXPERIMENTAL VALUES: (continued)

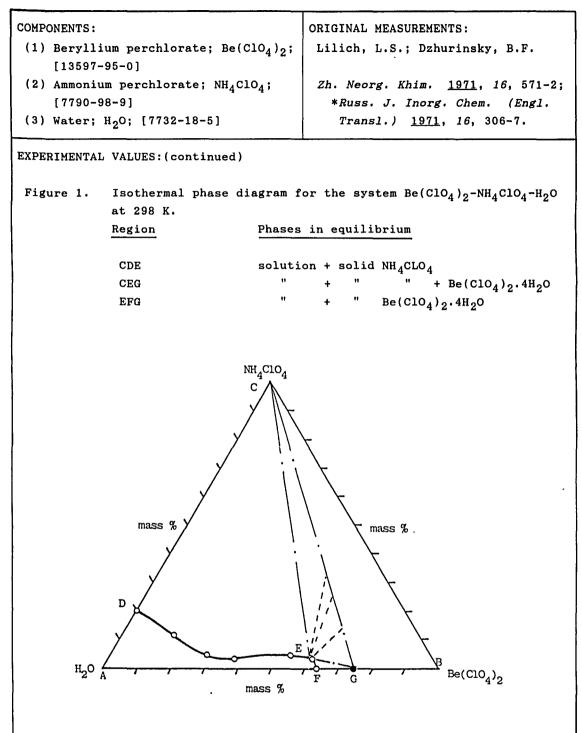
Solubility system $Be(ClO_4)_2 - NH_4ClO_4 - H_2O$ at $25^{\circ}C$:(continued)

		Liquid pha	se compos	ition			Soli	d phase
	mass	%	mol	% ^a	molality ^a	/mol kg	-1	
(1)	(2)	(3)	(1)	(2)	(1)	(2) (2)		
59.79	3.38	36.83	12.182	1.219	7.808	0.781	NH4C	10 ₄ +
							Be(C104)2.4H2O
60.03	3.41	36.56	12.301	1.237	7.897	0.794	**	
59.98	3.48	36.54	12.295	1.262	7.895	0.811	**	11
60.23	3.35	36.42	12.381	1.219	7.954	0.783	**	"
60.19	3.31	36.50	12.352	1.202	7.931	0.772	Be(ClO	4)2.4H20
63.09	-	36.91	12.900	-	8.221	-		4.2

a Compiler's calculations.

COMMENTS AND/OR ADDITIONAL DATA

The solubility isotherm (Fig.1) at 25° C for the above mentioned ternary system consists of two branches, one corresponding to the crystallization of anhydrous ammonium perchlorate and the other to that of beryllium perchlorate tetrahydrate. No double salt and solid solution were observed. The isothermal invariant solubilities of Be(ClO₄)₂.4H₂O and NH₄ClO₄ in water at 25^oC in equilibrium with both salts in their solid phases are 7.89 ± 0.06 mol kg⁻¹ and 0.792 ± 0.014 mol kg⁻¹ respectively (compiler).


AUXILIARY INFORMATION

REFERENCES:

- 1. Freeth, F.A. Recl. Trav. Chim. Pays-Bas. <u>1924</u>, 43, 475.
- 2. Pirtea, T.J.; Michail, J. Z. Analyt. Chem. <u>1958</u>, 159, 205.
- 3. Loeblich, O. Z. Analyt. Chem. <u>1926</u>, 68, 34.
- 4. Serezhkina, V.N.; Novoselova, A.V. Russ. J. Inorg. Chem. <u>1971</u>, 16, 1539.

12

(continued next page)

COMPONENTS:	EVALUATORS:
(1) Magnesium perchlorate; Mg(ClO ₄) ₂ ;	I.N. Lepeshkov ; E.S. Gryzlova
[10034-81-8]	
(2) Water; H ₂ O; [7732-18-5]	Institute Obshchej i Neorganiche-
(3) Other solvents	skoi Khimii AN SSSR, Moscow.
	April, 1986

CRITICAL EVALUATION:

[Editor's note : This evaluation has been substantially revised by one of the editors (K.H. Khoo) who also evaluated the solubility of $Mg(ClO_4)_2$ in binary systems.]

Binary systems

1. Solubility in water at 298 K

In common with other Group IIA metal perchlorate solubility systems, the data for $Mg(ClO_4)_2$ systems are found predominantly in Russian journals, with only three publications found elsewhere. Almost without exception, the experimental information given is either lacking (1-4) or vague (5-8). While a few papers quote the precision of temperature control, only one paper (9) gives the estimated errors in the solubility analyses. The experimental method used to determine the solubility is invariably the analytical method in which magnesium is analyzed titrimetrically with ethylenediaminetetraacetic acid, EDTA (sometimes named Trilon B). There is no mention about the criterion used to ascertain the attainment of equilibrium, although in a few cases, periods of equilibration ranging from a few hours to several days have been mentioned. Nineteen publications on ternary systems have been selected as the basis for evaluating the solubility of $Mg(ClO_4)_2$ in water at 298 K. These are given in Table I. All the data are given equal weightage except for those

> Table I. Solubility of $Mg(ClO_4)_2$ in water at 298 K [Solid phase : $Mg(ClO_4)_2.6H_2O$]

Soly/mass %	Ref.	Soly/mass %	Ref.
49.83 ^{a,b}	1	49.98	12
49.90 ^a	2	49.80	13
49.78 ^a	4	49.87	14
50.07	5	49.99	15
49.80	6	49.80	16
49.73	7	50.00	17
49.65	8	49.90	19
50.00 ^C ,	9	49.80	20
49.83 ^{a,b}	10	49.90	23
49.67 ^a	11		

^a half weightage ; ^b these two values appears to be from same source ; ^c double weightage

Average : (49.9 ± 0.2) mass % or (4.46 ± 0.02) mol kg⁻¹

indicated in the footnote of the table. The weightage of the experimental data is based on factors such as experimental information (or lack of it)

COMPONENTS:	EVALUATORS:
(1) Magnesium perchlorate; Mg(ClO ₄) ₂ ;	I.N. Lepeshkov ; E.S. Gryzlova
[10034-81-8]	
(2) Water; H ₂ O; [7732-18-5]	Institute Obshchej i Neorganiche-
(3) Other solvents	skoi Khimii AN SSSR, Moscow.
	April, 1986

CRITICAL EVALUATION: (continued)

and the manner in which the experimental data have been treated. Based on Table I, it is recommended that the solubility of $Mg(ClO_4)_2$ in water at 298 K be as follows:

solubility = 49.9 mass % = (4.46 ± 0.02) mol kg⁻¹ [Solid phase = Mg(ClO₄)₂.6H₂O]

2. Solubility in water at other temperatures

Lilich et al (9) reported the solubility of $Mg(ClO_4)_2$ at 273 K as 48.21 mass % (4.17 mol kg⁻¹) while Leboshchina (21) quoted the solubility at 308 K as 51.2 mass % or 4.7 mol kg⁻¹. Since there is only one publication in each case, these values are regarded as tentative ones. However, at 323 K, there are five publications for the solubility of $Mg(ClO_4)_2$ in water, as shown in Table II, of which only three are independent sources while two (No. 4 and 5) are probably derived from the same source. The results show much better agreement than the data at 298 K where the scatter is larger than expected.

Table II. Solubility of $Mg(ClO_4)_2$ in water at 323 K [Solid phase : $Mg(ClO_4)_2.6H_2O$]

No.	Soly/mass %	Ref.	No.	Soly/mass %	Ref.
1 2 3	52.25 52.19 52.24	9 17 2	4 5	52.21 52.21	3 12

recommended solubility : (52.22 ± 0.03) mass % : (4.896 ± 0.003) mol kg⁻¹

There is only one publication for the solubility of $Mg(ClO_4)_2$ in water at 363 K which is given as 55.57 mass % (21). Table III summarizes the solubility of $Mg(ClO_4)_2$ in water at various temperatures.

3. Solubility in nonaqueous solvents

Willard and Smith (23) have measured the solubility of $Mg(ClO_4)_2$ in a number of organic solvents, as shown in Table IV. No mention is made of the analyis of the solid phase which is claimed to be $Mg(ClO_4)_2$. The precision in temperature is ± 0.01 K while the estimated error in the solubility analysis is ± 0.05 %. Although the solvents were purified and their densities quoted, nothing is said about their moisture content.

15

PONENTS:				EVALUATORS :			
 Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8] Water; H₂O; [7732-18-5] 			; I.N	I.N. Lepeshkov ; E.S. Gryzlova Institute Obshchej i Neorganich			
			Ins				
b) Other solvents				skoi Khimii AN SSSR, Moscow.			
			Apr	il, 198	6		
FICAL EVALUATIO	N: (contin	nued)					
Table III. Sol						temperatures	
	[Solid	l phase : 1	Mg(ClO ₄) ₂ .6H ₂ O]		
Temp.	/¥	273	208	308	323	363	
	; mass %						
	: mol kg ⁻¹						
Statu		T	R		R	Т	
^a T =	tentative	e ; R = re	commend	ed			
^a T = Table IV. Solu	bility of) ₂ in o	rganic	solvents	s at 298 K	
	bility of [Solid	f Mg(ClO ₄ l phase : 1 S) ₂ in o Mg(ClO ₄ 	rganic) ₂] ty			
Table IV. Solu	bility of [Solid	f Mg(ClO ₄ l phase : 1 S) ₂ in o Mg(ClO ₄ 	rganic) ₂] ty		s at 298 K 3 mol kg ⁻¹	
Table IV. Solu	bility of [Solid	f Mg(ClO ₄ l phase : 1 S g/100 cm ³) ₂ in o Mg(ClO ₄ 	rganic) ₂] ty mol % 6.93	mol dm ^{-;} 1.69	3 mol kg ⁻¹ 2.32	
Table IV. Solu Solvent methanol ethanol	bility of [Solid mass % 34.1 19.3	f Mg(ClO ₄ d phase :) g/100 cm ³ 37.7 18.4) ₂ in o Mg(ClO ₄ 	rganic) ₂] ty mol % 6.93 4.71	mol dm ⁻³ 1.69 8.24	³ mol kg ⁻¹ 2.32 1.07	
Table IV. Solu Solvent methanol ethanol n-propanol	bility of [Solid mass % 34.1 19.3 42.3	f Mg(ClO ₄ d phase : 1 g/100 cm ³ 37.7 18.4 50.5) ₂ in o Mg(ClO ₄ 	rganic) ₂] ty mol % 6.93 4.71 16.5	mol dm ⁻³ 1.69 8.24 2.26	3 mol kg ⁻¹ 2.32 1.07 3.29	
Table IV. Solu Solvent methanol ethanol n-propanol n-butanol	bility of [Solid mass % 34.1 19.3 42.3 39.2	<pre>g Mg(ClO₄ d phase :) S g/100 cm³ 37.7 18.4 50.5 44.6</pre>) ₂ in o Mg(ClO ₄ 	rganic) ₂] ty mol % 6.93 4.71 16.5 17.6	mol dm ^{-;} 1.69 8.24 2.26 2.00	³ mol kg ⁻¹ 2.32 1.07 3.29 2.88	
Table IV. Solu Solvent methanol ethanol n-propanol n-butanol isobutanol	bility of [Solid mass % 34.1 19.3 42.3 39.2 31.3	<pre>Mg(ClO₄ phase :) S g/100 cm³ 37.7 18.4 50.5 44.6 33.2</pre>) ₂ in o Mg(ClO ₄ 	rganic) ₂] ty mol % 6.93 4.71 16.5 17.6 13.1	mol dm ⁻³ 1.69 8.24 2.26 2.00 1.49	³ mol kg ⁻¹ 2.32 1.07 3.29 2.88 2.04	
Table IV. Solu Solvent methanol ethanol n-propanol n-butanol isobutanol acetone	bility of [Solid mass % 34.1 19.3 42.3 39.2 31.3 30.0	Mg(ClO ₄) phase : 1 S g/100 cm ³ 37.7 18.4 50.5 44.6 33.2 32.4) ₂ in o Mg(ClO ₄ 	rganic)2] ty mol % 6.93 4.71 16.5 17.6 13.1 10.0	mol dm ⁻³ 1.69 8.24 2.26 2.00 1.49 1.45	³ mol kg ⁻¹ 2.32 1.07 3.29 2.88 2.04 1.92	
Table IV. Solu Solvent methanol ethanol n-propanol n-butanol isobutanol acetone ethyl acetate	bility of [Solid mass % 34.1 19.3 42.3 39.2 31.3 30.0	<pre>Mg(ClO₄ phase :) S g/100 cm³ 37.7 18.4 50.5 44.6 33.2</pre>) ₂ in o Mg(ClO ₄ 	rganic)2] ty mol % 6.93 4.71 16.5 17.6 13.1 10.0 21.9	mol dm ⁻³ 1.69 8.24 2.26 2.00 1.49	³ mol kg ⁻¹ 2.32 1.07 3.29 2.88 2.04 1.92 3.18	
Table IV. Solu Solvent methanol ethanol n-propanol n-butanol isobutanol acetone ethyl acetate hydrazine ^a	bility of [Solid mass % 34.1 19.3 42.3 39.2 31.3 30.0	Mg(ClO ₄) phase : 1 S g/100 cm ³ 37.7 18.4 50.5 44.6 33.2 32.4) ₂ in o Mg(ClO ₄ 	rganic)2] ty mol % 6.93 4.71 16.5 17.6 13.1 10.0	mol dm ⁻³ 1.69 8.24 2.26 2.00 1.49 1.45 2.43	³ mol kg ⁻¹ 2.32 1.07 3.29 2.88 2.04 1.92	
Table IV. Solu Solvent methanol ethanol n-propanol n-butanol isobutanol acetone ethyl acetate hydrazine ^a sulfolane ^b	bility of [Solid mass % 34.1 19.3 42.3 39.2 31.3 30.0	Mg(ClO ₄) phase : 1 S g/100 cm ³ 37.7 18.4 50.5 44.6 33.2 32.4) ₂ in o Mg(ClO ₄ 	rganic)2] ty mol % 6.93 4.71 16.5 17.6 13.1 10.0 21.9	mol dm ⁻³ 1.69 8.24 2.26 2.00 1.49 1.45	³ mol kg ⁻¹ 2.32 1.07 3.29 2.88 2.04 1.92 3.18	
Table IV. Solu Solvent methanol ethanol n-propanol n-butanol isobutanol acetone ethyl acetate hydrazine ^a sulfolane ^b tetrahydro-	bility of [Solid mass % 34.1 19.3 42.3 39.2 31.3 30.0	Mg(ClO ₄) phase : 1 S g/100 cm ³ 37.7 18.4 50.5 44.6 33.2 32.4) ₂ in o Mg(ClO ₄ 	rganic)2] ty mol % 6.93 4.71 16.5 17.6 13.1 10.0 21.9	mol dm ⁻³ 1.69 8.24 2.26 2.00 1.49 1.45 2.43 0.36	³ mol kg ⁻¹ 2.32 1.07 3.29 2.88 2.04 1.92 3.18	
Table IV. Solu Solvent methanol ethanol n-propanol n-butanol isobutanol acetone ethyl acetate hydrazine ^a sulfolane ^b	bility of [Solid mass % 34.1 19.3 42.3 39.2 31.3 30.0 41.5	Mg(ClO ₄) phase : 1 S g/100 cm ³ 37.7 18.4 50.5 44.6 33.2 32.4) ₂ in o Mg(ClO ₄ 	rganic)2] ty mol % 6.93 4.71 16.5 17.6 13.1 10.0 21.9	mol dm ⁻³ 1.69 8.24 2.26 2.00 1.49 1.45 2.43 0.36 1.25	³ mol kg ⁻¹ 2.32 1.07 3.29 2.88 2.04 1.92 3.18 3.09	

For diethyl ether, their results are at variance with the more recent results of Rowley and Seiler (24) who studied the solubility over the temperature range 273-298 K (Table V). The much higher value of Willard and Smith is ascribed to traces of moisture in their solvents, the effect

COMPONENTS:	EVALUATORS:
(1) Magnesium perchlorate; Mg(ClO ₄) ₂ ;	I.N. Lepeshkov ; E.S. Gryzlova
[10034-81-8]	
(2) Water; H ₂ O; [7732-18-5]	Institute Obshchej i Neorganiche-
(3) Other solvents	skoi Khimii AN SSSR, Moscow.
	April, 1986

of which is more deleterious for diethyl ether than for the other solvents. Since no meaningful evaluation can be made on the solubility of $Mg(ClO_4)_2$ in organic solvents, it is suggested that the values of Rowley and Seiler be taken as tentative values for the solubility in diethyl ether at various temperatures while for the other solvents, the values given in Table IV be accepted as tentative values. The number of decimal figures have been truncated to reflect the experimental uncertainties more appropriately.

Table V. Solubility of $Mg(ClO_4)_2$ in diethyl ether at various temperatures

Temp/K	solubility					
	g/100g	solvent	molality/10 ³	mol	kg ⁻¹	
273	0.044		1.96			
288	0.059		2.63			
298	0.064		2.88			

Ternary Systems

1. Solubility of $Mg(ClO_4)_2$ in the presence of perchlorates in water. The compilations for ternary systems show only one publication for

each system. In most of these systems experimental information is often lacking and experimental data scarce so that evaluation of the solubility data is precluded. There are apparently two publications for the system $Mg(ClO_4)_2$ -dimethylurea-water, one by Vasil'eva and Rylenkova (1) and the other by Karnaukhov and Vasil'eva (10). However, an examination of the data indicates that these two sets of data are the same. There are also two publications for the system $Mg(ClO_4)_2$ - $MgCl_2$ - H_2O , but the data in one publication appears incomplete while the data in another is inadequate. In view of this, no evaluation on the ternary systems will be made. Instead, comments relevant to each system will be made where necessary.

1.1 The system Mg(ClO₄)₂-HClO₄-H₂O

This system was studied by Lilich, et al (9) at 273, 298 and 323 K. Their paper is one of the few among the Russian publications which give estimated errors in the solubility determinations. They claim estimated errors of as low as ± 0.05 % at low perchloric acid concentrations and ± 0.1 % at high acid concentrations. If these are acceptable, then in the

COMPONENTS:	EVALUATORS:
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂ [10034-81-8]</pre>	; I.N. Lepeshkov ; E.S. Gryzlova
(2) Water; H ₂ O; [7732-18-5] (3) Other solvents	Institute Obshchej i Neorganiche- skoi Khimii AN SSSR, Moscow.
	April, 1986

absence of other sources of reference, it is suggested that their values be accepted as tentative values since their measurements are extensive and appear to have been carefully performed. The solubility isotherm shows a distinct minimum, indicating salting-out of perchloric acid by the strongly hydrated cation. As the temperature increases, the solubility minimum deepens in line with the more pronounced salting-out of the acid.

1.2 The system Mg(ClO₄)₂-NaClO₄-H₂O

A study of this system was made by Karnaukhov and Kudryakova (20) at 298 K while another was made by Kudryakova and Lepeshkov at 363 K (22). No solid solutions or chemical compounds are formed in the system. The component salts separate out as $Mg(ClO_4)_2.6H_2O$ and $NaClO_4$.

1.3 The system $Mg(ClO_4)_2$ -KClO₄-H₂O at 298 K

The solubility isotherm shows one branch of crystallization corresponding to sparingly soluble KClO_4 (28, 29). The eutectic mixture consists of 0.09 mass % KClO_4 , 49.54 mass % $\text{Mg}(\text{ClO}_4)_2$ and 50.37 mass % H_2O . The solid phase contains rhombic plates of potassium perchlorate and hexagonal acicular crystals of magnesium perchlorate hexahydrate. Magnesium perchlorate has a strong salting-out effect on potassium perchlorate.

1.4 The solubility of $Mg(ClO_4)_2$ in aqueous solutions of other univalent perchlorates

The solubility of $Mg(ClO_4)_2$ has also been studied in aqueous solutions of $LiClO_4$ (30), $TlClO_4$ (4) and NH_4ClO_4 (31). In all these systems, the added salt is salted out by $Mg(ClO_4)_2$. Each system is characterized by the existence of a simple eutectic and the absence of chemical interaction between the components with no formation of solid solutions. Although in some cases, the experimental information is lacking, there is no reason to doubt the reliability of the data. Hence, the data on these systems can be accepted tentatively. The solubility isotherms are given in the compilations, where appropriate.

1.5 The solubility of $Mg(ClO_4)_2$ in aqueous solutions of trivalent perchlorates

The solubility of $Mg(ClO_4)_2$ has been reported in aqueous solutions of $La(ClO_4)_3$ (18), $Ce(ClO_4)_3$ (13), $Gd(ClO_4)_3$ (5), $Sm(ClO_4)_3$ (6) and $Tb(ClO_4)_3$ (11). Each of these systems possesses a simple eutectic, a

COMPONENTS:	EVALUATORS:
(1) Magnesium perchlorate; Mg(ClO ₄) ₂ ;	I.N. Lepeshkov ; E.S. Gryzlova
[10034-81-8]	
(2) Water; H ₂ O; [7732-18-5]	Institute Obshchej i Neorganiche-
(3) Other solvents	skoi Khimii AN SSSR, Moscow.
	April, 1986

solid phase of composition $Mg(ClO_4)_2.6H_2O$ and another solid phase of composition $M(ClO_4)_3.9H_2O$, where M is the trivalent metal.

2. The solubility of ${\rm Mg(ClO_4)}_2$ in aqueous solutions of other magnesium salts

2.1 The system $Mg(ClO_4)_2 - MgSO_4 - H_2O$

This system has been studied at 298 K (33) and 308 K (34). Magnesium forms more stable aquo-complexes with sulfate than with perchlorate ions so that magnesium sulfate exhibits a stronger salting-out effect in the presence of magnesium perchlorate. Magnesium perchlorate crystallizes as the hexahydrate while magnesium sulfate crystallizes as $MgSO_4.7H_2O$ at 298 K (21). At 308 K, a new branch appears in the solubility isotherm indicating the appearance of another solid phase of composition $MgSO_4.6H_2O$. The point of conversion of $MgSO_4.7H_2O$ to $MgSO_4.6H_2O$ is not shown. A comparison of the solubility isotherms at the two temperatures indicates that an increase in temperature causes an increase in the field of existence of $MgSO_4.6H_2O$ which is stable at 308 K. Further dehydration to lower hydrates does not occur (21) but may be presumed to occur at higher temperatures.

2.2 Other systems

The solubility of $Mg(ClO_4)_2$ has also been studied in aqueous solutions of the following magnesium salts:

- (i) MgCl₂ at 298 K (20) and 363 K (22)
- (ii) $MgCrO_4$ at 298 K (14) and 323 K (35)
- (iii) $Mg(NO_3)_2$ at 298 and 323K (12)

3. The solubility of ${\rm Mg(ClO_4)}_2$ in aqueous solutions of nonelectrolytes at 298 K

3.1 Dimethylurea

Dimethylurea forms complexes with magnesium perchlorate more readily than does urea (3) or thiourea (36). At low concentrations of dimethylurea, the complex $Mg(ClO_4)_2.4C_3H_8N_2O.2H_2O$ precipitates, while at high concentrations of dimethylurea, the solid $Mg(ClO_4)_2.5C_3H_8N_2O.H_2O$ separates from solution. The composition of these complexes indicates that complexation is of the substitution type, with the substitution of the water of crystallization in the crystal hydrate occuring stepwise.

```
COMPONENTS:
                                             EVALUATORS:

    Magnesium perchlorate; Mg(ClO<sub>4</sub>)<sub>2</sub>;

                                              I.N. Lepeshkov ; E.S. Gryzlova
     [10034-81-8]
 (2) Water; H<sub>2</sub>O; [7732-18-5]
                                              Institute Obshchej i Neorganiche-
 (3) Other solvents
                                              skoi Khimii AN SSSR, Moscow.
                                              April, 1986
CRITICAL EVALUATION: (continued)
 3.2 Other nonelectrolytes
        The solubility of Mg(ClO_4)_2 has also been studied in aqueous
  solutions of the following nonelectrolytes:
      (i) urea (1)
      (ii) acetamide (16)
     (iii) thiourea (15)
      (iv) hexamethylenetetramine (8)
                          Quaternary Reciprocal Systems
 1. The system Mg^{2+}, Li^+//Clo_4^-, Cro_4^{2-} - H_2O at 298 K
    There are four crystallization fields in the solubility diagram. These
 are:
         (a) MgCrO_4.5H_2O_7,
                             (b) LiClO_4.3H_2O_7
         (c) Li_2CrO_4.2H_2O, and (d) Mg(ClO_4)_2.6H_2O
 The largest field, MgCrO_4.5H_2O occupies 57.97 % of the diagram space,
 while the field LiClO_4.3H_2O takes up 41.29% of the area, thus leaving
 very small fields of very soluble Li_2CrO_4.3H_2O and Mg(ClO_4)_2.6H_2O. Due
 to its low solubility, MgCrO_4 is salted out by all the other salts in
 the system.
2. Other systems
   Other quaternary reciprocal systems which have been reported are the
 systems:
          (i) Mg^{2+}, La^{3+}//Clo_4^-, SO_4^{2-} - H_2O at 298 K (38)
          (ii) Mg^{2+}, Na^+//Clo_4^-, Cl^- - H_2O at 298 K (20) and 282 K (22)
         (iii) Mg^{2+}, K^+//Clo_4^-, Cl^- - H_2^- at 298 K (29)
          (iv) Mg^{2+}, Ce^{3+}//Clo_4^-, Cl^- - H_2O at 298 K (39)
          (v) Mg^{2+}, NH_4^+//Clo_4^-, Cl^- - H_2O at 298 K (2,19,32)
          (vi) Mg^{2+}, NH_4^+//Clo_4^-, NO_3^- - H_2O at 298 K (40)
                               Quaternary Systems
 Two quaternary systems consisting of water and a nonelectrolyte as two of
 the components have been reported at 298 K. These are:
           (i) Mg(ClO_4)_2-Ca(ClO_4)_2-CS(NH_2)_2-H<sub>2</sub>O, (41) and
          (ii) Mg(ClO_4)_2-LiClO<sub>4</sub>-C<sub>6</sub>H<sub>12</sub>N<sub>4</sub>-H<sub>2</sub>O (42)
```

COMPONENTS:	EVALUATORS:
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	I.N. Lepeshkov ; E.S. Gryzlova
(2) Water; H ₂ O; [7732-18-5]	Institute Obshchej i Neorganiche-
(3) Other solvents	skoi Khimii AN SSSR, Moscow.
	April, 1986

References

- Vasil'eva, S.I.; Rylenkova, I.N. Sb. Tr. Smolensk. Gos. Ped. Inst. 1979, 7-15.
- Leboshchina, V.I. Uch. Zap. Vladim. Gos. Ped. Inst. <u>1970</u>, 22(1), 60-5.
- Bitokov, V.T.; Ivanov, S.A. Sb. Tr. Yarosl. Gos. Ped. Inst. <u>1970</u>, 79, 61-6.
- 4. Ivanov, S.A. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1973</u>, 120, 20-3.
- Andronova, N.P.; Druzhnina, G.V. Sb. Tr. Yarosl. Gos. Ped. Inst. 1980, 185, 9-12.
- 6. Guseva, A.D. Sb. Tr. Yarosl. Gos. Ped. Inst. 1978, 169, 5-7.
- Troitskii, E.N.; Gumenyuk, V.P.; Prishel'tsev, N.I. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1977</u>, 164, 30.
- Karnaukhov, A.S.; Kosheleva, N.I. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1976</u>, 154, 62-6.
- 9. Lilich, L.S.; Kurbanova, Z.I.; Kocheregin, S.B.; Chernykh, L.V. Zh. Neorg. Khim. <u>1971</u>, 16, 2268-72; *Russ. J. Inorg. Chem. (Engl. Transl.) <u>1971</u>, 16, 1210-2.
- Karnaukhov, A.S.; Vasil'eva, S.I.; Rylenkova, I.N. Sb. Tr. Yarosl. Gos. Ped. Inst. <u>1979</u>, 178, 43-8.
- 11. Andronova, N.P. Sb. Tr. Yarosl. Gos. Ped. Inst. 1979, 178, 7-10.
- 12. Bitokov, V.T. Sb. Tr. Yarosl. Gos. Ped. Inst. 1970, 78, 142-9.
- Guseva, A.D.; Druzhnina, G.V. Sb. Tr. Yarosl. Gos. Ped. Inst. <u>1975</u>, 144, 81-6.
- 14. Lepeshkov, I.N.; Orekhov, O.L. Sb. Tr. Yarosl. Gos. Ped. Inst. <u>1969</u>, 66, 62-71.
- 15. Karnaukhov, A.S.; Zakharova, V.P. Sb. Tr. Yarosl. Gos. Ped. Inst. 1970, 78, 122-6.
- 16. Tarakanov, V.F. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1976</u>, 154, 37-9.
- 17. Lilich, L. S.; Druzhnina, B. F. Zh. Obshchei Khim. <u>1956</u>, 26, 1549-53;
 *J. General Chem. U.S.S.R. (Engl. Transl.) <u>1956</u>, 26, 1733-7.
- 18. Chernova, L.P. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1976</u>, 154, 16-8.
- Lepeshkov, I.N.; Leboshchina, V.I. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1966</u>, 59, 48-66.
- 20. Karnaukhov, A.S.; Kudryakova, S.A. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1966</u>, 59, 119-36.
- 21. Leboshchina, V.I. Uch. Zap. Yarosl. Gos. Ped. Inst. 1973, 120, 47-53.

COMPONENTS:	EVALUATORS:				
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂ [10034-81-8]</pre>	; I.N. Lepeshkov ; E.S. Gryzlova				
(2) Water; H ₂ O; [7732-18-5]	Institute Obshchej i Neorganiche-				
(3) Other solvents	skoi Khimii AN SSSR, Moscow.				
	April, 1986				
CRITICAL EVALUATION: (continued)					
22. Kudryakova, S.A.; Lepeshkov, I.N <u>1969</u> , 66, 40-50.	. Sb. Tr. Yarosl. Gos. Ped. Inst.				
23. Willard, H.H.; Smith, G.F. J. A	Am. Chem. Soc. <u>1923</u> , 45, 286-96.				
24. Rowley, H.H.; Seiler, F.J. Proc	c. Iowa Acad. Sci. <u>1940</u> , 47, 159-63.				
25. Sakk, Z.G.; Rosolovskii, V.Y. *Russ. J. Inorg. Chem. <u>1972</u> , 17,	Zh. Neorg. Khim. <u>1972</u> , 17, 1783-4; 927-8.				
26. Starkovich, J.A.; Janghorbani, 789-91.	M. J. Inorg. Nucl. Chem. <u>1972</u> , 34,				
789-91. 27. Makarenko, B.K.; Mendzheritskii, E.A.; Sobolev, R.P.; Pavarov, Y.M.; Sereda, P.A. Elektrokhimiya, <u>1974</u> , 10, 355-8; *Soviet Electrochem. (Engl. Transl.) <u>1974</u> , 10, 337-40.					
28. Troitskii, E.N. Sb. Tr. Yarosl.					
29. Troitskii, E.N. Sb. Tr. Yarosl.	Gos. Ped. Inst. 1969, 66, 23-33.				
30. Voronina, T.N.; Karnaukhov, A.S. <u>1970</u> , <i>78</i> , 27-31.	30. Voronina, T.N.; Karnaukhov, A.S. Sb. Tr. Yarosl. Gos. Ped. Inst.				
	I. Sb. Tr. Yarosl. Gos. Ped. Inst.				
32. Ivanov, C.I.; Orekhov, O.L. Sb. 203-6.	Tr. Yarosl. Gos. Ped. Inst. <u>1970</u> , 78,				
 Troitskii, E. N.; Gumenyuk, V.P Gos. Ped. Inst. <u>1970</u>, 78, 82-5. 	.; Proshletsov, A.I. Sb. Tr. Yarosl.				
34. Karnaukhov, A.S.; Kudryakova, S Gos. Ped. Inst. <u>1977</u> , 164, 29-30					
	?r. Yarosl. Gos. Ped. Inst. <u>1970</u> , 79,				
36. Collander, R. Acta Chim. Scand.	1949, <i>3</i> , 717.				
37. Voronina, T.I. Sb. Tr. Yarosl.					
38. Chernova, L.P. Sb. Tr. Yarosl.					
39. Guseva, A.D. Sb. Tr. Yarosl. Go					
	Sb. Tr. Yarosl. Gos. Ped. Inst. <u>1920</u> ,				
41. Zakharov, V.M. Sb. Tr. Yarosl.	Gos. Ped. Inst. <u>1971</u> , <i>95</i> , 98-100.				
42. Kosheleva, N.I. Sb. Tr. Yarosl.					

Magnesium	Perchlorate		
COMPONENTS: (1) Magnesium perchlorate; Mg(ClO ₄) ₂ ; [10034-81-8] (3) Water; H ₂ O; [7732-18-5]	ORIGINAL MEASUREMENTS: Lilich, L.S.; Dzhurinsky, B.F. Zh. Obshchei Khim. U.S.S.R. <u>1956</u> , 26, 1549-53; *J. Gen. Chem. U.S.S.R. (Engl. Transl.) <u>1956</u> , 26, 1733-7.		
VARIABLES: Temperature: 273-323 K	PREPARED BY: K.H. Khoo		
EXPERIMENTAL VALUES: Solubility of Mg(ClO ₄) ₂ in water	: Solid phase = Mg(ClO ₄) ₂ .6H ₂ O		
t/ ^o C soly/mol kg ⁻¹ 0 4.10 5 4.20 10 4.26 15 4.34 20 4.44 25 4.48	t/ ^o C soly/mol kg ⁻¹ 30 4.57 35 4.68 40 4.72 45 4.79 50 4.89		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: The salt was stirred with water in a thermostat. Equilibrium was reached after continuous stirring for 1-4 h. Approach to equilibrium from above or below had no effect. Magnesium was determined by precipitation as the sulfate [1]. The composition of the solid phase was determined at the	SOURCE AND PURITY OF MATERIALS: $Mg(ClO_4)_2$ was prepared by satura- ting $HClO_4$ with MgO (analytically pure grade) and recrystallized twice or thrice from solution. The purity of the salt was not stated.		
same time as the solubility by press- ing a sample with filter paper be- tween metal plates kept at about the same temperature as the solution.	ESTIMATED ERROR: Not stated.		
	REFERENCES: 1. Kolthoff, I.M.; Lundell, G.E., <i>Quantitative Analysis</i> , <u>1948</u> , 772.		

COMPONENTS:	
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8] (2) Water; H₂O; [7732-18-5]</pre>	ORIGINAL MEASUREMENTS: Willard, H.H.; Smith, G.F. <i>J. Am. Chem. Soc.</i> <u>1923</u> , 45, 286-96.
VARIABLES: One temperature: 298.15 K	PREPARED BY: C.Y. Chan
EXPERIMENTAL VALUES:	L
Solubility ^a of magnesium perchlorate	in water at 25.00°C :
mass % g/100 cm ³ sln. mol %	mol dm ⁻³ mol kg ⁻¹ sat. sln. density/g cm ⁻³
49.90 73.453 7.441 ^b	3.294 ^b 4.462 ^b 1.4720
specified) that had crystallized fro ^b Compiler's calculations. 	
METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube	was prepared as described in

COMPONENTS:			
JOHLONENID:	ORIGINAL MEASUREMENTS:		
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	Titova, K.V.; Kolmakova, E.I.; Rosolovskii, V.Ya.		
(2) Hydogen peroxide; H ₂ O ₂ ;			
[7722-84-1]	Zh. Neorg. Khim. <u>1986</u> , 31,		
	3213-5; *Russ. J. Inorg. Chem.		
	(Engl. Transl.) <u>1986</u> , 31,		
	1846-7.		
VARIABLES:	PREPARED BY:		
One temperature: 273 K	C.Y. Chan		
EXPERIMENTAL VALUES:	I		
The solubility ^a of magnesium perchlora	ate in hydrogen peroxide at O ^O C :		
g(1)/ 100 g(2) mass % mol	% molality/mol kg ⁻¹		
70.1 41.21 9.65			
was reported as Mg(ClO ₄) ₂ ,xH ₂ O ₂ b reliable analysis of its composition.			
AUXILIARY IN	IFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
No details of saturation method was	The anhydrous perchlorate was pre-		
given. Solubility equilibrium was	1		
established in 1-1.5 h. The con-	pared by heating the hydrate in		
Contration of the melocity of 1/1	pared by heating the hydrate in vacuum (source not given).		
centration of the solutions did not			
change noticeably during the next 3h	vacuum (source not given). Samples that showed no water I.R. absorption bands in the range		
change noticeably during the next 3h but after that slow decomposition of	vacuum (source not given). Samples that showed no water I.R. absorption bands in the range 1620-1635 cm ⁻¹ were used.		
change noticeably during the next 3h but after that slow decomposition of peroxide began. The concentrations of perchlorate in the satd solutions	vacuum (source not given). Samples that showed no water I.R. absorption bands in the range		
change noticeably during the next 3h but after that slow decomposition of peroxide began. The concentrations	vacuum (source not given). Samples that showed no water I.R. absorption bands in the range 1620-1635 cm ⁻¹ were used.		
change noticeably during the next 3h but after that slow decomposition of peroxide began. The concentrations of perchlorate in the satd solutions were determined by gravimetric an-	vacuum (source not given). Samples that showed no water I.R. absorption bands in the range $1620-1635 \text{ cm}^{-1}$ were used. The H ₂ O ₂ was 99.8% \pm 0.2% pure.		
change noticeably during the next 3h but after that slow decomposition of peroxide began. The concentrations of perchlorate in the satd solutions were determined by gravimetric an- alysis using nitron as the agent for precipitation. H_2O_2 was analys-	vacuum (source not given). Samples that showed no water I.R. absorption bands in the range $1620-1635 \text{ cm}^{-1}$ were used. The H ₂ O ₂ was 99.8% \pm 0.2% pure. ESTIMATED ERROR:		

COMPONENTS:			ORIGINAL ME	EASUREMENTS:	
(1) Magnesium pe	Mg(ClO ₄) ₂ ;	Willard, H.H.; Smith, G.F.			
[10034-81-8]					
(2) Alcohols:		J. Am. Chem. Soc. <u>1923</u> , 45, 286-96.			
(A) Methanol	lcohol);				
сн ₄ о; [е					
(B) Ethanol	ohol);				
1 v	[64-17-5]				
(C) 1-Propar	yl alcohol)	5			
C ₃ H ₈ O; [(D) 1-Butanc	alcoholl				
$C_4 H_{10}O;$	a100m01),				
(E) 2-Methyl		l (<i>iso-</i>			
	lcohol); C ₄				
[78-83-1	-	10			
VARIABLES:			PREPARED BY	·····	
One temperature:	298.15 K		C.Y. Chan	. •	
			1		
EXPERIMENTAL VALU	JES:				
soly in :	methanol	ethanol	1-propanol	1-butanol	2-methyl- 1-propanol
soly in : mass %	methanol 34.14			1-butanol 39.16	
	34.14	19.33			1-propanol
mass % g/100 cm ³ sln. mol % ^a	34.14 37.749	19.33	42.33 50.483	39.16	1-propanol 31.27
mass % g/100 cm ³ sln. mol % ^a mol dm ^{-3 a}	34.14 37.749 6.926	19.33 18.398	42.33 50.483 16.50	39.16 44.638 17.61	1-propanol 31.27 33.174
mass % g/100 cm ³ sln. mol % ^a	34.14 37.749 6.926	19.33 18.398 4.713	42.33 50.483 16.50	39.16 44.638 17.61	1-propanol 31.27 33.174 13.13
mass % g/100 cm ³ sln. mol % ^a mol dm ^{-3 a}	34.14 37.749 6.926 1.691 2.322	19.33 18.398 4.713 8.241	42.33 50.483 16.50 2.261	39.16 44.638 17.61 2.000	1-propanol 31.27 33.174 13.13 1.486
mass % g/100 cm ³ sln. mol % ^a mol dm ^{-3 a} mol kg ⁻¹ a	34.14 37.749 6.926 1.691 2.322	19.33 18.398 4.713 8.241	42.33 50.483 16.50 2.261 3.288	39.16 44.638 17.61 2.000	1-propanol 31.27 33.174 13.13 1.486
mass % g/100 cm ³ sln. mol % ^a mol dm ⁻³ a mol kg ⁻¹ a ^a Compiler's cal	34.14 37.749 6.926 1.691 2.322 .culations.	19.33 18.398 4.713 8.241 1.074	42.33 50.483 16.50 2.261 3.288	39.16 44.638 17.61 2.000	1-propanol 31.27 33.174 13.13 1.486 2.038
mass % g/100 cm ³ sln. mol % ^a mol dm ⁻³ a mol kg ⁻¹ a ^a Compiler's cal	34.14 37.749 6.926 1.691 2.322 .culations.	19.33 18.398 4.713 8.241 1.074	42.33 50.483 16.50 2.261 3.288	39.16 44.638 17.61 2.000 2.884	1-propanol 31.27 33.174 13.13 1.486 2.038
mass % g/100 cm ³ sln. mol % ^a mol dm ^{-3 a} mol kg ^{-1 a} ^a Compiler's cal	34.14 37.749 6.926 1.691 2.322 .culations.	19.33 18.398 4.713 8.241 1.074 AUXILIARY IN	42.33 50.483 16.50 2.261 3.288 IFORMATION SOURCE AND Anhydrous	39.16 44.638 17.61 2.000 2.884 PURITY OF MA	1-propanol 31.27 33.174 13.13 1.486 2.038 ATERIALS: erchlorate
mass % g/100 cm ³ sln. mol % ^a mol dm ⁻³ a mol kg ⁻¹ a ^a Compiler's cal METHOD/APPARATUS/ A sat. sln. of t at a temperature and sealed toget	34.14 37.749 6.926 1.691 2.322 culations. PROCEDURE: the salt w slightly ther with a	19.33 18.398 4.713 8.241 1.074 AUXILIARY IN as prepared above 25°C bout 1 g of	42.33 50.483 16.50 2.261 3.288 NFORMATION SOURCE AND Anhydrous was prepar ref.1.	39.16 44.638 17.61 2.000 2.884 PURITY OF MA magnesium por red as descr:	1-propanol 31.27 33.174 13.13 1.486 2.038 ATERIALS: erchlorate ibed in
mass % g/100 cm ³ sln. mol % ^a mol dm ⁻³ a mol kg ⁻¹ a ^a Compiler's cal METHOD/APPARATUS/ A sat. sln. of t at a temperature and sealed toget the anhydrous sa	34.14 37.749 6.926 1.691 2.322 Culations. PROCEDURE: The salt we slightly ther with a clt in a	19.33 18.398 4.713 8.241 1.074 AUXILIARY IN as prepared above 25°C bout 1 g of solubility	42.33 50.483 16.50 2.261 3.288 IFORMATION SOURCE AND Anhydrous was prepar ref.1. Alcohols p	39.16 44.638 17.61 2.000 2.884 PURITY OF MA magnesium period as description	1-propanol 31.27 33.174 13.13 1.486 2.038 ATERIALS: erchlorate ibed in fractional
mass % g/100 cm ³ sln. mol % ^a mol dm ⁻³ a mol kg ⁻¹ a A compiler's cal METHOD/APPARATUS/ A sat. sln. of t at a temperature and sealed toget the anhydrous sa tube, capacity 1	34.14 37.749 6.926 1.691 2.322 .culations. PROCEDURE: the salt w slightly ther with a alt in a 8-20 cm ³ .	19.33 18.398 4.713 8.241 1.074 AUXILIARY IN AUXILIARY IN as prepared above 25°C bout 1 g of solubility This tube	42.33 50.483 16.50 2.261 3.288 FORMATION SOURCE AND Anhydrous was prepar ref.1 . Alcohols p distillati	39.16 44.638 17.61 2.000 2.884 PURITY OF MA magnesium part red as descriptions ourified by the second secon	1-propanol 31.27 33.174 13.13 1.486 2.038 ATERIALS: erchlorate ibed in
<pre>mass % g/100 cm³ sln. mol %^a mol dm⁻³ a mol kg⁻¹ a a Compiler's cal METHOD/APPARATUS/ A sat. sln. of t at a temperature and sealed toget the anhydrous sa tube, capacity 1 was then rotated</pre>	34.14 37.749 6.926 1.691 2.322 .culations. PROCEDURE: the salt w slightly ther with a lt in a 8-20 cm ³ . end-over-	19.33 18.398 4.713 8.241 1.074 AUXILIARY IN as prepared above 25°C bout 1 g of solubility This tube end in the	42.33 50.483 16.50 2.261 3.288 IFORMATION SOURCE AND Anhydrous was prepar ref.1. Alcohols p	39.16 44.638 17.61 2.000 2.884 PURITY OF MA magnesium part red as descriptions ourified by the second secon	1-propanol 31.27 33.174 13.13 1.486 2.038 ATERIALS: erchlorate ibed in fractional
<pre>mass % g/100 cm³ sln. mol %^a mol dm⁻³ a mol kg⁻¹ a a Compiler's cal METHOD/APPARATUS/ A sat. sln. of t at a temperature and sealed toget the anhydrous sa tube, capacity 1</pre>	34.14 37.749 6.926 1.691 2.322 .culations. PROCEDURE: the salt w slightly ther with a lt in a 8-20 cm ³ . end-over-	19.33 18.398 4.713 8.241 1.074 AUXILIARY IN as prepared above 25°C bout 1 g of solubility This tube end in the	42.33 50.483 16.50 2.261 3.288 FORMATION SOURCE AND Anhydrous was prepar ref.1 . Alcohols p distillati	39.16 44.638 17.61 2.000 2.884 PURITY OF MA magnesium part red as descriptions ourified by the second secon	1-propanol 31.27 33.174 13.13 1.486 2.038 ATERIALS: erchlorate ibed in fractional
mass % g/100 cm ³ sln. mol % ^a mol dm ⁻³ a mol kg ⁻¹ a A compiler's cal METHOD/APPARATUS/ A sat. sln. of t at a temperature and sealed toget the anhydrous sa tube, capacity 1 was then rotated	34.14 37.749 6.926 1.691 2.322 .culations. PROCEDURE: the salt w slightly ther with a lt in a 8-20 cm ³ . end-over-	19.33 18.398 4.713 8.241 1.074 AUXILIARY IN as prepared above 25°C bout 1 g of solubility This tube end in the	42.33 50.483 16.50 2.261 3.288 FORMATION SOURCE AND Anhydrous was prepar ref.1 . Alcohols p distillati	39.16 44.638 17.61 2.000 2.884 PURITY OF MA magnesium per red as description ourified by rest on after rest tal.	1-propanol 31.27 33.174 13.13 1.486 2.038 ATERIALS: erchlorate ibed in fractional

COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Magnesium perchlorate; Mg(ClO ₄) ₂ ;	Willard, H.H.; Smith, G.F.			
[10034-81-8]				
(2) Alcohols:	J. Am. Chem. Soc. <u>1923</u> , 45,			
(A) Methanol (methyl alcohol);	286-96.			
CH ₄ O; [67-56-1]				
(B) Ethanol (<i>ethyl alcohol</i>);				
C ₂ H ₆ O; [64-17-5]				
(C) 1-Propanol (n-propyl alcohol);				
C ₃ H ₈ O; [71-23-8]				
(D) 1-Butanol (<i>n-butyl alcohol</i>);				
C ₄ H ₁₀ O; [71-36-3]				
(E) 2-Methyl-1-propanol (iso-				
butyl alcohol); C ₄ H ₁₀ O;				
[78-83-1]				

	methanol	ethanol	1-propanol	1-butanol	2-methyl- 1-propanol
				- <u></u>	
sat. sln. density/g cm ⁻³	1.1057	0.9518	1.1926	1.1399	1.0609
pure solvent density/g cm ⁻³	0.78705	0.78515	0.7989	0.8059	0.7981 ·

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: (continued) and stood vertically to allow the solids to settle. Samples of the clear sat. sln. were then analysed for solute content by an evaporationto-dryness method using Pt crucibles. The salt was dried to constant wt. at 250° C in a current of air dried with P_2O_5 . Duplicate soly determinations were made, those analyses in which chloride (from thermal decomposition) was found present being rejected.

ESTIMATED ERROR:

Precision in temp. was $\pm 0.01^{\circ}$ C; soly precision probably about \pm 0.1% (compiler).

REFERENCES:

 Willard, H.H.; Smith, G.F. J. Am. Chem. Soc. <u>1922</u>, 44, 2816.

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	Willard, H.H.; Smith, G.F.		
(2) Acetone; C ₃ H ₆ O; [67-64-1]	J. Am. Chem. Soc. <u>1923</u> , 45, 286-96.		
/ARIABLES: One temperature: 298.15 K	PREPARED BY: C.Y. Chan		
EXPERIMENTAL VALUES:			
Solubility ^a of magnesium perchlorate	in acetone at 25.00 ⁰ C :		
mass % g/100 cm ³ sln. mol % m	ol dm ⁻³ mol kg ⁻¹ sat. sln. density/g cm ⁻³		
30.015 32.410 10.039 ^b	1.452 ^b 1.9214 ^b 1.0798		
AUXILIARY IN	FORMATION		
AETHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the solids to settle. Samples of the	SOURCE AND PURITY OF MATERIALS: Anhydrous (1) was prepared as described in ref. 1. (2) was purified by refluxing with		
AETHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the	SOURCE AND PURITY OF MATERIALS: Anhydrous (1) was prepared as described in ref. 1. (2) was purified by refluxing with KOH and fractional distillation. Density of (2) at 25°C was 0.7852		

<pre>COMPONENTS: (1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8] (2) Tetrahydrofuran; C₄H₈O; [109-99-9]</pre>	<pre>ORIGINAL MEASUREMENTS: Makarenko, B.K.; Mendzheritskii, E.A.; Sobolev, R.P.; Povarov, Yu.M.; Sereda, P.A. Elektrokhimiya <u>1974</u>, 10, 355-8; *Soviet Electrochem. (Engl. Transl.) <u>1974</u>, 10, 337-40.</pre>
VARIABLES: One temperature: 298 K	PREPARED BY: C.Y. Chan
EXPERIMENTAL VALUES: The solubility of magnesium perchlorat 1.25 mol L^{-1} and the specific conduct was 4.1x10 ⁻³ S cm ⁻¹ .	
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE: No details given. Solubility was determined by polarographic analysis of the ions in solution. Saturated solution contained not more than 0.02% water.	SOURCE AND PURITY OF MATERIALS: (1) was recrystallized twice from aqueous sln. and dried under vacuum at 150-160 ^O C for 20-25 h; (2) was dried for 5-7 days with metallic lithium. Sources not given.
	ESTIMATED ERROR: Temperature <u>+</u> 0.1 [°] C .
	REFERENCES :

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	Willard, H.H.; Smith, G.F.
(2) Ethyl acetate; C ₄ H ₈ O ₂ ; [141-78-6]	J. Am. Chem. Soc. <u>1923</u> , 45, 286-96.
VARIABLES:	PREPARED BY:
One temperature: 298.15 K .	C.Y. Chan
EXPERIMENTAL VALUES:	l
Solubility ^a of magnesium perchlorate	in ethyl acetate at 25.00° C :
mass % g/100 cm ³ sln. mol % r	nol dm ⁻³ mol kg ⁻¹ sat. sln. density/g cm ⁻³
41.49 54.173 21.87 ^b	2.427 ^b 3.177 ^b 1.3057
^b Compiler's calculations.	
AUXILIARY IN	FORMATION
AUXILIARY IN	FORMATION SOURCE AND PURITY OF MATERIALS:
AUXILIARY IN METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared	SOURCE AND PURITY OF MATERIALS: Anhydrous (1) was prepared as
AUXILIARY IN METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C	SOURCE AND PURITY OF MATERIALS: Anhydrous (1) was prepared as described in ref. 1.
AUXILIARY IN METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared	SOURCE AND PURITY OF MATERIALS: Anhydrous (1) was prepared as described in ref. 1.
AUXILIARY IN METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube	SOURCE AND PURITY OF MATERIALS: Anhydrous (1) was prepared as described in ref. 1. (2) was purified by refluxing with P_2O_5 and fractional distillation. Density of (2) at $25^{\circ}C$ was 0.89457
AUXILIARY IN METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the	SOURCE AND PURITY OF MATERIALS: Anhydrous (1) was prepared as described in ref. 1. (2) was purified by refluxing with P_2O_5 and fractional distillation.
AUXILIARY IN METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h	SOURCE AND PURITY OF MATERIALS: Anhydrous (1) was prepared as described in ref. 1. (2) was purified by refluxing with P_2O_5 and fractional distillation. Density of (2) at $25^{\circ}C$ was 0.89455
AUXILIARY IN METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the	SOURCE AND PURITY OF MATERIALS: Anhydrous (1) was prepared as described in ref. 1. (2) was purified by refluxing with P_2O_5 and fractional distillation. Density of (2) at $25^{\circ}C$ was 0.89455
AUXILIARY IN METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the	SOURCE AND PURITY OF MATERIALS: Anhydrous (1) was prepared as described in ref. 1. (2) was purified by refluxing with P_2O_5 and fractional distillation. Density of (2) at $25^{\circ}C$ was 0.89455
AUXILIARY IN METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the solids to settle. Samples of the clear sat. sln. were then analysed for solute content by an evaporation-	SOURCE AND PURITY OF MATERIALS: Anhydrous (1) was prepared as described in ref. 1. (2) was purified by refluxing with P_2O_5 and fractional distillation. Density of (2) at 25°C was 0.89457 g cm ⁻³ ; b.p. was 77.14-77.16 °C.
AUXILIARY IN METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the solids to settle. Samples of the clear sat. sln. were then analysed for solute content by an evaporation- to-dryness method using Pt crucibles.	SOURCE AND PURITY OF MATERIALS: Anhydrous (1) was prepared as described in ref. 1. (2) was purified by refluxing with P ₂ O ₅ and fractional distillation. Density of (2) at 25°C was 0.89457 g cm ⁻³ ; b.p. was 77.14-77.16 °C.
AUXILIARY IN METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the solids to settle. Samples of the clear sat. sln. were then analysed for solute content by an evaporation- to-dryness method using Pt crucibles. The salt was dried to constant wt. at 250°C in a current of air dried with	SOURCE AND PURITY OF MATERIALS: Anhydrous (1) was prepared as described in ref. 1. (2) was purified by refluxing with P_2O_5 and fractional distillation. Density of (2) at 25°C was 0.89457 g cm ⁻³ ; b.p. was 77.14-77.16 °C.
AUXILIARY IN METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25° C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00° C for 24-48h and stood vertically to allow the solids to settle. Samples of the clear sat. sln. were then analysed for solute content by an evaporation- to-dryness method using Pt crucibles. The salt was dried to constant wt. at 250° C in a current of air dried with P_2O_5 . Duplicate soly determinations	SOURCE AND PURITY OF MATERIALS: Anhydrous (1) was prepared as described in ref. 1. (2) was purified by refluxing with P ₂ O ₅ and fractional distillation. Density of (2) at 25°C was 0.89457 g cm ⁻³ ; b.p. was 77.14-77.16 °C. ESTIMATED ERROR: Precision in temp. was ± 0.01°C.
AUXILIARY IN METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the solids to settle. Samples of the clear sat. sln. were then analysed for solute content by an evaporation- to-dryness method using Pt crucibles. The salt was dried to constant wt. at 250°C in a current of air dried with	SOURCE AND PURITY OF MATERIALS: Anhydrous (1) was prepared as described in ref. 1. (2) was purified by refluxing with P ₂ O ₅ and fractional distillation. Density of (2) at 25°C was 0.89457 g cm ⁻³ ; b.p. was 77.14-77.16 °C.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	Rowley, H.H.; Seiler, F.J.
<pre>(2) 1,1'-oxybis-ethane (diethyl</pre>	*Proc. Iowa Acad. Sci. <u>1940</u> , 47, 159-63; Trans. Illinois State Acad. Sci. <u>1940</u> , 33, 117-9.
VARIABLES: One temperature: 273 -298 K	PREPARED BY: C.Y. Chan

EXPERIMENTAL VALUES:

Solubility of magnesium perchlorate in anhydrous *diethyl ether* at various temperatures :

t∕°C	g(1)/100g(2)	molality $^{\rm a}/10^{-3}$ mol kg $^{-1}$
0	0.0437	1.958
15	0.0588	2.634
25	0.0643	2.881

^a Compiler's calculation.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a 50 cm^3 pyrex tube and a 250 cm³ pyrex flask, joined together at the necks via a 20 cm tubing with a stopcock in the middle. The neck of each had been drawn out so that it could be sealed off when necessary. About 150 cm³ of (2) was placed in the larger flask and fresh sodium wire added. When the sodium had ceased reacting, the stopcock was closed and the flask was sealed after gentle suction had been applied. Solid (1) was placed in the tube and heated at 250°C. The drawn outlet of the tube was connected to a vacuum pump. After several hours this outlet was sealed off and the sample allowed to cool in vacuum. The tube was then cooled with dry ice, the stopcock opened, and (2) readily distilled over from the flask at room temperature. When about 50 cm^3 of (2) had collected in the tube, it was

SOURCE AND PURITY OF MATERIALS: Anhy. (1) prepared by dehydration of commercial dehydrite (G.F. Smith and Co.) at 250°C under vacuum and was 99.9% pure. Anhy. (2) prepared by distilling reagent grade ether over sodium and collecting the middle fraction for use.

ESTIMATED ERROR: Reproducibility of triplicate determinations was \pm 7% of the mean.

REFERENCES:

(continued next page)

(1) Magnesium		ORIGINAL MEASUREMEN	TS:		
[10034-81-	<pre>perchlorate; Mg(ClO₄)₂; 8]</pre>	; Rowley, H.H.; Seiler, F.J.			
	s-ethane (<i>diethyl</i>	*Proc. Iowa Acad. Sci. <u>1940</u> , 47,			
ether); C	4 ^H 10 ^O ; [60-29-7]	159-63; Trans. Illinois State			
		Acad. Sci. <u>1940</u>	Acad. Sci. <u>1940</u> , 33, 117-9.		
XPERIMENTAL VA	LUES: (continued)				
Composition of	solid phase in equilib	orium with saturated s	olution :		
temp.	mass % (1)	mol ratio, (1):(2)			
0°C	50.2	2.99			
	45.4	3.64			
Mean ^a	: 47.8	3.32			
25 ⁰ C	63.7	1.75			
	64.7	1.65			
	62.8	1.79			
	58.4	2.15			
Mean	a: 62.4 ± 2.8	1.84 ± 0.21			
It is believe	<u>R ADDITIONAL DATA</u> : d that solid Mg(ClO ₄) ₂ . nd possibly at 25 ⁰ C. T				
etherates of Mg(ClO ₄) ₂ .3(C ether molecul	(1), viz. $Mg(ClO_4)_2.(C_2H_5)_2O$. The diethe e fairly readily at 25^{C} ate is fairly stable up	C, but much more slow	C ₂ H ₅) ₂ O and e but loses on		
etherates of Mg(ClO ₄) ₂ .3(C ether molecul The monoether	$_{2}^{H_{5}})_{2}^{O}$. The diethe fairly readily at 25°	rate is fairly stabl ² C, but much more slow b to 100 ⁰ C.	C ₂ H ₅) ₂ O and e but loses on ly at O ^O C,		
etherates of Mg(ClO ₄) ₂ .3(C ether molecul The monoether	${}_{2}H_{5}){}_{2}O$. The diethe e fairly readily at 25 ^C ate is fairly stable up (1) in (2) in the pres	rate is fairly stabl ² C, but much more slow to 100 ⁰ C. sence of small amts. o	C ₂ H ₅) ₂ O and e but loses on ly at O ^O C,		
etherates of Mg(ClO ₄) ₂ .3(C ether molecul The monoether Solubility of	${}_{2}H_{5}){}_{2}O$. The diethe e fairly readily at 25 ^C ate is fairly stable up (1) in (2) in the pres 1 (2) g (1)/10	rate is fairly stabl ² C, but much more slow to 100 [°] C. sence of small amts. o ² Og (2) molality	C ₂ H ₅) ₂ O and e but loses on ly at O ^O C. f water: 		
etherates of Mg(ClO ₄) ₂ .3(C ether molecul The monoether Solubility of mol H ₂ O/mo	${}_{2}H_{5}){}_{2}O$. The diethe e fairly readily at 25 ^C ate is fairly stable up (1) in (2) in the pres (1) (2) g (1)/10 15 ^O C	rate is fairly stabl ² C, but much more slow to 100 ^o C. sence of small amts. o ² Og (2) molality 25 ^o C 15 ^o C	C ₂ H ₅) ₂ O and e but loses on ly at O ^O C. f water: /mol kg ⁻¹ 25 [°] C		

sealed and disconnected from the apparatus. Several such sealed tubes were rotated end-over-end in constant temperature baths at 0, 15 and 25 $^{\circ}$ C. After allowing the solids to settle, the ends of the tubes were broken off and the clear solution quickly filtered through glass wool in enclosed tubes into weighing bottles and then weighed. The contents were then analysed for Mg by the pyrophosphate gravimetric method.

Magnesium Perchlorate				
<pre>COMPONENTS: (1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8] (2) 1,1'-oxybis-ethane (diethyl ether); C₄H₁₀O ; [60-29-7]</pre>	ORIGINAL MEASUREMENTS: Willard, H.H.; Smith, G.F. <i>J. Am. Chem. Soc.</i> <u>1923</u> , 45, 286-96.			
VARIABLES: One temperature: 298.15 K	PREPARED BY: C.Y. Chan			
EXPERIMENTAL VALUES: Solubility ^a of magnesium perchlorate	in <i>diethyl ether</i> at 25.00 ⁰ C :			
mass % g/100 cm ³ sln. mol %	nol dm ⁻³ mol kg ⁻¹ sat. sln. density/g cm ⁻³			
0.29 0.2059 0.097 ^b	0.00936 ^b 0.013 ^b 0.7101			
^a The solid phase was the anhydrous s. ^b Compiler's calculations.				
_	IFORMATION			
^b Compiler's calculations.	SOURCE AND PURITY OF MATERIALS: Anhydrous (1) was prepared as described in ref. 1. (2) was purified by refluxing with P_2O_5 and fractional distillation.			
^b Compiler's calculations. AUXILIARY IN METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the solids to settle. Samples of the clear sat. sln. were then analysed	SOURCE AND PURITY OF MATERIALS: Anhydrous (1) was prepared as described in ref. 1. (2) was purified by refluxing with P_2O_5 and fractional distillation. Density of (2) at $25^{\circ}C$ was 0.7081			

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	Sakk, Zh.G.; Rosolovskii, V.Ya.
(2) Hydrazine; N ₂ H ₄ ; [302-01-2]	Zh. Neorg. Khim. <u>1972</u> , 17, 1783-4; *Russ. J. Inorg. Chem. (Engl. Transl.) <u>1972</u> , 17, 927-8.
VARIABLES: One temperature: 298.2 K	PREPARED BY: C.Y. Chan

EXPERIMENTAL VALUES:

The solubility of magnesium perchlorate in hydrazine at 25.0° C was reported as 69.0 g(1)/100 g(2). The corresponding mol % and molality values calculated by the compiler are 9.01% and 3.091 mol kg⁻¹ respectively. The solid phase was presumably the anhydrous salt (compiler).

AUXILIARY INFORMATION

fitted with a porosity no.4 filter at reduced pressure. After separa- ting the phases, the solution was analysed for hydrazine. Methods of analysis not given. Replicate soly determinations were made.
--

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Magnesium perchlorate; Mg(ClO ₄) ₂ ;	Lilich, L.S.; Kurbanova, Z.I.;		
[10034-81-8]	Kocheregin, S.B.; Chernykh, L.V.		
(2) Perchloric acid; HClO ₄ ;			
[7601-90-3]	Zh. Neorg. Khim. <u>1971</u> ,16, 2268-72;		
(3) Water; H ₂ O; [7732-18-5]	*Russ. J. Inorg. Chem. (Engl.		
	Transl.) <u>1971</u> , <i>16</i> , 1210-2.		
VARIABLES:	PREPARED BY:		
Temperature/K: 273.2, 298.15 and	K.H. Khoo		
323.15			
Composition			
EXPERIMENTAL VALUES:			
Solubility system Mg(ClO	$(4)_2$ -HClO ₄ -H ₂ O at 0.0°C		
Liquid phase compositio	n Solid		
	phase		
mass % mol % ^a molality (1) (2) (1) (2) (1)	a/mol kg ⁻¹ (2)		
48.21 - 6.988 - 4.170	- $Mg(ClO_4)_2.6H_2O$		
	1 001 "		

]	Liquid p	hase co	omposition	Ļ	Solid
						phase
ma	.ss %	mol	% ^a	molality ^a	/mol kg ⁻¹	
(1)	(2)	(1)		(1)		
48.21	-	6,988	-	4.170	-	Mg(ClO ₄) ₂ .6H ₂ C
11.19	7.21	5.914	2.300	3.576	1.391	
29.37	19.19	4.140	6.011	2.558	3.714	**
20.74	28.75	2.919	8.992	1.840	5.666	**
15.56	34.90	2.201	10.97	1.407	7.013	11

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The solubility was measured by the isothermal saturation method. The time taken to attain equilibrium was 6-10 h, depending on the temperature. Mg^{2+} was determined by titration with Trilon B using eriochrome black as indicator. $HClO_4$ was determined by titration with borax solution using methyl red as indicator. The compositions of the solid phases were determined using Schreimemakers' method [1].

REFERENCES:

1. Schreinemakers, F.A.H. Z. Phys. Chem. <u>1983</u>, 11, 81. SOURCE AND PURITY OF MATERIALS: Magnesium perchlorate was made by neutralizing "pure" grade MgCO3 with "analytical reagent" grade HClO₄ and recrystallized thrice. The purity was not stated. $HClO_4$ was the anhydrous acid as well as the "chemically pure" grade 57 % acid which was checked for the contents of Cl⁻ and SO_A^{2-} ions.

ESTIMATED ERROR: Temperature : ± 0.2 K at 273 K; ±0.02 K at 298 K; ±0.05 K at 323 K. Solubility : ±0.05 % (±0.1% at high HClO₄ concentrations

(continued next page)

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Magnesium perchlorate; Mg(ClO ₄) ₂ ;	Lilich, L.S.; Kurbanova, Z.I.;
[10034-81-8]	Kocheregin, S.B.; Chernykh, L.V.
(2) Perchloric acid; HClO ₄ ;	
[7601-90-3]	Zh. Neorg. Khim. <u>1971</u> ,16, 2268-72;
(3) Water; H ₂ O; [7732-18-5]	*Russ. J. Inorg. Chem. (Engl.
	Transl.) <u>1971</u> , <i>16</i> , 1210-2.

Solubility system $Mg(ClO_4)_2-HClO_4-H_2O$ at 0.0^oC

	Solid phase ^b					
mas	ss %	mol	% ^a	molality ^a ,	/mol kg ⁻¹	
(1)	(2)	(1)	(2)	(1)	(2)	
9.10	42.22	1.289	13.29	0.837	8.633	А
4.34	49.05	0.628	15.78	0.417	10.48	Α
1.08	55.90	0.164	18.87	0.112	12.94	А
0.05	66.36	0.009	26.16	0.007	19.67	Α
0.29	71.24	0.057	30.96	0.046	24.91	Α
1.43	75.35	0.313	36.67	0.276	32.30	Α
3.25	72.56	0.700	34.73	0.602	29.86	A + B
3.17	72.62	0.682	34.74	0.587	29.86	В
3.54	72.79	0.772	35.27	0.670	30.61	В
5.00	72.76	1.131	36.56	1.007	32.57	B + C
3.28	75.05	0.748	38.03	0.678	34.48	С
3.00	75.61	0.688	38.53	0.628	35.19	C + D
1.18	76.40	0.263	37.83	0.236	33.92	D
-	77.81	-	38.61	-	34.91	D

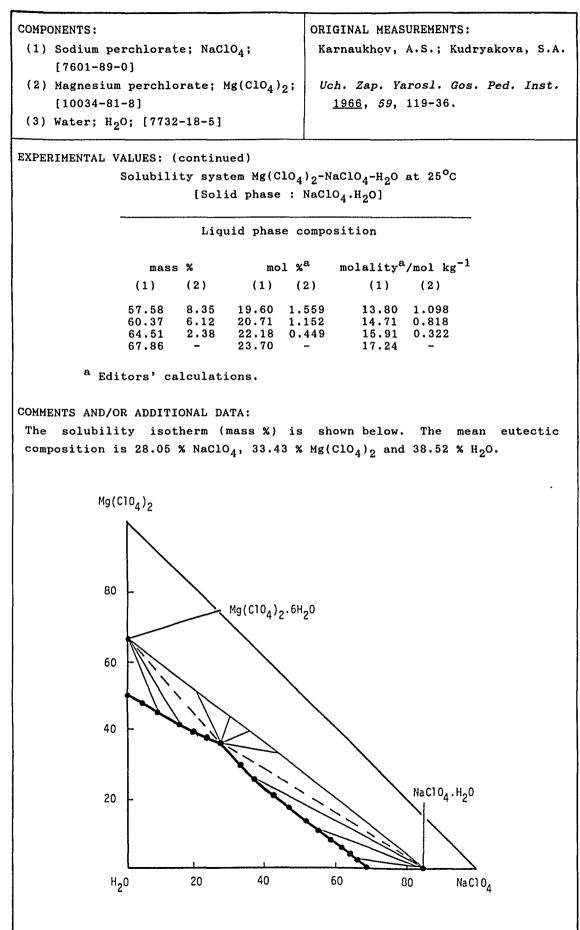
Solubility system $Mg(ClO_4)_2-HClO_4-H_2O$ at 25.00°C

		Liquid p	hase co	omposition		Solid phase ^b
	ss %	mol	v∕a	molality ^a	$mol ka^{-1}$	
(1)		(1)	~ (2)	(1)	(2)	
(1)	(4)	(+)	(4)	(1)	(2)	
50.00	-	7.468	-	4.480	-	А
32.67	17.68	4.755	5.717	2.948	3.545	А
21.32	29.80	3.076	9.552	1,954	6.069	Α
11.85	41.59	1.740	13.57	1.140	8.892	Α
2.80	55.00	0.432	18.86		12.97	Α
0.62	63.90	0.106	24.39	0.078	17.93	A
0.77	68.71	0.145	28.72	0.113	22.41	А
1.70	71.14	0.343	31.85	0.280	26.07	А
6.08	68.92	1.296	32.65	1.090	27.44	А
7.03	68.30		32.67	1.277	27.56	A + B
7.03	69.47	1.553	34.11	1.340	29.43	В
8.25	69.34	1.875	35.02	1.649	30.80	B + C
6.80	71.41	1.562	36.44	1.398	32.62	B + C
5.33	73.71	1.243	38.19	1.139	35.01	С
4.34	75.76	1.035	40.15	0.977	37.90	С
3.17	77.69	0.768	41.80		40.41	C + D
1.72	78.21	0.406	40.97	0.384	38.79	D
-	79.41	-	40.89	-	38.39	D
Compi	ler's cal	lculatio	ns.			
$A = M_{1}$	g(ClO ₄) ₂	.6H ₂ O ;	B = Mg	(C10 ₄) ₂ .4H	20;	
$C = M_{2}$	$g(Clo_4)_2$.2H ₂ О ;	D = HC	104.H20.		

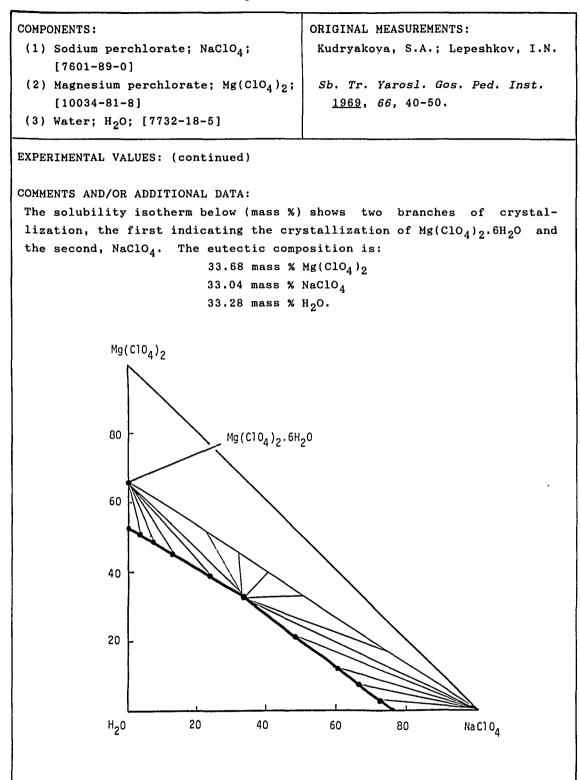
(continued next page)

COMPONENTS:	ORIGINAL MEASUREMENTS:			
 Magnesium perchlorate; Mg(ClO₄)₂; 	Lilich, L.S.; Kurbanova, Z.I.;			
[10034-81-8]	Kocheregin, S.B.; Chernykh, L.V.			
(2) Perchloric acid; HClO ₄ ;				
[7601-90-3]	Zh. Neorg. Khim. <u>1971</u> ,16, 2268-72;			
(3) Water; H ₂ O; [7732-18-5]	*Russ. J. Inorg. Chem. (Engl.			
_	Transl.) <u>1971</u> , <i>16</i> , 1210-2.			

Solubility system $Mg(ClO_4)_2$ -HClO₄-H₂O at 50.00°C


	Liquid phase composition Solid phase ^b							
mas	s %	mol	% ^a	molality ^a	$mol ka^{-1}$			
(1)	(2)	(1)	~ (2)	(1)	(2)			
(1)	(2)	(1)	(4)	(1)	(4)			
52.25	-	8.115	-	4.902	-	А		
37.40	15.20	5.680	5.129	3.535	3.192	А		
25.00	28.75	3.777	9.651	2,422	6.188	Α		
7.55	50.03	1.172	17.25	0.797	11.74	Α		
2.20	60.85	0.370	22.72	0.267	16.39	Α		
1.88	66.12	0.345	26.94	0.263	20.57	Α		
3.45	68.19	0.681	29.92	0.545	23.94	Α		
5.77	67.31	1.180	30.59	0.960	24.89	Α		
8,06	65.91	1.690	30.70	1.387	25.21	Α		
13.12	61.31	2.815	29.22	2.299	23.87	Α		
13.90	60.56	2.990	28.94	2.438	23.60	A + B		
14.00	60.78	3.033	29.26		23.99	A + B		
14.18	61.71	3.151	30.47	2.635		В		
15.67	61.88	3.633	31.88		27.44	В		
16.11	61.57	3.751	31.85	3.234	27.46	В		
16.42	61.27	3.828	31.74	3.297	27.34	B + C		
13.93	64.41	3.275	33.64		29.60	B + C		
11.27	67.55	2.659	35.42	2.384	31.75	С		
6.05	74.81	1.478	40.60	1.416	38.91	С		
2.85	80.50	0.735	46.10	0.767	48.13	С		

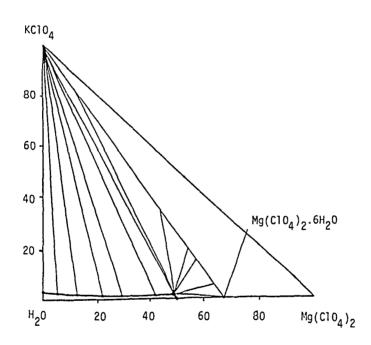
^a Compiler's calculations.


^b A = Mg(ClO₄)₂.6H₂O ; B = Mg(ClO₄)₂.4H₂O ; C = Mg(ClO₄)₂.2H₂O.

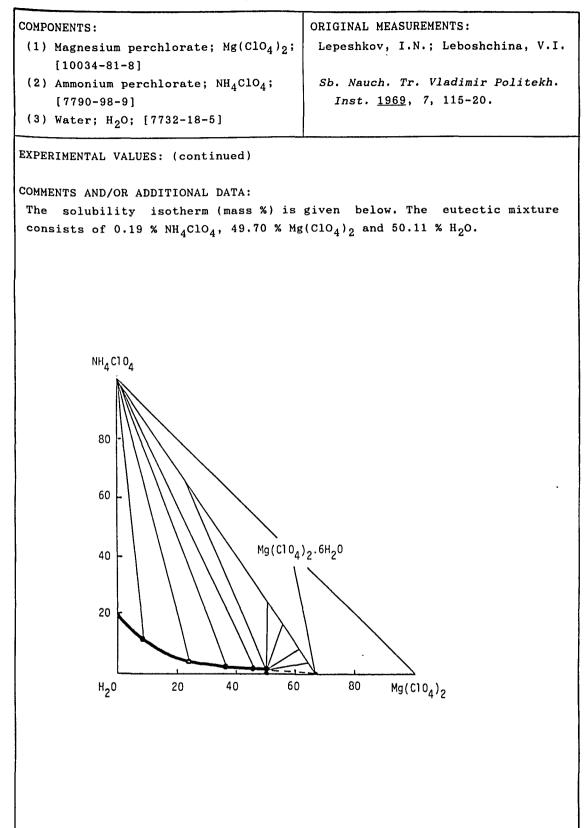
ENTS: ; Kudryakova, S.A. <i>. Gos. Ped. Inst.</i> 36.
36. id
36. id
Ъ
se ^b
_
B B
В
B B
B
OF MATERIALS:
recrystallized
5.58-99.75%.
°c.
ntinued next page)

.

40 Magnesium	Perchiorate
<pre>COMPONENTS: (1) Sodium perchlorate; NaClO₄; [7601-89-0] (2) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8] (3) Water; H₂O; [7732-18-5]</pre>	ORIGINAL MEASUREMENTS: Kudryakova, S.A.; Lepeshkov, I.N. Sb. Tr. Yarosl. Gos. Ped. Inst. <u>1969</u> , 66, 40-50.
VARIABLES: One temperature: 363 K Composition	PREPARED BY: I.S. Bodnya
EXPERIMENTAL VALUES: Solubility System Mg(ClO ₄	$)_2$ -NaClO ₄ -H ₂ O at 90°C
	phase ^b .ty ^a /mol kg ⁻¹ (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.336 A + B 4.367 B 4.095 B 3.750 B 3.475 B 3.126 B 2.388 B 1.815 B 0.961 B
74.51 1.33 31.12 0.305 25.19 76.27 - 32.11 - 26.25 ^a Editors's calculations ; ^b A = Mg(– В
	INFORMATION
METHOD/APPARATUS/PROCEDURE: The isothermal method was used. Mg ²⁺ was determined volumetrically by titration with Trilon B; Na ⁺ gravi- metrically by precipation with zinc	SOURCE AND PURITY OF MATERIALS: Not given. ESTIMATED ERROR:
uranyl acetate; and ClO_4 gravimetri- cally by nitron precipitation. The density and relative viscosity of the saturated solutions were measured.	
	(continued next page)



COMPONENTS			,		ORIGINAL	MEASUREMENTS:	
(1) Potass [7778-		rchlorate	e; KC10	4;	Troitskii, E.N.		
(2) Magnes		rchlorate	e; Mg(C	10 ₄) ₂ ;	Sb. Tr. Yarosl. Gos. Ped. Inst.		
[10034	4-81-8]				<u>1969</u> ,	66, 23-33.	
(3) Water;	н ₂ о; (7732-18-	-5]				
VARIABLES:					PREPARED	BY:	
One temper		298 K			E.S. Gr	yzlova	
Compositio)n						
EXPERIMENT							
	Solut	oility sy	vstem M	g(ClO ₄) ₂	2-КС10 ₄ -Н	20 at 25° C :	
	Li	iquid pha	ase com	positior	1	Solid	
			-		_	phase	
mass (1)		mol (1)			^a /mol kg (2)	-1	
-	2.00		0.164			KCIO4	
1.86 5.02		0.249 0.688			0.057	"	
12.65	0.43	1.856	0.039	1.050	0.022	11	
22.32 30.14			0.031 0.019		0.018	**	
		7.220			0.011		
41.94	0.12	8.601	0.015	5.224	0.009	**	
	0.11	10.38			0.009		
	0.10 0.08		0.014 0.011		0.009	$KClo_4 + Mg(Clo_4)_2.6H_2O$	
49.54	0.09		0.013		0.008	47	
		11.32			0.007	**	
$49.48 \\ 49.61$	0.08 0.11	$11.31 \\ 11.37$	0.011 0.016		0.007		
49.54	0.09	11.34	0.013		0.008	Mg(ClO ₄)2.6H2O	
		ulations		/.1/4	_		
Euitoi			.				
			AUXIL	IARY INF	ORMATION		
METHOD/APPA	.RATUS/F	ROCEDURE	:				
The isothe	ermal me	ethod wa	s used.	K ⁺ was	s determi	ined gravimetrically using	
tetrapher	lylbora	ate. Mg	2+ by	titrat	ion wit	h Trilon B and ClO_4^- by	
						ty and refractive index of	
						composition of the solid	
						s and the solid phases	
were deter	mined b	y Schrei	nemakei	rs' meth	od .		
SOURCE AND	PURITY	OF MATER	IALS:		REFERENC	ES:	
Not stated	•				None.		
ESTIMATED E	RROR:						
Temperatur	e: <u>+</u> 0.0	5° C.					
				1			
						(continued next page)	


COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Potassium perchlorate; KClO ₄ ;	Troitskii, E.N.
[7778-74-7]	
<pre>(2) Magnesium perchlorate; Mg(ClO₄)₂;</pre>	Sb. Tr. Yarosl. Gos. Ped. Inst.
[10034-81-8]	<u>1969</u> , <i>66</i> , 23-33.
(3) Water; H ₂ O; [7732-18-5]	

COMMENTS AND/OR ADDITIONAL DATA:

The solubility isotherm (mass %) is given below. It shows a long branch of crystallization of KClO₄. Magnesium perchlorate has a strong saltingout effect on potassium perchlorate. The eutectic contains 0.09 % KClO₄, 49.54 % $Mg(ClO_4)_2$ and 50.37 % H_2O .

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Magnesium perchlorate; Mg(ClO ₄) ₂	
[10034-81-8]	
<pre>(2) Ammonium perchlorate; NH₄ClO₄; [7790-98-9]</pre>	Sb. Nauch. Tr. Vladimir Politekh. Inst. <u>1969</u> , 7, 115-20.
(3) Water; H ₂ O; [7732-18-5]	inst: <u>1000</u> , 7, 110-20.
VARIABLES:	PREPARED BY:
One temperature: 298 K	N.A. Kozyreva
Composition	
EXPERIMENTAL VALUES:	
Solubility system Mg(Cl	$0_4)_2 - NH_4 C10_4 - H_2 O$ at 25°C
Liquid phase composit	
	ity ^a /mol kg ⁻¹ 1) (2)
	- 2.099 NH ₄ ClO ₄
3.25 16.30 0.315 3.004 0.	055 1.918 " 181 1.725 "
	449 1.310 " 527 1.148 "
19.06 5.94 1.986 1.176 1.	139 0.674 "
	564 0.451 " 169 0.245 "
33.48 1.68 3.986 0.380 2.	313 0.221 "
	751 0.126 " 318 0.086 "
43.70 0.30 5.921 0.077 3.	496 0.046 "
	963 0.047 " 443 0.031 NH ₄ ClO ₄ + Mg(ClO ₄) ₂ .6H ₂ O
	443 0.031 $NH_4ClO_4 + Mg(ClO_4)_2.6H_2O$ 432 0.024 "
	441 0.027 "
	444 0.032 " 441 0.027 "
49.90 - 7.441 - 4.	462 - $Mg(ClO_4)_2.6H_2O$
^a Editors' calculations.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method. Details not given	
Mg ²⁺ was determined by titration wit	
EDTA; NH_4^+ by distilling off NH_3 int	
boric acid solution and titratio	
with H_2SO_4 ; ClO_4 was determined wit	
nitron.	Not stated.
	REFERENCES :
	None.
	(continued next page)

		rchlorat	e; Mg(C	ORIGINAL MEASUREMENTS: Ivanov, S.A.; Orekhov, O.L.			
(2) Ammo [779	nium per 0-98-9]	chlorate	•	.0 ₄ ;		. Yarosl. Gos. Ped. 78, 203-10.	Inst.
(3) Wate	r; H ₂ O;	[7732-18-	-5]				
VARIABLES	:				PREPARED I	BY:	
One temp	erature:	298 K			N.A. Kozyreva		
Composit	ion						
EXPERIMEN			system	Mg(ClO ₄)	2-NH4ClO4.	-H ₂ O at 25°C	
	L	iquid pha				Solid phase	
ma (1)	ss % (2)	mol (1)			^a /mol kg ^{-:} (2)	L	
		0.096				NH4C104	
9.39		$0.315 \\ 0.921 \\ 1.986$	2.008	0.527		**	

^a Editors' calculations.

3.78

1.68

0.91

0.29

0.28

0.18

0.14

0.16

0.19

0.16

24,90

33.48

37.70

46.80

46.90

49.70

49.66

49.70

49.70

49.70

49.87

METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The salts were recrystallized. Isothermal method. Details not given. NH_A^+ was determined by distilling off NH_3 into boric acid and then titrating with H_2SO_4 ; Mg^{2+} by titra-ESTIMATED ERROR: tion with Trilon B at pH 10-11 with Temperature: ±0.1°C. chrome blue black as indicator; $Clo_{\overline{4}}$ by difference. The density, viscosity and electrical conductivity of the **REFERENCES:** saturated solutions were measured. None. (continued next page)

AUXILIARY INFORMATION

1.564

2.313

2.751

3.963

3.978

4.443

4.432

4.441

4.444

4.46

0.451

0.221

0.126

0.047

0.045

0.024

0.027

0.032

4.441 0.027

0.031

11 **

 $Mg(ClO_4)_2.6H_2O$

 $Mg(ClO_4)_2.6H_2O$

 $NH_4ClO_4 + Mg(ClO_4)_2.6H_2O$

0.784

0.380

0.216

0.078

0.076

0.051

0.040

0.045

0.054

0.045

2.719

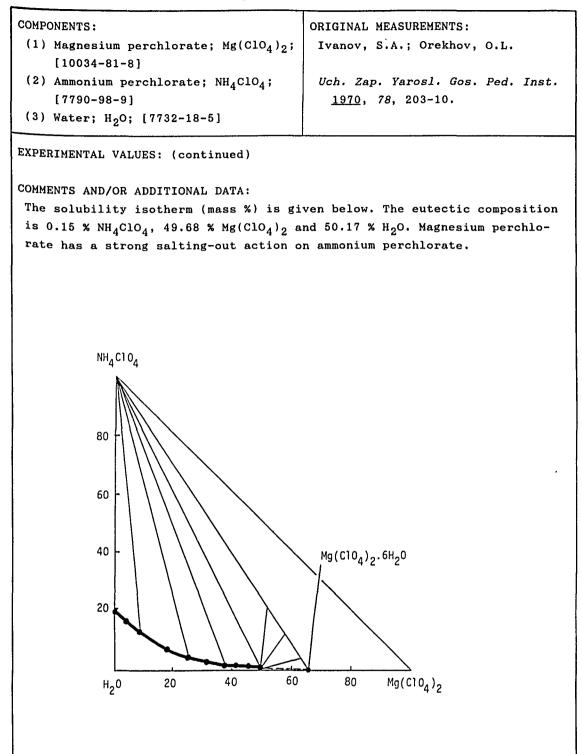
3.986

4.712

6.658

6.682

7.407


7.391

7.404

7.408

7.404

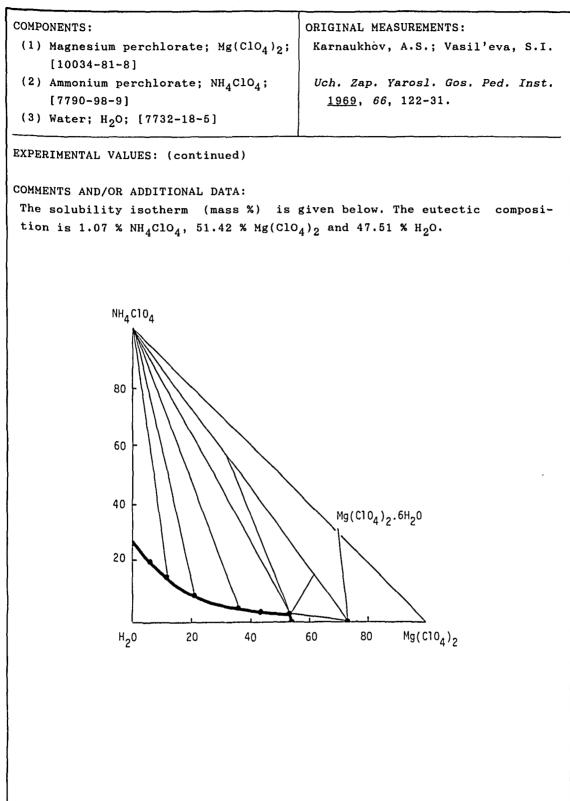
7.43

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Magnesium perchlorate; Mg(ClO₄)₂; 	Karnaukhov, A.S.; Vasil'eva, S.I.
[10034-81-8]	
(2) Ammonium perchlorate; NH ₄ ClO ₄ ;	Uch. Zap. Yarosl. Gos. Ped. Inst.
[7790-98-9]	<u>1969</u> , 66, 122-31.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
One temperature: 313 K	I.S. Bodnya
Composition	
	<u> </u>
EXPERIMENTAL VALUES:	

indicator at pH 10-11, and ClO_4^- iodi-

viscosity of the saturated solutions

were determined,


Solubility system $Mg(ClO_4)_2 - NH_4ClO_4 - H_2O$ at $40^{\circ}C$

	I	iquid phase com	-		Solid phase
ma	.ss %	mol % ^a m	olality ^a	/mol kg ⁻	1
(1)	(2)	(1) (2)	(1)	(2)	
-	26.67	- 5.282	-	3.096	NH4ClO4
	24.71	0.124 4.859	0.073		
	24.36	0.153 4.788	0.089		"
	21.36	0.416 4.188	0.242		"
5.76	19.86	0.597 3.910	0.347		"
8.61	18.06	0.905 3.606	0.526		11
11.94	15.43	1.269 3.115	0.737	1.808	"
17.08	12.34	1.867 2.562	1.084	1.488	**
23.02	8.16	2.583 1.740	1.499	1.009	*1
25.91	6.75	2.968 1.469	1.724		"
36.61	6.75 3.30 2.88	4.650 0.796	2.730	0.467	**
39.50	2.88	5.205 0.721	3.071	0.425	
43.42	2.37	6.034 0.626	3.588	0.372	**
51.23	1.19	7.967 0.352	4.824	0.213	$NH_4ClO_4 + Mg(ClO_4)_2.6H_2$
51.16	1.11	7.936 0.327	4.802	0.198	
51.39	0.93	7.981 0.274	4.829	0.166	"
51.49	1.02 1.15 1.09	8.023 0.302	4.858	0.183	11
51.65	1.15	8.088 0.342	4.903	0.207	"
51.42	1.09	8.011 0.323	4.851	0.195	**
51.62	0.97	8.055 0.288	4.878	0.174	"
52.00	-	8.040 -	4.854		$Mg(ClO_4)_2.6H_2O$
^a Edit	ors' cal	culations.			
		AUXIL	IARY INF	ORMATION	
THOD/AP	PARATUS/	PROCEDURE:		SOURCE A	ND PURITY OF MATERIALS:
sotherm	al metho	d. NH_4^+ was dete	rmined	The s	alts were recrystalliz
		f NH ₃ into bori	1	twice.	
ollowed	bv ti	tration with	Hosod: -		···-
2+	-,		24'		

Mg²⁺ was determined by titration with ESTIMATED ERROR:

Trilon B using chrome blue black as Not stated.

metrically. The density and relative REFERENCES: None.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	Karnaukhov, A.S.; Leboshchina, V. I.; Lepeshkov, I.N.
<pre>(2) Ammonium perchlorate; NH₄ClO₄; [7790-98-9] (3) Water; H₂O; [7732-18-5]</pre>	Zh. Neorg. Khim. <u>1967</u> , 12, 3153-6; *Russ. J. Inorg. Chem. (Engl. Transl.) <u>1967</u> , 12, 1168-70.
VARIABLES: Temperature/K: 298 and 323 Composition	PREPARED BY: C.C. Ho

EXPERIMENTAL VALUES:

```
Solubility in the system Mg(ClO_4)_2 - NH_4ClO_4 - H_2O_4
```

Temp.		Liquid	d phase o	composit:	ion		Solid ¹
°c	mas	s %	mol % ^a		molality ^a /mol kg ⁻¹		phase
	(1)	(2)	(1)	(2)	(1)	(2)	
25	49.7 [°]	0.19 ^c	7.41	0.054	4.44	0.032	A + B
50	52.24	-	8.112	-	4.900	-	А
	51.72 ^c	0.9760 ^c	8.086	0.290	4.898	0.1760	A + B
	-	30.00	-	6.170	-	3.648	В

$$B = NH_{1}Clo_{1}$$

^c Eutonic point .

AUXILIARY INFORMATION

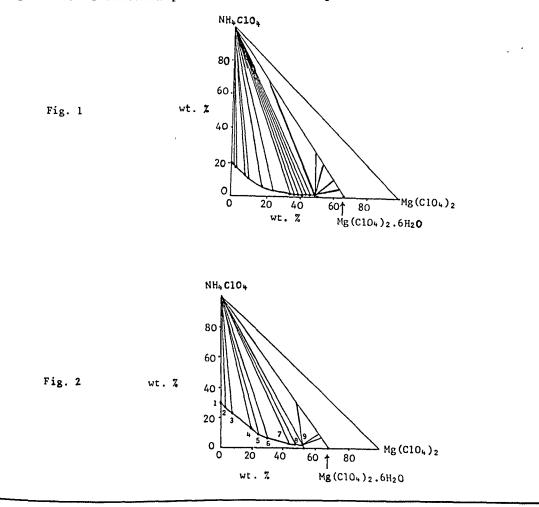
METHOD/APPARATUS/PROCEDURE:

The solubility was measured by the isothermal saturation method. Mg²⁺ concentration was determined by complexometry at pH 10-11, NH₄⁺ determined by formalin and ClO_4^- by difference.

```
SOURCE AND PURITY OF MATERIALS:
"Chemically pure" and "analytical
reagent" materials thoroughly
purified by recrystallization.
Chemical analysis:
ammonium perchlorate: 99.85% pure
magnesium perchlorate: 99.91% pure
```

ESTIMATED ERROR:

Temp.: precision $\pm 0.1^{\circ}$ C Composition : nothing specified.


REFERENCES:

(continued next page)

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	Karnaukhov, A.S.; Leboshchina, V. I.; Lepeshkov, I.N.		
<pre>(2) Ammonium perchlorate; NH₄ClO₄; [7790-98-9]</pre>	Zh. Neorg. Khim. <u>1967</u> , 12, 3153-6;		
(3) Water; H ₂ O; [7732-18-5]	*Russ. J. Inorg. Chem. (Engl. Transl.) <u>1967</u> , 12, 1168-70.		

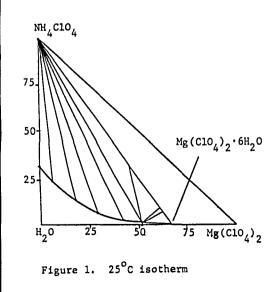
COMMENTS/ADDITIONAL DATA:

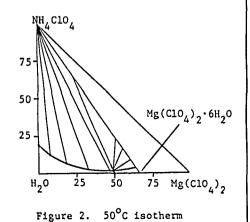
The densities of the saturated solutions at 25.0° C were 1.098 g cm⁻³ for ammonium perchlorate and 1.470 g cm⁻³ for magnesium perchlorate. Thus the solubility in volume units at 25.0° C became 0.0353 mol dm⁻³ for ammonium perchlorate and 3.278 mol dm⁻³ for magnesium perchlorate. The 25.0° C and 50.0° C isotherms are shown in Fig. 1 and 2 respectively. The isotherm at 25.0° C had two branches. The first corresponded to the crystallization of anhydrous ammonium perchlorate. The second branch corresponded to solutions in equilibrium with a solid phase of Mg(ClO₄)₂.6H₂O. The isotherm showed the marked salting out action of magnesium perchlorate on ammonium perchlorate. The isotherm at 50.0° C also had two branches. The first (points 1 to 9) corresponded to separation of ammonium perchlorate as solid phase.

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	Leboshchina, V.I.		
<pre>(2) Ammonium perchlorate; NH₄ClO₄;</pre>	Uch. Zap. Vladim. Gos. Ped. Inst.		
[7790-98-9]	<u>1970,</u> 22(1), Ser. Khim. 60-5.		
(3) Water; H ₂ O; [7732-18-5]			
/ARIABLES:	PREPARED BY:		
Temperature/K: 298 and 323	E.S. Gryzlova		
Composition			
EXPERIMENTAL VALUES:			
Solubility system Mg(ClO ₄) ₂ -NH	$H_4ClO_4-H_2O$ at 25°C		
Liquid phase composition	on Solid		
	phaseb		
mass % mol % ^a molalit (1) (2) (1) (2) (1)	y ^a /mol kg ⁻¹ (2)		
- 19.78 - 3.643 -	2.099 A		
1.00 18.21 0.096 3.338 0.05 3.25 16.30 0.315 3.004 0.18	5 1.918 A 31 1.725 A		
7.99 12.27 0.784 2.287 0.44	9 1.310 A		
	27 1.148 A 39 0.674 A		
24.90 3.78 2.719 0.784 1.56	64 0.451 A		
	59 0.245 A L3 0.221 A		
37.70 0.91 4.712 0.216 2.75	51 0.126 A		
	L8 0.086 A 96 0.046 A		
	A A A A A A A A A A A A A A A A A A A		
	4 0.032 A + B 2 0.024 A + B		
49.70 0.16 7.404 0.045 4.44	A + B		
	44 0.032 A + B		
49.70 0.16 7.404 0.045 4.44 49.90 - 7.441 - 4.46			
^a Editors' calculations.			
^b A = NH_4CIO_4 ; B = $Mg(CIO_4)_2.6H_2O$.			
AUXILIARY	INFORMATION		
IETHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The experimental procedure was as	Not stated.		
reported elsewhere[1].			
ESTIMATED ERROR:	REFERENCES:		
Not stated.	1. Karnaukhov, A.S.; Leboshchina,		
	V.I.; Lepeshkhov, I.N.,		
	<i>Zh. Neorg. Khim.</i> <u>1967</u> , No. 11.		
	(continued next page)		

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Magnesium perchlorate; $Mg(ClO_4)_2$;	Leboshchina, V.I.
[10034-81-8]	
(2) Ammonium perchlorate; NH ₄ ClO ₄ ;	Uch. Zap. Vladim. Gos. Ped. Inst.
[7790-98-9]	<u>1970</u> , 22(1), Ser. Khim. 60-5.
(3) Water; H ₂ O; [7732-18-5]	

Solubility system $Mg(ClO_4)_2 - NH_4ClO_4 - H_2O$ at $50^{\circ}C$

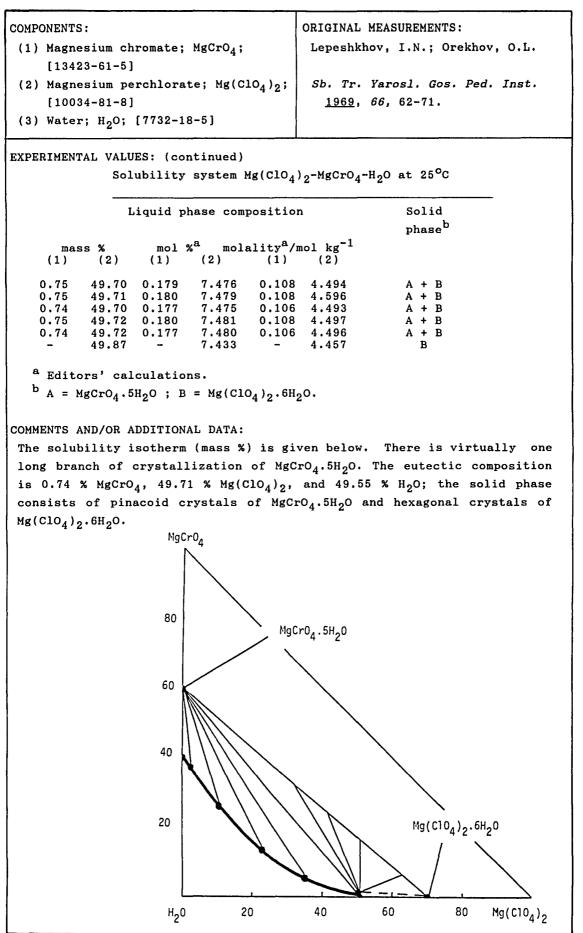

	Lie	quid pha	se compo	osition		Solid phase ^b
			•		1	phase
ma	ass %	mol	% ^a	molality ^a	/mol kg ⁻¹	
(1)	(2)	(1)	(2)	(1)	(2)	
-	30.00	-	6.166	-	3.648	А
2.60	27.28	0.282	5.614	0.166	3.311	Α
7.06	22.84	0.768	4.722	0.451	2.773	Α
8.88	12.20	2.107	2.587	1.227	1.507	Α
4.04	9.13	2.765	1.995	1.612	1.613	Α
0.00	5.78	3.586	1.312	_ · ·	0.766	A
2.97	2.35	5.928	0.616	3.521	0.366	A
7.25	1.69	6.917	0.470	4.146	0.282	A
1.74	0.945	8.087	0.281	4.899	0.170	A + B
1.70	0.976	8.079	0.290	4.894	0.176	A + B
1.72	0.99	8.086	0.294	4.899	0.178	A + B
1.75	0.934	8.089	0.277		0.168	A + B
1.70	1.040	8.088	0.309		0.187	В
2.24		8.112	_	4.900	-	B


^a Editors' calculations.

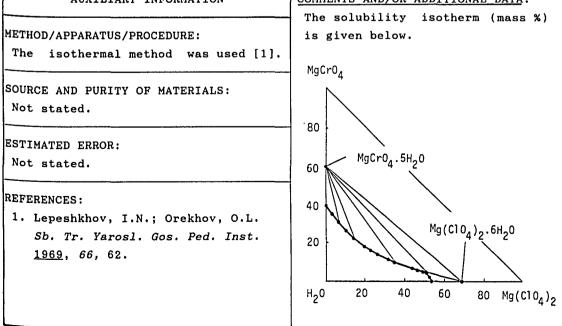
^b A = NH_4ClO_4 ; B = $Mg(ClO_4)_2.6H_2O$.

COMMENTS AND/OR ADDITIONAL DATA:

At both temperatures, the solubility isotherm is dominated by the NH_4ClO_4 field because of the strong salting-out effect of $Mg(ClO_4)_2$. The two isotherms (mass %) are shown below.


COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂;</pre>	Ivanov, S.A.
[10034-81-8]	
(2) Thallium perchlorate; TlClO ₄ ;	Uch. Zap. Yarosl. Gos. Ped. Inst.
[13453-40-2]	<u>1973</u> , <i>120</i> , 20-3.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
One temperature: 298 K	N.A. Kozyreva
Composition.	
EXPERIMENTAL VALUES:	<u> </u>
Solubility system Mg(ClO ₄)	$_2$ -TlClO ₄ -H ₂ O at 25 ^o C
Liquid phase compositio	on Solid
	$phase^{b}$
mass % mol % ^a molalit (1) (2) (1) (2) (1)	$y^{a}/mol kg^{-1}$ (2)
-14.09 - 0.963 - 12.01 6.22 1.166 0.444 0.658	
27.45 2.36 3.054 0.193 1.752	
42.02 1.50 5.656 0.148 3.333 49.73 1.64 7.610 0.184 4.582	0.087 A 0.111 A + B
49.67 1.72 7.604 0.193 4.578	
49.78 - 7.408 - 4.441	– B
^a Editors' calculations.	
^b A = T1ClO ₄ ; B = Mg(ClO ₄) ₂ .6H ₂ O.	
	I
AUXILIARY INFORMATION	<u>COMMENTS AND/OR ADDITIONAL DATA:</u> The solubility isotherm (mass %)
METHOD/APPARATUS/PROCEDURE:	is given below. The composition of
The conditions of saturation are not	the eutectic mixture is:
given. Mg ²⁺ was determined by titrat-	1.64% TlClO ₄ , 49.73% Mg(ClO ₄) ₂ and
tion with Trilon B; Tl ⁺ by the	48.63 % H ₂ O.
bromate method and ClO_4^- by precipita-	40100 % 1201
tion with nitron.	
	$\frac{\mu_{g(clo_4)_2}}{N}$
SOURCE AND PURITY OF MATERIALS:	
Not stated.	
ESTIMATED ERROR:	75
Not stated.	Mg(Cl0 ₄) ² 6H ₂ 0
REFERENCES:	50
None.	
	25
	H ₂ 0 25 50 75 TICIO ₄
	- *

Magnesium	Perchlorate		
<pre>COMPONENTS: (1) Magnesium chromate; MgCrO₄; [13423-61-5] (2) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8] (3) Water; H₂O; [7732-18-5]</pre>	ORIGINAL MEASUREMENTS: Lepeshkhov, I.N.; Orekhov, O.L. Sb. Tr. Yarosl. Gos. Ped. Inst. <u>1969</u> , 66, 62-71.		
VARIABLES: One temperature: 298 K Composition	PREPARED BY: E.S. Gryzlova		
EXPERIMENTAL VALUES: Solubility system Mg(ClO ₄	$)_2$ -MgCrO ₄ -H ₂ O at 25°C ^a		
mass % mol % (1) (2) (1) 35.39 - 6.571 33.73 0.91 6.208 32.80 1.25 5.994 30.31 4.06 5.572 25.98 8.86 4.820 23.50 11.86 4.398 17.68 17.30 3.305 14.38 21.18 2.716 9.43 26.99 1.808 6.52 31.83 1.287 3.40 38.83 0.712 2.69 41.31 0.579 2.01 44.32 0.449 1.19 48.02 0.279 ^a Solid phase : MgCrO ₄ .5H ₂ O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
METHOD/APPARATUS/PROCEDURE: The isothermal method was used. Mg^{2+} was determined by titration with Trilon B using chrome blue black as indicator at pH 10-11; CrO_4^{2-} iodi- metrically; and ClO_4^{-} by difference. Schreinemakers' method of "residues" was used to determine the composition of the solid phases. Electrical cond- uctivity, density, viscosity and refractive index measurements were made.	SOURCE AND PURITY OF MATERIALS: The salts were recrystallized. MgCrO ₄ was dissolved, filtered and evaporated under reduced pressure until crystals appeared. The salt was cooled for 12 h, centrifuged and dried, first in air and then in a desiccator for 7 days. The MgCrO ₄ .5H ₂ O obtained was 99.86 % pure. ESTIMATED ERROR: Temperature: $\pm 0.1^{\circ}$ C.		
REFERENCES:			


None.

(continued next page)

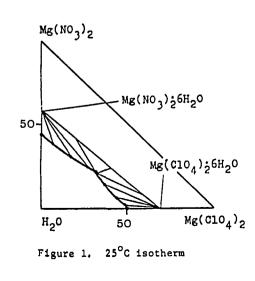
55

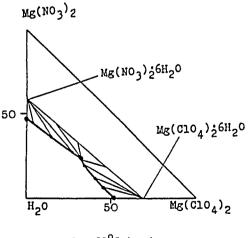
Magnesium Perchiorate				5			
COMPONENTS:			ORIGINA	L MEASUREMENTS:			
<pre>(1) Magnesium chromate: MgCrO₄; [13423-61-5]</pre>			Bitoko	v, V.T.; Ivanov, S.A.			
<pre>(2) Magnesium perchlorate; Mg(ClO₄)₂;</pre>			Sb. Tr	. Yarosl. Gos. Ped. Inst.			
	34-81-8			T G	1970	, 79, 61-6.	
(3) Wate	r; H ₂ O;	[7732-1	8-5]				
VARIABLES:					PREPARE	D BY:	
One temp	erature	: 323 K			E.S. G	ryzlova	
Composit	ion						
EXPERIMEN So	lubilit	y system		9 ₄) ₂ -MgCr(
Liquid phase compositio					ı	Solid	
						phase	
	ss %	mol	% ^a	molality		-1	
(1)	(2)	(1)	(2)	(1)	(2)		
36.89	-	6.982	-	4.166	-	MgCrO ₄ .5H ₂ O	
35.78	$1.14 \\ 3.17$	6.780	0.136	4.043		H	
33.34 30.90	$3.17 \\ 5.09$	6.293	0.376		0.224 0.356	**	
26.85	8.81		1.038		0.613	11	
21.00	14.02		1.645			11	
17.21		3.271				**	
12.50	23.62		2.829			11	
10.00	26.47	1.918		1.122		**	
6.41	34.28	1.309			2.589		
5.05	37.40	1.059		0.625			
3.20	42.88	0.711			3.563	**	
$1.81 \\ 1.44$	47.77 51.63	0.426 0.361			$4.245 \\ 4.929$		1.0
	51.03	0.381			4.929	$MgCrO_4.5H_2O + Mg(ClO_4)_2.6H_Mg(ClO_4)_2.6H_2O$	·2℃
-	52.21	-	8.103	-	4.895	", ", ", ", ", ", ", ", ", ", ", ", ", "	
^a Edit	ors' ca	lculatio	ns.				
AUXILIARY INFORMATION			COMMENT	S AND/OR ADDITIONAL DATA:			

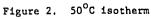
	1	
COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Magnesium nitrate; Mg(NO₃)₂; [10377-60-3]</pre>	Bitokov, V.T.	
(2) Magnesium perchlorate; Mg(ClO ₄) ₂ ;	Sb. Tr. Yarosl. Gos. Ped. Inst.	
[10034-81-8]	<u>1970</u> , 78, 142-9.	
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
Temperature/K: 298 and 323	E.S. Gryzlova	
Composition		
EXPERIMENTAL VALUES:	_	
Solubility system Mg(ClO ₄)	$2^{-Mg(NO_3)}2^{-H_2O}$ at 25°C	
Liquid phase compositio	on Solid	
	phase ^b	
mass % mol % ^a molality (1) (2) (1) (2) (1)	a/mol kg ⁻¹ (2)	
42.57 - 8.260 - 4.998		
40.18 3.08 7.888 0.402 4.775 36.86 7.63 7.388 1.106 4.477		
36.86 7.63 7.388 1.106 4.477 34.69 10.71 7.061 1.448 4.284	0.879 A	
30.00 17.50 6.331 2.454 3.853 27.22 21.83 5.902 3.145 3.602		
27.22 21.83 5.502 5.145 $5.00225.41$ 24.42 5.589 3.569 $3.41522.70$ 28.70 5.137 4.316 3.149		
21.17 31.03 4.863 4.737 2.986 19.97 31.84 4.561 4.832 2.794	2.960 B	
18.24 32.82 4.118 4.923 2.513 15.13 34.81 3.359 5.136 2.038	B 3.004 B B 3.115 B	
15.13 34.81 3.359 5.136 2.038 11.73 37.47 2.579 5.474 1.557	3.115 B 3.305 B	
10.10 38.79 2.212 5.644 1.332	3.400 B	
6.38 42.19 1.394 6.123 0.836 4.19 44.60 0.920 6.507 0.552	3.902 B	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4.219 B 4.477 B	
^a Editors' calculations. ^b A = Mg(NO ₃) ₂ .6H ₂ O ; B = Mg(ClO ₄) ₂ .	6H- O	
A - Mg(N03)2.0120 , B - Mg(0104/2.		
AUXILIARY	INFORMATION	
IETHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The isothermal method was used.	Not stated.	
Periods of equilibration were 5-6		
days at 25° C and 3-4 days at 50° C.		
Mg ²⁺ was determined by complexometric		
titration with Trilon B using chrome		
blue black indicator at pH 10-12;	Not stated.	
NO_3^- was reduced to NH_3 with Devarda's		
alloy, distilled into 4% boric acid		
and titrated with 0.1 mol $dm^{-3} H_2SO_4$;		
and Clo_4^- was determined by differ-	REFERENCES:	
ence. Density and viscosity measure-	None.	
ments were made.	(continued next page)	

ORIGINAL MEASUREMENTS:
Bitokov, V.T.
Sb. Tr. Yarosl. Gos. Ped. Inst.
<u>1970</u> , <i>78</i> , 142-9.
;;

Solubility system Mg(ClO₄)₂-Mg(NO₃)₂-H₂O at 50°C

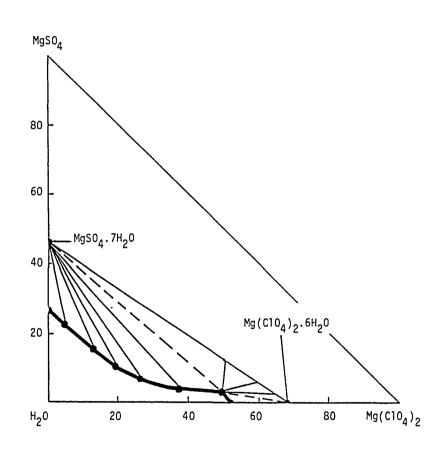

Liquid phase composition						Solid phase ^b
mas	з %	mol	% ^a	molality ^a	/mol kg ⁻¹	
(1)	(2)	(1)	(2)	(1)	(2)	
46.00	-	9.377	-	5.744	-	А
42.98	4.46	8.979	0.619	5.513	0.380	Α
37.61	11.37	8.085	1.624	4.970	0.998	Α
33.82	16.09	7.402	2.340	4.552	1.439	Α
29.63	22.01	6.698	3.306	4.131	2.039	Α
24,90	28.82	5.858	4.505	3.628	2.790	Α
23.61	30.70	5.619	4.855	3.484	3.010	A
22.15	34.46	5.506	5.692	3.442	3.558	A + B
19.94	34.18	4.743	5.403	2.930	3.338	В
14.29	38.12	3.312	5.871	2.025	3.589	B
12.09	39.82	2.783	6.090	1,695	3.710	B
8.94	42.01	2.029	6.335	1.229	3.837	B
6.75	44.80	1.550	6.837	0.939	4.143	B
-	52.21	_	8.103	-	4.895	B


^a Editors' calculations.


^b A = $Mg(NO_3)_2.6H_2O$; B = $Mg(CIO_4)_2.6H_2O$.

COMMENTS AND/OR ADDITIONAL DATA:

The solubility isotherms (mass %) are shown below. There are two branches of crystallization corresponding to the separation of the components. $Mg(ClO_4)_2$ has an insignificant salting-out effect on $Mg(NO_3)_2$.



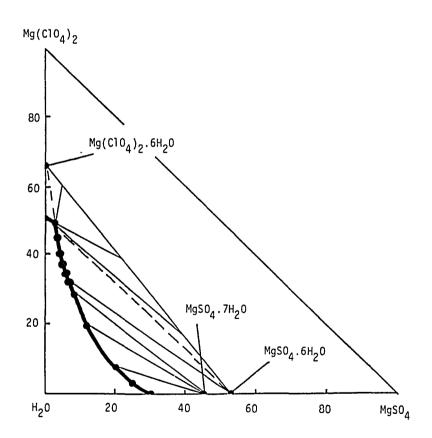
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium sulfate; MgSO₄; [7487-88-9]</pre>	Troitskii, E.N.; Gumenyuk, V.P.; Prishel'tsev, N.I.
(2) Magnesium perchlorate; Mg(ClO ₄) ₂ ;	
[10034-81-8]	Uch. Zap. Yarosl. Gos. Ped. Inst.
(3) Water; H ₂ O; [7732-18-5]	<u>1977</u> , <i>164</i> , 30.
VARIABLES:	PREPARED BY:
One temperature: 298.15 K	I.S. Bodnya
Composition	l
EXPERIMENTAL VALUES:	
Solubility system Mg(ClO ₄)	2 ^{-MgSO} 4 ^{-H} 2 ^O at 25.00°C
Liquid phase compositio	
	phase ^b
mass % mol % ^a molali (1) (2) (1) (2) (1)	ty ^a /mol kg ⁻¹ (2)
27.35 - 5.334 - 3.128	
25.23 1.45 4.891 0.152 2.859 23.65 3.44 4.613 0.362 2.695	
15.78 13.21 3.173 1.432 1.846	0.833 A
	1.379 A 2.127 A
2.53 37.17 0.595 4.711 0.349	2.762 A
1.51 43.45 0.385 5.967 0.228 1.03 48.83 0.284 7.267 0.171	3.537 A 4.363 A
	4.363 A + B
1.04 48.81 0.287 7.262 0.172	4.360 A + B
1.04 48.82 0.287 7.265 0.172 1.05 48.80 0.290 7.261 0.174	4.360 A + B 4.360 A + B 4.360 A + B
1.02 48.79 0.281 7.255 0.169	4.355 B
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4.395 B 3.626 B
^a Editors' calculations.	
^b A = $MgSO_4.7H_2O$; B = $Mg(ClO_4)_2.6H_2$	0.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The isothermal method was used.	$MgSO_4$ and $Mg(ClO_4)_2$ were purified
Periods of equilibration of saturated	by recrystallization twice.
solutions were $3-4$ days. Mg ²⁺ was	_, United to a function of the test
determined by complexometric titrat-	· · · · · · · · · · · · · · · · · · ·
tion with EDTA; SO_4^{2-} gravimetric-	ESTIMATED ERROR:
ally as barium sulfate and ClO_4 by	Temperature : $\pm 0.05^{\circ}$ C.
difference.	
	REFERENCES:
	None.
	(continued next page)

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Magnesium sulfate; MgSO₄; 	Troitskii, E.N.; Gumenyuk, V.P.;
[7487-88-9]	Prishel'tsev, N.I.
(2) Magnesium perchlorate; Mg(ClO ₄) ₂ ;	
[10034-81-8]	Uch. Zap. Yarosl. Gos. Ped. Inst.
(3) Water; H ₂ O; [7732-18-5]	<u>1977, 164,</u> 30.

COMMENTS AND/OR ADDITIONAL DATA: The solubility isotherm (mass %) is given below. This shows two branches of crystallization of the component salts. The first branch corresponds to the separation of the solid phase $MgSO_4.7H_2O$ and the second branch corresponds to the separation of $Mg(ClO_4)_2.6H_2O$. The eutectic composition is:

1.05 mass % ${\rm MgSO}_4\,,$ 48.80 mass % ${\rm Mg(ClO}_4\,)_2$ and 50.15 mass % ${\rm H}_2{\rm O}.$

Magnesium r	
<pre>COMPONENTS: (1) Magnesium sulfate; MgSO₄; [7487-88-9] (2) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8] (3) Water; H₂O; [7732-18-5]</pre>	ORIGINAL MEASUREMENTS: Leboshchina, V.I. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1973</u> , 120, 47-53.
VARIABLES: One temperature: 308 K Composition	PREPARED BY: I.S. Bodnya
EXPERIMENTAL VALUES: Solubility system Mg(ClO ₄) ₂ -Mg	50 ₄ -H ₂ 0 at 35 [°] C
Liquid phase composition mass % mol % ^A molalit (1) (2) (1) (2) (1) 29.74 - 5.958 - 3.51 8.46 26.66 1.854 3.151 1.08 5.53 32.77 1.270 4.058 0.74 4.63 35.29 1.089 4.477 0.64 2.47 41.57 0.619 5.621 0.36 1.77 46.47 0.475 6.725 0.28 0.67 50.62 0.190 7.724 0.11 0.58 50.64 0.164 7.718 0.09 - 51.20 - 7.807 - ^A Editors' calculations. ^b A = MgSO ₄ .7H ₂ O ; B = MgSO ₄ .6H ₂ O ;	phase ^b $y^{a}/mol kg^{-1}$ (2) 7 - A 3 1.841 A 5 2.379 A 0 2.632 A + B 7 3.328 B 4 4.656 B + C 9 4.651 C 4.700 C
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The isothermal recrystallization method was used. Periods of equilib- ration varied from 7-8 days. Mg ²⁺ was determined by titration using the	SOURCE AND PURITY OF MATERIALS: The salts were purified by re- crystallization.
indicator chrome blue black at pH $10-12$, ClO_4^- gravimetrically by precipitation with nitron, and SO_4^{2-} by difference. The composition of the solid phases was determined by Schreinemakers' method of "residues".	ESTIMATED ERROR: Not stated. REFERENCES: None.
	(continued next page)

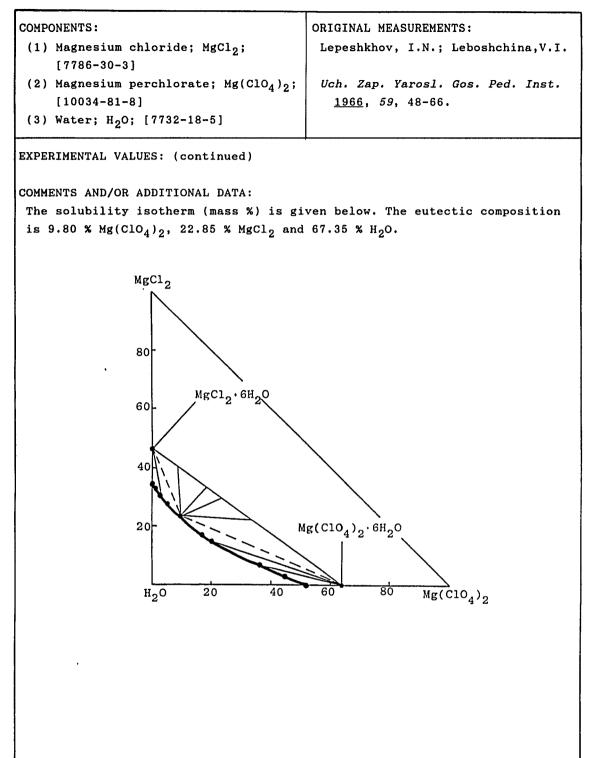

•

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Magnesium sulfate; MgSO₄; 	Leboshchina, V.I.
[7487-88-9]	
(2) Magnesium perchlorate; Mg(ClO ₄) ₂ ;	Uch. Zap. Yarosl. Gos. Ped. Inst.
[10034-81-8]	<u>1973</u> , <i>120</i> , 47-53.
(3) Water; H ₂ O; [7732-18-5]	

COMMENTS AND/OR ADDITIONAL DATA:

The solubility isotherm shown below (mass %) consists of three branches of crystallization. The first branch refers to the crystallization of epsomite, $MgSO_4.7H_2O$. The second corresponds to the crystallization of $MgSO_4.6H_2O$ while the third branch shows the crystallization of $Mg(ClO_4)_2.6H_2O$. The point of conversion of the heptahydrate to the hexahydrate is not shown. The eutectic phase contains $Mg(ClO_4)_2.6H_2O$ and $MgSO_4.6H_2O$ crystals and the eutectic solution has the following composition:

50.62 mass % Mg(ClO₄)₂; 0.67 mass % MgSO₄; 48.71 mass % H₂O.


COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Magnesium chloride; MgCl₂;	Karnaukhov, A.S.; Kudryakova, S.A.		
[7786-30-3]	Karnauknov, A.S., Kuuryakova, S.A.		
(2) Magnesium perchlorate; Mg(ClO ₄) ₂ ;	Uch. Zap. Yarosl. Gos. Ped. Inst.		
[10034-81-8]	<u>1966</u> , <i>59</i> , 119-36.		
(3) Water; H ₂ O; [7732-18-5]			
VARIABLES:	PREPARED BY:		
One temperature: 298.2 K	E.S. Gryzlova		
Composition			
EXPERIMENTAL VALUES:			
Solubility system Mg(ClO ₄) ₂ -MgCl ₂	2-H ₂ O at 25.0 [°] C		
Liquid phase compositio	on Solid		
	phase		
mass % mol % ^a molalit (1) (2) (1) (2) (1)	$\begin{array}{c} xy^{a}/mo1 \ kg^{-1} \\ y (2) \end{array}$		
	· · · · ·		
35.65 - 9.488 - 5.819 34.77 2.02 9.405 0.233 5.777			
32.56 5.30 8.964 0.622 5.503			
31.00 7.53 8.633 0.895 5.330 29.24 10.96 8.355 1.336 5.136			
25.78 15.24 7.494 1.890 4.591			
23.22 18.77 6.874 2.370 4.204			
22.90 19.85 6.858 2.536 4.201	1.553 "		
22.69 19.85 6.777 2.529 4.147 22.93 20.16 6.900 2.588 4.232	7 1.548 $MgCl_2.6H_2O + Mg(ClO_4)_2.6H_2O$ 2 1.587 "		
22.90 20.01 6.874 2.562 4.213	3 1.570 "		
22.86 19.98 6.855 2.556 4.200 22.46 20.16 6.718 2.572 4.111	$Mg(ClO_4)_2.6H_2O$ 1.574 "2.6H2O		
^a Editors' calculations.			
AUXILIARY INFORMATION	COMMENTS AND/OR ADDITIONAL DATA:		
	- The solubility isotherm (mass %)		
METHOD/APPARATUS/PROCEDURE:	is shown below.		
The isothermal method was used.			
Periods of equilibration were 20-70	MgCl ₂		
h. Cl was determined mercurimetric-	N		
ally, Mg ²⁺ by complexometric titra-			
tion and Clo_4^- gravimetrically by	80-		
nitron precipitation. Density and			
viscosity measurements were made.	60-		
	MgC1 ₂ .6H ₂ 0		
SOURCE AND PURITY OF MATERIALS:	40		
The salts were recrystallized twice.			
Purity: 95.58-99.75 %.	20 - Mg(C10 ₄) ₂ .6H ₂ 0		
ESTIMATED ERROR:			
Temperature: $\pm 0.1^{\circ}$ C.	H ₂ 0 20 40 60 80 Mg(ClO ₄) ₂		

ł

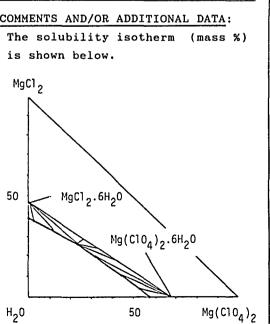
ł

Magnesium	Perchlorate 6
COMPONENTS:	ORIGINAL MEASUREMENTS: Lepeshkhov, I.N.; Leboshchina,V.I.
<pre>(1) Magnesium chloride; MgCl₂; [7786-30-3]</pre>	Lepesnknov, I.N.; Lebosnchina, V.1.
<pre>(2) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1966</u> , 59, 48-66.
(3) Water; H_2O ; [7732-18-5]	<u></u> ,,
VARIABLES:	PREPARED BY:
One temperature: 298 K Composition	E.S. Gryzlova
EXPERIMENTAL VALUES: Solubility system Mg(ClO ₄) ₂ -MgCl ₂	2-H ₂ O at 25 [°] C
Liquid phase compositio	on Solid
or	phase
mass % mol % ^a molality ^a (1) (2) (1) (2) (1)	(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
^a Editors' calculations.	
AUXILIARY IN	IFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The isothermal method was used. Experimental details were not given.	The salts were recrystallized.
Mg ²⁺ was determined by titration with	
Trilon B using chrome blue black as indicator at pH 10-11, Cl ⁻ by titration with $Hg_2(NO_3)_2$ in acidic medium	Temperature: <u>+</u> 0.1 ⁰ C.
with diphenylcarbazone as indicator,	
and $Clo_{\overline{4}}$ by difference. Viscosity, density and electrical conductivity	REFERENCES: None.
measurements of the saturated solu- tions were made.	

(continued next page)

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium chloride; MgCl₂; [7786-30-3]</pre>	Kudryakova, S.A.; Lepeshkov, I.N.
<pre>(2) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8] (3) Water; H₂O; [7732-18-5]</pre>	Sb. Tr. Yarosl. Gos. Ped. Inst. <u>1969</u> , 66, 40-50.
VARIABLES:	PREPARED BY:
One temperature: 363 K Composition	I.S. Bodnya

f E Solubility system $Mg(ClO_4)_2-MgCl_2-H_2O$ at $90^{\circ}C$


	L	Solid				
ma	ss %	phase ^b				
(1)	(2)	(1)	~ (2)	(1)	(2)	phabe
40.48	-	11.40	-	7.143	-	А
38.77	2.69	11.10	0.328	6.956	0.206	А
36.97	5.11	10.71	0.631	6.704	0.395	Α
34.69	10.85	10.60	1.415	6.690	0.893	А
	17.37					А
	22.52				2.010	Α
27.08	22.95	8.998	3.253	5.692	2.058	A + B
26.94	23.24	8.975	3.303	5.679	2.090	A + B
26.66	23.32	8.858	3.305	5.598	2.089	A + B
26.20	23.51	8.675	3.321	5.472	2.094	В
21.39	28.60	7.180	4.095	4.492	2.562	в
18.62	28.60 31.13	6.259	4.464	3.892	2.775	в
14.90	36.24	5.163	5.357	3.203	3.323	В
	41.16				3.842	B B
8.56	43.95	3.076	6.737	1.893	4.146	в
5.97	46.98	2.174	7,296	1.333	4.473	В
3.58	50.55	1.338	8.059	0.820	4.937	В
-	55.57	-	9.169	-	5.603	В
^a Edit	ors' cal	culation	s; ^b	A = MgCl	2.6H ₂ О ; В	= $Mg(ClO_4)_2.6H_2O.$
	AUXILIAR	Y INFORM	ATION		COMMENTS A	ND/OR ADDITIONAL DA
					The solub	ility isotherm (ma
HOD/AP	PARATUS/	PROCEDUR	Е:		is shown	below.
		ethod wa		Mg ²⁺		

was determined wolumetrically using Trilon B as indicator; ClO_4^- gravimetrically by nitron precipitation; and Cl^- mercurimetrically. The densities and viscosities of the saturated solutions were measured [1].

SOURCE AND PURITY OF MATERIALS: Not stated.

REFERENCES:

 Copeland, L.E.; Bragg, P.H. J. Phys. Chem. <u>1954</u>, 58, 1070.

COMPONENTS:	IPONENTS:			ORIGINA	AL MEASUREM	ENTS:	
	<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>				, N.N.; Zak	harova, V.P.	
(2) Calcium perchlorate; $Ca(ClO_4)_2$; [13477-36-6]				1	r. Yarosl. , 79, 120-4	Gos. Ped. Inst.	
(3) Water; H ₂ ((3) Water; H ₂ O; [7732-18-5]						
VARIABLES:				PREPARI	ED BY:		
One temperatu	re: 298 K			E.S. (Gryzlova		
Composition.					-		
-							
EXPERIMENTAL VA	ALUES:						
Solubility in	the system				H ₂ O at 25 ⁰ C		
Solubility in	the system	uid pha	ase com	position		Solid	
Solubility in	the system	uid pha mol %	ase com	position molality	H ₂ O at 25 [°] C y ^a /mol kg ⁻¹ (2)		
Solubility in mass (1) 49.99	the system Lig s % (2) - 7	uid pha mol % (1) 7.466	ase com ¿ª (2) -	position molalit; (1) 4.478	y ^a /mol kg ⁻¹ (2)	Solid phase	
Solubility in 	the system Liq s % (2) - 7 3.44 6	uid pha mol % (1) 7.466 5.914	(2) 0.479	position molalit; (1) 4.478 4.144	y ^a /mol kg ⁻¹ (2) 0.287	Solid	
Solubility in mass (1) 49.99 46.40 38.97	the system Liq s % (2) - 7 3.44 6 10.27 5	uid pha mol % (1) 7.466 5.914 5.752	ase com ¿a (2) 0.479 1.416	position molalit; (1) 4.478 4.144 3.440	y ^a /mol kg ⁻¹ (2) 0.287 0.847	Solid phase	
Solubility in mass (1) 49.99 46.40 38.97 34.51 29.15	the system Lig 5 % (2) - 7 3.44 6 10.27 5 16.08 5 22.59 4	uid pha mol % (1) 7.466 5.914 5.752 5.215 5.215 5.497	ase com (2) 0.479 1.416 2.270 3.255	position molalit; (1) 4.478 4.144 3.440 3.129 2.706	y ^a /mol kg ⁻¹ (2) - 0.287 0.847 1.362 1.959	Solid phase Mg(ClO ₄) ₂ .6H ₂ O "	
Solubility in mass (1) 49.99 46.40 38.97 34.51 29.15 24.58	the system Lig 5 % (2) - 7 3.44 6 10.27 5 16.08 5 22.59 4 28.03 3	uid pha mol % (1) 7.466 5.914 5.752 5.215 5.215 5.497 5.853	ase com (2) 0.479 1.416 2.270 3.255 4.104	position molalit; (1) 4.478 4.144 3.440 3.129 2.706 2.324	y ^a /mol kg ⁻¹ (2) - 0.287 0.847 1.362 1.959 2.475	Solid phase Mg(ClO ₄) ₂ .6H ₂ O " " "	
Solubility in mass (1) 49.99 46.40 38.97 34.51 29.15 24.58 18.77	the system Lig 5 % (2) - 7 3.44 6 10.27 5 16.08 5 22.59 4 28.03 3 35.26 3	uid pha mol % (1) 7.466 5.914 5.752 5.215 5.497 5.853 3.021	ase com (2) 0.479 1.416 2.270 3.255 4.104 5.301	position molalit; (1) 4.478 4.144 3.440 3.129 2.706 2.324 1.829	y ^a /mol kg ⁻¹ (2) - 0.287 0.847 1.362 1.959 2.475 3.210	Solid phase Mg(ClO ₄) ₂ .6H ₂ O " " " "	
Solubility in mass (1) 49.99 46.40 38.97 34.51 29.15 24.58 18.77 7.77	the system Lig 5 % (2) - 7 3.44 6 10.27 5 16.08 5 22.59 4 28.03 3	uid pha mol % (1) 7.466 5.914 5.215 5.215 5.497 5.853 5.021 374	ase com (2) 0.479 1.416 2.270 3.255 4.104 5.301 8.436	position molalit; (1) 4.478 4.144 3.440 3.129 2.706 2.324 1.829 0.846	y ^a /mol kg ⁻¹ (2) - 0.287 0.847 1.362 1.959 2.475 3.210 5.192	Solid phase Mg(ClO ₄) ₂ .6H ₂ O " " "	

^a Compiler's calculations.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Isothermal method. The sum of Ca^{2+} and Mg^{2+} ions was determined by complexometric titration with the indicator chrome blue black; Ca^{2+} with the indicator murexide (ref 1). The nature of the solid phase was determined by Schreinemakers' method of "residues". The density, viscosity and electric conductivity of saturated solutions were studied. SOURCE AND PURITY OF MATERIALS: Calcium perchlorate was prepared by reacting chemically pure calcium carbonate with perchloric acid and then recrystallizing the salt obtained. Magnesium perchlorate was recrystallized twice from the anhydrous salt.

ESTIMATED ERROR: No details given.

REFERENCES:

 Pribil, R. Komplexone in der chemischen Analyse, Berlin, Deutsch Verl. der Wissenschften, <u>1961</u>.

(continued next page)

ś

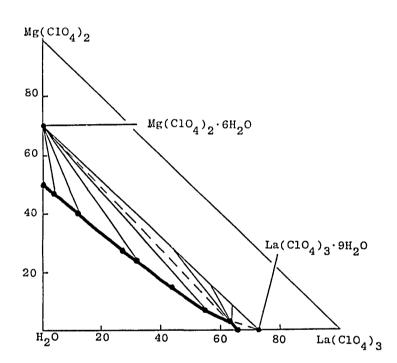
,

2 7 3

,

		141	agnesium i	ercinorate	3		
OMPONENTS:				ORIGIN	AL MEASUR	EMENTS:	
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>					, N.N.; Z	akharova, V.P.	
(2) Calcium perchlorate; Ca(ClO ₄) ₂ ;						l. Gos. Ped. Inst.	
[13477-36-6]				<u>1970</u>	<u>1970</u> , <i>79</i> , 120-4.		
(3) Water; H ₂ O; [7732-18-5]							
XPERIMENTAL	VALUES: (continue	ed)				
Solubility	in the sys	tem Mg(C	210 ₄) ₂ -Ca	c10 ₄) ₂ -	H ₂ O at 25	°c:	
<u></u>		Liquid p	base com	osition		Solid	
m	ass %		. % ^a			-1 phase	
(1)	(2)	(1)	(2)	(1)	(2)		
1.3	6 63.52	0.274	11.97	0.173	7.568		
						+ $Ca(ClO_4)_2.4H_2O$	
1.3	8 63.54	0.279	11.98	0.176	7.57	$Ca(ClO_4)_2.4H_2O$	
-	65.34	-	12.44	-	7.888	"	
		and 3	1.35 mass 5.13 mass				
	Mg(C10 ₄) ₂					
	1						
		\mathbf{i}					
		\rightarrow	Mg(ClO ₄)	2 ^{,6H} 2 ^O			
			\backslash				
	Mass %	$\langle \rangle$					
			$^{\prime\prime}$ $^{\prime}$				
	4			Ca	(ClO ₄) ₂ .4	1H ₂ 0	
				\checkmark			
	н ₂ 0	,	1000 Ø	Ca(C10 ₄) ₂		
	_	N	lass %				

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	Chernova, L.P.
 (2) Lanthanum perchlorate; La(ClO₄)₃; [14017-46-0] (3) Water; H₂O; [7732-18-5] 	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1976</u> , 154, 16-8.
VARIABLES:	PREPARED BY:
One temperature: 298 K Composition	I.S. Bodnya
EXPERIMENTAL VALUES: Solubility system Mg(ClO ₄) ₂ -La(Cl	0 ₄) ₃ -H ₂ 0 at 25 [°] C
Liquid phase compositio	n Solid phase ^b
mass % mol % ^a molality (1) (2) (1) (2) (1)	a/mol kg ⁻¹ (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 0.329 & A \\ 0.716 & A \\ 1.468 & A \\ 1.943 & A \\ 2.478 & A \\ 3.458 & A \\ 4.315 & A + B \end{array}$
^a Editors' calculations. ^b A = Mg(ClO ₄) ₂ .6H ₂ O ; B = La(ClO ₄) ₃	.9H ₂ O.
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE: The solubility was determined by iso- thermal recrystallization. Clo_4^- was determined gravimetrically by nitron precipitation, La^{3+} by complexometric titration and Mg^{2+} by difference.	SOURCE AND PURITY OF MATERIALS: La(ClO_4) ₃ was prepared by neutra- lizing 30 % HClO ₄ with La ₂ (CO ₃) ₃ . The solution was then evaporated, the mother liquor separated and the salt dried in a desiccator.
	ESTIMATED ERROR: Not stated.
	REFERENCES: Not stated.
	(continued next page)


.

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Magnesium perchlorate; Mg(ClO₄)₂; 	Chernova, L.P.
[10034-81-8]	
(2) Lanthanum perchlorate; La(ClO ₄) ₃ ;	Uch. Zap. Yarosl. Gos. Ped. Inst.
[14017-46-0]	<u>1976</u> , <i>154</i> , 16-8.
(3) Water; H ₂ O; [7732-18-5]	

EXPERIMENTAL VALUES: (continued)

COMMENTS AND/OR ADDITIONAL DATA:

The solubility isotherm (mass %) is shown below. The eutectic composition is 0.45 % $Mg(ClO_4)_2$, 65.06 % $La(ClO_4)_3$ and 34.49 % H_2O .

Magnesium Perchlorate				
COMPONENTS: (1) Magnesium perchlorate; Mg(ClO ₄) ₂ [10034-81-8] (2) Cerium perchlorate; Ce(ClO ₄) ₃ ; [14017-47-1] (3) Water; H ₂ O; [7732-18-5]	ORIGINAL MEASUREMENTS: Guseva, A.D.; Druzhinina, G.V. Sb. Tr. Yarosl. Gos. Ped. Inst. <u>1975</u> , 144, 81-6.			
VARIABLES: One temperature: 298 K Composition	PREPARED BY: I.S. Bodnya			
EXPERIMENTAL VALUES: Solubility system Mg(ClO,	$_{4})_{2}$ -Ce(ClO ₄) ₃ -H ₂ O at 25 ^o C			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} phase^{b} \\ lity^{a}/mol kg^{-1} \\ (2) \\ 44 - A \\ 96 & 0.481 \\ 36 & 0.651 \\ A \\ 74 & 0.859 \\ 99 & 1.307 \\ 78 & 1.858 \\ A \\ 73 & 2.519 \\ 34 & 2.788 \\ A \\ 73 & 2.519 \\ 34 & 2.788 \\ A \\ 46 & 4.065 \\ A & + B \\ 37 & 4.049 \\ A & + B \\ 51 & 4.121 \\ B \\ 4.208 \\ B \end{array}$			
AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The isothermal method was used. Ce ³⁺ was determined by complexometric titration with EDTA using xylenol orange as indicator in the presence of urotropin. ClO_4^- was determined gravimetrically as nitron perchlor- ate.	Mg(Clo ₄) ₂			

50

H20

с. (с104) 39H20

50

Ce(C104)3

SOURCE AND PURITY OF MATERIALS: Not stated.

ESTIMATED ERROR: Not stated.

COMPONENTS: (1) Magnesium perchlorate; Mg(ClO ₄) ₂ ; [10034-81-8]	ORIGINAL MEASUREMENTS: Guseva, A.D.
<pre>(2) Neodymium perchlorate; Nd(ClO₄)₃; [13498-06-1] (3) Water; H₂O; [7732-18-5]</pre>	Sb. Nauch. Tr. Yarosl. Gos. Ped. Inst. <u>1982</u> , 199, 3-6.
VARIABLES: Temperature: 298 K Composition	PREPARED BY: E.S. Gryzlova

1

Solubility system $Mg(ClO_4)_2$ -Nd(ClO_4)₃-H₂O at 25^oC

Liquid phase composition						Solid phase ^b
mas	s %	mol	% ^a	molality	. ^a /mol kg ⁻¹	
(1)	(2)	(1)	(2)	(1)	(2)	
9.80	-	7.413	_	4.444	-	А
7.55	15.41	5.978	1.237	3.576	0.740	Α
12.94	19.82	5.243	1.591	3.124	0,948	Α
24.79	29.06	4.056	2.398	2.407	1.423	Α
19.77	35.42	3.335	3.013	1.977	1.786	Α
2.33	46.20	2.244	4.241	1.332	2.517	Α
5.81	55.34	1.128	5.419	0.670	3.218	Α
2.82	63.28	0.620	7.018	0.373	4.218	A + B
2.76	63.22	0.605	6.990	0.363	4.199	A + B
2.79	63.25	0.613	7,004	0.368	4.208	A + B
_	65.39	_	7.141	-	4.269	В

^b A = $Mg(Clo_4)_2.6H_2O$; B = $Nd(Clo_4)_3.9H_2O$.

AUXILIARY INFORMATION

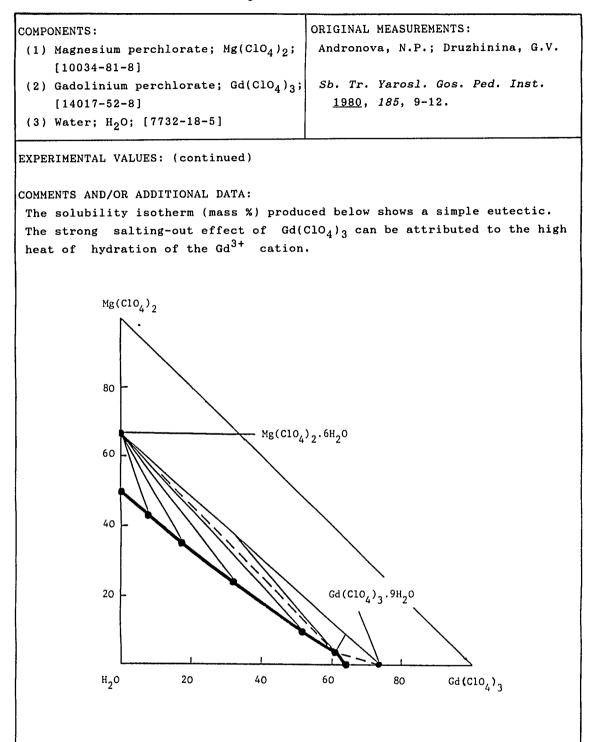
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal recrystallization. Equili-	Not stated.
brium was reached in 40 h. Liquid and	
solid phases were analyzed by deter-	ESTIMATED ERROR:
mining neodymium and perchlorate ions	Not stated.
(ref. 1,2). Magnesium ion was deter-	
mined by difference.	

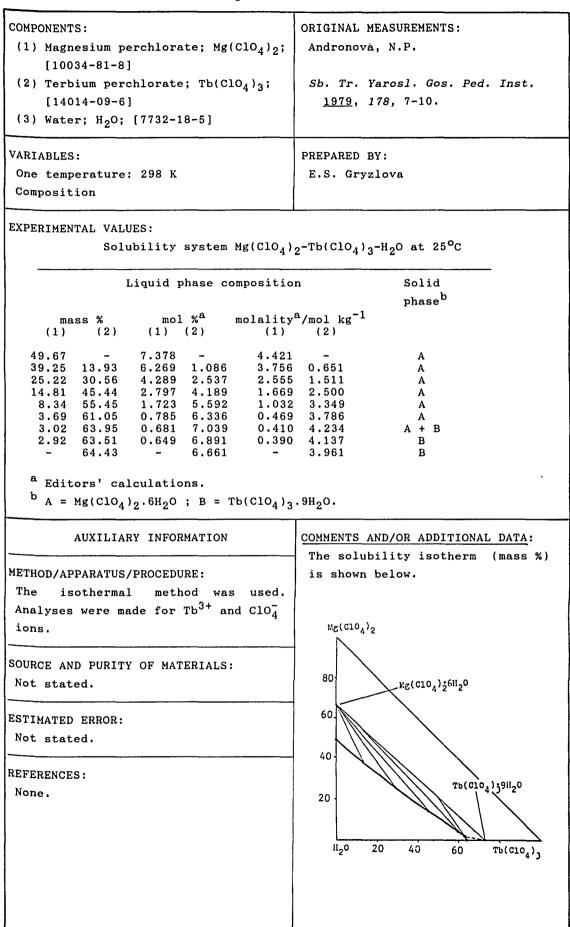
REFERENCES:

- Karnauchov, A.S.; Kulikova, A.A.; Ashimichina, T.J. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1975</u>, 144, 19-29.
- Karnauchov, A.S.; Kulikova, A.A. Uch. Zap. Yarosl. Gos. Ped. Inst. 1975, 144, 81-85.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Magnesium perchlorate; Mg(ClO ₄) ₂ ;	Guseva, A.D.
[10034-81-8]	
(2) Samarium perchlorate; Sm(ClO ₄) ₃ ;	Sb. Tr. Yarosl. Gos. Ped. Inst.
[13569-60-3]	<u>1978</u> , <i>169</i> , 5-7.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
One temperature: 298 K	E.S. Gryzlova
Composition	
EXPERIMENTAL VALUES:	L
Solubility system Mg(ClO ₄)	$2^{-Sm(ClO_4)}3^{-H_2O}$ at $25^{\circ}C$
Liquid phase compositio	on Solid
	phase ^b
mass % mol % ^a molality (1) (2) (1) (2) (1)	^{,a} /mol kg ⁻¹ (2)
49.80 - 7.413 - 4.444	- A
12 08 8 30 6 616 0 672 3 060	0 385 A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A 1.185 A A A A A A A A A A A A A A A A A A A
4.81 58.98 0.996 6.077 0.595	5 3.630 A
2.87 63.24 0.632 6.926 0.379	4.159 A + B
2.83 63.27 0.623 6.928 0.374 - 64.98 - 6.933 -	4.159 A + B 4.135 B
8	
^a Editors' calculations. b	
^b A = Mg(ClO ₄) ₂ .6H ₂ O ; B = Sm(ClO ₄) ₃	.9H ₂ O.
AUXILIARY INFORMATION	COMMENTS AND/OR ADDITIONAL DATA:
	The solubility isotherm (mass %)
METHOD/APPARATUS/PROCEDURE:	consists of two crystallization
The solubility was determined by	branches, one for each of the
isothermal recrystallızation. Equili-	hydrates. The eutectic mixture
brium was attained in 5 or 6 days.	contains 2.85 % $Mg(ClO_4)_2$, 63.26
Analysis was made according to a	% Sm(ClO ₄) ₃ , and 33.89 % H_2O .
previous technique [1].	
	Mg(C10 ₄) ₂
SOURCE AND PURITY OF MATERIALS:	
$Sm(ClO_4)_3$ was prepared by reacting 57	
% HClO ₄ (purity unstated) with samar-	80
ium carbonate and stored in vacuum even $P_{i}O_{i}$ for $7-10$ days	Mg(C10 ₄) ₂ .6H ₂ 0
over P ₂ O ₅ for 7-10 days.	60
ESTIMATED ERROR:	40
Not stated.	
REFERENCES :	20 Sm(C10 ₄) ₃ .9H ₂ 0
1. Guseva, A.D., Sb. Tr Yarosl.	
Gos. Ped. Inst. <u>1977</u> , 164, 23-6.	
305, 103, 1150, <u>107,</u> 107, 20 ⁻ 0,	H_20 20 40 60 80 Sm(ClO ₄) ₃

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	Andronová, N.P.; Druzhinina, G.V.
<pre>(2) Gadolinium perchlorate; Gd(ClO₄)₃; [14017-52-8] (3) Water; H₂O; [7732-18-5]</pre>	Sb. Tr. Yarosl. Gos. Ped. Inst. <u>1980</u> , 185, 9-12.
VARIABLES: One temperature: 298 K Composition	PREPARED BY: E.S. Gryzlova


ł


:

Solubility system ${\rm Mg(ClO_4)_2-Gd(ClO_4)_3-H_2O}$ at $25^{\rm O}{\rm C}$

Liquid phase composition Solid $phase^b$ mass X mol X ^A molality ^A /mol kg ⁻¹ (1) (2) (1) (2) 50.07 - 7.488 - 4.493 - A 42.31 8.48 6.448 0.633 3.852 0.378 A 10.36 48.38 1.900 4.347 1.125 2.574 A 62.0 56.09 1.238 5.486 0.737 3.265 A 2.98 63.42 0.662 6.899 0.397 4.143 A + B 2.67 63.68 0.592 6.921 0.355 4.154 A + B - 64.62 - 6.736 - 4.009 B A METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: Gd(ClO ₄) ₃ .9H ₂ O w
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
42.31 8.48 6.448 0.633 3.852 0.378 A 33.01 19.33 5.215 1.496 3.103 0.890 A 28.17 25.24 4.560 2.002 2.709 1.189 A 16.98 37.84 2.852 3.114 1.684 1.838 A 10.36 48.38 1.900 4.347 1.125 2.574 A 6.20 56.09 1.238 5.486 0.737 3.265 A 2.98 63.42 0.662 6.899 0.397 4.143 A + B - 64.62 - 6.736 - 4.009 B a Editors' calculations. b A = Mg(ClO_4)_2.6H_2O ; B = Gd(ClO_4)_3.9H_2O. AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The isothermal method was used. Equilibrium was attained in 12 h. Gd(ClO_4)_3.9H_2O was prepared from fdd ²⁺ was determined by complexometric and 57 % perchloric acid. The nitron perchlorate. The composition lization and repeated washing of
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:The isothermal method was used. $Gd(ClO_4)_3.9H_2O$ was prepared fromEquilibrium was attained in 12 h. $Gd(ClO_4)_3.9H_2O$ was prepared from Gd^{2+} was determined by complexometricand 57 % perchloric acid. Thetitration; ClO_4^- gravimetrically assalts were purified by recrystal-nitron perchlorate. The compositionlization and repeated washingof the solid phases was determined bywith ether.Schreinemakers' method of "residues".ESTIMATED ERROR:
The isothermal method was used. Equilibrium was attained in 12 h. Gd^{2+} was determined by complexometric titration; ClO_4^- gravimetrically as nitron perchlorate. The composition of the solid phases was determined by Schreinemakers' method of "residues". $Gd(ClO_4)_3.9H_2O$ was prepared from the corresponding carbonate and and 57 % perchloric acid. The salts were purified by recrystal- lization and repeated washing with ether. ESTIMATED ERROR:
Not stated.
REFERENCES: None.
(continued next page

75

	······································
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Magnesium perchlorate; $Mg(ClO_4)_2$;	Andronova, N.P.; Pavlova, E.V.
[10034-81-8]	
(2) Lutetium perchlorate; Lu(ClO ₄) ₃ ;	Sb. Nauch. Tr. Yarosl. Gos. Ped.
[14646-29-8]	Inst. <u>1982</u> , <i>199</i> , 26-30.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
Temperature: 298 K	E.S. Gryzlova
Composition	
	• • • • • • • • • • • • • • • • • • •
EXPERIMENTAL VALUES:	$-1.0(0,0)$, 10.0 at 25^{9}
Solubility system $Mg(ClO_4)_2$	$-Lu(CIO_4)_3 - H_2O$ at 25 C
Liquid phase compositio	n Solid
	phase ^b
mass % mol % ^a molali	
(1) (2) (1) (2) (1)	(2)
49.67 - 7.378 - 4.42	1 – A
49.07 - 7.378 - 4.42 35.00 16.85 5.473 1.243 3.25 24.99 26 10 2.052 1.012 2.27	7 0.739 "
24.82 26.19 3.853 1.917 2.27 23.93 29.52 3.894 2.265 2.30	3 1.340 "
15.70 40.74 2.732 3.343 1.61 4.34 56.37 0.838 5.135 0.49	5 1.976 " 5 2.021 "
2.91 59.50 0.586 5.649 0.34	7 3.344 "
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 3.667 A + B
2.98 61.76 0.635 6.210 0.37 1.04 64.27 0.226 6.572 0.13	9 3.701 A + B 4 3.914 B
- 64.78 - 6.543 -	
^a Editors' calculations.	
^b A = Mg(ClO ₄) ₂ .6H ₂ O ; B = Lu(ClO ₄) ₃ .	9HoQ
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE: The isothermal method was used.	SOURCE AND PURITY OF MATERIALS:
	Not stated.
Clo_4^- was determined gravimetrically by precipitation with nitron and Lu ³⁺	ESTIMATED ERROR:
	Not stated.
was determined by titration with Trilon B.	Not stated.
	REFERENCES:
	Not stated.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	Karnaukhov, A.S.; Runov, N.N.; Zakharova, V.P.
<pre>(2) Carbamide (urea); CH₄N₂O; [57-13-6] (3) Water; H₂O; [7732-18-5]</pre>	Zh. Neorg. Khim. <u>1970</u> , 15, 2545-8; *Russ. J. Inorg. Chem. (Engl. Transl.) <u>1970</u> , 15, 1316-8.
VARIABLES: Temperature: 298 K	PREPARED BY: C.C. Ho
Composition	

Solubility in the system $Mg(ClO_4)_2$ -CH₄N₂O-H₂O at 25^oC

Liquid p	hase compo	sition Solid
mc	1 %	phase
(1)	(2)	
- 0.59	100 99.41	CH4 ^N 20
2.38	97.62	11
6.41 7.96	93.59 92.04	
9.04	90.96	$CH_4N_2O + Mg(ClO_4)_2.6CH_4N_2O$
$11.31 \\ 15.10 \\ 17.29 \\ 27.89 \\ 30.30 \\ 43.94$	88.69 84.90 82.71 72.11 69.70 56.06	$Mg(ClO_4)_{2.6CH_4N_2O}$ " " " " Mg(ClO_4)_{2.4CH_4N_2O.2H_2O}

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: The solubility was measured by the isothermal saturation method. Equilibrium was attained after 70-140h. CH_4N_2O concentration was determined by the classical Kjeldahl method, Mg^{2+} ion by complexometry with chrome dark blue indicator (ref. 1). The solid phase was analysed by Schreinemakers' method (ref. 2). SOURCE AND PURITY OF MATERIALS: "Analytical reagent" grade Mg(ClO₄)₂ and carbamide were recrystallized before use. Source not specified.

ESTIMATED ERROR: Temperature: not stated. Solubility : not stated.

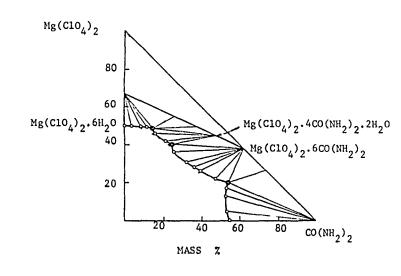
REFERENCES:

- Pribil, "Komplexony v Chemicke analyse" (Translated into Russian), Inostr. Lit., Moscow <u>1955</u>, 154.
- Schreinemakers, F.A., Z. Phys. Khim. <u>1894</u>, 11, 81.

(continued next page)

COMPONENTS:	
-------------	--

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	Karnaukhov, A.S.; Runov, N.N.; Zakharova, V.P.
(2) Carbamide (<i>urea</i>); CH ₄ N ₂ O; [57-13-6]	Zh. Neorg. Khim. <u>1970</u> , 15, 2545-8;
(3) Water; H ₂ O; [7732-18-5]	*Russ. J. Inorg. Chem. (Engl. Transl.) <u>1970</u> , 15, 1316-8.


Solubility in the system Mg(ClO₄)₂-CH₄N₂O-H₂O at 25^oC

Liquid pl	nase compos	ition Solid
mc	ol %	phase
(1)	(2)	
47.35	52.65	$Mg(ClO_4)_2.4CH_4N_2O.2H_2O + Mg(ClO_4)_2.6H_2O$
53.54	46.46	Mg(ClO ₄) ₂ .6H ₂ O
80.31	19.69	11 T L L
100	-	**

COMMENTS/ADDITIONAL DATA:

The solubility curve consists of four branches, the extreme ones corresponding to the crystallization of the initial components, CH_4N_2O and $Mg(ClO_4)_2.6H_2O$. The longest branch belongs to the congruently soluble compound of magnesium perchlorate and carbamide. The rays connecting the compositions of the liquid phase and solid 'residues' meet on the hypotenuse of the triangle at a single point, showing the separation of the compound, $Mg(ClO_4)_2.6CH_4N_2O$. The crystals of this compound have the form of rectangular prisms and are stable in air. On reducing the concentration of carbamide, another complex crystallizes out: $Mg(ClO_4)_2.4CH_4N_2O.2H_2O.$ Thus in saturated aqueous solutions of magnesium perchlorate at $25^{\circ}C$, the following equilibria exist:

$$[Mg(H_{2}O)_{6}]^{2+} + 4CH_{4}N_{2}O \iff [Mg(H_{2}O)_{2}(CH_{4}N_{2}O)_{4}]^{2+} + 4H_{2}O$$
$$[Mg(H_{2}O)_{2}(CH_{4}N_{2}O)_{4}]^{2+} + 2CH_{4}N_{2}O \iff [Mg(CH_{4}N_{2}O)_{6}]^{2+} + 2H_{2}O$$

k | 1

. . . .

	
COMPONENTS: (1) Magnesium perchlorate; Mg(ClO ₄) ₂ ; [10034-81-8]	ORIGINAL MEASUREMENTS: Karnaukhov, A.S.; Zakharova, V.P.
<pre>(2) Thiocarbamide (thiourea); CH₄N₂S; [62-56-6] (3) Water; H₂O; [7732-18-5]</pre>	Sb. Tr. Yarosl. Gos. Ped. Inst. <u>1970</u> , 78, 122-6.
VARIABLES: One temperature: 298.2 K Composition	PREPARED BY: E.S. Gryzlova
EXPERIMENTAL VALUES: Solubility system Mg(ClO ₄) ₂ -CS(NH	2)2-H2O at 25.0°C
Liquid phase compositio mass % mol % ^a molalit	phase ^b y ^a /mol kg ⁻¹
(1) (2) (1) (2) (1) - 14.26 - 3.787 - 5.90 13.38 0.564 3.754 0.32 11.40 12.30 1.148 3.633 0.66 16.55 11.77 1.762 3.675 1.03 27.32 9.86 3.274 3.464 1.94 36.54 9.66 4.996 3.873 3.04 41.65 9.20 6.147 3.981 3.79 41.63 9.15 6.138 3.956 3.78 41.62 9.03 6.12 3.897 3.77 44.17 8.20 6.709 3.652 4.15 47.57 5.34 7.356 2.421 4.52 47.92 4.80 7.398 2.173 4.54 48.33 4.26 7.456 1.927 4.56 49.23 2.20 7.488 0.981 4.54 49.99 - 7.466 - 4.47 a Editors' calculations. b $A = CS(NH_2)_2$; $B = Mg(ClO_4)_2.4CS(N)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The isothermal method was used. Mg ²⁺ was determined by titration with Trilon B and thiocarbamide was deter- mined using Kjeldahl's method. The	COMMENTS AND/OR ADDITIONAL DATA: The solubility isotherm (mass %) is shown below. The eutectic contains 47.80 % $CS(NH_2)_2$, 35.00 % $Mg(ClO_4)_2$ and 17.20 % H_2O . $CS(NH_2)_2$
densities and viscosities of the saturated solutions were measured. SOURCE AND PURITY OF MATERIALS: The salts were recrystallized twice.	50-Mg(Cl0 ₄);4CS(NH ₂);6H ₂ 0
ESTIMATED ERROR: Temperature: <u>+</u> 0.1 ⁰ C.	$H_{2^{0}} = 50 M_{g}(Clo_{4})_{2}^{2} GH_{2^{0}}$

82 Magnesium I	Perchlorate
COMPONENTS: (1) Magnesium perchlorate; $Mg(ClO_4)_2$; [10034-81-8] (2) Acetamide; C_2H_5NO ; [60-35-5] (3) Water; H_2O ; [7732-18-5]	ORIGINAL MEASUREMENTS: Tarakanov, V.F. Uch. Zap. Yarosl. Gos. Ped. Inst. 1976, 154, 37-9.
VARIABLES: One temperature: 298 K Composition	PREPARED BY: E.S. Gryzlova
EXPERIMENTAL VALUES: Solubility system Mg(ClC	$(4)_2 - C_2 H_5 NO - H_2 O$ at 25°C
Liquid phase compositio mass % mol % ^a molali (1) (2) (1) (2) (1	phase ^b .ty ^a /mol kg ⁻¹
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE:	COMMENTS AND/OR ADDITIONAL DATA: The solubility isotherm (mass %) is shown below.
The solubility was determined by iso- thermal recrystallization. The exper- imental details are not given. Mg ²⁺ was determined by complexometric titration, acetamide by Kjeldahl's method and ClO ₄ gravimetrically as nitron perchlorate. SOURCE AND PURITY OF MATERIALS: Not stated. ESTIMATED ERROR: Not stated.	$Mg(C10_{4})_{2}$ $Mg(C10_{4})_{2}.6H_{2}0$ $Mg(C10_{4})_{2}.5CH_{3}CONH_{2}$ C
REFERENCES None.	H_2^0 20 40 60 80 $CH_3^CONH_2$

1

1

,

;

 $(c = Mg(C10_4)_2.7CH_3CONH_2)$

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	Karnaukhov, A.S.; Vasil'eva, S.I. Rylenkova, I.N.
<pre>(2) Dimethylcarbamide (dimethylurea); C₃H₈N₂O; [1320-50-9] (3) Water; H₂O; [7732-18-5]</pre>	Sb. Tr. Yarosl. Gos. Ped. Inst. <u>1979</u> , 178, 43-8.
VARIABLES: One temperature: 298 K Composition	PREPARED BY: E.S.Gryzlova

TAL VALUES: Solubility system Mg(ClO₄)₂-C₃H₈N₂O-H₂O at 25^oC

	Liquid phase compositio					Solid phase ^b
ma (1)	ss % (2)		% ^a (2)	molality ^a (1)	/mol kg ⁻¹ (2)	
7.85 11.96 11.99 13.05 13.60 13.65 15.38 15.71 16.48 17.38 19.20 22.32 28.50 31.77 34.54 34.93 37.41 a Edit	26.29 27.90 30.83 31.44 32.18 29.71 29.57 27.97 27.56 28.12 27.45 25.27 22.35 18.11 16.48 15.17 15.76 15.31 ors' cal	- 0.898 1.497 1.513 1.688 1.719 1.723 1.951 1.993 2.129 2.256 2.490 2.920 3.873 4.445 4.962 5.093 5.651	6.797 8.081 9.776 10.05 9.512 9.458 8.990 8.856 9.202 9.026 8.301 7.406 6.234 5.841 5.521 5.822 5.859 ns.	$\begin{array}{c} -\\ 0.547\\ 0.937\\ 0.950\\ 1.067\\ 1.075\\ 1.075\\ 1.216\\ 1.241\\ 1.333\\ 1.411\\ 1.549\\ 1.807\\ 2.392\\ 2.750\\ 3.077\\ 3.174\\ 3.545\end{array}$	$\begin{array}{r} 4.048\\ 4.928\\ 6.116\\ 6.308\\ 6.668\\ 5.948\\ 5.911\\ 5.604\\ 5.514\\ 5.761\\ 5.647\\ 5.165\\ 4.584\\ 3.850\\ 3.614\\ 3.424\\ 3.627\\ 3.675\end{array}$	A A A A A B B B B B B B B C C C C C C C
		; $B = 5$.Mg(ClO).Mg(ClO ₄) 20.	2.H ₂ O ;	
			AU	JXILIARY I	NFORMATIO	N
ETHOD/AP The isot was de titration black as methylur	hermal termined n with E indicat	method by CDTA usi	was use complex ng chro pH 10-1	ed. Mg ²⁺ cometric ome blue 1. Di-	Dimethyl pure" gr	D PURITY OF MATERIALS: urea was of "chemically ade and Mg(ClO ₄) ₂ was from MgO and HClO ₄ .
dahl's m	ethod. I ractive	ensity,	viscos	sity and arements	ESTIMATED Not stat	
EFERENCE: None.	S:					(continued next page)

COMPONENTS:	ORIGINAL MEASUREMENTS:				
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	Karnaukhov, A.S.; Vasil'eva, S.I. Rylenkova, I.N.				
<pre>(2) Dimethylcarbamide (dimethylurea); C₃H₈N₂O; [1320-50-9]</pre>	Sb. Tr. Yarosl. Gos. Ped. Inst.				
(3) Water; H ₂ O; [7732-18-5]	<u>1979</u> , <i>178,</i> 43-8.				

Solubility system $Mg(ClO_4)_2 - C_3H_8N_2O - H_2O$ at 25°C

	Liquid phase co		Solid	
mass % mol % ^a molality ^a /mol kg ⁻¹			1	phase ^b
mass %				
(1) (2)	(1) (2)	(1) (2)	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	709 126 673 950 609 209 205 295 715	A A A A A A A A B B B B B B B B B B B B
50.18 4.33 49.83 -	$8.032 ext{ 1.756} \\ 7.422 ext{ -}$	4.942 1. 4.450	080	B B
· · · · · · · · ·	ADDITIONAL DATA			
ion: i) $C_3H_8N_2O$; and (iv) $4C_3H_8N_2$	(ii) Mg(ClO ₄) ₂ .	6H ₂ O ; (iii) 2H ₂ O. The c	5C ₃ H ₈ N ₂ omplex	branches of crystalliz $20.Mg(ClO_4)_2.H_2O$; $5C_3H_8N_2O.Mg(ClO_4)_2.H_3$ poncentrations.
ion: i) $C_3H_8N_2O$; and (iv) $4C_3H_8N_2$	(ii) Mg(ClO ₄) ₂ . N ₂ O.Mg(ClO ₄) ₂ .2	6H ₂ O ; (iii) 2H ₂ O. The c	5C ₃ H ₈ N ₂ omplex	20.Mg(ClO ₄)2.H ₂ O ; 5C ₃ H ₈ N ₂ O.Mg(ClO ₄)2.H ₂

i

ł

r

COMPONENTS:	ORIGINAL MEASUREMENTS: Vasil'eva, S.I.; Rylenkova, I.N.
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	
<pre>(2) Dimethylcarbamide (dimethylurea); C₃H₈N₂O; [1320-50-9] (3) Water; H₂O; [7732-18-5]</pre>	Sb. Tr. Smolensk. Gos. Ped. Inst. <u>1979</u> , 7-15.
VARIABLES:	PREPARED BY:
One temperature: 298 K Composition	E.S. Gryzlova

٢

Solubility system $Mg(ClO_4)_2-C_3H_8N_2O-H_2O$ at 25°C

	Li	quid pha	ase com	position		Solid phase ^b
mod	3s %	mol	% ^a	molelity	^a /mol kg ⁻¹	•
(1)	(2)	(1)		(1)	(2)	
(-)	(=)	x - y	(-)	(-)	、 - ,	
-	25.29	-	6.473	-	3.842	Α
7.85	27.90	0.898	8.081	0.547	4.928	Α
11.96	30.83	1.497	9.776	0.937	6.116	Α
13.05	32.18	1.688	10.54	1.067	6.668	A + B
13.60	29.71	1.719	9.512	1.075	5.948	В
15.38	27.97		8.990	1.216	5.604	В
16.93	27.78		9.112		5.702	B + C
19.20	25.37	2.493	8.344	1.552	5.195	С
22.32	22.35	2.920	7.406	1.807	4.584	С
28.50	18.11	3.873	6.234		3.850	С
31.77	16.48	4.445	5.841	2.750	3.614	С
34.54	15.17	4.962	5.521	3.077	3.424	С
38.11	14.42	5.750	5.512			с
43.30	14.42	7.173	6.051	4.588	3.871	С
46.40	17.28		8.104	5.724	5.400	С
47.46	19.88		10.02	5.724 6.510	6,908	C + D
47.28	17.57		8.441	6.026	5.673	D
47.68			7.464	5.864	4.950	D
48.23		8.513	5.585	5.501	6.908 5.673 4.950 3.609	D
48.93		8.513 8.159 8.252	3.515	5.128	2.209	D
49.95	8.32 6.57	8.252	2,750	5.128 5.147	1.715	D
50.18	4.33	8.032	1.756	4.942	1.080	D
49.83	-	7.422	_	4.450	-	D
a Edito	ors' calc	ulation	9.			
^b A = 0	3 ^H 8 ^N 2 ^O ;	$B = 5C_{2}$	3H8N20.	Mg(ClO ₄) ₂	.н ₂ о ;	
C = 4	IC ₃ H ₈ N ₂ O.	Mg(ClO ₄) ₂ .2H ₂ O	; $D = Mg$	(C10 ₄) ₂ .6H ₂	20.
	UXILIARY	INFORM	ATION	C	OMMENTS AND)/OR ADDITIONAL DATA:
			·	1		complexes, X.5Y.H ₂ O a
ETHOD/API	PARATUS/F	ROCEDURI	Ξ:		K.4Y.2H ₂ O	$(X = Mg(ClO_4)_2, Y)$
The isoth	ermel me	thod way	, hagu s		TeHeNeO).	are salted out wi
				1	• • -	Probably, complexati
DURCE ANI	PURITY	OF MATE	RIALS:		• •	step-wise substituti
Not state	ed.				type.	
	FRROR					
THAT	ERROR:			I		
STIMATED						
STIMATED Not state						

COMPONENTS: (1) Magnesium perchlorate; Mg(ClO ₄) ₂ ;	ORIGINAL MEASUREMENTS: Karnaukhov, A.S.; Kosheleva, N.I.				
[10034-81-8] (2) Hexamethylenetetramine; C ₆ H ₁₂ N ₄ ; [100-97-0] (3) Water; H ₂ O; [7732-18-5]	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1976</u> , 154, 62-6.				
VARIABLES: One temperature: 298 K Composition	PREPARED BY: N.A. Kozyreva				

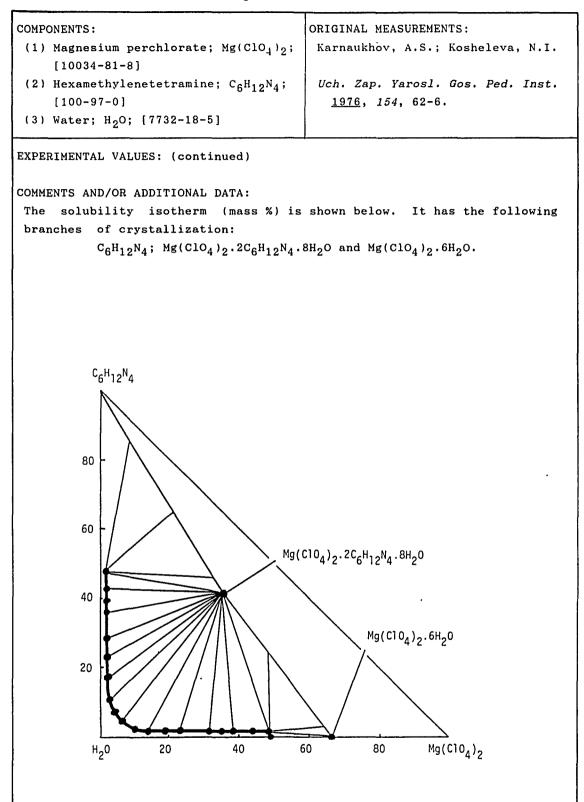
Solubility system $Mg(ClO_4)_2-C_6H_{12}N_4-H_2O$ at 25°C

		Liquid p	hase co	omposition		Solid phase ^b
ma	ss %	mol	% ^a	molality ^a	/mol kg ⁻¹	•
	(2)			(1)		
-	46.47	-	10.04	-	6.192	А
1.60	36.80	0.194	7.116	0.116	4.261	A + B
2.12	24.60	0.223	4.126	0.130	2.395	В
3.00	16.50	0.292	2.559	0.167	1.462	в
3.76	12.24	0.353	1.832	0.201	1.039	B
5.49	7.49	0.501	1.089	0.283	0.614	в
8.09	5.08	0.741	0.741	0.417	0.417	В
0.21	3.75	0.943	0.552	0.532	0.311	в
6.29	2.20	1.582	0.340	0.895	0.193	В
2.30	1.04	2.290	0.170	1.303	0.097	В
9.52	1.42	3.326	0.255	1,915	0.147	в
8.42	1.24	4.876	0.251	2.853	0.147	в
9.48	1.29	7.480	0.311	4.503	0.187	B + C
9.65	1.28					B + C
9.65	_	7.372	_	4.418	-	c

^a Editors' calculations. ^b A = $C_6H_{12}N_4$; B = Mg(ClO₄)₂.2C₆H₁₂N₄.8H₂O;

 $C = Mg(ClO_4)_2.6H_2O.$

AUXILIARY INFORMATION


METHOD/APPARATUS/PROCEDURE: isothermal method was used. The Periods of equilibration varied from 15 to 20 days. Clo_4^- was determined gravimetrically by nitron precipitation; and hexamethylenetetramine by ESTIMATED ERROR: potentiometric titration. Schreinemakers' method was used to determine the composition of the solid phases. The densities and viscosities of the REFERENCES: saturated solutions were measured.

SOURCE AND PURITY OF MATERIALS: Not stated.

Not stated.

None.

Ţ

COMPONENTS:	ORIGINAL MEASUREMENTS:			
<pre>(1) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	Zakharova, V.P.			
(2) Calcium perchlorate; Ca(ClO ₄) ₂ ; [13477-36-6]	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1971</u> , 95, 98-100.			
<pre>(3) Thiocarbamide; (thiourea); CH₄N₂S; [62-56-6]</pre>				
(4) Water; H ₂ O; [7732-18-5]				
VARIABLES:	PREPARED BY:			
One temperature: 298 K.	N.A. Kozyreva			
Composition.				

Solubility in the quaternary system $Mg(ClO_4)_2$ -Ca $(ClO_4)_2$ -CH₄N₂S-H₂O at 25^oC:

Liquid phase composition mass % mol % ^a molality ^a /mol kg ⁻¹								Solid ^b phase	
	mass %			mol %		molal	ity /mo	I Kg	pnase
(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)	
41.63 9.46	_ 39.35	10.15 10.65	$\begin{array}{r} 13.47\\ 3.74\end{array}$	- 6.204	4.106 5.271	9.068 2.451	_ 4.062	2.765 3.451	A+B A+B
1.09	56.30	10.72	0.53	10.92	6.526	0.359	7.387	4.416	A+B+C
	59.98	10.44	-	12.36	6.756	-	8.485	4.637	A+C
0.79	57.54	8.08	0.374	10.85	4.78	0.247	7.168	3.16	B+C
47.92 40.44 10.23	- 8.31 44.55	5.20 4.95 4.93	$15.86 \\ 13.73 \\ 4.140$	_ 1.12 7.184	2.15 2.10 2.50	$10.74 \\ 9.174 \\ 2.667$	_ 0.751 4.627	1.46 1.40 1.61	B+D B+D B+D
1.60	58.51	6.58	0.765	11.14	3.93	0.504	7.350	2.60	D+B+C

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The solubility was studied with the method of nonvariant points. The phase diagram was made using the Gibbs-Roozeboom method. SOURCE AND. PURITY OF MATERIALS: Not stated.

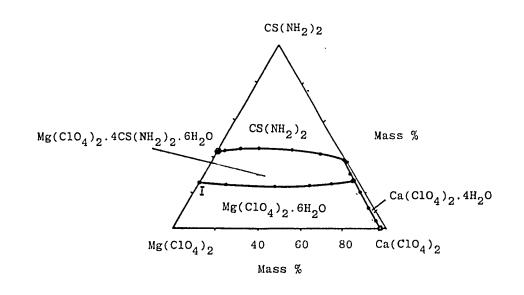
ESTIMATED ERROR: Not stated.

REFERENCES:

(continued next page)

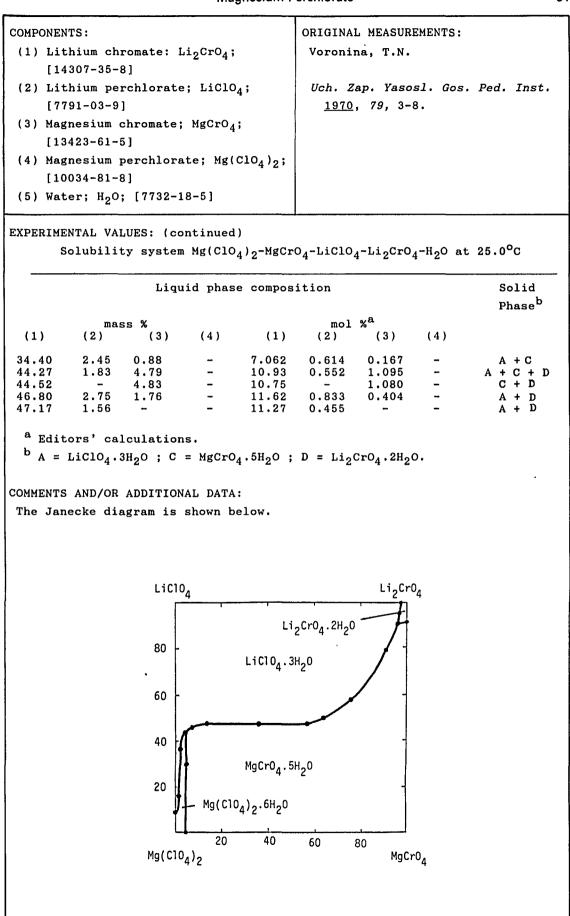
1		
	COMPONENTS:	ORIGINAL MEASUREMENTS:
	 Magnesium perchlorate; Mg(ClO₄)₂; 	Zakharova, V.P.
	[10034-81-8]	
	(2) Calcium perchlorate; Ca(ClO ₄) ₂ ;	Uch. Zap. Yarosl. Gos. Ped. Inst.
	[13477-36-6]	<u>1971</u> , <i>95</i> , 98-100.
	(3) Thiocarbamide; (<i>thiourea</i>);	
	CH ₄ N ₂ S; [62-56-6]	
	(4) Water; H ₂ O; [7732-18-5]	

EXPERIMENTAL VALUES: (continued)

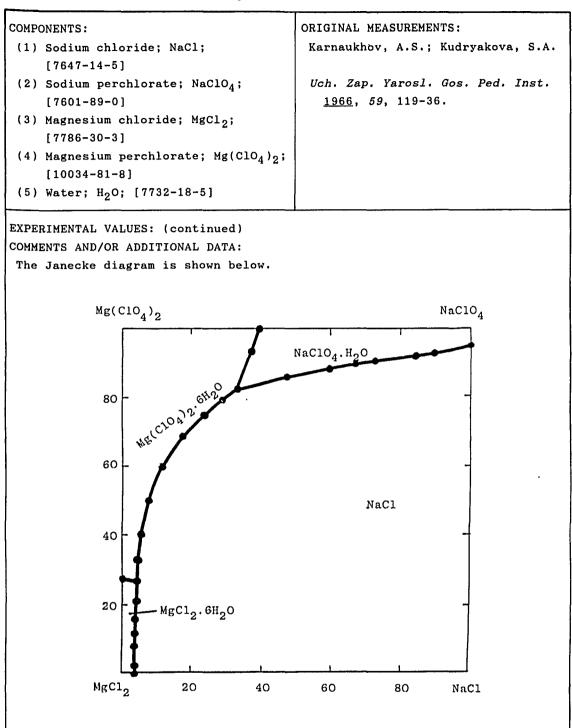

Solubility in the quaternary system $Mg(ClO_4)_2$ -Ca(ClO₄)₂-CH₄N₂S-H₂O at 25°C:

		L	iquid ph	ase com	positio	n			Solid ^b phase
	mass %			mol % ^a		molal	ity ^a /mo	l kg ⁻¹	
(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)	
1.29 1.36	$57.41 \\ 63.52$	2.34	0.554 0.641	9.81 11.92	1.26	0.348 0.407	6.166 7.568	0.789 -	D+C D+C
h	tor's cal CH ₄ N ₂ S	culation		Mg(ClO	4)2.4CH	4 ^{N2} S.6H2	0		

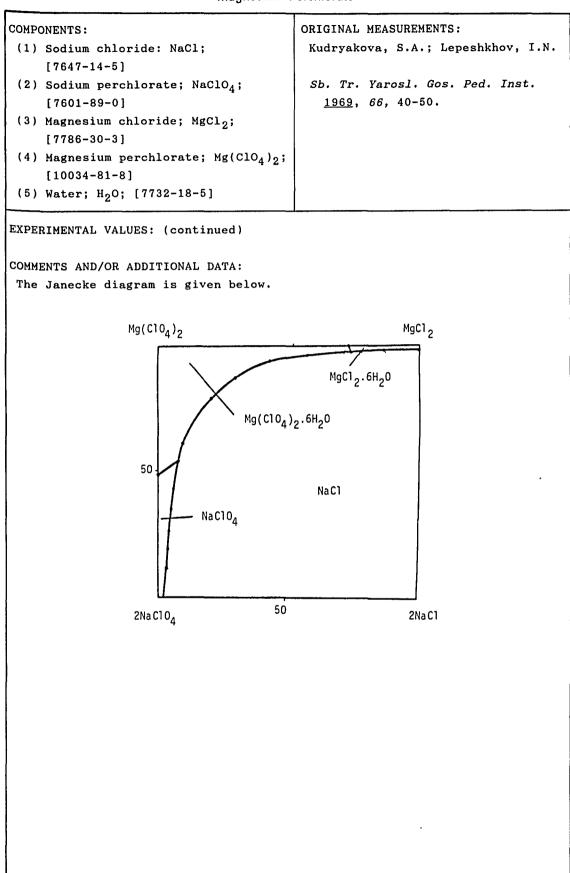
COMMENTS/ADDITIONAL DATA:


 $C = Ca(ClO_4)_2.4H_2O$ $D = Mg(ClO_4)_2.6H_2O$

Two triple eutectic points were found: the solution at the first point was saturated with thiocarbamide, calcium perchlorate tetrahydrate and the compound $Mg(ClO_4)_2.4CH_4N_2S.6H_2O$; the solution at the second point was saturated with $Mg(ClO_4)_2.4CH_4N_2S.6H_2O$, calcium perchlorate tetrahydrate and magnesium perchlorate hexahydrate.


				gnosiumi						
COMPONE	NTS:				ORIGINA	L MEASUR	EMENTS:			
	thium c 4307-35		Li2CrO4;		Voronii	na, T.N.				
	thium p 791-03-		te; LiClC	Uch. Zap. Yasosl. Gos. Ped. Inst. <u>1970</u> , 79, 3-8.						
	gnesium 3423-61		e; MgCrO ₄	;						
	gnesium 0034-81		rate; Mg(clo ₄) ₂ ;						
(5) Wat	ter; H ₂ 0	D; [7732-	-18-5]							
VARIABLE	ES:				PREPARE	D BY:				
One ter Composi		re: 298.2	2 K		E.S. G	ryzlova				
EXPERIME			em Mg(ClO) _o -MgCr	O ₄ -LiClO	-Li _o CrO	-H ₂ O at	25.0°c		
-, , - , - , - , - , - , - , -			uid phas							
	me	ass %			" "	1 % ^a		Phase ^b		
(1)	(2)		(4)	(1)		(3)	(4)			
-	4.03 8.16		46.45 46.24		1.269 2.738		7.003 7.395	A + B A + B		
-	33.24	0.32	46.34	-	19.07	0.139	12.67	A + B		
-	34.19	0.73	46.35 49.71	-	20.42	0.331	7.389	A + B + C B + C		
-	22.84	2.94	42.10	-	9.727	0.949	8.546	B + C		
-	36.95 37.11		41.50 26.98	-	20.65 15.49		11.06 5.367	A + C A + C		
_	37.19	5.04	17.61	_	12.98		2.929	A + C A + C		
	37.38		5.68	-	11.97		0.867	A + C		
	37.42 31.28	31.38 25.79 12 31	-	9.394 9.357	$24.14 \\ 16.25$		-	A + C A + C		
	12.12	12.31	-	8.234	3.916	3.016	-	A + C A + C		
		culation								
^b A = I	.iclo ₄ .3	ВН ₂ О ; В	= Mg(ClO	4)2.6H2O	; C = Mg	gCr0 ₄ .5H ₂	20.			
			AUXI	LIARY IN	FORMATION	1				
iethod/f	ROCEDUF	RE/APPARA	TUS:		SOURCE A	AND PURIT	TY OF MAT	ERIALS:		
The i	sothern	nal met	hod was	used.	The sa	alts wer	re recry	stallized.		
	-		tion we							
			ined iod							
cally,	Mg ²⁺	by titra	tion wit	h EDTA,						
			uranyl a		ESTIMAT	ED ERROF	≀:			
		fference		-	Tempera	ature: <u>+</u> 0).1 ⁰ C.			
					REFERENC	CES:				
					None.					
						(c	continued	next page)		

,

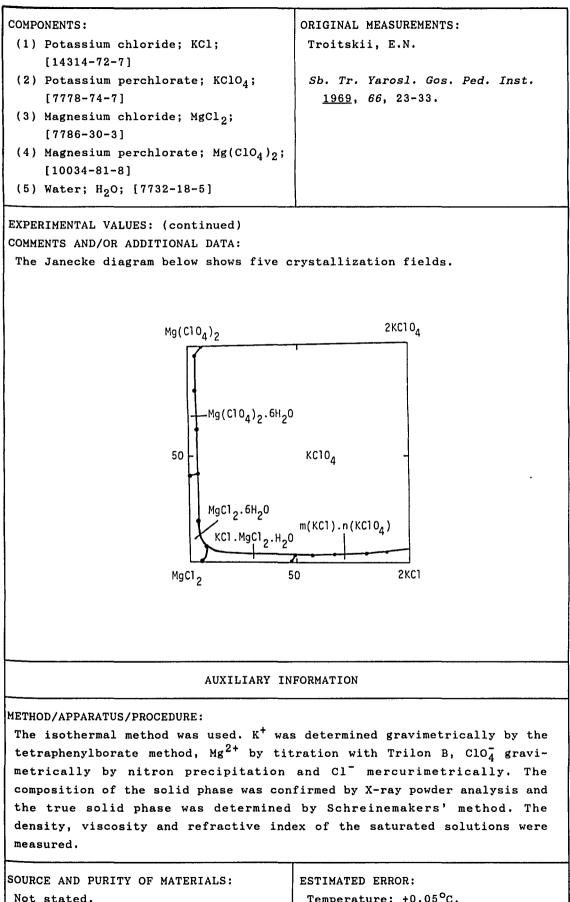

COMPONENTS:	ORIGINAL MEASUREMENTS:				
(1) Sodium chloride; NaCl;	Karnaukhov, A.S.; Kudryakova, S.A.				
[7647-14-5]					
(2) Sodium perchlorate; NaClO ₄ ;	Uch. Zap. Yarosl. Gos. Ped. Inst.				
[7601-89-0]	<u>1966</u> , <i>59</i> , 119-36.				
(3) Magnesium chloride; MgCl ₂ ;					
[7786-30-3]					
(4) Magnesium perchlorate; Mg(ClO ₄) ₂ ;					
[10034-81-8]					
(5) Water; H ₂ O; [7732-18-5]					
VADTADIEC.	DEDADED BV.				
VARIABLES:	PREPARED BY:				
One temperature: 298.2 K Composition	N.A. Kozyreva				
EXPERIMENTAL VALUES:					
Solubility system Na ⁺ ,Mg ²	$^{2+}//Clo_{4}^{-},Cl^{-}-H_{2}O$ at 25.0°C				
Liquid phase o					
mass % (1) (2) (3) (4)	mol % ^a (1) (2) (3) (4)				
0.34 - 35.44 - 0.42	0.148 - 9.441 - 0.101				
0.43 - 34.53 2.60	0.191 - 9.426 0.303				
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.277 - 8.665 0.851 0.259 - 8.598 1.115				
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.331 - 8.068 1.772				
0.05 - 27.42 14.12 0.92 - 25.81 16.45	0.331 - 8.008 1.772 0.448 - 7.713 2.097				
1.02 - 20.75 17.93	0.476 - 5.950 2.193				
0.81 - 22.93 20.44	0.402 - 6.991 2.658				
- - 22.81 20.01	6.839 2.559				
1.70 - 19.64 22.95	0.848 - 6.013 2.997				
1.65 - 16.73 22.67	0.789 - 4.911 2.838				
1.88 - 14.26 28.06	0.945 - 4.399 3.692				
2.06 - 12.44 31.96	1.074 - 3.982 4.364				
3.13 - 8.76 37.54	1.716 - 2.948 5.389				
^a Editors' calculations.					
AUXILIARY IN	ΙΕΩΡΜΔΤΙΩΝ				
METHOD/APPARATUS/PROCEDURE:					
The method of nonvariant points was	used. Na ⁺ was determined gravi-				
metrically as sodium zinc uranyl acet					
tion, Cl ⁻ mercurimetrically and ClO_4^- g	ravimetrically by nitron precipita-				
tion. Densities and viscosities of the					
SOURCE AND PURITY OF MATERIALS:	ESTIMATED ERROR:				
The salts were recrystallized.	Temperature: ±0.1°C.				
Purity: 95.58-99.75 %.					
······································					
REFERENCES:					
None.	(continued next page)				

I

COMPONE		oride: Na	aCl;		ORIGINAL Kudryako			hkhov, I.N.
(2) Soc [76 (3) Mag	501 - 89-0	chlorate;] chloride;	; NaClO ₄ ; ; MgCl ₂ ;			Yarosl. 66, 40-4	Gos. Pec 50.	d. Inst.
[10	0034-81-8	3]	ate; Mg(C	10 ₄) ₂ ;				
(5) Wat VARIABLE	_	; [7732-1	[8-5]		PREPARED	BY:		
One ter Composi	nperature	e: 363 K			E.S. Gry			
	ENTAL VAI		Mg(ClO ₄)	2-MgCl2-	NaClO ₄ -Ne	aCl-H ₂ O a	at 90°C	
<u></u>		Liqu	id phase	composi	tion			Solid Phase ^b
(1)		ss % (3)	(4)	(1)	mc (2)	ol % ^a (3)	(4)	1 Mabe
0.63 0.69 0.69 1.14 1.60 3.65 0.54	- - - - 5.62	26.79 25.29 19.35 12.98 5.54	16.17 19.51 22.76 31.32 39.38 48.69 52.82	0.355 0.366 0.642 0.945 2.333 0.360	- - - 1.787		2.630 3.162 4.619 6.093 8.149 9.212	A + C A + C A + C
2.39 2.24 1.85	19.51 23.59 25.45 39.20 47.72 52.62 57.46	-	38.19 32.89 27.68 23.23 18.77 13.94 9.19	1.346 1.298	6.248 7.232 7.300 13.13 17.10 18.71 20.27		4.355 4.268	A + C + D
•		ulations MgCl ₂ .6	н. Н ₂ о;с	= Mg(ClO	1)2.6H20	; D = Ne	aClO ₄ .	
			AUXIL	IARY INFO	DRMATION			
The isc of nonv eutecti a new precipi	othermal cariant p c compo solid p tation w	ooints: osition ohase app vith zinc	as used. to the s of terna eared. M	saturated ry syste g ²⁺ was acetate,	d soluti ems, a the determine $C10\frac{1}{4}$ g	on corr hird salt hed with	respondin . was add Trilon B	e method g to the ed until ; Na ⁺ , by y nitron
SOURCE A Not sta		Y OF MAT	ERIALS:	I	ESTIMATEI Not stat	.ed.	ontinued	next page)

ł

Т

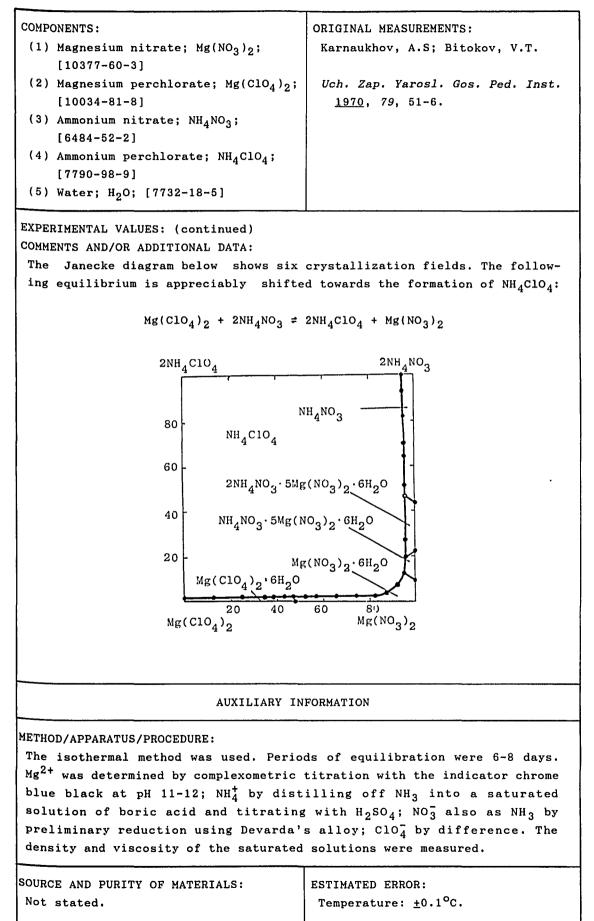

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Potassium chloride; KCl;	Troitskii, E.N.
[14314-72-7]	
(2) Potassium perchlorate; KClO ₄ ;	Sb. Tr. Yarosl. Gos. Ped. Inst.
[7778-74-7]	<u>1969</u> , 66, 23-33.
(3) Magnesium chloride; MgCl ₂ ;	
[7786-30-3]	
(4) Magnesium perchlorate; $Mg(ClO_4)_2$;	
[10034-81-8]	
(5) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
One temperature: 298.15 K	E.S. Gryzlova
Composition	

EXPERIMENTAL VALUES: Solubility system K⁺,Mg²⁺//ClO₄,Cl⁻-H₂O at 25.00°C

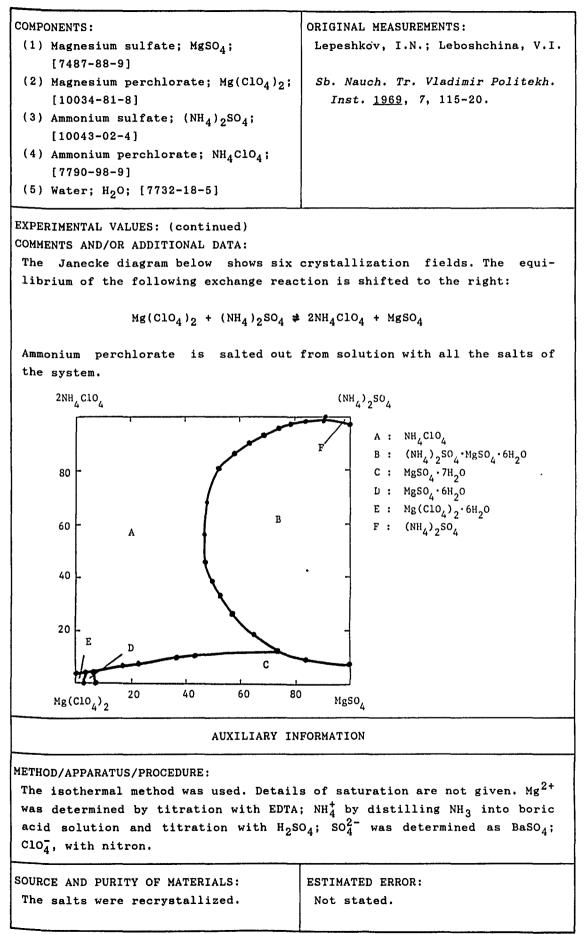
		Li	quid phase	compositi	on			Solid
								phaseb
	ma	ss %			mol S	_x a		
(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	
-	0.07	0.56	49.39	-	0.017		7.371	A + B
-	0.06	1.64	48,46	-	0.014	0.574	7.234	**
-	0.06	4.08	39.08	-	0.013	1.271	5.195	**
-	0.07	9.03	33.05	-	0.015	2.745	4.286	**
-	0.07	11.84	26.45	-	0.014	3.393	3.233	11
-	0.07	15.67	17.48	-	0.013	4.166	1.982	**
-	0.07		14.70		0.013	4.382	1.631	A + B +
-	0.06	16.86	14.70	-	0.011	4.384	1.631	**
-	0.05	16.85	14.72	-	0.009	4.382	1.633	11
-	0.01	24.38	6.27	-	0.002	6.195	0.680	B + C
-	0.04		5.18	-	0.007	6.455	0.561	11
).76	0.22	35.31	-	0.260	0.041	9.463	-	B + C +
.57	0.24	35.31	-	0.195	0.044	9.446	-	**
.76	0.21	35.31	-	0.260	0.039	9.462	-	**
3.60	0.02	26.70	-	1.151	0.003			B + D +
3.43	0.01	26.35	-	1.090	0.002		-	11
8.60	0.01	26.35	-	1.146	0.002	6.569	-	**
9.98	0.01	25.16	-	1.256	0.002	6.217	-	B + E
.70	0.01	21.43	-		0.002	5.179	-	
.23	0.01	18,97		2.207	0.002	4.536	-	**
.89	0.03	14.32	-		0.005	3.383	-	
63	0.03	9.40	-	4.692	0.005	2.209	-	11
.65	0.03	3.57	-	6.850	0.005		-	**
	0.03	0.91	_	7.851	0.005	0.216	-	A + B
1.87	0.09	-	49.54	-	0.022	-	7.353	B + E
- 87		~~ ~~	20.04	-	-	6.838	2.564	$\tilde{A} + \tilde{C}$
5.87 - -	-	22.80						
-	-	22.80	-	0.037	_	9.462	-	C + D
5.87 - - 0.11 3.40		22.80 35.55 26.79	-	0.037 1.085	-	9.462 6.696	-	C + D D + F

(continued next page)

ł


Temperature: $\pm 0.05^{\circ}$ C.

OMPONEN'	TS:				ORIGINA	L MEASU	REMENTS	:						
	nesium n 377-60-3		Mg(NO ₃)) ₂ ;	Karnaukhov, A.S; Bitokov, V.T.			•						
<pre>(2) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>						Uch. Zap. Yarosl. Gos. Ped. Inst <u>1970</u> , 79, 51-6.				Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1970</u> , 79, 51-6.				
	onium ni 84-52-2]		NH ₄ NO ₃ ;											
			te; NH ₄ C	210 ₄ ;										
	90-98-9] er; H ₂ O;		18-5]											
ARIABLES	 S:				PREPARE	D BY:								
One temp	perature	: 298.2	К		N.A. K	ozyreva								
Composit	tion													
XPERIMEN			tem NH_4^+	⁺ ,Mg ²⁺ //C	104 ^{-,} NO3	-н ₂ о а	t 25.0°	0						
	mas	s%				l % ^a		Soli	d pha	ıse ^b				
(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)							
3.16 13.59 18.266 19.73 29.30 31.94 32.95 34.95 35.49 37.07 41.39 39.31 40.06 41.65 42.01 40.40 40.80 41.66 41.82 40.374 35.36 31.10 27.01 24.45 22.89 20.05 21.17 18.47 14.05 9.57 3.70 -		59.07 47.89 43.16 41.62 31.98 29.30 30.00 25.19 22.12 14.09 10.26 11.98 6.71	3.41 3.29 3.12 3.00 - 2.88 2.48 2.34 2.25 - 2.53 2.73	0.841 3.533 4.747 5.123 7.707 8.417 8.481 9.067 8.775 8.301 9.384 8.536 8.488 8.720 8.868 8.151 8.185 8.496 9.223 9.353 8.455 7.055 6.2300 4.875 4.863 4.525 3.500 2.4300 0.877		26.49 20.98 18.90 18.21 14.17 13.01 13.01 11.01 9.213 5.315	1.832 1.260 1.119 1.036 0.998 - 0.943 0.774 0.661 0.644	A + B B + C B B + D B B + C B B + C B B + C B B + C B + C B + C B + C B + C B + C B + C B + C B + C + C + C + C + C + C + C + C + C +	+ C + C " + D + D + D "	D				
^b A = NH		$B = NH_4$	cio ₄ ; c	2 = 2NH ₄ NO E = Mg(NO	•	0;F=				age				


1

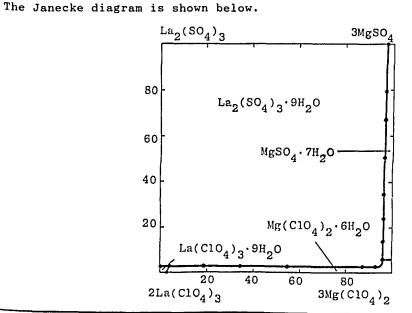
ş

1

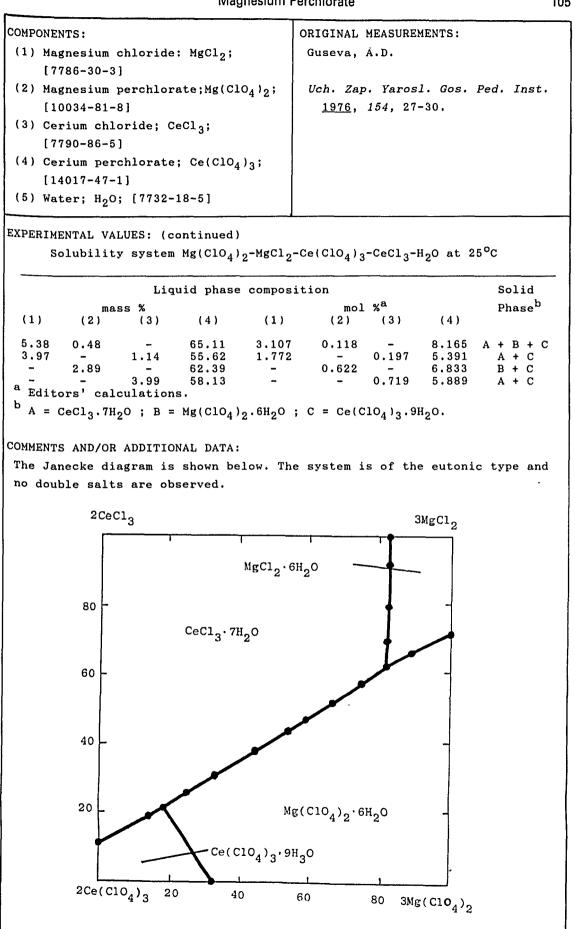
OMPONEN		_			ORIGINA					
	nesium s 87-88-9]		MgSO ₄ ;		Lepeshkov, I.N.; Leboshchina, V.I Sb. Nauch. Tr. Vladimir Politekh. Inst. <u>1969</u> , 7, 115-20.				v. I	
	nesium p 034-81-8		ate; Mg()	210 ₄) ₂ ;					kh.	
	onium su 043-02-4		(NH ₄) ₂ SO	1 ;						
			te; NH ₄ C	LO ₄ ;						
	90-98-9]									
(5) Wat	er; H ₂ O;	[7732-	18-5]							
ARIABLE	s:				PREPAREI	D BY:				
One tem	perature	: 298 K	:		N.A. Ke	ozyreva				
Composi	tion									
XPERIME	NTAL VAL	UES:				<u></u>				
			tem NH_4^+	Mg ²⁺ //Cl	.0 ₄ -,so ₄	^{2н} 2 ^{0 а}	t 25°C			
<u></u>	та	.ss%			mol	% ^a		Solid	l ph	ase
(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)			
-	-	40.79			-	8,941			+ B	
0.22 0.26	-	40.42 42.89	3.22	0.053 0.062	-	8.863 9.321	0.794		н н С	
	-	40.83		0.062 0.060 0.073 0.137	-	8.837				
0.32 0.67	-	35.92 22.65		0.073 0.137	-	$7.509 \\ 4.221$		A	+ C	
0.94	-			0.183	-	2.920			"	
1.87	-	8.35	13.51	0.183 0.351 0.632	-	1.427	2.597		11 11	
3.42 5.69	-	4.26 1.80	14.69 15.52	0.632	-	$0.717 \\ 0.305$	2.781 2.957			
8.15	0.19	-	15.29	1.526		-	2.932		••	
8.36	0.64	-	14.72	1.567		-	2.827		11 11	
8.75 10.23	$2.05 \\ 4.15$	-	12.94 10.90	$1.642 \\ 1.956$		-	2.489 2.136			
11.23	5.05	-	9.57	2.163		-	1.888		0	
12.84	6.15	-	7.24	2.486		-	1.436	. .	"	n
17.61 26.45	6.30	2.27	5.43	3.531 5.240	0.681	- 0.410	1.116	A + C	C + + D	
21.65	2.50	-	4.60	4.298	0.268	-	0.936	Ŭ		
17.61	6.30	-	5.43	3.531	0.681	-	1.116	A +		
14.73 9.01	9.68 17.74	-	4.92 4.11	$2.963 \\ 1.859$	1.050 1.974	-	1.014 0.869	A	+ D	
8.45	18.72	-	3.85	1.748	2.088	-	0.816		"	
6.58	22.20	-	3.40	1.385	2.519	-	0.733		**	
4.60 3.42	27.23 31.10	-	2.79 2.38	1.002 0.770	$3.199 \\ 3.775$	-	$0.623 \\ 0.549$			
3.00	34.62	-	1.97	0.702	4.369	-	0.472		**	
2.32	45.00	-	1.43	0.626	6.550	-	0.395		# 	
1.31 1.49	42.78 42.43	-	0.95	$0.334 \\ 0.373$	5.877 5.734	-	0.248	A + D	υ + + E	
1.31	42.78	-	0.95	0.334	5.877	-	0.248	A +		
0.83	49.14		- 74	0.230	7.328	-	-	E	+ F "	
0.75	48.29 49.70	-	0.74 0.19	0.207	7.172 7.408	-	0.209 0.054	А	+ F	
0.27	49.70	-	0.68	0.076	7.497	-	0.195		**	_
0.75	48.29	-	0.74	0.207	7.172	-	0.209	A +	E +	F
^a Edito	rs' calc	ulation	s.							
ь. "	н.сто. •	B = (N	H ₄) ₂ SO ₄	C = (NH)	1.1.50	405068	-0 ·			
-A = N			-4/2-4	• (4 / 2004		2°,			

101

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium sulfate; MgSO₄; [7487-88-9]</pre>	Chernova, L.P.
<pre>(2) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>	Sb. Tr. Yarosl. Gos. Ped. Inst. <u>1979</u> , 176, 13-8.
<pre>(3) Lanthanum sulfate; La₂(SO₄)₃; [10099-60-2]</pre>	
<pre>(4) Lanthanum perchlorate; La(ClO₄)₃; [14017-46-0]</pre>	
(5) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
One temperature: 298 K Composition	T. Mioduski
EXPERIMENTAL VALUES: Solubility system Mg(ClO ₄) ₂ -MgSO ₄	$L_1-La(ClO_4)_3-La_2(SO_4)_3-H_2O$ at 25°C
Liquid phase compos	sition Solid Phase ^b
mass % (1) (2) (3) (4) (1)	mol % ^a (2) (3) (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
^a Editors' calculations ; ^b A = MgSO ₄ . C = Mg(ClO ₄) ₂ .6H ₂ O ; D = La(ClO ₄) ₃ .9	
AUXILIARY IN	IFORMATION
METHOD/PROCEDURE/APPARATUS: The isothermal recrystallization	SOURCE AND PURITY OF MATERIALS: Nothing specified.
method was used. No information is given on the criterion for ascertain-	
ing equilibrium. SO_4^2 and ClO_4^- were determined gravimetrically as $BaSO_4$	
and nitron perchlorate, respectively. La ³⁺ was separated from Mg^{2+} at pH	ESTIMATED ERROR:
9.2 by precipitation with $(NH_4)_2CO_3$ and the La ₂ (CO ₃) ₃ precipitate was	Not stated.
washed with 50 cm^3 distilled water and dissolved in 0.5 mol dm ⁻³ HCl.	REFERENCES :
${\tt La^{3+}}$ was determined by titration with	None.
Complexone III at pH 5 using the indicator xylenol orange. Mg^{2+} was	
determined by titration with Complex- one III using "chrome acid dark blue"	
one III using "chrome acid dark blue" indicator.	(continued next page)

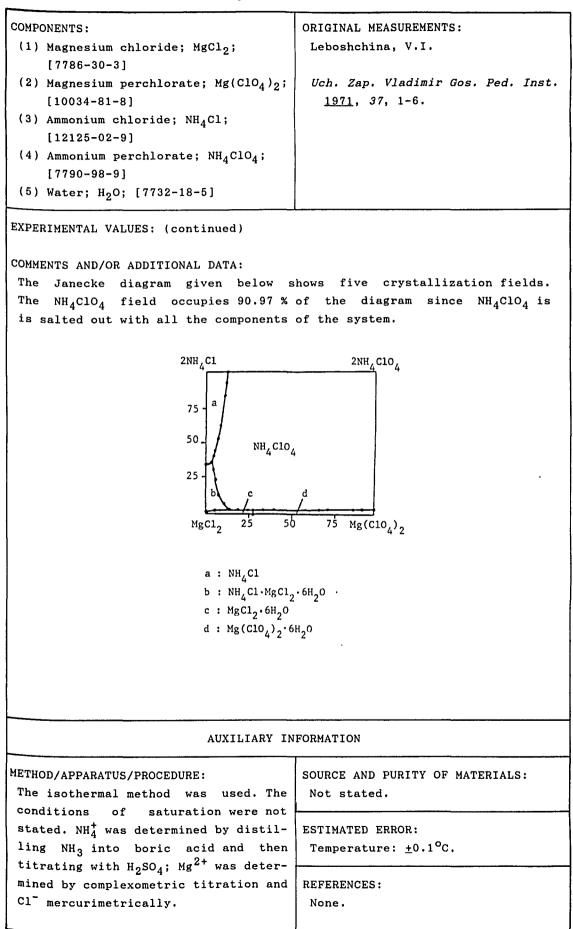

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium sulfate; MgSO₄;</pre>	Chernova, L.P.
[7487-88-9]	
(2) Magnesium perchlorate; Mg(ClO ₄) ₂ ;	Sb. Tr. Yarosl. Gos. Ped. Inst.
[10034-81-8]	<u>1979</u> , <i>176</i> , 13-8.
(3) Lanthanum sulfate; $La_2(SO_4)_3$;	
[10099-60-2]	
(4) Lanthanum perchlorate; $La(ClO_4)_3$;	
[14017-46-0]	
(5) Water; H ₂ O; [7732-18-5]	
EXPERIMENTAL VALUES: (continued)	

Solubility system $Mg(ClO_4)_2$ -MgSO₄-La(ClO₄)₃-La₂(SO₄)₃-H₂O at 25^oC


Soli			tion	e composi	uid phase	Liqu		
Phase								
		% ^a	mol			s %	mas	
	(4)	(3)	(2)	(1)	(4)	(3)	(2)	(1)
A + 1	-	0.047	0.685	4.299	-	1.10	6.35	1.49
A + 1	-	0.049	1,202	3.654	-	1.14	10.95	7.96
A + 1	-	0.050	5,804	6.233	-	0.77	35.42	0.51
A + 1	-	0.010	3.056	1.111	-	0.22	26.77	5.25
A + 1		0.009	3.873	0.828	-	0.18	32.19	3.71
A + 1	-	0.007	4.875	0.407	-	0.13	38.22	1.72
A + B ·	-	0.019	7,018	0.171	-	0.33	47.91	0.63
A + B ·	-	0.007	7,311	0.202	-	0.12	49.06	0.73
A + B ·	-	0.011	7.312	0.169	-	0.19	49.08	0.61
B + (0.399	0.005	7.087	-	3.98	0.08	46.72	-
B+(0.853	0.034	6,150	-	8.59	0.57	40.92	-
B + (3.300	0.005	4.486	-	29.49	0.07	26.49	-
B + (4.853	0/049	3.372	-	40.26	0.68	18.48	-
B + (5.55	0.030	1.477	-	48.14	0.43	8.46	-
B + C +	9.298	0.009	0.394	-	64.62	0.10	1.81	-

^a Editors' calculations ; ^b A = MgSO₄.7H₂O ; B = La₂(SO₄)₃.9H₂O ; C = Mg(ClO₄)₂.6H₂O ; D = La(ClO₄)₃.9H₂O.

COMMENTS AND/OR ADDITIONAL DATA:

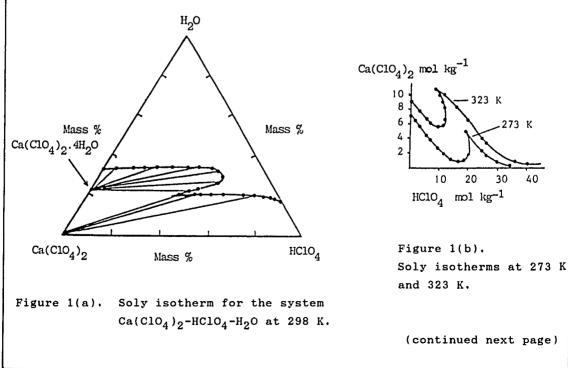

COMPONENTS:	ORIGINAL MEASUREMENTS:					
<pre>(1) Magnesium chloride: MgCl₂; [7786-30-3]</pre>	Guseva, A.D.					
<pre>(2) Magnesium perchlorate;Mg(ClO₄)₂; [10034-81-8]</pre>	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1976</u> , 154, 27-30.					
(3) Cerium chloride; CeCl ₃ ; [7790-86-5]						
(4) Cerium perchlorate; Ce(ClO ₄) ₃ ;						
[14017-47-1] (5) Water; H ₂ O; [7732-18-5]						
VARIABLES:	PREPARED BY:					
One temperature: 298.2 K Composition	T. Mioduski					
EXPERIMENTAL VALUES: Solubility system Mg(ClO ₄) ₂ -MgCl ₂ -C	$e(ClO_4)_3$ -CeCl ₃ -H ₂ O at 25 ^o C					
Liquid phase compos	ition Solid Phase ^b					
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
AUXILIARY IN	FORMATION					
	pective third salt was added until brium was reached in 4-6 days. ClO_4^- h nitron. Cl ⁻ was determined by ylcarbazone indicator. Ce ³⁺ was de-					
SOURCE AND PURITY OF MATERIALS: Nothing stated.	ESTIMATED ERROR: Not stated.					
REFERENCES: None.	(continued next page)					

COMPONENTS:		c	RIGINAL	MEASURE	MENTS:			
<pre>(1) Magnesium chloride; MgCl₂; [7786-30-3]</pre>			Lepeshkhov, I.N.; Leboshchina, V.I.					
<pre>(2) Magnesium perchlorate; Mg(ClO₄)₂; [10034-81-8]</pre>		210 ₄) ₂ ;	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1966</u> , 59, 48-66.					
(3) Ammonium [12125-0	chloride; NH ₄ Cl; 2-9]							
(4) Ammonium [7790-98	perchlorate; NH ₄ Cl	.o ₄ ;						
	-9] 20; [7732-18-5]							
ARIABLES:		F	REPARED	BY:				
One temperat Composition	ure: 298,2 K		N.A. Koz	yreva				
EXPERIMENTAL		l		<u></u>				
Sol	ubility system NH ₄ ⁺	,Mg ²⁺ //Cl	.0 ₄ ⁻ ,c1 ⁻ -	H ₂ O at	25.0°C			
	Liquid phase	e composit	ion			Solid phase ^b		
(1) (2	mass %) (3) (4)	(1)	mol (2)	% ^a (3)	(4)			
 3.904 - 5.24 - 9.37 -		0.947 1.268 2.264	-	11.32 9.854 9.169 7.413	0.853 0.794	A + B " "		
12.90 - 15.87 - 18.73 -	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3.139 3.890 4.590 5.113	- - -			" " A + B + C		
21.22 - 20.62 -	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5.212 5.106 5.577 5.831	- - -	3.799 3.843 2.535		$\begin{array}{c} A + C \\ A + C \\ A + B + C \\ B + C \\ \end{array}$		
25.90 - 25.34 4. 22.688 11.5 21.808 14.2	1.62 2.11 95 - 1.30 95 - 0.501	6.436 6.497 6.087 5.990	- 0.541 1.327 1.673	0.717		11 11 17 17		
35.69 - 31.139 6.2 27.18 11.	0.086 - 5 - 0.32 93 - 0.416	9.511 8.572 7.717	- 0.734 1.445	0.041 - -	0.071	C + D "		
21.808 14.2 23.14 18. 22.85 19. 23.14 18.	53 - 0.468 85	5.990 6.862 6.838 6.862	1.673 2.344 2.534 2.344	- - -	0.081 0.112 	B + C + D $B + D + E$ $D + E$ $B + D + E$		
- 49. 2.28 44. 4.60 42. 6.97 38.	15 - 0.323 03 - 0.332	- 0.753 1.518 2.265	7.391 6.220 5.915 5.406		0.054 0.086 0.089 0.091	B + E " "		
10.13 35. 18.45 25. 22.72 19. 23.12 18.	16 - 0.319 58 - 0.460 93 - 0.428	3.238 5.710 6.835 6.846	4.794 3.377 2.557 2.331	- - -	0.083 0.115 0.104 0.112	" " B + D + E		
	alculations.	01010						
$b = NH_4C1$; B = NH_4ClO_4 ; C = $6H_2O$; E = $Mg(ClO_4)$	-	с1 ₂ .6н ₂ 0	;				
- 4	₩ - 4/	- 4		1.0	ontinucd	l next page)		

OMPONENTS:			0	ORIGINAL						
<pre>(1) Magnesium chloride; MgCl₂; [7786-30-3]</pre>				Leboshc	hina, V.	Ι.				
		orate; Mg(C	10 ₄) ₂ ;	Uch. Za	p. Vladi	mir Gos	. Pe	ed.	Iı	nst
[10034-				<u>1971</u> ,	37, 1-6	•				
(3) Ammoniu [12125-		e; NH ₄ Cl;								
		orate; NH ₄ Cl	.0,;							
[7790-9			4							
(5) Water;	H ₂ O; [773	2-18-5]								
ARIABLES:			I	PREPARED	BY:					
One tempera	ature: 323	.2 K		N.A. Ko	zyreva					
Composition	ı									
XPERIMENTAI	L VALUES:					··.				
		system NH_4^+	,Mg ²⁺ //C	10 ₄ -,c1-	-H ₂ O at	50.0°C				
	T	iquid phase	composi	tion				Sol	id	
	-	7 5. ee ea 19, ee						oha		þ
(1)	mass % (2) (3)	(4)	(1)	mol (2)	% ^a (3)	(4)				
-			(-)	(•)	13.88				т.	2
2.48	- 29.7 - 27.2	7 9.68	0.654		12.81	2.070			+ I "	2
5.80 11.38	- 24.0	7 8.04 0 6.57	1.513 2.963		$11.18 \\ 8.758$				11 17	
14.50	- 16.2		3.763		7.524				11	
17.69	- 14.0		4.578	-	6.468				# ††	
18.99 20.71	- 12.8 - 11.3		4.891 5.303		5.868 5.186		A			⊦ C
20.86	- 12.5	0 -	5.277		5.628	-		В	+ (2
20.52	- 11.7		5.248		5.349		Α			F C
21.18 22.13	- 10.3	3 2.86 0 2.93	5.448 5.663	-	4.730 3.872			A	+ (j
23.42	- 8.5	6 3.15	5.994	-	3.034				11	
26.90	- 1.5		6.913	-	0.709	0.868			11 11	
	2.93 -	3.63 1.83	7.161 7.360	0.328 0.872	-	0.772 0.403			••	
	2.85 -	1.03	7.044		_	0.235	А			- D
	9.48 -	0.55	7.665	2.559	-	0.137			n	-
37.10	- 0.1		10.05	-	0.068	-			+ I ")
	3.76 -	0.52	9.742 7.665	$0.448 \\ 2.559$	-	0.118 0.137	٨			n
).48 - 3.49 -	0.55 0.60	7.971	3.265	-	0.158				- D - E
	.60 -	-	7.058	3.000	-	-		D	+ E	2
	3.49 -	0.60	7.120	3.176	-	0.154	Α			Ε
	.72 -	0.97 0.91	- 0.550	8.085 8.857	-	0.288 0.286			+ E "	5
	s.58 -	0.85	1.009	7.444	_	0.288			**	
6.25 43	.05 -	0.79	2.162	6.354	-	0.222			**	
	- 60 -	0.75	2.640	6.607	-	0.216			11 11	
	·.26 -	0.67 0.54	$5.175 \\ 6.101$	3.614 3.100	-	0.169 0.134			••	
	- 49 -	0.60	7.120	3.176	-	0.154	A			·E
^a Editors'	calculati	ons.								
L.		NH ₄ Cl ; C =	NH4C1.ME	gCl ₂ .6H ₂	р;					
	-	-	-	-						
$D = MgCl_2$.6H ₂ O ; E	$= \text{Mg}(\text{CIO}_4)$	2.0120.							

COMPONENTS:	EVALUATOR:
(1) Calcium perchlorate; Ca(ClO ₄) ₂ ; [13477-36-6]	I.N. Lepeshkov and N.A. Kozyreva
(2) Water; H ₂ O; [7732-18-5]	Institute of General and Inorganic Chemistry, USSR Academy of Sciences

CRITICAL EVALUATION:


Binary Systems

Solubility data for $Ca(ClO_4)_2$ - H_2O binary systems were reported in reference (1) and 17 others (see separate evaluation following this). In references (2,3) solubility data for calcium perchlorate hexahydrate over the temperature range 273-323K were reported. The eutectic composition of the $Ca(ClO_4)_2.4H_2O$ -ice mixture was reported (4) to be 38.5 mass % $Ca(Clo_4)_2$, as suggested from the position of the maximum on the specific conductivity isotherms and of the zero point on the isotherms of the derivative of this property in terms of the concentration.

Solubilities of $Ca(ClO_4)_2$ in methanol, ethanol, 1-propanol, 2-methyl-1-propanol, 1-butanol, acetone, ethyl acetate and diethyl ether at 298.15K were reported by only one group of workers (1). Similarly, there was only one report (4) of the solubility of calcium perchlorate in hydrazine at 298.15K.

Ternary Systems

The solubility isotherm (5) at 298 K for $Ca(ClO_4)_2$ in the $Ca(ClO_A)_2$ -HClO_A-H₂O system shows a deep minimum after which the solubility increases with perchloric acid concentration again when the solid phase is $Ca(ClO_4)_2$.4H₂O, as shown in Fig. 1(a). Fig. 1(b) shows similar minima (6) for temperatures 273 K and 323 K.

40

110

COMPONENTS:	EVALUATOR:
<pre>(1) Calcium perchlorate; Ca(ClO₄)₂; [13477-36-6]</pre>	I.N. Lepeshkov and N.A. Kozyreva
 (2) Water; H ₂ O; [7732-18-5]	Institute of General and Inorganic Chemistry, USSR Academy of Sciences

Systems involving organic compounds : Among the systems with organic compounds as one of the components, the simplest is that involving thiocarbamide (7). At 298K, the following eutectic composition (mass %: $58.71 \text{ Ca}(\text{ClO}_4)_2$, $10.44 \text{ CS}(\text{NH}_2)_2$, $30.85 \text{ H}_2\text{O}$) was reported (7), with no coordination compounds formed. For the systems involving dimethylurea (8,9) at 298 K, the compounds $Ca(ClO_4)_2.4C_3H_8ON_2$ and $Ca(ClO_4)_2.3C_3H_8ON_2$ have been reported to be strongly salted out by calcium perchlorate. The system $Ca(ClO_4)_2$ -urea-H₂O has a more complex character (10), its isotherm at 298K showing five crystallization branches as a result of the formation of additional solid compounds $Ca(ClO_4)_2.6CO(NH_2)_2$, $Ca(ClO_4)_2.4CO(NH_2)_2$, and $Ca(ClO_4)_2.2CO(NH_2)_2.2H_2O$. The former is congruently soluble while the latter two are incongruently soluble. For Ca(ClO₄)₂-hexamethylenetetramine-water, the formation of solid phases of $Ca(ClO_4)_2.2C_6H_{12}N_4.6H_2O$ and $Ca(ClO_4)_2.3C_6H_{12}N_4$ were reported (11).

Systems involving only calcium salts :

In the ternary aqueous systems with $Ca(NO_3)_2$, $CaCrO_4$ or $CaCl_2$ as the other solute at 298K, the crystallization isotherms in each case showed a branch corresponding to $Ca(ClO_4)_2.4H_2O$ which did not convert to the anhydrous phase (12-19). Calcium nitrate and calcium chloride gave two branches of crystallization each, corresponding to their respective hydrates $Ca(NO_3)_2.4H_2O$, $Ca(NO_3)_2.2H_2O$, $CaCl_2.4H_2O$ and $CaCl_2.2H_2O$. The tentative eutectic compositions of these systems are presented in Table 1.

Table 1. Eutectic compositions of ternary systems involving calcium salts only at different temperatures.

System	T/K	Eutectic co	Reference	
		mass	%	
(1) (2)		(1)	(2)	
$Ca(ClO_4)_2 - Ca(NO_3)_2 - H_2O$	298	45.23	30.89	12
$Ca(ClO_4)_2$ -Ca(NO ₃) ₂ -H ₂ O	298	44.64	30.89	13
$Ca(ClO_4)_2 - Ca(NO_3)_2 - H_2O$	323	33.48	47.60	14
$Ca(ClO_4)_2$ -CaCrO_4-H ₂ O	298	65.14	0.10	15
$Ca(ClO_4)_2$ -CaCrO ₄ -H ₂ O	313	66.90	0.02	16
$Ca(ClO_4)_2$ -CaCl ₂ -H ₂ O	313	54.40	14	18

1		
	COMPONENTS:	EVALUATOR:
	(1) Calcium perchlorate; Ca(ClO ₄) ₂ ;	I.N. Lepeshkov and N.A. Kozyreva
	[13477-36-6]	
	(2) Water; H ₂ O; [7732-18-5]	Institute of General and
		Inorganic Chemistry,
		USSR Academy of Sciences

Systems involving alkali metal and ammonium perchlorates :

Calcium perchlorate does not form new phases with $LiClO_4$ at 298K and at the eutectic point (mass %: 48.35 $Ca(ClO_4)_2$, 8.89 $LiClO_4$) $LiClO_4.3H_2O$ and $Ca(ClO_4)_2.4H_2O$ crystallize (20). Three crystallization fields were found for the system $Ca(ClO_4)_2$ -NaClO₄-H₂O at 313K (18). The solid phases were $Ca(ClO_4)_2.4H_2O$, NaClO₄ and NaClO₄.H₂O. The eutectic composition, in mass %, was 65.10 Ca(ClO₄)₂ and 6.13 MaClO₄. Calcium perchlorate was found to have a stronger salting-out effect on sodium perchlorate (21) than lithium perchlorate.

Systems involving alkaline earth metal perchlorates:

The eutectic composition for the system $Ca(ClO_4)_2$ -Mg(ClO_4)₂-H₂O at 298K was reported (22) to be, in terms of mass %, 63.52% $Ca(ClO_4)_2$ and 1.35% Mg(ClO_4)₂, where $Ca(ClO_4)_2$.4H₂O and Mg(ClO_4)₂.6H₂O formed the solid phases in equilibrium.

Systems involving perchlorates of lanthanides:

The systems involving $Ce(ClO_4)_3$, $Sm(ClO_4)_3$ and $Tb(ClO_4)_3$ form eutectic mixtures at 298K where $Ca(ClO_4)_2.4H_2O$ crystallized out in equilibrium with the nanohydrates of the corresponding lanthanide perchlorate. The tentative eutectic compositions for these systems at 298K are given in Table 2.

Table2 Eutectic compositions of ternary systems involving lanthanides at 298K.

System	Eutectic d	Reference	
	mass	s %	
(1) (2)	(1)	(2)	
$Ca(ClO_4)_2$ -Ce(ClO_4)_3-H ₂ O	24.20	43.07	(23)
$Ca(ClO_4)_2 - Sm(ClO_4)_3 - H_2O$	23.94	43.28	(24)
$Ca(ClO_4)_2$ -Tb(ClO_4)_3-H ₂ O	20.42	43.40	(25)

COMPONENTS:	EVALUATOR:
(1) Calcium perchlorate; Ca(ClO ₄) ₂ ; [13477-36-6]	I.N. Lepeshkov and N.A. Kozyreva
(2) Water; H ₂ O; [7732-18-5]	Institute of General and Inorganic Chemistry, USSR Academy of Sciences

QUATERNARY SYSTEMS

The formation of $Mg(ClO_4)_2.4CS(NH_2)_2.6H_2O$ in the system $Ca(ClO_4)_2-Mg(ClO_4)_2-CS(NH_2)_2-H_2O$ at 298K was reported (26). There were more complex compounds formed in the $Ca(ClO_4)_2-LiClO_4-C_6H_{12}N_4-H_2O$ system (27), viz. $LiClO_4.2C_6H_{12}N_4.4H_2O$, $LiClO_4.C_6H_{12}N_4.3H_2O$, $Ca(ClO_4)_2.4C_6H_{12}N_4$. $6H_2O$ and $Ca(ClO_4)_2.2C_6H_{12}N_4.6H_2O$, as solid phases. Complex compounds containing more hexamethylenetetramine molecules per molecule of mineral salt were reported to be more readily soluble.

From the study of the quaternary reciprocal salt system $2NH_4^+$, Ca^{2+} || $2ClO_4^-$, CrO_4^{2-} -H₂O at 313K, the following crystallization fields were identified (17) : $CaCrO_4$.H₂O, NH_4ClO_4 , NH_4ClO_4 .(NH_4)₂CrO₄, (NH_4)₂CrO₄, and $2(NH_4)_2CrO_4$.

For the system $2NH_4^+$, $Ca^{2+} \mid \mid 2ClO_4^-$, $2NO_3^- -H_2O$ at 298K, the equilibrium of the exchange reaction (13),

 $Ca(ClO_4)_2 + 2NH_4NO_3 \Rightarrow Ca(NO_3)_2 + 2NH_4ClO_4$

is strongly shifted to the right. The formation of the following compounds, $NH_4NO_3.5Ca(NO_3)_2.10H_2O$ and $NH_4NO_3.Ca(NO_3)_2.3H_2O$ have also been reported (13).

REFERENCES

 Willard, H.H.; Smith, G.F. J. Am. Chem. Soc. <u>1923</u>, 45, 286.
 Lilich, L.S.; Mogilev, M.E. Zh. Obshchei Khim. <u>1956</u>, 26, 312.
 Lilich, L.S.; Dzhurinskii, B.F. Zh. Obshchei Khim. <u>1956</u>, 26, 1549.
 Sakk, Zh.G.; Rosolovskii, V.Ya. Zh. Neorg. Khim. <u>1972</u>, 17, 1783.
 Lilich, L.S.; Kurbanova, Z.I.; Chernykh, L.V. Zh. Neorg. Khim. <u>1972</u>, 17, 812.
 Lilich, L.S.; Chernykh, L.V., Shalygin, V.M. Zh. Neorg. Khim. <u>1963</u>, 8, 2773.
 Zakharova, V.P.; Runov, N.N. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1970</u>, 78, 107.

COMPO	ONENTS:	EVALUATOR:
(1)	Calcium perchlorate; Ca(ClO ₄) ₂ ; [13477-36-6]	I.N. Lepeshkov and N.A. Kozyreva
(2)	Water; H ₂ O; [7732-18-5]	Institute of General and
		Inorganic Chemistry,
		USSR Academy of Sciences.
CRIT	ICAL EVALUATION: (continued)	
8.	Karnaukhov, A.S.; Vasil'eva, S.I.;	Rylenkova, I.N. Uch. Zap. Yarosl.
9.	Gos. Ped. Inst. <u>1978</u> , 169, 22. Vasil'eva, S.I., Rylenkova, I.N.	Fiz. Khim. Issled Neord Ord
5.	Soed. <u>1979</u> , 7.	112, MIM, 199164, Neolg, Olg.
10.	Zakharova, V.P.; Runov, N.N. Uch 1973, 120, 89.	. Zap. Yarosl. Gos. Ped. Inst.
11.	Karnaukhov, A.S.; Kosheleva, N.I. Inst. <u>1975</u> , 135, 60.	Uch. Zap. Yarosl. Gos. Ped.
12.	Vasil'eva, S.I.; Karnaukhov, A.S.	Uch. Zap. Yarosl. Gos. Ped.
13.	Inst. <u>1972</u> , 103, 7. Vasil'eva, S.I.; Lepeshkov, I.N.	Zh. Neorg. Khim. 1973. 18. 819.
	Vasil'eva, S.I.; Rylenkova, I.N.	
	Soed. <u>1976</u> , 23.	
15.	Karnaukhov, A.S.; Orekhov, O.L.	Uch. Zap. Yarosl. Gos. Ped. Inst.
	<u>1969</u> , <i>66</i> , 72; <u>1970</u> , <i>78</i> , 3.	
16.	Lepeshkov, I.N.; Vasil'eva, S.I. <u>1970</u> , <i>78</i> , 74.	Uch. Zap. Yarosl. Gos. Ped. Inst.
17.	Karnaukhov, A.S.; Vasil'eva, S.I.	Zh. Neorg. Khim. 1970, 15, 2499.
	Ivanov, S.A. Uch. Zap. Yarosl. Go.	
	Latysheva, V.A.; Andreeva, I.N. Z	
20.	Ivanov, S.A. Uch. Zap. Yarosl. Go.	s. Ped. Inst. <u>1971</u> , 95, 11.
21.	Lilich, L.S.; Ovtrakht, N.V. Vest	n. LGU, Ser. Fiz. Khim. <u>1965</u> ,
	10, 115.	
22.	Runov, N.N.; Zakharova, V.P. Uch. 1970, 79, 120.	Zap. Yarosl. Gos. Ped. Inst.
23.	Rybina, T.V.; Druzhinina, G.V. Uc.	h. Zap. Yarosl. Gos. Ped. Inst.
	<u>1977</u> , <i>164</i> , 74.	
24.	Guseva, A.D. Uch. Zap. Yarosl. Go.	s. Ped. Inst. <u>1980</u> , 1 <i>85</i> , 3.
25.	Komissarova, V.I.; Andronova, N.P. <u>1978</u> , <i>169</i> , 18.	Uch. Zap. Yarosl. Gos. Ped. Inst.
26.	Zakharova, V.P. Uch. Zap. Yarosl.	Gos. Ped. Inst. <u>1971</u> , 95, 98.
27.	Kosheleva, N.I. Uch. Zap. Yarosl.	

COMPONENTS:	EVALUATOR:
<pre>(1) Calcium perchlorate; Ca(ClO₄)₂;</pre>	C.Y. Chan
[13477-36-6]	
(2) Water; H ₂ O; [7732-18-5]	Department of Chemistry
	University of Malaya
	Kuala Lumpur, Malaysia
	January, 1988

CRITICAL EVALUATION:

Solubility of calcium perchlorate in water

Table 1 summarizes values of the solubility of $Ca(ClO_4)_2$ in water in mass % as reported by various research groups. Only two groups (1,17) gave an indication of the precision of their solubility analyses, in both cases about $\pm 0.05\%$ of the soly value. All reported that the solid phase in equilibrium with saturated solution was $Ca(ClO_4)_2.4H_2O$.

Table 1.	Data	for the	solubility	r of	Ca(C]	$10_4)_2$	in v	vater
	from	various	sources.	In	each	case	the	reported
	soli	d phase	was Ca(ClO ₄	1)2.1	4H ₂ 0	[1562	27-86	6-8].

mass % Ca(ClO₄

т	1	ĸ

	Source
) ₂	

298.15	65.35	Willard and Smith (1)
298	65.40	Lilich and Ovtrakht (2)
	65.20	Karnaukhov and Orekhov (3)
11	65.38	Zakharova and Runov (4)
**	65.34	•
†1	65.50	Ivanov (6)
**	65.46	Vasil'eva and Karnaukhov (7)
	65.46	Vasil'eva and Lepeshkov (8)
11	65.50	Karnaukhov and Kosheleva (9)
**	65.57	Rybina and Druzhinina (10)
	65.64	Karnaukhov et al (11)
000 15		· · · · · ·
298.15	66.16	• • • •
298	65.90	Komissarova and Andronova (13)
**	65.77	Guseva (14)
313	68.40	Ivanov (15)
	68.48	Lepeshkov and Vasil'eva (16)
11	68.48	Lilich and Kurbanova (17)
313.15	67.97	Lilich and Dzhurinsky (12)
010110	01101	Dirion and Dindrinony (10)
323.15	69.42	Lilich and Dzhurinsky (12)
323	68.51	Lilich and Kurbanova (17)
11	69.96	Vasil'eva and Rylenkova (18)
273.15	62.67	Lilich and Kurbanova (17)
"	62.92	Lilich and Dzhurinsky (12)
	02.02	arrive and panutinony (14)

Data from ref.(1-11) gave a mean mass % value of 65.44 for the solubility of calcium perchlorate in water at 298K with a standard deviation of

COMPONENTS:	EVALUATOR:
<pre>(1) Calcium perchlorate; Ca(ClO₄)₂; [13477-36-6]</pre>	C.Y. Chan
(2) Water; H ₂ O; [7732-18-5]	Department of Chemistry University of Malaya Kuala Lumpur, Malaysia
	January, 1988

0.12%, and these include Willard and Smith's value which appears to be the most precise of those listed in Table 1. The data from ref.(12-14) are rejected based on the usual statistical analysis grounds. The mean soly value at 313K is $68.45\% \text{ Ca(ClO}_4)_2$ with a std. dev. of 0.04%, the value from ref.(12) being somewhat lower than the others (15-17) and has been rejected. For 323K (12,17,18), the mean mass % soly value is 69.30% $\text{Ca(ClO}_4)_2$ with a std. dev. of 0.73%. The mean of the two reported values (12,17) at 273.15K is 62.80%.

Based on the treatment described in the INTRODUCTION to this volume and used in previous evaluations of soly data of the other alkaline earth perchlorates, Lilich and Dzhurinsky's data for the temperature range 273 - 323K are combined with the data as given in Table 1 to obtain the best-fit equations, Eq.(1) with solubility in terms of mol fraction x and Eq.(2) with solubility in terms of molality m. Recommended and tentative smoothed values of the solubilities of calcium perchlorate in water at selected temperatures, calculated using these equations, are presented in Table 2.

$$F(x) = 1609.5 (T/K)^{-1} + 7.000 \ln(T/K) - 53.604$$
(1)

where $F(x) = \ln[x^{\nu}(1-x)^n/(1+(\nu-1)x)^{n+\nu}]$, $\nu = 3$ and n = 4. The regression coefficient obtained in the the multilinear regression analysis is 0.985 and the average percentage difference between calculated and observed values is 1.1%.

$$F(m) = 535.5 (T/K) + 2.3298 \ln(T/K) - 13.829$$
(2)

where $F(m) = \ln m - (1 + n/v)\ln(vmM_W + 1)$, $M_W = molar mass of water.$ The regression coefficient is also 0.985 and the average percentage difference between calculated and observed values is 1.2%.

COMPONENTS:	EVALUATOR:
<pre>(1) Calcium perchlorate; Ca(ClO₄)₂; [13477-36-6]</pre>	C.Y. Chan
(2) Water; H ₂ O; [7732-18-5]	Department of Chemistry University of Malaya Kuala Lumpur, Malaysia
	January, 1988

Table 2. Recommended and tentative smoothed solubility data for calcium perchlorate in water at selected temperatures. Solid phase is $Ca(ClO_4)_2.4H_2O$.

t/°C	T/K	Soly/mol %	Soly/mol kg ⁻¹	Status
0.00	273.15	11.33	7.094	tentative
5.00	278.15	11.54	7.238	**
10.00	283.15	11.76	7.401	**
15.00	288.15	12.02	7.583	**
20.00	293.15	12.30	7.787	11
25.00	298.15	12.49	7.922	recommended
30.00	303.15	12.98	8.276	tentative
35.00	308.15	13.38	8.571	** .
40.00	313.15	13.83	8.909	"
45.00	318.15	14.36	9.306	**
50.00	323.15	14.98	9.782	"

REFERENCES :

- 1. Willard, H.H.; Smith, G.F. J. Am. Chem. Soc. <u>1923</u>, 45, 286.
- Lilich, L.S.; Ovtrakht, N.V. Vestn. LGU, Ser. Fiz. Khim. <u>1965</u>, 10(2), 115.
- Karnaukhov, A.S.; Orekhov, O.L. Uch. Zap. Yarosl. Gos. Ped. Inst. 1969, 66, 72; 1970, 78, 3.
- 4. Zakharova, V.P.; Runov, N.N. Uch. Zap. Yarosl. Gos. Ped. Inst. 1970, 78, 107.
- Runov, N.N.; Zakharova, V.P. Sb. Tr. Yarosl. Gos. Ped. Inst. <u>1970</u>, 79, 120; Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1973</u>, 120, 89.
- 6. Ivanov, S.A. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1971</u>, 95, 11.
- 7. Vasil'eva, S.I.; Karnaukhov, A.S. Uch. Zap. Yarosl. Gos. Ped. Inst. 1972, 103, 7.

117

COMPONENTS:	EVALUATOR:
	C.Y. Chan
<pre>(1) Calcium perchlorate; Ca(ClO₄)₂; [13477-36-6]</pre>	C.I. Chan
(2) Water; H ₂ O; [7732-18-5]	Department of Chemistry
	University of Malaya
	Kuala Lumpur, Malaysia
	January, 1988
CRITICAL EVALUATION: (continued)	
8. Vasil'eva, S.I.; Lepeshkov, I.N. <i>(Engl. Transl.) <u>1973</u>, 18</i> , 429.	Russ. J. Inorg. Chem.
9. Karnaukhov, A.S.; Kosheleva, N.I.	Uch. Zap. Yarosl. Gos. Ped. Inst.
<u>1975</u> , <i>135</i> , 60.	
10. Rybina, T.V.; Druzhinina, G.V. Uo 1977, 169, 22.	ch. Zap. Yarosl. Gos. Ped. Inst.
11. Karnaukhov, A.S.; Vasil'eva, S.I.;	; Rylenkova, I.N.
Uch. Zap. Yarosl. Gos. Ped. Inst.	
12. Lilich, L.S.; Dzhurinsky, B.F.	Zhur. Obshchei Khim. <u>1956</u> , 26, 1549;
J. Gen. Chem. USSR (Engl. Transl.) <u>1956</u> , <i>26</i> , 1733.
13. Komissarova, V.I.; Andronova, N.P. <u>1978</u> , 169, 18.	. Uch. Zap. Yarosl. Gos. Ped. Inst.
14. Guseva, A.D. Uch. Zap. Yarosl. Go	os. Ped. Inst. <u>1980</u> , 185, 3.
15. Ivanov, S.A. Uch. Zap. Yarosl. Go	os. Ped. Inst. <u>1969</u> , 66, 82.
16. Lepeshkov, I.V.; Vasil'eva, S.I. <u>1970</u> , 78, 74.	Uch. Zap. Yarosl. Gos. Ped. Inst.
17. Lilich, L.S.; Kurbanova, Z.I. Zh.	. Neorg. Khim. <u>1972</u> , 17, 812;
Russ. J. Inorg. Chem. (Engl. Trans	sl.) <u>1972</u> , 17, 424.
18. Vasil'eva, S.I.; Rylenkova, I.N.	
Neorg. Org. Soyed. Smol. <u>1976</u> , 23	

COMPONENTS: (1) Calcium perchlorate; Ca(ClO ₄) ₂ ; [17477-36-6]	ORIGINAL MEASUREMENTS: Lilich, L.S.; Dzhurinsky, B.F.		
(2) Water; H ₂ O; [7732-18-5]	Zhur. Obshchei Khim. <u>1956</u> , 26, 1549–53; *J. Gen. Chem. USSR (Engl. Transl.) <u>1956</u> , 26, 1733–7.		
VARIABLES: Temperature: 273 - 323 K	PREPARED BY: C.Y. Chan		

EXPERIMENTAL VALUES:

Solubility^a of calcium perchlorate in water at various temperatures :

t/°C :	0	5	10	15	20	25	30
$s/ mol kg^{-1}$:	7.10	7.29	7.51	7.67	7.91	8.18	8.46
mol% ^b :	11.34	11.61	11.92	12.14	12.47	12.84	13.23
t/ ^o C :	35	40	45	50			
$s/ mol kg^{-1}$:	8.76	8.88	9.29	9.50			
mol % ^b :	13.63	13.79	14.34	14.61			
^a Solid phas	se/phases	not spec	ified.	b C	ompiler's	calculat	ions.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The solid perchlorate, presumably hydrated (compiler), was stirred continuously with water in the soly apparatus (sketch given in original paper) in a Hoppler ultra-thermostat. Solution samples were suction-filtered and forced into small weighed glass containers with the help of a rubber bulb-and-tube arrangement. Samples were analysed for Ca by the sulfate method (ref.1). The time required for attainment of equilibrium was 1-4h, determined by successive withdrawal of samples at various time interval for analysis. Solid samples were withdrawn with a glass sieve and pressed with filter paper between metal plates heated or cooled to approx. the temp. of determination. The weighed samples were then analysed for Ca.

SOURCE AND PURITY OF MATERIALS: (1) was prepared by saturating perchloric acid with analytically pure grade calcium oxide, followed by 2-3 recrystallizations from solution. Purity of the acid and sources of chemicals not given.

ESTIMATED ERROR: Not available.

REFERENCES:

 Kolthoff, I.M.; Lundell, E.V. *Quantitative Analysis* (State Chemical Press <u>1948</u>), 772.

COMPONENTS:			ORIGINAL MEASUREMENTS:		
(1) Calcium perchlorate; Ca(ClO ₄) ₂ ; [17477-36-6]		Willard, H.H.; Smith, G.F.			
(2) Water; H ₂ O; [7732-18-5]			J. Am. Chem. Soc. <u>1923</u> , 45, 286-96.		
VARIABLES: One temperature: 298.15 K			PREPARED BY: C.Y. Chan		
EXPERIMENTAL VAL	JUES :			. <u></u>	
Solubility ^a of	calcium perc	chlorate in	n water at 25.	00°C :	
mass % g/100	cm ³ sln.	mol% i	nol dm ⁻³ mo		sat. sln. density/g cm ⁻³
65.35 112.	34	12.45 ^b	1.701 ^b 7.	892 ^b	1.7191
~ Compiler's ca	lculations.				
~ Compiler's ca					
	Al S/PROCEDURE: the salt was re slightly at other with abo salt in a s 18-20 cm ³ . ed end-over-er	pove 25 ⁰ C put 1 g of solubility This tube nd in the	SOURCE AND P Hydrated (1 twice-recry nitrate and (ref.1). A) was p vstallize l purif: anhyd. () the hyd	repared from ed calcium
METHOD/APPARATUS A sat. sln. of at a temperatur and sealed toge the anhydrous s tube, capacity was then rotate thermostat bath	At S/PROCEDURE: the salt was re slightly at ether with above salt in a so $18-20 \text{ cm}^3$. red end-over-er at 25.00°C for restically to the sample at were then	s prepared pove 25 ^o C put 1 g of solubility This tube ad in the for 24-48h allow the es of the analysed	SOURCE AND P Hydrated (1 twice-recry nitrate and (ref.1). A by heating wt. at 250° ESTIMATED ER Precision i	a) was p vstallized purif: Anhyd. (2) the hydr C. ROR: an temp.	repared from ed calcium ied HClO ₄ 1) obtained

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Calcium perchlorate; Ca(ClO ₄) ₂ ;	Titova, K.V.; Kolmakova, E.I.;	
[13477-36-6]	Rosolovskii, V.Ya.	
(2) Hydogen peroxide; H ₂ O ₂ ;		
[7722-84-1]	Zh. Neorg. Khim. <u>1986</u> , 31,	
	3213-5; *Russ. J. Inorg. Chem.	
	(Engl. Transl.) <u>1986</u> , 31,	
	1846-7.	
VARIABLES:	PREPARED BY:	
One temperature: 273 K	C.Y. Chan	

EXPERIMENTAL VALUES:

The solubility^a of calcium perchlorate in hydrogen peroxide at $0^{\circ}C$:

g(1)/ 100 g(2)	mass %	mol %	molality/ mol kg ⁻¹
97.7	49.42	12.21	4.088

^a Mass %, mol % and molality values calculated by compiler.

The solid phase was reported as $Ca(ClO_4)_2.2H_2O_2$. Analysis gave the following mass % values : Ca 12.7%, ClO_4 63.3% and H_2O_2 21.3%. The corresponding theoretical values are Ca 13.05%, ClO_4 64.79% and H_2O_2 22.15% for the solid $Ca(ClO_4)_2.2H_2O_2$.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

No details of saturation method were given. Solubility equilibrium was established in 1-1.5 h. The concentration of the solutions did not change noticeably during the next 3h but after that slow decomposition of peroxide began. The concentrations of perchlorate in the sat. solutions were determined by gravimetric analysis using nitron as the agent for precipitation. H_2O_2 was analysed by permanganate titration. SOURCE AND PURITY OF MATERIALS: The anhydrous perchlorate was prepared by heating the hydrate in vacuum (source not given). Samples that showed no water I.R. absorption bands in the range $1620-1635 \text{ cm}^{-1}$ were used. The H₂O₂ was 99.8% \pm 0.2% pure.

ESTIMATED ERROR: Not stated.

REFERENCES:

· · ·			· · · · · · · · · · · · · · · · · · ·		
COMPONENTS:			ORIGINAL MI	EASUREMENTS:	
 (1) Calcium perchlorate; Ca(ClO₄)₂; [13477-36-6] (2) Alcohols: (A) Methanol (methyl alcohol); 			Willard, H.H.; Smith, G.F.		
			J. Am. Ch	em. Soc. <u>19</u>	<u>23</u> , 45,
			286-96.		
сн ₄ 0; [6	37-56-1]				
(B) Ethanol	(ethyl alco	ohol);			
с ₂ н ₆ о; [64-17-5]				
(C) 1-Propanol $(n-propyl alcohol);$ C ₃ H ₈ O; [71-23-8]					
C ₄ H ₁₀ O;	[71-36-3]				
(E) 2-Methyl	-1-propanol	l (<i>iso-</i>			
	cohol); C ₄ H	4 ₁₀ 0;			
[78-83-1	.]				
VARIABLES:	<u></u>		PREPARED BY	ζ:	
One temperature:	298.15 K		C.Y. Chan		
• · · · · · · · · · · · · · · · · · · ·					
the solid phase soly in :	being the a methanol			1-butanol	2-methyl-
					1-propanol
mass %	70.36	62.44	59.17	53.17	36.29
g/100 cm ³ sln.	113.68	89.551	81.690	68.419	39.567
mol % ^a	24.14	24.27	26.71	26.04	15.01
mol dm ^{-3 a}	4.758	3.747	3.418	2.863	1.656
mol kg ⁻¹ a	9.933	6.956	6.064	4.751	2.384
^a Compiler's cal	culations.				
		AUXILIARY IN	FORMATION		
METHOD/APPARATUS/	PROCEDURE:	анария на кара, _{стра}	SOURCE AND	PURITY OF M	ATERIALS:
A sat. sln. of the salt was prepared at a temperature slightly above 25 ⁰ C			Hydrated (1) was prepared from twice-recrystallized calcium ni-		
the anhydrous sa					
tube, capacity 1	$8-20 \text{ cm}^3$.	This tube			
was then rotated					
thermostat bath	at 25.00°C	for 24-48h	tillation	after reflu	xing with Ca.
				(continu	ed next page)
1					

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Calcium perchlorate; Ca(ClO ₄) ₂ ;	Willard, H.H.; Smith, G.F.
[13477-36-6]	
(2) Alcohols:	J. Am. Chem. Soc. <u>1923</u> , 45,
(A) Methanol (methyl alcohol);	286-96.
CH ₄ O; [67-56-1]	
(B) Ethanol (ethyl alcohol);	
C ₂ H ₆ O; [64-17-5]	
(C) 1-Propanol (n-propyl alcohol);	
C ₃ H ₈ O; [71-23-8]	
(D) 1-Butanol (<i>n-butyl alcohol</i>);	
C ₄ H ₁₀ O; [71-36-3]	
(E) 2-Methyl-1-propanol (iso-	
butyl alcohol); C ₄ H ₁₀ O;	
[78-83-1]	

EXPERIMENTAL VALUES: (continued)

•

	methanol	ethanol	1-propanol	1-butanol	2-methyl- 1-propanol
					·····
sat. sln. density/g cm ⁻³	1.6155	1.4342	1.3806	1.2868	1.0903
pure solvent density/g cm ⁻³	0.78705	0.78515	0.7989	0.8059	0.7981

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:(continued)	ESTIMATED ERROR:
and stood vertically to allow the	Precision in temp. was $\pm 0.01^{\circ}$ C.
solids to settle. Samples of the	soly precision probably about
clear sat. sln. were then analysed	<u>+</u> 0.1% (compiler).
for solute content by an evaporation-	
to-dryness method using Pt crucibles.	
The salt was dried to constant wt. at	
250°C in a current of air dried with	REFERENCES:
P ₂ O ₅ . Duplicate soly determinations	1. Willard, H.H. J. Am. Chem.
were made, those analyses in which	Soc. <u>1912</u> , <i>34</i> , 1480.
chloride (from thermal decomposition)	
was found present being rejected.	

Calcium Perchiorate				
COMPONENTS: (1) Calcium perchlorate; Ca(ClO ₄) ₂ ; [13450-97-0] (2) Acetone; C ₃ H ₆ O; [67-64-1]	ORIGINAL MEASUREMENTS: Willard, H.H.; Smith, G.F. J. Am. Chem. Soc. <u>1923</u> , 45, 286-96.			
VARIABLES: One temperature: 298.15 K	PREPARED BY: C.Y. Chan			
EXPERIMENTAL VALUES: Solubility ^a of calcium perchlorate in	acetone at 25.00 [°] C :			
mass % g/100 cm ³ sln. mol % m	ol dm ⁻³ mol kg ⁻¹ sat. sln. density/g cm ⁻³			
38.18 43.812 13.05 ^b 1	.833 ^b 2.584 ^b 1.1475			
AUXILIARY IN	FORMATION			
METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the solids to settle. Samples of the clear sat. sln. were then analysed for solute content by an evaporation- to-dryness method using Pt crucibles. The salt was dried to constant wt. at 250°C in a current of air dried with	twice-recrystallized calcium			
P_2O_5 . Duplicate soly determinations were made, those analyses in which	Precision in temp. was \pm 0.01 ^O C . Soly precision probably about			

Components:	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium perchlorate; Ca(ClO₄)₂; [13450-97-0]</pre>	Willard, H.H.; Smith, G.F.
(2) 1,1'-oxybis-ethane (<i>diethyl</i> <i>ether</i>); C ₄ H ₁₀ O; [60-29-7]	J. Am. Chem. Soc. <u>1923</u> , 45, 286-96.
VARIABLES: One temperature: 298.15 K	PREPARED BY: C.Y. Chan
EXPERIMENTAL VALUES:	
Solubility ^a of calcium perchlorate in	diethyl ether at 25.00°C :
mass % g/100 cm ³ sln. mol % m	ol dm ⁻³ mol kg ⁻¹ sat. sln. density/g cm ⁻³
0.26 0.1846 0.081 ^b 0	.00772 ^b 0.0109 ^b 0.7098
^b Compiler's calculations.	
AUXILIARY INF	ORMATION
METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the solids to settle. Samples of the clear sat. sln. were then analysed for solute content by an evaporation- to-dryness method using Pt crucibles. The salt was dried to constant wt. at	
250° C in a current of air dried with P_2O_5 . Duplicate soly determinations were made, those analyses in which	
chloride (from thermal decomposition) was found present being rejected.	REFERENCES: 1. Willard, H.H. <i>J. Am. Chem.</i> <i>Soc.</i> <u>1912</u> , <i>34</i> , 1480.

COMPONENTS: (1) Calcium perchlorate; Ca(ClO ₄) ₂ ; [13450-97-0]	ORIGINAL MEASUREMENTS: Sakk, Zh.G.; Rosolovskii, V.Ya.
(2) Hydrazine; N ₂ H ₄ ; [302-01-2]	Zh. Neorg. Khim. <u>1972</u> , 17, 1783-4; *Russ. J. Inorg. Chem. (Engl. Transl.) <u>1972</u> , 17, 927-8.
VARIABLES: One temperature: 298.2 K	PREPARED BY: C.Y. Chan

The solubility of calcium perchlorate in hydrazine at 25.0° C was reported as 86.8 g(1)/100 g(2). The corresponding mol % and molality values calculated by the compiler are 10.43% and 3.630 mol kg⁻¹, respectively. The solid phase was presumably the anhydrous salt, (compiler).

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

4-6 g of the salt and 8-11 cm³ of hydrazine were thermostated at 25°C for 7-8 h with continuous stirring in a vessel isolated from atmospheric moisture. Samples for analysis were removed by drawing solution and part of the solid phase into a vessel fitted with a porosity no.4 filter at reduced pressure. After separating the phases, the solution was analysed for hydrazine. Methods of analysis not given. Replicate soly determinations were made. SOURCE AND PURITY OF MATERIALS: The methods of purification of the perchlorate and of preparation of hydrazine were as described in ref.1. Salt purity was about 99.5 - 99.9%.

ESTIMATED ERROR:

Precision in temp. was $\pm 0.01^{\circ}$ C; Absolute error in soly value was 0.4% .

REFERENCES:

 Rosolovskii, V.Ya.; Sakk, Zh.G. Zh. Neorg. Khim. <u>1970</u>, 15, 2262 .

COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Calcium perchlorate; $Ca(ClO_4)_2$;	Lilich, L.S.; Kurbanova, Z.I.;			
[13477-36-6]	Chernykh, L.V.			
<pre>(2) Perchloric acid; HClO₄;</pre>	Zh. Neorg. Khim. <u>1972</u> , 17, 812-16;			
[7601-90-3]	*Russ. J. Inorg. Chem. (Engl.			
(3) Water; H ₂ O; [7732-18-5]	Transl.) <u>1972</u> , 17, 424-6.			
VARIABLES: Temperatures: 273.0 and 323.0 K Composition	PREPARED BY: C.C. Ho			

1

Solubility in the system $Ca(ClO_4)_2$ -HClO₄-H₂O at 0.0^oC :

	0/		a a		y ^a /mol kg ⁻¹	-
mas	S 76	mor	% ^a	molalit	y /moi kg	phase
(1)	(2)	(1)	(2)	(1)	(2)	
52.67	-	11.23	-	7.025	-	$Ca(ClO_4)_2.4H_2O$
57.89	5.25	10.35	2.233	6.572	1.418	**
18.50	13.18	8.246	5.331	5.296	3.424	
35.61	25.38	5.805	9.842	3.820	6.476	19
23.93	36.67	3,776	13.76	2.541	9.265	**
16.75	44.60	2.635	16.69	1.813	11.49	**
0.05	52.35	1.587	19.66	1.118	13.86	**
6.80	59.02	1.132	23.38	0.832	17.19	**
7.73	60.60	1.351	25.20	1.021	19.05	"
6.52	56.54	3.249	26.46	2.566	20.89	17
21.11	52.83	4.286	25.52	3.390	20.18	**
26.23	49.07	5.574	24.80	4.444	19.78	**

^a Compiler's calculation.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The solubility was measured by the isothermal saturation method. Equilibrium was reached after 8-10h. Ca²⁺ in the liquid and solid phases was determined by titration with a soln of Trilon B using Erichrome Black as indicator, $HClO_4$ by titrating H^+ with borax soln against methyl red as indicator. The composition of the solid phase was found by Schreinemakers' method.

SOURCE AND PURITY OF MATERIALS: "Chemically pure" grade of perchloric acid and "pure" grade of calcium carbonate were used to prepare the perchlorate which was recrystallized three times before use.

ESTIMATED ERROR: Temp.: precision ± 0.1 °C at 0° and 50°C Analyses: relative error ± 0.05 %

REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Calcium perchlorate; Ca(ClO ₄) ₂ ;	Lilich, L.S.; Kurbanova, Z.I.;
[13477-36-6]	Chernykh, L.V.
(2) Perchloric acid; HClO ₄ ;	
[7601-90-3]	Zh. Neorg. Khim. <u>1972</u> , 17, 812-16;
(3) Water; H ₂ O; [7732-18-5]	*Russ. J. Inorg. Chem. (Engl. Transl.) <u>1972</u> , 17, 424-6.

Solubility in the system $Ca(ClO_4)_2$ -HClO₄-H₂O at 0.0^oC :

	I	Solid				
mas	s %	mol	% ^a	molalit	y ^a /mol kg ⁻¹	phase
(1)	(2)	(1)	(2)	(1)	(2)	
29.81	46.15	6.502	23.94	5.189	19.11	$Ca(ClO_4)_2.4H_2O$
						+ Ca(ClO ₄) ₂
13.98	61.60	2.886	30.25	2.396	25.11	$Ca(ClO_4)_2$
9.19	65.84	1.849	31.51	1.540	26.25	. 4 2
4.04	71.98	0.819	34.71	0.705	29.88	"
2.31	75.59	0.486	37.83	0.437	34.05	**
-	77.81	-	38.61	-	34.91	19

Solubility in the system $Ca(ClO_4)_2$ -HClO₄-H₂O at 50.0°C :

		Liquid pha	se compo	sition		Solid
mas	s %	mol	% ^a	molality ⁸	/mol kg ⁻¹	phase
(1)	(2)	(1)	(2)	(1)	(2)	
68.51	-	14.09	-	9.104	-	$Ca(ClO_4)_2.4H_2O$
55.61	12.64	10.97	5.933	7.329	3.963	4
51.81	16.34	10.10	7.575	6.807	5.107	**
44.71	23.80	8.614	10.91	5.941	7.523	11
41.20	27.58	7.909	12.59	5.522	8.794	**
40.42	29.75	7.974	13.96	5.670	9.928	**
40.17	31.70	8.219	15.43		11.22	17
44.65	30.08	9.891	15.85	7.394	11.85	11
	28.45	11.06	15.68	8.379	11.88	**
	25.46			8.806	10.56	11
	22.57		13.02	9.946	9.798	"
57.18	20.05	14.05	11.72	10.51	8.765	$Ca(ClO_4)_2.4H_2O$
						+ $Ca(ClO_4)_2$
53.08	25.56	13.36	15.31	10.40	11.91	$Ca(ClO_4)_2$
43.88	25.13	8.524	11.61	5.925	8.072	" 4 2
35.18	43.26	8.295	24.27	6.828	19.97	49
18.15	59.15	3.946	30.59	3.346	25.94	**
10.58	67.37	2.283	34.59		30.41	17
	74.60	0.936	38.46	0.858	35.23	**
3.28	77.69		41.95			"
2.86	80.11		45.45	0.703		11
0.69	85.80	0.180	53.15	0.214	63.22	**

a Compiler's calculations.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Calcium perchlorate; Ca(ClO ₄) ₂ ;	Lilich, L.S.; Chernykh, L.V.
[17477-36-6]	Shalygin, V.M.
<pre>(2) Perchloric acid; HClO₄; [7601-90-3] (3) Water; H₂O; [7732-18-5]</pre>	Zh. Neorg. Khim. <u>1963</u> , 8, 91-4; *Russ. J. Inorg. Chem. (Engl. Transl.) <u>1971</u> ,16, 1453-6.
VARIABLES:	PREPARED BY:
One temperature: 298.15 K	C.Y. Chan

Composition of the solubility system $Ca(ClO_4)_2-HClO_4-H_2O$ at 25.00°C :

Liquid phase composition						Solid phase
mas	s %	mol	% ^a	molality ^a	/ mol kg ⁻¹	
(1)	(2)	(1)	(2)	(1)	(2)	
52.83	3.52	12.139	1.618	7.813	1.041	$Ca(ClO_4)_2.4H_2O$
57.89	8.37	11.019	3.790	7.180	2.469	" T Z Z
52,98	12.90	9.879	5.722	6.497	3.764	**
52,60	13.25	9.793	5.868	6.445	3.862	**
18.68	17.11	8.962	7.493	5.954	4.979	*1
17.45	18.37	8.713	8.025	5.809	5.350	**
12.84	22.44	7.694	9.587	5.163	6.434	**
12.52	22.85	7.644	9.772	5.138	6.568	**
40.50	25.00	7.263		4.912	7.213	**
10.33	25.03		10.64	4.872	7.193	**
37.94	27.54		11.67	4.599	7.942	*1
34.78	30.50		12.78	4.192	8.744	**
13.75	33.83		10.19	1.098	6.424	18
28.90	36.27		14.95	3.472	10.37	
27.81	37.78		15.65	3.382	10.93	81
24.20	41.78		17.29	2.977	12.22	**

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Various mixtures of the three components were vigorously stirred for 4-6h which was the time required for saturation equilibrium, as established from constancy of liquid phase composition. The water thermostat was maintained at $25.00\pm0.01^{\circ}$ C. (2) was analysed by potentiometric titration with borax and Ca with disodium EDTA. The solid phase was determined using Schreinemakers' method. No other details of saturation method and analysis given. SOURCE AND PURITY OF MATERIALS: (1) was obtained by dissolving either calcium carbonate or oxide in perchloric acid, recrystallized and then dehydrated by heating to 250° C in a vacuum (10-15 torr). Anhy. (2) was distilled from KClO₄ and conc. H₂SO₄. 72% (2) was obtained by distilling the 65% acid in a vacuum. Sources of starting materials not given.

ESTIMATED ERROR: Temperature: <u>+</u> 0.01°C

REFERENCES:

COMPONENT	s:			0	ORIGINAL MEASUREMENTS:		
(1) Calcium perchlorate; $Ca(ClO_4)_2$;					Lilich, L.S	5.; Chernykh, L.V.	
[17477-36-6] (2) Perchloric acid; HClO ₄ ;					Shalygin	, V.M.	
	1-90-3]	-	4.		Zh. Neorg.	Khim. <u>1963</u> , 8, 91-4	
(3) Wate		[7732-18	3-51			. Inorg. Chem. (Engl.	
(0)	1,					<u>1971</u> , <i>16</i> , 1453-6.	
	<u></u>						
XPERIMEN							
Composit	ion of t	he solu	oility s	ystem Ca(с10 ₄) ₂ -нс10	D_4-H_2O at 25.00°C :	
	I	iquid pl	nase com	position		Solid phase	
mas	s %	mol	1 % ^a	molalit	y ^a / mol kg	-1	
(1)	(2)	(1)	(2)	(1)	(2)		
33.29	32.16	5.860	13.47	4.032	9.266	$Ca(ClO_4)_2.4H_2O$	
	44.46		18.38		13.11	,, T L	
	45.90 48.79	3.669 3.249 3.121	19.15 20.41		13.77 14.84	"	
	50.19	3.121	21.16	2.288	15.52	4	
17.54	50.83	3.121 3.143 3.196	21.67		16.00 16.42	11 11	
$17.64 \\ 17.73$	51.63	3.241	22.45		16.77	"	
18.35	51.94	3.423 3.454	23.05	2.584	17.40	**	
18.43	52.07 49.92	3.454	23.21		17.57 18.38		
	47.52	4.607 5.666	23.68		18.60	"	
	44.29	7.032 8.374	23.24		18.50	er 11	
36.38 40.56			22.43		17.99 17.85	11	
40.90		10.134		8.389		11	
40.48		9.807	22.09	7.994		$Ca(ClO_4)_2$	
36.67	42.24 42.63	8.795 8.510		7.276	19.94 19.77		
$35.91 \\ 34.48$			24.03	5.997		н	
32.31	46.17	7.556	25,69		21.36	"	
31.06 30.96			26.20 26.03		21.85 21.63		
26.71		6.134		5.191	23.93	"	
22.06	55.79		29.59	4.167	25.07	19	
$13.25 \\ 10.35$	64.92 68.54		33.77 35.96	2.540 2.052	29.60 32.32	"	
9.80	68.39	2.122	35.23	1.880	31.21	"	
7.23 7.00	70.64 71.37		35.84 36.61	$1.367 \\ 1.354$	31.77 32.85	17 11	
5.48	73.64		38.28	1.098	35.11	"	
4.44	74.27	0.958	38.12	0.873	34.73	11	
3.60 2.02	75.96 78.28		39.68 41.42	$0.737 \\ 0.429$	36.99 39.55	"	
2.02	78.28		41.42	0.429	39.63	"	
2.45	77.98		41.44	0.523	39.66	"	
-	79.41 79.12	-	40.88 40.46	-	38.39 37.72	HC104, H20	

^a Compiler's calculations.

Components:	ORIGINAL MEASUREMENTS:
(1) Calcium perchlorate; Ca(ClO ₄) ₂ ;	Lilich, L.S.; Chernykh, L.V.
[17477-36-6]	Shalygin, V.M.
(2) Perchloric acid; HClO ₄ ;	
[7601-90-3]	Zh. Neorg. Khim. <u>1963</u> , 8, 91-4;
(3) Water; H ₂ O; [7732-18-5]	*Russ. J. Inorg. Chem. (Engl.
	Transl.) <u>1971</u> ,16, 1453-6.

COMMENTS AND/OR ADDITIONAL DATA

The solubility isotherm of this system at 25.00° C is given in Figure 1. The results suggest that as the perchloric acid concentration in the solution is increased, the hydrated calcium perchlorate solid phase is dehydrated. The solid phase changes sharply from Ca(ClO₄)₂.4H₂O to the anhydrous salt.

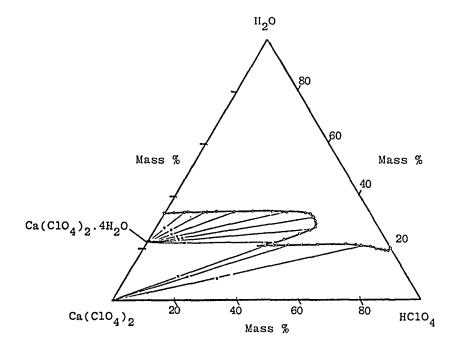
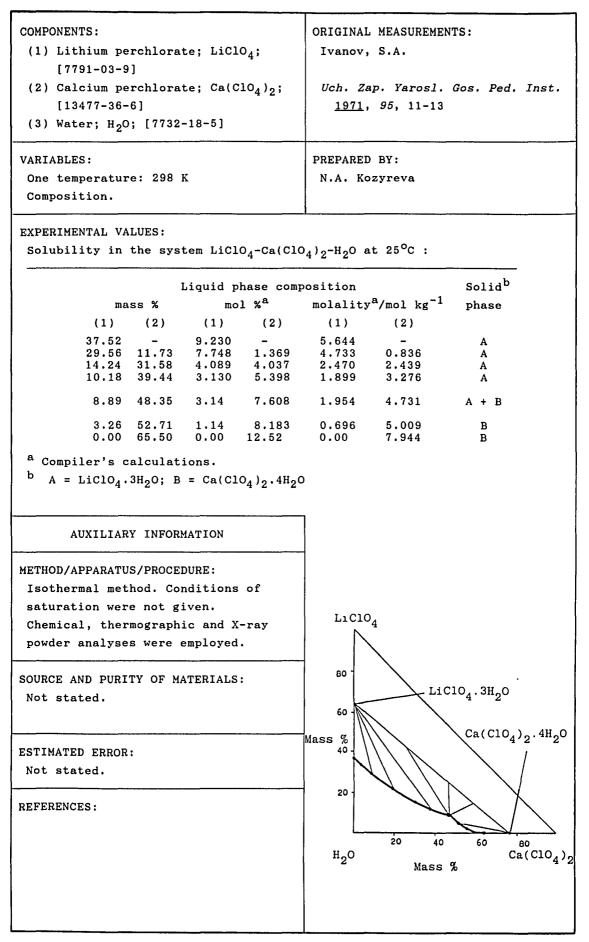
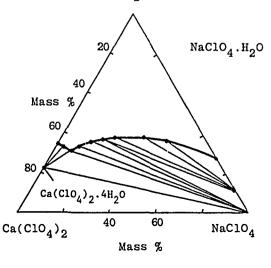



Figure 1. Solubility isotherm of the system $Ca(ClO_4)_2-HClO_4-H_2O$ at 298.15 K.


COMPONENTS: (1) Sodium perchlorate; NaClO ₄ ;	ORIGINAL MEASUREMENTS: Lilich, L.S.; Ovtrakht, N.V.
[7601-89-0] (2) Calcium perchlorate; Ca(ClO ₄) ₂ ; [13477-36-6] (3) Water; H ₂ O; [7732-18-5]	Vestn. LGU, Ser. Fiz. Khim. <u>1965</u> , 10, 115-9.
VARIABLES: One temperature: 298 K Composition.	PREPARED BY: N.A. Kozyreva

Solubility in the system $NaClO_4$ -Ca(ClO₄)₂-H₂O at 25^oC:

mas	55 %	uid phase mol	-		^a /mol kg ⁻	Solid 1 phase
(1)	(2)	(1)		(1)	(2)	-
-	65.40	-	12.47		7.909	$Ca(C10_{1})_{a}, 4H_{2}0$
1.92		0.72		0.462		$Ca(ClO_{4})_{2}.4H_{2}O$
3.28		1.24	12.15	0.792	7.786	11
5.61	61.76	2.17	12.22	1.404	7.920	**
5.82	61.47	2.24	12.13	1.453	7.864	**
5.84	61.47	2.24 2.25	12.14	1,459	7.868	17
6.01	61.26	2.31	12.08	1.500	7.832	*1
6.45	61.16	2.50	12.15	1.626	7.901	NaClO ₄
6.77	60.30	2.59	11.82	1.679	7.662	" 4
9.15	57.59	3.46	11.15	2.247 3.148 3.208	7.245	**
13.50	51.48	4.858	9.491	3.148	6.151	**
13.77	51.17	4.948	9.421	3.208	6.107	
15.71	48.36	5.518	8.703	3.571	5,632	NaClO ₄ .H ₂ O
17.16		5.989			5.415	
	46.90	6.087	8.445	3.954	5.485	**
18.16	45.72	6.326	8.160	4.106	5.297	H
23.13	39.56	7.789	6.825	5.063 7.813	4.437	11
35.68	27.02	11.77	4.568	7.813	3.031	••
44.94	18.59	14.86	3.150	10.06	2.133	"
	11.15		1.922	12.58	1.334	**
67.79	-	23.64	-	17.19	-	
- Compiler	r's calcu	ulations.				н ₂ о
AUX	ILIARY I	NFORMATION	N			\wedge
ETHOD/APPAH	RATUS/PRO	OCEDURE:			20/	NaClO ₄
Isothermal	-		ained in			γ
$3-4h. Clo_{4}^{-}$					40 /	\backslash
· · · · · · · · · · · · · · · · · · ·	has uett	rurued of	,		5 %	\

ion-exchange method using a KU-2 resin; Ca²⁺ by complexometric titration. The composition of the solid phase was determined by Schreinemakers' method of residues.

SOURCE AND PURITY OF MATERIALS: Not stated.

COMPONENTS: (1) Sodium perchlorate; NaClO ₄ ; [7601-89-0]	ORIGINAL MEASUREMENTS: Ivanov, S.A.
<pre>(2) Calcium perchlorate; Ca(ClO₄)₂; [13477-36-6] (3) Water; H₂O; [7732-18-5]</pre>	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1969</u> , 66, 82-95.
VARIABLES: One temperature: 313 K Composition.	PREPARED BY: N.A. Kozyreva

Solubility in the system $NaClO_4$ -Ca(ClO₄)₂-H₂O at 40^oC:

			Liquid ph	ase comp	osition		Solid
	mass	s %	mol	% ^a	molality ⁸	/mol kg ⁻¹	phase
	(1)	(2)	(1)	(2)	(1)	(2)	
	_ 2.50	68.40 67.00		14.03 14.06		9.057 9.192	$Ca(Clo_{4})_{2.4H_{2}O}$
		64.98		14.08			"
	6.40	65.08	2.74	14.28	1.833	9.548	$Ca(ClO_4)_2.4H_2O$
							+ NaClO ₄
	6.23	65.14	2.66	14.25	1.777	9.516	
	5.90	64.90	2.48	13.99	1.650	9.300	** **
	6.10	65.30	2.61	14.30	1.742	9.554	11 11
	6.15	65.20	2.63	14.26	1.753	9.523	NaClO4
	10.30	59.80	4.219	12.55	2.813	8.369	
	13.20	55.90	5.241	11.37	3.489	7.570	**
	15.20	50.04	5.486	9.253	3.571	6.024	"
	20.17	45.70	7.320	8.497	4.827	5.603	**
	23.04	42.20	8.202	7.697	5.413	5.080	**
	29.82	35.00	10.40	6.251	6.923	4.163	**
	36.05	31.71	13.28	5.986	9.132	4.116	"
a	Compiler's	calcul	lations.				

AUXILIARY INFORMATION

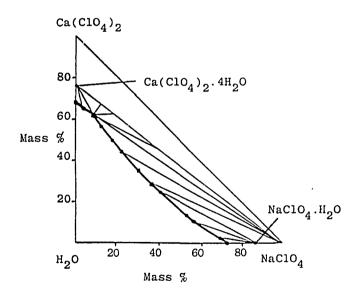
METHOD/APPARATUS/PROCEDURE:

Isothermal method. Solubility equilibria required 3-5 days. The solid phases were studied thermographically. The densities, viscosities and refractive indexes of the saturated solutions were measured. SOURCE AND PURITY OF MATERIALS: Not stated.

ESTIMATED ERROR: Not stated.

REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Sodium perchlorate; NaClO₄; 	Ivanov, S.A.
[7601-89-0]	
(2) Calcium perchlorate; Ca(ClO ₄) ₂ ;	Uch. Zap. Yarosl. Gos. Ped. Inst.
[13477-36-6]	<u>1969</u> , <i>66</i> , 82-95.
(3) Water; H ₂ O; [7732-18-5]	


Solubility in the system $NaClO_4$ -Ca(ClO₄)₂-H₂O at 40^oC:

mas	s %	Liquid ph mol	_		. ^a /mol kg ⁻¹	Solid phase
(1)	(2)	(1)	(2)	(1)	(2)	
$40.60 \\ 47.10 \\ 53.70$	26.70 19.80 14.05	14.68 16.69 19.17	4.947 3.595 2.570	10.14 11.62 13.60	3.417 2.503 1.823	NaClO ₄ .H ₂ O "
59.40	8.90	21.26	1.63	15.30	1.175	**
66.07 70.87	4.14	$24.41 \\ 26.36$	0.78	$18.11 \\ 19.87$	0.582	**

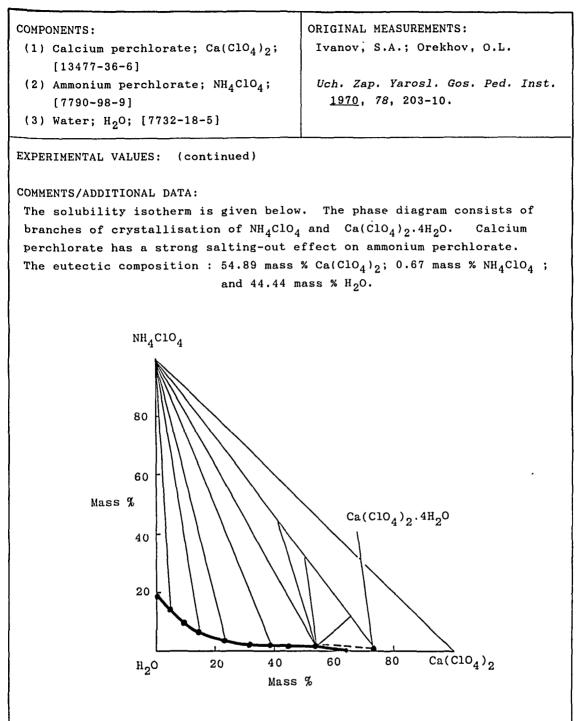
^a Compiler's calculations.

COMMENTS/ADDITIONAL DATA:

The isotherm shows the branches of crystallization of $Ca(ClO_4)_2.4H_2O$, $NaClO_4$ and $NaClO_4.H_2O$. The eutectic composition (in mass %) consists of 65.10 % $Ca(ClO_4)_2$, 6.13 % $NaClO_4$, and 28.77 % H_2O .

135

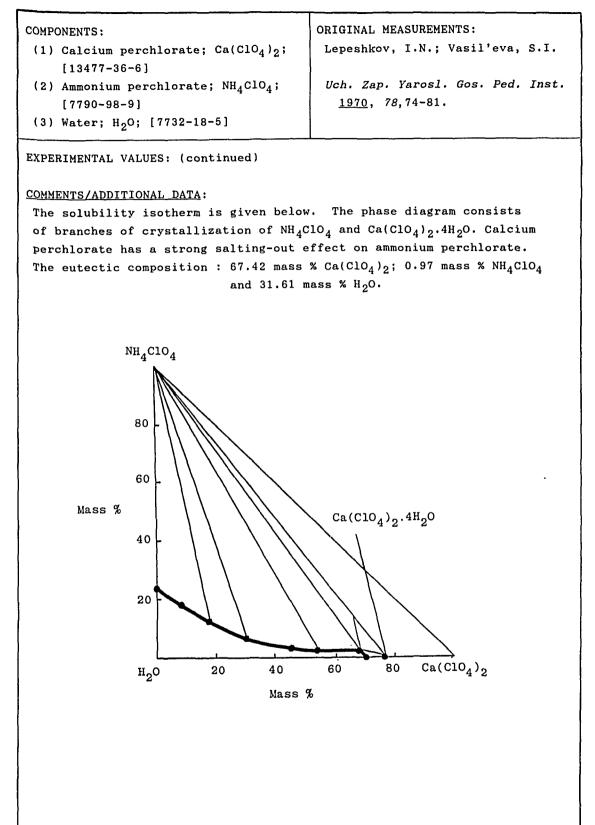
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium perchlorate; Ca(ClO₄)₂; [13477-36-6]</pre>	Ivanov, S.A.; Orekhov, O.L.
(2) Ammonium perchlorate; NH ₄ ClO ₄ ; [7790-98-9]	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1970</u> , 78,203-10.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
One temperature: 298.2 K Composition.	N.A. Kozyreva
	1


Solubility in the system $Ca(ClO_4)_2 - NH_4ClO_4 - H_2O$ at 25.0°C

	Liq	uid phas	e compos	sition		Solid
ma	ss %	mo	1 % ^a	molali	ty ^a /mol	kg ⁻¹ phase
(1)	(2)	(1)	(2)	(1)	(2)	
- 5.23	18.62		3.39 2.772		$1.947 \\ 1.590$	NH4ClO4
11.76			2.174			"
17.04	8.29	1.663	1.646	0.955	0.945	"
28.44	4.06	3.051	0.886	1.763	0.512	88
33.39	2.00	3.733	0.455	2.162	0.263	**
40.18	1.36	4.909	0.338	2.876	0.198	11
45.53	1.06	6.021	0.285	3.567	0.169	**
54.79	0.84	8.493	0.265	5.167	0.161	**
55.12	0.68	8.57	0.215	5.218	0.131	NH4C104
						+ $Ca(ClO_4)_2.4H_2O$
54.69	0.59	8.43	0.18	5.117	0.112	11 11
54.82	0.73	8.49	0.23	5.161	0.140	** **
55.09	0.44	8.53	0.14	5.184	0.084	$Ca(ClO_4)_2.4H_2O$
65.19		12.37	**	7.836	-	" T T T

^a Compiler's calculations.

AUXILIARY INFORMATION


SOURCE AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: Isothermal method. Details of sat-Calcium perchlorate was prepared uration method were not given. NH_4^+ by saturating 30% perchloric acid was determined by distilling off with calcium carbonate (analyti- NH_3 into a solution of boric acid cal grade); it was purified by and then titrated with $0.1M H_2SO_4$; recrystallization. Chemically Ca^{2+} was determined by titration pure ammonium perchlorate was with Trilon B at pH 10-11 with further purified by recrystalindicator chrome blue black; $Clo_4^$ lisation. by difference. The densities, visco-ESTIMATED ERROR: sities and electrical conductivities Precision: $\pm 0.1^{\circ}$ C in temperature of the saturated solutions were measured.

COMPONENTS: (1) Calcium perchlorate; Ca(ClO ₄) ₂ ; [13477-36-6]	ORIGINAL MEASUREMENTS: Lepeshkov, I.N.; Vasil'eva, S.I.
<pre>(2) Ammonium perchlorate; NH₄ClO₄; [7790-98-9] (3) Water; H₂O; [7732-18-5]</pre>	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1970</u> , 78,74-81.
VARIABLES: One temperature: 313 K. Composition.	PREPARED BY: N.A. Kozyreva

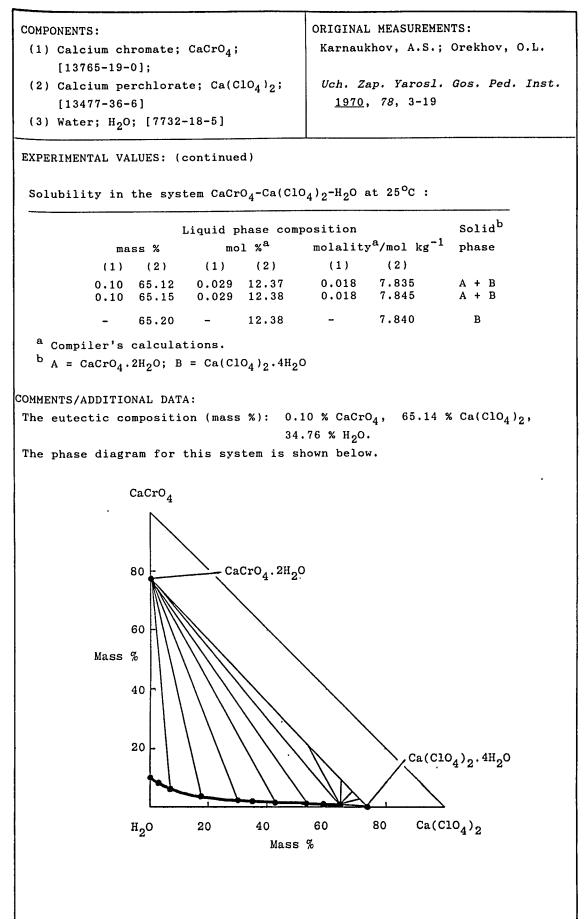
Solubility in the system ${\rm Ca(ClO_4)_2-NH_4ClO_4-H_2O}$ at $40^{\rm O}{\rm C}$:

	Liqu	id phase	compos			Solid phase	
ma	ass %	mol	% ^a	molalit	y ^a /mol	kg ⁻¹	
(1)	(2)	(1)	(2)	(1)	(2)		
$\begin{array}{c} 6.76\\ 11.34\\ 18.14\\ 25.49\\ 32.41\\ 42.10\\ 47.12\\ 57.43\\ 62.41\\ 67.36\\ 67.51\\ 67.48\\ 67.31\\ 68.48\\ \end{array}$	1.09 1.01 0.87 0.94 1.08	0.664 1.136 1.876 2.767 3.744 5.426 6.498 9.420 11.37 13.78 13.81 13.82 13.77 14.07	0.404	0.386 0.661 1.090 1.610 2.189 3.212 3.882 5.796 7.155 8.911 8.934 8.934 8.941	1.999 1.491 1.060 0.776 0.473 0.350 0.228 0.254 0.272 0.272	$ \begin{array}{c} NH_4ClO_4 \\ """"""""""""""""""""""""""""""""$	
^a Compiler's	calculat	<u> </u>		INFORMAT	TON		
METHOD/APPARATU Isothermal met reached in 7-1	hod. Equ	URE: ilibrium	was	SOURCE Calciu from C	AND PUF m perch aCO ₃ wi	RITY OF MATERIALS: alorate was prepared th further recrys-	
termined by ti	trating	with Tri	lon B	tallisation from solution.			
using the indi at pH 10-11. M NH ₃ into H ₃ BO ₃ titrating with	stilling n and the	ESTIMATED ERROR: Not stated.					
was determined by difference. The				REFEREN	CES:		
densities, vis							
	0 AT th	e satura	ated	1			

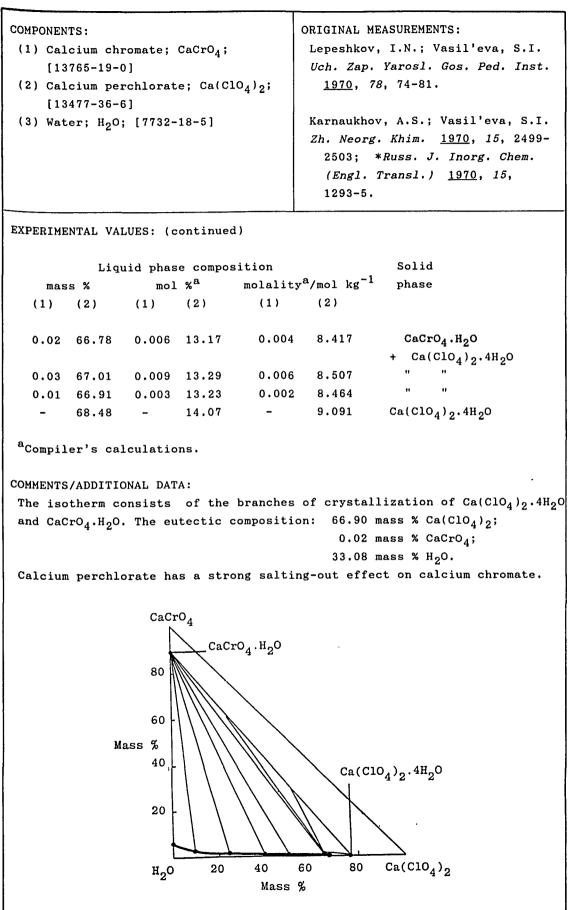
COMPONENTS: (1) Calcium chromate; CaCrO ₄ ; [13765-19-0];	ORIGINAL MEASUREMENTS: Karnaukhov, A.S.; Orekhov, O.L.
(2) Calcium perchlorate; $Ca(ClO_4)_2$; [13477-36-6] (3) Water; H_2O ; [7732-18-5]	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1970</u> , 78, 3-19.
VARIABLES: One temperature: 298.2 K Composition.	PREPARED BY: I.S. Bodnya

Solubility in the system ${\rm CaCrO_4-Ca(ClO_4)_2-H_2O}$ at 25.0 $^{\rm O}{\rm C}$:

та	.ss %	mo	l % ^a	molality	^a /mol kg ⁻¹	phase
(1)	(2)	(1)	(2)	(1)	(2)	
10.40	-	1.322	-	0.744	-	А
10.13	0.25	1.288	0.021	0.724	0.012	Α
7.52	2.12	0.950	0.175	0.533	0.098	Α
5.71	7.44	0.748	0.637	0.421	0.358	Α
3.82	19.58	0.562	1.880	0.320	1.070	Α
2.21	31.29	0.369	3.413	0.213	1.969	Α
1.16	34.21	0.199	3.829	0.115	2.215	Α
0.31	43.52	0.060	5.515	0.035	3.242	Α
0.26	55.01	0.061	8.479	0.037	5.146	Α
0.18	60.97	0.048	10.57	0.030	6.567	Α
0.10	64.98	0.029	12.30	0.018	7.786	A + B
0.10	65.03	0.029	12.32	0.018	7.804	A + B
0.10	65.01	0.029	12.31	0.018	7.797	A + B
0.10	65.08	0.029	12.35	0.018	7.821	A + B


AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

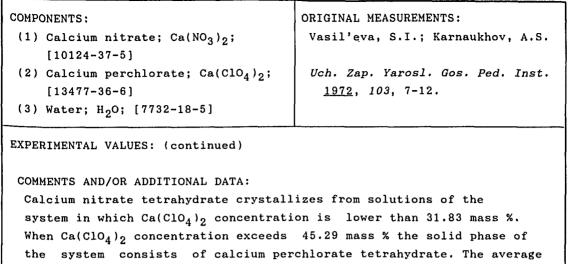

Isothermal method. Details of saturation method were not given. Ca^{2+} was determined by titration with Trilon B in an ammonia solution in the presence of the indicator chrome blue black at pH 10-11; CrO_4^{2-} iodimetrically; ClO_4^{-} by difference. The density, viscosity, electric conductivity and refractive index were measured. Solid phases were studied by chemical, thermogravimetric, and X-ray powder analysis; microphotographing was carried out. Solid phases were determined by Schreinemakers' method of residues . SOURCE AND PURITY OF MATERIALS: Not stated.

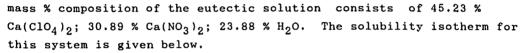
ESTIMATED ERROR: Temp.: precision $\pm 0.1^{\circ}$ C

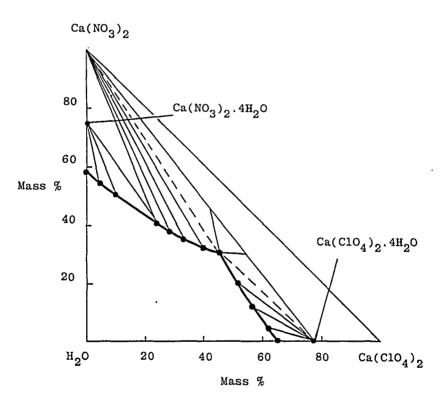
REFERENCES:

COMPONENTS: (1) Calcium chromate; CaCrO ₄ ;	ORIGINAL MEASUREMENTS:		
(1) Coloium chromator CoCrO.			
(1) Calcium enfomate; Cacro ₄ ,	Lepeshkov, I.N.; Vasil'eva, S.I.		
[13765-19-0]	Uch. Zap. Yarosl. Gos. Ped. Inst.		
(2) Calcium perchlorate; Ca(ClO ₄) ₂ ;	<u>1970</u> , 78, 74-81.		
[13477-36-6]			
(3) Water; H ₂ O; [7732-18-5]	Karnaukhov, A.S.; Vasil'eva, S.I.		
2	Zh. Neorg. Khim. <u>1970</u> , 15, 2499-		
	2503; *Russ. J. Inorg. Chem.		
	(Engl. Transl.) <u>1970</u> , 15,		
	1293-5.		
VARIABLES:	PREPARED BY:		
One temperature: 313.0 K	N.A. Kozyreva and C.C. Ho		
Composition.			
			
EXPERIMENTAL VALUES:			
Solubility in the system CaCrO ₄ -Ca(ClO	$(4)_2 - H_2O$ at 40.0°C :		
Liquid phase composition	Solid		
mass % mol % ^a molali			
	(2)		
5.44 - 0.660 - 0.36	$9 - CaCrO_4.H_2O$		
	0.1/0		
2.86 9.54 0.372 0.811 $0.201.53$ 18.37 0.216 1.696 0.12	9 0.456 " 2 0.960 "		
0.50 25.75 0.076 2.563 0.04	3 1.461 "		
0.09 35.54 0.015 3.995 0.00			
0.06 42.40 0.011 5.262 0.00 0.03 45.65 0.006 5.957 0.00	1 3.083		
0.08 51.16 0.018 7.328 0.01	1 4.390 "		
0.05 59.92 0.013 10.14 0.00	8 6.264 "		
AUXILIARY IN	FORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Isothermal method. Equilibrium was	Calcium perchlorate was prepared		
reached in 7-10 days. Ca^{2+} was det-	from CaCO ₃ and recrystallized		
ermined by Trilon B titration with	5		
-	twice from solution. Calcium		
the indicator chrome blue black at 2^{-1}	chromate was purified by		
pH 10-11; CrO_4^2 was determined	recrystallization.		
iodimetrically; $Clo_{\overline{4}}^{-}$ by difference.			
The densities, viscosities and	ESTIMATED ERROR:		
electrical conductivities of the	Temp.: <u>+</u> 0.1°C.		
saturated solutions were measured.	Soly.: nothing specified.		
	REFERENCES:		
	None.		
	(continued next page)		
	(construct next page)		

COMPONENTS: (1) Calcium nitrate; Ca(NO ₃) ₂ ;	ORIGINAL MEASUREMENTS: Vasil'eva, S.I.; Karnaukhov, A.S.			
[10124-37-5] (2) Calcium perchlorate; Ca(ClO ₄) ₂ ; [13477-36-6] (3) Water; H ₂ O; [7732-18-5]	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1972</u> , 103, 7-12.			
VARIABLES: One temperature: 298 K Composition.	PREPARED BY: N.A. Kozyreva			


Solubility in the system $Ca(NO_3)_2-Ca(ClO_4)_2-H_2O$ at 25°C:


m	ass %	mo	1 % ^a	molali	ity ^a /mol	kg ⁻¹ phase
(1)	(2)	(1)	(2)	(1)	(2)	
58,14	-	13.23	-	8.464	-	А
49.81	11.68	12.19	1.96	7.882	1.269	Α
38.03	31.83	11.37	6.54	7.690	4.419	в
34.65	36.29	10.69	7.68	7.267	5.225	В
33.62	41.24	11.56	9.73	8.150	6.864	В
30.89	44.64	10.86	10.78	7.693	7.634	B + C
31.43	45.27	11.44	11.31	8.221	8.130	B + C
30.26	45.79	10.81	11.23	7.700	8.000	B + C
13.01	56.36	3.934	11.70	2.589	7.699	с
-	65.46	-	12.50	-	7.930	С


^b A = Ca(NO₃)₂.4H₂O; B = Ca(NO₃)₂; C = Ca(ClO₄)₂.4H₂O

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: Isothermal method. Equilibrium was Not stated. reached in 5-8 days. Ca^{2+} was determined by complexometric titration with Trilon B with the indicator chrome blue black at pH 10-11; NO3 by Devarda's method. The composition | ESTIMATED ERROR: of solid phases was determined Not stated. graphically by Schreinemakers' method of residues. The density and viscosity of saturated solutions were determined. **REFERENCES:** (continued next page)

COMPONENT	10.			LODICIN	AT MEACIDEMENTC.	
		ate; Ca(NO ₃) ₂ ;	ł	ORIGINAL MEASUREMENTS: Vasil'eva S.I.; Lepeshkov, I.N.		
	24-37-5]					
(2) Calc	ium perc	hlorate; Ca(Cl	.0 ₄) ₂ ;	Zh. Neorg. Khim. <u>1973</u> , 18, 819-22;		
[134	77-36-6]			*Ru	ss. J. Inorg. Chem.	
(3) Wate	r; H ₂ O;	[7732-18-5]	(En	gl. Transl.) <u>1973</u> , <i>18</i> , 429-31		
VARIABLES			PREPARED BY:			
One temp	erature:	298 K	к.н.	Khoo		
Composit	ion					
EXPERIMEN	TAL VALU	ES:				
	Solubil	ity in the sys	tem Ca(C	10 ₄) ₂ -C	$(NO_3)_2-H_2O$ at $25^{\circ}C$	
	L	iquid phase co	mpositio	n	Solid	
					phase	
	ss %	mol % ^a			kg ⁻¹	
(1)	(2)	(1) (2)	(1)	(2)		
58.14		13.23 -	8.464		$Ca(NO_3)_2.4H_2O$	
54.77 49.81	5.40 11.68) 8.380 3 7.882		"	
44.76	18.71	11.47 3.291	7.467	2.143	**	
	$24.34 \\ 28.73$		7.310		**	
38.03	31.83	11.37 6.535	5 7.690	4.419	$Ca(NO_3)_2$	
34.65	36.29 40.29		5 7.267 9 8.120		11	
33.62 30.89	41.24 44.64	11.56 9.733 10.86 10.78	8.150 7.693		$\frac{1}{2}$	
	44.04	11.44 11.31			$Ca(NO_3)_2 + Ca(ClO_4)_2.4H_2O$	
30.36 21.49	45.79 51.51	10.88 11.27 7.097 11.68	7.758		$Ca(ClO_4)_2.4H_2O$	
13.01	56.36	3.934 11.70	2.589	7.699		
5.730	61.64 65.46	1.660 12.26 - 12.50		7.905 7.930	"	
^a Comp	iler's c	alculations.				
^a Comp	iler's c	alculations.				
COMMENTS	AND/OR A	DDITIONAL DATA				
COMMENTS	AND/OR A	DDITIONAL DATA		ated by	calcium perchlorate.	
COMMENTS	AND/OR A	DDITIONAL DATA tetrahydrate i			·	
COMMENTS Calcium	AND/OR A nitrate	DDITIONAL DATA tetrahydrate i	.s dehydr	ORMATIO	·	
COMMENTS Calcium METHOD/AP The solu	AND/OR A nitrate PARATUS/ bility w	DDITIONAL DATA tetrahydrate i AUXIL PROCEDURE: as determined	s dehydr IARY INF by the	ORMATION SOURCE	N AND PURITY OF MATERIALS:	
COMMENTS Calcium METHOD/AP The solu	AND/OR A nitrate PARATUS/ bility w	DDITIONAL DATA tetrahydrate i AUXIL PROCEDURE:	s dehydr IARY INF by the	ORMATION SOURCE	N AND PURITY OF MATERIALS:	
COMMENTS Calcium METHOD/AP The solu isotherm	AND/OR A nitrate PARATUS/ bility w al satu	DDITIONAL DATA tetrahydrate i AUXIL PROCEDURE: as determined	S dehydr JARY INF by the . Ca ²⁺	ORMATION SOURCE	N AND PURITY OF MATERIALS:	
COMMENTS Calcium METHOD/AP The solu isotherm was anal	AND/OR A nitrate PARATUS/ bility w al satu ysed by	DDITIONAL DATA tetrahydrate i AUXIL PROCEDURE: as determined ration method	IARY INF by the Ca ²⁺ titra-	ORMATION SOURCE Not st	N AND PURITY OF MATERIALS:	
COMMENTS Calcium METHOD/AP The solu isotherm was anal tion wi azurol	AND/OR A nitrate PARATUS/ bility w al satu ysed by o th Trilo S as in	DDITIONAL DATA tetrahydrate i AUXIL PROCEDURE: as determined ration method complexometric on B using ndicator at pH	IARY INF by the Ca ²⁺ titra- chrome 10-11,	ORMATION SOURCE Not st REFEREN	AND PURITY OF MATERIALS: cated. NCES: ' arlot, G. Les methods de la	
COMMENTS Calcium METHOD/AP The solu isotherm was anal tion wi azurol NO3 by	AND/OR A nitrate PARATUS/ bility w al satu ysed by o th Trilo S as in Devarda	DDITIONAL DATA tetrahydrate i AUXIL PROCEDURE: as determined ration method complexometric on B using ndicator at pH 's method [1	IARY INF by the Ca ²⁺ titra- chrome 10-11,	ORMATION SOURCE Not st REFEREN 1. Cha ch.	AND PURITY OF MATERIALS: cated. NCES: ' arlot, G. Les methods de la imie analytique. Analyse	
COMMENTS Calcium METHOD/AP The solu isotherm was anal tion wi azurol	AND/OR A nitrate PARATUS/ bility w al satu ysed by o th Trilo S as in Devarda	DDITIONAL DATA tetrahydrate i AUXIL PROCEDURE: as determined ration method complexometric on B using ndicator at pH 's method [1	IARY INF by the Ca ²⁺ titra- chrome 10-11,	ORMATION SOURCE Not st REFEREN 1. Cha ch min	AND PURITY OF MATERIALS: cated. NCES: ' arlot, G. Les methods de la imie analytique. Analyse merale; *Izd. Khimiya	
COMMENTS Calcium METHOD/AP The solu isotherm was anal tion wi azurol NO3 by	AND/OR A nitrate PARATUS/ bility w al satu ysed by o th Trill S as in Devarda differen	DDITIONAL DATA tetrahydrate i AUXIL PROCEDURE: as determined ration method complexometric on B using ndicator at pH 's method [1	IARY INF by the Ca ²⁺ titra- chrome 10-11,	ORMATION SOURCE Not st REFEREN 1. Cha ch min	AND PURITY OF MATERIALS: cated. NCES: ' arlot, G. Les methods de la imie analytique. Analyse	
COMMENTS Calcium METHOD/AP The solu isotherm was anal tion wi azurol NO3 by ClO4 by	AND/OR A nitrate PARATUS/ bility w al satu ysed by o th Tril S as in Devarda differen ERROR:	DDITIONAL DATA tetrahydrate i AUXIL PROCEDURE: as determined ration method complexometric on B using ndicator at pH 's method [1	IARY INF by the Ca ²⁺ titra- chrome 10-11,	ORMATION SOURCE Not st REFEREN 1. Cha ch min	AND PURITY OF MATERIALS: cated. NCES: ' arlot, G. Les methods de la imie analytique. Analyse merale; *Izd. Khimiya	

.

COMPONENTS: (1) Calcium nitrate; Ca(NO ₃) ₂ ; [10124-37-5]	ORIGINAL MEASUREMENTS: Vasil'ęva, S.I.; Rylenkova, I.N.
(2) Calcium perchlorate; $Ca(ClO_4)_2$; [13477-36-6] (3) Water; H ₂ O; [7732-18-5]	Khim. i Fizkhim. Issled. Neorg. Org. Soed. Smolensk <u>1976</u> , 23-5.
VARIABLES: One temperature: 323 K Composition.	PREPARED BY: E.S. Gryzlova; N.A. Kozyreva

Solubility in the system $Ca(NO_3)_2-Ca(ClO_4)_2-H_2O$ at $50^{\circ}C$:

		Liqui	d phase	compositio	n	Solid
ma	ss %	mol	% ^a	molality	^a /mol kg ⁻¹	phase
(1)	(2)	(1)	(2)	(1)	(2)	
-	69.96	-	14.93	-	9.745	$Ca(ClO_4)_2.4H_2O$
5.47	62.99	1.63	12.87	1.057	8.357	"
11.72	59.48	3.722	12.97	2.480	8.642	**
16.75	55.56	5.454	12.42	3.686	8.396	**
19.92	53.24	6.619	12.15	4.523	8.300	
25.09	47.11	8.077	10.41	5.500	7.091	**
35.98	38.41	12.17	8.921	8.562	6.276	**
						•
47.15	33.73	19.29	9.474	15.03	7.382	$Ca(ClO_4)_2.4H_2O$
						+ $Ca(NO_3)_2$
47.54	32.53	18.91	8.884	14.54	6.830	87 89
48.11	34.17	20.65	10.07	16.55	8.069	11 11

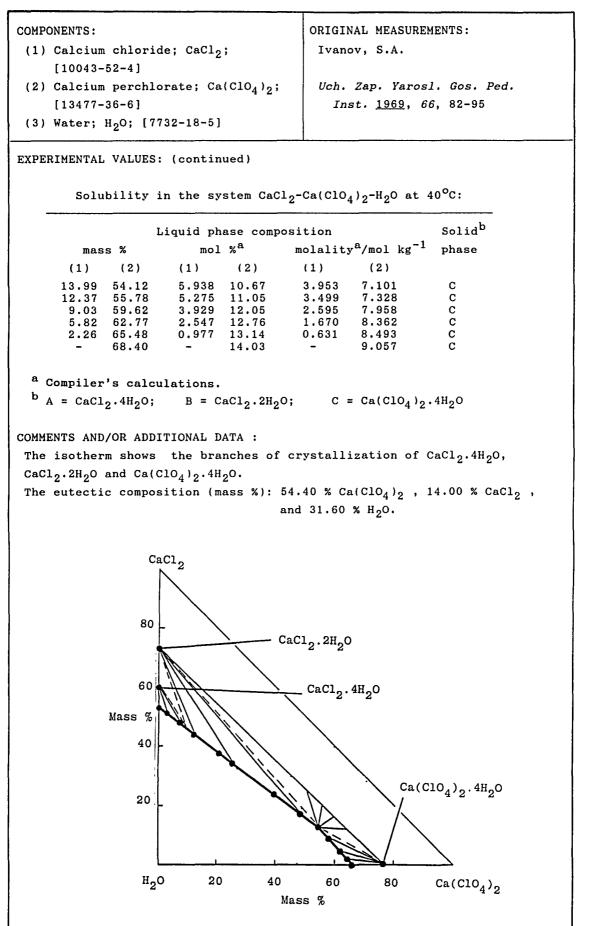
AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method. Periods of equi-	Not stated.
	Not stated.
libration were from 5 to 7 days. NO_3^-	
was determined by the Devarda method	
(ref 1); Ca ²⁺ by complexometric	ESTIMATED ERROR:
titration with Trilon B using chrome	Not stated.
blue black as an indicator at pH 10	
or 11 (ref 1).	
	REFERENCES:
	1. Hillebrand, W.F. and Lundell,
	G.E.F. Applied Inorganic
	Analysis, (2nd ed., Wiley,
	• • • • • • • • • • • • • • • • • • • •
	1963).
	(continued next page)

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	MPONENTS:					ORIGINAL MEASUREMENTS:		
(1) Calcium ni [10124-37-		$Ca(NO_3)_2;$		Vasil'eva, S.I.; Rylenkova, I.N.				
(2) Calcium pe		te; Ca(Cl	.0,),;	Khim. i Fizkhim. Issled. Neorg.				
[13477-36-			4 2			ensk <u>1976</u> , 23-5.		
(3) Water; H ₂ O	; [7732-	-18-5]						
EXPERIMENTAL VA	LUES: (continued	1)					
Solub	ility in	n the sys	stem Ca(N	103)2-Ca(C	10 ₄) ₂ -н ₂ 0	at 50°C :		
]	Liquid ph	nase comp	position Solid				
	ss %		. % ^a		y ^a /mol kg ⁻	¹ phase		
				(1)				
				15,05		$Ca(NO_3)_2$		
				18.32		**		
				20.52		"		
79.24	-	29.53	-	23.26	-	**		
^a Compilers' ca	alculat	ions.						
COMMEMTS AND/OR								
The solubility	isother	rm shows	two hren	ches of c	rystalliza	tion. The first		
			CHO DI AII					
branch corresp					ation. The			
	onds to	$Ca(ClO_4)$	2.4H20 c	rystalliza	ation. The			
branch corresponds to The eutectic c	onds to Ca(NO ₃ omposit:	Ca(ClO ₄)) ₂ crysta ion (in m	2·4H ₂ O c llizatio mass %) w	rystalliza n. as reporte	ed as foll	second branch		
branch corresp corresponds to	onds to Ca(NO ₃ omposit:	Ca(ClO ₄)) ₂ crysta ion (in m	2·4H ₂ O c llizatio mass %) w	rystalliza n. as reporte	ed as foll	second branch		
branch corresponds to The eutectic c	onds to Ca(NO ₃ omposit:	Ca(ClO ₄)) ₂ crysta ion (in m	2·4H ₂ O c llizatio mass %) w	rystalliza n. as reporte	ed as foll	second branch		
branch corresponds to The eutectic c	onds to Ca(NO ₃ omposit: $_4$) ₂ , 47	Ca(ClO ₄)) ₂ crysta ion (in m .60 % Ca(2·4H ₂ O c llizatio mass %) w	rystalliza n. as reporte	ed as foll	second branch		
branch corresponds to The eutectic c	onds to Ca(NO ₃ omposit:	Ca(ClO ₄)) ₂ crysta ion (in m .60 % Ca(2·4H ₂ O c llizatio mass %) w	rystalliza n. as reporte	ed as foll	second branch		
branch corresponds to The eutectic c	onds to Ca(NO ₃ omposit: $_4$) ₂ , 47	Ca(ClO ₄)) ₂ crysta ion (in m .60 % Ca(2·4H ₂ O c llizatio mass %) w	rystalliza n. as reporte	ed as foll	second branch		
branch corresponds to The eutectic c	onds to $Ca(NO_3)$ omposit: $(4)_2, 47$ $Ca(ClO_4)$	Ca(ClO ₄)) ₂ crysta ion (in m .60 % Ca(2·4H ₂ O c llizatio mass %) w	rystalliza n. as reporte	ed as foll	second branch		
branch corresponds to The eutectic c	onds to Ca(NO ₃ omposit: $_4$) ₂ , 47	Ca(ClO ₄)) ₂ crysta ion (in m .60 % Ca(4 ⁾ 2	2.4H ₂ O c Allizatio Mass %) w NO ₃) ₂ , a	rystalliza n. as reporta nd 18.92 9	ed as foll	second branch		
branch corresponds to The eutectic c	onds to $Ca(NO_3)$ omposit: $(4)_2, 47$ $Ca(ClO_4)$	Ca(ClO ₄)) ₂ crysta ion (in m .60 % Ca(4 ⁾ 2	2·4H ₂ O c llizatio mass %) w	rystalliza n. as reporta nd 18.92 9	ed as foll	second branch		
branch corresponds to The eutectic c	onds to $Ca(NO_3)$ omposit: $(4)_2, 47$ $Ca(ClO_4)$	Ca(ClO ₄)) ₂ crysta ion (in m .60 % Ca(4 ⁾ 2	2.4H ₂ O c Allizatio Mass %) w NO ₃) ₂ , a	rystalliza n. as reporta nd 18.92 9	ed as foll	second branch		
branch corresponds to The eutectic c	onds to $Ca(NO_3)$ omposit: $(4)_2, 47$ $Ca(ClO_4)$	Ca(ClO ₄)) ₂ crysta ion (in m .60 % Ca(4 ⁾ 2	2.4H ₂ O c Allizatio Mass %) w NO ₃) ₂ , a	rystalliza n. as reporta nd 18.92 9	ed as foll	second branch		
branch corresponds to The eutectic c	onds to $Ca(NO_3)$ omposit: $4)_2$, 47 $Ca(ClO_4)$ 80 60	Ca(ClO ₄)) ₂ crysta ion (in m .60 % Ca(4 ⁾ 2	2.4H ₂ O c Allizatio Mass %) w NO ₃) ₂ , a	rystalliza n. as reporta nd 18.92 9	ed as foll	second branch		
branch corresp corresponds to The eutectic co 33.48 % Ca(ClO	Ca(NO ₃ omposit: 4)2, 47 Ca(ClO, 80 60 %	Ca(ClO ₄)) ₂ crysta ion (in m .60 % Ca(4 ⁾ 2	2.4H ₂ O c Allizatio Mass %) w NO ₃) ₂ , a	rystalliza n. as reporta nd 18.92 9	ed as foll	second branch		
branch corresponds to Corresponds to The eutectic cu 33.48 % Ca(ClO	onds to $Ca(NO_3)$ omposit: $4)_2$, 47 $Ca(ClO_4)$ 80 60	Ca(ClO ₄)) ₂ crysta ion (in m .60 % Ca(4 ⁾ 2	2.4H ₂ O c Allizatio Mass %) w NO ₃) ₂ , a	rystalliza n. as reporta nd 18.92 9	ed as foll	second branch		
branch corresp corresponds to The eutectic co 33.48 % Ca(ClO	Ca(NO ₃ omposit: 4)2, 47 Ca(ClO, 80 60 %	Ca(ClO ₄)) ₂ crysta ion (in m .60 % Ca(4 ⁾ 2	2.4H ₂ O c Allizatio Mass %) w NO ₃) ₂ , a	rystalliza n. as reporta nd 18.92 9	ed as foll	second branch		
branch corresponds to Corresponds to The eutectic cu 33.48 % Ca(ClO	Ca(NO ₃ omposit: 4)2, 47 Ca(ClO, 80 60 %	Ca(ClO ₄)) ₂ crysta ion (in m .60 % Ca(4 ⁾ 2	2.4H ₂ O c Allizatio Mass %) w NO ₃) ₂ , a	rystalliza n. as reporta nd 18.92 9	ed as foll	second branch		
branch corresponds to Corresponds to The eutectic cu 33.48 % Ca(ClO	onds to $Ca(NO_3)$ omposit: $4)_2$, 47 $Ca(ClO_4)$ 80 60 %	Ca(ClO ₄)) ₂ crysta ion (in m .60 % Ca(4 ⁾ 2	2.4H ₂ O c Allizatio Mass %) w NO ₃) ₂ , a	rystalliza n. as reporta nd 18.92 9	ed as foll	second branch		
branch corresponds to Corresponds to The eutectic cu 33.48 % Ca(ClO	onds to Ca(NO ₃ omposit: 4)2, 47 Ca(ClO, 80 60 % 40	Ca(ClO ₄)) ₂ crysta ion (in m .60 % Ca(4 ⁾ 2	2.4H ₂ O c Allizatio Mass %) w NO ₃) ₂ , a	rystalliza n. as reporta nd 18.92 9	ed as foll	second branch		
branch correspo corresponds to The eutectic cu 33.48 % Ca(ClO	onds to Ca(NO ₃ omposit: 4)2, 47 Ca(ClO, 80 60 % 40	Ca(ClO ₄)) ₂ crysta ion (in m .60 % Ca(4 ⁾ 2	2.4H ₂ O c Allizatio Mass %) w NO ₃) ₂ , a	rystalliza n. as reporta nd 18.92 9	ed as foll	second branch		
branch corresp corresponds to The eutectic cu 33.48 % Ca(ClO	onds to Ca(NO ₃ omposit: 4)2, 47 Ca(ClO, 80 60 % 40	Ca(ClO ₄)) ₂ crysta ion (in m .60 % Ca(4 ⁾ 2	2.4H ₂ O c Allizatio Mass %) w NO ₃) ₂ , a	rystalliza n. as reporta nd 18.92 9	ed as foll	second branch		
branch corresp corresponds to The eutectic cu 33.48 % Ca(ClO	onds to Ca(NO ₃ omposit: 4)2, 47 Ca(ClO, 80 60 % 40	Ca(ClO ₄)) ₂ crysta ion (in m .60 % Ca(4 ⁾ 2	2.4H ₂ O c Allizatio Mass %) w NO ₃) ₂ , a	rystalliza n. as reporta nd 18.92 9	ed as foll % H ₂ O.	second branch		
branch correspo corresponds to The eutectic cu 33.48 % Ca(ClO	onds to Ca(NO ₃ omposit: 4)2, 47 Ca(ClO, 80 60 % 40 20	$Ca(ClO_4)$ $)_2$ crysta ion (in m .60 % Ca($(1)_2$	2.4H ₂ O c allizatio hass %) w NO ₃) ₂ , a Ca(ClO ₄)	rystalliza n. as reporte nd 18.92 \$ 2.4H ₂ O	ed as foll % H ₂ O.	second branch ows :		

COMPONENTS:	ORIGINAL MEASUREMENTS:				
<pre>(1) Calcium chloride; CaCl₂; [10043-52-4]</pre>	Ivanov, S.A.				
<pre>(2) Calcium perchlorate; Ca(ClO₄)₂; [13477-36-6]</pre>	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1969</u> , 66, 82-95				
(3) Water; H ₂ O; [7732-18-5]					
VARIABLES:	PREPARED BY:				
One temperature: 313 K	N.A. Kozyreva				
Composition.					

Solubility in the system $CaCl_2-Ca(ClO_4)_2-H_2O$ at $40^{\circ}C$:

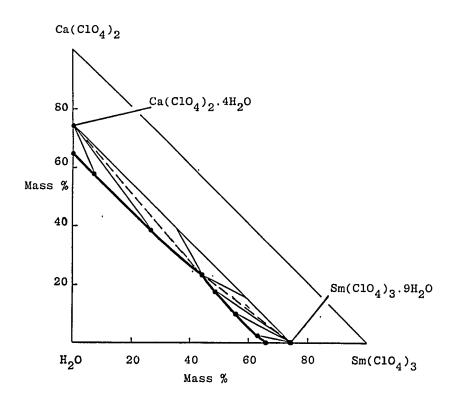

	Liquid phase composition								
	mass %		mol % ^a		molality	phase			
	(1)	(2)	(1)	(2)	(1)	(2)			
	53.14	-	15.55	-	10.22	-	А		
	51.86	2.41	15.49	0.334	10.22	0.221	Α		
	50.13	5.01	15.25	0.708	10.07	0.467	Α		
	46.87	10.12	14.81	1.485	9.819	0.985	А		
	45.11	12.30	14.40	1.824	9.543	1.208	в		
	40.26	19.46	13.54	3.038	9.006	2.022	В		
	36.31	24.55	12.57	3.947	8.359	2.625	в		
	33.60	29.17	12.15	4.899	8.132	3.279	В		
	29.42	34.58	11.01	6.009	7.363	4.019	в		
	24.19	41.02	9.392	7,396	6.265	4.934	В		
	18.13	49.79	7.589	9.680	5.092	6.494	в		
		53.82	6.106	10.62	4.070	7.080	В		
	14.22	54.20	6.078	10.76	4.057	7.182	B + C		
		54.61	6.106				B + C		
		54.40					B + C		
		54.48				7.246	B + C		
	13.98		5.923	10.63	3.940	7.074	B + C		
a (Compiler	's calc	ulation.						
Ъ	A = CaCl	2.4H ₂ O;	B = C	$aCl_2.2H_2C$); C =	$\operatorname{Ca(ClO_4)}_2$.4H ₂ 0		

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: Isothermal method. Equilibrium was attained in 3-5 days. Thermographic studies of solid phases were carried out. The density, viscosity, and refractive index of saturated solutions were measured. SOURCE AND PURITY OF MATERIALS: Not stated.

ESTIMATED ERROR: Not stated.

REFERENCES:


			Calcium	Perchlora	110			
(2) Cerium [1401	um perchl 7-36-6] n perchlc 7-47-1]	orate; Ce	(clo ₄) ₃ ;	; Ryl	oina, T.V	SUREMENTS: .; Druzhinina, G.V. <i>Tarosl. Gos. Ped. Inst.</i> , 74-6.		
(3) Water VARIABLES:	; H ₂ 0; [7	732-18-5]	PREI	PREPARED BY:			
One tempe: Compositio		98 К.		N.4	A. Kozyre	va		
EXPERIMENTA Solubilit:			a(ClO ₄) ₂ -	-Ce(ClO ₄)	3 ^{-H} 2 ^O at	25°C :		
		Liquid pl	hase com	position		Solid		
mass	s %	mol	% ^a	molality	^a /mol kg	-1 phase		
(1)	(2)	(1)	(2)	(1)	(2)			
	- 12.08 22.34 31.34	12.55 9.006 7.539 6.627	- 1.181 2.248	7.969 5.566 4.639	0.730	$Ca(Clo_4)_2.4H_2O$		
	31.34 39.82		$3.337 \\ 4.353$		2.057 2.673	**		
24.20	43.07	5.022	4.872	3.094	3.001	Ca(ClO ₄) ₂ .4H ₂ O + Ce(ClO ₄) ₃ .9H ₂ O		
24.20	43.07		4.872		3.001	11 11		
20.08 8.31 -	$46.43 \\ 55.50 \\ 64.80$	4.101 1.602 -	5.168 5.832 7.032	2.509 0.961 -	$3.162 \\ 3.498 \\ 4.198$	Ce(ClO ₄) ₃ .9H ₂ O "		
^a Compiler	's calcu	lations.		<u></u>				
AUXILIA	ARY INFOR	MATION						
METHOD/APPA	ARATUS/PR	OCEDURE:						
Isothermal				. C	$(C10_4)_2$			
ration met			-	Mass	%			
was detern tion; Ce ³⁺				í	5	Ca(C10 ₄) ₂ .4H ₂ O		
tion, et tion, tion						\backslash		
orange; Ca	a ²⁺ was d	etermined	l by	5	50 -			
difference								
SOURCE AND				- 2	25-			
Not stated		F MATENIA						
ESTIMATED E	RROR:			E	¹ 2 ⁰ 25 M	ass % $\left(\begin{array}{c} 50 \\ Ce(ClO_4)_3 \end{array} \right)$		
Not stated	l .					/ Ce(ClO ₄) ₃ .9H ₂ O		
REFERENCES:								

				<u>-r</u>		·		
COMPONENTS:					ORIGINAL MEASUREMENTS:			
(1) Calcium [13477-3		ate; Ca(C	$(10_4)_2;$	Guse	Guseva, A.D.			
(2) Samarium	-	rate: Sm(C10,);;	Uch.	Uch. Zap. Yarosl. Gos. Ped. Inst.			
[13569-6			4/3/		<u>80</u> , <i>185</i> , 3			
(3) Water; H	2 ⁰ ; [7732	2-18-5]						
VARIABLES:			PREPA	PREPARED BY:				
One temperat	ure: 298	К.	N.A.	Kozyreva				
Composition.								
EXPERIMENTAL	VALUES:			1				
Solubility i	n the sys	stem of	Ca(ClO ₄)	2-Sm(C10	0 ₄) ₃ -Н ₂ 0 а	t 25°C:		
	Lic	quid phas	e compos	ition	****	Solid ^b		
						phase		
ma	ss %	mol	. % ^a	molali	ty ^a /mol kg	-1		
		(1)		(1)	-			
65.77		12.65 11.41	-	8.040	-	A		
43.84	20.62	8.330	2.087	5.162		A A		
	29.14	7.270	3.073	4.501		Α		
					2.943	A + B		
23.85	43.42	4.957	4.806	3.049	2.957	A + B		
19.32	45.24 56.25	3.762	4.692 5.926	2.281 1.015	2.845 3.560	B B		
4.03		0.815				B		
-	64.98	-	6.933	-	4.135	В		
a Compiler's	calculati	ions.						
^b A = $Ca(ClO_4$) ₂ .4H ₂ O		B = Sm(clo ₄) ₃ .9	эн ₂ о			
	·····			······		-,		
		A	UXILIARY	INFORM	ATION	·····		
METHOD/APPARA'	rus/proce	EDURE:		SOURCE	E AND PURI	TY OF MATERIALS:		
Isothermal r	•			The s	salts were	synthesized fro	m	
Periods of e						57% $HClO_4$ (chem		
to 6 days, S						ef 1). Since the		
by titrating			-			roscopic, they w		
orange as inc		-			kept in a vacuum desiccator over			
rimetric tit:				phosp	phoric anh	ydride or H_2SO_4 .		
bazone as inc		-						
rence. The co					ATED ERROR	:		
phases were of makers' method		•	reine-	Not s	stated.			
marcis meth	JU DI PE	STANCR .		REFERE	ENCES:			
						. Uch. Zap. Yard	sl.	
						nst., <u>1978</u> , 169,		
					(c	ontinued next pa	.ge)	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Calcium perchlorate; Ca(ClO ₄) ₂ ;	Guseva, A.D.
[13477-36-6]	
(2) Samarium perchlorate; Sm(ClO ₄) ₃ ;	Uch. Zap. Yarosl. Gos. Ped. Inst.
[13569-60-3]	<u>1980</u> , <i>185</i> , 3-5.
(3) Water; H ₂ O; [7732-18-5]	

COMMENTS/ADDITIONAL DATA:

The solubility isotherm, as given below, consists of the branches of crystallization of $Ca(ClO_4)_2.4H_2O$ and $Sm(ClO_4)_3.9H_2O$. The solubility of $Ca(ClO_4)_2$ in the eutectic is 23.9 mass %.

			
COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Calcium perchlorate; $Ca(ClO_4)_2$;	Komissarova, V.I.; Andronova, N.P.		
[13477-36-6]			
(2) Terbium perchlorate; $Tb(ClO_4)_3$;	Uch. Zap. Yarosl. Gos. Ped. Inst.		
[14014-09-6] (3) Water; H ₂ O; [7732-18-5]	<u>1978</u> , <i>169</i> , 18-20.		
(3) water; n ₂ 0; [//32-18-3]			
VARIABLES:	PREPARED BY:		
One temperature: 298 K.	N.A. Kozyreva		
Composition.			
EXPERIMENTAL VALUES: Solubility in the system Ca(ClO ₄) ₂	$-Tb(ClO_{1}) = H_{2}O_{2}at 25^{\circ}C_{2}t$		
Liquid phase c			
mass % mol % ^a	phase molality ^a /mol kg ⁻¹		
(1) (2) (1) (2)			
65.90 - 12.72 -	8.087 - A 6.538 0.809 A		
53.28 12.62 10.40 1.288 40.90 24.38 7.954 2.478	6.538 0.809 A 4.929 1.536 A		
40.90 24.38 7.954 2.478 36.41 30.07 7.329 3.163			
27.70 37.34 5.421 3.819			
20.42 43.40 3.904 4.336 20.42 43.40 3.904 4.336	2.362 2.623 A + B 2.362 2.623 A + B		
18.12 49.72 3.849 5.520			
3.42 63.60 0.721 $7.010- 64.43 - 6.661$			
^a Compiler's calculations.			
^b A = Ca(ClO ₄) ₂ .4H ₂ O B = Tb	(C10 ₄) ₃ .9H ₂ O		
AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE: Isothermal method (ref. 1).	Ca(ClO ₄) ₂		
Details not given	N N		
M	ass %		
SOURCE AND PURITY OF MATERIALS:	$_{80}$ Ca(ClO ₄) ₂ .4H ₂ O		
Terbium perchlorate was prepared	80 Ca(ClO ₄) ₂ .4H ₂ O		
by neutralizing 30% perchloric			
acid with terbium carbonate and	60		
then evaporating the solution,	Ть(С104)3.9H20		
filtering and desiccating over	40		
P ₂ O ₅ .			
ESTIMATED ERROR: Not given	20		
NOC BIVEN			
REFERENCES:	H_{20} 20 40 60 $Tb(C10_4)_3$		
1. Andronova, N.P.; Uch. Zap.	$M_{2} = 20 40 50 10(010_4)_3$ Mass %		
Yarosl. Gos. Ped. Inst. <u>1975</u> ,			
144; <u>1976</u> , 164.			

COMPONENTS: (1) Calcium perchlorate; $Ca(ClO_4)_2$;	ORIGINAL MEASUREMENTS: Andronova, N.P.; Pavlova, E.V.			
[13477-36-6]				
<pre>(2) Lutetium perchlorate; Lu(ClO₄)₃; [14646-29-8]</pre>	Sb. Nauch. Tr. Yarosl. Gos. Ped. Inst. <u>1982</u> , 199, 26.			
(3) Water; H ₂ O; [7732-18-5]				
VARIABLES:	PREPARED BY:			
One temperature: 298 K Composition	E.S. Gryzlova			

Solubility system $Ca(ClO_4)_2-Lu(ClO_4)_3-H_2O$ at $25^{\circ}C$:

	Lig	uid phase	composi	tion		Solid
mas	s %	mol	% ^a	molality	^a /mol kg ⁻¹	phase
(1)	(2)	(1)	(2)	(1)	(2)	
65.90	-	12.716	-	8.087	-	$Ca(ClO_4)_2.4H_2O$
52.61	12.45	10.071	1.203	6.301	0.753	
42.82	23.45	8.528	2.358	5.312	1.469	**
37.07	28.05	7.213	2.756	4.447	1.699	**
27.40	39.17	5.585	4.031	3.430	2.475	$Ca(ClO_4)_2.4H_2O$
						+ $Lu(ClO_4)_3.9H_2O$
28.00	39.67	5.871	4.200	3.624	2.592	tt 11
24.73	41.69	5.034	4.285	3.082	2.623	Lu(ClO ₄)3.9H ₂ O
9.20	56.78	1.881	5.861	1.132	3.526	7,10 2
-	64.56	-	6.484	-	3.849	**

^a Compiler's calculations.

ŧ.

AUXILIARY INFORMATION

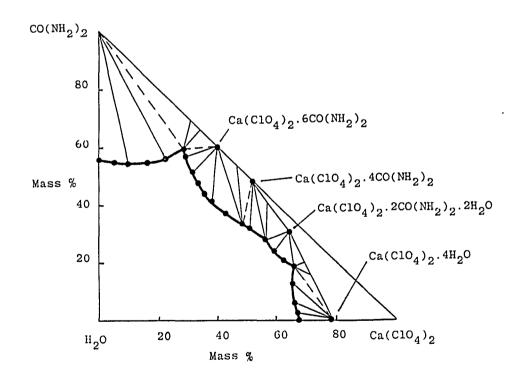
METHOD/APPARATUS/PROCEDURE: Details of saturation method not given. Liquid phases and solid re- sidues were analysed; perchlorate by	SOURCE AND PURITY OF MATERIALS: Not stated.		
gravimetry, using nitron precipitat- ion, and lutetium by titration with Trilon B.	ESTIMATED ERROR: Not stated.		
	REFERENCES:		

	Jaicium Perchiorate
COMPONENTS: (1) Calcium perchlorate; Ca(C [13477-36-6] (2) Carbamide (<i>urea</i>); CH ₄ N ₂ O; [57-13-6] (3) Water; H ₂ O; [7732-18-5]	ORIGINAL MEASUREMENTS: 2akharova, V.P.; Runov, N.N. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1973</u> , 120, 89-94.
VARIABLES: One temperature: 298 K Composition	PREPARED BY: N.A. Kozyreva
EXPERIMENTAL VALUES: Solubility system Ca(ClO ₄) ₂	
Liquid phase com	position Solid molality ^a /mol kg ⁻¹ phase ^b
mass % mol % a (1) (2) (1) (
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.46- 19.97 A $.09$ 1.241 23.28 A $.22$ 7.269 63.33 A + B $.41$ 6.149 35.30 B $.56$ 6.799 27.42 B $.74$ 13.077 34.93 B + C $.82$ 14.659 34.27 C $.09$ 15.452 33.54 C $.16$ 16.450 32.57 C + D $.24$ 14.425 24.88 D $.92$ 14.663 23.30 D $.44$ 16.544 23.31 D + E $.47$ 11.381 11.32 E
^a Compiler's calculations. ^b A = CO(NH ₂) ₂ C = Ca(ClO ₄) ₂ .4CO(NH ₂) ₂ E = Ca(ClO ₄) ₂ .4H ₂ O	$B = Ca(ClO_4)_2.6CO(NH_2)_2$ $D = Ca(ClO_4)_2.2CO(NH_2)_2.2H_2O$
AUX	ILIARY INFORMATION
METHOD/APPARATUS/PROCEDURE: Details of saturation method given. Ca ²⁺ was determined by lexometric titration with the	y comp- were of chemically pure grade.

ESTIMATED ERROR: Not stated.

REFERENCES:

cator chrome blue black; carbamide by Kjeldahl's method. Thermographi-


cal and optical crystallography

the solid phases.

methods were used in the study of

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Calcium perchlorate; Ca(ClO ₄) ₂ ;	Zakharova, V.P.; Runov, N.N.
[13477-36-6]	
(2) Carbamide (<i>urea</i>); CH ₄ N ₂ O;	Uch. Zap. Yarosl. Gos. Ped. Inst.
[57-13-6]	<u>1973</u> , <i>120</i> , 89-94.
(3) Water; H ₂ O; [7732-18-5]	

COMMENTS AND/OR ADDITIONAL DATA : The solubility isotherm is shown in the diagram given below. When carbamide content in the saturated solutions reached 22.03-28.40 mass %, the incongruently soluble compound $Ca(ClO_4)_2.2CO(NH_2)_2.2H_2O$ crystallized. A further increase in the carbamide content led to the formation of the compound $Ca(ClO_4)_2.4CO(NH_2)_2$. Above 33.71 mass % of carbamide, the congruently soluble compound $Ca(ClO_4)_2.6CO(NH_2)_2$ precipitated. The branches of the isotherm which corresponds to the crystallization of $Ca(ClO_4)_2.4H_2O$ and $CO(NH_2)_2$ are also indicated.

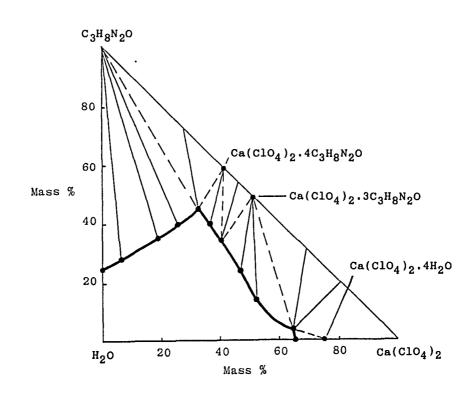
COMPONENTS: (1) Calcium perchlorate; $Ca(ClO_4)_2$; [13477-36-6] (2) Dimethylcarbamide (<i>dimethylurea</i> $C_3H_8N_2O$; [1320-50-9] (3) Water; H_2O ; [7732-18-5]	ORIGINAL MEASUREMENTS: Karnaukhov, A.S.; Vasil'eva, S.I.; Rylenkova, I.N. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1978</u> , 169, 22-6. Vasil'eva, S.I; Rylenkova, I.N.		
	Fizkhim. Issled. Neorg. Org. Soed. <u>1979</u> , 7-15.		
VARIABLES: One temperature: 298 K. Composition.	PREPARED BY: N.A. Kozyreva; C.C. Ho		
EXPERIMENTAL VALUES: Solubility in the system Ca(ClO ₄) ₂ -	C ₃ H ₈ N ₂ O-H ₂ O at 25° C :		
Liquid phase comp	osition Solid		
mass % mol % ^a	$molality^{a}/mol kg^{-1}$ phase		
(1) (2) (1) (2)	(1) (2)		
- 25.29 - 6.473			
6.26 27.94 0.656 7.936			
11.08 31.22 1.287 9.833			
13.42 32.02 1.629 10.54			
20.37 35.94 2.921 13.98			
25.78 37.98 4.229 16.90			
27.23 39.63 4.741 18.72			
34.48 46.81 8.417 30.99	7.711 28.39 $C_{3}H_{8}N_{2}O + C_{2}(C1O_{4})_{2}.4C_{3}H_{8}N_{2}O$		
AUXILIA	RY INFORMATION		
METHOD/APPARATUS/PROCEDURE: Isothermal method. Details of satu- ration were not given. Ca ²⁺ was det ermined by titrating with Trilon B at pH 10-11 with the indicator chro blue black; dimethylcarbamide by th Kjeldahl method. The density, visco sity and refractive index of satu- rated solutions were measured.	SOURCE AND PURITY OF MATERIALS: Calcium perchlorate was prepared by reacting CaO with perchloric acid. Asymmetric dimethylcarbamide (chemically pure grade) was used. ESTIMATED ERROR: Not stated. REFERENCES:		
 	(continued next page)		

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium perchlorate; Ca(ClO₄)₂; [13477-36-6]</pre>	Karnaukhov, A.S.; Vasil'eva, S.I.; Rylenkova, I.N.
(2) Dimethylcarbamide (<i>dimethylurea</i>);	
C ₃ H ₈ N ₂ O; [1320-50-9]	Uch. Zap. Yarosl. Gos. Ped. Inst.
(3) Water; H ₂ O; [7732-18-5]	<u>1978</u> , <i>169</i> , 22-6.
	Vasil'eva, S.I; Rylenkova, I.N.
	Fizkhim. Issled. Neorg. Org. Soed. <u>1979</u> , 7-15.

1

l

Solubility in the system $Ca(ClO_4)_2 - C_3H_8N_2O - H_2O$ at 25° C :


		Liquid ph	ase comp	position		Solid
mas	s %	mol	% ^a	molalit	y ^a /mol k	g ⁻¹ phase
(1)	(2)	(1)	(2)	(1)	(2)	
35.21	42.83	7.954	26.24	6.709	22.14	Ca(ClO ₄) ₂ .4C ₃ H ₈ N ₂ O
35.53	40.21	7.618	23.38	6.128	18.81	**
36.53	40.21	8.044	24.01	6.572	19.62	**
37.82	37.87	8.168	22.18	6.510	17.68	"
38.91	33.11	7.784	17.97	5.819	13.43	11
39.38	32.45	7.859	17.56	5.850	13.07	$Ca(ClO_4)_2.4C_{3}H_8N_2O$ + Ca(ClO_4)_2.3C_3H_8N_2O
39.73	31.59	7.854	16.94	5.797	12.50	$Ca(ClO_4)_2.3C_3H_8N_2O$
41.83	29,56		15.99	6.118	11.73	4°2 002 "
42.17	27.34	8.097	14.24	5.787	10.18	"
44.72	22,26	8.234	11.12	5.667	7.651	"
46.28	19.40	8.351	9.495	5.643	6.415	"
48.02	14.21	8.172	6.559	5.320	4.270	11
51.50	9.17	8.611	4.16	5.479	2.65	11
62.82	3.24	12.00	1.68	7.745	1.08	"
63.94	2.87	12.49	1.52	8.061	0.981	$Ca(ClO_4)_2.3C_3H_8N_2O$ + Ca(ClO_4)_2.4H_2O
64.36	2.31	12.55	1.22	8.080	0.787	11
64.49	2.76	12.73	1.48	8.240	0.96	11
64.95	3.48	13.17	1.91	8.609	1.25	11
65.00	2.37	12.89	1.27	8.336	0.824	**
65.64	-	12.59	-	7.994	-	$Ca(ClO_4)_2.4H_2O$

^a Compiler's calculations.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium perchlorate; Ca(ClO₄)₂; [13477-36-6]</pre>	Karnaukhov, A.S.; Vasil'eva, S.I.; Rylenkova, I.N.
<pre>(2) Dimethylcarbamide (dimethylurea); C₃H₈N₂O; [1320-50-9] (3) Water; H₂O; [7732-18-5]</pre>	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1978</u> , 169, 22-6.
	Vasil'eva, S.I; Rylenkova, I.N.
	Fizkhim. Issled. Neorg. Org. Soed. <u>1979</u> , 7-15.
EXPERIMENTAL VALUES: (continued)	L

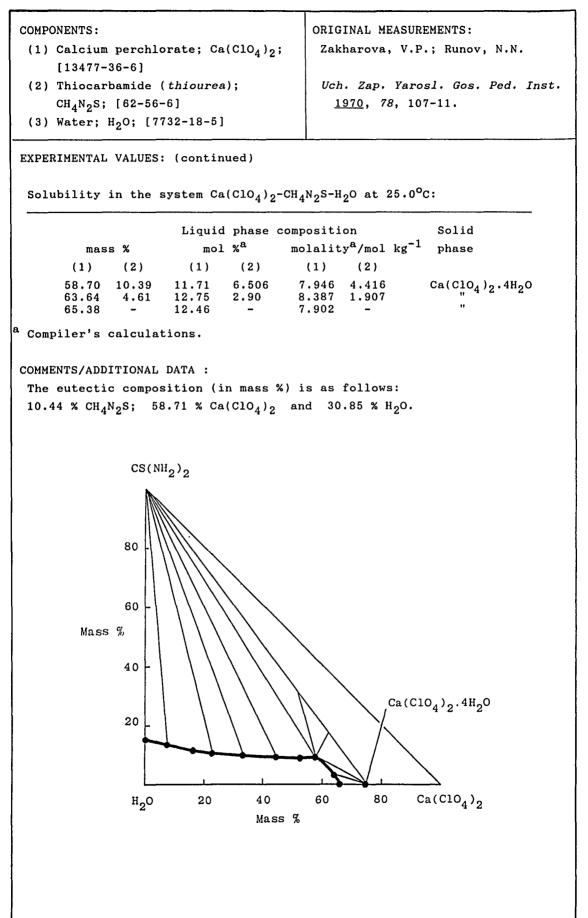
COMMENTS/ADDITIONAL DATA:

The solubility isotherm given below shows the branches of crystallization of $Ca(ClO_4)_2.4H_2O$; $C_3H_8N_2O$; $Ca(ClO_4)_2.4C_3H_8N_2O$ and $Ca(ClO_4)_2.3C_3H_8N_2O$.

COMPONENTS: (1) Calcium perchlorate; Ca(ClO ₄) ₂ ; [13477-36-6]	ORIGINAL MEASUREMENTS: Zakharova, V.P.; Runov, N.N.				
 (2) Thiocarbamide (<i>thiourea</i>); CH₄N₂S; [62-56-6] (3) Water; H₂O; [7732-18-5] 	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1970</u> , 78, 107-11.				
VARIABLES: One temperature: 298 K. Composition.	PREPARED BY: I.S. Bodnya				

Solubility in the system $Ca(ClO_4)_2$ -CH₄N₂S-H₂O at 25.0 °C:

	L.	iquid pha	ise comp	osition		Solid
mas	s %	mol	. % ^a	molalit	.y ^a /mol	kg ⁻¹ phase
(1)	(2)	(1)	(2)	(1)	(2)	
-	14.26	-	3.79	-	2.185	CH4 ^N 2S
7.44	13.38	0.676	3.819	0.393	2.220	4,,2
5.34	12.45	1.515	3.861	0.889	2.265	**
2.36	11.51	2.390	3.862	1.415	2.287	11
2.65	10.08	3,962	3.841	2.386	2.312	**
4.95	9.73	6.643	4.51	4.150	2.820	11
1.40	9.81	8.613	5.16	5.545	3.322	11
7.18			5.96		3.982	**
8.70			6.544	7.959	4.444	**
8.71	10.44		6.546	7.963	4.446	CH4N2S +
						$Ca(ClO_4)_2.4H_2O^2$
8.74	10.42	11.73	6.535	7.970	4.439	"


AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: Isothermal method. Details of saturation method were not given. Ca²⁺ was determined by titrating with Trilon B; thiocarbamide was determined by the Kjeldahl method. The densities, viscosities and electrical conductivities of the saturated solutions were measured. SOURCE AND PURITY OF MATERIALS: Calcium perchlorate was prepared by reacting CaCO₃ with perchloric acid; the salt was then recrystallized twice. Chemically pure thiocarbamide was further purified by recrystallization.

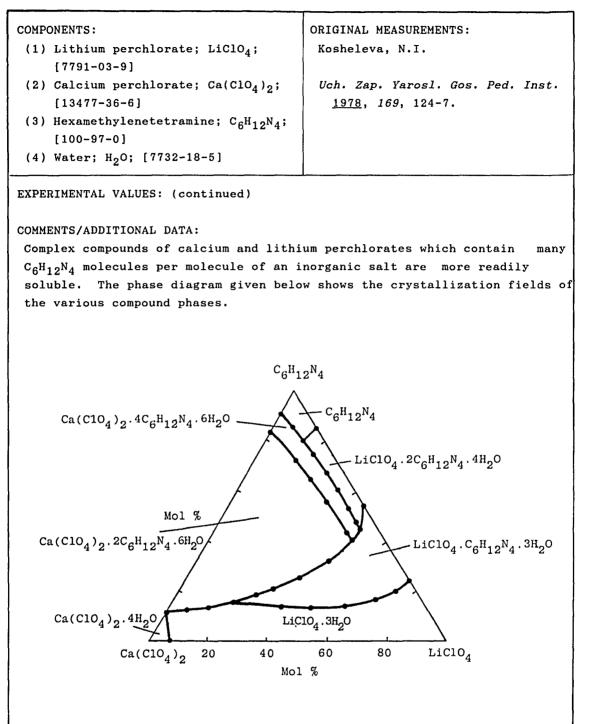
ESTIMATED ERROR: Temp. precision: <u>+</u> 0.1^oC

REFERENCES:

161

COMPONENTS: (1) Calcium perchlorate; Ca(ClO ₄) ₂ ; [13477-36-6]	ORIGINAL MEASUREMENTS: Karnaukhov, A.S.; Kosheleva, N.I.
<pre>(2) Hexamethylenetetramine; C₆H₁₂N₄; [100-97-0] (3) Water; H₂O; [7732-18-5]</pre>	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1975</u> , 135, 60-4.
VARIABLES:	PREPARED BY:
One temperature: 298 K. Composition.	I.S. Bodnya

Solubility in the system $Ca(ClO_4)_2 - C_6H_{12}N_4 - H_2O$ at 25° C :


		L:	iquid phas	se composi	ition		olid ^b			
	mas	s %	mol	% ^a	molality	y ^a /mol kg ⁻¹	l pl	hase		
	(1)	(2)	(1)	(2)	(1)	(2)				
	_	46.50	-	10.05	-	6.200		A		
	4.22	44.56	0.556	10.00	0.345	6.206		A		
	5.41	44.20	0.722	10.06	0.449	6.257	A	+ B		
	7.05	44.20	0.967	10.33	0.605	6.467		В		
	9.80	39.70	1.31	9.055	0.812	5.608		В		
	10.00	39.15	1.331	8.883	0.823	5.492	В	+ C		
	10.70	36.90	1.392	8.183	0.854	5.023		с		
	15.64	24.35	1.833	4.865	1.091	2.894		С		
	61.25	5.95	12.09	2.00	7.814	1.294		с		
	64.30	3.82	13.02	1.32	8.440	0.855		D		
	65.50	-	12.52	-	7.944	-		D		
b A	^a Compiler's calculations. ^b A = C ₆ H ₁₂ N ₄ ; B = Ca(ClO ₄) ₂ .3C ₆ H ₁₂ N ₄ ; C = Ca(ClO ₄) ₂ .2C ₆ H ₁₂ N ₄ .6H ₂ O; D = Ca(ClO ₄) ₂ .4H ₂ O									
	AUXILIARY INFORMATION									
Isot	hermal.		OCEDURE: prium was a ²⁺ was d		SOURCE AND PURITY OF MATERIALS: Not stated.					
by t	itrating	g with	EDTA; C ₆	^H 12 ^N 4	ESTIMA	ESTIMATED ERROR: Not stated.				
					REFERE	REFERENCES: (continued next page)				

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Calcium perchlorate; Ca(ClO ₄) ₂ ;	Karnaukhov, A.S.; Kosheleva, N.I.
[13477-36-6]	
(2) Hexamethylenetetramine; $C_6H_{12}N_4$;	Uch. Zap. Yarosl. Gos. Ped. Inst.
[100-97-0]	<u>1975</u> , <i>135</i> , 60-4.
(3) Water; H ₂ O; [7732-18-5]	
EXPERIMENTAL VALUES: (continued)	
COMMENTS/ADDITIONAL DATA:	
mi i halidiki di kha a haa ƙwa ha	
The solubility isotherm shows four br Ca(ClO ₄) ₂ .4H ₂ O, Ca(ClO ₄) ₂ .2C ₆ H ₁₂ N ₄ .6H ₂	
The two transition points were (i) 4.8	
$C_{6}H_{12}N_{4}$ and 50.77 mass % $H_{2}O$; (ii) 10.	}
$C_6H_{12}N_4$ and 52.40 mass % H_2O respectiv	
The eutectic point (mass %) : 64.30 Ca	(Cl0 ₄) ₂ ,
3.81 C ₆	
$31.89 H_2$	
The compound $Ca(ClO_4)_2.3C_6H_{12}N_4$ which 66.20 mass % $C_6H_{12}N_4$ is incongruent.	
whose composition is 38.10 mass % Ca(
congruently soluble.	0.12.4
$C_6H_{12}N_4$	
80	
$\left \left \right \right \left \right \right \left \left \right \right \right \left \left $	^{3C} 6 ^H 12 ^N 4
60 - 1	
Mass %	a(ClO ₄) ₂ .2C ₆ H ₁₂ N ₄ .6H ₂ O
40	
	\mathbf{i}
20-	$Ca(ClO_4)_2.4H_2O$
4	$60 \qquad 80 \qquad Ca(ClO_4)_2$
Mass %	

COMPONENTS: (1) Lithium perchlorate; LiClO ₄ ; [7791-03-9]	ORIGINAL MEASUREMENTS: Kosheleva, N.I.
(2) Calcium perchlorate; $Ca(ClO_4)_2$; [13477-36-6] (3) Hexamethylenetetramine; $C_6H_{12}N_4$; [100-97-0] (4) Water; H_2O ; [7732-18-5]	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1978</u> , 169, 124-7.
VARIABLES: One temperature: 298 K. Composition.	PREPARED BY: I.S. Bodnya

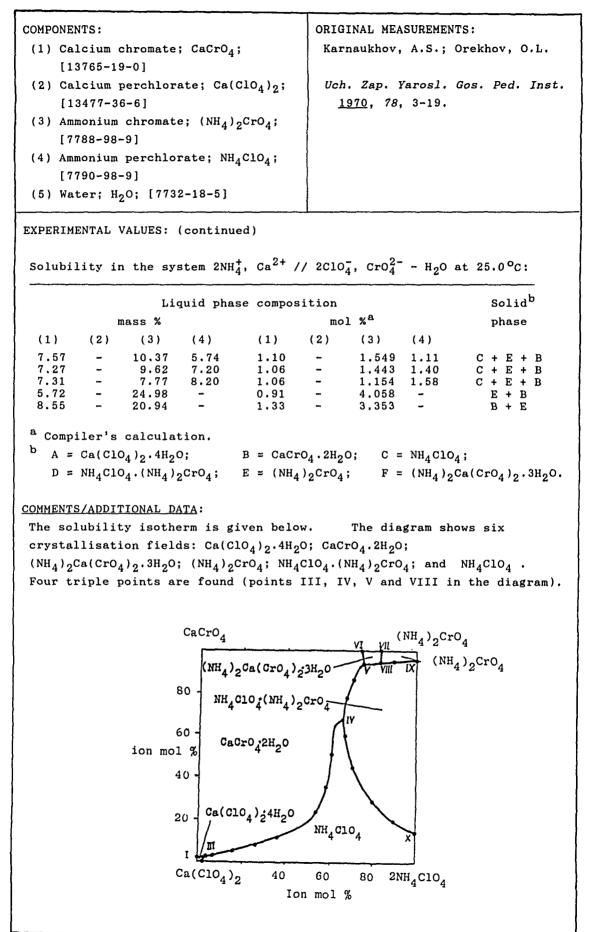
Solubility in the system ${\rm LiClO}_4-{\rm Ca(ClO}_4)_2-{\rm C}_6{\rm H}_{12}{\rm N}_4-{\rm H}_2{\rm O}$ at 25° C :

		Liqu	id phase	e composi	tion				Solid ^b phase
	mass %			mol % ^a		molali	ty ^a /mol	kg ⁻¹	
(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)	
-	5.41	44.20	-	0.722	10.06	-	0.449	6.257	A+B
-	10.44	39.16	-	1.400	8.951	-	0.867	5.542	B+C
-	64.30	3.82	-	13.02	1.32	-	8.440	0.855	C+D
1.11	63.35	-	0.46	11.79	-	0.29	7.459	-	E+F
33.26	-	10.32	8.886	-	2.093	5.541	-	1.305	F∔G
18.10	-	35.50	5.673	-	8.444	3.667	-	5.458	G+H
6.24		48.10	2.00	-	11.69	1.285	-	7.514	H+A
5.10	3.70	41.80	1.54	0.50	9.607	0.970	0.31	6.036	A+B+H
19.18	20.29	26,85	7.750	3.650	8.233	5.353	2.521	5.687	B+H+G
21.31	4.89	21.56	6.117	0.625	4.697	3.834	0.392	2.944	B+C+G
9.50	54.45	8.01	4.62	11.80	2.96	3.18	8.126	2.04	C+G+F
	64.45	-	1.75	13.06	_	1 14	8.507	_	E+F+C
		calculati		10.00	-	1,14	8.507	-	ETTTC
a Comp b A = D =	oiler's o C ₆ H ₁₂ N Ca(ClO ₂		ions. a(ClO ₄) ₂ ; E = Ca	.4C ₆ H ₁₂ N (ClO ₄) ₂ .	4.6H ₂ O; 4H ₂ O; F	C = Ca(= LiClO	сіо ₄) ₂ . 9 ₄ .3н ₂ 0;		
a Comp b A = D =	oiler's o C ₆ H ₁₂ N Ca(ClO ₂	$calculat:$ $a_{4}; B = Ca$ $a_{4}, b_{2}, 6H_{2}O;$	ions. $(ClO_4)_2$; E = Ca .3H ₂ O; H	.4C ₆ H ₁₂ N (ClO ₄) ₂ .	4.6 ^{H2O;} 4H2O; F 4.2C6 ^H 12	C = Ca(= LiClC N ₄ .4H ₂ O	сіо ₄) ₂ . 9 ₄ .3н ₂ 0;		
^a Comp b A = D = G =	Diler's of C6 ^H 12 ^N 2 Ca(ClO2 LiClO4	$calculat:$ $a_{4}; B = Ca$ $a_{4}, b_{2}, 6H_{2}O;$	ions. $a(ClO_4)_2$; E = Ca $3H_2O$; H A	.4C ₆ H ₁₂ N (ClO ₄) ₂ . = LiClO	4.6H ₂ O; 4H ₂ O; F 4.2C ₆ H ₁₂ INFORMA	$C = Ca($ $= LiClO$ $N_4 \cdot 4H_2O$ TION	сіо ₄) ₂ . 9 ₄ .3н ₂ 0;	2C ₆ H ₁₂ I	№ ₄ .6H ₂ O
a Comp b A = D = G =	oiler's of C ₆ H ₁₂ N ₂ Ca(ClO ₂ LiClO ₄ APPARATU	calculat: $_{4}; B = Ce$ $_{4})_{2}.6H_{2}O;$ $.C_{6}H_{12}N_{4}.$	ions. $a(ClO_4)_2$; E = Ca .3H ₂ O; H A DURE:	.4C ₆ H ₁₂ N (ClO ₄) ₂ . = LiClO UXILIARY	4.6H ₂ O; 4H ₂ O; F 4.2C ₆ H ₁₂ INFORMA SOURCE	$C = Ca($ $= LiClO$ $N_4 \cdot 4H_2O$ TION	c10 ₄) ₂ . 4.3H ₂ O;	2C ₆ H ₁₂ I	№ ₄ .6H ₂ O
A Comp b A = D = G = ETHOD/ Isothe	APPARATU	calculat: $_{4}$; B = Ca $_{4}$) ₂ .6H ₂ O; .C ₆ H ₁₂ N ₄ . US/PROCEE	tions. $a(ClO_4)_2$; E = Ca $3H_2O$; H A DURE: cails of	.4C ₆ H ₁₂ N (ClO ₄) ₂ . = LiClO UXILIARY	4.6H ₂ O; 4H ₂ O; F 4.2C ₆ H ₁₂ INFORMA SOURCE	$C = Ca($ $= LiClO$ $N_4 \cdot 4H_2O$ TION AND PU	c10 ₄) ₂ . 4.3H ₂ O;	2C ₆ H ₁₂ I	№ ₄ .6H ₂ O
a Comp b A = D = G = ETHOD/ Isothe ration	APPARATU APPARATU	calculat: 4; B = Ca 4)2.6H2O; $C_6H_{12}N_4$. US/PROCEE thod. Det	ions. $a(ClO_4)_2$; E = Ca $3H_2O$; H A DURE: cails of c given.	$\begin{array}{r} .4C_{6}H_{12}N\\ (ClO_{4})_{2}.\\ = LiClO\\ \hline\\ UXILIARY\\ \\ satu- \end{array}$	4.6H2O; 4H2O; F 4.2C6H12 INFORMA SOURCE Not s	$C = Ca($ $= LiClO$ $N_4 \cdot 4H_2O$ TION AND PU	C10 ₄) ₂ . 9 ₄ .3H ₂ O;	2C ₆ H ₁₂ I	№ ₄ .6H ₂ O
^a Comp b A = D = G = ETHOD/ Isothe ration Roozeb	APPARATU APPARATU method	calculat: 4; B = Ca 4)2.6H ₂ O; C ₆ H ₁₂ N ₄ . US/PROCENT thod. Det were not	ions. $a(ClO_4)_2$; E = Ca $3H_2O$; H A DURE: cails of ; given. ; le was	$\begin{array}{r} .4C_{6}H_{12}N\\ (ClO_{4})_{2}.\\ = LiClO\\ \hline\\ UXILIARY\\ \\ satu- \end{array}$	$4.6H_2O;$ $4H_2O;$ $4.2C_6H_{12}$ INFORMA SOURCE Not s ESTIMA	$C = Ca($ $= LiClO$ $N_4 \cdot 4H_2O$ TION AND PU tated.	C10 ₄) ₂ . 9 ₄ .3H ₂ O;	2C ₆ H ₁₂ I	№ ₄ .6H ₂ O
a Comp b A = D = G = ETHOD/ Isothe ration Roozeb	APPARATU APPARATU method	calculat: 4; B = Ca 4)2.6H2O; $C_6H_{12}N_4$. US/PROCENT thod. Det were not os triang	ions. $a(ClO_4)_2$; E = Ca $3H_2O$; H A DURE: cails of ; given. ; le was	$\begin{array}{r} .4C_{6}H_{12}N\\ (ClO_{4})_{2}.\\ = LiClO\\ \hline\\ UXILIARY\\ \\ satu- \end{array}$	$4.6H_2O;$ $4H_2O;$ $4.2C_6H_{12}$ INFORMA SOURCE Not s ESTIMA	$C = Ca($ $= LiClO$ $N_4 \cdot 4H_2O$ TION AND PU tated. TED ERR tated.	C10 ₄) ₂ . 9 ₄ .3H ₂ O;	2C ₆ H ₁₂ I	№ ₄ .6H ₂ O

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Calcium chromate; CaCrO ₄ ;	Karnaukhov, A.S.; Orekhov, O.L.
[13765-19-0]	
(2) Calcium perchlorate; Ca(ClO ₄) ₂ ;	Uch. Zap. Yarosl. Gos. Ped. Inst.
[13477-36-6]	<u>1970</u> , 78, 3-19.
(3) Ammonium chromate; (NH ₄) ₂ CrO ₄ ;	
[7788-98-9]	
(4) Ammonium perchlorate; NH ₄ ClO ₄ ;	
[7790-98-9]	
(5) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
One temperature: 298.2 K	N.A. Kozyreva
Composition.	

Solubility in the system 2NH_4^+, Ca²⁺ // 2ClO_4^-, CrO_4^{2-} - H_2O at 25.0 °C:

Liquid phase composition							Solid ^b	
	m	ass %			mol	% ^a		phase
(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	
0.10	64.15	-	-	0.03	11.91	-	-	A + B
-	45.37	0.39	0.85	-	6.002	0.08	0.23	A + B + C
-	54.89	-	0.67	-	8.500	-	0.21	A + C
-	37.22	0.59	2.14		4.436	0.11	0.52	B + C
-	31.70	0.65	3.08	-	3.540	0.11	0.70	B + C
-	21.54	1.75	4.98	-	2.185	0.28	1.03	B + C
-	17.14	2.35	7.26	-	1.702	0.37	1.47	B + C
-	15.34	3.17	7.43	-	1.507	0.49	1.48	B + C
-	10.07	6,96	8.04	-	0.976	1.06	1.59	B + C
5.80	-	3.23	15.52	0.85	-	0.49	3.017	B + C
7.36	-	8.73	10.65	1.11	-	1.35	2.127	B + C + D
-	-	3.78	17.45	-	-	0.55	3.267	C + E
3.68	-	3.15	16.47	0.53	-	0.47	3.156	D + C
6.21	-	5.32	11.41	0.89	-	0.79	2.183	D + C
7.21	-	5.62	11.17	1.05	-	0.84	2.162	D + C
7.25	-	7.59	11.64	1.09	-	1.17	2.317	D + C
-	-	25.55	0.91	-	-	3.946	0.182	E + C
4.98	-	23.35	1.36	0.78	-	3.745	0.282	E + D
3.93	-	23.59	1.88	0.61	-	3.770	0.389	F + C + E
6,99	-	19.32	2.66	1.08		3.071	0.547	F + C + E + B


AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Isothermal method. Details of saturation method were not given. Ca^{2+} was determined by titrating with Trilon B at pH 10-11 with the indicator chrome blue black; NH_4^+ by distilling off NH_3 into H_3BO_3 solution and then titrating with $0.1M H_2SO_4$; CrO_4^{2-} iodiometrically; ClO_4^- was determined by difference. SOURCE AND PURITY OF MATERIALS: Not stated.

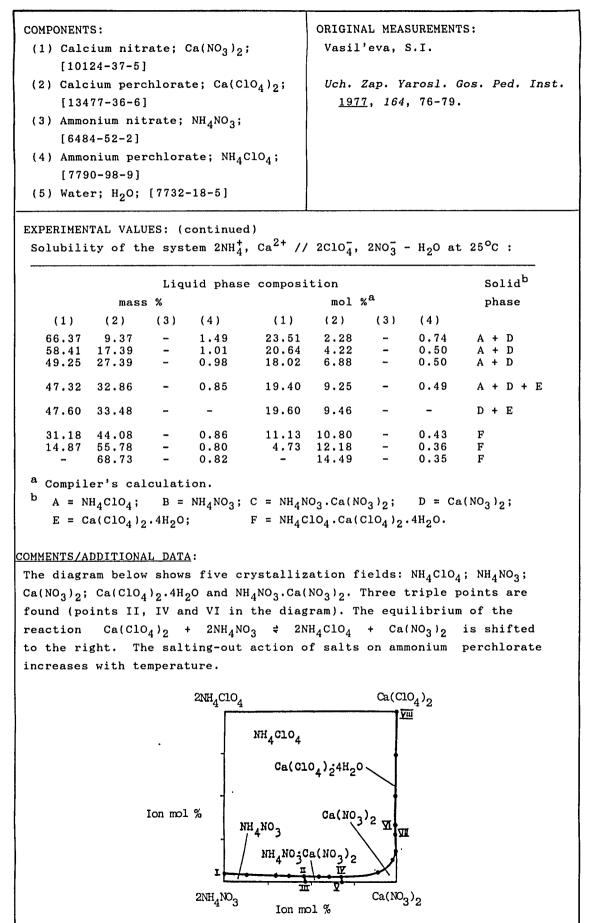
ESTIMATED ERROR: $\pm 0.1^{\circ}C$ in temperature.

REFERENCES:

COMPONENTS: (1) Calcium nitrate; $Ca(NO_3)_2$; [10124-37-5] (2) Calcium perchlorate; $Ca(ClO_4)_2$; [13477-36-6] (3) Ammonium nitrate; NH_4NO_3 ; [6484-52-2] (4) Ammonium perchlorate; NH_4ClO_4 ; [7790-98-9] (5) Water; H_2O ; [7732-18-5]	ORIGINAL MEASUREMENTS: Vasil'èva, S.I. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1977</u> , 164, 76-79.
VARIABLES: One temperature: 298 K. Composition.	PREPARED BY: I.S. Bodnya

Solubility in the system $2NH_4^+$, Ca^{2+} // $2ClO_4^-$, $2NO_3^-$ - H_2O at $25^{\circ}C$:

		Liqu	id phase	e composit	cion			Solid ^b
	ma	ss %			mol	% ^a		phase
(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	
-	-	74.83	4.23	-	-	43.82	1.69	A + B
10.18	-	68.23	3.68	3.20	-	43.94	1.61	A + B
25.37	-	56.49	3.01	8.96	-	40.89	1.48	A + B
31.75	-	51.96	3.28	12.15	-	40.76	1.75	A + B
41.18	-	46.21	3.13	18.17	-	41.80	1.93	A + B + C
42.35	-	47.58	-	18.29	-	42.11	-	B + C
60.98	-	26.29	3.28	29.67	-	26.22	2.23	A + D + C
60.94	-	27.86	-	27.69	-	25.95	-	D + C
71.29	-	8.19	3.92	29.13	-	6.86	2.24	A + D
47.67	-	38.51	3.16	20.90	-	34.61	1.93	A + C
54.12	-	31.18	3.15	23.77	-	28.08	1.93	A + C


METHOD/APPARATUS/PROCEDURE:

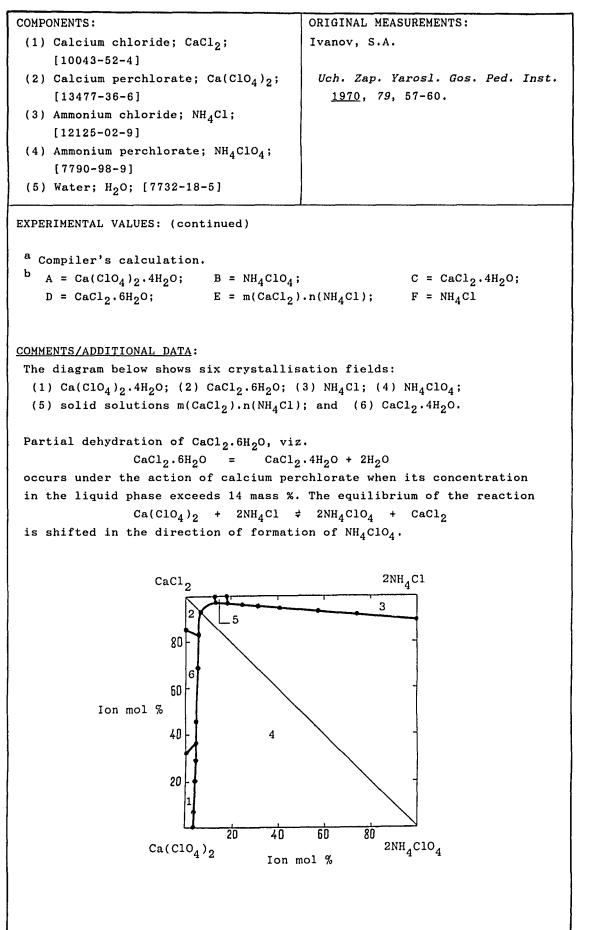
Isothermal method. Details of saturation method were not given. Ca^{2+} was determined by titrating with Trilon B at pH 10-11 with the indicator chrome blue black; NH4 by distilling off NH3 into H3BO3 solution and then titrating with $0.1M H_2SO_4$; NO_3 by Devarda's method; ClO_4^- was determined by difference. A Janecke diagram was used for the graphical representation.

AUXILIARY INFORMATION

SOURCE AND PURITY OF MATERIALS: Calcium perchlorate was prepared by reacting CaCO3 with perchloric acid. Anhydrous calcium nitrate was obtained from tetrahydrate by heating at 100°C under vacuum. Ammonium salts were purified by recrystallization.

ESTIMATED ERROR: Not stated.

9	
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Calcium chloride; CaCl ₂ ;	Ivanov, S.A.
[10043-52-4]	
(2) Calcium perchlorate; Ca(ClO ₄) ₂ ;	Uch. Zap. Yarosl. Gos. Ped. Inst.
[13477-36-6]	<u>1970</u> , 79, 57-60.
(3) Ammonium chloride; NH ₄ Cl;	
[12125-02-9]	
(4) Ammonium perchlorate; NH ₄ ClO ₄ ;	
[7790-98-9]	
(5) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
One temperature: 298 K.	N.A. Kozyreva
Composition.	


Solubility in the system $2NH_4^+$, Ca^{2+} // $2ClO_4^-$, $2Cl^- - H_2O$ at $25^{\circ}C$:

-			L:	iquid pł	ase compo	sition				Sol	id ^b	
		mas	s %			mol	% ^a			phas	se	
	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)				
	-	54.89	-	0.67	-	8.50	-	0.21		A +		
I	1.28	53.93	~	0.66	0.43	8.382	-	0.21		A +	в	
ļ	4.42	51.03	~	0.85	1.48	7.949	-	0.27		A +	в	
I	7.35	47.74	-	0.60	2.43	7.316	-	0.19		A +	в	
ļ	11.23	49.08	-	0.69	4.08	8.290	-	0.24		A +	в	
ļ	14.75	49.25	-	-	5.69	8.817		-		A +	с	
	15.08	47.68	-	0.63	5.73	8.408	-	0.23	А	+ C	+ B	
l	19.39	41.53	-	0.91	7.06	7.021	-	0.31		A +	в	
l	30.67	25.44		1.55	10.06	3.876	-	0.48		A +	В	
ł	37.82	14.01	-	1.69	11.38	1.96	-	0.480		A +		
l	38.43	13.86	-	-		1.90	-	_		A +		
l	44.20	1.14	-	2.89		0.14	-	0.745		A +		
ļ		1.11	-	2.05	12.00	0114		01140		Ат	Б	
	45.81	-	5.23	-	12.79	-	3.03	-		D +	Е	
	41.62	-	5.52	0.26	11.03	-	3.03	0.065	А	+ E	+ B	
	35.05	-	5.72	-	8.51	-	2.88	-		E +	F	
							-					
	36.57	-	5.59	0.39	9.09	-	2.88	0.092		F +	в	
ĺ	30.27	-	6.76	1.24	7.11	-	3.294	0.275		F +		
	25.14	-	8,91	1.43	5.68	-	4.178	0.305		F +	_	
	20.06	-	12.32	2.61	4.47	-	5.698	0.550		F +	_	
	12.64	-		3.43	2.72	_	7.410	0.697		гт F+		
	6.60	-			1.41	_	9.253	1.05			-	
	-			5.21	1.41	-	9.253			F +	-	
4		-	26.48	5.50	-	-	11,400	1.08		F +	в	
										and the second se		

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: Isothermal method. Details of saturation method and chemical procedures were not given. SOURCE AND PURITY OF MATERIALS: Not stated.

ESTIMATED ERROR: Not stated.

COMPONENTS:	EVALUATOR:
(1) Strontium perchlorate; Sr(ClO ₄) ₂ ;	C.Y. Chan
[13450-97-0]	Department of Chemistry
(2) Water; H ₂ O; [7732-18-5]	University of Malaya
	Kuala Lumpur, Malaysia
	March, 1987

CRITICAL EVALUATION:

SOLUBILITY OF STRONTIUM PERCHLORATE IN WATER

Several reports of the solubility of $Sr(ClO_4)_2$ in water at 298 K were found and Table 1 summarizes these. Only two of these (1,2) gave an indication of the precision of their solubility analyses. It should be noted that, as seen in Table 1, certain values have been obtained from more than one compilation reference source and in these cases, the evaluator is of the opinion that the solubility determination had been carried out only once, i.e. by the co-author whose name was cited in all the sources referred to.

T/K	mass % Sr(ClO ₄) ₂	Source
298.15 ± 0.01	75.59 <u>+</u> 0.04 ^a	Willard and Smith (1)
298	75.52 ^b	Bogachev et al (3-5)
"	75.53 ^C	Karnaukhov and Zakharova (6)
"	75.53 ^b	Runov and Zakharova (7)
"	75.52 ^b	Runov and Novikov (8)
"	75.50 ^C	Ivanov (9)
**	75.12 ^{b,e}	Lilich and Dzhurinsky (10)
11	75.01 ^b	Guseva and Druzhinina (11); Druzhinina (12); Guseva and
		Golubkova (13)
298.15 <u>+</u> 0.02	74.85 <u>+</u> 0.04 ^d	Lilich et al (2)
298.2 <u>+</u> 0.1	74.32 ^b	Karnaukhov and Sudakova (14); Lepeshkov, Bogachev and Sudakova (15)

<u>Table 1.</u> Solubility of $Sr(ClO_4)_2$ in water.

^a Solid phase was reported to be a mixt. of the anhyd. salt and the hydrate crystallized from the satd sln; the authors suggested that the stable phase at 298 K was the dihydrate.

^b Reported solid phase was Sr(ClO₄)₂.4H₂O

c Reported solid phase was Sr(ClO₄)₂.2H₂O

d Reported solid phase was Sr(ClO₄)₂.3H₂O

e Evaluator's calculation.

(continued next page)

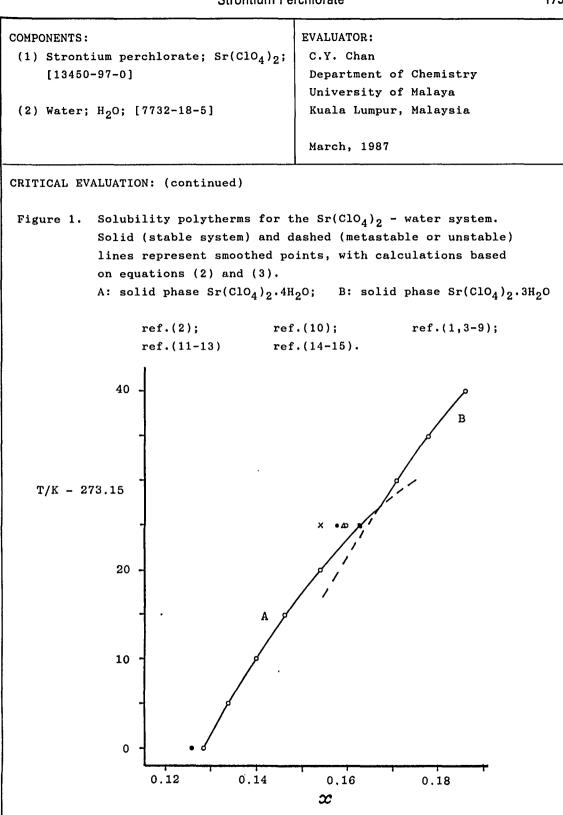
COMPONENTS:	EVALUATOR:
(1) Strontium perchlorate; Sr(ClO ₄) ₂ ;	C.Y. Chan
[13450-97-0]	Department of Chemistry
	University of Malaya
(2) Water; H ₂ O; [7732-18-5]	Kuala Lumpur, Malaysia
	March, 1987

The first six values in Table 1 give a mean value of 75.532 % with a standard deviation of 0.034 %, and these include Willard and Smith's data which appear to be the most precise of those reported here. The remaining four values are lower by 0.55 - 1.6 % of the mean value.

There is only one reported investigation (10) of the variation of solubility of strontium perchlorate in water over a range of temperatures though values at 273,15 K and 298.15 K were reported in (2). Lilich and Dzhurinsky (10) studied this system over the range 273 - 313K at 5K intervals. From their analyses of the solid phases in equilibrium with the saturated solutions at the various temperatures, they concluded that at 298K and below, the solid phase was $Sr(ClO_4)_2.4H_2O$ while at the higher temperatures studied up to 313K, the solid phase was $Sr(ClO_4)_2$.3H₂O. Based on the treatment described in (16) and in the INTRODUCTION to this volume, with the assumption that the terms involving variation of activity coefficients with solubility and temperature have the same form, equation (1) is used to fit Lilich and Dzhurinsky's data together with all the data given in Table 1 initially, and then selectively rejecting data until all the solubility values (mol fraction) are fitted to within $\pm 2s$ of the calculated value at each selected temperature, where s is the standard error defined by $s^2 = (x_{obs}, -x_{calc})^2/(N-3)$, N being the total number of data points.

$$F(x) = a(T/K)^{-1} + b \ln(T/K) + c$$
(1)

where $F(x) = \ln[x^{V}(1-x)^{n}/(1+(v-1)x)^{n+V}]$.


For $Sr(ClO_4)_2$, v=3, with n=4 for the tetrahydrate and n=3 for the trihydrate respectively. The best-fit equations are as follows:

for the tetrahydrate, (plot A, Figure 1),

$$\ln \left[x^{3} (1-x)^{4} / (1+2x)^{7} \right] = 11.297 - 1331 (T/K)^{-1} - 2.626 \ln (T/K)$$
(2)

for the trihydrate, (plot B, Figure 1),

 $\ln \left[x^3 (1-x)^3 / (1+2x)^6 \right] = -14.099 - 240.1 (T/K)^{-1} + 1.271 \ln (T/K)$ (3)

The value of s for plot A in Figure 1 is 0.07 mol %. Since only 3 data points are available for plot B, it is not meaningful to have a value for s. From equations (2) and (3), the temperature at which the solid phase

COMPONENTS:	EVALUATOR:
(1) Strontium perchlorate; Sr(ClO ₄) ₂ ;	C.Y. Chan
[13450-97-0]	Department of Chemistry
	University of Malaya
(2) Water; H ₂ O; [7732-18-5]	Kuala Lumpur, Malaysia
	March, 1987

transition between the tetrahydrate and the trihydrate occurs is calculated to be 299.94 K and the sat. solution at this point contains 16.65 mol % of $Sr(ClO_4)_2$.

Based on the above data analysis, the solubility data at 298K from (2,10,11,14) and the value at 273K from (2) are rejected. Table 2 gives the recommended and tentative smoothed values of the solubility of strontium perchlorate in water, calculated from equations (2) and (3) at selected temperatures.

<i>T/</i> K	solubility		status	solid phase	
	mol %	molality/mol kg ⁻¹			
273.15	12.82	8.17	recommended	$Sr(ClO_4)_2.4H_2O$	
278.15	13.37	8.57	11	**	
283.15	13.97	9.01	"	11	
288.15	14.63	9.51	"	"	
293.15	15.37	10.08	**	**	
298.15	16.26	10.78	11	11	
299.85	16.65	11.09	tentative	Sr(ClO ₄) ₂ .4H ₂ O	
				$sr(cio_4)_2.3H_2O$	
303.15	17.08	11.43	tentative	sr(ClO ₄) ₂ .3H ₂ O	
308.15	17.80	12.02	11	11	
313.15	18.62	12.70	11	tt	

<u>Table 2.</u> Recommended and tentative smoothed solubility data for $Sr(ClO_4)_2$ in water at selected temperatures.

.

COMPONENTS:	EVALUATOR:
(1) Strontium perchlorate; Sr(ClO ₄) ₂ ;	C.Y. Chan
[13450-97-0]	Department of Chemistry
	University of Malaya
(2) Water; H ₂ O; [7732-18-5]	Kuala Lumpur, Malaysia
	March, 1987

MULTICOMPONENT SYSTEMS

Aqueous Systems

Only two separate reports were found for each of the ternary systems at 298.2K, $Sr(ClO_4)_2$ -NH₄ClO₄-water and $Sr(ClO_4)_2$ -SrCl₂-water, which give data for the mutual solubilities of $Sr(ClO_4)_2$ and the other solute. These and their mean values are summarised in Table 3, and they should be considered at this stage as tentative values only.

It is not possible to carry out critical evaluations of the data compiled for the other multicomponent aqueous solubility systems of strontium perchlorate because only one publication exists for each one of them. In addition, insufficient experimental and analytical details were given in every one of these reports.

				Solub		
Reference		NH_4ClO_4)2	Sr(C10 ₄	
	mol kg ⁻¹	mol %	mass %	mol kg ⁻¹	mol %	mass %
(17)	0.414	0.622	1.19	10.59	15.92	74.32
(15)	0.391	0.592	1.162	10.19	15.42	73.31
(15)	0.387	0.588	1.159	10.02	15.21	73.62
	0.40	0.60	1.17	10.3	15.5	mean: 73.7 <u>+</u> 0.5
	<u>+</u> 0.01	<u>+</u> 0.02	<u>+</u> 0.02	<u>+</u> 0.3	± 0.4	<u>+</u> 0.5
-	SrC12.6H20	2.4H20 +	sr(ClO ₄)	lid phase = Solu	(B) : so	
Reference		SrCl ₂) ₂	Sr(C104	
	mol kg ⁻¹	mol %	mass %	mol kg ⁻¹	mol %	mass %
(14)	0.335	0.513	1.40	9.48	14.60	72.21
(14)	0.335	0.512	1.41	9.55	14.51	72.05
(15)	0.337	0.516	1.42	9.46	14.50	72.02
(10)						
(10)				9.50 ± 0.05		mean: 72.1

<u>Table 3.</u> Mutual solubilities at 298.2K in the systems: (A) $Sr(ClO_4)_2-NH_4ClO_4$ -water and (B) $Sr(ClO_4)_2-SrCl_2$ -water.

COMPONENTS: (1) Strontium perchlorate; Sr(ClO ₄) ₂ ; [13450-97-0] (2) Water; H ₂ O; [7732-18-5]	EVALUATOR: C.Y. Chan Department of Chemistry University of Malaya Kuala Lumpur, Malaysia
	March, 1987

Non-aqueous Systems

Data compiled for the solubilities of strontium perchlorate in various organic solvents (binary systems only) cannot be critically evaluated since only one reference source was found for each of these systems. However, the evaluator is of the opinion that the data reported by Willard and Smith (1) for the solubilities of $Sr(ClO_4)_2$ in aliphatic alcohols, ethyl acetate and acetone (see the relevant Compilations) can be tentatively accepted because, based on the information given by them regarding experimental procedures and analytical precision, it is apparent that their data had been obtained with great care.

<u>References</u>

- 1. Willard, H.H.; Smith, G.H. J. Am. Chem. Soc. <u>1923</u>, 45, 286.
- 2. Lilich, L.S.; Kurbanova, Z.I.; Kocheregin, S.B.; Chernykh, L.V. Zh. Neorg. Khim. <u>1971</u>, 16, 2268; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1971</u>, 16, 1210.
- Bogachev, A.V.; Ivanov, S.A. Uch. Zap. Yarosl. Gos. Ped. Inst. 1972, 103, 23.
- 4. Bogachev, A.V. Sb. Tr. Yarosl. Gos. Ped. Inst. 1973, 120, 31.
- 5. Bogachev, A.V.; Karnaukhov, A.S. Sb. Tr. Yarosl. Gos. Ped. Inst. 1978, 169, 31.
- Karnaukhov, A.S.; Zakharova, V.P. Uch. Zap. Yarosl. Gos. Ped. Inst. 1970, 79, 107.
- Runov, N.N.; Zakharova, V.P. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1972</u>, 103, 67.
- Runov, N.N.; Novikov, V.V. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1975</u>, 144, 37.
- 9. Ivanov, S.A. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1973</u>, 120, 20.
- 10. Lilich, L.S.; Dzhurinsky, B.F. Zh. Obshch. Khim. <u>1956</u>, 26, 1549.
- 11. Guseva, A.D.; Druzhinina, G.V. Sb. Tr. Yarosl. Gos. Ped. Inst. <u>1975</u>, 144, 81.
- 12. Druzhinina, G.V. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1972</u>, 103, 39.
- Guseva, A.D.; Golubkova, O.N. Sb. Tr. Yarosl. Ped. Inst. <u>1979</u>, 178, 3.

COMPONENTS:	EVALUATOR: C.Y. Chan
<pre>(1) Strontium perchlorate; Sr(ClO₄)₂; [13450-97-0]</pre>	Department of Chemistry
[13430-37-0]	University of Malaya
(2) Water; H ₂ O; [7732-18-5]	Kuala Lumpur, Malaysia
	March, 1987

References (continued)

- 14. Karnaukhov, A.S.; Sudakova, A.A. Uch. Zap. Yarosl. Gos. Ped. Inst. 1973, 120, 3.
- Lepeshkov, I.N.; Bogachev, A.V.; Sudakova, A.A. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1972</u>, 103, 28.
- 16. Cohen-Adad, R.; Saugier, M.T.; Said, J. *Rev. Chim. Miner.* <u>1973</u>, 10, 631.
- Lepeshkov, I.N.; Sudakova, A.A. Zh. Neorg. Khim. <u>1975</u>, 20, 559;
 Russ. J. Inorg. Chem. (Engl. Transl.) <u>1975</u>, 20, 312.
- 18. Druzhinina, G.V. Sb. Tr. Yarosl. Gos. Ped. Inst. <u>1979</u>, 178, 10.
- Bogachev, A.V.; Lepeshkov, I.N. Zh. Neorg. Khim. <u>1982</u>, 27, 1605; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1982</u>, 27, 907.
- 20. Dawson, L.R.; Berger, J.E.; Vaughn, J.W.; Eckstrom, H.C. J. Phys. Chem. <u>1963</u>, 67, 281.

	T			
COMPONENTS:	ORIGINAL MEASUREMENTS:			
<pre>(1) Strontium perchlorate; Sr(ClO₄)₂; [13450-97-0]</pre>	Lilich, L.S.; Dzhurinsky, B.F.			
(2) Water; H ₂ O; [7732-18-5]	Zh. Obshchei Khim. <u>1956</u> , 26,			
	1549-53; *J. General Chem.			
	U.S.S.R. (Engl. Transl.) <u>1956</u> , 26, 1733-7.			
VARIABLES:	PREPARED BY:			
Temperature/K: 273-313	K.H. Khoo			
EXPERIMENTAL VALUES:				
Solubility of Sr(ClO ₄) ₂ (s) in wat	er at various temperatures (T)			
T/ ^o C 0 5 10 15	20 25 30 35 40			
s/mol kg ⁻¹ 8.16 8.57 9.03 9.49				
Note: The solid phase is $Sr(ClO_4)_2$.4				
above this temperature, the sc	$\frac{1110}{2.3H_20}$			
AUXILIARY IN	FORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATEIALS:			
The salt was stirred with water in	Sr(ClO ₄) ₂ was prepared by satur- ating perchloric acid with SrO (analytically pure grade) and re- crystallized twice or thrice from			
a thermostat. Equilibrium was reached				
after continuous stirring for 1-4 h.				
Owing to the great tendency of the				
salt to form super-saturated solut-				
ions, equilibrium was approached	was not stated.			
from below. Strontium was determined by precipitation as sulfate [1]. The	ESTIMATED ERROR:			
composition of the solid phase was	Not stated.			
determined at the same time as the				
solubility by pressing a sample with				
filter paper between metal plates				
kept at about the temperature of the				
solution. In most cases, the excess				
of adsorbed water was 0-6 mol % of				
the total amount of water of crystal-				
lization.				
	REFERENCES:			
	1. Kolthoff, I.M.; Lundell, G.E.			
	Quantitative Analysis. <u>1948</u> , 772.			

 COMPONENTS: (1) Strontium perchlorate; Sr(ClO ₄) ₂ ; [13450-97-0]	ORIGINAL MEASUREMENTS: ; Willard, H.H.; Smith, G.F.		
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1923</u> , 45, 286-96.		
VARIABLES: One temperature: 298.15 K	PREPARED BY: C.Y. Chan		

Solubility^a of strontium perchlorate in water at 25.00°C :

mass %	g/100 cm ³	sln	mol %	mol dm ⁻³		sat. sln. ensity/g cm ⁻³
75.59	157.51		16.297 ^b	5.497 ^b	10.808 ^b	2.0837

- ^a The solid phase was a mixture of the anhydrous salt and its hydrate which was not analysed. The authors reported that when strontium perchlorate was crystallized at about 25°C the dihydrate was obtained. This observation is in error and the solid phase was probably $Sr(ClO_4)_2.4H_2O$.
- ^b Compiler's calculations.

AUXILIARY INFORMATION

	METHOD/APPARATUS/PROCEDURE:	SOURCE AND
	A sat. sln. of the salt was prepared	Hydrated (
	at a temperature slightly above 25 ⁰ C	twice-recr
	and sealed together with about 1 g of	nitrate and
	the anhydrous salt in a solubility	(ref.1).
	tube, capacity 18-20 cm ³ . This tube	by heating
	was then rotated end-over-end in the	wt. at 250
	thermostat bath at 25.00°C for 24-48h	
	and stood vertically to allow the	ESTIMATED E
l	solids to settle. Samples of the	Precision
	clear sat. sln. were then analysed	precision
	for solute content by an evaporation-	
	to-dryness method using Pt crucibles.	REFERENCES:
1	The salt was dried to constant wt. at	1. Willard
	250 [°] C in a current of air dried with	Soc. <u>1</u>
	P ₂ O ₅ . Duplicate soly determinations	
	were made, those analyses in which	
	chloride (from thermal decomposition)	
	was found present being rejected.	
		1

PURITY OF MATERIALS: 1) was prepared from ystallized strontium d purified $HClO_4$ Anhyd. (1) obtained the hydrate to const. °c.

RROR:

in temp. was $\pm 0.01^{\circ}C$; in soly. about $\pm 0.05\%$.

, H.H. J. Am. Chem. 912, 34, 1480.

<pre>COMPONENTS: (1) Strontium perchlorate; Sr(ClO₄)₂; [13450-97-0] (2) Hydogen peroxide; H₂O₂; [7722-84-1]</pre>	<pre>ORIGINAL MEASUREMENTS: Titova, K.V.; Kolmakova, E.I.; Rosolovskii, V.Ya. Zh. Neorg. Khim. <u>1986</u>, 31, 3213-5; *Russ. J. Inorg. Chem. (Engl. Transl.) <u>1986</u>, 31, 1846-7.</pre>		
VARIABLES: One temperature: 273 K	PREPARED BY: C.Y. Chan		
EXPERIMENTAL VALUES: The solubility ^a of strontium perchlora g(1)/ 100 g(2) mass % mol 113.3 53.12 11.8 ^a Mass %, mol % and molality values ca The solid phase was reported as Sr following mass % values : Sr 27.1% ,	% molality/ mol kg ⁻¹ 36 3.954 Alculated by compiler. $C(ClO_4)_2.H_2O_2$. Analysis gave the		
The corresponding theoretical values H ₂ O ₂ 10.61% for the solid Sr(ClO ₄ AUXILIARY IN	s are Sr 27.32%, ClO ₄ 62.07% and 1)2.2H ₂ O ₂ .		
METHOD/APPARATUS/PROCEDURE: No details of saturation method was given. Solubility equilibrium was established in 1-1.5 h. The con- centration of the solutions did not change noticeably during the next 3h but after that slow decomposition of peroxide began. The concentrations of perchlorate in the sat. solutions were determined by gravimetric an- alysis using nitron as the agent for precipitation. H_2O_2 was analys- ed by permanganate titration.	SOURCE AND PURITY OF MATERIALS: The anhydrous perchlorate was pre- pared by heating the hydrate in vacuum (source not given). Samples that showed no water I.R. absorption bands in the range $1620-1635 \text{ cm}^{-1}$ were used. The H ₂ O ₂ was 99.8% ± 0.2% pure. ESTIMATED ERROR: Not stated.		
ed by permanganate titration.	REFERENCES:		

			I		· · · · · · · · · · · · · · · · · · ·
COMPONENTS:			ORIGINAL M	EASUREMENTS:	
(1) Strontium Po	$sr(clo_4)_2;$	Willard, H.H.; Smith, G.F.			
[13450-97-0]				
(2) Alcohols:			J. Am. Chem. Soc. <u>1923</u> , 45,		
(A) Methano		lcohol);	286-96.		
•	67-56-1]				
(B) Ethanol		ohol);			
	[64-17-5]				
		yl alcohol);			
00	[71-23-8]				
(D) 1-Butano		alcohol);			
	[71-36-3]				
(E) 2-Methy					
	lcohol); C ₄ 1	^H 10 ^O ;			
[78-83-:	L]				
VARIABLES:			PREPARED BY	Z :	
One temperature	: 298.15 K		C.Y. Chan		
soly in :	methanol	ethanol	1-propanol	1-butanol	2-methyl- 1-propanol
mass %	67.95	64.37	58.40	53.16	43.78
g/100 cm ³ sln.	113.95	100.01	83.31	71.205	52.63
mol % ^a	19.116	22.51	22.75	22.70	16.77
mol dm ⁻³ a	3.977	3.4905	2,908	2.4852	1.8369
mol kg ⁻¹ a	7.400	6.305	4.900	3.961	2.718
^a Compiler's cal	lculations.		· · · · · · · · · · · · · · · · · · ·		
	A	UXILIARY INF	ORMATION		and a state of the
METHOD / APPARATUS		UXILIARY INF	1	PURITY OF M	ATERIALS:
METHOD/APPARATUS/ A sat. sln. of t	PROCEDURE:		SOURCE AND	PURITY OF MA	
A sat. sln. of t	PROCEDURE:	as prepared	SOURCE AND Hydrated (1) was prepa	ared from
A sat. sln. of t at a temperature	PROCEDURE: the salt water slightly a	as prepared above 25 ⁰ C	SOURCE AND Hydrated (twice-recr	1) was prepa ystallized	ared from strontium
A sat. sln. of t at a temperature and sealed toget	/PROCEDURE: the salt was slightly a ther with al	as prepared above 25 ⁰ C pout 1 g of	SOURCE AND Hydrated (twice-recr nitrate ar	1) was prepa ystallized d purified H	ared from strontium IClO ₄ (ref.1)
A sat. sln. of t at a temperature and sealed toget the anhydrous sa	PROCEDURE: the salt was slightly a ther with al- alt in a	as prepared above 25 ⁰ C pout 1 g of solubility	SOURCE AND Hydrated (twice-recu nitrate an Anhyd. (1)	1) was prepa ystallized d purified H obtained by	ared from strontium IClO ₄ (ref.1) y heating
A sat. sln. of t at a temperature and sealed toget	PROCEDURE: the salt was slightly a ther with al alt in a .8-20 cm ³ .	as prepared above 25 ⁰ C bout 1 g of solubility This tube	SOURCE AND Hydrated (twice-recr nitrate an Anhyd. (1) hydrate to	1) was prepa ystallized d purified H	ared from strontium IClO ₄ (ref.1) v heating at 250°C.

thermostat bath at 25.00°C for 24-48h

(continued next page)

tillation after refluxing with Ca.

COMPONENTS:	ORIGINAL 1	ORIGINAL MEASUREMENTS:				
(1) Calcium per	$Ca(ClO_4)_2;$	Willard,	H.H.; Smith	, G.F.		
[13477-36-6	3					
(2) Alcohols:		J. Am. C.	hem. Soc. <u>1</u>	<u>923</u> , 45,		
(A) Methano	l (methyl	alcohol);	286-96	286-96.		
сн ₄ о; (
(B) Ethanol	cohol);					
с ₂ н ₆ о;						
(C) 1-Propa	pyl alcohol);				
с ₃ н ₈ о;						
(D) 1-Butan		l alcohol);				
	[71-36-3]					
(E) 2-Methyl-1-propanol (iso-						
	lcohol); C	4 ^H 10 ^O ;				
[78-83-	1]					
EXPERIMENTAL VAL	UES:(conti	nued)				
soly in:	methanol	ethanol	ol 1-propanol 1-b		2-methyl-	
					1-propanol	
		<u></u>		·		
sat. sln.	density/g cm ⁻³ 1.6771 1.5539					
sat. sln. density/g cm ⁻³	1.6771	1.5539	1.4266	1.3394	1.2022	
	1.6771	1.5539	1.4266	1.3394	1.2022	
density/g cm ⁻³ pure solvent		1.5539	1.4266	1.3394	1.2022	
density/g cm^{-3}		1.5539 0.78515		1.3394 0.8059	1.2022 0.7981	

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:(continued) | ESTIMATED ERROR: and stood vertically to allow the solids to settle. Samples of the soly precision probably about clear sat. sln. were then analysed for solute content by an evaporationto-dryness method using Pt crucibles. The salt was dried to constant wt. at $250^{\circ}C$ in a current of air dried with | REFERENCES: P205. Duplicate soly determinations | 1. Willard, H.H. J. Am. Chem. were made, those analyses in which chloride (from thermal decomposition) was found present being rejected.

Precision in temp. was $\pm 0.01^{\circ}$ C. <u>+</u> 0.1% (compiler).

Soc. <u>1912</u>, 34, 1480.

Strontium Pe	rchlorate 185
COMPONENTS: (1) Strontium perchlorate; Sr(ClO ₄) ₂ ; [13450-97-0] (2) Acetone; C ₃ H ₆ O; [67-64-1]	ORIGINAL MEASUREMENTS: Willard, H.H.; Smith, G.F. J. Am. Chem. Soc. <u>1923</u> , 45, 286-96.
VARIABLES: One temperature: 298.15 K	PREPARED BY: C.Y. Chan
EXPERIMENTAL VALUES: Solubility ^a of strontium perchlor mass % g/100 cm ³ sln. mol %	
60.01 89.92 23.32 ^b 3	density/g cm ⁻³ .138 ^b 5.237 ^b 1.4984
^a The solid phase was the anhydrous sa ^b Compiler's calculations. AUXILIARY INF	
METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25° C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the solids to settle. Samples of the clear sat. sln. were then analysed for solute content by an evaporation- to-dryness method using Pt crucibles. The salt was dried to constant wt. at 250°C in a current of air dried with P ₂ O ₅ . Duplicate soly determinations were made, those analyses in which chloride (from thermal decomposition)	twice-recrystallized strontium
was found present being rejected.	1. Willard, H.H. J. Am. Chem. Soc. <u>1912</u> , 34, 1480.

186 Strontium Pe	erchlorate	
<pre>COMPONENTS: (1) Strontium perchlorate; Sr(ClO₄)₂; [13450-97-0] (2) N-methyl-acetamide; C₃H₇NO; [79-16-3]</pre>	ORIGINAL MEASUREMENTS: Dawson, L.R.; Berger, J.E.; Vaughn, J.W.; Eckstrom, H.C. J. Phys. Chem. <u>1963</u> , 67, 281-3.	
VARIABLES: Temperature: 313 K	PREPARED BY: W.L. Ng	
EXPERIMENTAL VALUES:		
Solubility of Sr(ClO ₄) ₂ in N-methyl-ac (0.92 mol Density of (2) at 40°C: 942.0 kg m ⁻³	kg^{-1} , compiler's calculation)	
AUXILIARY INF	'ORMATION	
METHOD Saturated solution was prepared in a large test tube fitted with a stopper and covered with aluminium foil. The solution was equilibrated in a water bath at 40°C. The concn was determined from conductance measurements.	SOURCE AND PURITY OF MATERIALS: (1): reagent grade; purity not stated. (2): prepared and purified (ref. 1-3). Specific conductance: (0.6-2.0)x10 ⁻⁷ ohm ⁻¹ cm ⁻¹ .	
ESTIMATED ERROR: Solubility <u>+</u> 5% ; error in temperature	not stated.	

REFERENCES:

- (1) Dawson, L.R.; Sears, P.G.; Graves, R.H. J. Am. Chem. Soc., <u>1955</u>, 77, 1986.
- (2) Dawson, L.R.; Wilhoit, E.D.; Sears, P.G. J. Am. Chem. Soc., 1956, 78, 1569.
- (3) Dawson, L.R.; Wilhoit, E.D.; Hoomes, R.R.; Sears, P.G. J. Am. Chem. Soc., <u>1957</u>, 79, 3004.

COMPONENTS: (1) Strontium perchlorate; Sr(ClO ₄) ₂ ; [13450-97-0]	ORIGINAL MEASUREMENTS: Willard, H.H.; Smith, G.F.
(2) Ethyl acetate; $C_4 H_8 O_2$;	J. Am. Chem. Soc. <u>1923</u> , 45,
[141-78-6]	286-96.
VARIABLES:	PREPARED BY:
One temperature: 298.15 K	C.Y. Chan

Solubility^a of strontium perchlorate in ethyl acetate at 25.00°C :

mass %	g/100 cm ³ sln	. mol %	mol dm ⁻³	mol kg ⁻¹	sat. sln. density/g cm ⁻³
52.10	76.67	25.06 ^b	2.676 ^b	3.796 ^b	1.4717

^a The solid phase was the anhydrous salt.

^b Compiler's calculations.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm³. This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the solids to settle. Samples of the clear sat. sln. were then analysed for solute content by an evaporationto-dryness method using Pt crucibles. The salt was dried to constant wt. at 250°C in a current of air dried with P₂O₅. Duplicate soly determinations were made, those analyses in which chloride (from thermal decomposition) was found present being rejected.

SOURCE AND PURITY OF MATERIALS: Hydrated (1) was prepared from twice-recrystallized strontium nitrate and purified HClO₄ (ref.1). Anhyd. (1) obtained by heating the hydrate to const. wt. at 250°C. (2) was purified by refluxing with P_2O_5 and fractional distillation. Density of (2) at 25°C was 0.8945 g cm⁻³; b.p. was 77.14-77.16 °C.

ESTIMATED ERROR: Precision in temp. was $\pm 0.01^{\circ}C$.

REFERENCES:

 Willard, H.H. J. Am. Chem. Soc. <u>1912</u>, 34, 1480.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Strontium perchlorate; Sr(ClO₄)₂; [13450-97-0]</pre>	Sakk, Zh.G.; Rosolovskii, V.Ya.
(2) Hydrazine; N ₂ H ₄ ; [302-01-2]	Zh. Neorg. Khim. <u>1972</u> , 17, 1783-4; *Russ. J. Inorg. Chem. (Engl. Transl.) <u>1972</u> , 17, 927-8.
VARIABLES: One temperature: 298.15 K	PREPARED BY: C.Y. Chan

The solubility of strontium perchlorate in hydrazine at 25.0° C was reported as 88.0 g(1)/100 g(2). The corresponding mol % and molality values calculated by the compiler are 8.96% and 3.07 mol kg⁻¹, respectively.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

4-6 g of the salt and 8-11 cm ³ of hydrazine were thermostated at 25°C for 7-8 h with continuous stirring in a vessel isolated from atmospheric moisture. Samples for analysis were removed by drawing solution and part of the solid phase into a vessel fitted with a porosity no.4 filter at reduced pressure. After separating the phases, the solution was analysed for hydrazine. Methods of analysis not given. Replicate soly determinations were made. SOURCE AND PURITY OF MATERIALS: The methods of purification of the perchlorate and of preparation of hydrazine were as described in ref.1 . Salt purity was about 99.5 - 99.9% .

ESTIMATED ERROR:

Precision in temp. was $\pm 0.01^{\circ}$ C; Absolute error in soly value was 0.4% .

REFERENCES:

 Rosolovskii, V.Ya.; Sakk, Zh.G. Zh. Neorg. Khim. <u>1970</u>, 15, 2262 .

	ORIGINAL MEASUREMENTS:
(1) Strontium perchlorate;	Lilich, L.S.; Kurbanova, Z.I.;
$Sr(ClO_4)_2; [13450-97-0]$	Kocheregin, S.B.; Chernykh, L.V.
(2) Perchloric acid; HClO ₄ ;	
[7601-90-3]	Zh. Neorg. Khim., <u>1971</u> , 16, 2268-
(3) Water, H ₂ O; [7732-18-5])	72; *Russ. J. Inorg. Chem.
	(Engl. Transl.) <u>1971</u> 16, 1210-2.
VARIABLES:	PREPARED BY:
Temperature/K: 273.2, 298.15 and	С.С. Но
323.15	
Composition	

	Liquid phase composition					Solid ^b phase
т	ass %	mol	% ^a	molality	^{.a} /mol kg ⁻¹	
(1)	(2)	(1)	(2)	(1)	(2)	
69.58	-	12.57	-	7.983	-	А
63.21	5.20	10.89	2.555	6.984	1.639	Α
52.58	15.97	8.788	7.613	5.835	5.055	A
45.82	22.16	7.411	10.22	4.994	6.889	А
34.28	33.77	5.367	15.08	3.745	10.52	A

AUXILIARY INFORMATION

1		
	METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
	Equilibrium of salt solution was	Chemically pure grade perch-
	attained after 6-10h depending on	loric acid and pure grade
	temperature. Specimens of liquid	strontium carbonate were used
	and solid phases were withdrawn	to prepare the perchlorate which
	and analysed for ${ m Sr}^{2+}$ by titr-	was recrystallized three times
	ating with Trilon B using fluorescein	before use.
	as indicator (ref. 1). HClO ₄ was	
	determined by titrating the \texttt{H}^+ with	ESTIMATED ERROR :
	borax solution.	Temperature: precision $\pm 0.2^{\circ}$ at
	The composition of the solid phases	0°C, <u>+</u> 0.02° at 25°C
	was found by Schreinemakers' method.	and $\pm 0.05^{\circ}$ at 50° C.
		Relative error in analytical
l	REFERENCES:	determination: $\pm 0.05\%$.
	Pribil, R.; "Komplexony v Chemicke	In the range of higher $HClO_4$
	Analyse" (Translated into	concentration : $\pm 0.1\%$.
	Russian), Inostr. Lit., Moscow,	

<u>1960</u>, 154.

.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Strontium perchlorate;	Lilich, L.S.; Kurbanova, Z.I.;
Sr(ClO ₄) ₂ ; [13450-97-0]	Kocheregin, S.B.; Chernykh, L.V.
(2) Perchloric acid; HClO ₄ ;	
[7601-90-3]	Zh. Neorg. Khim., <u>1971</u> , 16, 2268-
(3) Water, H ₂ O; [7732-18-5])	72; *Russ. J. Inorg. Chem.
	(Engl. Transl.) <u>1971</u> 16, 1210-2.

EXPERIMENTAL VALUES: (continued)

	Li	quid phase	e compos:	ition		Solid ¹ phase
ma	ss %	mol	% ^a	molality	^a /mol kg ⁻¹	1
(1)	(2)	(1)	(2)	(1)	(2)	
29.35	38.64	4.525	16.99	3.200	12.02	A + C
23.50	44.25	3.547	19.05	2.543	13.66	с
20.58	47.25	3.086	20.21	2.233	14.62	Ċ
6.52	50.92	2.431	21.37	1.771	15.57	С
5.00	52.30	2.192	21.80	1.601	15.92	С
3.47	55.74	2.034	24.01	1.527	18.02	С
7.46	64.88	1.180	29.26	0.941	23.35	С
5.00	69.00	0.813	31.98	0.671	26.42	C + E
2.95	72.09	0.487	33,96	0.412	28.75	Е
2.03	74.70	0.347	36.41	0.304	31.96	E
mas	ss %	mol	% ^a	molalitv ⁸	^a /mol kg ⁻¹	phase
(1)	(2)	(1)	(2)	(1)	(2)	
4.85	_	15.76	-	10.39	_	В
37.52	6.03	13.36	3.40	8.909	2.269	в
0.50	21.60	9.085	11.08	6.317	7.707	в
3.18	28.73	7.551	14.33	5.365	10.18	в
4.65	36.44	5.791	17.37	4.183	12.55	В
0.40	41.00	5.048	19.42	3.710	14.27	B + C
27.25	43.41	4.412	20.04	3.242	14.73	B + C
4.36	46.35	3.914	21.24	2.903	15.75	С
	47.67	3.890	22.18	2.920	16.66	C + D
3.84		0 0 7 7	22.29	2.757	16.71	D
23.84	48.40	3.677				D
2.77	52.78	3.677 3.014	24.20	2.299	18,45	ų
2.77 8.75	52.78 59.85			2.299 1.563	21.49	D
2.77 8.75 2.42 1.88	52.78	3.014	24.20 27.35 28.35		21.49 22.57	
2.77 8.75 2.42 1.88 1.30	52.78 59.85 61.15 62.40	3.014 1.990 1.931 1.860	24.20 27.35	1.563	21.49	D
2.77 8.75 2.42 1.88 1.30 9.60	52.78 59.85 61.15 62.40 64.40	3.014 1.990 1.931 1.860 1.582	24.20 27.35 28.35 29.29 30.27	1.563 1.537 1.500 1.289	21.49 22.57 23.62 24.66	D D D + E E
2.77 8.75 2.42 1.88 1.30 9.60 7.80	52.7859.8561.1562.4064.4066.40	3.014 1.990 1.931 1.860 1.582 1.284	24.20 27.35 28.35 29.29 30.27 31.17	1.563 1.537 1.500 1.289 1.055	21.49 22.57 23.62 24.66 25.62	D D D + E E E
2.77 8.75 2.42 1.88 1.30 9.60 7.80 4.75	52.78 59.85 61.15 62.40 64.40 66.40 70.50	3.014 1.990 1.931 1.860 1.582 1.284 0.792	24.20 27.35 28.35 29.29 30.27 31.17 33.54	1.5631.5371.5001.2891.0550.670	21.49 22.57 23.62 24.66 25.62 28.36	D D + E E E E
2.77 3.75 2.42 1.88 1.30 9.60 7.80 1.75	52.78 59.85 61.15 62.40 64.40 66.40 70.50	3.014 1.990 1.931 1.860 1.582 1.284 0.792	24.20 27.35 28.35 29.29 30.27 31.17 33.54	1.5631.5371.5001.2891.0550.670	21.49 22.57 23.62 24.66 25.62 28.36	D D D + E E E E
2.77 3.75 2.42 1.88 1.30 9.60 7.80	52.7859.8561.1562.4064.4066.40	3.014 1.990 1.931 1.860 1.582 1.284	24.20 27.35 28.35 29.29 30.27 31.17	1.563 1.537 1.500 1.289 1.055	21.49 22.57 23.62 24.66 25.62	D D D + E E E

ORIGINAL MEASUREMENTS:
Lilich, L.S.; Kurbanova, Z.I.;
Kocheregin, S.B.; Chernykh, L.V.
Zh. Neorg. Khim., <u>1971</u> , 16, 2268-
72; *Russ. J. Inorg. Chem.
(Engl. Transl.) <u>1971</u> 16, 1210-2.

EXPERIMENTAL VALUES: (continued)

Solubility in the system $Sr(ClO_4)_2$ -HClO₄-H₂O at 50°C :

	Lie	quid phase	e composi	tion		Solid ^b phase
mas	ss %	mol	% ^a	molality	^a /mol kg ⁻¹	
(1)	(2)	(1)	(2)	(1)	(2)	
76.41	2.94	18.49	2.03	12.91	1.417	С
76.87	2.56	18.69	1.78	13.04	1.239	С
73.74	4.62	17.11	3.06	11.89	2.125	С
70.90	6.98	16.02	4.50	11.19	3.141	С
65.75	11.33	14.21	6.986	10.01	4.921	С
61.46	14.96	12.83	8.905	9.097	6.315	С
55.28	20.24	11.00	11.49	7.881	8.230	С
54.03	22.10	10.88	12.69	7.900	9.216	C + D
52.48	23.37	10.43	13.25	7.584	9.633	C + D
49.13	25.94	9.455	14.24	6.878	10.36	D
40.74	33.68	7.494	17.67	5.559	13.11	D
31.20	41.90	5.393	20.66	4.048	15.51	D
24.20	48.31	4.039	23.00	3.072	17.49	D
16.30	58.16	2.770	28.19	2.227		D
7.40	67.94	1.247	32.66	1.047	27.43	D
4.79	71.94	0.826	35.37	0.718	30.77	Е
1.16	78.90	0.214	41.42	0.203	39.39	Е
0.90	85.60	0.20	53.10	0.233	63.12	E
Compiler's	s calculat	tion, b	A = Sr(C104)2.4H	 0	
				ClO ₄) ₂ .3H	-	
				$(10_4)_2.3H$ $(10_4)_2.2H$	-	
				$(10_4)_2 \cdot 20_4$ $(10_4)_2 \cdot H_2$		
			E = Sr(Clo_A),		

COMPONENTS: (1) Sodium perchlorate; NaClO ₄ ; [7601-89-0] (2) Strontium perchlorate; Sr(ClO [13450-97-0] (3) Water; H ₂ O; [7732-18-5]	ORIGINAL MEASUREMENTS: Druzhinina, G.V. (4) ₂ ; Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1972</u> , 103, 39-41.
VARIABLES: One temperature, 298 K. Composition.	PREPARED BY: I.S. Bodnya
EXPERIMENTAL VALUES: Solubility System NaClO ₄	$-Sr(ClO_4)_2 - H_20$ at 25°C.
Liquid phase compos	ition Solid phase
mass % mol % ^a (1) (2) (1) (2)	molality ^a /mol kg ⁻¹ (1) (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	1.913 9.765 NaClO ₄ + Sr(ClO ₄) ₂ .4H ₂ O
phases $Sr(ClO_4)_2.4H_2O$ and $NaClO_4$.	- 10.48 Sr(ClO ₄) ₂ .4H ₂ O of two branches, corresponding to solid H ₂ O. Average composition (mass %) of ClO ₄ ; 69.39% Sr(ClO ₄) ₂ and 24.8% H ₂ O.
AUXILIARY INFORMATION	NaClO ₄
METHOD/APPARATUS/PROCEDURE: No details.	NaClO ₄ .H ₂ O 75 -
SOURCE AND PURITY OF MATERIALS: Not stated.	$\begin{array}{c} \text{mass \%} \\ 50 \\ 25 \end{array}$
ESTIMATED ERROR: Not stated.	
REFERENCES: None.	25 50 $75H_20 mass % Sr(ClO_4)_2$

			Stron	tium Perchlora	ate	1
COMPONENT	s:			ORIG	INAL MEAS	SUREMENTS:
	ntium p 50-97-0	erchlorat]	e; Sr(Cl	0 ₄) ₂ ; Iva	nov; S.A.	
(2) Thal	lium pe	rchlorate	; T1C104	; Uch	. Zap. Ya	arosl. Gos. Ped. Inst.
[134	53-40-2]	-	1	<u>973</u> , 120	, 20-3.
(3) Wate	r; H ₂ O;	[7732-18	-5]			
ARIABLES	: One t	emperatur	e, 298 K	. PREP	ARED BY:	
	Compo	sition.		N.A	. Kozyrev	va
magg		iquid pha		sition molality ^a	(mol kg ⁻	Solid phase 1
mass				•	-	L
(1)	(2)	(1)	(2)	(1)	(2)	
	14.09	- 700	0.963		0.540	TICIO4
	7.67 3.00	0.790	0.548 0.235	0.444 1.077	0.308 0.133	**
	2.91	2.690	0.249	1.538	0.142	**
	2.21	3.362	0.201	1.935	0.116	**
	2.20	4.491	0.222	2.616	0.130	11
56.03 67.12	1.11 1.30	7.585	0.142 0.215	4.563 7.418	0.085 0.135	11
72.45	1.38	14.787	0.266	9.662	0.174	TICIO ₄ +
						$sr(clo_4)_2.2H_2O$
75.50	-	16.231	-	10.755	-	Sr(ClO ₄) ₂ .2H ₂ O

1.38 % TlClo₄ ; 72.45 % $Sr(Clo_4)_2$; 26.17 % H₂O.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: Conditions of saturation not given. Sr ²⁺ was analysed by titrating with	SOURCE AND PURITY OF MATERIALS: Not stated.
Trilon B in the presence of the Mg complex; Tl ⁺ by the bromate method; perchlorate by precipitation with nitron. Details of solid phase analyses not given.	ESTIMATED ERROR:
	REFERENCES:

COMPONENTS: (1) Strontium perchlorate; Sr(ClO ₄) ₂ ; [13450-97-0]	ORIGINAL MEASUREMENTS: Karnaukhov, A.S.; Sudakova, A.A.
(2) Ammonium perchlorate; NH_4ClO_4 ; [7790-98-9] (3) Water; H_2O ; [7732-18-5]	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1972</u> , 103, 28-32.
VARIABLES: One temperature, 298 K. Composition.	PREPARED BY: I.S. Bodnya

Solubility System NH_4ClO_4 -Sr(ClO₄)₂-H₂0 at 25^oC.

		Liq	uid phase	composi	tion		Solid phase ^b
	mas	s %	mol	% ^a	molality	i / mol kg	g ⁻¹
	(1)	(2)	(1)	(2)	(1)	(2)	
	-	20.02	-	3.696	-	2.131	A
	8.81	13.73	0.691	2.628	0.397	1.509	Α
	16.12	10.24	1.330	2.060	0.764	1.184	Α
	26.40	6.443	2.378	1.415	1.372	0.817	Α
	35.52	3.905	3.522	0.944	2.047	0.549	Α
	51.31	1.698	6.391	0.516	3.811	0.308	Α
	64.87	1.357	10.717	0.547	6.704	0.342	Α
	73.31	1.162	15.205	0.588	10.023	0.387	A + B
	73.62	1.159	15.416	0.592	10.188	0.391	A + B
	73.80	1.198	15.558	0.616	10.302	0.408	В
	74.32	-	15.395	-	10.101	-	В
a Co	ompiler's	calculat	ions.				
b	$A = NH_4C$	10 ₄		B = Sr(сіо ₄)2.4H2C)	

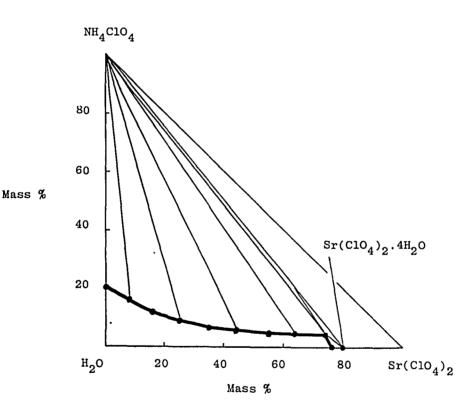
AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: Solubility equilibrium obtained in Strontium perchlorate obtained by 4-5 h. Sr²⁺ was determined complexo- reacting reagent grade strontium metrically with the use of eriochrome black (ref.1); NH_4^+ by distillation into 4% boric acid with subsequent titration with 0.05 mol L^{-1} H₂SO₄. Solid phase composition was determined using Schreinemakers' method.

SOURCE AND PURITY OF MATERIALS: carbonate with perchloric acid and recrystallization.

ESTIMATED ERROR: Not stated.

REFERENCES:


1. Kompleksonometriya (teoreticheskiye osnovy i prakticheskoye primeneniye). Collection of transactions GN-T, Izd. Khim. Lit., Moscow 1962.

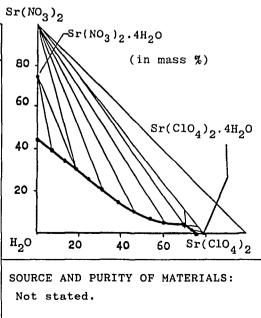
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Strontium perchlorate; $Sr(ClO_4)_2$;	Karnaukhov, A.S.; Sudakova, A.A.
[13450-97-0]	
(2) Ammonium perchlorate; NH ₄ ClO ₄ ;	Uch. Zap. Yarosl. Gos. Ped. Inst.,
[7790-98-9]	<u>1972</u> , <i>103</i> , 28-32.
(3) Water; H ₂ O; [7732-18-5]	

EXPERIMENTAL VALUES:(continued)

COMMENTS / ADDITIONAL DATA

The solubility isotherm, shown below, consists of two branches, corresponding to the solid phases $Sr(ClO_4)_2.4H_2O$ and NH_4ClO_4 respectively. The average composition (mass %) of the eutectic solution is : 74.42% $Sr(ClO_4)_2$; 1.19% NH_4ClO_4 and 24.39% H_2O . Strontium perchlorate has a strong salting-out effect on ammonium perchlorate.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Strontium perchlorate; Sr(ClO ₄) ₂ ;	Bogachev, A.V.; Ivanov, S.A.
[13450-97-0]	
(2) Strontium nitrate; Sr(NO ₃) ₂ ;	Uch. Zap. Yarosl. Gos. Ped. Inst.
[10042-76-9]	<u>1972</u> , <i>103</i> , 23-7.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
One temperature: 298 K.	N.A. Kozyreva
Composition.	


	Liquid phase composition						Solid phase
mass % (1) (2)		mol % ^a (1) (2)		molality ^a /mol kg ⁻¹ (1) (2)			
	_ 18.43	44.58 29.74	2.087	6.409 4.560	_ 1.241	3.801 2.711	Sr(NO3)2.4H20
	20.12 40.02	28.10 12.68	2.282 4.944	4.315 2.121	1.356 2.953	2.564 1.267	Sr(NO ₃) ₂
	54.22 71.44	6.47 3.26	7.879 14.938	1.273 0.923	4.814 9.855	0.778	" " + Sr(ClO ₄) ₂ .4H ₂ O
	75.52	-	16.246	-	10.767	-	Sr(ClO ₄) ₂ .4H ₂ O
	~						

^a Compiler's calculations.

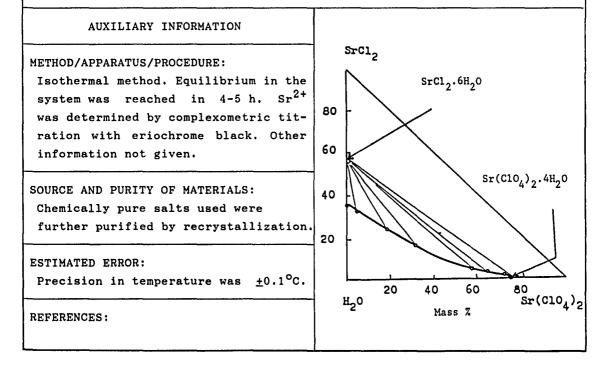
COMMENTS / ADDITIONAL DATA

The solubility isotherm consists of three branches, corresponding to the solid phases strontium nitrate tetrahydrate, anhydrous strontium nitrate, and strontium perchlorate tetrahydrate. The average composition (mass %) of the eutectic solution was 3.26% Sr(NO₃)₂, 71.44% Sr(ClO₄)₂ and 25.30% H₂O.

AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: Soly equilibria attained in 4-5 days. Sr²⁺ was determined by titrating with Trilon B in the presence of the indicator chrome blue black at pH 10-11; NO₃ was reduced by Devarda's alloy to NH₃ with subsequent distillation into a saturated solution of boric acid and titration with 0.05 mol L⁻¹ H₂SO₄; ClO₄ was determined by difference. The composition of the solid phase was determined using Schreinemakers' method.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Strontium perchlorate; Sr(ClO₄)₂; [13450-97-0]</pre>	Karnaukhov, A.S.; Sudakova,A.A. 🖡
<pre>(2) Strontium chloride; SrCl₂; [10476-85-4] (3) Water; H₂O; [7732-18-5]</pre>	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1973</u> , 120, 3-8.
VARIABLES: One temperature: 298 K. Composition.	PREPARED BY: E.S. Gryzlova

EXPERIMENTAL VALUES:


Solubility system Sr(ClO₄)₂-SrCl₂-H₂O at 25^oC

	L	iquid pha	se compo	osition		Solid phase
mas	s %	mol	% ^a	molalit	y ^a /mol kg ⁻¹	
(1)	(2)	(1)	(2)	(1)	(2)	
-	35.92	-	5.99	-	3.536	SrCl ₂ .6H ₂ O
25.13	19.96	2.689	3.860	1.597	2.293	" <i>2</i> 2
33.58	15.15	3.832	3.124	2.286	1.864	11
52.27	6.45	7.255	1.618	4.419	0.986	**
63.95	2.79	10.695	0.843	6.711	0.529	••
72.21	1.40	14.604	0.512	9.550	0.335	" + $Sr(C10_4)_{0.4}H_00$
72.05	1.41	14.506	0.513	9.475	0.335	" + $Sr(Clo_4)_{2*}4H_2O$ " + "
74.32	-	15.395	-	10.101	-	$sr(ClO_4)_2.4H_2O$

^a Compiler's calculations.

COMMENTS / ADDITIONAL DATA

The solubility isotherm consists of two branches corresponding to the crystallization of strontium chloride hexahydrate and strontium perchlorate tetrahydrate. The eutectic solution has the following mean composition (mass%): 72.02% Sr(ClO₄)₂; 1.42\% SrCl₂; and 26.56\% H₂O.

COMPONENTS:	ORIGINAL MEASUREMENTS:
•(1) Strontium perchlorate; Sr(ClO ₄) ₂ ; [13450-97-0]	Bogachev, A.V.
<pre>(2) Barium perchlorate; Ba(ClO₄)₂; [13465-95-7] (3) Water; H₂O; [7732-18-5]</pre>	Sb. Tr. Yarosl. Gos. Ped. Inst. <u>1973</u> , 120, 31-35.
VARIABLES: One temperature: 298K. Composition.	PREPARED BY: Gryzlova, E.S.

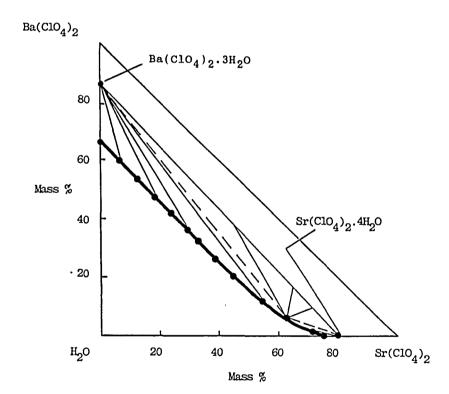
EXPERIMENTAL VALUES:

Solubility system $Sr(ClO_4)_2$ -Ba $(ClO_4)_2$ -H₂O at 25.0 °C :

		Liquid phas	e compos	ition		Solid phase
mas	s %	mol	" ^a	molality	y ^a /mol kg ⁻	1
(1)	(2)	(1)	(2)	(1)	(2)	
6.07 17.48 28.83 42.04 50.87 58.90	$\begin{array}{c} 66.75\\ 59.32\\ 46.24\\ 33.10\\ 21.06\\ 14.83\\ 8.46 \end{array}$	$\begin{array}{c} - \\ 1.000 \\ 2.758 \\ 4.352 \\ 6.499 \\ 8.353 \\ 10.065 \end{array}$	9.711 8.327 6.216 4.257 2.774 2.075 1.232	0.612 1.682 2.643 3.976 5.176 6.298	5.970 5.097 3.791 2.586 1.697 1.286 0.771	Ba(C10 ₄) ₂ .3H ₂ O " " " " "
64.32	4.75	11.480	0.722	7.258	0.457	$Ba(ClO_4)_2.3H_2O$ + Sr(ClO_4)_2.4H_2O
69.14 75.52	3.08	13.462 16.246	0.511	8.686 10.767	0.330	$\operatorname{Sr}(\operatorname{Clo}_4)_2.4H_2O$

^a Compiler's calculations.

AUXILIARY INFORMATION


METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Solubility equilibrium was attained	Not stated.
with continuous stirring after 1-2	
days. Ba ²⁺ was determined gravi-	
metrically as barium chromate, preci-	
pitated from potassium chromate sln	ESTIMATED ERROR:
containing an acetate buffer mixture,	Insufficient information for
and perchlorate by precipitation with	estimation. Temp. precision
nitron. Sr ²⁺ content was calculated	± 0.1°C.
by difference. Solid phase composi-	
tion determined by Schreinemakers'	
method. The water thermostat was	REFERENCES:
maintained at $25.0^{\circ} \pm 0.1^{\circ}$ C.	
	(continued next page)

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Strontium perchlorate; Sr(ClO ₄) ₂ ;	Bogachev, A.V.
[13450-97-0]	
(2) Barium perchlorate; Ba(ClO ₄) ₂ ;	Sb. Tr. Yarosl. Gos. Ped. Inst.
[13465-95-7]	<u>1973</u> , <i>120</i> , 31-35.
(3) Water; H ₂ O; [7732-18-5]	

COMMENTS AND/OR ADDITIONAL DATA :

The eutectic solution has the following mass % composition : $Sr(ClO_4)_2 = 64.32\%$; $Ba(ClO_4)_2 = 4.75\%$; $H_2O = 30.93\%$.

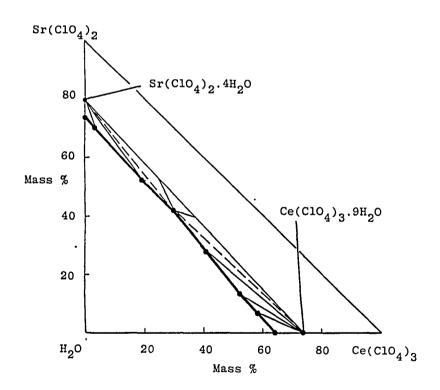
Strontium perchlorate has a strong salting-out effect on barium perchlorate.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Strontium perchlorate; Sr(ClO₄)₂; [13450-97-0]</pre>	Guseva, A.D.; Druzhinina, G.V.
(2) Cerium perchlorate; Ce(ClO ₄) ₃ ;	Sb. Tr. Yarosl. Gos. Ped. Inst.
[14017-47-1]	<u>1975</u> , 144, 81-5.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES: One temperature, 298 K.	PREPARED BY:
Composition.	E.S. Gryzlova
EXPERIMENTAL VALUES:	
Solubility System Sr(ClO ₄) ₂ -Ce(ClO ₄)	$_3$ -H ₂ O at 25°C :

		Liquid pha	se comp	osition		Solid phase
mas	s %	mol	% ^a	molali	ty ^a /mol 1	kg ⁻¹
(1)	(2)	(1)	(2)	(1)	(2)	
75.01	-	15.877	-	10.476	-	$Sr(ClO_4)_2.4H_2O$
67.86	6.12	13.972	0.823	9.102	0.536	
58.73	14.79	11.997	1.974	7.741	1.274	11
50.75	22.34	10.287	2.959	6.582	1.893	**
41.07	31.86	8.340	4.228	5.295	2.684	$sr(ClO_4)_2.4H_2O +$
						Ce(ClO ₄) ₃ .9H ₂ O
41.24	31.53	8.333	4.163	5.286	2.641	H H
36.47	35.16	7.142	4.499	4.487	2.826	Ce(C10 ₄) ₃ .9H ₂ O
30.43	40.10	5.793	4.988	3.604	3.103	" 4 J Z
14.57	53.30	2.600	6.215	1.583	3.783	11
8.21	58.07	1.410	6.515	0.850	3.928	11
-	64.62	-	6.980	-	4.166	**

^a Compiler's calculations.

AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE: No details. Cerium ion was determined by complexometric titration with Tri- lon B in the presence of urotropin and the indicator xylenol orange. Perchlorate was determined gravime- trically as nitron perchlorate.	SOURCE AND PURITY OF MATERIALS: Not stated.
cricarly as micron perchicitate.	ESTIMATED ERROR: Not stated.


REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Strontium perchlorate; Sr(ClO ₄) ₂ ;	Guseva, A.D.; Druzhinina, G.V.
[13450-97-0]	
(2) Cerium perchlorate; Ce(ClO ₄) ₃ ;	Sb. Tr. Yarosl. Gos. Ped. Inst.
[14017-47-1]	<u>1975</u> , 144, 81-5.
(3) Water; H ₂ O; [7732-18-5]	

COMMENTS / ADDITIONAL DATA

The solubility isotherm at 298 K, given below, does not indicate the formation of new solid phases in the system in addition to the solids $Ce(ClO_4)_3.9H_2O$ and $Sr(ClO_4)_2.4H_2O$. The eutectic composition (mass %) was : 31.68% $Ce(ClO_4)_3$; 41.15% $Sr(ClO_4)_2$; 27.17% H_2O .

The almost linear configuration of the isotherm is attributed to the high comparable solubilities of both salts in the system, and they have equal salting-out effects.

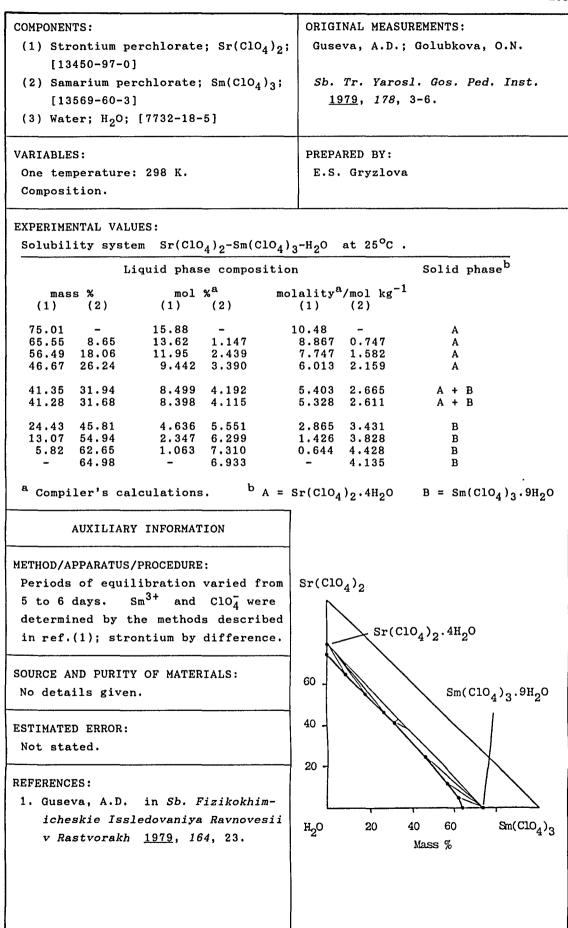
201

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Strontium perchlorate; Sr(ClO₄)₂; [13450-97-0]</pre>	Runov, N.N.; Novikov, V.V.
(2) Praseodymium perchlorate;	Uch. Zap. Yarosl. Gos. Ped. Inst.
$Pr(ClO_4)_3; [13498-07-2]$	1975, 144, 37-9.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
One temperature: 298 K.	E.S. Gryzlova
Composition.	
EXPERIMENTAL VALUES: Solubility system Sr(ClO ₄) ₂ -Pr(ClO ₄)	₃ -H ₂ O at 25 [°] C :
Liquid phase composition	n Solid phase
mass % mol % ^a mola (1) (2) (1) (2) (1	lity ^a /mol kg ⁻¹) (2)
- 64.89 - 7.046 -	4.208 Pr(ClQ ₄) $a.94aO$

4.208 5.324 1.392 3.200 3.515 3.483 2 140 64.89 $\Pr(C_{104})_{3.9H_{20}}$ 14.22 50.12 2.316 5.324 5.697 3.515 6.035 3.555 3.4832.1493.7052.182 11 33.92 32.09 ** 35.15 31.74 39.14 27.64 3.079 4.112 1.894 $Pr(ClO_4)_3.9H_2O$ 6.685 + $Sr(Clo_4)_2.4H_2O$ 5.667 52.02 15.94 9.095 1.818 1.133 Sr(ClO₄)₂.4H₂O 16.246 -10.767 75.52 -

^a Compiler's calculations.

AUXILIARY INFORMATION

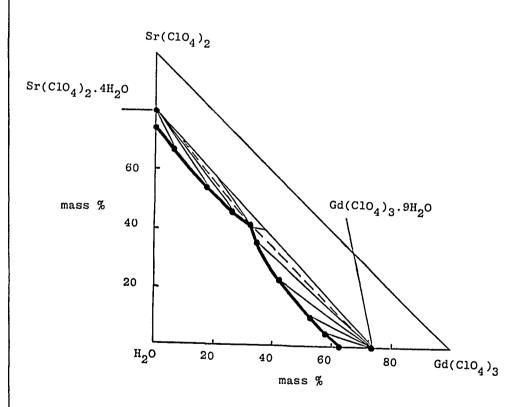

METHOD/APPARATUS/PROCEDURE:

Solubility equilibrium was attained in 2 - 3 days. Details of method not given. Pr^{3+} was determined by complexometric titration with Trilon B ; perchlorate gravimetrically as nitron perchlorate. Solid phase compositions were determined using Schreinemakers' method. SOURCE AND PURITY OF MATERIALS: $Pr(ClO_4)_3$ was prepared from very pure grade Pr_6O_{11} and 57% chemically pure perchloric acid. The dissolution was slow (6-8 h) with slight heating. Recrystallized salt washed with ether to remove excess perchloric acid. All the salts used were chemically pure.

ESTIMATED ERROR:

Not stated.

REFERENCES: None.


COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Strontium perchlorate; Sr(ClO ₄) ₂ ;	Druzhinina, G.V.		
[13450-97-0]	Ch Ma Varant Gan Dad Trat		
<pre>(2) Gadolinium perchlorate; Gd(ClO₄)₃; [14017-52-8]</pre>	Sb. Tr. Yarosl. Gos. Ped. Inst. <u>1978</u> , 169, 31.		
(3) Water; H_2O ; [7732-18-5]	<u></u> , 100, 010		
-			
VARIABLES:	PREPARED BY:		
One temperature: 298 K. Composition.	I.S. Bodnya		
EXPERIMENTAL VALUES:			
Solubility system Sr(ClO ₄) ₂ -Gd(ClO ₄) ₃	-H ₂ O at 25°C :		
Liquid phase composition	Solid phase		
mass % mol % ^a mol %	-		
(1) (2) (1) (2) (1)) (2)		
75.01 - 15.88 - 10.	$48 - Sr(Clo_4)_2.4H_2O$		
75.01 - 15.88 - 10.65.93 65.93 8.01 13.58 1.078 8.65.93 51.14 22.21 10.45 2.965 6.65.93	697 1.901 "		
45.38 28.09 9.344 3.779 5.	970 2.415 "		
41.52 33.67 9.063 4.803 5.	4 4 4 4		
	+ $Gd(ClO_4)_3.9H_2O$		
36.52 37.06 7.594 5.035 4. 26.31 43.98 4.987 5.447 3.	$B24 3.199 Gd(ClO_4)_3.9H_2O$		
14.05 52.51 2.422 5.914 1.			
4.48 61.12 0.757 6.752 0. - 64.62 - 6.980	455 4.052 ···· 4.166 ···		
^a Compiler's calculations.			
AUXILIARY INF	ORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Gadolinium ion was determined by	The starting salts were prepared		
potentiometric titration with EDTA,	by reacting the appropriate car-		
using xylenol orange as indicator in	bonates with 57% $HClO_4$ and re-		
the presence of urotropin buffer,	crystallizing. Excess acid was washed away with ether. Both		
pH = 5-6 , (Ref. 1); perchlorate ion			
determined gravimetrically as nitron	hydrates were stored in a desic-		
perchlorate, (Ref. 2). Solid phase	cator containing phosphorus an-		
compositions were determined using Schreinemakers' method.	hydride.		
Schreinemakers method.	ESTIMATED ERROR:		
Schreinemakers method,	ESTIMATED ERROR: Not stated.		

Nikolaev, N.; ed. Radiochemistry, Moscow, Vyssh. Shkola, <u>1969</u>, 296.
 Loebich, O.Z. Z. Analyt. Chem. <u>1926</u>, 68, 34.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Strontium perchlorate; Sr(ClO₄)₂; [13450-97-0]</pre>	Druzhinina, G.V.
<pre>(2) Gadolinium perchlorate; Gd(ClO₄)₃;</pre>	Sb. Tr. Yarosl. Gos. Ped. Inst.
[14017-52-8]	<u>1978</u> , <i>169</i> , 31.
(3) Water; H_2O ; [7732-18-5]	

COMMENTS /ADDITIONAL DATA

The solubility isotherm for the system $Sr(ClO_4)_2 - Gd(ClO_4)_3 - H_2O$ at $25^{\circ}C$, as shown below, consists of two branches, one corresponding to the crystallization of $Sr(ClO_4)_2.4H_2O$ and the other to that of $Gd(ClO_4)_3.9H_2O$.

COMPONENTS:	ORIGINAL MEASUREMENTS:				
<pre>(1) Strontium perchlorate; Sr(ClO₄)₂; [13450-97-0]</pre>	Runov, N.N.; Zakharova, V.P.				
(2) Carbamide (<i>urea</i>); CH ₄ N ₂ O; [57-13-6] (3) Water; H ₂ O; [7732-18-5]	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1972</u> , 103, 67-72.				
VARIABLES: One temperature, 298 K. Composition.	PREPARED BY: N.A. Kozyreva				

EXPERIMENTAL VALUES:

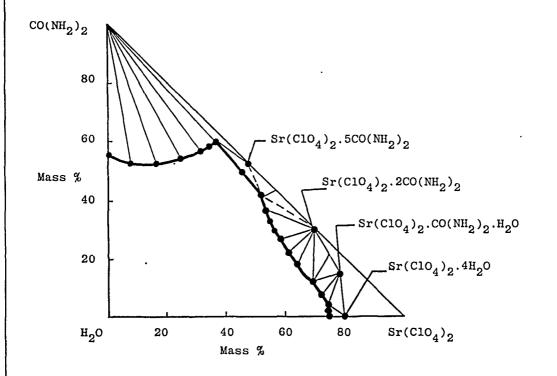
	L	iquid pha	se compos	sition		Solid	l phas	eb
mas	s %	mol	% ^a	Solute	mol % ^a			
(1)	(2)	(1)	(2)	(1)	(2)			
-	54.53	-	26.46	-	100.00		A	
17.94	52.06	2.413	33.41	6.74	93.26		Α	
34.67	55,53	7.612	58.17	11.57	88.43		Α	
39.06	59.85	11.423	83.51	12.03	87.97	А	+ B	
45.61	49.97	12.873	67.29	16.06	83.94		в	
50.71	44.10	14.756	61.22	19.42	80.58		В	
54.77	33.40	13.615	39.61	25.58	74.42		С	
61.21	21.94	14.108	24.13	36.90	63.10		С	
68.90	12.08	16.059	13,43	54.45	45.55	С	+ D	
69.82	9.45	15.704	10.14	60,76	39.24		D	
71.13	7.36	15.865	7.83	66.95	33.05		D	
74.72	4.15	17.353	4.60	79.05	20.95	D	+ E	
74.20	2.80	16.367	2.95	84.74	15.26		E	
75.53	-	16.253	-	100.00	-		Е	
a Comp	iler's c	alculatio	ns.					
b _{A=}	CH ₄ N ₂ O			В	= Sr(C10 ₄)	2.5CH4N	120	
)2.2CH4N2	0		= $Sr(Clo_4)$	••)
	Sr(ClO ₄				4	4 4 4	. 4	

AUXILIARY INFORMATION

1---

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:				
Conditions of saturation not given.	Strontium perchlorate was				
Sr ²⁺ was determined by complexome-	obtained by neutralization of				
tric titration at pH 11 in the pre-	strontium carbonate with per-				
sence of $Mg(NO_3)_2$; carbamide by the	chloric acid and purified by				
Kjeldahl method. Thermographic	recrystallization.				
studies of the solid phases were					
carried out.	ESTIMATED ERROR:				
	Not stated.				

REFERENCES:


COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Strontium perchlorate; Sr(ClO ₄) ₂ ;	Runov, N.N.; Zakharova, V.P.
[13450-97-0]	
(2) Carbamide (<i>urea</i>); CH ₄ N ₂ O;	Uch. Zap. Yarosl. Gos. Ped. Inst.
[57-13~6]	<u>1972</u> , <i>103</i> , 67-72.
(3) Water; H ₂ O; [7732-18-5]	

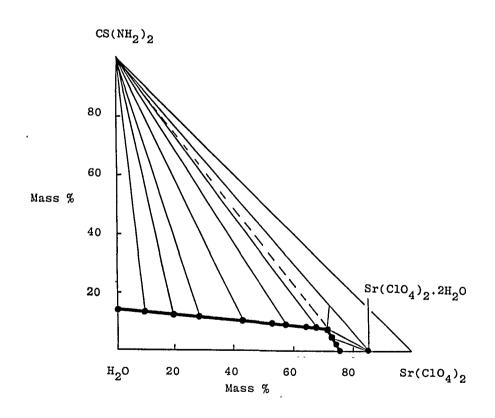
COMMENTS / ADDITIONAL DATA

I

ł

```
The isotherm consists of five branches corresponding to the following solid phases : Sr(ClO_4)_2.4H_2O; CH_4N_2O; Sr(ClO_4)_2.CH_4N_2O.H_2O (incongruently soluble); Sr(ClO_4)_2.2CH_4N_2O (congruently soluble); and Sr(ClO_4)_2.5CH_4N_2O.
```


COMPONENTS:	····		ORI	ORIGINAL MEASUREMENTS:			
(1) Strontium p [13450-97-0		Sr(Cl0 ₄) ₂ ; Ka	arnaukhov, A.S	.; Zakharova, V.I		
(2) Thiocarbami	de (thioure	ea); CH ₄ N	2s; <i>u</i>	ch. Zap. Yaros	l. Gos. Ped. Ins		
[62-56-6] (3) Water; H ₂ O;	[7732-18-5]		<u>1970</u> , 79, 107	-14.		
VARIABLES:			PRI	EPARED BY:	****		
One temperature	: 298 K.		N	.A. Kozyreva			
Composition.							
EXPERIMENTAL VAL	UES:						
				-			
Solubility sy	stem Sr(C	10 ₄) ₂ -cs	(NH ₂) ₂ -1	H ₂ O at 25 ^o C :			
L	iquid phase	composi	tion		Solid phase ^b		
mass %	mol % ⁸	n me	olality	^a /mol kg ⁻¹			
(1) (2)	(1) (2)	(1)	(2)			
- 14.26 10.01 13.09		.787 .842	- 0.454	2.185	A		
21.26 11.44		.795	1.103	2.233	A A		
30.80 10.46	3.067 3	.920		2.339	A		
44.43 8.72		.991	3.310 4.926	2.445 2.830	A		
53 73 8 20		1110			٨		
53.73 8.20 58.07 7.81	9.216 4	.665		3.007	A A		
58.07 7.81 65.77 7.02	9.216 4 12.529 5	.034	$5.940 \\ 8.436$	3.007 3.389	A A		
58.07 7.81 65.77 7.02 68.74 6.71	9.216 4 12.529 5 14.189 5	.034 .214	$5.940 \\ 8.436 \\ 9.772$	3.007 3.389 3.591	A A A		
58.07 7.81 65.77 7.02	9.216 4 12.529 5 14.189 5	.034 .214	$5.940 \\ 8.436 \\ 9.772$	3.007 3.389	A A		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9.216 4 12.529 5 14.189 5	.034 .214 .680	$5.940 \\ 8.436 \\ 9.772$	3.007 3.389 3.591 4.036	A A A		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.216 4 12.529 5 14.189 5 16.203 5 16.218 5 16.218 5	.034 .214 .680 .666	5.940 8.436 9.772 11.514 11.524 11.506	3.007 3.389 3.591 4.036 4.026 4.008	A A A A A + B B		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.216 4 12.529 5 14.189 5 16.203 5 16.218 5 16.218 5	.034 .214 .680 .666 .644 .014	5.940 8.436 9.772 11.514 11.524 11.506	3.007 3.389 3.591 4.036 4.026	A A A A A + B		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.216 4 12.529 5 14.189 5 16.203 5 16.218 5 16.201 5 16.307 3	.034 .214 .680 .666 .644 .014	5.940 8.436 9.772 11.514 11.524 11.506 11.220	3.007 3.389 3.591 4.036 4.026 4.008	A A A A A + B B B		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 9.216 \\ 4\\ 12.529 \\ 5\\ 14.189 \\ 5\\ 16.203 \\ 5\\ 16.218 \\ 5\\ 16.201 \\ 5\\ 16.307 \\ 3\\ 16.253 \end{array}$.034 .214 .680 .666 .644 .014	5.940 8.436 9.772 11.514 11.524 11.506 11.220	3.007 3.389 3.591 4.036 4.026 4.008	A A A A A + B B B		
58.07 7.81 65.77 7.02 68.74 6.71 71.62 6.67 71.65 6.65 71.64 6.63 73.52 3.61 75.53 -	9.216 4 12.529 5 14.189 5 16.203 5 16.218 5 16.201 5 16.307 3 16.253 calculation	.034 .214 .680 .666 .644 .014	5.940 8.436 9.772 11.514 11.524 11.506 11.220 10.773	3.007 3.389 3.591 4.036 4.026 4.008 2.074	A A A A A + B B B		


AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: $Sr(ClO_4)_2$ prepared from chemic-Solubility equilibrium at each data point was attained after periods of ally pure SrCO3 and reagent-grade between 24-168h. Sr²⁺ was determined $HClO_4$ and recrystallized. by titration with Trilon B in the Chemically pure CH_4N_2S further presence of a magnesium salt at pH purified by recrystallization. 11-12 and CH_4N_2S was determined by the Kjeldahl method. ESTIMATED ERROR: Solid phase compositions were deter-Not stated. mined using Schreinemakers' method. **REFERENCES:** (continued next page)

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Strontium perchlorate; Sr(ClO ₄) ₂ ;	Karnaukhov, A.S.; Zakharova, V.P.
[13450-97-0]	
(2) Thiocarbamide (<i>thiourea</i>); CH ₄ N ₂ S;	Uch. Zap. Yarosl. Gos. Ped. Inst.
[62-56-6]	<u>1970</u> , 79, 107–14.
(3) Water; H ₂ O; [7732-18-5]	

COMMENTS / ADDITIONAL DATA

The solubility isotherm given below has two branches, one corresponding to the crystallization of $Sr(ClO_4)_2.2H_2O$ and the other to that of $CS(NH_2)_2$. The average mass % composition of the eutectic solution consists of 6.65% $CS(NH_2)_2$; 71.65% $Sr(ClO_4)_2$; and 21.70% H_2O .

209

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Strontium perchlorate;	Bogachev, A.V.; Karnaukhov, A.S.
Sr(ClO ₄) ₂ ; [1350-97-0]	
(2) Hexamethylenetetramine;	Sb. Tr. Yarosl. Gos. Ped. Inst.
C ₆ H ₁₂ N ₄ ; [100-97-0]	<u>1978</u> , <i>169</i> , 31-33.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
One temperature: 298 K	I.S. Bodnya
Composition	

EXPERIMENTAL VALUES:

Solubility in the system $Sr(ClO_4)_2 - C_6H_{12}N_4$ -water at 25°C .

							<u> </u>
	Liq	uid phase	e composit	ion		Solid	phase ^b
	ss %	mol	. % ^a	molality	y ^a /mol kg ⁻	·1	
(1)	(2)	(1)	(2)	(1)	(2)		
-	46.52	-	10.05	-	6.205	А	
8.18	44.13	0.955	10.54	0.599	6.601	Α	
17.87	43.46	2.476	12.31	1.613	8.017	A +	В
20.22	34.34	2.487	8.632	1.553	5.391	В	
31.07	22.24	3.793	5.549	2.323	3.398	B	
41.76	15.32	5.526	4.143	3.396	2.546	В	
43.10	15.04	5.828	4.156	3.594	2.563	в+	С
50.33	10.77	7.283	3.185	4.516	1.975	С	
54.54	9.48	8.441	2.999	5.291	1.879	C +	D
68.06	2.60	12.60	0.984	8.096	0.632	D	
74.47	1.78	16.34	0.798	10.94	0.535	D +	Е
75.52	-	16.25	-	10.77	-	Е	
a Compi	ler's cal	culations	•				
b A = C	6 ^H 12 ^N 4			B = \$	$sr(clo_4)_2$.	2C6 ^H 12 ^N	4.8H20
		.3C6H12N4	.12H ₂ O	D =	$sr(Clo_4)_2$.	CeH12N4	.4H ₀ 0
		• •• •	22		4'4	0-14 4	, ,
E = 51	$r(clo_4)_2.$	^{4H} 2 ^U					
			AUXILIARY	INFORMATI	ION		
ETHOD/AP	PARATUS/P	ROCEDURE:		SOURCI	E AND PURI	TY OF M	ATERIALS:
			the system		stated.		
					stateu.		
			N ₄ conten	1			
		•	drolysis,				
		iberated			ATED ERROR	, •	
		•	is of the	Nots	stated.		
		s determi					
			Solid pha	se REFERE	INCES:		
-		etermined	using		,		• .
Schreiner	makers' m	ethod.			(c	ontinued	d next page

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Strontium perchlorate;	Bogachev, A.V.; Karnaukhov, A.S.
sr(ClO ₄) ₂ ; [1350-97-0]	
(2) Hexamethylenetetramine;	Sb. Tr. Yarosl. Gos. Ped. Inst.
$C_{6}H_{12}N_4$; [100-97-0]	<u>1978</u> , <i>169</i> , 31-33.
(3) Water; H_2O ; [7732-18-5]	

1

and $Sr(Clo_4)_2.4H_2O$.

 $C_{6}^{H_{12}N_{4}}$ $sr(clo_4)_2 \cdot 2c_6H_{12}N_4 \cdot 8H_2O$ 80 Sr(Cl0₄)₂.3C₆H₁₂N₄.12H₂O 60 Mass % Sr(Cl0₄)₂.C₆H₁₂N₄.4H₂O 40 $Sr(ClO_4)_2.4H_2O$ 20 H_2O 20 $Sr(ClO_4)_2$ 40 60 80 Mass %

COMPONENTS:	ORIGINAL MEASUREMENTS:				
(1) Strontium perchlorate;	Bogachev, A.V.; Lepeshkov, I.N.				
Sr(ClO ₄) ₂ ; [1350-97-0]					
(2) Barium perchlorate;	Zh. Neorg. Khim. <u>1982</u> , 27,				
Ba(ClO ₄) ₂ ; [13465-95-7]	1605-6; *Russ. J. Inorg. Chem.				
(3) Hexamethylenetetramine;	Engl. Transl.) <u>1982</u> , 27,				
C ₆ H ₁₂ N ₄ ; [100-97-0]	907-8.				
(4) Water; H ₂ O; [7732-18-5]					
VARIABLES:	PREPARED BY:				
One temperature: 298 K	C.Y. Chan				
EXPERIMENTAL VALUES:					
Solubility in the system Sr(ClO ₄) ₂ -	$-Ba(ClO_4)_2 - C_6H_{12}N_4 - water at 25°C :$				

	Liqu	id phase	e composi	tion ^a					Solid
	mass %			mol %	b	molali	ty ^b / m	ol kg ⁻¹	phase ^C
(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)	
64.32	4.75	-	11.480	0.722	-	7.258	0.457	-	A+B
58.54	9.18	2.81	10.825	1.446	1.062	6.933	0.926	0.680	A+B+C
51.90	14.46	3.58	9.443	2.242	1.331	6.026	1.431	0.850	B+C

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The method involved adding the third component to the sat. eutonic sln. under isothermal conditions and in the presence of excess solid phase until a new solid phase appeared. Compositions of liquid and solid phases were determined from analyses of the ions as follows: perchlorate gravimetrically with nitron; barium with potassium dichromate; strontium by difference from total perchlorate concentration. $C_{6}H_{12}N_{4}$ determined via initial hydrolysis, distillation of the hydrolysis product into alkali and analysis of ammonia in the distillate. Saturation equilibria were attained after continuous stirring for 12-15 days in a thermostat.

SOURCE AND PURITY OF MATERIALS: No information.

ESTIMATED ERROR: Not stated.

REFERENCES:

COMPONENTS:	

- (2) Barium perchlorate; Ba(ClO₄)₂; [13465-95-7]
- (3) Hexamethylenetetramine; C₆H₁₂N₄; [100-97-0]
 (4) Water; H₂O; [7732-18-5]

ORIGINAL MEASUREMENTS: Bogachev, A.V.; Lepeshkov, I.N. Zh. Neorg. Khim. <u>1982</u>, 27, 1605-6; *Russ. J. Inorg. Chem. Engl. Transl.) <u>1982</u>, 27, 907-8.

EXPERIMENTAL VALUES: (continued)

Solubility in the system $Sr(ClO_4)_2$ -Ba $(ClO_4)_2$ -C₆H₁₂N₄-water at 25^oC :

	Liqu	id phase	e composi	ition ^a					Solid
					h		h	_1	phase ^C
	mass %			mol %	D	molali	.ty ^D / m	ol kg ⁻¹	
(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)	
33.85	25.40	5.53	5.399	3.452	1.803	3.354	2.145	1.120	B+C+D
32.61	32.24	6.49	6.163	5.192	2.507	3.971	3.346	1.615	B+D+E
23.10	40.73	7.41	4.356	6.544	2.856	2.803	4.212	1.838	B+E+F
-	65.15	6.34	-	10.637	2.483	-	6.796	1.586	B+F
74.47	-	1.78	16.337	-	0.80	10.944	-	0.535	A+C
54.54	-	9.48	8.441	-	2.999	5.291	-	1.879	C+D
43.10	-	15.04	5.828	-	4.156	3.594	-	2.563	D+E
16.72	37.49	12.42	2.765	5.282	4.197	1.749	3.341	2.655	E+F+G
6.21	21.04	36.29	0.916	2.644	10.94	0.594	1.716	7.10	E+G+H
17.87	-	43.46	2.476	-	12.31	1.613	-	8.02	E+H
-	26.45	39.06	-	3.463	12.27	-	2.281	8.08	G+H

^a Data for the ternary systems tabulated by the authors were obtained from their previous publications (see the relevant Compilations for these systems).

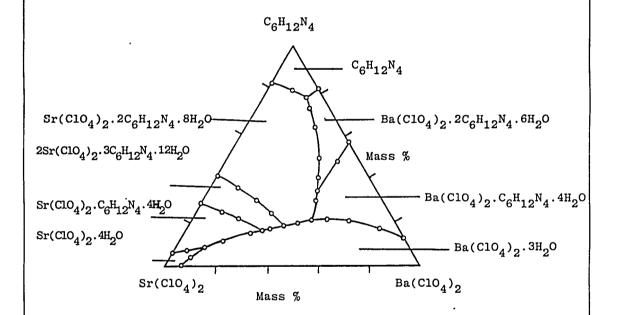
^b Compiler's calculations.

^c A =
$$Sr(Clo_4)_2 \cdot 4H_2O$$

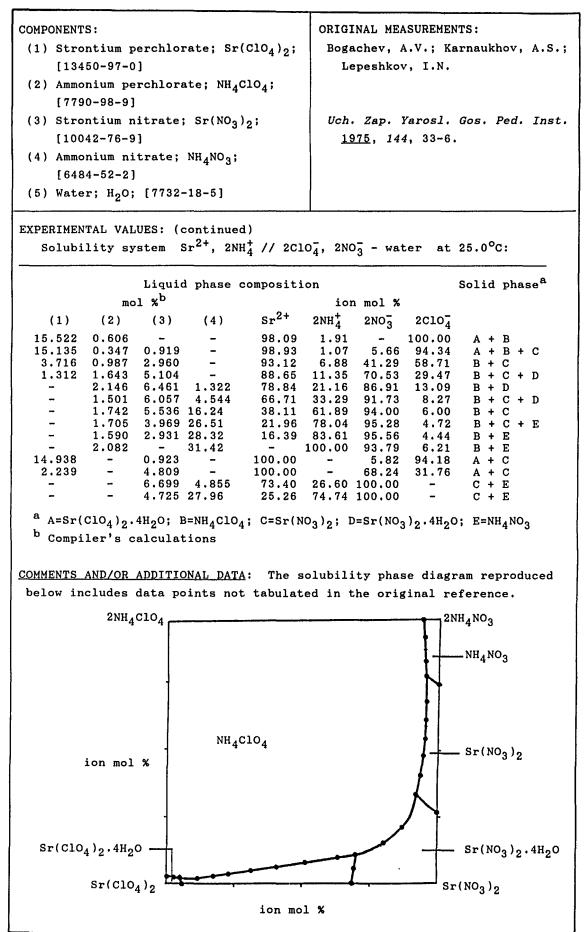
B = $Ba(Clo_4)_2 \cdot 3H_2O$;
C = $Sr(Clo_4)_2 \cdot C_6H_{12}N_4 \cdot 4H_2O$;
E = $Sr(Clo_4)_2 \cdot 2C_6H_{12}N_4 \cdot 8H_2O$;
G = $Ba(Clo_4)_2 \cdot 2C_6H_{12}N_4 \cdot 6H_2O$;
H = $C_6H_{12}N_4$

(continued next page)

COMPONENTS:


- (2) Barium perchlorate; Ba(ClO₄)₂; [13465-95-7]
- (3) Hexamethylenetetramine; C₆H₁₂N₄; [100-97-0]
 (4) Water; H₂O; [7732-18-5]

```
ORIGINAL MEASUREMENTS:
Bogachev, A.V.; Lepeshkov, I.N.
Zh. Neorg. Khim. <u>1982</u>, 27,
1605-6; *Russ. J. Inorg. Chem.
Engl. Transl.) <u>1982</u>, 27,
907-8.
```


EXPERIMENTAL VALUES: (continued)

COMMENTS / ADDITIONAL DATA

The solubility phase diagram for the system $Sr(ClO_4)_2$ -Ba $(ClO_4)_2$ -C $_6H_{12}N_4$ -water at 25°C is shown below. The crystallization fields of eight apparent solid phases are indicated. The largest crystallization field (32.84%) is occupied by the congruently soluble compound $Sr(ClO_4)_2$.2C $_6H_{12}N_4$.8H $_2$ O,

					2
COMPONENTS: (1) Strontium perchlorate; Sr [13450-97-0] (2) Ammonium perchlorate; NH ₄	Bogac			: aukhov, A.S.;	
<pre>[7790-98-9] (3) Strontium nitrate; Sr(NO₃ [10042-76-9] (4) Ammonium nitrate; NH₄NO₃; [6484-52-2] (5) Water; H₂O; [7732-18-5]</pre>)	Zар. Үа <u>15</u> , 144,		s. Ped. Inst.	
VARIABLES: One temperature, 298 K. Composition.			RED BY: Kozyrev	a	
EXPERIMENTAL VALUES: Solubility system Sr ²⁺ , 2N	0H ⁺ ₄ // 2ClC	9 4 , 2N03	- wate	r at 25.	.0°C:
Liquid phase co	mposition			Se	olid Phase ^a
mass % (1) (2) (3) (4)		ality ^b / (2)	/mol kg ⁻ (3)	1 (4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.049 2.234 0.792 - - - 9.855 1.337 -	0.593 0.992 1.322 0.948 1.265 1.396 1.314 1.738 - -	0.610 1.779 3.082 3.981 3.825 4.018 3.248 2.423 	0.814 2.869 11.78 21.70 23.41 26.23 3.047 23.05	$A + B$ $A + B + C$ $B + C$ $B + C + D$ $B + C + D$ $B + C + D$ $B + C + E$ $B + E$ $B + E$ $A + C$ $C + E$ $C + E$ $C + E$ $E = NH_4 NO_3$
A 11V	TITADY THE				
AUX	ILIARY INF	ORMATIC)N		
METHOD/APPARATUS/PROCEDURE: Soly equilibrium attained in by titration with Trilon B pH 10-11; NO_3 was first r then distilled into a sat. sl lation into 4% boric acid and Solid phase composition was d	in the p educed to n. of H ₂ SO titration	resence ammoni $4 \cdot NH_4^+$ with 0	e of c a with was de .05 mol	hrome blu Devarda's termined L ⁻¹ H ₂ SC	ue black at s alloy and by distil- O ₄ solution.

COM	PONE	NTS:				ORIGINAL MEASUREMENTS:				
(1		rontiu 3450-9'		chlorat	te; Sr(Lepeshkov	, I.N., S	Sudakova,	A.A.,	
(2) St	rontiu	m chlo	oride;	SrCl ₂ ;				<u>1975</u> , 20	
	[1	0476-8	5-4]				559-62;	*Russ.	J. Inorg.	Chem.
(3		monium 790-98		nlorate	∍; NH ₄ C	104;	Engl. T	ransl.)	<u>1975</u> , 20	, 312-4
(4	- - Ап	monium	chlo	ride: 1	NHAC1:					
		2125-0		,	4					
(5	•	ter; H	-	7732-18	8-51					
			20, 1							
VAF	IABL	ES:					PREPARED E	Y:		
Or	ne te	mperat	ure: 3	298 К			W.L. Ng			
One temperature: 298 K Composition.										
Co	mpos	ition.								
		ENTAL	VALUE	 S:						
EXF	PERIM	IENTAL	solut	ion co			he aqueous	reciproc	al salt s	ystem
EXF	PERIM	TENTAL	solut	ion con Cl ⁻ -H ₂ C		^о с:	he aqueous mol ^a %		al salt s	ystem solid
EXF	PERIM Satu Sr ²⁺	TENTAL	solut ClO ₄ ,0	ion con Cl ⁻ -H ₂ (D at 25	°C :		ion m		
EXF	PERIM Satu Sr ²⁺ (1) -	IENTAL 7 17 ated 7 7, NH ⁺ //(1 (2) -	solut ClO ₄ ,(mass 9 (3) 4.21	ion con Cl ⁻ -H ₂ (% (4) 26.18	O at 25 (5) 69.61	^{5°} C : ion Sr ²⁺ -	mol ^a % 2NH ⁺ 100.00	ion mapping $2C10\overline{4}$ 6.79	ol % 2C1 ⁻ 93.21	solid
EXF	PERIM Satu Sr ²⁺	IENTAL 7 17 ated 7 7, NH ⁺ //(1 (2) -	solut ClO ₄ ,(mass 9 (3) 4.21	ion con Cl ⁻ -H ₂ (% (4) 26.18	O at 25	¹⁰ C : ion Sr ²⁺	mol ^a % 2NH ⁺ 100.00 87.00	ion m 2C104	ol % 2C1 ⁻	solid phase ^C
EXF	PERIM Satu Sr ²⁺ (1) -	ENTAL arated : , NH ⁺ //((2) 5.20	solut ClO ₄ , mass ((3) 4.21 3.77	ion con Cl ⁻ -H ₂ (% (4) 26.18 23.08	0 at 25 (5) 69.61 67.95	¹⁰ C : ion Sr ²⁺	mol ^a % 2NH ⁺ 100.00	ion mapping $2C10\overline{4}$ 6.79	ol % 2C1 ⁻ 93.21	solid phase ^C
1 2	PERIM Satu Sr ²⁺ (1) -	IENTAL arated , NH ⁺ //((2) 5.20 12.52	solut. ClO ₄ , (mass 5 (3) 4.21 3.77 3.55	ion con Cl ⁻ -H ₂ ((4) 26.18 23.08 18.30	0 at 25 (5) 69.61 67.95	^{5°} C : ion Sr ²⁺ - 13.00 (12.39) 29.78	mol ^a % 2NH ⁺ 100.00 87.00 b (87.61)b 70.22	ion mu $2C10\overline{4}$ 6.79 6.06 5.69 5.67	ol % 2C1 93.21 93.94 94.31 94.33	solid phase ^C A+B "
1 2 3 4	Satu Sr ²⁺ (1) 	IENTAL Irated , NH ⁺ //((2) 5.20 12.52 20.12	solut Clo ₄ , ((3) 4.21 3.77 3.55 3.32	ion con Cl ⁻ -H ₂ (% (4) 26.18 23.08 18.30 14.09	(5) 69.61 67.95 65.63 62.47	ion sr ²⁺ - 13.00 (12.39) 29.78 46.48 (46.53) 67.06	$mol^{a} % 2NH_{4}^{+} 100.00 \\ 87.00 \\ b (87.61)b \\ 70.22 \\ 53.52 \\ b (53.47)b \\ 32.94 $	ion mu $2C10\overline{4}$ 6.79 6.06 5.69 5.67	ol % 2C1 ⁻ 93.21 93.94 94.31 94.33 (94.82) ^b	solid phase ^C A+B " "
1 2 3	Satu Sr ²⁺ (1) - - -	IENTAL Irated , NH ⁺ //((2) 5.20 12.52 20.12	solut ClO ₄ , ((3) 4.21 3.77 3.55 3.32	ion con Cl ⁻ -H ₂ (% (4) 26.18 23.08 18.30 14.09 9.93	(5) 69.61 67.95 65.63 62.47 60.03	ion Sr ²⁺ - 13.00 (12.39) 29.78 46.48 (46.53) 67.06 (67.12)	mol ^a % $2NH_4^+$ 100.00 87.00 (87.61)b 70.22 53.52 $(53.47)^b$	ion mu $2C10\overline{4}$ 6.79 6.06 5.69 5.67	ol % 2C1 93.21 93.94 94.31 94.33	solid phase ^C A+B "

AUXILIARY INFORMATION

(continued next page)

217

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Strontium perchlorate; Sr(ClO ₄) ₂ [13450-97-01]	Lepeshkov, I.N., Sudakova, A.A.,
<pre>(2) Strontium chloride; SrCl₂; [10476-85-4]</pre>	Zh. Neorg. Khim. <u>1975</u> , 20, 559-62; [*] Russ. J. Inorg. Chem.
<pre>(3) Ammonium perchlorate; NH₄ClO₄; [7790-98-9]</pre>	Engl. Transl.) <u>1975</u> , 20, 312-4.
(4) Ammonium chloride; NH ₄ Cl; [12125-02-9]	
(5) Water; H ₂ O; [7732-18-5]	

		I	nass 9	6		ion mo	ole ^a %	ion m	nol %	solid
	(1)	(2)	(3)	(4)	(5)	Sr ²⁺	2NH +	20104	201	phase ^C
7	-	30.52	2.54	9.17	57.77	66.41	33.59 (33.40) ^b	3.73	96.27	A+B+C
8	-	31.72	2.81	8.96	56.51	78.10	21.90	4.67	95.33	A+C
9	-	32.89	6.28	-	60.83	89.01	(32.36) ^b 10.99	10.99	(95.96) ^b 89.01	11
10	12.65	27.61	3.42	-	56.32	(88.59) ⁰ 93.75	(11.41) ^b 6.25	21.55	78.45	
				1.54		93.94	6.06	(25.27) ^b 24.21	75.79	17
				1.33		(93.77) ^D 94.62	(6.23) ^D 5.38	(24.60) ^b 35.47	64.53	11
				_		(94.71) ^b 94.65	(5.29) ^b 5.35	(35.67) ^b 45.02	(64.33) ^b 54.98	11
				-		95.52	4.48	(45.98) ^b 59.61	$(54.02)^{b}$ 40.39	"
						(95.20) ^b	(4.80) ^D	(62.86) ^b	(37.14) ^D	**
	52.30 55.43	6.81 5.74	-		39.98 37.95	96.33 96.86 .	3.67 3.38 、	77.99 81.77 ,	22.01 18.23	17
		4.54	-	0.92	31.71	(96.54) ^b 96.54	3.46	(81.33) ^b 84.93	15.07	**
					01 11	(96.65) ^b		(85.48) ^b	$(14.52)^{b}$ 11.15	11
	64.84 66.99	3.14	-	0.91 0.72	30.46	96.67 97.24	3.33 2.76	88.85 92.53		**
						(97.33) ^b	$(2.67)^{b}$	92.53 (92.75) ^b	(7.25) ^b	
20	72.02	1.42	-	-	26.56	100.00	· <u>-</u>	96.43 (96.56) ^b	3.57	C+D
21	68.75	1.91	1.21	-	28.13	97.69 (98.00) ^b	2.31 (2.00) ^b	95.32	4.68	A+C+D
22	70.43	0.78	1.17	-	27.62	97.78 (98.05) ^b	2.22	97.56 (98.08) ^b	2.44	A+D
23	74.32	-	1.19	-	24.49	98.16 (98.09) ^b	1.84 (1.91) ^b	100.00	-	**
				0.	.5 n(NH		(101)			
٤	a x(2	2NH4)	= -			· 4 ′	= 1 - x(s)	Sr ²⁺)		
		4 '		0.5 n	(NH ⁺) +	• n(Sr ²⁺)				
				0.	.5 n(Cl	07)				
	x(2	20104)	= -			•	= 1 - x(2)	2C1-)		
		-		0.5 n	$(NH_{4}^{+}) +$	- n(Sr ²⁺)				

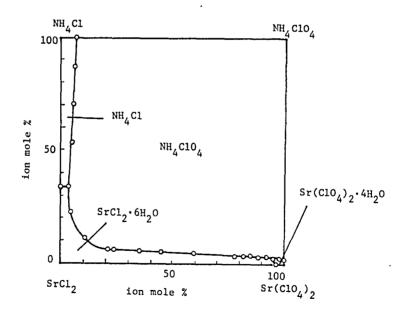
b Data in parentheses calculated by compiler. The given data appear to be in error.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Strontium perchlorate; $Sr(ClO_4)_2$	Lepeshkov, I.N., Sudakova, A.A.,
[13450-97-01]	
(2) Strontium chloride; SrCl ₂ ;	Zh. Neorg. Khim. <u>1975</u> , 20,
[10476-85-4]	559-62; [*] Russ. J. Inorg. Chem.
(3) Ammonium perchlorate; NH ₄ ClO ₄ ;	Engl. Transl.) <u>1975</u> , 20, 312-4.
[7790-98-9]	
(4) Ammonium chloride; NH ₄ Cl;	
[12125-02-9]	
(5) Water; H ₂ O; [7732-18-5]	

,

ł			. d.,			1	lality ^d	(1	0-144
1		I	mole ^d %			mol	ality",	moi Ki	3	Solid
	(1)	(2)	(3)	(4)	(5)	(1)	(2)	(3)	(4)	phase ^C
1 1		-	0.817	11.15	88.03	-	-	0.515	7.031	A+B
2	-	0.768	0.752	10.11	88.37		0.472	0.472	6.350	11
3	-		0.738		88.98	-	1,203	0.461	5.213	11
4	-	3.267	0.727	6.780	89.23	-	2.031	0.452	4.217	**
5	-	5.113	-	5.01	89.88	-	3.157	-	3.09	B+C
5 6		5.054	0.23	5.06	89.66	-	3.129	0.14	3.13	11
7	-		0.602	4.77	89.27	-	3.332	0.374	2.97	A+B+C
8	~		0.678	4.75	88.90	-	3.541	0.423	2.96	A+C
9	-	5.704		-	92.83	-	3.411	0.879	-	**
10	1.309	5.163		-	92.67	0.7839	3.092	0.517	-	**
1 11		4.703	_	0.847	92.78	1.000	2.813	-	0.507	11
12		4.390	_	0.786	92.17	1.597	2.643		0.473	11
13		3.917	0.776	-	92.35	1.770		0.466	-	**
14		2.700		-	92.40	2.533	1.620	0.418	-	. "
15	7.417		-	0.69	90.14	4.566	1.075	-	0.43	*1
16		1.54	-	0.70	89.53	5.098	0.954	-	0.43	**
17		1.42	_	0.85	86.89	6.915	0.903	-	0.54	"
18		1.00	-	0.86	86.76	7.274	0.636	-	0.55	**
		0.592	-	0.69	86.72	7.676	0.379		0.44	**
20		0.516	-	-	85.00	9.464	0.337	-	-	C+D
	13.16	0.661	0.565		85.61	8.530	0.428	0.366	-	A+C+D
	13.71	0.27	0.555	-	85,46	8.899	0.18	0.361	-	A+D
23	15.92	-	0.622	-	83.46	10.59	-	0.414	-	11
}										
	с _{А:}	NH . C	10.			C: 51	Cl2.H2	n		
1	А,	NH ₄ C	-04,			0. 51	2-2-22			

B: NH₄Cl


D: $Sr(Clo_4)_2.4H_2O$

d Calculated by compiler.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Strontium perchlorate; $Sr(ClO_4)_2$	Lepeshkov, I.N., Sudakova, A.A.,
[13450-97-01]	
<pre>(2) Strontium chloride; SrCl₂;</pre>	Zh. Neorg. Khim. <u>1975</u> , 20,
[10476-85-4]	559-62; [*] Russ. J. Inorg. Chem.
(3) Ammonium perchlorate; NH ₄ ClO ₄ ;	Engl. Transl.) <u>1975</u> , 20, 312-4.
[7790-98-9]	
(4) Ammonium chloride; NH ₄ Cl;	
[12125-02-9]	
(5) Water; H ₂ O;	
[7732-18-5]	

COMMENTS AND/OR ADDITIONAL DATA

In the Janecke diagram there are four crystallization fields of which NH_4ClO_4 has the largest area (89.51%). This indicates that NH_4ClO_4 has the lowest solubility of the salts of the system. To the left and below the NH_4ClO_4 field are the crystallization fields of NH_4Cl (3.68%) and $SrCl_2.6H_2O$ (6.71%) respectively. The crystallization field of $Sr(ClO_4)_2.4H_2O$ (0.02%) is extremely small due to its high solubility and strong salting-out action on the other components.

COMPONENTS:	EVALUATOR:
(1) Barium perchlorate; Ba(ClO ₄) ₂ ;	K.H. Khoo
[13465-95-7]	Department of Chemistry
(2) Water; H ₂ O; [7732-18-5]	University of Malaya
(3) Other solvents	59100 Kuala Lumpur, Malaysia.
	December 1987

CRITICAL EVALUATION:

Almost all the publications in the literature on the solubility of $Ba(ClO_4)_2$ in water appear in Russian journals and most of these deal with the solubility at 298 K. There are only three papers which report solubility in water at various temperatures. One of these is the the paper by Carlson (1) who determined the solubility of $Ba(ClO_4)_2$ in water at 273-413 K. However, he did not describe his method of determination and his data are 50-74% higher than the data of Lilich and Dzhurinsky (2) who reported the solubility of $Ba(ClO_4)_2$ in water at 273, 293 and 313 K. Lilich, Kurbanova and Chernykh (3) determined the solubility at 273, 298 and 323 K. There is no consistency between the results of these workers. However. at lower temperatures, there is better agreement between the results of Lilich and Dzurinsky and those of Lilich, Kurbanova and Chernykh. In view of this, the data of Carlson are to be rejected. so that the evaluation of the solubility at various temperatures is based on only two sets of data. Of these two sets, the data of Lilich, Kurbanova and Chernykh are more recent and more reliable since the time of equilibration was extended over a longer period. Abdukarimova, et al (4) measured the solubility of $Ba(ClO_4)_2$ in water at 303 K while Zaitseva and Lepeshkov (15) measured the solubility at 323 K. These two values are less reliable than the results of Lilich, Kurbanova and Chernykh as no experimental information is given in the relevant publications. Hence, only the data of Lilich, Kurbanova and Chernykh are adopted as tentative values for the solubility of $Ba(ClO_4)_2$ at the temperatures shown in Table I.

Table I. Tentative values for the solubility of $Ba(ClO_4)_2$ in water at 273 and 323 K

T/K	Solubility/mol kg ⁻¹	Solid phase
273	4.68	$Ba(ClO_4)_2.4H_2O$ $Ba(ClO_4)_2.2H_2O$
323	8.44	$Ba(CIO_4)_2 \cdot 2H_2O$

Solubility in water at 298 K

All the measurements of the solubility of $Ba(ClO_4)_2$ in water at 298 K were obtained using the isothermal saturation method. The solid phase is $Ba(ClO_4)_2.3H_2O$. The earliest measurement was reported by Willard and Smith (5) in 1923 who claimed a precision in the solubility of the order of ± 0.05 % and constancy in temperature to within ± 0.01 K. Analysis of the saturated solutions was made using the evaporation-to-dryness

COMPONENTS:	EVALUATOR:
(1) Barium perchlorate; Ba(ClO ₄) ₂ ;	K.H. Khoo
[13465-95-7]	Department of Chemistry
(2) Water; H ₂ O; [7732-18-5]	University of Malaya
(3) Other solvents	59100 Kuala Lumpur, Malaysia.
	December 1987

method and the solubility was found to be 5.898 mol kg⁻¹. Almost fifty years later, the same value was obtained by Karnaukhov and Zakharova (6). In this and subsequent work, barium was determined either volumetrically or gravimetrically. The results of the various workers are collected in Table II. Data are given weightage according to the availability of experimental details and the reliability of the results. Points (5), (7), (8) and (16) are given one-quarter weightage since they all refer to the same measurement. The same argument applies to points (11) and (14) while point (10) is given 1/2 weightage as there is practically no experimental information in the report. This forms the basis for recommending the value for the solubility of Ba(ClO₄)₂ in water at 298 K as shown here.

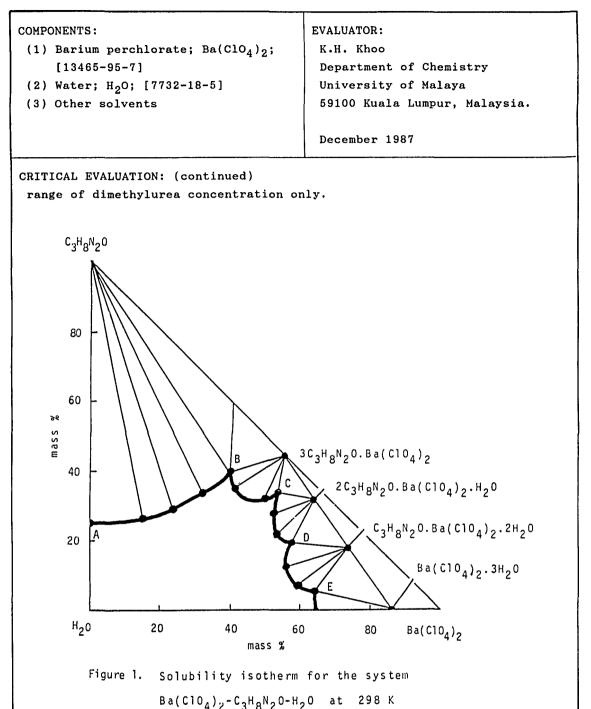
Table II. Solubility of $Ba(ClO_4)_2$ in water at 298 K (Solid Phase: $Ba(ClO_4)_2$. $3H_2O$)

No.	Solubility/mol kg ⁻¹	Weightage	Reference	
1	5.898	2	5	
2	5.898	2	6	
3	5.898	1	7	
4	5.898	1	3	
5	5.9705	1/4	8	
6	5.9866	1	9	
7	5.9705	1/4	10	
8	5.9705	1/4	11	
9	5.8879	1	12	
10	5,997	1/2	13	
11	5.8694	1/2	14	
12	6,008	i	15	
13	5.883	1	16	
14	5.8694	1/2	17	
15	4.984	0	18	
16	5.9705	1/4	20	

<u>Recommended</u> value : (5.92 ± 0.04) mol kg⁻¹

Solubility in aqueous solutions of nonelectrolytes

1. <u>Carbamide (urea)</u>. There are only two publications on solubility in the ternary system $Ba(ClO_4)_2-CH_4N_2O-H_2O$, one by Zakharova (7) at 298K and the other by Abdukarimova, et al (4) at 303 K. The data of Zakharova are considered to be tentative while the data of Abdukarimova, et al must be regarded as doubtful as no experimental information is given. The solubility isotherms are included in the compilations.


COMPONENTS:	EVALUATOR:
(1) Barium perchlorate; Ba(ClO ₄) ₂ ;	K.H. Khoo
[13465-95-7]	Department of Chemistry
(2) Water; H ₂ O; [7732-18-5]	University of Malaya
(3) Other solvents	59100 Kuala Lumpur, Malaysia.
	December 1987

2. Thiocarbamide (thiourea). As with the previous system, there are only two papers on the $Ba(ClO_4)_2$ -CH₄N₂S-H₂O system. The paper by Abdukarimova, et al (4) deals with the system at 303 K. Owing to a complete absence of experimental information, the results must be considered as doubtful. The other paper on the system is reported by Karnaukhov and Zakharova (6) at 298 K. There is no reason to reject their results as some precaution had been exercised to ensure the purity of the materials and the attainment of equilibrium by having an equilibration period of up to 168 hours. Hence the results of Karnaukhov and Zakharova are considered as tentative. The solubility isotherm at 298 K (see compilation) is of the eutonic type with two crystallization branches corresponding to the separation of the solid pure components. Unlike urea, there is no strong interaction between thiourea and barium perchlorate so that no double compound or solid solution is formed and the solubility of one component mutually decreases in the presence of the other.

3. <u>Dimethylcarbamide (dimethylurea</u>). The paper by Vasil'eva, et al (19) gives solubility data for the system $Ba(ClO_4)_2-C_3H_8N_2O-H_2O$ at 298 K. No experimental details are given whereas the other paper by Karnaukhov, et al (16), also at 298 K, gives some experimental information. Generally, these two sets of data are in good agreement, although the disparity in the solubility of dimethylurea in pure water is about 5 %, the solubility being 3.84 mol kg⁻¹ according to Vasil'eva, et al and 4.05 mol kg⁻¹ according to Karnaukhov, et al. The solubility isotherm is shown in Figure 1. It has five branches of crystallization. The first branch AB corresponds to the crystallization of dimethylurea. This branch can be fitted empirically to the equation

 $m_1 = 3.8766 + 1.42745 m_2 + 0.47350 m_2^2 - 0.0313836 m_2^3$

where m_1 and m_2 are the molalities of $Ba(ClO_4)_2$ and dimethylurea, respectively. The coefficient of correlation is 0.99989 and the standard error of estimate is 0.14. Table III gives the solubility of dimethylurea at round molalities of $Ba(ClO_4)_2$ in the region where the solid phase is dimethylurea. The solubility of dimethylurea increases markedly with increasing concentration of $Ba(ClO_4)_2$ and this indicates complex formation in the system. The other three branches of the solubility isotherm, BC, CD and DE correspond to the crystallization of $3C_3H_8N_2O.Ba(ClO_4)_2$, $2C_3H_8N_2O.Ba(ClO_4)_2.H_2O$ and $C_3H_8N_2O.Ba(ClO_4)_2.2H_2O$, respectively, while the last branch EF shows that $Ba(ClO_4)_2.3H_2O$ crystallizes within a narrow

4. <u>Other nonelectrolytes</u>. There is one publication on the solubility of $Ba(ClO_4)_2$ in aqueous acetamide (12) and one in aqueous hexamethylene-tetramine (11) systems at 298 K. Both were studied using the isothermal method. As there is no reason to reject the results, they are classified as tentative. The respective solubility isotherms are attached to the compilations for these systems.

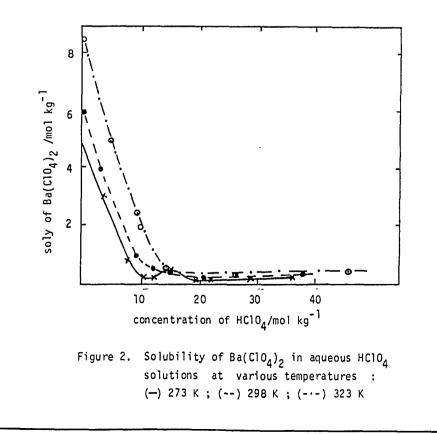

COMPONENTS:	EVALUATOR:
(1) Barium perchlorate; Ba(ClO ₄) ₂ ;	K.H. Khoo
[13465-95-7]	Department of Chemistry
(2) Water; H ₂ O; [7732-18-5]	University of Malaya
(3) Other solvents	59100 Kuala Lumpur, Malaysia.
	December 1987

Table III. The solubility of dimethylurea (m_1) in aqueous solutions of Ba $(ClO_4)_2$ (m_2) at 298 K.(solid phase = dimethylurea)

m ₁ /mol kg ⁻¹	m ₂ /mol kg ⁻¹	m ₁ /mol kg ⁻¹	m ₂ /mol kg ⁻¹
0	3.88	5	18.93
0.5	4.70	6	22.71
1	5.75	7	26.31
2	8.37	8	29.53
3	11.57	9	32.20
4	15.15	10	34.12

Solubility in aqueous electrolyte solutions

1. <u>Perchloric acid</u>. The paper by Lilich, et al (3) is the only paper reporting the solubility of $Ba(ClO_4)_2$ in aqueous perchloric acid at 273, 298 and 323 K. Unlike most of the Russian publications reviewed, this paper reports the estimated errors in temperature and solubility and also gives a detailed account of the experimental procedure. The solubility isotherms given in Figure 2 show a shallow minimum at 273 K

COMPONENTS:	EVALUATOR:
(1) Barium perchlorate; Ba(ClO ₄) ₂ ;	K.H. Khoo
[13465-95-7]	Department of Chemistry
(2) Water; H ₂ O; [7732-18-5]	University of Malaya
(3) Other solvents	59100 Kuala Lumpur, Malaysia.
	December 1987

which gradually disappears as the temperature is raised. This minimum is not significant and it can be ascribed to changes in the coordination number in the crystal which occur at an acid concentration of 10-12 mol kg^{-1} . Apart from this, there is a monotonic salting-out of $Ba(ClO_4)_2$ since the Ba²⁺ ion is weakly hydrated. In highly-concentrated acid solutions (>16 mol kg⁻¹) where the solid phase is the unhydrated salt, $Ba(ClO_4)_2$, the solubility of the salt appears to be little affected by changes in temperature or further increases in the concentration of the acid.

The highest crystal hydrate of the salt exists as the solid phase up to an acid concentration of about 12 mol kg⁻¹. This is $Ba(ClO_4)_2.4H_2O$ at 273K, $Ba(ClO_4)_2.3H_2O$ at 298 K and $Ba(ClO_4)_2.2H_2O$ at 323 K. Here, the solubility data can be represented by the equation

$$m_1 = a_0 + a_1 m_2 + a_2 m_2^2 + a_3 m_2^3$$
 (1)

where m_1 and m_2 are the molal solubility of $Ba(ClO_4)_2$ and molal concentration of perchloric acid, respectively. Table IV gives the values of the fitting parameters and Table V gives the calculated solubility at round molalities of the acid. These values are regarded as tentative.

T/K	ao	-a ₁	10 ² a ₂	10 ³ a ₃	max m2	R^{a}	۹p
273	4.6925	0.5140	-2.53	3.24	10.4	0.9997	0.05
298	5.9135	0.6183	-0.871	1.91	12.8	0.9998	0.05
323	8.4404	0.8811	4.31	-2.22	9.4	0.9997	0.09

Table IV. Parameters of Equation (1)

bd = standard error of estimate

2. Barium nitrate. The solubility of $Ba(ClO_4)_2$ in aqueous barium nitrate solutions has been reported in only one publication by Karnaukhov and Bogachev (20) at 298 K. No information is provided on the purity of the materials used and no estimated error is given. There is also no mention of the saturation conditions. Nitrate and total barium were determined volumetrically but perchlorate was determined by difference and not analytically. Furthermore, there are only 7 data points in the compilation for this system. This renders the available data for the system unsuitable for evaluation. Nevertheless, the paper is included in the compilation together with the solubility isotherm so as to give a

COMPONENTS:	EVALUATOR:
(1) Barium perchlorate; Ba(ClO ₄) ₂ ;	K.H. Khoo
[13465-95-7]	Department of Chemistry
(2) Water; H ₂ O; [7732-18-5]	University of Malaya
(3) Other solvents	59100 Kuala Lumpur, Malaysia.
	December 1987

tentative picture of the solubility behaviour of the $Ba(ClO_4)_2-Ba(NO_3)_2-H_2O$ system at 298 K.

Table V. Solubility of $Ba(ClO_4)_2$ (m₁) in aqueous $HClO_4(m_2)$

m ₂ /mol kg ⁻¹	I	n ₁ /mol kg ⁻¹	L
	273 K	298 K	323 K
1	4.16	5.29	7.60
2	3.59	4.66	6.83
3	3.01	4.03	6.12
4	2.44	3.42	5.46
5	1.89	2.84	4.84
6	1.40	2.30	4.23
7	0.96	1.82	3.62
8	0.62	1.39	3.01
9	0.37	1.04	2.38
10	0.25	0.77	-
11	-	0.61	-

3. <u>Ammonium perchlorate</u>. There is only one publication on solubility in the $Ba(ClO_4)_2$ -NH₄ClO₄-H₂O system (8) and this is at 298 K. This system was studied by the same authors as those who reported the results for the previous system and ,consequently, an evaluation of the system is also not worthwhile.

4. Other salt systems. The solubility of $Ba(ClO_4)_2$ in the following systems has been reported:

System	<u>Temp/K</u>	<u>Ref</u>
(A) $Ba(ClO_4)_2$ + $LiClO_4$ + H_2O	298	18
(B) $Ba(ClO_4)_2$ + $NaClO_4$ + H_2O	298;323	15
(C) $Ba(ClO_4)_2 + Sr(ClO_4)_2 + H_2O$	298	10
(D) $Ba(ClO_4)_2 + Pr(ClO_4)_3 + H_2O$	298	9
(E) $Ba(ClO_4)_2 + Sm(ClO_4)_3 + H_2O$	298	13
(F) $Ba(ClO_4)_2$ + $Lu(ClO_4)_3$ + H_2O	298	14
(G) $Ba(ClO_4)_2 + Tb(ClO_4)_3 + H_2O$	298	17
(H) $Ba(ClO_4)_2 + Ba(NO_3)_2 + NH_4ClO_4 +$		
$NH_4NO_3 + H_2O$	298	21

There is only one publication for each system. In some of the papers, there is practically no experimental information given (13,15,17,18) while in others the experimental data are scarce and in only paper (10)

COMPONENTS:	EVALUATOR:
(1) Barium perchlorate; Ba(ClO ₄) ₂ ;	K.H. Khoo
[13465-95-7]	Department of Chemistry
(2) Water; H ₂ O; [7732-18-5]	University of Malaya
(3) Other solvents	59100 Kuala Lumpur, Malaysia.
	December 1987

is mention made of the precision in temperature. As such, no evaluation is made of the data for these systems. In the absence of other studies of these systems, the data sheets are given in the compilations together with the relevant solubility isotherms as a guide to the solubility behaviour of these systems.

Solubility in nonaqueous solvents

Only three groups of workers studied the solubility of $Ba(ClO_4)_2$ in organic solvents. Van-Valkenburg and McDaniels (22) reported the solubility in solvents containing 95-99.8% ethanol (presumably by weight) at 293 K. A rough extrapolation gives the solubility of $Ba(ClO_4)_2$ in pure ethanol as 96 g/100 cm³ (ethanol) at 293 K compared with the value of 97.85 g/100 cm³ (ethanol) at 298 K calculated from the data of Willard and Smith (5). This shows some consistency between the two sets of data. However, since no experimental information is given in the short report of Van-Valkenburg and McDaniels, their results cannot be accepted. On the other hand, Willard and Smith gave a detailed account of their experimental procedure. Solubility measurements were made in duplicate by an evaporation-to-dryness method to within a precision of \pm 0.05% and the temperature was controlled to within \pm 0.01 K. Adequate time was allowed for saturation and care was taken to ensure that no solute remained in the saturated solutions during analysis. The solvents were purified by refluxing and fractional distillation and their purity was checked by density and boiling-point determinations. However, the moisture content of the solvents was not specified and the solid phase in equilibrium with the saturated solution in each solvent was not mentioned. Since no other work similar to the work of Willard and Smith is available, the values of Willard and Smith are accepted as tentative values. Similarly, the value obtained by Sakk and Rosolovskii (23) for the solubility of $Ba(ClO_4)_2$ in hydrazine at 298 K is accepted as a tentative value. Table VI summarizes the solubility of $Ba(ClO_4)_2$ in the various organic solvents at 298 K.

COMPONENTS:	EVALUATOR:
(1) Barium perchlorate; Ba(ClO ₄) ₂ ;	K.H. Khoo
[13465-95-7]	Department of Chemistry
(2) Water; H ₂ O; [7732-18-5]	University of Malaya
(3) Other solvents	59100 Kuala Lumpur, Malaysia.
	December 1987

Table VI. Tentative values for the solubility of $Ba(ClO_4)_2$ in nonaqueous solvents at 298 K. (Solid phase unidentified).

Solvent	Solubility					
	mass %	g/100 cm ³	mol %	mol dm^{-3}	mol kg ⁻¹	
methanol	68.46	119.85	17.13	3.564	6.455	
ethanol	55.48	78.54	14.58	2.336	3.706	
acetone	55.49	81.05	17.72	2.411	3.708	
1-propanol	43.07	52.31	11.91	1.556	2.250	
ethyl acetate	53.04	80.81	22.84	2.403	3.359	
n-butyl alcohol	36.78	41.72	11.37	1.241	1.730	
iso-butyl alcohol	35.99	36.67	11.03	1.091	1.672	
hydrazine	52.22	-	9.43	-	3.251	

REFERENCES

- Carlson, B. Festschrift, (Klason, P., Editor) Norstedt, Stockholm, <u>1910</u>, 247-66.
- Lilich, L.S.; Dzhurinsky, B.F. Zh. Obshchei Khim. <u>1956</u>, 26, 1549-53;
 *J. General Chem. U.S.S.R. (Engl. Transl.) <u>1956</u>, 26, 1733-7.
- Lilich, L.S.; Kurbanova, Z.I.; Chernykh, L.V. Zh. Neorg. Khim. <u>1972</u>, 17, 812-6; *Russ. J. Inorg. Chem. (Engl. Transl.) <u>1972</u>, 17, 424-6.
- 4. Abdukarimova, F.M.; Nogoev, K.; Sulaimankulov, K. Zh. Neorg. Khim. <u>1973</u>, 18, 2275-8; *Russ. J. Inorg. Chem. (Engl. Transl.) <u>1973</u>, 18, 1203-5.
- 5. Willard, H.H.; Smith, G.F. J. Am. Chem. Soc. 1923, 45, 286-96.
- Karnaukhov, A.S.; Zhakharova, V.P. Uch. Zap. Yarosl. Gos. Ped. Inst. 1970, 79, 107-14.
- 7. Zakharova, V.P. Uch. Zap. Yarosl. Gos. Ped. Inst. 1971, 95, 95-7.
- Karnaukhov, A.S.; Bogachev, A.V. Uch. Zap. Yarosl. Gos. Ped. Inst. 1971, 95, 32-5.
- 9. Runov, N.N.; Novikov, V.V. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1975</u>, 144, 37-9.
- 10. Bogachev, A.V. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1973</u>, 120, 31-5.
- 11. Bogachev, A.V. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1976</u>, 154, 55-8.
- 12. Tarakanov, V.F. Uch. Zap. Yarosl. Gos. Ped. Inst. 1977, 164, 35-6.
- Guseva, A.D.; Golubkova, O.N. Tr. Yarosl. Gos. Ped. Inst. <u>1979</u>, 178, 3-6.
- 14. Andronova, N.P.; Druzhinina, G.V. Tr. Yarosl. Gos. Ped. Inst. <u>1980</u>, 185, 9-12.
- 15. Zaitseva, S.N.; Lepeshkov, I.N. Uch. Zap. Yarosl. Gos. Ped. Inst.

229

COMPONENTS:	EVALUATOR:
 Barium perchlorate; Ba(ClO₄)₂; 	K H. Khoo
[13465-95-7]	Department of Chemistry
(2) Water; H ₂ O; [7732-18-5]	University of Malaya
(3) Other solvents	59100 Kuala Lumpur, Malaysia.
	2 1 1007
	December 1987
CRITICAL EVALUATION: (continued) <u>1969</u> , <i>66</i> , 113-21.	
16. Karnaukhov, A.S.; Rylenkova, I.N.	; Vasil'eva, S.I. Tr. Yarosl. Gos.
Ped. Inst. <u>1979</u> , 178, 49-52.	
17. Andronova, N.P. Tr. Yarosl. Gos.	Ped. Inst. <u>1979</u> , 178, 7-10.
18. Ganina, G.I.; Pisarenko, O.N. Uc.	h. Zap. Yarosl. Gos. Ped. Inst.
<u>1976</u> , <i>154</i> , 41-4.	
19. Vasil'eva, S.I.; Rylenkova, I.N.	Sb. Tr. Smolensk. Gos. Ped. Inst.
<u>1979</u> , 7-15.	
20. Karnaukhov, A.S.; Bogachev, A.V.	Uch. Zap. Yarosl. Gos. Ped. Inst.
<u>1971</u> , 95, 27-31.	
21. Karnaukhov, A.S.; Bogachev, A.V.	Uch. Zap. Yarosl. Gos. Ped. Inst.
<u>1973, 120, 36-9.</u>	
22. Van-Valkenburgh, H.B.; McDaniels,	W.B. J. Colo. Wyo. Acad. Sc.
<u>1930</u> , 1, 44-5.	
23. Sakk, Zh.G.; Rosolovskii, V.Ya.	Zh. Neorg. Khim. <u>1972</u> , 17, 1783-4;
*Russ. J. Inorg. Chem. (Engl. Tra	nsl.) <u>1972</u> , <i>17</i> , 927-8.

Barium Per	chlorate	23
COMPONENTS: (1) Barium perchlorate; Ba(ClO ₄) ₂ ; [13465-95-7] (2) Water; H ₂ O; [7732-18-5]	ORIGINAL MEASUREMENTS: Lilich, L.S.; Dzurinsky, B.F. Zh. Obshchei Khim. <u>1956</u> , 26, 1549-53; *J. General Chem. U.S.S.R. (Engl. Transl.) <u>1956</u> , 26, 1733-7.	•
VARIABLES: Temperature/K: 273, 293 and 313 Composition	PREPARED BY: K.H. Khoo	
EXPERIMENTAL VALUES: The solubility of $Ba(ClO_4)_2$ in wa		
of moles of anhydrous salt per	KILOBLAM OF MAREL AS TOTTOMS:	
t/ ⁰ C sol	y/mol kg ⁻¹	
	4.11	
	5.29 6.13	
(compiler). AUXILIARY IN	FORMATION	
METHOD/APPARATUS/PROCEDURE The salt was stirred with water in a thermostat. Equilibrium was estab- lished after continuous stirring for	SOURCE AND PURITY OF MATERIALS: Nothing specified.	
1-4 h. Approach to equilibrium from above or below had no effect. No in- formation is given on analysis of the	ESTIMATED ERROR: Nothing specified.	
saturated solutions and the nature of the solid phase.	REFERENCES: None.	

······································	T
COMPONENTS:	ORIGINAL MEASUREMENTS:
 Barium perchlorate; Ba(ClO₄)₂; 	Willard, H.H.; Smith, G.F.
[13465-95-7]	
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1923</u> , 45, 286-96.
VARIABLES:	PREPARED BY:
One temperature: 298.15 K	C.Y. Chan
EXPERIMENTAL VALUES:	
Solubility ^a of barium perchlorate in	water at 25.00 ⁰ C :
mass % g/100 cm ³ sln. mol %	moldm ⁻³ molkg ⁻¹ sat. sln.
	density/g cm
66.48 128.99 9.606 ^b	3.8362 ^b 5.898 ^b 1.9403
⁴ The solid phase was a mixture of th specified) that had crystallized fr ^b Compiler's calculations.	e anhydrous salt and the hydrate (not om the saturated solution.
specified) that had crystallized fr ^b Compiler's calculations.	om the saturated solution.
specified) that had crystallized fr	om the saturated solution.
specified) that had crystallized fr ^b Compiler's calculations.	om the saturated solution.
specified) that had crystallized fr ^b Compiler's calculations. AUXILIARY I	om the saturated solution. NFORMATION SOURCE AND PURITY OF MATERIALS:
specified) that had crystallized fr ^b Compiler's calculations. AUXILIARY I METHOD/APPARATUS/PROCEDURE:	om the saturated solution. NFORMATION SOURCE AND PURITY OF MATERIALS: Hydrated barium perchlorate was
specified) that had crystallized fr ^b Compiler's calculations. AUXILIARY I METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of	om the saturated solution. NFORMATION SOURCE AND PURITY OF MATERIALS: Hydrated barium perchlorate was prepared from very pure barium chloride and purified HClO ₄ (ref.1
specified) that had crystallized fr ^b Compiler's calculations. AUXILIARY I METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility	om the saturated solution. NFORMATION SOURCE AND PURITY OF MATERIALS: Hydrated barium perchlorate was prepared from very pure barium chloride and purified HClO ₄ (ref.1 and recrystallized twice. The anhy
specified) that had crystallized fr ^b Compiler's calculations. AUXILIARY I METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube	om the saturated solution. NFORMATION SOURCE AND PURITY OF MATERIALS: Hydrated barium perchlorate was prepared from very pure barium chloride and purified HClO ₄ (ref.1 and recrystallized twice. The anhy salt was obtained by heating the
specified) that had crystallized fr ^b Compiler's calculations. AUXILIARY I METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility	om the saturated solution. NFORMATION SOURCE AND PURITY OF MATERIALS: Hydrated barium perchlorate was prepared from very pure barium chloride and purified HClO ₄ (ref.1 and recrystallized twice. The anhy salt was obtained by heating the hydrate at 250°C in a current of
specified) that had crystallized fr ^b Compiler's calculations. AUXILIARY I METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the	om the saturated solution. NFORMATION SOURCE AND PURITY OF MATERIALS: Hydrated barium perchlorate was prepared from very pure barium chloride and purified HClO ₄ (ref.1 and recrystallized twice. The anhy salt was obtained by heating the hydrate at 250°C in a current of dry air to constant weight.
specified) that had crystallized fr ^b Compiler's calculations. AUXILIARY I METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the solids to settle. Samples of the	om the saturated solution. NFORMATION SOURCE AND PURITY OF MATERIALS: Hydrated barium perchlorate was prepared from very pure barium chloride and purified HClO ₄ (ref.1 and recrystallized twice. The anhy salt was obtained by heating the hydrate at 250°C in a current of dry air to constant weight.
specified) that had crystallized fr ^b Compiler's calculations. AUXILIARY I METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the solids to settle. Samples of the clear sat. sln were then analysed	om the saturated solution. NFORMATION SOURCE AND PURITY OF MATERIALS: Hydrated barium perchlorate was prepared from very pure barium chloride and purified HClO ₄ (ref.1 and recrystallized twice. The anhy salt was obtained by heating the hydrate at 250°C in a current of dry air to constant weight. ESTIMATED ERROR:
specified) that had crystallized fr ^b Compiler's calculations. AUXILIARY I METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the solids to settle. Samples of the clear sat. sln were then analysed for solute content by an evaporation-	om the saturated solution. NFORMATION SOURCE AND PURITY OF MATERIALS: Hydrated barium perchlorate was prepared from very pure barium chloride and purified HClO ₄ (ref.1 and recrystallized twice. The anhy salt was obtained by heating the hydrate at 250°C in a current of dry air to constant weight. ESTIMATED ERROR: Precision in temp. was ±0.01°C;
specified) that had crystallized fr ^b Compiler's calculations. AUXILIARY I METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the solids to settle. Samples of the clear sat. sln were then analysed for solute content by an evaporation- to-dryness method using Pt crucibles.	om the saturated solution. NFORMATION SOURCE AND PURITY OF MATERIALS: Hydrated barium perchlorate was prepared from very pure barium chloride and purified HClO ₄ (ref.1 and recrystallized twice. The anhy salt was obtained by heating the hydrate at 250°C in a current of dry air to constant weight. ESTIMATED ERROR: Precision in temp. was ±0.01°C;
specified) that had crystallized fr ^b Compiler's calculations. AUXILIARY I METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the solids to settle. Samples of the clear sat. sln were then analysed for solute content by an evaporation- to-dryness method using Pt crucibles. Duplicate soly determinations were	om the saturated solution. NFORMATION SOURCE AND PURITY OF MATERIALS: Hydrated barium perchlorate was prepared from very pure barium chloride and purified HClO ₄ (ref.1 and recrystallized twice. The anhy salt was obtained by heating the hydrate at 250°C in a current of dry air to constant weight. ESTIMATED ERROR: Precision in temp. was ±0.01°C;
specified) that had crystallized fr ^b Compiler's calculations. AUXILIARY I METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the solids to settle. Samples of the clear sat. sln were then analysed for solute content by an evaporation- to-dryness method using Pt crucibles. Duplicate soly determinations were made, those analyses with chloride	om the saturated solution. NFORMATION SOURCE AND PURITY OF MATERIALS: Hydrated barium perchlorate was prepared from very pure barium chloride and purified HClO ₄ (ref.1 and recrystallized twice. The anhy salt was obtained by heating the hydrate at 250°C in a current of dry air to constant weight. ESTIMATED ERROR: Precision in temp. was ±0.01°C;
specified) that had crystallized fr ^b Compiler's calculations. AUXILIARY I METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25°C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h and stood vertically to allow the solids to settle. Samples of the clear sat. sln were then analysed for solute content by an evaporation- to-dryness method using Pt crucibles. Duplicate soly determinations were	om the saturated solution. NFORMATION SOURCE AND PURITY OF MATERIALS: Hydrated barium perchlorate was prepared from very pure barium chloride and purified HClO ₄ (ref.1 and recrystallized twice. The anhy salt was obtained by heating the hydrate at 250°C in a current of dry air to constant weight. ESTIMATED ERROR: Precision in temp. was $\pm 0.01°C$; precision in soly. about $\pm 0.05\%$.

COMPONENTS:			ORIGINAL MI	EASUREMENTS:		
(1) Barium percl		(ClO ₄) ₂ ;	Willard, H	I.H.; Smith,	G.F.	
[13465-95-7]]					
(2) Alcohols:				em. Soc. <u>192</u>	23, 45,	
(A) Methanol		lcohol);	286-96.			
(B) Ethanol	67-56-1] (ethyl alc	abol				
	(ethyl alt [64-17-5]	01101),				
(C) 1-Propa		yl alcohol)	3			
	[71-23-8]					
(D) 1-Butan	ol (<i>n-butyl</i>	alcohol);				
C ₄ H ₁₀ O;	[71-36-3]		Í			
(E) 2-Methy						
	lcohol); C ₄ 1	^H 10 ^O ;				
[78-83-]	1]					
VARIABLES:			PREPARED BY	ζ:		
One temperature	: 298.15 K		C.Y. Chan			
Solubility ^a of the solid phase		anhydrous s	alt :			
			alt : 1-propanol	1-butanol		
the solid phase	being the a	ethanol	1-propanol	1-butanol 36.78		
the solid phase soly in : mass % g/100 cm ³ sln.	being the methanol	ethanol	1-propanol		1-propanol	
the solid phase soly in : mass % g/100 cm ³ sln. mol % ^a	being the methanol 68.46 119.85 17.13	ethanol 55.48 78.543 14.584	1-propanol 43.07 52.309 11.911	36.78 41.716 11.367	1-propanol 35.99 36.667 11.028	
the solid phase soly in : mass % g/100 cm ³ sln. mol % ^a mol dm ⁻³ a	being the a methanol 68.46 119.85 17.13 3.5644	ethanol 55.48 78.543 14.584 2.3359	1-propanol 43.07 52.309 11.911 1.5557	36.78 41.716 11.367 1.2407	1-propanol 35.99 36.667 11.028 1.0905	
the solid phase soly in : mass % g/100 cm ³ sln. mol % ^a	being the methanol 68.46 119.85 17.13	ethanol 55.48 78.543 14.584	1-propanol 43.07 52.309 11.911	36.78 41.716 11.367	1-propanol 35.99 36.667 11.028	
the solid phase soly in : mass % g/100 cm ³ sln. mol % ^a mol dm ⁻³ a	being the methanol 68.46 119.85 17.13 3.5644 6.455	ethanol 55.48 78.543 14.584 2.3359	1-propanol 43.07 52.309 11.911 1.5557	36.78 41.716 11.367 1.2407	1-propanol 35.99 36.667 11.028 1.0905	
the solid phase soly in : mass % g/100 cm ³ sln. mol % ^a mol dm ⁻³ a mol kg ⁻¹ a	being the methanol 68.46 119.85 17.13 3.5644 6.455 lculations.	ethanol 55.48 78.543 14.584 2.3359	1-propanol 43.07 52.309 11.911 1.5557 2.250	36.78 41.716 11.367 1.2407	1-propanol 35.99 36.667 11.028 1.0905	
the solid phase soly in : mass % g/100 cm ³ sln. mol % ^a mol dm ⁻³ a mol kg ⁻¹ a ^a Compiler's ca	being the methanol 68.46 119.85 17.13 3.5644 6.455 lculations.	ethanol 55.48 78.543 14.584 2.3359 3.706	1-propanol 43.07 52.309 11.911 1.5557 2.250 NFORMATION	36.78 41.716 11.367 1.2407	1-propanol 35.99 36.667 11.028 1.0905 1.6722	
the solid phase soly in : mass % g/100 cm ³ sln. mol % ^a mol dm ⁻³ a mol kg ⁻¹ a ^a Compiler's ca: METHOD/APPARATUS, A sat. sln. of f	being the methanol 68.46 119.85 17.13 3.5644 6.455 lculations. /PROCEDURE: the salt wa	ethanol 55.48 78.543 14.584 2.3359 3.706 AUXILIARY 1	1-propanol 43.07 52.309 11.911 1.5557 2.250 NFORMATION SOURCE AND Hydrated 1	36.78 41.716 11.367 1.2407 1.7302	1-propanol 35.99 36.667 11.028 1.0905 1.6722	
the solid phase soly in : mass % g/100 cm ³ sln. mol % ^a mol dm ⁻³ a mol kg ⁻¹ a ^a Compiler's ca METHOD/APPARATUS, A sat. sln. of t at a temperature	being the methanol 68.46 119.85 17.13 3.5644 6.455 lculations. /PROCEDURE: the salt way	ethanol 55.48 78.543 14.584 2.3359 3.706 AUXILIARY 1 as prepared above 25°C	1-propanol 43.07 52.309 11.911 1.5557 2.250 NFORMATION SOURCE AND Hydrated I prepared 1	36.78 41.716 11.367 1.2407 1.7302 PURITY OF MA Darium perch from very put	1-propanol 35.99 36.667 11.028 1.0905 1.6722 ATERIALS: lorate was re barium	
the solid phase soly in : mass % g/100 cm ³ sln. mol % ^a mol dm ⁻³ a mol kg ⁻¹ a ^a Compiler's ca METHOD/APPARATUS/ A sat. sln. of a at a temperature and sealed toget	being the methanol 68.46 119.85 17.13 3.5644 6.455 lculations. /PROCEDURE: the salt was e slightly a ther with al	ethanol 55.48 78.543 14.584 2.3359 3.706 AUXILIARY 1 as prepared above 25°C bout 1 g of	1-propanol 43.07 52.309 11.911 1.5557 2.250 NFORMATION SOURCE AND Hydrated I prepared f chloride a	36.78 41.716 11.367 1.2407 1.7302 PURITY OF MA Darium perchl from very pur and purified	1-propanol 35.99 36.667 11.028 1.0905 1.6722 ATERIALS: lorate was re barium HClO ₄ (ref.	
the solid phase soly in : mass % g/100 cm ³ sln. mol % ^a mol dm ⁻³ a mol kg ⁻¹ a ^a Compiler's ca: METHOD/APPARATUS, A sat. sln. of t at a temperature and sealed toget the anhydrous sa	being the methanol 68.46 119.85 17.13 3.5644 6.455 lculations. /PROCEDURE: the salt was e slightly atter with all alt in a	ethanol 55.48 78.543 14.584 2.3359 3.706 AUXILIARY I as prepared above 25°C bout 1 g of solubility	1-propanol 43.07 52.309 11.911 1.5557 2.250 NFORMATION SOURCE AND Hydrated I prepared i chloride a and recrys	36.78 41.716 11.367 1.2407 1.7302 PURITY OF MA Darium perch from very pur and purified stallized twi	1-propanol 35.99 36.667 11.028 1.0905 1.6722 ATERIALS: lorate was re barium HClO ₄ (ref. lice. The anh	
the solid phase soly in : mass % g/100 cm ³ sln. mol % ^a mol dm ⁻³ a mol kg ⁻¹ a ^a Compiler's ca: METHOD/APPARATUS, A sat. sln. of t at a temperature and sealed toget the anhydrous sa tube, capacity :	being the methanol 68.46 119.85 17.13 3.5644 6.455 lculations. /PROCEDURE: the salt was e slightly a ther with al alt in a 18-20 cm ³ .	ethanol 55.48 78.543 14.584 2.3359 3.706 AUXILIARY I as prepared above 25°C bout 1 g of solubility This tube	1-propanol 43.07 52.309 11.911 1.5557 2.250 NFORMATION SOURCE AND Hydrated I prepared f chloride a and recrys salt was o	36.78 41.716 11.367 1.2407 1.7302 PURITY OF MA Darium perch from very pur and purified stallized twi obtained by h	1-propanol 35.99 36.667 11.028 1.0905 1.6722 ATERIALS: lorate was re barium HClO ₄ (ref. ice. The anh heating the	
the solid phase soly in : mass % g/100 cm ³ sln. mol % ^a mol dm ⁻³ a mol kg ⁻¹ a ^a Compiler's ca METHOD/APPARATUS, A sat. sln. of at a temperature and sealed toget the anhydrous sa tube, capacity : was then rotated	being the methanol 68.46 119.85 17.13 3.5644 6.455 lculations. /PROCEDURE: the salt was e slightly a ther with al alt in a 18-20 cm ³ . d end-over-e	ethanol 55.48 78.543 14.584 2.3359 3.706 AUXILIARY 1 AUXILIARY 1 as prepared above 25°C bout 1 g of solubility This tube end in the	1-propanol 43.07 52.309 11.911 1.5557 2.250 NFORMATION SOURCE AND Hydrated I prepared f chloride a and recrys salt was o hydrate at	36.78 41.716 11.367 1.2407 1.7302 PURITY OF MA Darium perchl from very pur and purified stallized twi obtained by A 250°C in a	1-propanol 35.99 36.667 11.028 1.0905 1.6722 ATERIALS: Lorate was re barium HClO ₄ (ref. Lee. The anh heating the current of	
the solid phase soly in : mass % g/100 cm ³ sln. mol % ^a mol dm ⁻³ a mol kg ⁻¹ a A compiler's ca METHOD/APPARATUS, A sat. sln. of t at a temperature and sealed toget the anhydrous sa tube, capacity :	being the methanol 68.46 119.85 17.13 3.5644 6.455 lculations. /PROCEDURE: the salt was e slightly a ther with al alt in a 18-20 cm ³ . d end-over-over-over-over-over-over-over-over	ethanol 55.48 78.543 14.584 2.3359 3.706 AUXILIARY I as prepared above 25°C bout 1 g of solubility This tube end in the for 24-48h	1-propanol 43.07 52.309 11.911 1.5557 2.250 NFORMATION SOURCE AND Hydrated I prepared i chloride a and recrys salt was o hydrate at dry air to	36.78 41.716 11.367 1.2407 1.7302 PURITY OF MA Darium perch from very pur and purified stallized twi obtained by h	1-propanol 35.99 36.667 11.028 1.0905 1.6722 ATERIALS: Lorate was re barium HClO ₄ (ref. ice. The anh heating the current of eight.	

Т

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Barium perchlorate; Ba(ClO ₄) ₂ ;	Willard, H.H.; Smith, G.F.
[13465-95-7]	
(2) Alcohols:	J. Am. Chem. Soc. <u>1923</u> , 45,
(A) Methanol (methyl alcohol);	286-96.
CH ₄ O; [67-56-1]	
(B) Ethanol (ethyl alcohol);	
C ₂ H ₆ O; [64-17-5]	
(C) 1-Propanol (n-propyl alcohol);	
C ₃ H ₈ O; [71-23-8]	
(D) 1-Butanol (<i>n-butyl alcohol</i>);	
C ₄ H ₁₀ O; [71-36-3]	
(E) 2-Methyl-1-propanol (iso-	
butyl alcohol); C ₄ H ₁₀ O;	
[78-83-1]	
EXPERIMENTAL VALUES:(continued)	I
methanol ethanol 1	-propanol 1-butanol 2-methyl- 1-propanol

AUXILIARY INFORMATION

density/g cm⁻³ 1.7507 1.4157 1.2145 1.1342 1.1171

density/g cm⁻³ 0.78705 0.78515 0.7989 0.8059 0.7981

- -

.

METHOD/APPARATUS/PROCEDURE: (continued) solids to settle. Samples of the clear sat. sln. were then analysed for solute content by an evaporation- to-dryness method using Pt crucibles. The salt was dried to constant wt. at	SOURCE AND PURITY OF MATERIALS: (continued) refluxing with calcium and fractional distillation.
The salt was dried to constant wt. at 250° C in a current of air dried with P_2O_5 . Duplicate soly determinations were made, those analyses in which chloride (from thermal decomposition) was found present being rejected.	ESTIMATED ERROR: Precision in temp. was ±0.01 ⁰ C;

REFERENCES:

sat. sln.

pure solvent

1. Willard, H.H.; J. Am. Chem.Soc. <u>1912</u>, 34, 1480.

COMPONENTS: (1) Barium perchlorate; Ba(ClO ₄) ₂ ; [13465-95-7]	ORIGINAL MEASUREMENTS: Willard, H.H.; Smith, G.F.
(2) Acetone; C ₃ H ₆ O; [67-64-1]	J. Am. Chem. Soc. <u>1923</u> , 45, 286-96.
VARIABLES: One temperature: 298.15 K	PREPARED BY: C.Y. Chan
EXPERIMENTAL VALUES:	
Solubility ^a of barium perchlorate ir	a acetone at 25.00°C :
mass % g/100 cm ³ sln, mol %	mol dm ⁻³ mol kg ⁻¹ sat. sln.

55.49 81.054 17.719^b 2.4106^b 3.708^b 1.4607

^a The solid phase was the anhydrous salt.

^b Compiler's calculations.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: A sat. sln. of the salt was prepared Hydrated barium perchlorate was at a temperature slightly above 25°C prepared from very pure barium and sealed together with about 1 g of chloride and purified HClO₄ (ref.1) the anhydrous salt in a solubility and recrystallized twice. The anhy. tube, capacity 18-20 cm³. This tube salt was obtained by heating the hydrate at 250°C in a current of was then rotated end-over-end in the thermostat bath at 25.00°C for 24-48h dry air to constant weight. (2) and stood vertically to allow the was purified by refluxing with solids to settle. Samples of the KOH and fractional distillation. Density of (2) at $25^{\circ}C$ was 0.7852 clear sat. sln were then analysed for $g \text{ cm}^{-3}$; b.p. was 56.16-56.51 °C. solute content by an evaporation-todryness method using Pt crucibles. The salt was dried to constant wt. at ESTIMATED ERROR: 250°C in a current of air dried with Precision in temp. was $\pm 0.01^{\circ}$ C. P₂O₅. Duplicate soly. determinations were made, those analyses in which chloride (from thermal decomposition) **REFERENCES:** was found present being rejected. 1. Willard, H.H. J. Am. Chem. Soc. 1912, 34, 1480.

density/g cm^{-3}

.so Danum Fei	cinorate
COMPONENTS: (1) Barium perchlorate; $Ba(ClO_4)_2$; [13465-95-7] (2) Ethyl acetate; $C_4H_8O_2$; [141-78-6]	ORIGINAL MEASUREMENTS: Willard, H.H.; Smith, G.F. <i>J. Am. Chem. Soc.</i> <u>1923</u> , 45, 286-96.
VARIABLES: One temperature: 298.15 K	PREPARED BY: C.Y. Chan
EXPERIMENTAL VALUES: Solubility ^a of barium perchlorate in mass % g/100 cm ³ sln. mol % m	
53.04 80.812 22.837 ^b 2	2.4034 ^b 3.359 ^b 1.5236
AUXILIARY IN	IFORMATION
METHOD/APPARATUS/PROCEDURE: A sat. sln. of the salt was prepared at a temperature slightly above 25° C and sealed together with about 1 g of the anhydrous salt in a solubility tube, capacity 18-20 cm ³ . This tube was then rotated end-over-end in the thermostat bath at 25.00° C for 24-48h and stood vertically to allow the solids to settle. Samples of the clear sat. sln were then analysed for solute content by an evaporation-to- dryness method using Pt crucibles. The salt was dried to constant wt. at 250° C in a current of air dried with P_2O_5 . Duplicate soly. determinations were made, those analyses in which	1
were made, those analyses in which chloride (from thermal decomposition) was found present being rejected.	REFERENCES: 1. Willard, H.H. J. Am. Chem. Soc. <u>1912</u> , 34, 1480.

•

COMPONENTS: (1) Barium perchlorate; Ba(ClO ₄) ₂ ; [13465-95-7]	ORIGINAL MEASUREMENTS: Sakk, Zh. G.; Rosolovskii, V.Ya.
(2) Hydrazine; N ₂ H ₄ ; [302-01-2]	Zh. Neorg. Khim. <u>1972</u> , 17, 1783-4; *Russ. J. Inorg. Chem. (Engl. Transl.) <u>1972</u> , 17, 927-8.
VARIABLES: One temperature: 298.2 K	PREPARED BY: C.Y. Chan

EXPERIMENTAL VALUES:

The solubility of barium perchlorate in hydrazine at 25.0 °C was 109.3 g (1) in 100 g (2). The corresponding mass %, mol % and molality values for (1), calculated by the compiler, are 52.22 %, 9.43 % and 3.25 mol kg⁻¹ respectively.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: 4-6 g of the salt and 8-11 cm³ of hydrazine were thermostated at 25.0°C for 7-8 h with continuous stirring in a vessel isolated from atmospheric moisture. Samples for analysis were removed by drawing solution and part of the solid phase into a vessel fitted with a porosity no.4 filter at | was 0.4 %. Temperature precision reduced pressure. After separating the phases, the solution was analysed for hydrazine. Replicate solubility determinations were made.

SOURCE AND PURITY OF MATERIALS: Barium perchlorate was 99.5-99.9 % pure. Anhydrous hydrazine was prepared following the procedure given in ref.1 .

ESTIMATED ERROR:

Absolute error in solubility value was \pm 0.1 °C.

REFERENCES:

1. Rosolovskii, V.Ya.; Sakk, Zh.G. Zh. Neorg. Khim. 1970, 15, 2262.

Т

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Barium perchlorate; Ba(ClO ₄) ₂ ;	Lilich, L.S.; Kurbanova, Z.I.;
[13465-95-7]	Chernykh, L.V.
<pre>(2) Perchloric acid; HClO₄;</pre>	Zh. Neorg. Khim. <u>1972</u> , 17, 812-6.
[7601-90-3]	*Russ. J. Inorg. Chem. (Engl.
(3) Water; H ₂ O; [7732-18-5]	Transl.) <u>1972</u> , 17, 424-6.
VARIABLES: Temperature/K: 273, 298 and 323 K Composition	PREPARED BY: C.C. Ho

EXPERIMENTAL VALUES:

Solubility of $Ba(ClO_4)_2$ in aqueous perchloric acid at 0.0 $^{\circ}C$

mass %		mol kg ⁻¹		mol % ^a			
(1)	(2)	(1)	(2)	(1)	(2)		
1.12	-	4.68	-	7.768	-	$Ba(ClO_4)_2.4H_2O$	
56.99	3.39	4.28	0.85	7.055	1.40	" 4 Z Z	
51.45	7.09	3.70	1.70	6.060	2.80	"	
13.75	13.28	3.04	3.07	4.915	4.99	11	
31.09	22.28	1.63	4.75	3.186	7.641	"	
		$(1.98)^{1}$	5				
23.59	28.28	1.46	5.84	2.321	9.311	**	
3.26	37.25	0.80	7.49	1.249	11.74	"	
7.69	42.78	0.46		0.715		**	
3.81	49.13		10.39	0.364	15,71	"	

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE The isothermal method was used. Equilibrium was reached after 8-10 h. Ba^{2+} in the liquid and solid phases was determined by titration with a solution of Trilon B using fluorescein as indicator, HClO ₄ by titrating the H ⁺ with borax solution using methyl red as indicator. The	prepare the salt which was thrice
composition of the solid phase was found by Schreinemakers' method.	ESTIMATED ERROR: Temp.: $\pm 0.1^{\circ}$ C at 0° C and 50° C;
Found by Schleinemakers method.	$\pm 0.05^{\circ}C$ at 25°C.
	Relative error in analyses:
	±0.05 %.
	REFERENCES:
	None.
	(continued next page)

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Barium perchlorate; Ba(ClO ₄) ₂ ;	Lilich, L.S.; Kurbanova, Z.I.;
[13465-95-7]	Chernykh, L.V.
(2) Perchloric acid; HClO ₄ ;	
[7601-90-3]	Zh. Neorg. Khim. <u>1972</u> , 17, 812-6.
(3) Water; H ₂ O; [7732-18-5]	*Russ. J. Inorg. Chem. (Engl.
	Transl.) <u>1972</u> , 17, 424-6.

EXPERIMENTAL VALUES: (continued)

Solubility of $Ba(ClO_4)_2$ in aqueous perchloric acid at 0.0 $^{\circ}C$

•		Liquid p	Solid phase ^a			
mas	ss %	mol kg^{-1}		mol	% ^b	
(1)	(2)	(1)	(2)	(1)	(2)	
3.92	50.12	0.25	10.62 (10.86) ^c	0.381	16.30	A + B
3.00	53.02	0.20	11.99	0.300	17.72	в
4.07	55.81	0.30	13.84	0.433	19.88	B + C
4.82	56.81	0.37	14.73	0.529	20.87	С
1.91	60.60	0.15	16.08	0.211	22.43	С
1.77	67.30	0.17	21.65	0.220	28.01	С
1.78	73.02	0.14 (0.21) ^c	28.17 (28.84) ^c	0.248	34.11	С
1.78	77.04	0.25	36.20	0.272	39.37	С

Solubility of $Ba(ClO_4)_2$ in aqueous perchloric acid at 25.00°C

Solid phase ^a	Liquid phase composition						
	% ^b	nol kg ⁻¹ mol % ^b	mol	s %	mas		
	(2)	(1)	(2)	(1)	(2)	(1)	
D	-	9.606	-	5.91	-	6.48	
D	4.968	6.342	2.46 (3.11) ^c	3.97	11.80	0.42	
D	8.820	3.978	5.61	2.53	23.35	35.25	
D	11.08	2.693	7.13	1.73	31.16	5.35	
D	13.89	1.503	9.10	0.98	40.73	4.76	
D	16.25	0.991	10.90	0.66	47.23	9.64	
D	18.30	0.903	12.56	0.62	51.11	8.41	
C + D	18.54	0.766	12.76	0.52	52.11	7.21	
С	19.04	0.589	13.14	0.40	53.74	5.57	
С	19.28	0.518	13.33	0.36	54.46	4.90	
С	21.85	0.257	15.52	0.18	59.51	2.34	
С	25.29	0.238	18.84	0.16 (0.18) ^c	64.12	2.02	
С	29.61	0.251	23.43		68.82	1.95	
С	40.11	0.286	37.35	0.27	77.50	1.85	

- $C = Ba(ClO_4)_2$; $D = Ba(ClO_4)_2.3H_2O$.
- ^b compiler's calculations.
- ^c recalculated by compiler (original values are in error).

COMPONENTS:

(1)	Barium perchlorate; Ba(ClO ₄) ₂ ;
	[13465-95-7]
(2)	Perchloric acid; HClO ₄ ;
	[7601-90-3]
(3)	Water; H ₂ O; [7732-18-5]

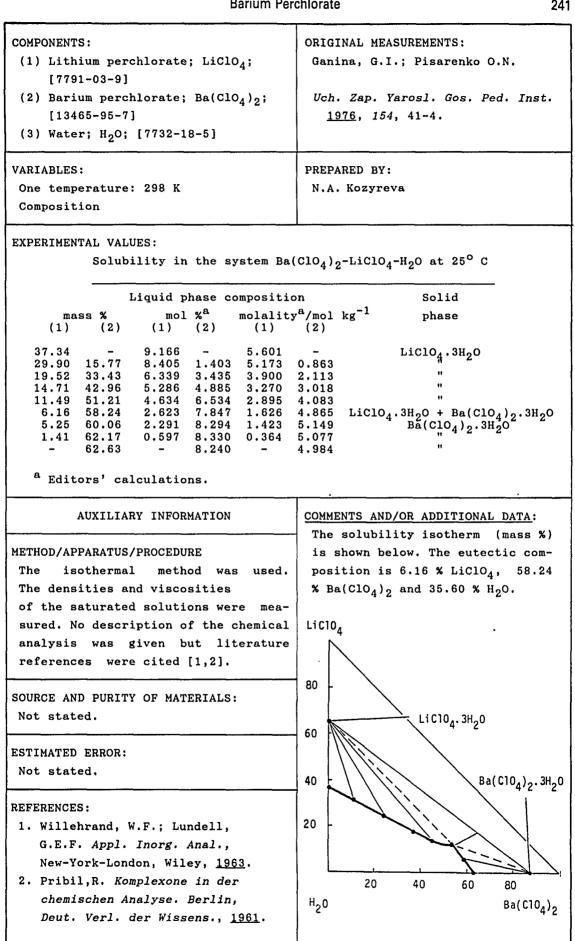
ORIGINAL MEASUREMENTS: Lilich, L.S.; Kurbanova, Z.I.; Chernykh, L.V.

Zh. Neorg. Khim. <u>1972</u>, 17, 812-6. *Russ. J. Inorg. Chem. (Engl. Transl.) <u>1972</u>, 17, 424-6.

EXPERIMENTAL VALUES: (continued)

Solubility of $Ba(ClO_4)_2$ in aqueous perchloric acid at 50.0°C

		Liquid p	hase com	position		Solid phase ^a
mass %		mol	kg ⁻¹	mol	1 % ^b	
(1)	(2)	(1)	(2)	(1)	(2)	
73.90	-	8.44	-	13.17	-	Α
68.53	3.78	7.33	1.35	11.46	2.12	Α
53.61	14.64	5.03	4.59	7.712	7.049	Α
48.91	18.60	4.49	5.69	6.816	8.676	Α
29.95	33.08	2.41	8.90	3.605	13.33	Α
28.07	34.50	2.21	9.16	3.333	13.71	Α
27.42	35.32	2.08	9.43	3.260	14.06	A + B
		(2.19) ^c				
26.28	36.12	2.05	9.30	3.096	14.24	в
			(9.56) ^C			
17.52	44.89	1.38	11.88	2.015	17.28	В
6.29	55.45	0.49	14.42	0.694	20.49	в
2.62	60.51	0.22	16.40	0.293	22.67	в
2.98	62.04	0.25	17.65	0.345	24.05	В
2.38	65.66	0.22	20.45	0.291	26.85	в
2.17	71.08	0.24	26.45	0.294	32.18	в
1.93	80.74	0.33	46.40	0.324	45.37	в


^a A = Ba(ClO₄)₂.2H₂O ; B = Ba(ClO₄)₂.

^b compiler's calculations.

^c recalculated by compiler (original values are in error).

COMMENTS AND/OR ADDITIONAL DATA:

 Ba^{2+} being weakly hydrated, there is a monotonic salting-out of $Ba(ClO_4)_2$. As the temperature is raised, there is a gradual disappearance of the highest crystal hydrate of the salt.

COMPONENT	s:			i	ORIGINA	AL MEASUREMENTS:	
(1) Sodi [760	um perch 1-89-0]	nlorate;	NaC104;		Zaitseva, S.N.; Lepeshkov, I.N.		
(2) Bari	um perc) 65-95-7]	1	-	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1969</u> , 66, 113-21.			
VARIABLES Temperat Composit	ure/K: 2	298 and	323		PREPARE N.A. H	ED BY: Kozyreva	
EXPERIMEN			the syst	em Ba(C	10 ₄) ₂ -Ne	aclo ₄ -H ₂ O	
			hase com	-		Solid phase	
ma (1)	ss % (2)		1 % ^a m (2) At 25 ⁰	(1)	^a /mol kg (2)	s -	
$\begin{array}{c} 6.74\\ 19.68\\ 29.40\\ 35.95\\ 39.89\\ 40.67\\ 40.67\\ 41.32\\ 41.30\\ 41.30\\ 42.22\\ 47.04\\ 56.45\\ 61.46\\ 67.48\\ \end{array}$	$\begin{array}{c} 32.19\\ 32.73\\ 32.90\\ 32.02\\ 32.33\\ 29.15\\ 23.69\\ 12.92\\ 4.45\\ -\\ \\ 72.52\\ 71.65\\ 68.27\\ 65.63\\ 59.31\\ 53.17 \end{array}$	2.705 8.084 12.36 15.24 16.89 17.17 17.43 18.08 17.63 17.78 17.06 18.48 20.96 20.85 23.39	7.491 6.462 5.648 5.088 4.949 5.107 5.243 4.977 5.068	1.698 5.315 8.455 10.69 12.02 12.24 12.49 13.09 12.04 13.13 15.05 14.73 16.95 C C - 0.038 1.350 2.559 4.614 7.034	4.419 3.963 3.620 3.527 3.659 3.795 3.569 3.646 3.028 2.407 1.254 0.388 - 7.849 7.551 7.456 7.458		
a Edit	ors' cal	culatio	ns				
			AUXIL	IARY IN	FORMATIC	DN .	
METHOD/APPARATUS/PROCEDURE: The isothermal method was used [1]. Densities and viscosities of the					Not st		
saturate ESTIMATED Not state	ERROR:	.ons wer	e measur	ea.	REFERENCES: 1. Karnaukhov, A.S. <i>Izv. SFKhA</i> <i>AN SSSR</i> , <u>1954</u> , <i>25</i> , 335. (continued next page)		

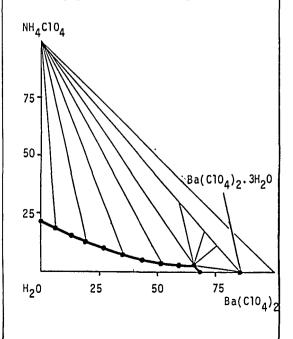
COMPONENTS:

- (1) Sodium perchlorate; NaClO₄;
 [7601-89-0]
- (2) Barium perchlorate; Ba(ClO₄)₂; [13465-95-7]
- (3) Water; H_2O ; [7732-18-5]

ORIGINAL MEASUREMENTS: Zaitseva, S.N.; Lepeshkov, I.N. Uch. Zap. Yarosl. Gos. Ped. Inst. 1969, 66, 113-21.

EXPERIMENTAL VALUES: (continued)

Solubility in the system $Ba(ClO_4)_2$ -NaClO₄-H₂O at 50^oC


		. <u> </u>				······	
	I	iquid ph	ase co	mposition	l.	Solid	
						phase ^b	
	.ss %	mol		molality ^a	/mol kg ⁻¹	l	
(1)	(2)	(1)	(2)	(1)	(2)		
30.39	46.21	14.73	8.158	10.61	5.873	А	
34.05	43.02	16.56	7.621	12.13	5.580	A	
34.67	42.89		7.701	12.62		Α	
	$42.74 \\ 41.87$		7.789			A	
	41.87		7.130		5.227	A + B A + B	
	41.71		7.367			A + B	
	41.84	16.99			5.405	A + B	
	41.76		7.664		5.761	B	
	40.19 33.34	18.33 20.42	5.699			B B	
	28.00				3.465	B	
	22.79	21.92			2.632	B	
	13.31	25.38			1.541	В	
64.15		26.35 27.05			1.152	C C	
68.79 71.50	$4.14 \\ 2.23$	27.05		20.78	0.455 0.252	C	
73.15	-	28.62	-	22.25	-	č	
solid so		isotherms are form				elow. No double s	alts or
Ba(C104)2				В	a(C10 ₄) ₂		
	Ba(C10 ₄) ₂	.H ₂ 0			Ba(с10 ₄) ₂ .H ₂ 0	
80 MA				80	APA	_ Ba(C10 ₄) ₂ .3H ₂ 0	
IWW,		0 ₄) ₂ .3H ₂ 0				Da(0104/2.5m20	
1 // //							
1////	$\langle \langle \langle \rangle \rangle$				NIN	$\langle \rangle$	
60 N				60			
60				60			
60		\backslash		60			
		\sum		40			
			NaCI				aC104.H2C
40		Ø	NaCI	40 0 ₄ .H ₂ 0			aC104.H2C
40			NaCI	40			aC104.H2C
40			NaCI	40 0 ₄ .H ₂ 0			aC10 ₄ .H ₂ C
40 - 20 -				40 0 ₄ .H ₂ 0			
40 .	20 4	0 60	NaC1	40 0 ₄ .H ₂ 0 20	20		
40 20		0 $60C isotherm$		40 0 ₄ .H ₂ 0 20			

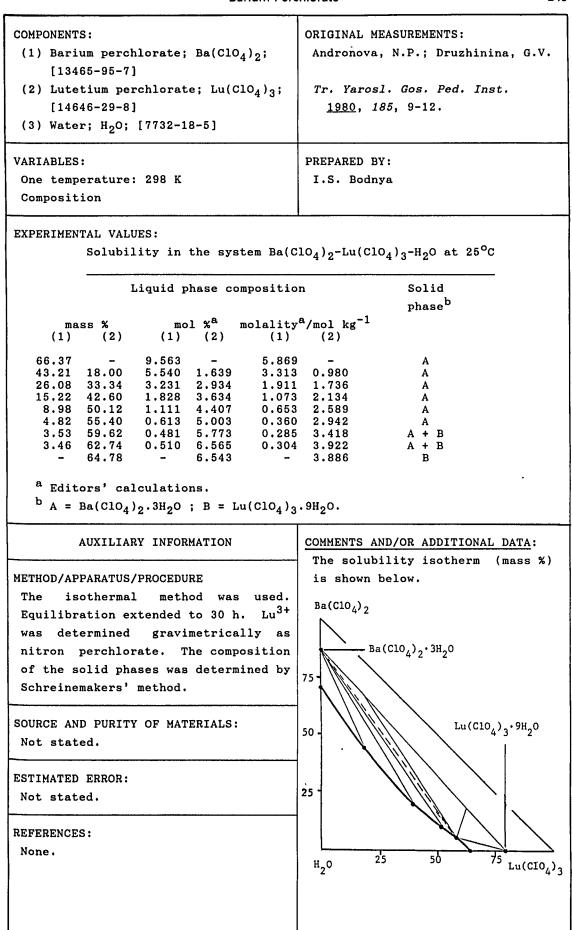
COMPONENT	S:			ORIGINAL MEASUREMENTS:		
(1) Bari	um perch	lorate;	Ba(C10,	Karnaukhov, A.S.; Bogachev,A.V.		
[134	65-95-7]	J				
(2) Ammo	nium per	chlorat	e; NH ₄ Cl	Uch. Zap. Yarosl. Gos. Ped. Inst.		
[779	0-98-9]				<u>1971</u>	, <i>95</i> , 32-5.
(3) Wate	r; H ₂ 0;	[7732-1	8-5]			
VARIABLES					PREPAREI	D BY:
One temp	erature	: 298 K			I.S. Bo	odnya ; N.A. Kozyreva
Composit						
Composite	ION					
						H ₄ ClO ₄ -H ₂ O at 25°C
				nposition		H ₄ ClO ₄ -H ₂ O at 25°C Solid phase
ma]	Liquid p mol	hase cor % ^a	mposition	n	Solid phase
ma (1)]	Liquid p	hase cor % ^a		n cy ^a /mol 1	Solid phase
(1)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Liquid p mol (1) -	hase con % ^a (2) 3.692	mposition molalit (1)	2.128	Solid phase kg ⁻¹
(1)	1 (2) 20.00 13.77	Liquid p mol (1) 0.842	hase con % ^a (2) 3.692 2.745	mposition molalit (1) 0.485	2.128 1.581	Solid phase
(1)	1 (2) 20.00 13.77	Liquid p mol (1) 0.842	hase con % ^a (2) 3.692 2.745	mposition molalit (1) 0.485	2.128 1.581	Solid phase kg ⁻¹
(1) - 12.08 24.40 43.54	1 1 1 1 1 1 2 0.00 1 3.77 9.09 4.11	Liquid p mol (1) - 0.842 1.889 4.217	hase con % ^a (2) 3.692 2.745 2.014 1.139	mposition molalit (1) 0.485 1.091 2.474	2.128 1.581 1.163 0.668	Solid phase kg ⁻¹ NH ₄ ClO ₄ "
(1) 12.08 24.40 43.54 57.13	20.00 13.77 9.09 4.11 1.97	Liquid p mol (1) - 0.842 1.889 4.217 6.915	hase con % ^a (2) 3.692 2.745 2.014 1.139 0.682	mposition molalit (1) 0.485	2.128 (2) 2.128 1.581 1.163 0.668 0.410	Solid phase kg ⁻¹ NH ₄ ClO ₄ "
(1) $-$ 12.08 24.40 43.54 57.13 63.73	20.00 13.77 9.09 4.11 1.97 1.76	Liquid p mol (1) - 0.842 1.889 4.217 6.915 8.940	hase cor % ^a (2) 3.692 2.745 2.014 1.139 0.682 0.707	mposition molalit (1) - 0.485 1.091 2.474 4.154	2.128 1.581 1.163 0.668 0.410 0.434	Solid phase kg ⁻¹ NH ₄ ClO ₄ "
(1) $-$ 12.08 24.40 43.54 57.13 63.73 66.75	20.00 13.77 9.09 4.11 1.97 1.76 -	Liquid p mol (1) - 0.842 1.889 4.217 6.915 8.940 9.711	hase con % ^a (2) 3.692 2.745 2.014 1.139 0.682 0.707 -	mposition molalit (1) - 0.485 1.091 2.474 4.154 5.492	2.128 1.581 1.163 0.668 0.410 0.434	Solid phase kg^{-1} NH ₄ ClO ₄ " " NH ₄ ClO ₄ + Ba(ClO ₄) ₂ .3H ₂ O
(1) $-$ 12.08 24.40 43.54 57.13 63.73 66.75	20.00 13.77 9.09 4.11 1.97 1.76 -	Liquid p mol (1) - 0.842 1.889 4.217 6.915 8.940	hase con % ^a (2) 3.692 2.745 2.014 1.139 0.682 0.707 -	mposition molalit (1) - 0.485 1.091 2.474 4.154 5.492	2.128 1.581 1.163 0.668 0.410 0.434	Solid phase kg^{-1} NH ₄ ClO ₄ " " NH ₄ ClO ₄ + Ba(ClO ₄) ₂ .3H ₂ O

METHOD/APPARATUS/PROCEDURE: isothermal method The was used. The temperature was kept constant using a contact thermometer with an accuracy of ±0.1°C. Equilibrium was

reached in 1 or 2 days. Ba²⁺ was determined by titrating with Trilon B in the presence of the indicator chrome blue black at pH 10-11; NH_4^+ by distillation of ammonia into saturated boric acid solution and subsequent titration with 0.2 mol dm^{-3} H_2SO_4 . Viscosities and densities of the saturated solutions were measured. The compositions of the solid phases were determined by Schreinemakers' method of residues .

The solubility isotherm (mass %) is shown below. The eutectic contains 1.76 % NH₄ClO₄, 63.73 % $Ba(ClO_4)_2$ and 34.51 % H_2O .

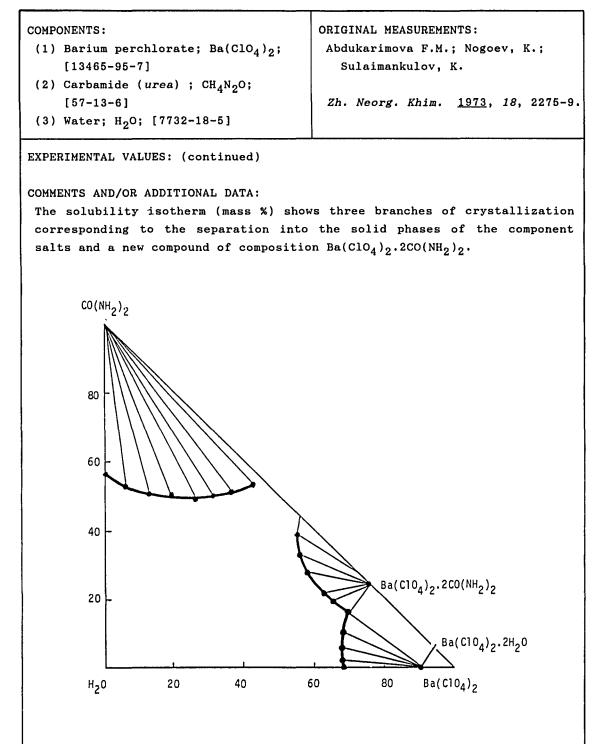
<pre>COMPONENTS: (1) Barium nitrate; Ba(NO₃)₂; [10022-31-8] (2) Barium perchlorate; Ba(ClO₄)₂; [13465-95-7] (3) Water; H₂O; [7732-18-5]</pre>	ORIGINAL MEASUREMENTS: Karnaukhov,A.S.; Bogachev,A.V. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1971</u> , 95, 27-31.
VARIABLES: Temperature: 298 K Composition	PREPARED BY: N.A. Kozyreva
EXPERIMENTAL VALUES: Solubility in the system Ba(C	$(10_4)_2$ -Ba $(NO_3)_2$ -H $_2$ O at 25°C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ty^{a}/mol kg^{-1}$ phase (2) - Ba(NO ₃) ₂ 0.523 " 1.935 "
AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The isothermal method was used [1]. Details were not given. Viscosity and density measurements were taken. The solid and liquid phases were analyzed volumetrically; Ba ²⁺ by titration with Trilon B in the presence of the indicator chrome blue black at pH 10- 11; NO ₃ by reduction to NH ₃ with Devarda's alloy followed by distilla- tion into 4 % boric acid and titra- tion with H ₂ SO ₄ ; ClO ₄ ion was deter- mined by difference. SOURCE AND PURITY OF MATERIALS: Not stated. REFERENCES: 1. Karnaukhov, A.S.; Bitokov, V.T.; Bogachev, A.V. Uch. Zap. Yarosl. Gos. Ped. Inst. 1970, 79, 161-6.	COMMENTS AND/OR ADDITIONAL DATA: The solubility isotherm (mass %) is shown below. The eutectic com- position is $6.17 \times Ba(NO_3)_2$, $63.82 \times Ba(ClO_4)_2$ and $30.01 \times H_2O$. Ba(NO_3)_2 75- 50- Ba(ClO_4)_2 \cdot 3H_2O Ba(ClO_4)_2 \cdot 3H_2O H_2O 25 50 H_2O 25 50 75 Ba(ClO_4)


ł

	remorate		
COMPONENTS: (1) Barium perchlorate; $Ba(ClO_4)_2$; [13465-95-7] (2) Praseodymium perchlorate; $Pr(ClO_4)_3$; [13498-07-2] (3) Water; H_2O ; [7732-18-5]	ORIGINAL MEASUREMENTS: Bogachev, A.V. Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1975</u> , 144, 37-9.		
VARIABLES: One temperature: 298 K Composition	PREPARED BY: E.S. Gryzlova		
EXPERIMENTAL VALUES: Solubility in the system Ba(C	$(10_4)_2 - Pr(C10_4)_3 - H_2O$ at 25°C		
	n Solid phase ^b ty ^a /mol kg ⁻¹ (2)		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4.224 A 4.385 A + B 4.364 B 2.871 B 1.924 B 0.922 B 0.357 B - B		
AUXILIARY IN	FORMATION		
METHOD/APPARATUS/PROCEDURE: The isothermal method was used. Equilibrium was reached in 2-3 days. Pr ³⁺ was determined by complexometric titration with Trilon B; ClO ₄ gravi- metrically as nitron perchlorate. The composition of the solid phases was determined graphically by Schreine- makers' method of residues .	SOURCE AND PURITY OF MATERIALS: The salts were chemically pure. $Pr(ClO_4)_3$ was prepared from Pr_6O_{11} (super pure grade) and 57 % $HClO_4$ (chemically pure). The dis- solution was slow (6-8 h) with slight heating. Excess acid was removed with ether. The Pr^{3+} to ClO_4^- ratio was 1:3.0. ESTIMATED ERROR: Not stated. REFERENCES: None.		

Barium Pere	chlorate 242
<pre>COMPONENTS: (1) Barium perchlorate; Ba(ClO₄)₂; [13465-95-7] (2) Samarium perchlorate; Sm(ClO₄)₃; [13569-60-3] (3) Water; H₂O; [7732-18-5]</pre>	ORIGINAL MEASUREMENTS: Gusevà, A.D.; Golubkova, O.N. <i>Tr. Yarosl. Gos. Ped. Inst.</i> <u>1979</u> , <i>178</i> , 3-6.
VARIABLES: One temperature: 298 K Composition	PREPARED BY: E.S. Gryzlova
EXPERIMENTAL VALUES: Solubility in the system Ba(C	$(10_4)_2 - Sm(ClO_4)_3 - H_2O$ at $25^{\circ}C$
Liquid phase composition mass % mol % ^a molali	phase ^b
14.47 43.29 1.732 3.884 1.019 5.19 56.91 0.687 5.647 0.407 4.68 62.47 0.704 7.044 0.424	9 0.691 A 7 1.203 A 9 2.284 A 4 3.347 A 4 4.238 A + B 5 4.234 A + B 4.135 B
AUXILIARY INFORMATION	COMMENTS AND/OR ADDITIONAL DATA:
METHOD/APPARATUS/PROCEDURE: The isothermal recrystallization method was used. Equilibrium was reached in 5 or 6 days. Sm^{3+} and ClO_4^- were determined using a tech- nique from elsewhere [1]. Ba ²⁺ was determined by difference.	The solubility isotherm (mass %) is given below. $Ba(ClO_4)_2$ $Ba(ClO_4)_2 \cdot 3H_2O$
SOURCE AND PURITY OF MATERIALS: Not stated.	50
ESTIMATED ERROR: Not stated.	Sm(Cl0 ₄) ₃ ·9H ₂ 0
REFERENCES: 1, Guseva, A.D. Sb. Fiziko- khimicheskie Issledovaniya Ravnovesii V Rastvorakh 1977, 164, 23-6.	$H_2^{25} = \frac{1}{H_2^{0}} + \frac{1}{25} + \frac{1}{50} + \frac{1}$

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Barium perchlorate; Ba(ClO₄)₂; [13465-95-7]</pre>	Andronova, N.P.
(2) Terbium perchlorate; $Tb(ClO_4)_3$;	Tr. Yarosl. Gos. Ped. Inst.
[14014-09-6]	<u>1979</u> , <i>178</i> , 7-10.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
One temperature: 298 K	E.S. Gryzlova
Composition	
EXPERIMENTAL VALUES:	
Solubility in the system Ba($(ClO_4)_2$ -Tb $(ClO_4)_3$ -H ₂ O at 25°C
Liquid phase compositio	on Solid
	phase
mass % mol % ^a molality (1) (2) (1) (2) (1)	$y^a/mol kg^{-1}$ (2)
	$= Ba(C10_4)_2.3H_2O$
56.51 9.45 8.087 0.996 4.937 0 52.19 13.22 7.377 1.374 4.487 0	0.607
29.30 29.16 3.547 2.596 2.098 1	L.535 "
15.85 42.33 1.915 3.761 1.127 2 9.68 49.93 1.210 4.588 0.713 2	2.214
4.46 57.95 0.596 5.692 0.353 3	3.371 "
	$(1.394 \text{ Ba}(\text{ClO}_4)_2.3\text{H}_2\text{O} + \text{Tb}(\text{ClO}_4)_3.9\text{H}_2\text{O})$
	3.961 ть(с10 ₄) ₃ .9H ₂ O
^a Editors' calculations.	
AUXILIARY INFORMATION	COMMENTS AND/OR ADDITIONAL DATA:
	The solubility isotherm (mass %)
METHOD/APPARATUS/PROCEDURE	is shown below.
The isothermal method was used.	
The equilibrium liquid and solid	
phases were analyzed for terbium and	$Ba(Clo_4)_2$
perchlorate ions.	Ba(C104)23H20
	80
SOURCE AND PURITY OF MATERIALS: Not stated.	
Not stated.	60
ESTIMATED ERROR:	
Not stated.	40
REFERENCES:	20. TB(CIO ₄) ₃ 9H ₂ 0
None.	
	H ₂ 0 20 40 60 BO TD(C104)3


.

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Barium perchlorate; Ba(ClO₄)₂;</pre>	Zakharova, V.P.
[13465-95-7]	
(2) Carbamide (<i>urea</i>); CH ₄ N ₂ O;	Uch. Zap. Yarosl. Gos. Ped. Inst.
[57-13-6]	<u>1971</u> , <i>95</i> , 95-7.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
One temperature: 298 K	N.A. Kozyreva
Composition	
EXPERIMENTAL VALUES:	
Solubility in the system Ba($(ClO_4)_2$ -CH ₄ N ₂ O-H ₂ O at 25 ^o C
Liquid phase composition	
mass % mol % ^a molali (1) (2) (1) (2) (1)	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	19.97 A
12.48 49.06 1.242 27.33 0.965 34.61 47.40 5.444 41.74 5.722	5 21.24 A 2 43.87 A
44.60 48.60 10.05 61.34 19.51 47.42 43.25 10.23 52.22 15.12	119.0 A + B
	2 77.19 B
57.09 25.62 10.91 27.41 9.820 62.99 18.75 12.38 20.63 10.26) 24.67 B 5 17.10 B + C
61.62 8.95 9.322 7.581 6.227	7 5.064 C
66.48 - 9.606 - 5.898	- C
^a Editors' calculations.	
^b A = CH_4N_2O ; B = $Ba(ClO_4)_2.3CH_4N_2O$	$D.H_2O$; C = Ba(ClO ₄) ₂ .3H ₂ O.
AUXILIARY INFORMATION	COMMENTS AND/OR ADDITIONAL DATA:
	- The solubility isotherm (mass %)
METHOD/APPARATUS/PROCEDURE:	is given below.
The isothermal method was used.	
Saturation conditions were not given.	CO (NH ₂) 2
Carbamide was determined by the Kjel-	
dahl method, $Ba(ClO_4)_2$ by complexo-	I THE
metric titration in the presence of a	
magnesium salt [1]. The refractive	75
index of the complex formed was	$Ba(C10_4)_2 \cdot CO(NH_2)_2 \cdot H_2O$
measured.	
SOURCE AND PURITY OF MATERIALS:	50
	Ba(C10 ₄) ₂ ·3H ₂ 0
The (chemically pure) components were	
recrystallized before use.	
	1
ESTIMATED ERROR:	
Not stated.	H_{20} 25 50 75 Ba(ClO ₄) ₂
REFERENCES :	
1. Vorob'eva, O.L.; Osonova, L.R.	
<i>Zh. Obshchei. Khim.</i> <u>1953</u> , <i>23</i> , 68.	
2/// COSMERCE // MILMI, 1300, 20, 00.	

					1	
COMPONENTS	5:				ORIG	INAL MEASUREMENTS:
(1) Bariu	um percl	hlorate;	Ba(ClO	$(_{4})_{2};$	Abdu	ukarimova F.M.; Nogoev, K.;
1	5-95-7				S	ulaimankulov, K.
(2) Carba	amide (urea); (CHAN20;			
[57-1			7 4	Zh.	Neorg. Khim. <u>1973</u> , 18, 2275-9.	
(3) Water	; H ₂ O;	[7732-18	3-5]			
		-				
VARIABLES:	:			PREPA	ARED BY:	
One tempe	erature	: 303 K			. Gryzlova	
Compositi						
			<u></u>			
EXPERIMENT	TAL VAL	UES:				
			the sys	tem Ba()	C10,).	-CH ₄ N ₂ O-H ₂ O at 30° C
		•	•		4'4	4 2 2
	1	Liquid pl	nase co	mpositi	on	Solid
	-			• • • • • • • •		phase
mas	ss %	то	l x ^a	molali	tv ^a /mo ⁴	
		(1)		(1)	(2)	
				(1)	(2)	
	57.50 54.97	- 0.652	28.87		22.53	CO(NH ₂) ₂
14.45	52.54	1.563 2.754	31.81			11
21.67 28.72				2.578		17
		$4.158 \\ 5.250$	41.47 47.49	4.245 6.166	42.34	11
37.44	53.02	7.308	57.94	11.67	92.54	
						$CO(NH_2)_2 + Ba(ClO_4)_2.2CO(NH_2)_2$
	40.65	12.45 12.50		20.91 20.97		$\operatorname{Ba}(\operatorname{ClO}_4)_2 \cdot 2\operatorname{CO}(\operatorname{NH}_2)_2$
53,00	35.84	11.47	43.44	14.12	53.48	"
		$11.42 \\ 11.75$		12.16 11.08		11
59.95	23.01	11.83	25.42	10.46	22.49	11
	17.22	$14.85 \\ 14.58$			18.50 17.77	$Ba(Clo_{"4})_2.2H_2O$
66.36	11.37	12.16	11.67	8.862	8.501	11
66.08 66.92	6.69 2.64	10.80 10.30	6.123 2.275		4.091 1.444	**
66.53	-	9.625		5 010	-	**
^a Edito	ors' cal	Lculatior	ns.			
			AUXIL	IARY IN	FORMATI	ION
			·····			······································
METHOD/APF	PARATUS	PROCEDU	RE:		SOUR	CE AND PURITY OF MATERIALS:
The isoth	nermal m	nethod wa	as used	•	Not	stated.
					ESTIN	AATED ERROR:
					Not	stated.
					REFE	RENCES:
					None	9.
1						
						(continued next page)
}						

ţ

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Barium perchlorate; Ba(ClO ₄) ₂ ;	Abdùkarimova, F.M.; Nogoev, K.;
[13465-95-7]	Sulaimankulov, K.
(2) Carbamide (<i>urea</i>); CH ₄ N ₂ O;	Zh. Neorg. Khim. <u>1973</u> , 18,
[57-13-6]]	2275-8; *Russ. J. Inorg. Chem.
(3) Water; H ₂ O; [7732-18-5]	(Engl.Transl.) <u>1973</u> , 18, 1203-5.
VARIABLES: One temperature: 303 K Composition	PREPARED BY: C.Y. Chan

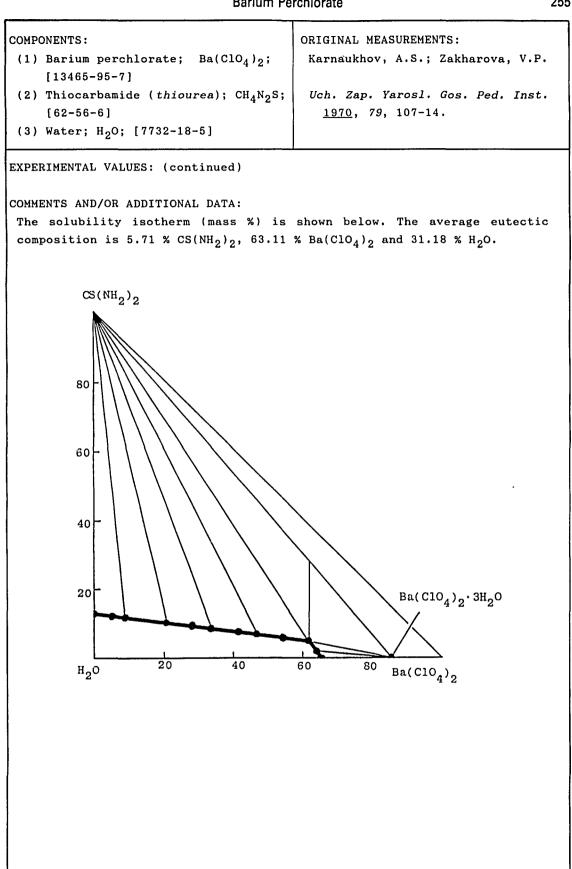
EXPERIMENTAL VALUES:

The solubility system $Ba(ClO_4)_2-CH_4N_2O-H_2O$ at $30^{\circ}C$:

	L	iquid	phase comp	Solid phase	
	mass	%	mol	, % ^a	
(1)	(2)	(1)	(2)	
66.		-	9.625		$Ba(ClO_4)_2.2H_2O$
65.		2.64			
66.		6.69			
66.		11.37	12.16		1
67.		17.01	14.58	20.7	
67.		17.22	14.85	21.2 25.4	$8 Ba(ClO_4)_2 \cdot 2CO(NH_2)_2$
59. 58.		23.01	11.83	20.4	۲ ۵ "
		26.06	11.70	29.4 36.4	0 "
55.		31.40	11.44	43.4	J A "
53. 52.		35.84 40.51	11.47 12.50		
51.		40.65	12.30		$2 = P_{0}(C(0, 1)) = 2CO(NH_{-}) = + CO(NH_{-}) =$
42.		54.67		77.1	
37.		53.02	7.304	57.9	4
		52.15	5.250	47.4	9 "
28.		51.16	4.158	41.4	7 "
21.		53.33	2.754	37.9	5
		52.54		31.8	1
6.		54.97 57.50	0.652	29.8	9
			AUXIL	IARY IN	FORMATION
ETHOD/APPA		-	DURE:		SOURCE AND PURITY OF MATERIALS: Not given.
No details					
NO DELAIIS					
No details				P 1	ESTIMATED ERROR:
NO DETAIIS				ŗ	ESTIMATED ERROR:
NO DETAIIS				-	ESTIMATED ERROR: Not given.
NO DETAIIS					
NO DETAILS					Not given.
NO GETAIIS					Not given. REFERENCES:
NO GETAIIS					Not given. REFERENCES:

COMPONENTS: (1) Barium perchlorate; Ba(ClO ₄) ₂ ; [13465-95-7]	ORIGINAL MEASUREMENTS: Karnaukhov, A.S.; Zakharova, V.P.			
(2) Thiocarbamide (<i>thiourea</i>); CH_4N_2S ; [62-56-6] (3) Water; H_2O ; [7732-18-5]	Uch. Zap. Yarosl. Gos. Ped. Inst. <u>1970</u> , 79, 107-14.			
VARIABLES: One temperature: 298 K Composition	PREPARED BY: N.A. Kozyreva			

EXPERIMENTAL VALUES:


Solubility in the system $Ba(ClO_4)_2$ -CH₄N₂S-H₂O at 25^oC

]	Liquid p	hase con	nposition		Solid phase ^b
ma	.ss %	mol	% ^a	molalit	v ^a /mol kg	-1
(1)	(2)		(2)		(2)	
-	14.26	_	3.787	_	2.185	А
7.84	13.20	0.509	3.787	0.295	2.196	Α
0.95	12.88	0.735	3.820	0.428	2.221	Α
4.80	11.27	1.956	3.927	1.154	2.316	Α
4.50	9.75	3.086	3.852	1.840	2.298	Α
2.41	8.65	4.266	3.844	2.577	2.322	Δ
4.03	7.93	4.513	3.590	2.726	2.169	Α
7.08	7.96	5.110	3.816	3.114	2.326	Α
9.83	7.51	5.668	3.773	3.474	2.313	Α
3.29	7.01	6.458	3.752	3.992	2.320	Α
8.20	6.61	7.821	3.923	4.919	2.468	Α
3.11	5.71	9.415	3.763	6.020	2.406	A + B
5.07	2.54	9.558	1.648	5.975	1.030	В
	-	9.606	-	5.898	-	В

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: The isothermal method was used. Equilibrium was reached in 24-168 h. Ba ²⁺ was determined gravimetrically in the presence of picric acid; thio- carbamide by the Kjeldahl method. The composition of the solid phases was determined by Schreinemakers' method. The densities, viscosities and	SOURCE AND PURITY OF MATERIALS: Chemically pure thiocarmbamide and barium perchlorate trihydrate (reagent grade) were recrystall- ized. ESTIMATED ERROR: Not stated.		
electrical conductivities of the saturated solutions were measured.	REFERENCES: None.		
	(continued next page)		

ſ

	· · · · · · · · · · · · · · · · · · ·
<pre>COMPONENTS: (1) Barium perchlorate; Ba(ClO₄)₂; [13465-95-7] (2) Thiocarbamide (thiourea); CH₄N₂S; [62-56-6] (3) Water; H₂O; [7732-18-5]</pre>	ORIGINAL MEASUREMENTS: Abdukarimova F.M.; Nogoev, K.; Sulaimankulov, K. Zh. Neorg. Khim. <u>1973</u> , 18, 2275-9.
VARIABLES: One temperature: 303 K Composition	PREPARED BY: E.S. Gryzlova
EXPERIMENTAL VALUES: Solubility in the system Ba(C	$Clo_4)_2$ -CH $_4N_2S$ -H $_2O$ at $30^{\circ}C$
Liquid phase composition mass % mol % ^a molalit	phase
(1) (2) (1) (2) (1)	(2) 2.923 $CS(NH_2)_2$ 2.629 " 2.710 " 2.682 " 2.593 " 2.986 " 3.619 " 3.496 $CS(NH_2)_2 + Ba(ClO_4)_2.2H_2O$ 3.294 $Ba(ClO_4)_2.2H_2O$
ESTIMATED ERROR: Not stated. REFERENCES: None.	$Ba(Cl0_4)_2 \cdot 2H_20$ 50- 25- H_20 $Ba(Cl0_4)_2 \cdot 2H_20$ $Ba(Cl0_4)_2 \cdot 2H_20$ $Ba(Cl0_4)_2$ B

COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Barium perchlorate; Ba(ClO ₄) ₂ ;	Van-Valkenburgh, H.B.;			
[13465-95-7]	McDaniels, W.B.			
(2) Ethanol (<i>ethyl alcohol</i>); C ₂ H ₆ O				
— •	I Colo Wwo Acad So 1020			
[64-17-5]	J. Colo. Wyo. Acad. Sc. <u>1930</u> ,			
(3) Water; H ₂ O; [7732-18-5]	1, 44-5.			
VARIABLES:	PREPARED BY:			
One temperature: 293 K	C.Y. Chan			
EXPERIMENTAL VALUES:	1			
Solubility ^a of barium perchlorate in	ethyl alcohol, containing trace			
amounts of water, at 20 $^{ m o}$ C :				
% alcohol ^a g(1)/10	0 cm ³ alcohol			
	U Cm ² AICONOI			
95 64.9	a			
97 66.0				
98 71.99				
99.8 93.2	1			
AUXILIARY I	NFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
The experimental procedure was not	Not stated.			
given. Analysis was probably by an				
evaporation-to-dryness method				
(compiler).				
	ESTIMATED ERROR:			
	Not stated.			
	REFERENCES:			

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Barium perchlorate; Ba(ClO₄)₂; [13465-95-7]</pre>	Tarakanov, V.F.		
(2) Acetamide; C ₂ H ₅ NO; [60-35-5]	Uch. Zap. Yarosl. Gos. Ped. Inst.		
(3) Water; H ₂ O; [7732-18-5]	<u>1977</u> , <i>164</i> , 35-6.		
VARIABLES:	PREPARED BY:		
One temperature: 298 K	E.S. Gryzlova		
Composition			

				·····		A		
	1	Liquid pl	nase comj	position	n		Solid	l
							phase	•
	.ss %		% ^a		ity ^a /mol l			
(1)	(2)	(1)	(2)	(1)	(2)			
66.44	-	9.590	-	5.888	3 –		Ba(ClO) ₂ .3H ₂ O
	3.28	9.341	2.713	5.896		2		, 2,
63.70	8.38	10.07	7.542	6,785	5 5.08	31		
63.34	11.78	10.65	11.28	7.571			**	
62.15	16.59	11.23	17.07	8.694			**	
61.90	20.08	12.08	22.30	10.22				
62.00 34.92	24.28 60.32	$13.59 \\ 7.475$	30.29 73.51	13.44 21.82				NO
	62.92	3.734	56.60	5.225			^C 2 ^H ₂ 5	NO
21.18	63.51	3.169	54.08	4.114			**	
9.47	67.12	1.143	46.12	1.203			**	
-	71.22	-	43.01	-	41.9		**	
						-		
^a Edit	ors' cal	lculatior	ıs.					
		RY INFORM			COMMENTS			
	NOVIDIU	NI INFORM	INTION		COMMENTS AND/OR ADDITIONAL DATA: The solubility isotherm (mass %)			
METHOD/AP	•			.	is given below. It shows a dis-			
The sol	ubility	was st	udied by	y iso-	continui	ty sin	nce melt	s are formed
thermal	recrysta	allizatio	on. Acet	tamide				
was dete	rmined b	by Kjeld	lahl's r	method	Balcio N			
		e ion w		1	Ba(C10 ₄) ₂			
-					Ν			
gravimet	rically	as nitro	on perchl	Lorate		- Ba(C)	0 1 30 0	
							0 ₄) ₂ .3H ₂ 0	
SOURCE AN	D PURITY	Y OF MATE	ERIALS:		75			
Not stat					^" ∐\	\land		
NOT STAT	ea.				La parte	<u>b-b</u>	\backslash	
ESTIMATED	FPROP				50 -		\mathbf{i}	
				Į	[
Not stat	ed.							R
					25			
REFERENCE	s:							/
None.								\mathcal{F}
					1		1	
					H20	25	50	75 CH ₃ CONH ₂
								J 2
			• • • • •					

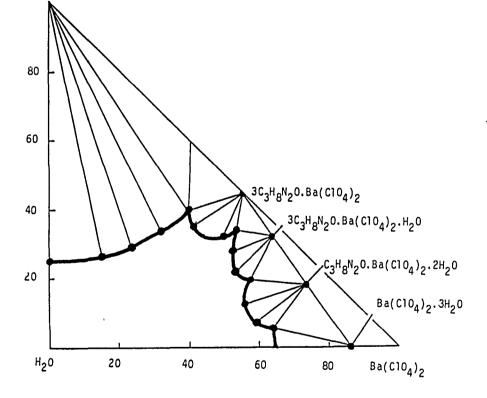
COMPONENT	'S:				ORIGINAL	MEASUREMENTS:		
(1) Bari	lum perc	hlorate;	Ba(ClO		a,S.I.; Rylenkova,I.N.			
[134	65-95-7]						
	-	bamide (-	lurea);	Sb. Tr. Smolensk. Gos. Ped. Inst			
	-	320-50-9			<u>1979</u> ,	7-15.		
(3) Water; H ₂ O; [7732-18-5]								
VARIABLES	5:				PREPARED	BY:		
One tem <u>r</u>	erature	: 298 K			E.S. Gryzlova			
Composit	Composition							
EXPERIMEN	TAL VAL	UES:			· · · · · · · · · · · · · · · · · · ·			
	Solubi	lity in	the sys	tem Ba(Cl	LO ₄) ₂ -С ₃ Н ₈	N ₂ O-H ₂ O at 25 [°] C		
		ridnig b	nase co	mpositior	n	Solid phase ^b		
me	uss %	mol	% ^a	molalit	ty ^a /mol kg	-1		
(1)	(2)	(1)		(1)	(2)			
-	25.29	-	6.473	-	3.842	А		
16.40	27.01	1.395	8.767	0.862	5.417	Α		

	1	Liquid p	hase con	nposition	n	Solid	
					phaseb		
					ty ^a /mol kg	-1	
(1)	(2)	(1)	(2)	(1)	(2)		
-	25.29	-	6.473	-	3.842	А	
	27.01			0.862	5.417	Α	
	28.01		9.908	1.228		А	
	29.90	2.778	11.96	1.809		A	
	33.84	4.141	16.39	2.892	11.45	A	
	35.29			3.605		A	
	37.18	5.849	21.95	4.496		A	
	40.50 36.46	10.29 8.583		7.330	34.56	A + B	
	32.58		$26.42 \\ 25.54$	7.330 9.033		B B	
53.11	35.22	13.10		13.54	34.25	B + C	
	31.07	11.06		9.587		C C	
	27.53		19.83	7.829		č	
	21.41	8.352		5.900		č	
	20.29	9.133		6.505		č	
	19.19		12.97	7.363		C + D	
	17.29		9.890	5.407		D	
	15.02		8,061	4.875		D	
	13.34		7.238	5.073		D	
	10.33		5.393	4.853		D	
	9.32		5.057	5.278		D	
58.19	6.92	7.909	3.587	4.960		D	
	4.77	8.900	2.616			D + E	
64.42	5.09	8.900 9.867	2.977	6.284	$1.634 \\ 1.896$	E	
^a Edit	ors' cal	culatio	ns.				
				.3C ₂ H _o N ₂	,0 ; C = Ba	a(ClO ₄) ₂ .2C ₃ H ₈ N ₂ O.H ₂ O;	
					(ClO ₄) ₂ .3H		
			AUXIL	IARY INF	FORMATION		
ETHOD/AP	PARATUS	PROCEDU	RE	T	COMMENTS A	ND/OR ADDITIONAL DATA:	
The is	othermal	meth	od was	used.	The follo	wing compounds are salt	
1110 18	o enermal	meen	su was	useu.			
					out with	barium perchlorate:	
OURCE AN	D PURITY	OF MAT	ERIALS:		Ba(ClO ₄)	$2.2C_{3}H_{8}N_{2}O.H_{2}O$ and	
					• •		
Not stat	ea.				$Ba(CIO_4)_2$	2.C ₃ H ₈ N ₂ O.2H ₂ O.	
STIMATED	ERROR						
	ed.						
Not stat	ou.			1			

260 Barium Per	chlorate			
COMPONENTS: (1) Barium perchlorate; $Ba(ClO_4)_2$; [13465-95-7] (2) Dimethylcarbamide (<i>dimethylurea</i>); $C_{3}H_8N_2O$; [1320-50-9] (3) Water; H_2O ; [7732-18-5] VARIABLES: One temperature: 298 K Composition	ORIGINAL MEASUREMENTS: Karnaukhov, A.S.; Rylenkova,I.N.; Vasil'eva, S.I. <i>Tr. Yarosl. Gos. Ped. Inst.</i> <u>1979</u> , 178, 49-52. PREPARED BY: E.S. Gryzlova			
EXPERIMENTAL VALUES: Solubility in the system Ba(C Liquid phase composition mass % mol % ^a molal (1) (2) (1) (2) (1)	on Solid phase ^b ity ^a /mol kg ⁻¹			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
AUXILIARY INF	ORMATION			
METHOD/APPARATUS/PROCEDURE: The isothermal method was used. Equilibrium was attained in 5 days. Ba ²⁺ was determined by complexometric titration with EDTA in the presence of chrome black at pH 10-11. The equivalence point was detected by back titration [1,2]. Dimethylurea	SOURCE AND PURITY OF MATERIALS: Barium perchlorate was prepared from the oxide and perchloric acid. Asymmetric dimethylurea was chemically pure. REFERENCES: 1. Pribil, R. Komplexone in der			
was determined by Kjeldahl's method. The densities, viscosities and refractive indexes of the saturated solutions were measured.	chemischen Analyse. Berlin, Deut. Verl. der Wissen. <u>1961</u> . 2. Charlot. G. Les methodes de la chimie anal.Masson, Paris. <u>1961.</u> (continued next page)			

ļ

ł


Components:	ORIGINAL MEASUREMENTS:
(1) Barium perchlorate; Ba(ClO ₄) ₂ ;	Karnaukhov, A.S.; Rylenkova, I.N.;
[13465-95-7]	Vasil'eva, S.I.
(2) Dimethylcarbamide (dimethylurea);	
C ₃ H ₈ N ₂ O; [1320-50-9]	Tr. Yarosl. Gos. Ped. Inst. <u>1979</u> ,
(3) Water; H ₂ O; [7732-18-5]	178, 49-52.

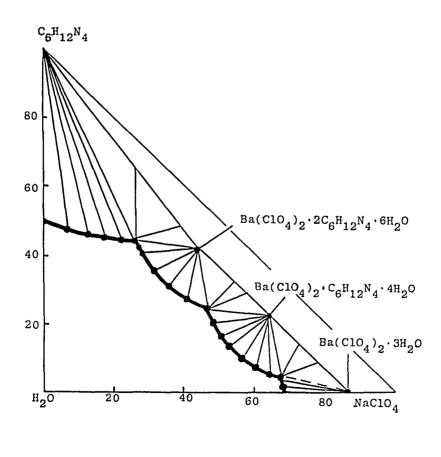
EXPERIMENTAL VALUES: (continued)

COMMENTS AND/OR ADDITIONAL DATA:

The solubility isotherm (mass %) is shown below. It shows five branches of crystallization, two for the crystallization of the components and three for the complexes formed. The solubility of dimethylurea increases considerably with increasing concentration of barium perchlorate, indicating complex formation in the system.

COMPONENTS:	ORIGINAL MEASUREMENTS:				
(1) Barium perchlorate; Ba(ClO ₄) ₂ ;	Bogachev, A.V.				
[13465-95-7]					
(2) Hexamethylenetetramine; $C_6H_{12}N_4$;	Sb. Tr. Yarosl. Gos. Ped. Inst.				
[100-97-0]	<u>1976</u> , <i>154</i> , 55-58.				
(3) Water; H ₂ O; [7732-18-5]					
VARIABLES:	PREPARED BY:				
One temperature: 298 K	E.S. Gryzlova				
Composition					
	I				
EXPERIMENTAL VALUES:					
Solubility in the system Ba(C	$(10_4)_2 - C_6 H_{12} N_4 - H_2 O$ at 25°C				
Liquid phase compositio	-				
	phase ^b				
mass % mol % ^a molality (1) (2) (1) (2) (1)	(2)				
	5.948 A 6.692 A				
14.07 42.50 1.525 10.59 0.964 26.45 39.06 3.480 11.82 2.281	7.744 A + B				
32.02 33.08 4.216 10.02 2.729 37.81 26.28 4.920 7.863 3.131	6.482 B 5.004 B				
44.57 22.63 6.288 7.341 4.041 47.93 17.05 6.470 5.292 4.070	4.718 B + C				
47.93 17.05 6.470 5.292 4.070 58.34 8.28 8.330 2.718 5.198) 3.329 C 3 1.696 C				
58.34 8.28 8.330 2.718 5.198 65.15 6.34 10.65 2.383 6.796	5 1.521 C + D				
66.05 2.48 10.02 0.865 6.242 66.75 - 9.711 - 5.970	2 0.539 D - D				
	2				
^a Editors' calculations.					
^b A = $C_6H_{12}N_4$; B = $Ba(ClO_4)_2.2C_6H_1$	2 ^N 4.6H ₂ O ;				
$C = Ba(ClO_4)_2 \cdot C_6 H_{12} N_4 \cdot 4 H_2 O$; D =	$Ba(ClO_4)_2.3H_2O.$				
AUXILIARY IN	FORMATION				
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:				
Equilibration by the isothermal p_{2}^{2+}	Not stated.				
method was made in 12-14 days. Ba ²⁺					
was determined with Trilon B using					
chrome black as indicator at pH 9-10.	1				
Hexamethylenetetramine was determined	Not stated.				
by acid hydrolysis. The ammonia was					
distilled into a saturated solution					
of boric acid which was titrated with $2 - 2 - 2 + 2 - 3 = 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2$					
0.2 mol dm ⁻³ H_2SO_4 . The solid phase	None.				
composition was determined by Schrei-					
nemakers' "wet residue" method as					
well as analytically.					
	(continued next page)				

- - -


÷

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Barium perchlorate; Ba(ClO ₄) ₂ ;	Bogachev, A.V.
[13465-95-7]	
(2) Hexamethylenetetramine; $C_6H_{12}N_4$	Sb. Tr. Yarosl. Gos. Ped. Inst.
[100-97-0]	<u>1976</u> , <i>154</i> , 55-58.
(3) Water; H ₂ O; [7732-18-5]	

EXPERIMENTAL VALUES: (continued)

COMMENTS AND/OR ADDITIONAL DATA:

The solubility isotherm (mass %) is given below. It has four branches of crystallization. The first and the last branches correspond to the crystallization of the pure components. The third branch corresponds to the crystallization of a congruently soluble compound of formula $Ba(ClO_4)_2.2C_6H_{12}N_4.6H_2O$ and the fourth branch is for the crystallization of the other congruently soluble compound of formula $Ba(ClO_4)_2.C_6H_{12}N_4.4H_2O$. These compounds are white crystalline substances which are stable in air and non-hygroscopic. They have different densities and are readily prepared from aqueous solutions of hexamethylenetetramine and barium perchlorate of definite ratios. The density and viscosity isotherms have three extrema and confirm crystallization of the two components and two compounds.

COMPONE	NTS:				ORIGI	NAL MEA	SUREMENT	S:
(1) Soc	dium chlo	oride: 1	NaCl:		1. z	aitseva	, S.N.:	Karnaukhov, A.S
	647-14-5		•				• •	•
	dium per		e. NeCli	0.•	,	ich. Zen	. Veroel	. Gos. Ped.Inst
			e, naor	0 4,		•	<i>66</i> , 107-	
-	501-89-0	-				1909,	00, 107-	14.
	rium chle		$BaC1_2;$					
[10	0361-37-2	2]			2. Z	aitseva	, S.N.;	Karnaukhov, A.S
(4) Ban	rium pere	chlorat	e; Ba(C	10 ₄) ₂ ;				
[13	3465-95-	7]			ι τ	ich. Zap	. Yarosl	. Gos. Ped.Inst
(5) Wat	ter; H ₂ O	; [7732-	-18-5]		<u>1970</u> , 78, 86-91.			
VARIABLI Tempera Composi	ature/K:	298 an	d 323			RED BY: Gryzlo	va	
EXPERIMI	ENTAL VA Solubil	ity in		tem Na ⁺ ,B 		.04, 01	H ₂ O at 2	Solid
								$phase^{b}$
		ss %				×a		
(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	
24.72	-	3.12	-	9.519	-	0.337	-	A + B
					0.593			
23.38	3.16	3.04	-	2+130		01000		11
19.38	12.83	2.97	-	8.417	2.599	0.354	-	**
$19.38 \\ 17.77$	12.83 16.61	2.97 3.18	-	8.417 7.755	2.599 3.460	0.354 0.389	-	**
$19.38 \\ 17.77$	12.83 16.61 38.06	2.97	-	8.417 7.755	2.599 3.460	0.354	-	

	ma	55 /0			mor	<i>7</i> 0					
(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)				
24.72	-	3.12	-	9.519	-	0.337	-		. +	в	
23.38	3.16	3.04	-	9.198	0.593	0.336	_	•		-	
19.38	12.83	2.97	-	8.417	2.599	0,354	-		*1		
17.77	16.61	3.18	-	7.755	3.460	0.389	-		11		
9.00	38.06	2.62	-	4.709	9.504	0.385	-		**		
6.07	43.02	2.43		3.289	11.13	0.370	-		**		
4.96	49.25	1.66	-	2.882	13.66	0.271	-				
2,26	53.08	1.24	-	1.339		0.206			**		
1.30	61.76	1.62	-	0.892	20.22	0.312	-	A	в	+ C	
1.35	66.18	_	-	0.976		_	-		3 +		
1.80	61.39	-	4.14	1.306	21.26	-	0.522		+		
	47.17	2.58	1.74	_		0.400			c		
-		4.23	1.93	-	12.22	0.663	0.187		ι÷.		
-		5.90	1.49	-		0.840	0.131	-		-	
-		7.31	1.84	-		0.989	0.154		*1		
-	8.63	22.11	0.25	-	1.759	2.649	0.019		11		
-	1.54	23.87	1.18	-	0.299	2.726	0.083				
-	0.48	24.78	1.70	_	0.094	2.845	0.121		11		
-	-	26.18	1.74	-	_	3.043	0.125		**		
1.37	59.15	_	10.11	1.082	22.29	-	1.388 .	C	; +	D	
1.43	44.35	-	21.76	1.086		-	2.872			-	
1.57	40.84		25.75	1.219		-	3.474		11		
1.52	35.67	-	34.84	1.318	14.76	-	5.250	C I	·D	+ E	
_	41.32	-			18.08	-	5.243		; +		
_	32.53	2.61	32.90 27.74	-		0.518) +		
-	28.01	1.91	32.68	-	9,488	0.380	4.031	-	11	_	
-		4.08	33.25	-		0.782	3.946		11		
	18.42	7.84		-		1.387			н		
-	8.84	6.84	33.71	-		1.090	3.326				
-	-	6.78	50.82	-	_	1.283	5.957		"		
^a Edit	ors' ca	lculatio	ons.								
•				; C = Na	с10. н.	0 : D =	n(BaClo).m[]	a(C	10.) 1 :
								,		4	·2. ,
L =	n[ba(CI	04/2 []]	(Dau12)	; $F = Ba$	(0104)2	·n20.					

(continued next page)

÷

ł

ł

1

.....

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Sodium chloride; NaCl;	1. Zaitseva, S.N.; Karnaukhov, A.S.
[7647-14-5]	
(2) Sodium perchlorate; NaClO ₄ ;	Uch. Zap. Yarosl. Gos. Ped.Inst.
[7601-89-0]	<u>1969</u> , 66, 107-12.
(3) Barium chloride; BaCl ₂ ;	
[10361-37-2]	2. Zaitseva, S.N.; Karnaukhov, A.S.
(4) Barium perchlorate; Ba(ClO ₄) ₂ ;	
[13465-95-7]	Uch. Zap. Yarosl. Gos. Ped.Inst.
(5) Water; H ₂ O; [7732-18-5]	<u>1970</u> , <i>78</i> , 86-91.

EXPERIMENTAL VALUES: (continued)

Solubility in the system $Na^+, Ba^{2+}//Clo_4^-, Cl^--H_2O$ at 50°C

									pha	.se ^b)
	mass				mol % ^a				-		
(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)				
23.96	-	6.58	-	9.541	-	0.735			A +	в	
20.13	3.46	5.97	-	7.989	0.655	0.665			"		
18.30	11.29	5.25		7.736	2.278				**		
15.12	16.13	5.25	-	6.566			-		**		
0.85	27.74	5.19	-	5.218	6.368	0.701	-				
9.35	28.49		-	4.374	6.361	0.479	-		**		
6.30	40.15	3.68	-	3.346	10.18	0.549	-		11		
2.44	53.51	3.93	-	1.532		0.693	-		"		
1.53	54.26		-	0.956	16.17	0.634	-		Ħ		
0.08	61.28	3.37	-	0.055		0.654			**		
0.08	63.84	2.90	-	0.058			-	Α	+ B	+	С
1.35	67.25	-	2.91	1.068		-	0.400		B +		
1.30	69.27	-	2.47	1.063	27.05	-	0.351		**		
1.35	71.19		1.27	1.120	28,20		0.183				
1.37	69.00	-	-	1.050	25.25	-	-		B +	D	
-	55.16	2.82	3.89		17.38	0.522	0.446	С	+ E		F
-	49.84	3.91	5.29		14.99	0.692	0.579		A +		
	41.26		3.13		10.76	0.909	0.297		н		
-	32.53		3.38	-	7.821	1.216	0.296		••		
	24.39		6.15		5.780	1.722	0.531		**		
	17.84	16.82	6.88		4.173	2.313	0.586				
-	10.22	22.05	4.16	-	2.238	2.838	0.332		н		
-	0.75	25.19	3.97	-	0.152	3.002	0.293		"		
-	-	27.24	4.14		-	3.310	0.312		**		
-	61.01	-	13.31		25.38	-	2.016		C +	D	
1.25	45.36	-	20.74		16.35	-	2.722	С	+ D		F
1.32	35.30		30.68		13.00	-	4.115		D +		-
-	36.21	2.03	37.53	-	16.78	0.553	6.334	D	+ F		G
-	35.40	-	41.71		17.17	-	7.367		D +		-
-	24.27	4.32	37.85		9.033	0.945	5.130		F +		
-	11.50	4.76	49.38		4.326	1.053	6.765		- 11		
-	4.37				1.545	1.015	6.831		**		
-	3.99		52.90		1.405	1.077	6.784		**		
-	5.26	-	54.20		1.750	_	6.567		"		
Edito	rs' cale	culation	ne.								
				; C = NaC	10,.H ₂ O	; D =	NaC10,	: E :	= Ba	C1,	·HaC
17	(De01)	-[D-(0]	0 1 1		$-4^{\circ}4^{\circ}4^{\circ}$	1 - (D.	4	, .	-	4	4
$\mathbf{F} = \mathbf{m}$	Baur2/	'wfRa(c)	.0 ₄ ,21	; $G = n[B]$	a(CIU ₄)	2 ^{ј.т(ва}	^{1C1} 2).				

ORIGINAL MEASUREMENTS:

1. Zaitseva, S.N.; Karnaukhov, A.S.

2. Zaitseva, S.N.; Karnaukhov, A.S.

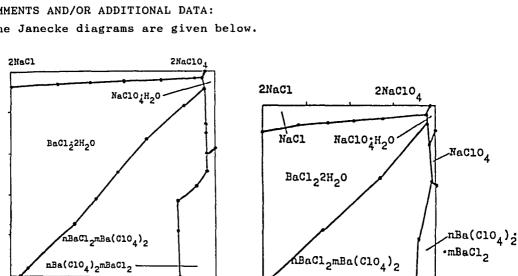
Ba(C104)2

Ion %

1969, 66, 107-12.

1970, 78, 86-91.

Uch. Zap. Yarosl. Gos. Ped.Inst.


Uch. Zap. Yarosl. Gos. Ped.Inst.

COMPONENTS:

- (1) Sodium chloride; NaCl; [7647 - 14 - 5]
- (2) Sodium perchlorate; NaClO₄; [7601-89-0]
- (3) Barium chloride; BaCl₂; [10361 - 37 - 2]
- (4) Barium perchlorate; Ba(ClO₄)₂; [13465-95-7]
- (5) Water; H₂O; [7732-18-5]

EXPERIMENTAL VALUES: (continued)

COMMENTS AND/OR ADDITIONAL DATA: The Janecke diagrams are given below.

AUXILIARY INFORMATION

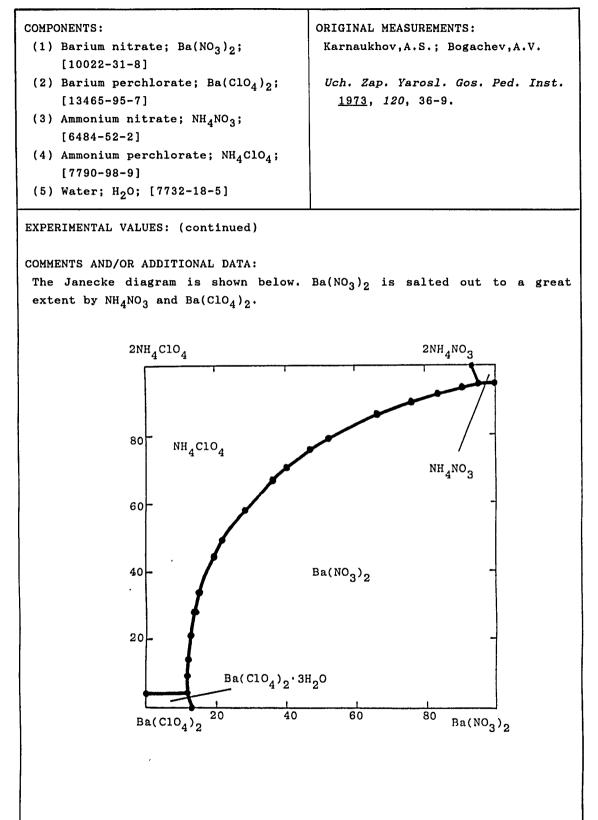
BaC12

Ba(C104)2

METHOD/APPARATUS/PROCEDURE:

BaC12

The method of nonvariant points. To the solution corresponding to the transition point of the ternary system a third salt was added until a new solid phase appeared. Conditions of saturation not stated. Ba $^{2+}$ was determined gravimetrically in the presence of picric acid; Na⁺ gravimetrically as sodium zinc uranyl acetate; Cl^{-} mercurimetrically; Clo_{1} by difference.


SOURCF AND PURITY MATERIALS:	ESTIMATED ERROR:
The (chemically pure) components were	Temp.: <u>+</u> 0.1 ⁰ C.
recrystallized before use.	
	REFERENCES

COMPONENT	rs:				ORIGI	NAL MEA	SUREMENT	s:		
<pre>(1) Barium nitrate; Ba(NO₃)₂; [10022-31-8]</pre>					Karn	Karnaukhov, A.S.; Bogachev, A.V.				
(2) Barium perchlorate; Ba(ClO ₄) ₂ ;				-			los. Ped. Inst.			
[134	165-95-	7]			19	<u>973</u> , 120), 36-9.			
(3) Ammo [648	onium n 34-52-2		NH4NO3	;						
(4) Ammo [779	onium p 90-98-9		ate; NH	4 ^{ClO} 4;						
(5) Wate	er; H ₂ O	; [7732	-18-5]							
VARIABLES					PREPA	RED BY:				
Temperat	ture: 2	98 K			N.A.	Kozyre	eva			
Composit	ion									
				composit	ion		.H ₂ 0 at 2	Solid phase ^b		
(1)	mass		(4)	(1)	mol % ^a	(3)	(Λ)			
(1) 6.17	(2) 63.82		(4)	1.256	mol % (2) 10.10 9.582	(3)	-	A + B		
5.84	61.57	-	2.20	1.169	9.582	-	0.980	A + B + C		
5.07	46.62	-	3.98	1.169 0.731 0.501	5.227	-	1.287	B + C		
4.64 3.28	26.34	_	2.20 3.98 8.12 14.13	$0.501 \\ 0.334$	$2.109 \\ 1.451$	-	$1.949 \\ 3.203$	B + C B + C,		
1.87	12.16	-	18.94	0.182			4.107	B + C		
8.12	-	3.72	16.65	0.742	-	1.110		B + C		
9.02 4.42	37.10	- 30.47	9.75	1.289 0.470	4.121	10 50	3.099 ^c 2.095	B + C B + C		
3.43	-	60.73	3.47	0.504				B + C + D		
4.04		65.45	-	0.612	-	32.36	-	B + D		
6.13	- 62.07		6.18 2.05		- 9.825		2.082 0.930	C + D A + C		
-	63.73			-	8.942		0.707			
^a Edito	ors' ca	lculati	ons.							
b A = H	$Ba(ClO_{4})$),.3H ₂ O	; B = 1	Ba(NO ₂),	; C = N	HAC104	; D = NH	NO2.		
							evaluato			
			AU	XILIARY :	INFORMAT	ION				
			AU.			- ~				

S/PROCEDURE:

The isothermal method was used. To the sat. slns. corresponding to the composition of the nodal points (in the presence of excess solid phases) a third salt was added until a new solid phase appeared. Ba²⁺ was determined by complexometric titration with the indicator chromogen black at pH 8-9; NH_4^+ by distillation of NH_3 into a sat. sln. of boric acid and subsequent titration with H_2SO_4 ; NO_3 as NH_3 by preliminary reduction to NH_3 using Devarda's alloy and ClO_4^- by difference. Solid phases were examined under a microscope and graphic representation was made using the horizontal projection of the crystallization field.

(continued next page)

SYSTEM INDEX		
Perchloric acid, barium salt		
+ acetic acid, ethyl ester + l-butanol + ethanol	236 233,234 233,234	
+ hydrazine + methanol + 2-methyl-1-propanol + 1-propanol	237 233,234 233,234 233,234 233,234	
+ 2-propanone + water Perchloric acid, barium salt (aqueous) + acetamide	235 231,232 258	
+ carbamide + dimethylcarbamide + ethanol	250-253 259-261 257	
<pre>+ hexamethylenetetramine + nitric acid, barium salt + perchloric acid + perchloric acid, ammonium salt</pre>	262,263 245 238-240 244	
+ perchloric acid, lithium salt + perchloric acid, lutetium perchlorate + perchloric acid, praseodymium salt	241 249 246	
+ perchloric acid, samarium + perchloric acid, sodium salt + perchloric acıd, terbium salt + thiocarbamide	247 242,243 248 254-256	
Perchloric acid, barium salt (multicomponent) + nitric acid, barium salt + perchloric acid, ammon salt + nitric acid, ammonium salt (aqueous)	ium 267,268	
+ barium chloride + perchloric acid, sodium salt + sodium chloride (aqueous) Perchloric acid, beryllium salt	264-266	
+ water	5,7	
Perchloric acid, beryllium salt (aqueous) + perchloric acid + perchloric acid, ammonium salt Perchloric acid, calcium salt	8-10 11-13	
+ 1-butanol + ethanol + hydrazine	122,123 122,123 126	
+ hydrogen peroxide + methanol + 2-methyl-l-propanol + l,l'-oxybisethane	121 122,123 122,123 125	
+ 1-propanol + 2-propanone + water	122,123 124 119,120	
Perchloric acid, calcium salt (aqueous) + calcium chloride + carbamide + chromic acid, calcium salt	149,150 156,157 140-143	
+ dimethylcarbamide (aqueous) + hexamethylenetetramine + nitric acid, calcium salt	158-160 163,164 144-148	
+ perchloric acid + perchloric acid, ammonium salt + perchloric acid, cerium salt + perchloric acid, lithium salt	127-131 136-139 151 132	
<pre>+ perchloric acid, lutetium salt + perchloric acid, samarium salt + perchloric acid, sodium salt + perchloric acid, terbium salt</pre>	155 152,153 133-135 154	
+ thiocarbamide (aqueous) Perchloric acid, calcium salt (multicomponent) + calcium chloride + perchloric acid, ammonium salt + ammonium chloride (aqueous)	161,162 : 171,172	
+ chromic acid, calcium salt + perchloric acid, amn salt + chromic acid, ammonium salt (aqueous)		

Perchloric acid, calcium salt (multicomponent)	
+ nitric acid, calcium salt + perchloric acid	ammonium
+ mitric acid, carcium sait + perchioric acid	
salt + nitric acid, ammonium salt (aqueous)	169,170
+ perchloric acid, lithium salt	165 166
+ hexamethylenetetramine (aqueous)	165,166
Perchloric acid, magnesium salt	
+ acetic acid, ethyl ester	30
+ 1-butanol	26,27
+ ethanol	26,27
+ hydrazine	34
+ hydrogen peroxide	25
+ methanol	26,27
+ 2-methyl-1-propanol	26,27
+ 1-propanol	26,27
+ 2-propanone	28
+ tetrahydrofuran	29
+ 1,1 -oxybisethane	31-33
+ water	23,24
Perchloric acid, magnesium salt (aqueous)	
+ acetamide	82
+ carbamide	79,80
+ chromic acid, magnesium salt	55-57
+ dimethylcarbamide	83-85
+ hexamethylenetetramine	86,87
+ magnesium chloride	64-67
+ nitric acid, magnesium salt	58,59
+ perchloric acid	35-37
+ perchloric acid, ammonium salt	44-53
+ perchloric acid, calcium salt	68,69
+ perchloric acid, cerium salt	·
	72
+ perchloric acid, gadolinium salt	75,76
+ perchloric acid, lanthanum salt	70,71
+ perchloric acid, lutetium salt	78
+ perchloric acid, neodymium salt	73
+ perchloric acid, potassium salt	42-43
+ perchloric acid, samarium salt	74
+ perchloric acid, sodium salt	38-41
+ perchloric acid, terbium salt	77
+ perchloric acid, thallium salt	54
+ sulfuric acid, magnesium salt	60-63
+ thiocarbamide	81
Perchloric acid, magnesium salt (multicomponent)	
+ chromic acid, magnesium salt + perchloric ac	cid. lithium
salt + chromic acid, lithium salt (aqueous)	90,91
+ magnesium chloride + perchloric acid, ammon:	
+ ammonium chloride (aqueous)	106-109
+ magnesium chloride + perchloric acid, cerium	
+ cerium chloride (aqueous)	104,105
+ magnesium chloride + perchloric acid, potass	
+ potassium chloride (aqueous)	96,97
+ magnesium chloride + perchloric acid, sodium	
+ sodium chloride (aqueous)	92-95
+ nitric acid, magnesium salt + perchloric ac:	
salt + nitric acid, ammonium salt (aqueous)	98,99
+ perchloric acid, calcium salt + thiocarbamic	
+ sulfuric acid, magnesium salt + perchloric a	
salt + sulfuric acid, ammonium salt (aqueous	
+ sulfuruc acid, magnesium salt + perchloric a	
salt + sulfuric acid, lanthanum salt (aqueou	
Perchloric acid, strontium salt	
+ acetic acid, ethyl ester	187
+ 1-butanol	183,184
+ ethanol	183,184
+ hydrazine	
	188
+ hydrogen peroxide	182
+ methanol	183,184
+ N-methylacetamide	186
+ 2-methyl-l-propanol	183,184
+ l-propanol	183,184
+ 2-propanone	185
+ water	180,181
	-
1	

-

Perchloric acid, strontium salt (aqueous)	
+ carbamide (aqueous)	206,207
+ hexamethylenetetramine (aqueous)	210,211
+ nitric acid, strontium salt	196
+ perchloric acid	189-191
+ perchloric acid, ammonium salt	194,195
+ perchloric acid, barium salt	198,199
+ perchloric acid, cerium perchlorate	200,201
+ percnloric acid, gadolinium salt	204,205
+ perchloric acid, praseodymium salt	202
+ perchloric acid, samarium salt	203
+ perchloric acid, sodium salt	192
+ perchloric acid, thallium salt	193
+ strontium chloride	197
+ thiocarbamide (aqueous)	208,209
Perchloric acid, strontium salt (multicomponent)	•
+ perchloric acid, barium salt	
+ hexamethylenetetramine (aqueous)	212-214
+ strontium nitrate + ammonium perchlorate	
+ ammonium nitrate (aqueous)	215,216
+ strontium chloride + ammonium perchlorate	
+ ammonium chloride (aqueous)	217-220

•

FORMULA/REGISTRY NUMBER INDEX

Page numbers preceded by E refer to evaluation texts.

FORMULA	C.A.S. REGISTRY NUMBER	PAGE
BaCl ₂	10361-37-2	264-266
$Ba(ClO_4)_2$	13465-95-7	198, 199, 212-214, E221-E230, 231-268
$Ba(ClO_4)_2.2CH_4N_2O$	_	251-253
$H_{2}^{4/2}$ $H_{2}^{4/2}$ Ba(ClO ₄) ₂ .3CH ₄ N ₂ O.H ₂ O	38784-37-1	250
$Ba(ClO_4)_2.C_3H_8N_2O.2H_2O$	78914-13-3	E223, 259-261
$Ba(ClO_4)_2.2C_3H_8N_2O.H_2O$	78914-14-4	E223, 259-261
$Ba(ClO_4)_2.3C_3H_8N_2O$	78913-71-0	
$Ba(ClO_4)_2 \cdot C_6H_{12}N_4 \cdot 4H_2O$	-	212-214, 262, 263
$Ba(ClO_4)_2.2C_6H_12N_4.6H_2O$	-	212-214, 262, 263
$Ba(ClO_4)_2.H_2O$	15318-52-2	264-266
$Ba(ClO_4)_2.2H_2O$	21006-10-0	E221, E226, 239, 240, 251-253,
4 2 2		256, 264-266
$Ba(ClO_4)_2.3H_2O$	10294-39-0	198, 212-214, E221-E223, E226,
7 4 6		231, 239, 241-250, 254, 255,
		258-263, 267, 268
$Ba(ClO_4)_2.4H_2O$	-	E221, E226, 238, 239
$Ba(NO_3)_2$	10022-31-8	E226, E227, 245, 267, 268
$Be(ClO_4)_2$	13597-95-0	E1-E4, 5-13
$Be(ClO_4)_2.4H_2O$	7787-48-6	El-E4, 5-10, 12, 13
CH ₄ O	67-56-1	E16, 26, 27, E110, 122, 123, 183
*		184, E229, 233, 234
CH ₄ N ₂ O	57-13-6	E19, E20, 79, 80, E112, 156, 157
• -		206, 207, E222, 250, 252
CH4N2S	62-56-6	E19, E20, 81, 83-85, 88, 89,
		E112, 161, 162, 208, 209, E223,
		254-256
с ₂ н ₅ NO	60-35-5	E20, 82, E224, 258
C ₂ H ₆ O	64-17-5	E16, 26, 27, E110, 122, 123, 183
		184, E229, 233, 234, 257
с _{знб} о	67-64-1	E16, 28, E110, 124, 185, E229,
		235
C ₃ H ₇ NO	79-16-3	186
с ₃ н ₈ 0	71-23-8	E16, 26, 27, E110, 122, 123, 183
		184, E229, 233, 234
с ₃ н ₈ N ₂ O	1320-50-9	E17, E19, 83-85, E112, 158-160,
		E223, 259-261
C ₄ H ₈ O	109-99-9	E16, 29
C ₄ H ₁₀ O	78-83-1	E16, 26, 27, E110, 122, 123, 183,
		184, E229, 233, 234

Formula/Registry Number Index

;

]
C ₄ H ₁₀ O	71-36-3	E16, 26, 27, 31-33, E110, 122,
		123, 125, 183, 184, E229, 233,
		234
C ₄ H ₈ O ₂	141-78-6	E16, 30, E110, 187, 236
C ₆ H ₁₂ N ₄	100-97-0	E20, 86, 87, E112, 163-166,
		210-214, E222, E224, 262, 263
CaCl ₂	10043-52-4	149, 150, 171, 172
CaCl ₂ .2H ₂ O	-	E112, 149, 150
CaCl ₂ .4H ₂ O	-	149, 150, 171, 172
CaCl ₂ .6H ₂ O	7774-34-7	171, 172
Ca(ClO ₄) ₂	13477-36-6	68, 69, 88, 89, EllO-Ell8,
		119-172
$Ca(ClO_4)_2 \cdot 2CH_4N_2O \cdot 2H_2O$	-	E112, 156, 157
$Ca(ClO_4)_2.4CH_4N_2O$	78914-11-1	E112, 156, 157
$Ca(ClO_4)_2.6CH_4N_2O$	-	E112, 156, 157
Ca(ClO ₄) ₂ .3C ₃ H ₈ N ₂ O	78914-12-2	E112, 159, 160
$Ca(ClO_4)_2.4C_3H_8N_2O$	-	E112, 158-160
$Ca(ClO_4)_2.2C_6H_12N_4.6H_2O$	-	E112, E113, 163-166
$Ca(ClO_4)_2.3C_6H_{12}N_4$	-	Ell2, 163, 164
$Ca(ClO_4)_2.4C_6H_{12}N_4.6H_2O$	-	E113, 165, 166
$Ca(ClO_4)_2.4H_2O$	15627-86-8	69, 88, 89, Ello-Ell2, Ell5,
7 <i>L</i> L		E117, 120, 127-157, 159-172
Ca(ClO ₄) ₂ .6H ₂ O	20624-28-6	165, 166
$Ca(ClO_4)_2 \cdot 2H_2O_2$	-	121
CaCrO ₄	13765-19-0	140-143, 167, 168
CaCrO ₄ .H ₂ O	-	E113, 142, 143
CaCrO ₄ .2H ₂ O	_	E112, 140, 141, 167, 168
$Ca(NO_3)_2$	10124-37-5	E112, 144-148, 169, 170
$Ca(NO_3)_2$. 2H ₂ O	15842-30-5	E112, 144-148, 189, 170 E112
$Ca(NO_3)_2.4H_2O$	13477-34-4	
CeCl ₃		E112, 144-146
•	7790-86-5	104, 105
$CeCl_3.7H_2O$	18618-55-8	104, 105
$Ce(ClO_4)_3$	14017-47-1	E18, 72, 104, 105, 151, 200, 201
Ce(ClO ₄) ₃ .9H ₂ O	102496-99-1	105, 151, 175, 200, 201
$Gd(ClO_4)_3$	14017-52-8	E18, 75, 76, 204, 205
Gd(ClO ₄) ₃ .9H ₂ O	-	75, 76, 204, 205
HClO ₄	7601-90-3	E4, 5, 8-11, E17, 23, 35-37, 70,
		74, 83, E110, 127-131, 189-191,
		E225, 238-240
HC104.H20	60477-26-1	E4, 8-10, 35, 36, 130
HC104.2H20	-	8
н ₂ 0	7732-18-5	E1-E4, 5-13, E14-E22, 23, 24,
		35-109, E110-E118, 119, 120,
		127-172, E173-E179, 180-182,
		189-220, E221-E230, 231, 232,
		238-268
н ₂ 0 ₂	7722-84-1	25, 121, 182
KC1	7447-40-7	96, 97
KCl.MgCl ₂ .H ₂ O	67125-97-7	96, 97
кс104	7778-74-7	5, E18, 42, 43, 96, 97
_		

La(ClO ₄) ₃	14017-46-0	E18, 70, 71, 102, 103
$La(ClO_4)_{3.9H_2O}$	-	70, 102, 103
$La_2(SO_4)_3$	10099-60-2	102, 103
$La_{2}(SO_{4})_{3}.9H_{2}O$	10294-62-9	102, 103
LiClO ₄	7791-03-9	E18, E20, 90, 91, E111, E113,
		132, 165, 166,
ł		E227, 241
LiClO ₄ .C ₆ H ₁₂ N ₄ .3H ₂ O	-	E113, 165, 166
LiClO ₄ .2C ₆ H ₁₂ N ₄ .4H ₂ O	-	E113, 165, 166
LiClO ₄ .3H ₂ O	13453-78-6	E20, 90-91, E111, 132, 165,
		166, 241
Li ₂ CrO ₄	14307-35-8	90, 91
Li ₂ CrO ₄ .2H ₂ O	7789-01-7	E20
Lu(ClO ₄) ₃	14646-29-8	78, 155, E227, 249
Lu(ClO ₄) ₃ .9H ₂ O	-	78, 155, 249
MgCl ₂	7786-30-3	E17, E19, 64-67, 92-97, 104-109
MgCl ₂ .6H ₂ O	7791-18-6	64, 65, 67, 94-97, 104-109
Mg(ClO ₄) ₂	10034-81-8	E14-E22, 23-109
$Mg(ClO_4)_2.4CH_4N_2O.2H_2O$	-	79, 80
$Mg(ClO_4)_2.6CH_4N_2O$	-	79, 80
$Mg(ClO_4)_2.4CH_4N_2S.6H_2O$	33849-67-1	81, 88, 89, E113
$Mg(ClO_4)_2.5C_2H_5NO$	64340-73-4	81
Mg(ClO ₄) ₂ .7C ₂ H ₅ NO	64340-74-5	82
$Mg(ClO_4)_2.4C_3H_8N_2O.2H_2O$	-	E19, 83-85
Mg(ClO ₄) ₂ .5C ₃ H ₈ N ₂ O.H ₂ O	-	E19, 83-85
$Mg(ClO_4)_2.C_4H_{10}O$	-	32
$Mg(C10_4)_2.2C_4H_{10}O$	-	32
$Mg(ClO_4)_2.3C_4H_{10}O$	-	32
$Mg(ClO_4)_2.2C_6H_12N_4.8H_2O$	-	86, 87
Mg(ClO ₄) ₂ .2H ₂ O	18716-62-6	35-37
$Mg(C10_4)_2.4H_2O$	22465-13-0	35-37
Mg(ClO ₄) ₂ .6H ₂ O	13446-19-0	E14-E16, E18-E20, 23, 35-37, 41,
		42, 44, 52-70, 72-82, 84-91,
		94-109, E111
MgCrO ₄	13423-61-5	E19, E20, 55-57, 90, 91
MgCrO ₄ .5H ₂ O	-	E20, 55-57, 90, 91
Mg(NO ₃) ₂	10377-60-3	E19, 58, 59, 98, 99
Mg(NO ₃) ₂ .6H ₂ O	13446-18-9	58, 59, 98, 99
MgSO ₄	7487-88-9	E19, 60-63, 100-103
MgSO ₄ .6H ₂ O	-	E19, 62, 63, 100, 101
$MgSO_4 \cdot 7H_2O$	10034-99-8	E19, 60-63, 100-103
N ₂ H ₄	302-01-2	E16, 34, E110, 126, 188, E228,
	-	E229, 237
NaCl	7647-14-5	92-95, 264-266
NaClO4	7601-89-0	E18, 38-41, 92-95, E111, 133-135,
		192, E227, 242, 243, 264-266
NaClO ₄ .H ₂ O	7791-07-3	E111, 133, 135, 192, 242, 243,
		265, 266
$Nd(ClO_4)_3$	13498-06-1	73
Nd(ClO ₄) ₃ .9H ₂ O		73
4.3		· -

Formula/Registry Number Index

NH4C1	12125-02-9	106-109, 171, 172, 217-220
NH ₄ ClO ₄	7790-98-9	E3, 11-13, E18, 44-53, 98-103,
1 1		106-109, E113, 136-139, 167-172,
		E177, 194, 195, 215-220, E227,
		244, 267, 268
$NH_4ClO_4.Ca(ClO_4)_2.4H_2O$	-	169, 170
NH4Cl.MgCl2.6H2O	-	106-109
NH4ClO4.(NH4)2CrO4	-	E113, 167, 168
$(NH_4)_2 CrO_4$	7788-98-9	E113, 167, 168
$(NH_4)_2 CrO_4 \cdot CaCrO_4 \cdot 3H_2O$	26837-82-1	167, 168
$2(NH_4)_2 CrO_4.3 CaCrO_4$	-	E113
NH4NO3	6484-52-2	98, 99, 169, 170, 215, 216, E227
		267, 268
$NH_4NO_3.Ca(NO_3)_2$	-	169, 170
$\rm NH_4NO_3.Ca(NO_3)_2.3H_2O$	-	E113
$MH_4NO_3.5Ca(NO_3)_2.10H_2O$	-	E113
$NH_4NO_3.5Mg(NO_3)_2.6H_2O$	-	98, 99
2NH ₄ NO ₃ .5Mg(NO ₃) ₂ .6H ₂ O	-	98, 99
(NH ₄) ₂ SO ₄	10043-02-4	100-103
(NH ₄) ₂ SO ₄ .MgSO ₄ .6H ₂ O	-	100, 101
Pr(ClO ₄) ₃	13498-07-2	202, E227, 246
Pr(ClO ₄) ₃ .9H ₂ O	-	202, 246
Sm(ClO ₄) ₃	13569-60-3	E18, 73, E111, 152, 153, 203,
		E227, 247
Sm(ClO ₄) ₃ .9H ₂ O	19414-32-5	74, 152, 153, 203, 247
SrCl ₂	10476-85-4	E177, 197, 217-220
SrCl ₂ .H ₂ O	16894-53-4	218
SrCl ₂ .6H ₂ O	10025-70-4	197, 220
Sr(ClO ₄) ₂	13450-97-0	E173-E179, 180-220, E227
Sr(ClO ₄) ₂ .CH ₄ N ₂ O.H ₂ O	-	206, 207
$Sr(ClO_4)_2.2CH_4N_2O$	-	206, 207
$Sr(ClO_4)_2.5CH_4N_2O$	-	206, 207
$sr(clo_4)_2.c_6H_{12}N_4.4H_2O$	-	210-214
$sr(clo_4)_2.2c_6H_{12}N_4.8H_2O$	37999-92-1	210-214
Sr(ClO ₄) ₂ .3C ₆ H ₁₂ N ₄ .12H ₂ O	-	210-214
$Sr(ClO_4)_2.H_2O$	-	189-191, 197, 217, 218
Sr(ClO ₄) ₂ .2H ₂ O	-	E173, 189-191, 193, 208, 209
Sr(ClO ₄) ₂ .3H ₂ O	-	E173-E175, 180, 182, 189-191
Sr(ClO ₄) ₂ .4H ₂ O	51792-15-5	E173-E175, 180-182, 189-192,
		194-218, 220
$sr(clo_4)_2.H_2O_2$	-	182
sr(ClO ₄) ₂ .2H ₂ O ₂	-	182
$Sr(NO_3)_2$	10042-76-9	185, 187, 196, 215, 216
$Sr(NO_3)_2.4H_2O$	-	196, 215, 216
Tb(ClO ₄) ₃	14014-09-6	E18, 77, E111, 154, E227, 248
Tb(ClO ₄) ₃ .9H ₂ O	-	77, 154, 248
TICIO4	13453-40-2	E18, 54, 193

REGISTRY NUMBER INDEX

Page numbers	preceded by E refer to evaluation texts.
57-13-6	E19, E20, 79, 80, E112, 156, 157, 206, 207, E222, 250, 252
60-35-5 62-56-6	E20, 82, E224, 268 E19, E20, 81, 83-85, 88, 89, E112, 161,
64-17-5	162, 208, 209, E223, 254-256 E16, 26, 27, E110, 122, 123, 183, 184,
67-56-1	E229, 233, 234, 257 E16, 26, 27, E110, 122, 123, 183, 184, E229, 233, 234
67-64-1 71-23-8	E16, 28, E110, 124, 185, E229, 235 E16, 26, 27, E110, 122, 123, 183, 184, E229, 233, 234
71-36-3	E16, 26, 27, 31-33, E110, 122, 123, 125, 183, 184, E229, 233, 234
78-83-1	E16, 26, 27, E110, 122, 123, 183, 184, E229, 233, 234
79-16-3	186
100-97-0	E20, 86, 87, E112, 163-166, 210-214, E222, E224, 262, 263
109-99-9 141-78-6 302-01-2	E16, 29 E16, 30, E110, 187, 236 E16, 34, E110, 126, 188, E228,
1320-50-9	E229, 237 E17, E19, 83-85, E112, 158-160, E223, 259-261
6484-52-2 7447-40-7 7487-88-9 7601-89-0 7601-90-3	98, 99, 169, 170, 215, 216, E227, 267, 268 96, 97 E19, 60-63, 100-103 E18, 38-41, 92-95, E111, 133-135, 192, E227, 242, 243, 264-266 E4, 5, 8-11, E17, 23, 35-37, 70, 74, 83, E110, 127-131, 189-191, E225, 238-240
7647-14-5 7722-84-1 7732-18-5 7774-34-7 7778-74-7	92-95, 264-266 25, 121, 182 E1-E4, 5-13, E14-E22, 23, 24, 35-109, E110-E118, 119, 120, 127-172, E173-E179, 180-182, 189-220, E221-E230, 231, 232, 238-268 171, 172 5, E18, 42, 43, 96, 97
7786-30-3 7787-48-6 7788-98-9 7789-01-7 7790-86-5	E17, E19, 64-67, 92-97, 104-109 E1-E4, 5-10, 12, 13 E113, 167, 168 E20 104, 105
7790-98-9	E3, 11-13, E18, 44-53, 98-103, 106-109, E113, 136-139, 167-172,
7791-03-9 7791-07-3 7791-18-6 10022-31-8	E177, 194, 195, 215-220, E227, 244, 267, 268 E18, E20, 90, 91, E111, E113, 132, 165, E227, 241 E111, 133, 135, 192, 242, 243, 265, 266 64, 65, 67, 94-97, 104-109 E226, E227, 245, 267, 268
10025-70-4 10034-81-8 10034-99-8 10042-76-9 10043-02-4	197, 220 E14-E22, 23-109 E19, 60-63, 100-103 185, 187, 196, 215, 216 100, 103

.

10043-52-4 149, 150, 171, 172 10099-60-2 102, 103 E112, 144-148, 169, 170 198, 212-214, E221-E223, E226, 231, 239, 241-250, 254, 255, 258-263, 267, 268 102, 103 10124-37-5 10294-39-0 10294-62-9 10361-37-2 264-266 E19, 58, 59, 98, 99 10377-60-3 E177, 197, 217-220 10476-85-4 106-109, 171, 172, 217-220 12125-02-9 13423-61-5 E19, E20, 55-57, 90, 91 13446-18-9 58, 59, 98, 99 E14-E16, E18-E20, 23, 35-37, 41, 42, 44, 52-70, 72-82, 84-91, 94-109, E111 13446-19-0 E173-E179, 180-220, E227 13450-97-0 13453-40-2 E18, 54, 193 13453-78-6 E20, 90-91, E111, 132, 165, 166, 241 198, 199, 212-214, E221-E230, 231-268 E112, 144-146 13465-95-7 13477-34-4 13477-36-6 68, 69, 88, 89, Ello-Ell8, 119-172 13498-06-1 73 13498-07-2 202, E227, 246 13569-60-3 E18, 73, E111, 152, 153, 203, E227, 247 13597-95-0 E1-E4, 5-13 140-143, 167, 168 E18, 77, E111, 154, E227, 248 E18, 70, 71, 102, 103 13765-19-0 14014-09-6 14017-46-0 E18, 72, 104, 105, 151, 200, 201 E18, 75, 76, 204, 205 90, 91 78, 155, E227, 249 14017-47-1 14017-52-8 14307-35-8 14646-29-8 264-266 15318-52-2 15627-86-8 69, 88, 89, Ello-Ell2, Ell5, Ell7, 120, 127-157, 159-172 15842-30-5 E112 16894-53-4 218 18618-55-8 104, 105 35-37 18716-62-6 19414-32-5 74, 152, 153, 203, 247 20624-28-6 165, 166 21006-10-0 E221, E226, 239, 240, 251-253, 256, 264-266 22465-13-0 35-37 26837-82-1 167, 168 33849-67-1 81, 88, 89, E113 37999-92-1 210-214 38784-27-1 250 E173-E175, 180-182, 189-192, 194-218, 220 E4, 8-10, 35, 36, 130 51792-15-5 60477-26-1 64340-73-4 81 64340-74-5 82 67125-97-7 96, 97 E223, 259-261 78913-71-0 78914-11-1 E112, 156, 157 E112, 159, 160 E223, 259-261 78914-12-2 78914-13-3 E223, 259-261 78914-14-4 102496-99-1 105, 151, 175, 200, 201

AUTHOR INDEX

Page numbers preceded by E refer to evaluation texts. Abdukarimova, F.M. E221-E223, E229, 251, 252, 256 Andreeva, I.N. E114 Andronova, N.P. E21, 75-78, E114, 115, E118, 154, 155, E229, E230, 248, 249 E179, 186 Berger, J.E. E21, E22, 57-59, 98, 99, 245 Bitokov, V.T. Bogachev, A.V. E173, E178, E179, 196, 198, 199, 210-216, E226, E230, 244-246, 262, 263, 267, 268 Bragg, P.H. 67 Bykov, V.T. E22 Carlson, B. E221, E229 Chaney, A.L. 5 146, 260 E21, E22, 70, 71, 102, 103 E15, E17, E21, 35-37, E113, 127-131, E173, Charlot, G. Chernova, L.P. Chernykh, L.V. E178, 189-191, E221, E225, E229, 238-240 El, E4, E179 Cohen-Adad, R. Collander, R. E22 Copeland, L.E. 67 E179, 186 E21, 72, 75, 76, E114, E115, E118, 151, E173, E178, E179, 192, 200, 201, 204, 205, E229, 249 E1, E4, 5, 6, 11-13, 23, E113, E115, E116, E118, E173, E174, E178, 180, E221, E229, 231 Dawson, L.R. Druzhinina, G.V. Dzhurinsky, B.F. Eckstrom, H.C. E179, 186 Freeth, F.A. 9, 12 Ganina, G.I. E230, 241 Golubkova, O.N. E173, E178, 203, E229, 247 Graves, R.H. 186 Grigorovich, Z.I. E1, E4, 8-10 E21, E22, 60, 61 E21, E22, 72-74, 104, 105, E114, E115, E118, Gumenyuk, V.P. Guseva, A.D. 152, 153, E173, E178, 200, 201, 203, E229, 247 Hillebrand, W.F. 147 Hoomes, R.R. 186 E21, E22, 46, 47, 54, 57, E114, E115, E117, E118, 132, 134, 135-137, 149, 150, 171, 172, E173, E178, 193, 196 Ivanov, S.A. Janghorbani, M. E22 E17, E18, E21, E22, 38, 39, 48-51, 64, 79-81, 83 Karnaukhov, A.S. 84, 86, 87, 92, 93, 98, 99, E114, E115, E117, E118, 140-145, 158-160, 163, 164, 167, 168, E173, E178, E179, 194, 195, 197, 208-211, 215, 216, E222, E223, E226, E229, E230, 242-245, 254, 255, 260, 261, 264-268 Kocheregin, S.B. E15, E17, E21, 35-37, E173, E178, 189-191 25, 121, 182 23, 119, 180 Kolmakova, E.I. Kolthoff, I.M. Komissarova, V.I. Ell4, Ell5, Ell8, 154 Kosheleva, N.I. E21, E22, 86, 87, E114, E115, E118, 163-166 E18, E21, E22, 38-41, 64, 67, 92-95 E15, E17, E21, 35-37 E113, E115, E118, 127, 128, E173, E178, 189-191, Kudryakova, S.A. Kurbanova, A.S. Kurbanova, Z.I. E221, E225, E229, 238-240 Latysheva, V.A. E114 Leboschina, V.I. E15, E21, 44, 45, 50-53, 62, 63, 65, 66, 100, 101, 106-109

Lepeshkov, I.N. E18, E21, 40, 41, 44, 45, 50, 51, 55-57, 65-67, E18, E21, 40, 41, 44, 45, 50, 51, 55-57, 65-67, 94, 95, 100, 101, 106, 107, E114, E115, E117, E118, 138, 139, 142, 143, 146, E173, E179, 212-220, E221, E229, 242, 243 E1, E4, 7 E1, E4, 5, 6, 11-13, E15, E17, E21, 23, 35-37, E113-E118, 119, 127-131, 133, E173, E174, E178, 180, 189-191, E221, E225, E229, 231, 238-240 Lewis, N.B. Lilich, L.S. Loebich, O.Z. 205 Loeblich, O. 9, 12 Lundell, G.E. 23, 119, 147, 241 E22, 29 Makarenko, B.K. Mann, A. E228, E230, 257 McDaniels, W.B. Mendzheritskii, E.A. E22, 29 Michail, J. 9, 12 E113 Mogilev, M.E. Nikolaev, N. 205 E221-E223, E229, 251, 252, 256 Nogoev, K. Novikov, V.V. E173, E178, E202, E229 Novoselova, A.V. E1, E3, E4, 8-10, 12 Orekhov, O.L. E21, E22, 46, 47, 55-57, E114, E115, E117, 136, 137, 140, 141, 167, 168 Osonova, L.R. 250 Ell4, Ell5, Ell7, 133 Ovtrakht, N.V. Pavarov, Y.M. E22 Pavlova, E.V. Pirtea, Th.J. 78, 155 9, 12 E230, 241 Pisarenko, O.N. Povarov, Yu.M. 29 Pribil, R. Prishel tsev, N.I. 68, 79, 189, 241, 260 E21, 60, 61 Proshletsov, A.I. E22 9, E22, 25, 34, E113, 121, 126, 182, 188, Rosolovskii, V.Ya. E228, E230, E16, E17, E22, 31, 32 68, 69, 79, 80, E113-E115, E117, 156, 157, 161, Rowley, H.H. Runov, N.N. 162, E173, E178, 202, 206, 207, E229 Ell4, Ell5, Ell8, 151 Rybina, T.V. Rylenkova, I.N. E17, E21, 83-85, E114, E115, E118, 147, 148, 158-160, E230, 259-261 E1, E4, E179 Said, J. E22, 34, E113, 126, 188, E228, E230 Sakk, Z.G. El, E4, E179 35, 79 Saugier, M.T. Schreinemakers, F.A.H. 186 Sears, P.G. Seiler, F.J. E16, E17, E22, 31, 32 Sereda, P.A. E22, 29 Serezhkina, L.B. E1, E3, E4, 8-10, 12 Shalygin, V.M. Sidwick, N.V. E113, 129-131 El, E4, 7 E15, E16, E22, 24, 26-28, 30, 33, E113, E115, E117, 120, 122-125, E173, E175, E178, 181, 183-185, 187, E221, E228, E229, 232-236 Smith, G.F. Sobolev, R.P. E22, 29 Starkovich, J.A. E22 E173, E179, 194, 195, 197, 217-220 E221-E223, E229, 251, 252, 256 Sudakova, A.A. Sulaimankulov, K. Tamm, N.S. E1, E3, E4, 8-10 E21, 82, E229, 257 Tarakanov, V.F. Titova, K.V. 25, 121, 182 Troitskii, E.N. E21, E22, 42, 43, 60, 61, 96, 97 Van-Valkenburgh, H.B. E228, E230, 257 E17, E21, E22, 83-85, E114, E115, E117, E118, 138, 139, 142-148, 158-160, 169, 170, E223, Vasil eva, S.I. E230, 259-261

Vaughn, J.W.	E179, 186
Vorob´eva, O.L.	250
Voronina, T.N.	E22, 90, 91
Wilhoit, E.D. Willard, H.H.	186 E15, E16, E22, 24, 26-28, 30, 33, E113, E115, E117, 120, 122-125, E173, E175, E178, 181, 183-185, 187, E221, E228, E229, 232-236
Willehrand, W.F.	241
Wyk, H.J.	9
Zaitseva, S.N. Zakharov, V.M. Zakharova, V.P.	E221, E229, 242, 243, 264-266 E22 E21, 69, 69, 79-81, 88, 89, E113-E115, E117, 156, 157, 161, 162, E173, E178, 206-209, E222, E223, E229, 250, 254, 255

SOLUBILITY DATA SERIES

;

,

Volume 1	H. L. Clever, Helium and Neon
Volume 2	H. L. Clever, Krypton, Xenon and Radon
Volume 3	M. Salomon, Silver Azide, Cyanide, Cyanamides, Cyanate, Selenocyanate and Thiocyanate
Volume 4	H. L. Clever, Argon
Volume 5/6	C. L. Young, Hydrogen and Deuterium
Volume 7	R. Battino, Oxygen and Ozone
Volume 8	C. L. Young, Oxides of Nitrogen
Volume 9	W. Hayduk, <i>Ethane</i>
Volume 10	R. Battino, Nitrogen and Air
Volume 11	B. Scrosati and C. A. Vincent, <i>Alkali Metal, Alkaline Earth Metal and Ammonium Halides. Amide Solvents</i>
Volume 12	C. L. Young, Sulfur Dioxide, Chlorine, Fluorine and Chlorine Oxides
Volume 13	S. Siekierski, T. Mioduski and M. Salomon, <i>Scandium, Yttrium, Lanthanum and Lanthanide Nitrates</i>
Volume 14	H. Miyamoto, M. Salomon and H. L. Clever, Alkaline Earth Metal Halates
Volume 15	A. F. M. Barton, Alcohols with Water
Volume 16/17	E. Tomlinson and A. Regosz, Antibiotics: I. β-Lactam Antibiotics
Volume 18	O. Popovych, Tetraphenylborates
Volume 19	C. L. Young, Cumulative Index: Volumes 1–18
Volume 20	A. L. Horvath and F. W. Getzen, Halogenated Benzenes, Toluenes and Phenols with Water
Volume 21	C. L. Young and P. G. T. Fogg, Ammonia, Amines, Phosphine, Arsine, Stibine, Silane, Germane and Stannane in Organic Solvents
Volume 22	T. Mioduski and M. Salomon, <i>Scandium, Yttrium, Lanthanum and Lanthanide Halides in Nonaqueous Solvents</i>
Volume 23	T. P. Dirkse, Copper, Silver, Gold, and Zinc, Cadmium, Mercury Oxides and Hydroxides
Volume 24	W. Hayduk, Propane, Butane and 2-Methylpropane
Volume 25	C. Hirayama, Z. Galus and C. Guminski, Metals in Mercury
Volume 26	M. R. Masson, H. D. Lutz and B. Engelen, Sulfites, Selenites and Tellurites
Volume 27/28	H. L. Clever and C. L. Young, <i>Methane</i>
Volume 29	H. L. Clever, Mercury in Liquids, Compressed Gases, Molten Salts and Other Elements
Volume 30	H. Miyamoto and M. Salomon, Alkali Metal Halates, Ammonium lodate and lodic Acid
Volume 31	J. Eysseltová and T. P. Dirkse, Alkali Metal Orthophosphates
Volume 32	P. G. T. Fogg and C. L. Young, Hydrogen Sulfide, Deuterium Sulfide and Hydrogen Selenide
Volume 33	P: Franzosini, <i>Molten Alkali Metal Alkanoates</i>
Volume 34	A. N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part I: Non-cyclic Substituents
Volume 35	A. N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part II: 5-Membered Heterocyclic Substituents
Volume 36	A. N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part III: 6-Membered Heterocyclic Substituents and Miscellaneous Systems
Volume 37	D. G. Shaw, Hydrocarbons with Water and Seawater. Part I: Hydrocarbons C_5 to C_7
Volume 38	D. G. Shaw, Hydrocarbons with Water and Seawater. Part II: Hydrocarbons C_8 to C_{36}
Volume 39	C. L. Young, Cumulative Index: Volumes 20–38
Volume 40	J. Hala, Halides, Oxyhalides and Salts of Halogen Complexes of Titanium, Zirconium, Hafnium, Vanadium, Niobium and Tantalum
Volume 41	CY. Chan, I. N. Lepeshkov and K. H. Khoo, Alkaline Earth Metal Perchlorates