INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

ANALYTICAL CHEMISTRY DIVISION COMMISSION ON SOLUBILITY DATA

SOLUBILITY DATA SERIES

Volume 42

HYDROGEN HALIDES IN NON-AQUEOUS SOLVENTS

SOLUBILITY DATA SERIES

Editor-in-Chief J. W. LORIMER The University of Western Ontario London, Ontario, Canada

H. L. Clever (USA) Sub-editor, Gas/Liquid Systems C. L. Young (Australia) Sub-editor Indexes

EDITORIAL BOARD

A. F. M. Barton (Australia)

R. Battino (USA)

R. W. Cargill (UK)

R. Cohen-Adad (France)

R. Crovetto (USA)

M. Fermeglia (Italy)

F. W. Getzen (USA)

L. H. Gevantman (USA)

W. Hayduk (Canada)

G. T. Hefter (Australia) A. E. Mather (Canada) R. Paterson (USA) R. P. T. Tomkins (USA) M. Salomon (USA) D. G. Shaw (USA) D. A. Wiesenberg (USA) E. Wilhelm (Austria) Yu. P. Yampol'skii (USSR)

Managing Editor P. D. GUJRAL IUPAC Secretariat, Oxford, UK

.

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY IUPAC Secretariat, Bank Court Chambers, 2-3 Pound Way, Cowley Centre, Oxford OX4 3YF, UK

NOTICE TO READERS

Dear Reader

If your library is not already a standing-order customer or subscriber to the Solubility Data Series, may we recommend that you place a standing order or subscription order to receive immediately upon publication all new volumes published in this valuable series. Should you find that these volumes no longer serve your needs, your order can be cancelled at any time without notice

ROBERT MAXWELL Publisher at Pergamon Press

A complete list of volumes published in the Solubility Data Series will be found on p 480

SOLUBILITY DATA SERIES

NIST Research Information Center NO 55 9 C 1 C

Volume 42

HYDROGEN HALIDES IN NON-AQUEOUS SOLVENTS

Volume Editors

PETER G. T. FOGG

WILLIAM GERRARD

Polytechnic of North London Holloway, London, UK

٠

.

Polytechnic of North London Holloway, London, UK

Contributor

H. LAWRENCE CLEVER

Emory University Atlanta, Georgia, USA

PERGAMON PRESS

Member of Maxwell Macmillan Pergamon Publishing Corporation

OXFORD · NEW YORK · BEIJING · FRANKFURT SÃO PAULO · SYDNEY · TOKYO · TORONTO

U.K.	Pergamon Press plc, Headington Hill Hall, Oxford OX3 0BW, England
U S.A.	Pergamon Press, Inc., Maxwell House, Fairview Park, Elmsford, New York 10523, U.S.A.
PEOPLE'S REPUBLIC OF CHINA	Pergamon Press, Room 4037, Qianmen Hotel, Beijing, People's Republic of China
FEDERAL REPUBLIC OF GERMANY	Pergamon Press GmbH, Hammerweg 6, D-6242 Kronberg, Federal Republic of Germany
BRAZIL	Pergamon Editora Ltda, Rua Eça de Queiros, 346, CEP 04011, Paraiso, São Paulo, Brazil
AUSTRALIA	Pergamon Press Australia Pty Ltd., P.O. Box 544, Potts Point, N.S.W. 2011, Australia
JAPAN	Pergamon Press, 5th Floor, Matsuoka Central Building, 1-7-1 Nıshishinjuku, Shınjuku-ku, Tokyo 160, Japan
CANADA	Pergamon Press Canada Ltd., Suite No. 271, 253 College Street, Toronto, Ontario, Canada M5T 1R5
	Copyright © 1990 International Union of Pure and Applied Chemistry

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the copyright holders. First edition 1990

The Library of Congress has catalogued this serial title as follows:

Solubility data series.—Vol. 1—Oxford, New York; Pergamon, c 1979v.; 28 cm. Separately catalogued and classified in LC before no. 18. ISSN 0191-5622 = Solubility data series. 1. Solubility—Tables—Collected works. QD543.S6629 541.3'42'05-dc19 85-641351 AACR 2 MARC-S

British Library Cataloguing in Publication Data

Hydrogen halides in non-aqueous solvents. 1. Hydrogen halides. Solubility I. Fogg, P. G. T. II. Gerrard, William, 1900-III. Clever, H. Lawrence IV. Series 546'.2 ISBN 0-08-023925-0

CONTENTS

Foreword	Vll				
Preface	ix				
The Solubility of Gases in Liquids	Xl				
1 Hydrogen Fluoride in Non-Aqueous Solvents	1				
2 Hydrogen Chloride in Non-Aqueous Solvents	7				
 2.1 Alkanes 2.2 Mixtures of heptane and other solvents 2.3 Miscellaneous hydrocarbons 2.4 Aromatic hydrocarbons 2.5 Alkanols 2.6 Halogenated alkanols 2.7 Alkenols and alkynols 2.8 Alkanediols 2.9 Aromatic and alicyclic alcohols 2.10 Ethers and miscellaneous solvents containing carbon, hydrogen and oxygen 2.11 Aliphatic carboxylic acids 2.12 Esters of carboxylic and carbonic acids 2.13 Halogenated alkanes and halogenated alkanes 	150 196 207				
 2.14 Halogenated aromatic compounds 2.15 Nitrogen compounds 2.16 Sulfur compounds 2.17 Boron compounds 2.18 Phosphorus compounds 2.19 Silicon compounds 2.20 Tetrachlorostannane and titanium chloride 	314 330 342 352 365 379				
 3 Hydrogen Bromide in Non-Aqueous Solvents 3.1 Critical evaluation of data 3.2 Alkanes 3.3 Aromatic hydrocarbons 3.4 Alcohols, ethers and carboxylic acids 3.5 Haloalkanes and halobenzenes 3.6 Nitrogen compounds 3.7 Sulfur compounds and boron compounds 	383 383 392 401 411 424 431 434				
 4 Hydrogen Iodide in Non-Aqueous Solvents 4.1 Critical evaluation of data 4.2 Alcohols, ethers and carboxylic acids 4.3 Alkyl halides 4.4 Sulfur compounds and boron compounds 	437 437 440 444 449				
Physical Properties of the Hydrogen Halides	451				
System Index	453				
Registry Number Index	470				
Author Index 476					
Titles in the Solubility Data Series	480				

FOREWORD

If the knowledge is undigested or simply wrong, more is not better.

The Solubility Data Series is a project of Commission V.8 (Solubility Data) of the International Union of Pure and Applied Chemistry (IUPAC). The project had its origins in 1973, when the Analytical Chemistry Division of IUPAC set up a Subcommission on Solubility Data under the chairmanship of the late Prof. A.S. Kertes. When publication of the Solubility Data Series began in 1979, the Committee became a full commission of IUPAC, again under the chairmanship of Prof. Kertes, who also became Editor-in-Chief of the Series. The Series has as its goal the preparation of a comprehensive and critical compilation of data on solubilities in all physical systems, including gases, liquids and solids.

The motivation for the Series arose from the realization that, while solubility data are of importance in a wide range of fields in science and technology, the existing data had not been summarized in a form that was at the same time comprehensive and complete. Existing compilations of solubility data indeed existed, but they contained many errors, were in general uncritical, and were seriously out-of-date.

It was also realized that a new series of compilations of data gave educational opportunities, in that careful compilations of existing data could be used to demonstrate what constitutes data of high and lasting quality. As well, if the data were summarized in a sufficiently complete form, any individual could prepare his or her own evaluation, independently of the published evaluation. Thus, a special format was established for each volume, consisting of individual data sheets for each separate publication, and critical evaluations for each separate system, provided sufficient data from different sources were available for comparison. The compilations and, especially, the evaluations were to be prepared by active scientists who were either involved in producing new data, or were interested in using data of high quality. With minor modifications in format, this strategy has continued throughout the Series.

In the standard arrangement of each volume, the Critical Evaluation gives the following information:

(i) A text which discusses the numerical solubility information which has been abstracted from the primary sources in the form of compilation sheets. The text concerns primarily the quality of the data, after consideration of the purity of the materials and their characterization, the experimental method used, the uncertainties in the experimental values, the reproducibility, the agreement with accepted test values, and, finally, the fitting of the data to suitable functions, along with statistical tests of the fitted data.

(11) A set of recommended data, whenever possible, including weighted averages and estimated standard deviations. If applicable, one or more smoothing equations which have been computed or verified by the evaluator are also given.

(111) A graphical plot of the recommended data, in the form of phase diagrams where appropriate.

The Compilation part consists of data sheets which summarize the experimental data from the primary literature. Here much effort is put into obtaining complete coverage; many good data have appeared in publications from the late nineteenth and early twentieth centuries, or in obscure journals. Data of demonstrably low precision are not compiled, but are mentioned in the Critical Evaluation. Similarly, graphical data, given the uncertainty of accurate conversion to numerical values, are compiled only where no better data are available. The documentation of data of low precision can serve to alert researchers to areas where more work is needed.

A typical data sheet contains the following information:

- (i) list of components: names, formulas, Chemical Abstracts Registry Numbers;
- (11) primary source of the data;
- (iii) experimental variables;
- (1v) compiler's name;
 - (v) experimental values as they appear in the primary source, in modern units with explanations if appropriate;
- (vi) experimental methods used;
- (vii) apparatus and procedure used;
- (v111) source and purity of materials used;
 - (1x) estimated error, either from the primary source or estimated by the compiler;
 - (x) references relevant to the generation of the data cited in the primary source.

Each volume also contains a general introduction to the particular type of system, such as solubility of gases, of solids in liquids, etc., which contains a discussion of the nomenclature used, the principles of accurate determination of solubilities, and related thermodynamic principles. This general introduction is followed by a specific introduction to the subject matter of the volume itself.

The Series embodies a new approach to the presentation of numerical data, and the details continue to be influenced strongly by the perceived needs of prospective users. The approach used will, it is hoped, encourage attention to the quality of new published work, as authors become more aware that their work will attain permanence only if it meets the standards set out in these volumes. If the Series succeeds in this respect, even partially, the Solubility Data Commission will have justified the labour expended by many scientists throughout the world in its production.

January, 1989

J.W. Lorimer, London, Canada

PREFACE

This volume of The Solubility Data Series contains evaluated data for the solubility of hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide in non-aqueous solvents. Information on about four hundred systems is included. Hydrogen halides take part, either as reactants or products, in many reactions of organic compounds. Measurements of solubilities of these gases have often been carried out during studies of such reactions.

There are few measurements of the solubility of hydrogen fluoride in non-aqueous solvents. The solubilities of each of the other gases show wide divergences from solvent to solvent under the same conditions of temperature and pressure. In many cases there are distinct non-linear variations of mole fraction solubility with change of partial pressure of gas at pressures less than 101.3 kPa. This must be borne in mind when attempts are made to predict solubilities at finite pressures from limiting values of Henry's law constants.

Reliance may be placed upon data when there is close agreement between measurements by different groups of workers. Unfortunately there are sometimes inconsistencies in the literature. Difficulties in attaining equilibria between gas and liquid phases are likely to be the chief cause of such discrepancies.

Equations relating mole fraction solubility at constant pressure with temperature have been derived if appropriate experimental data have been available. Errors may arise if these equations are used outside the temperature range of the original measurements.

The editors are grateful for help and encouragement from fellow members of the I.U.P.A.C. Commission on Solubility Data. In particular we should like to acknowledge the tremendous support given by the late Steven Kertes whose untimely death has caused great sorrow to members of the Commission.

Peter Fogg William Gerrard

London

July 1989

THE SOLUBILITY OF GASES IN LIQUIDS

R Battino, H L Clever and C L. Young

INTRODUCTION

The Solubility Data Project aims to make a comprehensive search of the literature for data on the solubility of gases, liquids and solids in liquids. Data of suitable accuracy are compiled into data sheets set out in a uniform format. The data for each system are evaluated and where data of sufficient accuracy are available values recommended and in some cases a smoothing equation suggested to represent the variation of solubility with pressure and/or temperature. A text giving an evaluation and recommended values and the compiled data sheets are published on consecutive pages.

DEFINITION OF GAS SOLUBILITY

The distinction between vapor-liquid equilibria and the solubility of gases in liquids is arbitrary. It is generally accepted that the equilibrium set up at 300K between a typical gas such as argon and a liquid such as water is gas liquid solubility whereas the equilibrium set up between hexane and cyclohexane at 350K is an example of vapor-liquid equilibrium. However, the distinction between gas-liquid solubility and vapor-liquid equilibrium is often not so clear. The equilibria set up between methane and propane above the critical temperature of methane and below the critical temperature of propane may be classed as vapor-liquid equilibrium or as gas-liquid solubility depending on the particular range of pressure considered and the particular worker concerned.

The difficulty partly stems from our inability to rigorously distinguish between a gas, a vapor, and a liquid, which has been discussed in numerous textbooks. We have taken a fairly liberal view in these volumes and have included systems which may be regarded, by some workers, as vapor-liquid equilibria.

UNITS AND QUANTITIES

The solubility of gases in liquids is of interest to a wide range of scientific and technological disciplines and not solely to chemistry. Therefore a variety of ways for reporting gas solubility have been used in the primary literature and inevitably sometimes, because of insufficient available information, it has been necessary to use several quantities in the compiled tables. Where possible, the gas solubility has been quoted as a mole fraction of the gaseous component in the liquid phase. The units of pressure used are bar, pascal, millimeters of mercury and atmosphere. Temperatures are reported in Kelvin.

EVALUATION AND COMPILATION

The solubility of comparatively few systems is known with sufficient accuracy to enable a set of recommended values to be presented. This is true both of the measurement near atmospheric pressure and at high pressures. Although a considerable number of systems have been studied by at least two workers, the range of pressures and/or temperatures is often sufficiently different to make meaningful comparison impossible.

Occasionally, it is not clear why two groups of workers obtained very different sets of results at the same temperature and pressure, although both sets of results were obtained by reliable methods and are internally consistent. In such cases, sometimes an incorrect assessment has been given. There are several examples where two or more sets of data have been classified as tentative although the sets are mutually inconsistent.

Many high pressure solubility data have been published in a smoothed form. Such data are particularly difficult to evaluate, and unless specifically discussed by the authors, the estimated error on such values can only be regarded as an "informed guess". Many of the high pressure solubility data have been obtained in a more general study of high pressure vapor-liquid equilibrium. In such cases a note is included to indicate that additional vapor-liquid equilibrium data are given in the source. Since the evaluation is for the compiled data, it is possible that the solubility data are given a classification which is better than that which would be given for the complete vapor-liquid data (or vice versa). For example, it is difficult to determine coexisting liquid and vapor compositions near the critical point of a mixture using some widely used experimental techniques which yield accurate high pressure solubility data. For example, conventional methods of analysis may give results with an expected error which would be regarded as sufficiently small for vapor-liquid equilibrium data but an order of magnitude too large for acceptable high pressure gas-liquid solubility.

It is occasionally possible to evaluate data on mixtures of a given substance with a member of a homologous series by considering all the available data for the given substance with other members of the homologous series. In this study the use of such a technique has been very limited.

The estimated error is often omitted in the original article and sometimes the errors quoted do not cover all the variables. In order to increase the usefulness of the compiled tables estimated errors have been included even when absent from the original article. If the error on *any* variable has been inserted by the compiler this has been noted.

PURITY OF MATERIALS

The purity of materials has been quoted in the compiled tables where given in the original publication. The solubility is usually more sensitive to impurities in the gaseous component than to liquid impurities in the liquid component. However, the most important impurities are traces of a gas dissolved in the liquid. Inadequate degassing of the absorbing liquid is probably the most often overlooked serious source of error in gas solubility measurements.

APPARATUS AND PROCEDURES

In the compiled tables brief mention is made of the apparatus and procedure. There are several reviews on experimental methods of determining gas solubilities and these are given in References 1-7.

METHODS OF EXPRESSING GAS SOLUBILITIES

Because gas solubilities are important for many different scientific and engineering problems, they have been expressed in a great many ways:

The Mole Fraction, x(q)

The mole fraction solubility for a binary system is given by:

$$x(g) = \frac{n(g)}{n(g) + n(1)}$$

$$= \frac{W(g) / M(g)}{[W(g) / M(g)] + [W(1) / M(1)]}$$

here n is the number of moles of a substance (an *amount* of substance), W is the mass of a substance, and M is the molecular mass. To be unambiguous, the partial pressure of the gas (or the total pressure) and the temperature of measurement must be specified.

The Weight Per Cent Solubility, wt%

For a binary system this is given by

wt = 100 W(g) / [W(g) + W(1)]

where W is the weight of substance. As in the case of mole fraction, the pressure (partial or total) and the temperature must be specified. The weight per cent solubility is related to the mole fraction solubility by

$$x(g) = \frac{[wt^{\&}/M(g)]}{[wt^{\&}/M(g)] + [(100 - wt^{\&})/M(1)]}$$

The Weight Solubility, C_w

The weight solubility is the number of moles of dissolved gas per gram of solvent when the partial pressure of gas is 1 atmosphere. The weight solubility is related to the mole fraction solubility at one atmosphere partial pressure by

$$x(g)$$
 (partial pressure 1 atm) = $\frac{C_w^{M(1)}}{1 + C_w^{M(1)}}$

where M(1) is the molecular weight of the solvent.

The Moles Per Unit Volume Solubility, n

Often for multicomponent systems the density of the liquid mixture is not known and the solubility is guoted as moles of gas per unit volume of liquid mixture. This is related to the mole fraction solubility by

$$x = \frac{n v^{O}(1)}{1 + n v^{O}(1)}$$

where $v^{\circ}(1)$ is the molar volume of the liquid component.

The Bunsen Coefficient, a

The Bunsen coefficient is defined as the volume of gas reduced to 273.15K and 1 atmosphere pressure which is absorbed by unit volume of solvent (at the temperature of measurement) under a partial pressure of 1 atmosphere. If ideal gas behavior and Henry's law is assumed to be obeyed,

$$\alpha = \frac{V(g)}{V(1)} \frac{273.15}{T}$$

where V(g) is the volume of gas absorbed and V(1) is the original (starting) volume of absorbing solvent. The mole fraction solubility is related to the Bunsen coefficient by

 $x(g, 1 \text{ atm}) = \frac{\alpha}{\alpha + \frac{273.15}{T} \frac{v^{\circ}(g)}{v^{\circ}(1)}}$

where $v^{\circ}(g)$ and $v^{\circ}(1)$ are the molar volumes of gas and solvent at a pressure of one atmosphere. If the gas is ideal,

$$x(g) = \frac{\alpha}{\alpha + \frac{273.15R}{v^{\circ}(1)}}$$

Real gases do not follow the ideal gas law and it is important to establish the real gas law used for calculating α in the original publication and to make the necessary adjustments when calculating the mole fraction solubility.

The Kuenen Coefficient, S

This is the volume of gas, reduced to 273.15K and 1 atmosphere pressure, dissolved at a partial pressure of gas of 1 atmosphere by 1 gram of solvent.

```
The Ostwald Coefficient, L
```

The Ostwald coefficient, L, is defined at the ratio of the volume of gas absorbed to the volume of the absorbing liquid, all measured at the same temperature.

 $L = \frac{V(q)}{V(1)}$

If the gas is ideal and Henry's Law is applicable, the Ostwald coefficient is independent of the partial pressure of the gas. .It is necessary, in practice, to state the temperature and total pressure for which the Ostwald coefficient is measured. The mole fraction solubility, x, is related to the Ostwald coefficient by

-1

$$x(g) = \frac{RT}{P(g) L v^{O}(1)} + 1$$

where P is the partial pressure of gas. The mole fraction solubility will be at a partial pressure of P(g).

The Absorption Coefficient, B

There are several "absorption coefficients", the most commonly used one being defined as the volume of gas, reduced to 273.15K and 1 atmosphere, absorbed per unit volume of liquid when the total pressure is 1 atmosphere. β is related to the Bunsen coefficient by

 $\beta = \alpha (1-P(1))$

where P(1) is the partial pressure of the liquid in atmosphere.

The Henry's Law Contant

A generally used formulation of Henry's Law may be expressed as

 $P(g) = K_{H} x(g)$

where $K_{\rm H}$ is the Henry's Law constant and x the mole fraction solubility. Other formulations are

$$P(g) = K_2C(1)$$

or

 $C(g) = K_C(1)$

where K₂ and K₂ are constants, C the concentration, and (1) and (g) refer to the liquid and gas phases. Unfortunately, K_H, K₂ and K₂ are all sometimes referred to as Henry's Law constants. Henry's Law is a limiting law but can sometimes be used for converting solubility data from the experimental pressure to a partial gas pressure of 1 atmosphere, provided the mole fraction of the gas in the liquid is small, and that the difference in pressures is small. Great caution must be exercised in using Henry's Law.

The Mole Ratio, N

The mole ratio, N, is defined by

N = n(g) / n(1)

Table 1 contains a presentation of the most commonly used inter-conversions not already discussed.

For gas solubilities greater than about 0.01 mole fraction at a partial pressure of 1 atmosphere there are several additional factors which must be taken into account to unambiguously report gas solubilities. Solution densities or the partial molar volume of gases must be known. Corrections should be made for the possible non-ideality of the gas or the non-applicability of Henry's Law. TABLE 1. Interconversion of parameters used for reporting solubility.

$$L = \alpha(T/273.15)$$

$$C_{w} = \alpha/v_{o}\rho$$

$$K_{H} = \frac{17.033 \times 10^{6}\rho(\text{soln})}{\alpha M(1)} + 760$$

$$L = C_{w} v_{t,gas} \rho$$

where v_o is the molal volume of the gas in cm³ mol⁻¹ at 0°C, ρ the density of the solvent at the temperature of the measurement, ρ_{soln} the density of the solution at the temperature of the measurement, and v_{t,gas} the molal volume of the gas (cm³ mol⁻¹) at the temperature of the measurement.

REFERENCES

- 1. Battino, R.; Clever, H. L. Chem. Rev. 1966, 66, 395.
- Clever, H. L.; Battino, R. in Solutions and Solubilities, Ed. M. R. J. Dack, J. Wiley & Sons, New York, <u>1975</u>, Chapter 7.
- Hildebrand, J. H.; Prausnitz, J. M.; Scott, R. L. Regular and Related Solutions, Van Nostrand Reinhold, New York, <u>1970</u>, Chapter 8.
- 4. Markham, A. E.; Kobe, K. A. Chem. Rev. 1941, 63, 449.
- 5. Wilhelm, E.; Battino, R. Chem. Rev. 1973, 73, 1.
- 6. Wilhelm, E.; Battino, R.; Wilcock, R. J. Chem. Rev. <u>1977</u>, 77, 219.
- Kertes, A. S.; Levy, O.; Markovits, G. Y. in Experimental Thermochemistry Vol. II, Ed. B. Vodar and B. LeNaindre, Butterworth, London, <u>1974</u>, Chapter 15.

Revised: December 1984 (CLY)

APPENDIX I. Conversion Facto	rs	k a	nd k	- 1	•		
	1		k n-SI (SI		nit) it)	=	k^{-1} 1 (SI Unit) = k^{-1} (non-SI Unit)
LENGTH							SI Unit, m
<pre>Å (angstrom cm (centimeter) in (inch) ft (foot)</pre>		3	1 254	x x	10 ⁻¹ 10 ⁻² 10 ⁻⁴ 10 ⁻⁴	(*) (*)	$ \begin{array}{r} 1 \times 10^{10} (*) \\ 1 \times 10^{2} (*) \\ 3 937 008 \times 10^{-5} \\ 3 280 840 \times 10^{-6} \end{array} $
AREA					_		SI Unit, m ²
cm ² in ² ft ²	9 2	64 290	516	×	10 ⁻⁴ 10 ⁻⁸ 10 ⁻⁸	(*) (*) (*)	$\begin{array}{rrrr} 1 & \times & 10^{4} & (*) \\ 1 & 550 & 003 & \times & 10^{-3} \\ 1 & 076 & 391 & \times & 10^{-5} \end{array}$
VOLUME							SI Unit, m ³
cm ³ in ³ ft ³ 1 (litre) UKgal (UK gallon) USgal (US gallon)		831 45	064 685 1 461	× × × ×	$10^{6} \\ 10^{-1} \\ 10^{-8} \\ 10^{-3} \\ 10^{-7} \\ 10^{-7} \\ 10^{-7}$	(*)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
MASS							SI Unit, kg
g (gram) t (tonne) lb (pound) 4	15 :	359	1	×	10^{-3} 10^{3} 10^{-8}	(*) (*) (*)	$ \begin{array}{r} 1 \times 10^{3} (*) \\ 1 \times 10^{-3} (*) \\ 2 \ 204 \ 623 \ \times 10^{-6} \end{array} $
DENSITY							SI Unit, kg m ⁻³
g cm ⁻³ g l ⁻¹ lb in ⁻³ lb ft ⁻³ lb UKgal ⁻¹ lb USgal ⁻¹	1 6	601 99	1 991 847 776	× × ×	10^{3} 10^{-2} 10^{-5} 10^{-3} 10^{-4}		$ \begin{array}{r} 1 \times 10^{-3} (*) \\ 1 (*) \\ 3 612 728 \times 10^{-11} \\ 6 242 795 \times 10^{-6} \\ 100 224 \times 10^{-7} \\ 8 345 406 \times 10^{-9} \end{array} $
PRESSURE			s	ſι	Jnit,	Pa (pa	ascal, kg m ⁻¹ s ⁻²)
lbf ft ⁻² inHg (inch of mercury)	5 6 3	101 894 47 386	665 325 1 757 880 388	× × × × × ×	$10^{-1} \\ 10^{-1} \\ 10^{5} \\ 10^{-3} \\ 10^{-3} \\ 10^{-3} \\ 10^{-4} \\ 10^{-4}$	(*) (*) (*)	$1 \times 10 (*)$ $1 019 716 \times 10^{-11}$ $9 869 233 \times 10^{-12}$ $1 \times 10^{-5} (*)$ $1 450 377 \times 10^{-10}$ $20 886 \times 10^{-6}$ $2 952 999 \times 10^{-10}$ $7 500 617 \times 10^{-9}$
ENERGY			s	L L	Jnit,	J (jou	ule, kg m ² s ⁻²)
hp h (horse power hour)	1 1 3 2 6	4 101 355 584	868 184 36 325 818 519	× × × × ×	10^{-7} 10^{-4} 10^{-3} 10^{-3} 10^{-5} 10^{-3}	(*) (*)	$ \begin{array}{r} 1 \times 10^{7} (*) \\ 2 388 459 \times 10^{-7} \\ 2 390 057 \times 10^{-7} \\ 2 777 778 \times 10^{-13} \\ 9 869 233 \times 10^{-9} \\ 7 375 622 \times 10^{-7} \\ 3 725 062 \times 10^{-13} \\ 9 478 172 \times 10^{-10} \\ \end{array} $
****			<u> </u>				

An asterisk (*) denotes an exact relationship.

٢

COMPONENTS	EVALUATOR.
 Hydrogen Fluoride; HF; [7664-39-3] 	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2. Non-aqueous Solvents	Polytechnic of North London, Holloway, London, N7 8DB, U.K. January 1989

CRITICAL EVALUATION

The Solubility of Hydrogen Fluoride in Non-aqueous Solvents

Simons (1) measured the solubility of hydrogen fluoride in benzene over the temperature range 292.7 K to 345.9 K and pressure range 0.32 kPa to 89.2 kPa. Except at partial pressures of hydrogen fluoride below about 0.5 kPa the mole fraction solubility lies below the reference surface defined by the Raoult's law equation. i.e.

 $x_{\rm HF} = P_{\rm HF}/P_{\rm HF}^{\circ}$

where $P_{\rm HF}$ is the partial pressure of hydrogen fluoride and $P_{\rm HF}^{\circ}$ the vapor pressure of liquid hydrogen fluoride. The behaviour differs from that of the other hydrogen halides. Mole fraction solubilities in benzene of these gases lie above this reference surface. Simons' data for hydrogen fluoride are self-consistent but there are no other data on this system available for comparison. They may be accepted on a tentative basis.

Simons also measured the solubility of hydrogen fluoride in octane in the range 298.3 K to 339.5 K at a total pressure equal to barometric. Mole fraction solubilities are very low. These measurements may also be accepted on a tentative basis until further studies have been made.

Matuszak (2) reported the solubility in 1,2-ethanediol, 1,2,3-propanetriol, 1,1'-oxybis[3-methylbutane] and in 1,1'-oxybisbenzene, each at a single temperature in the range 295.4 K to 304.3 K and single pressure of either 98.93 kPa (742 mmHg) or 99.59 kPa (747 mmHg). On the basis of analogy with the behaviour of the other hydrogen halides it is to be expected that the mole fraction solubility of hydrogen fluoride in these solvents should be high relative to the reference values based upon the Raoult's law equation. Mole fraction solubilities from Matuszak's measurements are as follows :

Solvent	₽ _{HF} /mmHg	т/к	^x HF	Reference value P _{HF} /P _{HF}
1,2-ethanediol	742	302.0	0.916	0.705
1,2,3-propanetriol	747	295.4	0.946	0.886
1,1'-oxybis[3-methylbutane]	742	297.6	0.799	0.820
1,1'-oxybisbenzene	742	304.3	0.583	0.653

This author's measurement of the solubility of hydrogen chloride in 1,2-ethanediol is consistent with measurements by Gerrard & Macklen. His values for the solubility of hydrogen chloride in 1,1'-oxybis[3-methylbutane] and in 1,1'-oxybisbenzene are lower than those reported by others. The evaluator recommends that these solubility data for hydrogen fluoride should be treated as semi-qualitative until they have been confirmed by other workers.

Hartman (4) reported the solubility in fluorosulfuric acid at four temperatures from 299.8 K to 333.2 K at a pressure of 101.3 kPa. Mole fraction solubilities are high, relative to the reference line based upon the Raoult's law equation, and are self-consistent. No experimental details were given. No other measurements are available for comparison and the reliability of these data cannot be judged.

REFERENCES

1.	Simons, J. H. J. Am. Chem. Soc. <u>1931</u> , 53, 83-87.
2.	Matuszak, M. P. <i>U. S. Patent</i> 2,520,947 September 5, <u>1950</u> .
3.	Gerrard, W.; Macklen, E. D. J. Appl. Chem. <u>1960</u> , 10, 57-62.
4.	Hartman, B. F. <i>U. S. Patent</i> 2,434,040 January 6, <u>1948</u> .

COMPONENTS:	UF.		ORIGINAL MEASUREMENTS: Simons, J. H.
<pre>(1) Hydrogen fluoride; HF; [7664-39-3]</pre>			Simons, J. H.
(2) Octane; C ₈ H ₁₈ ; [111-65-9]		J. Am. Chem. Soc. <u>1931</u> , 53, 83 - 87.	
VARIABLES:			PREPARED BY:
T/K: 298.3 - HF P/kPa: 85.7 - 9			W. Gerrard
HF P/kPa: $85.7 - 9$ (643 - 7)			(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:			
EXPERIMENTAL VALUES.	т/к	Pressu	re Mol Fraction
		p_1/mm	
	[293.15	735	0.00372]
	298.3		0.00338
	[303.15	727	0.00305]
	309.2		0.00276
	[313.15	714	0.00253]
	318.2		0.00235
	[323.15	695	0.00213]
	324.2		0.00194
j	[333.15	666	0.00181]
	339.5		0.00170
The HF vapor pressur pressure at each tem assumed to be 745 mm	perature	alculat from th	ed by subtracting the octane vapor e barometric pressure which was
	A		INFORMATION
METHOD/APPARATUS/PROCEDURE: Three vessels were connected by taps. Vessel X contained the liquid HF, and was furnished with an inlet tube passing to the bottom. The exit tube was flush with the top of X, and it then became the inlet tube for vessel Y which contained the octane. This inlet tube passed to the bottom of the absorption vessel, Y. The outlet tube from Y was flush with the top of Y; but it was not clear where it went after that. These two vessels were immersed in separate thermostats. A vertical tube carrying a tap passed from the bottom of vessel Y, and was attached to a tapped vessel Z of about 20 cm ³ capacity for the reception of a sample of solution for the determina- tion of hydrogen fluoride by titra- tion with sodium hydroxide (excess) and hydrochloric acid.		HF, and be it tube nd it vessel This m of sh with lear se two ate bottom to a 3 a ermina- itra-	<pre>as described by Simons (1). It was distilled directly into the dry apparatus filled with nitrogen. (2) Octane. Self prepared. Dried with phosphorus pentoxide and sodium, and distilled directly into the apparatus. ESTIMATED ERROR: REFERENCES:</pre>

2

4	e	
	1	
	ł	,

[7664-3	en fluoride 39-3] e; C ₆ H ₆ ; [7				9. <u>1931</u> , 53,
T/K	Pressure	Mol Fraction	Т/К		Mol Fraction
	p1/mmHg	<i>x</i> 1		p1/mmHg	<i>x</i> 1
Equilib liquid	HF at 292.6	pressure of 5 K		F at 273.1	pressure of 5 K (continued)
[293.15	669	0.0673]	[323.15	214	0.0196]
294.6 294.7		0.0653 0.0650	325.1 329.4		0.0181 0.0150
295.1		0.0648	[333.15	160	0.0117]
296.2 297.3		0.0530 0.0625	334.3		0.0108
297.3		0.0620	338.2		0.0084
298.9 300.3		0.0596 0.0588	Equilibr	ium vapor	pressure of
302.4		0.0556	liquid H	F at 255.1	
302.5 [303.15	625	0.0548	[293.15	147	0.0385]
304.2	640	0.0548]	293.9 294.0		0.0382 0.0381
306.0		0.0525 0.0507	294.1		0.0375
307.0		0.0495	296.1		0.0355
308.7 309.8		0.0510 0.0468	301.1		0.0327
312.2		0.0442	[303.15	137	0.0315]
312.3 312.5		0.0437 0.0427	304.3 304.9		0.0306 0.0323
	541		304.9 311.1		0.0258
[313.15	561	0.0422]	[313.15	123	0.0244]
315.4 317.8		0.0394 0.0382	313.9		0.0244
317.9		0.0365	322.1		0.0184
319.1	470 C	0.0332	[323.15	104	0.0173]
[323.15	473.6	0.0298]	325.9		0.0161
324.1 327.1		0.0280 0.0246	331.2		0.0117
327.2		0.0248	[333.15	77.5	0.0102]
327.2		0.0243	333.7		0.0098
[333.15	354.9	0.0180]			pressure of
334.1 335.5		0.0167 0.0150	-	F at 196.1	
335.6		0.0155	292.7	· -	0.0249
345.9		0.00395	[293.15	4.5	0.0248]
liquid H	HF at 273.1		296.7 303.1		0.0227 0.0208
[293.15	303	0.0432]	[303.15	4.2	0.0203]
294.1		0.0425	311.4		0.0163
298.7		0.0384	[313.15	3.8	0.0158]
300.6		0.0368	318.1		0.0128
[303.15	283	0.0355]	[323.15	3.2	0.0112]
303.3		0.0346	326.0		0.0098
306.0		0.0330	329.1	÷ .	0.00825
[313.15	254	0.0275]	[333.15	2.4	0.0071]
313.6		0.0277	333.9 338.1		0.0067 0.00557
		0 0777			V • • • • • • • •

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen fluoride; HF; [7664-39-3] (2) Benzene; C₆H₆; [71-43-2]</pre>	Simons, J. H. J. Am. Chem. Soc. <u>1931</u> , 53, 83 - 87.
VARIABLES: T/K: 296.1 - 345.9 P/kPa: 0.32 - 89.20 (2.4 - 669 mmHg)	PREPARED BY: W. Gerrard

EXPERIMENTAL VALUES:

See preceeding page.

The mole fraction values in [] are smoothed values of the author.

The HF partial pressure values were calculated from the data below and the equation:

p1/mmHg =[(p_{barometer}/mmHg - p⁰₂/mmHg)/p_{barometer}/mmHg] p⁰₁/mmHg

where p_1^{\uparrow} is the equilibrium vapor pressure of HF at the HF liquid temperature, and p_2^{\downarrow} is the solvent equilibrium vapor pressure at the temperature of the solubility measurement. The author's values are below.

 T/K	Hydrogen Fluoride	Benzene	Average Barometer
	p1/mmHg	p₂/mmHg	p barometer/mmHg
			······
196.15	5.1		750
255.15	166		740
273.15	342		742
292.15	760		745
293.15	768	75.6	
303.15	1070	120.2	
313.15	1470	183.6	
323.15	1990	271.4	
333.15	2630	390.1	

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Three vessels are connected by taps. Vessel I contains the liquid HF. It is furnished with an inlet tube passing to the bottom. The exit tube is flush with the top of I, and passes to the bottom of vessel II. The outlet tube from II is flush with the top and can be opened to the atm. The two vessels are immersed in separate thermostats. Vessel I	 Hydrogen fluoride. Prepared as described by Simons (1). It was distilled directly into the dry apparatus filled with nitrogen.
controls the partial pressure of HF, vessel II contains the solvent at the temperature of the solubility measure-	
ment. A vertical tube passes from the bottom of II to vessel III for the reception of a sample of solution for chemical titration. The sample is reacted with excess NaOH, and back	
titrated with HCl.	REFERENCES:
Vessel I is maintained at a chosen temperature of 292.65 K (normal b.p.	<pre>1. Simons, J. H. J. Am. Chem. Soc. <u>1924</u>, 46, 2179.</pre>
of HF) or lower to control the HF partial pressure. The partial pressur in II is calculated from the vapor pre of solvent in II, and the barometric p	ssure of HF in I, the vapor pressure

4

Hydrogen Fluoriae in	non-Aqueous Solver	115	5	
COMPONENTS:	ORIGINAL MEASU	REMENTS:		
<pre>(1) Hydrogen fluoride; HF; [7664-39-3]</pre>	Matuszak, M. F	Matuszak, M. F.		
<pre>(2) 1,2-Ethanediol 1,2,3-Propanediol 1,1'-Oxybis[3-methylbutane] 1,1'-Oxybisbenzene</pre>	U.S. Patent 2,520,947 September 5, 1950 Chem. Abstr. 1950, 44, 11044g			
VARIABLES: T/K: 295.2 - 304.3 P/kPa : 98.93 - 99.59 (742 - 747 mmHg)	PREPARED BY: W. Gerrar	rd		
EXPERIMENTAL VALUES:	. I <u></u>			
	HF Absorbed* Mo HF per 100 g component 2	ole Ratio** ⁿ HF ^{/n} 2	Mole Fraction** [*] HF	
1,2-Ethanediol, (ethvlene glycol); ^C 2 ^H 6 ^O 2; [107-21-1] 84 302.0 742	350	10.86	0.916	
1,2,3-Propanetriol, (glvcerol); C ₃ H ₈ O ₃ ; [56-81-5] 72 295.4 747	382	17.6	0.946	
1,1'-Oxybis[3-methylbutane], (<i>diisoam</i> ^C 10 ^H 22 ^O ; [544-01-4] 76 297.6 742	v1 ether); 50.5	4.00	0.799	
1,1'-Oxybisbenzene, (diphenvl ether); C _{12^H10^O; [101-84-8] 88 304.3 742}	16.4	1.396	0.583	
* The author's statement was "HF at oxycompound." ** calculated by the compiler.	sorbed, weight p	er cent of		
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE	SOURCE AND PURI	TY OF MATER	IALS:	
No information	No information			
	ESTIMATED ERROR	:		
	REFERENCES:			

0					
COMPONENTS :			ORIGINAL MEASURE	MENTS:	
(1) Hydrogen i	fluoride; HF;		Hartman, B. H	2.	
[7664-39-3	[7664-39-3]		11. S. Patent	2,434,040, Jan.	6 1948
<pre>(2) Fluorosulfuric acid or fluo- sulfonic acid; FHO₃S;[7789-21-1]</pre>			o. b. rutent	2,454,040, ball.	0, <u>1940</u> .
VARIABLES:			PREPARED BY:		
VARIABLES: $T/K = 299.8 - 333.2$ p/kPa = 101.325 (1 atm)			}	H. L. Clever	
EXPERIMENTAL VALU	ES:			,	
	Temperature	Hydroge	en Fluoride	Mol Fraction	
	-	$10^2 \omega_1 / w$	t % dissolved		
	$t/{}^{\circ}\mathbf{F}$ T/\mathbf{K}	in fluc <u>at one</u>	sulfonic acid atm	<i>x</i> ₁	
	80 299.8		58.0	0.874	
	100 310.9 120 322.0		33.0	0.711	
	120 322.0 140 333.2		18.0 11.0	0.523 0.382	
	The compiler ca	alculated	the mole frac	ction values.	
		AUXILIARY	INFORMATION		
METHOD/APPARATUS/	PROCEDURE :		SOURCE AND PURI	TY OF MATERIALS:	
No inf	Cormation.		No inform	nation.	
			ESTIMATED ERROR	:	· · · · · · · · · · · · · · · · · · ·
			REFERENCES :		

 (1) Hydrogen chloride; HCl; [7647-01-0] (2) Alkanes H. Lawrence Clever Chemistry Department Emory University Atlanta, GA 30322 USA 1986, November

CRITICAL EVALUATION:

The Solubility of Hydrogen Chloride in Alkanes.

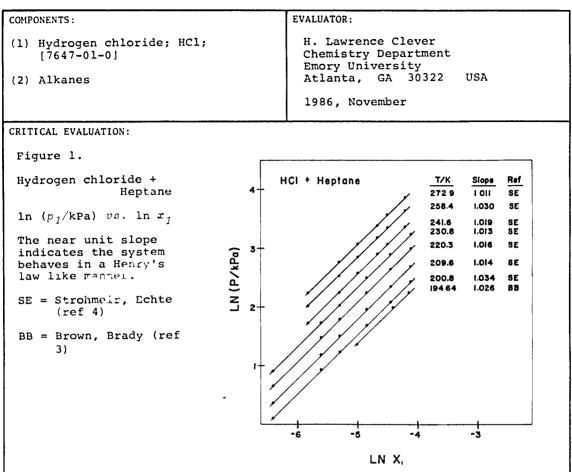
Seven papers (ref 1 - 7) report measurements of the solubility of hydrogen chloride in seven normal alkanes and one branched alkane. Some of the measurements were made as a function of pressure at partial pressures well below atmospheric pressure. Other measurements were made at only one pressure at or near atmospheric pressure. The measurements cover the temperature interval of 194.6 to 475 K.

Two trends have been observed in evaluating the solubility of gases in normal alkanes which are also expected for hydrogen chloride. The trends are:

(i) the temperature coefficient of solubility of a gas is the same for all alkanes at a given temperature. This is because a given gas has nearly the same enthalpy of solution in all normal alkanes.

(ii) at a given temperature and gas partial pressure the mole fraction solubility increases with normal alkane chain length. The increasing contact area of the alkane with carbon number will allow more solute molecules to contact the alkane which results in a larger mole fraction solubility.

Henry's law can be a helpful relationship in the evaluation of gas solubility data. The hydrogen halides are non-ideal gases, their solutions are non-ideal, and there is a question as to whether or not their solutions obey Henry's law over even a low partial pressure range, especially for solvents with some basic character. Of all the solvents the normal alkanes probably show the least basic character. The HCl + heptane solubility data of Brown and Brady (ref 3) and Strohmeir and Echte (ref 4) at eight temperatures between 194.6 and 272.9 K strongly indicate that Henry's law is a good approximation to the solubility behavior of the system. The evidence is presented in Figure 1. When Henry's law, in the form


 $(p_1/kPa) = (k_H/kPa)x_1$, is put in logarithmic form $\ln(p_1/kPa) = \ln k_H + \ln x_1$,

it is seen that a plot of $\ln (p_1/kPa) vs. \ln x_1$ should be linear and of unit slope. The HCl + heptane data plotted in Figure 1 is linear and averages within 2 percent of unit slope. The gas partial pressures range from 1.1 to 47.8 kPa. Thus the present evaluation will assume a Henry's law like model can be used to help evaluate the data. It is further assumed that the relationship is valid to 101.3 kPa (atmospheric pressure).

Both O'Brien and Kenny (ref 2) and Ryabov et al. (ref 7) present pressure dependent solubility data for the HCl + hexane system. The Ryabov et al. experiment appears to be seriously flawed. The data scatter badly, and the atmospheric pressure values at several temperatures appear to be too small when compared with other data. The O'Brien and Kenny data when plotted in logarithmic form are approximately linear, but the slope is 7 per cent larger than unity. Although these experiments do not support the Henry law model well, we believe the Strohmeir and Echte experiments on HCl + heptane are definitive, and accept Henry's law for all of the HCl + alkane systems.

The HCl + alkane mole fraction solubilities at 101.3 kPa are shown in Figure 2 and given in Table 1 as a function of temperature. In the figure is plotted $\ln x_1 vs$. 1000/(T/K). The HCl vapor pressure and Raoults law were used to construct an ideal solubility line at 101.3 kPa partial pressure (the line also represents the 101.3 kPa solubility predicted by the Gerrard reference line). Also given in Table 1 are Henry's constants in kPa. The Henry's constants reproduce the low pressure solubility values of the HCl + heptane system with an average deviation of 0.9 percent.

Figure 2 allows the expected trends of a similar temperature coefficient of solubility and of an increasing solubility with increasing chain length for the HCl + alkane systems to be checked. The results are disappointing. The figure indicates the HCl + alkane data do not make up a self-consistent set of solubility data. The figure shows that the HCl +

heptane data of Brown and brady (ref 3) and Strohmeir and Echte (ref 4), and the HCl + decane data of Gerrard, Mincer and Wyvill (ref 5) best represent the behavior of HCl in alkanes. The HCl + hexane data of Ryabov *et al.* (ref 7) appear to be too low and of a different temperature coefficient of solubility. The HCl + hexadecane data of Tremper and Prausnitz (ref 6) do not fit the expected pattern well. Near 300 K the mole fraction solubility values are smaller than expected on comparison with the heptane and decane data. Above 400 K the values are nearer the expected magnitude. However, the temperature coefficient of solubility is quite different from that of the systems considered most reliable.

Not all of the data points of Bell (ref 1) and Ryabov *et al.* (ref 7) are shown on Figure 2. Bell reported one solubility value at 293.2 K for each of four hydrocarbons. From the location of Bell's solubility values on Figure 2 we believe his values are reliable with the possible exception of the hexadecane value.

Each HCl + alkane system is discussed further below.

1. Hydrogen chloride + Pentane; C₅H₁₂; [109-66-0]

Ryabov $et \ al.$ (Ref 7) report one mole fraction solubility value at 101.3 kPa and 298.2 K. It appears to be too small and is classified as doubtful.

2. Hydrogen chloride + Hexane; C₆H₁₄; [110-54-3]

Three papers report rather discordant measurements of the solubility of HCl in hexane. Probably the most reliable value is the single value reported by Bell (ref 1) at 101.3 kPa and 293.2 K. O'Brien and Kenny (ref 2) report four values measured at pressures between 2.10 and 10.84 kPa HCl at 298.2 K. The data recalculated as Henry's constant show some scatter and lead to an atmospheric pressure value that is nearly 20 per cent below the Bell value. Ryabov *et al.* (ref 7) report solubility values at 101.3 kPa

8

COMPONENTS:	EVALUATOR:
 (1) Hydrogen chloride; HCl; [7647-01-0] (2) Alkanes 	H. Lawrence Clever Chemistry Department Emory University Atlanta, GA 30322 USA
	1986, November

CRITICAL EVALUATION:

at six temperatures between 283.2 and 313.2 K. It appears that they made measurements at a number of HCl partial pressures, but a complete data set is given for only the 298.2 K measurements. As discussed earlier their experiment appears to be flawed. The pressure dependent data at 298.2 K scatter badly, and all of their values appear to be low. The results are classed as doubtful.

3. Hydrogen chloride + Heptane; C₇H₁₆; [142-82-5]

The data reported by Brown and Brady (ref 3) and Strohmeir and Echte (ref 4) are classed as tentative. However, they may be the most reliable data available for HCl + alkane systems. Their pressure dependent data appears to obey Henry's law (Figure 1). The Henry's constants given in Table 1 regenerate the experimental data from these papers with an average deviation of 0.9 percent. The lol.3 kPa mole fraction solubilities calculated from these data are plotted in Figure 2. A single value at lol.3 kPa and 298.2 K of Ryabov *et al.* (ref 7) appears to be too small and is classed as doubtful.

4. Hydrogen chloride + Octane; C₈H₁₈; [111-65-9]

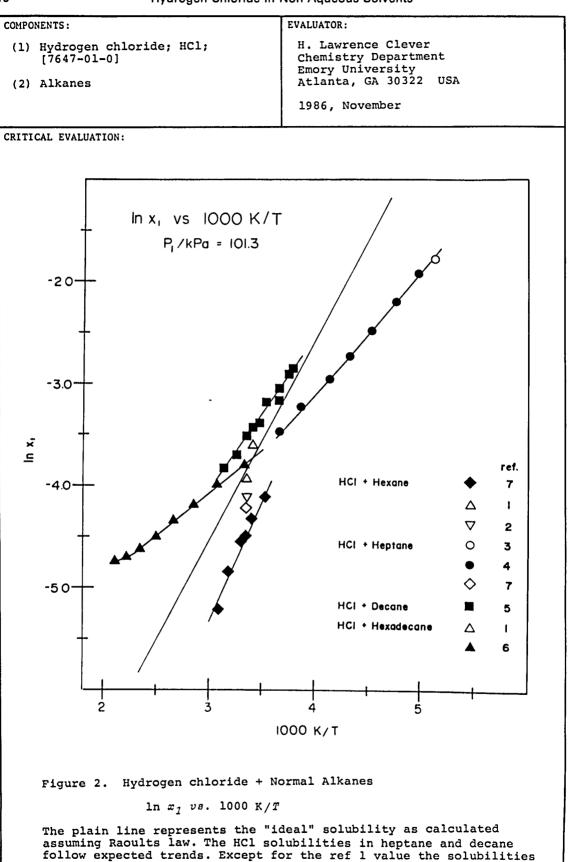
Bell (ref 1) reports a single value at 101.3 kPa and 293.2 K which is classed tentative. Ryabov $et \ al$. (ref 7) report a single value at 101.3 kPa and 298.2 K which is classed doubtful.

5. Hydrogen chloride + 2,2,4-Trimethylpentane; C₈H₁₈; [540-84-1]

One value at 101.3 kPa and 298.2 K is reported (ref 7). The branched alkanes do not always fit a predictable pattern of gas solubility. The present value is suspected of being low. It is classed doubtful.

6. Hydrogen chloride + Decane; $C_{10}H_{22}$; [124-18-5]

Gerrard, Mincer, and Wyvill (ref 5) report the only data on the system. They report eleven measurements at 101.3 kPa between the temperatures of 269.2 and 319.2 K. The data show some scatter (Figure 2), but they do show the expected trends in mole fraction solubility and temperature coefficient of solubility relative to the HCl + heptane data.The data are classed as tentative.


7. Hydrogen chloride + Dodecane; C₁₂H₂₆; [112-40-3]

Bell (ref 1) reports a single measurement at 101.3 kPa and 293.2 K. The value fits the expected pattern of solubility in alkanes fairly well, and it is classed as tentative.

8. Hydrogen chloride + Hexadecane; C₁₆H₃₄; [544-76-3]

Bell (ref 1) reports a single solubility value at 101.3 kPa and 293.2 K. Tremper and Prausnitz (ref 6) report seven Henry's constant values at temperatures between 300 and 475 K. The Henry's constant values have been converted to mole fraction values at 101.3 kPa. They are shown in Figure 2 and given in Table I. At 293.2 K the extrapolated solubility value of Tremper and Prausnitz is 12 percent lower than the Bell value. Bell's value already appears to be low when compared with the solubility values of HCl in heptane and decane at 293.2 K.

Tremper and Prausnitz used modern equipment, established techniques, and took account of the non-ideality of the gas state in their calculations. They state their reproducibility is one percent. Thus, it is of concern to inspect Figure 2 and see that their data does not fit the overall pattern well. Their results near 300 K appear to be too small when compared to the HCl solubility in other alkanes. Their temperature coefficient of solubility differs from that of other systems. At this time it is not possible to decide whether the HCl + dodecane or the HCl + heptane and decane solubility curves (Fig 2) best represent the typical behavior of HCl in a normal alkane. New experimental results are needed.

assuming Raoults law. The HCl solubilities in heptane and decane follow expected trends. Except for the ref l value the solubilities in hexane appear to be too small. The solubilities in hexadecane are smaller magnitude than expected at the lower temperatures, but near expected magnitudes at the higher temperatures. The HCl + hexadecane slope agrees poorly with the slopes of the other systems. ſ

94.6 90.8 99.6 20.3 30.8 41.6 58.4 72.9 33.2 93.2	4/kPa	<i>x</i> ₁	6220 7680		k _H /kPa 600 689 901 1206 1554 1941	0.169 0.147 0.1125 0.0842 0.0657	k _H /kPa	<i>ω</i> ₁	3 4 4 4
00.8 09.6 20.3 30.8 41.6 58.4 72.9 33.2 93.2 93.2 93.2 93.2 93.2 93.2 93.2 93.2 93.2 93.2	L600				689 901 1206 1554 1941	0.147 0.1125 0.0842 0.0657			4 4 4
)3.2 13.2	L600		5140	0.0163 0.0132 0.0197	2572 3206	0.0522 0.0394 0.0316	3420	0.0296	4 4 4 7 7 1
)3.2 13.2		0.0047		0.0112	6890	0.0147		0.0163	7
13.2		0.0017	6220	0.0163	0000	0.011/	0220	0.0100	2
			9560 L2840 L8730	0.0106 0.00789 0.00541					7 7 7
	,2,4-Tr ethylpe		Decane		Dodecan	e	Hexadec	ane	
$\overline{k_E}$	y/kPa	<i>x</i> ₁	k _H /kPa	<i>x</i> ₁	k _H /kPa	<i>x</i> ₁	k _H /kPa	<i>x</i> ₁	
54.2 57.2 73.2 73.4 79.2 33.2 88.4 93.2 93.4			1745 1865 2140 2170 2405 2465 3015 3155	0.0581 0.0544 0.0473 0.0467 0.0421 0.0411 0.0336 0.0321	3230	0.0314	3750	0.0270	5 5 5 5 5 5 5 1 5 5
	5580	0.0154	3400	0.0298					5 7
00 06.7 19.2 25 50 75 50 25 50 75			4100 4690	0.0247 0.0216			4565 5505 6665 7915 9210 10340 11250 11750	0.0222 0.0184 0.0152 0.0128 0.0110 0.00980 0.00901 0.00862	655666666 6666666

COMPONENTS :	ORIGINAL MEASUREMENTS:
	Ryabov, V. G.; Solomonov, A. B.;
<pre>(1) Hydrogen chloride; HCl; 7647-01-0</pre>	Ketov, A. N.; Bugaichuk, A. M.
(2) Alkanes; $C_{5}H_{12}$, $C_{6}H_{14}$, $C_{7}H_{16}$,	2h. Fiz. Khim. <u>1979</u> , 53, 2915 - 6.
and $C_{8}H_{18}$	Ruвв. J. Phys. Chem. <u>1979</u> , 53, 1667 - 8.
VARIABLES:	PREPARED BY:
T/K: 298.15 P/kPa: 101.325	H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol	Fraction ¹ ^x 1
Pentane; C ₅ H ₁₂ ; []	.09-66-0]
298.15 0	0.0047 ± 0.0001
Hexane; C ₆ H ₁₄ ; [1]	.0-54-3]
298.15 0	0.0112 ± 0.0001
Heptane; C ₇ H ₁₆ ; []	.42-82-5]
298.15 0	0.0147 ± 0.0003
Octane; C ₈ H ₁₈ ; [1]	1-65-9]
298.15 0	0.0163 ± 0.0004
2,2,4-Trimethylper C ₈ H ₁₈ ; [540-84-1]	tane or isooctane;
298.15 0	0.0154 ± 0.0002
¹ The authors report mole per cent. The c point and reports mo	ted the solubility as compiler moved the decimal ple fraction.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The hydrogen chloride was bubbled through a thermostated layer of the hydrocarbon.	No information.
Samples were removed at specified times, washed with distilled water, and the aqueous extract titrated with 0.1 N sodium hydroxide.	
Saturation was confirmed by taking 2 to 3 more samples after the time concentration curve leveled.	
	ESTIMATED ERROR:
	The uncertainty is described by the authors as a fiducial probability of 0.99.
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Bell, R. P.		
(2) Alkanes; C_6H_{14} , C_8H_{18} , $C_{12}H_{26}$, and $C_{16}H_{34}$	J. Chem. Soc. <u>1931</u> , 1371 - 1382.		
VARIABLES:	PREPARED BY:		
T/K = 293.15 P/kPa = 101.325 (1 atm)	W. Gerrard		
EXPERIMENTAL VALUES:	Lengen		
T/K Partition Coefficient c1,1/c1,9	Mol Fraction #1		
Hexane; C ₆ H ₁₄ ;	[110-54-3]		
293.15 3.64	0.0197		
Octane; C ₈ H ₁₈ ;	[111-65-9]		
293.15 4.50			
Dodecane; C ₁₂ H ₂			
293.15 3.42			
	H ₃₄ ;[544-76-3] ^a		
293.15 2.28	0.0270		
The ideal gas concentra	tion at $p_1 = 1$ atm		
is $c_{1,g}/mol dm^{-3} = n/V$	r = p/RT = 0.0417.		
^a named cetane in the c	riginal paper.		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The apparatus consisted of a 50 cm ³ bulb extended at the top as a graduated tube, and sealed at the bottom to a capillary U-tube. The liquid was saturated with gas at atmospheric pressure. The gas was displaced from the saturated solu- tion by a current of dry CO ₂ free air, absorbed in water, and titrated with a solution of NaOH. The solubility, c/mol dm ⁻³ , was	 Hydrogen chloride. Prepared by dropping pure concentrated hydrochloric acid into pure sulfuric acid. Alkanes. Good specimens were dried over calcium chloride, and distilled. Boiling points are given in paper. 		
by dividing by the ideal gas con- centration of HCl in the gas phase.	ESTIMATED ERROR: $\delta T/K = 0.01$ $\delta c/c = 0.01$		
The mole fraction solubility was calculated on the assumption that the density of the solution obeys the ideal mixture law.	REFERENCES :		
	L		

					NAL MEASUREME	NTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>				O'Brien, S. J.; Kenny, C. L.		
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]			J. 118	Am. Chem. 9 - 1192.	50c. <u>1940</u> , 62,	
VARIABLES:				PREPA	RED BY:	······
T/K: 298.15 P/kPa: 2.09 - 10.87 (15.7 - 81.5 mmHg)			ънд)			Gerrard
EXPERIMENTAL VALUES:						
т/к	Pressure	Molality	Henry		Mol Ratio	Mol Fraction
	p1/mmHg	ml/mol kg ⁻¹	Const k ¹		n1/n2	<i>x</i> 1
298.15	15.7 28.3 49.2 81.5	0.0042 0.0073 0.0111 0.020	4.9 5.1 5.8 5.4		0.000362 0.000629 0.000956 0.00172	0.000629 0.000956
	(760		5.3			0.0160) ²
2						
		AU	XILIARY	INFORM	1ATION	
METHOD /APP	ARATUS / PROCED		XILIARY			OF MATERIALS.
The meth Saylor (<i>al</i> . (2). use of a 7 day eq The appa which ar solvent the gas, the lower	 as modiling The main of the main of the	DURE: aratus are th fied by O'Bri difference is y instead of	ose of en <i>et</i> the a 5 to ulbs he with to	SOURC (1) (2)	E AND PURITY Hydrogen o chemically chloride a by phospho Hexane. Ea Attested 1 n ²⁰ 1.37	OF MATERIALS: chloride. Prepared from y pure potassium and sulfuric acid. Drie orus pentoxide. astman Kodak Co. by refractive index, 41.
The meth Saylor (<i>al</i> . (2). use of a 7 day eq The appa which ar solvent the gas, the lowe partiall and the thermost	od and app 1) as modi The main of 1 to 2 day uilibration ratus cons e separate is partial and the se r bulb. The y evacuated whole appar at from 1	DURE: aratus are th fied by O'Bri difference is y instead of n time. ists of two b d by a tap. T ly saturated olution added e bulbs are d, the tap op ratus put in	ose of en <i>et</i> the a 5 to ulbs he with to ened, a	SOURC (1) (2)	E AND PURITY Hydrogen o chemically chloride a by phospho Hexane. Ea Attested 1 n ² 0 1.374	chloride. Prepared from y pure potassium and sulfuric acid. Drie orus pentoxide. astman Kodak Co. by refractive index,

COMPONENTS:			ORIGINAL MEASU	REMENTS :	
(1) Hydrod [7647-	gen chloride -01-0]	; HC1;			onov, A. B.; ichuk, A. M.
(2) Hexane	(2) Hexane; C ₆ H ₁₄ ;[110-54-3]				53, 2915 - 6.
			Russ. J. P 1667 - 8.	hys. Chem.	<u>1979</u> , 53,
VARIABLES:		· · · · · · · · · · · · · · · · · · ·	PREPARED BY:		
	/к: 298.15			H. L. Cl	ever
P/R	Pa: 9.626 - (0.095	- 1,00 atm)			
EXPERIMENTAL					
т/к	Gas Phase HCl Mol % ¹	Order of Ma Measurement	ol Fraction ² x1	Standard Error	Confidence Interval
298.15	9.5	2	0.00027	0.001	±0.001
230.13	22.1	6	0.00175	0.001	±0.004
	24.2	8	0.00208	0.005	±0.009
	35.5	9	0.0032	0.012	±0.02
	47.8	3	0.00252	0.002 0.004	±0.003 ±0.006
	56.7 74.1	5 7	0.00445 0.01018	0.004	±0.008
	76.3	10	0.0103	0.006	±0.01
	76.6	4	0.0089	0.029	±0.05
	88.0	12	0.01045	0.009	±0.019
	97.1	11	0.01099 0.0112	0.003 0.0024	±0.006 ±0.01
	100.0	1	0.0112	0.0024	10.01
		AUXILIARY	INFORMATION		
METHOD /APPAR	TUS /PROCEDURE	•	SOURCE AND PUL	RITY OF MATE	RTALS.
					11.00
The hydro through a hydrocarb	thermostate	e was bubbled ed layer of the	No informa	ation.	
times, wa and the a	ere removed shed with di queous extra	at specified	1		
with 0.1	N sodium hyd	istilled water, act titrated			
Saturatio 2 to 3 mo	N sodium hyd n was confi re samples a	istilled water, act titrated droxide. rmed by taking after the time			
Saturatio 2 to 3 mo	N sodium hyd n was confi	istilled water, act titrated droxide. rmed by taking after the time	ESTIMATED ERR	OR:	
Saturatio 2 to 3 mo concentra The measu	N sodium hyd n was confi: re samples a tion curve i	istilled water, act titrated droxide. rmed by taking after the time leveled. e made in the	See table	above for rd error a	authors values nd confidence
Saturatio 2 to 3 mo concentra The measu random or	N sodium hyd n was confin re samples a tion curve i rements were	istilled water, act titrated droxide. rmed by taking after the time leveled. e made in the	See table of standa	above for rd error a	authors values nd confidence
Saturatio 2 to 3 mo concentra The measu random or	N sodium hyd n was confin re samples a tion curve i rements were	istilled water, act titrated droxide. rmed by taking after the time leveled. e made in the	See table of standa interval.	above for rd error a	authors values nd confidence
Saturatio 2 to 3 mo concentra The measu random or	N sodium hyd n was confin re samples a tion curve i rements were	istilled water, act titrated droxide. rmed by taking after the time leveled. e made in the	See table of standa interval.	above for rd error a	authors values nd confidence
Saturatio 2 to 3 mo concentra The measu random or	N sodium hyd n was confin re samples a tion curve i rements were	istilled water, act titrated droxide. rmed by taking after the time leveled. e made in the	See table of standa interval.	above for rd error a	authors values nd confidence
Saturatio 2 to 3 mo concentra The measu random or	N sodium hyd n was confin re samples a tion curve i rements were	istilled water, act titrated droxide. rmed by taking after the time leveled. e made in the	See table of standa interval.	above for rd error a	authors values nd confidence
Saturatio 2 to 3 mo concentra The measu random or	N sodium hyd n was confin re samples a tion curve i rements were	istilled water, act titrated droxide. rmed by taking after the time leveled. e made in the	See table of standa interval.	above for rd error a	authors values nd confidence

Hydrogen Chloride in Non-Aqueous Solvents

	Noll-Aqueous Solvents
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Ryabov, V. G.; Solomonov, A. B.; Ketov, A. N.; Bugaichuk, A. M.
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	Zh. Fiz. Khim. <u>1979</u> , 53, 2915 - 6.
	Russ. J. Phys. Chem. <u>1979</u> , 53, 1667 - 8.
VARIABLES: T/K: 283.15 - 323.15 P/kPa: 101.325 (1 atm)	PREPARED BY: H. L. Clever
EXPERIMENTAL VALUES:	
т/к Мс	ol Fraction #1
283.15 293.15 298.15 303.15 313.15 323.15	0.0112 ± 0.0001 0.01060 0.00789
The standard deviation was	results on a computer to $3.143/(t + 50) - 9055.09/(t + 50)^2$ 3.0.029 mole per cent, and the per cent) ² . In the equation the
temperature is t/ºC.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The hydrogen chloride was bubbled through a thermostated layer of the hydrocarbon. Samples were removed at specified	No information.
times, washed with distilled water, and the aqueous extract titrated with 0.1 N sodium hydroxide.	
Saturation was confirmed by taking 2 to 3 more samples after the	
time concentration curve leveled.	ESTIMATED ERROR:
	REFERENCES :

COMPONENTS :			1	ODICTN	T MEACHIDELE	PC .	
	en chlorid	le: HCl:			L MEASUREMENT		
(1) Hydrog [7647-							
(2) Heptan	e; C _{7^H16} ;	[142-82-5]		J. Am. Chem. Soc. <u>1952</u> , 74, 3570 - 3582.			
VARIABLES:	/K: 194.6			PREPARI	D BY:		
T P/k	Pa: 3.921	4 - 9.503 1 - 71.28 m	nmHg)			Gerrard	
EXPERIMENTAL	VALUES:						
Т/К	Pressure p ₁ /mmHg		um Mixtu n ₂ /mm		1 Fraction	Henry's Constan K/mmHg = p_1/x_1	t
194.64		0.217	32.5		0.00662	4443	
194.04	29.41 55.30	0.402			0.01219	4443	
	71.28	0.520	32.5	7	0.01571	4537	
						4520 ¹ (5.947 atm)
to calc maximum	ulate valu recorded	es of mole	fractio	n for	pressures o	sed indiscriminat greater than the	егу
mixture							
		A	AUXILIARY	INFORMA	TION		
ME THOD / APPAR	RATUS / PROCEDU		AUXILIARY		ATION AND PURITY O	F MATERIALS:	
y means of	f high pre	JRE: cision high	n vacuum	SOURCE (1) H	AND PURITY O ydrogen chl	oride. Not stat	ed,
y means of quipment a he pressu:	f high pre and proced re of the	JRE: cision high ure the cha gas phase d	n vacuum ange of lue to	SOURCE (1) H b	AND PURITY O ydrogen chl		ed,
by means of equipment a the pressu bsorption	f high pre and proced re of the	JRE: cision high ure the cha	n vacuum ange of lue to	SOURCE (1) H b q	AND PURITY O ydrogen chl ut may be t uality.	oride. Not stat aken as of high	
y means of equipment a the pressu bsorption 94.64 K.	f high pre and proced re of the was accur	JRE: cision high ure the cha gas phase d ately measu	n vacuum ange of due to ured at	SOURCE (1) H b q (2) H o	AND PURITY O ydrogen chl ut may be t uality. eptane. Th f high qual	oride. Not stat taken as of high horoughly atteste tity. Values of	d as the
by means of equipment a be pressu- bsorption 94.64 K. The mole find the lique	f high pre and proced re of the was accur raction of uid phase	JRE: cision high ure the cha gas phase d ately measu hydrogen c was calcula	n vacuum ange of due to ured at chloride ated.	SOURCE (1) H b q (2) H o b	AND PURITY O ydrogen chl ut may be t uality. eptane. Th f high qual oiling poir	oride. Not stat aken as of high horoughly atteste	d as the
by means of equipment a be pressu- bsorption 94.64 K. The mole f: n the liquite the solubi	f high pre and proced re of the was accur raction of uid phase lity was f	JRE: cision high ure the cha gas phase d ately measu hydrogen c was calcula inally expr	n vacuum ange of lue to ired at chloride ated. ressed	SOURCE (1) H b q (2) H o b	AND PURITY O ydrogen chl ut may be t uality. eptane. Th f high qual oiling poir	oride. Not stat taken as of high horoughly atteste tity. Values of ht and refractive	d as the
y means or quipment he pressu bsorption 94.64 K. The mole fin the liqu the solubits the Hen	f high pre and proced re of the was accur raction of uid phase lity was f	JRE: cision high ure the cha gas phase d ately measu hydrogen c was calcula inally expr ant, K/mmHg	n vacuum ange of lue to ired at chloride ated. ressed	SOURCE (1) H b q (2) H o b	AND PURITY O ydrogen chl ut may be t uality. eptane. Th f high qual oiling poir	oride. Not stat taken as of high horoughly atteste tity. Values of ht and refractive	d as the
by means of equipment a the pressure bsorption 94.64 K. The mole fr the solubit the solubit the Henry pressure/mon	f high pre- and proced re of the was accur raction of uid phase lity was f ry's const ole fraction nstant is	JRE: cision high ure the cha gas phase d ately measu hydrogen c was calcula inally expr ant, K/mmHg	n vacuum ange of due to ured at chloride ated. ressed g = HCl	SOURCE (1) H b q (2) H o b i	AND PURITY O ydrogen chl ut may be t uality. eptane. Th f high qual oiling poir	oride. Not stat taken as of high horoughly atteste tity. Values of ht and refractive	d as the
By means of equipment a the pressu absorption 94.64 K. The mole find the solubit is the Hent pressure/mo fenry's con funmerical may deviate	f high pre- and proced re of the was accur raction of uid phase lity was f ry's const ole fraction nstant is ly) at which e widely f	JRE: cision high ure the cha gas phase d ately measu hydrogen c was calcula inally expr ant, K/mmHg on. the pressur	n vacuum ange of due to ured at chloride ated. ressed g = HCl re and it ported	SOURCE (1) H b q (2) H o b i	AND PURITY O ydrogen chl ut may be t uality. eptane. Th f high qual oiling poir ndex are in	oride. Not stat taken as of high horoughly atteste tity. Values of ht and refractive	d as the
By means of equipment a the pressu absorption 194.64 K. The mole find the solubit as the lique the solubit as the Hent pressure/me thenry's con (numerical) may deviate value of plate the vapor p	f high pre- and proced re of the was accur raction of uid phase lity was f ry's const. ole fraction nstant is ly) at which e widely f 1 = 1.43 a	JRE: cision high ure the cha gas phase d ately measu hydrogen c was calcula inally expr ant, K/mmHg on. the pressur ch $x_1 = 1$, rom the rep tm (1087 mm f pure liqu	n vacuum ange of lue to ired at chloride ated. ressed g = HCl re and it ported nHg),	SOURCE (1) H b q (2) H o b i	AND PURITY O ydrogen chl ut may be t uality. eptane. Th f high qual oiling poir ndex are in	oride. Not stat taken as of high horoughly atteste tity. Values of ht and refractive	d as the
By means of equipment a the pressu absorption 194.64 K. The mole find the solubit as the lique the solubit oressure/me lenry's con (numerical) may deviate value of p the vapor p	f high pre- and proced re of the was accur raction of uid phase lity was f ry's const. ole fraction nstant is ly) at which e widely f 1 = 1.43 accursts	JRE: cision high ure the cha gas phase d ately measu hydrogen c was calcula inally expr ant, K/mmHg on. the pressur ch $x_1 = 1$, rom the rep tm (1087 mm f pure liqu	n vacuum ange of lue to ired at chloride ated. ressed g = HCl re and it ported nHg),	SOURCE (1) H b q (2) H o b i	AND PURITY O ydrogen chl ut may be t uality. eptane. Th f high qual oiling poir ndex are in	oride. Not stat taken as of high horoughly atteste tity. Values of ht and refractive	d as the
By means of equipment a the pressu absorption 194.64 K. The mole find the solubit as the lique the solubit as the Hent pressure/me thenry's con (numerical) may deviate value of plate the vapor p	f high pre- and proced re of the was accur raction of uid phase lity was f ry's const. ole fraction nstant is ly) at which e widely f 1 = 1.43 accursts	JRE: cision high ure the cha gas phase d ately measu hydrogen c was calcula inally expr ant, K/mmHg on. the pressur ch $x_1 = 1$, rom the rep tm (1087 mm f pure liqu	n vacuum ange of lue to ired at chloride ated. ressed g = HCl re and it ported nHg),	SOURCE (1) H b q (2) H o b i i	AND PURITY O ydrogen chl ut may be t uality. eptane. Th f high qual oiling poir ndex are in	oride. Not stat taken as of high horoughly atteste tity. Values of ht and refractive	d as the
By means of equipment a the pressu absorption 194.64 K. The mole find the solubit as the lique the solubit oressure/me tenry's con (numerical) may deviate value of p the vapor p	f high pre- and proced re of the was accur raction of uid phase lity was f ry's const. ole fraction nstant is ly) at which e widely f 1 = 1.43 accursts	JRE: cision high ure the cha gas phase d ately measu hydrogen c was calcula inally expr ant, K/mmHg on. the pressur ch $x_1 = 1$, rom the rep tm (1087 mm f pure liqu	n vacuum ange of lue to ired at chloride ated. ressed g = HCl re and it ported nHg),	SOURCE (1) H b q (2) H o b i i	AND PURITY O ydrogen chl ut may be t uality. eptane. Th f high qual oiling poir ndex are in	oride. Not stat taken as of high horoughly atteste tity. Values of ht and refractive	d as the
By means of equipment a the pressu absorption 194.64 K. The mole find the solubit as the lique the solubit as the Hent pressure/me thenry's con (numerical) may deviate value of plate the vapor p	f high pre- and proced re of the was accur raction of uid phase lity was f ry's const. ole fraction nstant is ly) at which e widely f 1 = 1.43 accursts	JRE: cision high ure the cha gas phase d ately measu hydrogen c was calcula inally expr ant, K/mmHg on. the pressur ch $x_1 = 1$, rom the rep tm (1087 mm f pure liqu	n vacuum ange of lue to ired at chloride ated. ressed g = HCl re and it ported nHg),	SOURCE (1) H b q (2) H o b i i	AND PURITY O ydrogen chl ut may be t uality. eptane. Th f high qual oiling poir ndex are in	oride. Not stat taken as of high horoughly atteste tity. Values of ht and refractive	d as the

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Strohmeir, W.; Echte, A. Z. Elektrochem. <u>1957</u> , 61, 549-555.
(2) Heptane; C ₇ H ₁₆ ; [142-82-5]	
VARIABLES: T/K: 200.8 - 272.9 p ₁ /mmHg: 8.3 - 358.8	PREPARED BY: W. Gerrard
EXPERIMENTAL VALUES:	
T/K 200.8 209.6 220	0.3 230.8 241.6 258.4 272.9
Mole Fraction x ₁	p ₁ /mmHg
0.001651 8.3 10.8 1 0.003677 18.9 24.8 3 0.005000 25.9 33.9 4 0.007823 40.8 53.3 7 0.011646 60.5 79.3 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0.002983 0.004964 0.006764 0.009337 0.011088 0.014766	42.2 56.6 71.0 71.4 94.8 119.0 98.9 130.1 162.6 137.1 181.0 223.9 162.8 215.0 267.9 219.3 288.6 358.8
Henry's constant for $x_1 + 0$ Henry's constant: H/mmHg = (at 272.9 K was given as 24,000 mmHg. $p_1/mmHg)/x_1$.
AUXILIA	Y INFORMATION
METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature wa increased and the corresponding pressure of the gas phase measured.	
	ESTIMATED ERROR:
	REFERENCES: 1. Brown, H. C.; Brady, J. C. J. Am. Chem. Soc. <u>1952</u> , 74, 3570.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
(2) Decane; C ₁₀ H ₂₂ ; [124-18-5]	J. Appl. Chem. <u>1959</u> , 9, 89 - 93.
VARIABLES:	PREPARED BY:
T/K: 264.15 - 319.15	W. Gerrard
Total P/kPc: 101.325 (1 atm)	
	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Ratio	Mol Fraction
· · · · · · · · · · · · · · · · · · ·	
ⁿ HCl/ ⁿ C ₁₀ H ₂₂	^x HCl
264.15 0.0617	0.0581
267.15 0.0575	0.0544
273.15 0.0496	0.0473
273.35 0.0490	0.0467
279.15 0.0440 283.15 0.0429	0.0421 0.0411
288.35 0.0348	0.0336
293.95 0.0332	0.0321
298.15 0.0307	0.0298
306.65 0.0253	0.0247
	0.0216
The mole fraction values were calcula	ted by the compiler.
Smoothed Data: $\ln x_{HCl} = -8.716 + 15$.491/(T/100)
HCI Standard error about	regression line = 1.03×10^{-3}
Standard erfor about	
T/K Ma	ol Fraction
	^x HC1
263.15 273.15	0.0591
273.15	0.0476 0.0390
293.15	0.0323
303.15	0.0272
313.15	0.0231
323.15	0.0198
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solvent was weighed in a bubbler	(1) Hydrogen chloride. Good specimen
tube. The amount of gas absorbed was	
determined by reweighing to constant weight. The total pressure was	dried.
barometric, very nearly 1 atm.	(2) Decane. Carefully purified,
For determination at temperatures	and purity rigorously attested.
below 273 K, a chemical titration was	
Carried out. After the maximum	
absorption at the stated temperature,	
the bubbler tube was attached to a	
flask containing 1 dm ³ of water, and allowed to warm slowly (12 hours) to	
room temperature. The contents of	ESTIMATED ERROR:
the bubbler tube were then added to	
the water, and the total chloride ion	$\delta T/K = 2 < 273 K$ $\delta x/x = 0.025$
was determined by the Volhard method.	
A low temperature, Teddington-type YM	
thermostat was used for temperatures below 273 K, the control being within	REFERENCES:
+ 2 K.	
-	
ļ	

COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Tremper, K. L.; Prausnitz, J. M.	
(2) Hexadecane; C ₁₆ H ₃₄ ; [544-76-3]	J. Chem. Eng. Data <u>1976</u> , 21, 295 - 299.	
VARIABLES :	PREPARED BY:	
T/K = 300 - 475 $p_{1}/kPa < 133.3$ (1000 mmHg)	W. Gerrard	
EXPERIMENTAL VALUES:		
T/K Partial Mola Entropy of S $\Delta \overline{s}_1/cal K^-$	olution	
300 -4.06	45.0	
325 -5.06	54.3	
350 -5.14 375 -4.81	65.8 78.3	
400 -4.22	90.7	
425 -3.47	102.0	
450 -2.52	111.0	
475 -1.61	116.	
Henry's constant was defined as $H_{1,2}/\text{atm} = \lim_{x_1 \to 0} (f_1/\text{atm})/x_1$		
where f_1 is the fugacity of the gas; the numeral 2 indicates the hexadecane.		
The partial nolar entropy of solu		
$\Delta \overline{s}_{1} \equiv \overline{s}_{1}^{L}(T, x_{1} = 1/H_{1,2}) - \overline{s}_{pure 1}^{G}(T, f_{1} = 1 \text{ atm}) = -R(d \ln H_{1,2})/d\ln T$		
The partial molar enthalpy of solution is related by		
$\Delta \overline{n}_1 = T \Delta \overline{\sigma}_1.$		
The compiler states that caution should be exercized in using the expression $1/$ "Henry's constant" to calculate the mole fraction, x_1 , for 1 atm.		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
A known amount of gas is added from a precision gas buret to a known amount of the hexadecane. Only the temperature and pressure need be measured to specify the system completely (1).	Not specified; but may be deemed of acceptable purity.	
The experimental pressures were not stated. They were described as being low; "total pressures were always less than 1000 mmHg and usually much less."	ESTIMATED ERROR:	
The authors state that Henry's law was checked in some experiments, however, there is no definite state-	$\delta x_1/x_1 = \pm 0.01$	
ment that Henry's law was checked for	REFERENCES :	
HCl. Note compiler's caution below the table.	<pre>I. Cukor, P. M.; Prausnitz, J. M. Ind. Eng. Chem. Fundam. <u>1971</u>, 10, 638.</pre>	

COMPONENTS:	EVALUATOR:
 Hydrogen Chlorid [7647-01-0] 	e; HCl; Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2. Organic Solvents	Polytechnic of North London, Holloway, London, N7 8DB, U.K.
3. Heptane; C _{7H16} ;	[142-82-5] January 1989

CRITICAL EVALUATION:

The Solubility of Hydrogen Chloride in Mixtures of Heptane with Other Solvents.

Strohmeir & Echte (1) measured the solubility of hydrogen chloride in heptane at partial pressures from 1.1 kPa (8.3 mmHg) to 47.8 kPa (359 mmHg) in the temperature range 200.8 K to 272.9 K. Mixed solvents were prepared which, in most cases, consisted of 0.020 mole of heptane and 0.001 mole of a second solvent. The dioxane-heptane mixture under test however, consisted of 0.040 mole of heptane with 0.001 mole of dioxane. Solubility of hydrogen chloride was measured in each of the mixed solvents at 272.9 K and, in most cases, at other temperatures in the range 200.8 K to 272.9 K, over pressure ranges below barometric pressure. The variation of mole fraction solubility with partial pressure of hydrogen chloride deviates increasingly from linearity the greater the solubility of the gas in the mixed solvent.

The authors have calculated limiting values of Henry's constant, $k_{\rm H}$, for dissolution hydrogen chloride in the mixtures at 272.9 K from the variation of mole fraction solubility with pressure. These constants are defined by the relationship:

$$k_{\rm H}/{\rm mmHg} = \lim_{x_{\rm HCl} \neq 0} (P_{\rm HCl}/x_{\rm HCl})$$

The evaluator has estimated mole fraction solubilities of hydrogen chloride in the mixtures for a temperature of 272.9 K and a partial pressure of 101.3 kPa. It has been assumed that the variation of partial pressure of hydrogen chloride with concentration in the solution can be represented by a Margules equation of the form :

$$P_{HCl} = P_{HCl}^{\circ} x_{HCl} \exp(\alpha(1-x_{HCl})^2)$$

The contribution of the heptane to the dissolution of the hydrogen chloride under these conditions has then been estimated. It has been assumed that this is given by the solubility of the gas in pure heptane multiplied by the mole fraction of heptane in the original mixed solvent i.e. 20/21 in most cases. The contribution of the second solvent in a mixture has been taken to be the difference between the total solubility and the contribution of the heptane. This has then been used to estimate the solubility of hydrogen chloride per mole of the second solvent and hence the apparent mole fraction solubility in this second solvent. Values are listed below.

For many of these second solvents there are independent values of mole fraction solubility at 273.15 K and a partial pressure of 101.3 kPa. These values are also listed below.

COMPONENTS.	EVALUATOR:	
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Peter G. T. Fogg Department of Applied Chemistry	
2. Organic Solvents	and Life Sciences, Polytechnic of North London, Holloway, London, N7 8DB, U.K.	
3. Heptane; C ₇ H ₁₆ ; [142-82-5]	January 1989	
CRITICAL EVALUATION.		
Solvent	Mixed solvent Pure solvent	
	x _{HCl (272.9 K)} x _{HCl (273.15 K)} x _{HCl (273.15 K)}	
(Heptane)	(0.032) 0.032 (1)	
1,1'-Oxybisethane 1,1'-Oxybispropane	0.556 0.543 (2) 0.502 (0.529)+	
1,1'-Oxybisbutane	0.502 0.515 (3)	
1,1'-0xybis[2-chloroethane]	0.235 0.229 (3)	
Methoxybenzene 1,1'-Oxybisbenzene	0.199 0.195 (3) 0.175 0.105 (3)	
1,1'-[Oxybis(methylene)]bisbenzene	0.413 -	
Tetrahydrofuran	0.633 0.624 (3)	
1,4-Dioxane	0.610 0.548 (3)	
Tetrahydro-2H-pyran	0.552 - 0.381 (0.397)¶(5)	
1,1'-Thiobisethane Nitrobenzene	0.381 (0.397)¶(5) 0.198 0.123 (4)	
1-Methyl-2-nitrobenzene	(0.193) $(0.129)*(6)$	
Tetrachloromethane	0.017 0.022 §	
Nitric acid, ethyl ester (ethyl nitrate) 0.092 -		
<pre>† mean of values for 1,1'-oxybisethane and 1,1'-oxybisbutane</pre>		
<pre>¶ value for 1,1'-thiobispropane</pre>		
* estimated from the value at 298.15 K from measurements by O'Brien & Kenny on the assumption that the temperature coefficient of solubility at this temperature is the same as that for nitrobenzene		
§ see page 236		
Agreement is good, except in the case of nitrobenzene, 1-methyl-2- nitrobenzene and 1,1'-oxybisbenzene.		
Brown & Brady (7) studied the solubility of hydrogen chloride in mixtures of heptane or methylbenzene with another solvent. In this case, however, the maximum partial pressure of hydrogen chloride was 9.67 kPa and extrapolation of solubilities to a partial pressure of 101.3 kPa is not justified. (see pages 38-40, 70-72)		
REFERENCES		
1. Strohmeir, W.; Echte, A. Z. E.	lektrochem. 1957, 61, 549-555.	
 Kapoor, K. P.; Luckcock, R. G. Biotech. <u>1971</u>, 21, 97-100. 	; Sandbach, J. A. J. Appl. Chem.	
3. Gerrard, W.; Macklen, E. D. J.	. Appl. Chem. <u>1960</u> , 10, 57-62.	
4. Ahmed, W.; Gerrard, W.; Maladka 109-119.	ar, V. K. J. Appl. Chem. <u>1970</u> , 20,	
5. Frazer, M. J.; Gerrard, W. Nat	ture, <u>1964</u> , 204, 1299-1300.	
6. O'Brien, S. J.; Kenny, C. L.	J. Am. Chem. Soc. <u>1940</u> , 62, 1189-1192.	
7. Brown, H. C.; Brady, J. D. J.	Am. Chem. Soc. <u>1952</u> , 74,3570-3582.	

22

nyurogon omorido m	Non-Aqueous Solvents 23
COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Strohmeir, W.; Echte, A.
(2) 1,1'-Oxybisethane or diethyl ether; $C_4H_{10}O$; [60-29-7]	Z. Elektrochem. <u>1957</u> , 61, 549-555.
(3) Heptane; $C_{7^{H}16}$; [142-82-5]	
VARIABLES:	PREPARED BY:
T/K: 200.8 - 272.9 P ₁ /mmHg: 0.1 - 479.6	W. Gerrard
EXPERIMENTAL VALUES:	
T/K 200.8 209.6 220.3	230.8 241.6 258.4 272.9
Mole Fraction	p ₁ /mmHg
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.5 14.2 33.5 70.9 8.7 20.3 49.2 101.5 12.7 27.5 66.1 137.3 9.19.7 36.5 92.9 176.1 8.27.9 53.1 122.3 221.7 8.40.2 73.4 158.7 278.4 58.0 97.7 200.7 334.0 7.81.5 127.8 253.1 405.6 113.0 166.7 312.9 479.6 272.9 K was given as 4000 mmHg. pmponent (2) + 0.020 mole of ch measurement.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding pressure of the gas phase measured.	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Diethyl ether. Treated with Na-K alloy. (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy. ESTIMATED ERROR: REFERENCES: 1. Brown, H. C.; Brady, J. C. J. Am. Chem. Soc. <u>1952</u>, 74, 3570.</pre>

COMPONENTS: (1) Hydrogen chloride; HCl;	ORIGINAL MEASUREMENTS: Strohmeir, W.; Echte, A.
[7647-01-0] (2) 1,1'-Oxybispropane or dipropyl ether; C ₆ H ₁₄ O; [111-43-3]	2. Elektrochem. <u>1957</u> , 61, 549-555.
(3) Heptane; C ₇ H ₁₆ ; [142-82-5]	
VARIABLES: T/K: 200.8 - 272.9	PREPARED BY:
$p_1/\text{mmHg}: 0.25 - 556.0$	W. Gerrard
EXPERIMENTAL VALUES:	
Т/К 200.8 209.6 220.3	3 230.8 241.6 258.4 272.9
Wala	n (mmlig
Mole Fraction x ₁	p ₁ /mmHg
0.005 0.25 0.5 1.2	2 2.1 5.3 15.8 27.0
0.010 0.4 1.0 2.0	5 5.4 11.7 29.3 58.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0.025 1.4 3.7 8.	
0.030 2.1 5.2 12. 0.035 3.4 7.8 18.2	5 26.9 56.8 123.9 222.3 2 38.5 76.6 159.8 276.8
0.035 3.4 7.8 18.2 0.040 5.7 12.5 27.0	
0.045 10.5 20.6 39.	7 72.9 130.3 245.7 404.0
0.050 18.1 31.3 57. 0.055 28.0 46.0 77.	
component (3) (heptane) for eac Henry's constant: H/mmHg = (p	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding pressure of the gas phase measured.	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken

COMPONENTS: OBLIGNAL HEASUREMENTS: (1) Hydrogen chloride; HC1; (7647-01-0] (2) 1,1'-Oxybisbutane or dibutyl ether; $C_{g}H_{16}0$; (142-96-1] OBLIGNAL HEASUREMENTS: (2) 1,1'-Oxybisbutane or dibutyl ether; $C_{g}H_{16}0$; (142-96-1] DELOMMENT, W.; Echte, A. (3) Heptane; $C_{r}H_{16}$; (142-82-5) PREPARED BY: VARIABLES: $p_{f}/mmlig$: 0.25 - 556.0 PREPARED BY: W. Gerrard T/K 200.8<209.6<220.3 230.8 241.6 258.4 272.9 Noie Fraction $p_{f}/mmlig$ $p_{2.5}$ $p_{1.7}/mmlig$ $p_{2.6}$ $p_{2.7}$ 0.010 0.4 1.0 2.6 5.4 1.7 29.3 58.1 0.010 0.4 1.0 2.6 5.4 1.7 29.3 58.1 0.020 0.9 2.5 6.1 11.5 29.4 69.1 150.7 0.025 1.4 3.7 15.4 21.2 22.2 22.2 23.5 76.6 159.8 23.6 27.6 159.6 23.5 24.5 76.6 159.6 27.6 169.6 236.0 <th></th> <th>25</th>		25
(2) 1,1'-Oxybisbutane or dibuty1 ether: $C_{gH_{16}0}^{(1)}$ (142-92-5) 2. Elektrochem. <u>1957</u> , 61, 549 - 555. VARIABLES: T/K: 200.8 - 272.9 $p_{j}/mmlig$: 0.25 - 556.0 PREPARED BY: W. Gerrard EXPERIMENTAL VALUES: T/K: 200.8 209.6 220.3 230.8 241.6 256.4 272.9 Wole Fraction $p_{j}/mmlig$ $\frac{z_{j}}{0.005}$ 0.25 0.5 1.2 0.015 0.625 0.5 1.2 2.1 0.020 0.9 2.5 6.1 13.5 29.4 0.030 2.1 5.2 12.5 26.9 56.8 12.9 22.3 0.045 0.5 2.0 38.5 76.6 159.6 36.9 36.9 0.035 1.8.1 31.3 57.3 97.3 164.4 297.0 474.0 0.055 28.0 46.0 77.8 127.5 208.6 349.0 556.0 Henry's constant for $x_{j} + 0$ at 272.9 K was given as 5200 mmlig. The solvent is 0.001 mole of component (2) + 0.020 mole of component (3) (heptane) for each measurement. 10.14 Hydrogen chloride. Not sportade but may be taken as of good quality. as of good quality. 11 Hydrogen chloride. Not sportade but may be taken as of good quality.	(1) Hydrogen chloride; HCl;	Strohmeir, W.; Echte, A.
VARIABLES: T/K: 200.8 - 272.9 $p_{j}/mmlig: 0.25 - 556.0$ PREPARED BY: W. Gerrard EXPERIMENTAL VALUES: T/K 200.8 209.6 220.3 230.8 241.6 258.4 272.9 Mole $p_{j}/mmlig$ Fraction $p_{j}/mmlig$ $\frac{x_{j}}{0.005}$ 0.25 0.5 1.2 2.1 5.3 15.8 27.0 0.005 0.25 0.5 1.2 2.1 5.3 15.8 27.0 0.005 0.25 0.5 1.2 2.1 5.3 15.8 27.0 0.010 0.4 1.0 2.6 5.4 11.7 29.3 58.1 0.025 0.5 1.2 2.1 5.3 12.7 9.3 47.9 92.1 0.025 0.6 1.7 8.7 19.1 41.2 93.7 174.2 $6.633.7$ 72.9 10.3 245.7 464.0 $66.139.7$ 72.9 10.3 245.7 404.0 0.655 28.0 46.0 77.8 127.5 208.6 349.0 556.0 Henry's constant for $x_{1} + 0$ at 272.9 K	(2) 1,1'-Oxybisbutane or dibutyl	2. Elektrochem. <u>1957</u> , 61, 549 - 555 .
T/K: 200.8 - 272.9 W. Gerrard EXPERIMENTAL VALUES: T/K 200.8 209.6 220.3 230.8 241.6 258.4 272.9 Mole T/K 200.8 209.6 220.3 230.8 241.6 258.4 272.9 Mole T/K 200.8 209.6 220.3 230.8 241.6 258.4 272.9 Mole T_1 T/K 200.8 209.6 220.3 230.8 241.6 258.4 272.9 Mole T_1 T/K 200.8 209.6 220.3 230.8 241.6 258.4 272.9 Mole T/K 200.8 209.6 220.3 230.8 241.6 258.4 272.9 38.1 30.7 39.1 30.1 30.7 30.2 30.2 1.1 7.7 12.5 26.9 56.8 123.9 222.3 30.03 24.1 59.8 276.8 30.6.9 30.6.9 30.6.9 30.6.9 30.6.9 30.6.9 30.6.9 30.6.9 30.6.9 30.6.9 30.6.9 30.5.0 56.0	(3) Heptane; C ₇ H ₁₆ ; [142-82-5]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T/K: 200.8 - 272.9	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EXPERIMENTAL VALUES:	
Fraction $\frac{x_1}{0.005}$ 0.010 0.4 1.0 2.6 5.4 11.7 29.3 58.1 0.010 0.4 1.0 2.6 5.4 11.7 29.3 58.1 0.010 0.4 1.0 2.6 5.4 11.7 29.3 58.1 0.010 0.4 3.7 8.7 19.1 41.2 93.7 174.2 0.025 1.4 3.7 8.7 19.1 41.2 93.7 174.2 0.035 3.4 7.8 18.2 38.5 76.6 159.6 276.8 0.045 10.5 20.6 39.7 72.9 130.3 245.7 404.0 0.055 28.0 46.0 77.8 127.5 208.6 349.0 556.0 Henry's constant for $x_1 + 0$ at 272.9 K was given as 5200 mmHg. The solvent is 0.001 mole of component (2) + 0.020 mole of component (3) (heptane) for each measurement. Henry's constant: H/mmHg = ($p_1/mmHg)/x_1$ MUNILIARY INFORMATION MUNILIARY INFORMATION </td <td></td> <td>230.8 241.6 258.4 272.9</td>		230.8 241.6 258.4 272.9
$0.005 \ 0.25 \ 0.5 \ 1.2 \ 2.1 \ 5.3 \ 15.8 \ 27.0 \ 0.010 \ 0.4 \ 1.0 \ 2.6 \ 5.4 \ 11.7 \ 29.3 \ 58.1 \ 0.010 \ 0.4 \ 1.0 \ 2.6 \ 5.4 \ 11.7 \ 29.3 \ 58.1 \ 0.010 \ 0.4 \ 1.0 \ 2.6 \ 5.4 \ 11.7 \ 29.3 \ 58.1 \ 0.020 \ 0.9 \ 2.5 \ 6.1 \ 13.5 \ 29.4 \ 69.1 \ 130.7 \ 0.025 \ 1.4 \ 3.7 \ 8.7 \ 19.1 \ 41.2 \ 93.7 \ 174.2 \ 0.307 \ 2.5 \ 20.5 \ 26.9 \ 56.8 \ 123.9 \ 92.1 \ 30.7 \ 174.2 \ 0.330 \ 2.1 \ 5.2 \ 12.5 \ 26.9 \ 56.8 \ 123.9 \ 222.3 \ 0.035 \ 3.4 \ 7.8 \ 16.2 \ 38.5 \ 76.6 \ 159.8 \ 276.8 \ 0.0400 \ 5.7 \ 12.5 \ 27.0 \ 54.0 \ 101.6 \ 198.0 \ 336.9 \ 0.045 \ 10.5 \ 20.6 \ 39.7 \ 72.9 \ 130.3 \ 245.7 \ 404.0 \ 0.055 \ 18.1 \ 31.3 \ 57.3 \ 97.3 \ 164.4 \ 297.0 \ 474.0 \ 0.055 \ 28.0 \ 46.0 \ 77.8 \ 127.5 \ 208.6 \ 349.0 \ 556.0 \ 0.055 \ 28.0 \ 46.0 \ 77.8 \ 127.5 \ 208.6 \ 349.0 \ 556.0 \ 0.055 \ 28.0 \ 46.0 \ 77.8 \ 127.5 \ 208.6 \ 349.0 \ 556.0 \ 0.055 \ 28.0 \ 46.0 \ 77.8 \ 127.5 \ 208.6 \ 349.0 \ 556.0 \ 0.055 \ 28.0 \ 46.0 \ 77.8 \ 127.5 \ 208.6 \ 349.0 \ 556.0 \ 0.055 \ 28.0 \ 46.0 \ 77.8 \ 127.5 \ 208.6 \ 349.0 \ 556.0 \ 0.055 \ 28.0 \ 46.0 \ 77.8 \ 127.5 \ 208.6 \ 349.0 \ 556.0 \ 0.056 $	Fraction	p ₁ /mmHg
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding pressure of the gas phase measured. (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Dibutyl ether. Treated with KOH, distilled, and treated with Na-K alloy. (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy. ESTIMATED ERROR: REFERENCES:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.4 11.7 29.3 58.1 8.9 19.3 47.9 92.1 13.5 29.4 69.1 130.7 19.1 41.2 93.7 174.2 26.9 56.8 123.9 222.3 38.5 76.6 159.8 276.8 54.0 101.6 198.0 336.9 72.9 130.3 245.7 404.0 97.3 164.4 297.0 474.0 127.5 208.6 349.0 556.0 272.9 K was given as 5200 mmHg. mponent (2) + 0.020 mole of th measurement.
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding pressure of the gas phase measured. (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Dibutyl ether. Treated with KOH, distilled, and treated with Na-K alloy. (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy. ESTIMATED ERROR: REFERENCES:	AUXILIARY	INFORMATION
J. Am. Chem. Soc. <u>1952</u> , 74, 3570.	METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Dibutyl ether. Treated with KOH, distilled, and treated with Na-K alloy. (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy. ESTIMATED ERROR: REFERENCES: 1. Brown, H. C.; Brady, J. C.</pre>

	•
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Strohmeir, W.; Echte, A.
<pre>(2) 1,1'-Oxybis[2-chloroethane] or 2,2'-dichloroethyl ether; C₄H₈Cl₂O; [111-44-4]</pre>	2. Elektrochem. <u>1957</u> , 61, 549 - 555.
(3) Heptane; C ₇ H ₁₆ ; [142-82-5]	
VARIABLES:	PREPARED BY:
T/K: 258.4, 272.9 P_{j} /mmHg: 16.2 - 562.0	W. Gerrard
EXPERIMENTAL VALUES:	
T/K Pressur	e Mol
p ₁ /mmHc	Fraction x_1
258.4 76.2	
139.4	
198.2 256.5	
319.1	0.02766
387.4	0.03234
272.9 109.6	0 00613
272.9 109.6	
290.7	0.01689
373.1	
480.0	
· <u>····································</u>	
Henry's constant for $x_1 \rightarrow 0$ at 272.9	K was given as 17,300 mmHg.
1	
The solvent is 0.001 mole of componen (3) (heptane) for each measurement.	$c(2) \neq 0.020$ more of component
Henry's constant: $H/mmHg = (p_1/mmHg)$	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;
The same in principle as the high	(1) Hydrogen chloride. Not
vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	specified; but may be taken as of good quality.
pressure of the gas phase measured.	<pre>(2) 1,1'-Oxybis[2-chloroethane]. Distilled in a vacuum.</pre>
	(3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy.
	ESTIMATED ERROR:
	REFERENCES ;
	1. Brown, H. C.; Brady, J. C. J. Am. Chem. Soc. <u>1952</u> , 74, 3570.
1	1

COMPONENTS:(1) Hydrogen chloride; HCl; $[7647-01-0]$ ORIGINAL MEASUREMENTS:(2) Methoxybenzene or methyl phenyl ether or anisole; C_7H_8O ; $[100-66-3]$ Strohmeir, W.; Echte, A.(3) Heptane; C_7H_{16} ; $[142-82-5]$ Z. Elektrochem. 1957, 61, 549-5VARIABLES: T/K: 209.6 - 272.9PREPARED BY:	55.
(2) Methoxybenzene or methyl phenyl ether or anisole; C_7H_8O ; [100-66-3] (3) Heptane; C_7H_{16} ; [142-82-5] VARIABLES: T/Y: 209.6 - 272.9	55.
(3) Heptane; C_7H_{16} ; [142-82-5] VARIABLES: T/K: 209.6 - 272.9	
π/r , 209 6 - 272 9	
т/к: 209.6 - 272.9	
$p_1/mmHg: 12.8 - 635.0$ W. Gerrard	
EXPERIMENTAL VALUES:	
T/K 209.6 220.3 230.8 241.6 258.4 272.9	
Mole $p_1/mmHg$ Fraction x_1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
The solvent is 0.001 mole of component (2) + 0.020 mole of component (3) (heptane) for each measurement. Henry's constant: $H/mmHg = (p_1/mmHg)/x_1$	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:	
The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding pressure of the gas phase measured. (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Methoxybenzene. Dried with CaCl ₂ , distilled, and treat	1
with Na-K alloy.	
(3) Heptane. Purified as for optical measurements. Drie over sodium-potassium alloy	
ESTIMATED ERROR:	
REFERENCES :	
1. Brown, H. C.; Brady, J. C. J. Am. Chem. Soc. <u>1952</u> , 74,	3570.

ORIGINAL MEASUREMENTS: Strohmeir, W.; Echte, A.
2. Elektrochem. <u>1957</u> , 61, 549 - 555.
PREPARED BY: W. Gerrard
are Mol
$\frac{\text{Fraction}}{\frac{x_1}{2}}$
5 0.00454 3 0.01120 8 0.01727 6 0.02348
0 0.00454 7 0.01120 4 0.01727 7 0.02348
K was given as 21,100 mmHg.
nt (2) + 0.020 mole of component
INFORMATION
SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality.
(2) Diphenyl ether. Distilled in a vacuum.
(3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy.
ESTIMATED ERROR:
REFERENCES :
<pre>1. Brown, H. C.; Brady, J. C. J. Am. Chem. Soc. 1952, 74, 3570.</pre>

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Strohmeir, W.; Echte, A.
<pre>(2) 1,1'-[Oxybis(methylene)] bisbenzene or dibenzyl ether; C₁₄H₁₄O; [103-50-4]</pre>	2. Elektrochem. <u>1957</u> , 61, 549 - 555.
(3) Heptane; C ₇ H ₁₆ ; [142-82-5]	
VARIABLES:	PREPARED BY:
T/K: 258.4, 272.9 p ₁ /mmHg: 36.9 - 534.5	W. Gerrard
EXPERIMENTAL VALUES:	***************************************
T/I: Pres	sure Mol
<u> </u>	$\frac{1}{2}$
	6.9 0.00610
	5.2 0.01243 5.7 0.01813
	2.6 0.02491
	1.4 0.03102
-	1.1 0.03783 1.5 0.04335
272.9 6	3.3 0.00610
	1.9 0.01243
	7.3 0.01813 8.8 0.02491
	1.8 0.03102
	4.9 0.03783
53	4.5 0.04335
Henry's constant: $H/mmHg = (p_1/mmHg)$	/ x ₁
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	COUNCE AND DUDITY OF MATERIALC.
The same in principle as the high vacuum technique of Brown and Brady	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality.
(1), except that the temperature was increased and the corresponding pressure of the gas phase measured.	 (2) Dibenzyl ether. Dried with CaCl₂, distilled, treated with
	Na-K alloy.
	(3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy.
	ESTIMATED ERROR:
	REFERENCES :
	<pre>1. Brown, H. C.; Brady, J. C. J. Am. Chem. Soc. <u>1952</u>, 74, 3570.</pre>
1	

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Strohmeir, W.; Echte, A.
(2) Tetrahydrofuran; $C_4 H_8 O;$ (109-99-9]	2. Elektrochem. 1957, 61, 549-555.
(3) Heptane; C ₇ H ₁₆ ; [142-82-5]	
VARIABLES:	PREPARED BY:
T/K: 200.8 - 272.9 P_1 /mmHg: 0.0 - 371.8	W. Gerrard
EXPERIMENTAL VALUES:	
T/K 200.8 209.6 220.3	230.8 241.6 258.4 272.9
Mole	p,/mmHg
Fraction	- <u>1</u> , J
<u> </u>	
0.005 0.0 0.1 0.1	0.8 1.9 5.1 11.7
0.010 0.0 0.3 0.3 0.015 0.1 0.5 0.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.6 9.0 24.4 57.9
0.030 0.4 1.3 3.3	8.2 20.3 52.3 108.1 12.1 29.1 72.1 144.6
0.035 0.5 1.8 4.9 0.040 0.7 2.7 7.3	12.1 29.1 72.1 144.6 18.4 43.0 99.3 188.2
0.045 2.0 4.4 12.0	28.0 62.0 133.6 239.3 44.4 88.3 176.3 297.3
0.050 5.1 7.9 19.4	44.4 88.3 176.3 297.3
0.055 10.7 17.2 28.9	66.2 127.8 228.1 371.8
Henry's constant for $x_1 + 0$ a The solvent is 0.001 mole of component (3) (Heptane) for e Henry's constant: H/mmHg = (ach measurement.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality.
(1), except that the temperature was increased and the corresponding	(2) Tetrahydrofuran. Treated with
pressure of the gas phase measured.	KOH, distilled, and treated with Na-K alloy.
	(3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy.
	ESTIMATED ERROR:
	REFERENCES :
	1. Brown, H. C.; Brady, J. C. J. Am. Chem. Soc. <u>1952</u> , 74, 3570.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Strohmeir, W.; Echte, A.
(2) Dioxane; C ₄ H ₈ O ₂ ; [123-91-1]	2. Elektrochem. <u>1957</u> , 61, 549 - 555.
(3) Heptane; C ₇ H ₁₆ ; [142-82-5]	
VARIABLES :	PREPARED BY:
T/K: 230.8 - 272.9 p_1 /mmHg: 5.0 - 716.0	W. Gerrard
EXPERIMENTAL VALUES:	
т/к 230.8	241.6 258.4 272.9
Mole p ₁ /mmHg	
Fraction	
<u> </u>	
0.005 5.0 0.010 10.6	9.6 21.3 39.0 20.7 45.5 85.0
0.015 17.7	35.9 76.7 136.0
0.020 28.1	54.0 112.0 189.5
0.025 41.7	78.6 152.6 252.5
0.030	110.0 202.5 320.5
0.035 0.040	141.8 257.3 400.0 177.9 315.4 488.5
0.045	222.4 377.5 558.5
0.050	270.8 441.5 637.0
0.055	320.0 506.0 716.0
The solvent is 0.001 m mole of component (3) Henry's constant: H/m	whole of component (2) + 0.040 (heptane) for each measurement. $mHg = (p_1/mmHg)/x_1$
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was	(1) Hydrogen chloride. Not specified; but may be taken as of good quality.
increased and the corresponding	(2) Dioxane. Treated with KOH,
pressure of the gas phase measured.	distilled, and treated with Na-K alloy.
	(3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy.
	ESTIMATED ERROR:
	REFERENCES :
	1. Brown, H. C.; Brady, J. C. J. Am. Chem. Soc. <u>1952</u> , 74, 3570.

		·					·······
COMPONENTS :				ORIGINAL	MEASUREMENT	S:	
(1) Hydrod [7647-		ide; HCl;			eir, W.;		540 555
(2) Tetrah [142-6	nydro-2#-1 68-7]	pyran; C ₅	H ₁₀ 0;	2. Ele	ktrocnem.	<u>1957</u> ,67,	549 - 555.
(3) Heptar	ne, C7 ^H 16	: [142-82	-5]				
VARIABLES:				PREPARED	BY:		
	r/K: 200.8 nHg: 0.0				W. Ge	rrard	
EXPERIMENTAL	VALUES:						
Т/К	200.8	209.6	220.3	230.8	241.6	258.4	272.9
Mole Fraction				r ₁ /mmHg			
x 1							
0.005	0.0	0.3	0.7 1.2	1.3		6.7 14.1	13.3 29.9
0.010 0.015	0.1	0.0	1.2	4.1	8.7	22.6	48.9
0.020	0.3	0.9 1.2	2.8	5.8	13.1	34.8	73.0
0.025	0.4		3.8	8.4	18.6	48.8	
0.030	0.5	1.5	5.3 7.9	12.0 17.8	26.9 39.1	66.6 90.5	134.6 171.6
0.035 0.040	0.8 1.7		12.4	27.5	57.3	122.9	
0.045	~ •	8.5 -	20.1	46.1	80.0	161.3	277.8
0.050	3.4 8.0	16.2		64.3		209.6 270.2	343.3 403.8
0.055	16.7	27.4	48.6	92.1	138.5	270.2	403.8
The solve (3) (hept	ent 1s 0. tane) for	001 mole each mea	0 at 272.9 of compone surement. = (p ₁ /mmHc	ent (2)	+ 0.020	mole of c	component
			AUXILIARY	INFORMATIO	ол С		
METHOD/APPAR	ATUS/PROCED	URE:		SOURCE AN	D PURITY OF	MATERIALS	
The same : vacuum teo	chnique o	f Brown a	e high nd Brady ature was	but	lrogen chl may be t llity.	oride. No aken as c	ot specified; of good
increased pressure	and the	correspon	ding	(2) Tet KOH	rahydro-2	H-pyran. .ed, treat	Treated with ed with Na-
				(3) Her mea	otane. Pur	. Dried d	for optical over sodium-
				ESTIMATEI	ERROR:		
				REFERENCE	ES :		
					vn, H. C.; Am. Chem.		J. C. 2, 74, 3570.

COMPORENTS: (1) Hydrogen chloride; HCl; (1) Hydrogen chloride; HCl; (2) $1, 1'-Fhiobisethane or diethyl sulfide; C_4H_10^5; (352-93-2) (3) Heptane; C_7H_{6}; (142-82-5) VARIARESS: T/K: 200.8 - 272.9 p_j/mmHg: 1.4 - 544.4EXPERIMENTAL VALUES:T/K 200.8 209.6 220.3 230.8 241.6 258.4 272.9MoleFraction\frac{z_j}{0.00555} 1.4 3.0 6.3 12.0 22.4 44.9 74.70.010654 2.6 5.4 11.0 21.1 39.3 70.0 126.70.02655 1.4 3.0 6.3 12.0 22.4 44.9 74.70.01055 2.6 5.4 11.0 21.1 39.3 70.0 126.70.02659 3.5 16.7 35.7 64.5 111.1 207.7 324.60.03399 11.7 22.9 44.3 79.9 137.3 250.3 389.10.04131 21.6 39.1 74.2 129.9 210.9 365.8 544.4Henry's constant for x_j + 0 at 272.9 K was given as 11,400 mmHg.The solvent is 0.001 mole of component (2) + 0.020 mole ofcomponent (3) (heptane) for each measurement.Henry's constant: H/mmHg = (p_j/mmHg)/x_j(1) Mydrogen chloride. Notspecified; but may be takenincreased and the correspondingpressure of the gas phase measure.HETHENCES:1. Brown, H. C.; Brady, J. C.J. Am. Chem. Soc. 1952, 74, 3570.$		
$\frac{1}{5647-01-01}$ (2) 1,1'-Thiobisethane or disthyl sulfide; C ₄ H ₁₀ S; (352-93-2) (3) Hoptane; C ₇ H ₁₆ ; (142-82-5) VARIABLES: T/K: 200.8 - 272.9 p ₁ /mmlig: 1.4 - 544.4 EXPERIMENTAL VALUES: T/K 200.8 209.6 220.3 230.8 241.6 258.4 272.9 Mole Fraction T/K 200.8 209.6 220.3 230.8 241.6 258.4 272.9 Mole Fraction Mole Fraction Mole Fraction Mole Fraction Mole Fraction Mole Fraction Mole Fraction Mole Mole Fraction Mole Mole Fraction Mole Mole Mole Fraction Mole Mole Fraction Mole M	COMPONENTS :	ORIGINAL MEASUREMENTS:
(2) 1.1 - THIODISECTATE OF LIGENCY 1 sulfise: $C_{1}^{H}(_{16}; (142-82-5)]$ (3) Heptane: $C_{7}H_{16}; (142-82-5)$ VARIABLES: T/K: 200.8 - 272.9 p_{1} /mmHg: 1.4 - 544.4 EXPERIMENTAL VALUES: T/K: 200.8 209.6 220.3 230.8 241.6 258.4 272.9 Noie p_{2} /mmHg: 1.4 - 544.4 Praction $\frac{\pi_{1}}{0.00655}$ 0.00655 1.4 0.01085 2.6 0.01085 2.6 0.01085 2.6 0.01085 2.6 0.02075 6.0 0.02075 6.0 0.0339 11.7 0.0339 11.7 0.0311 21.6 0.0311 21.6 0.04131 21.6 0.04131 21.6 0.04131 21.6 0.04131 21.6 1.7 7.4 Merny's constant for $x_1 + 0$ at 272.9 K was given as 11,400 mmHg. The solvent is 0.001 mole of component (2) + 0.020 mole of component (2) (1) Hydrocin chi citals. Not specified childs. Not specified childs		
VARIABLES: T/K: 200.8 - 272.9 $p_1/mmHg$: 1.4 - 544.4 PREPARED BY: W. Gerrard EXPERIMENTAL VALUES: T/K 200.8 209.6 220.3 230.8 241.6 258.4 272.9 Mole T/K 200.8 209.6 220.3 230.8 241.6 258.4 272.9 Mole T/K 200.8 209.6 220.3 230.8 241.6 258.4 272.9 0.01085 2.6 5.4 11.0 0.02075 6.0 12.5 24.7 47.2 0.03399 11.7 21.9 44.3 79.9 137.3 250.3 389.1 0.03396 15.9 30.0 58.6 102.1 175.6 309.7 470.3 0.04131 21.6 39.1 74.2 129.9 210.9 365.8 544.4 Henry's constant for $x_1 \div 0$ at 272.9 K was given as 11,400 mmHg. The solvent is 0.001 mole of component (2) + 0.020 mole of component (3) (heptane) for each measurement. Henry's constant: H/mmHg = ($p_1/mmHg$)/ x_1 AUXILLARY INFORMATION METHOD/APPARATUS/PROCEDURE: The same in principle as the high (1) Hydrogen chlori	<pre>(2) 1,1'-Thiobisethane or diethyl sulfide; C4H10S; [352-93-2]</pre>	2. Elektrochem. <u>1957</u> , 61, 549-555.
T/K: 200.8 - 272.9 $p_{1}/mmHg$: 1.4 - 544.4 EXPERIMENTAL VALUES: T/K 200.8 209.6 220.3 230.8 241.6 258.4 272.9 Nole Fraction $\frac{x_{1}}{0.00655 \ 1.4 \ 3.0 \ 6.3 \ 12.0 \ 22.4 \ 44.9 \ 74.7 \ 0.01085 \ 2.6 \ 5.4 \ 11.0 \ 21.1 \ 39.3 \ 70.0 \ 126.7 \ 0.01054 \ 4.3 \ 8.5 \ 18.2 \ 35.8 \ 64.5 \ 123.2 \ 200.8 \ 0.02075 \ 6.0 \ 12.5 \ 24.7 \ 47.2 \ 85.1 \ 159.1 \ 252.2 \ 0.02593 \ 8.5 \ 16.7 \ 35.7 \ 64.5 \ 111.1 \ 207.7 \ 324.6 \ 0.03039 \ 11.7 \ 21.9 \ 44.3 \ 79.9 \ 137.3 \ 250.3 \ 389.1 \ 0.03596 \ 15.9 \ 30.0 \ 58.6 \ 102.1 \ 175.6 \ 309.7 \ 470.3 \ 0.04131 \ 21.6 \ 35.1 \ 74.2 \ 129.9 \ 210.9 \ 35.8 \ 54.4 \ 44.4 \ 44.4 \ 472.9 \ 470.3 \ 0.04131 \ 21.6 \ 33.1 \ 74.2 \ 129.9 \ 210.9 \ 35.8 \ 54.4 \ 44$	(3) Heptane; C ₇ H ₁₆ ; [142-82-5]	
p_{1} /mmilg: 1.4 - 544.4 W. Gerfald EXPERIMENTAL VALUES: T/K 200.8 209.6 220.3 230.8 241.6 258.4 272.9 Nole p_{1} /mmHg Praction p_{1} /mmHg $\frac{x_{1}}{0.00655 1.4 3.0 6.3}$ 12.0 22.4 44.9 74.7 0.01654 4.3 8.5 18.2 35.8 64.5 123.2 200.8 0.02075 6.0 12.5 24.7 47.2 85.1 159.1 252.2 0.8 0.03596 15.9 30.0 58.6 102.1 175.6 309.7 470.3 0.03596 15.9 30.0 58.6 102.1 175.6 309.7 470.3 0.04131 21.6 39.1 74.2 129.9 210.9 365.8 544.4 Henry's constant for $x_{1} + 0$ at 272.9 K was given as 11,400 mmHg. The solvent is 0.001 mole of component (2) + 0.020 mole of component (3) (heptane) for each measurement. Henry's constant: H/mmHg = (p_{1} /mmHg)/ x_{1} Source AND PURITY OF MATERIALS: (1), except that the temperature was increased and the corresponding pressure of the gas phase measured. (2) Diethyl sulfide. Treated with H90, P205, and distilled. (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy. ESTIMATED ERKOR: EETERENCES: 1. Brown, H. C.; Brady, J. C.	VARIABLES:	PREPARED BY:
T/K 200.8 209.6 220.3 230.8 241.6 258.4 272.9 Mole Fraction x_1 $p_1/mmHg$ $p_1/mmHg$ $p_1/mmHg$ $p_2/mmHg$ 0.00655 1.4 3.0 6.3 12.0 22.4 44.9 74.7 0.01085 2.6 5.4 11.0 21.1 39.3 70.0 126.7 0.02075 6.0 1.25 24.7 47.2 85.1 159.1 22.22 0.02075 6.0 1.25 24.7 47.2 85.1 159.1 252.2 0.03039 11.7 21.9 44.3 79.9 137.3 250.3 389.1 0.04131 21.6 39.1 74.2 129.9 210.9 365.8 544.4 Henry's constant for $x_1 \rightarrow 0$ at 272.9 K was given as 11,400 mmHg. The same in principle as the high vacuum technique of Brown and Brady (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (1) Hydrogen chloride. Treated		W. Gerrard
Mole Fraction $p_1/mmHg$ $\frac{x_1}{0.00655}$ $\frac{1.4}{3.0}$ $\frac{6.3}{6.3}$ $\frac{12.0}{22.4}$ $\frac{21.4}{44.9}$ $\frac{74.7}{74.7}$ 0.01085 2.6 5.4 11.0 21.1 39.3 70.0 126.7 0.01085 2.6 5.4 11.0 21.1 39.3 70.0 126.7 0.02075 6.0 12.5 24.7 47.2 85.1 159.1 $22.22.2$ 0.02075 6.0 12.5 24.7 47.2 85.1 159.1 $22.22.2$ 0.02075 6.0 12.5 24.7 47.2 85.1 159.1 $22.22.2$ 0.03391 11.7 21.9 85.6 102.1 175.6 309.7 470.3 0.04131 21.6 39.1 74.2 129.9 210.9 365.8 544.4 Henry's constant for $x_1 + 0$ at 272.9 K was given as 11.400 mmHg. The solvent is 0.001 mole of component $(2) + 0.020$ mole of MULLIARY INFORMATION METHOD/APPARATUS/PROCEDURE: <td>EXPERIMENTAL VALUES:</td> <td></td>	EXPERIMENTAL VALUES:	
Auxiliary Source And Pressure of the gas phase measured. x_1 x_1 0.00655 1.4 3.0 6.3 12.0 22.4 44.9 74.7 0.01654 4.3 8.5 18.2 35.8 64.5 123.2 200.8 0.02075 6.0 12.5 24.7 47.2 85.1 159.1 252.2 0.02593 8.5 16.7 35.7 64.5 111.1 207.7 324.6 0.03399 11.7 21.9 44.3 79.9 137.3 250.3 389.1 0.04131 21.6 39.1 74.2 129.9 210.9 365.8 544.4 Henry's constant for $x_1 + 0$ at 272.9 K was given as 11,400 mmHg. The solvent is 0.001 mole of component (2) + 0.020 mole of component (3) (heptane) for each measurement. Henry's constant: H/mmHg = $(p_1/mmHg)/x_1$ AUXILIARY INFORMATION METHOD/APPARATUS/FROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding Source AND PURITY OF MATERIALS: (1)	T/K 200.8 209.6 220.3	230.8 241.6 258.4 272.9
$\frac{1}{0.00655 \ 1.4 \ 3.0 \ 6.3 \ 12.0 \ 22.4 \ 44.9 \ 74.7 \ 0.01085 \ 2.6 \ 5.4 \ 11.0 \ 21.1 \ 39.3 \ 70.0 \ 126.7 \ 0.01654 \ 4.3 \ 8.5 \ 18.2 \ 35.8 \ 64.5 \ 123.2 \ 200.8 \ 0.02075 \ 6.0 \ 12.5 \ 24.7 \ 47.2 \ 85.1 \ 159.1 \ 252.2 \ 0.02593 \ 8.5 \ 16.7 \ 35.7 \ 64.5 \ 11.1 \ 207.7 \ 324.6 \ 0.03039 \ 11.7 \ 21.9 \ 44.3 \ 79.9 \ 137.3 \ 250.3 \ 389.1 \ 0.03596 \ 15.9 \ 30.0 \ 56.6 \ 102.1 \ 175.6 \ 309.7 \ 470.3 \ 0.04131 \ 21.6 \ 39.1 \ 74.2 \ 129.9 \ 210.9 \ 365.8 \ 544.4 \ 44.4$	Fraction	p ₁ /mmHg
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0.00655 1.4 3.0 6.3 0.01085 2.6 5.4 11.0 0.01654 4.3 8.5 18.2	21.1 39.3 70.0 126.7 35.8 64.5 123.2 200.8
The solvent is 0.001 mole of component (2) + 0.020 mole of component (3) (heptane) for each measurement. Henry's constant: $H/mmHg = (p_1/mmHg)/x_1$ AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding pressure of the gas phase measured. (2) Diethyl sulfide. Treated with HgO, P_2O_5 , and distilled. (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy. ESTIMATED ERROR: REFERENCES: 1. Brown, H. C.; Brady, J. C.	0.03039 11.7 21.9 44.3 0.03596 15.9 30.0 58.6	79.9 137.3 250.3 389.1 102.1 175.6 309.7 470.3
 METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding pressure of the gas phase measured. SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Diethyl sulfide. Treated with HgO, P₂O₅, and distilled. (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy. ESTIMATED ERROR: 		
 The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding pressure of the gas phase measured. (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Diethyl sulfide. Treated with HgO, P2O5, and distilled. (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy. ESTIMATED ERROR: 	AUXILIARY	INFORMATION
	METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	 SOURCE AND PURITY OF MATERIALS: Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Diethyl sulfide. Treated with HgO, P2O5, and distilled. (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy. ESTIMATED ERROR: REFERENCES: Brown, H. C.; Brady, J. C.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Hydrogen chloride; HCl;	Strohmeir, W.; Echte, A.
[7647-01-0] (2) Nitrobenzene; C ₆ H ₅ NO ₂ ; [98-95-3]	2. Elektrochem. <u>1957</u> , 61, 549 - 555.
(3) Heptane; C ₇ H ₁₆ ; [142-82-5]	
VARIABLES: T/K: 272.9	PREPARED BY:
p_1/mmHg : 76.2 - 549.7	W. Gerrard
EXPERIMENTAL VALUES:	
T/K Pressur	e Mol
P ₁ /mmHe	Fraction

272.9 76.2	
203.6	
284.2	0.01580
375.4	
460.6 549.7	
549.7	0.02955
Henry's constant for $x_1 \neq 0$ at 272.9	K was given as 18,300 mmHg.
The solvent is 0.001 mole of componer (3) (heptane) for each measurement.	
Henry's constant: $H/mmHg = (p_1/mmHg)$	/x ₁
Henry's constant: H/mmHg = (p ₁ /mmHg)	/x ₁
Henry's constant: H/mmHg = (p ₁ /mmHg)	/x ₁
Henry's constant: H/mmHg = (p ₁ /mmHg)	/x ₁
Henry's constant: H/mmHg = (p ₁ /mmHg)	/x ₁
Henry's constant: H/mmHg = (p ₁ /mmHg)	/x ₁
Henry's constant: H/mmHg = (p ₁ /mmHg)	/x ₁
Henry's constant: H/mmHg = (p ₁ /mmHg)	/x ₁
Henry's constant: H/mmHg = (p ₁ /mmHg)	/x ₁
AUXILIARY	INFORMATION
AUXILIARY METHOD/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS:
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was	INFORMATION SOURCE AND PURITY OF MATERIALS:
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality.
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Nitrobenzene. Dried with
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Nitrobenzene. Dried with CaCl₂, and distilled, in a</pre>
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Nitrobenzene. Dried with CaCl₂, and distilled, in a vacuum.</pre>
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Nitrobenzene. Dried with CaCl₂, and distilled, in a vacuum. (3) Heptane. Purified as for</pre>
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Nitrobenzene. Dried with CaCl₂, and distilled, in a vacuum. (3) Heptane. Purified as for optical measurements. Dried</pre>
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Nitrobenzene. Dried with CaCl₂, and distilled, in a vacuum. (3) Heptane. Purified as for</pre>
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Nitrobenzene. Dried with CaCl₂, and distilled, in a vacuum. (3) Heptane. Purified as for optical measurements. Dried</pre>
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Nitrobenzene. Dried with CaCl₂, and distilled, in a vacuum. (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy.</pre>
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Nitrobenzene. Dried with CaCl₂, and distilled, in a vacuum. (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy.</pre>
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Nitrobenzene. Dried with CaCl₂, and distilled, in a vacuum. (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy. ESTIMATED ERROR:</pre>
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Nitrobenzene. Dried with CaCl₂, and distilled, in a vacuum. (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy.</pre>
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Nitrobenzene. Dried with CaCl₂, and distilled, in a vacuum. (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy. ESTIMATED ERROR: REFERENCES:</pre>
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Nitrobenzene. Dried with CaCl₂, and distilled, in a vacuum. (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy. ESTIMATED ERROR:</pre>
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Nitrobenzene. Dried with CaCl₂, and distilled, in a vacuum. (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy. ESTIMATED ERROR: REFERENCES: 1. Brown, H. C.; Brady, J. C.</pre>
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Nitrobenzene. Dried with CaCl₂, and distilled, in a vacuum. (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy. ESTIMATED ERROR: REFERENCES: 1. Brown, H. C.; Brady, J. C.</pre>
AUXILIARY METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Nitrobenzene. Dried with CaCl₂, and distilled, in a vacuum. (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy. ESTIMATED ERROR: REFERENCES: 1. Brown, H. C.; Brady, J. C.</pre>

Hydrogen Chloride in l	Non-Aqueous Solvents 35
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Strohmeir, W.; Echte, A.
<pre>(2) 1-Methyl-2-nitrobenzene or</pre>	2. Elektrochem. <u>1957</u> , 61, 549 - 555.
(3) Heptane; C ₇ H ₁₆ ; [142-82-5]	
VARIABLES:	PREPARED BY:
T/K: 258.4, 272.9 p ₁ /mmHg: 39.0 - 522.6	W. Gerrard
EXPERIMENTAL VALUES:	
T/K Pressur	e Mol
n /mmH	Fraction
$p_1/mmHq$	$\frac{x_1}{1}$
258.4 39.0 90.6	
149.4	
211.6	
261.1	
319.1	
378.0	0.02801
272.9 53.1	0.00293
125.3	
207.4	
294.7 361.9	
442.6	
522.6	0.02801
The solvent is 0.001 mole of componen (3) (heptane) for each measurement. Henry's constant: $H/mmHg = (p_1/mmHg)$	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The same in principle as the high vacuum technique of Brown and Brady	(1) Hydrogen chloride. Not specified; but may be taken as of good quality.
(1), except that the temperature was increased and the corresponding	(2) o-nitrotoluene. Dried with
pressure of the gas phase measured.	CaCl ₂ and distilled in a vacuum.
	(3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy.
	ESTIMATED ERROR:
	REFERENCES:
	 Brown, H. C.; Brady, J. C. J. Am. Chem. Soc. <u>1952</u>, 74, 3570.

So Hydrogen enionde in r	ton Aqueeus contents
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Strohmeir, W.; Echte, A.
(2) Tetrachloromethane or carbon tetrachloride; CCl ₄ ; [56-23-5]	2. Elektrochem. <u>1957</u> , 61, 549-555.
(3) Heptane; C ₇ H ₁₆ ; [142-82-5]	
VARIABLES:	PREPARED BY:
T/K: 200.8 - 272.9	W. Gerrard
p ₁ /mmHg: 22.3 - 498.4	
EXPERIMENTAL VALUES:	
T/K 200.8 209.6 220.3	230.8 241.6 258.4 272.9
Mole	p ₁ /mmHg
Fraction	1
<u> </u>	
0.00430 22.3 28.8 39.0	50.9 63.7 84.8 105.4
0.00831 42.9 56.1 75.3 0.01160 60.0 78.0 105.2	96.8 124.6 163.8 203.3
	135.3 174.1 229.5 287.1 193.7 249.2 328.9 407.7
0.01663 85.4 110.4 150.5 0.02016 103.7 134.6 181.5	193.7 249.2 328.9 407.7 234.4 300.7 399.3 498.4
AUXILIARY	INFORMATION
ME THOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was	 (1) Hydrogen chloride. Not specified; but may be taken as of good quality.
increased and the corresponding pressure of the gas phase measured.	(2) Carbon Tetrachloride. Dried with P ₂ O ₅ .
	 (3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy.
1	ESTIMATED ERROR:
	DITIONED LANDA.
	REFERENCES: 1. Brown, H. C.; Brady, J. C. J. Am. Chem. Soc. <u>1952</u> , 74, 3570.

,	37
COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Strohmeir, W.; Echte, A.
<pre>(2) Nitric acid ethyl ester or ethyl nitrate; C₂H₅NO₃; [625-58-1]</pre>	2. Elektrochem. <u>1957</u> , 61, 549-555.
(3) Heptane; C ₇ H ₁₆ ; [142-82-5]	
VARIABLES: T/K: 200.8 - 272.9 p ₁ /mmHg: 13.7 - 659.0	PREPARED BY: W. Gerrard
EXPERIMENTAL VALUES:	
T/K 200.8 209.6 220.3	230.8 241.6 258.4 272.9
Mole Fraction x_1	p ₁ /mmHg
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80.7108.3151.0196.591.8125.3172.9233.9123.3165.9230.3298.0157.4211.4291.7376.8212.4285.5394.7507.3
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The same in principle as the high vacuum technique of Brown and Brady (1), except that the temperature was increased and the corresponding pressure of the gas phase measured.	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not specified; but may be taken as of good quality. (2) Ethyl nitrate. Not stated.</pre>
pressure of the gas phase measured.	(3) Heptane. Purified as for optical measurements. Dried over sodium-potassium alloy.
	ESTIMATED ERROR:
	REFERENCES: 1. Brown, H. C.; Brady, J. C. J. Am. Chem. Soc. <u>1952</u> , 74, 3570.

COMPONENTS: (1) Hydrogen Ch	loride: HC	·]•	1	NAL MEASURI	EMENTS: rady, J. D.	
 Hydrogen Chloride; HCl; [7647-01-0] Hydrocarbons and halogenated hydrocarbons Heptane; C₇H₁₆; [142-82-5] 			J. Am		z. <u>1952</u> , 74	
VARIABLES:	· · ·		PREPA	RED BY:		······
T/K: 194.6 P ₁ /kPa: 1. (s		6		W. Gerrard	3	
EXPERIMENTAL VAL Temperature = 19						
Component (2)	P/mmHg	-	orium mi			Henry's Constant
		n ₁ /mmol 1	2 ^{/mmol}	n ₃ /mmol	<i>*</i> 1	K/mmHg
Benzene; C ₆ H ₆ ; [71-43-2]	35.10 47.40 72.50	0.461	0.629 1.629 1.629	32.57 32.57 32.57	0.00996 0.01330 0.02070	3524 3564 3502 3500 ¹
Methylbenzene; C [108-88-3]	-Ho;				(4	.605 atm)
[108-88-3]	' 31.45 49.05 61.10	0.538	.629 .629 .629	32.57 32.57 32.57	0.00993 0.01549 0.01916	3167 3167 3189 3170 ¹
		0.320	2.500 2.500 2.500	32.62 ² 32.582 ² 32.59 ²	0.00397 0.00904 0.01369	.171 atm) 2783 2801 2795 2790 ¹ .671 atm)
 ¹ The authors' value. The plot of pressure vs. mole fraction was read as linear. The Henry's constant value should not be used indiscriminately to calculate values of mole fraction for pressures greater than the maximum recorded above. ² Values calculated by the compiler. These experiments were carried out at a constant 2.5 mmol of component 2 in sufficient heptane to make a total volume of 4.803 cm³ of solution. 				minately the ied out		
The compiler calculated the values of Henry's constant for the mixtures.				mixtures.		
		AUXILIARY	INFORMA	TION	·	
METHOD/APPARATUS	/PROCEDURE	:	SOURC	E AND PURIT	TY OF MATER	IALS:
vacuum equipment change of the pr	By means of high precision high vacuum equipment and procedure the change of the pressure of the gas phase due to absorption was accurately measured at 194.64 K. The mole fraction of hydrogen chloride in the liquid phase was calculated. The solubility was finally expressed as the Henry's constant, K/mmHg = HCl pressure/mole fraction, p_1/x_1 .				nloride. N taken as o	
accurately measu The mole fractio				high qualit boıling poi	ly attested ty. Values ints and re given in	of the fractive
calculated. The finally expresse constant, K/mmHg				ATED ERROR:		
Henry's constant (numerically) at it may deviate w reported value o (1087 mmHg), th of pure liquid h 194.64 K.	which x_1 idely from f $p_1^\circ = 1.4$ e vapor	= 1, and the 3 atm pressure	REFER	ENCES:		

COMPONENTS: (1) Hydrogen Chl [7647-01-0] (2) Hydrocarbons hydrocarbons	and halo	genated	Brown J. Am	NAL MEASURE , H. C.; Bi . Chem. Soc - 3582.	rady, J. D.	
(3) Heptane; C ₇ H ₁₆ ; [142-82-5]						
EXPERIMENTAL VALU Temperature = 194						
Component (2)	P/mmHg		ibrium mi		Mole Fraction	Henry's Constant
		n ₁ /mmol	ⁿ 2 ^{/mmol}	n ₃ /mmol	×1	K/mmHg
Ethylbenzene;						
C ₈ H ₁₀ ; [100-41-4]	12.22	0.167	2.500	32.642	0.00473	2584
	24.80 40.42	0.328 0.537	2.500 2.500	32.59 ² 32.60 ²	0.00926 0.01507	2678 2682
	10.42	0.337	2.300	52.00		2680¹
1,3-Dimethylbenze	ene;				(.	3.526 atm)
C ₈ H ₁₀ ; [108-38-3]	25.00	0.300	1.629	32.57	0.00869	2877
	39.99 45.95	0.468 0.537	1.629 1.629	32.57 32.57	0.01350 0.01545	2962 2974
	10.00	0.00.				2980 ¹
	10 50	0 100	2 500	32.59²		3.921 atm)
	13.53 30.86	0.193 0.441	2.500 2.500	32.59 ⁻ 32.59 ²	0.00547 0.01241	2473 2487
	46.82	0.678	2.500	30.79 ²	0.01996	2346
					13	2460 ¹ 3.237 atm)
1,3,5-Trimethylbe	enzene, (m	esitylene);		(-	3.23/ atia;
C ₉ H ₁₂ ; [108-67-8]] 12.11	0.113	0.326	32.57	0.00342	3541
	34.64 44.79	0.300 0.381	0.326 0.326	32.57 32.57	0.00903 0.01144	3836 3915
	44.79 62.83	0.381	0.326	32.57	0.01588	3957
						3910 ¹
	20 50	0 105	0.051	22 57		5.145 atm)
	20.50 30.79	0.195 0.292	0.651 0.651	32.57 32.57	0.00583 0.00871	3516 3535
	40.55	0.386	0.651	32.57	0.01148	3532
						3510 ¹
	30.25	0.415	1.629	32.57	0.01199	1.618 atm) 2523
	41.46	0.562	1.629	32.57	0.01617	2564
	49.92	0.676	1.629	32.57	0.01938	2576
						2550 ¹ 3.355 atm)
	7.65	0.126	2.500	32.67²	0.00357	2143
	19.16	0.309	2.500	32.59²	0.00873	2195
	32.65	0.524	2.500	32.53²	0.01474	2215 2210 ¹
					()	2210- 2.908 atm)
(1-Methylethyl)be				umene);	• -	· · · · · · · · ·
^C 9 ^H 12; [98-82-8]	15.30		2.500 2.500	32.63^{2} 32.61^{2}	0.00614 0.01082	2492 2492
	26.96 38.69		2.500	32.01 32.59^{2}	0.01560	2492
	30.05	0.000	2,000	52105		2490 ¹
					(3	3.276 atm)
¹ The authors' va linear. The He to calculate va maximum recorde	enry's con alues of m	stant val	ue should	not be use	ed indiscr:	iminately
² Values calculat at a constant 2 total volume of	2.5 mmol o	f compone	nt 2 in s			
total volume or	: 4.803 Cm	• OI SOLU	tion.			
The compiler ca	lculated	the value	s of Henr	y's constan	nt for the	mixtures

Hydrogen Chloride in Non-Aqueous Solvents

<pre>COMPONENTS: (1) Hydrogen Chloride; HCl; [7647-01-0] (2) Hydrocarbons and halogenated hydrocarbons (3) Heptane; C₇H₁₆; [142-82-5]</pre>			Brown, J. Am.	ORIGINAL MEASUREMENTS: Brown, H. C.; Brady, J. D. J. Am. Chem. Soc. <u>1952</u> , 74, 3570 - 3582.		
EXPERIMENTAL VALUE Temperature = 194.			I			6. 60 1 <u>1.</u>
Component (2)	P/mmHg	Equil:	ibrium mix	ture	Mole Fraction	Henry's Constant
(2)		n ₁ /mmol	ⁿ 2 ^{/mmol}	$n_3/mmol$	×1	K/mmHg
(2-Methylpropyl)be C ₁₀ H ₁₄ ; [538-93-2]	nzene, (14.78 25.15 39.56	t-butylber 0.219 0.378 0.589	nzene); 2.500 0.500 2.500	32.60 ² 32.58 ² 32.59 ²	0.00620 0.01066 0.01651 (3	2384 2359 2396 2380 ¹ .132 atm)
Fluorobenzene; C ₆ H ₅ F; [462-06-6]	14.21 26.37 39.64	0.162 0.288 0.426	2.500 2.500 2.500	32.63 ² 32.59 ² 32.60 ²	0.00459 0.00814 0.01199 (4	3096 3240 3306 3260 ¹ .289 atm)
Trifluoromethylben C ₇ H ₅ F ₃ ; [98-08-8]	zene; 30.30 45.66 64.60	0.251 0.368 0.529	1.629 1.629 1.629	32.57 32.57 32.57	0.00728 0.01064 0.01523 (5	4162 4291 4242 4220 ¹ .553 atm)
Chlorobenzene; C ₆ H ₅ Cl; [108-90-7]	13.40 39.75 72.32	0.117 0.346 0.628	1.629 1.629 1.629	32.57 32.57 32.57	0.00341 0.01001 0.01803	3960 3971 4011 4000 ¹ .263 atm)
	14.53 26.23 41.67	0.145 0.258 0.413	2.500 2.500 2.500	32.63 ² 32.58 ² 32.60 ²	0.00411 0.00730 0.01163	3535 3593 3583 3570 ¹ .697 atm)
Bromobenzene; C ₆ H ₅ Br; [108-86-1]	10.50 21.30 33.90	0.101 0.201 0.325	2.500 0.500 0.500	32.59 ² 32.62 ² 32.58 ²	0.00287 0.00569 0.00918 (4	3658 3743 3693 3660 ¹ .816 atm)
Iodobenzene; C ₆ H ₅ I; [591-50-4]	11.58 30.58 39.86	0.111 0.289 0.375	2.500 2.500 2.500	32.63 ² 32.58 ² 32.60 ²	0.00315 0.00817 0.01057 (4	3676 3743 3771 3750 ¹ .934 atm)
(100% Heptane)		0.217 0.402 0.520	- - -	32.57 32.57 32.57	0.00662 0.01219 0.01571 (5	4443 4537 4537 4520 ¹ .947 atm)
¹ The authors' val linear. The Hen to calculate val maximum recorded	ry's con ues of m	stant valı	le should	not be use	ed indıscri	minately
² Values calculate at a constant 2. total volume of	5 mmol o	f componer	nt 2 in su	xperiments fficient h	were carr Neptane to	ied out make a

The compiler calculated the values of Henry's constant for the mixtures.

40

COMPONENTS:	EVALUATOR:
 Hydrogen Chloride; HCl; [7647-01-0] Niscellanceus Hudrogarbens 	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences, Polytechnic of North London,
Miscellaneous Hydrocarbons	Holloway, London, N7 8DB, U.K. January 1989

CRITICAL EVALUATION:

The Solubility of Hydrogen Chloride in Miscellaneous Hydrocarbons.

Chesterman (1) found that the solubility in a sample of petroleum boiling between 333.2 K and 353.2 K. was 0.3 wt.% at 298.15 K and a total pressure of 100.9 kPa. This may be compared with the solubility in hexane (b.pt. 341.9 K) of 0.54 wt.% under the same conditions as estimated by the evaluator from measurements by O'Brien & Kenny (2).

Solubility in cyclohexane was reported by Bell (3) at 293.15 K for a partial pressure of 101.3 kPa, by Wiegner (4) at 292.99 K and 313.15 K for a partial pressures from 0.025 to 89.1 kPa and by Tsiklis & Svetlova (5) at 283.15 K to 313.15 K for partial pressures from 0.133 to 106.7 kPa. There are discrepancies between the measurements as may be seen by comparing mole fraction solubilities at a partial pressure of 101.3 kPa based upon data from the three sources.

<u>Mole fraction solubilities in cyclohexane at a partial pressure of</u> 101.3 kPa from different sources.

	292.99 K	293.15 K	313.15 K
Bell		0.0154	
Wiegner	0.0144		0.0106
Tsiklis & Svetlova	0.0180	0.0179	0.0133

Further measurements on this system are required before reliable solubility data can be established.

Brown & Brady (6) measured solubilities in 2,4,4-trimethyl-1-pentene and in 2,4,4-trimethyl-2-pentene at 194.64 K and at partial pressures of gas between 0.509 kPa and 1.432 kPa. The solubility is greater in the latter than the former. These measurements cannot be linearly extrapolated to give a meaningful estimate of the mole fraction solubility at a partial pressure of 101.3 kPa. Such an extrapolation would give values greater than unity. However if the variation of mole fraction solubility with pressure approximates to a Margules equation then mole fraction solubilities at this partial pressure would be about 0.74.

Rajalo and co-workers (7) have published equations for Henry's law constants for dissolution in mixtures of dienes and chlorides from reaction with hydrogen chloride. If it is assumed that the equations are valid for 298.15 K over the whole of the mole fraction range and that the Henry's law constants can be used to calculate solubilities at 101.3 kPa then mole fraction solubilities at this temperature in the compounds under test are as follows :

1,3-pentadiene 0.049 2-methyl-1,3-butadiene 0.062 2,3-dimethyl-1,3-butadiene 0.017 (or 2-methyl-1,3-pentadiene; see the compilation)

In view of the lack of numerical data in the papers and the uncertainties involved in their interpretation the mole fraction solubilities can only be considered to be of semi-quantitative significance.

Scher *et al.* (8) measured the solubility of hydrogen chloride in 1-hexadecene at pressures from 23.3 kPa to 100.0 kPa and at four temperatures from 298.15 K to 328.15. Values of Henry's constants were reported. The data are self consistent and appear to be reliable. The corresponding mole fraction solubility at 298.15 K and a partial pressure of 101.3 kPa is 0.0357. This may be compared with a value of 0.0225 for dissolution in hexadecane from measurements by Tremper & Prausnitz (9). The reference value for this temperature from the Raoult's law equation is 0.0218. No other data for 1-hexadecene are available for comparison.

COMPON	IENTS :	EVALUATOR:
1.	Hydrogen Chloride; HCl; [7647-01-0]	Peter G. T. Fogg Department of Applied Chemistry
2.	Miscellaneous Hydrocarbons	and Life Sciences, Polytechnic of North London, Holloway, London, N7 8DB, U.K.
		January 1989
CRITIC	AL EVALUATION:	
REFE	RENCES	
1.	Chesterman, D. R. J. Chem. Soc	. <u>1935</u> , 906-910.
2.	O'Brien, S. J.; Kenny, C. L. J	. Am. Chem. Soc. <u>1940</u> , 62, 1189-1192.
3.	Bell, R. P. J. Chem. Soc. <u>1931</u>	, 1371–1382.
4.	Wiegner, F. Z. Elektrochem. <u>19</u>	<u>41</u> , 47, 163-164.
5.	Tsıklis, D. S.; Svetlova, G. M.	Zh. Fiz. Khim. <u>1958</u> , 32, 1476-1480.
6.	Brown, H. C.; Brady, J. D. J.	Am. Chem. Soc. <u>1952</u> , 74, 3570-3582.
7.	Savich, T. O.; Dement'eva, V.; 1 Toım. Keem. Geol. <u>1977</u> , 26, 83- Volens, T.; Rajalo G. 1b. <u>1981</u>	
8.	Scher, M.; Gill, W. N.; Jelinek <u>1963</u> , 2, 107–112.	, R. V. Ind. Eng. Chem., Fundam.
9.	Tremper, K. L.; Prausnitz, J. M 295-299.	. J. Chem. Eng. Data <u>1976</u> , 21,

COMPONENTS:					
	ide, ucl.		ORIGINAL MEASUREMENTS: Chesterman, D. R.		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>			Chesterman, D. R.		
(2) Petroleum			J. Chem. Soc. <u>1935</u> , 906 - 910.		
VARIABLES: T/K: 298.	15		PREPARED BY:		
Total P/kPa: 101	(∿l atm)		W. Gerrard		
EXPERIMENTAL VALUES:					
	T/K	Observed	Solubility		
		Pressure p/mmHg	g HCl g ⁻¹ Solution		
	298.15	757	0.003		
		AUXILIARY	INFORMATION		
METHOD /APPARATUS / PROCE	DURE :		SOURCE AND PURITY OF MATERIALS:		
The apparatus was		for the	(1) Hydrogen chloride. Prepared from		
conductivity. A s	ample of ·	the	conc. sulfuric acid and pure		
saturated solution weighed, the hydro			sodium chloride. Passed through		
reacted with exces			sulfuric acid and over P ₂ O ₅ .		
which was back tit		h a	(2) Petroleum. Was stated to be		
standard acid solu	tion.		the purest obtainable. "Light petroleum," dried with sodium,		
			b.p./°C (750 mmHg) = 60 - 80.		
1					
			ESTIMATED ERROR:		
			REFERENCES:		

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	ORIGINAL MEASUREMENTS: Bell, R. P. J. Chem. Soc. <u>1931</u> , 1371 - 1382.
(2) Cyclonexane; $C_6^{n_{12}}$, [110-02 /]	
VARIABLES: T/K: 293.15 P/kPa: 101.325 (1 atm)	PREPARED BY: W. Gerrard
EXPERIMENTAL VALUES:	······································
T/K Partition Coefficien ^c l, l ^{/c} l,g	
293.15 3.42	0.0154
The ideal gas concentr	ation at $n_{\rm c} = 1$ atm
is $c_{1,q}/mol dm^{-3} = n/V$	
$15 C_{1,g}$ mor $dm = m/v$	
•	
	INFORMATION
METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a 50 cm ³ bulb extended at the top as a graduated tube, and sealed at the bottom to a capillary U-tube. The liquid was saturated with gas at	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Prepared by dropping pure concentrated hydrochloric acid into pure sulfuric acid.
atmospheric pressure. The gas was displaced from the saturated solu- tion by a current of dry CO ₂ free	(2) Cyclohexane. Good specimen was dried over calcium chloride, and distilled. Boiling point is given in paper.
air, absorbed in water, and titrated with a solution of NaOH.	is given in paper.
The solubility, c/mol dm ⁻³ , was	
converted to a partition coefficient	ESTIMATED ERROR:
converted to a partition coefficient by dividing by the ideal gas con- centration of HCL in the gas phase.	$\delta T/K = 0.01$
by dividing by the ideal gas con- centration of HCl in the gas phase.	
by dividing by the ideal gas con-	$\delta T/K = 0.01$
by dividing by the ideal gas con- centration of HCl in the gas phase. The mole fraction solubility was calculated on the assumption that the density of the solution obeys	$\delta T/K = 0.01$ $\delta c/c = 0.01$
by dividing by the ideal gas con- centration of HCl in the gas phase. The mole fraction solubility was calculated on the assumption that the density of the solution obeys	$\delta T/K = 0.01$ $\delta c/c = 0.01$

Hydrogen Chioria	le in Non-Aqueous Solvents 45
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Hydrogen chloride; HCl;	Wiegner, F.
[7647-01-0] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	2. Elektrochem. <u>1941</u> , 47, 163 - 164.
VARIABLES :	PREPARED BY:
T/K = 292.99, 313.15 $p_1/kPa = 2.506 - 89.059$ (18.8 - 668 mmHg)	W. Gerrard
EXPERIMENTAL VALUES:	
Temperature Hydr	lrogen Chloride Mol Fraction
Part	tial Pressure
t/°C T/K	<i>p</i> ₁ /mmHg <i>x</i> ₁
19.84 292.99	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	58.0 0.00094 164.9 0.00238 271.5 0.00401 366.3 0.00516 465.4 0.00681 543.4 0.00787 (760.0 0.0106) ¹
	K the enthalpy of solution was 2.19 kcal mol ⁻¹ (-9.16 J mol ⁻¹).
	LIARY INFORMATION
METHOD/APPARATUS/PROCEDURE: Hydrogen chloride was passed into cyclohexane until saturation was attained. The HCl content was deter mined by chemical titration. The partial pressure, p_1 , appears have been calculated by subtraction the vapor pressure of cyclohexane (over the pure liquid) from the measured total pressure, the vapor pressure lowering being deemed negligible for these small mole fraction, x_1 , values.	er- (2) Cyclohexane was rigorously purified. F.p./ ⁰ C = 6.34, to b. p. (1 atm)/ ⁰ C = 80.05. ng
	REFERENCES :

COMPONENTS:			ORIGINAL MI	EASUREMENTS :		
(1) Hydrogen chloride; HCl;			Tsiklis	, D. S.; Svet	tlova, G. M.	
[7647-01-0] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]			Zh. Hz.	. Khim. <u>1958</u> ,	, <i>32</i> , 1476-1480.	
VARIABLES:			PREPARED BY	PREPARED BY:		
	·	93.15, 313.15		W. Gerrard	1	
	g: 100 - 800)			· · · · · · · · · · · · · · · · · · ·	
EXPERIMENTAL VALUES: T/K 283.15 T/K 293.1		3.15	т/к 3	13.15		
	Mole		Mole			
Pressure	Fraction	Pressure	Fraction	Pressure	Mole Fraction	
<i>P</i> ₁	<i>x</i> ₁	<i>p</i> ₁	<i>x</i> ₁	<i>p</i> ₁	<i>x</i> ₁	
100	0.0028	100	0.0024	100	0.0018	
200	0.0055	200	0.0047	200	0.0035	
300	0.0083	300	0.0071	300	0.0053	
400	0.0111	400	0.0094	400	0.0071	
500	0.0131	500	0.0110	500	0.0088	
600	0.0166	600	0.0142	600	0.0105	
700	0.0194	700	0.0165	700	0.0123	
760	0.02091	760	0.01791	760	0.01331	
800	0.0122 ²	800	0.0189	800	0.0141	
The authors smoothing equation for He log $(H/mmHg) = 6.608 - 580.5/(T/K)$ wi					$(x_1, x_2) = x_1 + x_2 + x_2$	
		AUXILIARY	INFORMATION	17. 1.1.		
ETHOD/APPARAT	TUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:			
The cyclohexane was frozen in the absorption vessel, and the air was pumped out. The vapor pressure, p_{g}^{0} , of the cyclohexane was determined.		 (1) Hydrogen chloride. The HCl was freed from water by cooling to about 213 K. It was then cooled by liquid nitrogen and distilled. 				
The hydrogen chloride was admitted from a weighed vessel, and a second weighing gave (with certain adjust- ments) the amount of gas absorbed at the observed total pressure, p_t . The hydrogen chloride partial pressure, p_1 , appeared to be obtained from the difference $p_t - p_8^\circ$. The authors concluded that the mole fraction form of Henry's law was obeyed.		adson twice	ohexane. Puri rption on sil e distilled.			
		their dat square de data from lation of	y evaluated t ta by calcula eviation of t n those produ f the curves ed to fluctua	thors stated the error of ating the mean the experimental aced by interpo- . The deviation ate from 10 to		

	4		
COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Brown, H. C.; Brady, J. D.		
<pre>(2) 2,4,4-trimethyl-l-pentene; C₈H₁₆; [107-39-1]</pre>	J. Am. Chem. Soc. <u>1952</u> , 74, 3570 - 3582.		
VARIABLES: T/K: 194.64 P/kPa: 0.509 - 1.432	PREPARED BY: W. Gerrard		
(3.82 - 10.74 mmHg)			
EXPERIMENTAL VALUES:			
T/K Pressure Equilibrium Mixtu $p_1/mmHg = \frac{n_1/mmol}{n_1/mmol} \frac{n_2/mm}{n_2/mm}$	$\frac{\text{Mol Fraction Henry's Constant}}{x_1} = \frac{x_1}{x_1}$		
194.64 3.82 0.325 44.9 5.95 0.490 44.9 10.74 0.840 44.9	06 0.01078 552		
10.74 0.840 44.9	6 0.01834 586 550 ¹ (0.724 atm)		
AUXILIARY	INFORMATION		
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
By means of high precision high vacuum equipment and procedure the change of the pressure of the gas phase due to absorption was accurately measured at 194.64 K.	<pre>(1) Hydrogen chloride. Not stated, but may be taken as of high quality.</pre>		
	(2) 2,4,4-trimethyl-l-pentene.		
chloride in the liquid phase was calculated. The solubility was finally expressed as the Henry's constant, K/mmHg = HCl pressure/mole	(2) 2,4,4-trimethyl-1-pentene. Thoroughly attested as of high quality. Values of the boiling point and refractive index are in the paper.		
chloride in the liquid phase was calculated. The solubility was finally expressed as the Henry's constant, K/mmHg = HCl pressure/mole fraction. Henry's constant is the pressure	Thoroughly attested as of high quality. Values of the boiling point and refractive index are		
chloride in the liquid phase was calculated. The solubility was finally expressed as the Henry's constant, K/mmHg = HCl pressure/mole fraction. Henry's constant is the pressure (numerically) at which $x_1 = 1$, and it may deviate widely from the	Thoroughly attested as of high quality. Values of the boiling point and refractive index are in the paper.		
The mole fraction of hydrogen chloride in the liquid phase was calculated. The solubility was finally expressed as the Henry's constant, K/mmHg = HCl pressure/mole fraction. Henry's constant is the pressure (numerically) at which $x_1 = 1$, and it may deviate widely from the reported value of $p_1^\circ = 1.43$ atm (1087 mmHg), the vapor pressure of pure liquid hydrogen chloride at 194.64 K.	Thoroughly attested as of high quality. Values of the boiling point and refractive index are in the paper.		
chloride in the liquid phase was calculated. The solubility was finally expressed as the Henry's constant, K/mmHg = HCl pressure/mole fraction. Henry's constant is the pressure (numerically) at which $x_1 = 1$, and it may deviate widely from the reported value of $p_1^\circ = 1.43$ atm (1087 mmHg), the vapor pressure of pure liquid hydrogen chloride at	Thoroughly attested as of high quality. Values of the boiling point and refractive index are in the paper. ESTIMATED ERROR:		

COMPONENTS :	
(1) Hydrogen chloride; HCl;	ORIGINAL MEASUREMENTS:
[7647-01-0]	Brown, H. C.; Brady, J. D. J. Am. Chem. Soc. 1952, 74,
<pre>(2) 2,4,4-trimethyl-2-pentene; C₈H₁₆; [107-40-4]</pre>	3570 - 3582.
VARIABLES:	PREPARED BY:
T/K: 194.64 P/kPa: 0.599 - 1.163 (4.49 - 8.72 mmHg)	W. Gerrard
EXPERIMENTAL VALUES:	
T/K Pressure Equilibrium Mixt	ure Mol Fraction Henry's Constant
p ₁ /mmHg n ₁ /mmol n ₂ /m	$\frac{1}{1} \qquad \frac{1}{1} \qquad \frac{1}$
194.64 4.49 0.483 44.	96 0.01063 422
	96 0.01693 437 96 0.01984 440
0.72 0.910 44.	430 ¹ (0.566 atm)
The authors estimated K/mmHg graph showed slight curvature, possibly more basic impurity in the olefin.	the result of a small quantity of a
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
By means of high precision high vacuum equipment and procedure the change of the pressure of the gas phase due to absorption was accurately measured at 194.64 K. The mole fraction of hydrogen chloride in the liquid phase was calculated. The solubility was finally expressed as the Henry's constant, K/mmHg = HCl pressure/mole fraction.	(2) 2,4,4-trimethyl-2-pentene. Thoroughly attested as of high
Henry's constant is the pressure (numerically) at which $x_1 = 1$, and it	ESTIMATED ERROR:
may deviate widely from the reported value of $p_1^\circ = 1.43$ atm (1087 mmHg),	
the vapor pressure of pure liquid hydrogen chloride at 194.64 K.	REFERENCES:

,

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Savich, T. O.; Dement'eva, V. Rajalo, G.
<pre>(2) 1,3-Pentadiene or piperylene; C₅H₈; [504-60-9]</pre>	Eesti NSV Tead. Akad. Toim. Keem. Geol. <u>1977</u> , 26, 83 - 88.
	Chem. Abstr. 1978, 88, 55542a
VARIABLES:	PREPARED BY:
	W. Gerrard

EXPERIMENTAL VALUES:

The title of the paper is "Equilibrium Solubility of HCl in Piperylene and its Hydrochlorides." The authors used various mixtures of 1,3-pentadiene (piperylene), (E)-3-chloro-2-pentene (trans-2-chloro-3-pentene) [26423-61-0], and (Z)-3-chloro-2-pentene (cis-2-chloro-3-pentene) [26423-60-9]. There is a lack of definition in the quantities used. The pressure was not stated, presumably it was atmospheric. Numerical data were not given.

The solubility data were summarized by an equation which related Henry's constant, K/atm, to the temperature, T/K, and the 1,3-pentadiene mole fraction, x_2 :

 $\ln (K/atm) = 8.68 - 1760/(T/K) + 0.236 x_2.$

The low value of the term 0.236 x_2 was deemed to show the small difference in solubility of HCl in 1,3-pentadiene and the chloro-hydrocarbons.

The heat of solution can be approximated from the temperature dependence of Henry's constant as-14630 J mol⁻¹(-3495 cal mol⁻¹). There was deemed to be an insignificant difference in the heats of solution of HCl in 1,3-pentadiene and the chloro-hydrocarbons.

AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Dried HCl was passed via a flowmeter into a jacketed bubbler tube reactor fitted with a sampling device. When constant conditions were attained, a sample was removed for titration with standard alkali. From this result, and by gas-liquid chroma- tography, the amounts of piperylene and its hydrochloride were deter- mined.	 (1) Hydrogen chloride was obtained by the action of concentrated sulfuric acid, and dried calcium chloride. (2) "All components for the prepara- tion of the initial mixtures were purified by rectification." Purity was stated to be greater than 99 per cent. ESTIMATED ERROR:	

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Rajalo, G.; Savich, T. O.; Dement'eva, V.
<pre>(2) 2-Methy1-1,3-butadiene or iso- prene; C₅H₈; [78-79-5]</pre>	Eesti NSV Tead. Akad. Toim. Keem. Geol. <u>1979</u> , 28, 45 - 46.
	Chem. Abstr. <u>1979</u> , 90, 157793s
VARIABLES:	PREPARED BY:
	W. Gerrard
EXPERIMENTAL VALUES:	
The title of the paper is "The Equil	ibrium Solubility of Hydrogen chloride

The title of the paper is "The Equilibrium Solubility of Hydrogen chloride in Systems Reacting with it and Consisting of Isoprene and Isopentenyl Chloride."

The authors stated that there is a negligible difference between the solubility of hydrogen chloride in isoprene and the isopentenyl chlorides. The authors conclude that there is absence of a statistical correlation between Henry's constant, K/atm, and the isoprene mole fraction, x_2 , and between ln (K/atm) and $x_2/T/K$. The authors obtained a correlation between Henry's constant, K/atm, and the temperature, T/K, which is given by the equation:

 $\ln (K/atm) = -6.12 - 996.6/(T/K)$.

The equation gives the approximate heat of solution of -8300 J mol^{-1} (-1980 cal mol⁻¹).

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: Dried HCl was passed via a flowmeter into a jacketed bubbler tube reactor fitted with a sampling device. When constant conditions were attained, a sample was removed for titration with standard alkali. From this result, and by gas-liquid chroma- tography, the amounts of isoprene and the isopentenyl chlorides were determined.	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride was obtained by the action of concentrated sulfuric acid, and dried calcium chloride. (2) "All components for the prepara- tion of the initial mixtures were purified by rectification." Purity was stated to be greater than 99 per cent.
See the authors earlier paper (1).	ESTIMATED ERROR:
	REFERENCES: 1. Savich, T. O.; Dement'eva, V. Rajalo, G. Eesti NSV Tead. Akad. Toim. Keem. Geol. <u>1977</u> , 26, 83.

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Volens, T.; Rajalo, G.
(2) 2,3-Dimethyl-1,3-butadiene; C ₆ H ₁₀ ; [513-81-5]	Eesti NSV Tead. Akad. Toim. Keem. <u>1981</u> , 30 (2), 136 - 137.
VARIABLES:	PREPARED BY:
	H. L. Clever
EXPERIMENTAL VALUES:	
The title of the paper is "Equilibriu Systems reacting with it consisting o methylbutadiene hydrochlorides."	
The compiler assumes the title compound [513-81-5] however, 2-methyl -1,3-pen	nd is 2,3-dimethy1-1,3-butadiene tadiene [1118-58-7]is also possible.
Numerical data were not given. By usi related Henry's constant, K/atm, to t methyl-1,3-butadiene mole fraction, x	the temperature, T/K , and the 2.3-di-
ln (K/atm) = 8.26 - 1540	$/(T/K) + 0.997 x_2.$
The enthalpy of solution of hydrogen approximated from the temperature coe $-12.8 \text{ kJ mol}^{-1}$ (-3.06 kcal mol $^{-1}$).	chloride in the hydrocarbon can be fficient of the Henry's constant as
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Dried HCl was passed via a flowmeter into a jacketed bubbler tube reactor fitted with a sampling device. When Constant conditions were attained, a sample was removed for titration with standard alkali. From this result, and by gas-liquid chromoto-	 Hydrogen chloride was obtained by the action of concentrated sulfuric acid and dry calcium chloride. "All components for the prepara- tion of the initial mixtures
graphy, the amounts of the butadiene and its hydrochlorides were determined.	were purified by rectification." Purity was stated to be greater than 99 per cent.
	ESTIMATED ERROR:
	REFERENCES:
	1

		ORIGINAL MEASUREMENTS:			
		Scher, M.; Gill, W. N.; Jelinek, R. V.			
(2) 1-Hexadecene; C ₁₆ H ₃₂ ; [629-73-2]		Ind. Eng. 2, 107 - 1	Chem., Fund 12.	am. <u>1963</u> ,	
VARIABLES:			PREPARED BY:		
	<pre>%: 298.15 - 328.15 ba: 23.33 - 99.99 (175 - 750 mmHg</pre>)		W. Gerrar	ď
EXPERIMENTAL	VALUES:				
		Number of Points	Percent Mean	Mol Fraction x_1	
	K'/mmHg dm ³ mol ⁻¹	K/mmHg		Deviation	L :
298.15 303.15	6000 6990	21,310 24,470	5 7	±1.0 ±1.4	0.0357 0.0311
313.15	7920	27,600	13	±1.6	0.0275
328.15	8680	29,820	4	±2.1	0.0255
Henry's d	constants:				
K'/mmHg ć	$im^3 mol^{-1} = (p_1/mmHg)$)/(c./mo]	L dm ⁻³)		
1	-	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		
i	$(p_1/mmHg)/x_1$	_			
The compi kPa (760	ler calculated the mmHg).	mole frac	ction solub	ility value	at 101.325
		AUXILIARY	INFORMATION		
	ATUS/PROCEDURE:	n on		PURITY OF MATE en chloride	
apparatus	lity was measured in designed to determine	n an ne the		ed at high	
	te of catalyzed hyd on of 1-hexadecene			air temper led into st	
presence c	of ferric chloride.	The		system.	orage and
	gas absorbed by the increasing pressure		(2) 1-Heya	decene. Pu	rified by
175 - 750	mmHg, was measured.	The	reflux	ing with po	tassium for
	solubility values a in a graph. The Her			rs, and the um, and sto	n distilled in
	were tabulated.	mry 5	nitrog	•	
The heat of solution was stated to		ESTIMATED EN	202.		
be -3.00 kcal mol ⁻¹ (-12.55 kJ mol ⁻¹)		ESTIMATED EF	KKOK:		
at 303 K and -0.20 kcal mol ⁻¹ (0.84 kJ mol ⁻¹) at 328 K.					
			REFERENCES:		
[[
L			1		

COMPONENTS:	EVALUATOR:
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2. Aromatic Hydrocarbons	Polytechnic of North London, Holloway, London, N7 8DB, U.K. January 1989

CRITICAL EVALUATION:

The Solubility of Hydrogen Chloride in Aromatic Hydrocarbons.

The solubility of hydrogen chloride in benzene was measured over a pressure range by Saylor (1) and by O'Brien *et al.*(2). Approximate values of the solubility at a partial pressure of 101.3 kPa were estimated by the evaluator by use of the Krichevskii-Il'inskaya equation. Measurements were made at a total pressure equal to barometric pressure by Knight & Hinshelwood (3), Bell (4), Parande *et al.*(5), Chesterman (6) and by Zetkin *et al.*(7). Data by Paranda *et al.* differ by a factor of about 100 from other data and should be rejected. The solubility reported by Chesterman is high compared with values given by other workers and should be rejected because the method used may be unreliable. Mole fraction solubilities at a partial pressure of 101.35 bar fit the equation: $\ln x_{\rm HCl} = -358.42 + 17853.6 / (T/K) + 51.818 \ln (T/K)$

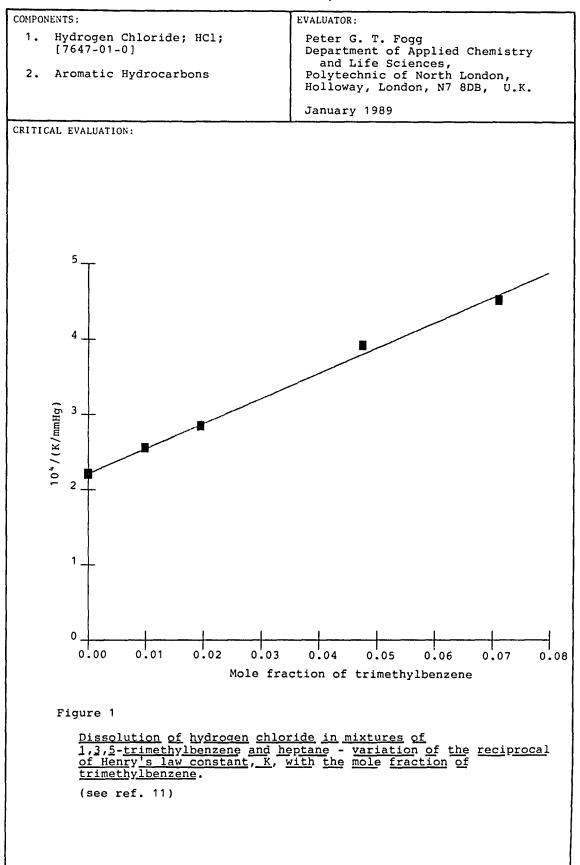
The standard deviation in values of x_{HCl} is 0.00312. This equation is based upon measurements made from 283.15 K^{HCl} to 323.15 K.

The solubility in benzene saturated with water was measured over pressure ranges below 101.3 kPa by Wynne-Jones (8) at 298.15 K and by Saylor (1) at 303.15 K. Extrapolation to a partial pressure of 101.3 kPa and comparison with the mole fraction solubility in dry benzene given by the above equation indicate an apparent increase in the mole fraction solubility from addition of water in the first case and an apparent decrease in the second case. However the difference between solubilities in benzene saturated with water and those in dry benzene are less than those between different values for solubility in dry benzene.

The solubility in methylbenzene was measured by Bell (4), by Parande *et al.*(5) and by Mirsaidov *et al.*(9) at barometric pressure, by O'Brien & Bobalek (10) at pressures to 28 kPa and by Brown & Brady (11) at pressures to 0.8 kPa. Measurements by Parande *et al.* should again be rejected because they are grossly out of line with other data. Extrapolation of measurements by O'Brien to a partial pressure of 101.3 kPa by use of a Krichevskii-Il'inskaya equation indicates a mole fraction solubility at 298.15 K of 0.0428. This is in contrast to the lower value of 0.0334 from measurements by Mirsaidov *et al.* Four values of mole fraction solubilities at a partial pressure of 101.3 kPa estimated by the evaluator from measurements by Bell, by Mirsaidov *et al.* and by O'Brien & Bobalek in the temperature range 273.15 K to 298.15 K fit the equation : $\ln x_{\rm HCl} = -9.383 + 1837/(T/X)$

The standard deviation in values of x_{HC1} is 0.006.

Measurements by Brown and Brady at 194.64 K were at low pressures and reliable extrapolation to 101.3 kPa is not possible.


Solubilities in the three dimethylbenzenes at a total pressure equal to barometric pressure were measured over temperature ranges by Ahmed, Gerrard and Maladkar (12). These can be accepted on a tentative basis but no other measurements in pure dimethylbenzenes are available for comparison.

Mole fraction solubilities at 298.15 K and a partial pressure of gas of 101.3 kPa are, according to the data discussed above, in the order: benzene (0.0366) < methylbenzene (0.0399) < 1,2-dimethylbenzene (0.0515) < 1,4-dimethylbenzene (0.0529) < 1,3-dimethylbenzene (0.0570)</p>

This series is close to that found by Brown & Brady except that the order of 1,2- and 1.4-dimethylbenzene is reversed. These authors measured the solubility of hydrogen chloride at 194.64 K and pressures to 0.84 kPa (6.4 mmHg) in mixtures of organic compounds (mostly aromatic) and methylbenzene in the ratio 4.515 moles to 44.96 moles. Similar measurements at the same temperature were also made of the solubility in mixtures of organic compounds and heptane. In this case measurements were carried out up to a pressure of 9.6 kPa (72 mmHg). Henry's constants, K, based on measurements at low pressures, were defined as:

$K = P_{HC1}/x_{HC1}$

Values of K/mmHg are given in brackets. (The higher the value of K the lower is the mole fraction solubility at a fixed pressure.) COMPONENTS: EVALUATOR: Peter G. T. Fogg Hydrogen Chloride; HCl; 1. Department of Applied Chemistry [7647-01-0] and Life Sciences, Polytechnic of North London, 2. Aromatic Hydrocarbons Holloway, London, N7 8DB, U.K. January 1989 CRITICAL EVALUATION: Relative solubilities of HCl in mixtures containing methylbenzene and another solvent in the ratio 44.96 moles to 4.515 moles : heptane (335) < (trifluoromethyl)-benzene (332) = tetrachlorethene (332)</pre> < chlorobenzene (318) < thiophene (316) < benzene (308) < 1-octene (306)</pre> < [methyl benzene] (299) < 1,4-dimethylbenzene (294) < cyclohexene (290) < 2,4,4-trimethyl-2-pentene (288) = 2,4,4-trimethyl-1-pentene (288) < 1,2-dimethylbenzene (286) < 1,3-dimethylbenzene (278) < 1,2,4-trimethylbenzene (272) < 1,2,3-trimethylbenzene (265) < 1,3,5-trimethylbenzene (254) < 1,2,3,4-tetramethylbenzene (250)</pre> < 1,2,3,5-tetramethylbenzene (246) Relative solubilities in mixtures containing heptane and another solvent in the ratio 32.57 moles to 1.629 moles : [heptane] (4520) < trifluoromethylbenzene (4220) < chlorobenzene (4000) < benzene (3500) < fluorobenzene (3260) < methylbenzene (3170)</pre> < 1,3-dimethylbenzene (2980) < trimethylbenzene (2550) Relative solubilities in mixtures containing heptane and another solvent in the ratio 32.67 moles to 2.5 moles : [heptane] (4520) < iodobenzene (3750) < bromobenzene (3660) < chlorobenzene (3570) < fluorobenzene (3260) < methylbenzene (2790)
< ethylbenzene (2680) < (1-methylethyl)-benzene (2490)</pre> < 1,3-dimethylbenzene (2460) < (2-methylpropyl)-benzene (2380) < 1,3,5-trimethylbenzene (2210) The solubility of hydrogen chloride was also measured at two other concentrations of 1,3,5-trimethylbenzene in heptane. A plot of the reciprocal of the Henry's law constant against the mole fraction of 1,3,5-trimethylbenzene in the mixture lies close to a straight line (see fig. 1) The data presented by Brown and Brady are self-consistent and appear to be reliable and enable useful comparisons with measurements of solubilities in single solvents at higher temperatures. The two authors explained the orders for the aromatic compounds indicated above in terms of relative basicities of aromatic nuclei and showed that there was good correlation with other measures of relative basicities. REFERENCES 1. Saylor, J. H. J. Am. Chem. Soc. 1937, 59, 1712-1714. O'Brien, S. J.; Kenny, C. L.; Zeurcher, R. A. J. Am. Chem. Soc. 1939, 61, 2. 2504-2507.; O'Brien, S. J. J. Am. Chem. Soc. 1941, 63, 2709-2712. Knight, R. W.; Hinshelwood, C. N. J. Chem. Soc. 1927, 466-472. 3. 4. Bell, R. P. J. Chem. Soc. <u>1931</u>, 1371-1382. 5. Parande, M. G.; Kshirsagar, S. N.; Deshpande, A. B. Pet. Hydrocarbons 1969, 4, 17-18. 6. Chesterman, D. R. J. Chem. Soc. 1935, 906-910. Zetkin, V. I.; Kosorotov, V. I.; Stul, B. Ya.; Dzhagatspanyan, R. V. Khim. Prom. <u>1971</u>, 47, 102-103. 7. Wynne-Jones, W. F. K. J. Chem. Soc. 1930, 1064-1071. 8. Mirsaidov, U.; Dzhuraev, Kh. Sh.; Semenenko, K.N. Dokl. Akad. Nauk. 9. Tadzh. SSR 1975, 18, 30-31. O'Brien, S. J.; Bobalek, E. G. J. Am. Chem. Soc. 1940, 62, 3227-3230. 10. Brown, H. C.; Brady, J. D. J. Am. Chem. Soc. 1952, 74, 3570-3582. 11. 12. Ahmed W.; Gerrard W.; Maladkar, V. K. J. Appl. Chem. 1970, 20, 109-115.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-1]</pre>	Knight, R. W.; Hinshelwood, C. N.
(2) Benzene; C ₆ H ₆ ; [71-43-2]	J. Chem. Soc. <u>1927</u> , 466 - 472.
VARIABLES: T/K: 293.15 Total P/kPa: 101.325	PREPARED BY: W. Gerrard
EXPERIMENTAL VALUES:	
T/K Total So Pressure p/mmHg	g dm ⁻³
K. He estimates the pa above the solution to a linear change of mol chloride with change i (689 - 760 mmHg). The	16.80 16.76 16.82 16.74 16.79 16.81 16.80 16.80 av.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The apparatus was a straight tube fitted with a gas inlet tube, and a capillary syphon tube for the with- drawal of samples of solution for chemical analysis. After the gas had been passed for many hours at 293.15 K, a sample of solution was allowed to pass into alkali, and the excess of the latter was back titrated. The total pressure in the absorption vessel was atmospheric.	standard. Purified and fraction- ated through a 6-foot column. M.p. 278.63 K.

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Bell, R. P.
(2) Aromatic hydrocarbons; $C_6^{H_6}$ and $C_7^{H_8}$	J. Chem. Soc. <u>1931</u> , 1371 - 1382.
VARIABLES: T/K: 293.15 P/kPa: 101.325 (1 atm)	PREPARED BY: W. Gerrard
EXPERIMENTAL VALUES:	
T/K Partitic Coefficie c1,2/c1	ent r.
Benzene; C ₆ H ₆ ;	[71-43-2]
293.15 11.05	0.0425
Methyl benzene C ₇ H ₈ ; [108-88-	or toluene; 3]
293.15 11.9	0.0507
The ideal gas concen	tration at $p_1 = 1$ atm
is $c_{1,a}/mol dm^{-3} = n$	-
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus consisted of a 50 cm ³ bulb extended at the top as a graduated tube, and sealed at the bottom to a capillary U-tube. The liquid was saturated with gas at	 (1) Hydrogen chloride. Prepared by dropping pure concentrated hydrochloric acid into pure sulfuric acid. (2) Aromatic hydrocarbons. Good
displaced from the saturated solu- tion by a current of dry CO ₂ free	specimens were dried over calcium chloride, and distilled. Boiling points are given in
air, absorbed in water, and titrated with a solution of NaOH.	paper.
The solubility, $c/mol dm^{-3}$, was converted to a partition coefficient by dividing by the ideal gas con-	ESTIMATED ERROR:
centration of HCl in the gas phase.	$\delta T/K = 0.01$ $\delta c/c = 0.01$
The mole fraction solubility was calculated on the assumption that the density of the solution obeys the ideal mixture law.	REFERENCES :

.

·····		
COMPONENTS :		ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>		Chesterman, D. R.
(2) Benzene; C ₆ H ₆ ; [71-43-2]		J. Chem. Soc. <u>1935</u> , 906 - 910.
(2) Benzene, C6n6, [/1-45-2]		
VARIABLES: T/K: 298.15		PREPARED BY:
Total P/kPa: 101 (~1 atm)		W. Gerrard
EXPERIMENTAL VALUES:		
Pres	erved Solubil ssure g HCl g ⁻¹ mHg	ity Mol Fraction Solution x _l
298.15 76	57 0.0	2 0.042
The mole fraction solubility value was calculated by the compiler.		
AUXILIARY INFORMATION		
METHOD APPARATUS/PROCEDURE:	<u></u>	SOURCE AND PURITY OF MATERIALS:
The apparatus was that conductivity. A sample saturated solution was weighed, the hydrogen reacted with excess st which was back titrate standard acid solution	e of the s removed, chloride was candard base ed with a	 (1) Hydrogen chloride. Prepared from conc. sulfuric acid and pure sodium chloride. Passed through sulfuric acid and over P205. (2) Benzene. Was stated to be the purest obtainable. Dried with sodium and distilled. B.p./°C (767 mmHg) = 79.5 - 80.0
		ESTIMATED ERROR:
		REFERENCES :

COMPONENTS :			ORIGINAL MEASUR	EMENTS:	
(1) Hydrogen c	hloride. H	_			
[7647-01-0			Saylor, J. H.		
(2) Benzene; C	C _{6^H6; [71-4}	13-2]	J. Am. Chem 1712 - 1714	. Soc. <u>1937</u> , 59, ·	
VARIABLES:			PREPARED BY:		
	(1.5 - 5	75.994 70 mmHg)		W. Gerrard	
EXPERIMENTAL VALUES	5:				
T/K	Pressure	Molality	Mole Ratio	Mol Fraction	
	₽1∕mmHg	m _l /mol kg ⁻¹	n_1/n_2	<i>x</i> 1	
p1.	le ratio an	-		0.0000468 0.00172 0.00133 0.00304 0.00858 0.0132 0.0145 0.0210 0.0226 0.0230 0.027 - 0.029) ¹ Thin plot of $x_1 vs$. Here calculated by the	
		AUXILIARY	INFORMATION		
METHOD/APPARATUS/PI The apparatus of bulbs which an The lower bulb, contains the s space. The upped cm ³ capacity, of The solvent in saturated with dry gas through are then "part tap opened, and put in a thermo The tap is clos upper bulb is of and titrated. The sure is calcula volume and num A weighed solut moved for the t	consists of ce separate 200 cm ³ of solvent and er bulb, 29 contains t the lower HCl by but h the solve tially evac d the whole ostat for 5 sed. The HCl parated from to ber of mole tion sample lower bulb	ed by a tap. capacity, l some gas 92.6 ± 0.02 the gas. bulb is obling the ent. The bulb cuated", the e apparatus 5 to 7 days. Cl in the vely removed rtial pres- the bulb es of HC1. e is re-	<pre>(1) Hydrogen generate good gra (2) Benzene. Kahlbaum distilla sodium. B ESTIMATED ERRON REFERENCES:</pre>	<pre>ITY OF MATERIALS: h chloride. The HCl was ed from sulfuric acid and hde ammonium chloride. . Both Baker Analyzed and n. Purified by fractional ation, and stored over R:</pre>	

COMPONENTS:			IGINAL MEASUREN			
(1) Hydrogen chlor [7647-01-0]	ride; HCl;		'Brien, S. J eurcher, R. J	.; Kenny, C. L.; A.		
(2) Benzene; C ₆ H ₆	; [71-43-2]		J. Am. Chem. Soc. <u>1939</u> , 61, 2504 - 2507.			
	<u></u>					
VARIABLES: T/K: 298	15	PR	EPARED BY:			
P/kPa: 2.6		.m)	₩.	Gerrard		
EXPERIMENTAL VALUES:						
Т/К	Pressure Mc p ₁ /atm m ₁ /	lality mol kg ⁻¹		Mol Fraction $\frac{x_1}{2}$		
298.15	0.026 0	.014	0.00109	0.00109		
		.040	0.00312	0.00311		
		.047	0.00367	0.00365		
		.048	0.00374	0.00373		
).096).112	0.00749	0.00743 0.00866		
).191	0.0149	0.0147		
		.273	0.0213	0.0209		
	(1.00			0.0310)1		
	AU	XILIARY IN	FORMATION	· · · · · · · · · · · · · · · · · · ·		
METHOD/APPARATUS/PROCE The method and ap identical to thos The main differen 1 to 2 day instea equilibration tim The apparatus con which are separat solvent is partia	paratus are al e of Saylor (] ce is the use d of a 5 to 7 e. sists of two h ed by a tap. lly saturated	Lmost (of a day oulbs The with	 Hydrogen chemicall chloride Dried by 	Y OF MATERIALS: chloride. Prepared from y pure potassium and sulfuric acid. phosphorus pentoxide. Eastman Kodak Co. eceived.		
the gas, and the the lower bulb. partially evacuat and the whole app	The bulbs are ed, the tap op aratus put in	pened,	STIMATED ERROR:	······································		
thermostat from 1	το 2 days.					
The tap is closed upper bulb is qua and titrated with partial pressure the bulb volume a moles of HCl assu	ntitatively re NaOH. The HO is calculated nd the number	emoved Cl from R of	EFERENCES: 1. Saylor, J	К = 0.02		
behavior. A weig is removed from t titrated with NaO	hed solution s he lower bulb	sample	J. Am. Ch 1712.	.em. Soc. <u>1937</u> , 59,		

COMPONENTS :	• •		ORIGINAL ME	
(1) Hydrogen ch		HCl;	O'Brien,	S. J.
[7647-01-0]			I Am Ch	em. Soc. 1941, 63,
(2) Benzene; C	.H.: [71-	43-21	2709 - 27	
	56,		2703 - 27	12.
]	
VARIABLES: T/K: 3	303.15, 3	12 15	PREPARED BY	· ·
).77 - 61			W. Gerrard
	(5.8 - 46)			
			l	
EXPERIMENTAL VALUE				Mal Decalder
	Pressure	-	Mol Ratio	
	P1 ^{/mmHg}	m _l /mol kg ⁻¹	n_{1}/n_{2}	x1
		·	0.0000	
303.15	47 65	0.0255 0.0364	0.0020 0.0028	0.0020 0.0028
	72	0.0396	0.0031	0.0031
	246	0.145	0.0113	0.0112
l	438	0.252	0.0197	0.0193
	463	0.263	0.0205	0.0201
	1760			0.0306)
1	(760			0.0306)1
313.15	5.8	0.0026	0.000203	0.000203
	12.3	0.0061	0.00048	0.00048
	17.0	0.0074	0.00058	0.00058
	22.4	0.0110	0.00086	0.00086
	46.7	0.0204	0.00159	0.00159
	48.8	0.0221	0.00172	0.00172 0.00221
	56.2 108	0.0284 0.046	0.00222 0.00359	0.00358
	159	0.076	0.00593	0.00590
	247	0.107	0.00835	0.00827
				0.0214)
	(760			0.0214)1
				the entry 1 w
· A graphi	ical extr	apolation of the	ne plot of	the actual x_1
(760 mm)		ves the stated	value ioi	101.323 KFd
(700 1111				
			THEODULARTON	
		AUXILIARY	INFORMATION	
METHOD/APPARATUS/P	ROCEDURE :		SOURCE AND	PURITY OF MATERIALS:
			(1) Hydro	gen chloride. Prepared
Saylor (1) as r				chemically pure potassium
al. (2) . The ruse of a 1 to 2				ide and sulfuric acid.
7 day equilibra	ation tim	e.	DITEU	al husehusing bencoving.
			(2) Benze	ene. Stored over sodium.
The apparatus of	consists	of two bulbs		lled before use; m.p.
which are separ	rated by	a tap. The	278.6	3 K.
solvent is part	cially sa	turated with	1	
the gas, and the lower bulb.				
partially evacu			1	
and the whole a	apparatus	put in a		
thermostat from			ESTIMATED I	ERROR:
	··	101 da 11 -	1	$\delta T/K = 0.02$
The tap is close				
upper bulb is of and titrated with			1	
partial pressu			REFERENCES	•
the bulb volume	e and the	number of		-
moles of HCl as	ssuming i	deal gas		or, J. H. A. Chem. Soc.1937, 59, 1712.
behavior. A we	eighed so	lution sample		
is removed from titrated with N		er buib and		en, S. J.; Kenny, C. L.
LICIACEU WITH I	aun.			ther, R. A.
1			J. Am	n. Chem. Soc. <u>1939</u> , 61, 2504.
			1	

COMPONENTS :			ORIGI	NAL MEASURE	MENTS:	<u> </u>
(1) Hydrogen c [7647-01-0		Cl;	Parande, M. G.; Kshirsagar, S. N.; Deshpande, A. B.			
(2) Benzene; C	6 ^H 6; [71-4	3-2]	Pet. Hydrocarbons <u>1969</u> , 4, 17 - 18.			
				· · · · · · · · · · · · · · · · · · ·		
VARIABLES:	K: 301.15	- 328.15	PREPA	RED BY:		
HCl P/kP	a: 53.33 - (400 -	80.53 604 mmHg)		Г	. Gerrard	
EXPERIMENTAL VALUE	S:				*,*****	
Т/К	Total Pressure p _t /mmHg		1 Se	g cm ⁻³	Mol Frac Experiment Pressure	
301.15	714	604	0	.0001786	0.000439	0.000552
308.15	714	569	0	.0001380	0.000342	0.000457
318.15	714	490	0	.0001104	0.000278	0.000431
328.15	714	400	0	.0000781	0.000199	0.000378
The mol	e fraction	ity of pure s solubility a a linear cha	t on	e atm HCl	was obtained	-
		AUXILIARY	INFOR	ATION		
METHOD/APPARATUS/P	ROCEDURE :		SOURC	E AND PURIT	Y OF MATERIALS:	
Dry hydrogen c into about 500 was in a three with a stirrer stated to be a The passage of stopped; the 1 "some more tim gas; a 5 cm ³ s removed for an	cm ³ of so -necked fl . The pres tmospheric gas appea iquid was e" to remo ample of s	<pre>lvent which ask fitted sure was . red to be stirred for ve excess olution was</pre>		pure grad added dro sulfuric Benzene. ically pu		ic acid was mically pure iven. Chem-
The liquid was m at the next controlled by another sample titration.	higher tem a thermost	perature, at, and		ATED ERROR:		

.

Hydrogen Chloride in	Non-Aqueous Solvents 63
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Zetkin, V. I.; Kosorotov, V. I.; Stul, B. Ya.; Dzhagatspanyan, R. V.
(2) Benzene; C ₆ H ₆ ; [71-43-2]	Khim. Prom. <u>1971</u> , 47, 102 - 103.
	Soviet Chem. Ind. <u>1971</u> , 3, 89 - 90.
VARIABLES:	PREPARED BY:
T/K = 283.15 - 323.15 p/kPa = 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES: Temperature	Mol Fraction
t/°C T/K	
10 283.15	
20 293.15 30 303.15	
40 313.15	5 0.0224
50 323.15	5 0.0162
The measurements appear to have been one atm.	carried out at a total pressure of
Smoothed Data: For use between 283.]	L5 and 323.15 K
$\ln x_1 = 34.3060 - 39.2708/(T)$	′100 K) - 22.4004 ln (T/100 K)
The standard error about the	regression line is 2.53 x 10^{-4} .
<i>T/K</i> N	Nol Fraction
	x_1
283.15	0.0563
293.15 298.15	0.0415 0.0356
303.15	0.0305
313.15 323.15	0.0223 0.0162
	INFORMATION
METHOD/APPARATUS/PROCEDURE: Gas absorbed at atmospheric pressure	SOURCE AND PURITY OF MATERIALS:
as described by Zetkin and Kosorotov (1). The amount of gas absorbed was determined by a chemical titration.	(1) Hydrogen chloride. Self prepared from sodium chloride and concen- trated sulfuric acid. Dried with sulfuric acid.
The author fitted the data to the linear equation	(2) Benzene. Purity stated to be
$\log x_1 = -5.71 + 1270/(T/K)$	greater than 99 %. Dried with calcium chloride.
However, the three constant equation above fits the data much better. The author's equation gives an	
enthalpy of solution of -5.8 k cal mol-1.	ESTIMATED ERROR:
	DEFENSIVE.
	REFERENCES: 1. Zetkin, V. I.; Kosorotov, V. I. <i>Zh. Fiz. Khim.</i> <u>1970</u> , 44, 830.
1	

ORIGINAL MEAS	SUREMENTS :	
Wynne-Jon	les, W. F. K	
J. Chem.	Soc. <u>1930</u> ,	1064 - 1071.
PREPARED BY:	····	·
	W. Gerrard	
izene Phase	Henry's Constant	Mole Fraction ¹
/mol kg ⁻¹		(Benzene) x ₁
0.00213 0.00340 0.00423 0.00768 0.0110 0.0216	1390 1370 1350 1400 1420 1300	0.000166 0.000265 0.000330 0.000599 0.000858 0.00168
n, as given is only 28.1	by Randall	and Young (1).
 (1) Hydrog obtain acid sulfut (2) Benzer (3) Water 	gen chloride ned by dropp (analytical ric acid. ne. Not sta [.]	e. The gas was ping hydrochloric grade) into ted.
ESTIMATED ER	ROR: δT/K =	
REFERENCES :	0T/K =	
	Wynne-Jon J. Chem. J. Chem. PREPARED BY: PREPARED BY: PREPARED BY: prepare Phase prepare Phase $prepare Phaseprepare $	Wynne-Jones, W. F. K J. Chem. Soc. <u>1930</u> , PREPARED BY: W. Gerrard p_2 (Benzene) p_1/m_1 0.00213 1390 0.00340 1370 0.00423 1350 0.00768 1400 0.0110 1420 0.0216 1300 HCl in benzene was call $l = (p_1/mmHg)/(m_1/mol k)$ both liquid phases, ar n, as given by Randall is only 28.1 mmHg (0.03) FINFORMATION SOURCE AND PURITY OF MATER (1) Hydrogen chloride obtained by droppi acid (analytical sulfuric acid. (2) Benzene. Not stated (3) Water. Not stated

nyurogen chionu	e in Non-Aqueous Solvents 65
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Saylor, J. H.
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1937</u> , 59,
(3) Benzene; C ₆ H ₆ ; [71-43-2]	1712 - 1714.
VARIABLES: T/K: 303.15	PREPARED BY:
P/kPa: 14.49 - 77.21 (109 - 579 mmHg)	W. Gerrard
EXPERIMENTAL VALUES:	
T/K Pressure Molalit	y Mole Ratio Mol Fraction
p _l /mmHg m _l /mol	$\frac{kg^{-1} n_1/n_3}{2} \frac{x_1}{2}$
303.15 109 0.057	
244 0.132 395 0.205	0.0160 0.0157
579 0.282	
(760	0.0266)1
is distinctly curved cond the highest pressure to 7 The mole ratio and mole f by the compiler. Water-saturated benzene. bubbling HCl into a mixtu of the benzene layer was	The actual plot of x_1 vs. p_1 ave upward. Extrapolation from 60 mmHg gives the value for x_1 . Fraction values were calculated The solution was prepared by are of water and benzene. A sample transferred to the apparatus hine the equilibrium vapor pressure
AUXILI	ARY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus consists of two glass bulbs which are separated by a tap The lower bulb, 200 cm ³ capacity, contains the solvent and some gas space. The upper bulb, 292.6 \pm 0.0 cm ³ capacity, contains the gas.	 generated from sulfuric acid and a good grade ammonium chloride. (2) Water. No information.
The solution is placed in the lowe bulb. The bulbs are then"partially evacuated", the tap opened, and th whole apparatus put in a thermosta for 5 to 7 days.	distillation, and stored over sodium.
The tap is closed. The HCl in the upper bulb is quantitatively remove and titrated with carbonate free sodium hydroxide. The HCl partial pressure is calculated from the bu- volume and the number of moles of HCl. A weighed solution sample is removed from the lower bulb and titrated with carbonate free sodiu hydroxide.	δT/K = 0.02 alb REFERENCES:

COMPONENTS: (1) Hydrogen chlori [7647-01-0] (2) Methylbenzene c [108-88-3]		ORIGINAL MEASUREMENTS: O'Brien, S. J.; Bobalek, E. G. J. Am. Chem. Soc. <u>1940</u> , 62, 3227 - 3230.
	15 - 28.53 L - 214 mmHg)	PREPARED BY: W. Gerrard
EXPERIMENTAL VALUES: T/K Press P1/m		Henry's Mol Ratio Mol Fraction Constant $\frac{n_1}{2}$ $\frac{x_1}{1}$
21	0 0.119 4 0.137	2.16 0.00141 0.00141 2.02 0.00154 0.00153 2.09 0.00428 0.00426 2.06 0.0043 0.00429 2.07 0.0070 0.00696 2.11 0.0109 0.0108 2.05 0.0126 0.0124 2.09 av. 0.0444 $0.0425)^2$
	AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCED	MIDE .	SOURCE AND PURITY OF MATERIALS:
The method and app Saylor (1) as modi al. (2). The main	aratus are those of fied by O'Brien <i>et</i> difference is the y instead of a 5 to n time. ists of two bulbs	f (1) Hydrogen chloride. Prepared from chemically pure potassium chloride and sulfuric acid.
solvent is partial the gas, and the s the lower bulb. T partially evacuate and the whole appa thermostat from 1	ly saturated with olution added to he bulbs are	
The tap is closed. upper bulb is quan	ratus put in a	ESTIMATED ERROR:

P	
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Brown, H. C.; Brady, J. D.
<pre>(2) Methylbenzene or toluene; C₆H₅CH₃; [108-88-3]</pre>	J. Am. Chem. Soc. <u>1952</u> , 74, 3570 - 3582.
VARIABLES: T/K: 194.64 P/kPa: 0.504 - 0.836 (3.78 - 6.27 mmHg)	PREPARED BY: W. Gerrard
EXPERIMENTAL VALUES:	
T/K Pressure Equilibrium Mixtu	are Mol Fraction Henry's Constant
$\frac{p_1/mmHg}{n_1/mmOl} = \frac{1}{n_2/mmOl} \frac{1}{n_2/mmOl}$	
194.64 3.78 0.640 49.4	
4.84 0.824 49.4 6.27 1.061 49.4	
	299 ¹ (0.393 atm)
	alue should not be used indiscrimi- fraction for pressures greater than
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
By means of high precision high vacuum equipment and procedure the change of the pressure of the gas phase due to absorption was accu- rately measured at 194.64 K. The mole fraction of hydrogen	 (1) Hydrogen chloride. Not stated, but may be taken as of high quality. (2) Methylbenzene. Thoroughly attested as of high quality. Values of the boiling point
chloride in the liquid phase was calculated. The solubility was finally expressed as the Henry's constant, K/mmHg = HCl pressure/mole fraction.	and refractive index are in the paper.
Henry's constant is the pressure (numerically) at which $x_1 = 1$, and	ESTIMATED ERROR:
it may deviate widely from the reported value of $p_1^2 = 1.43$ atm	
(1087 mmHg), the vapor pressure of pure liquid hydrogen chloride at 194.64 K.	REFERENCES :

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Parande, M. G.; Kshirsagar, S. N.; Deshpande, A. B.
(2) Methylbenzene or toluene; C _{7^H8} ; [108-88-3]	Pet. Hydrocarbons <u>1969</u> , 4, 17 - 18.
VARIABLES:	PREPARED BY:
T/K: 300.15 - 328.15 HCl P/kPa: 78.93 - 90.66 (592 - 680 mmHg)	W. Gerrard
EXPERIMENTAL VALUES:	
T/K Total Approximate S Pressure HCl Pressure ¹ p _t /mmHg p ₁ /mmHg	olubility Mol Fraction x_1^2 g cm ⁻³ Experiment At One Pressure Atm
300.15 712 680 0	.0002759 0.000809 0.000904
308.15 712 665 0	.0001980 0.000586 0.000669
	.0001677 0.000502 0.000601
328.14 712 592 0	.0001380 0.000423 0.000543
¹ The compiler calculated the approx subtracting the pure toluene vapor at the specified temperature.	imate HCl partial pressure by pressure from the total pressure
² The mole fraction solubility value assuming the solubility represente solvent. The density of pure solv The mole fraction solubility at on compiler assuming a linear change	d g HCl with 1 cm ³ of pure ent was used at each temperature. e atm HCl was obtained by the
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;
Dry hydrogen chloride was bubbled into about 500 cm ³ of solvent which was in a three-necked flask fitted with a stirrer. The pressure was stated to be atmospheric. The passage of gas appeared to be	 Hydrogen chloride. Chemically pure grade hydrochloric acid was added dropwise to chemically pure sulfuric acid. Methylbenzene. Chemically pure sample was distilled, and stored
stopped; the liquid was stirred for "some more time" to remove excess gas; a 5 cm ³ sample of solution was removed for an acid-alkali titration.	over sodium.
The liquid was then stirred 30 to 40 m at the next higher temperature, controlled by a thermostat, and another sample was removed for titration.	ESTIMATED ERROR:
	REFERENCES :
	1

nyarogen emonae m	Non-Addeods Solvents 09
COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Mirsaidov, U.; Dzhuraev, Kh. Sh.; Semenenko, K. N.
(2) Methylbenzene or toluene; C ₇ H ₈ ; [108-88-3]	Dokl. Akad. Nauk Tadzh. SSR <u>1975</u> , 18, 30 - 31.
VARIABLES: T/K = 273.15, 298.15 $p_1/kPa = 101.325 (1 atm)$	PREPARED BY: W. Gerrard
EXPERIMENTAL VALUES:	
T/K Hydrogen Chloride Ma	ol Ratio Mol Fraction
w ₁ /wt%	n_1/n_2 x_1
273.15 2.8 298.15 1.3	0.0729 0.0679 0.0332 0.0322
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Hydrogen chloride was passed into the liquid until the concentration remained constant. The amount dis- solved was determined by an alkali titration. The final pressure was presumably a total pressure equal to the atmospheric pressure.	
	ESTIMATED ERROR:
	REFERENCES :

[7647-01-0] (2) Various orga		ounds	Brown J. Am		EMENTS: rady, J. D. c. <u>1952</u> , 74	
<pre>(3) Methylbenzen C7H8; [108-8</pre>	e, (tolue 8-3]	ene);				
VARIABLES: T/K: 194.64			PREPAI	RED BY:		
p1/kPa: 0.1		55		W. Gerrard	đ	
EXPERIMENTAL VALU Temperature = 194						
Component (2)	P/mmHg	-	ibrium mı:		Mole Fraction	Henry's Constant
·····	, <u> </u>	n ₁ /mmol	ⁿ 2 ^{/mmol}	n ₃ /mmol	×1	K/mmHg
Cyclohexene;	1 74	0.303	4.515	44.96	0.00609	286
C ₆ H ₁₀ ; [110-82-7]	3.38	0.588		44.96	0.01174	288
	5.70	0.995	4.515	44.96	0.01971	289 290 ¹
					(0	.382 atm)
Heptane; C ₇ H ₁₆ ; [142-82-5]	2.25	0.334	4.515	44.96	0.00671	335
-7.16/ (1.2.02.0)	3.50	0.526	4.515	44.96	0.01052	333
	5.90	0.888	4.515	44.96	0.01763	335 3351
2 2 4 7 1 1 4		•			(0	.441 atm)
2,2,4-Trimethyl-1 C ₈ H ₁₆ ; [107-39-1]	-pentene;	0.156	4.515	44.96	0.00314	287
-8-167 (107 01 11	3.33	0.574	4.515	44.96	0.01147	290
	4.75	0.810	4.515	44.96	0.01611	295 2881
¹ The authors' va linear. The He	nry's con	stant val	ue should	not be use	ed indiscrı	minately
	nry's con lues of m	stant val	ue should	not be use	ed indiscrı	minately
linear. The He to calculate va	nry's con lues of m d above.	istant val Nole fract	ue should ion for pi	not be use ressures gi	ed indiscrı reater than	minately the
linear. The He to calculate va maximum recorde	nry's con lues of m d above.	estant val hole fract the value	ue should ion for pi	not be use ressures g y's constan	ed indiscrı reater than	minately the
linear. The He to calculate va maximum recorde The compiler ca	nry's cor lues of m d above. lculated	AUXILIAR	ue should ion for pi s of Henry Y INFORMAT	not be use ressures g y's constan TION	ed indiscrı reater than	minately the mixtures.
<pre>linear. The He to calculate va maximum recorde The compiler ca METHOD/APPARATUS/ By means of high vacuum equipment change of the pre</pre>	nry's cor lues of m d above. lculated PROCEDURE precision and proce ssure of	AUXILIAR AUXILIAR	ue should ion for pr s of Henry Y INFORMA SOURCI (1) I	not be use ressures g y's constan FION E AND PURI Hydrogen cl	ed indiscri reater than nt for the TY OF MATER	minately the mixtures. IALS:
<pre>linear. The He to calculate va maximum recorde The compiler ca METHOD/APPARATUS/ By means of high vacuum equipment change of the pre phase due to abso</pre>	nry's con lues of m d above. lculated PROCEDURE precision and proce ssure of rption wa	AUXILIAR AUXILIAR	ve should ion for pr s of Henry Y INFORMAT (1) H (2,3)	not be use ressures g: y's constan FION E AND PURI Hydrogen cl but may be guality. Thorough	ed indiscri reater than nt for the TY OF MATER hloride. N taken as o ly attested	minately the mixtures. IALS: ot stated f high
<pre>linear. The He to calculate va maximum recorde The compiler ca METHOD/APPARATUS/ By means of high vacuum equipment change of the pre phase due to abso accurately measur The mole fraction chloride in the 1</pre>	nry's con lues of m d above. lculated PROCEDURE precision and proce ssure of rption wa ed at 194 of hydrc iquid pha	AUXILIAR AUXILIAR AUXILIAR the gas the gas the function the function	ue should ion for pr s of Henry Y INFORMAT (1) H (2,3)	not be use ressures gr y's constant FION E AND PURI Hydrogen ch but may be quality. Thorough high quality poiling poi	ed indiscri reater than nt for the TY OF MATER hloride. N taken as o	minately the mixtures. IALS: of stated of high as of of the fractive
<pre>linear. The He to calculate va maximum recorde The compiler ca METHOD/APPARATUS/ By means of high vacuum equipment change of the pre phase due to abso accurately measur The mole fraction chloride in the l calculated. The finally expressed</pre>	nry's con lues of m d above. lculated PROCEDURE precision and proce ssure of rption wa ed at 194 of hydrc iquid pha solubilit as the H	AUXILIAR AUXILIAR AUXILIAR c: high dure the the gas s. 64 K. ogen see was cy was lenry's	ve should ion for pr s of Henry Y INFORMAT (1) H (2,3)	not be use ressures gr y's constant FION E AND PURI Hydrogen ch but may be quality. Thorough high quality onling position	ed indiscri reater than nt for the TY OF MATER hloride. N taken as o ly attested ty. Values ints and re e given in	minately the mixtures. IALS: of stated of high as of of the fractive
<pre>linear. The He to calculate va maximum recorde The compiler ca METHOD/APPARATUS/ By means of high vacuum equipment change of the pre phase due to abso accurately measur The mole fraction chloride in the l calculated. The</pre>	nry's con lues of m d above. lculated PROCEDURE precision and proce ssure of rption wa ed at 194 of hydrc iquid pha solubilit as the H	AUXILIAR AUXILIAR AUXILIAR c: high dure the the gas s. 64 K. ogen see was cy was lenry's	ve should ion for pr s of Henry Y INFORMAT (1) H (2,3)	not be use ressures gr y's constant FION E AND PURI Hydrogen ch but may be quality. Thorough high quality poiling poi	ed indiscri reater than nt for the TY OF MATER hloride. N taken as o ly attested ty. Values ints and re e given in	minately the mixtures. IALS: of stated of high as of of the fractive
<pre>linear. The He to calculate va maximum recorde The compiler ca METHOD/APPARATUS/ By means of high vacuum equipment change of the pre phase due to abso accurately measur The mole fraction chloride in the 1 calculated. The finally expressed constant, K/mmHg fraction, p1/x1.</pre>	nry's con lues of m d above. lculated PROCEDURE precision and proce ssure of rption wa ed at 194 of hydrc iquid pha solubilit as the H = HCl pre	AUXILIAR AUX	ve should ion for pr s of Henry Y INFORMAT (1) H (2,3)	not be use ressures gr y's constant FION E AND PURI Hydrogen ch but may be quality. Thorough high quality onling position	ed indiscri reater than nt for the TY OF MATER hloride. N taken as o ly attested ty. Values ints and re e given in	minately the mixtures. IALS: of stated of high as of of the fractive
<pre>linear. The He to calculate va maximum recorde The compiler ca METHOD/APPARATUS/ By means of high vacuum equipment change of the pre phase due to abso accurately measur The mole fraction chloride in the 1 calculated. The finally expressed constant, K/mmHg fraction, p₁/x₁. Henry's constant (numerically) at</pre>	nry's con lues of m d above. lculated PROCEDURE precision and proce ssure of rption wa ed at 194 of hydro iguid pha solubilit as the H = HCl pre is the pr which x ₁	AUXILIAR AUX	e ESTIMA	not be use ressures gr y's constant FION E AND PURI Hydrogen ch but may be quality. Thorough high quality onling position	ed indiscri reater than nt for the TY OF MATER hloride. N taken as o ly attested ty. Values ints and re e given in	minately the mixtures. IALS: of stated of high as of of the fractive
<pre>linear. The He to calculate va maximum recorde The compiler ca METHOD/APPARATUS/ By means of high vacuum equipment change of the pre phase due to abso accurately measur The mole fraction chloride in the l calculated. The finally expressed constant, K/mmHg fraction, p₁/x₁. Henry's constant (numerically) at it may deviate</pre>	nry's con lues of m d above. lculated PROCEDURE precision and proce ssure of rption wa ed at 194 of hydro iquid pha solubilit as the F = HCl pre is the pr which x1 widely	AUXILIAR AUX	e ESTIMA	not be use ressures g: y's constant FION E AND PURI Hydrogen cl but may be guality. Thorough high quality. Thorough high quality boiling poindices are ATED ERROR	ed indiscri reater than nt for the TY OF MATER hloride. N taken as o ly attested ty. Values ints and re e given in	minately the mixtures. IALS: of stated of high as of of the fractive
<pre>linear. The He to calculate va maximum recorde The compiler ca METHOD/APPARATUS/ By means of high vacuum equipment change of the pre phase due to abso accurately measur The mole fraction chloride in the 1 calculated. The finally expressed constant, K/mmHg fraction, p₁/x₁. Henry's constant (numerically) at</pre>	nry's con lues of m d above. lculated PROCEDURE precision and proce ssure of rption wa ed at 194 of hydro iquid pha solubilit as the F = HCl pre is the pr which x1 widely pi = 1.4 vapor	AUXILIAR AUXILIAR AUXILIAR AUXILIAR AUXILIAR AUXILIAR AUXILIAR AUXILIAR AUXILIAR AUXILIAR AUXILIAR AUXILIAR AUXILIAR AUXILIAR AUXILIAR AUXILIAR AUXILIAR AUXILIAR Composition	e ESTIMA	not be use ressures g: y's constant FION E AND PURI Hydrogen cl but may be guality. Thorough high quality. Thorough high quality boiling poindices are ATED ERROR	ed indiscri reater than nt for the TY OF MATER hloride. N taken as o ly attested ty. Values ints and re e given in	minately the mixtures. IALS: of stated of high as of of the fractive

<pre>COMPONENTS: (1) Hydrogen Chloride; HCl; [7647-01-0] (2) Various organic compounds (3) Methylbenzene, (toluene); C₇H₈; [108-88-3]</pre>		ORIGINAL MEASUREMENTS: Brown, H. C.; Brady, J. D. J. Am. Chem. Soc. <u>1952</u> , 74,				
		ne);	3570 - 3582.			
EXPERIMENTAL VALUE Temperature = 194.					<u> </u>	
Component (2)	P/mmHg	Equilibr			Mole Fraction	Henry's Constant
		n ₁ /mmol n ₂	2/mmo1	n ₃ /mmol	[×] 1	K/mmHg
2,4,4-Trimethy1-2-	pentene;					
C ₈ H ₁₆ ; [107-40-4]	1.30	0.228 4.	515	44.96	0.00459	283
	2.75 4.58		.515 .515	44.96 44.96	0.00953 0.01537	289 298
	4.50	01772 4	. 51 5	41.00		288 ¹
1-Octene;					(0	.379 atm)
C ₈ H ₁₆ ; [111-66-0]	1.95		515	44.96	0.00637	306
	3.00 4.11		.515 .515	44.96 44.96	0.00975 0.01320	308 311
						306¹
Benzene;					(0	.403 atm)
C ₆ H ₆ ; [71-43-2]	1.90		515	44.96	0.00629	302
0 0	3.67		.515 .515	44.96	0.01200	306
	5.80	0.947 4.	. 515	44.96	0.01880	309 3081
					(0	.405 atm)
1,2-Dimethylbenzen C ₈ H ₁₀ ; [95-47-6]	1.40	0.245 4.	.515	44.96	0.00493	284
8 107 1	3.65	0.636 4.	.515	44.96	0.01269	288
	5.15	0.902 4.	.515	44.96	0.01791	288 286 ¹
					(0	.376 atm)
1,3-Dimethylbenzen C ₈ H ₁₀ ; [108-38-3]	le; (m-xy 1.99	lene); 0.359 4.	515	44.96	0.00720	276
8.10' [100 50 5]	2.98	0.542 4.	.515	44.96	0.01084	275
	3.92	0.701 4.	.515	44.96	0.01397	281 2781
					(0	.366 atm)
1,4-Dimethylbenzen	e; (p-xy	lene);				
C ₈ H ₁₀ ; [106-42-3]	2.34	0.402 4. 0.885 4.	.515 .515	44.96 44.96	0.00806 0.01757	290 295
	6.41	1.093 4.	515	44.96	0.02161	297
					(0	294 ¹ .387 atm)
1,2,3-Trimethylben	zene, (h	emimellitene	e);		(0	.507 acm;
C ₉ H ₁₂ ; [526-73-8]	2.88	0.545 4.	.515	44.96	0.01090	264
	4.45 5.61		.515 .515	44.96 44.96	0.01666 0.02107	267 266
			-			265 ¹
1,2,4-Trimethylber	zene (n	seudocumene	•		(0	.349 atm)
C ₉ H ₁₂ ; [95-63-6]	3.36	0.623 4.	.515	44.96	0.01244	270
5 12	4.24		.515	44.96	0.01558	272
	5.49	1.011 4.	.515	44.96	0.02003	274 272 ¹
					(0	.358 atm)
¹ The authors' val linear. The Hen to calculate val maximum recorded	ry's con ues of m		should	not be use	d indiscri	minately

The compiler calculated the values of Henry's constant for the mixtures.

COMPONENTS: (1) Hydrogen Chlo	oride; HC	:1;		AL MEASURE H. C.; Br	EMENTS: ady, J. D.	
[7647-01-0] (2) Various organ				J. Am. Chem. Soc. <u>1952</u> , 74, 3570 - 3582.		
(3) Methylbenzene C ₇ H ₈ ; [108-88		ne);	3570 -	3582.		
EXPERIMENTAL VALUE Temperature = 194.			I			
Component (2)	P/mmHg	Equili	ibrium mix		Mole Fraction	Henry's Constant
		n ₁ /mmol	ⁿ 2 ^{/mmol}	n ₃ /mmol	^x 1	K/mmHg
1,3,5-Trimethylber	izene, (m	esitylene));			
C ₉ H ₁₂ ; [108-67-8]	1.84	0.375	4.515	44.96	0.00752	245
	2.78 4.40	0.547 0.852	4.515 4.515	44.96 44.96	0.01094 0.01693	254 260 254 ¹
					(0	.334 atm)
1,2,3,4-Tetramethy C ₁₀ H ₁₄ ; [488-23-3]	lbenzene	•, (prehnit 0.276	tene); 4.515	44.96	0.00555	241
10 ⁿ 14 ⁱ [400-23-3]	3.05	0.600	4.515	44.96	0.01198	255
	3.85	0.777	4.515	44.96	0.01553	248
					(0	250 ¹ .329 atm)
1,2,3,5-Tetramethy	lbenzene	. (isodure	ene):		(0	.329 atm)
C ₁₀ H ₁₄ ; [527-53-7]	2.50	0.514	4.515	44.96	0.01028	243
10 14	3.61	0.733	4.515	44.96	0.01460	247
					(0	246 ¹ .324 atm)
(Trifluoromethyl)b	enzene,	(benzotrif	fluoride):		(0	• JZ- ACIII)
C ₇ H ₅ F ₃ ; [98-08-8]	2.24	0.335	4.515	44.96	0.00673	333
, , , ,	3.50	0.530	4.515	44.96	0.01060	330
	5.43	0.824	4.515	44.96	0.01638	332 3321
					(0	.437 atm)
Chlorobenzene;					0.00001	212
C ₆ H ₅ Cl; [108-90-7]	1.88	0.299 0.555	4.515 4.515	44.96 44.96	0.00601 0.01109	313 320
	5.53	0.861	4.515	44.96	0.01711	323
						318 ¹
Matriaghlanasthanas					(0	.418 atm)
Tetrachloroethene; C ₂ Cl ₄ ; [127-18-4]	1.54	0.233	4.515	44.96	0.00469	328
2214, [12,110 1]	2.63	0.403	4.515	44.96	0.00808	325
	5.15	0.785	4.515	44.96	0.01571	328
					(0	332 ¹ .437 atm)
Thiophene, (thiofu	ran);				(0	•457 atill)
C ₄ H ₄ S; [110-02-1]	3.80	0.602	4.515	44.96	0.01202	316
7 7	4.92	0.783	4.515	44.96	0.01202	316
	5.89	0.939	4.515	44.96	0.01863	316 316 ¹
(0.416 atm)						
(100% Methylbenzen		0.640		40 475	0 01070	207
	3.78 4.84	0.640 0.824	-	49.475 49.475	0.01278 0.01639	296 295
	6.27	1.061	-	49.475	0.02099	295
	,					2991
					(0	.392 atm)
¹ The authors' val	ue The	nlot of r		a mala fr	action was	road ac

¹ The authors' value. The plot of pressure *vs*. mole fraction was read as linear. The Henry's constant value should not be used indiscriminately to calculate values of mole fraction for pressures greater than the maximum recorded above.

The compiler calculated the values of Henry's constant for the mixtures.

, ,	
COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0] (2) 1,1'-Oxybisethane or diethyl ether; $C_4H_{10}O$; [60-29-7] (3) Methylbenzene or toluene; C_7H_8 ; [108-88-3] VARIABLES: T/K = 273.15, 298.15 $p_1/kPa = 101.325$ (1 atm)	ORIGINAL MEASUREMENTS: Mirsaidov, U.; Dzhuraev, Kh. Sh.; Semenenko, K. N. Dokl. Akad. Nauk Tadzh. SSR <u>1975</u> , 18, 30 - 31. PREPARED BY: W. Gerrard
EXPERIMENTAL VALUES:	
T/K Ether Methylbenz	ene Ratio Hydrogen Chloride ²
n ₂ :n ₃	$10^2 w_{\gamma}$ /wt%
273.15 1:0 1:1	26.5 20.1
3:7	12.7
1:3	11.04
0:1	2.8
298.15 1:0	17.0
3:1	19.0 ¹
1:1	13.5 8 ¹
1:3 0:1	1.3
compiler assumed this wa	s wergnt per cent.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Hydrogen chloride was passed into the liquid until the concentration remained constant. The amount dis- solved was determined by an alkali titration. The final pressure was	 (1) Hydrogen chloride. Obtained from its concentrated aqueous solution by treatment with concentrated sulfuric acid.
presumably a total pressure equal to the atmospheric pressure.	(2) 1,1'-Oxybisethane. Not stated.
	(3) Methyl benzene. Not stated.
	ESTIMATED ERROR:
	DEPENDING
	REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
1. Hydrogen chloride; HCl; [7647-01-0]	Ahmed, W.; Gerrard, W.; Maladkar, V. K.
2. 1,2-Dimethylbenzene; C ₈ H ₁₀ ;	J. Appl. Chem. 1970, 20, 109 - 115.
[95-47-6]	
VARIABLES: T/K: 253.15 - 293.15	PREPARED BY:
Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Ra	
253.15 0.18 263.15 0.13	
273.15 0.10	3 0.0934
283.15 0.07 293.15 0.06	
The mole fraction solubilities were ca	alculated from the mole ratio by the
compiler.	
Smoothed Data: $\ln x_{HC1} = -9.359 + 19$	-
Standard error about	the regression line = 1.03×10^{-3}
T/K	Mol Fraction
	× _{HC1}
253.15 263.15	0.159 0.119
273.15 283.15	0.0917 0.0717
293.15	0.0570
	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Hydrogen chloride was passed into a known weight of liquid in a bubbler	 Hydrogen chloride. Obtained from a cylinder containing a good com-
tube at a total pressure measured by	mercial specimen. Was dried by
a manometer assembly. The absorbed gas was weighed by re-weighing the	passage through concentrated sulfuric acid.
bubbler tube. The temperature was manually controlled to within 0.2 K.	2. 1,2-Dimethylbenzene. Best
The procedure and apparatus are	obtainable specimen was suitably purified, dried, and fractionally
described by Gerrard (1,2). For temperatures below 268 K a	distilled, and attested.
chemical titration was conducted.	
	ESTIMATED ERROR:
	$\begin{array}{rcl} \delta T/K &= & 0.2 \\ \delta X/X &= & 0.015 \end{array}$
	REFERENCES:
	<pre>1. Gerrard, W. J. Appl. Chem. Biotechnol. 1972, 22, 623 - 650.</pre>
	2. Gerrard, W. "Solubility of Gases and Liquids" Plenum Press, New York, 1976

COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>1. Hydrogen chloride; HCl; [7647-01-0]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.	
2. 1,3-Dimethylbenzene; C ₈ H ₁₀ ; [108-38-3]	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.	
VARIABLES:	PREPARED BY:	
T/K: 203.15 - 293.15	W. Gerrard	
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)	
EXPERIMENTAL VALUES: T/K Mol R		
ⁿ HC1/ ⁿ C	8 ^H 10 XHC1	
203.15 1.45		
213.15 0.95		
223.15 0.60 233.15 0.38		
243.15 0.27		
253.15 0.19	5 0.163	
263.15 0.14		
273.15 0.11 283.15 0.08		
293.15 0.07		
The mole fraction solubilities were c compiler.		
Smoothed Data: $\ln X_{ucl} = 9.261 - 6.7$	86/(T/100) - 9.026 ln (T/100)	
Standard error about	regression line = 1.42×10^{-2}	
	Mol Fraction	
_,	X _{HC1}	
203.15	0.621	
213.15	0.471	
223.15	0.359	
233.15 243.15	0.275 0.212	
253.15	0.165	
263.15	0.129	
273.15	0.101	
283.15 293.15	0.0797 C.0632	
	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Hydrogen chloride was passed into a	1. Hydrogen chloride. Obtained from	
known weight of liquid in a bubbler	a cylinder containing a good com-	
tube at a total pressure measured by	mercial specimen. Was dried by	
a manometer assembly. The absorbed	passage through concentrated	
gas was weighed by re-weighing the bubbler tube. The temperature was	sulfuric acid.	
manually controlled to within 0.2 K.	2. 1,3-Dimethylbenzene. Best	
The procedure and apparatus are	obtainable specimen was suitably	
described by Gerrard (1,2).	purified, dried, and fractionally distilled, and attested.	
For temperatures below 268 K a chem-	distilled, and attested.	
ical titration was conducted.		
	ESTIMATED ERROR:	
	$\delta T/K = 0.2$	
	$\delta X/X = 0.04$	
	PEEDENCUS .	
	REFERENCES:	
	1. Gerrard, W. J. Appl. Chem. Biotechnol. <u>1972</u> ,	
1	22, 623 - 650.	
	2. Gerrard, W.	
	"Solubility of Gases and Liquids"	
	Plenum Press, New York, 1976	
	1	

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen chloride; HCl; [7647-01-0]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.
<pre>2. 1,4-Dimethylbenzene; C₈H₁₀; [106-42-3]</pre>	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.
VARIABLES: T/K: 273.15 - 293.15	PREPARED BY:
Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES: T/K Mol Ra	
ⁿ HCl/ ⁿ C	8 ^H 10 ^X HC1
273.15 0.11	
283.15 0.08 293.15 0.06	
The mole fraction solubilities were ca compiler.	arcutated from the more fatio by the
Smoothed Data: $\ln X_{HC1} = -9.752 + 20$.313/(T/100)
Standard error about	regression line = 2.30×10^{-3}
	Mol Fraction
-, •	× _{HC1}
273.15	0.0987
283.15	0.0759
293.15	0.0594
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS;
Hydrogen chloride was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was	 Hydrogen chloride. Obtained from a cylinder containing a good com- mercial specimen. Was dried by passage through concentrated sulfuric acid. 1,4-Dimethylbenzene. Best
manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2).	obtainable specimen was suitably purified, dried, and fractionally distilled, and attested.
	ESTIMATED ERROR: $\delta T/K = 0.2$ $\delta X/X = 0.015$
	REFERENCES: 1. Gerrard, W. J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623 - 650.
	2. Gerrard, W. "Solubility of Gases and Liquids" Plenum Press, New York, 1976

nydrogen chionde in r	von-Aqueous Solvents //	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Parande, M. G.; Kshirsagar, S. N.; Deshpande, A. B.	
<pre>(2) Dimethylbenzene (mixture of isomers); C₈H₁₀; [1330-20-7]</pre>	Pet.Hydrocarbons <u>1969</u> , 4, 17 - 18.	
VARIABLES:	PREPARED BY:	
T/K: 300.15 - 328.15 HCl P/kPa: 93.33 (700 mmHg)	W. Gerrard	
EXPERIMENTAL VALUES:		
T/K Total Approximate S	Solubility Mol Fraction x_1^2	
$\frac{p_t/mmHg}{p_1/mmHg} = \frac{p_t/mmHg}{p_1/mmHg}$	g cm ⁻³ Experiment At One Pressure Atm	
300.15 711 700	0.0005520 0.00187 0.00203	
308.15	0.0004629	
318.15	0.0003750	
328.15	0.0003220	
 ¹ The compiler calculated the approx subtracting the pure solvent vapor at the specified temperature. ² The mole fraction solubility value 	r pressure from the total pressure	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: Dry hydrogen chloride was bubbled into about 500 cm ³ of solvent which was in a three-necked flask fitted with a stirrer. The pressure was	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Chemically pure grade hydrochloric acid was added dropwise to chemically pure sulfuric acid.	
stated to be atmospheric. The passage of gas appeared to be stopped; the liquid was stirred for "some more time" to remove excess gas; a 5 cm ³ sample of solution was removed for an acid-alkali titration.	(2) Dimethylbenzene. Commercial grade sample was distilled, and stored over sodium.	
The liquid was then stirred 30 to 40 m at the next higher temperature, controlled by a thermostat, and another sample was removed for titration.	ESTIMATED ERROR:	
	REFERENCES :	

COMPONENTS :	EVALUATOR:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	H. Lawrence Clever Department of Chemistry Emory University
(2) Alcohols	Atlanta, GA 30322 USA 1984, March; revised 1987, February

An Evaluation of the Solubility of Hydrogen Chloride in Alcohols.

Fifteen papers (ref 1 - 15) report the solubility of hydrogen chloride gas in fourteen linear primary alcohols, four branched primary alcohols, five linear secondary alcohols, and one branched secondary alcohol. Most of the measurements were carried out at a hydrogen chloride partial pressure of 101.3 kPa at several temperatures. Measurements at hydrogen chloride partial pressures less than atmospheric pressure (101.3 kPa) are reported for only methanol, ethanol, and 1-butanol. Seventy per cent of the data are in six papers (ref 5, 7, 8, 9, 13, 14) from the laboratory of Professor W. Gerrard, who has published extensively on the solubility of gases in liquids (ref 16, 17, and references therein).

The solutions saturated at 101.3 kPa partial pressure of hydrogen chloride are concentrated and non-ideal. A number of conductivity studies have been carried out on dilute hydrogen chloride-alcohol solutions, but few experiments have been carried out to characterize the departure from ideal behavior of the concentrated solutions. The nature of the interaction between hydrogen chloride and the alcohol lone pair electrons is still a matter of some controversy as to whether these are strong, moderate, or weak electrolyte interactions.

Table 1 compares the solubilities of hydrogen chloride in the various alcohol solutions liquid at 273.15 and 298.15 K and 101.3 kPa partial pressure hydrogen chloride in units of mole fraction (x_1) , molality $(m_1/mol kg^{-1})$, and concentration $(c_1/mol dm^{-3})$. The solubility of hydrogen chloride in water is included for comparison (ref 18). Table 2 contains a more extensive comparison of mole fraction solubilities for 24 alcohols at ten degree intervals over the experimental range reported.

The experimental data were treated by linear regressions to obtain equations of ln (mole fraction) as a function of temperature. The mole fraction values in Table 1 and 2 are from these equations. Several of the 273.15 K values were extrapolated from values at higher temperature. The mole fraction values in Table 1 are believed to be reliable to 0.5 percent or better. The molality values, calculated directly from the mole fraction values, should be equally reliable. However, the concentration values may be uncertain by several percent. They were approximated by estimating the solution volume to be the sum of the pure hydrogen chloride and alcohol volumes at 273.15 and 298.15 K. The density of liquid hydrogen chloride was taken from (ref 18).

The solubility data in Table 1 show several trends of interest. (*i*) The mole fraction solubility of hydrogen chloride is smaller in water than in any of the alcohols at 273.15 K, but larger in water than in the primary alcohols at 298.15. The secondary alcohols show a larger mole fraction solubility than in water at both temperatures. (*ii*) The mole fraction solubility of hydrogen chloride in the primary alcohols increases with increasing alcohol carbon number from methanol to 1-pentanol at 273.15 K, and from methanol to 1-heptanol at 298.15 K. The largest increase is between methanol and ethanol (5 - 7 %); at higher carbon number alcohols the increase is about the magnitude of the uncertainty in the measurement. (*iii*) The mole fraction solubility is about four percent greater in the secondary alcohol than in the corresponding carbon number primary alcohol at these temperatures.

Individual hydrogen chloride + alcohol systems are discussed below under sections on the effect of hydrogen chloride partial pressure and temperature on the solubility.

I. The solubility of hydrogen chloride in alcohols as a function of partial pressure.

The solubility of hydrogen chloride as a function of pressure

COMPONENTS :	EVALUATOR:
 (1) Hydrogen chloride; HCl; [7647-01-0] (2) Alcohols 	H. Lawrence Clever Department of Chemistry Emory University Atlanta, GA 30322 USA
	1984, March, revised 1987, February

Table 1. Solubility of hydrogen chloride in alcohols. Tentative values of the mole fraction (x_1) , molality $(m_1/\text{mol kg}^{-1})$, and concentration $(c_1/\text{mol dm}^{-3})$ solubilities at 273.15 and 298.15 K at a hydrogen chloride partial pressure of 101.3 kPa.

Alcohol	<i>T</i> /K	<i>x</i> ₁	$m_1/mol kg^{-1}$	$c_1/\text{mol dm}^{-3}$
Water ^a	273.15	0.487	52.8	22.5
	298.15	0.463	47.9	21.4
Lınear (Normal) Primary		0.100		
Methanol	273.15	0.490	30.0	12.4
	298.15	0.419	22.5	9.85
Ethanol	273.15	0.513	22.9	10.7
	298.15	0.448	17.6	8.5
l-Propanol	273.15	0.513	17.5	9.2
	298.15	0.449	13.6	7.3
1-Butanol	273.15	0.520	14.6	8.2
	298.15	0.451	11.1	6.4
l-Pentanol	273.15	0.523	12.4	7.3
	298.15	0.450	9.28	5.6
l-Hexanol	273.15	0.518	10.5	6.5
	298.15	0.454	8.14	5.1
l-Heptanol	273.15	0.516	9.17	5.9
	298.15	0.456	7.21	4.7
l-Octanol	273.15	0.511	8.02	5.3
	298.15	0.452	6.33	4.2
l-Nonanol	273.15 298.15	- 0.449	5.65	- 3.85
l-Decanol	273.15	0.513	6.68	4.6
	298.15	0.460	5.38	3.7
1-Dodecanol	273.15 298.15	_ 0.424	3.95	2.9
Branched Primary Alcoho	ls			
2-Methyl-l-propanol	273.15	0.514	14.3	8.0
	298.15	0.455	11.3	6.4
2-Methyl-l-butanol	273.15	0.526	12.6	7.4
	298.15	0.471	10.1	6.0
3-Methyl-l-butanol	273.15 298.15	0.521	12.3	7.15
2,5,5-Trimethyl-l-hexan	298.15	0.517 0.457	7.42 5.83	5.0 3.95
Linear and Branched Sec 2-Propanol	ondary Alco 273.15	hols 0.530	18.8	9.4
2-Butanol	298.15	0.472	14.9	7.6
	273.15	0.539	15.8	8.6
3-Pentanol	298.15 273.15	0.473	12.1 13.2	6.8 7.6
4-Heptanol	298.15	0.479	10.4	6.1
	273.15	0.535	9.90	6.2
	298.15	0.478	7.88	5.0
2-Octanol 4-Methyl-2-pentanol	273.15 273.15 298.15	0.535 0.547 0.476	8.83 11.8 8.89	5.7 7.0 5.4
^a Ref 18				J • 7

was studied in methanol at 298.15 K, in ethanol at 298.15 K, and in 1-butanol at a number of temperatures between 235 and 326 K. One study estimated the hydrogen chloride solubility at a single small partial pressure from electrochemical measurements in methanol and ethanol at a temperature of 298.15 K. The temperatures, pressure intervals, and number of measurements are summarized below and in Figures 1, 2, and 3.

System	T/K	Pressure Interval	Number	Reference
HCl + Methanol	298.15	5.19-1.116x10 ⁴ Pa	56	11
	298.15	0.11 Pa	1	6
HCl + Ethanol	298.15	14.4 - 625 Pa	5	2
	298.15	62 Pa	1	6
HCl + 1-Butanol	273.15	22.8 - 101.3 kPa	6	9
	278.15	28.3 - 116.9 kPa	6	9
	283.15	34.3 - 136.4 kPa	6	9
	288.15	41.2 - 157.7 kPa	6	9

1. Hydrogen chloride + 1-Butanol [71-36-3]

Gerrard, Mincer and Wyvill (ref 9) report the partial pressure of hydrogen chloride over six solutions as a function of temperature and pressure. There are over 60 measurements that range in temperature from 235.15 to 326.85 K and in hydrogen chloride partial pressure from 22.7 to 170.7 kPa (170 to 1281 mmHg). From these measurements data sets of the solubility of hydrogen chloride as a function of partial pressure were prepared at temperatures of 273.15, 278.15, 283.15, and 288.15. The data are displayed in Figure 1 as a plot of ln $(p_1/kPa)vs$. ln (x_1) . The plots were assumed to be linear, and the data were treated by a linear regression to obtain the intercepts and slopes below:

T/K	Intercept	Slope
273.15	8.6572	6.153
278.15	8.7605	6.044
283.15	8.7876	5.8575
288.15	8.8432	5.7146

The slopes are very near six. They show that the hydrogen chloride mole fraction solubility increases as about the (1/6) power of the partial pressure.

Professor Gerrard has long criticized both the concept and the application of Henry's law. He is correct in that Henry's law does not apply to the HCl + 1-butanol system at these temperatures and pressures. The partial pressure to the (1/6) power is quite different than the limiting first power dependence expected of Henry's law in the limit of low pressure and dilute solution.

At present we have no explanation of the linear $\ln (p_1) vs$. $\ln (x_1)$ relationship of slope near six. As an empirical relationship it appears to be useful. From a single measurement of the solubility at atmospheric pressure one can assume the slope of six and estimate the hydrogen chloride mole fraction solubility down to an HCl partial pressure of near 20 kPa. Figure 1 data do show a slight upward curvature. Thus, it is not advisable to use the relationship at either higher or lower pressures until the relationship is studied over greater pressure intervals.

The hydrogen chloride + 1-butanol data are classed as tentative. The equation $\ln (p_1/kPa) = \text{Intercept} + \text{Slope } \ln (x_1)$ reproduces the data with an average deviation of less than 0.5 percent.

2. Hydrogen chloride + Ethanol [64-17-5]

Jones, Lapworth, and Lingford (ref 2) measured the solubility of hydrogen chloride in ethanol and in a number of ethanol + water mixtures. Only the results for pure ethanol are presented and discussed in this volume. They measured the equilibrium pressure of HCl over solutions of known composition rather than measure directly the solubility. There are five duplicate measurements at hydrogen chloride partial pressures between 14 and 625 Pa. These values are presented in Figure 2 on a $\ln (p_1/kPa)$ vs. $\ln (x_1)$ plot. Also on Figure 2 is a point for the accepted solubility at one atm (101.3 kPa) with a line of slope six drawn through it. The experimental data at

COMPONENTS :	EVALUATOR:
 (1) Hydrogen Chloride; HCl; [7647-01-0] (2) Alcohols 	H. Lawrence Clever Department of Chemistry Emory University Atlanta, GA 30322 USA
	1984, March; revised 1987, February

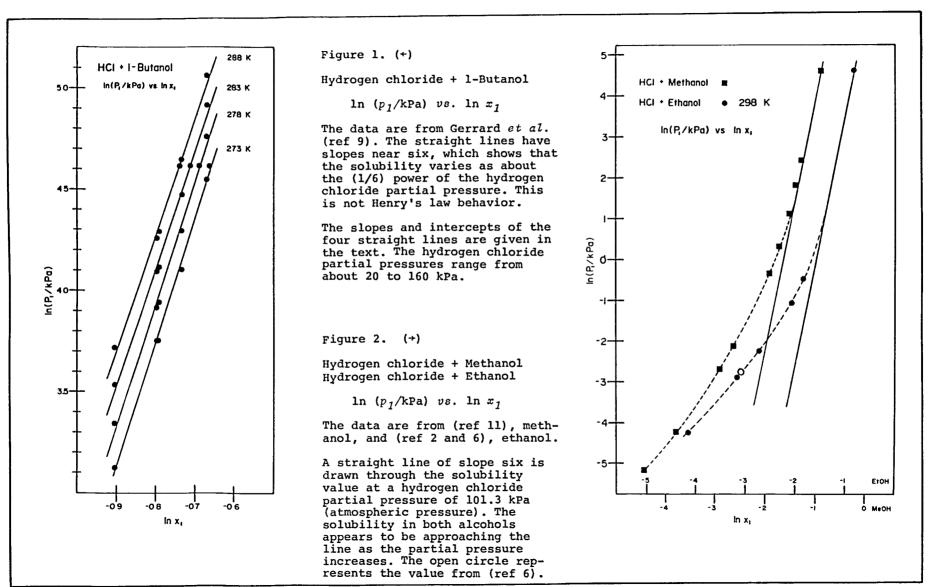
pressures less than 1 kPa deviate from the line of slope six, but do appear to be approaching the line as the partial pressure increases.

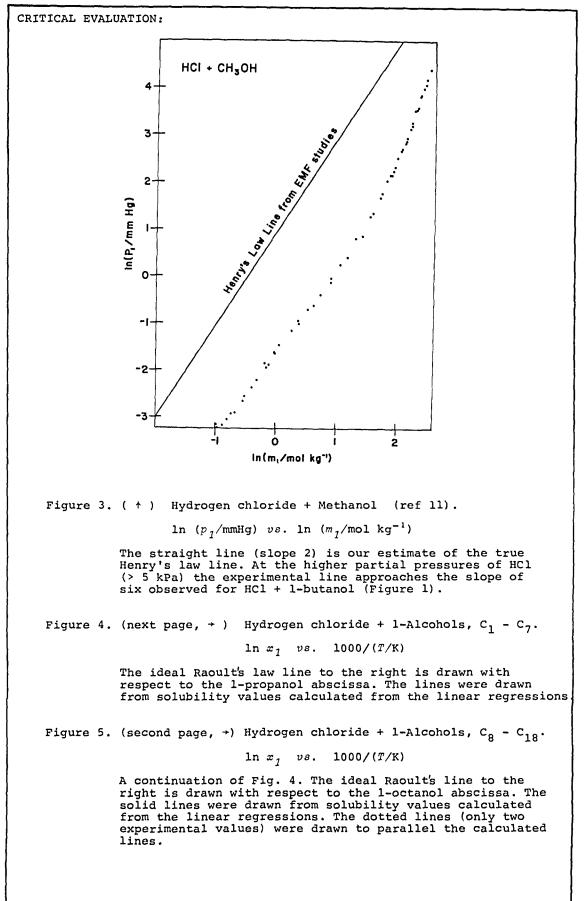
The results are classed as tentative. The experimental values at 298.15 K are given below: HCl partial pressure, p_1 /Pa 14.4 55.6 108. 351 625

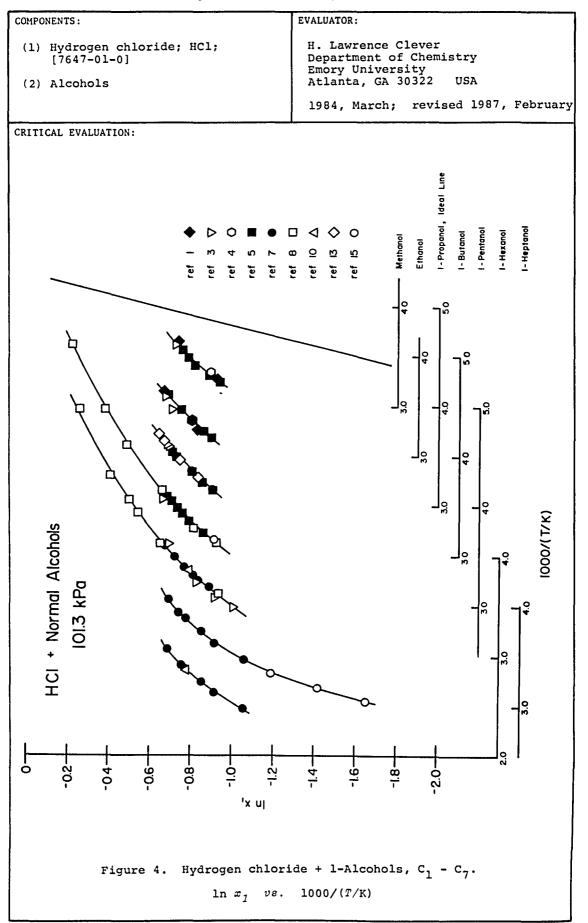
Mole Fraction HCl, x_1 0.0159 0.0425 0.0651 0.1267 0.1642

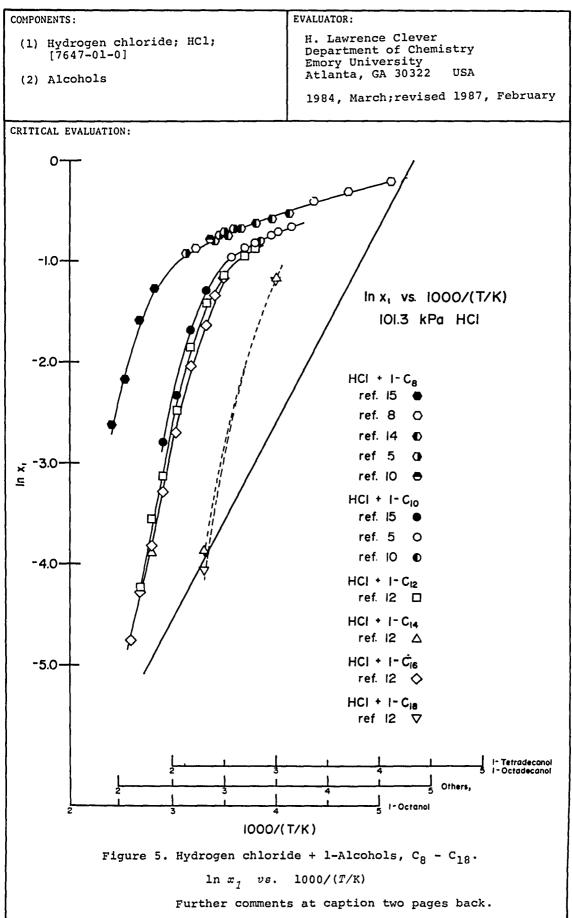
The authors applied the Gibbs-Duhem relation to obtain an equation for the HCl partial pressure as a function of the solution mole ratio. It is interesting that the equation, when extrapolated to atmospheric pressure, gives a solution composition that is within 2 percent of the accepted HCl solubility in ethanol at that pressure.

Fritz (ref 6) estimated an HCl solubility of 0.0461 mole fraction at a partial pressure of 62 Pa. The value is classed tentative. It agrees well with the values of Jones $et \ al$. (ref 2).


3. Hydrogen chloride + Methanol [67-56-1]


Fritz (ref 6) estimated one solubility value at a partial pressure of 0.11 Pa from his analysis of emf results. Schmid, Maschka, and Sofer (ref 11) made 56 measurements of the HCl vapor pressure over HCl + methanol solutions of known composition. The partial pressures ranged from 5.19 to 11160 Pa at 298.15 K. The single value of Fritz does not agree well with the results of Schmid *et al*. The value was not considered further, but the lack of agreement is disturbing since Fritz's solubility value in ethanol appears to be reliable.


Nine of the Schmid *et al.* values are plotted on the $\ln (p_1/kPa) vs$. $\ln (x_1)$ scale of Figure 2. Also on the Figure is a point for the solubility of HCl in methanol at atmospheric pressure with a line of slope six through it. The solubility values at the lower pressures deviates greatly from the line, but the values at partial pressures of 3.08, 6.11, and 11.16 kPa fall almost on the line of slope six. This indicates the empirical observation of the slope six line for the HCl + 1-butanol system may be useful for other systems. For the HCl + methanol system it may allow a reasonable estimation of the solubility down to a partial pressure of 3 kPa.


A further test for Henry's law behavior is shown in Figure 3. All 56 measurements of Schmid *et al.* (ref 11) were used to prepare the Figure of ln (p_1/mmHg) vs. ln $(m_1/\text{mol kg}^{-1})$. The experimental values are compared with a Henry's law line of slope 2 (strong electrolyte assumption) estimated from literature emf measurements in ultradilute solutions. If our estimate is correct, the HCl + methanol system is not in agreement with Henry's law at the pressure of 5.19 Pa (0.0389 mmHg). For the HCl + methanol solutions the relationship for the HCl activity was taken to be $a_1 = a_1^2 = m_1^2 \ \gamma_1^2$.

The data of Schmid, Mashka, and Sofer (ref 11) are classed as tentative. The single value of Frizt (ref 6) is classed as doubtful. The behavior of HCl + methanol solutions at low HCl partial pressures needs further study.

COMPONENTS :	EVALUATOR:
 (1) Hydrogen chloride; HCl; [7647-01-0) (2) Alcohols 	H. Lawrence Clever Department of Chemistry Emory University Atlanta, GA 30322 USA
	1984, March, revised 1987, February

II. The solubility of hydrogen chloride in alcohols as a function of temperature at a hydrogen partial pressure of 101.3 kPa.

There are solubility data on 24 alcohols at a hydrogen chloride partial pressure of 101.3 kPa. Three systems have data at only one temperature, two systems at two temperatures, and for the other nineteen systems the data range from five to over twenty five temperatures. The temperature intervals studied range from 35 degrees for methanol to 220 degrees for l-octanol.

Few of the papers give details of the HCl partial pressure measurement. In many of the experiments the gas is bubbled through the liquid and escapes against'atmospheric'pressure. The depth of the liquid (hydrostatic pressure contribution) and the actual atmospheric (barometer) pressure are not given. There could be an uncertainty in the pressure of several percent. If all of the HCl + alcohol systems show the same (1/6) power of partial pressure dependence of mole fraction as does the HCl + 1-butanol system discussed in section I the effect of pressure would result in only a 0.5 percent uncertainty in the mole fraction solubility.

Most of the papers state the alcohol was dried and protected from water vapor during the experiment. However, none of the papers give a quantitative analysis of the alcohol water content. Jones $et \ al$. (ref 2) studied the effect of water on the solubility of HCl in ethanol. Small amounts of water decrease the HCl solubility in ethanol. This effect is an unknown factor in the other alcohols.

The temperature dependent data have been fitted by the method of least squares to an equation of the type:

 $\ln x_{1} = A_{1} + A_{2}/(T/100 \text{ K}) + A_{3}\ln (T/100 \text{ K}) + A_{4}(T/100 \text{ K}) + A_{5}(T/100 \text{ K})^{2} + \cdots$

Most of the systems were well fitted by a three constant equation, but five systems required four constants (1-butanol, 1-hexanol, 1-decanol, 1-hexadecanol, and 2-butanol), and the 1-octanol systems required five constants. The linear regression equation, its standard error about the regression line in mole fraction, and the experimental temperature range are given for each system in Table 3. Table 2 contains smoothed values of the mole fraction solubility at ten degree intervals within the experimental temperature interval. A few values were extrapolated beyond the experimental temperature range. They are enclosed in ().

Figures 4 and 5 display the experimental data for the linear primary alcohols. The lines were drawn from values calculated from the linear regression equations. The straight line to the right is the Raoult's law ideal solubility line. The maximum deviation from Raoult's law behavior occurs near 335 K for all systems. It appears as if the experimental behavior will approach the Raoult's law line at very high temperatures. The normal boiling point of hydrogen chloride is 188.2 K. At this temperature the ideal mole fraction solubility reaches its limit of unit mole fraction hydrogen chloride.

It is reassuring to see the parallel nature of the $\ln x_1$ vs. 1000/(T/K) plots of Figures 4 and 5. It implies a consistency among the various workers in their measurement of the HCl solubility in alcohols. The data are classed tentative with a few exceptions noted in the following section on the individual systems. The values in the 273 to 313 K interval are believed to be reliable to within one-half or one percent. At the temperature extremes the uncertainty is probably greater, but probably no worse than three to five percent.

Starting at alcohol of carbon number 12 there appears to be a change in the solubility pattern. At 333 K the mole fraction solubility is about four percent less than in the lower molecular weight alcohols. All of the solubility values for alcohols of carbon number 12, 14, 16, and 18 are from the paper of Fernandes and Sharma (ref 12). Whether the change indicates a systematic error in their measurement or a change in the solution property because of increasing fraction of hydrocarbon residue in the alcohol can not be determined. However, there is a possibility that the solubility data for these alcohols is less reliable than the values for the smaller carbon number alcohols.

The individual systems are discussed briefly below. There is additional information on the systems in Tables 2 and 3. Table 2 is arranged to make comparison of the smoothed solubility values for linear primary, branched primary, linear secondary, and branched secondary alcohols easy. The same arrangement is used in the discussion below and in Table 3. There are no HCl solubility data in tertiary alcohols. The tertiary alcohols normally react readily with HCl to form the chloride.

1. HCl + Methanol; [67-56-1]

Lobry de Bruyn (ref 1) reports two, Gerrard and Macklen (ref 5) six, Kohn (ref 3) one, and Chesterman (ref 4) one measurement. The 273.15 K measurement from (ref 1) and the single measurement from (ref 4) were not used in the linear regression. All other values were classed tentative.

2. HCl + Ethanol; [64-17-5]

Lobry de Bruyn (ref 1) reports two, Kohn (ref 3) one, Chesterman (ref 4) two, and Gerrard and Macklen (ref 5) five measurements. The 305.15 K value from (ref 1) and the 288.15 K value from (ref 3) were not used in the linear regression. All other values were classed tentative.

3. HCl + 1-Propanol; [71-23-8]

Kohn (ref 3) reports two, Gerrard and Macklen (ref 5) six, and Cook (ref 13) five measurements. All values were classed as tentative and used in the linear regression.

4. HCl + 1-Butanol; [71-36-3]

Kohn (ref 3) reports three, Gerrard and Macklen (ref 5) seven, Gerrard $et \ al.$ (ref 8) six, Ionin $et \ al.$ (ref 10) one, and Fernandes (ref 15) one measurement. No values from (ref 3) were used. The 273.15 K value of (ref 8) and the 315.15 K value of (ref 15) were not used in the linear regression. All of the values used were classed as tentative.

5. HCl + 1-Pentanol; [71-41-0]

Kohn (ref 3) reports six, Gerrard and Macklen (ref 7) six, Gerrard *et al.* (ref 8) thirteen, and Ionin *et al.* (ref 10) one measurement. The 334.15 K value from (ref 3) and all of the values from the other references were classed as tentative and used in the linear regression.

6. HCl + 1-Hexanol; [111-27-3]

Gerrard and Macklen (ref 7) report six, and Fernandes (ref 15) three measurements. All were classed as tentative and used in the linear regression.

7. HCl + 1-Heptanol; [111-70-6]

Gerrard and Macklen (ref 7) report six, and Ionin $et \ al.$ (ref 10) one measurement. All values were classed as tentative and used in the linear regression.

8. HCl + 1-Octanol; [111-87-5]

Gerrard and Macklen (ref 5) report seven, Gerrard *et al.* (ref 8) four, Ionin *et al.* (ref 10) one, Ahmed *et al.* (ref 14), and Fernandes (ref 15) four measurements. The values at 196.15 and 229.15 K from (ref 8), at 273.15 and 283.15 from (ref 14), and at 353.15 and 373.15 K from (ref 15) were omitted from the linear regression. All other values were classed as tentative.

9. HCl + 1-Nonanol; [143-08-8]

The single measurement of Ionin et al. (ref 10) was classed as tentative.

10. HCl + 1-Decanol; [112-30-1]

Gerrard and Macklen (ref 7) report six, Ionin *et al.* (ref 10) one, and Fernandes (ref 15) four measurments. All values were classed as tentative and used in the linear regression. 1-Decanol melts at 280.1 K, however, the saturated solutions are liquid well below the alcohol's normal m. p. COMPONENTS : EVALUATOR: (1) Hydrogen chloride; HCl; H. Lawrence Clever [7647-01-0] Department of Chemistry Emory University (2) Alcohols Atlanta, GA 30322 USA 1984, March; revised 1987, February CRITICAL EVALUATION: 11. HCl + 1-Dodecanol; [112-53-8] Fernandes and Sharma (ref 12) report the nine measurements on the system. They are classed as tentative and all were used in the linear regression. The authors report the solution at 453.15 K turned brown, however, the solubility value appears consistent with the other values. The 1-dodecanol melts at 297.0 K, but its solutions saturated with HCl are liquid to lower temperatures. Note the comment about these data at the top of the previous page. HC1 + 1-Tetradecano1; [112-72-1]12. Fernandes and Sharma (ref 12) report the two measurements on the system. The values were classed as tentative. HCl + 1-Hexadecanol; [36653-82-4] 13. Fernandes and Sharma (ref 12) report nine measurements. All values were classed tentative and used in the linear regression. HC1 + 1-Octadecano1; [112-92-5]Fernandes and Sharma (ref 12) report two measurements. The values were classed as tentative. HC1 + 2-Methyl-1-propanol; [78-83-1] 15. Gerrard and Macklen (ref 5) report seven measurements. All values were classed as tentative and used in the linear regression. HC1 + 2-Methyl-l-butanol; [137-32-6] 16. Gerrard and Macklen (ref 5) report seven measurements. All values were classed as tentative and used in the linear regression. 17. HC1 + 3-Methyl-1-butanol; [123-51-3] Kohn (ref 3) reports two measurements at 278.15 K. The values were classed tentative, but may be less reliable than values from most other workers. HCl + 2,5,5-Trimethyl-1-hexanol; [3452-97-9] 18. Gerrard and Macklen (ref 5) report five measurements. All values were classed as tentative and used in the linear regression. HC1 + 2-Propano1; [67-63-0]Chesterman (ref 4) reports one, and Gerrard and Macklen (ref 5) five measurements. The single value from (ref 4) appears to be about four percent too small and was not used. The other values were classed as tentative and were used in the linear regression. 20. HCl + 2-Butanol; [78-92-2] Gerrard and Macklen (ref 5) report six measurements from 281.25 to 312.95 K, and Gerrard *et al.* (ref 8) report seven measurements from 198.15 to 319.15 K. All values were classed as tentative and were used in the linear regression. 21. HCl + 3-Pentanol; [584-02-1] 22. HCl + 4-Heptanol; [589-55-9] Gerrard and Macklen (ref 5) report five measurements for each system. All values were classed as tentative and used in the linear regressions. HC1 + 2-Octano1; [123-96-6]Kohn(ref 3) reports one measurement at 279.15 K. The value was classed as tentative, but may be less reliable by 2 - 3 percent than values from other workers. 24. HCl + 4-Methyl-2-pentanol; [108-11-2] Gerrard and Macklen (ref 7) report six measurements from 274.75 to 319.45 K, and Gerrard et al. (ref 8) report nine measurements from 201.15 and 311.15 K. The 307.45 K value from (ref 7) was not used. All other values were classed as tentative and used in the linear regression.

COMPONENT	S:				EVAI	UATOR:			
 (1) Hydrogen chloride; HCl; [7647-01-0] (2) Alcohols 					Dep Emo	H. Lawrence Clever Department of Chemistry Emory University Atlanta, GA 30322 USA			
					198	4, Marc	h, revi	sed 198	7, February
CRITICAL	EVALUATI	ON:	······						
Table 2	val	ues of	the mol		on sol	ubility	at a h	ydrogen	Tentative chloride rature.
	Primar	y Norma	l Alcoh	nols					
	Methanol	Ethanol	l-Propanol	1-Butanol	1-Pentanol	1-Hexanol	l-Heptanol	1-Octanol	l-Nonanol
T/K									
193.15 203.15 213.15				(0.816) 0.767 0.724	(0.799) 0.765 0.729			(0.828) 0.776 0.724	
223.15 233.15 243.15					0.693 0.657 0.622			0.675 0.632 0.595	
253.15 263.15 273.15	- - 0.490	_ 0.513	- 0.513	0.581 0.550 0.520	0.587 0.554 0.523	- - (0.518)	 (0.516)	0.564 0.536 0.511	
283.15 293.15	0.463 0.434	0.488 0.462	0.488 0.463		0.493 0.464	0.493 0.467		0.488 0.464	
298.15	0.419	0.448	0.449	0.451	0.450	0.454	0.456	0.452	0.449 ^a
303.15 313.15 323.15	0.404	0.434 0.407 -	0.436 0.410 -	0.437 0.412	0.437 0.412 0.388	0.414	0.415	0.439 0.412 0.383	-
333.15 343.15 353.15					0.366	0.359 0.330 0.301	0.360 - -	0.350 0.314 0.276	
363.15 373.15 383.15						0.272 0.244 0.217		0.237 0.198 0.160	
393.15 403.15 413.15						0.190		0.126 0.095 0.070	
423.15 433.15 443.15								-	
453.15 463.15									

Values in () were extrapolated outside the range of experimental measurement.

COMPONENTS	S:				EVALUAT	OR:		·····		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>					Depar	H. Lawrence Clever Department of Chemistry				
(2) Alcohols						Emory University Atlanta, GA 30322 USA				
						1984, March, revised 1987, February				
CRITICAL E				<u> </u>						
Table 2	value	es of th	e mole	fractio	n solubil	chloride in Lity of hydro function of	ogen ch	ls. Tentative loride at a ature.		
Primary Normal Alcohols						Branched	l Prim	ary Alcohols		
	l-Decanol	1-Dodecanol	l-Tetradecanol	1-Hexadecanol	1-Octadecanol	2-Methyl-l- propanol	2-Methyl-1- butanol	3-Methyl-l- butanol		
T/K										
193.15 203.15 213.15										
223.15 233.15 243.15										
253.15 263.15 273.15	- 0.513					- (0.514)	_ _ (0.526)	- 0.521 ^C		
283.15 293.15	0.492 0.471	-				0.492 0.468	0.505 0.482	-		
298.15	0.460	(0.424)		-		0.455	0.471			
303.15 313.15 323.15	0.448 0.420 0.388	0.421 0.399 0.364	-	(0.398) (0.365)	-	0.442 0.415 -	0.459 0.435 -			
333.15 343.15 353.15	0.350 0.309 0.266		0.313 ^b	0.315 0.260 0.207	0.309 ^b					
363.15 373.15 383.15	0.223 0.181 0.143	0.186 0.148 0.115		0.160 0.122 0.092						
393.15 403.15 413.15	0.109 0.081 0.058	0.089 0.067 0.050		0.069 0.051 0.039						
423.15 433.15 443.15	- - -	0.037 0.027 0.020	0.021	0.029 0.022 0.017	0.018 ^b					
453.15 463.15 473.15		0.014		0.014 0.011 0.009						
b experimental values. c estimated from two experimental values at a higher temperature.										

COMPONEN				1				9
		ide. HCl.		1	UATOR:	re Cleve)r	
	<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>			De	H. Lawrence Clever Department of Chemistry			
(2) Alcohols				Emory University Atlanta, GA 30322 USA				
8				19	84, Mar¢	ch, rev	ised 1987,	February
					<u> </u>			
	EVALUATION: 2 (continued	l). Solubil	ity of h	vdrog	en chlo	ride in	alcohols.	Tentative
	values of	the mole pressure of	fraction	solu	bility d	of hydro	ogen chlor	ide at a
	Parciar P							
(cont.)	Linea	ar and Br	anche	d Second	lary Alo	CONOIS	
i i	L L							
	,5-Trimethyl -hexanol							
	ime nol	01	d.	01	01	н	4-Methyl- 2-pentanol	
	-Tr exa	pan	ano	itan	tan	ano	thy l enta	
	1-72	2-Propanol	2-Butanol	3-Pentanol	-Heptanol	2-Octanol	-Met 2-pe	
	7	5-	5	'n	4	2-	4	
T/K								
193.15 203.15			0.779				(0.831) 0.793	
213.15			0.732				0.755	
223.15 233.15			0.691 0.656				0.717 0.680	
243.15			0.624				0.645	
253.15	-	-	0.594	-	-	-	0.610	
263.15 273.15	(0.517)	(0.530)	0.566 0.539 (0	- .535)	(0.535)	0.535 ^d	0.578 0.547	
283.15 293.15	0.495 0.470	0.508 0.484		.514			0.517 0.489	
298.15	0.457	0.472	0.473 0	.479	0.478		0.476	
303.15	0.444	0.460		.467	0.466		0.463	
313.15 323.15	0.418	0.435	0.435 0 (0.410)				0.438	
333.15	-	-	-					
343.15 353.15	-	-	-					
363.15								
373.15								
293.15 403.15								
413.15								
423.15 433.15 443.15								
453.15 463.15 473.15								
d esti	mated from a	a single va	lue at a	high	er temp	erature	•	
	es in () ar rimental mea			ues f	rom out:	side the	e range of	the the

Table 3. Hydrogen chloride in alcohols. Smoothing equation from linear regression, standard error about regression line (mole fraction), temperature range of experimental measurements. 1-Hexadecanol Methanol $\ln x_7 = (387.1453 \pm 113.6435)$ $\ln x_1 = (18.1997 \pm 7.0628)$ -(543.9591 ± 163.0653)/(T/100K) -(275.4782 ± 82.3463)ln(T/100K) -(23.8284 ± 9.9260)/(T/100K) $-(10.1400 \pm 3.4162) \ln(T/100K)$ +(31.9656 ± 10.3266)(T/100K) $\sigma = 0.0025$ $\sigma = 0.0063$ 273.15 - 307.35 K 333.15 - 473.15 K Ethanol $\ln x_1 = (13.6149 \pm 3.5862)$ 1-Octadecanol $-(17.7142 \pm 5.0459)/(T/100K)$ No equation, only two values. 2-Methyl-1-propanol $-(7.7589 \pm 1.7323) \ln(T/100K)$ $\ln x_1 = (15.2839 \pm 1.1420)$ $\sigma = 0.0021$ -(20.2632 ± 1.6281)/(T/100K) -(8.4901 ± 0.5451)ln(T/100K) 273.15 - 313.25 K 1-Propanol $\ln x_1 = (12.4129 \pm 0.5637)$ $\sigma = 0.0006$ -(16.0956 ± 0.7919)/(T/100K) 279.15 - 319.55 K 2-Methyl-l-butanol $-(7.1532 \pm 0.2727) \ln(T/100K)$ $\ln x_1 = (10.1079 \pm 1.7033)$ = 0.0005 -(13.1798 ± 2.4235)/(T/100K) 267.65 -315.15 K $-(5.8961 \pm 0.8149) \ln(T/100K)$ 1-Butanol $\sigma = 0.0009$ $\ln x_1 = -(5.3500 \pm 1.800)$ 277.85 - 318.35 K $+(8.4593 \pm 2.4336)/(T/100K)$ 3-Methyl-l-butanol $+(6.9795 \pm 1.9422) \ln(T/100K)$ No equation, only two values. $-(1.9819 \pm 0.3824)(T/100K)$ 2,5,5-Trimethyl-l-hexanol $\sigma = 0.0015$ $\ln x_1 = (13.2973 \pm 0.4197)$ 195.15 - 318.15 К -(17.4507 ± 0.5958)/(T/100K) 1-Pentanol $-(7.5306 \pm 0.2012) \ln(T/100K)$ $\ln x_1 = (4.9597 \pm 0.3413)$ -(5.4332 ± 0.4510)/(T/100K) $\sigma = 0.0001$ 280.05 - 313.65 K $-3.6021 \pm 0.1737) \ln(T/100K)$ $\sigma = 0.0033$ 2-Propanol $\ln x_1 = (11.5269 \pm 1.2174)$ 201.15 = 334.15 K $-(15.0957 \pm 1.7321)/(T/100K)$ 1-Hexanol $-(6.6035 \pm 0.5822) \ln(T/100K)$ $\ln x_1 = -(45.5683 \pm 12.2455)$ $\sigma = 0.0005$ $\overline{+}(62.9042 \pm 16.8788)/(T/100K)$ 280.55 - 316.45 K $+(46.3840 \pm 10.2143) \ln(T/100K)$ 2-Butanol $-(9.0526 \pm 1.5359)(T/100K)$ $\ln x_1 = -(12.3518 \pm 7.7459)$ $\sigma = 0.0014$ +(17.7961 ± 10.4797)/(T/100K) 279.85 - 393.15 $+(13.9946 \pm 8.2996) \ln(T/100K)$ 1-Heptanol $-(3.2378 \pm 1.6256)(T/100K)$ $\ln x_{1} = (16.6621 \pm 1.3802)$ -(22.1457 ± 1.9973)/(T/100K) $\sigma = 0.0057$ 198.15 - 319.15 K $-(9.1718 \pm 0.6496) \ln(T/100K)$ 3-Pentanol $\sigma = 0.0013$ $\ln x_1 = (10.6744 \pm 1.3536) \\ -(13.9682 \pm 1.9251) / (T/100K)$ 279.15 - 337.35 K 1-Octanol $\ln x_1 = (75.6012 \pm 28.4597)$ $-(6.1562 \pm 0.6476) \ln(T/100K)$ -(158.4921 ± 48.8758)/(T/100K) $\sigma = 0.0005$ $-(200.3029 \pm 52.1084) \ln(T/100K)$ 280.35 - 316.55 K +(82.3919 ± 18.1865)(T/100K) 4-Heptanol $\ln x_1 = (9.9919 \pm 0.5128)$ -5.6328 ± 1.0389) (T/100K) $-(12.9965 \pm 0.7326)/(T/100K)$ $\sigma = 0.0087$ $-(5.8317 \pm 0.2443) \ln(T/100K)$ 196.15 - 413.15 K $\sigma = 0.0002$ 1-Nonanol 283.05 -318.45 K No equation, only one experimental value. 2-Octanol 1-Decanol $\ln x_1 = -(175.8767 \pm 68.5805)$ No equation, only a single value. $+(239.8244 \pm 94.5801)/(T/100K)$ 4-Methyl-2-pentanol $\ln x_1 = (4.0718 \pm 0.6401) \\ -(4.2973 \pm 0.8340)/(T/100K)$ $+(170.1297 \pm 56.6925) \ln(T/100K)$ $-(30.5853 \pm 8.4252)(T/100K)$ $-(3.0877 \pm 0.3305) \ln(T/100K)$ $\sigma = 0.0088$ 273.15 - 413.15 K $\sigma = 0.0065$ 201.15 - 319.45 K 1-Dodecanol $\ln x_1 = (89.8907 \pm 7.6611)$ $-(129.0024 \pm 12.1823)/(T/100K)$ $-(43.4629 \pm 3.3184) \ln(T/100K)$ $\sigma = 0.0093$ 303.15 - 453.15 K 1-Tetradecanol No equation, only two values.

COMPO	NENTS:	EVALUATOR:						
(1)	Hydrogen Chloride; HCl; [7647-01-0]	H. Lawrence Clever Department of Chemistry Emory University						
(2)	Alcohols	Atlanta, GA 30322 USA						
		1984, March, revised 1987, February						
CRITI	CAL EVALUATION:							
REFI	ERENCES:							
1.	Lobry de Bruyn, C. A. Z. Phys. C	Chem. <u>1892</u> , 10, 782-9.						
2.	. Jones, W. J.; Lapworth, A.; Lingford, H. M. J. Chem. Soc. <u>1913</u> , 103, 252-63.							
3.	Kohn, G. Ber. Dtschn. Ghem. Ges. B. <u>1932</u> , 65, 589-95.							
4.	Chesterman, D. R. <i>J. Chem. Soc.</i> <u>1935</u> , 906-10.							
5.	Gerrard, W.; Macklen, E. D. J. A	1ppl. Chem. <u>1956</u> , 6, 241-4.						
6.	Fritz, J. J. J. Phys. Chem. 19	<u>956</u> , <i>60</i> , 1461.						
7.	Gerrard, W.; Macklen, E. D. J. A	1ppl. Chem. <u>1959</u> , 9, 85-8.						
8.	Gerrard, W.; Mincer, A. M. A.; Wy 9, 89-93.	vill, P. L. J. Appl. Chem. <u>1959</u> ,						
9.	Gerrard, W.; Mincer, A. M. A.; Wy 10, 115-21.	vill, P. L. J. Appl. Chem. <u>1960</u> ,						
10.	Ionin, M. V.; Kurina, N. V.; Sudo Tekhnol. <u>1963</u> , (1), 47-8.	oplatova, A. E. Tr. po Khim.i Khim.						
11.	Schmid, H.; Maschka, A.; Sofer, H	I. Monatshefte <u>1964</u> , 95, 348-58.						
12.	Fernandes, J. B.; Sharma, M. M.	Indian Chem. Eng. <u>1965</u> , 7, 38-40.						
13.	Cook, T. M. Thesis 1966, Gerrar	rd, W.,Adviser, University of London.						
14.	Ahmed, W.; Gerrard, W.; Maladkar, 109-15.	, V. K. J. Appl. Chem. <u>1970</u> , 20,						
15.	Fernandes, J. B. J. Chem. Eng. L	Data <u>1972</u> , 17, 377-9.						
16.	Gerrard, W. Solubility of Gases of 1976, 275 pp.	and Liquids, Plenum Press, New York,						
17.	Gerrard, W. Gas Solubilities, Per 1980, 497 pp.	rgamon Press, Oxford and New York,						
18.	Rupert, F. F. J. Am. Chem. Soc. national Critical Tables <u>1928</u> , 3	<u>1909</u> , <i>31</i> , 851-66; See also <i>Inter-</i> 3, 104.						

COMPONENTS :	6	ORIGINAL MEASUREMENTS:				
<pre>(1) Hydrogen chloride; HCl [7647-01-0]</pre>	;	Lobr	y de Bruyn,	С. А.		
(2) Methanol; CH ₄ O; [67-56	-11	2. P	hys. Chem.	<u>1892</u> , <i>10</i> , 782 - 789.		
(2) Methanor, cn_4 0, co_{-30}		Recl. Trav. Chim. Pays-Bas <u>1892</u> , 11, 112 - 157.				
VARIABLES: T/K = 273.15, p = "baromet	304.85	PREPARED BY: W. Gerrard				
EXPERIMENTAL VALUES:				<u> </u>		
Temperature P	arts HCl by		Mol Ratio	Mol Fraction		
	weight for 10			<i>x</i> ₁		
0 273.15	105		0.922	0.480		
31.7 304.85	75.1		0.659	0.397		
The compiler calcu	lated the mo	ole ra	tio and mol	e fraction values.		
	-					
· · · · · · · · · · · · · · · · · · ·			<u></u>			
	AUXILIARY	INFORMA	TION			
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:				
The gas was passed into a	weighed	(1) 1	lydrogen ch	loride. Definite		
amount of methanol in a b 3 cm ³ capacity until equi	librium was			not given.		
reached at the observed t and at a total pressure o		(2) 1	Methanol. S oure alcoho	imply stated that l was used.		
760 - 770 mmHg (barometri bulb was sealed "à la lam	c). The					
weighed. A titration was	also					
mentioned, but the statem vague.	ent is					
-						
	1	ESTIMA	TED FROMP.			
		ESTIMA	TED ERROR:			
		ESTIMA	TED ERROR:			
		ESTIMA				

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Kohn, G.
(2) Methanol	Ber. Dtschn. Chem. Ges. B. <u>1932</u> , 65, 589 - 595.
or Ethanol	
VARIABLES: T/K: 275.15 - 334.15	PREPARED BY:
P/kPa: 101 (atmospheric)	W. Gerrard
EXPERIMENTAL VALUES:	
T/K Alcohol Hydroge	n Mol Ratio Mol Fraction
Chlorid wt/g wt/g	$n_{1/n_{2}}^{e}$
Methanol; CH ₄ O; [67	-56-1]
276.15 19.9 21.4	0.944 0.486
Ethanol; C ₂ H ₆ O; [64	-17-5]
277.15 20.6 16.8	1.029 0.507
288.15 31.7 24.5	0.975 0.494
	INFORMATION
METHOD/APPARATUS/PROCEDURE: The hydrogen chloride was passed to the alcohol in a measuring cylinder in an ice-salt mixture. The temperature, "end temperature" was recorded, and the absorbed gas was weighed. The pressure was presumably atmospheric.	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Prepared from sodium chloride and sulfuric acid, and dried by sulfuric acid. (2) Alcohols. Kahlbaum specimens.
	ESTIMATED ERROR:
	ówt∕g = 0.1
1	REFERENCES :

,

COMPONENTS :		ORIGINAL MEASUREMENTS:
(1) Hydrogen cl [7647-01-0]		Chesterman, D. R.
(2) Alcohols	-	J. Chem. Soc. <u>1935</u> , 906 - 910.
VARIABLES:		PREPARED BY:
T/K: Total P/kPa:		W. Gerrard
EXPERIMENTAL VALUE	S:	
	T/K Observed Sol Pressure g HCl o p/mmHg	Lubility Mol Fraction y^{-1} Solution x_1
Me	ethanol; CH ₄ O; [67-56-1]	
29	98.15 750	0.44 0.41
Et	hanol; C ₂ H ₆ 0; [64-17-5]	
	98.15 752	0.39 0.45
2-	-Propanol; C ₃ H ₈ O; [67-63	3-0]
	98.15 771	0.17 0.25
	······································	y values were calculated by
	AUXILIARY	INFORMATION
METHOD APPARATUS /	PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
METHOD APPARATUS / PROCEDURE: The apparatus was that used for the conductivity. A sample of the saturated solution was removed, weighed, the hydrogen chloride was reacted with excess base which was back titrated with a standard acid solution.		 Hydrogen chloride. Prepared from conc. sulfuric acid and pure sodium chloride. Passed through sulfuric acid and over P₂O₅.
		<pre>(2) Methanol. Was stated to be the purest obtainable. Freed from acetone, dried with sodium, b.p./°C (759 mmHg) = 66.0.</pre>
		Ethanol. Was stated to be the purest obtainable. Dried with calcium oxide, b.p./°C (752 mmHg) = 77.7.
		2-Propanol. Was stated to be the purest obtainable. Dried over calcium, b.p./°C (745 mmHg) = 80.5.

COMPONENTS:	ORIGINAL M	EASUREMENTS:	
(1) Hydrogen chloride; HCl;		.; Macklen, E.D.	
[7647-01-0]		hem. <u>1956</u> , 6, 24	
(2) Alcohols		<i>new.</i> <u>1990</u> , 0, 24	1-244
VARIABLES:	PREPARED B		
T/K: See below Total P/kPa : 101.325 (1 atm)	W. G	errard	
EXPERIMENTAL VALUES:	K Mole ratio	Mole* Sm	oothed**
·	ⁿ HCl ^{/n} alcohol	fraction mole	fraction
	·····	*нсі	*нсі
Methanol; CH ₄ O; [67-56-1] 273	3.15		0.487
275	5.25 0.933).35 0.883	0.483 0.469	
	8.15	0.409	0.462
	5.55 0.835	0.455	
	1.85 0.785 3.15	0.440	0.435
	0.75 0.700	0.412	
	3.15 7.35 0.645	0.392	0.405
	3.15		0.374
Smoothing equation: $\ln x_{HC1} = 21.1$ Standard error in x_{HC1} about	83 - 28.125/(T/ the regression	100) - 11.550 lr line = 1.27 × 1	(T/100) 0 ⁻³
Ethanol; C ₂ H ₆ O; [64-17-5] 273	3.15		0.513
- 276	5.15 1.021	0.505	0 407
	3.15 3.75 0.895	0.472	0.487
	8.15	0.440	0.461
	7.55 0.816 3.15	0.449	0.434
	7.15 0.732	0.423	
	8.25 0.686 8.15	0.407	0,408
Smoothing equation: ln x _{HCl} = 11.6 Standard error in x _{HCl} about	531 - 14.943/(T/ the regression	100) - 6.795 ln(line = 2.46 × 1	T/100) 0 ⁻³
* calculated by the compiler ** smoothing equation and smoothe	ed values were c	alculated by H.I	. Clever
AUXILIA	ARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND	PURITY OF MATER	IALS:
Hydrogen chloride was generated in an all-glass apparatus.		gen chloride: se red and dried.	lf-
The all-glass absroption vessel (50 cm^3) comprised an inlet bubble tube, an outlet tube, and the part holding a weighed amount of liquid	er were	ols: high grade distilled and at	
Each tube was fitted with a tap, a		ERROR: $\delta T/K = \pm 0.1$	
either a B-19 cone, or a B-19 sock Entrained liquid was collected and	$\delta x_{max}/\delta$	$x_{HC1} = \pm 0.005 \text{ to}$	0.01
allowed for. Temperature control			
was within 0.1 K. The amount of c absorbed was determined by weighin		:	

97

Hydrogen Chloride in Non-Aqueous Solvents

	OPICINAL NEACOPROPERTY
COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Gerrard, W.; Macklen, E.D.
(2) Alcohols	J. Appl. Chem. <u>1956</u> , 6, 241-244
EXPERIMENTAL VALUES: T/K	Mole ratio Mole* Smoothed** HCl ^{/n} alcohol fraction mole fraction ^x HCl ^x HCl
1-Propanol; C ₃ H ₈ O; [71-23-8] 273.1 275.6 281.6	5 1.028 0.507
283.1 285.5	5 0.488 5 0.932 0.482
293.1 298.7 303.1	5 0 . 811 0 . 448
307.3 313.1	0.740 0.425
315.1 323.1	
Smoothing equation: $\ln x_{HC1} = 12.983$ Standard error in x_{HC1} about the	- 16.900/(T/100) - 7.428 ln(T/100) e regression line = 2.67 × 10 ⁻⁴
2-Propanol; C ₃ H ₈ O; [67-63-0] 273.11 280.5	
283.1 289.7	0.508 0.970 0.492
293.1 300.4 303.1	0.877 0.467
306.4 313.1	5 0.824 0.452 5 0.435
316.4 323.1	
Smoothing equation: ln x _{HCl} = 13.166 Standard error in x _{HCl} about the	- 17.405/(T/100) - 7.395 ln(T/100) e regression line = 6.64 × 10 ⁻⁴
1-Butanol; C ₄ H ₁₀ O; [71-36-3] 273.1 277.1 281.9	5 1.023 0.506
283.1 286.8 291.0	5 0.925 0.481 5 0.887 0.470
293.1 298.1	0.827 0.453
303.11 308.9 313.11	0.732 0.423
318.1 323.1	o 0.660 0.398
Smoothing equation: $\ln x_{HC1} = 13.723$ Standard error in x_{HC1} about the	- 17.945/(T/100) - 7.779 ln(T/100) e regression line = 7.31 × 10 ⁻⁴
2-Butanol; C ₄ H ₁₀ O; [78-92-2] 273.15 281.25	0.533
283.1 283.3	0.512 5 1.046 0.511
291.4! 293.1! 298.6!	o.489
303.1 304.0	0.465
312.99	o.793 0.442
Smoothing equation: ln x _{HCl} = 10.431 Standard error in x _{HCl} about the * calculated by the compiler	- 13.623/(T/100) - 6.043 ln(T/100) e regression line = 2.12 × 10 ⁻³
** smoothing equation and smoothed v	values were calculated by H.L. Clever

98

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0] (2) Alcohols	G	errard, W.	ASUREMENTS: ; Macklen, em. <u>1956</u> , 6	E.D.
EXPERIMENTAL VALUES:				
	•	ele ratio /n _{alcohol}		Smoothed** mole fraction ^x HCl
[78-83-1] 21	73.15 79.05 83.15 85.55	1.008	0.502	0.514 0.492
2 2 2 2	88.05 92.25 93.15	0.922 0.886 0.840	0.480 0.470 0.457	0.468
3	03.15 06.45 13.15	0.766	0.434	0.442 0.416
3		0.661	0.398	0.389
Smoothing equation: ln x _{HCl} = 15 Standard error in x _{HCl} abou	.284 - 2 t the re	0.263/(T/1 gression l	00) - 8.490 ine = 5.92) ln(T/100) × 10 ⁻³
[584-02-1] 5 12 2		1.083	0.520	0.535 0.514
2	93.15	0.979	0.495	0.491
3	03.05 03.15 06.15	0.878	0.468 0.460	0.467
3	13.15 16.55	0.771	0.435	0.443
	23.15 .674 - 1	3.968/(T/1	00) - 6.156	0.419 5 ln(T/100)
Smoothing equation: $\ln x_{HC1} = 10$ Standard error in x_{HC1} abou		gression 1	ine = 5.39	
[137-32-6] 2	73.15 77.85 83.15	1.068	0.516	0.526
2	84.95 91.55 93.15	1.004 0.948	0.501 0.487	0.482
2		0.899	0.473	0.459
3	03.55 12.95 13.15	0.844 0.771	0.458 0.435	0.436
3	18.35	0.736	0.424	0.412
Smoothing equation: ln x _{HCl} = 10 Standard error in x _{HCl} abou	.108 - 1 t the re	3.180/(T/1 egression l	00) - 5.896 ine = 9.03	$\frac{1}{10} \ln(T/100) \times 10^{-3}$
<pre>* calculated by the compiler ** smoothing equation and smoot</pre>	hed valu	aes were ca	lculated by	'H.L. Clever

99

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0] (2) Alcohols	ORIGINAL ME Gerrard, W. J. Appl. Ch	; Macklen,	E.D.
,	Mole ratio Cl ^{/n} alcohol	Mole* fraction ^x HCl	
4-Heptanol; C ₇ H ₁₆ O; 283.05 [589-55-9] 283.15 286.65	1.054	0.513	0.513
293.15 294.45	0.950	0.487	0.490
303.15 306.15 313.15	0.850	0.459	0.466 0.442
318.45 323.15	0.753	0.430	0.419
Smoothing equation: $\ln x_{HC1} = 9.992 - Standard error in x_{HC1}^{HC1}$ about the	12.996/(T/10 regression 1	00) - 5.832 Line = 1.80	2 ln(T/100)) × 10 ⁻⁴
1-Octanol; C ₈ H ₁₈ O; [111-87-5] 273.15 278.45	1.021	0.505	0.516
283.15 285.65 289.65	0.951 0.912	0.487 0.477	0.494
- 293.15 299.15 303.15	0.827	0.453	0.469 0.443
304.05 311.15	0.788 0.728	0.441 0.421	0.113
313.15 319.75 323.15	0.661	0.398	0.416 0.389
Smoothing equation: $\ln x_{HC1} = 14.392$ - Standard error in x_{HC1} about the	18.962/(T/1 regression 1	100) - 8.07 Line = 6.23	2 ln(T/100) 3 × 10 ⁻³
3,5,5-Trimethyl-1-hexanol; 273.15 C ₉ H ₂₀ O; [3452-97-9] 280.05	1.009	0.502	0.517
283.15 290.45 293.15	0.912	0.477	0.494 0.470
300.45 303.15 308.25	0.820 0.759	0.451 0.431	0.444
313.15 313.65	0.739	0.431	0.418
323.15 Smoothing equation: $\ln x_{HC1} = 13.297$ -	17.451/(T/1	00) - 7.53	0.392 1 ln(T/100)
Standard error in x _{HCl} about the	regression 1	line = 1.35	5 × 10 ⁻⁴
<pre>** calculated by the compiler ** smoothing equation and smoothed va</pre>	lues were ca	alculated b	by H.L. Clever

	NENTS:				ORIGINAL MEASUREM	ENTS :	
(1)		gen chlori	de; HCl;		· · · · · · · · · · · · · · · · · · ·		
/		-01-0]			Fritz, J. J.		
(2)	Metha	nol; CH ₄ O;	l67 - 56-1	1	J. Phys. Chem	1956, 60	0, 1461.
	Ethan	ol; C ₂ H ₆ O;	[64-17-5	1			
VARIA	BLES:				PREPARED BY:		
	Р	T/K = 298 1/Pa = 0.1			H	I. L. Clever	r
EXPER	IMENTAL	VALUES:					
_	Temp	erature			Molality	Mol Ratio	
	t∕°C	<i>Т/</i> К		ssure p ₁ /atm	m ₁ /mol kg ⁻¹	n ₁ /n ₂	Fraction ^x 1
	1	Methanol					
	25	298.15 Ethanol	8x10 ⁻⁴	1.1×10 ⁻⁶	0.56	0.0179	0.017 ₆
	25		0.46	6.1x10 ⁻⁴	1.00	0.0461	0.0440
					ب العرب و الم		
METHO				AUXILIARY	INFORMATION		
ጥ	D/APPAR	ATUS / PROCEDU	RE:	AUXILIARY	INFORMATION SOURCE AND PURITY	OF MATERIALS	:
	he vap	ATUS/PROCEDU or pressur d from			· · · · · · · · · · · · · · · · · · ·	OF MATERIALS	:
cal	he vap culate	or pressur	e of HCl		· · · · · · · · · · · · · · · · · · ·		:
cal 1	he vap culate n $f_1 =$	or pressur d from	e of HCl - E)	was	SOURCE AND PURITY		:
cale li whe: ^H 2,	he vap culate n f_1 = re E i Pt/HC	or pressur d from $(F/RT) (E_g^0)$ s the volt l(alcohol)	e of HCl - E) age of th /AgCl, Ag	was e cell	SOURCE AND PURITY		:
cale li whe: H ₂ , and	he vap culate n $f_1 =$ re E i Pt/HC E_q^0 i	or pressur d from (F/RT)(E ⁰ g s the volt	e of HCl - E) age of th /AgCl, Ag dard pote	was e cell	SOURCE AND PURITY		::
cald li whe: H ₂ , and the T Har: value	he vap culate n $f_1 =$ re E i Pt/HC $E_{\mathcal{G}}^{0}$ i cell he E v ned an ue was	or pressur d from $(F/RT) (E_g^0)$ s the volt l(alcohol) s the stan	e of HCl - E) age of th /AgCl, Ag dard pote ugacity. taken fr f l), and	was e cell , ntial of om the E_q^0	SOURCE AND PURITY NO informa ESTIMATED ERROR:		

COMPONENTS:	ORIGINAL MEASUREMENTS:			
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Schmid, H.; Maschka, A.; Sofer, H.			
(2) Methanol; CH ₄ O; [67-56-1]	Monatshefte <u>1964</u> , 95, 348 - 358.			
VARIABLES:	PREPARED BY:			
T/K = 298.15				
$p_1/kPa = 5.19 - 11.159$ (0.0389 - 83.7 mmHg)				
METHOD/APPARATUS/PROCEDURE:	· · · · · · · · · · · · · · · · · · ·			
METHOD/APPARATUS/PROCEDURE: The solution of HCl in methanol was prepared freshly each day, because of the slow conversion into chloromethane as reported by Carter and Butler (1). The molality of the solution for use in the vapor pressure measurements was determined by acid-akkali titration. Dry nitrogen was passed through the solution of the stated molality at 298.15 K slowly enough to give an effluent gas "saturated" with HCl and methanol. The effluent gas was passed into the first of two U-tubes to absorb the HCl in 0.5 N-NaOH, and most of the methanol, the increase in weight and a potentiometric titration (AgNO ₃) giving the contents. The remaining methanol and entrained water vapor was collected in the second U-tube containing water-free magnesium chloride. The nitrogen was collected in a gasometer. The partial pressures, p_1 and p_2 were calculated by assuming the validity of Dalton's law.				
-				
The authors used the data of Oiwa (ref 2) to establish that Henry's constant in $f_1 = ka_1$ is 2.58 mmHg.				
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
	ESTIMATED ERROR:			
	DEEEDENCIA			
	REFERENCES:			
	l. Carter, S. R.; Butler, J. A. V. J. Chem. Soc. <u>1924</u> , 125, 963.			
	 Oiwa, I. T. J. Phys. Chem. <u>1956</u>, 60, 754. 			

COMPONENTS.							
COMPONENTS:					ORIGINAL MEASUREMENTS:		
	<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>			I.; Maschka,	A.; Sofer, H.		
(2) Methanol; CH ₄ O; [67-56-1]			Monatshej	fte <u>1964</u> , 95	5, 348 - 358.		
EXPERIMENTAL VA	LUES:						
<i>T/</i> K	 Partial	Pressures		Mol Ratio	Mol Fraction		
	HCl p ₁ /mmHg	CH3OH p2/mmHg		n ₁ /n ₂	<i>x</i> ₁		
298.15	0.0417 0.0389 0.0417 0.0473 0.0531 0.0538 0.0705 0.0772 0.0932	124.6 125.1 125.1 124.0 123.2 124.3 126.6 124.6 122.6	0.375 0.379 0.416 0.446 0.478 0.507 0.580 0.598 0.67	0.0120	0.0119		
	$\begin{array}{c} 0.110\\ 0.154\\ 0.141\\ 0.152\\ 0.201\\ 0.194\\ 0.231\\ 0.310\\ 0.386\\ 0.365\\ 0.492 \end{array}$	119.8 123.2 122.7 122.0 121.0 120.3 120.3 119.6 119.3 119.1 116.6	0.73 0.825 0.85 0.885 0.975 0.98 1.04 1.28 1.43 1.45 1.67	0.0234	0.0228		
	0.516 0.671 0.961	115.6 113.2 111.8	1.84 2.06 2.45	0.0589	0.0556		
	0.903 1.27 1.49 2.21 2.34 3.63 4.01	110.7 107.8 105.4 102.7 101.2 97.2 94.4	2.46 2.85 3.23 3.67 4.12 4.6 4.85	0.0787	0.0730		
	5.32 5.77 7.94 8.63 8.61 9.37	91.7 90.4 90.8 84.7 87.5 79.2	5.45 5.6 6.05 6.45 6.6 6.8	0.174	0.149		
	10.2 12.4 14.8 15.2 17.4 17.8 19.1	79.6 82.9 78.5 77.2 77.5 73.4 70.4	6.9 7.25 7.75 7.85 8.25 8.3 8.4	0.221	0.181		
	23.1 26.4 24.7 33.4 33.8 34.8 36.1	69.1 70.9 68.6 66.1 68.0 65.1 65.6	8.9 9.15 9.55 9.55 9.55 9.9 10.1	0.285	0.222		
	45.8 47.6 54.5 58.9 65.4	55.1 60.9 55.4 51.3 51.2	10.5 10.55 11.15 11.45 11.7	0.336	0.251		

83.7

44.9

12.4

0.397

0.284

COMPONENTS :	ORIGINAL MEASUREMENTS:
 (1) Hydrogen chloride; HCl; [7647-01-0] (2) Ethanol; C₂H₆O; [64-17-5] 	Lobry de Bruyn, C. A. <i>Z. Phys. Chem.</i> <u>1892</u> , <i>10</i> , 782 - 789. <i>Recl. Trav. Chim. Pays-Bas</i> <u>1892</u> , <i>11</i> , 112 - 157.
VARIABLES: T/K = 273.15, 305.15 p = "barometric"	PREPARED BY: W. Gerrard

EXPERIMENTAL VALUES:

Tempe	rature	Parts HCl by		Mol Fraction
t∕°C	<i>Т/</i> К	weight for 100 parts of ethanol ¹	ⁿ 1 ^{/n} 2	<i>x</i> ₁
0	273.15	83	1.047	0.512
32	305.15	61.6	0.777	0.437

¹ Equivalent to g of gas per 100 g of solvent.

•

The mole ratio and mole fraction values were calculated by the compiler.

AUXILIARY INFORMATION				
ME THOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:			
The gas was passed into a weighed amount of ethanol in a bulb of 2 - 3 cm ³ capacity until equilibrium was reached at the observed temperature and at a total pressure of about 760 - 770 mmHg (barometric). The bulb was sealed "à la lampe," and weighed. A titration was also mentioned, but the statement is vague.	 (1) Hydrogen chloride. Definite information not given. (2) Ethanol. Simply stated that pure alcohol was used. ESTIMATED ERROR: REFERENCES: 			

COMPONENTS :			ORIGIN	AT. MEASUR	FMENTS .	
			ORIGINAL MEASUREMENTS:			
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>			Jones, W. J.; Lapworth, A.; Lingford, H. M.			
(2) Ethanol; C ₂ H ₆ O; [64-17-5]			J. Ci	hem. Soc	e. <u>1913</u> , <i>103</i> , 252-263.	
VARIABLES: T/K = 298.15 $p_1/Pa = 14.4 - 625$ (0.108 - 4.69 mmHg)			PREPAR	ED BY:	H. L. Clever	
EXPERIMENTAL VAL	LUES:	<u> </u>	<u> </u>			
<i>Т/</i> К	T/K Hydrogen Hydrogen Chloride Chloride Pressure Concentration		Mole Ratio Mol Fraction			
	p ₁ /mmHg		n ₁ ,	/n ₂	<i>x</i> ₁	
298.15	0.108 0.417 0.811 2.63 4.69	0.275 0.751 1.168 2.390 3.188	0.0	0162 0444 0696 1451 1965	0.0159 0.0425 0.0651 0.1267 0.1642	
ſ	760.	10.45	0.1	82	0.45] ¹	
	ta for the	aqueous ethano	l solu	itions a	s of water per dm ³ . are not included in	
		AUXILIARY				
METHOD/APPARATUS/PROCEDURE: A solution of dry ethanol + hydrogen chloride was prepared and placed in the middle of a three bubbler train. The first bubbler contained pure ethanol, the second the solutio of known composition, and the third contained water.		(1) H (2) H (2) H	Hydrogen given. S Iried. Ethanol. alcohol calcium	ITY OF MATERIALS: a chloride. Source not Stated to be carefully Commercial absolute was distilled from turnings. The ethanol was $\rho_4^{2.5}/g$ cm ⁻³ = 0.784	93.	
Hydrogen gas, prepared from zinc and dilute hydrochloric acid, suitably purified and dried, was passed through the system. The volume of hydrogen gas was measured. The HCl transferred from the alcohol solution to the water was titrated against standard barium hydroxide.				$\delta p_1/mm$	R: $T/K = \pm 0.05$ $Hg = \pm 0.03$ $x_1 = \pm 0.025$ (Compiler)
The HCl pressure over the ethanol + hydrogen chloride solution of known concentration was calculate from the hydrogen volume, amount of hydrogen chloride, and the vapor pressure of pure ethanol.			đ			

105

	· · · · · · · · · · · · · · · · · · ·				
COMPONENTS:			ORIGINAL MEASUREMENTS:		
(1) Hydrogen ch [7647-01-0]	loride; HCl;		Kohn, G.		
			<i>Ber. Dtschn</i> 65, 589 - 5	. Chem. Ges. B. <u>193</u> 95.	<u>2</u> ,
or					
1-Butanol					
	75.15 - 334.1	5	PREPARED BY:		
P/kPa: 1	01 atmospheric)			W. Gerrard	
EXPERIMENTAL VALUES	:			······································	
T	/K Alcohol	Hydrogen	Mol Ratio	Mol Fraction	
	wt/g	Chloride wt/g	ⁿ 1 ^{/n} 2	<i>x</i> 1	ſ
	1-Propanol;	с ₃ н ₈ 0; [7	71-23-8]		
276 277	.15 31.2 .15 25.2	19.3 15.5	1.018 1.012	0.505 0.503	:
	1-Butanol;	C ₄ H ₁₀ 0; [7	71-36-3]		
278	.15 30.2	14.3	0.961	0.490	
279	.15 30.0 .15 30.9	15.6 16.1	1.056 1.058	0.513 0.514	
	····	AUXILIARY	INFORMATION	· · · · · · · · · · · · · · · · · · ·	
METHOD/APPARATUS/PROCEDURE: The hydrogen chloride was passed to the alcohol in a measuring cylinder in an ice-salt mixture. The temperature, "end temperature", was recorded, and the absorbed gas was weighed. The pressure was presumably atmospheric.			(1) Hydroge sodium acid, a	RITY OF MATERIALS: n chloride. Prepar chloride and sulfur nd dried by sulfuri s. Kahlbaum specim	ic c acid.
			ESTIMATED ERF	OR: δwt/g = 0.1	

	•	
Components :	ORIGINAL MEASUREMENTS:	
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Cook, T. M.	
2. 1-Propanol; C ₃ H ₈ O; [71-23-8]	Thesis, <u>1966</u> University of London	
3 0		
VARIABLES:	PREPARED BY:	
T/K: 267.65 - 304.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard	
10tal F/KFa: 101.525 (1 atm)	(smoothed data calculated by H.L. Clever)	
EXPERIMENTAL VALUES:		
T/K Mol Ratio	Mol Fraction	
ⁿ HC1/ ⁿ C ₃ H ₈ C		
267.65 1.110 273.15 1.052	0.526 0.513	
	0.493	
288.55 0.901	0.474	
304.15 0.767	0.434	
The mole fraction values were calculat	ed by the compiler.	
	066/(T/100) - 6.790 ln (T/100)	
Standard Error About F	Regression Line = 7.11 x 10^{-4}	
	Nol Fraction	
	x _{HC1}	
263.15 273.15	0.536 0.513	
283.15	0.489	
293.15	0.463	
303.15 313.15	0.434 0.411	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The data were cited by Gerrard (1).	1. Hydrogen chloride. Sample of best guality was self prepared, and was	
Hydrogen chloride was passed into a	passed through concentrated sul-	
bubbler tube containing a weighed	furic acid and calcium chloride.	
amount of solvent at the specified	2. 1-Propanol. Purified and attested	
temperature until the increase in		
weight was constant at the barometric pressure (2).		
For temperatures below 273 K a weighed amount (excess) of pyridine		
was quantitatively injected into the		
absorption vessel at the temperature	ESTIMATED ERROR:	
of the thermostat. The tube was then weighed at room temperature.	$\delta x_1 / x_1 = 0.005$	
Chen werghen at room temperature.		
	REFERENCES: 1. Gerrard, W.	
	J. Chim. Phys. 1964, 61, 73;	
	Solubility of Gases in Liquids,	
	Plenum Press, New York, <u>1976</u> .	
	2. Ahmed, W.; Gerrard, W.; Maladkar, V. K. J. Appl. Chem.	
	<u>1970</u> , 20, 109.	

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.		
(2) Alkanols	J. Appl. Chem. <u>1959</u> , 9, 89-93.		
VARIABLES:	PREPARED BY:		
T/K: See below Total P/kPa : 101.325 (1 atm)	W. Gerrard		
EXPERIMENTAL VALUES: T/K	Mole ratio Mole* Smoothed** HCl ^{/n} alkanol fraction mole fraction		
	HCl [] HCl		
1-Butanol; C ₄ H ₁₀ O; [71-36-3] 193.15 195.15	0.812 4.127 0.805		
203.15	0.769		
213.15 223.15			
223.15			
243.15			
253.15	0.579		
263.15			
273.15			
283.15 293.15	0.487 0.460		
303.15	0.435		
304.15	0.740 0.436		
* 313.15	0.412		
318.15 323.15	0.660 0.398 0.390		
<pre>Smoothing equation: ln x_{HCl} = 3.548 - Standard error in x_{HCl} about the * calculated by the compiler ** smoothing equation and smoothed va</pre>	regression line = 3.04 × 10		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The liquid component was weighed in a bubbler tube. The amount of gas absorbed was determined by reweighing to constant weight. The total pressure was barometric, very nearly 1 atm (101.325 kPa).	 Hydrogen chloride: good specimen from a commercial cylinder was dried. Alkanols : carefully purified, and purity rigourously attested. 		
For determination at temperatures	ESTIMATED ERROR: $\delta T/K = \pm 2$ below 273 K $\delta x_{HCl}/x_{HCl} = \pm 0.005$ to 0.015		
below 273 K, a chemical titration was carried out. After the maximum			
absorption at the stated temperature, the bubbler was attached to a flask			
containing one dm ³ of water, and allowed to warm slowly to room temperature (12 hours). The contents of the bubbler tube were then added to the water, and the total chloride ion was determined by the Volhard method. A low temperature, Teddington-type YM	REFERENCES:		
thermostat was used for temperatures below 273 K, the control being to ±2 K.			

r			
COMPONENTS:	ORIGINAL ME	ASUREMENTS	5:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W. Wyvill, P.		A. M. A.;
(2) Alkanols	J. Appl. Ch	em. <u>1959</u> ,	9, 89-93.
EXPERIMENTAL VALUES: T/K	Mole ratio	Mole*	Smoothed** mole fraction
	HCl ^{/n} alkanol	^x HC1	^x HC1
2-Butanol; C ₄ H ₁₀ O; [78-92-2] 193.15 198.15 203.15		0.805	0.824
213.15		0.731	0.736
223.15		0.694	0.696
233.15 243.15		0 6 2 4	0.659
243.15	1.000	0.624	0.624 0.592
263.15			0.562
273.15		0.534	0.534
283.15			0.508
293.15 303.15	0.955	0.488	0.484 0.461
313.15			0.440
319.15	0.738	0.425	
323.15			0.420
Smoothing equation: $\ln x_{HC1} = 2.062 - Standard error in x_{HC1}$ about the	1.776/(T/100 regression 1) - 2.029 ine = 4.10	ln(T/100)) × 10 ⁻³
1-Pentanol; C ₅ H ₁₂ O; [71-41-0] 193.15			0.798
201.15	3.424	0.774	
203.15			0.765
213.15			0.730 0.694
231.15	1.985	0.665	0.004
233.15			0.658
243.15		0 607	0.622
245.65 253.15	1.545	0.607	0.588
253.65	1.397	0.583	0.500
263.15			0.554
273.15			0.522
275.15	1.091	0.522	0.492
293.15			0.463
294.15		0.464	
298.05	0.816	0.449	
300.15 303.15	0.803	0.445	0.436
305.55	0.761	0.432	0.430
306.55	0.742	0.426	
310.25	0.716	0.417	A 44-
313.15 314.05	0.695	0.410	0.410
314.03	0.641	0.391	
323.15			0.386
Smoothing equation: $\ln x_{HC1} = 5.154 - Standard error in x_{HC1}$ about the	5.677/(T/100 regression l) - 3.707 ine = 3.72	ln(T/100) 2 × 10 ⁻³
* calculated by the compiler			
** smoothing equation and smoothed va	alues were ca	lculated b	y H.L. Clever
			-

Gerrard, W Wyvill, P.	Chem. <u>1959</u> , Mole*	A. M. A.; 9, 89-93.
Wyvill, P. J. Appl. (Iole ratio 1 ^{/n} alkano) 4.232 3.060 2.486 1.852 1.576	. L. Chem. <u>1959</u> , Mole* fraction ^x HCl 0.809 0.754 0.713 0.649 0.612	9, 89-93. Smoothed** mole fraction ^x HCl 0.791 0.756 0.719 0.683 0.683 0.648 0.614 0.581
lole ratio 21 ^{/n} alkano 4.232 3.060 2.486 1.852 1.576	Mole* fraction *HC1 0.809 0.754 0.713 0.649 0.612	Smoothed** mole fraction ^x HCl 0.791 0.756 0.719 0.683 0.648 0.614 0.581
4.232 3.060 2.486 1.852 1.576	1 fraction *HC1 0.809 0.754 0.713 0.649 0.612	mole fraction ^x HCl 0.791 0.756 0.719 0.683 0.648 0.614 0.581
4.232 3.060 2.486 1.852 1.576	1 fraction *HC1 0.809 0.754 0.713 0.649 0.612	mole fraction ^x HCl 0.791 0.756 0.719 0.683 0.648 0.614 0.581
4.232 3.060 2.486 1.852 1.576	[×] HC1 0.809 0.754 0.713 0.649 0.612	0.791 0.756 0.719 0.683 0.648 0.614 0.581
3.060 2.486 1.852 1.576	0.754 0.713 0.649 0.612	0.756 0.719 0.683 0.648 0.614 0.581
3.060 2.486 1.852 1.576	0.754 0.713 0.649 0.612	0.756 0.719 0.683 0.648 0.614 0.581
2.486 1.852 1.576	0.713 0.649 0.612	0.719 0.683 0.648 0.614 0.581
1.852 1.576	0.649 0.612	0.719 0.683 0.648 0.614 0.581
1.852 1.576	0.649 0.612	0.683 0.648 0.614 0.581
1.576	0.612	0.648 0.614 0.581
1.576	0.612	0.614 0.581
1.576	0.612	0.581
1.576		0.581
		0.581
1.249	0.555	
	0.555	0.347
		0.519
		0.491
0 055	0 400	0.491
0.955	0.488	
		0.464
0.802	0.445	
		0.438
.964/(T/10 egression	00) - 3.350 line = 7.66	× 10 ⁻³
		0.821
4.184	0.807	
		0.774
2.681	0.728	0.729
		0.687
1 972	0 664	
1.772	0.004	0.648
		0.612
		0.577
		0.545
		0.516
		0.488
		0.462
		0.438
0.731	0.422	-
		0.416
	0.826 0.802 .964/(T/1/ egression 4.184 2.681 1.972 0.731 .476/(T/1) egression	0.826 0.452 0.802 0.445 .964/(T/100) - 3.350 egression line = 7.66 4.184 0.807 2.681 0.728 1.972 0.664

COMPONENTS :			ORIGINAL	MEASUREMEN	ITS:	
				Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.		
(2) l-But	(2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]		J. Appl.	Chem. <u>1960</u>	<u>)</u> , <i>10</i> , 115 - 121.	
Variation		ature and pres- le fraction.			ature and pres- ble fraction (cont.)	
Т/К	Pressure P1 ^{/mmHg}	Mol Fraction	T/K	Pressure P1 ^{/mmHg}	Mol Fraction	
273.65 279.75 284.35 293.15 298.55 303.65 308.15 312.15 315.95 319.15 322.95 326.85	174 230 263 307 371 448 531 617 687 754 821 884 973	0.405	235.15 240.65 246.85 254.65 261.45 266.95 267.45 277.15 281.05 281.05 282.55 284.75 286.55 288.15	170 211 252 338 438 542 546 709 847 962 1008 1077 1131 1182	0.512	
273.15 277.35 283.05 286.55 290.55	321 366 453 504 575	0.451	Variation fraction	of pressu at constan	re and mole t temperature.	
291.95 295.15 300.75 306.15 309.15 311.65 315.35	608 673 805 945 1031 1124 1249		T/K	Pressure <u>p₁/mmHg</u> 171 321 321 456 710	x1 0.405 0.451 0.454 0.480 0.512	
272.15 279.75 283.55 290.35 293.35 298.55 305.65	309 408 466 593 652 779 972	0.454	278.15	760 212 377 387 552 760 877	0.516 0.405 0.451 0.454 0.480 0.503 0.512	
310.95 257.15 259.15 262.75 267.45 273.15 277.35	1116 261 281 305 368 456 533	0.480	283.15	257 451 461 659 760 1023 309	0.405 0.451 0.454 0.480 0.491 0.512 0.405	
277.35 278.25 285.15 290.15 293.35 297.95 299.15 303.75	555 708 841 928 1079 1115 1281			531 548 759 783 1183	0.401 0.451 0.454 0.478 0.480 0.512	
			See nex informa		additional	

<u></u>	
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
(2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	J. Appl. Chem. <u>1960</u> , 10, 115 - 121.
VARIABLES: T/K : 235.15 - 326.85 p_1/kPa : 22.66 - 170.79 (170 - 1281 mmHg)	PREPARED BY: W. Gerrard
EXPERIMENTAL VALUES:	
See preceding pag	ge.
	INFORMATION
METHOD/APPARATUS/PROCEDURE: To measure the total pressure, taken to be p_1 , a weighed amount of 1-but- anol was put into a flask fitted with a capillary bubbler tube through which the gas was passed into the liquid at approximately room temper- ature. By suitable adjustments of taps the flask was attached to the tapped end of a U-tube manometer containing mercury, the other limb being open to the atmosphere; the pressure, p_1 , was measured to within	(2) 1-Butanol. The sample was purified by a standard technique, and the purity was rigorously attested.
1 mmHg for the condition of equilibriu at each recorded temperature. From a plot of p_1 vs. T/K the value of T/K for $p_1 = 1$ atm was read; and the separately determined mole fraction for that T/K (1) was taken to be the x_1 value for the series. Data for the five series were reporte as on the preceding page. From the set of p_1 vs. T/K curves, data given in the second table above were obtained.	$\delta p_1/\text{mmHg} = \pm 1$ REFERENCES:

		·····	Toproryus services		
COMPONENTS :			ORIGINAL MEASUREMENTS:		
(1) Hydrogen cl [7647-01-0]		Ionin, M. V.; Kurina, N. V.; Sudoplatova, A. E.		
<pre>(2) 1-Butanol; C₄H₁₀O; [71-36-3] 1-Pentanol; C₅H₁₂O; [71-41-0] 1-Hexanol; C₆H₁₄O; [111-27-3]</pre>			Tr. po Khim. i Khim. Tekhnol. <u>1963</u> , (1), 47 - 48.		
VARIABLES:		PREPARED BY:			
T/K: 298.15 Total p/kPa: 101.3 (atmospheric)			Ψ.	Gerrard	
EXPERIMENTAL VALUE	S:				
	Refractive		Concentration	Mol Ratio	Mol Fraction
	$\frac{\operatorname{Index}^{1}}{n_{D}^{298}}$	Density p/g cm ⁻³	$c_1/mol dm^{-3}$	n1/n2	<i>x</i> 1
	1-Butanol				
298.15	1.3992	0.93130	7.38	0.823	0.451
	1-Pentanol				
298.15	1.4098	0.90946	6.37	0.829	0.453
1	1-Hexanol				
298.15	1.4179	0.90466	5.54	0.805	0.446
		AUXILIARY	INFORMATION	n	<u></u>
METHOD/APPARATUS/P	ROCEDURE :		SOURCE AND PURITY OF MATERIALS:		
The gas was ab which was not probably barom the solution w pyknometer. Th absorbed was d alkali titrati	osorbed at a stated, and letric. The o vas determine he hydrogen o letermined by	was lensity of ed by a chloride	 (1) Hydrogen sodium c acid. Dr (2) 1-Alkano 	chloride. hloride and ied by calc	Prepared from sulfuric ium chloride. not given.
				:	
]					
			REFERENCES :		

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Fernandes, J. B.
(2) l-Butanol; C ₄ H ₁₀ O; [71-36-3]	J. Chem. Eng. Data <u>1972</u> , 17, 377 - 379.
VARIABLES: $T/K = 315.15$ $p_1/kPa = 101.325$ (1 atm)	PREPARED BY: H. L. Clever
EXPERIMENTAL VALUES:	
Temperature Mol	Ratio Mol Fraction
t∕°C T∕K n	$1/n_2 x_1$
42 315.15	0.66 0.40
The mole fraction va the compiler.	lue was calculated by
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The value above was credited to unpublished work of J. B. Fernandes and M. M. Sharma, University of Bombay, 1966. It is assumed the method was a chemical titration.	No information.
	ESTIMATED ERROR:
	ESTIMATED ERROR:
	ESTIMATED ERROR: REFERENCES:

COMPONENTS :			ORIGINAL MEAS	SUREMENTS:
(1) Hydrogen chlori 7647-01-0	ide; HCl;		Kohn, G.	
(2) 1-Pentanol			Ber. Dt8c 65, 589 -	hn. Chem. Ges. B. <u>1932</u> , 595.
or				
3-Methyl-1-buta			PREPARED BY:	
T/K: 27 P/kPa: 10	5.15 - 33 01 tmospheri		TREFACED DI.	W. Gerrard
EXPERIMENTAL VALUES:			· ··· ··· ···	
T/K	Alcohol		Mol Ratio	Mol Fraction
	wt/g	Chloride wt/g	ⁿ 1 ^{/n} 2	<i>x</i> 1
	-Pentanol 71-41-0]	or 1-amyl	alcohol; C	5 ^H 12 ^O ;
275,15	55.0	22.9	1.005	0.501
278.15	50.0	19.9 21.5	0.961	0.490
318.15	55.0 ¹	21.5	0.944	0.485
308.15		9.5	0.976	0.494
308.15 323.15	23.6 ³	7.6	0.777 0.665	0.437
323.15	23.6 ³ 23.6 ³	6.5 5.6		0.399 0.364
334.15 3. C		-butanol o	r isoamyl a	
			1 050	0.514
278.15	31.6 40.3	13.85 17.3		0.514 0.509
¹ Presuma	¹ Presumably 55.0 from posit			ginal table.
			ure with pa l as "one ex	
The thr	ee varues		INFORMATION	
METHOD/APPARATUS/PROCED	URE :		SOURCE AND P	URITY OF MATERIALS:
the alcohol in a m in an ice-salt mix erature, "end temp	The hydrogen chloride was passed to the alcohol in a measuring cylinder in an ice-salt mixture. The temp- erature, "end temperature", was			gen chloride. Prepared from n chloride and sulfuric and dried by sulfuric acid.
recorded, and the absorbed gas was weighed. The pressure was presumably atmospheric.			The 3.	ols. Kahlbaum specimens. -methyl-l-butanol was stated free from pyridine.
			ESTIMATED ER	ROR: ówt/g = 0.1
The mole ratio and values were calcul compiler.	i mole fra ated by f	action the	REFERENCES :	

COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Hydrogen chloride; HCl;	Gerrard, W.; Macklen, E.D.			
[7647-01-0]	J. Appl. Chem. <u>1959</u> , 9, 85-88.			
(2) Alkanols				
VARIABLES:	PREPARED BY:			
T/K: See below Total P/kPa : 101.325 (1 atm)	W. Gerrard			
EXPERIMENTAL VALUES: T/K	Mole ratio Mole* Smoothed**			
	HCl ^{/n} alcohol fraction mole fraction			
	HCl ^x HCl ^x HCl			
1-Pentanol; C ₅ H ₁₂ O; 273.15 [71-41-0] 276.25	0.516			
[71-41-0] ⁵ ² 276.25 283.15				
285.55 293.15	0.947 0.486			
294.15	0.867 0.464			
302.15 303.15				
306.05	0.762 0.432			
313.15 313.45				
Smoothing equation: $\ln x_{HC1} = 14.160$ Standard error in x_{HC1} about the	regression line = 2.68×10^{-4}			
1-Hexanol; $C_{6H_{14}O}$; 279.85 [111-27-3] 283.15				
[111-27-3] 283.15 290.25				
293.15 295.85				
303.15	0.441			
308.55 313.15				
318.75	0.663 0.399			
323.15 333.15				
337.35	0.530 0.346			
Smoothing equation: $\ln x_{HC1} = 16.882 - 22.445/(T/100) - 9.284 \ln(T/100)$ Standard error in x_{HC1}^{HC1} about the regression line = 9.78 × 10 ⁻⁴				
<pre>* calculated by the compiler ** smoothing equation and smoothed v</pre>	alues were calculated by H.L. Clever			
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
The apparatus and procedure were those described by Gerrard and	(1) Hydrogen chloride: self- prepared and dried.			
Macklen (1). The hydrogen chloride				
was generated in an all glass apparatus. The absorption vessel, previously weighed, was fitted with a stoppered bubbler tube, and a	(2) Alcohols: purified, distilled, and attested by physical constants.			
stoppered outlet tube. Entrained	ESTIMATED ERROR:			
liquid was condensed at 273.15 K, and allowed for. The amount of gas	$\delta x_{\rm HCl} / x_{\rm HCl} = \pm 0.005 \text{ to } 0.01$			
absorbed by a known weight of liquid	REFERENCES:			
was determined by weighing.	1. Gerrard, W.; Macklen, E.D. J. Appl. Chem. <u>1956</u> , 6, 241.			
<u></u>				

COMPONENTS:	ORIGINAL MEASUREMENTS:	
 Hydrogen chloride; HCl; 	Gerrard, W.; Macklen, E.D.	
[7647-01-0]	J. Appl. Chem. <u>1959</u> , 9, 85-88.	
(2) Alkanols	······································	
EXPERIMENTAL VALUES: T/K	Mole ratio Mole* Smoothed* ⁿ HCl ^{/n} alcohol fraction mole fracti	
4-Methyl-2-pentanol; C ₆ H ₁₄ O; 273.1 [108-11-2] 274.7		
283.1 287.0	5 0.513	
293.1 294.2	5 0.489	
300.3	5 0.893 0.472	
303.1 307.4		
313.1	5 0.440	
319.4 323.1		
Smoothing equation: $\ln x = 11.406$		
Smoothing equation: ln x _{HCl} = 11.406 Standard error in x _{HCl} about th	e regression line = 6.14×10^{-4}	
1-Heptanol; C ₇ H ₁₆ O; 279.8 [111-70-6] 283.1		
292.4	5 0.887 0.470	
293.1 295.8	5 0.855 0.461	
303.1 308.5		
313.1 318.7		
323.1 333.1	5 0.387	
337.3 343.1	5 0.534 0.348	
	8 - 21.150/(T/100) - 8.843 ln(T/100) e regression line = 8.16 × 10 ⁻⁴	
1-Decanol; C ₁₀ H ₂₂ O; 273.1 [112-30-1] 273.8		
283.1	5 0.496	
283.9 290.2		
293.1	5 0.470	
303.1 303.4		
312.5	5 0.723 0.420	
313.1 323.1		
325.5	5 0.623 0.384	
333.1	5 0.365	
Smoothing equation: ln x _{HCl} = 13.79 Standard error in x _{HCl} about th	4 - 18.096/(T/100) - 7.787 ln(T/100) e regression line = 8.37 × 10 ⁻⁴	
<pre>* calculated by the compiler ** smoothing equation and smoothed</pre>	values were calculated by H.L. Cleve	r

nydrogen chloride hi	Non-Aqueous Solvents	
COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Fernandes, J. B. J. Chem. Eng. Data 1972, 17,	
(2) l-Hexanol; C ₆ H ₁₄ O; [111-27-3]	377-379.	
VARIABLES:	PREPARED BY:	
T/K: 353.15 - 393.15 $p_1/kPa:$ 101.325 (1 atm)	H. L. Clever	
EXPERIMENTAL VALUES:		
_	Ratio ¹ Mol Fraction	
t/°C T/K n	$\frac{1}{2}$ x_{1}	
80 353.15 0	.434 0.303	
80 353.15 0 100 373.15 0 120 393.15 0	.320 0.242	
120 393.15 0	.236 0.191	
¹ Vapor pressure cor	rection applied.	
The mole fraction solubility values w		
Smoothed Data: For use between 353.1		
$\ln x_{1} = -5.7174 + 15.$		
	regression line is 3.63×10^{-3} .	
	Fraction	
+	<i>x</i> ₁	
353.15 0.	305	
363.15 0.	269	
373.15 0. 383.15 0.		
383.15 0.214 393.15 0.192		
AUXILIARY	INFORMATION	
	COURCE AND DUDITY OF MATERIALS.	
METHOD/APPARATUS/PROCEDURE: The data above were credited to	SOURCE AND PURITY OF MATERIALS: No information.	
unpublished work of J. B. Fernandes and M. M. Sharma, University of Bombay, 1966. It is assumed the method is the same as for the HBr + 1-hexanol system. See that data sheet for details.		
	ESTIMATED ERROR:	
	REFERENCES :	

		us Solvents		119
COMPONENTS:	ORIGINAL M	EASUREMENTS :		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	drogen chloride; HCl; Ionin, M. V.; Kurina, N. V.;		, N. V.;	
(2) 1-Heptanol; C7H160; [111-70-6]	_		Table 1 1000	
l-Octanol; C ₈ H ₁₈ O; [111-87-5] l-Nonanol; C9H ₂₀ O; [143-08-8]	(1), 47		Tekhnol. <u>1963</u> ,	1
1-Decanol; $C_{10}H_{22}O$; [112-30-1]				
VARIABLES: T/K: 298.15	PREPARED BY: W. Gerrard			
P/kPa: 101.3 (atmospheric)		w. Ge	rraru	
EXPERIMENTAL VALUES:				
T/K Refractive Solution Conc	entration		Mol Fraction	
Index ¹ Density n_{D}^{298} $\rho/g \text{ cm}^{-3}$	nol dm ⁻³	n_1/n_2	<i>x</i> 1	
l-Heptanol				
298.15 1.4241 0.89480	5.14	0.844	0.458	
1-Octanol				
298.15 1.4293 0.89250	4.62	0.831	0.454	
1-Nonanol				
	4.16	0.815	0.449	
l-Decanol				
298.15 1.4373 0.88244	3.83	0.816	0.449	
AUXILIARY INFORMATION				
	INFORMATIO	N		
METHOD/APPARATUS/PROCEDURE:	SOURCE ANI	D PURITY OF MAT		
The gas was absorbed at a pressure which was not stated, and was	SOURCE ANI (1) Hydr from	D PURITY OF MAT rogen chlorid n sodium chlo	e. Prepared ride and	
The gas was absorbed at a pressure which was not stated, and was probably barometric. The density of	SOURCE AND (1) Hydr from sulf	D PURITY OF MAT rogen chlorid n sodium chlo furic acid.	e. Prepared ride and Dried by	
The gas was absorbed at a pressure which was not stated, and was probably barometric. The density of the solution was determined by a pyknometer. The hydrogen chloride	SOURCE AND (1) Hydr from sulf calc	D PURITY OF MAT rogen chlorid n sodium chlo furic acid. cium chloride	e. Prepared ride and Dried by	
The gas was absorbed at a pressure which was not stated, and was probably barometric. The density of the solution was determined by a	SOURCE AND (1) Hydr from sulf calc (2) 1-AD	D PURITY OF MAT rogen chlorid n sodium chlo furic acid. cium chloride	e. Prepared ride and Dried by • rce not given.	
The gas was absorbed at a pressure which was not stated, and was probably barometric. The density of the solution was determined by a pyknometer. The hydrogen chloride absorbed was determined by an	SOURCE AND (1) Hydr from sulf calc (2) 1-AD	D FURITY OF MAT cogen chlorid n sodium chlo furic acid. cium chloride lkanols. Sou	e. Prepared ride and Dried by • rce not given.	
The gas was absorbed at a pressure which was not stated, and was probably barometric. The density of the solution was determined by a pyknometer. The hydrogen chloride absorbed was determined by an	SOURCE AND (1) Hydr from sulf calc (2) 1-AD	D FURITY OF MAT cogen chlorid n sodium chlo furic acid. cium chloride lkanols. Sou	e. Prepared ride and Dried by • rce not given.	
The gas was absorbed at a pressure which was not stated, and was probably barometric. The density of the solution was determined by a pyknometer. The hydrogen chloride absorbed was determined by an	SOURCE AND (1) Hydr from sulf calc (2) 1-AD	D FURITY OF MAT cogen chlorid n sodium chlo furic acid. cium chloride lkanols. Sou	e. Prepared ride and Dried by • rce not given.	
The gas was absorbed at a pressure which was not stated, and was probably barometric. The density of the solution was determined by a pyknometer. The hydrogen chloride absorbed was determined by an	SOURCE AND (1) Hydr from sulf calc (2) 1-AD	D FURITY OF MAT rogen chlorid n sodium chlo furic acid. cium chloride lkanols. Sou ed by calcium	e. Prepared ride and Dried by • rce not given.	
The gas was absorbed at a pressure which was not stated, and was probably barometric. The density of the solution was determined by a pyknometer. The hydrogen chloride absorbed was determined by an	SOURCE ANI (1) Hydr from sulf calc (2) 1-Al Drie	D FURITY OF MAT rogen chlorid n sodium chlo furic acid. cium chloride lkanols. Sou ed by calcium	e. Prepared ride and Dried by • rce not given.	
The gas was absorbed at a pressure which was not stated, and was probably barometric. The density of the solution was determined by a pyknometer. The hydrogen chloride absorbed was determined by an	SOURCE ANI (1) Hydr from sulf calc (2) 1-Al Drie	D FURITY OF MAT rogen chlorid n sodium chlo furic acid. cium chloride lkanols. Sou ed by calcium	e. Prepared ride and Dried by • rce not given.	
The gas was absorbed at a pressure which was not stated, and was probably barometric. The density of the solution was determined by a pyknometer. The hydrogen chloride absorbed was determined by an	SOURCE ANI (1) Hydr from sulf calc (2) 1-A Drie ESTIMATED	D FURITY OF MAT rogen chlorid n sodium chlo Euric acid. cium chloride lkanols. Sou ed by calcium	e. Prepared ride and Dried by • rce not given.	
The gas was absorbed at a pressure which was not stated, and was probably barometric. The density of the solution was determined by a pyknometer. The hydrogen chloride absorbed was determined by an	SOURCE ANI (1) Hydr from sulf calc (2) 1-Al Drie	D FURITY OF MAT rogen chlorid n sodium chlo Euric acid. cium chloride lkanols. Sou ed by calcium	e. Prepared ride and Dried by • rce not given.	
The gas was absorbed at a pressure which was not stated, and was probably barometric. The density of the solution was determined by a pyknometer. The hydrogen chloride absorbed was determined by an	SOURCE ANI (1) Hydr from sulf calc (2) 1-A Drie ESTIMATED	D FURITY OF MAT rogen chlorid n sodium chlo Euric acid. cium chloride lkanols. Sou ed by calcium	e. Prepared ride and Dried by • rce not given.	
The gas was absorbed at a pressure which was not stated, and was probably barometric. The density of the solution was determined by a pyknometer. The hydrogen chloride absorbed was determined by an	SOURCE ANI (1) Hydr from sulf calc (2) 1-A Drie ESTIMATED	D FURITY OF MAT rogen chlorid n sodium chlo Euric acid. cium chloride lkanols. Sou ed by calcium	e. Prepared ride and Dried by • rce not given.	
The gas was absorbed at a pressure which was not stated, and was probably barometric. The density of the solution was determined by a pyknometer. The hydrogen chloride absorbed was determined by an	SOURCE ANI (1) Hydr from sulf calc (2) 1-A Drie ESTIMATED	D FURITY OF MAT rogen chlorid n sodium chlo Euric acid. cium chloride lkanols. Sou ed by calcium	e. Prepared ride and Dried by • rce not given.	
The gas was absorbed at a pressure which was not stated, and was probably barometric. The density of the solution was determined by a pyknometer. The hydrogen chloride absorbed was determined by an	SOURCE ANI (1) Hydr from sulf calc (2) 1-A Drie ESTIMATED	D FURITY OF MAT rogen chlorid n sodium chlo Euric acid. cium chloride lkanols. Sou ed by calcium	e. Prepared ride and Dried by • rce not given.	

.

120 Hy	diogen cinonde in i	Non-Aqueous Solvents	
COMPONENTS :		ORIGINAL MEASUREMENTS:	
<pre>1. Hydrogen chloride; [7647-01-0]</pre>	HCl;	Ahmed, W.; Gerrard, W.; Maladkar, V. K.	
2. 1-Octanol; C ₈ H ₁₈ O;	[111-87-5]	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.	
VARIABLES:	202.15	PREPARED BY:	
T/K: 243.15 - Total P/kPa: 101.325		W. Gerrard	
		(smoothed data calculated by H.L. Clever)	
EXPERIMENTAL VALUES:	T/K Mol Ra	atio Mol Fraction	
	ⁿ HC1/ ⁿ C	H ₁₀ O X _{HC1}	
	243.15 1.44 253.15 1.27		
	263.15 1.14		
)	273.15 1.02		
	283.15 0.89 293.15 0.81		
The mole fraction solu compiler.	ubilities were ca	alculated from the mole ratio by the	
1		$/(T/100K) - 4.901 \ln(T/100K)$	
Standa	ard erior about :	regression line = 2.81×10^{-3}	
	- T/K I	Mol Fraction	
		X _{HC1}	
	243.15	0.589	
253.15 0.561			
263.15 0.532			
273.15 0.502 283.15 0.474			
293.15 0.446			
		INFORMATION	
METHOD/APPARATUS/PROCEDURE		SOURCE AND PURITY OF MATERIALS:	
Hydrogen chloride was		1. Hydrogen chloride. Obtained from a cylinder containing a good com-	
known weight of liquid tube at a total press		mercial specimen. Was dried by	
a manometer assembly.	The absorbed	passage through concentrated	
gas was weighed by re-		sulfuric acid.	
bubbler tube. The ter		2. 1-Octanol. Best obtainable	
manually controlled to The procedure and appa		specimen was suitably purified,	
described by Gerrard		dried, and fractionally dis-	
-		tilled, and attested.	
For temperatures below 268 K, a chem- ical titration was performed.			
		ESTIMATED ERROR:	
		$\delta T = 0.2$	
		$\delta x/x = 0.005$	
		REFERENCES:	
		1. Gerrard, W. J. Appl. Chem. Biotechnol. <u>1972</u> ,	
		22, 623 - 650.	
		2. Gerrard, W.	
		"Solubility of Gases and Liquids"	
		Plenum Press, New York, 1976	
		l	

Hydrogen Unioriae in Non-Aqueous Solvents 12			
COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Fernandes, J. B.		
(2) 1-Octanol; $C_{8}H_{18}O$; [111-87-5] J. Chem. Eng. Data <u>1972</u> , 17, 377-379.			
VARIABLES: T/K: 353.15 - 413.15 p_1/kPa : 101.325 (1 atm)	PREPARED BY: H. L. Clever		
EXPERIMENTAL VALUES:	Ratio ¹ Mol Fraction		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<pre>26 0.206 129 0.114 0785 0.0728 rection applied. values in ref. (1). ere calculated by the compiler.</pre>		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: The data above were credited to unpublished work of J. B. Fernandes and M. M. Sharma, University of Bombay, 1966. It is assumed the method is the same as for the HBr + 1-octanol system. See that data sheet for details.	SOURCE AND PURITY OF MATERIALS: No information.		
	ESTIMATED ERROR:		
	REFERENCES: 1. Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L. J. Appl. Chem. <u>1959</u> , 9, 89.		

COMPONENTS: (1) Hydrogen chloride; HCl;	ORIGINAL MEASUREMENTS: Kohn, G.
<pre>[7647-01-0] (2) 2-Octanol or s-octyl alcohol;</pre>	Ber. Dtschn. Chem. Ges. B. <u>1932</u> , 65, 589 - 595.
С ₈ н ₁₈ 0; [123-96-6]	
VARIABLES: T/K: 275.15 - 334.15	PREPARED BY:
P/kPa: 101 (atmospheric)	W. Gerrard
EXPERIMENTAL VALUES:	
	Mol Ratio Mol Fraction
Chloride wt/g wt/g	
2-Octanol or s-octy:	alcohol; C ₈ H ₁₈ O; [123-96-6]
279.15 25.15 7.8	1.107 0.525
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The hydrogen chloride was passed to the alcohol in a measuring cylinder in an ice-salt mixture. The temperature, "end temperature", was recorded, and the absorbed gas was weighed. The pressure was presumably atmospheric.	 Hydrogen chloride. Prepared from sodium chloride and sulfuric acid, and dried by sulfuric acid. Alcohols. Kahlbaum specimens.
	ESTIMATED ERROR:
	$\delta wt/g = 0.1$
	REFERENCES :

Hydrogen Chloride in i	Non-Aqueous Solvents 123	
COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Fernandes, J. B.	
(2) 1-Decanol; C ₁₀ H ₂₂ O; [112-30-1]	J. Chem. Eng. Data <u>1972</u> , 17, 377-379.	
VARIABLES:	PREPARED BY:	
T/K: 353.15 - 413.15 $p_1/kPa:$ 101.325 (1 atm)	H. L. Clever	
EXPERIMENTAL VALUES: Temperature Mol	Ratio ¹ Mol Fraction	
-	$1/n_2$ x_1	
30 303.15 0 40 313.15 0	.800 ² 0.444 .712 ² 0.416	
40 313.15 0 60 333.15 0	.712 ² 0.416 .567 ² 0.362	
80 353.15 0	.385 0.278	
100 373.15 0	.232 0.188	
120 393.15 0	.109 0.098	
140 413.15 0	.0655 0.0615	
¹ Vapor pressure co	rrection applied.	
² Interpolated from	values in ref. (1).	
The mole fraction solubility values we		
Smoothed Data: For use between 333.1		
1 1	$0.3336/(T/100 \text{ K}) - 49.0594 \ln (T/100 \text{ K})$	
The standard error about the p	regression line is 1.18×10^{-2} .	
T/K Mol Fraction x ₁	T/K Mol Fraction x_1	
333.15 0.368	383.15 0.139	
343.15 0.321	393.15 0.107	
353.15 0.271	403.15 0.080	
363.15 0.223	413.15 0.060	
373.15 0.178		
	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The data above were credited to	No information.	
unpublished work of J. B. Fernandes and M. M. Sharma, University of		
Bombay, 1966. It is assumed the		
method is the same as for the		
HBr + 1-decanol system. See that		
data sheet for the details.		
	ESTIMATED ERROR:	
	REFERENCES :	
	1. Gerrard, W.; Mincer, A. M. A.;	
1	Wyvill, P. L.	
	J. Appl. Chem. <u>1959</u> , 9, 89.	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Hydrogen chloride; HCl;	Fernandes, J. B.; Sharma, M. M.
[7647-01-0]	
(2) 1-Dodecanol; $C_{12}H_{26}O;$	Indian Chem. Eng. <u>1965</u> , 7, 38 - 40.
[112-53-8]	
(
VARIABLES:	
T/K: 303.15 - 453.15	PREPARED BY:
HC1 P/kPa: 101.325 (760 mmHg)	W. Gerrard
	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
	Mol Fraction
n_1/n_2	x ₁
$\frac{1}{303.15}$ $\frac{1}{0.724}$	
313.15 0.634	0.388
333.15 0.472	
353.15 0.3234	0.244
373.15 0.1862 393.15 0.0921	0.157
393.15 0.0921 413.15 0.0460	
433.15 0.0296	0.0287
453.15 0.01728	0.01471
¹ Material turned k	prown.
Smoothed Data: $\ln x_1 = 89.891 - 129.$	
1 = 129.091 = 129.091 = 129.091	002/(1/100K) = 43.465 III (1/100K)
Standard error about	the regression line = 9.30×10^{-3}
	Mol Fraction
1/ K	x ₁
303.15	<u> </u>
313.15	0.400
333.15	0.321
353.15	0.229
373.15	0.148
393.15 413.15	0.0886 0.0502
433.15	0.0272
453.15	0.0142
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Hydrogen chloride was bubbled into	(1) Hydrogen chloride. Self prepared
the solvent for more than an hour.	by the method of Sloan (1).
Approximately 1 cm ³ of the solution	
was transferred to a weighed sample	(2) 1-Dodecanol. Dehydag Deutsche
tube and the whole re-weighed. The contents were transferred to water,	Hydrierwerke GMBH. Minimum purity 95 per cent (usually 98+
and the chloride content determined	per cent). Used as received.
by the Volhard method.	
-	
	ESTIMATED ERROR:
	$\delta T/K = 0.2$
	$\delta x_1 / x_1 = 0.05$
	REFERENCES :
	1. Sloan, A. D. B.
	Chem. Ind. <u>1964</u> , 574.
	1

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Fernandes, J. B.; Sharma, M. M.	
(2) 1-Tetradecanol; C ₁₄ H ₃₀ O; [112-72-1]	Indian Chem. Eng. <u>1965</u> , 7, 38 - 40.	
1-Octadecanol; C ₁₈ H ₃₈ O; [112-92-5]		
VARIABLES: T/K: 333.15, 433.15 HCl P/kPa: 101.325 (760 mmHg)	PREPARED BY: W. Gerrard	
EXPERIMENTAL VALUES:	1	
T/K Mol Rati	o Mol Fraction	
l-Tetradecano	1	
333.15 0.462 433.15 0.0211	0.313 0.0207	
1-Octadecanol		
333.15 0.448 433.15 0.0178	0.309 0.0175	
AUXILIARY METHOD/APPARATUS/PROCEDURE: Hydrogen chloride was bubbled into the solvent for more than an hour. Approximately 1 cm ³ of the solution was transferred to a weighed sample tube and the whole re-weighed. The contents were transferred to water, and the chloride content determined by the Volhard method.	<pre>y values. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Self prepared by the method of Sloan (1). (2) 1-Tetradecanol and 1-Octadecanol. Both alcohols supplied by Dehydag Deutsch Hydrierwerke GMBH. Minimum purity 95 per cent (usually 98+ per cent). Used</pre>	
	as received. ESTIMATED ERROR: $\delta T/K = 0.2$ $\delta x_1/x_1 = 0.05$ REFERENCES: 1. Sloan, A. D. B. <i>Chem. Ind.</i> <u>1964</u> , 574.	

26 Hydrogen Chloride in	Non-Aqueous Solvents
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Hydrogen chloride; HCl;	Fernandes, J. B.; Sharma, M. M.
[7647-01-0]	Indian Chem. Eng. <u>1965</u> , 7, 38 - 40.
(2) 1-Hexadecanol; $C_{16}H_{34}O;$ [36653-82-4]	
VARIABLES:	PREPARED BY:
T/K: 333.15 - 473.15 HCl P/kPa: 101.325 (760 mmHq)	W. Gerrard
nci P/RPa: 101.525 (700 mung)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Ratic	Mol Fraction
$\frac{11}{333.15}$ $\frac{11}{0.462}$	0.316
343.15 0.358	0.264
353.15 0.2445	0.196
373.15 0.1491	0.130
393.15 0.0727	0.0678
413.15 0.0391	0.0376
433.15 0.0227 453.15 0.0141 ¹	0.0222
453.15 0.0141 ⁴ 473.15 0.00876	0.0139 5 ¹ 0.00868
¹ The material turr	
	L48/(T/100K)- 20.670 ln (T/100K)
Standard error about	the regression line = 9.67×10^{-3}
	101 Fraction
	x1
333.15	0.346
353.15	0.205
373.15	0.121
393.15	0.0709
413.15 433.15	0.0417 0.0246
453.15	0.0145
473.15	0.00867
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Hydrogen chloride was bubbled into	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Self prepared
the solvent for more than an hour.	by the method of Sloan (1).
Approximately 1 cm ³ of the solution	
was transferred to a weighed sample	(2) 1-Hexadecanol. Dehydag Deutsche
tube and the whole re-weighed. The	Hydrierwerke GMBH. Minimum
contents were transferred to water,	95 per cent purity (usually
and the chloride content determined	98+ per cent). Used as received
by the Volhard method.	
	ESTIMATED ERROR:
	$\begin{cases} \delta T/K = 0.2 \\ \delta x_1/x_1 = 0.05 \end{cases}$
	REFERENCES :
	l. Sloan, A. D. B. Chem. Ind. 1964, 574.
	CREM. 144. 1707, 514.

COMPONENTS :	EVALUATOR:
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2. Halogenated Alkanols	Polytechnic of North London, Holloway, London, N7 8DB, U.K.
	January 1989

CRITICAL EVALUATION:

The Solubility of Hydrogen Chloride in Halogenated Alkanols

Gerrard and co-workers (1-3) measured solubilities in several halogenated alkanols over temperature ranges at a total pressure equal to barometric pressure. Under the conditions of the experiments the differences between these solubilities and values for a partial pressure of 101.3 kPa are likely to be less than experimental error.

The presence of a halogen atom in 2-chloroethanol, 2-bromoethanol, 1-chloro-2-propanol and 1-bromo-2-propanol lowers the mole fraction solubilities of HCl relative to those in the unsubstituted alcohols but these solubilities are nevertheless appreciably higher than reference values from the Raoult's law equation. There is little difference between mole fraction solubilities in these solvents in the overlapping temperature range.

The presence of two halogen atoms in 1,3-dibromo-2-propanol and in 2,3-dibromo-1-propanol causes a greater lowering of solubility. Mole fraction solubilities in 2,3-dibromo-1-propanol are about double those in 1,3-dibromo-2-propanol. Perhaps this is due to steric factors.

Mole fraction solubilities in 2,2,2-trifluoroethanol and in 2,2,2-trichloroethanol are close to each other and lower than in the dibromopropanols but, despite the presence of three halogen atoms, the solubilities lie above the reference line from the Raoult's law equation.

Measurements reported by Gerrard & Macklen (1) for solubility in 2-chloroethanol, and in 2,2,2-trichloroethanol differ to some extent from those reported by Gerrard, Mincer & Wyvill (2,3). The maximum difference between smoothed values of mole fraction solubilities in 2-chloroethanol from the two sources is about 7%. The maximum difference in the case of 2,2,2-trichloroethanol is about 10%. These differences are not sufficient to cast doubt on the overall pattern of measurements in these solvents. Data from other sources are not available for comparison.

Mole fraction solubilities at 293.15 K and a partial pressure of 101.3 kPa.

Solvent	×HC1	Source
(Reference value)	0.024	(Raoult's law equation)
Ethanol	0.462	(evaluated value)
1-Propanol	0.463	(evaluated value)
2-Chloroethanol	0.300	(2)
	0.295	(1)
2-Bromoethanol	0.330	(1)
1-Chloro-2-propanol	0.318	(1)
1-Bromo-2-propanol	0.329	(1)
1,3-Dibromo-2-propanol	0.088	(1)
2,3-Dibromo-1-propanol	0.184	(1)
2,2,2-Trifluoroethanol	0.0480	(1)
2,2,2-Trichloroethanol	0.0600	(3)
	0.0669	(1)

REFERENCES

1. Gerrard, W.; Macklen, E. D. J. Appl. Chem. <u>1959</u>, 9, 85 - 88.

2. Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L. J. Appl. Chem. <u>1959</u>, 9, 89 - 91.

 Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L. J. Appl. Chem. <u>1960</u>, 10, 115 - 121.

	nyarogen omonao n	, ton , quo			
COMPONENTS :		ORIGINAL	MEASUREMENTS:	···· ·································	
 Hydrogen Chloride [7647-01-0] 		Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.			
2. 2-Chloroethanol;	J. App	L. Chem. <u>1959</u> , 9	, 89 - 93.		
[107-07-3]					
	<u>,</u>	_			
VARIABLES:	PREPARED	BY:			
T/K: 199.15 - 322.65 Total P/kPa: 101.325 (1 atm)			W. Gerrard		
10002 1/	• (_ uu.,	(smoot)	ned data calculated	by H.L. Clever)	
EXPERIMENTAL VALUES:	-,		Nol Fraction	· · · · · · · · · · · · · · · · · · ·	
	ⁿ HC1/ ⁿ	с ₂ н ₅ с10	X _{HC1}		
		<u>25</u> 858	0.741		
		110	0.678		
		247	0.555		
		883	0.469		
		557	0.358		
		439	0.305		
		315 210	0.240		
	522.05 0.	210	0.174		
Smoothed Data: $\ln x_1$	= -66.3023 + 92	.9619/(T/	100K) + 80.1282	ln (T/100K)	
	-18.0080 (T/1	00K)			
Standar	d error about th	e regress	ion line = 1.06	$\times 10^{-2}$	
T/K	Mole Fraction	T/K	Mole Fraction		
	x_1		x_1		
100.15		262 15	0.424		
193.15 203.15	0.813 0.717	263.15 273.15	0.434 0.390		
203.15 213.15	0.651	283.15	0.346		
223.15	0.600	293.15	0.300		
233.15	0.556	303.15	0.256		
243.15	0.516	313.15	0.214		
253.15	0.475	323.15	0.175		
The male for	ation volves ver		tod by the compi	lor	
	action values wer			.ier.	
<u> </u>		Y INFORMATI			
METHOD / APPARATUS / PROCEDU		3	D PURITY OF MATERI		
The solvent was weig			ogen Chloride.		
tube. The amount of		drie	n a commercial c	ylinder was	
temperatures above 2 mined by reweighing	arte				
weight. The total p	ressure was	2. 2-Ch	loroethanol. C	arefully	
barometric, very nea			fied, and purit		
(101.325 kPa).	atte	ested.			
For determinations b	elow 273 K, a				
chemical titration w	as carried out.				
After the maximum ab					
stated temperature,					
was attached to a fl	ESTIMATE				
l dm ³ of water, and allowed to warm slowly (12 hours) to room temperature.					
The contents of the			below 273 K		
then added to the wa		$\delta X_1 / X_1 = 0.$	02		
total chloride ion was determined by					
the Volhard method.		REFERENC	ES:		
A low temperature, Teddington type					
YM thermostat was us					
tures below 273 K, t					
within <u>+</u> 2 K.		1			
		1			

COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Hydrogen chloride; HCl;	Gerrard, W.; Macklen, E.D.			
[7647-01-0]	J. Appl. Chem. <u>1959</u> , 9, 85-88.			
(2) Halogenated alcohols	J. Appr. chem. <u>1939</u> , 9, 65-66.			
VARIABLES:	PREPARED BY:			
T/K: See below Total P/kPa : 101.325 (1 atm)	W. Gerrard			
EXPERIMENTAL VALUES: T/K	Mole ratio Mole* Smoothed**			
г	HCl ^{/n} alcohol fraction mole fraction			
	×HCl ×HCl			
2-Chloroethanol; C ₂ H ₅ Cl0; 273.15 [107-07-3] 277.65				
[107-07-3] 277.65 283.15				
285.15 293.15				
293.85	0.410 0.291			
298.45 303.15				
308.05	0.302 0.232			
313.15				
323.15	0.166			
Smoothing equation: $\ln x_{HC1} = 76.741$ Standard error in x_{HC1} about the	- 103.640/(T/100) - 39.616 ln(T/100) e regression line = 2.17 × 10 ⁻³			
2-Bromoethanol; C ₂ H ₅ BrO; 273.15				
[540-51-2] 278.55 282.85				
283.15 288.75	0.330			
293.15	0.290			
294.55				
303.15	0.247			
310.05 313.15	0.205			
318.35 323.15				
Smoothing equation: $\ln x_{HC1} = 67.476$ Standard error in x_{HC1} about the				
* calculated by the compiler ** smoothing equation and smoothed v	alues were calculated by H.L. Clever			
AUXILIARY INFORMATION				
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
The apparatus and procedure were those described by Gerrard and Macklen (1). The hydrogen chloride	(1) Hydrogen chloride: self- prepared and dried.			
was generated in an all glass apparatus. The absorption vessel, previously weighed, was fitted with a stoppered bubbler tube and a	(2) Halo-alcohols: purified, distilled, and attested by physical constants.			
stoppered outlet tube. Entrained liquid was condensed at 273.15 K, and allowed for. The amount of gas	ESTIMATED ERROR: $\delta x_{HCl}/x_{HCl} = \pm 0.01$ to 0.02			
absorbed by a known weight of liquid	REFERENCES:			
was determined by weighing.	1. Gerrard, W.; Macklen, E.D. J. Appl. Chem. <u>1956</u> , 6, 241.			

COMPONENTS:	ORIGINAL MEASUREMENTS:				
(1) Hydrogen chloride; HCl;	Gerrard, W.; Macklen, E.D.				
[7647-01-0]	J. Appl. Chem. <u>1959</u> , 9, 85-88.				
(2) Halogenated alcohols	<u></u> , ,, ,,				
EXPERIMENTAL VALUES:					
T/K					
	ⁿ HCl ^{/n} alcohol fraction mole fraction ^x HCl ^x HCl				
1-Chloro-2-propanol; 273.					
$C_{3}H_{7}Clo; [127-00-4] 283. 284.$					
292.	15 0.467 0.318				
293.					
301. 303.					
308.					
313.	5 0.228				
320. 323.					
Smoothing equation: $\ln x_{HCl} = 65.50$ Standard error in x_{HCl} about t	5 - 87.945/(T/100) - 34.079 ln(T/100) ne regression line = 3.74 × 10 ⁻³				
1-Bromo-2-propanol; 280.					
$C_{3}H_{7}BrO;$ [19686-73-8] 283.					
293. 295.					
297.					
302.					
303. 312.					
313.					
321.	05 0.269 0.212				
323.					
Smoothing equation: $\ln x_{HC1} = 60.86$ Standard error in x_{HC1} about t	- 82.074/(T/100) - 31.589 ln(T/100) ne regression line = 1.09 × 10 ⁻³				
1,3-Dibromo-2-propanol; 273.					
$C_{3}H_{6}Br_{2}; [96-21-9]$ 273.					
283. 289.					
293.					
297.					
302. 303.					
303.					
313.	5 0.0519				
318.					
323.	5 0.0381				
Smoothing equation: ln x _{HCl} = 86.10 Standard error in x _{HCl} about t	2 - 114.858/(T/100) - 45.889 ln(T/100) le regression line = 2.35 × 10 ⁻³				
<pre>* calculated by the compiler ** smoothing equation and smoothed values were calculated by H.L. Clever</pre>					

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Macklen, E.D.
(2) Halogenated alcohols	J. Appl. Chem. <u>1959</u> , 9, 85-88.
EXPERIMENTAL VALUES: T/K	Mole ratio Mole [*] Smoothed ^{**} HCl ^{/n} alcohol fraction mole fraction ^x HCl ^x HCl
2,3-Dibromo-1-propanol; 280.1 C ₃ H ₆ Br ₂ O; [96-13-9] 283.1 291.1 293.1 298.6 303.1 304.8 313.0 313.1 322.0 323.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Smoothing equation: ln x _{HCl} = 48.152 Standard error in x _{HCl} about the	
2,2,2-Trifluoroethanol; 273.1 C ₂ H ₃ F ₃ O; [75-89-8] 277.8 283.1 284.2 293.1 294.6 302.6 303.1 313.1 313.6	0.0728 0.070 0.0654 0.0587 0.060 0.0566 0.0480 0.0480 0.041 0.0394 0.0387 0.0333
Smoothing equation: $\ln x_{HC1} = -8.7$ Standard error in x_{HC1} about t	41 + 16.720/(T/100) ne regression line = 1.26 × 10 ⁻³
2,2,2-Trichloroethanol; 273.1 C ₂ H ₃ Cl ₃ O; [115-20-8] 273.5 283.1 288.3 293.1 294.4 302.6 303.1 313.1	0.0932 0.102 0.0926 0.081 0.0749 0.0669 0.057 0.0539 0.0528 0.0400
Standard error in x _{HCl} about the * calculated by the compiler	- $132.665/(T/100)$ - $51.580 \ln(T/100)$ e regression line = 1.26×10^{-3} values were calculated by H.L. Clever

rsz Hydrogen Chlonde in	i Non-Aqueous Solvents
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
(2) 2,2,2-Trichloroethanol; C ₂ H ₃ Cl ₃ O; [115-20-8]	J. Appl. Chem. <u>1960</u> , 10, 115-121.
VARIABLES :	
T/K: 273.15 - 303.15	PREPARED BY:
Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Rat	
ⁿ HC1 ^{/n} C ₂ H	3 ^{C1} 3 ^O ^x 1
273.15 0.104	
278.15 0.089	
279.65 0.086 285.15 0.076	
288.35 0.073	
294.75 0.060	
297.85 0.059	
303.15 0.051	1 0.0486
The compiler calculated the mole fra	
Smoothed Data: $\ln x_1 = -8.814 + 17.$	592/(T/100)
Standard error about	the regression line is 1.34×10^{-3}
T/K	Mol Fraction x1
273.15 283.15 293.15 303.15	0.0742
AUXILIAR METHOD APPARATUS/PROCEDURE: The liquid component was weighed in a bubbler tube. The amount of gas absorbed was determined by re- weighing to constant weight. The total pressure was barometric, very nearly 1 atm (101.325 kPa).	Y INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Good specimen from a commercial cylinder was dried. (2) 2,2,2-Trichloroethanol. Care- fully purified, and purity rigorously attested. ESTIMATED ERROR: $\delta x_1/x_1 = 0.02$ REFERENCES:

COMPONENTS:	EVALUATOR:
 (1) Hydrogen chloride; HCl; [7647-01-0] (2) Alkenols and Alkynols 	H. Lawrence Clever Department of Chemistry Emory University Atlanta, GA 30322 USA
	1983, July

The Solubility of Hydrogen Chloride in Unsaturated Alcohols.

Cook (ref 1) measured the solubility of hydrogen chloride at a partial pressure of 101.325 kPa (1 atm) over the 263 - 293 K temperature interval in eleven unsaturated alcohols. Eight of the alcohols are alkenols and three are alkynols.

The hydrogen chloride is more soluble in the alkenols than in the alkynols of similar molecular weight and structure. The alkenols range from three to seven carbon atoms. The mole fraction solubility increases as the carbon chain length increases and it increases with chain branching. The largest solubility is observed in the branched chain four carbon alkenol.

The data were fitted to an equation of the type

 $\ln x_1 = A_1 + A_2/(T/100 \text{ K}) + A_3 \ln (T/100 \text{ K})$

by the method of least squares. The equations and a table of smoothed mole fraction solubility data are included on each data sheet. The data are classed as tentative.Although an uncertainty of 0.5 percent is noted on the data sheets, the data are considered accurate to 2 to 3 percent because of uncertainties in the pressure measurement.

Table 1 gives smoothed solubility values in mole fraction (x_1) and mole ratio (n_1/n_2) at temperatures of 273.15 and 293.15 K along with the semi-structural formulas of the alcohols. The trends in the hydrogen chloride solubility with structure mentioned briefly above can be seen in the table.

Table 1. Tentative mole ratio and mole fraction solubilities of hydrogen chloride in unsaturated alcohols at a partial pressure of 101.325 kPa and temperatures of 273.15 and 293.15 K.

Solvent Name and Structure		Solubility					
		273.15	5 K	293.15 K			
		n ₁ /n ₂	<i>x</i> ₁	n ₁ /n ₂	<i>x</i> 1		
ALKENOLS							
2-Propen-1-ol	CH2=CHCH2OH	0.887	0.470	0.689	0.408		
2-Buten-1-ol	CH ₃ CH=CHCH ₂ OH	1.024	0.506	0.828	0.453		
3-Buten-1-ol	CH2=CHCH2CH2OH	0.972	0.493	0.786	0.440		
2-Methyl-2-pro	.						
	CH ₂ =C(CH ₃)CH ₂ OH	1.364	0.577	1.169	0.539		
4-Penten-1-ol	Сн ₂ =Снсн ₂ Сн ₂ Сн ₂ Он	1.045	0.511	0.848	0.459		
3-Penten-1-ol	CH3CH=CHCH2CH2OH	1.033	0.508	0.838	0.456		
3-Hexen-1-ol	CH3CH2CH=CHCH2CH2OH	1.041	0.510	0.848	0.459		
3-Hepten-1-ol	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH	1.053	0.513				
ALKYNOLS							
2-Propyn-1-ol	сн≡ссн₂он	0.429	0.300	0.272	0.214		
3-Butyn-1-ol	сн≡ссн ₂ сн ₂ он	0.706	0.414	0.592	0.372		
3-Butyn-2-ol	сн≡сснонсн	1.033	0.508	0.876	0.467		

COMPONENTS:	ORIGINAL MEASUREMENTS:				
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Cook, T.M.				
(2) Alkenols and alkynols	Thesis, <u>1966</u> University of London				
VARIABLES:	PREPARED BY:				
T/K: 252.15 - 303.05 Total P/kPa : 101.325 (1 atm)	W. Gerrard				
EXPERIMENTAL VALUES:					
т/к	Mole ratio Mole* Smoothed**				
ſ	HCl ^{/n} alcohol fraction mole fraction				
	*HC1 *HC1				
2-Propyn-1-ol, 263.15	0,338				
2-Propyn-1-01, 263.15 (propargyl alcohol); 263.35					
C ₃ H ₄ O; [107-19-7] 268.65					
273.15					
275.15					
278.15 283.15					
283.12					
292.65					
293.15	0.273 0.214 0.214				
303.15	0.174				
Smoothing equation: $\ln x_{HC1} = 62.588$ Standard error in x_{HC1} about the reginator x_{HC1} about the reginator $*$ calculated by the compiler. ** smoothing equations and smoothed we can be a smoothed we can be able to the smoothed we can b	<pre>2 - 81.788/(T/100) - 33.685 ln(T/100) ression line = 1.73 × 10⁻³ values were calculated by H.L. Clever.</pre>				
AUXILIARY 1	NFORMATION				
METHOD/APPARATUS/PROCEDURE: The data were cited by Gerrard (1).					
Hydrogen chloride was passed into a k amount of solvent at the specified te weight was constant at the barometric below 273 K a weighed amount (excess injected into the absorption vessel a The tube was then weighed at room ten	emperature until the increase in pressure (2). For temperatures b) of pyridine was quantitatively t the temperature of the thermostat.				
SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride: sample of bes passed through concentrated sulfuric (2) Alcohols: 2-buten-1-ol self prepa distilled.					
B.Pt.(1 atm)/°C	Refractive Index Density				
2-propyn-1-ol 114	$d^2 = 0.9712$				
2-propen-2-ol 96.5 3-butyn-1-ol 128.5-130 r	$n_D^{20} = 1.4133$ $n_D^{21} = 1.4404$ $d^2 = 0.922$ $d^2 = 0.922$				
3-butyn-2-ol 104-105.5	$n_0^{21} = 1.4236$ $d_4^{20} = 0.887$				
2-buten-1-ol 120.5-121.5 r	$d^{15}_{D} = 1.4333$ $d^{15}_{4} = 0.8570$				
(33-34 at 8.5 mmHg)	-16				
3-buten-1-ol 112-113	$d^{15}_{\mu} = 0.8382$ $d^{20}_{\mu} = 0.846$				
2-methyl-2-propen-1-ol 113-114.5 r 3-penten-1-ol 137-138.5	$n_D^{20} = 1.4262$ $d^{20} = 0.846$ $n_D^{21} = 1.4376$				
4-penten_1_01 134_138					
3-hexen-1-ol 155-157 r	$d^{20} = 1.4380$ $d^{20} = 0.849$				
3-hepten-1-ol 173-173.5	$n_{\rm D}^{23} = 1.4394$				
ESTIMATED ERROR:					
$\frac{\delta x_{\rm HC1}/x_{\rm HC1}}{\kappa_{\rm HC1}} = 0.005$					
REFERENCES:	<i>41</i> 72.				
 Gerrard, W. J. Chim. Phys. <u>1964</u>, Solubility of Gases in Liquids, 1 	Plenum Press, New York, 1976.				
2. Ahmed, W.; Gerrard, W.; Maladkar,	W.K. J. Appl. Chem. 1970, 20, 109.				
· ···· ···, ··· · · · · · · · · · · · ·					

f	· · · · · ·			
COMPONENTS:		ORIGINAL ME	ASUREMENTS	:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>		Cook, T.M.	_	
(2) Alkenols and alkynols		Thesis, <u>196</u> University		
EXPERIMENTAL VALUES:		Mole ratio IC1 ^{/n} alcohol	Mole* fraction ^x HCl	
2-Propen-1-ol, (<i>allyl alcohol</i>); C ₃ H ₆ O; [107-18-6]	263.15 273.15 278.15	0.993	0.498	0.498 0.470
	283.15 288.15 289.45	0.733	0.423	0.440
	291.35 293.15 296.15	0.712	0.416	0.408
	303.05 303.15	0.606	0.377	0.375
Smoothing equation: ln x _{HCl} = Standard error in x _{HCl} about th	19.291 ne regre	- 24.988/(T/ ession line =	100) - 10. 2.36 × 10	845 ln(T/100) -3
3-Butyn-1-ol; C ₄ H ₆ O; [927-74-2]	262.45 263.15 273.15 273.65		0.442	0.440 0.414
	280.45 283.15 285.75	0.659	0.397 0.392 0.386	0.391
Smoothing equation: ln x _{HCl} = Standard error in x _{HCl} about th	293.15 -3.030 ne regre	+ 5.107/(T/1 ession line =	00) + 0.27 4.21 × 1	0.372 7 ln(T/100) 0 ⁻⁴
3-Butyn-2-01; C ₄ H ₆ O; [2028-63-9]	263.15 268.90	1.057	0.514	0.519
	273.15 278.65 283.15	0.977 0.965	0.499 0.491	0.508
	283.15 284.45 293.15	0.950	0.487	0.490 0.467
Smoothing equation: ln x _{HCl} = Standard error in x _{HCl} about th	24.510 ne regre	- 33.231/(T/ ession line =	100) - 12. 8.94 × 10	958 ln(T/100) -4
2-Buten-1-ol, (<i>3-methylallyl alcohol</i>); C ₄ H ₈ O; [6117-91-5]	273.15 276.65 280.45	1.007 0.980	0.502 0.495	0.506
7.0	283.15 283.35 284.55 291.35		0.487 0.484 0.460	0.488
Smoothing equation: In y -	293.15			0.453
Smoothing equation: $\ln x_{HC1} = $ Standard error in x_{HC1} about th * calculated by the compiler.	ne regre	ession line =	3.22 × 10	-4
** smoothing equations and smoo	othed va	lues were ca	lculated b	y H.L. Clever.

COMPONENTS:	ORIGINAL ME	ASUREMENTS	•
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Cook, T.M.		
(2) Alkenols and alkynols	Thesis, <u>196</u> University		
	Mole ratio HC1 ^{/n} alcohol	Mole* fraction ^x HCl	
3-Buten-1-ol; C ₄ H ₈ O; 263.15 [627-27-0] 270.15	1.005	0.501	0.518
273.15 274.45 277.55	0.960	0.490 0.480	0.493
282.75 283.15 290.35	0.882 0.811	0.469 0.448	0.467
292.75 293.15		0.441	0.440
Smoothing equation: $\ln x_{HC1} = 10.571$ Standard error in x_{HC1} about the regr	- 13.408/(T/ ession line =	100) - 6.3 1.17 × 10	39 ln(T/100) -3
2-Methyl-2-propen-1-ol; 263.15 C ₄ H ₈ O; [513-42-8] 270.05	1.40	0.583	0.594
273.15 277.65 283.15	1.31	0.567	0.577
283.65 293.15	1.26	0.558	0.539
	1.16 1.15 1.11	0.537 0.535 0.526	
303.15			0.519
Smoothing equation: $\ln x_{HC1} = 6.298$ Standard error in x_{HC1} about the regr	- 8.152/(T/10 ession line =	0) - 3.845 1.31 × 10	$\frac{\ln(T/100)}{-3}$
3-Penten-1-ol; C ₅ H ₁₀ O; 263.15 [39161-19-8] 265.55	1.115	0.527	0.532
273.15 275.25 280.05	1.009	0.502	0.508
282.45 283.15	0.939	0.484	0.482
285.55 293.15	0.910	0.476	0.456
Smoothing equation: $\ln x_{HC1} = 11.093$ Standard error in x_{HC1} about the regr	- 14.188/(T/ ession line =	100) - 6.5 1.23 × 10	44 ln(T/100) -3
4-Penten-1-ol; C ₅ H ₁₀ O; 252.15 [821-09-0] 253.15 263.15 273.15	1.426	0.588	0.584 0.545 0.511
275.45 278.75 279.95	0.979 0.968	0.504 0.495 0.492	0.511
281.55 283.15 286.25 293.15		0.487 0.475	0.483 0.459
293.15	+ 7.868/(T/1	00) + 1.25	
Smoothing equation: $\ln x_{\text{HCl}} = -4.807$	estion line	3 60 - 10	- 4
Smoothing equation: $\ln x_{HC1} = -4.807$ Standard error in x_{HC1} about the regret * calculated by the compiler. ** smoothing equations and smoothed variables			

COMPONENTS:		ORIGINAL ME	ASUREMENTS	:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>		Cook, T.M.		
(2) Alkenols and alkynols		Thesis, <u>196</u> University		
EXPERIMENTAL VALUES:		Mole ratio HCl ^{/n} alcohol	Mole* fraction ^x HCl	Smoothed** mole fraction ^x HCl
3-Hexen-1-ol; C ₆ H ₁₂ O; [2305-21-7]	293.15	0.953 0.940 0.897 0.849	0.536 0.488 0.485 0.473 0.459	0.537 0.510 0.484 0.459
Smoothing equation: ln x _{HCl} = Standard error in x _{HCl} about t	= 5.733 the regre	- 6.804/(T/1)	00) - 3.89 9.91 × 10	6 ln(T/100) -4
3-Hepten-1-ol; C ₇ H ₁₄ O; [10606-47-0]	282.75	1.056 0.963 0.956	0.537 0.514 0.491 0.489	0.538
	282.85 283.15	0.955	0.488	0.488
Smoothing equation: $\ln x_{HC1} = Standard error in x_{HC1}$ about t	= 8.160 - he regre	10.185/(T/1 ession line =	00) - 5.07 3.76 × 10	4 ln(T/100) -4
<pre>* calculated by the compiler. ** smoothing equations and smo</pre>				

-

COMPONENTS :	EVALUATOR:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0] (2) Alkanediols</pre>	H. Lawrence Clever Department of Chemistry Emory University Atlanta, GA 30322 USA
(2) Alkanediois	1983, July

The solubility of hydrogen chloride in alkanediols.

Hydrogen chloride + 1,2-Ethanediol; C₂H₆O₂; [107-21-1]

Three laboratories have reported solubility data on the system. O'Brien, Kenny and Zeurcher (ref. 1) studied the HCl + CH_2OHCH_2OH system at 298.15 K and HCl partial pressure range of 0.081 to 43.0 kPa. Matuzak (ref. 2) reported one solubility value at 310.9 K and 99.1 kPa partial pressure. Gerrard and Macklen (ref. 3) reported the solubility at a partial pressure of 101.3 kPa and ten temperatures between 273.15 and 319.65 K. All of the data are classed as tentative although, as discussed below, there is evidence the O'Brien *et al.* solubility data may be too small.

The one value of Matuszak at 310.9 K, when corrected to 101.3 kPa pressure by Henry's law, agrees exactly with the 310.9 K solubility value calculated from the smoothed data equation obtained from Gerrard and Macklen's data. This tends to support the reliability of the results of both laboratories.

At 298.15 K a graph of $\ln p_1$ vs. either $\ln x_1$ or $\ln(n_1/n_2)$ shows a poor correlation between the results of O'Brien *et al.* and of Gerrard and Macklen. If the Gerrard and Macklen value at 101.3 kPa is correct then the O'Brien *et al.* solubility values appear to be in error by being too small. Selected values of the data of O'Brien *et al.* at partial pressures of 0.081, 0.253, 0.324 and 3.67 kPa (0.0008, 0.0025, 0.0032 and 0.0357 atm) could form a line that would correlate with Gerrard and Macklen's value, but the other nine values, which fall on a satisfactory straight line, are too small. There is not enough evidence to discredit the results of O'Brien *et al.* but their data should be used with caution until confirmed by additional experiments.

Hydrogen chloride + Alkanediols (Table 1)

Gerrard and Macklen (ref. 3) report the solubility of hydrogen chloride in six alkanediols, including the 1,2-ethanediol discussed above, at 101.3 kPa hydrogen chloride partial pressure over the temperature interval of about 273 to 323 K.

The data were fitted by the method of least squares to an equation of the type

 $\ln x_1 = A_1 + A_2/(T/100 \text{ K}) + A_3 \ln(T/100 \text{ K})$

The equation and a table of smoothed mole fraction solubility data are included on each data sheet. Table 1 contains the smoothed solubility values in mole fraction (x_1) and mole ratio (n_1/n_2) at temperatures of 273.15, 293.15 and 323.15 K and a partial pressure of 101.3 kPa along with the name and formula of each alkanediol.

Although only a limited number of solvents were studied one can observe several trends between solubility and structure. For alkanediols, $C_n H_{2n+2} O_2$, the solubility in l,n-alkanediols increases as n increases. Within the butanediols the solubility decreases as the hydroxy groups are spaced nearer together. Thus the solubility decreases in the order

1,4-Butanediol > 1,3-Butanediol > 2,3-Butanediol

······································							
COMPONENTS :		H	EVALUATOR	:			<u> </u>
 Hydrogen chloride; H [7647-01-0] Alkanediols 				H. Lawrence Clever Department of Chemistry Emory University Atlanta, GA 30322 USA 1983, July			
RITICAL EVALUATION:							<u></u>
fr ch pr	action loride essure	(x_1) so in alka of 101.	atio (n olubilit nediols 325 kPa 5 and 3	ies of at a p and te	hydroge artial mperatu	en	
Solvent Name and Structure			y of HC				
		15 K		15 K	<u></u>	15 K	
<u></u>	$\frac{n_{1}/n_{2}}{2}$	<u>x</u>	$\frac{n_{1}/n_{2}}{2}$	<u> </u>	$\frac{n_{1}^{/n}n_{2}^{}}{2}$	<u> </u>	
l,2-Ethanediol CH ₂ OHCH ₂ OH [107-21-1]	1.037	0.509	0.815	0.449	0.637	0.389	
l,3-Propanediol CH ₂ OHCH ₂ CH ₂ OH [504-63-2]	1.132	0.531	0.873	0.466	0.689	0.408	
l,3-Butanediol CH ₂ OHCH ₂ CHOHCH ₃ [107-88-0]	1,597	0.615	1.217	0.549	0.942	0.485	
1,4-Butanediol CH ₂ OHCH ₂ CH ₂ CH ₂ OH [110-63-4]	1.674	0.626	1.353	0.575	1.088	0.521	
2,3-Butanediol CH ₃ CHOHCHOHCH ₃ [513-85-9]	1.288	0.563	0.961	0.490	0.745	0.427	
1,5-Pentanediol CH ₂ OHCH ₂ CH ₂ CH ₂ CH ₂ OH [111-29-5]			1.506	0.601	1.212	0.548	

REFERENCES:

 O'Brien, S. J.; Kenny, C. L.; Zeurcher, R. A. J. Am. Chem. Soc. <u>1939</u>, 61, 2504.
 Matuszak, M. P. U. S. Patent 2,520,947 Sept. 5, <u>1950</u>.

3. Gerrard, W.; Macklen, E. D. J. Appl. Chem. 1960, 10, 57.

140	nyuruger	i chioride în î	Non-Aqueous Sol	ivents		
COMPONENTS :			ORIGINAL MEASUREMENTS:			
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>		O'Brien, S. J.; Kenny, C. L.; Zeurcher, R. A.				
<pre>(2) 1,2-Ethanediol or ethylene glycol; C₂H₆O₂; [107-21-1]</pre>		J. Am. Chem 2504 - 2507	. Soc. <u>1939</u> , 61, •			
VARIABLES:	·		PREPARED BY:	<u></u>		
P/kI	K: 298.15 a: 0.081 - 0008 - 0.42	42.96	W. Gerr	ard		
EXPERIMENTAL VALUES:						
T/K	Pressure		Mol Ratio	Mol Fraction		
	p ₁ /atm	m1/mol kg-	-1 n ₁ /n ₂	<i>x</i> 1		
¹ Value plot o	of the abov e ratio and	e x ₁ vs. p ₁	data.	0.0359 0.0598 0.0642 0.0708 0.0780 0.0792 0.0801 0.0806 0.115 0.155 0.157 0.162 0.197 0.249) ¹ Tapolation of the series calculated by		
		AUXILIARY	INFORMATION			
METHOD/APPARATUS/PRO	CEDURE :			TY OF MATERIALS:		
The method and apparatus are almost identical to those of Saylor (1). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened,		 (1) Hydrogen chemical chloride by phosp (2) 1,2-Etha Used as 	a chloride. Prepared from ly pure potassium e and sulfuric acid. Dried phorus pentoxide. anediol. Eastman Kodak Co. received.			
and the whole apparatus put in a thermostat from 1 to 2 days.		ESTIMATED ERROR	° δT/K = 0.02			
The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH. The HCl partial pressure is calculated from the bulb volume and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and titrated with NaOH.		REFERENCES:	I. H. Lem. Soc. <u>1937</u> , 59, 1712.			
1						

COMPONENTS:		ORTGINAL M	EASUREMENTS	•
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>			.; Macklen,	
(2) Diols		J. App1. C	hem. <u>1960</u> ,	10, 57-62.
VARIABLES:		PREPARED B		
T/K: See below Total P/kPa : 101.325 (1 atm)		W. G	errard	
EXPERIMENTAL VALUES:				
	т/к	Mole ratio ⁿ HCl ^{/n} diol	Mole* fraction ^x HCl	Smoothed** mole fraction ^x HCl
	273.15	1.038	0.509	0.509
glycol); C ₂ H ₆ O ₂ ; [107-21-1]	276.25 283.15	1.000	0.500	0.479
	284.15	0.902	0.474	0.175
	292.95 293.15	0.816	0.449	0.449
	295.35		0.442 0.425	
	303.15		0.403	0.419
	311.15		0.396	
	313.15 317.85		0.374	0.389
	319.65	0.585	0.369	0.360
<pre>** smoothing equation and smoo</pre>	thed va	alues were c	alculated by	y H.L. Clever
AUXI	LIARY 1	INFORMATION		
METHOD/APPARATUS/PROCEDURE:		SOURCE AND	PURITY OF	MATERIALS:
The method and procedure were described by Gerrard and Mackle The amount of gas absorbed by a			gen chlorid red and drie	
measured weight of solvent was determined by re-weighing the bubbler tube to constant weight the measured total pressure was barometric, very nearly 101.325 The temperature control was wit 0.1 K.	kPa.	metho boili index	; distilled	attested by d refractive
		ESTIMATED ^{6x} HCl	δτ/κ	$= \pm 0.1$ 0.005 to 0.025
		REFERENCES	•	
			, W.; Mackle . Chem. <u>195</u>	

COMPONENTS:		ORIGINAL ME	EASUREMENTS	:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>		Gerrard, W.		
(2) Diols		J. Appl. Cł	nem. <u>1960</u> , .	10, 57-62.
VARIABLES: T/K: See below		PREPARED BY	<pre>/: errard</pre>	
Total P/kPa : 101.325 (1 atm)				
EXPERIMENTAL VALUES:				
	т/к	Mole ratio ⁿ HCl ^{/n} diol	Mole* fraction	Smoothed** mole fraction
		net dioi	*нсі	×HC1
1,3-Propanediol, (propylene	273.15 277.65	1.138 1.068	0.532 0.516	0.531
glycol); C ₃ H ₈ O ₂ ; [504-63-2]	280.35	1.036	0.509	
	282.65	0.994	0.498	
	283.15			0.498
	290.25	0.903	0.475	
	293.15			0.466
	297.45	0.833	0.454	
	306.65	0.748 0.705	0.428 0.413	
	310.85 313.15	0.705	0.413	0.408
	317.85	0.652	0.395	0.400
	303.15	01001	0.000	0.436
	323.15			0.381
ncı		- 8.297/(T/10 e regression	00) - 4.776 line = 1.42	
1,3-Butanediol, (1,3-butylene		1 452	0 500	0.615
glycol); C4 ^H 10 ^O 2; [107-88-0]	279.65 281.25	1.453 1.430	0.592 0.588	
	283.15	1.130	0.500	0.582
	285.65	1.353	0.575	
	293.15			0.549
	293.35	1.222	0.550	
	298.65	1.128	0.530	
	300.15	1.111	0.526	0 546
	303.15	1 040	0 510	0.516
	303.75 307.65	1.049 1.013	0.512 0.503	
	310.35	0.974	0.493	
	313.15			0.485
	318.15	0.884	0.469	
	323.15			0.454
	326.35	0.801	0.445	0 405
	333.15			0.425
Smoothing equation: ln × _{HCl} = Standard error in × _{HCl} =	= 9.533 - about the	- 11.646/(T/1 e regression	00) - 5.728 line = 1.39	3 ln(T/100) 9 × 10 ⁻³
* calculated by the compiler ** smoothing equation and smo	othed va	lues were ca	lculated by	H.L. Clever

COMPONENTS:		ORIGINAL ME	ASUREMENTS	:
(1) Hydrogen chloride; HCl;		Gerrard, W.	; Macklen,	E.D.
[7647-01-0]		J. Appl. Ch	em. 1960, 1	0, 57-62.
(2) Diols				
EXPERIMENTAL VALUES:	т/к	Mole ratio ⁿ HCl ^{/n} diol	Mole* fraction	Smoothed** mole fraction
			^x HCl	×HC1
2,3-Butanediol, (2,3-butylene	273.15			0.563
<i>glycol</i>); C ₄ H ₁₀ O ₂ ; [513-85-9]	275.05 276.85	1.246 1.217	0.555 0.549	
	280.55	1.154	0.536	0 535
	283.15 284.15	1.088	0.521	0.525
	288.85	1.011	0.503	0.490
	293.15 294.55	0.936	0.483	0.490
	302.75 303.15	0.852	0.460	0.458
	308.25	0.793	0.442	
	313.15 314.45	0.738	0.425	0.427
	321.05	0.671	0.402	
	323.15			0.399
Smoothing equation: ln x _{HCl} = Standard error in x _{HCl} , a	5.667 - bout the	- 5.930/(T/10 e regression	00) - 4.051 line = 1.74	ln(T/100) 4 × 10 ⁻³
1,4-Butanediol,	273.15		0.626	0.626
(tetramethylene glycol); C ₄ H ₁₀ O ₂ ; [110-63-4]	280.55 283.55	1.552 1.500	0.608 0.600	
4-10-27	283.15	1 401	0 500	0.601
	284.65 288.25	1.491 1.433	0.599 0.589	
	290.35 293.15	1.395	0.582	0.575
	293.35	1.360	0.576	0.373
	294.35 298.35	1.337 1.279	0.572 0.561	
	303.15			0.548
	304.75 312.55	1.193 1.096	0.544 0.523	
	313.15			0.521
Smoothing equation: ln x _{HCl} = Standard error in x _{HCl} =	10.370 bout the	- 13.365/(T/ e regression	(100) - 5.9 line = 7.50	7 ln(T/100) 5 × 10 ⁻⁴
1,5-Pentanediol,	283.15			0.630
(pentamethylene glycol); C ₅ H ₁₂ O ₂ ; [111-29-5]	286.55 291.75	1.620 1.532	0.618 0.605	
-5-12-27	293.15			0.601
	298.95 303.15	1.421	0.587	0.573
	312.35	1.223	0.550	
	313.15 316.95	1.163	0.538	0.548
	322.35	1.095	0.523	0.524
	323.15	1.017	0.504	
	333.15			0.502
Smoothing equation: ln x _{HCl} = Standard error in x _{HCl} a	2.064 - bout the	- 1.545/(T/10 e regression)0) - 1.903 line = 2.27	ln(T/100) × 10 ⁻³
* calculated by the compiler				
<pre>** smoothing equation and smo</pre>	othed va	alues were ca	alculated by	H.L. Clever

COMPONENTS :	FVALUATOR.
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
 Aromatic and alicyclic alcohols 	Polytechnic of North London, Holloway, London, N7 8DB, U.K. January 1989

Solubility of Hydrogen Chloride in Aromatic and Alicyclic Alcohols

Gerrard & Macklen (1) measured solubilities in benzenemethanol, phenylethanol and phenyl-1-propanol over temperature ranges at a total pressure of 1.013 bar. The contribution of the vapor pressure of the solvent to the total pressure was negligible under the conditions of the measurements and data may be taken to correspond to solubilities at a partial pressure of 1.013 bar. Measurements are self-consistent and correspond to a small increase in mole fraction solubility with increase in carbon number. No other data for these systems are available for comparison.

Mole fraction solubilities at 293.15 K and a partial pressure of 1.013 bar.

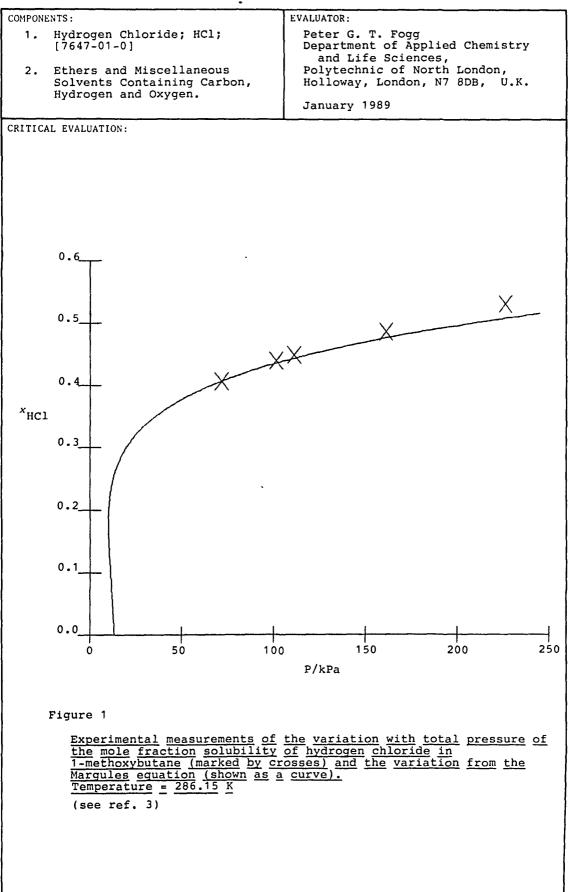
Methanol Ethanol	0.434 0.462	(evaluated value) (evaluated value)
Propanol	0.463	(evaluated value)
Benzenemethanol	0.412	(smoothed data based upon
Phenylethanol	0.425	measurements by
Phenyl-1-propanol	0.446	Gerrard & Macklen)

Gerrard & Macklen (2) also measured solubilities in cyclohexanol and in 2-methylcyclohexanol at a total pressure equal to barometric pressure over the temperature ranges 280.95 K to 314.75 K and 277.85 K to 321.85 K respectively. Both sets of measurements are self-consistent with mole fraction solubilities at the same temperature very close to each other. The smoothed value at 293.15 K for cyclohexanol is 0.507 and that for 2-methylcyclohexanol in 0.510. Under the conditions of measurement mole fraction solubilities for a total pressure of 1.013 bar are likely to be close to those at a partial pressure of gas of 1.013 bar. The corresponding smoothed value for solubility in 1-hexanol from measurements by these authors is 0.468. The data for cyclohexanol and 2-methylcyclohexanol may be accepted on a tentative basis.

REFERENCES

1.	Gerrard,	W.;	Macklen,	Ε.	D.	J.	<i>App1</i> .	Chem.	<u>1956</u> ,	6,	241 -	244.
2.	Gerrard,	W.;	Macklen,	E.	D.	J.	App1.	Chem.	<u>1959</u> ,	9,	85 - 8	38.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Macklen, E.D.
(2) Cyclic alkanols	J. Appl. Chem. <u>1959</u> , 9, 85-88.
VARIABLES:	PREPARED BY:
T/K: See below Total P/kPa : 101.325 (1 atm)	W. Gerrard
EXPERIMENTAL VALUES: T/K	Mole ratio Mole* Smoothed** HCl ^{/n} alcohol fraction mole fraction ^x HCl ^x HCl
Cyclohexanol; C ₆ H ₁₂ O; 273.15 [108-93-0] 280.95	
283.15 285.15 289.55	1.013 0.503
203.15 293.15 299.75	0.484
303.15	0.460
307.85 313.15 314.75	0.437
Smoothing equation: $\ln x_{HC1} = 6.643 - $ Standard error in x_{HC1} about the	
2-Methylcyclohexanol; 273.15	0.533
C ₇ H ₁₄ O; [583-59-5] 277.85 283.15	1.096 0.523
285.05 293.15	1.026 0.506
296.05 302.35	
303.15 312.55	0.463
313.15 321.85	0.722 0.419
323.15 - Smoothing equation: ln x _{HCl} = 9.687 Standard error in x _{HCl} about the	
* calculated by the compiler	alues were calculated by H.L. Clever
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus and procedure were those described by Gerrard and Macklen (1). The hydrogen chloride was generated in an all glass apparatus. The absorption vessel, previously weighed, was fitted with	 (1) Hydrogen chloride: self- prepared and dried. (2) Alcohols: purified, distilled, and attested by physical constants.
a stoppered bubbler tube, and a stoppered outlet tube. Entrained liquid was condensed at 273.15 K, and allowed for. The amount of gas	ESTIMATED ERROR: $\delta x_{HCl} / x_{HCl} = \pm 0.01$
absorbed by a known weight of liquid was determined by weighing.	REFERENCES:
"as determined by werghing.	1. Gerrard, W.; Macklen, E.D. J. Appl. Chem. <u>1956</u> , 6, 241.


Hydrogen Chlo	ride in l	Non-Aqueous Solvents 14
COMPONENTS :		ORIGINAL MEASUREMENTS:
(1) Hydrogen chloride; HCl;		Gerrard, W.; Macklen, E. D.
[7647-01-0]		
		J. Appl. Chem. <u>1956</u> , 6, 241-244.
(2) Benzenemethanol or benzyl		
alcohol; C ₇ H ₈ O; [100-51-6]		
VARIABLES:		PREPARED BY:
T/K: 278.65 - 316.85 Total P/kPa: 101.325 (1 atm)		W. Gerrard
		(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	e Ratic	Mole Fraction
-,		
-HCI	/ ⁿ c ₇ н ₈	
278.65	0.875	0.467
	0.793	0.422
	0.720	0.419
	0.657 0.597	0.396 0.374
	0.525	0.344
The mole fraction solubility va	lues w	ere calculated by the compiler.
		_
Smoothed Data: $\ln x_1 = -3.085$	+ 6.44	1/(T/100)
Chandand owner	about	regression line = 9.91×10^{-3}
Standard erfor		
T/	к мо	le Fraction
		<i>x</i> 1
		0.483
273. 283.		0.445
293.		0.412
303.	-	0.383
313.		0.358 0.336
323.	T.2	0.338
AU	XILIARY	INFORMATION
	·	
METHOD/APPARATUS/PROCEDURE:	in an	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Self pre-
all-glass apparatus.	in an	pared and dried.
are dropp abbaracap.		purca and arrows
The all glass absorption vessel		(2) Benzenemethanol or benzyl
cm ³) comprised an inlet bubbler		alcohol. High-grade specimen
an outlet tube, and the part ho a weighed amount of liquid. Ea		was distilled and attested.
tube was fitted with a tap, and		
either a B-19 cone, or a B-19		
socket. Entrained liquid was c		
lected and allowed for. Temper control was within 0.1 K. The	ature	
amount of gas absorbed was dete	r-	
mined by weighing.	-	ESTIMATED ERROR:
		$\delta T/K = 0.1$
		$\delta x_{1}/x_{1} = 0.01$
		REFERENCES :
		1

	Non-Aqueous bolients
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Hydrogen chloride; HCl;	Gerrard, W.; Macklen, E. D.
[7647-01-0]	1
(2) Phonylothanol, C.H. O.	J. Appl. Chem. <u>1956</u> , 6, 241-244.
(2) Phenylethanol; C ₈ H ₁₀ O;	
[1321-27-3]	
VARIABLES:	PREPARED BY:
т/к: 278.35 - 315.85	W. Gerrard
Total P/kPa: 101.325 (1 atm)	
	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mole Rat	
ⁿ HCl/ ⁿ C ₈ H	x ₁₀ 0 ^x 1
278.35 0.878	0.468
287.05 0.796	
292.35 0.747	0.428
299.25 0.686 309.35 0.608	0.407
309.35 0.608 315.85 0.565	0.378 0.361
The mole fraction solubility values w	vere calculated by the compiler.
Smoothed Data: $\ln x_1 = 12.392 - 15.6$	587 (T/100) - 7.351 In (T/100)
Standard error about	regression line = 6.09×10^{-4}
T/K Mc	ole Fraction
	<i>x</i> ₁
273.15	0.483
283.15	0.454
293.15	0.425
303.15 313.15	0.396 0.368
323.15	0.341
AUXILIARY	INFORMATION
METHOD APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Hydrogen chloride was generated in ar	
all-glass apparatus.	pared and dried.
The all glass absorption vessel (50 cm ³) comprised an inlet bubbler tube,	(2) Phenylethanol. High-grade specimen was distilled and
an outlet tube, and the part holding	attested.
a weighed amount of liquid. Each	
tube was fitted with a tap, and	
either a B-19 cone, or a B-19 socket. Entrained liquid was col-	
lected and allowed for. Temperature	
control was within 0.1 K. The	
amount of gas absorbed was deter- mined by weighing.	ESTIMATED ERROR:
······································	$\delta T/K = 0.1$
	$\delta x_1 / x_1 = 0.005$
	REFERENCES:

Hydrogen Ch	loride in I	Non-Aqueous Solvents	149
COMPONENTS :		ORIGINAL MEASUREMENTS:	
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>		Gerrard, W.; Macklen, E. D.	
(2) Phenyl-1-propanol; C ₉ H ₁₂ O; [1335-12-2]		J. Appl. Chem. <u>1956</u> , 6, 241-244.	
VARIABLES:		PREPARED BY:	
T/K: 280.15 - 317.75		W. Gerrard	
Total P/kPa: 101.325 (1 atm)		(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:			
	ole Rati		
nHC	с1/ ⁿ с9 ^н 1	2 ⁰ ^x 1	
280.15	0.922	0.480	
286.55	0.860	0.462	
293.55 300.55	0.801 0.740	0.445 0.425	
303.85	0.714	0.417	
310.25 317.75	0.659	0.397	
317.73	0.601	0.375	
Smoothed Data: $\ln x_1 = 19.778$	3 - 26.3	ere calculated by the compiler. $54/(T/100) - 10.781 \ln (T/100)$	
Standard error	about	regression line = 1.03×10^{-3}	
د 	г/к мо	le Fraction ^x 1	
27:	3.15	0.495	
	3.15	0.472	
	8.15 8.15	0.446 0.418	
	3.15	0.389	
	3.15	0.360	
	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS;	
Hydrogen chloride was generate all-glass apparatus.	ed in an	(1) Hydrogen chloride. Self pre- pared and dried.	
The all glass absorption vesses cm^3) comprised an inlet bubble an outlet tube, and the part H a weighed amount of liquid. H tube was fitted with a tap, an either a B-19 cone, or a B-19 socket. Entrained liquid was lected and allowed for. Tempe control was within 0.1 K. The	er tube, holding Each hd col- erature	(2) Phenyl-1-propanol. High-grade specimen was distilled and attested.	
amount of gas absorbed was det	ter-	ESTIMATED ERROR:	
mined by weighing.		$\delta T/K = 0.1$ $\delta x_1/x_1 = 0.005$	
			_
		REFERENCES :	

COMPONENTS: EVALUATOR: 1. Hydrogen Chloride; HCl; Peter G. T. Fogg Department of Applied Chemistry and Life Sciences, [7647-01-0] Polytechnic of North London, 2. Ethers and Miscellaneous Solvents Containing Carbon, Hydrogen and Holloway, London, N7 8DB, U.K. Oxygen. January 1989 CRITICAL EVALUATION: The Solubility of Hydrogen Chloride in Ethers and Miscellaneous Solvents Containing Carbon, Hydrogen and Oxygen. The solubility in a wide range of alkyl ethers has been measured by Gerrard and his co-workers (1-3) over the temperature range 197 K to 301 K at a total pressure equal to barometric pressure. The solubility in 1-methoxybutane has also been measured over a total pressure range of 7 kPa to 226 kPa at temperatures 233.45 K to 286.15 K. Mole fraction solubilities are appreciably higher than values corresponding to the Raoult's law equation i.e. mole fraction = partial pressure / vapor pressure of liquid HCl The variations of mole fraction solubility with pressure at a constant temperature for 1-methoxybutane may be compared with the variations expected from the Margules equation i.e. $P_{total} = P_g^{\circ} x_g \exp(\alpha x_s^2) + P_s^{\circ} x_s \exp(\alpha x_g^2)$ where 'g' refers to the gas and 's' refers to the solvent. P°_{s} and P°_{s} are the vapor pressures of pure liquefied gas and solvent respectively. The value of α may be found by substitution in the equation of the mole fraction solubility for one value of the total pressure at a particular temperature. The equation may then be used to draw the variation of mole fraction solubility with pressure which follows from the equation. As may be seen from fig. 1 the experimental data for 1-methoxybutane approximate to the curve from the Margules equation but do not exactly coincide with it except at the data point used to calculate the value of α . The curve does not pass through the origin because the pure solvent has a small vapor pressure at this temperature. Both the experimental measurements and the theoretical curve indicate that, at total pressures of about 101.3 kPa, there is relatively small change in mole fraction solubility with change of pressure, whereas at very low total pressures the change is relatively large. Solubilities in other dialkyl ethers have not been measured over pressure ranges but the evaluator considers that the Margules equation is likely to give an approximate prediction of behaviour which is valid for the comparison of one system with another. At the higher temperatures of measurement the lower ethers are appreciably volatile. 1,1'-Oxybisethane has a vapor pressure of about 75 kPa at 299 K, the highest temperature of measurement of solubility in this ether. According to Kapoor et al. the mole fraction solubility of hydrogen chloride in this solvent Margules equation applied to this system that a saturated solution under these conditions is likely to have a partial pressure of hydrogen chloride of 82.3 kPa with the partial pressure of 1,1'-oxybisethane reduced to 19.0 kPa. It also follows from the Margules equation that the mole fraction solubility for a partial pressure of hydrogen chloride of 101.3 kPa would be about 0.374 compared with the solubility of 0.357 for a total pressure of 101.3 kPa. This difference is small despite the very high volatility of the pure solvent. At lower temperatures for this solvent and at this temperature for higher ethers the difference between mole fraction solubility at a total pressure of 101.3 kPa and mole fraction solubility at this partial pressure is likely to be much smaller. At 283.95 K the vapor pressure of pure 1,1'-oxybisethane is about 40 kPa and experimental value of the mole fraction solubility of hydrogen chloride at a total pressure of 101.3 kPa is 0.475. The partial pressure of 1,1'-oxybisethane over the saturated solution is likely to be about 2.2 kPa and the corresponding value of mole fraction solubility for a partial pressure of 101.3 kPa to be about 0.477.

The evaluator considers that, for the purpose of general comparison of these sets of data for dialkyl ethers at a total pressure of 101.3 kPa, either one with another or with data for other systems, the contribution of the vapor pressure of the ether to the total pressure may be disregarded. Solubilities at

COMPO	DNENTS:	EVALUATOR:
1.	Hydrogen Chloride; HCl; [7647-01-0]	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2.	Ethers and Miscellaneous Solvents Containing Carbon, Hydrogen and Oxygen.	Polytechnic of North London, Holloway, London, N7 8DB, U.K. January 1989

a total pressure of 101.3 kPa may be considered to differ from solubilities at a partial pressure of 101.3 kPa by less than the experimental error in measurement.

The general pattern of data for a total pressure of 101.3 kPa is consistent but unusual. Over much of the temperature range the variation with temperature of mole fraction solubilities in the various ethers is almost linear. The solubility curves are very close to one another and there is very little change in pattern on going from the lower alkyl ethers with carbon number of four to higher ones with carbon number of 16. Mole fraction solubilities in 2-ethoxybutane are slightly higher than in the other alkyl ethers. At 273.15 the smoothed value given by Kapoor *et al.*(3) is 0.574 compared with the smoothed value of 0.537 for dissolution in 1-ethoxybutane.

Kapoor *et al.*(3) repeated some of the earlier measurements of the solubility in 1-methoxybutane, 1,1'-oxybispropane, 1,1'-oxybisbutane 1,1'-oxybispentane, and 1,1'-oxybis[3-methyl]-butane made with similar apparatus in the same laboratory by Gerrard & Macklen (1) or Ahmed, Gerrard & Maladkar (2). In all cases there is agreement within about 2%. Some measurements of solubility in alkyl ethers have been reported from other laboratories. Perkin's measurements (4) of solubility in 1,1'-oxybis[3-methyl]-butane over the temperature range 273.15 K to 298.15 K are close to the later measurements by Gerrard & Macklen and by Kapoor *et al.* The single measurement reported by Matuszak (5) at 297.6 K is significantly lower than solubilities reported by other authors and is rejected by the evaluator.

The evaluator recommends the following equation for solubilities in 1,1'-oxybis[3-methyl]-butane at a total pressure of 101.3 kPa for the temperature range 272.9 K to 307.45 K which is based upon experimental data obtained within this range :

 $\ln x_{\rm HCl} = 299.563 - 11887.3/(T/K) - 45.7625 \ln(T/K)$

The standard deviation in values of x_{HC1} is 0.0081.

The data obtained by Kapoor $et \ al.$ should be used for solubilities at lower temperatures down to 194.65 K. These data are probably reliable but there are no other measurements at very low temperatures for comparison.

The solubility in 1,1'-oxybisethane at a total pressure equal to barometric pressure was also measured by Kapoor *et al.*(3) over the temperature range 201.15 K to 299.55 K, by Schunke (6) over the range 263.95 K to 303.15 K, by Ionin & Shverina (7) and by Chesterman (8) at 298.15 K and also by Mirsaidov *et al.*(9) at 273.15 K and 298.15 K. As explained above, the solubility in ethers is relatively insensitive to changes in pressure at pressures close to 101.3 kPa. Variation in barometric pressure from one set of data to another does not cause significant changes in solubility. Data presented by Kapoor *et al.*, by Schunke and by Chesterman agree fairly closely. The solubilities published by Mirsaidov *et al.* are appreciably lower and the value given by Ionin & Shverina higher than values given by other authors. The following equation based upon measurements by Kapoor *et al.*, by Schunke and by Chesterman is recommended for solubilities in the range 260 K to 303 K :

 $\ln x_{\rm HC1} = 75.090 - 2391.9/(T/K) - 11.940 \ln(T/K)$

The standard deviation in values of x_{HC1} is 0.0177.

Data published by Kapoor *et al.* for lower temperatures down to 201.15 K are likely to be reliable. No other measurements down to this temperature are available for comparison.

Ionin & Shverina (7) measured the solubility in 1,1'-oxybisbutane at 298.15 K and a total pressure equal to barometric pressure. Their value of the fraction solubility is 0.447 which is high compared with the value of 0.39 from measurements by Kapoor *et al.*(3), and by Gerrard & Macklen (1) which are in

COMPO	NENTS:	EVALUATOR:
1.	Hydrogen Chloride; HCl; [7647-01-0]	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2.	Ethers and Miscellaneous Solvents Containing Carbon, Hydrogen and Oxygen.	Polytechnic of North London, Holloway, London, N7 8DB, U.K. January 1989

satisfactory agreement where the two temperature ranges overlap. Ionin & Shverina also measured the solubility in 2,2'-oxybisbutane at 298.15 K. No other measurements of the solubility of hydrogen chloride in this solvent are available for comparison. In view of the uncertainty cast on their measurement of solubility in 1,1'-oxybisethane and in 1,1'-oxybisbutane published in the same paper the value for 2,2'-oxybisbutane should be treated with caution.

Gerrard & Macklen (1) measured the solubility of hydrogen chloride in (methoxymethyl)benzene, (ethoxymethyl)benzene, (butoxymethyl)benzene and 1,1'-[oxybis(methylene)]bisbenzene at total pressures equal to barometric pressure in the temperature range 273.15 K to 312.95 K. The measurements are self-consistent and likely to be reliable but no other measurements of solubility in these solvents are available for comparison. Mole fraction solubilities are appreciably higher than given by the Raoult's law equation but the presence of the benzene rings lowers solubility relative to that in dialkyl ethers as shown below:

Table 1 Mole fraction solubility of hydrochloric acid at 283.15 K, total pressure 101.325 kPa

Solvent	×HC1	Source
(Raoult's law equation)	0.0305	
1,1'-Oxybisethane	0.478	evaluator's equation
(Methoxymethy1)benzene	0.421	(1)
(Ethoxymethyl)benzene	0.419	(1)
(Butoxymethyl)benzene	0.407	(1)
1,1'-[Oxybis(methylene)]bisbenzene	0.352	(1)
Methoxybenzene	0.144	evaluator's equation
Ethoxybenzene	0.149	evaluator's equation
1-Methoxy-2-methylbenzene	0.112	(1)
1,1'-Oxybisbenzene	0.049 (298.15 K)	(11)
	0.059 (298.15 K)	(1)
Tetrahydrofuran	0.581	(1)
1.4-Dioxane	0.517	(1)

Mole fraction solubility at barometric pressure is further reduced if the benzene ring is directly attached to the ether linkage. Unlike the ethers discussed above there is, in the case of alkyl aryl ethers and diaryl ethers, significant variation in mole fraction solubility with change in pressure at pressures close to 101.3 kPa. The assumption that mole fraction solubility varies linearly with pressure to about 101.3 kPa is probably a valid approximation for many purposes.

The solubility in methoxybenzene has been measured over a pressure and temperature range by O'Brien (10). Solubility at a total pressure of 101.3 kPa has also been measured over temperature ranges by Gerrard & Macklen and by Kapoor *et al.* Mole fraction solubilities at a partial pressure of 101.3 kPa by extrapolation of O'Brien's data are close to values from the other two sources, corrected where necessary for the small contribution of the solvent to the total vapor pressure. The evaluator recommends the following equation for mole fraction solubilities in the temperature range 277 K to 321.65 K based upon data from the three sources:

 $\ln x_{\rm HC1} = -217.535 + 11508.4/(T/K) + 30.9874 \ln(T/K)$

The standard deviation in values of x_{HC1} is 0.0506.

Measurements made down to 195.65 K by Kapoor *et al.* are likely to be reliable but no other data for low temperatures are available for comparison.

O'Brien & King (11) measured Henry's constants for solubility in ethoxybenzene over the temperature range 283.15 K to 298.15 K. Gerrard and Macklen reported solubilities in this solvent at a total pressure of 101.3 kPa for the range 282.75 K to 322.95 K. The two sets of data are consistent to within 6%.

Hydrogen Chloride in Non-Aqueous Solvents EVALUATOR: COMPONENTS : Hydrogen Chloride; HCl; Peter G. T. Fogg 1. [7647-01-0] Department of Applied Chemistry and Life Sciences, Ethers and Miscellaneous Solvents Polytechnic of North London, 2. Holloway, London, N7 8DB, U.K. Containing Carbon, Hydrogen and Oxygen. January 1989 CRITICAL EVALUATION: The corresponding values of mole fraction solubilities fit the following equation : $\ln x_{\rm HC1} = 67.4844 - 1288.90/(T/K) - 11.4837 \ln(T/K)$ The standard deviation for values of x_{HC1} is 0.0020. O'Brien & King also measured Henry's constants for dissolution of hydrogen chloride in butoxybenzene at 293.15 k and 298.15 K. No other measurements for dissolution of the gas in this solvent are available for comparison. The corresponding mole fraction solubilities for a partial pressure of 101.3 kPa are close to those for dissolution in ethoxybenzene. There is no reason to doubt their reliability, within the limits of experimental error given by the author. Solubility in 1-methoxy-2-methylbenzene at a total pressure of 101.3 kPa over the range 273.15 K to 316.45 K was measured by Gerrard & Macklen (1). The data indicate that the presence of the methyl group adjacent to the ether linkage reduces the mole fraction solubility relative to that in methoxy- and ethoxybenzene. There is no reason to doubt the reliability of the data but no other measurements on this system are available for comparison. The solubility in 1,1'-oxybisbenzene was measured by O'Brien & King (11) at 298.15 K and 303.15 K and by Gerrard & Macklen (1) who reported solubilities at 101.3 kPa over the temperature range 273.15 K to 323.55 K. Matuszak (5) reported the solubility at a pressure of 99.6 kPa at 307.0 K. There is poor agreement between measurements by different authors as may be seen below: $x_{\rm HC1}$ at 101.3 kPa total pressure. Authors T/K Gerrard & Macklen (1) 298.15 0.0593 (interpolated) 303.15 0.0535 0.0496 307.0 O'Brien & King (11) 298.15 0.0486 0.0461 303.15 Matuszak (5) 307.0 0.0290 The measurement by Matuszak can be rejected because it is so much smaller than values from the other sources. Gerrard's measurements are self consistent over a range of seven temperatures and may be more reliable than those published by O'Brien but further measurements on this system are needed for confirmation. Chlorination of dialkyl ethers lowers the solubility of hydrogen chloride. Gerrard & Macklen (1) measured the solubility in 1,1'-oxybis[2-chloroethane] at a total pressure of 101.3 kPa from 273.15 K to 311.55 K. The contribution of the vapor pressure of the solvent to the total pressure may be disregarded over this temperature range. O'Brien (10) measured solubilities over pressure ranges below barometric pressure at 293.15 K to 313.15 K. Mole fraction solubilities are appreciably higher than values from the Raoult's law equation. Linear extrapolation of O'Brien's data to a partial pressure of 101.3 kPa gives mole fraction solubilities which are greater than values from Gerrard's measurements.

At 293.15 K O'Brien's value is 0.149 compared with Gerrard's value of 0.132. At 313.15 K the values are 0.0927 and 0.0766 respectively. If the variation in mole fraction solubility with partial pressure of gas approximates to the Margules equation then the above differences are partly due to errors from the linear extrapolation of solubilities to a partial pressure of 101.3 kPa. Gerrard's data are likely to be the more reliable for a partial or total pressure of 101.3 kPa.

Gerrard & Macklen (1) also measured solubilities in oxybis[chloromethane] , 1-chloro-1-(2-chloroethoxy)ethane and in 1,1'-oxybis[3-chloropropane] at a total pressure of 101.3 kPa over temperature ranges. The solubility in 1-chloro-1-(2-chloroethoxy)ethane is close to that in 1,1'-oxybis[2-chloroethane]. The effect of the chlorine in reducing solubility of hydrogen chloride is greatest in oxybis[chloromethane] and least in 1,1'-oxybis[3-chloropropane]. No other measurements of solubility in these three ethers are available for comparison but there is no reason to doubt their reliability.

COMPO	NENTS:	EVALUATOR:
1.	Hydrogen Chlorıde; HCl; [7647-01-0]	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2.	Ethers and Miscellaneous Solvents Containing Carbon, Hydrogen and Oxygen.	Polytechnic of North London, Holloway, London, N7 8DB, U.K. January 1989

Solubility in 1,4-dioxane at a total pressure of 101.3 kPa over the temperature range 279.65 K to 312.85 K was also measured by Gerrard & Macklen. Solubilities are close to those in dialkyl ethers under the same conditions and are likely to be relatively insensitive to changes in partial pressure at pressures close to 101.3 kPa. A measurement by Matuszak at 305.4 K and a total pressure of 99.6 kPa is equivalent to a mole fraction solubility of 0.372 under these conditions. Correction of this measurement to a partial pressure of 101.3 kPa gives a value of 0.375, on the assumption that variation of pressure with composition may be approximately represented by the Margules equation. Interpolation of Gerrard's data to give a solubility at 307.4 k and correction to a partial pressure of 101.3 kPa gives a value of the mole fraction solubility of 0.401. Measurements of the solubility in other ethers reported by Matuszak are lower than solubilities reported by other workers and, in this case also, ought to be rejected in favour of the data reported by Gerrard & Macklen.

Gerrard & Macklen (1) also measured the solubility in tetrahydrofuran at a total pressure of 101.3 kPa over the range 278.15 K to 304.35 K. The measurements show that, under the conditions of the measurement the mole fraction solubility is higher than that in any other ether for which data are available. The measurements are likely to be reliable but data from other workers are not available for comparison.

Gerrard *et al.*(12) measured the solubility in 1,1,1-triethoxyethane at a total pressure equal to 101.3 kPa over the range 279.15 K to 314.35 K. The mole fraction solubility is 0.731 at 279.15 K but measurements show that there is a marked decrease over this temperature range with a value of 0.322 at 314.35 K. These authors also measured solubilities under similar conditions in 1,3-benzodioxole, 2,3-dihydro-1,4-benzodioxin, 3,4-dihydro-2H-1,2-benzodioxepin, 2-methyl-1,4-benzodioxan (12) and in phenol (13). All values of mole fraction solubilities fall above the reference line corresponding to the Raoult's law equation. No other data for these compounds are available for comparison.

REFERENCES

- 1. Gerrard, W.; Macklen, E. D. J. Appl. Chem. 1960, 10, 57 62.
- Ahmed, W.; Gerrard, W.; Maladkar, V. K. J. Appl. Chem. <u>1970</u>, 20, 109 - 115.
- 3. Kapoor, K. P.; Luckcock, R. G.; Sandbach, J. A. J. Appl. Chem. Biotech. <u>1971</u>, 21, 97 100.
- 4. Perkin, W. H. J. Chem. Soc. <u>1894</u>, 65, 20 28.
- Matuszak, M. P. U.S. Patent 2,520,947 September 5 <u>1950</u>; Chem. Abstr. <u>1951</u>, 44, 11044g.
- 6. Schunke, J. Z. Phys. Chem. <u>1894</u>, 14, 331 345.
- 7. Ionin, M. V.; Shverina, V. G. Zh. Obshch. Khim. 1965, 35, 209 211.
- 8. Chesterman, D. R. J. Chem. Soc. 1935, 906 910.
- 9. Mirsaidov, U.; Dzhuraev, Kh. Sh.; Semenenko, K. N. Dokl. Akad. Nauk. Tadzh. SSR 1975, 18, 30 - 31.
- 10. O'Brien, S. J. J. Am. Chem. Soc. <u>1942</u>, 64, 951 953.
- 11. O'Brien, S. J.; King, C. V. J. Am. Chem. Soc. <u>1949</u>, 71, 3632 3634.
- 12. Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L. J. Appl. Chem. <u>1960</u>, 10, 115 - 121.
- Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L. J. Appl. Chem. <u>1959</u>, 9, 85 - 88.

ORIGINAL MEASUREMENTS: (1) Hydrogen chloride; HC1; (7647-01-0] (2) Ethers VARIABLES: 7/K: see below Total P/KPa: 101.325 (1 atm) T/K T/K Nole Mole T/K Nole T/K T/K Nole T/K Nole Nole T/K Nole T/K Nole Nole <		Non-Aqueous Solvents
(1) (2) Ethers Sandbach, J.A. (2) Ethers J. Appl. Chem. Biotech. 1971, 21, 97-100. VARIABLES: T/K see below Total P/Kmar 101.325 (1 atm) PREPARED BY: EXFERTMENTAL VALUES: Nole* T/K Mole* Authors' smoothed x _{HC1} ** Methoxyethane, 231.15 231.15 2.91 0.746 0.789 Cyligor, 1540-57-01 241.15 241.15 2.93 0.746 0.638 0.664 Smoothing equation: In x _{HC1} = -2.154 + 4.317/(T/100) 665 Smoothing equation and mole fractions from the equation were calculated by the compiler • ** calculated by the compiler • ** smoothing equation and mole fractions from the equation were calculated by H.L. Clever SOURCE AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The bubbler-tube technique described Surger and Yuili 11 was used. Sort temperatures less than 23 K. SOURCE AND PURITY OF MATERIALS: The bubbler-tube technique described (1) "crybisilia-methyli-butane, 1, 1'crybisilia-methyli-butane, 1, 1'crybisilia-methyli-butane, 1, 1'crybisilia-methyli-butane, 1, 1'crybisilia-methyli-but	COMPONENTS:	ORIGINAL MEASUREMENTS:
21, 97-100. VARIABLES: T/K: see below Total P/kPa: 101.325 (1 atm) EXPERIMENTAL VALUES: T/K Mole Mole* ratio fraction n _{HCl} /n ₂ x _{HCl} adata frem! Wethoxyethane, C ₃ H ₈ O; [540-67-0] 231.15 2.91 0.744 (ethv! aethyl other); 233.15 2.93 0.746 0.789 C ₃ H ₈ O; [540-67-0] 233.15 0.664 0.638 Smoothing equation: ln x _{HCl} = -2.154 + 4.317/(T/100) (for use between 233.15 K and 253.15 K) 0.638 Smoothing equation and mole fractions from the equation were calculated by the compiler ** smoothing equation and mole fractions from the equation were calculated by H.L. Clever SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride: a good cylinder, and dried. (2) 1/1-cxybispethane, methoxy- b; 1/-cxybispethane, methoxy- b; 1/-cxybispethane, methoxy- b; 1/-cxybispethane, methoxy- b; 1/-cxybispethane was prepared anitained within t1 K. For 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After staturation at a recorded imperature, the temperature was carefully added drop-wise to fix the bydrogen chloride as the pyrtainim aalt. After treatment with water, the chloride ion content was deternined by the Volhard method or by use of an automatic titrineter. STIMATED ERROR: (2) CH (-KRC) AM, A, K, Wyvill, PL.	<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Kapoor, K.P.; Luckcock, R.G.; Sandbach, J.A.
Total P/KPa: see below W. Gerrard Total P/KPa: 101.325 (1 atm) W. Gerrard EXPERIMENTAL VALUES: T/K Mole fraction data from a from	(2) Ethers	
Total P/KPa: see below W. Gerrard Total P/KPa: 101.325 (1 atm) W. Gerrard EXPERIMENTAL VALUES: T/K Mole fraction data from a from	VARIABLES:	PREPARED BY:
T/KMole ratioMole* ratioAuthors' smoothed data r_{HCI}^{1*} n_{HCI}/n_2 n_{HCI}/n_2 r_{HCI} r_{HCI} r_{HCI}^{1*} Methoxyethane, (6thyl methyl other); 233.152.91 0.744 0.789 $(0,h)$ 243.15 2.93 0.746 0.685 251.65 1.806 0.644 0.638 Smoothing equation: n_{HCI} $=-2.154 + 4.317/(T/100)$ (for use between 233.15 K and 253.15 K)Standard error in x_{HCI} r_{HCI} $=-2.154 + 4.317/(T/100)$ (for use between 233.15 K and 253.15 K)Standard error in x_{HCI} about the regression line = 9.98×10^{-3} * calculated by the compiler ** smoothing equation and mole fractions from the equation were calculated by H.L. CleverSOURCE AND PUEITY OF MATERIALS: (1) Hydrogen chloride: a good specimen was obtained from a cylinder, and dried. (2) 1,1'-oxybispentane, 1,1'-oxybispent	T/K: see below	
ratio fraction data ftbm ⁺ n _{HCl} /n ₂ x _{HCl} n _{HCl} /n ₂ x _{HCl} equation Methoxyethane, 231.15 2.91 0.744 0.685 (6thv) mothyl othor); 233.15 2.93 0.746 0.685 3HgO; [540-67-0] 243.15 0.614 0.638 Smoothing equation: ln x _{HCl} =-2.154 + 4.317/(T/100) (for use between 233.15 K and 253.15 K) Standard error in x _{HCl} about the regression line = 9.98 × 10 ⁻³ * * calculated by the compiler * * ** smoothing equation and mole fractions from the equation were calculated by H.L. Clever SOURCE AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The bubbler-tube technique described by H.L. Clever SOURCE AND PURITY OF MATERIALS: Mattion of small pieces of solid carbon doxide and manual Stirring enabled the temperatures between 303 K alcributane, rit-oxybispettane, methoxy-benzene, 1,1'-oxybispettane, methoxy-benzene, 1,1'-oxybispettane, methoxy-benzene and 1,1'-oxybispettane was prepared from a cylinder, and dried. For temperatures below 273.15 K it was assumed that the loss of solvent by oth sulfuric acid method. Other ethers were prepared from an alcohol, sodium and an alkyl halide. All ethers were rigorously purifie	EXPERIMENTAL VALUES:	
(othyl methyl ether); 233.15 2.93 0.746 0.789 C_3H_8O; [540-67-0] 243.15 0.638 251.65 1.806 0.644 0.638 Smoothing equation: ln x _{HC1} = -2.154 + 4.317/(T/100) (for use between 233.15 K and 253.15 K) Standard error in x _{HC1} about the regression line = 9.98 × 10 ⁻³ 0.638 * calculated by the compiler ** ** ** smoothing equation and mole fractions from the equation were calculated by H.L. Clever SOURCE AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The bubler-tube technique described by Gerard, Mincer and Wyvill (1) was used. SOURCE AND PURITY OF MATERIALS: Addition of small pieces of solid (2) 1,1'-oxybispentane, 1	ratio	o fraction data from t
(othyl methyl ether); 233.15 2.93 0.746 0.789 C _{3Hg} O; [540-67-0] 243.15 0.638 251.65 1.806 0.644 0.638 Smoothing equation: ln x _{HC1} -2.154 + 4.317/(T/100) (for use between 233.15 K and 253.15 K) Standard error in x _{HC1} about the regression line = 9.98 × 10 ⁻³ 0.638 * calculated by the compiler * * ** smoothing equation and mole fractions from the equation were calculated by H.L. Clever SOURCE AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: (1) Hydrogen chloride: a good sciented by Gerard, Mincer and Wyvill (1) was used. For temperatures between 303 K and 253 K and LBI thermostat SOURCE AND PURITY OF MATERIALS: Rot temperatures less than 253 K alditing liquid paraffin was used. For temperatures between 303 K a slurry of ice and water was used. SOURCE AND PURITY OF MATERIALS: For temperatures below 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. SOURCE AND PURITY OF MATERIALS: For temperatures below 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. SOURCE AND PURITY OF MATERIALS: For temperatures below 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. SOURCE AND PURITY OF MATERIALS: Mydrogen chloride as the pyridinin was carefully added drop-wise to fix the hydrogen ch	Methoxyethane, 231.15 2.91	0.744
251.65 1.806 0.644 253.15 0.638 Smoothing equation: ln x _{HC1} =2.154 + 4.317/(T/100) (for use between 233.15 K and 253.15 K) Standard error in x _{HC1} about the regression line = 9.98 × 10 ⁻³ * * calculated by the compiler ** ** smoothing equation and mole fractions from the equation were calculated by H.L. Clever Source AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: Source AND PURITY OF MATERIALS: The bubbler-tube technique described by Gerrad, Mincer and Wyvill (1) was used. For temperatures between 303 K and LB1 thermostat containing liquid paraffin was used. For temperatures tess than 253 K addition of small pieces of solid carbon dioxide and manual stirring enabled the temperature to be maintained within 1 K. For 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chirdle ion content was determined by the Volhard method or by use of an automatic tirimeter. Strimate Wilner, A.M.A.; Wyvill, P.L.	(ethy1 methy1 ether); 233.15 2.93	0.746 0.789
253.15 Smoothing equation: ln x _{HCl} = -2.154 + 4.317/(T/100) (for use between 233.15 K and 253.15 K) Standard error in x _{HCl} about the regression line = 9.98 × 10 ⁻³ * calculated by the compiler ** smoothing equation and mole fractions from the equation were calculated by H.L. Clever METHOD/APPARATUS/PROCEDURE: The bubler-tube technique described by Gerrard, Mincer and Wyill (1) was used. For temperatures between 303 K and 253 K and LB1 thermostat containing liquid paraffin was used. For temperatures less than 253 K addition of small pieces of solid carbon dixide and manual stirring enabled the temperature to be maintained within 11 K. For 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or by use of an automatic tirimeter.	$C_{3}H_{8}O; [540-67-0] 243.15 251.65 1.800$	
<pre>(for use between 233.15 K and 253.15 K) Standard error in x_{HC1} about the regression line = 9.98 × 10⁻³ * calculated by the compiler ** smoothing equation and mole fractions from the equation were calculated by H.L. Clever AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The bubbler-tube technique described by Gerard, Mincer and Wyill (1) was used. For temperatures between 303 K and 253 K and LBI thermostat containing liquid paraffin was used. For temperatures less than 253 K addition of small pieces of solid carbon dioxide and manual stirring enabled the temperature to be maintained within ±1 K. For 273.15 K a slurry of ice and water was used. For temperatures below 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After reatment with water, the chloride ion content was determined by the Volhard method or by use of an automatic titrimeter. (for use between 233.15 K it was assumed that the loss of solvent by entrainment could be ignored. After reatment with water, the chloride ion content was determined by the Volhard method or by use of an automatic titrimeter. (for use between 233.15 K it was assumed that the loss of solvent by description at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or by use of an automatic titrimeter. (for use between 233.15 K it was assumed that the loss of solvent by description at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or by use of an automatic titrimeter. (for the provide the termined with water, the chloride ion content was determined by the Volhard method or by use of an automatic titrimeter. (for the provide the termined with water, the us</pre>		
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:The bubbler-tube technique describedSOURCE AND PURITY OF MATERIALS:The bubbler-tube technique describedspecimen was obtained from a cylinder, and dried.and 253 K and LBI thermostat(1) Hydrogen chloride: a good specimen was obtained from a cylinder, and dried.and 253 K and LBI thermostat(2) 1,1'-oxybisethane, methoxy- benzene, 1,1'-oxybisethane, 1,1'-oxybisethane, harder, and dried.For temperatures less than 253 K addition of small pieces of solid carbon dioxide and manual stirring enabled the temperature to be maintained within ±1 K. For 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or by use of an automatic titrimeter.SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride: a good specimen was obtained from a cylinder, and dried.METHOD/APPARATUS/PROCEDURE: (2) 1,1'-oxybisethane, methoxy- bezene, 1,1'-oxybispentane, 1,1'-oxybispentane, 1,1'-oxybispertane, 1,1'-oxybispertane were commercial samples. (1,1'-oxybispertane was prepared by the sulfuric acid method. Other ethers were prepared from an alcohol, sodium and an alkyl halide. All ethers were to 5 (253-303 K) $= \pm 1$ (< 253 K) $\delta x_{\rm HC1}/x_{\rm HC1} = \pm 0.02$ For temperature, the volhard method or by use of an automatic titrimeter.Source AND PURITY OF MATERIALS: (2) 1,1'-oxybispethane, methoxy- (2) 1,1'-oxybispethane, 1,1'-oxybispethane, 1,1'-oxybispethane 	<pre>Standard error in x_{HCl} about the regre * calculated by the compiler ** smoothing equation and mole fraction</pre>	ession line = 9.98×10^{-3}
The bubbler-tube technique described by Gerrard, Mincer and Wyvill (1) was used. For temperatures between 303 K and 253 K and LBI thermostat containing liquid paraffin was used. For temperatures less than 253 K addition of small pieces of solid carbon dioxide and manual stirring enabled the temperature to be maintained within ± 1 K. For 273.15 K a slurry of ice and water was used. For temperatures below 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or by use of an automatic titrimeter. (1) Hydrogen chloride: a good specimen was obtained from a cylinder, and dried. (2) 1,1'-oxybisebtane, methoxy- benzene, 1,1'-oxybispentane, 1,1'-oxybis- hexane and 1,1'-oxybisoctane were commercial samples. 1,1'-oxybisheptane was prepared by the sulfuric acid method. Other ethers were prepared from an alcohol, sodium and an alkyl halide. All ethers were rigorously purified and attested. $\delta T/K = \pm 0.5 (253-303 K)$ $= \pm 1 (< 253 K)$ $\delta x_{HC1}/x_{HC1} = \pm 0.02$	AUXILIARY	INFORMATION
	The bubbler-tube technique described by Gerrard, Mincer and Wyvill (1) was used. For temperatures between 303 K and 253 K and LBI thermostat containing liquid paraffin was used. For temperatures less than 253 K addition of small pieces of solid carbon dioxide and manual stirring enabled the temperature to be maintained within ±1 K. For 273.15 K a slurry of ice and water was used. For temperatures below 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or	<pre>(1) Hydrogen chloride: a good specimen was obtained from a cylinder, and dried. (2) 1,1'-oxybisethane, methoxy- benzene, 1,1'-oxybisbutane, 1,1'-oxybis[3-methyl]-butane, 1,1'-oxybispentane, 1,1'-oxybis- hexane and 1,1'-oxybisoctane were commercial samples. 1,1'-oxybisheptane was prepared by the sulfuric acid method. Other ethers were prepared from an alcohol, sodium and an alkyl halide. All ethers were rigorously purified and attested. ESTIMATED ERROR: $\delta T/K = \pm 0.5 (253-303 \text{ K})$ $= \pm 1 (< 253 \text{ K})$ $\delta x_{HC1}/x_{HC1} = \pm 0.02$ REFERENCES: 1. Gerrard, W.; Mincer, A.M.A.; Wyvill, P.L.</pre>

Hydrogen Chloride in Non-Aqueous Solvents

COMPONENTS: (1) Hydrogen chloride [7647-01-0] (2) Ethers	e; HCl;		ORIGINAL M Kapoor, K. Sandbach, J. Appl. C 21, 97-100	P.; Luckc J.A. Them. Biot	ock, R.G	
EXPERIMENTAL VALUES:	т/к	Mole ratio		Authors' da		ed × _{HCl} ** from
		ⁿ HC1 ^{/n} 2		ⁿ HC1 ^{/n} 2	×HC1	equation
1,1'-Oxybisethane (diethyl ether);	201.15	7.45	0.882	6.80	0.872	0.868
C ₄ H ₁₀ O; [60-29-7]	206.15 213.15 223.15	6.08	0.859	2 10	0.750	0.851
	233.15 234.15 243.15	3.01	0.751	3.10	0.756	0.767
	251.15 253.15 259.65	1.982 1.470	0.595	1.80	0.643	0.650
	262.15 263.15 273.15	1.365		1.160	0.537	0.589 0.528
	277.65 282.65 283.15	1.018 0.955		0.930	0.482	0.471
	283.65 283.95 286.95 290.55 299.55	0.898 0.903 0.874 0.776 0.556	0.475 0.466 0.437			
Smoothing equation:	In x _{HCl} =	19.385 -	23.089/(T/	100) - 11 203-15 K	.514 ln(т/100) 15 к)
Standard error in x _{HC}	cl about	the regre	ssion line	= 1.50 ×	10 ⁻²	
1-Methoxypropane, (methyl propyl ether); C ₄ H ₁₀ O;	203.15 204.65 213.15	5.43	0.844	5.70	0.851	0.843
ether); C ₄ H ₁₀ O; [557-17-5]	215.65 223.15 233.15	3.91 2.55	0.796 0.718	2.45	0.710	0.765
	243.15 253.15			1.45	0.592	0.663
	255.15 263.15 273.15	1.325	0.517	1.085	0.520	0.558 0.508
	282.65 283.15 283.15	0.913 0.896	0.473	0.896	0.473	0.461
	283.35 297.35	0.891 0.609				
Smoothing equation:		(for u	se between	203.15 K	and 283.	:/100) 15 к)
Standard error in x_{HC} * calculated by the c	compiler					
** smoothing equation by H.L. Clever	and mol	e fractio	ns from the	equation	were ca	liculated

COMPONENTS: (1) Hydrogen chlorid [7647-01-0] (2) Ethers	e; HCl;		ORIGINAL M Kapoor, K. Sandbach, J. Appl. C 21, 97-100	P.; Luckc J.A. 'hem. Biot	ock, R.G	
EXPERIMENTAL VALUES:		l.				
	т/к	Mole ratio	Mole* fraction	Authors' da	smoothe ta	d xHCl**
		ⁿ HC1 ^{/n} 2	×HC1	ⁿ HC1 ^{/n} 2	*HC1	equation
1-Methoxypentane, (methyl pentyl	230.65 233.15	3.07	0.754	2.70	0.730	0.734
ether); C ₆ H ₁₄ O; [628-80-8]	243.15 251.65 253.15	1.617	0.618	1.55	0.608	0.677 0.621
	263.15 273.15	1.049	0.512	1.060	0.515	0.568 0.518
	273.15 283.15 283.35	1.070	0.517 0.479	0.910	0.476	0.472
	283.35 283.35 283.55 298.65	0.920 0.916 0.908 0.658	0.479 0.478 0.476 0.397			
Smoothing equation: Standard error in $x_{\rm H}$		(for us	se between	233.15 K	and 283.	/100) 15 К)
2-Ethoxybutane,	198.15	6.14				0.045
(2-buty1 ethy1 ether); C ₆ H ₁₄ O; [2679-87-0]	203.15 209.15 213.15	4.81	0.828	5.45	0.845	0.845
	219.15	4.00	0.800			0.803
	233.15 243.15			3.00	0.750	0.763
	253.15 254.15	1.96	0.662	2.00	0.667	0.664
	263.15 273.15 283.15	1.35	0.574	1.35	0.574	0.611 0.558 0.506
	284.35 294.15	1.00 0.793	0.500 0.442			
Smoothing equation: Standard error in × _H		(IOT US	se petween	203.15 M	anu 205.	/100) 15 к)
1,1'-Oxybispropane, (dipropyl ether);	203.15 204.15	6.00	0.857	6.30	0.863	0.858
$C_{6}^{H_{14}O; [111-43-3]}$	213.15 213.65	4.84	0.829			0.837
	223.15 233.15 233.65	3.35	0.770	3.00	0.750	0.801 0.753
	243.15 253.15			1.70	0.630	0.699 0.642
	253.65 263.15 273.15	1.649	0.622	1.110	0.526	0.584 0.527
	282.65 282.95	0.918	0.479			
	283.15 283.35 298.35	0.900 0.653	0.474 0.395	0.920	0.479	0.473
Smoothing equation: $\ln x_{HC1} = 17.491 - 20.745/(T/100) - 10.486 \ln(T/100)$ (for use between 203.15 K and 283.15 K)						
Standard error in × _H	-	the regres	ssion line	= 1.10 ×	10-2	,
<pre>* calculated by the ** smoothing equatio by H.L. Clever</pre>		e fraction	ns from the	equation	were ca	lculated

Hydrogen Chloride in Non-Aqueous Solvents

Hydrogen Chloride in Non-Aqueous Solvents

	······································				,
COMPONENTS: (1) Hydrogen chloride; HCl;		ORIGINAL M Kapoor, K.			.
[7647-01-0]		Sandbach,		JUR, R.G	•••
(2) Ethers		J. App1. C	hem. Biot	ech. <u>19</u> 7	1,
		21, 97-100	•		_
EXPERIMENTAL VALUES: T/K	Mole	Mole*	Authors'	smoothe	a v **
EXPERIMENTAL VALUES: 1/K	ratic		da		from
	$n_{\rm HCl}/n_2$		$n_{\rm HC1}/n_2$	×HC1	equation
		HCI	HCI Z	HCI	-
1 Mathewshewana 202 15			6.90	0 073	0 0 0 1
1-Methoxyhexane, 203.15 (hexyl methyl ether); 206.15	6.68	0.870	0.90	0.873	0.881
C ₇ H ₁₆ O; [4747-07-3] 213.15	4.64	0.823			0.831
223.15					0.778
232.15	2.93	0.746	2 5 2	0 744	0 700
233.15 243.15			2.50	0.714	0.723 0.668
251.95	1.505	0.601			0,000
253.15			1.50	0.600	0.615
263.15					0.564
273.15 283.15	1.060 0.918		1.060 0.900	0.515 0.474	0.517
283.75	0.900		0.900	0.4/4	0.472
289.95	0.827				
297.95	0.667	0.400			
Smoothing equation: $\ln x_{HC1} = 2$	9.712 -	10.777/(T/1	00) - 6.3	96 ln(T/	100)
	(tor u	ise between	203.15 K	and 283.	15 K)
Standard error in x _{HCl} about th	he regre	ssion line	= 1.36 ×	10 ⁻²	
1-Propoxybutane, 203.15			6.50	0.867	0.862
(butv1 propy1 ether); 203.65	6.17	0.861	0.00		0.002
C ₇ H ₁₆ O; [3073-92-5] 213.15					0.834
213.65	4.80	0.828			0 706
223.15 233.15			3.15	0.759	0.796 0.750
233.15	3.24	0.764	3.15	0.755	0.750
243.15					0.701
250.45	1.820	0.645			0 4 7 9
253.15 263.15			2.00	0.667	0.650 0.598
273.15	1.199	0.545	1.215	0.549	0.548
273.15	1.223				
282.75	1.030				
283.65	1.013	0.503	1.020	0.505	0.500
283.15 283.95	0.975	0.494	1.020	0.505	0.500
294.35	0.821				
297.75	0.750	0.429			
Smoothing equation: $\ln x_{HC1} = 7$	13.255 -	15.510/(T/	100) - 8.	139 ln(T	/100)
	(Ior u	se between	203.15 K	and 283.	15 K)
Standard error in x _{HC1} about th	ne regre	ssion line	= 1.01 ×	10 *	
1-Methoxyheptane, 200.15	6.67	0.870			
(heptv1 methv1 203.15		· · · •	6.20	0.861	0.862
ether); C ₈ H ₁₈ O; 213.15					0.818
	4.31	0.812			0.769
223.15 233.15			2.45	0.710	0.769
234.15	2.76	0.734			
243.15					0.665
249.65	1.554	0.608	1 45	0 600	0 610
253.15 263.15			1.45	0.592	0.613 0.562
273.15	1.041	0.510	1.040	0.510	
283.15	0.905	0.475	0.895	0.472	0.469
283.35	0.899				
283.55	0.890				
297.15 0.686 0.407					
Smoothing equation: $\ln x_{HC1} = 10.724 - 12.136/(T/100) - 6.912 \ln(T/100)$					
(for use between 203.15 K and 283.15 K) Standard error in x_{HC1} about the regression line = 1.36 × 10 ⁻²					
* calculated by the compiler; and mole fractions from the	TT SN	oothing equ	ation		lover
and more tractions if on the	e equati	on were car	culated D	يك منه المعقام ال	LEVEL

160

Hydrogen Chloride in Non-Aqueous Solvents

COMPONENTS: (1) Hydrogen chloride [7647-01-0] (2) Ethers	∍; HCl;		ORIGINAL M Kapoor, K. Sandbach, J. Appl. C 21, 97-100	P.; Lucko J.A. Chem. Biot	ock, R.G	
EXPERIMENTAL VALUES:	т/к	Mole ratio		Authors' da	smoothe ta	d x _{HCl} **
		ⁿ HC1 ^{/n} 2	^x HCl	ⁿ HCl ^{/n} 2	^x HCl	equation
1,1'-Oxybisbutane,	198.15	7.28	0.879			
(dibutyl ether);	203.15 205.65	5.93	0.856	6.20	0.861	0.873
C ₈ H ₁₈ O; [142-96-1]	213.15	5.55	0.050			0.844
	223.15 230.65	3.35	0.770			0.802
	233.15 235.15	3.09	0.756	2.70	0.730	0.750
	235.65	3.06	0.754			0 603
	243.15 252.95	1.59	0.614			0.693
	253.15 263.15			1.60	0.615	0.634 0.576
	273.15 283.15	1.048 0.841		1.055 0.850	0.513 0.459	0.519 0.465
	283.35	0.848	0.459	0.000	0.455	0.405
	296.15 296.55	0.693 0.674				
Smoothing equation:	n _Y HCl =	16.533 -	19 .42 0/(T/	100) - 10	.032 ln(т/100)
Standard error in ^x HC		(IOT U	se between	203.15 K	and 283.	15 K)
1-Methoxyoctane, (methyl octyl ether); C ₉ H ₂₀ O; [929-56-6]	232.65 233.15 243.15	2.67	0.728	2.55	0.718	0.726 0.682
9 20	243.45 253.15 263.15	2.14	0.682	1.45	0.592	0.632 0.579
	273.15 282.15 282.45	1.097 0.917 0.915	0.478 0.478	1.080	0.519	0.525
	282.65 283.15 288.65	0.913 0.797		0.905	0.475	0.473
Smoothing equation: 1		(for u	se between	233.15 K	and 283.	т/100) 15 к)
Standard error in * _{HC}	l about t	he regre	ssion line	= 1./8 ×	10-3	
<pre>1,1'-Oxybispentane, (dipentyl ether);</pre>	200.15 209.15	6.80 5.19	0.872 0.838			
C ₁₀ ^H 22 ^O , [693-65-2]	213.15	4.91	0.831			0.833 0.793
	223.15 231.15	3.17	0.760			
	233.15 243.15			2.80	0.737	0.744 0.689
	244.15	2.05	0.672	1.65	0.623	0.631
	255.65	1.529			0.025	
	263.15 273.15	1.377	0.579	1.105	0.525	0.574 0.518
	273.95 283.15	1.086	0.521	0.900	0.474	0.464
	283.55 283.75 298.05	0.894 0.879 0.614	0.468			
Smoothing equation: $\ln x_{HC1} = 16.682 - 19.668/(T/100) - 10.091 \ln(T/100)$ (for use between 213.15 K and 283.15 K)						
Standard error in x_{HC}		he regre	ssion line	= 9.95 ×	10-3	
* calculated by the c and mole fraction					у н.г. с	lever.

COMPONENTS:			ORIGINAL M	EASUREMEN	TS:	
(1) Hydrogen chloride [7647-01-0]	e; HCl;		Kapoor, K. Sandbach,		ock, R.G	•;
(2) Ethers			J. App1. C 21, 97-100		ech. <u>197</u>	<u>1</u> ,
EXPERIMENTAL VALUES:		,				
	т/к	Mole ratic	Mole* fraction		smoothe ta	d * _{HC1} ** from
		ⁿ HC1 ^{/n} 2	e ^x HCl	ⁿ HC1 ^{/n} 2	*HCl	equation
1,1'-Oxybis-	194.65	6.31	0.863			
[3-methyl]butane,	196.15 203.15	6.06	0.858	5.10	0.836	0.852
(d11soamyl ether); C ₁₀ H ₂₂ O; [544-01-4]	209.15	4.40	0.815	5.10	0.030	
10 22	213.15 223.15					0.838 0.801
	231.15	2.82	0.738	0 F F	0 710	
	233.15 243.15			2.55	0.718	0.748 0.706
	244.15 253.15	1.94	0.660	1.60	0.615	0.619
	263.15			1.00	0.015	0.551
	272.95 273.15	1.103	0.524	1.025	0.506	0.485
	283.15			0.800	0.444	0.424
	288.15 293.15	0.708	0.415			0.367
	303.15	0 405				0.316
	306.75 307.45	0.405				
	313.15					0.270
Smoothing equation: Standard error i		(for	: use betwee	n 203.15	K and 31	3.15 K)
1-Pentyloxyhexane, (pentyl hexyl ether);	; 203.15	0.07	0.099	6.80	0.872	0.881
C _{11^H24} 0; [32357-83-8]	210.65 213.15 223.15	5.25	0.840			0.852 0.809
	229.65	3.68	0.786			
	231.15 233.15	3.52	0.779	3.00	0.750	0.755
	243.15					0.696
	253.15 253.65	1.507	0.601	1.65	0.623	0.634
	263.15 273.15			1.080	0.519	0.572 0.513
	274.15	1.057	0.514			
	283.15 283.65	0.875	0,467	0.890	0.471	0.457
	283.95	0.870	0.465			
	296.95 299.65	0.620				
Smoothing equation: 1 Standard error in x _{HC} * calculated by the ** smoothing equation	compiler	(for he regre	use between ession line	= 1.78 ×	10^{-2}	.15 K)
by H.L. Clever.						

COMPONENTS:			ORIGINAL M			
(1) Hydrogen chlorid	e; HCI;		Kapoor, K.		ock, R.G	.;
[7647-01-0] (2) Ethers		1	Sandbach, J. Appl. C		ech 197	1
(2) Beners			21, 97-100		<u> </u>	<u> </u>
			21, 27, 27, 100	•		
EXPERIMENTAL VALUES:	T/K	Mole	Mole*	Authors	smoothe	d xuci**
		ratio			ta	d xHCl ** from
1		ⁿ HC1 ^{/n} 2	×HC1	$n_{\rm HC1}/n_2$	×HC1	equation
1,1'-Oxybishexane,	198.15	8.37	0.893			
(dihexyl ether);	203.15	0.07	0.055	6.60	0.868	0.874
C ₁₂ H ₂₆ O; [112-58-3]	211.65	5.07	0.835			-
12 20	213.15					0.847
	223.15					0.805
	233.15	3.03	0.752	2.85	0.740	0.752
]	240.15 243.15	2.67	0.728			0.694
	253.15			1.65	0.623	0.634
	254.65	1.490	0.598	1.05	0.025	0.034
	263.15	1.353				0.573
	273.15	1.109	0.526	1.090	0.522	0.515
	283.15	0.877		0.895	0.472	0.459
	289.55	0.780				
	296.95	0.632				
	301.15	0.561	0.359			
Smoothing equation:	1n x =	17.576 -	20.702/(T/	(100) - 10	.610 ln(т/100)
		(for use	between 20)3.15 K an	d 283.15	K)
Standard error	in xual at	out the	regression	line = 1 .	53×10^{-1}	2
)	HCI					
1,1'-Oxybisheptane,		7.32	0.880			
(diheptyl ether);	203.15		0.000	6.80	0.872	0.867
C ₁₄ H ₃₀ O; [629-64-1]	212.65	5.11	0.836			0.847
	213.15 223.15					0.808
	226.15	3.75	0.789			0.000
	233.15			3.10	0.756	0.757
	243.15					0.699
	249.65	1.830	0.647			
	253.15			1.70	0.630	0.636
	263.15	1 076	0 510	1 100	0.524	0.573
	273.15 283.15	1.076 0.909		1.100 0.905	0.475	0.512 0.454
	296.55	0.605		0.903	0.475	0.454
	297.65	0.583				
Smoothing equation:	$\ln x_{HC1} =$	19.856	- 23.594 /(T/100) -	11.830 1	n(T/100)
1		(IOT US	e petween z	:03•15 r d	nu 203.1	5 K)
Standard error	in xHCl at	out the	regression	line = 1 .	47 × 10	-
1-Heptyloxyoctane,	200.65	6.94	0.874			
(heptyl octyl ether)		0.24	0.0/3	6.60	0.868	0.865
$C_{15}H_{32}O;$ [32357-84-9	213.15	5.10	0.836			0.842
15-32-7 1	223.15					0.802
	233.15	3.11	0.757	3.00	0.750	0.751
1	243.15					0.693
	251.15	1.719	0.632	1 70	0	0 6 0 0
	253.15	1 400	A 597	1.70	0.630	0.633
}	258.65 263.15	1.423	0.587			0.572
	273.15	1.094	0.522	1.100	0.524	0.513
1	282.95	0.914				
	283.15			0.900	0.474	0.457
	283.95	0.854				
1	297.55	0.605				
1	298.15	0.594	0.373			
Cmeething equations	1	10 334	21 602/17	1/1001 1	1 004 1-	(1002)
Smoothing equation:			- 21.692/(T between 20			
Standard erro	r in v		e regressio	n line -	1.23 × 1	0-2
Standard erro * calculated by the	compiler ¹		** smoo	othing equ	ation an	d mole
fractions from the	equation	were cal				
fractions from the equation were calculated by H.L. Clever.						

COMPONENTS:	<u></u>		ORIGINAL M	EASUREMEN	ITS:	
<pre>(1) Hydrogen chloride [7647-01-0]</pre>	e; HCl;		Kapoor, K. Sandbach,		cock, R.G	.;
(2) Ethers			J. Appl. C 21, 97-100		ech. <u>197</u>	<u>1</u> ,
EXPERIMENTAL VALUES:		1				
	т/к	Mole ratic ⁿ HCl ^{/n} 2	fraction		smoothe ita ^x HCl	d x ** from equation
	<u> </u>					
1,1'-Oxybisoctane, (<i>dioctyl ether</i>); C ₁₆ H ₃₄ O; [629-82-3]	198.15 200.15 203.15 213.15	9.55 7.48	0.905 0.882	7.20	0.878	0.888 0.859
	213.15 223.15 233.15 242.15	2.46	0.711	3.20	0.762	0.815 0.760
	243.15 253.15 257.15 257.15	1.525 1.396		1.75	0.636	0.699 0.635
	263.15 272.15	1.111	0.526			0.572
	273.15 283.15 283.55 299.55	0.878 0.870 0.548	0.468	1.080 0.878	0.519 0.468	0.511 0.453
Smoothing equation: 1 Standard error in x _{HC}		(for	use betweer	1 203.15 F	(and 283	1, 100K) 15 K)
Methoxybenzene, (<i>anisole</i>); C ₇ H ₈ O; [100-66-3]	195.65 203.15 211.65	4.50 1.79	0.818	2.80	0.737	0.762
[100-00-3]	213.15 223.15					0.677 0.580
	231.15 233.15 243.15	0.960	0.490	0.90	0.474	0.485 0.395
	252.65 253.15 263.15	0.478	0.323	0.50	0.333	0.317
	273.15	0.228	0.186	0.25	0.200	0.195
	283.15 286.25	0.158	0.136	0.16	0.138	0.151
	295.05 302.35	0.120 0.100				
Smoothing equation:]	.n × _{HCl} =	33.800 -	38.791/(T/ use betwee	/100) - 21	.130 ln(т/100) 2.35 К)
Standard error i	n x _{HCl} al	oout the	regression	line = 9.	11 × 10	3
<pre>* calculated by the c ** smoothing equation by H.L. Clever.</pre>		e fractic	ns from the	equatior	were ca	lculated
_						

COMPONENTS :				INAL MEASUREMEN	NTS:	
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>		Sc	hunke, J.			
(2) 1,1'-Oxybise	thane or diethy 0; [60-29-7]	1		Phys. Chem. 1 - 345.	. <u>1894</u> , <i>14</i>	•
Total P/kPa:	263.95 - 303.15 97.1 - 98.7 28 - 740 mmHg)		PREP.	ARED BY: W. C	Gerrard	
EXPERIMENTAL VALUES:						
Т/К	Hydrogen Chloride + Diethyl Ether (Wtl + Wt2)/g	Chlor	ide	Hydrogen M Chloride g g ⁻¹	401 Ratio n _l /n ₂	Mol Fraction
263.95	1.1770 1.7330 1.4565	0.436 0.657 0.567	0	0.3705 0.3796 0.3752 0.3751 av.	1.219	0.549
273.55	2.3430 1.5170 2.00	0.839 0.534 0.711	72	0.35407 0.35246 0.35585 0.3541 av.	1.115	0.527
287.95	1.9420 1.242 1.4370	0.540 0.346 0.397	75	0.2781 0.2792 0.2768 0.2780 av.	0.782	0.439
303.15		0.503 0.543		0.1945 0.1949 0.1947 av.	0.491	0.329
The value compiler	es of mole ratio	and n	nole	fraction we:	re calcula	ated by the
	AUX	ILIARY	INFOR	MATION		
METHOD/APPARATUS/PRO	CEDURE :		SOUR	CE AND PURITY	OF MATERIAL	S;
Hydrogen chloride was passed as a slow stream through 50 cm ³ of ether in a wide-necked flask of 100 cm ³ capacity. The prevailing pressure was barometric, 728 - 740 mmHg (97.1 - 98.7 kPa). (101.325 kPa = 760 mmHg) The amount of hydrogen chloride absorbed was determined by an alkali				rock salt dried by s calcium ch Diethyl et standard t over sodiu	and sulfu ulfuric ad loride. her. Purit echnique a m. It had	fied by a
titration.				MATED ERROR: RENCES:		

COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Chesterman, D. R.		
<pre>(2) 1,1'-Oxybisethane or diethyl ether; C₄H₁₀O; [60-29-7]</pre>	J. Chem. Soc. <u>1935</u> , 906 - 910.		
VARIABLES:	DDEDADED DV.		
T/K: 298.15 Total P/kPa: 101 (~1 atm)	PREPARED BY: W. Gerrard		
EXPERIMENTAL VALUES:	<u> </u>		
T/K Observed So Pressure g HCL p/mmHg	lubility Mol Fraction g ⁻¹ Solution ^x l		
298.15 760	0.22 0.36		
The mole fraction value wa	s calculated by the compiler.		
AUXILIARY	INFORMATION		
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
The apparatus was that used for the conductivity. A sample of the saturated solution was removed, weighed, the hydrogen chloride was reacted with excess standard base which was back titrated with standard acid solution.	 Hydrogen chloride. Prepared from conc. sulfuric acid and pure sodium chloride. Passed through sulfuric acid and over P2⁰5. Diethyl ether. Was stated to be the purest obtainable. Freed from alcohol and acetone, and dried with sodium, b.p./°C (765 mmHg) = 35.5. 		
	ESTIMATED ERROR:		
	REFERENCES :		

100	Hydrogen Chloride in i	Non-Aqueous a	orvents	
COMPONENTS :		ORIGINAL MEASU	REMENTS :	
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>		Mirsaidov, U.; Dzhuraev, Kh.Sh.; Semenenko, K. N.		
<pre>(2) 1,1'-Oxybisethane or diethyl ether; C₄H₁₀O; [60-29-7]</pre>		Dokl. Akad. Nauk Tadzh. SSR <u>1975</u> , 18, 30 - 31.		
	·			
VARIABLES: T/K = 273.15, 298.15 $p_1/kPa = 101.325 (1 atm)$		PREPARED BY:	W. Gerrard	
EXPERIMENTAL VALUES:				
Т/К	Hydrogen Chloride N	lol Ratio M	ol Fraction	
	$10^2 w_{\gamma}/\text{wt}$	n_{1}/n_{2}	<i>x</i> 1	
273.15	26.5	0.732	0.423	
298.15	17.0	0.416	0.294	
	AUXILIARY	INFORMATION		
METHOD / APPARATUS / PRO	·······		RITY OF MATERIALS:	
Hydrogen chloride liquid until the remained constant solved was detern titration. The f	e was passed into the concentration t. The amount dis- nined by an alkali final pressure was al pressure equal to	<pre>(1) Hydrog from i solutio concen (2) 1,1'-0</pre>	en chloride. Obtain ts concentrated aque on by treatment with trated sulfuric acid xybisethane. Not st	eous 1 1.
		ESTIMATED ERF	OR:	

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Hydrogen chloride; HCl;	Gerrard, W.; Macklen, E.D.		
[7647-01-0]	J. Appl. Chem. <u>1960</u> , 10, 57-62.		
(2) Ethers			
VARIABLES:	PREPARED BY:		
T/K: See below Total P/kPa : 101.325 (1 atm)	W. Gerrard		
EXPERIMENTAL VALUES: T/K	Mole ratio Mole* Smoothed**		
n 1 n	HCl ^{/n} ether fraction mole fraction ^x HCl ^x HCl		
1-Methoxybutane, 273.15 (buty1 methy1 ether); 277.55			
$C_5H_{12}O; [628-28-4] 280.95$	0.915 0.478 0.468		
283.15	0.845 0.458		
289.15	0.792 0.442 0.741 0.426 0.426		
Smoothing equation: $\ln x_{max} = 31.559$	- 41.243/(T/100) - 17.056 ln(T/100)		
Smoothing equation: ln x _{HCl} = 31.559 Standard error in x _{HCl} about the	regression line = 8.23×10^{-4}		
1,1'-Oxybis propane, 273.15	1.157 0.536 0.536		
(dipropyl ether); 279.05	1.055 0.513		
283.15	0.496		
283.75 287.55	0.970 0.492 0.915 0.478		
290.45 293.15	0.862 0.463 0.450		
297.15 303.15	0.757 0.431 0.402		
Smoothing equation: ln × _{HCl} = 39.791 Standard error in × _{HCl} about the	- 52.612 /(T/100) - 21.052 $\ln(T/100)$ regression line = 1.16 × 10 ⁻³		
HCI			
* calculated by the compiler			
** smoothing equation and smoothed va	alues were calculated by H.L. Clever		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The method and procedure were	(1) Hydrogen chloride: self-		
described by Gerrard and Macklen (1). The amount of gas absorbed by a	prepared and dried.		
measured weight of solvent was determined by re-weighing the	(2) Ethers: purified by known methods; purity attested by		
bubbler tube to constant weight. the measured total pressure was	boiling point and refractive index; distilled into the		
barometric, very nearly 101.325 kPa.	absorption vessel just before		
The temperature control was within 0.1 K.	use.		
	ESTIMATED ERROR: $\delta T/K = \pm 0.1$		
	$\delta x_{\rm HCl} / x_{\rm HCl} = \pm 0.005 \text{ to } 0.025$		
	REFERENCES:		
	 Gerrard, W.; Macklen, E.D. J. Appl. Chem. <u>1956</u>, 6, 241. 		

COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Hydrogen chloride; HCl;	Gerrard, W.; Macklen, E.D.			
[7647-01-0]	J. Appl. Chem. <u>1960</u> , 10, 57-62.			
(2) Ethers	<u></u>			
EXPERIMENTAL VALUES:				
т/к	Mole ratio Mole* Smoothed** HCl ^{/n} ether fraction mole fraction			
	HCl HCl HCl			
· · · · · · · · · · · · · · · · · · ·	······································			
1,1'-Oxybisbutane, 273.15 (<i>dibutyl ether</i>); C ₈ H ₁₈ O; 278.35	1.061 0.515 0.511 0.971 0.493			
[142-96-1] 8 18 281.25 283.15	0.922 0.480			
291.25	0.762 0.432			
293.15 297.65	0.423			
303.15 303.35	0.364			
310.85	0.467 0.318			
313.15 313.75	0.303			
Smoothing equation: $\ln x_{HC1} = 75.759$	-102.235/(T/100) - 38.813 lp(T/100)			
Standard error in x_{HC1} about the	regression line = 3.14×10^{-3}			
1,1'-Oxybispentane, 273.15	0.516			
(dipentyl ether); C ₁₀ H ₂₂ O; 278.85 [693-65-2] 283.15	0.992 0.498 0.480			
284.15 - 290.35	0.901 0.474 0.799 0.444			
293.15	0.430			
295.85 301.05	0.709 0.415 0.632 0.387			
303.15 304.95	0.374			
308.85	0.515 0.340			
313.15	0.317			
Smoothing equation: $\ln x_{HC1} = 65.285$ Standard error in x_{HC1} about the	- 87.839/(T/100) - 33.625 ln(T/100) regression line = 1.30 × 10 ⁻³			
1,1'-Oxybis [3-methyl butane], 273.15	0.994 0.498 0.497			
(d11sopentyl ether); C ₁₀ H ₂₂ O; 278.65 [544-01-4] 282.75	0.881 0.468 0.818 0.450			
283.15 286.85	0.447			
290.75	0.676 0.403			
293.15 297.15	0.386 0.559 0.359			
303.15	0.321			
Smoothing equation: ln × _{HC1} = 79.232 Standard error in × _{HC1} about the	- 105.846/(T/100) - 40.983 ln(T/100) regression line = 2.45 × 10 ⁻³			
Methoxybenzene, 279.85	0.182 0.154			
(methyl phenyl ether, 283.15 anisole); C ₇ H ₈ O; [100-66-3] 290.35	0.137			
293.15 296.15	0.103 0.0934 0.101			
303.15	0.0785			
304.35 313.15	0.082 0.0758 0.0647			
313.65 321.65	0.068 0.0637 0.061 0.0575			
323.15	0.0561			
Smoothing equation: ln × _{HCl} = -89.382 Standard error in × _{HCl} about the	+ 135.432/(T/100) + 38.016 ln(T/100) regression line = 9.29 × 10 ⁻⁴			
* calculated by the compiler ** smoothing equation and smoothed values were calculated by H.L. Clever				

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Hydrogen chloride; HCl;	Gerrard, W.; Macklen, E.D.		
[7647-01-0]			
(2) Ethers	J. Appl. Chem. <u>1960</u> , 10, 57-62.		
EXPERIMENTAL VALUES: T/K	Mole ratio Mole* Smoothed**		
	Mole ratio Mole* Smoothed** HCl ^{/n} ether fraction mole fraction		
	^x HCl ^x HCl		
1-Methoxy-2-methylbenzene, 273.15	0.181 0.153 0.152		
(methyl o-tolyl ether); 277.65	0.147 0.128		
C ₈ H ₁₀ O; [578-58-5] 283.15 284.35	0.126 0.112		
288.15 293.15			
296.15	0.086 0.0792		
302.75 303.15	0.0691		
308.75 313.15			
316.45	0.059 0.0557		
323.15	0.0498		
	+ 87.230/(T/100) + 22.744 ln(T/100) regression line = 2.70 × 10 ⁻³		
(Methoxymethyl) benzene, 273.15 (benzyl methyl ether); 278.95			
C ₈ H ₁₀ O; [538-86-3] 280.65 283.15			
284.85	0.712 0.416		
284.65			
293.15 297.35			
302.35	0.474 0.322		
303.15			
Smoothing equation: $\ln x_{HC1} = 60.979$ Standard error in x_{HC1} about the	- 81.245/(T/100) - 31.851 ln(T/100) regression line = 2.64 × 10 ⁻³		
Ethoxybenzene, (phenyl ethyl 282.75			
<i>ether; phenetole</i>); C ₈ H ₁₀ O; 283.15 [103-73-1] 290.55			
293.15 298.15			
303.15 305.15	0.0902		
311.25	0.079 0.0732		
313.15			
323.15			
Smoothing equation: $\ln x_{HC1} = -9.547$ Standard error in x_{HC1} about the	+ 21.649/(T/100) regression line = 1.65 × 10 ⁻³		
* calculated by the compiler			
	alues were calculated by H.L. Clever		

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Hydrogen chloride; HCl;	Gerrard, W.; Macklen, E.D.
[7647-01-0]	J. Appl. Chem. <u>1960</u> , 10, 57-62.
(2) Ethers	
EXPERIMENTAL VALUES: T/K	Mole ratio Mole* Smoothed**
n ₁	ICl ^{/n} ether fraction mole fraction
	×HCl ×HCl
(Ethoxymethyl) benzene, 282.35	0.737 0.424
(benzyl ethyl ether); 283.15 C ₉ H ₁₂ O; [539-30-0] 288.25	0.419 0.658 0.397
289.15	0.649 0.394 0.376
300.15	0.504 0.335
303.15 304.85	0.321
309.75 313.15	0.398 0.285 0.261
314.05 319.35	0.343 0.255 0.288 0.224
323.15	0.204
Smoothing equation: $\ln x_{HC1} = 105.948$	- 145.039/(T/100) - 53.416 ln(T/100)
Standard error in *HCl about the	regression line = 3.04×10^{-3}
(Butoxymethyl) benzene, 273.15	0.810 0.448 0.448
(benzyl butyl ether); 277.25	0.764 0.433
C ₁₁ H ₁₆ O; [588-67-0] 282.15 283.15	0.695 0.410 0.407
287.85 292.85	0.621 0.383 0.556 0.357
293.15	0.355
298.05 303.15	0.486 0.327 0.299
307.75 310.55	0.379 0.275 0.348 0.258
313.15	0.245
Smoothing equation: $\ln x_{HC1} = 73.440$ Standard error in x_{HC1} about the	98.334/(T/100) - 38.058 ln(T/100) regression line = 9.24 × 10 ⁻⁴
HCI	-
1,1'-Oxybisbenzene 273.15	0.117 0.105 0.105
(diphenyl ether); C ₁₂ H ₁₀ O; 280.15 [101-84-8] 283.15	0.094 0.0859 0.0824
290.25	0.076 0.0706 0.0659
298.65 303.15	0.065 0.0610 0.0535
307.15	0.052 0.0494
313.15 314.35	0.0440 0.045 0.0431
323.55 323.15	0.037 0.0357 0.0367
Smoothing equation: ln x _{HCl} = -9.038 - Standard error in x _{HCl} about the	regression line = 1.57×10^{-3}
* calculated by the compiler	
** smoothing equation and smoothed va	lues were calculated by H.L. Clever

.

COMPONENTS:	ORIGINAL M	IEASUREMENTS:	
(1) Hydrogen chloride; HCl;	Gerrard, W	.; Macklen, 1	E.D.
[7647-01-0]	J. Appl. C	hem. 1960, 1	0, 57-62.
(2)· Ethers		<u>, , , , , , , , , , , , , , , , , , , </u>	, .,
EXPERIMENTAL VALUES:	 Mole ratio	Mole*	Smoothed**
	ⁿ HCl ^{/n} ether		nole fraction ^x HCl
1,1'-[Oxybis(methylene)]bis- 273.	15 0.643	0.391	0.389
benzene, (<i>dibenzyl ether</i>); 277. C ₁₄ H ₁₄ O; [103-50-4] 280.		0.374 0.363	
14 14 283. 284.		0.345	0.352
287. 292.	35 0.500	0.333 0.308	
293.	15		0.309
299. 303.		0.281	0.263
305. 312.		0.253 0.218	
313.			0.219
Smoothing equation: $\ln x_{HC1} = 61.35$ Standard error in x_{HC1} about t	6 - 81.792/(T/ he regression	100) - 32.199 line = 2.01	9 ln(T/100) < 10 ⁻³
Tetrahydrofuran; C ₄ H ₈ O; 273.	15		0.624
[109-99-9] ⁴ ⁶ 278. 279.		0.607 0.601	
283.	05 1.382	0.580	0.581
283. 288.	15 1.226	0.551	0.501
290. 293.		0.534	0.515
296. 302.		0.487 0.442	
· 303. 304.	15	0.427	0.436
Smoothing equation: ln × _{HCl} = 91.03 Standard error in × _{HCl} about t			23 ln(T/100) < 10 ⁻³
1,4-Dioxane; $C_{4}H_{0}O_{2}$; 273.	15		0.548
[123-91-1] 482 279.	65 1.134	0.531	
283. 284.	85 1.031	0.508	0.517
289. 293.		0.486	0.470
296. 302.		0.450 0.419	
303.	15		0.414
308. 312.	85 0.549	0.385 0.354	
313.			0.354
Smoothing equation: $\ln x_{HC1} = 67.10$ Standard error in x_{HC1} about t	0 - 90.850/(T/ he regression	100) - 34.276 line = 1.92 >	5 ln(T/100) < 10 ⁻³
<pre>* calculated by the compiler ** smoothing equation and smoothed</pre>	values were c	alculated by	H.L. Clever
•			

COMPONENTS:		ORIGINAL	MEASUREMENTS	:
(1) Hydrogen chloride; HCl;		Gerrard.	W.; Macklen,	E.D.
[7647-01-0]		[Chem. <u>1960</u> ,	
(2) Ethers			<u>(1)00</u>	10, 3, 02.
EXPERIMENTAL VALUES:	т/к	Mole ratio	o Mole*	Smoothed**
		HCl ^{/n} ether	fraction	mole fraction
			×HCl	×HC1
Oxybis [chloromethane],	273.15	0.072	0.0672	0.0669
(dichloromethyl ether):	277.35	0.059	0.0557	0.0460
242	286.55	0.044	0.0421	0.0400
	292.15	0.038	0.0366	0.0360
		1 . 260 42	2/(m/100) . 9	
Smoothing equation: ln x _{HCl} = - Standard error in x _{HCl} abo	out the	4 + 268.433 regression	3/(17/100) + 8 n line = 6.93	× 10 ⁻⁴
ner				
1-Chloro-1-(2-chloroethoxy)	273.15	0 347	0 100	0.242
ethane, $(\alpha\beta-dichloroethyl ether); C_4^H_8^{Cl}_2^O; [1462-34-6]$	279.85 283.15	0.247	0.198	0.180
402	284.85 285.75	0.206 0.201	0.171 0.167	
	291.45	0.167	0.143	
_	293.15	0.145	0.127	0.135
	298.05	0.134	0.118	0.103
	303.15 309.65	0.093	0.0851	
	313.15 318.15	0.074	0.0689	0.0783
	323.15			0.0601
Smoothing equation: $\ln x_{HC1} = 1$ Standard error in x_{HC1} above	0.599 - out the	- 5.264/(T/ regression	/100) - 10.04 n line = 6.67	4 ln(T/100) × 10 ⁻⁴
<pre>1,1'-Oxybis [2-chloroethane], 2 (ββ'-dichloroethyl ether);</pre>	273.15	0.297	0.229	0.228 0.174
$C_{4}H_{8}Cl_{2}O;$ [111-44-4] 2	284.15	0.202	0.168	
	288.85 293.15	0.175	0.149	0.132
	297.65 303.15	0.133 0.114	0.117 0.102	0.101
3	306.45	0.100	0.0909	0.101
	311.55 313.15	0.087	0.0800	0.0766
Smoothing equation: $\ln x_{HC1} = 2$	23.200 -	- 23.438/(1	r/100) - 16.0	18 ln(T/100)
Standard error in xHCl abo	Juc the	rediessio	1 111e = 1.09	
1,1'-Oxybis [3-chloropropane],	273.15	0.391	0.281	0.285
(YY'-dichloropropyl ether);	283.15			0.213
C ₆ H ₁₂ Cl ₂ O; [629-36-7]	283.55 290.85	0.269 0.213	0.212 0.176	
	293.15 298.15	0.162	0.139	0.159
	303.15			0.119
	303.45	0.131	0.116	0.0895
	314.15 323.15	0.090 0.075	0.0826 0.0698	0.0634
Smoothing equation: $\ln x_{HC1} = 2$ Standard error in x_{HC1} abo				
* calculated by the compiler ** smoothing equation and smoo				

COMPONENTS: (1) Hydrogen chloride; HCl; (1) Hydrogen chloride; HCl; (2) 1-methoxybutane or butyl methyl ether; $C_{3}H_{12}O$; (628-28-4] (2) 10-methoxybutane or butyl methyl (2) 1-methoxybutane or butyl methyl (moothed data calculated by H.L. Clever) EXPERIMENTAL VALUES: T/K MOI Ratio MOI Fraction n_{1}/n_{2} 203.15 0.565 0.665 0.407 205.15 0.666 0.407 205.15 0.665 0.407 205.15 0.665 0.407 205.15 0.665 0.407 205.15 0.665 0.407 205.15 0.665 0.407 205.15 0.666 0.407 205.15 0.666 0.407 205.15 0.666 0.407 205.15 0.666 0.407 205.15 0.666 0.407 205.15 0.667 0.857 0.856 223.15 0.070 0.476 0.857 0.666 233.15 0.407 0.476 0.427 233.15 0.907 0.476 0.427 0.427 0.427 0.427 0.427 0.427 0.427 0.427 0.427 0.427 0.427 0.427 0.427 0.427 0.427 0.427 0.427 0.427 0		173
ether; $C_{5}H_{12}O$; $[628-28-4]$ 7/K: 203.15 - 296.55 Total P/KPa: 101.325 (1 atm) EXPERIMENTAL VALUES: 7/K MOI Ratio MOI Fraction $\frac{n_1/n_2}{203.15} - \frac{2}{5.98}$ $\frac{2}{214.15} - \frac{1}{1.15} - \frac{2}{214.15} - \frac{1}{1.26} - \frac{1}{214.15} - \frac{1}{216.15} -$	(1) Hydrogen chloride; HCl;	Kapoor, K. P.; Luckcock, R. G.;
T/K: 203.15 - 296.55 Total P/kPa: 101.325 (1 atm) EXPERIMENTAL VALUES: T/K MOI Ratio MOI Fraction n1/n2 $\frac{1}{203.15}$ (5.98 203.15 5.98 203.15 5.98 204.15 4.11 0.804 246.15 1.706 0.630 The mole fraction 251.15 1.523 0.604 solubility values 266.55 1.312 0.667 were calculated 273.15 1.073 0.318 by the compiler. 286.55 0.407 296.55 0.688 0.408 Smoothed Data: For use between 203.15 and 293.15 K. In $x_1 = 8.308 - 9.080/(T/100K) - 5.635 ln (T/100K)$ Standard error about the regression line is 9.71 x 10 ⁻³ T/K Author's Smoothed Data Compiler's Eqn. Mol Ratio MOI Fraction Mol Fraction n_1/n_2 x_1 x_1 203.15 6.600 0.857 0.856 213.15 0.080 0.476 213.15 0.080 0.476 213.15 0.080 0.476 213.15 0.080 0.476 213.15 0.0807 0.466 223.15 2.45 0.710 0.700 233.15 1.45 0.592 0.552 273.15 1.45 0.592 0.552 273.15 1.45 0.592 0.552 273.15 1.45 0.592 0.552 273.15 1.45 0.592 0.639 223.15 0.907 0.476 0.426 223.15 0.907 0.476 0.426 223.15 0.907 0.476 0.426 223.15 1.45 0.592 0.552 273.15 1.075 0.518 0.507 233.15 1.45 0.592 0.552 273.15 1.45 0.592 0.552 273.15 1.45 0.592 0.552 273.15 1.075 0.518 0.507 283.15 0.907 0.476 0.426 293.15 AUXILIARY INFORMATION METHON/AFPAATUS/FROCEDURE: AUXILIARY INFORMATION METHON/AFPAATUS/FROCEDURE: AUXILIARY INFORMATION METHON/AFPAATUS/FROCEDURE: AUXILIARY INFORMATION METHON/AFPAATUS/FROCEDURE: FOR temperatures below 273.15 K it was used. For temperature was carboul joi ca and water in a vacuum flask was used. For temperatures below 273.15 K it was used. For temperature was lowered by 10 K and pyridine was carboul joi dic and water in a vacuum flask was used. For temperatures below 273.15 K it was used. For temperature was lowered by 10 K and pyridine was carboul joi dic and peridinue was lowered by 10 K and pyridine was lowered by 10 K a	<pre>(2) 1-methoxybutane or butyl methyl ether; C₅H₁₂O; [628-28-4]</pre>	
T/K: 203.15 - 296.55 Total P/kPa: 101.325 (1 atm) EXPERIMENTAL VALUES: T/K MOI Ratio MOI Fraction n1/n2 x_1 203.15 5.98 214.15 4.11 0.004 246.15 1.706 0.630 The mole fraction 251.15 1.523 0.604 solubility values 266.55 1.312 0.687 were calculated 273.15 1.073 0.518 by the compiler. 286.55 0.406 0.476 296.55 0.688 0.409 Smoothed Data: For use between 203.15 and 293.15 K. In $x_1 = 8.308 - 9.080/(T/100K) - 5.635 ln (T/100K)$ Standard error about the regression line is 9.71 x 10 ⁻³ T/K Author's Smoothed Data Compiler's Eqn. Mol Ratio Mol Fraction Mol Fraction n_1/n_2 x_1 x_1 $203.15 6.000 0.857 0.856 213.15 0.0685 0.409 Standard error about the regression line is 9.71 x 10-3 T/K Author's Smoothed Data Compiler's Eqn. Mol Ratio Mol Fraction Mol Fraction n_1/n_2 x_1 x_1203.15 6.000 0.857 0.856 213.15 0.059 0.476 0.855 0.646213.15 0.059 0.552273.15 1.45 0.592 0.599263.15 1.45 0.592 0.599263.15 1.45 0.592 0.599263.15 1.45 0.592 0.599273.15 1.075 0.518 0.507283.15 0.907 0.476 0.466293.15 0.907 0.476 0.466293.15 0.907 0.476 0.426293.15 1.075 0.518 0.507283.15 1.055 0.518 0.507283.15 1.055 0.518 0.507283.15 1.057 0.518 0.507283.15 1.057 0.518 0.507283.15 1.057 0.518 0.507283.15 1.057 0.518 0.507283.15 1.057 0.518 0.507283.15 1.057 0.518 0.507283.15 1.057 0.518 0.507283.15 1.057 0.518 0.507283.15 1.057 0.518 0.507283.15 0.907 0.476 0.466293.15AUXILIARY INFORMATIOMEXTHOM/AFPAATUS/FROCEDURE:AUXILIARY INFORMATIOMEXTHOM/AFPAATUS/FROCEDURE:FUEND/AFPAATUS/FROCEDURE:AUXILIARY INFORMATIOMEXTHOM/AFPAATUS/FROCEDURE:FUENCINF assumed that the loss of solventSource Auy of ice and water in a vaccumflask was used.For temperatures below 273.15 K itwas used. For temperature waslowered by 10 K and pyridine wascarefully added drop-wise to fix thehydrogen chloride as the pyridiniumsalt. A fler treatment with water,the chloride ion content wasdetermined by the Vohard method orX^{2} Appl. Chem. 1959, 9, 89.$		
T/K: 203.15 - 296.55 Total P/kPa: 101.325 (1 atm) EXPERIMENTAL VALUES: T/K MOI Ratio MOI Fraction n ₁ /n ₂ x ₁ 203.15 5.98 214.15 4.11 0.804 246.15 1.706 0.630 The mole fraction 256.65 1.312 0.667 were calculated 256.65 1.312 0.667 were calculated 236.15 0.695 0.442 236.15 0.695 0.442 236.15 0.685 0.407 296.55 0.688 0.408 Smoothed Data: For use between 203.15 and 233.15 K. In x ₁ = 8.308 - 9.080/(T/100K) - 5.635 In (T/100K) Standard error about the regression line is 9.71 x 10 ⁻³ T/K Author's Smoothed Data Compiler's Eqn. Mol Ratio Mol Fraction Mol Fraction n ₁ /n ₂ x ₁ x ₁ 201.15 6.000 0.857 0.856 211.15 0.685 0.407 236.15 0.409 0.857 0.856 213.15 0.000 0.429 233.15 1.45 0.592 0.599 233.15 1.45 0.592 0.599 243.15 0.907 0.476 0.466 293.15 0.907 0.476 0.466 293.15 0.907 0.476 0.466 293.15 0.907 0.476 0.466 293.15 0.907 0.476 0.427 243.15 1.075 0.518 0.507 243.15 1.075 0.518 0.507 243.15 1.095 0.518 0.507 243.15 0.907 0.476 0.426 293.15 0.907 0.476 0.426 201.16 demardument me the eth	VARIABLES:	PREPARED BY:
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
EXPERIMENTAL VALUES: T/K MOI Ratio Mol Fraction n_1/n_2 x_1 203.15 5.98 0.857 214.15 4.11 0.804 246.15 1.706 0.630 The mole fraction 256.65 1.312 0.567 were calculated 262.95 0.908 0.476 283.15 0.895 0.472 283.15 0.895 0.472 283.15 0.897 0.476 296.15 0.688 0.407 296.55 0.688 0.407 296.55 0.688 0.407 296.55 0.688 0.407 296.55 0.688 0.407 236.55 0.689 0.476 231.5 0.689 0.476 233.15 0.689 0.476 233.15 0.689 0.407 236.55 0.688 0.407 236.55 0.688 0.407 236.55 0.688 0.407 236.55 0.688 0.407 236.55 0.688 0.407 236.55 0.688 0.408 Smoothed Data: For use between 203.15 and 293.15 K. In $x_1 = 8.308 - 9.080/(T/100K) - 5.635 ln (T/100K)$ Standard error about the regression line is 9.71 x 10 ⁻³ T/K Author's Smoothed Data Complier's Eqn. Mol Ratio Mol Fraction Mol Fraction n_1/n_2 x_1 x_1 203.15 0.057 0.855 213.15 1.45 0.592 0.599 263.15 0.466 233.15 0.907 0.476 0.466 233.15 0.907 0.476 0.466 233.15 0.907 0.476 4247 MUTHDARY INFORMATION METHOD/AFFAATUS/FROCEDURE: The bubbler-tube technique described by Gerard, Mincer, and Wyvill (1) was used. For temperatures between 303 and 253 an LBI thermostat con- taining liquid parafin was used. For temperatures between 203.15 K it was used. For comperatures between 303 and 253 an LBI thermostat con- taining liquid parafin was used. For temperatures between aver as obtained from a cylinder, and dried. (2) Butyl methyl ether. Prepared from 1-butanol, sodium, and idodomethane. The ether was rigorously purified and attested. (2) Butyl methyl ether. Prepared from 1-butanol, sodium, and idodomethane. The ether was rigorously purified and attested. $\delta x_1/x_1 = 0.02$ REFIENCES: 1. Gerrard, W. Mincer, A. M. A.; Wyvill, P. L. <i>J. Appl. Chem.</i> 1959, <i>J.</i> 89.	Total P/RPa: 101.325 (1 acm)	(smoothed data calculated by H.L. Clever)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T/K MOI RAU	
$\begin{array}{c} 214.15 & 4.11 & 0.804\\ 246.15 & 1.706 & 0.630\\ 251.15 & 1.523 & 0.604 & solubility values\\ 256.65 & 1.312 & 0.567 & solubility values\\ 273.15 & 1.075 & 0.518 & were calculated\\ 283.15 & 0.895 & 0.472\\ 283.15 & 0.689 & 0.476\\ 283.15 & 0.688 & 0.407\\ 296.55 & 0.688 & 0.408\\ 236.15 & 0.688 & 0.408\\ \hline \end{array}$ Smoothed Data: For use between 203.15 and 293.15 K. In $x_1 = 8.308 - 9.080/(T/100K) - 5.635 \ln (T/100K)$ Standard error about the regression line is 9.71 x 10 ⁻³ T/K Author's Smoothed Data Compiler's Eqn. Mol Ratio Mol Fraction Mol Fraction Mol Ratio Mol Fraction Mol Fraction Mol Ratio Mol Fraction Mol Fraction $\frac{n_1/n_2}{723.15} \frac{x_1}{0.857} \frac{21}{0.856}$ $\frac{233.15}{223.15} 1.45 & 0.592 & 0.595\\ 263.15 & 1.45 & 0.592 & 0.595\\ 263.15 & 1.075 & 0.518 & 0.507\\ 233.15 & 1.075 & 0.518 & 0.507\\ 233.15 & 1.075 & 0.518 & 0.507\\ 233.15 & 0.907 & 0.476 & 0.466\\ 233.15 & 0.907 & 0.476 & 0.466\\ 233.15 & 0.907 & 0.476 & 0.466\\ 233.15 & 0.907 & 0.476 & 0.427\\ \hline METHOD/APPARATUS/FROCEDURE: The bubbler-tube technique described by Gerard, Mincer, and Wyvill (1) was used. For temperatures between and annual string enabled the temperature to be maintaing liquid paraffin was used. For temperatures between and annual string enabled the temperature to be maintaing liquid paraffin was used. For temperatures between and water in a vacuum flak was used. For temperatures between and water in a vacuum flak was used. For temperature to be maintaing higuid paraffin was used. For temperatures between and water in a vacuum flak was used. For temperature to be maintaing liquid paraffin was used. For temperature to be maintaing higuid paraffin was used. For temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride is on content was devered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride is on content was devered by 10 K and p$		
$\begin{array}{c} 246.15 & 1.706 \\ 251.15 & 1.523 & 0.604 \\ 256.65 & 1.312 & 0.567 \\ 273.15 & 1.075 & 0.518 \\ 282.95 & 0.908 & 0.476 \\ 283.15 & 0.895 & 0.476 \\ 283.15 & 0.907 & 0.476 \\ 283.15 & 0.688 & 0.407 \\ 285.15 & 0.688 & 0.408 \\ \hline \\ Smoothed Data: For use between 203.15 and 293.15 K. \\ 1n x_1 = 8.308 - 9.080/(T/100K) - 5.635 ln (T/100K) \\ Standard error about the regression line is 9.71 x 10^{-3}T/K Author's Smoothed Data Compiler's Eqn. Mol Ratio Mol Fraction Mol Fraction Mol Fraction Mol Fraction Mol Fraction 213.15 & 0.685 \\ 213.15 & 0.00 & 0.857 & 0.856 \\ 213.15 & 6.00 & 0.857 & 0.856 \\ 213.15 & 0.00 & 0.857 & 0.856 \\ 213.15 & 0.0907 & 0.476 & 0.466 \\ 293.15 & 0.907 & 0.476 & 0.466 \\ 293.15 & 0.907 & 0.476 & 0.466 \\ 293.15 & 0.907 & 0.476 & 0.466 \\ 293.15 & 0.907 & 0.476 & 0.466 \\ 293.15 & 0.907 & 0.476 & 0.466 \\ 293.15 & 0.907 & 0.476 & 0.466 \\ 293.15 & 0.907 & 0.476 & 0.466 \\ 293.15 & 0.907 & 0.476 & 0.427 \\ \hline \\ $		
$\begin{array}{c} 256.65 & 1.312 & 0.604 \\ 256.65 & 1.312 & 0.567 & were calculated \\ 273.15 & 1.075 & 0.518 & by the compiler. \\ 282.95 & 0.908 & 0.476 \\ 283.15 & 0.695 & 0.472 \\ 283.15 & 0.685 & 0.407 \\ 296.15 & 0.688 & 0.408 \\ \hline \\ \\ \hline \\ 10 x_1 = 8.308 - 9.080/(T/100K) - 5.635 \ln (T/100K) \\ \hline \\ Standard error about the regression line is 9.71 x 10^{-3} \\ \hline \\ $	246.15 1.706	0 630
$\begin{array}{c} 273.15 & 1.075 & 0.518 & \text{Were Calculated} \\ 282.95 & 0.908 & 0.476 & \text{by the compiler.} \\ 283.15 & 0.895 & 0.472 \\ 296.15 & 0.688 & 0.407 \\ 296.55 & 0.668 & 0.408 \\ \hline & 296.55 & 0.668 & 0.408 \\ \hline & 296.55 & 0.668 & 0.408 \\ \hline & & & & & & & & & & & & & & & & & &$	1	0.004 solubility values
$\begin{array}{c} 222.95 & 0.908 & 0.476 & \text{By the Complete}.\\ 283.15 & 0.905 & 0.472 \\ 283.15 & 0.907 & 0.476 \\ 296.15 & 0.668 & 0.407 \\ 296.55 & 0.668 & 0.408 \\ \end{array}$ Smoothed Data: For use between 203.15 and 293.15 K. $\ln x_1 = 8.308 - 9.080/(T/100K) - 5.635 \ln (T/100K) \\ \text{Standard error about the regression line is 9.71 x 10^{-3} \\ \hline T/K & Author's Smoothed Data & Compiler's Eqn. \\ \hline Mol Ratio Mol Fraction & Mol Fraction \\ \hline Mol Ratio Mol Fraction \\ \hline Mol Mol Mol Mol Fratio \\ \hline Mol Mol Mol Mol Mol Mol$		0.567 were calculated
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	282.95 0.908	0.476 by the compiler.
$\begin{array}{c} 296.15 \\ 296.55 \\ 296.55 \\ 0.688 \\ 0.408 \\ 0.408 \\ \hline \end{array}$ Smoothed Data: For use between 203.15 and 293.15 K. In $x_1 = 8.308 - 9.080/(T/100K) - 5.635 ln (T/100K) \\ \hline \\ Standard error about the regression line is 9.71 x 10^{-3} \\ \hline \hline \\ \hline \\ Mol Ratio Mol Fraction Mol Fraction \\ \hline \\ Mol Ratio Mol Fraction Mol Fraction \\ \hline \\ \hline \\ Mol Ratio Mol Fraction \\ \hline \\ Mol Ratio Mol Fraction \\ \hline \\ Mol Fraction \\ \hline \\ \hline \\ 203.15 \\ 21$		
Smoothed Data: For use between 203.15 and 293.15 K. In $x_1 = 8.308 - 9.080/(T/100K) - 5.635 ln (T/100K) Standard error about the regression line is 9.71 x 10-3 T/K Author's Smoothed Data Compiler's Eqn. Mol Ratio Mol Fraction Mol Fraction n_1/n_2 x_1 x_1203.15 6.00 0.857 0.805213.15 2.45 0.710 0.753233.15 2.45 0.710 0.700243.15 0.649253.15 1.45 0.592 0.599263.15 0.427The bubbler-tube technique describedby Gerrard, Mincer, and Wyvill (1)Was used. For temperatures between303 and 253 an LBI thermostat con-tained within ±1 K. For 273.15 K itwas used.For temperatures below 273.15 K itwas assumed that the loss of solventby entrainment could be ignored.After saturation at a recordedtemperature, the temperature wascovered by 10 K and pyridine wascarefully added drop-wise to fix thehydrogen chloride as the pyridiniumsalt. After treatment with water,the chloride ion content wasdetermined by the Volhard method orStandard error about the regression line is 9.71 x 10-3Taimed with water,the chloride ion content wasGerefully added drop-wise to fix thehydrogen chloride as the pyridiniumsalt. After treatment with water,the chloride ion content wasGerefully added drop-wise to fix thehydrogen chloride was the pyridiniumsalt. After treatment with water,the chloride ion content wasGerefully added drop-wise to fix thehydrogen chloride was the pyridiniumsalt. After treatment with water,the chloride ion content wasGerefully added drop-wise to fix thehydrogen chloride was the pyridiniumsalt. After treatment with water,the chloride ion content wasGerefully added drop-wise to fix thehydrogen chloride was the pyridiniumsalt. After treatment with water,the chloride ion content wasGerefully added drop-wise to fix thehydrogen chloride was the pyridiniumsalt. After treatment with water,the chloride ion content wasGerefully added drop-wise to fix thehydrogen chloride ion content wasGerefully add$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
Standard error about the regression line is 9.71×10^{-3} T/K Author's Smoothed DataCompiler's Eqn. Mol FractionMol Ratio Mol FractionAdvision Mol FractionAdvision Mol FractionAdvision Mol FractionMol Ratio Mol FractionMol Ratio Mol FractionMol Ratio Mol FractionMol Ratio Mol FractionAdvision Mol FractionAdvision Mol FractionMol Mol FractionMol Mol FractionMol Mol Fractio	Smoothed Data: For use between 203	15 and 293.15 K.
Standard error about the regression line is 9.71×10^{-3} T/K Author's Smoothed DataCompiler's Eqn. Mol FractionMol Ratio Mol FractionAdvision Mol FractionAdvision Mol FractionAdvision Mol FractionMol Ratio Mol FractionMol Ratio Mol FractionMol Ratio Mol FractionMol Ratio Mol FractionAdvision Mol FractionAdvision Mol FractionMol Mol FractionMol Mol FractionMol Mol Fractio	$\ln x_1 = 8.308 - 9.08$	0/(T/100K) - 5.635 ln (T/100K)
T/KAuthor's Smoothed DataCompiler's Eqn. Mol Ratio Mol FractionMol Ratio Mol FractionMol FractionMol Fraction203.156.000.8570.856213.152.450.7100.770243.150.5920.599263.151.0750.5180.507283.150.9070.4760.4427AUXILIARY INFORMATIONMETHOD/APRANUS/FROCEDURE:The bubbler-tube technique described by Gerrard, Mincer, and Wyvill (1)MUNILIARY INFORMATIONMETHOD/APRANUS/FROCEDURE:Courte temperatures between 303 and 253 an LBI thermostat con- taining liquid paraffin was used.For temperatures less than 253 K a diury of ice and water in a vacuum flask was used.For temperatures below 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride ion content was determined by the Vollard method orESTIMATED ERROR: $& 1.253$ KISTIMATED ERROCES:1. Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L. J. Appl. Chem. 1959, 9, 89.	Standard error about	the regression line is 9.71 x 10^{-3}
Mol Ratio Mol Fraction Mol Fraction $\frac{n_1/n_2}{203.15} \qquad x_1 \qquad $		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mol Ratio Mol	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n_1/n_2	x1 x1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c} 233.15 & 2.45 & 0.710 & 0.700 \\ 243.15 & 0.649 \\ 253.15 & 1.45 & 0.592 & 0.599 \\ 263.15 & 0.518 & 0.507 \\ 263.15 & 0.907 & 0.476 & 0.466 \\ 293.15 & 0.427 \\ \hline \end{array}$		
$\begin{array}{c} 253.15 \\ 263.15 \\ 263.15 \\ 263.15 \\ 273.15 \\ 1.075 \\ 283.15 \\ 0.507 \\ 283.15 \\ 0.907 \\ 0.476 \\ 0.466 \\ 293.15 \\ 0.427 \\ \hline \end{array}$	233.15 2.45 (0.710 0.700
$\begin{array}{c} 263.15 \\ 273.15 \\ 273.15 \\ 283.15 \\ 0.907 \\ 0.476 \\ 0.427 \\ \hline \\ $		
$\begin{array}{c} 283.15 \\ 293.15 \\ 293.15 \\ \hline \end{array} 0.907 \\ 0.476 \\ 0.427 \\ \hline \end{array} \\ \hline \\$	263.15	0.552
$\begin{array}{c} \underline{293.15} \\ \hline \\ $		
AUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:The bubbler-tube technique describedSOURCE AND PURITY OF MATERIALS:by Gerrard, Mincer, and Wyvill (1)Source and purchastwas used.For temperatures between303 and 253 an LBI thermostat con-cylinder, and dried.taining liquid paraffin was used.(2) Butyl methyl ether. PreparedFor temperatures less than 253 Kiodomethane. The ether wasaddition of small pieces of solidiodomethane. The ether wascarbon dioxide and manual stirringrigorously purified and attested.enabled the temperature to be main-iodomethane. The ether wastained within ±1 K. For 273.15 Krigorously purified and attested.For temperatures below 273.15 K itStrike ± 0.5 253 - 303 Kwas assumed that the loss of solvent $\delta T/K = \pm 0.5253 - 303 K$ by entrainment could be ignored. $\delta tr/k = 0.02$ After saturation at a recorded $\delta x_1/x_1 = 0.02$ lowered by 10 K and pyridine wasREFERENCES:carefully added drop-wise to fix theNether treatment with water,hydrogen chloride as the pyridiniumI. After treatment with water,salt. After treatment with water,J. Appl. Chem. 1959, 9, 89.		
The bubbler-tube technique described by Gerrard, Mincer, and Wyvill (1) was used. For temperatures between 303 and 253 an LBI thermostat con- taining liquid paraffin was used. For temperatures less than 253 K addition of small pieces of solid carbon dioxide and manual stirring enabled the temperature to be main- tained within ±1 K. For 273.15 K a slurry of ice and water in a vacuum flask was used. For temperatures below 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or		
by Gerrard, Mincer, and Wyvill (1) was used. For temperatures between 303 and 253 an LBI thermostat con- taining liquid paraffin was used. For temperatures less than 253 K addition of small pieces of solid carbon dioxide and manual stirring enabled the temperature to be main- tained within ±1 K. For 273.15 K a slurry of ice and water in a vacuum flask was used. For temperatures below 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or		SOURCE AND PURITY OF MATERIALS:
was used. For temperatures between 303 and 253 an LBI thermostat con- taining liquid paraffin was used. For temperatures less than 253 K addition of small pieces of solid carbon dioxide and manual stirring enabled the temperature to be main- tained within ± 1 K. For 273.15 K a slurry of ice and water in a vacuum flask was used. For temperatures below 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or xi = tin (2) Butyl methyl ether. Prepared from 1-butanol, sodium, and iodomethane. The ether was rigorously purified and attested. $\xi T/K = \pm 0.5 253 - 303 K$ $\xi T/K = \pm 0.02$ REFERENCES: 1. Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L. J. Appl. Chem. <u>1959</u> , 9, 89.		
taining liquid paraffin was used. For temperatures less than 253 K addition of small pieces of solid carbon dioxide and manual stirring enabled the temperature to be main- tained within ± 1 K. For 273.15 K a slurry of ice and water in a vacuum flask was used. For temperatures below 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or (2) Butyl methyl ether. Prepared from 1-butanol, sodium, and iodomethane. The ether was rigorously purified and attested. (2) Butyl methyl ether. Prepared from 1-butanol, sodium, and iodomethane. The ether was rigorously purified and attested. $\delta T/K = \pm 0.5 \ 253 - 303 \ K = \pm 1 \ <253 \ K \ \delta x_1/x_1 = 0.02$ REFERENCES: 1. Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L. J. Appl. Chem. <u>1959</u> , 9, 89.		
For temperatures less than 253 K addition of small pieces of solid carbon dioxide and manual stirring enabled the temperature to be main- tained within ±1 K. For 273.15 K a slurry of ice and water in a vacuum flask was used. For temperatures below 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or For temperatures below 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride ion content was determined by the Volhard method or		(2) Butul mothul ether Prepared
addition of small pieces of solid carbon dioxide and manual stirring enabled the temperature to be main- tained within ± 1 K. For 273.15 K a slurry of ice and water in a vacuum flask was used. For temperatures below 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or		
enabled the temperature to be main- tained within ± 1 K. For 273.15 K a slurry of ice and water in a vacuum flask was used. For temperatures below 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or	addition of small pieces of solid	
tained within ± 1 K. For 273.15 K a slurry of ice and water in a vacuum flask was used. For temperatures below 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or		rigorously purified and attested.
flask was used. For temperatures below 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or ESTIMATED ERROR: $\delta T/K = \pm 0.5 253 - 303 K$ $\delta T/K = \pm 1 < 253 K$ $\delta x_1/x_1 = 0.02$ REFERENCES: 1. Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L. J. Appl. Chem. <u>1959</u> , 9, 89.		
For temperatures below 273.15 K it was assumed that the loss of solvent by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or $ESTIMATED ERROR:\delta T/K = \pm 0.5 \ 253 - 303 \ K= \pm 1 \ <253 \ K\delta x_1/x_1 = 0.02$		m
was assumed that the loss of solvent by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or		
by entrainment could be ignored. After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or $= \pm 1 < 253 \text{ K}$ $\delta x_1/x_1 = 0.02$ REFERENCES: 1. Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L. J. Appl. Chem. <u>1959</u> , 9, 89.		
After saturation at a recorded temperature, the temperature was lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or $\delta x_1/x_1 = 0.02$ REFERENCES: 1. Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L. J. Appl. Chem. <u>1959</u> , 9, 89.		
lowered by 10 K and pyridine was carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or	After saturation at a recorded	
carefully added drop-wise to fix the hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or		
hydrogen chloride as the pyridinium salt. After treatment with water, the chloride ion content was determined by the Volhard method or	carefully added drop-wise to fix the	
the chloride ion content was J. Appl. Chem. <u>1959</u> , 9, 89. determined by the Volhard method or		
determined by the Volhard method or		
by use of an automatic titrimeter.	determined by the Volhard method or	
	by use of an automatic titrimeter.	

OMPONENTS :				EASUREMENT	
	ogen chlori 7-01-0]	.de; HCl;	Kapoor, K. Sandbach,	P.; Luckc J. A.	ock, R. G.;
2) 1-Met ether	choxybutane ; C ₅ H ₁₂ O;	or butyl methyl [628-28-4]	J. Appl. C 21, 97 - 1		ech. <u>1971</u> ,
(PERIMEN	TAL VALUES	; :			
		ature and pres- le fraction.			re and mole t temperature.
T/K	Pressure p ₁ /mmHg	Mol Fraction $\frac{x_1}{2}$	т/к	Pressure p _l /mmHg	Mol Fraction
232.95 239.25 249.65 259.95	76	0.405	233.45	53.7 84 133 206.5	0.411 0.455 0.494 0.539
266.45 273.15 279.95 286.25	550		243.85	142	0.455
	940 67.7	0.450		217 343 760	0.494 0.538 0.635
253.75	154.2 218 306.5 366.5	-	256.35	150 250.5 372.5 565 760	
281.25 290.35	692.2 1003	0.490	270.25	273.5 444.5 656 760	0.452 0.491
222.35 230.35 239.35 249.15 257.85 265.05 272.15 281.55 288.55	83 122.5 180.5 275 399.2 526 695.5 974 1363	0.490	286.15	760 944 537 760 833 1210 1698	0.508 0.535 0.407 0.440 0.450 0.487 0.531
217.75 225.35 231.35 242.15 253.65 260.45 267.45 272.05 281.95	103.2 143 194.5 323.5 511.5 665.5 844.5 1003 1409	0.536			
			mole frac	tion solub	age. Variation o ility with temp- HCl pressure.

Hydrogen Chionde in	Non-Aqueous Solvents 175
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Ionin, M. V.; Shverina, V. G.
(2) 1,1'-Oxybisalkanes; $C_4 H_{10}O_7$,	Zh. Obshch. Khim. <u>1965</u> , 35, 209-211.
$C_6H_{14}O$, and $C_8H_{18}O$	J. Gen. Chem. USSR (Engl. Transl.) 1965, 35, 211 - 212.
VARIABLES: T/K: 298.15	PREPARED BY:
Total P/kPa: 101.3 (atmospheric) W. Gerrard
EXPERIMENTAL VALUES:	
T/K Refractive Solution	Mol Ratio Mol Fraction
Index ¹ Density n_{D}^{298} ρ/g cm ⁻³	$n_1/n_2 x_1$
l,l'-Oxybisethane or diethyle	ether; C ₄ H ₁₀ O; [60-29-7]
298.15 1.3523 0.8133	0.802 0.445
2,2'-Oxybispropane or di-isop [108-20-3]	propyl ether; C ₆ H ₁₄ O;
298.15 1.3660 0.8086	0.799 0.444
l,l'-Oxybisbutane or dibutyl [142-96-1]	ether; C ₈ H ₁₈ O;
298.15 1.3966 0.8253	0.808 0.447
¹ Pure solvent refractive index The mole ratio values were calc	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The ether was saturated with hydro- gen chloride at 298.2 K and atmospheric pressure, not specified. An aliquot of the solution was diluted with water, and titrated with alkali.	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Prepared from "chemically pure" sodium chloride and sulfuric acid; and was dried by sulfuric acid and anhydrous calcium chloride. (2) 1,1'-Oxybisalkanes. The ethyl and 2-propyl ethers were "pure" grade materials, freed from peroxy compounds, dried with sodium and distilled. The butyl ether was self prepared.
	ESTIMATED ERROR:
	REFERENCES :

į

COMPONENT	`S:		ORIGINAI	L MEASUREME	INTS :		
(1) Hyd [76	lrogen chlo 547-01-0]	oride; HCl;	Kapoor, Sand	Kapoor, K. P.; Luckcock, R. G.; Sandbach, J. A.			
(2) 1-E eth	Sthoxybutan her; C ₆ H ₁₄ C	e or butyl ethyl ; [628-81-9]	J. Appl 21, 97	J. Appl. Chem. Biotech. <u>1971</u> , 21, 97 - 100.			
EXPERIM	IENTAL VALU	ES:					
Variati sure at	on of temp constant	erature and pres- mole fraction.	Variati fractic	on of pres	sure and mole ant temperature.		
т/к	Pressure p1/mmHg	Mol Fraction x1	т/к	Pressure p ₁ /mmHg	Mol Fraction x ₁		
243.05 251.05	91 132.5 205.7	0.430	233.45	26.1 51.9 92.0 189.2 760	0.490		
279.35 286.25 293.05 299.25	408.5 562.5 743.2 977	0.484	243.85	56.6 102.5 175 336 760	0.440 0.490 0.539 0.601 0.685		
233.85 242.35 250.15 258.15 265.05 273.15 280.55	94.2 144 229.5 326 482	0.484	256.35	123 206.5 334 696 760	0.439 0.489 0.538 0.599 0.626		
286.55		0.535	270.25	257 419 638 760 1038	0.437 0.487 0.536 0.555 0.596		
256.45 265.15 273.15	334 510 735 1060		285.65	551 760 963 1036	0.433 0.470 0.480 0.532		
233.05 239.15 247.45 255.15 262.15 268.15 273.15	195 266.7 400 565.7 757.8 957 1156	0.597					
			mole fra		page. Variation of temperature at		

	· · · · · · · · · · · · · · · · · · ·		
COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Kapoor, K. P.; Luckcock, R. G.; Sandbach, J. A.		
(2) Butyl ethyl ether; C ₆ H ₁₄ O; [628-81-9]	J. Appl. Chem. Biotech. <u>1971</u> , 21, 97 - 100.		
VARIABLES:	PREPARED BY:		
T/K: 205.15 - 297.15			
Total P/kPa: 101.325 (1 atm)	W. Gerrard		
	(smoothed data calculated by H.L. Clever)		
EXPERIMENTAL VALUES: T/K Mol Rat			
n1/n2	^x 1		
205.15 5.75	0.852		
213.15 4.31	0.812 The mole fraction		
217.65 4.24	0.809 solubility values		
232.15 2.95			
245.95 2.17	0.685 by the compiler.		
	0.683		
281.45 1.000 282.15 0.996			
282.15 0.996 285.65 0.919			
297.15 0.716			
Smoothed Data: For use between 203.1	5 and 283.15 K.		
	65/(T/100K) - 9.460 ln (T/100K)		
The standard error about the	regression line is 6.90×10^{-3}		
	Data Compiler's Eqn.		
	ction Mol Fraction		
n_{1}/n_{2} x_{1}	<i>x</i> 1		
203.15 6.15 0.860			
213.15	0.823		
223.15	0.790		
233.15 2.93 0.746	0.747		
243.15	0.698		
253.15 1.90 0.655			
263.15	0.592		
273.15 1.150 0.535			
283.15 0.965 0.491	0.489		
AUXILIARY	INFORMATION		
METHOD APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The bubbler-tube technique described	(1) Hydrogen chloride. A good		
by Gerrard, Mincer, and Wyvill (1)	specimen was obtained from a		
was used. For temperatures between	cylinder, and dried.		
303 and 253 an LBI thermostat			
containing liquid paraffin was used.	(2) Butyl ethyl ether. Prepared		
For temperatures less than 253 K	from alcohol, sodium, and		
addition of small pieces of solid	alkyl bromide. The ether was		
carbon dioxide and manual stirring	rigorously purified and attested.		
enabled the temperature to be main- tained with in + 1 K. For 273.15 K			
a slurry of ice and water in a vacuum			
flask was used.			
For temperatures below 273.15 K it			
was assumed that the loss of solvent	ESTIMATED ERROR:		
by entrainment could be ignored.	$\delta T/K = \pm 0.5 253 - 303 K$		
After saturation at a recorded	$= \pm 1$ < 253 K		
temperature, the temperature was	$\delta x_1 / x_1 = 0.01$		
lowered by 10 K and pyridine was			
carefully added drop-wise to fix the	REFERENCES:		
hydrogen chloride as the pyridinium	1. Gerrard, W.; Mincer, A. M. A.;		
salt. After treatment with water,	Wyvill, P. L.		
the chloride ion content was	J. Appl. Chem. <u>1959</u> , 9, 89.		
determined by the Volhard method or			
by use of an automatic titrimeter.			
	1		

.

COMPONENTS :		ORIGINAL MEASUREMENTS:			
<pre>(1) Hydrogen chloride; HCl; [76,47-01-0]</pre>			Perkin, W. H.		
<pre>(2) 1,1'-Oxybis[3-methylbutane] or diisoamyl ether; C₁₀H₂₂O; [544-01-4]</pre>		J. (Chem. Soc. <u>1</u>	<u>894</u> , <i>65</i> , 20 - 28.	
VARIABLES: T/K: 273.15 -	208 15	PREPAR	ED BY:		
			W. Ge	rrard	
p/kPa: 101.3 (a	thospheric :)	(smo	othed data cald	culated by H.L. Clever)	
EXPERIMENTAL VALUES:					
Temperature t/ C T/K	Hydrogen Chlo Weight per ce		Mol Ratio	Mol Fraction	
	Weighing Tit	ration	n1/n2	x1	
			1.00	0.500	
0 273.15 5 278.15		.70	1.00 0.892	0.500 0.472	
9 282.15	16.28 16	.26	0.843	0.458	
13 286.15	15.05 15	.40	0.791	0.442	
15 288.15		.91	0.761 0.569	0.432 0.362	
25 298.15	11.27 11	. 30	0.505	0.302	
the weighing values. The mole ratio and mole fraction the titration weight per cents Smoothed Data: $\ln x_1 = 98.038$ Standard error about the regard		on val by th -132 ressio Mol Fr 27 0.4 0.4 0.3 r INFORM SOURCE he (1) (2)	ues were cal e compiler. .498/(T/100K n line is 5. action 96 56 97 ATION E AND PURITY OF Hydrogen chl	<pre>7) - 49.990 ln(T/100K) 70 x 10⁻³.</pre>	
titrating with alkali. The author states that in the two values is d ization of solvent dur	the different ue to evapor-		ATED ERROR:		
bubbling process.					
The pressure was not s appears to have been a					
		REFER	ENCES:		
		1			

nyarogen omoriae m	Non-Aqueous Solvents
COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Matuszak, M. P. U. S. Patent 2,520,947
<pre>(2) 1,1'-Oxybis[3-methyl butane] or diisoamyl ether; C₁₀H₂₂O; [544-01-4]</pre>	
VARIABLES: T/K = 297.6 p/kPa = 99.59 (747 mmHg)	PREPARED BY: W. Gerrard
EXPERIMENTAL VALUES:	
Temperature Pressure HCL A t/°F T/K p/mmHg g HCL	Absorbed ¹ Mol Ratio Mol Fraction per 100 n_1/n_2 x_1
	0.0 0.435 0.303
¹ The author's statement was " oxycompound."	HCl absorbed, weight per cent of
AUXILIARY	INFORMATION
ME THOD / AP PARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
No information.	No information.
	ESTIMATED ERROR: REFERENCES:

180 Hydrogen Chloride in	Non-Aqueous Solvents
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen chloride; HCl; [7647-01-0]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.
2. l,l'-Oxybisoctane or Dioctyl ether; C _{l6} H ₃₄ O; [629-82-3]	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.
VARIABLES:	PREPARED BY:
T/K: 253.15 - 293.15	W. Gerrard
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Ra	tio Mol Fraction
ⁿ HCl/ ⁿ C ₁	6 ^H 34 ^O X _{HCl}
253.15 1.70	
263.15 1.35	0.574
273.15 1.06 283.15 0.88	
293.15 0.68	
The mole fraction solubilities were c compiler.	alculated from the mole ratio by the
Smoothed Data: ln X _{HCl} = 24.890 - 30	.734/(T/100) - 14.226 ln (T/100)
Standard error about	regression line = 4.85×10^{-3}
T/K	Mol Fraction
	X _{HC1}
253.15	0.629
263.15 - 273.15	0.575 0.519
283.15	0.463
293.15	0.409
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Hydrogen chloride was passed into a	1. Hydrogen chloride. Obtained from
known weight of liquid in a bubbler tube at a total pressure measured by	a cylinder containing a good com- mercial specimen. Was dried by
a manometer assembly. The absorbed gas was weighed by re-weighing the	passage through concentrated sulfuric acid.
bubbler tube. The temperature was	2. Best obtainable specimen was
manually controlled to within 0.2 K. The procedure and apparatus are	suitably purified, dried, and
described by Gerrard (1,2).	fractionally distilled, and attested.
For temperatures below 268 K, a chemical titration was conducted.	
chemical electron was conducted.	
	ESTIMATED ERROR: $\delta T/K = 0.2$
	$\delta x/x = 0.01$
	REFERENCES :
	1. Gerrard W. J. Appl. Chem. Biotechnol. <u>1972</u> ,
	22, 623 - 650.
	2. Gerrard, W. "Solubility of Gases and Liquids" Plenum Press, New York, 1976

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	O'Brien, S. J.
(2) Methoxybenzene or anisole; C ₇ H ₈ O; [100~66-3]	J. Am. Chem. Soc. 1942, 64, 951 - 953.

EXPERIMENTAL VALUES:

т/к	Pressure P1/mmHg	Molality m _l /mol kg ⁻¹	Henry's Constant	Mol Ratio	Mol Fraction
	± 		<u>k¹</u>	م ح 	
293.15	30.3	0.0378	1.05	0.0041	0.0041
	66.7	0.0926	0.95	0.0100	0.0099
	70.7	0.100	0.93	0.0108	0.0107
	82.7	0.109	0.99	0.0118	0.0116
	(760		0.97 av.	0.111	0.100) ²
303.15	52.7	0.059	1.18	0.00637	0.00633
	66	0.073	1.21	0.00788	0.00782
	85	0.092	1.22	0.00994	0.00984
	168	0.180	1.23	0.0194	0.0191
	181	0.200	1.19	0.0216	0.0211
	408	0.448	1.20	0.0484	0.0461
	(760		1.21 av.	0.0892	0.0819) ²
308.15	45.9	0.0449	1.34	0.00485	0.00483
	72.0	0.0720	1.31	0.00778	0.00772
	77.8	0.0764	1.34	0.00825	0.00762
	250	0.250	1.31	0.0270	0.0263
	264	0.253	1.37	0.0273	0.0266
	410	0.400	1.35	0.0432	0.0414
	(760		1.34 av.	0.0806	0.0746) ²
313.15	61.8	0.0463	1.56	0.00500	0.00498
	82.3	0.0735	1.48	0.00793	0.00787
	98.8	0.0887	1.46	0.00958	0.00949
	106	0.0929	1.61	0.0100	0.0099
	216	0.179	1.59	0.0193	0.0190
	(760		1.54 av.	0.0701	0.0655) ²

¹ k/atm mol⁻¹ kg = $(p_1/atm)/(m_1/mol kg^{-1})$

 2 Value calculated by the compiler from the average value of Henry's constant, assuming a linear function of $p_1\ vs.\ m_1$, as the original author appeared to imply.

Note: The molality, m_1 , is essentially a *mole ratio* form. If linear for this, *not* linear for mole fraction, except in the limit of infinite dilution.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Hydrogen chloride; HCl;	O'Brien, S. J.
<pre>[7647-01-0] (2) Methoxybenzene or anisole; C₇H₈O; [100-66-3]</pre>	J. Am. Chem. Soc. <u>1942</u> ,64, 951 - 953.
-7-8-7	
VARIABLES:	PREPARED BY:
T/K: 293.15 - 313.15 P/kPa: 4.04 - 54.66	W. Gerrard
(30.3 - 410 mmHg)	
EXPERIMENTAL VALUES:	
See prec	eeding page.
、	
	2
	,
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Prepared
Saylor (1) as modified by O'Brien et	from chemically pure potassium
al. (2). The main difference is the	chloride and sulfuric acid.
use of a 1 to 2 day instead of a 5 to 7 day equilibration time.	Dried by phosphorus pentoxide.
, day equilibration time.	(2) Anisole. Eastman Kodak Co.
The apparatus consists of two bulbs	Dried and distilled.
which are separated by a tap. The solvent is partially saturated with	
the gas, and the solution added to	
the lower bulb. The bulbs are	
partially evacuated, the tap opened, and the whole apparatus put in a	
thermostat from 1 to 2 days.	ESTIMATED ERROR:
_	tm/r = 0.00
The tap is closed. The HCl in the upper bulb is quantitatively removed	$\delta T/K = 0.02$
and titrated with NaOH. The HCl	
partial pressure is calculated from	REFERENCES:
the bulb volume and the number of moles of HCl assuming ideal gas	1. Saylor, J. H. J. Am. Chem. Soc. <u>1937</u> , 59, 1712.
behavior. A weighed solution sample	
is removed from the lower bulb and titrated with NaOH.	2. O'Brien, S. J.; Kenny, C. L. Zeurcher, R. A.
LILLACEU WICH NAUN.	J. Am. Chem. Soc. 1939, 61, 2504.

.

COMPONENTS:	OPTOTNAL WEACUPENERS		
	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	O'Brien, S. J.; King, C. V.		
<pre>(2) Ethoxybenzene or ethyl phenyl ether or phenetole; C₈H₁₀O; [103-73-1]</pre>	J. Am. Chem. Soc. <u>1949</u> , 71, 3632 - 3634.		
VARIABLES: T/K: 283.15 - 298.15 P/kPa: 101.325 (1 atm)	PREPARED BY: W. Gerrard		
EXPERIMENTAL VALUES:			
T/K Henry's M Constant ¹ k	ol Ratio Mol Fraction $n_1/n_2 \qquad \qquad$		
283.15 0.70 ± 0.03	0.178 0.151 0.174 ² 0.148 ²		
293.15 0.90 ± 0.01	0.136 0.120 0.136 ² 0.119 ²		
298.15 1.02 ± 0.04	0.120 0.107		
at pressures below one-ha The Henry's constant value	ents were probably carried out If atm partial pressure of HCL. is are the mean of from 2 to 6 verage deviation of the mean.		
AUXILIARY	INFORMATION		
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
The method and apparatus are those of Saylor (1) as modified by O'Brien et	1		
al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution is added to the lower bulb. The bulbs are partially evacuated, the tap opened,	 chloride and sulfuric acid as in previous work (2). (2) Ethoxybenzene. Eastman Kodak Co. Dried and distilled. 		
al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution is added to the lower bulb. The bulbs are	Probably prepared from potassium chloride and sulfuric acid as in previous work (2). (2) Ethoxybenzene. Eastman Kodak Co. Dried and distilled.		

•• -

·** :3-

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: O'Brien, S. J.; King, C. V. J. Am. Chem. Soc. <u>1949</u> , 71, 3632 - 3634.		
<pre>(2) Butoxybenzene or butyl phenyl ether; C₁₀H₁₄O; [1126-79-0]</pre>			
VARIABLES: T/K: 293.15, 298.15 P/kPa: 101.325 (1 atm)	PREPARED BY: W. Gerrard		
EXPERIMENTAL VALUES:			
T/K Henry's M Constant ¹ k	Nol Ratio Mol Fraction $n_1/n_2 $		
293.15 1.21 <u>+</u> 0.05	0.124 0.110		
298.15 1.37 <u>+</u> 0.04	0.111 0.100 0.109 ² 0.0987 ²		
1 k/atm mol ⁻¹ kg = (p ₁ /at			
² Values as recalculated	l by the compiler.		
All of the mole ratio va the compiler.	lues were calculated by		
The experimental measurements were probably carried out at pressures below one-half atm partial pressure of HCl. The Henry's constant values are the mean of from 2 to 6 values followed by the average deviation of the mean.			
From the slope of log x_1 vs. l/T. The enthalpy of solution is -3.78 kcal mol ⁻¹ (-15.82 kJ mol ⁻¹).			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution is added to the lower bulb. The bulbs are partially evacuated, the tap opened,	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Not stated. Probably prepared from potassium chloride and sulfuric acid as in previous work (2). (2) Butoxybenzene. Eastman Kodak Co Dried and distilled. 		
and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the	ESTIMATED ERROR:		
upper bulb is quantitatively removed and titrated with NaOH. The HCl partial pressure is calculated from the bulb volume and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and titrated with NaOH.	<pre>&T/K = 0.02 REFERENCES: 1. Saylor, J. H. J. Am. Chem. Soc. <u>1937</u>, 59, 1712 2. O'Brien, S. J.; Kenny, C. L. Zeurcher, R. A. J. Am. Chem. Soc. <u>1939</u>, 61, 2504</pre>		

nydrogen Chibride III	Non-Aqueous Solvenis 185	
<pre>COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0] (2) 1,1'-Oxybisbenzene or diphenyl ether; C₁₂H₁₀O; [101-84-8]</pre>	ORIGINAL MEASUREMENTS: O'Brien, S. J.; King, C. V. J. Am. Chem. Soc. <u>1949</u> , 71, 3632 - 3634.	
VARIABLES: T/K: 298.15, 303.15 P/kPa: 101.325 (1 atm)	PREPARED BY: W. Gerrard	
EXPERIMENTAL VALUES:		
T/K Henry's Constant ¹ k	Mol Ratio Mol Fraction $\frac{n_1}{n_2}$ $\frac{x_1}{x_1}$	
298.15 3.33 <u>+</u> 0.07	0.0520 0.0494 0.0511 ² 0.0486 ²	
303.15 3.52 <u>+</u> 0.01	0.0462 0.0442 0.0482 ² 0.0461 ²	
¹ k/atm mol ⁻¹ kg = (p ₁ /a	$tm)/(m_1/mol kg^{-1})$	
² Values as recalculate	ed by the compiler.	
All of the mole ratio w the compiler.	values were calculated by	
The experimental measurements were probably carried out at pressures below one-half atm partial pressure of HC1. The Henry's constant values are the mean of from 2 to 6 values followed by the average devia- tion of the mean. From the slope of $\log x_1 vs. 1/T$. The enthalpy of solution is -3.80 kcal mol ⁻¹ (-15.90 kJ mol ⁻¹).		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution is added to the lower bulb. The bulbs are	(2) 1,1'-Oxybisbenzene. Eastman Kodak Co. Dried and distilled.	
partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days.	ESTIMATED ERROR:	
The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH. The HCl partial pressure is calculated from the bulb volume and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and titrated with NaOH.	δT/K = 0.02 REFERENCES: Saylor, J. H. J. Am. Chem. Soc. <u>1937</u>, 59, 1712. O'Brien, S. J.; Kenny, C. L. Zeurcher, R. A. J. Am. Chem. Soc. <u>1939</u>, 61, 2504. 	

-

ORIGINAL MEASUREMENTS: Matuszak, M. P.				
U. S. Patent 2,520,947 September 5, <u>1950</u> Chem. Abstr. <u>1950</u> , 44, 11044g				
PREPARED BY: W. Gerrard				
sorbed ¹ Mol Ratio Mol Fraction per 100 $n_1/n_2 = x_1$				
63 0.0294 0.0286				
The mole ratio and mole fraction values were calculated by the compiler.				
INFORMATION				
SOURCE AND PURITY OF MATERIALS:				
No information.				
ESTIMATED ERROR: REFERENCES:				

MDONENTS .					
OMPONENTS :		ORIGINAL	ORIGINAL MEASUREMENTS:		
 Hydrogen chloride; HCl; [7647-01-0] 1,1'Oxybis[2-chloroethane]; C₄H₈Cl₂O; [111-44-4] 		O'Brien, S. J.			
		J. Am. Chem. Soc. 1942, 64, 951 - 953.			
XPERIMENTAL	VALUES.				
T/K	Pressure	Molality	Henry's	Mol Ratio	Mol Fraction
	p ₁ /mmHg	m ₁ /mol kg ⁻¹	Constant k ¹	ⁿ 1 ^{/n} 2	x1
293.15	23.7	0.0419	0.75	0.0060	0.0060
	53	0.090	0.78	0.0129	0.0127
	103	0.168	0.81	0.0240	0.0235
	109	0.182	0.79	0.0260	0.0254
	116	0.198	0.78	0.0283	0.0275
	122	0.202	0.80	0.0289	0.0281
	186	0.305	0.80	0.0436	0.0418
	287	0.481	0.79	0.0688	0.0644
	533	0.794	0.88	0.114	0.102
	(760		0.82 av	. 0.174	0.149) ²
298.15	6.6	0.0091	0.95	0.00130	0.00130
	38.1	0.0572	0.88	0.00818	0.00811
	54.3	0.0758	0.94	0.01084	0.01073
	68.3	0.103	0.87	0.0147	0.0145
	84	0.126	0.88	0.0180	0.0177
	94	0.140	0.88	0.0200	0.0196
	124	0.165	0.99	0.0236	0.0231
	124	0.175	0.94	0.0250	0.0244
	215 365	0.308 0.502	0.92 0.96	0.0440 0.0718	0.0422
	363	0.518	0.92	0.0741	0.0670 0.0690
	378	0.538	0.93	0.0769	0.0714
	413	0.555	0.98	0.0794	0.0735
	401	0.556	0.95	0.0795	0.0737
	418	0.571	0.96	0.0817	0.0755
	(760		0.94 av	. 0.152	0.132) ²
303.15	17.2	0.0224	1.00	0.00320	0.00319
	25.6	0.0292	1.15	0.00418	0.00416
	260	0.343	1.00	0.0490	0.0468
	283	0.366	1.02	0.0523	0.0497
	(760		1.03 av.		0.122) ²
313.15	70.9	0.0711	1.31	0.0102	0.0101
	160	0.165	1.28	0.0236	0.0231
	177	0.166	1.41	0.0237	0.0232
	307	0.265	1.52	0.0379	0.0365
	307	0.291	1.37	0.0416	0.0400
	(760		1.40 av.		$0.0927)^{2}$
	(700		1.40 aV.	. 0.1021	0.0927)

¹ k/atm mol⁻¹ kg = $(p_1/atm)/(m_1/mol kg^{-1})$

² Value calculated by the compiler from the average value of Henry's constant, assuming a linear function of p_1 vs. m_1 , as the original author appeared to imply.

The compiler calculated the values of mole ratio and mole fraction.

Another name for the solvent is 2,2'-dichloroethyl ether.

Note: Henry's constant. The molality is essentially of a *mole ratio* form. If linear for this, *not* linear for mole fraction, except in the limit of infinite dilution.

188 Hydrogen Chloride in F	
<pre>COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0] (2) 1,1'Oxybis[2-chloroethane]; C₄H₈Cl₂O; [111-44-4]</pre>	ORIGINAL MEASUREMENTS: O'Brien, S. J. J. Am. Chem. Soc. <u>1942</u> , 64, 951 - 953.
VARIABLES: T/K: 293.15 - 313.15 P/kPa: 0.88 - 71.06 (6.6 - 533 mmHg)	PREPARED BY: W. Gerrard
EXPERIMENTAL VALUES:	eding page
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> <i>al.</i> (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time.	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Prepared from chemically pure potassium chloride and sulfuric acid. Dried by phosphorus pentoxide.
The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened,	<pre>(2) 1,1'-Oxybis[2-chloroethane]. Eastman Kodak Co. Dried and distilled.</pre>
and the whole apparatus put in a thermostat from 1 to 2 days.	ESTIMATED ERROR:
The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH. The HCl partial pressure is calculated from the bulb volume and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and titrated with NaOH.	<pre>6T/K = 0.02 REFERENCES: 1. Saylor, J. H. J. Am. Chem. Soc. <u>1937</u>, 59, 1712. 2. O'Brien, S. J.; Kenny, C. L. Zeurcher, R. A. J. Am. Chem. Soc. <u>1939</u>, 61, 2504.</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Matuszak, M. P.		
(2) 1,4-Dioxane; C ₄ H ₈ O ₂ ; [123-91-1]	U. S. Patent 2,520,947 September 5, <u>1950</u> Chem. Abstr. <u>1950</u> , 44, 11044g		
VARIABLES:	PREPARED BY:		
T/K = 305.4 p/kPa = 99.59 (747 mmHg)	W. Gerrard		
EXPERIMENTAL VALUES:			
Temperature Pressure HCl At	bsorbed ¹ Mol Ratio Mol Fraction		
t/°F 7/K n/mmHg g HCl	per 100 $n_1/n_2 x_1$		
90 305.4 747 24	4.5 0.592 0.372		
AUXILIARY	INFORMATION		
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
No information.	No information.		
	ESTIMATED ERROR:		
	REFERENCES :		

150	,		Non-Aqueous Solvents		
COMPONENTS :			ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>			Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.		
(2) 1,1,1-Triethoxyethane; C ₈ H ₁₈ O ₃ ; [78-39-7]		8 ^H 18 ^O 3'	J. Appl. Chem. <u>1960</u> , 10, 115-121.		
VARIABLES:			PREPARED BY:		
	9.15 - 314.3		W. Gerrard		
Total P/kPa: 10	1.325 (1 atm	()	(smoothed data calculated by H.L. Clever)		
EXPERIMENTAL VALUES:		Mol Rati	Nol Exaction		
	T/K	MOT RACE	o Mol Fraction		
		HC1 ^{/n} C8 ^H 1	803		
	279.15	2.720	0.731		
	284.35	2.366	0.703		
	290.65	1.956	0.662		
	296.75 304.75	1.501 1.053	0.600 0.513		
	307.35	0.915	0.478		
	314.35	0.477*	0.323		
	314.35	0.475*	0.322		
	*A third mo probably o		value of 0.441 was error.		
The compiler cal	culated the	mole frac	tion values.		
Cmanthad Datas	1	205 . 427	240/(m/100) = 150 682 lm (m/100)		
Smoothed Data:	$111 x_1 = 307.$	595 - 427	$249/(T/100) - 150.683 \ln (T/100)$		
	Standard err	or about	the regression line is 2.62×10^{-2}		
T/K Mol Fraction ^x 1					
		283.15 293.15 303.15 313.15	0.663		
L		AUXILIARI	INFORMATION		
METHOD APPARATUS/PRO	CEDURE:	SOURCE AND PURITY OF MATERIALS:			
The liquid component was weighed in a bubbler tube. The amount of gas absorbed was determined by re-		of gas e-	(1) Hydrogen chloride. Good specimen from a commercial cylinder was dried.		
weighing to constant weight. The total pressure was barometric, very nearly 1 atm (101.325 kPa).			<pre>(2) 1,1,1-Triethoxyethane. Carefully purified, and purity rigorously attested.</pre>		
Solvent name is ethyl orthoacetate in		cetate in	USTIMATED EDDODA		
paper, IUPAC name			ESTIMATED ERROR:		
orthoacetate.			$\delta x_1 / x_1 = 0.012$		
1					
			REFERENCES :		
1					
]					

Hydrogen Chloride in Non-Aqueous Solvents 19				
COMPONENTS:		ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; 7647-01-0 (2) 1,3-Benzodioxole; C₇H₆O₂; 274-09-9</pre>		Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.		
		J. Appl. Chem. <u>1960</u> , 10, 115 - 121.		
VARIABLES:		PREPARED BY:		
T/K: 273.15 Total P/kPa: 101.32		W. Gerrard		
10tai 1/kia. 101.52.	,	(smoothed data calculated by H.L. Clever)		
EXPERIMENTAL VALUES:		Lee		
т/к	Mole Ratio M	ol Fraction		
-,	ⁿ HC1/ ⁿ C7H6 ⁰ 2	<i>x</i> 1		
273.15	0.130	0.115		
273.13	0.112	0.101		
283.75 293.35	0.0909 0.0735	0.0833 0.0685		
304.85	0.0571	0.0540		
-		ole fraction values.		
Smoothed Data: ln :	$x_1 = -9.511 + 20$.056/(T/100 K)		
The s	tandard error ab	out the regression line is 2.73 x 10^{-1}		
	T/K Mol	Fraction		
		<i>x</i> ₁		
	273.15	0.114		
	283.15	0.0882		
		0.0693 0.0553		
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE	:	SOURCE AND PURITY OF MATERIALS:		
The liquid component		(1) Hydrogen chloride. Good specime		
a bubbler tube. The amount of gas absorbed was determined by re-		from a commercial cylinder was dried.		
weighing to constant weight. The				
total pressure was barometric, very nearly 1 atm (101.325 kPa).		(2) 1,3-Benzodioxole. Carefully purified, and purity rigorously		
	, -	attested.		
Other names for the s		ESTIMATED ERROR:		
<pre>o-phenylene methylene ether and 1,2-(methylenedioxy)benzene.</pre>		$\delta x_1/x_1 = 0.025$		
		1 * *		
		REFERENCES :		

······			
COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.		
(2) 2,3-Dihydro-1,4-benzodioxin; C ₈ H ₈ O ₂ ; [493-09-4]	J. Appl. Chem. <u>1960</u> , 10, 115-121.		
VARIABLES:	PREPARED BY:		
T/K: 275.95 - 303.15	W. Gerrard		
Total P/kPa: 101.325 (1 atm)			
	(smoothed data calculated by H.L. Clever)		
EXPERIMENTAL VALUES:			
T/K Mol Rati	o Mol Fraction		
ⁿ HCl ^{/n} C ₈ H			
275.95 0.225	0.184		
284.45 0.178	0.151		
294.85 0.137	0.120		
303.15 0.111	0.100		
The compiler calculated the mole fract	tion values.		
Smoothed Data: $\ln x_1 = 6.173 - 1.814$,	/(T/100) - 7.102 ln (T/100)		
Standard error about a	regression line is 2.85 x 10^{-4}		
T/K Ma	ol Fraction		
	<i>x</i> ₁		
273.15	0.196		
273:15	0.156		
293.15	0.124		
303.15	0.100		
AUXILIARY	INFORMATION		
METHOD APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The liquid component was weighed in	(1) Hydrogen chloride. Good specimen		
a bubbler tube. The amount of gas	from a commercial cylinder was		
absorbed was determined by re- weighing to constant weight. The	dried.		
total pressure was barometric, very	(2) 2,3-Dihydro-1,4-benzodioxin.		
nearly 1 atm (101.325 kPa).	Carefully purified, and purity		
	rigorously attested.		
Solvent name is o-phenylene	ESTIMATED ERROR:		
dimethylene ether in paper, IUPAC			
name is 1,4-benzodioxan.	$\delta x_1 / x_1 = 0.01$		
	REFERENCES:		
	1		

nyarogen		•		
COMPONENTS:		ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>		Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.		
(2) 3,4-Dihydro-2H-1,2-benzo C ₉ H ₁₀ O ₂ ; [7216-18-4]	dioxepin;	J. Appl. Chem. <u>1960</u> , 10, 115-121.		
VARIABLES:	u	PREPARED BY:		
T/K: 273.15 - 305.1	.5	W. Gerrard		
Total P/kPa: 101.325 (1 atm	1)	(smoothed data calculated by H.L. Clever)		
EXPERIMENTAL VALUES:				
	Mol Rat	io Mol Fraction		
	ⁿ HC1 ^{/n} C ₉ H	$10^{\circ}2$ x_1		
273.15	0.255			
281.05	0.197			
286.35	0.172			
294.35 305.15	0.142 0.108	0.0975		
The compiler calculated the	mole frac	tion values.		
Smoothed Data: $\ln x_1 = -8.5$				
Standard err	or about	regression line is 1.19×10^{-3}		
	T/K	Mol Fraction ^x 1		
273.15 283.15 293.15 303.15		0.202 0.158		
		0.126		
	313.15	0.0835		
METHOD APPARATUS/PROCEDURE: The liquid component was wei a bubbler tube. The amount absorbed was determined by r weighing to constant weight. total pressure was barometri	ghed in of gas ce- The	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Good specimen from a commercial cylinder was dried. (2) 3,4-Dihydro-2H-1,2-benzodioxepin.</pre>		
nearly 1 atm (101.325 kPa).		Carefully purified, and purity rigorously attested.		
Solvent name is o-phenyl tri ether in the paper.	.methylene	ESTIMATED ERROR: $\delta x_1 / x_1 = 0.01$ REFERENCES:		

194 Hydrogen Chlonde in	Non-Aqueous Solvents			
COMPONENTS:	ORIGINAL MEASUREMENTS:			
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.			
(2) 2-Methyl-1,4-benzodioxan; C ₉ H ₁₀ O ₂ ; [5966-54-1]	J. Appl. Chem. <u>1960</u> , 10, 115-121.			
VARIABLES:	PREPARED BY:			
т/к: 273.15 - 303.45				
Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)			
EXPERIMENTAL VALUES:				
T/K Mol Ra	atio Mol Fraction			
ⁿ HCl ^{/n} C _c	^H 10 ^O 2 ^x 1			
273.15 0.43	0.305			
274.95 0.41				
280.85 0.33				
281.85 0.33 284.35 0.29				
284.35 0.25				
294.55 0.20				
303.45 0.15				
The compiler calculated the mole frac	tion values.			
Smoothed Data: $\ln x_1 = 55.372 - 67.933/(T/100) - 31.537 \ln (T/100)$				
Standard error about the regression line is 1.77×10^{-3}				
T/K Mol Fraction ^x 1				
273.15 0.305				
283.15 0.236				
293.15	0.179			
303.15 0.134				
AUXILIARY	(INFORMATION			
METHOD 'APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:			
The liquid component was weighed in	(1) Hydrogen chloride. Good specimen			
a bubbler tube. The amount of gas	from a commercial cylinder was			
absorbed was determined by re-	dried.			
weighing to constant weight. The total pressure was barometric, very	(2) 2-Mothul-1 (-hongodiovan			
nearly 1 atm (101.325 kPa)	(2) 2-Methyl-1,4-benzodioxan. Carefully purified, and purity			
hearing i dow (roiroid Ard)	rigorously attested.			
Solvent name is o-phenylene mono-	ESTIMATED ERROR:			
methyl dimethylene ether in paper.				
	$\delta x_1 / x_1 = 0.01$			
	REFERENCES:			
	1			
I	1			

	Non-Aquebus Solvents		
COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Macklen, E. D.		
(2) Phenol; C ₆ H ₆ O; [108-95-2]	J. Appl. Chem. <u>1959</u> , 9, 85 - 88.		
VARIABLES:	PREPARED BY:		
т/к: 313.55 - 335.85	W. Gerrard		
Total P/kPa: 101.325 (1 atm)	w. Gerrard (smoothed data calculated by H.L. Clever)		
	(Subscribe alter curculated by n.D. Crever)		
EXPERIMENTAL VALUES:			
T/K Mol Rati ⁿ HCl/ ⁿ C ₆ H			
313.55 0.039	0.0375		
315.15 0.035 321.35 0.028			
329.35 0.024	0.0234		
335.85 0.023	0.0225		
The mole fraction values were calcula	ated by the compiler		
	767.213/(T/100) + 229.285 ln (T/100)		
Standard error about	regression line = 5.32×10^{-4}		
T/K	Mol Fraction		
	^x HCl		
313.15	0.0377		
323.15	0.0260		
333.15	0.0226		
·	······································		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: The apparatus and procedure were	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Self prepared		
those described by Gerrard and	and dried.		
Macklen (1). The hydrogen chloride was generated in an all glass	(2) Phenol. Purified, distilled, and		
apparatus. The absorption vessel,	attested by physical constants.		
previously weighed, was fitted with a stoppered bubbler tube, and a			
stoppered outlet tube. Entrained			
liquid was condensed at 273.15 K, and allowed for. The amount of gas			
absorbed by a known weight of liquid			
was determined by weighing.	NOTIVATED EDDAD.		
	ESTIMATED ERROR:		
	$\delta x/x = 0.02$		
	REFERENCES :		
	1. Gerrard, W.; Macklen, E. D.		
	J. Appl. Chem. <u>1956</u> , 6, 241.		
1			

COMPONENTS:	EVALUATOR:	
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,	
2. Aliphatic Carboxylic Acids	Polytechnic of North London, Holloway, London, N7 8DB, U.K. January 1989	

CRITICAL EVALUATION:

The Solubility of Hydrogen Chloride in Aliphatic Carboxylic Acids.

The solubility in acetic acid has been measured at barometric pressure over various temperature ranges by Cupr (1), by Gerrard & Macklen (2), by Ahmed *et al.*(3), by Kitvinenko & Kapova (4), and by Kumar & Gehlawat (5). Mole fraction solubilities for a partial pressure of 101.3 kPa derived from data provided by the last four groups may be fitted to the equation :

 $\ln x_{\rm HC1} = 70.224 - 1056.9/(T/K) - 12.092 \ln(T/K)$

The standard deviation in values of $x_{\rm HC1}$ is 0.0095.

This equation is based upon data for 253.15 K to 353.15 K. The data, published by Cupr, for 298.15 K, but not that for 273.15 K, are in accord with this smoothing equation.

Rodebush & Ewart (6) measured solubilities of hydrogen chloride in acetic acid at 298 K over a pressure range of 1.25 kPa to 12.4 kPa. The data are consistent with data for higher pressures published by other authors.

Gerrard & co-workers (2,3) also measured solubilities over temperature ranges in formic acid, propanoic acid, butanoic acid, hexanoic acid, 2-methyl propanoic acid and 3-methyl butanoic acid. The total pressure was equal to barometric. At 298.15 K there is a general tendency for mole fraction solubilities corrected to a partial pressure of 101.3 kPa to increase with chain length in the case of straight chain acids. Branching tends to lower the solubility. These measurements appear to be self consistent but there are no data by other authors for comparison.

Gerrard & Macklen (2) measured solubilities in chloroacetic acid and trichloroacetic acid over temperature ranges of about 320 K to 340 K at a total pressure of 101.3 kPa. The contribution of these solvents to the total pressure is small in this temperature range and the measured solubilities may be equated with solubilities at a partial pressure of 101.3 kPa. The presence of chlorine lowers the solubilities relative to that in acetic acid itself in this temperature range but the difference in solubilities in the two chlorinated solvents is very small.

Mole fraction solubilities at 323.15 K and a partial pressure of hydrogen chloride of 101.3 kPa.

Acetic acid	0.054	(from recommended equation)
Chloroacetic acid	0.0280	(Gerrard & Macklen - interpolated)
Trichloroacetic acid	0.0288	

REFERENCES

 Cupr, V. Rec1. Trav. Chim. Pays-Bas <u>1928</u>, 47, 5 	5 - 7	Ζ.
--	-------	----

- 2. Gerrard, W.; Macklen, E. D. J. Appl. Chem. <u>1956</u>, 6, 241 244.
- Ahmed, W.; Gerrard, W.; Maladkar, V. K. J. Appl. Chem. <u>1970</u>, 20, 109 - 115.
- Kitvinenko, V. I.; Kapova, Z. K. Izv. Akad. Nauk. Kaz. SSR, Ser. Khim. <u>1972</u>, 22, 75 - 77.
- 5. Kumar, S.; Gehlawat, J. K. J. Chem. Tech. Biotechnol. <u>1979</u>, 29, 353 - 360.
- Rodebush, W. H.; Ewart, R. H. J. Am. Chem. Soc. <u>1932</u>, 54, 419 423.

COMPONENTS:	ORIGINAL MEASUREM	ENTS:	
(1) Hydrogen chloride; HCl;	Gerrard, W.; Macki	len, E.D.	
[7647-01-0] (2) Aliphatic carboxylic acids	J. Appl. Chem. <u>1956</u> , 6, 241-244		
VARIABLES: T/K: See below Total P/kPa : 101.325 (1 atm)	PREPARED BY: W. Gerrard		
EXPERIMENTAL VALUES: T/K	Mole ratio Mole [*] Mole ratio fract: MCl ^{/n} acid [*] HCl	ion mole fraction	
Formic acid; CH ₂ O ₂ ; 273.15 [64-18-6] 281.25 283.15	0.082 0.07	0.0838 58 0.0728	
288.65 293.15	0.069 0.064		
295.65 303.15	0.060 0.056	1	
303.65 313.15	0.049 0.046		
316.05 323.15	0.033 0.03		
Smoothing equation: ln x _{HCl} = 104.052 Standard error in x _{HCl} about the	- 141.039/(T/100) - regression line = -	- 54.632 ln(T/100) 1.09 × 10 ⁻³	
Acetic acid; C ₂ H ₄ O ₂ ; 283.15 [64-19-7] 284.15 289.15	0.189 0.159 0.165 0.142	2	
293.15 300.15	0.121 0.108		
303.15 312.65 313.15	0.074 0.068	0.0632	
323.15 323.25	0.035 0.033	0.0350 38	
Smoothing equation: ln × _{HCl} = 329.714 Standard error in × _{HCl} about the	- 458.556/(T/100) - regression line = 5	- 162.979 ln(T/100) 5.96 × 10 ⁻³	
<pre>* calculated by the compiler ** smoothing equation and smoothed v</pre>	lues were calculate	ed by H.L. Clever.	
AUXILIARY	NFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY	OF MATERIALS:	
Hydrogen chloride was generated in an all-glass apparatus.	<pre>(1) Hydrogen chloride: self- prepared and dried.</pre>		
The all-glass absorption vessel (50 cm^3) comprised an inlet bubbler tube, an outlet tube, and the part holding a weighed amount of liquid.		grade specimens ed and attested.	
Each tube was fitted with a tap, and either a B-19 cone, or a B-19 socket. Entrained liquid was collected and allowed for. Temperature control was within 0.1 K. The amount of gas	ESTIMATED ERROR: $\delta T/K =$ $\delta x_{HC1}/x_{HC1} =$		
absorbed was determined by weighing.	REFERENCES:		

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Gerrard, W.; Macklen, E.D.
(2) Aliphatic carboxylic acids	J. Appl. Chem. <u>1956</u> , 6, 241-244
EXPERIMENTAL VALUES: T/K	Mole ratio Mole [*] Smoothed ^{**} HCl ^{/n} acid fraction mole fraction ^x HCl ^x HCl
Propanoic acid; C ₃ H ₆ O ₂ ; 273.15 [79-09-4] 278.05 280.15 283.15 290.15 293.15 293.15 296.45	0.170 0.145 0.160 0.138 0.135 0.139 0.122 0.117
303.15 308.15 313.15 315.45 323.15 324.15	0.098 0.0892 0.0811 0.084 0.0775 0.068 0.0637
Smoothing equation: ln x _{HCl} = 63.844 Standard error in x _{HCl} about the HCl	- 86.197/(T/100) - 34.017 ln(T/100) regression line = 1.45 × 10 ⁻³
Butanoic acid; C ₄ H ₈ O ₂ ; 282.75 [107-92-6] 283.15 291.05 293.15 294.45 303.15 306.25 313.15 316.95 323.15	0.166 0.1420 0.133 0.152 0.1320 0.105 0.105 0.0950 0.0841
Smoothing equation: ln x _{HCl} = -9.216 Standard error in x _{HCl} about the	+ 21.107/(T/100) regression line = 3.01 × 10 ⁻³
2-Methylpropanoic acid; 291.35 C ₄ H ₈ O ₂ ; [79-31-2] 293.15 303.15 303.95 313.15 320.45 323.15	0.138 0.1210 0.117 0.119 0.1060 0.0945 0.101 0.0917 0.0754 0.068 0.0637 0.0596
Smoothing equation: ln x _{HCl} = 40.660 Standard error in x _{HCl} about the	- 51.184/(T/100) - 23.565 ln(T/100) regression line = 2.18 × 10 ⁻³
3-Methylbutanoic acid; 273.15 C ₅ H ₁₀ O ₂ ; [503-74-2] 278.95 283.15 287.55 293.15 301.15 303.15 306.95 313.15	0.191 0.200 0.1670 0.150 0.154 0.1330 0.150 0.108 0.0975 0.0925 0.093 0.0851 0.0729
318.15 323.15 Smoothing equation: ln x _{HCl} = 17.481 Standard error in x _{HCl} about * calculated by the compiler ** smoothing equation and smoothed va	

		T Non-Aqueous Sor			
COMPONENTS :	ORIGINAL MEASURE	ORIGINAL MEASUREMENTS:			
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>		Cupr, V.			
(2) Acetic acid; ([64-19-7]	(2) Acetic acid; C ₂ H ₄ O ₂ ; [64-19-7]		him. Pays-E	3as <u>1928</u> ,	
VARIABLES: $T/K = 273.15, 298.15$ p/kPa = 101.325 (1 atm)		PREPARED BY: W	PREPARED BY: W. Gerrard		
EXPERIMENTAL VALUES:			· · · · · · · · · · · · · · · · · · ·		
<i>T/</i> K	Acetic Acid Hydro	ogen Chloride	Mol Ratio	Mol Fraction	
	w_1 /wt % g per	r 100 g solvent	n ₁ /n ₂	<i>x</i> 1	
273.15		31.392 25.0 ¹	0.4111	0.2921	
298.15		3.349 7.60	0.125	0.111	
acetic aci ¹ The values acid, sinc	his own plot of g H id for the estimate at 273.15 K are f be acetic acid is r ng point of acetic	e. for a hypothetic normaly a solid	al pure lig at this tem	uid acetic	
	AUXILIA	Y INFORMATION			
METHOD / APPARATUS / PROCE	DURE :	SOURCE AND PURIT	Y OF MATERIAL	S:	
The concentration solution of acetic mined by titration free sodium hydrox phenolphalein as i	acid was deter- with carbonate de solution with	(1) Hydrogen prepared	chloride. T from sodium ric acid.	he gas was chloride	
liquid in a U-tube were removed for t	was absorbed in the absorber. Samples the estimation of tration with silver	3			
		ESTIMATED ERROR	:		
		REFERENCES :			

COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Rodebush, W. H.; Ewart, R. H.	
(2) Acetic acid; C ₂ H ₄ O ₂ ; [64-19-7]	J. Am. Chem. Soc. <u>1932</u> , 54, 419 - 423.	
VARIABLES:	PREPARED BY:	
T/K = 298.00 $p_1/kPa = 1.29 - 12.40$ (9.7 - 93.0 mmHg)	W. Gerrard	
EXPERIMENTAL VALUES:		
Partial	n Chloride Mol Fraction Pressure mmHg x ₁	
24.85 298.00	9.7 0.00242 9.4 0.00206 15.0 0.00349 17.3 0.00406 28.6 0.00632 31.6 0.00695 46.9 0.0105 50.9 0.0110 52.8 0.0115 58.8 0.0137 93.0 0.0208	
The following approximate results were also given: a 5 wt % solution had $p_1 = 470 \text{ mmHg}$ ($x_1 = 0.0798$, by compiler), and a 3 wt % solution had $p_1 = 300 \text{ mmHg}$ ($x_1 = 0.0484$, by compiler). NOTE: The data recorded in the table should not be extrapolated linearly beyond 100 mmHg.		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
A dynamic method was used to determ- ine the vapor pressure of the hydrogen chloride over the solution of acetic acid. A known volume of air was drawn through the solution, and the contents were determined by chemical titrations. Allowance for the pressure due to acetic acid appears to have been 15.6 mmHg, the vapor pressure of pure acetic acid at 25 °C.	 Hydrogen chloride. Prepared from c. p. sodium chloride and c. p. 95 % sulfuric acid. Acetic acid. Strictly c. p. acetic acid (99.5 %) was distill- ed, and the middle portion was frozen to give acid (99.7 %). 	
	ESTIMATED ERROR: $\delta T/K = \pm 0.02$	
	REFERENCES :	

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0] (2) Acetic acid; C ₂ H ₄ O ₂ ; [64-19-7] VARIABLES: T/K: 303 - 333 Total P/kPa: 101 EXPERIMENTAL VALUES: ORIGINAL MEASUREMENTS: Kumar, S.; Gehlawat, J J. Chem. Tech. Biotech 29, 353 - 360. PREPARED BY: W. Gerrard H. L. Clever		
$[7647-01-0]$ J. Chem. Tech. Biotech (2) Acetic acid; $C_2H_4O_2$; $[64-19-7]$ J. Chem. Tech. Biotech 29 , $353 - 360$. VARIABLES: PREPARED BY: T/K: $303 - 333$ Total P/kPa: 101		
(2) Acetic acid; $C_2H_4O_2$; [64-19-7] VARIABLES: T/K: 303 - 333 Total P/kPa: 101 J. Chem. Tech. Biotech 29, 353 - 360. PREPARED BY: W. Gerrard H. L. Clever	ol. <u>1979</u> ,	
T/K: 303 - 333 Total P/kPa: 101 W. Gerrard H. L. Clever		
Total P/kPa: 101 H. L. Clever	······································	
EXPERIMENTAL VALUES:		
T/K Estimated Hydrogen Estimated Estin HCl Pressure Chloride Mol Ratio Mol Concentration		
	1	
313 97 0.96 1.37 0.080 0	102 074 0495	
	033	
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: The gas was bubbled through the solvent at atmospheric pressure. The increase of weight on the take up of HCl by the acetic acid was determined.(2) Acetic acid. Analy	Analytical	
ESTIMATED ERROR: $\delta c/c = 0.15$ (au	hors)	
REFERENCES:		
1		

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>1. Hydrogen chloride; HCl; [7647-01-0]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.	
2. Acetic Acid; C ₂ H ₄ O ₂ ;	J. Appl. Chem. 1970, 20, 109 - 115	
[64-19-7]	$5. \text{ Appl. Chem. } \frac{1970}{1970}, 20, 109 - 113$	
VARIABLES:	PREPARED BY:	
T/K: 253.15 - 293.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard	
	(smoothed data calculated by H.L. Clever)	
EXPERIMENTAL VALUES:		
T/K MOL R	atio Mol Fraction	
ⁿ HCl/ ⁿ C ₂ H ₄ O ₂ ^X HCl		
	2 ⁿ 4 ^o 2	
253.15 0.65		
263.15 0.46 273.15 0.29		
283.15 0.21	0.174	
293.15 0.15	0.130	
The mole fraction solubilities were calculated from the mole ratio by the compiler.		
-	.426/(T/100) - 21.778 ln (T/100)	
	regression line 8.82 x 10^{-3}	
	109103310H 11HE 0.02 X 10	
	Mol Fraction	
	x _{HC1}	
253.15	0.398	
253.15	0.305	
273.15	0.231	
283.15 . 293.15	0.174 0.130	
298.15	0.112	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Hydrogen chloride was passed into a known weight of liquid in a bubbler	 Hydrogen chloride. Obtained from a cylinder containing a 	
tube at a total pressure measured by	good commercial specimen. Was	
a manometer assembly. The absorbed	dried by passage through con- centrated sulfuric acid.	
gas was weighed by re-weighing the bubbler tube. The temperature was		
manually controlled to within 0.2 K.	2. Acetic Acid. Best obtainable specimen was suitably purified,	
The procedure and apparatus are described by Gerrard (1, 2).	dried, and fractionally dis-	
described by seriard (1, 2).	tilled, and attested.	
	ESTIMATED ERROR:	
	$\delta T/K = 0.2$	
	$\delta x/x = 0.025$	
	REFERENCES :	
	1. Gerrard, W.	
	J. Appl. Chem. Biotechnol. <u>1972</u> ,	
	22, 623 - 650.	
	2. Gerrard, N. "Solubility of Gases and Liquids"	
	Plenum Press, New York, 1976	
L	l	

.

	Non-Aqueous Solvents 203	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Kitvinenko, V. I.; Kapova, Z. K.	
(2) Acetic acid; C ₂ H ₄ O ₂ ; [64-19-7]	Izv. Akad. Nauk. Kaz. SSR, Ser. Khim. <u>1972</u> , 22, 75 - 77.	
VARIABLES: T/K = 293.15 - 353.15 p/kPa = 101.325 (1 atm)	PREPARED BY:	
EXPERIMENTAL VALUES:	I	
Chloride $w_1/\text{wt }$ 293.15 8.21 313.15 4.75 333.15 2.83 353.15 1.29 ¹ The mole fraction val compiler assuming the w values were for a total ² The mole fraction val compiler for a hydroger of one atm. The acetic calculated as $p_2 = p_2^{\circ}(0)$ liquid acetic acid vapo	wes were calculated by the chloride partial pressure acid vapor pressure was $1 - x_1$) where p_2 is the pure r pressure. Ogen chloride in aqueous acetic	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
It was stated that the apparatus of Cupr (1) was used. The concentration of HCl was deter- mined as weight % at successive intervals of time until a constant	 Hydrogen chloride. The gas was prepared from sodium chloride and sulfuric acid. Dried by sulfuric acid. Acetic acid. Stated to be of 99.8 per cent purity. 	
value was obtained.		
value was obtained.	ESTIMATED ERROR:	

204 Hydrogen Chioride in i	Von-Aqueous Solvents		
COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>1. Hydrogen chloride; HCl; [7647-01-0]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.		
2. Hexanoic Acid; C ₆ H ₁₂ O ₂ ;	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.		
[142-62-1]			
VARIABLES:	PREPARED BY:		
T/K: 213.15 - 293.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard		
TOTAL P/KPA: 101.325 (1 aum)	(smoothed data calculated by H.L. Clever)		
EXPERIMENTAL VALUES: T/K MOL Rat	io Mol Fraction		
EXPERIMENTAL VALUES: T/K Mol Rat nHCl/nC6H	^H 12 ^O 2 ^X HC1		
213.15 1.68	0.627		
223.15 1.32 233.15 1.04	0.569 0.510		
243.15 0.75	0.429		
253.15 0.53	0.346		
263.15 0.38 273.15 0.27	0.275 0.213		
283.15 0.20	0.167		
293.15 0.19	0.160		
The mole fraction solubilities were ca compiler.	alculated from the mole ratio by the		
	458/(T/100) - 18.135 ln (T/100)		
Standard error about a	regression line = 1.73×10^{-2}		
	Aol Fraction		
	X _{HC1}		
213.15	0.647		
223.15	0.569 0.489		
243.15	0.412		
253.15	0.342		
263.15 273.15	0.280 0.226		
283.15	0.182		
293.15	0.145		
	INFORMATION		
ME THOD /APPARATUS / PROCEDURE :			
Hydrogen chloride was passed into a	SOURCE AND PURITY OF MATERIALS: 1. Hydrogen chloride. Obtained from		
known weight of liquid in a bubbler	a cylinder containing a good com-		
tube at a total pressure measured by	mercial specimen. Was dried by		
a manometer assembly. The absorbed gas was weighed by re-weighing the	passage through concentrated sulfuric acid.		
bubbler tube. The temperature was	Sulfulic actu.		
manually controlled to within 0.2 K.	2. Hexanoic Acid. Best obtainable		
The procedure and apparatus are described by Gerrard (1,2).	specimen was suitably purified, dried, and fractionally dis-		
-	tilled, and attested.		
For temperatures below 268 K, a chemical titration was performed.			
	ESTIMATED ERROR:		
	$\delta T/K = 0.2$		
	$\delta X/X = 0.03$		
	REFERENCES :		
	1. Gerrard, W.		
1	J. Appl. Chem. Biotechnol. <u>1972</u> ,		
	22, 623 - 650.		
	2. Gerrard, W.		
	"Solubility of Gases and Liquids" Plenum Press, New York, 1976		
	11055, New 101K, 1770		

Hydrogen Chloride in Non-Aqueous Solvents

1.
_
Clever)
<u></u>
ce-

ingulogen chionae	in Non-Aqueous Solvents
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Hydrogen chloride; HCl;	Gerrard, W.; Macklen, E. D.
[7647-01-0]	J. Appl. Chem. <u>1956</u> , 6, 241-244.
(2) Trichloroacetic acid;	
C ₂ HCl ₃ O ₂ ; [76-03-9]	
VARIABLES:	PREPARED BY:
T/K: 323.65 - 339.85	W. Gerrard
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mole F	Ratio Mole Fraction
ⁿ HCl/ ⁿ C ₂	
323.65 0.02 329.55 0.02	
335.35 0.01	0.0177
339.85 0.01	15 0.0148
The mole fraction solubility values	were calculated by the compiler.
Ĩ	L0.324/(T/100) - 46.522 ln (T/100)
Standard error abou	it regression line = 1.09×10^{-4}
т/к	Mole Fraction
	<i>x</i> 1
323.15	0.0288
333.15 343.15	0.0194 0.0129
AUXILIA	ARY INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Hydrogen chloride was generated in all-glass apparatus.	an (1) Hydrogen chloride. Self pre- pared and dried.
The all glass absorption vessel (50 cm^3) comprised an inlet bubbler tub an outlet tube, and the part holdin a weighed amount of liquid. Each tube was fitted with a tap, and either a B-19 cone, or a B-19 socke Entrained liquid was collected and allowed for. Temperature control w within 0.1 K. The amount of gas	pe, grade specimen was distilled and attested. et. was
absorbed was determined by weighing	9. ESTIMATED ERROR:
	$\delta T/K = 0.1$ $\delta x_1/x_1 = 0.005$
	REFERENCES :

COMPONENTS:		EVALUATOR:	
1.	Hydrogen Chloride; HCl; [7647-01-0]	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,	
2.	Esters of Carboxylic Acids and of Carbonic Acid	Polytechnic of North London, Holloway, London, N7 8DB, U.K.	
		January 1989	

CRITICAL EVALUATION:

The Solubility of Hydrogen Chloride in Esters of Carboxylic Acids and of Carbonic Acid.

Gerrard & Macklen (1) have measured the solubility of hydrogen chloride in various alkanoic esters over temperature ranges at a total pressure equal to barometric pressure. Mole fraction solubilities are high relative to reference values given by the Raoult's law equation (0.0214 at 298.15 K). If the variation of mole fraction solubilities approximates to the Margules equation then mole fraction solubilities at a partial pressure of 101.3 kPa will be close to mole fraction solubilities at a total pressure of 101.3 kPa even though pure solvents have appreciable vapor pressures at the temperatures of measurement.

Table 1. Mole fraction solubilities of hydrogen chloride in alkyl esters of carboxylic acids at 298.15 K and total pressure of 1.013 bar.

Ester &	Gerrard Macklen•(1)	Ionen & Shverina (2)	Chesterman (3)	Cook (4)
athul formato	0.170			
ethyl formate		0 350	0 ()	
methyl acetate	0.302	0.250	0.63	
ethyl acetate	0.314	0.240	0.39	
1-methylethyl acetate	0.343	0.240		
propyl acetate	0.328	0.243		
2-methylpropyl acetate	0.338			
1-methylpropyl acetate	0.343			
butyl acetate	0.331	0.244		
pentyl acetate	0.333			
octyl acetate	0.334			
phenyl acetate	0.190			
benzyl acetate	0.243			
ethyl benzeneacetate	0.261			
ethyl propanoate	0.315			
ethyl butanoate	0.324			
propyl butanoate				0.293

Gerrard's measurements indicate that mole fraction solubilities in straight chain alkyl acetates increase with chain length. The solubility in propyl butanoate from an extrapolation of measurements by Cook does not fit into the pattern. Solubilities in non-linear alkyl acetates are greater than in linear acetates having the same carbon number. Solubility also increases with carbon number in the series ethyl formate to ethyl butanoate. Mole fraction solubility in phenyl acetate is less than in methyl acetate but is greater in benzyl acetate and ethyl benzeneacetate.

Solubilities at 298.15 K and a total pressure of 1.013 bar were also reported by Ionen & Shverina (2) for methyl, ethyl, propyl, 1-methylethyl and butyl acetates. The values of mole fraction solubilities are appreciably less than those reported by Gerrard. Mole fraction solubilities in methyl acetate and ethyl acetate from data published by Chesterman (3) for the same conditions are, on the contrary, appreciably greater than Gerrard's values.

The measurements reported by Gerrard & Macklen extend over a much wider range of temperatures than those reported by other workers. Their data are self consistent for each compound. Nevertheless, in view of the discrepancies between data from different sources, further measurements on these systems are required.

COMPO	NENTS :	EVALUATOR:
1.	Hydrogen Chlorıde; HCl; [7647-01-0]	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2.	Esters of Carboxylic Acids and of Carbonıc Acid	Polytechnic of North London, Holloway, London, N7 8DB, U.K.
		January 1989

CRITICAL EVALUATION:

Gerrard and co-workers (1,5) have also measured solubilities in various chlorinated esters and in the ethyl ester of bromoacetic acid over temperature ranges at a total pressure of 1.013 bar. The presence of halogen lowers the mole fraction solubility of hydrogen chloride. As mav be seen in Table 2, solubilities in the various chlorinated derivatives of ethyl acetate are less than in ethyl acetate itself. The greater the number of chlorine atoms the lower the solubility. Solubilities in derivatives of chlorinated acetic acid are less than in derivatives of 2-chlorinated Solubility in the ethyl ester of bromoacetic acid is less than ethanols. in the ethyl ester of chloroacetic acid. Solubility in the ethyl ester of 3-chloropropionic acid is less than in ethyl propionate. Solubility in the ethyl and in the 1-propyl ester of chloroformic acid is less than in ethyl formate. In general the data for this class of compounds is self-consistent and likely to be reliable although later measurements of the solubility in ethyl and propyl chloroformate (5) are not in agreement with earlier measurements (1) in the same laboratory.

Table 2 Mole fraction solubilities of hydrogen chloride in chlorinated esters at 298.15 K and total pressure of 1.013 bar.

Ester	× _{HCl} at 298.15 К	Reference
(ethyl formate)	0.170	(1)
ethyl chloroformate	0.0526	(1)
eenyr eniororormate	0.0666	(5)
1-propyl chloroformate	0.0582	(1)
	0.0794	(5)
hexyl chloroformate	0.0943	(5)
butyl chloroformate	0.0822	(5)
		(-)
(ethyl acetate)	0.314	(1)
ethyl chloroacetate	0.157	(6)
ethyl bromoacetate	0.172	(1)
ethyl dichloroacetate	0.108	(1)
ethyl trichloroacetate	0.0653	(1)
2-chloroethyl acetate	0.209	(1)
2,2,2-trichloroethyl acetate	0.153	(1)
(phenyl acetate)	0.190	(1)
phenyl chloroacetate	0.150	(5)
ethyl propanoate	0.315	(1)
ethyl 3-chloropropanoate	0.227	(6)

Gerrard et al.(5) measured solubilities in four esters of carbonic acid at a total pressure of 1.013 bar over temperature ranges. Solubilities are high relative to the reference line corresponding to the Raoult's law equation. Under the conditions of the experiments the mole fraction solubility at a total pressure of 1.013 bar will differ from the mole fraction solubility at a partial pressure by less than 2%. Mole fraction solubilities in the different esters are close to each other in the overlap of the temperature ranges. Solubility of hydrogen chloride in ethyl 2-chloroethyl carbonate was also measured by these authors under the same conditions. As in the case of ethers and esters of carboxylic acids, the presence of the chlorine atom lowers the mole fraction solubility of this gas. Interpolated mole fraction solubilities at 298.15 K and a total pressure of 1.013 bar are as follows:

•		
	diethyl carbonate	0.254
	dibutyl carbonate	0.271
	diisobutyl carbonate	0.284
	diisopentyl carbonate	0.271
	ethyl 2-chloroethyl carbonate	0.202

COMPON	ENTS:	EVALUATOR:		
1.	Hydrogen Chloride; HCl;	Peter G. T. Fogg	.	
_	[7647-01-0]	Department of Applied C and Life Sciences,		тy
2.	Esters of Carboxylic Acids and of Carbonic Acid	Polytechnic of North Lo Holloway, London, N7 8D		κ.
		January 1989		
CRITIC	AL EVALUATION:			<u> </u>
lıkel	lata for these esters of carbonic by to be reliable but confirmatio prements is not possible.			
Cook (4) measured solubilities in several esters of unsaturated acids and of unsaturated alcohols over short temperature ranges at a total pressure equal to barometric. Under the conditions of the experiments solubilities at a partial pressure of 1.013 bar are likely to be close to the measured solubilities. Mole fraction solubilities are high relative to the reference line based upon the Raoult's law equation. Values for ethyl crotonate are close to values for crotyl acetate and to values for ethyl butanoate. Values for allyl acetate, propionate and butanoate are lower but close to each other. For the solvents in this group mole fraction solubility is lowest in propargyl butyrate. No measurements by other authors are available for comparison and the reliability of these measurements cannot be judged. Table 3 Mole fraction solubilities of hydrogen chloride in unsaturated				
Este	esters at 283.15 K and a par	tial pressure of 1.013 ba		ref.
			*нсі	
	open-2-ol acetate (allyl acetate ten-1-ol acetate (crotyl acetate		0.354 0.403	(4) (4)
Prop	ionic acid, 2-propenyl ester (al.	lyl propanoate) C ₆ H ₁₀ O ₂	0.361	(4)
	tenoic acid, ethyl ester (<i>ethyl o</i> noic acid, 2-propynyl ester (<i>pro</i>			(4) (4)
Buta	noic acid, 2-propenyl ester (all pyl acetate)	y1 butanoate) C7H12O2 C5H10O2		(4)
(Eth	yl butanoate)	$C_6H_{12}O_2$	0.398	(1)
(Prc	pyl butanoate)	C7H14O2	0.410	(4)
REFER	ENCES			
1.	Gerrard, W.; Macklen, E. D. J.	Appl. Chem. <u>1956</u> , 6, 241	- 244.	
2.	Ionin, M. V.; Shverina, V. G. 2 209 - 211; J. Gen. Chem. USSR	Zh. Obshch. Khim. <u>1965</u> , 3		
3.	Chesterman, D. R. J. Chem. Soc.			
4.	Cook, T. M. Thesis, <u>1966</u> , Unive	ersity of London.		
5.	Gerrard, W.; Mincer, A. M. A.; V 9, 89 - 93; <u>1960</u> , 10, 115 - 12 ⁻		hem. <u>19</u>	<u>59</u> ,
6.	Gerrard, W.; Macklen, E. D. J.	Appl. Chem. <u>1959</u> , 9, 85	- 88.	:
l				
ł				

Hydrogen Chloride in Non-Aqueous Solvents

CONDONIENTEC	ODICINAL MEACUDEMENTS.				
COMPONENTS:	ORIGINAL MEASUREMENTS:	l			
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Macklen, E.D. J. Appl. Chem. <u>1956</u> , 6, 241-244				
(2) Esters of aliphatic carboxylic acids.	5. App1. Chem. <u>1956</u> , 0, 241-244				
VARIABLES:	PREPARED BY:				
T/K: See below Total P/kPa : 101.325 (1 atm)	W. Gerrard				
EXPERIMENTAL VALUES:	Mole ratio Mole* Smoothed** HCl ^{/n} ester fraction mole fraction	- 1			
	HCl *HCl *HCl				
{		-			
Formic acid, ethyl ester, 273.15 (ethyl formate); C ₃ H ₆ O ₂ ; 281.25	0.287				
[109-94-4] 283.15	0.275				
288.35	0.316 0.240 0.210				
293.15					
301.75	0.170 0.145				
303.15					
306.65 313.15					
		. [
Smoothing equation: ln x _{HCl} = 381.135 Standard error in x _{HCl} about the	- 523.963/(T/100) - 189.640 ln(T/100 regression line = 4.81 × 10 ⁻³))			
Acetic acid, methyl ester, 273.15	0.423	1			
(methyl acetate); C ₂ H ₆ O ₂ ; 274.75					
[79-20-9] 562 279.75 283.15					
287.85		ĺ			
292.15					
293.15 296.45					
299.45	0.420 0.296				
303.15 303.55					
	Smoothing equation: $\ln x_{HCl} = 71.059 - 94.752/(T/100) - 37.051 \ln(T/100)$ Standard error in x_{HCl} about the regression line = 9.97 × 10 ⁻⁴				
* calculated by the compiler ** smoothing equation and smoothed v	alues were calculated by H.L. Clever				
		-+			
	INFORMATION				
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:				
Hydrogen chloride was generated in an all-glass apparatus.	(1) Hydrogen chloride: self- prepared and dried.				
The all-glass absorption vessel (50 cm ³) comprised an inlet bubbler tube, an outlet tube, and the part holding a weighed amount of liquid.	(2) Esters: high grade specimens were distilled and attested.				
Each tube was fitted with a tap, and either a B-19 cone, or a B-19 socket. Entrained liquid was collected and	ESTIMATED ERROR: $\delta T/K = \pm 0.1$ $\delta *_{HC1}/*_{HC1} = \pm 0.02$				
allowed for. Temperature control was within 0.1 K. The amount of gas absorbed was determined by weighing.	REFERENCES:	┥			

COMPONENTS:	ODICINAL	MEA CUIDEMENING .	
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Macklen, E.D. J. Appl. Chem. <u>1956</u> , 6, 241-244		
(2) Esters of aliphatic carboxylic acids.	J. App1.	Chem. <u>1956</u> , 6,	241-244
EXPERIMENTAL VALUES: T/K	Mole ratio	o Mole* fraction mo	Smoothed**
	HC1'"ester	×HCl	^x HCl
Acetic acid, ethyl ester, 273.15 (ethyl acetate); C,H ₀ O ₂ ; 278.05	0.700	0.412	0.418
(ethyl acetate); C ₄ H ₈ O ₂ ; 278.05 [141-78-6] 282.85	0.638	0.389	
283.15		0.004	0.390
288.25	0.573	0.364	0.342
293.55	0.510	0.338	0.542
301.85	0.416	0.294	
303.15	0.266	0.000	0.284
306.45 - 313.15	0.366	0.268	0.225
317.95	0.246	0.197	0.225
323.15			0.171
Smoothing equations in y = 100 875	140 726		2 1-(m/100)
Smoothing equation: ln x _{HCl} = 109.975 Standard error in x _{HCl} about the	regression	/(T/100) - 55.76 n line = 3.89 ×	10 ⁻³
Acetic acid, propyl ester; 273.15			0.430
$C_{5}H_{10}O_{2}$; [109-60-4] 278.81	0.720	0.419	
	0.677	0.406	0.402
283.15 285.65	0.633	0.388	0.402
293.15			0.355
293.95		0.349	
298.25 303.15	0.483	0.326	0 200
303.13	0.386	0.278	0.299
313.15		•••	0.241
319.56	0.257	0.204	
323.15			0.187
Smoothing equation: $\ln x_{HC1} = 100.477$ Standard error in x_{HC1} about the	- 136.692, regression	/(T/100) - 51.03 n line = 2.98 ×	0 ln(T/100) 10 ⁻³
	0.728	0.421	0.446
ester; C ₅ H ₁₀ O ₂ ; [108-21-4] 283.15 289.55	0.633	0.388	0.416
293.15	0.035	0.000	0.372
293.75	0.576	0.365	
301.95	0.469	0.319	0.210
303.15 307.35	0.400	0.286	0.310
313.15			0.243
321.45	0.233	0.189	0.400
323.15			0.180
Smoothing equation: ln x _{HCl} = 141.452 Standard error in x _{HCl} about the	- 194.592/ regression	/(T/100) - 70.72 h line = 4.38 ×	0 ln(T/100) 10 ⁻³
* calculated by the compiler			
** smoothing equation and smoothed va	alues were	calculated by H	.L. Clever

Hydrogen Chloride in Non-Aqueous Solvents

COMPONENTS: (1) Hydrogen chloride; HCl;		ORIGINAL MEASUREMENTS:		
[7647-01-0]		Gerrard, W.; Macklen, E.D. J. Appl. Chem. <u>1956</u> , 6, 241-244		
(2) Esters of aliphatic can acids.	CDOXYIIC	J. Appl. (Snem. <u>1956</u> ,	0, 241-244
EXPERIMENTAL VALUES:	т/к	Mole ratio	Mole*	Smoothed**
		HCl $/n$ ester	fraction	
	•		^x HCl	^x HCl
Acetic acid, 2-methylpropyl	273.15	0 770	0.426	0.447
ester; C ₆ H ₁₂ O ₂ ; [110-19-0]	279.25	0.772	0.436	0.419
	287.45 293.15	0.654	0.395	0.368
	293.65 303.15	0.565	0.361	0.306
	303.65 308.05	0.442 0.383	0.307 0.277	i
	313.15			0.243
	317.35 323.15	0.276	0.216	0.185
Smoothing equation: In x	= 111.201	- 151.463/	(T/100) - 56	.283 ln(T/100)
Smoothing equation: ln × _{HCl} Standard error in × _{HCl}	about the	regression	line = 4.63	$\times 10^{-3}$
Acetic acid, 1-methylpropyl	273.15	0 010	0 450	0.457
ester; C ₆ H ₁₂ O ₂ ; [105-46-4]	277.25 283.15	0.818	0.450	0.425
	288.85 293.15	0.649	0.394	0.374
	294.55 303.05	0.564 0.459	0.361 0.315	
	303.15			0.312
	308.65 313.15	0.392	0.282	0.249
	317.85 323.15	0.280	0.219	0.192
Smoothing equation: ln × _{HCl}	= 102.632	- 139.384/	(T/100) - 52	.133 ln(T/100)
Standard error in xHCl	about the	regression	line = 4.96	× 10 ⁻³
Acetic acid, butyl ester; C ₆ H ₁₂ O ₂ ; [123-86-4]	273.15 277.95	0.741	0.426	0.436
6.12.2, [123-00-4]	283.15			0.405
	283.85 292.85	0.665 0.556	0.399 0.357	
	293.15		0.318	0.358
	300.65 303.15	0.467		0.303
	312.65 313.15	0.337	0.252	0.247
	318.15 323.15	0.279	0.218	0.195
Creathing acustions la .		100 700//		
Smoothing equation: ln x _{HCl} Standard error in x _{HCl}	about the	regression	1100 = 3.24	501 ln(T/100) × 10 ⁻³
Acetic acid, octyl ester;	273.15	0 7 4 7	0 400	0.434
C ₁₀ H ₂₀ O ₂ ; [112-14-1]	277.55	0.747	0.428	0.408
	288.85 293.15	0.610	0.379	0.361
	295.35 303.15	0.533	0.348	0.305
	303.35	0.440	0.306	0.303
	310.75 313.15	0.356	0.263	0.246
	320.75 323.15	0.255	0.203	0.192
Smoothing equation: ln x _{HCl} Standard error in x _{HCl}	= 100.796	- 137.289/((T/100) - 51 line = 3.63	.121 ln(T/100)
Standard error in x_{HCl}^{HCl} about the regression line = 3.63 × 10 ⁻³ * calculated by the compiler ** smoothing equation and smoothed values were calculated by H.L. Clever				
				<u> </u>

ţ

CONDONENTE	1 OPTOTNAL	MEASUREMENTS:	•
COMPONENTS: (1) Hydrogen chloride; HCl;	1	W.; Macklen,	
<pre>[7647-01-0] (2) Esters of aliphatic carboxylic</pre>	J. Appl.	Chem. <u>1956</u> , 6	5, 241-244
EXPERIMENTAL VALUES: T/K	Mole ratio	o Mole*	Smoothed**
	ⁿ HCl ^{/n} ester		
Acetic acid, phenyl ester, 273.1			0.275
(phenyl acetate); C ₈ H ₈ O ₂ ; 277.0 [122-79-2] 283.1		0.268	0.248
283.4 293.1		0.244	0.211
291.5	5 0.275	0.216	
300.5 303.1	5	0.182	0.170
309.9 313.1		0.145	0.132
315.1 323.1		0.124	0.115
Smoothing equation: $\ln x_{HC1} = 103.44$ Standard error in x_{HC1} about th	9 - 139.930 e regressio	7(T/100) - 53 n line = 2.24	$\times 10^{-3}$
Acetic acid, phenylmethyl 273.1 ester, (benzyl acetate); 277.9	5 5 0.489	0.328	0.341
$C_{9^{H}10}O_{2}; [140-11-4] 283.1 284.1$	5	0.304	0.309
289.3	5 0.392	0.282	
293.1 297.6		0.246	0.266
303.1 304.1		0.216	0.220
313.1 315.4	5	0.165	0.175
323.1		0.105	0.135
Smoothing equation: $\ln x_{HC1} = 90.759$ Standard error in x_{HC1} about th	– 122.460/ e regressio	(T/100) - 46.7 n line = 1.10	776 ln(T/100) × 10 ⁻³
Propanoic acid, ethyl ester, 273.1		0.400	0.417
(ethyl propionate); C ₅ H ₁₀ O ₂ ; 280.1 [105-37-3] 283.1	5	0.406	0.390
283.4 287.4		0.391 0.372	
293.1 293.9		0.339	0.343
301.4	5 0.429	0.300	0 386
303.1 311.6	5 0.315	0.240	0.286
313.1 319.3		0.194	0.228
323.1	5		0.174
Smoothing equation: $\ln x_{HC1} = 108.52$ Standard error in x_{HC1} about th	5 - 147.853 e regressio	/(T/100) - 55 n line = 2.52	.005 ln(T/100) × 10 ⁻³
Butanoic acid, ethyl ester, 273.1			0.428
(ethyl butyrate); C ₆ H ₁₂ O ₂ ; 279.2 [105-54-4] 283.1		0.414	0.398
283.3 293.1	5 0.652	0.395	0.351
298.5	6 0.472	0.321	
303.1 306.1	5 0.391	0.281	0.296
313.1 313.7		0.237	0.240
318.5	5 0.267	0.211	0 1 9 9
323.1		$(\pi/100) = 47$	0.188
Smoothing equation: $\ln x_{HC1} = 93.226 - 126.530/(T/100) - 47.522 \ln(T/100)$ Standard error in x _{HC1} about the regression line = 2.03 × 10 ⁻³ * calculated by the complier			
<pre>* calculated by the complier ** smoothing equation and smoothed</pre>	values were	calculated by	H.L. Clever.

•

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Chesterman, D. R.
(2) Esters	J. Chem. Soc. <u>1935</u> , 906 - 910.
VARIABLES:	PREPARED BY:
T/K: 298.15 Total P/kPa: 101 (∿1 atm)	W. Gerrard
EXPERIMENTAL VALUES:	
T/K Observed So Pressure g HCl p/mmHg	lubility Mol Fraction g^{-1} Solution x_1
Acetic acid, methyl este C ₃ H ₆ O ₂ ; [79-20-9]	r or methyl acetate;
298.15 760	0.46 0.63
Acetic acid, ethyl ester C ₄ H ₈ O ₂ ; [141-78-6]	or ethyl acetate;
298.15 765	0.21 0.39
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The apparatus was that used for the conductivity. A sample of the saturated solution was removed, weighed, the hydrogen chloride was reacted with excess standard base which was back titrated with a standard acid solution.	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Prepared from conc. sulfuric acid and pure sodium chloride. Passed through sulfuric acid and over P₂O₅. (2) Methyl acetate. Was stated to be the purest obtainable. Dried with phosphorus pentoxide, b.p./°C (760 mmHg) = 57.3 - 57.8. Ethyl acetate. Was stated to be the purest obtainable. Dried with P₂O₅, b.p./°C (765 mmHg) = 76.8 - 77.2.</pre>

COMPONENTS: (1) Hydrogen chloride; HCl;	ORIGINAL MEASUREMENTS: Ionin, M. V.; Shverina, V. G.		
[7647-01-0]	Zh. Obshch. Khim. <u>1965</u> , 35, 209-211.		
(2) Acetic acid, alkane esters; $C_3H_6O_2$ and $C_4H_8O_2$	J. Gen. Chem. USSR (Engl. Transl.) <u>1965</u> , 35, 211 - 212.		
VARIABLES:	PREPARED BY:		
T/K: 298.15 Total P/kPa: 101.3 (atmospheric)	W. Gerrard		
EXPERIMENTAL VALUES:			
T/K Refractive Solution M Index ¹ Density ${}^{n_{298}}$ $\rho/g \text{ cm}^{-3}$	Nol Ratio Mol Fraction n_1/n_2 x_1		
Acetic acid, methyl ester; C3H6	0 ₂ ; [79-20-9]		
298.15 1.36184 0.96322	0.333 0.2500		
Acetic acid, ethyl ester; C ₄ H ₈ C	2; [141-78-6]		
298.15 1.37248 0.92652	0.316 0.2400		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The ester was saturated with hydrogen chloride at 298.2 K and atmospheric pressure, not specified. An aliquot of the solution was diluted with water and titrated with alkali.	 (1) Hydrogen chloride. Prepared from pure sodium chloride and sulfuric acid, and dried by sulfuric acid and calcium chloride. (2) Acetic acid, alkane esters. Stated to be "pure". 		
	ESTIMATED ERROR:		
	REFERENCES :		

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Ionin, M. V.; Shverina, V. G.
	Zh. Obshch. Khim. <u>1965</u> , 35, 209-211.
<pre>(2) Acetic acid, alkane esters; C₅H₁₀O₂ and C₆H₁₂O₂</pre>	J. Gen. Chem. USSR (Engl. Transl.) 1965, 35, 211 - 212.
VARIABLES:	PREPARED BY:
T/K: 298.15 Total P/kPa: 101.3 (atmospheric)	W. Gerrard
EXPERIMENTAL VALUES:	······································
T/K Refractive Solution Index Density n_{D}^{298} $\rho/g \text{ cm}^{-3}$	Mol Ratio Mol Fraction ⁿ 1 ^{/n} 2 ^x 1
Acetic acid, propyl ester; C ₅ H	10 ⁰ 2; [109-60-4]
298.15 1.38310 0.92210	0.321 0.2429
Acetic acid, 1-methyl ethyl es	ter; C ₅ H ₁₀ O ₂ ; [108-21-4]
298.15 1.37668 0.93304	0.317 0.2405
Acetic acid, butyl ester; C ₆ H ₁	2 ⁰ 2; [123-86-4]
298.15 1.39361 0.90420	0.323 0.2441
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The ester was saturated with hydrogen chloride at 298.2 K and atmospheric pressure, not specified. An aliquot of the solution was diluted with water and titrated with alkali.	 Hydrogen chloride. Prepared from pure sodium chloride and sulfuric acid, and dried by sulfuric acid and calcium chloride. Acetic acid, alkane esters. Stated to be "pure".
	ESTIMATED ERROR:
	REFERENCES:

Hydrogen Chloride	in Non-Aqueous Solvents 217
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Macklen, E. D.
<pre>(2) Acetic acid pentyl ester or n-amyl acetate; C₇H₁₄O₂;</pre>	J. Appl. Chem. <u>1959</u> , 9, 85 - 88.
[628-63-7]	
VARIABLES:	PREPARED BY:
T/K: 279.85 - 314.75 Total P/kPa: 101.325 (1 atm)	W. Gerrard
	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	······
T/K Mol	Ratio Mol Fraction
	C7 ^H 14 ^O 2 ^x HC1
	723 0.420
	687 0.407
288.35 0.	615 0.381
294.15 0.	545 0.353
	476 0.322
	407 0.289 318 0.241
The mole fraction values were calcu	lated by the compiler.
Smoothed Data: $\ln x_{\rm HC1} = 84.774 - 100$	114.771/(T/100) - 43.344 ln (T/100)
	-
Standard error abou	t regression line = 1.90×10^{-3}
T/K	Mol Fraction
	^ж нС1
283.15	0.418
293.15	
303.15	0.315
313.15	0.258
A11X11 T A	RY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus and procedure were those described by Gerrard and	(1) Hydrogen chloride. Self prepared and dried.
Macklen (1). The hydrogen chloride	
was generated in an all glass	(2) Acetic acid pentyl ester or
apparatus. The absorption vessel,	n-amyl acetate. Purified,
previously weighed, was fitted with	
a stoppered bubbler tube, and a	physical constants.
stoppered outlet tube. Entrained liquid was condensed at 273.15 K,	
and allowed for. The amount of gas	
absorbed by a known weight of liquid	
was determined by weighing.	
	ESTIMATED ERROR:
	$\delta x/x = 0.01$
	REFERENCES :
	1. Gerrard, W.; Macklen, E. D.
	J. Appl. Chem. <u>1956</u> , 6, 241.
	<u></u>

_

210 Hydrogen Chloride In				
COMPONENTS:	ORIGINAL MEASUREMENTS:			
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Macklen, E. D.			
(2) Benzeneacetic acid, ethyl ester; C ₁₀ ^H ₁₂ O ₂ ; [101-97-3]	J. Appl. Chem. <u>1959</u> , 9, 85 - 88.			
VARIABLES:	PREPARED BY:			
T/K: 273.15 - 320.65 Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)			
EXPERIMENTAL VALUES:	I			
T/K Mol Ra nHCl/ ⁿ Cl				
273.15 0.5				
281.95 0.5				
291.05 0.4	14 0.293			
303.05 0.3				
308.65 0.2				
314.45 0.2 320.65 0.1				
The mole fraction values were calcula	ted by the compiler.			
	38.964/(T/100) - 52.600 ln (T/100)			
Standard error about	regression line = 4.87×10^{-3}			
т/к	Mol Fraction			
	^x HCl			
273.15 283.15	0.367 0.334			
203.15	0.287			
303.15	0.235			
313.15	0.184			
323.15	0.138			
	INFORMATION			
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:			
The apparatus and procedure were those described by Gerrard and	(1) Hydrogen chloride. Self prepared and dried.			
Macklen (1). The hydrogen chloride				
was generated in an all glass	(2) Benzeneacetic acid, ethyl ester.			
apparatus. The absorption vessel,	Purified, distilled, and			
previously weighed, was fitted with a stoppered bubbler tube, and a	attested by physical constants.			
stoppered outlet tube. Entrained				
liquid was condensed at 273.15 K,				
and allowed for. The amount of gas				
absorbed by a known weight of liquid				
was determined by weighing.	FOTIMATED EDDOD.			
	ESTIMATED ERROR:			
	$\delta x/x = 0.02$			
	REFERENCES :			
	1. Gerrard, W.; Macklen, E. D. J. Appl. Chem. <u>1956</u> , 6, 241.			

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Cook, T. M.			
(2) Esters of carboxylic acids	Thesis, <u>1966</u> , University of London.			
VARIABLES:	PREPARED BY:			
T/K: See below Total P/kPa : 101.325 (1 atm)	W. Gerrard			
EXPERIMENTAL VALUES:				
т/к	Mole ratio Mole* Smoothed** ⁿ HCl ^{/n} borate fraction mole fraction ^x HCl ^x HCl			
1. December 2 2	25 0 (52 0 205			
	35 0.652 0.395 35 0.617 0.382			
	95 0.576 0.365			
283.	15 0.549 0.354 0.361			
291.	35 0.455 0.313			
293.	15 0.301			
Smoothing equation: ln x _{HCl} = -6.36 Standard error in x _{HCl} about t	3 + 15.130/(T/100) he regression line = 5.49 ×10 ⁻³			
2-Buten-1-ol acetate, 279.	65 0.760 0.432			
(crotyl acetate); C _c H ₁₀ O ₂ ; 281.	15 0.706 0.414			
[628-08-0] 810 2 283.	15 0.668 0.400 0.403 45 0.640 0.390			
293.	15 0.341			
Smoothing equation: $\ln x_{HC1} = -5.781 + 13.796/(T/100)$ Standard error in x_{HC1} about the regression line = 4.42 × 10 ⁻³				
* calculated by the compiler ** smoothing equation and smoothed values were calculated by H.L. Clever				
AUXILIARY INFORMATION				
METHOD/APPARATUS/PROCEDURE: The data were cited by Gerrard (1).				
Hydrogen chloride was passed into a bubbler tube containing a weighed amount of solvent at the specified temperature until the increase in weight was constant at the barometric pressure (2).				
SOURCE AND PURITY OF MATERIALS:				
B.Pt.(1 atm)°/	C Refractive Index Density			
1-propen-2-ol acetate 102-103.5	$n^{21} - 1.4051$ $d^{20} - 0.901$			
2-buten-1-ol acetate 131-132.5	$n_{1}^{2} = 1.4197$ $d_{1}^{2} = 0.911$			
propanoic acid, 121.5-123	$n_D^{23.5} = 1.4060$ $d^2 = 0.899$			
2-propenyl ester	-			
2-butenoic acid, 48	$n_D^{23} = 1.4237$ $d^{20} = 0.919$			
ethyl ester butanoic acid, 155-156	$n_{D}^{21.5} = 1.4213$ $d^{20}_{4} = 0.947$			
butanoic acid, 155-156 2-propynyl ester	$m_{\rm D} = 1.4215$ $a_4 = 0.547$			
butanoic acid, 113-114	$n_D^{25} = 1.4133$ $d^{20}_4 = 0.895$			
2-propenyl ester	Ъ			
butanoic acid, 143.5-145 propyl ester	$n_D^{3^2} = 1.3953$ $d^{2^0}_4 = 0.8695$			
ESTIMATED ERROR: $\delta x_{HCl}/x_{HCl} = \pm 0.005$				
REFERENCES:				
 Gerrard, W. J. Chim. Phys. <u>1964</u> Solubility of Gases in Liquids, 	, <i>61</i> , 73; Plenum Press, New York, <u>1976</u> . , W.K. J. <i>Appl. Chem.</i> 1970, 20, 109.			

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL ME Cook, T. M.	CASUREMENTS:		
(2) Esters of carboxylic acids		Thesis, <u>1966</u> , University of London.		
EXPERIMENTAL VALUES:	[
	'K Mole ratio	Mole* Smoo	thed**	
	ⁿ HCl ^{/n} borate	fraction mole f		
		^x HCl ^x H	C1	
Propanoic acid, 2-propenyl 27	.15	0.	435	
	.55 0.592	0.372		
	0.564		361	
•	5.25 0.520 8.15	0.342 0.	304	
Smoothing equation: $\ln x = -6.0$	97 ± 14 381/(m/1	001		
Smoothing equation: $\ln x_{HC1} = -6.0$ Standard error in x_{HC1} about	the regression 1	$ine = 3.14 \times 10^{-4}$		
	8.15		479	
(ethyl crotonate); C ₆ H ₁₀ O ₂ ; 27 [°]	.55 0.806	0.446		
[10544-63-5] 28	.95 0.710	0.415	410	
	8.15 0.700 8.15 0.699	0.412 0. 0.411	410	
289	.15 0.610	0.379		
	3.15		362	
	1.15		326	
Smoothing equation: $\ln x_{HC1} = -32$. Standard error in x_{HC1} about	423 + 49.458/(T/ the regression 1	100) + 13.513 ln(ine = 2.11×10^{-3}	T/100)	
	3.15		333	
	.05 0.379 2.55 0.362	0.275 0.266		
	3.15 0.356		263	
284	.75 0.344	0.256		
	6.85 0.327 8.15	0.246	225	
Smoothing equation: ln × _{HCl} = -10 [°] Standard error in × _{HCl} about	.987 + 155.955/(the regression 1	T/100) + 49.552 1 ine = 5.79 × 10 ⁻⁴	n(T/100)	
,	.15		438	
	.65 0.696 .35 0.585	0.410 0.369		
	0.573		363	
	.15 0.551	0.355		
	0.35 0.542 0.55 0.523	0.351 0.343		
	.15 0.569	0.319		
293	1.15	0.	313	
Smoothing equation: ln × _{HCl} ≈ -54 Standard error in × _{HCl} about	106 + 80.510/(T/ the regression 1	100) + 23.691 ln(ine = 3.97×10^{-3}	т/100)	
Butanoic acid, propyl ester; 28	.15 0.778	0.438		
$C_{7}H_{14}O_{7}; [105-66-8]$ 283	0.694	0.410 0.	412	
283	.15 0.692 .25 0.662	0.409 0.398		
	.25 0.584	0.369		
	.15		327	
Smoothing equation: $\ln x_{HC1} = -7.6$ Standard error in x_{HC1} about	53 + 19.157/(T/1 the regression l	00) ine = 3.98×10^{-3}		
<pre>* calculated by the compiler ** smoothing equation and smoother</pre>	,		Clever	
		-		

COMPONENTS:	ORIGINAL M	EASUREMENTS:	
(1) Hydrogen chloride; HCl;		.; Macklen, E.D.	
[7647-01-0]		hem. <u>1956</u> , 6, 241-2	244
(2) Halogenated esters	0. <i>App1</i> . 0	<i>nem</i> , <u>1990</u> , 0, 241-2	
VARIABLES:	PREPARED B		
T/K: See below Total P/kPa : 101.325 (1 atm)	w. G	errard	
EXPERIMENTAL VALUES:	/K Mole ratio ⁿ HCl ^{/n} ester	Mole* Smoot fraction mole fr	hed**
	HCI' ester	^x HCl ^x HC	21
Carbonochloridic acid, ethyl 27	3.15	0	0908
ester, (ethyl chloroformate); 27	7.25 0.098	0.0893	0,000
	1.45 0.088 3.15	0.0809	0794
	8.75 0.074	0.0689	0620
29	3.55 0.064	0.0602	0020
	1.05 0.050 3.15	0.0476	0437
30	6.75 0.041	0.0394	
	3.15 8.25 0.022	0.0215	0282
32	3.15	0.	0169
Smoothing equation: ln x _{HCl} = 204 Standard error in x _{HCl} about	.296 - 279.047/(the regression	T/100) - 104.032 ln line = 1.65 × 10 ⁻³	(T/100)
Carbonochloridic acid, propyl 27	3.15		0959
• • • • •	9.55 0.099 2.55 0.092	0.0901 0.0842	
[109-61-5] 28	3.15 3.15		0841 0672
29	3.35 0.071	0.0663	
	3.15 4.05 0.051	0. 0.0485	0494
	3.15		0339
	7.45 0.029 3.15		0219
<pre>Smoothing equation: ln x_{HCl} = 166.569 - 227.164/(T/100) - 85.335 ln(T/100) Standard error in x_{HCl} about the regression line = 1.01 × 10⁻³ * calculated by the compiler ** smoothing equation and smoothed values were calculated by H.L. Clever</pre>			
AUXILI	ARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND	PURITY OF MATERIAL	s:
Hydrogen chloride was generated in an all-glass apparatus.		gen chloride: self- red and dried.	
The all-glass absorption vessel (50 cm ³) comprised an inlet bubble tube, an outlet tube, and the par- holding a weighed amount of liquid	er sampl t attes	esters: high grade es were distilled a ted.	nd
Each tube was fitted with a tap, a	and ESTIMATED		
either a B-19 cone, or a B-19 soci Entrained liquid was collected and	$\delta x_{\rm HCl}/$	$\delta T/K = \pm 0.1$	
allowed for. Temperature control was within 0.1 K. The amount of g			
absorbed was determined by weighin	ng.	•	
]

COMPONENTS:	<u> </u>	ORIGINAL	MEASUREMENTS:	· · · · · · · · · · · · · · · · · · ·
(1) Hydrogen chloride; HCl;		Gerrard.	W.; Macklen, H	ε. D.
[7647-01-0]				
(2) Halogenated esters		J. Appl. (Chem. <u>1956</u> , 6	, 241-244
EXPERIMENTAL VALUES:	<u></u> .	í	····	
	T/K	Mole ratio HCl ^{/n} ester		Smoothed** nole fraction
	- 1	AC1' ester	^x HCl	^x HCl
		<u> </u>		
Dichloroacetic acid, ethyl ester, (<i>ethyl</i>	273.15 278.95	0.180	0.153	0.165
dichloroacetate); C ₄ H ₆ O ₂ Cl ₂ ;	282.65	0.169	0.145	
[535-15-9]	283.15 286.35	0.158	0.136	0.144
	293.15	0.130	0.150	0.120
	294.15	0.134	0.118	
	301.95 303.15	0.108	0.0975	0.0960
	312.45	0.083	0.0766	
	313.15 320.95	0.063	0.0593	0.0743
	323.15	0.005	0.0393	0.0559
Smoothing equation: In x	87 315	117 286/0	T/100) - 45.95	$57 \ln(\pi/100)$
Smoothing equation: ln x _{HCl} = Standard error in x _{HCl} ab	out the	regression	line = 8.51	< 10 ⁻⁴
	202 15			0.0992
Trichloroacetic acid,ethyl ester, (<i>ethyl</i>	283.15 283.65	0.108	0.0975	0.0992
trichloroacetate); C ₄ H ₅ O ₂ Cl ₃ ;	293.15			0.0749
[515-84-4]	295.25	0.077	0.0715	0.0570
	303.85	0.058	0.0548	
	312.55	0.047	0.0449	0.0437
	323.15			0.0338
	324.05	0.034	0.0329	0 0000
	333.15			0.0262
Smoothing equation: ln x _{HCl} = Standard error in x _{HCl} ab	8.760 -	3.701/(T/1	00) - 9.381 lr line = 1.07 >	(T/100)
Standard error in X _{HCl} at	out the	regression	ine = 1.07	K 10
Bromoacetic acid, ethyl ester,	280.15	0.312	0.238	0.000
(ethyl bromoacetate); C ₄ H ₇ O ₂ Br; [105-36-2]	283.15 287.25	0.269	0.212	0.228
4.7-22, (103-30-2)	293.15			0.193
	296.15 301.75	0.218 0.187	0.179 0.158	
	303.15	0.,0/	0.100	0.151
	307.75	0.155	0.134	0 110
	313.15 320.35	0.092	0.0842	0.110
	323.15			0.0760
	333.15			0.0496
Smoothing equation: $\ln x_{HC1} =$	158.684	- 217.218/	(T/100) - 80.1	$76 \ln(T/100)$
Standard error in xHCl ab	out the	regression	$\pm 1ne = 2.92 >$	< 10 °
* calculated by the compiler		-		
** smoothing equation and smo	othed va	alues were o	calculated by	H.L. Clever
		•		
1				

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Macklen, E.D.
(2) Halogenated esters	J. Appl. Chem. <u>1956</u> , 6, 241-244
EXPERIMENTAL VALUES: T/K	Mole ratio Mole* Smoothed** HCl ^{/n} ester fraction mole fraction
2-Chloroethanol acetate, 273.15 (2-chloroethyl acetate); 279.95 C.H_O_Cl: [542-58-5] 283.15	0.306 0.405 0.288 0.276
C ₄ H ₇ O ₂ Cl; [542-58-5] 283.15 290.15 293.15 300.25	0.325 0.245 0.233
300.25 303.15 306.45	0.186
313.15 313.45	
Smoothing equation: ln x _{HCl} = 119.619 Standard error in x _{HCl} about the	- 162.125/(T/100) - 61.153 ln(T/100) regression line = 1.47 × 10 ⁻³
2,2,2-Trichloroethanol 283.05 acetate, C ₄ H ₅ O ₂ Cl ₃ ; [625-24-1] 283.15	0.253 0.202 0.203
291.05 293.15	0.214 0.176 0.167
299.85 303.15 305.75	0.140
312.45 313.15	0.136 0.120 0.118
316.65 323.15	0.126 0.112 0.101
Smoothing equation: $\ln x_{HC1} = -7.243$ Standard error in x_{HC1} about the	+ 15.993/(T/100) regression line = 2.02 × 10 ⁻³
* calculated by the compiler ** smoothing equation and smoothed v	alues were calculated by H.L. Clever

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen Chloride; HCl;	1
[7647-01-0]	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
2. Carbonochloridic acid ethyl ester or Ethyl chloroformate; C ₃ H ₅ O ₂ Cl; [541-41-3]	J. Appl. Chem. <u>1959</u> , 9, 89 - 93.
VARIABLES:	PREPARED BY:
T/K: 273.15 - 300.35	
Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
	(shoothed data calculated by h.L. clevel)
EXPERIMENTAL VALUES:T/K Mol Rat	io Mol Fraction
$\frac{n_{\rm HC1}/n_{\rm C_3H}}{2}$	5 ⁰ 2 ^{C1} XHC1
273.15 0.16	9 0.145
277.75 0.14	
282.85 0.11 289.35 0.09	
300.35 0.06	
Smoothed Data: $\ln X_{HC1} = -11.217 + 2$	5.368/(m/100)
	Regression Line = 4.30×10^{-4}
T/K	Mol Fraction
	x _{HC1}
	0.145
273.15 283.15	0.145 0.105
293.15	0.0770
303.15	0.0579
The mole fraction values were	calculated by the compiler.
	INFORMATION
METHOD APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solvent was weighed in a bubbler tube. The amount of gas absorbed was determined by reweighing to constant weight. The total pressure	 Hydrogen Chloride. Good specimen from a commercial cylinder was dried.
was barometric, very nearly 1 atm (101.325 kPa).	 Carbonochloridic acid ethyl ester. Carefully purified, and purity rigorously attested.
1	ESTIMATED ERROR:
	$\delta x_{1}/x_{1} = 0.01$
	REFERENCES :

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
<pre>(2) Carbonochloridic acid propyl ester or 1-propyl chloroformate; C4^H7^{ClO}2; [109-61-5]</pre>	J. Appl. Chem. <u>1960</u> , 10, 115-121.
VARIABLES:	PREPARED BY:
T/K: 274.15 - 302.35	W. Gerrard
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	- L
T/K Mol Ra	
ⁿ HCl ^{/n} C ₄ H	⁴ 7 ^{c10} 2 ^x 1
274.15 0.179	
282.95 0.139	0.122
292.75 0.10 302.35 0.076	
The compiler calculated the mole frac	ction values.
Smoothed Data: $\ln x_1 = -10.1355 + 22$	2.665/(T/100)
±	the regression line is 2.57×10^{-3}
T/K	Mol Fraction x1
273.15 283.15	0.159 0.119
293.15	0.0904
303.15	0.0700
AUXILIARY	(INFORMATION
METHOD 'APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The liquid component was weighed in a bubbler tube. The amount of gas absorbed was determined by re- weighing to constant weight. The total pressure was barometric, very nearly 1 atm (101.325 kPa).	 Hydrogen chloride. Good specimen from a commercial cylinder was dried. Carbonochloridic acid propyl ester. Carefully purified, and purity rigorously attested.
	ESTIMATED ERROR: $\delta x_1 / x_1 = 0.015$ REFERENCES:

riyurugen cinu		m-Aqueous Solvents
COMPONENTS :	0	RIGINAL MEASUREMENTS:
(1) Hydrogen chloride; HCl;	G	errard, W.; Macklen, E. D.
<pre>[7647-01-0] (2) Chloroacetic acid ethyl est C₄H₇ClO₂; [105-39-5]</pre>	er;	7. Appl. Chem. 1959, 9, 85 – 88.
VARIABLES:	P	REPARED BY:
T/K: 280.45 - 316.35 Total P/kPa: 101.325 (1 atm)		W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:		
	-1	
	ol Ratio ./ ⁿ C4 ^H 7Cl	
280.45	0.290	0.225
284.05	0.269	0.212
290.25	0.232	0.188
297.95	0.186	0.157
303.85 312.15	0.158 0.114	0.136
312.15 316.35	0.094	0.102 0.0859
	89 - 215	ad by the compiler. $0.066/(T/100) - 80.101 \ln (T/100)$ Egression line = 1.94×10^{-3}
,	T/K Mo	l Fraction
	I/K MO	
		^x HC1
29 30 31	3.15 3.15 3.15	0.215 0.178 0.137 0.0977 0.0660
AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The apparatus and procedure were those described by Gerrard and Macklen (1). The hydrogen chloride was generated in an all glass apparatus. The absorption vessel, previously weighed, was fitted with a stoppered bubbler tube, and a stoppered outlet tube. Entrained liquid was condensed at 273.15 K, and allowed for. The amount of gas absorbed by a known weight of liquid		
was determined by weighing.	E	ESTIMATED ERROR:
		$\delta x/x = 0.02$
		REFERENCES :
		. Gerrard, W.; Macklen, E. D. J. Appl. Chem. <u>1956</u> , 6, 241.

nyarogon onionae i	n Non-Aqueous Solvents 227
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
<pre>(2) Carbonochloridic acid butyl ester or butyl chloroformate; C₅H₉ClO₂; [592-34-7]</pre>	J. Appl. Chem. <u>1960</u> , 10, 115-121.
VARIABLES:	PREPARED BY:
T/K: 273.15 - 313.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	······································
	Ratio Mol Fraction C5 ^H 9 ^{ClO} 2
283.15 0. 291.75 0. 298.75 0. 303.15 0.	192 0.161 140 0.123 110 0.0991 0885 0.0813 0761 0.0707 0551 0.0522
The compiler calculated the mole fra	action values.
-	
-	.462/(T/100) - 31.280 ln (T/100) t the regression line is 1.08×10^{-3}
T/K	Mol Fraction ^x 1
273.15	
283.15 293.15	0.125
303.15	0.0709
313.15	0.0523
AUXILIA	RY INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The liquid component was weighed in a bubbler tube. The amount of gas absorbed was determined by re- weighing to constant weight. The total pressure was barometric, very nearly 1 atm (101.325 kPa).	 Hydrogen chloride. Good specimen from a commercial cylinder was dried.
	ESTIMATED ERROR:
	$\delta x_1 / x_1 = 0.005$
	REFERENCES:

COMPONENTS:		ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>		Gerrard, W.; Macklen, E. D.
<pre>(2) 3-Chloropropanoic acid, ester; C₅H₉ClO₂; [623-7</pre>	ethyl 1-2]	J. Appl. Chem. <u>1959</u> , 9, 85 - 88.
VARIABLES: T/K: 273.15 - 320.	15	PREPARED BY:
Total P/kPa: 101.325 (1 at		W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:		
T/K	Mol Rat ⁿ HC1/ ⁿ C ₅ H	
273.15	0.496	0.332
284.05	0.403	0.287
296.05	0.309	0.236
302.95	0.261	0.207
306.75 312.55	0.232 0.190	0.188 0.160
312.33	0.147	0.128
The mole fraction values we		ted by the compiler.
Smoothed Data: $\ln x_{HC1} = 1$	03.162 - 1	39.249/(T/100) - 53.037 ln (T/100)
Standard er	ror about	regression line = 3.49×10^{-3}
	<u></u>	
	T/K	Mol Fraction
		^x HCl
	273.15	0.329
	283.15	0.296
	293.15	0.251
	303.15	0.203
	313.15 323.15	0.158 0.118
	AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :		SOURCE AND PURITY OF MATERIALS:
The apparatus and procedure	were	(1) Hydrogen chloride. Self prepared
those described by Gerrard	and	and dried.
Macklen (1). The hydrogen	chloride	
was generated in an all gla		(2) 3-Chloropropanoic acid, ethyl ester Purified, distilled, and
apparatus. The absorption previously weighed, was fit		attested by physical constants.
a stoppered bubbler tube, a		
stoppered outlet tube. Ent	rained	
liquid was condensed at 273	.15 K,	
and allowed for. The amoun		
absorbed by a known weight was determined by weighing.		
and determined by weighing.		ESTIMATED ERROR:
		$\delta x/x = 0.01$
		REFERENCES :
		1. Gerrard, W.; Macklen, E. D.
		J. Appl. Chem. <u>1956</u> , 6, 241.
		1
		1

Hydrogen Chloride in I	Non-Aqueous Solvents 229
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
<pre>(2) Carbonochloridic acid hexyl ester or hexyl chloroformate; C₇H₁₃ClO₂; [6092-54-2]</pre>	J. Appl. Chem. <u>1960</u> , 10, 115-121.
VARIABLES:	PREPARED BY:
T/K: 273.15 - 317.85 Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Ra nHCl ^{/n} C ₇ H 273.15 0.21 279.15 0.17 284.55 0.15 292.35 0.12 299.85 0.10 300.75 0.09 308.45 0.07 317.85 0.06 The compiler calculated the mole frac Smoothed Data: $\ln x_1 = -0.622 + 8.28$ Standard error about	$\begin{array}{c} x \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The liquid component was weighed in a bubbler tube. The amount of gas absorbed was determined by re- weighing to constant weight. The total pressure was barometric, very nearly 1 atm (101.325 kPa).	<pre>(1) Hydrogen chloride. Good specimen from a commercial cylinder was dried. (2) Carbonochloridic acid hexyl ester. Carefully purified, and purity rigorously attested. ESTIMATED ERROR:</pre>

zso nydrogen		Non-Aqueous Solvenis
COMPONENTS :		ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>		Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
<pre>(2) Chloroacetic acid, pheny or phenyl chloroacetate C₈H₇O₂; [620-73-5]</pre>	l ester ;	J. Appl. Chem. <u>1960</u> , 10, 115-121.
VARIABLES:	······	PREPARED BY:
T/K: 311.15 - 323.		W. Gerrard
Total P/kPa: 101.325 (1 at	m)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:		
T/K	Mol Rat	tio Mol Fraction 3 ^H 7 ^O 2 ^x l
311.15		
314.65		
319.15 323.85		
The compiler calculated the	mole frac	tion values.
Smoothed Data: $\ln x_1 = -17$.026 + 45.	1045/(T/100K)
↓		-
Standard er	ror about	the regression line is 4.81 x 10^{-3}
	T/K	Mol Fraction ^x 1
	303.15	0.1168
	313.15 323.15	0.0726 0.0465
	AUXILIARY	/ INFORMATION
METHOD APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
The liquid component was we a bubbler tube. The amount absorbed was determined by weighing to constant weight total pressure was barometr nearly 1 atm (101.325 kPa).	of gas re- . The	 (1) Hydrogen chloride. Good specimer from a commercial cylinder was dried. (2) Chloroacetic acid, phenyl ester. Carefully purified, and purity rigorously attested.
		ESTIMATED ERROR:
		$\delta x_1 / x_1 = 0.025$
		REFERENCES:

nydrogen chionde in r	Voli-Aqueous Solvents 231
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
 Carbonic acid diethyl ester or diethyl carbonate; C₅H₁₀O₃; 	J. Appl. Chem. <u>1959</u> , 9, 89 - 93.
[105-58-8]	
VARIABLES:	
Т/К: 198.15 - 317.15	PREPARED BY: W. Gerrard
Total P/kPa: 101.325 (1 atm)	
	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES: T/K MOL H	Ratio Mol Fraction
	C5 ^H 10 ^O 3 XHC1
	463 0.882
	0.797
	0.660 The mole fraction
1	577 0.404 values were cal- 561 0.359 culated by the
	520 0.342 compiler.
	441 0.306
300.65 0.3	323 0.244
	300 0.231 222 0.182
	222 0.182 190 0.160
Smoothed Data: $\ln x_1 = -58.8547 + 84.9$ -18.7608 (T/100	
Ctordand amon shout th	
	ne regression line = 7.69×10^{-3}
T/K Mol Fraction	T/K Mol Fraction
<i>x</i> 1	<u>x1</u>
193.15 0.937	263.15 0.469
203.15 0.848	273.15 0.405
213.15 0.778	283.15 0.342
223.15 0.716 233.15 0.656	293.15 0.282 303.15 0.228
243.15 0.596	313.15 0.179
253.15 0.533	323.15 0.138
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The solvent was weighed in a bubbler	1. Hydrogen Chloride. Good specimen
tube. The amount of gas absorbed at	from a commercial cylinder was
temperatures above 273 K was deter-	dried.
mined by reweighing to constant	
weight. The total pressure was barometric, very nearly 1 atm	2. Carbonic acid diethyl ester. Carefully purified, and purity
(101.325 kPa).	rigorously attested.
For determinations below 273 K, a	
chemical titration was carried out.	
After the maximum absorption at the	
stated temperature, the bubbler tube	
was attached to a flask containing 1 dm ³ of water, and allowed to warm	ESTIMATED ERROR:
slowly (12 hours) to room temperature.	fm/r = 0 holow 070 r
The contents of the bubbler tube were	$\delta T/K = 2$ below 273 K $\delta X_1/X_1 = 0.015$
then added to the water, and the	
total chloride ion was determined by the Volhard method.	DEPERTNERS.
	REFERENCES :
A low temperature, Teddington type YM thermostat was used for tempera-	
tures below 273 K, the control being	
within ± 2 K.	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
2. Carbonic acid dibutyl ester; C ₉ H ₁₈ O ₃ ; [542-52-9]	J. Appl. Chem. <u>1959</u> , 9, 89 - 93.
VARIABLES:	PREPARED BY:
T/K: 273.15 - 317.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Rat	
ⁿ HCl/ ⁿ C ₉ H	H ₁₈ O ₃ ^X HC1
273.15 0.719	0.418
279.85 0.605	
297.15 0.386	
306.35 0.299 317.15 0.209	
	0.175
Smoothed Data: $\ln X_{HC1} = 68.788 - 90.$	168/(T/100) - 36.478 ln (T/100)
	-
Standard Error About F	Regression Line = 3.59×10^{-3}
T/K M	101 Fraction
	XHCI
273.15	0.416
283.15	0.359
293.15	0.300
303.15	0.244
313.15	0.193
323.15	0.149
The mole fraction values were	calculated by the compiler.
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The solvent was weighed in a bubbler tube. The amount of gas (1) absorbed was determined by reweighing to	 Hydrogen Chloride. Good specimen from a commercial cylinder was dried.
constant weight. The total pressure was barometric, very nearly 1 atm (101.325 kPa).	 Carbonic acid dibutyl ester. Carefully purified, and purity rigorously attested.
	ESTIMATED ERROR: $\delta x_1 / x_1 = 0.01$
Other solvent name Dibutyl carbonate	REFERENCES :

nyarogen Chioriae in	Non-Aqueous Solvents 233
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
<pre>2. Carbonic acid bis (2-methyl propyl) ester; C₉H₁₈O₃; [539-92-4]</pre>	J. Appl. Chem. <u>1959</u> , 9, 89 - 93.
VARIABLES:	PREPARED BY:
T/K: 273.15 - 315.05 Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Rati <u> hCl/ⁿC9^H1</u>	
273.15 0.740	0.425
282.55 0.595 294.55 0.435	0.373 0.303
302.75 0.350	0.259
315.05 0.246	0.197
Smoothed Data: ln X = 61.946 - 80	.958/(T/100) - 33.002 ln (T/100)
Standard Error About	Regression Line = 6.90×10^{-4}
	Mol Fraction
2, x	x _{HCl}
273.15	0.425
283.15	0.370
293.15 303.15	0.312 0.256
313.15	0.206
323.15	0.163
The mole fraction values were	calculated by the compiler.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solvent was weighed in a bubbler tube. The amount of gas absorbed was determined by reweighing to constant	 Hydrogen Chloride. Good specimen from a commercial cylinder was dried.
weight. The total pressure was	
barometric, very nearly l atm (101.325 kPa).	 Carbonic acid bis (2-methy1 propy1) ester. Carefully purified, and purity rigorously attested.
	ESTIMATED ERROR:
	$\delta x_1 / x_1 = 0.01$
Other solvent name Diisobutyl carbonate	REFERENCES :

	·
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
<pre>(2) 3-Methyl-l-butanol carbonate (2:1); C₁₁H₂₂O₃ or</pre>	J. Appl. Chem. <u>1960</u> , 10, 115-121.
(CH ₃ CH (CH ₃) CH ₂ CH ₂ O) ₂ CO; [2050-95-	5]
VARIABLES:	PREPARED BY:
T/K: 273.15 - 315.65 Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Rat ⁿ HCl ^{/n} C ₁₁	io Mol Fraction ^H 22 ^O 3 ^x 1
273.15 0.730	0.422
280.65 0.599	0.375
287.15 0.496 296.75 0.391	
296.75 0.391 306.15 0.307	
315.65 0.225	
The compiler calculated the mole fraction values.	
Smoothed Data: $\ln x_1 = 36.511 - 44$.	397/(T/100) - 20.987 ln (T/100)
Standard error about	the regression line is 7.00×10^{-3}
T/K	Mol Fraction x.
	<u> </u>
273.15 283.15	0.435 0.363
	0.300
313.15	0.244
323.15	0.197
AUXILIAR	Y INFORMATION
METHOD /APPARATUS / PROCEDURE :	COUDCE AND DUDITY OF MATERIALC.
The liquid component was weighed in	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Good specimen
a bubbler tube. The amount of gas	from a commercial cylinder was
absorbed was determined by re-	dried.
weighing to constant weight. The total pressure was barometric, very	(2) 3-Methyl-l-butanol carbonate.
nearly 1 atm (101.325 kPa).	Carefully purified, and purity
-	rigorously attested.
Solvent name is isopentyl carbonate	ESTIMATED ERROR:
in paper, IUPAC name is diisopentyl carbonate.	
curbonale.	$\delta x_1/x_1 = 0.02$
	REFERENCES:
	1

Hydrogen Chionae m	Non-Aqueous Solvents 235
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
<pre>(2) Carbonic acid 2-chloroethyl ethyl ester or ethyl 2-chloroethyl carbonate; C₅H₉ClO₃; [50780-47-7]</pre>	J. Appl. Chem. <u>1960</u> , 10, 115-121.
VARIABLES:	PREPARED BY:
т/к: 273.15 - 320.15	W. Gerrard
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	io Mol Fraction
ⁿ HCl ^{/n} C ₅ H	x_{10}
273.15 0.490 280.15 0.408	
287.15 0.338	
293.15 0.292	
299.05 0.247	
305.45 0.206 316.25 0.143	
320.15 0.122	
The compiler calculated the mole frac	
-	037/(T/100) - 44.727 ln (T/100)
Standard error about	the regression line is 3.10 x 10^{-3}
	Mol Fraction
	x_1
273.15	0.325
283.15	0.277
293.15	0.226
303.15 313.15	0.178 0.136
323.15	0.101
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The liquid component was weighed in	(1) Hydrogen chloride. Good specimen
a bubbler tube. The amount of gas absorbed was determined by re-	from a commercial cylinder was dried.
weighing to constant weight. The	difea.
total pressure was barometric, very	(2) Carbonic acid 2-chloroethyl ethyl
nearly 1 atm (101.325 kPa).	ester. Carefully purified, and
	purity rigorously attested.
	UCTIMATED EDDOD.
	ESTIMATED ERROR:
	$\delta x_1 / x_1 = 0.015$
	REFERENCES :

COMPONENTS :		EVALUATOR:
1.	Hydrogen Chloride; HCl; [7647-01-0]	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2.	Halogenated Alkanes and Halogenated Alkenes	Polytechnic of North London, Holloway, London, N7 8DB, U.K. January 1989

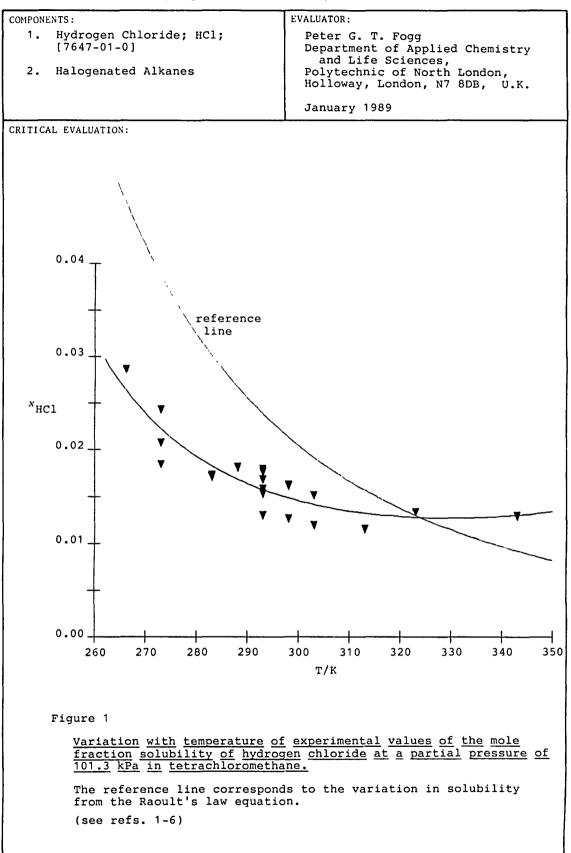
CRITICAL EVALUATION:

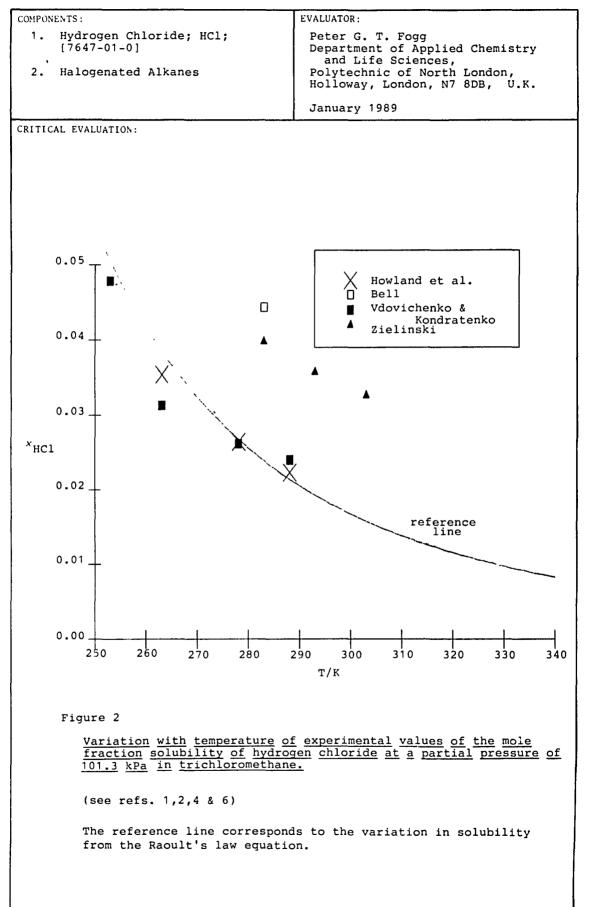
The Solubility of Hydrogen Chloride in Halogenated Alkanes and in Halogenated Alkenes.

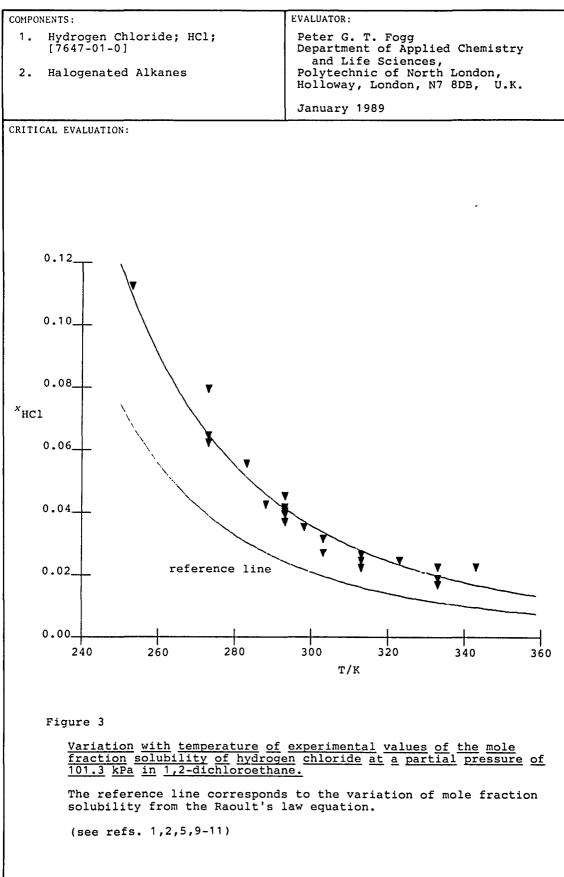
The solubility of hydrogen chloride in tetrachloromethane has been measured by various authors (1-4) at a total pressure equal to barometric, and over pressure ranges below 101.3 kPa by Hamai (5), by Howland *et al.* (6) and by Khodeeva & Rozovskii (7). The single measurement reported by Chesterman (8) is out of line with all other measurements and should be rejected. Data published by Khodeeva & Rozovskii are self-consistent except that there is an error in the reporting of constants associated with the Krichevskii-Il'inskaya equation. Data for 303.15 K and below are out of line with measurements by other authors. The evaluator considers that they are likely to be unreliable.

Mole fraction solubilities at a partial pressure of 101.3 kPa as given by other authors or as calculated from solubilities at partial pressures close to 101.3 kPa may be represented by the equation :

 $\ln x_{\rm HCl} = -206.48 + 9800.3/(T/K) + 29.732 \ln (T/K)$


The standard deviation in values of x_{HC1} is 0.0018.


This equation is based upon data for the temperature range 266.15 K to 343.15 K. There is appreciable scatter of data as may be seen in fig 1. Values fall below a reference line based upon the Raoult's law equation, except at temperatures greater than about 320 K.


Solubility in trichloromethane was measured by Bell (1), by Howland *et al.*(6), by Zielinski (2) and by Vdovichenko & Kondratenko (4). Mole fraction solubilities for a partial pressure of 101.3 kPa show appreciable scatter (see fig 2) with a general tendency for values to be greater than corresponding ones for dissolution in tetrachloromethane.

The mole fraction solubility in dichloromethane at a total pressure equal to barometric pressure was measured by Vdovichenko & Kondratenko (4) at temperatures of 263.15 K, 273.15 K and 298.15 K. Values corrected to a partial pressure of 101.3 kPa for the two lower temperatures lie above the corresponding values for tetrachloromethane and below the values for trichloromethane calculated from data given by these two authors. The vapor pressure of dichloromethane at 298.15 K (> 420 mmHg) is too high for reliable estimation of the solubility corresponding to a partial pressure of 101.3 kPa at this temperature.

Solubilities in 1,2-dichloroethane have been measured by various workers. Bell (1), Zielinski (2) and also Abdullaev *et al.*(9) made measurements at a total pressure equal to barometric at 293.15 K, 293.15 - 313.15 K and 273.15 - 353.15 K respectively. Hamai (5) made measurements over pressure ranges at 288.15 - 298.15 K. Hannaert *et al.*(10) made measurements in the temperature range 273.15 - 333.15 K. Detailed results were not published but data were given for an equation for the variation in mole fraction solubility at a total pressure of 101.3 kPa over this temperature range. Treger *et al.*(11) made measurements over the temperature range 253 - 333 K but they also did not publish detailed results. Data were given for an equation for the variation in mole ratio solubility at a partial pressure of 101.3 kPa over this temperature range. The evaluator has calculated mole fraction solubilities at a partial pressure of 101.3 kPa from the data that have been published, making allowance for the partial pressure of the solvent where necessary. Values at 20 K intervals were estimated from the equation given by Hannaert *et al.* and that from Treger's measurements. Correction of the solubility at 353.15 K given by Abdullaev *et al.* was considered to be unreliable because the vapor pressure of the pure solvent is about 90 kPa at this temperature and this data point was disregarded. Other data points for a partial pressure of 101.3 kPa fall into a very consistent pattern (see fig 3). The variation in mole fraction solubility at a partial pressure of 101.3 kPa may be

COMPONENTS. EVALUATOR: 1. Hydrogen Chloride; HCl;
[7647-01-0] Peter G. T. Fogg Department of Applied Chemistry and Life Sciences, 2. Halogenated Alkanes and Polytechnic of North London, Halogenated Alkenes Holloway, London, N7 8DB, U.K. January 1989 CRITICAL EVALUATION: represented by the equation: $\ln x_{\rm HC1} = -9.355 + 1808/(T/K)$ The standard deviation in values of x_{HC1} is 0.004. This equation is based upon measurements in the range 253.15 - 343.15 K Danov & Golubev (12) measured the solubility in 1,1-dichloroethane over a pressure range at 204.55 K to 242.65 K. No other data for solubility in this solvent are available for comparison but the mole fraction solubilities fit an equation which is closely similar to the one given above for the 1,2 isomer. 1.e. $\ln x_{\rm HC1} = -8.729 + 1646/(T/K)$ The standard deviation in values of x_{HC1} is 0.005. Solubility in 1,1,2-trichloroethane was measured by Hamai (5) and by Treger et al.(11) over a pressure and temperature range. Individual solubility values have not been published by Treger et al. but data have been given for an equation for the variation with temperature of mole fraction solubility at a partial pressure of 101.3 kPa. There is a gross discrepancy between Hamai's measurements and those of Treger *et al.* The mole fraction solubility at a partial pressure of 101.3 kPa and 293.15 from Hamai's measurements is 0.0310 whereas the value from Treger's data is 0.0507. There is a similar difference between the two sets of data at 285.15 K and 288.15 K. Data published by Hamai are in better accord with the pattern of solubilities in other chlorinated ethanes (see fig 4). Treger $et \ al.$ published data for dissolution in trichloroethene but no other measurements of the solubility in this compound are available for comparison. Solubility in 1,1,2,2-tetrachloroethane was measured by Bell (1) and by Zielinski (2) at barometric pressure and 293.15 K and 293.15 - 313.15 K respectively. Hamai (5) measured solubilities over a pressure range at 288.15 -298.15 K. Treger (11) reported data for an equation for the variation of mole fraction solubility with temperatures in the range 253 - 333 K. The values of the mole fraction solubility at a partial pressure of 101.3 kPa at 293.15 K from the four sets of data all lie between 0.0265 and 0.0289. Solubilities at higher temperatures from Zielinski's data are high compared with other values. Mole fraction solubilities for a partial pressure of 101.3 kPa based upon all the data may be fitted to the equation : $\ln x_{\rm HC1} = -7.939 + 1281.7/(T/K)$ The standard deviation in values of x_{HC1} is 0.002. This equation is based upon data for the temperature range 253 - 333 K. Solubility in pentachloroethane was measured by Bell (1) at 293.15 K at barometric pressure and by Hamai (5) at 285.15 - 293.15 K over a pressure range. The mole fraction solubility for a partial pressure at 293.15 K from Bell's measurement is 0.0214 which is close to the value of 0.0225 from data published by Hamaı. Solubilities in 1-chloroalkanes with 4,6,8,12 & 16 carbon atoms have been measured at different temperatures or over different temperature ranges between 197 K and 433 K (13 - 16). All measurements were made at barometric pressure except those carried out by Scher *et al.*(13) for 1-chlorohexadecane over a pressure range of 51 to 99 kPa. The mole fraction solubility at a partial pressure of 101.3 kPa and 313.15 K estimated from Scher's measurements is 0.0362. This is close to the value of 0.0369 for the same solvent published by Fernandes & Sharma (14). All mole fraction solubilities for 1-chloroalkanes from the available data lie above the reference line corresponding to the Raoult's law equation. Values may

COMPONENTS.

- Hydrogen Chloride; HCl; [7647-01-0]
- Halogenated Alkanes and Halogenated Alkenes

EVALUATOR:

Peter G. T. Fogg Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London, N7 8DB, U.K.

January 1989

CRITICAL EVALUATION:

be represented approximately by the equation:

 $\ln x_{HC1} = -10.53 + 2213/(T/K)$

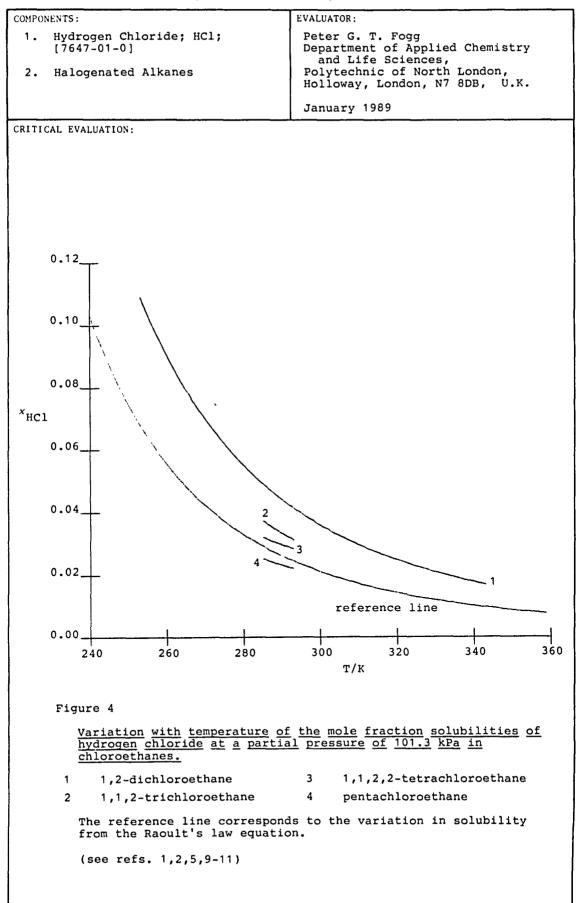
The standard deviation in values of x_{HC1} is 0.011.

This equation is based upon data in the temperature range 243 K to 433 K for the five compounds mentioned above. It must be considered a general guide to the behaviour of these compounds. Solubilities in individual solvents are scattered around the values of $x_{\rm HCl}$ calculated from the equation with no general relationship between "this scatter and the chain length of the solvent.

Hamai (4) measured the solubility in 1,2-dibromoethane over a pressure range at 288.15 K to 298.15 K. Bell (1) measured the solubility at 293.15 K and barometric pressure. Bell's value of the mole fraction solubility, corrected to a partial pressure of gas of 101.3 kPa, is 0.0348 and very close to the value of 0.0344 by extrapolation of Hamai's measurements. Bell also measured solubilities in bromoethane, tribromomethane and in 1,1,2,2-tetrabromoethane. No other measurements of the solubilities in these solvents are available for comparison.

The solubility in 1-bromooctane was measured by Gerrard *et al.* (15) at a total pressure of 101.3 kPa at temperatures from 273.15 K to 317.15 K. Measurements in the temperature range 243.15 K to 273.15 K were made by Ahmad *et al.* (16) in the same laboratory. The two values for the mole fraction solubility at 273.15 K differ by 8%. The two sets of values for the mole fraction solubility at a total pressure of 101.3 bar may be fitted to the equation:

 $\ln x_{\rm HCl} = -96.877 + 5655.9/(T/K) + 13.156 \ln(T/K)$


The standard deviation in values of x_{HC1} is 0.003.

Gerrard *et al.* also reported solubilities over temperature ranges in 1-bromobutane and 1-bromohexane at a total pressure of 101.3 kPa. Gerrard's data indicate that, corrected to a partial pressure of 101.3 kPa, mole fraction solubility increases with chain length from 1-bromobutane to 1-bromooctane, at temperatures at which comparison can be made (273.15 K - 298.15 K). However, the value for HCl in bromoethane at 293.15 K from Bell's measurement is 0.1019 and larger than the corresponding solubility in 1-bromooctane (0.058).

Ahmed et al. also measured the solubility in 1-iodooctane. The data indicate that the mole fraction solubility is higher than that in 1-bromooctane under the same conditions of measurement. No other measurements are available for comparison.

The solubility in chloroethene was measured by Danov & Golubev (12) at pressures to 133.3 kPa from 204.55 K to 242.65 K. An equation for Henry's constant for dissolution in this solvent at temperatures from 213.15 K to 243.15 K has been published by Hannaert *et al.*(10) Mole fraction solubilities estimated from this equation are lower than those from Danov's measurements. The mole fraction solubility for a partial pressure of hydrogen chloride of 93.3 kPa at 242.15 K is 0.1382. The value from Hannaert's equation is 0.1006. The extensive data presented by Danov are self consistent and likely to be more reliable than solubilities estimated from Hannaert's equation.

The solubility in trichloroethene was measured by Abdullaev *et al.*(9) at barometric pressure from 273.15 K to 353.15 K. Bell (1) measured the solubility at barometric pressure and 293.15 K. Data presented by Treger *et al.*(11) are ambiguous and cannot be compared with data from other authors. The mole fraction solubility at 293.15 K and a partial pressure of 101.3 kPa given by Bell is 0.0206. This is very close to the value of 0.0205 obtained by correcting Abdullaev's data for this temperature to a partial pressure of 101.3 kPa and adds support to data for other temperatures.

COMPONENTS:		EVALUATOR:	
1.	Hydrogen Chloride; HCl; [7647-01-0]	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,	
2.	Halogenated Alkanes and Halogenated Alkenes	Polytechnic of North London, Holloway, London, N7 8DB, U.K.	
1		January 1989	

CRITICAL EVALUATION:

Curda & Holas (3) measured the solubility in tetrachloroethene at barometric pressure from 293.15 K to 363.15 K. The mole fraction solubility at 293.15 K corrected to a partial pressure of 101.3 kPa from these data is 0.0160. This is in good agreement with the value of 0.0163 given by Bell.

Danov & Golubev (12) measured the solubility in (E)-1,2-dichloroethene at pressures to 133.3 kPa in the range 225.15 K to 256.25 K. The measurements are self consistent but no other data for this system are available for comparison.

The solubility in 3-chloro-1-propene was measured by Cook (17) at barometric pressure from 268.95 K to 283.15 K. The interpolated value of the mole fraction solubility at 273.15 K is 0.0468. This is in sharp contrast to the value of 0.0609 from data published by Curda & Holas (3). Measurements on this system need to be repeated.

REFERENCES

- 1. Bell, R. P. J. Chem. Soc. <u>1931</u>, 1371 1382.
- 2. Zielinski, A. Z. Przem. Chem. <u>1958</u>, 37, 338 339.
- 3. Curda, M.; Holas, J. Chem. Prumysl. 1964, 14, 547 548.
- 4. Vdovichenko, V. T.; Kondratenko, V. I. Khim. Prom. <u>1967</u>, 43, 290 291.
- 5. Hamai, S. Bull. Chem. Soc. Japan <u>1935</u>, 10, 5 16.
- Howland, J. J.; Miller, D. R.; Willard, J. E. J. Am. Chem. Soc. <u>1941</u>, 63, 2807 - 2811.
- Khodeeva, S. M.; Rozovskii, M. B. Zh. Fiz. Khim. <u>1975</u>, 49, 1396 1400; Russ. J. Phys. Chem. <u>1975</u>, 49, 824 - 827.
- 8. Chesterman, D. R. J. Chem. Soc. 1935, 906 910.
- Abdullaev, A. I.; Aliev, A. M.; Mamedov, M. B. Uch. Zap. Azerb. Gos. Univ., Ser. Khim. Nauk <u>1968</u>, No. 3, 80 - 83.
- 10. Hannaert, H.; Haccuria, M.; Mathieu, M. P. Ind. Chim. Belge <u>1967</u>, 32, 156 - 164.
- 11. Treger, Yu. A.; Flid, R. M.; Pimenov, I. F.; Avet'yan, M. G. *Zh. Fiz. Khim.* <u>1967</u>, 41, 2967 8; *Russ. J. Phys. Chem.* <u>1967</u>, 41, 1596 8.
- 12. Danov, S. M.; Golubev, Yu. D. Khim. Prom_st. (Moscow) 1968, 44 (2), 116 120.
- 13. Scher, M.; Gill, W. N.; Jelinek, R. V. Ind. Eng. Chem., Fundam. <u>1963</u>, 2, 107 112.
- 14. Fernandes, J. B.; Sharma, M. M. Indian Chem. Eng. <u>1965</u>, 7, 38 40.
- Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L. J. Appl. Chem. <u>1959</u>, 9, 89 - 93.
- Ahmed, W.; Gerrard, W.; Maladkar, V. K. J. Appl. Chem. <u>1970</u>, 20, 109 - 115.

17. Cook, T. M. Thesis 1966, University of London.

1 1		ORIGINAL MEASUREMENTS:		
(1) Hydrogen chloride; HCl;		Vdovichenko, V. T.;		
[7647-01-0]		Kondratenko, V. I.		
(2) Dichloromethane; CH ₂ Cl ₂ ;		Khim. Prom. <u>1967</u> , 43, 290 - 291.		
[75-09-2] 2 2				
1				
WADTADIEC.				
VARIABLES: $T/K = 263.15 - 298.11$	5	PREPARED BY: W. Gerrard		
p / kPa = 101.325 (1 atm)		HT BOLLEL		
	,	(smoothed data calculated by H.L. Clever)		
EXPERIMENTAL VALUES:		Mol Fraction		
	1/10 1			
		<u> </u>		
26	3.15	0.031		
27:	3.15	0.018		
29	8.15	0.013		
The mole fraction values appear	to he	for a total pressure of 1 atm		
more records varues appear		Tot a court propert of t dome		
Smoothed Data: For use between	263.15	5 and 298.15 K.		
$\ln x_{1} = -347.20$	+ 482	.95/(T/100 K) + 165.57 ln (T/100 K)		
	T/K	Mol Fraction		
		<i>x</i> ₁		
	<u> </u>			
20	68.15	0.023		
	78.15	0.015 0.013		
	98.15	0.013		
2:	90.13	0.013		
	XILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: Solubility determined at atmospheric pressure by the method described by Strepikheev and Babkin (1).		 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Obtained from chemically pure sodium chloride and concentrated sulfuric acid, dried by calcium chloride and filtered through glass wool. (2) Dichloromethane. B.p. (1 atm)/°C = 40.0 - 40.3; density, ρ²₄° = 1.3260; refractive index, n²_D° = 1.4245. 		
		ESTIMATED ERROR:		
		REFERENCES: 1. Strepikheev, Yu. A.; Babkin, B. M. Khim. Prom. <u>1963</u> , (1), 38.		

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Bell, R. P.
(2) Chloromethanes	J. Chem. Soc. <u>1931</u> , 1371 - 1382.
VARIABLES: T/K: 293.15	PREPARED BY:
P/kPa: 101.325 (1 atm)	W. Gerrard
EXPERIMENTAL VALUES:	
T/K Partition Coefficien ^C 1,2 ^{/C} 1,5	
Trichloromethane [67-66-3]	2; CHCl ₃ ;
293.15 13.80	0.0444
Tetrachlorometha [56-23-5]	ane; CCl ₄ ;
293.15 4.54	0.0181
The ideal gas concer	ntration at $p_1 = 1$ atm
	n/V = p/RT = 0.0417.
$13 c_{1,g}/mot am = 1$	1/V = p/RI = 0.0417.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus consisted of a 50 cm bulb extended at the top as a graduated tube, and sealed at the bottom to a capillary U-tube. The liquid was saturated with gas at	(1) Hydrogen chloride. Prepared by dropping pure concentrated hydrochloric acid into pure sulfuric acid.
atmospheric pressure. The gas was	(2) Chloromethanes. Good specimens
displaced from the saturated solu- tion by a current of dry CO, free air,	were dried over calcium chloride, and distilled. Boiling points
absorbed in water, and titrated	are given in paper.
with a solution of NaOH.	
The solubility, c/mol dm ⁻³ , was	
converted to a partition coefficient by dividing by the ideal gas con-	ESTIMATED ERROR:
centration of HCl in the gas phase.	$\delta T/K = 0.01$
The mole fraction solubility was	$\delta c/c = 0.01$
calculated on the assumption that	
the density of the solution obeys	REFERENCES:
the ideal mixture law.	

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Chesterman, D. R.		
[/04/-01-0]	J. Chem. Soc. 1935, 906 - 910.		
(2) Chloromethanes	,		
VARIABLES: T/K: 298.15	PREPARED BY:		
Total P/kPa: 101 (~1 atm)	W. Gerrard		
EXPERIMENTAL VALUES:			
T/K Observed So	lubility Mol Fraction		
Pressure g HCl o p/mmHg	x_1^{-1} Solution x_1		
Trichloromethane or chlor	roform; CHCl ₃ ; [67-66-3]		
298.15 730	0.004 0.013		
Tetrachloromethane or can CCl ₄ ; [56-23-5]	rbon tetrachloride;		
298.15 765	0.001 0.004		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The apparatus was that used for the conductivity. A sample of the saturated solution was removed, weighed, the hydrogen chloride was reacted with excess base which was back titrated with a standard acid solution.	 Hydrogen chloride. Prepared from conc. sulfuric acid and pure sodium chloride. Passed through sulfuric acid and over P2⁰5. Trichloromethane. Was stated to be the purest obtainable. Freed from acetone and alcohol, 		
	and dried with phosphorus pentoxide, b.p./°C (729 mmHg) = 59.5 - 59.8.		
	Tetrachloromethane. Was stated to be the purest obtainable. Dried with P_2O_5 ; b.p./°C (760 mmHg) = 77 - 77.5.		
	REFERENCES :		
]]		

246

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Howland, J. J.; Miller, D. R. Willard, J. E.	
<pre>(2) Trichloromethane or chloroform; CHCl₃; [67-66-3]</pre>	J. Am. Chem. Soc. <u>1941</u> , 63, 2807 - 2811.	
VARIABLES: T/K: 273.15 - 298.15 P/kPa: 22.80 - 81.33 (171 - 610 mmHg)	PREPARED BY: W. Gerrard	
EXPERIMENTAL VALUES:		
T/K Pressure Range Number o p ₁ /mmHg Determination	· · · ·	
273.15 308 - 581 3	4.66 <u>+</u> 0.03 0.0354	
288.15 171 - 587 5	3.48 ± 0.02 0.0264	
298.15 194 - 610 5	2.93 ± 0.02 0.0223	
¹ Henry's constant, K/(mmHg) ⁻¹ = $x_1/(1)$	P./mmHg).	
calculated by the compiler.		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: A mercury manometer was attached to an absorption bulb. The solvent was added to the bulb, and the vapor pressure was determined. This pres- sure, p_2° , was used to calculate the gas partial pressure, p_1 , from the total pressure, p_t , measured by the manometer: $p_1 = p_t - p_2^{\circ}(1 - x_1)$.	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Prepared by dropping sulfuric acid onto sodium chloride. The gas was passed through glass wool and calcium chloride. (2) Trichloromethane. Merck and Co. Technical grade, purified and distilled. 	
The amount of gas absorbed in a measured weight of solution with- drawn as a sample, was determined by a chemical titration.	ESTIMATED ERROR: 6K/K = 0.01	
The heat of solution was determined to be -3.00 ± 0.30 kcal mol ⁻¹ (-12.55 kJ mol ⁻¹).	REFERENCES:	

COMPONENTS :		/]		ORIGINAL MEASUREMENTS:			
[764]	ogen chlor 7-01-0]			Zielinski, A. Z. Przem. Chem. <u>1958</u> , 37, 338 - 339.			
	hlorometha 3; [67-66-		oroform;				
VARIABLES:	<u></u>	<u> </u>		PREPARED BY:		<u></u>	
	T/K = 293. kPa = 53.1 (398	15 - 313. 4 - 83.35 .6 - 625.	15 2 mmHg)	W. Gerrard			
EXPERIMENTAL	. VALUES:			······································			
T/K	Hydrogen Chloride Pressure	HCl	CHCl ₃	- Coefficient $S/cm^{3}(STP)q^{-1}$	Mol Ratio n ₁ /n ₂	Mol Fraction x_1	
<u> </u>	p ₁ /mmHg	n_1/mmol	n ₂ /mmol	atm ⁻¹			
293.15	625.2 625.2	2.841 3.175	84.6 93.2	7.67 7.77	0.0336 0.0341	0.0325 0.0329 0.0398 ¹	
303.15	529.4 529.4	3.102 2.690	? 105.4	6.92 6.88	? 0.0255	? 0.0249 0.0357 ¹	
313.15	398.6 398.6	1.719 1.793	99.1 102.6	6.21 6.26	0.0173 0.0175	0.0170 0.0172 0.0326 ¹	
				essure to be the ce solvent vapor			
	<u> </u>		AUXILIARY	INFORMATION			
METHOD /APPA	RATUS / PROCED	URE :		SOURCE AND PURITY O	OF MATERIALS:		
METHOD/APPARATUS/PROCEDURE: Hydrogen chloride was absorbed by the liquid in an absorption vessel described by Bichowsky and Storch (1). The amount absorbed was deter- mined by a chemical titration.				May be assumed factory purity.		tis-	
To calculate the volume of HCl absorbed by one gram of liquid, at 760 mmHg, 22.42 dm ³ mol ⁻¹ was taken as the molar volume of HCl at 273.15 K and 1 atm. The volume based on the real density of HCl under these conditions is (compiler) 22.247 dm ³ mol ⁻¹ .							
				ESTIMATED ERROR:			
			REFERENCES: 1. Bichowsky, F. R. V.; Storch, H. J. Am. Chem. Soc. <u>1915</u> , 37, 2695.				

والمستحي فيتحدد المسابقة المتحاد المستجل الشاري ومستحد والمتحد والمتحد والمتحد والمتحد والمحد و	
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Hydrogen chloride; HCl;	Vdovichenko, V. T.;
[7647-01-0]	Kondratenko, V. I.
(2) Trichloromethane or chloroform;	Khim. Prom. <u>1967</u> , 43, 290 - 291.
CHCl ₃ ; [67-66-3]	
	j j
VARIABLES:	PREPARED BY:
T/K = 263.15 - 298.15	W. Gerrard
p / kPa = 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
	-
EXPERIMENTAL VALUES:	
= T/K	ol Fraction
263.15	0.046
273.15	0.029
288.15	0.022
298.15	0.018
······································	
The mole fraction values appear to be	for a total pressure of 1 atm.
Smoothed Data: For use between 263.1	5 and 298.15 K.
$\ln x_1 = -152.60 + 215$	5.59/(T/100 K) + 69.842 ln (T/100 K)
The standard error about the	regression line is 2.04×10^{-3} .
	regression line is 2.04 x 10
	lol Fraction
268.15	0.0365
278.15	0.026
288.15	0.021
298.15	0.0185
h	
AUXILIARY	INFORMATION
	COUDCE AND DUDITY OF MATERIALS
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Solubility determined at atmospheric	(1) Hydrogen chloride. Obtained
pressure by the method described by	from chemically pure sodium
Strepikheev and Babkin (1).	chloride and concentrated
	sulfuric acid, dried by calcium
1	
	chloride and filtered through
	chloride and filtered through glass wool.
	glass wool.
	<pre>glass wool. (2) Chloroform. B.p. (l atm)/°C =</pre>
	<pre>glass wool. (2) Chloroform. B.p. (l atm)/°C = 61.1 - 61.2; density,</pre>
	<pre>glass wool. (2) Chloroform. B.p. (l atm)/°C = 61.1 - 61.2; density, ρ²⁰ = 1.4892; refractive</pre>
	<pre>glass wool. (2) Chloroform. B.p. (l atm)/°C =</pre>
	glass wool. (2) Chloroform. B.p. (1 atm)/°C = 61.1 - 61.2; density, $\rho_4^{20} = 1.4892$; refractive index, $n_D^{20} = 1.4464$.
	<pre>glass wool. (2) Chloroform. B.p. (1 atm)/°C = 61.1 - 61.2; density, ρ²⁰ = 1.4892; refractive</pre>
	glass wool. (2) Chloroform. B.p. (1 atm)/°C = 61.1 - 61.2; density, $\rho_4^{20} = 1.4892$; refractive index, $n_D^{20} = 1.4464$.
	glass wool. (2) Chloroform. B.p. (1 atm)/°C = 61.1 - 61.2; density, $\rho_4^{20} = 1.4892$; refractive index, $n_D^{20} = 1.4464$.
	glass wool. (2) Chloroform. B.p. (1 atm)/°C = 61.1 - 61.2; density, $\rho_4^{20} = 1.4892$; refractive index, $n_D^{20} = 1.4464$.
	glass wool. (2) Chloroform. B.p. $(1 \text{ atm})/^{\circ}C = 61.1 - 61.2$; density, $\rho_{+}^{20} = 1.4892$; refractive index, $n_{D}^{20} = 1.4464$. ESTIMATED ERROR:
	glass wool. (2) Chloroform. B.p. (1 atm)/°C = 61.1 - 61.2; density, $\rho_4^{20} = 1.4892$; refractive index, $n_D^{20} = 1.4464$.
	glass wool. (2) Chloroform. B.p. $(1 \text{ atm})/^{\circ}C = 61.1 - 61.2$; density, $\rho_{+}^{20} = 1.4892$; refractive index, $n_{D}^{20} = 1.4464$. ESTIMATED ERROR:
	glass wool. (2) Chloroform. B.p. $(1 \text{ atm})/^{\circ}C = 61.1 - 61.2$; density, $\rho_{4}^{20} = 1.4892$; refractive index, $n_{D}^{20} = 1.4464$. ESTIMATED ERROR: REFERENCES:
	glass wool. (2) Chloroform. B.p. $(1 \text{ atm})/^{\circ}C = 61.1 - 61.2; \text{ density}, \rho_{4}^{20} = 1.4892; \text{ refractive index}, n_{D}^{20} = 1.4464.$ ESTIMATED ERROR: REFERENCES: 1. Strepikheev, Yu. A.;
	glass wool. (2) Chloroform. B.p. $(1 \text{ atm})/^{\circ}C = 61.1 - 61.2$; density, $\rho_{4}^{20} = 1.4892$; refractive index, $n_{D}^{20} = 1.4464$. ESTIMATED ERROR: REFERENCES: 1. Strepikheev, Yu. A.; Babkin, B. M.
	glass wool. (2) Chloroform. B.p. $(1 \text{ atm})/^{\circ}C = 61.1 - 61.2$; density, $\rho_{4}^{20} = 1.4892$; refractive index, $n_{D}^{20} = 1.4464$. ESTIMATED ERROR: REFERENCES: 1. Strepikheev, Yu. A.; Babkin, B. M.
	glass wool. (2) Chloroform. B.p. $(1 \text{ atm})/^{\circ}C = 61.1 - 61.2$; density, $\rho_{4}^{20} = 1.4892$; refractive index, $n_{D}^{20} = 1.4464$. ESTIMATED ERROR: REFERENCES: 1. Strepikheev, Yu. A.; Babkin, B. M.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Hamai, S. Bull. Chem. Soc. Jpn. 1935, 10,
<pre>(2) Tetrachloromethane; CCl₄; [56-23-5]</pre>	5 - 16.
VARIABLES: T/K: 288.15 - 298.15 Total P/kPa: 56.06 - 103.92 (420.5 - 779.5 mmH	PREPARED BY: W. Gerrard g)
EXPERIMENTAL VALUES: T/K Total Pressur	M -
p/mmHc	
288.15 420.5 515.5 614.0	0.00928 0.01170
664.0	
(760	0.01826) ¹
293.15 425.0 521.0	
572.0	0.00876
(760	0.01550) 1
298.15` 433.5 531.5	0.00622
580.0	
680.5	0.00955
779.5	
(760	0.01277) ¹
partial pressure of 760 mmHg (1)	the compiler for a hydrogen chloride 01.325 kPa). It was assumed that the same for the solution and pure solvent.
AUXILIA	RY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus consisted of a U shaped gas buret, connected to a gas reservoir (335 cm ³ capacity) which was connected to the absorp- tion vessel. The volume of hydroge chloride absorbed by 20 cm ³ of the original liquid was converted into the amount of gas absorbed at a measured total pressure. The author obtained the heat of absorption, ΔH_t , of -6100 cal mol ⁻¹	n was passed through conc. sulfuric acid and twice condensed by
(-25.2 kJ mol ⁻¹) from the slope of a plot of log x_1 vs. 1/T.	ESTIMATED ERROR:
	REFERENCES :

00000000000					
			ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>			Howland, J. J.; Miller, D. R. Willard, J. E.		
<pre>(2) Tetrachloromethane; CCl₄; [56-23-5]</pre>			J. Am. Chem. Soc 2807 - 2811.	e. <u>1941</u> , <i>63</i> ,	
VARIABLES: T/K: 273.15 - 298.15 P/kPa: 16.40 - 92.66 (123 - 695 mmHg)			PREPARED BY: W. Ge	errard	
EXPERIMENT	AL VALUES:				
Т/К	Pressure or Pressure Range pl/mmHg	Number of Determination		Mol Fraction ²	
273.15	269 - 667	4	3.22 ± 0.01	0.0245	
293.15	123 - 695	7	2.34 ± 0.03	0.0178	
298.15	178.5 379.5 425.0 548.5 662.5		2.12 2.11 2.16 2.17 2.14	0.00379 ³ 0.00803 ³ 0.00922 ³ 0.01190 ³ 0.01415 ³	
	178 - 662	5	2.14 ± 0.02	0.0163	
set o	f data given by	the authors.			
	<u> </u>	AUXILIARY	INFORMATION		
METHOD/APP	ARATUS/PROCEDURE:		SOURCE AND PURITY OF	MATERIALS:	
an abso added t pressur sure, p gas par total p manomet	$= p_t - p_2^{\circ}(1 - x_1)$	solvent was the vapor . This pres- alculate the 1, from the sured by the).	dropping sul sodium chlor passed throu calcium chlo (2) Tetrachlorom	Loride. Prepared by Lfuric acid onto ride. The gas was ugh glass wool and oride. methane. Merck and Co. cade, purified and	
The amount of gas absorbed in a measured weight of solution with- drawn as a sample, was determined by a chemical titration.			ESTIMATED ERROR: $\delta K/K = 0.01$		
The heat of solution was determined to be -2.67 ± 0.30 kcal mol ⁻¹ (-11.17 kJ mol ⁻¹).			REFERENCES :		

Hydrogen Chloride in Non-Aqueous Solvents

COMPONENTS :		·····		ORI	GINAL MEASUREMENTS	:	
(1) Hydrog		e; HCl;		Zielinski, A. Z.			
<pre>[7647-01-0] (2) Tetrachloromethane or carbon tetrachloride; CCl₄; [56-23-5]</pre>				Pr	Przem. Chem. <u>1958</u> , 37, 338 - 339.		
VARIABLES:						<u> </u>	
Т	/K = 293.1 Pa = 71.8 (539.	5 - 313.1 9 - 89.6 2 - 672.4	5 5 mmHg)	PRE	PARED BY: W.	Gerrard	
EXPERIMENTAL	VALUES:						
T/K	Hydrogen Chloride Pressure		ompositi CCl4	.on	Kuenen Coefficient	Mol Ratio	Mol Fraction
	p ₁ /mmHg		n_2/mmo	1	S/cm^3 (STP) g ⁻¹ atm ⁻¹	n ₁ /n ₂	<i>x</i> 1
293.15	672.4 672.4	1.157 1.234	101.4 102.1		1.88 1.99	0.0114 0.0121	0.0113 0.0120 0.0132 ¹
303.15	613.8 613.8	0.971 1.009	97.8 101.5		1.79 1.79	0.0099 0.0099	0.0098 0.0098 0.0121 ¹
313.15	539.2 539.2	0.934 0.821	111.6 100.4		1.72 1.68	0.0084 0.0082	0.0084 0.0082 0.0117 ¹
fraction The aut	n at 101.3 hor took t	25 kPa (l he HCl pai	atm) va	lue: essu	f the experimen s were calculat ure to be the d solvent vapor p	ed by the c ifference b	ompiler.
		<u> </u>	AUXILIARY				
METHOD/APPARA	TUS/PROCEDUF	Æ:		SOURCE AND PURITY OF MATERIALS:			
METHOD/APPARATUS/PROCEDURE: Hydrogen chloride was absorbed by the liquid in an absorption vessel described by Bichowsky and Storch (1) The amount absorbed was determined by a chemical titration.				I I	May be assumed purity.	to be of sa	tisfactory
To calculate the volume of HCl absorbed by one gram of liquid, at 760 mmHg, 22.42 dm ³ mol ⁻¹ was taken as the the molar volume of HCl at 273.15 K and 1 atm. The volume based							
on the real density of HCl under thes conditions is (compiler) 22.247 dm ³ mol ⁻¹ .			EST	IIMATED ERROR:			
				REI	FERENCES :		
					Bichowsky, F. J. Am. Chem. S	R. v.; Stor <i>oc. <u>1915</u>, 3</i>	ch, H. 7, 2695.

Hydrogen Chloride in N	Ion-Aqueous Solvents 253
COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Curda, M.; Holas, J. Chem. Prumysl <u>1964</u> , 14, 547 - 548.
<pre>(2) Tetrachloromethane; CCl₄; [56-23-5]</pre>	
VARIABLES: T/K = 273.15 - 343.15 p / kPa = 101.325 (1 atm)	PREPARED BY: W. Gerrard
	(smoothed data calculated by H.L. Clever)
	atio ¹ Mol Fraction
$g_{1}/10^{2}$	<i>y</i> ₂ <i>x</i> ₁
273.15 0.43	0.0178
283.15 0.39	
293.15 0.34 303.15 0.30	
323.15 0.19	
343.15 0.06	0.0025
The mole fraction	
lated by the compi- Smoothed Data: For use between 273.	
	K)+1691.006 ln(T/100 K)-291.983(T/100K)
1	
	regression line is 5.32 x 10 ⁻⁴ . Fraction
I/K MOI	<i>x</i> ₁
283.15	0.0156
	0.0136
	0.0107
	0.0063
343.15	
¹ The weight ratio is grams of HCl p	per 100 grams of tetrachloromethane.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The gas was passed through the	(1) Hydrogen chloride. May be
liquid in a jacketed bubbler tube	taken as of satisfactory
fitted with a sampling tap at the	purity.
bottom. The amount of hydrogen chloride in a sample was determined	(2) Tetrachloromethane. Rectified
by a chemical titration.	technical grade. B.p.
The pressure was presumably	$(1 \text{ atm})/^{\circ}C = 77.$
atmospheric.	
	ESTIMATED ERROR:
	REFERENCES :
1	

254 Hydrogen Chloride in	
COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Vdovichenko, V. T.; Kondratenko, V. I.
<pre>(2) Tetrachloromethane; CCl₄; [56-23-5]</pre>	Khim. Prom. <u>1967</u> , 43, 290 - 291.
VARIABLES: T/K = 266.15 - 298.15 p /kPa = 101.325 (1 atm)	PREPARED BY: W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	······································
	Mol Fraction x ₁
266.15 273.15 283.15 293.15 293.15 298.15	0.028 0.020 0.016 0.015 0.014
The mole fraction values appear to be	for a total pressure of one atm.
Smoothed Data: For use between 266.1	5 and 298.15 K.
$\ln x_{\tau} = -243.30 + 339$.06/(T/100 K) + 114.73 ln (T/100 K)
The standard error about the re	
	Mol Fraction x ₁
268.15	
278.15 288.15	0.018 0.015
298.15	0.014
AUXILIARY	INFORMATION
ME THOD / AP PARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Solubility determined at atmospheric pressure by the method described by Strepikheev and Babkin (1).	(1) Hydrogen chloride. Obtained from chemically pure sodium chloride and concentrated sulfuric acid, dried by calcium chloride and filtered through glass wool.
	(2) Tetrachloromethane. B.p. (1 atm)/°C = 76.7 - 76.8; density, $\rho_{\mu}^{20} = 1.5970;$ refractive index, $n_{D}^{20} = 1.4602.$
	ESTIMATED ERROR:
	REFERENCES: 1. Strepikheev, Yu. A.; Babkin, B. M. Khim. Prom. <u>1963</u> , (1), 38.

Hydrogen Chloride in	Non-Aqueous Solvents 255				
COMPONENTS:	ORIGINAL MEASUREMENTS:				
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Khodeeva, S.M.; Rozovskii, M.B.				
<pre>(2) Tetrachloromethane; CCl₄; [56-23-5]</pre>	Zh. Fiz. Khim. <u>1975</u> , 49, 1396-1400. Russ. J. Phys. Chem. (Engl. Transl. <u>1975</u> , 49, 824-827.				
VARIABLES:	PREPARED BY:				
T/K: 293 - 323 Total p/kPa : 24.13 - 99.46 (181 - 746 mmHg)	P.G.T. Fogg				
EXPERIMENTAL VALUES:					
The authors stated that the data were Ilinskaya equation:	represented by the Krichevskii-				
$\log_{10}(p_1/\text{mmHg}) = \log_{10}((K/$	mmHg) x_1) - $\beta(1 - x_2^2)$				
where $\beta = A/2.303$ RT. Values of A, K 293 - 323 K.	and $\boldsymbol{\beta}$ were given at 5 K intervals from				
Temperature t/°C T/K A/cal mol ⁻¹	K/mmHg β				
25 298 1700 30 303 0 35 308 -6700 40 313 -8600 45 318 -15000	37200 2.4 38300 1.4* 39300 0 36300 -2.4* 33700 -6.0 31600 -10.5 24600 -17.0				
The value of A is not consistent wi	313 318 323 151 0.0150 0.0129 0.0121 th that of β . The mole fraction 1.013 bar has been calculated using				
AUXILIARY	INFORMATION				
METHOD/APPARATUS/PROCEDURE	SOURCE AND PURITY OF MATERIALS:				
The apparatus was similar to that described by Khodeeva (1). Total vapor pressures over solutions of different composition were measured.	 Hydrogen chloride. Obtained from "pure grade" hydrochloric acid, water vapor being removed at -50°C, and HCl being collected at the temperature of liquid nitrogen. 				
	 Tetrachloromethane. Chemically pure. Distilled. 				
	$d_4^{20} = 1.594 \text{ g cm}^{-3}$				
	ESTIMATED ERROR:				
	REFERENCES:				
	 Khodeeva, S.M. Zh. Fiz. Khim. <u>1961</u>, 35, 629. 				

•

COMPONENTS:	ORIGINAL MEASUREMENTS:				
 Hydrogen chloride; HCl; 	Bell, R. P.				
[7647-01-0]	L Cham Con 1021				
	J. Chem. Soc. <u>1931</u> , 1371 - 1382.				
(2) Chloroethanes.	1371 - 1382.				
VARIABLES:	PREPARED BY:				
T/K: 293.15 P/kPa: 101.325 (1 atm)	W. Gerrard				
17 AF 41 1010000 (1 4 4 4 4)					
EXPERIMENTAL VALUES:					
EXPERIMENTAL VALUES:	,				
T/K Partitic					
Coefficie					
c _{1,l} /c ₁	g				
	ane: C H Cl :				
1,2-Dichloroet [107-06-2]					
• •					
293.15 14.74	0.0457				
1,1,2,2-Tetrack	loroethane:				
$C_{2}H_{2}Cl_{4};$ [79-34					
293.15 6.20	0.0265				
Pentachloroetha	ane. C HCl :				
[76-01-7]	me, c ₂ , 5,				
293.15 3.86	0.0214				
The ideal gas conce	entration at $p_1 = 1$ atm				
$i = 2 (mol \ dm^{-3}) =$	n/V = p/RT = 0.0417.				
AUXILIARY	INFORMATION				
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:				
The apparatus consisted of a 50 cm^3	(1) Hydrogen chloride. Prepared by				
bulb extended at the top as a	dropping pure concentrated				
graduated tube, and sealed at the	hydrochloric acid into pure sulfuric acid.				
bottom to a capillary U-tube. The liquid was saturated with gas at	sulluric aciu.				
atmospheric pressure. The gas was	(2) Chloroethanes. Good specimens				
displaced from the saturated solu-	were dried over calcium				
tion by a current of dry CO ₂ free	chloride, and distilled.				
air, absorbed in water, and	Boiling points are given in paper.				
titrated with a solution of NaOH.	baber.				
The solubility, c/mol dm ⁻³ , was					
converted to a partition coefficient	ESTIMATED ERROR:				
by dividing by the ideal gas con-					
centration of HCl in the gas phase.	$\delta T/K = 0.01$				
	$\delta c/c = 0.01$				
The mole fraction solubility was calculated on the assumption that					
the density of the solution obeys	REFERENCES:				
the ideal mixture law.					

COMPONENTS:	ORIGINAL MEASUREMENTS:				
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Hamai, S.				
(2) 1,2-Dichloroethane; C ₂ H ₄ Cl ₂ ; [107-06-2]	Bull. Chem. Soc. Jpn. <u>1935</u> , 10, 5 - 16.				
VARIABLES:	PREPARED BY:				
T/K: 288.15 - 298.15 Total P/kPa: 45.66 - 97.53 (342.5 - 731.5 mmHg)	W. Gerrard				
EXPERIMENTAL VALUES: T/K Total Pressure p/mmHg	Mol Fraction				
288.15 342.5 422.0 533.5 550.0 (760.0	0.0188 0.0229 0.0298 0.0300 0.04377) ¹				
293.15 520.5 526.5 540.0 600.0 731.5 (760.0	0.0253 0.0258 0.0261 0.0303 0.0350 0.03993) ¹				
298.15 467.5 500.0 584.0 680.0 (760.0	0.0198 0.0213 0.0252 0.0291 0.03576) ¹				
partial pressure of 760 mmHg (101.	e compiler for a hydrogen chloride 325 kPa). It was assumed that the e for the solution and pure solvent.				
AUXILIARY	INFORMATION				
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:				
The apparatus consisted of a U shaped gas buret, connected to a gas reser- voir (335 cm ³ capacity) which was connected to the absorption vessel. The volume of hydrogen chloride absorbed by 20 cm ³ of the original liquid was converted into the amount of gas absorbed at a measured total pressure. The author obtained the heat of					
absorption, ΔH , of -3500 cal mol ⁻¹ (-14.64 kJ mole ⁻¹) from the slope of a plot of log x_1 vs. 1/T.	ESTIMATED ERROR:				
	REFERENCES:				

(1) Hydrogen chloride; HCl;	ORIGINAL ME	
		Yu. A.; Flid, R. M.;
[7647-01-0] (2) 1,2-Dichloroethane; C ₂ H ₄ Cl ₂ ;		I. F.; Avet'yan, M. G.;
[107-06-2] 2 4 2 1,1,2-Trichloroethane; C ₂ H ₃ Cl ₂	Zh. Fiz.	Khim. <u>1967</u> , 41, 2967 - 8.
[79-00-5] 1,1,2,2-Tetrachloroethane; C ₂ H	Russ. J.	Phys. Chem. (Engl. Transl.) , 1596 - 8.
[79-34-5] Trichloroethene; C ₂ HCl ₃ ;[79-0]	1-6] PREPARED BY	?:
VARIABLES: $T/K = 253 - 333$ $p_1/kPa = 26.7 - 101.325$		W. Gerrard
EXPERIMENTAL VALUES:		
Liquid	Enthalpy of Dissolution $\Delta H/cal mol^{-1}$	Entropy of Dissolution $\Delta S/cal K^{-1}mol^{-1}$
1,2-Dichloroethane	-4150 ± 50	-20.5
1,1,2-Trichloroethane	-4070 ± 100	-19.7
1,1,2,2-Tetrachloroethane	-2820 ± 100	-16.7
Trichloroethene	-3230 ± 100	-18.9
values or units of Henry's con thermodynamic properties of di mole ratio, $K/mol mol^{-1}$ log ($K/mol mol^{-1}$) = -($\Delta H/cal mol^{-1}$)	ssolution were	e calculated from the
		(K) + (ΔS /cal K 'mol ⁻¹)/2.3F
IIXUA	LIARY INFORMATION	
	COURCE AND	
(Continued from above) One diagram showed plots of $10^2 K/mol mol^{-1} vs$ $p_1/mmHg$. Each line was shown as b straight, but the temperature was	source and s. being (1) Hydro dried	PURITY OF MATERIALS: ogen chloride. Purified and
(Continued from above) One diagram showed plots of $10^2 K/mol mol^{-1} vs p_1/mmHg$. Each line was shown as b	source AND (1) Hydro dried of (2) Chlor	PURITY OF MATERIALS: ogen chloride. Purified and
(Continued from above) One diagram showed plots of $10^2 K/mol mol^{-1} vs$ $p_1/mmHg$. Each line was shown as b straight, but the temperature was stated. Their Fig. 2 showed plots log (K/mol mol ⁻¹) vs. $1/(T/K)$. Ea line was drawn as straight, but a value of $1/T$ was missing. The pre	SOURCE AND Source AND (1) Hydro dried dried (2) Chlor source with the source	PURITY OF MATERIALS: ogen chloride. Purified and 1. cocarbons. No information.
(Continued from above) One diagram showed plots of $10^2 K/mol mol^{-1} vs$ $p_1/mmHg$. Each line was shown as b straight, but the temperature was stated. Their Fig. 2 showed plots log (K/mol mol ⁻¹) vs. $1/(T/K)$. Ea line was drawn as straight, but a value of $1/T$ was missing. The pre for the K value was not given. The equation above should be used caution. It gives values of K of magnitude in figure 1, but it doe not reproduce the order of solubi shown in the figure.	source and sof cond sof cond sof cond cond cond cond cond cond cond cond	PURITY OF MATERIALS: ogen chloride. Purified and 1. cocarbons. No information.
(Continued from above) One diagram showed plots of $10^2 K/mol mol^{-1} vs$ $p_1/mmHg$. Each line was shown as b straight, but the temperature was stated. Their Fig. 2 showed plots log (K/mol mol ⁻¹) vs. $1/(T/K)$. Ea line was drawn as straight, but a value of $1/T$ was missing. The pre for the K value was not given. The equation above should be used caution. It gives values of K of magnitude in figure 1, but it doe not reproduce the order of solubi	source AND define a not a not (1) Hydro dried (2) Chlor a not essure a with the s lity e pressure of a for measurem king. The con	PURITY OF MATERIALS: ogen chloride. Purified and i. cocarbons. No information. ERROR: $\delta T/K = \pm 0.1$ $\delta K/K = \pm 0.01$ HCl was measured with a ments at lower partial itents of the cell were

ORIGINAL MEASUREMENTS:
Danov, S. M.; Golubev, Yu. D.
Khim. Prom_st. (Moscow) <u>1968</u> , 44 (2), 116 - 120.
PREPARED BY:
W. Gerrard
INFORMATION
SOURCE AND PURITY OF MATERIALS:
(1) Hydrogen chloride. Probably of
(2) 1,1-Dichloroethane. Purity checked by chromatography.
ESTIMATED ERROR:
REFERENCES:

	2	04.55	2	09.65	2	15.15	2	20.65	2	26.15	2	31.15	2	36.65	24	2.65	EXPE	(2)	(1)	KO V	260
p/mmHg	S1	x 1 1	S1	x 2 1	S1	x 1 ²	S1	x ₁ ²	Sì	x 2 2	S ¹	x 2 1	S1	x 2 2	S 1	x1 ²	RIMENTA	1,1 [75	Hydrogen chloride; [7647-01-0]	COMPONENTS	
100	16.2	0.0674	12.9	0.0547	10.4	0.0444	8.4	0.0364	6.6	0.0288	5.9	0.0257	4.8	0.0213	4.1	0.0187	NTA		47-	NTS	
200	34.9	0.1348	27.5	0.1094	21.8	0.0888	17.6	0.0728	13.7	0.0576	12.1	0.0514	9.9	0.0426	8.4	0.0362	F	Dichloroethane; 34-3]	or-		
300	56.7	0.2022	44.0	0.1641	34.4	0.1332	27.4	0.1092	21.2	0.0864	18.7	0.0771	15.3	0.0639	12.8	0.0543	/AL	0F	<u>o</u> c		
400	82.6	0.2696	62.8	0.2188	48.4	0.1776	38.1	0.1456	29.1	0.1152	25.6	0.1028	20.9	0.0852	17.5	0.0724	UES	oet	loı		
500	113.8	0.3370	84.4	0.2735	64.0	0.2200	49.7	0.1820	37.7	0.1440	33.1	0.1285	26.7	0.1065	22.3	0.0905		cha	rid		H Ya
600			109.6	0.3282	81.4	0.2664	62.5	0.2184	46.8	0.1728	40.8	0.1542	32.9	0.1278	27.3	0.1086		ne;			dro
700					114.2	0.3377	85.5	0.2764	62.8	0.2190	54.3	0.1953	43.4	0.1623	35.8	0.1379			HC1		gen
800							91.9	0.2910	67.1	0.2305	57.9	0.2056	46.1	0.1708	38.0	0.1452		2 ^H ,	1;		오 오
900							109.0	0.3274	78.4	0.2593	67.4	0.2313	53.3	0.1921	43.7	0.1632		C2H4C12			- P
1000									90.6	0.2881	77.4	0.2570	60.8	0.2134	49.6	0.1813		2			de
Henry's Constan K/mmHg ¹ Kuene ² Mole ³ Henry	t n coef fracti	on hydr	, S/cm ogen c	hloride	g ⁻¹ at: ,		2	749	3	470	3	891	46	82	5	510		44 (2), 116 - 120. 44 (2), 116 - 120.	S. M.; Golubev, M	ORIGINAL MEASUREMENTS:	Hydrogen Chloride in Non-Aqueous Solvents

			Chioride in I	·				
COMPONENTS: (1) Hvd:		ride; HCl;		ORIGINAL MEASUREME Zielinski, A.				
	47-01-0]	,,		Przem. Chem. <u>1958</u> , 37, 338 - 339.				
(2) 1,2- [10]	-Dichloroe 7-06-2]	thane; C ₂ F	44 ^{C1} 2;					
HADTADI DC.	<u> </u>					· ·· · · · · · · · · · · · · · · · · ·		
P ₁	T/K = 293 /kPa = 79. (59	.15 - 313. 74 - 92.62 8.1 - 694.	15 2 7 mmHg)	PREPARED BY:	W. Gerrard			
EXPERIMENT	L VALUES:				· · · · · · · · · · · · · · · · · · ·			
	Hydrogen	Liquid Co	mposition	Kuenen	Mol Ratio	Mol		
- /	Chloride			Coefficient	n_1/n_2	Fraction		
	Pressure p ₁ /mmHg		$\frac{C_2H_4Cl_2}{n_2/mmol}$	S/cm^3 (STP) g ⁻¹ atm ⁻¹	2	<i>x</i> 1		
293.15	694.7	4.336	122.2	8.79	0.0355	0.0343		
	694.6	4.409	125.7	8.69	0.0351	0.0339 0.0374 ¹		
303.15	661.1	2.989	121.6	6.40	0.0246	0.0240		
	661.2	2.690	108.4	6.45	0.0248	0.0242 0.0275 ¹		
313.15	598.1	2.466	134.9	5.26	0.0183	0.0180		
	598.1	2.504	134.6	5.29	0.0186	0.0183 0.0227 ¹		
the ba	rometric	pressure a	na the pur	e solvent vapor	pressure.			
<u>. </u>			AUXILIARY	INFORMATION				
Hydrogen liquid i describe (1). Th	n an abso: d by Bicho e amount a	DURE: was absor rption ves owsky and absorbed w al titrati	sel Storch as deter-	SOURCE AND PURITY May be assumed factory purity	to be of s	atis-		
absorbed 760 mmHg as the m 273.15 K based on under th	by one gr , 22.42 dr olar volur and 1 atr the real	volume of ram of liq n ³ mol ⁻¹ w ne of HCl n. The vo density o tions is (uid, at as taken at lume f HCl	ESTIMATED ERROR:				
				REFERENCES: 1. Bichowsky, J. Am. Chem	F. R. v.; S [.] . <i>Soc</i> . <u>1915</u>	torch, H. , 37, 2695.		

.

COMPORENTS: (1) Hydrogen chloride; HCl; [7647-01-0] (2) 1.2-Dichloroethane; $C_2H_4Cl_2$; [107-06-2] VARIABLES: T/K = 273.15 - 333.15 p/KPa = 101.325 (1 atm) EXPERIMENTAL VALUES: Temporature Hydrogen $T/K = 10^2 x_1/mol \ \%$ $T/K = 10^2 x_1/mol \ \%$ $T = 10^2 (K\pi v/atm) = \lambda - (\Delta H/cal mol^{-1})/(2.3R(T/K))$ The author's definitions are: $K = y_1/x_1 = mole \ Traction \ gas \ in \ gas \ phase$ $\pi/atm \ = 0 \ fraction \ gas \ in \ liquid \ phase$, $\pi/atm \ = 0 \ fraction \ gas \ in \ liquid \ phase$, $\pi/atm \ = 0 \ fraction \ gas \ in \ liquid \ phase$, $\pi/atm \ = 0 \ fraction \ gas \ in \ liquid \ phase$, $\pi/atm \ = 0 \ fraction \ gas \ in \ liquid \ phase$, $\pi/atm \ = 0 \ fraction \ gas \ in \ liquid \ phase$, $\pi/atm \ = 0 \ fraction \ gas \ in \ liquid \ phase$, $\pi/atm \ = 0 \ fraction \ gas \ in \ liquid \ phase$, $\pi/atm \ = 0 \ fraction \ gas \ in \ liquid \ phase$, $\pi/atm \ = 0 \ fraction \ gas \ hormato \ fraction \ gas \ hormato \ fraction \ gas \ hormato \ fraction \ fraction \ gas \ hormato \ fraction \ fract$,						
$ \begin{bmatrix} 7647-01-03 \\ 1,2-Dichloroethane; C_H_4Cl_2; \\ [107-06-2] \\ 107-06-2] \\ \hline \\ $	COMPONENTS :	ORIGINAL MEASUREMENTS:					
VARIABLES: T/K = 273.15 - 333.15 $p/KPa = 101.325 (1 atm)$ EXPERIMENTAL VALUES: Temperature Hydrogen KTU/atm ¹ Enthalpy of Constant Interval of Chloride at Dissolution A Measurements Mol % Range 293.15 K $T/K = 10^2 x_1/mol %$ $T/K = 10^2 x_1/$							
T/K = 273.15 - 333.15 $p/kPa = 101.325$ (1 atm)W. GerrardEXPERIMENTAL VALUES:Temperature Hydrogen Mol % Range 293.15 KEnthalpy of DissolutionTemperature Hydrogen Mol % Range 293.15 KMU/Atm ¹ DissolutionTemperature Hydrogen Mol % Range $273.15-333.15$ I - 3 24.6 A $M/kcal mol-1273.15-333.151 - 324.624.63.544.041 log (Xmv/atm) = A - (\Delta H/cal mol^{-1})/(2.3R(T/K))The author's definitions are:K = y_1/x_1 = mole fraction gas in gas phasemole fraction gas in liquid phase ,\pi/atm \doteq total pressure,v = coefficient of fugacity.The function, K\piv/atm, is equivalent to a Henry's constant in the form\pi_{1,2}/atm = (f_1/atm)/x_1 where f_1 is the fugacity.MUNILLARY INFORMATIONMUNILLARY I$	(2) 1,2-Dichloroethane; C ₂ H ₄ Cl ₂ ; [107-06-2]						
T/K = 273.15 - 333.15 $p/kPa = 101.325$ (1 atm)W. GerrardEXPERIMENTAL VALUES:Temperature Hydrogen Mol % Range 293.15 KEnthalpy of DissolutionTemperature Hydrogen Mol % Range 293.15 KMU/Atm ¹ DissolutionTemperature Hydrogen Mol % Range $273.15-333.15$ I - 3 24.6 A $M/kcal mol-1273.15-333.151 - 324.624.63.544.041 log (Xmv/atm) = A - (\Delta H/cal mol^{-1})/(2.3R(T/K))The author's definitions are:K = y_1/x_1 = mole fraction gas in gas phasemole fraction gas in liquid phase ,\pi/atm \doteq total pressure,v = coefficient of fugacity.The function, K\piv/atm, is equivalent to a Henry's constant in the form\pi_{1,2}/atm = (f_1/atm)/x_1 where f_1 is the fugacity.MUNILLARY INFORMATIONMUNILLARY I$	VARIABLES:	PREPARED BY:					
Temperature Interval of MeasurementsHydrogen Chloride at 293.15 K Mol & Range 293.15 K Mol $\chi_1/mol $ Enthalpy of Dissolution Mather at Dissolution A $\Delta H/kcal mol^{-1}$ 273.15-333.151 - 324.63.544.041log ($X \pi v/atm$) = A - ($\Delta H/cal mol^{-1}//(2.3R(T/K))$ The author's definitions are: $K = y_1/x_1 = mole fraction gas in gas phasemole fraction gas in liquid phase ,\pi/atm = total pressure,v = coefficient of fugacity.The function, X \pi v/atm, is equivalent to a Henry's constant in the formH_{1,2}/atm = (f_1/atm)/x_1 where f_1 is the fugacity.AUXILIARY INFORMATIONMUXILIARY INFORMATION$	T/K = 273.15 - 333.15						
Interval of MeasurementsChloride ange $10^2 x_1/mol %$ at DissolutionDissolution A $M/kcal mol^{-1}$ 273.15-333.15 $1 - 3$ 24.6 3.54 4.04 1log ($K\pi\nu/atm$) = A - ($\Delta H/cal mol^{-1}$)/(2.3R(T/K))The author's definitions are: $K = y_1/x_1 = mole fraction gas in gas phasemole fraction gas in liquid phase ,\pi/atm \doteq total pressure,\nu = coefficient of fugacity.The function, K\pi\nu/atm, is equivalent to a Henry's constant in the formH_{1, E}/atm = (f_1/atm)/x_1 where f_1 is the fugacity.METHOD/APPARATUS/PROCEDURE:The authors describe three methods:1.A. [Saturat. n° 1]. A measure ofthe static pressure of saturationin an apparatus which gave a precisionof 10 - 15 %.SOURCE AND PURITY OF MATERIALS:(1) Hydrogen chloride. BASF. Puritystated to be greater than 99.9 %.(2) 1,2-Dichloroethane. Attested byspectroscopy and gas chromato-graphy as having purity greaterthan 99.9 per cent.1.B. [Saturat. n° 2]. A measure ofthe static pressure of satura-tion in an apparatus which gave aprecision of 2 - 5 %.SURCE AND PURITY OF MATERIALS:(1) Hydrogen chloride. BASF. Puritystated to be greater than 99.9 %.ESTIMATED ERROR:2. [Chromato]. A Gas liquid chromato-graphic method estimated to havea precision of 2 - 5 %.ESTIMATED ERROR:ESTIMATED ERROR:3. [Anal. directe]. Direct analysisof the gaseous and liquid phases.EFERENCES:$	EXPERIMENTAL VALUES:						
I log (Kπν/atm) = A - (ΔH/cal mol ⁻¹)/(2.3R(T/K)) The author's definitions are: $K = y_1/x_1 = mole fraction gas in gas phasemole fraction gas in liquid phase ,\pi/atm \doteq total pressure,v = coefficient of fugacity. The function, Kπv/atm, is equivalent to a Henry's constant in the formH_{1,2}/atm = (f_1/atm)/x_1 where f_1 is the fugacity. METHOD/APPARATUS/PROCEDURE:The authors describe three methods:1.A. [Saturat. n° 1]. A measure ofthe static pressure of saturationin an apparatus which gave a precisionof 10 - 15 %. 1.B. [Saturat. n° 2]. A measure ofthe static pressure of saturationin an apparatus which gave aprecision of 2 - 5 %. 2. [Chromato]. A Gas liquid chromato-graphic method estimated to havea precision of 2 - 5 %. 3. [Anal. directe]. Direct analysisof the gaseous and liquid phases. $	Interval of Chloride a Measurements Mol % Range 293.	t Dissolution 15 K A					
The author's definitions are: $K = y_1/x_1 = \text{mole fraction gas in gas phase} \\ \pi/atm = total pressure, \\ v = coefficient of fugacity.$ The function, $K\pi v/atm$, is equivalent to a Henry's constant in the form $H_{1,2}/atm = (f_1/atm)/x_1$ where f_1 is the fugacity. METHOD/APPARATUS/PROCEDURE: The authors describe three methods: 1.A. [Saturat. n° 1]. A measure of the static pressure of saturation in an apparatus which gave a precision of 2 - 5 %. 2. [Chromato]. A Gas liquid chromatographic method estimated to have a precision of 2 - 5 %. 3. [Anal. directe]. Direct analysis of the gaseous and liquid phases. REFERENCES:	273.15-333.15 1 - 3 24	.6 3.54 4.04					
$K = y_1/x_1 = \frac{\text{mole fraction gas in gas phase}{\text{mole fraction gas in liquid phase}},$ $\pi/\text{atm} \doteq \text{total pressure,}$ $\nu = \text{coefficient of fugacity.}$ The function, $K\pi\nu/\text{atm}$, is equivalent to a Henry's constant in the form $H_{1,2}/\text{atm} = (f_1/\text{atm})/x_1 \text{ where } f_1 \text{ is the fugacity.}$ METHOD/APPARATUS/PROCEDURE: The authors describe three methods: 1.A. [Saturat. n ⁰ 1]. A measure of the static pressure of saturation in an apparatus which gave a precision of 10 - 15 %. 2. [Chromato]. A Gas liquid chromato- graphic method estimated to have a precision of 2 - 5 %. 3. [Anal. directe]. Direct analysis of the gaseous and liquid phases. REFERENCES:	¹ log (K $\pi v/atm$) = A - ($\Delta H/cal mol^{-1}$	¹)/(2.3R(<i>T</i> /K))					
$\pi/atm \doteq total pressure,$ $v = coefficient of fugacity.$ The function, $K\pi\nu/atm$, is equivalent to a Henry's constant in the form $H_{1,2}/atm = (f_1/atm)/x_1 \text{ where } f_1 \text{ is the fugacity.}$ METHOD/APPARATUS/PROCEDURE: The authors describe three methods: 1.A. [Saturat. n ⁰ 1]. A measure of the static pressure of saturation in an apparatus which gave a precision of 10 - 15 %. 1.B. [Saturat. n ⁰ 2]. A measure of the static pressure of saturation in an apparatus which gave a precision of 2 - 5 %. 3. [Anal. directe]. Direct analysis of the gaseous and liquid phases. REFERENCES:	The author's definitions are:						
<pre>v = coefficient of fugacity. The function, Kmv/atm, is equivalent to a Henry's constant in the form H_{1,2}/atm = (f₁/atm)/x₁ where f₁ is the fugacity. AUXILIARY INFORMATION KETHOD/APPARATUS/PROCEDURE: The authors describe three methods: 1.A. [Saturat. n⁰ 1]. A measure of the static pressure of saturation in an apparatus which gave a precision of 10 - 15 %. 1.B. [Saturat. n⁰ 2]. A measure of the static pressure of saturation in an apparatus which gave a precision of 2 - 5 %. 2. [Chromato]. A Gas liquid chromato- graphic method estimated to have a precision of 2 - 5 %. 3. [Anal. directe]. Direct analysis of the gaseous and liquid phases. REFERENCES:</pre>	$K = y_1 / x_1 = \frac{\text{mole}}{\text{mole}}$	fraction gas in gas phase fraction gas in liquid phase ,					
<pre>The function, K \u03c0 \u03c0 ATT ATT ATT ATT ATT ATT ATT ATT ATT AT</pre>	π/atm ≐ total pres:	sure,					
<pre>H_{1,2}/atm = (f₁/atm)/x₁ where f₁ is the fugacity. AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The authors describe three methods: 1.A. [Saturat. n⁰ 1]. A measure of the static pressure of saturation in an apparatus which gave a precision of 10 - 15 %. (1) Hydrogen chloride. BASF. Purity stated to be greater than 99.9 %. (1) Hydrogen chloride. BASF. Purity stated to be greater than 99.9 %. (2) 1,2-Dichloroethane. Attested by spectroscopy and gas chromato- graphy as having purity greater than 99.9 per cent. (2) 1,2-Dichloroethane. Attested by spectroscopy and gas chromato- graphy as having purity greater than 99.9 per cent. (2) I,2-Dichloroethane. Attested by spectroscopy and gas chromato- graphy as having purity greater than 99.9 per cent. (3) [Chromato]. A Gas liquid chromato- graphic method estimated to have a precision of 2 - 5 %. (3) [Anal. directe]. Direct analysis of the gaseous and liquid phases. REFERENCES: </pre>	v = coefficient of	fugacity.					
 METHOD/APPARATUS/PROCEDURE: The authors describe three methods: 1.A. [Saturat. n⁰ 1]. A measure of the static pressure of saturation in an apparatus which gave a precision of 10 - 15 %. 1.B. [Saturat. n⁰ 2]. A measure of the static pressure of satura- tion in an apparatus which gave a precision of 2 - 5 %. 2. [Chromato]. A Gas liquid chromato- graphic method estimated to have a precision of 2 - 5 %. 3. [Anal. directe]. Direct analysis of the gaseous and liquid phases. SOURCE AND PURITY OF MATERIALS: SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. BASF. Purity stated to be greater than 99.9 %. (2) 1,2-Dichloroethane. Attested by spectroscopy and gas chromato- graphy as having purity greater than 99.9 per cent. 	$H_{1,2}/\text{atm} = (f_1/\text{atm})/x_1 \text{ where } f_1 \text{ is the set of } f_1$	he fugacity.					
 The authors describe three methods: 1.A. [Saturat. n° 1]. A measure of the static pressure of saturation in an apparatus which gave a precision (2) 1,2-Dichloroethane. Attested by spectroscopy and gas chromatography as having purity greater than 99.9 per cent. (1) Hydrogen chloride. BASF. Purity stated to be greater than 99.9 %. (2) 1,2-Dichloroethane. Attested by spectroscopy and gas chromatography as having purity greater than 99.9 per cent. (2) 1,2-Dichloroethane. Attested by spectroscopy and gas chromatography as having purity greater than 99.9 per cent. (2) 1,2-Dichloroethane. Attested by spectroscopy and gas chromatography as having purity greater than 99.9 per cent. (2) 1,2-Dichloroethane. Attested by spectroscopy and gas chromatography as having purity greater than 99.9 per cent. (2) 1,2-Dichloroethane. Attested by spectroscopy and gas chromatography as having purity greater than 99.9 per cent. (3) [Anal. directe]. Direct analysis of the gaseous and liquid phases. (4) Hydrogen chloride. BASF. Purity stated to be greater than 99.9 %. (2) 1,2-Dichloroethane. Attested by spectroscopy and gas chromatography as having purity greater than 99.9 per cent. 	AUXILIARY	INFORMATION					
 The authors describe three methods: 1.A. [Saturat. n° 1]. A measure of the static pressure of saturation in an apparatus which gave a precision of 10 - 15 %. 1.B. [Saturat. n° 2]. A measure of the static pressure of saturation in an apparatus which gave a precision of 2 - 5 %. 2. [Chromato]. A Gas liquid chromatographic method estimated to have a precision of 2 - 5 %. 3. [Anal. directe]. Direct analysis of the gaseous and liquid phases. (1) Hydrogen chloride. BASF. Purity stated to be greater than 99.9 %. (1) Hydrogen chloride. BASF. Purity stated to be greater than 99.9 %. (2) 1,2-Dichloroethane. Attested by spectroscopy and gas chromatography as having purity greater than 99.9 per cent. ESTIMATED ERROR: 							
<pre>graphic method estimated to have a precision of 2 - 5 %. 3. [Anal. directe]. Direct analysis of the gaseous and liquid phases. REFERENCES:</pre>	 The authors describe three methods: 1.A. [Saturat. n⁰ 1]. A measure of the static pressure of saturation in an apparatus which gave a precision of 10 - 15 %. 1.B. [Saturat. n⁰ 2]. A measure of the static pressure of saturation in an apparatus which gave a 	 (1) Hydrogen chloride. BASF. Purity stated to be greater than 99.9 %. (2) 1,2-Dichloroethane. Attested by spectroscopy and gas chromato- graphy as having purity greater 					
of the gaseous and liquid phases. REFERENCES:	graphic method estimated to have	ESTIMATED ERROR:					
	of the gaseous and liquid phases.	REFERENCES :					

		ŀ	lydroger	Chloride in N	Ion-Aqueous So	lvents	26			
COMPONENTS	5:				ORIGINAL MEASUR	EMENTS:				
	lrogen 547-01-	chlorid 0]	le; HCl	;	Abdullaev, A. I.; Aliev, A. M.; Mamedov, M. B.					
(2) 1,2 [10	2-Dichl 07-06-2	oroetha]	ane; C ₂	H ₄ Cl ₂ :	Uch. Zap. Az Khim. Nauk <u>l</u>	erb. Gos. U 968, No. 3,	niv., Ser. 80 - 83.			
					Ref. Zh. Khi	. Zh. Khim. 1969, Abstr. No. 11B1279.				
ARIABLES Total	T/K	= 273.] re = ba			PREPARED BY:	W. Gerrard				
XPERIMEN	TAL VALU	ES:	···-	1						
T/K	Hydro	gen Chi		Hydrogen C	hloride ¹	Mol Ratio	Mol Fraction			
	а	w ₁ /wt b	Mean	g HCl per 100 g (2)		n ₁ /n ₂	<i>x</i> ₁			
	2.02 1.47 1.01 0.82 0.66 0.50 0.33 0.16	1.46 1.08 0.77 0.64 0.46 0.30 0.16	-	3.13 2.10 1.47 1.06 0.80 0.65 0.48 0.32 0.16 per cent. action valu	23.32 16.00 11.46 7.99 6.10 4.95 3.68 2.45 1.23 es were calcu	0.0850 0.0570 0.0399 0.0288 0.0217 0.0178 0.0132 0.0087 0.0043	0.0783 0.0539 0.0384 0.0280 0.0215 0.0175 0.0130 0.0086 0.0043 e compiler.			
						······································				
				AUXILIARY	INFORMATION SOURCE AND PURI	······································				

ESTIMATED ERROR:

REFERENCES:

Hydrogen Chloride in Non-Aqueous Solvents

COMPONENTS:		ORIGINAL MEASUREMENTS:				
<pre>(1) Hydrogen chloride; HCl [7647-01-0]</pre>	;	Hamai, S.				
(2) 1,1,2-Trichloroethane; [79-00-5]	C ₂ H ₃ Cl ₃ ;	Bull. Chem. Soc. Jpn. <u>1935</u> , 10, 207 - 211.				
VARIABLES:		PREPARED BY:				
T/K: 285.15 - 29 Total P/kPa: 67.79 - 88 (508.5 - 66	.93	W. Gerrard				
EXPERIMENTAL VALUES: T/K	Total M Pressure p/mmHg	fraction				
285.15	508.5 556.5 601.5 649.0 (760.0	0.02514 0.02705 0.02935 0.03195 0.03715) ¹				
288.15	516.0 655.0 562.0 (760.0	0.02378 0.03056 0.02588 0.03463) ¹				
293.15	523.5 523.5 620.0 620.0 640.5 667.0 (760.0	0.02166 0.02171 0.02488 0.02489 0.02633 0.02781 0.03101) ¹				
partial pressure of 760	mmHg (101.3)	compiler for a hydrogen chloride 25 kPa). It was assumed that the for the solution and pure solvent.				
	AUXILIARY	INFORMATION				
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:				
The apparatus consisted of gas buret, connected to a voir (335 cm ³ capacity) wh connected to the absorptio The volume of hydrogen chl absorbed by 20 cm ³ of the liquid was converted into of gas absorbed at a measu pressure. The author obtained the he absorption, ΔH , of -3600 c (-15.06 kJ mole ⁻¹) from th a plot of log x_1 vs. 1/T.	gas reser- ich was n vessel. oride original the amount red total at of al mol-1	 (1) Hydrogen chloride. Prepared by dropping concentrated hydro- chloric acid into pure concen- trated sulfuric acid. The gas was passed through concentrated sulfuric acid and twice con- densed by liquid nitrogen. (2) 1,1,2-Trichloroethane. Eastman, twice distilled. B.p. 385.65 - 386.15 K. ESTIMATED ERROR: 				
		REFERENCES :				

Ì

COMPONENTS:	ORIGINAL MEASUREMENTS:				
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Hamai, S.				
(2) 1,1,2,2-Tetrachloroethane; C ₂ H ₂ Cl ₄ ; [79-34-5]	Bull. Chem. Soc. Jpn. <u>1935</u> , 10, 5 - 16.				
· · ·					
VARIABLES: T/K: 288.15 - 298.15 Total P/kPa: 51.26 - 98.53 (384.5 - 739.0 mmHg)	PREPARED BY: W. Gerrard				
EXPERIMENTAL VALUES: T/K Total Pressure p/mmHg	Mol Fraction				
288.15 384.5 573.5 663.5 722.5 (760.0	0.0155 0.0231 0.0261 0.0281 0.03006) ¹				
293.15 390.0 582.0 621.5 631.5 680.0 731.5 (760.0					
298.15 396.0 442.0 493.5 541.0 614.5 739.0 (760.0	0.0201				
partial pressure of 760 mmHg (101	ne compiler for a hydrogen chloride .325 kPa). It was assumed that the ame for the solution and pure solvent.				
AUXILIAR	INFORMATION				
METHOD/APPARATUS/PROCEDURE:					
The apparatus consisted of a U shaped gas buret, connected to a gas reser- voir (335 cm ³ capacity) which was connected to the absorption vessel. The volume of hydrogen chloride absorbed by 20 cm ³ of the original liquid was converted into the amount of gas absorbed at a measured total pressure. The author obtained the heat of absorption, ΔH , of -3300 cal mol ⁻¹ (-13.81 kJ mole ⁻¹) from the slope of a plot of log x_1 vs. 1/T.	 dropping concentrated hydro- chloric acid into pure concen- trated sulfuric acid. The gas was passed through concentrated sulfuric acid and twice con- densed by liquid nitrogen. (2) 1,1,2,2-Tetrachloroethane. Kahlbaum, twice distilled. B.p. 416.65 - 417.15 K. 				
	REFERENCES :				

COMPONENTS:	·····			ORIGINAL MEASUREMEN	TS:				
	ogen chlor 7-01-0]	ide; HCl;		Zielinski, A. Z. <i>Przem. Chem.</i> <u>1958</u> , 37, 338 - 339.					
(2) 1,1,2	-	hloroethan 4-5]	ie;						
VARIABLES :				PREPARED BY:					
VARIABLES: 7 P1/k	7/K = 293. Pa = 98.2 (736	15 - 313.1 5 - 100.10 .9 - 750.8	.5) mmHg)		errard				
EXPERIMENTAL									
T/K	Hydrogen Chloride	Liquid Co	mposition	Kuenen Coefficient	Mol Ratio	Mol Fraction			
	Pressure p ₁ /mmHg	HCl n ₁ /mmol	$C_2H_2Cl_4$ $n_2/mmol$		n ₁ /n ₂	<i>x</i> ₁			
293.15	750.8	2.879	95.5	4.07	0.0301	0.0293			
	750.8 750.8	2.802 2.841	95.8 98.2	3.95 3.91	0.0292 0.0289	0.0284 0.0281 0.0289 ¹			
303.15	761.7	2.652	97.3	3.63	0.0273	0.0265			
505.15	761.7	2.244	81.7	3.66	0.0275	0.0267 0.0265 ¹			
313.15	736.9	2.318	90.8	3.51	0.0255	0.0249			
	736.9	2.541	98.2	3.57	0.0259	0.0252 0.0258 ¹			
The aut the bar	hor took a ometric pi	the HCl pa ressure and	rtial pre d the pur	ssure to be the e solvent vapor	difference pressure.	between			
<u></u>			AUXILIARY	INFORMATION					
the liqui described (1). The mined by To calcul absorbed	chloride y d in an al by Bichoy amount al a chemical ate the yo by one gra	URE: was absorb bsorption wsky and S bsorbed wa l titratio blume of H am of liqu mol ⁻¹ wa	vessel torch s deter- n. Cl id. at	SOURCE AND PURITY (May be assumed satisfactory pu	to be of				
as the mo 273.15 K	lar volume and l atm.	e of HCl a	t ume						
	se conditi	lons is (c		ESTIMATED ERROR:		<u></u>			
				REFERENCES: 1. Bichowsky, F J. Am. Chem.					

COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Hamai, S.		
<pre>(2) Pentachloroethane; C₂HCl₅; [76-01-7]</pre>	Bull. Chem. Soc. Jpn. <u>1935</u> , 10, 207 - 211.		
VARIABLES:	DEDADED NY		
T/K: 285.15 - 293.15 Total P/kPa: 45.26 - 95.73 (339.5 - 718.0 mmHg)	PREPARED BY: W. Gerrard		
EXPERIMENTAL VALUES: T/K Total Pressure p/mmHg	Mol Fraction		
285.15 560.5 611.5 657.5 712.5 (760.0	0.01865 0.02018 0.02199 0.02381 0.02502) ¹		
288.15 562.0 611.5 661.5 (760.0	0.01790 0.01934 0.02096 0.02396) ¹		
293.15 339.5 565.5 614.0 666.0 718.0 (760.0	0.009946 0.01666 0.01838 0.01937 0.02125 0.02250) ¹		
¹ These values were calculated by the compiler for a hydrogen chloride partial pressure of 760 mmHg (101.325 kPa). It was assumed that the solvent vapor pressure was the same for the solution and pure solvent.			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a U shaped gas buret, connected to a gas reser- voir (335 cm ³ capacity) which was connected to the absorption vessel. The volume of hydrogen chloride absorbed by 20 cm ³ of the original liquid was converted into the amount of gas absorbed at a measured total pressure. The author obtained the heat of absorption, ΔH , of -2200 cal mol ⁻¹ (-9.20 kJ mole ⁻¹) from the slope of a plot of log x_1 vs. 1/T.	<pre>dropping concentrated hydro- chloric acid into pure concen- trated sulfuric acid. The gas was passed through concentrated sulfuric acid and twice con- densed by liquid nitrogen. (2) Pentachloroethane. Eastman, twice distilled. B.p. 431.65 - 432.65 K.</pre>		
	REFERENCES :		

	ADTOTALL AND AND AND AND A		
COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.		
(2) l-Chlorobutane; C ₄ H ₉ Cl; [109-69-3]	J. Appl. Chem. <u>1959</u> , 9, 89 – 93.		
VARIABLES:	PREPARED BY:		
т/К: 273.15 - 293.55	W. Gerrard		
Total P/kPa: 101.325 (1 atm)	w. Gerrard (smoothed data calculated by H.L. Clever)		
EXPERIMENTAL VALUES:			
T/K Mol Ratio ⁿ HCl/ ⁿ C ₄ H ₉ Cl	Mol Fraction ^x HCl		
273.15 0.0843 277.05 0.0759	0.0777 0.0705		
282.15 0.0701	0.0655		
293.55 0.0520	0.0494		
The mole fraction values were calcula	ted by the compiler.		
Smoothed Data: $\ln x_{HC1} = -8.995 + 17$.607/(T/100)		
Standard error about :	regression line = 1.54×10^{-3}		
T/K	Mol Fraction		
•	^x HCl		
273.15 283.15			
293.15	0.0503		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The solvent was weighed in a bubbler tube. The amount of gas absorbed was determined by reweighing to constant weight. The total pressure was barometric, very nearly 1 atm.	(1) Hydrogen chloride. Good specimen		
	ESTIMATED ERROR: $\delta x/x = 0.015$ REFERENCES:		

· · ·				
COMPONENTS :	ORIGINAL MEASUREMENTS:			
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.			
(2) 1-Chlorohexane; C ₆ H ₁₃ Cl;	J. Appl. Chem. <u>1959</u> , 9, 89 - 93.			
[544-10-5]				
VARIABLES:	PREPARED BY:			
T/K: 197.15 - 315.95	W. Gerrard			
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)			
EXPERIMENTAL VALUES:	L			
	No.2. Proceeding			
T/K Mol Ratio	Mol Fraction			
$\underline{\qquad \qquad } \frac{{}^{n}\mathrm{HCl}/{}^{n}\mathrm{C}_{6}\mathrm{H}_{13}\mathrm{C}_{6}}{}^{n}\mathrm{Hcl}/{}^{n}\mathrm{C}_{6}\mathrm{H}_{13}\mathrm{C}_{6}\mathrm{H}_{1$	1 ^x HCl			
197.15 2.639	0.725			
208.15 1.194 229.65 0.468	0.544 0.319			
243.45 0.261	0.207			
251.15 0.179	0.152			
261.65 0.124 273.45 0.0885	0.110 0.0813			
273.43 0.0885	0.0716			
287.65 0.0699	0.0653			
295.45 0.0555 303.45 0.0452	0.0526 0.0432			
303.45 0.0432	0.0432			
315.95 0.0325	0.0315			
The mole fraction values were calculation	ted by the compiler.			
	71/(T/100) - 8.348 ln (T/100)			
HCl HCl Standown should	regression line = 1.68×10^{-2}			
Standard error about	$\frac{1}{2}$			
T/K Mol Fraction	T/K Mol Fraction			
^x HC1	^x HCl			
203.15 0.629	263.15 0.115			
213.15 0.463	273.15 0.0888 283.15 0.0693 293.15 0.0545			
223.15 0.344 233.15 0.258				
243.15 0.195	303.15 0.0431			
	313.15 0.0343			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
The solvent was weighed in a bubbler	(1) Hydrogen chloride. Good specimen			
tube. The amount of gas absorbed was determined by reweighing to constant	from a commercial cylinder was dried.			
weight. The total pressure was	dited.			
barometric, very nearly 1 atm.	(2) 1-Chlorohexane. Carefully puri-			
For determination at temperatures	fied, and purity rigorously attested.			
below 273 K, a chemical titration was carried out. After the maximum				
absorption at the stated temperature,				
the bubbler tube was attached to a				
flask containing 1 dm^3 of water, and allowed to warm slowly (12 hours) to				
room temperature. The contents of	ESTIMATED ERROR:			
the bubbler tube were then added to	$\delta T/K = 2 < 273K$			
the water, and the total chloride ion was determined by the Volhard method.	$\delta x/x = 0.035$			
A low temperature, Teddington-type YM				
thermostat was used for temperatures below 273 K, the control being within	REFERENCES :			
below 273 K, the control being within $\frac{1}{2}$ K.				

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>1. Hydrogen chloride; HCl; [7647-01-0]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.	
<pre>2. 1-Chlorooctane; C₈H₁₇Cl; [111-85-3]</pre>	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.	
VARIABLES:	PREPARED BY:	
T/K: 273.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard	
EXPERIMENTAL VALUES:		
T/K Mol Rat ⁿ HCl/ ⁿ C ₈ H		
273.15 0.1	12 0.107	
The mole fraction solubility was calculated from the mole ratio by the compiler.		
AUXILIARY INFORMATION		
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
Hydrogen chloride was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2).	 Hydrogen chloride. Obtained from a cylinder containing a good com- mercial specimen. Was dried by passage through concentrated sulfuric acid. 	
	 1-Chlorooctane. Best obtainable specimen was suitably purified, dried, and fractionally distilled, and attested. 	
	ESTIMATED ERROR:	
	$\begin{array}{rcl} \delta \mathbf{T}/\mathbf{K} &= & 0.2 \\ \delta \mathbf{X}/\mathbf{X} &= & 0.05 \end{array}$	
	REFERENCES: 1. Gerrard, W. J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623 - 650.	
	2. Gerrard, W. "Solubility of Gases and Liquids" Plenum Press, New York, 1976	

COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Fernandes, J. B.; Sharma, M. M.		
<pre>(2) 1-Chlorododecane or laury1 chloride; C₁₂H₂₅Cl; [112-52-7]</pre>	Indian Chem. Eng. <u>1965</u> , 7, 38 - 40.		
VARIABLES:	PREPARED BY:		
T/K: 313.15 - 433.15 HCl P/kPa: 101.325 (760 mmHg)	W. Gerrard (smoothed data calculated by H.L. Clever)		
EXPERIMENTAL VALUES:			
T/K Mol Rati n ₁ /n ₂	Mol Fraction		
313.15 0.0276 333.15 0.0174 353.15 0.0132 393.15 0.0072 433.15 0.0037	0.0171		
The compiler calculated the mole fraction solubility values.			
Smoothed Data: $\ln x_1 = -10.572 + 23$			
Standard error about the re	egression line = 7.27×10^{-4} .		
T/K Mol Fraction x1			
333.15 0 353.15 0 373.15 0 393.15 0 413.15 0	.0273 .0179 .0124 .0089 .0066 .0050 .0040		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Hydrogen chloride was bubbled into the solvent for more than an hour. Approximately 1 cm ³ of the solution was transferred to a weighed sample tube and the whole re-weighed. The contents were transferred to water, and the chloride content determined by the Volhard method.	 (1) Hydrogen chloride. Self prepared by the method of Sloan (1). (2) 1-Chlorododecane. Prepared from dodecanol by the interaction of hydrogen chloride in the presence of zinc chloride at 393 - 453 K. 		
	ESTIMATED ERROR: $\delta T/K = 0.2$ $\delta x_1/x_1 = 0.05$ REFERENCES: 1. Sloan, A. D. B. Chem. Ind. <u>1964</u> , 574.		

COMPONENTS: (1) Hydrogen chloride; HCl;	ORIGINAL MEASUREMENTS: Fernandes, J. B.; Sharma, M. M.		
[7647-01-0]	Indian Chem. Eng. <u>1965</u> , 7, 38 - 40.		
(2) 1-Chlorohexadecane or cetyl chloride; C ₁₆ H ₃₃ C1; [4860-03-1]	, , , , , , , , , , , , , , , , ,		
VARIABLES:	PREPARED BY:		
T/K: 313.15 HCl P/kPa: 101.325 (760 mmHg)	W. Gerrard		
EXPERIMENTAL VALUES:			
T/K Mol Rat	io Mol Fraction		
313.15 0.038	0.0369		
The compiler calc fraction solubili			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: Hydrogen chloride was bubbled into the solvent for more than an hour. Approximately 1 cm ³ of the solution was transferred to a weighed sample tube and the whole re-weighed. The contents were transferred to water, and the chloride content determined by the Volhard method.	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Self prepared by the method of Sloan (1). (2) 1-Chlorohexadecane. Prepared from 1-hexadecanol and hydrogen chloride in the presence of zinc chloride at 393-453 K. ESTIMATED ERROR: $\delta T/K = 0.2$ $\delta x_1/x_1 = 0.05$ REFERENCES: 1. Sloan, A. D. B. <i>Chem. Ind.</i> <u>1964</u> , 574.		

COMPONENTS :			ORI	SINAL MEASURE	ENTS:	
(1)						
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>		S	cher, M.; G Jelinek, R	ill, W. N.; . V.		
(2) 1-Chlorohexadecane; C ₁₆ H ₃₃ Cl; [4860-03-1]			nd. Eng. Ch , 107 - 112	em., Fundam	<i>n.</i> <u>1963</u> ,	
VARIABLES :			PRE	PARED BY:		
	<pre>/K: 313.15 /a: 50.66 - 98.66</pre>		W. Gerrard			
EXPERIMENTAL VAL	UES:				<u></u>	
T/K	Henry's Constants	<u></u>		Number	Percent	Mol Fraction
	K'/mmHg dm ³ mol ⁻¹	K/mm		of Points	Mean Deviation	<i>x</i> 1
313.15	6460	20,9	80	4	±0.6	0.0362
Henry's d	constants:					
K'/mmHg d	$lm^3 mol^{-1} = (p_1/mmHg)$	g)/(c]	/mo	1 dm ⁻³)		
	$(p_1/mmHg)/x_1$					
The compiler calculated the mole fraction solubility value at 101.325 kPa (760 mmHg).						
[AUX	ILIARY	INFO	RMATION		
METHOD/APPARATUS	/PROCEDURE:		sou	RCE AND PURIT	Y OF MATERIAL	S:
The solubility was measured in an apparatus designed to determine the kinetic rate of catalyzed hydro- chlorination of hexadecene in the presence of ferric chloride. The volume of gas absorbed by the pure liquid at increasing pressures, 380 - 740 mmHg, was measured. The individual solubility values are presented in a graph. The Henry's constants were tabulated.		 (1) Hydrogen chloride. Matheson Co. Sublimed at high vacuum and liquid air temperature, and distilled into storage and supply system. (2) 1-Chlorohexadecane. Not stated. 				
The paper re	ferences a value of		EST	IMATED ERROR:		
Henry's cons	tant in 2-chlorohexa hich was not availal	a-				
1			REF	ERENCES:		
			1.	Domash, L Ph. D. the Purdue Un:	esis, 1952	
			1			

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Bell, R. P.		
(2) Bromine substituted alkanes	J. Chem. Soc. <u>1931</u> , 1371 - 1382.		
VARIABLES: T/K: 293.15	PREPARED BY:		
P/kPa: 101.325 (1 atm)	W. Gerrard		
EXPERIMENTAL VALUES:			
T/K Partition Coefficien C1,1/C1,5			
Bromoethane; C ₂ H	H ₅ Br; [74-96-4]		
293.15 35.15	0.1019		
1,2-Dibromoethar [106-93-4]	ne; C ₂ H ₄ Br ₂ ;		
293.15 10.3	0.0348		
Tribromomethane	; CHBr ₃ ; [75-25-2]		
293.15 4.78	0.0306		
1,1,2,2-Tetrabro [79-27-6]	omoethane; C ₂ H ₂ Br ₄ ;		
293.15 3.93	0.0236		
The ideal gas concer	ntration is		
$c_{1,g} = n/V = p/RT =$	0.0417 mol dm ⁻³ .		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The apparatus consisted of a 50 cm ³ bulb extended at the top as a graduated tube, and sealed at the bottom to a capillary U-tube. The liquid was saturated with gas at	 Hydrogen chloride. Prepared by dropping pure concentrated hydrochloric acid into pure sulfuric acid. 		
atmospheric pressure. The gas was displaced from the saturated solu- tion by a current of dry CO ₂ free	(2) Bromine substituted alkanes. Good specimens were dried over calcium chloride, and distilled. Boiling points are given in		
air, absorbed in water, and titrated with a solution of NaOH.	paper.		
The solubility, $c/mol \ dm^{-3}$, was converted to a partition coefficient	ESTIMATED ERROR:		
by dividing by the ideal gas con- centration of HCl in the gas phase.	$\delta T/K = 0.01$ $\delta c/c = 0.01$		
The mole fraction solubility was calculated on the assumption that	REERENANG		
the density of the solution obeys the ideal mixture law.	REFERENCES :		

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Hamai, S.
<pre>(2) 1,2-Dibromoethane; C₂H₄Br₂; [106-93-4]</pre>	Bull. Chem. Soc. Jpn. <u>1935</u> , 10, 5 - 16.
VARIABLES:	PREPARED BY:
T/K: 288.15 - 298.15 Total P/kPa: 37.20 - 95.86 (279.0 - 719.0 mmHg)	W. Gerrard
EXPERIMENTAL VALUES: T/K Total Pressure p/mmHg	Mol Fraction
288.15 354.0 531.0 672.0 719.0	0.0180 0.0266 0.0325 0.0348
(760.0	0.03754) 1
293.15 362.0 453.5 496.0 679.5 (760.0	0.0165 0.0207 0.0225 0.0309 0.03441) ¹
298.15 279.0 368.5 507.0 601.0 672.0 (760.0	0.0117 0.0153 0.0206 0.0242 0.0269 0.03116) ¹
¹ These values were calculated by the partial pressure of 760 mmHg (101.3 solvent vapor pressure was the same	e compiler for a hydrogen chloride 325 kPa). It was assumed that the 2 for the solution and pure solvent.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a U shaped gas buret, connected to a gas reser- voir (335 cm ³ capacity) which was connected to the absorption vessel. The volume of hydrogen chloride absorbed by 20 cm ³ of the original liquid was converted into the amount of gas absorbed at a measured total pressure. The author obtained the heat of absorption, ΔH , of -3200 cal mol ⁻¹ (-13.39 kJ mole ⁻¹) from the slope of a plot of log x_1 vs. 1/T.	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Prepared by dropping concentrated hydro- chloric acid into pure concen- trated sulfuric acid. The gas was passed through concentrated sulfuric acid and twice con- densed by liquid nitrogen. (2) 1,2-Dibromoethane. Takeda, twice distilled. B.p. 402 K.
	REFERENCES :

Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.						
9 - 93.						
H.L. Clever)						
(T/100)						
-4						
^x HCl 0.0760						
ood specimen						
inder was						
ully puri- rously						

nyarogen enerae i	in Non-Aqueous Solvents 217
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
(2) l-Bromohexane; C ₆ H ₁₃ Br; [111-25-1]	J. Appl. Chem. <u>1959</u> , 9, 89 - 93.
VARIABLES:	PREPARED BY:
T/K: 273.15 - 315.65 Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Ratic ⁿ HCl/ ⁿ C ₆ H ₁₃ 273.15 0.0896 282.35 0.0709 293.15 0.0567 298.15 0.0508 304.15 0.0464	
315.65 0.0340	0.0329
	regression line = 1.34 x 10 ⁻³ Mol Fraction ^x HCl
AUXILIA	RY INFORMATION
METHOD/APPARATUS/PROCEDURE: The solvent was weighed in a bubbler tube. The amount of gas absorbed was determined by reweighing to constant weight. The total pressure was barometric, very nearly 1 atm.	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Good specimen from a commercial cylinder was dried. (2) 1-Bromohexane. Carefully puri- fied, and purity rigorously attested. ESTIMATED ERROR: $\delta x/x = 0.015$ REFERENCES:

270 Hydrogen Chloride in 1	Non-Aquebus bolvents					
COMPONENTS:	ORIGINAL MEASUREMENTS:					
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.					
(2) 1-Bromooctane; C ₈ H ₁₇ Br; [111-83-1]	J. Appl. Chem. <u>1959</u> , 9, 89 – 93.					
VARIABLES:	PREPARED BY:					
T/K: 273.15 - 317.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)					
EXPERIMENTAL VALUES:						
	Nol Duochion					
T/K Mol Ratio ⁿ HCl/ ⁿ C ₈ H ₁₇ B	Mol Fraction r ^x HCl					
273.15 0.0958	0.0874					
280.15 0.0820	0.0758					
289.15 0.0687 296.75 0.0601	0.0643 0.0567					
302.55 0.0540	0.0512					
310.45 0.0439	0.0421					
317.15 0.0371	0.0358					
The mole fraction values were calcula	ted by the compiler.					
	.914/(T/100) - 26.875 ln (T/100)					
Standard èrror about	regression line = 1.19×10^{-3}					
T/K M	101 Fraction ^x HC1					
273.15						
283.15	0.0730					
293.15 303.15	0.0606 0.0494					
313.15	0.0396					
323.15	0.0314					
AUXILIARY	INFORMATION					
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:					
The solvent was weighed in a bubbler	(1) Hydrogen chloride. Good specimen					
tube. The amount of gas absorbed was						
determined by reweighing to constant weight. The total pressure was	dried.					
barometric, very nearly 1 atm.	(2) 1-Bromooctane. Carefully					
	purified, and purity					
	rigorously attested.					
	ESTIMATED ERROR:					
	ESTIMATED ERROR:					
	$\delta x/x = 0.01$					
	REFERENCES :					

nyalogen d		Non-Aqueous Solvenis 2				
COMPONENTS:	·	ORIGINAL MEASUREMENTS:				
<pre>1. Hydrogen chloride; HCl; [7647-01-0]</pre>		Ahmed, W.; Gerrard, W.; Maladkar, V. K.				
2. 1-Bromooctane; C ₈ H ₁₇ Br; [111-83-1]		J. Appl. Chem. <u>1970</u> , 20, 109 - 115.				
VARIABLES:						
T/K: $243.15 - 273.15$	5	PREPARED BY:				
Total P/kPa: 101.325 (1 atm)		W. Gerrard (smoothed data calculated by H.L. Clever)				
EXPERIMENTAL VALUES:						
T/K	Mol Ra	tio Mol Fraction				
	ⁿ HCl/ ⁿ C ₈	H ₁₇ Br X _{HCl}				
243.15	0.36					
263.15 273.15	0.14					
The mole fraction solubilitie compiler.	es were ca	alculated from the mole ratio by the				
Smoothed Data: $\ln X_{HC1} = -10$.764 + 22	2.939/(T/100)				
		regression line = 2.82×10^{-3}				
	T/K 1	101 Fraction				
		X _{HCl}				
	243.15	0.265				
	263.15 273.15	0.129 0.094				
		INFORMATION				
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:				
Hydrogen chloride was passed known weight of liquid in a b tube at a total pressure meas a manometer assembly. The ab gas was weighed by re-weighin bubbler tube. The temperatur	ubbler ured by sorbed g the	 Hydrogen chloride. Obtained fro a cylinder containing a good com mercial specimen. Was dried by passage through concentrated sulfuric acid. 				
manually controlled to within The procedure and apparatus a described by Gerrard (1,2). For the first temperature a c	0.2 K. re	2. 1-Bromooctane. Best obtainable specimen was suitably purified, dried, and fractionally dis- tilled, and attested.				
titration was conducted.						
		ESTIMATED ERROR:				
		$\begin{array}{rcl} \delta \mathbf{T}/\mathbf{K} &= & 0.2 \\ \delta \mathbf{X}/\mathbf{X} &= & 0.01 \end{array}$				
		REFERENCES: 1. Gerrard, W. J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623 - 650.				
•						

$\begin{array}{c} \label{eq:construction} \hline COMPORENTS: \\ 1. Hydrogen chloride; HCl; \\ [7647-01-0] \\ 2. 1-Iodooctane; C_{g}H_{17}I; [629-27-6] \\ \hline VARIABLES: \\ T/K: 213.15 - 293.15 \\ Total P/KPa: 101.325 (1 atm) \\ \hline VARIABLES: \\ T/K: 213.15 - 293.15 \\ Total P/KPa: 101.325 (1 atm) \\ \hline NCL^{n}C_{G}^{n}H_{17}I \\ \hline NCL^{n}C_{G}^{n}H_{G}^{n}H_{C}^{n}H_$		von-Aqueous Solvents				
$ \begin{bmatrix} (7647-01-0] \\ 2. 1-Iodooctane; C_{g}H_{17}I; (629-27-6] \\ \hline Maladkar, V. K. \\ 2. 1-Iodooctane; C_{g}H_{17}I; (629-27-6] \\ \hline Maladkar, V. K. \\ J. Appl. Chem. 1970, 20, 109 - 115. \\ \hline J. $	COMPONENTS:	ORIGINAL MEASUREMENTS:				
VARIABLES: T/K: 213.15 - 293.15 Total P/KPa: 101.325 (1 atm) EXPERIMENTAL VALUES: T/K Mol. Ratio Mol Fraction MC1/ ⁿ C ₈ H ₁₇ T X _{HC1} 213.15 0.47 0.412 223.15 0.47 0.412 223.15 0.17 0.412 223.15 0.17 0.412 223.15 0.17 0.412 223.15 0.17 0.412 223.15 0.17 0.412 223.15 0.10 0.0909 293.15 0.10 0.0909 293.15 0.10 0.0909 293.15 0.10 0.0909 293.15 0.10 0.0909 293.15 0.28 T/K Mol Fraction Smoothed Data: ln X _{HC1} = 14.263 - 14.459/(T/100) - 11.088 ln (T/100) Standard error about regression line = 6.37 x 10 ⁻³ T/K Mol Fraction XHC1 213.15 0.125 0.327 233.15 0.266 243.15 0.215 233.15 0.174 203.15 0.113 203.15 0.104 203.15 0.104 203.15 0.174 203.15 0.113 203.15 0.113 203.15 0.0266 233.15 0.174 203.15 0.113 203.15 0.0261 203.15 0.0141 273.15 0.113 203.15 0.0261 203.15 0.0746 METHOD APPARATUS/PROCEDURE: Hydrogen chloride was passed into a ROWN weight of liquid in a bubbler tubbe at a total pressure measured by a manometer assembly. The baborbed gas was weighted by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1.2). For temperatures below 268 K a chem- ical titration was performed. ESTIMATED ERROR: ESTIMATED ERROR: ESTIMATED ERROR:		, ,				
T/K: 213.15 - 293.15 Total P/KPa: 101.325 (1 atm) EXPERIMENTAL VALUES: T/K Mol_Ratio NGC Praction NGC/ $^{0}C_{0}H_{17}T$ X _{HC1} 213.15 0.70 0.412 223.15 0.47 0.320 223.15 0.27 233.15 0.27 233.15 0.17 243.15 0.12 233.15 0.10 0.0909 233.15 0.08 0.0740 The mole fraction solubilities were calculated from the mole ratio by the compiler. Smoothed Data: ln X _{HC1} = 14.263 - 14.459/(T/100) - 11.088 ln (T/100) Standard error about regression line = 6.37 x 10 ⁻³ T/K: Mol Fraction $\frac{X_{HC1}}{213.15}$ 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.231.15 0.104 223.15 0.0821 233.15 0.026 233.15 0.026 233.15 0.174 233.15 0.104 233.15 0.104 233.15 0.104 233.15 0.026 233.15 0.174 234.15 0.174 235.15 0.174 235.15	2. 1-Iodooctane; C ₈ H ₁₇ I; [629-27-6]	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.				
T/K: 213.15 - 293.15 Total P/KPa: 101.325 (1 atm) EXPERIMENTAL VALUES: T/K Mol Ratio NG Fraction NCL/ ^A C ₂ H ₁ /T X _{HC1} 213.15 0.47 0.320 233.15 0.47 0.320 233.15 0.27 0.213 253.15 0.17 0.145 273.15 0.13 0.115 283.15 0.10 0.0909 293.15 0.08 0.0740 The mole fraction solubilities were calculated from the mole ratio by the compiler. Smoothed Data: $\ln X_{HC1} = 14.263 - 14.459/(T/100) - 11.088 \ln (T/100)$ Standard error about regression line = 6.37 x 10 ⁻³ T/K: Mol Fraction $\frac{X_{HC1}}{233.15}$ 0.215 233.15 0.266 243.15 0.215 233.15 0.266 243.15 0.215 233.15 0.104 $\frac{X_{HC1}}{233.15}$ 0.141 233.15 0.266 243.15 0.215 233.15 0.164 233.15 0.266 243.15 0.215 253.15 0.174 233.15 0.164 233.15 0.164 233.15 0.164 233.15 0.164 233.15 0.174 233.15 0.164 233.15 0.174 233.15 0.174 233.15 0.174 233.15 0.174 233.15 0.164 233.15 0.174 233.15 0.1	0 17					
T/K: 213.15 - 293.15 Total P/KPa: 101.325 (1 atm) EXPERIMENTAL VALUES: T/K Mol Ratio NG Fraction NCL/ $^{P}C_{0}H_{17}T$ X _{HC1} 213.15 0.47 0.320 233.15 0.47 0.320 233.15 0.27 0.213 253.15 0.17 0.145 273.15 0.10 0.0909 293.15 0.08 0.0740 The mole fraction solubilities were calculated from the mole ratio by the compiler. Smoothed Data: ln X _{HC1} = 14.263 - 14.459/(T/100) - 11.088 ln (T/100) Standard error about regression line = 6.37 x 10 ⁻³ T/K. Mol Fraction $\frac{X_{HC1}}{233.15}$ 0.215 $\frac{1}{233.15}$ 0.266 243.15 0.215 $\frac{1}{233.15}$ 0.266 243.15 0.215 $\frac{1}{233.15}$ 0.174 $\frac{1}{233.15}$ 0.266 243.15 0.266 243.15 0.215 $\frac{1}{233.15}$ 0.141 $\frac{1}{233.15}$ 0.164 $\frac{1}{233.15}$ 0.164 $\frac{1}{233.15}$ 0.174 $\frac{1}{233.15}$ 0.164 $\frac{1}{233.15}$ 0.176 $\frac{1}{233.15}$ 0.215 $\frac{1}{233.15}$ 0.164 $\frac{1}{233.15}$ 0.174 $\frac{1}{233.15}$ 0.125 $\frac{1}{233.15}$ 0.126 $\frac{1}{233.15}$ 0.127 $\frac{1}{233.15}$ 0.126 $\frac{1}{233.15}$ 0.127 $\frac{1}{233.15}$ 0.126 $\frac{1}{233.15}$ 0.126 $\frac{1}{2$						
Total P/kPa: 101.325 (1 atm) W. GETRIG (smoothed data calculated by H.L. Clever) EXPERIMENTAL VALUES: T/K Mol Ratio Mol Fraction HCL/PCgH ₁ T X _{HCl} 223.15 0.47 0.320 233.15 0.215 0.177 263.15 0.17 0.145 273.15 0.10 0.0909 293.15 0.008 0.07740 The mole fraction solubilities were calculated from the mole ratio by the compiler. Smoothed Data: ln X _{HCl} = 14.263 - 14.459/(T/100) - 11.088 ln (T/100) Standard error about regression line = 6.37 x 10 ⁻³ T/K. Mol Fraction X _{HCl} 213.15 0.266 243.15 0.215 0.401 223.15 0.266 243.15 0.215 233.15 0.266 243.15 0.215 233.15 0.00821 233.15 0.0821 233.15 0.00821 233.15 0.00821 233.15 0.0141 273.15 0.0141 273.15 0.0141 273.15 0.0141 273.15 0.0141 273.15 0.0141 273.15 0.0141 273.15 0.0141 273.15 0.0174 203.15 0.0126 203.15 0.0174 203.15 0.01821 203.15 0.0141 273.15 0.0141 273.15 0.0141 273.15 0.0174 203.15 0.01821 203.15 0.0141 273.15 0.0141 273.15 0.0141 273.15 0.0141 273.15 0.113 203.15 0.0141 273.15 0.113 203.15 0.0141 273.15 0.114 273.15 0.113 203.15 0.0121 203.15 0.0141 273.15 0.113 203.15 0.0121 203.15 0.0141 273.15 0.113 203.15 0.0121 203.15 0.0121 203.15 0.0141 273.15 0.113 203.15 0.0121 203.15 0.0121 203.15 0.0121 203.15 0.0121 203.15 0.0121 203.15 0.0121 203.15 0.0121 203.15 0.0121 203.15 0.0131 203.15	VARIABLES:	PREPARED BY:				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		W. Gerrard				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Total P/RPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	EXPEDIMENTAL VALUES.					
213.15 0.70 0.412 223.15 0.35 0.259 233.15 0.215 0.177 263.15 0.215 0.177 263.15 0.13 0.115 273.15 0.13 0.115 273.15 0.13 0.115 273.15 0.10 0.0909 293.15 0.08 0.0740 The mole fraction solubilities were calculated from the mole ratio by the compiler. Smoothed Data: In $x_{HC1} = 14.263 - 14.459/(T/100) - 11.088 ln (T/100) Standard error about regression line = 6.37 x 10-3 T/K: Mol Fraction XHC1 213.15 0.215 223.15 0.215 233.15 0.216 233.15 0.217 233.15 0.216 233.15 0.174 263.15 0.141 273.15 0.113 203.15 0.0216 203.15 0.0113 203.15 0.0216 203.15 0.0216 203.15 0.0216 $		tio Mol Fraction				
$\begin{array}{c} 223.15 & 0.47 & 0.320 \\ 233.15 & 0.35 & 0.259 \\ 243.15 & 0.21 & 0.213 \\ 253.15 & 0.21 & 0.177 \\ 263.15 & 0.13 & 0.145 \\ 273.15 & 0.10 & 0.0909 \\ 293.15 & 0.08 & 0.0740 \end{array}$ The mole fraction solubilities were calculated from the mole ratio by the compiler. Smoothed Data: ln X _{HC1} = 14.263 - 14.459/(T/100) - 11.088 ln (T/100) Standard error about regression line = 6.37 x 10 ⁻³ $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$						
$\begin{array}{c} 233.15 & 0.35 & 0.259 \\ 243.15 & 0.215 & 0.177 \\ 263.15 & 0.17 & 0.145 \\ 273.15 & 0.10 & 0.0909 \\ 293.15 & 0.08 & 0.0740 \end{array}$ The mole fraction solubilities were calculated from the mole ratio by the compiler. Smoothed Data: $\ln \chi_{HC1} = 14.263 - 14.459/(T/100) - 11.088 \ln (T/100) \\ \text{Standard error about regression line = 6.37 x 10^{-3} \\ \hline T/K & MOI Fraction \\ \chi_{HC1} \\ 213.15 & 0.327 \\ 233.15 & 0.266 \\ 243.15 & 0.215 \\ 253.15 & 0.174 \\ 265.15 & 0.141 \\ 273.15 & 0.141 \\ 273.15 & 0.0821 \\ 293.15 & 0.0746 \\ \hline \end{array}$ METHOD 'APPARATUS/FROCEDURE: In Hydrogen chloride was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2). For temperatures below 268 K a chemical titration was performed. \\ \hline ESTIMATED ERROR: \\ \hline \end{array}						
$\begin{array}{c} 243.15 & 0.27 & 0.213\\ 253.15 & 0.17\\ 263.15 & 0.17\\ 263.15 & 0.13 & 0.115\\ 273.15 & 0.13 & 0.115\\ 283.15 & 0.08 & 0.0740\\ \hline \end{array}$ The mole fraction solubilities were calculated from the mole ratio by the compiler. Smoothed Data: $\ln X_{HC1} = 14.263 - 14.459/(T/100) - 11.088 \ln (T/100)$ Standard error about regression line = 6.37 x 10 ⁻³ $\begin{array}{r} T/K \text{Mol Fraction} \\ \hline $	1					
$\begin{array}{c} 263.15 & 0.17 & 0.145 \\ 273.15 & 0.13 & 0.115 \\ 283.15 & 0.08 & 0.0740 \end{array}$ The mole fraction solubilities were calculated from the mole ratio by the compiler. Smoothed Data: $\ln X_{HC1} = 14.263 - 14.459/(T/100) - 11.088 \ln (T/100) \\ Standard error about regression line = 6.37 x 10^{-3} \\ \hline T/K. Mol Fraction \\ \hline X_{HC1} \\ \hline 213.15 & 0.327 \\ 233.15 & 0.215 \\ 253.15 & 0.124 \\ 263.15 & 0.141 \\ 273.15 & 0.113 \\ 203.15 & 0.0821 \\ 293.15 & 0.0821 \\ 293.15 & 0.0746 \\ \hline \end{array}$ METNOD/APPARATUS/PROCEDURE: Hydrogen chloride was passed into a known weight of liquid in a bubbler tube at total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2). For temperatures below 268 K a chemical titration was performed.						
$\begin{array}{c} 273.15 & 0.13 & 0.115 \\ 283.15 & 0.10 & 0.0909 \\ 293.15 & 0.08 & 0.0740 \\ \hline \\ $						
$\begin{array}{c} 283.15 & 0.10 & 0.0909 \\ \underline{293.15} & 0.08 & 0.0740 \\ \hline \\ $						
$\frac{293.15}{293.15} 0.08 0.0740$ The mole fraction solubilities were calculated from the mole ratio by the compiler. Smoothed Data: ln X _{HCl} = 14.263 - 14.459/(T/100) - 11.088 ln (T/100) Standard error about regression line = 6.37 x 10 ⁻³ T/K. Mol Fraction X _{HCl} 213.15 0.215 223.15 0.215 233.15 0.216 243.15 0.215 253.15 0.174 263.15 0.113 203.15 0.0821 293.15 0.0746 AUXILIARY INFORMATION METHOD 'APPARATUS/PROCEDURE: Hydrogen chloride was passed into a known weight of liquid in a bubler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2). For temperatures below 268 K a chem- ical titration was performed. SURCE AND PURITY OF MATERIALS: ESTIMATED ERROR: $\delta T/K = 0.2$						
compiler. Smoothed Data: ln X _{HCl} = 14.263 - 14.459/(T/100) - 11.088 ln (T/100) Standard error about regression line = 6.37 x 10 ⁻³ T/K. Mol Fraction X _{HCl} 213.15 0.401 223.15 0.226 243.15 0.215 253.15 0.174 263.15 0.113 203.15 0.0021 293.15 0.0746 AUXILIARY INFORMATION METHOD 'APPARATUS/PROCEDURE: Hydrogen chloride was passed into a Known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2). For temperatures below 268 K a chem- ical titration was performed. ESTIMATED ERROR: (AUXILIARY INFORMATION ENDINE)						
Smoothed Data: ln X _{HCl} = 14.263 - 14.459/(T/100) - 11.088 ln (T/100) Standard error about regression line = 6.37 x 10 ⁻³ T/K. Mol Fraction XHCl 213.15 0.401 223.15 0.266 243.15 0.215 253.15 0.174 263.15 0.141 273.15 0.141 273.15 0.141 273.15 0.141 273.15 0.141 273.15 0.141 273.15 0.141 273.15 0.141 273.15 0.0746 METHOD /APPARATUS/PROCEDURE: Hydrogen chloride was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2). For temperatures below 268 K a chem- ical titration was performed. ESTIMATED ERROR: $\delta T/K = 0.2$		alculated from the mole ratio by the				
Standard error about regression line = 6.37 x 10 ⁻³ T/K. Mol Fraction XHCl 213.15 213.15 213.15 213.15 23.15 23.15 23.15 23.15 23.15 23.15 AUXILIARY INFORMATION METHOD /APPARATUS/PROCEDURE: Hydrogen chloride was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2). For temperatures below 268 K a chemical titration was performed. ESTIMATED ERROR: (ST/K = 0.2	-	459/(T/100) = 11.088 ln (T/100)				
T/K. Mol Fraction X_{HCl} 213.150.401223.150.327233.150.266243.150.215253.150.174263.150.113203.150.0821293.150.0746Source Easymptic Anton weight of liquid in a bubblerHydrogen chloride was passed into a known weight of liquid in a bubblerSource Easymptic Anton weight of liquid in a bubblerBOURCE AND PURITY OF MATERIALS:1. Hydrogen chloride. Obtained from a cylinder containing a good com- mercial specimen. Was dried by passage through concentrated sulfuric acid.Source Easymptic Anton weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2).Source AND PURITY OF MATERIALS: 1. Hydrogen chloride. Obtained from a cylinder containing a good com- mercial specimen was suitably purified, dried, and fractionally dis- tilled, and attested.ESTIMATED ERROR: $\delta T/K = 0.2$						
XHC1 213.15 0.401 223.15 0.327 233.15 0.266 243.15 0.215 253.15 0.174 263.15 0.141 273.15 0.113 283.15 0.0821 293.15 0.0746 SOURCE AND PURITY OF MATERIALS: Hydrogen chloride was passed into a known weight of liquid in a bubbler 1. Hydrogen chloride. Obtained from a acylinder containing a good commercial specimen. Was dried by gas was weighed by re-weighing the sulfuric acid. bubbler tube. The temperature was sulfuric acid. 213.15 0.12K. The procedure and apparatus are described by Gerrard (1,2). For temperatures below 268 K a chemical titration was performed. ESTIMATED ERROR: ESTIMATED ERROR:	·					
213.150.401223.150.327233.150.266243.150.215253.150.174263.150.141273.150.113283.150.0821293.150.0746AUXILIARY INFORMATIONMETHOD /APPARATUS/PROCEDURE:Hydrogen chloride was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2).Source AND PURITY OF MATERIALS: 1. Hydrogen chloride. Obtained from a cylinder containing a good com- mercial specimen. Was dried by passage through concentrated sulfuric acid.2. 1-Iodooctane. Best obtainable specimen was suitably purified, dried, and fractionally dis- tilled, and attested.ESTIMATED ERROR: ST/K = 0.2						
223.150.327233.150.266243.150.215253.150.174263.150.141273.150.113203.150.0746AUXILIARY INFORMATIONMETHOD /APPARATUS/PROCEDURE:Hydrogen chloride was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2).SOURCE AND PURITY OF MATERIALS: 1. Hydrogen chloride. Obtained from a cylinder containing a good com- mercial specimen. Was dried by passage through concentrated sulfuric acid.2. 1-Iodoctane. Best obtainable specimen was suitably purified, dried, and fractionally dis- tilled, and attested.For temperatures below 268 K a chem- ical titration was performed.ESTIMATED ERROR: $\delta T/K = 0.2$	<u> 313-15</u>					
233.150.266243.150.215253.150.174263.150.141273.150.113203.150.0821293.150.0746AUXILIARY INFORMATIONMETHOD /APPARATUS/PROCEDURE:Hydrogen chloride was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2).SOURCE AND PURITY OF MATERIALS: 1. Hydrogen chloride. Obtained from a cylinder containing a good com- mercial specimen. Was dried by passage through concentrated sulfuric acid.2. 1-Iodooctane. Best obtainable specimen was suitably purified, dried, and fractionally dis- tilled, and attested.ESTIMATED ERROR: bubbler						
243.150.215253.150.174263.150.111273.150.113203.150.0821293.150.0746AUXILIARY INFORMATIONMETHOD /APPARATUS/PROCEDURE:Hydrogen chloride was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2).SOURCE AND PURITY OF MATERIALS: 1. Hydrogen chloride. Obtained from mcrcial specimen. Was dried by passage through concentrated sulfuric acid.2. 1-Iodooctane. Best obtainable specimen was suitably purified, dried, and fractionally dis- tilled, and attested.ESTIMATED ERROR: 0.7/K = 0.2						
263.150.141273.150.113203.150.0821293.150.0746293.150.0746AUXILIARY INFORMATIONMETHOD /APPARATUS/PROCEDURE:Hydrogen chloride was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2).SOURCE AND PURITY OF MATERIALS: 1. Hydrogen chloride. Obtained from a cylinder containing a good com- mercial specimen. Was dried by passage through concentrated sulfuric acid.2. 1-Iodooctane. Best obtainable specimen was suitably purified, dried, and fractionally dis- tilled, and attested.For temperatures below 268 K a chem- ical titration was performed.ESTIMATED ERROR: $\delta T/K = 0.2$	-	0.215				
273.150.113283.150.0821293.150.0746AUXILIARY INFORMATIONMETHOD /APPARATUS/PROCEDURE:Hydrogen chloride was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2).SOURCE AND PURITY OF MATERIALS: 1. Hydrogen chloride. Obtained from a cylinder containing a good com- mercial specimen. Was dried by passage through concentrated sulfuric acid.2. 1-Iodooctane. Best obtainable specimen was suitably purified, dried, and fractionally dis- tilled, and attested.For temperatures below 268 K a chem- ical titration was performed.ESTIMATED ERROR: 0T/K = 0.2						
283.150.0821293.150.0746AUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:Hydrogen chloride was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2).SOURCE AND PURITY OF MATERIALS: 1. Hydrogen chloride. Obtained from a cylinder containing a good com- mercial specimen. Was dried by passage through concentrated sulfuric acid.2. 1-Iodooctane. Best obtainable specimen was suitably purified, dried, and fractionally dis- tilled, and attested.ESTIMATED ERROR: br/K = 0.2						
293.150.0746AUXILIARY INFORMATIONMETHOD /APPARATUS/PROCEDURE:Hydrogen chloride was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2).SOURCE AND PURITY OF MATERIALS: 1. Hydrogen chloride. Obtained from a cylinder containing a good com- mercial specimen. Was dried by passage through concentrated sulfuric acid.2. 1-Todooctane. Best obtainable specimen was suitably purified, dried, and fractionally dis- tilled, and attested.For temperatures below 268 K a chem- ical titration was performed.ESTIMATED ERROR: $\delta T/K = 0.2$						
METHOD /APPARATUS/PROCEDURE: Hydrogen chloride was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2). For temperatures below 268 K a chem- ical titration was performed. SOURCE AND PURITY OF MATERIALS: 1. Hydrogen chloride. Obtained from a cylinder containing a good com- mercial specimen. Was dried by passage through concentrated sulfuric acid. 2. 1-Iodooctane. Best obtainable specimen was suitably purified, dried, and fractionally dis- tilled, and attested. ESTIMATED ERROR:	293.15	0.0746				
 Hydrogen chloride was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2). For temperatures below 268 K a chemical titration was performed. ESTIMATED ERROR: 6T/K = 0.2 	AUXILIARY	INFORMATION				
 Hydrogen chloride was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2). For temperatures below 268 K a chemical titration was performed. ESTIMATED ERROR: 6T/K = 0.2 	METHOD /APPARATUS / PROCEDURE -	SOURCE AND PURTTY OF MATERIALS.				
 known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2). For temperatures below 268 K a chem- ical titration was performed. a cylinder containing a good com- mercial specimen. Was dried by passage through concentrated sulfuric acid. 2. 1-Iodooctane. Best obtainable specimen was suitably purified, dried, and fractionally dis- tilled, and attested. ESTIMATED ERROR: δT/K = 0.2 						
<pre>tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2). For temperatures below 268 K a chem- ical titration was performed.</pre> mercial specimen. Was dried by passage through concentrated sulfuric acid. 2. 1-Iodooctane. Best obtainable specimen was suitably purified, dried, and fractionally dis- tilled, and attested. ESTIMATED ERROR:		a cylinder containing a good com-				
<pre>gas was weighed by re-weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2). For temperatures below 268 K a chem- ical titration was performed.</pre> Sulfuric acid. 2. 1-Iodooctane. Best obtainable specimen was suitably purified, dried, and fractionally dis- tilled, and attested. ESTIMATED ERROR: δT/K = 0.2	tube at a total pressure measured by	mercial specimen. Was dried by				
<pre>bubbler tube. The temperature was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2). For temperatures below 268 K a chem- ical titration was performed.</pre> 2. 1-Iodooctane. Best obtainable specimen was suitably purified, dried, and fractionally dis- tilled, and attested. ESTIMATED ERROR:						
<pre>manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1,2). For temperatures below 268 K a chem- ical titration was performed.</pre> 2. 1-Iodobctane. Best obtainable specimen was suitably purified, dried, and fractionally dis- tilled, and attested. ESTIMATED ERROR:						
The procedure and apparatus are described by Gerrard (1,2). For temperatures below 268 K a chem- ical titration was performed. ESTIMATED ERROR: $\delta T/K = 0.2$						
tilled, and attested. For temperatures below 268 K a chem- ical titration was performed. ESTIMATED ERROR: $\delta T/K = 0.2$						
For temperatures below 268 K a chem- ical titration was performed. ESTIMATED ERROR: $\delta T/K = 0.2$	described by Gerrard (1,2).					
ESTIMATED ERROR: $\delta T/K = 0.2$						
$\delta T/K = 0.2$	ical titration was performed.					
		0.025				
		REPERTING.				
REFERENCES :						
1. Gerrard, W. J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623 - 650.		J. Appl. Chem. Biotechnol. <u>1972</u> ,				
2. Gerrard, W.						
"Solubility of Gases and Liquids"		"Solubility of Gases and Liquids"				
		Plenum Press, New York, 1976				

ORIGINAL MEASUREMENTS:					
Hannaert, H.; Haccuria, M.; Mathieu, M. P.					
Ind. Chim. Belge. <u>1967</u> , 32, 156 - 164.					
PREPARED BY: W. Gerrard					
Enthalpy of Constant /atm ¹ Solution t A .15 K $\Delta H/kcal mol^{-1}$					
42) 4.26 4.80					
(2.3R(T/K)) lent to a Henry's constant in the f_1 is the fugacity. $x_1 = \frac{\text{mole fraction HCl in the gas}}{\text{mole fraction HCl in the liquid}}$ = total pressure, = coefficient of fugacity.					
INFORMATION					
SOURCE AND PURITY OF MATERIALS:					
(1) Hydrogen chloride. BASF. Purity stated to be greater than 99.9 %.					
 (2) Chloroethene. BASF. Degassed by repeated fusions in a vacuum. Purity greater than 99.9 %. Several values of both vapor pressure and density are given in the paper. 					
ESTIMATED ERROR:					
REFERENCES :					

281

262 Hydrogen Chloride In 1	Non-Aqueous Solvents
COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Danov, S. M.; Golubev, Yu. D.
<pre>(2) Chloroethene or vinyl chloride; C₂H₃Cl; [75-01-4]</pre>	Khim. Prom_st. (Moscow) <u>1968</u> , 44 (2), 116 - 120.
VARIABLES:	PREPARED BY:
T/K = 204.55 - 242.65 $p_1/kPa = (100 - 1000 \text{ mmHg})$	W. Gerrard
EXPERIMENTAL VALUES:	
2	
See next	page
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Solubilities were stated to be	(1) Hydrogen chloride. Probably of
measured by a static method. The pressures were stated to have been	satisfactory purity.
measured to an accuracy of 1 mmHg	(2) Chloroethene. Purity of vinyl
on a mercury column.	chloride was checked by chromato-
Note that in the authors' table the	graphy; stated to be not less than 99.999%.
pressures were given in steps of 100	Chail 33.3338.
mmHg. This appears to indicate a	
smoothing of primary data.	1
	ESTIMATED ERROR:
1	
1	REFERENCES :

							· · · · · ·													
T/K	2	04.55	2(09.65	2]	15.15	22	20.65	22	26.15	2	31.15	2	36.65	2	42.65	(2)	(1)	COMP	
p/mmHg	<i>S</i> ¹	x ₁ ¹	S1	x ₁ ²	<i>S</i> ¹	x ₁ ²	<i>S</i> ¹	x ₁ ²	S1	x_1 ²	<i>S</i> ¹	x ₁ ²	<i>S</i> ¹	x ₁ ²	S ¹	x ₁ ²	Chloroe C ₂ H ₃ Cl;	Hydrogen ([7647-01-(COMPONENTS	
100 200 300 400 500 600 700 800 900 1000	55.8 90.9 132.4	0.0675 0.1350 0.2025 0.2700 0.3375	44.6 71.3 101.9 137.1		35.3 55.7 78.3 103.5 131.9		28.3 44.1 61.4 80.2 100.8 138.1 148.3	0.2783 0.2930	22.0 34.0 46.9 60.6 75.3 101.1 108.0 126.3	0.2202 0.2930 0.2607	19.1 29.5 40.4 52.0 64.3 85.5 91.2 ³ 105.9	0.0508 0.0762 0.1016 0.1270 0.1524 0.1928 0.2030 0.2284	16.0 24.5 33.5 42.9 52.7 69.5 73.9 85.4	0.0642 0.0856 0.1070 0.1284 0.1627 0.1712 0.1926	13.5 20.6 28.1 42.9 43.8 57.4 60.9 70.1	0.0182 0.0364 0.0546 0.0728 0.0910 0.0109 ³ 0.1382 0.1455 0.1637 0.1819	oethene or vinyl chloride; 1; [75-01-4]	gen chloride; HCl; -01-0]		nyurugen Chioriae in Non-Aqueous
² Mole ³ Value	nt 2n coef fracti 2 appea	481 ficient on hydro rs to bo stant,	, S/cm ⁸ ogen ch e in en	loride, ror.	g ⁻¹ atm , x ₁ .		27	730	34	150	3	840	4	671	54	96	6 - 120.	Danov, S. M.; Golubev, Yu. D. Khim. Prom st. (Moscow) 1968.	MEASUREMENTS :	T NOU-Aqueous Solvents
																				202

<pre>COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0] (2) (E)-1,2-Dichloroethene or trans-dichloroethene; C₂H₂Cl₂; [156-60-5]</pre>	ORIGINAL MEASUREMENTS: Danov, S. M.; Golubev, Yu. D. Khim. Prom_st. (Moscow) <u>1968</u> , 44 (2), 116 - 120.
VARIABLES: T/K = 225.15 - 256.15 $p_1/kPa = (100 - 1000 \text{ mmHg})$	PREPARED BY: W. Gerrard
EXPERIMENTAL VALUES:	
See next p	age
•	
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS;
Solubilities were stated to be measured by a static method. The pressures were stated to have been measured to an accuracy of 1 mmHg on a mercury column. Note that in the authors' table the pressures were given in stages of 100 mmHg. This appears to indicate a smooting of primary data.	 (1) Hydrogen chloride. Probably of satisfactory purity. (2) (E)-1,2-dichloroethene or trans-dichloroethene. Purity checked by chromatography.
	ESTIMATED ERROR:

													EXPERIMENTAL	(2)	(1)	COMPONENTS	
T/K 225.15 229.65		225.15 229.65		25.15 229.65		235.	235.15 241.65		5	251.	15	256.1	256.15		(<i>E</i>) - dich [156	Hydı [76	NENTS
p/mmHg	SI	x ₁	S1	x_{1}^{2}	S	x_{1}^{2}	s'	x_{1}^{2}	- ST	x_1^2	ST		NTAL,	1,2 10r 60	Hydrogen ([7647-01-1		
100	4.5	0.0193	3.9	0.0168	3.4	0.0146	2.8	0.0121	2.2	0.0096	1.9	0.0084	MEA	,-Dichloroethene oethene; C ₂ H ₂ Cl ₂ ; -5]	- ch		
200	9.2	0.0386	8.0	0.0336	6.7	0.0292	5.7	0.0242	4.1	0.0192	4.0	0.0168	SURI	chlo ene;	lori		
300	14.2	0.0579	12.2	0.0504	10.6	0.0438	8.7	0.0363	6.9	0.0288	5.9	0.0252	MEASUREMENTS	C ₂ I	chloride; -0]		
400	19.3	0.0772	16.6	0.0672	14.3	0.0584	11.7	0.0484	9.2	0.0384	8.0	0.0336	TS:	then ^H 2C1	HC1;		
500	24.7	0.0965	21.1	0.0840	18.2	0.0730	18.2	0.0630	11.6	0.0480	10.1	0.0420		2° or	-		
600	30.3	0.1158	25.8	0.1008	22.2	0.0876	16.7 ³	0.0726	14.2	0.0576	12.3	0.0504		1			
760	39.8	0.1470	33.7	0.1275	28.8	0.1111	23.4	0.0920	18.3	0.0734	15.7	0.0640		trans			
800			35.8	0.1342	30.6	0.1169	24.7	0.0968	19.7	0.0772	16.6	0.0674				E	
900					35.0	0.1315	28.2	0.1089	22.0	0.0868	18.1	0.0758		116 116	Danov	EVALUATOR	
1000					39.5	0.1461	31.2	0.1210	24.5	0.0964	21.2	0.0842		1 1.		TOR:	
lenry's														120.			
Constant" K/mmHg	5169)	5957		683	39	8260		1035	0	1187	0		17	ີ . ດ		
l Kuener	meffi	icient S/	ти ³ (STTP)	g ⁻¹ atm ⁻¹ .										(M08cow)	Golubev		
		n hydrogen		-										000,	ev,		
		s to be in		1.													
		tant, K/mmi		$/\text{mmHg})/x_{1}$										(<u>8967</u>			
-		-	1'	1										44	•		
														(2)			

Hydrogen Chloride in Non-Aqueous Solvents

COMPONENTS :	ORIGINAL MEASUREMENTS:					
(1) Hydrogen chloride; HCl;	Bell, R. P.					
[7647-01-0]						
	J. Chem. Soc. 1931 ,					
(2) Chloroethenes	1371 - 1382.					
VARIABLES:	PREPARED BY:					
T/K: 293.15	W. Gerrard					
P/kPa: 101.325 (1 atm)						
EXPERIMENTAL VALUES:						
-,	n Mol Fraction					
Coefficie						
c _{1,1} /c _{1,}	g					
Trichloroethene	; C ₂ HCL ₃ ;					
[79-01-6]						
293.15 5.79	0.0206					
Tetrachloroethe	ne; C ₂ Cl ₄ ;					
[127-18-4]	2 1					
293.15 3.88	0.0163					
293.15 5.88	0:0105					
The ideal gas conce	ntration at one atm					
is $c_1 \ /mol \ dm^{-3} =$	n/V = p/RT = 0.0417.					
±,9,						
· · · · · · · · · · · · · · · · · · ·						
AUXILIARY	INFORMATION					
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:					
The apparatus consisted of a 50 cm^3	(1) Hydrogen chloride. Prepared by					
	dropping pure concentrated					
graduated tube, and sealed at the bottom to a capillary U-tube. The	hydrochloric acid into pure sulfuric acid.					
bottom to a capillary U-tube. The liquid was saturated with gas at	Sulluite actu.					
atmospheric pressure. The gas was	(2) Chloroethenes. Good specimens					
displaced from the saturated solu-	were dried over calcium					
tion by a current of dry CO, free	chloride, and distilled.					
air, absorbed in water, and	Boiling points are given in					
titrated with a solution of NaOH.	paper.					
The solubility, c/mol dm ⁻³ , was	ESTIMATED ERROR:					
converted to a partition coefficient	CONTRALED ERROR:					
by dividing by the ideal gas con-	$\delta T/K = 0.01$					
centration of HCl in the gas phase.	$\delta c/c = 0.01$					
The mole fraction solubility was						
calculated on the assumption that	REFERENCES :					
the density of the solution obeys						
the ideal mixture law.						
	1					

COMPONENT	S:				ORIGINAL MEASUR			
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>					Abdullaev, A. I.; Aliev, A. M.; Mamedov, M. B.			
(2) Tr	<pre>(2) Trichloroethene; C₂HCl₃; [79-01-6]</pre>					Uch. Zap. Azerb. Gos. Univ., Ser. Khim. Nauk. <u>1968</u> , No. 3, 80 - 83.		
					From <i>Ref.</i> Zi Abstr. No.		<u>69</u> ,	
VARIABLES	::				PREPARED BY:			
T/K = 273.15 - 353.15 Total pressure = barometric				W. Gerrard				
EXPERIMEN T/K	TAL VALU	ES:	lorido	Hydrogen Ch	loridol	Mol Patio	Mol Fraction	
171	nyuro	w _γ /wi	t %		· <u>.</u> · · · · · · · · · · · · · · · · · · ·			
	a	b		g HCl per 100 g (2)	cm HCl per 1 cm (2)	ⁿ 1/n2	<i>x</i> ₁	
	0.88				8.00	0.0324	0.0314	
	0.62		0.68		6.07	0.0245	0.0239	
	0.50		0.54		4.90	0.0195	0.0191	
	0.44		0.45		4.10 3.31	0.0162 0.0133	0.0160 0.0132	
	0.31				2.71	0.0108	0.0132	
	0.24				2.03	0.00829	0.00822	
	0.17				1.59	0.00649	0.00645	
353.15	0.16	0.14	0.15	0.15	1.35	0.00541	0.00538	
The mo	d on th le rati		-	-	es were calc	ulated by t	he compiler.	
The mo			-	-	es were calc	ulated by t	he compiler.	
The mo			-	caction valu	es were calc	ulated by t	he compiler.	
		o and m	nole fi	caction valu		-		
METHOD/AH The ap which tube c furic tube c	le rati PPARATUS/ paratus hCl is ontaini acid, a	o and m PROCEDUR consis generat ng conc bubble ng abou	E: E: sts of centrat er abso	AUXILIARY a flask in bubbler :ed sul-	INFORMATION SOURCE AND PUR (1) Hydroge from ch chlorid sulfuri	ITY OF MATERI n chloride. emically pu e and conce c acid.	ALS: Prepared re sodium ntrated	
METHOD/AI The ap which tube c furic tube c trichl The ga bubble a samp	PPARATUS/ paratus HCl is ontaini acid, a ontaini oroethy s was p r tube le of t	PROCEDUR consis generat ng conc bubble ng abou lene. assed f was coc he solu	E: ter abso ter abso to cor 3 h bled to tion w	AUXILIARY a flask in bubbler ed sul- orption	INFORMATION SOURCE AND PUR (1) Hydroge from ch chlorid sulfuri (2) Trichlo	ITY OF MATERI n chloride. emically pu e and conce c acid.	ALS: Prepared re sodium	
METHOD/AI The ap which tube c furic tube c trichl The ga bubble a samp	PPARATUS/ paratus HCl is ontaini acid, a ontaini oroethy s was p r tube le of t	PROCEDUR consis generat ng conc bubble ng abou lene. assed f was coc he solu	E: ter abso ter abso to cor 3 h bled to tion w	AUXILIARY AUXILIARY a flask in bubbler a sul- orption m ³ of the ours, the o 258 K, and vas with-	INFORMATION SOURCE AND PUR (1) Hydroge from ch chlorid sulfuri (2) Trichlo	ITY OF MATERI n chloride. emically pu e and conce c acid. roethene.	ALS: Prepared re sodium ntrated	
METHOD/AI The ap which tube c furic tube c trichl The ga bubble a samp	PPARATUS/ paratus HCl is ontaini acid, a ontaini oroethy s was p r tube le of t	PROCEDUR consis generat ng conc bubble ng abou lene. assed f was coc he solu	E: ter abso ter abso to cor 3 h bled to tion w	AUXILIARY AUXILIARY a flask in bubbler a sul- orption m ³ of the ours, the o 258 K, and vas with-	INFORMATION SOURCE AND PUR (1) Hydroge from ch chlorid sulfuri (2) Trichlo	ITY OF MATERI n chloride. emically pu e and conce c acid. roethene.	ALS: Prepared re sodium ntrated	
METHOD/AI The ap which tube c furic tube c trichl The ga bubble a samp	PPARATUS/ paratus HCl is ontaini acid, a ontaini oroethy s was p r tube le of t	PROCEDUR consis generat ng conc bubble ng abou lene. assed f was coc he solu	E: ter abso ter abso to cor 3 h bled to tion w	AUXILIARY AUXILIARY a flask in bubbler a sul- orption m ³ of the ours, the o 258 K, and vas with-	INFORMATION SOURCE AND PUR (1) Hydroge from ch chlorid sulfuri (2) Trichlo ESTIMATED ERRO	ITY OF MATERI n chloride. emically pu e and conce c acid. roethene.	ALS: Prepared re sodium ntrated	
METHOD/AI The ap which tube c furic tube c trichl The ga bubble a samp	PPARATUS/ paratus HCl is ontaini acid, a ontaini oroethy s was p r tube le of t	PROCEDUR consis generat ng conc bubble ng abou lene. assed f was coc he solu	E: ter abso ter abso to cor 3 h bled to tion w	AUXILIARY AUXILIARY a flask in bubbler a sul- orption m ³ of the ours, the o 258 K, and vas with-	INFORMATION SOURCE AND PUR (1) Hydroge from ch chlorid sulfuri (2) Trichlo	ITY OF MATERI n chloride. emically pu e and conce c acid. roethene.	ALS: Prepared re sodium ntrated	
METHOD/AI The ap which tube c furic tube c trichl The ga bubble a samp	PPARATUS/ paratus HCl is ontaini acid, a ontaini oroethy s was p r tube le of t	PROCEDUR consis generat ng conc bubble ng abou lene. assed f was coc he solu	E: ter abso ter abso to cor 3 h bled to tion w	AUXILIARY AUXILIARY a flask in bubbler a sul- orption m ³ of the hours, the o 258 K, and vas with-	INFORMATION SOURCE AND PUR (1) Hydroge from ch chlorid sulfuri (2) Trichlo ESTIMATED ERRO	ITY OF MATERI n chloride. emically pu e and conce c acid. roethene.	ALS: Prepared re sodium ntrated	

	·
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Hydrogen chloride; HCl;	Curda, M.; Holas, J.
[7647-01-0]	Cham Drawning 1 1064 14 EAR EAR
(2) Tetrachlereethere, C Cl ·	Chem. Prumysl <u>1964</u> , 14, 547 - 548.
(2) Tetrachloroethene; C ₂ Cl ₄ ; [127-18-4]	
[127-10-4]	
VARIABLES:	PREPARED BY:
T/K = 293.15 - 363.15	W. Gerrard
p / kPa = 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K weight i	ratio Mol Fraction
g ₁ /10	a^2g_2 x_1
293.15 0.35	0.0157
303.15 0.31	
323.15 0.22	
343.15 0.15	
363.15 0.08	0.0036
	values were calcu-
lated by the comp	iler.
Empothed Datas For use between 202	15 and 262 15 V
Smoothed Data: For use between 293.	15 and 363.15 K.
$\ln x = 95.045 - 137$.022/(T/100 K) - 48.788 ln (T/100 K)
	(1) 100 N, 100,00 IN (1) 100 N,
	Aol Fraction
	<i>x</i> ₁
298.15	0.0148
313.15	0.0122
328.15 343.15	0.0092
358.15	0.0043
¹ The weight ratio is grams of HCl p	per 100 grams of tetrachloroethene.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The gas was passed through the liquid	SOURCE AND PURITY OF MATERIALS:
in a jacketed bubbler tube fitted	taken as of satisfactory
with a sampling tap at the bottom.	purity.
The amount of hydrogen chloride in a	purrey.
sample was determined by a chemical	(2) Tetrachloroethene. Rectified
titration.	technical grade. B.p.
	$(1 \text{ atm})/^{\circ}C = 120.$
The pressure was presumably	
atmospheric.	
	Í .
	ESTIMATED ERROR:
	1
]	
	REFERENCES :
1	
1	1

20/20/20/20/20/20/20/20/20/20/20/20/20/2	
COMPONENTS: (1) Hydrogen chloride; HCl;	ORIGINAL MEASUREMENTS: Curda, M.; Holas, J.
[7647-01-0]	curua, M., noras, J.
(2) 3-Chloro-1-propene or allyl chloride; C ₃ H ₅ Cl; [107-05-1]	Chem. Prumysl <u>1964</u> , 14, 547 - 548.
55	
VARIABLES:	PREPARED BY:
T/K = 273.15 p /kPa = 101.325 (1 atm)	W. Gerrard
EXPERIMENTAL VALUES: T/K Weight Rat	iol Mol Fraction
g ₁ /10 ² g	x ₁
273.15 3.05	0.0609
¹ The weight ratio in 100 grams of 1-ch	ls grams of HCl per Loropropene.
	alue was calculated by
ene compilei.	
	Ĩ
·	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The gas was passed through the liquid in a jacketed bubbler tube fitted with a sampling tap at the bottom.	(1) Hydrogen chloride. May be taken as of satisfactory purity.
The amount of hydrogen chloride in a sample was determined by a chemical	(2) 1-Chloropropene. Redistilled.
titration. The pressure was presumably	B.p. $(1 \text{ atm})/^{\circ}C = 44.$
atmospheric.	
	ESTIMATED ERROR:
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Cook, T. M.
2. 3-Chloro-1-propene or allyl chloride; C ₃ H ₅ Cl; [107-05-1]	Thesis, <u>1966</u> University of London
VARIABLES:	PREPARED BY:
T/K: 268.95 - 283.15	W. Gerrard
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Ratio	Mol Fraction
ⁿ HC1/ ⁿ C ₃ H ₅ C	ri ^x hci
268.95 0.0536	
273.65 0.0484	
274.65 0.0475 278.15 0.0407	
283.15 0.0320	0.0310
The mole fraction values were calculat	ed by the compiler.
Smoothed Data: ln X _{HC1} = 485.138 - 65	5.137/(T/100) - 247.155 ln (T/100)
Standard Error About F	Regression Line = 4.12×10^{-4}
, Т/К М	lol Fraction
	x _{HC1}
263.15	0.0520
273.15	0.0468
283.15	0.0309
· · · · · · · · · · · · · · · · · · ·	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The data were cited by Gerrard (1).	1. Hydrogen chloride. Sample of best
Wudrogon chlerido una presed into a	quality was self prepared, and was
Hydrogen chloride was passed into a bubbler tube containing a weighed	passed through concentrated sul- furic acid and calcium chloride.
amount of solvent at the specified	2. 3-Chloropropene. Fractionally
temperature until the increase in weight was constant at the	distilled, boiling point (l atm) =
barometric pressure (2).	45-45.5°C, and refractive index,
For temperatures below 273 K a	$n_D^{20} = 1.4151.$
weighed amount (excess) of pyridine	
was quantitatively injected into the absorption vessel at the temperature	
of the thermostat. The tube was then	ESTIMATED ERROR:
weighed at room temperature.	$\delta x_1 / x_1 = 0.02$
	REFERENCES :
	1. Gerrard, W.
	J. Chim. Phys. <u>1964</u> , 61, 73; Solubility of Gases in Liquids,
	Plenum Press, New York, 1976.
	2. Ahmed, W.; Gerrard, W.; Maladkar, V. K. J. Appl. Chem.
	<u>1970</u> , 20, 109.
	<u></u>

COMPONENTS :	EVALUATOR:
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2. Halogenated Aromatic Compounds	Polytechnic of North London, Holloway, London, N7 8DB, U.K. January 1989

CRITICAL EVALUATION:

Solubility of Hydrogen Chloride in Halogenated Aromatic Compounds.

Solubility in chlorobenzene has been measured at barometric pressure by Bell (1), Gerrard et al.(2), and by Zetkin et al.(3). Measurements were made over a pressure range below 101.3 kPa by O'Brien (4,5) and by Wyrzykwoska-Stankiewicz et al.(6) and over a pressure range to 5050 kPa by Strepikheev & Babkin (7). Measurements by these various authors extend over the temperature range 273 to 391 K. Mole fraction solubilities for a partial pressure of 101.3 kPa calculated from the available data are shown in fig 1. The value for 391 K, estimated from measurements by Strepikheev & Babkin, can be disregarded because of the high vapor pressure of the solvent at this temperature. Other values may be fitted to the equation :

 $\ln x_{\rm HCl} = -82.804 + 5275.3/(T/K) + 10.802 \ln(T/K)$

The standard deviation in values of x_{HC1} is 0.0021.

Solubility in bromobenzene at barometric pressure was measured by Bell (1) at 293.15 K and by Gerrard (2) over the temperature range 273.45 K to 316.75 K. O'Brien & Byrne (4) made measurements at 298.15 K over a pressure range to 38.7 kPa. The mole fraction solubilities for a partial pressure of 101.3 kPa estimated from the published data may be fitted to the equation :

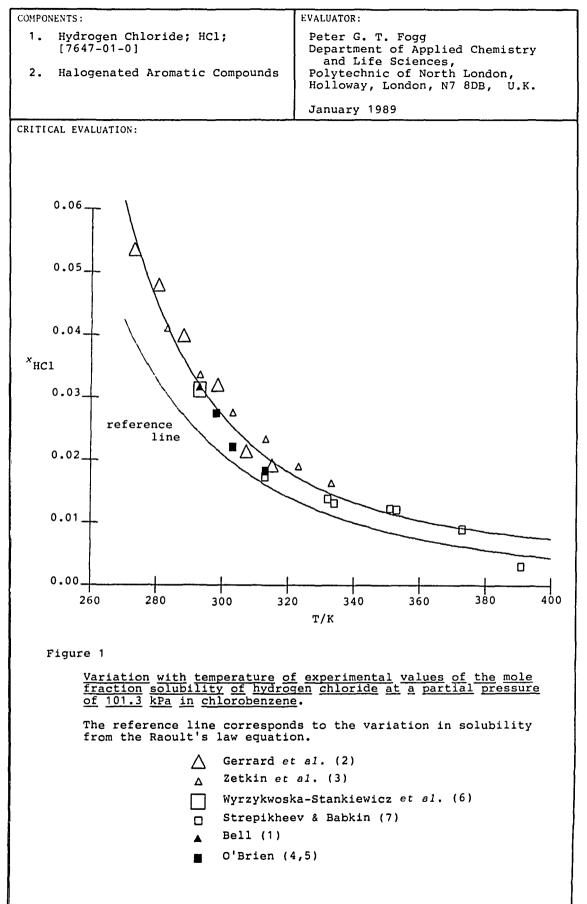
 $\ln x_{\rm HCl} = 231.01 - 8259.3/(T/K) - 36.315 \ln(T/K)$

The standard deviation in values of $x_{\rm HCl}$ is 0.0012.

O'Brien & Byrne (4) also measured solubilities in fluorobenzene and iodobenzene at 298.15 K over a pressure range to 35 kPa. No other measurements on this system are available for comparison. The compiler has estimated mole fraction solubilities for a partial pressure of 101.3 kPa from the average value of the Henry's constants reported by O'Brien. An alternative method is to fit the data to a form of the Krichevskii-Il'inskaya equation applicable to moderate pressures. i.e.

 $\log_{10} \frac{P_{HC1}/mmHg}{x_{HC1}} = \log_{10} (H/mmHg) - B (1 - x_{solvent})$

where B is a constant and H is the limiting value of Henry's constant defined as : H = lim. (P_{HCl}/x_{HCl}) x_{HCl}^{+0}


The corresponding values of mole fraction solubilities for a partial pressure of 101.3 kPa from O'Brien's data estimated in this way then fall in the order fluorobenzene (0.048) > chlorobenzene (0.027) > bromobenzene (0.026) > iodobenzene (0.022).

Zetkin *et al.*(3) measured solubility in 1,2-dichlorobenzene at barometric pressure over the temperature range 288.15 K to 333.15 K. Lavrova & Tudorovskaya (8) made measurements over the range 293.15 K to 438.15 K, also at barometric pressure, but corrected the values to a partial pressure of 101.15 kPa before publication. The data given by Zetkin, corrected to a partial pressure of 101.325 kPa is in good agreement with that given by Lavrova except at 293.15 K. Mole fraction solubilities at this temperature are 0.0209 (Zetkin) and 0.0220 (Lavrova). Mole fraction solubilities from the two sets of data may be represented by the equation :

 $\ln x_{HC1} = 18.049 - 106.766/(T/K) - 3.8027 \ln(T/K)$

The standard deviation in values of $x_{\rm HCl}$ is 0.00090. This equation is based upon data for the range 288 K to 438 K.

The solubility in 1,2,4-trichlorobenzene was measured by Zetkin *et al.*(3) at barometric pressure in the temperature range 288.15 K to 333.15 K. These values are self-consistent and probably as reliable as other

	· · · · · · · · · · · · · · · · · · ·
COMPONENTS :	EVALUATOR:
1. Hydrogen Chloride; HCl; [7647-01-0]	Peter G. T. Fogg Department of Applied Chemistry
2. Halogenated Aromatic Compounds	and Life Sciences, Polytechnic of North London,
	Holloway, London, N7 8DB, U.K.
	January 1989
CRITICAL EVALUATION:	
measurements by these authors of the so There are, however, no other measuremen comparison may be made.	
Bell (1) measured the solubility in (c) pressure and 293.15 K. No other measur for comparison.	
The solubility in (trichloromethyl)benz measured by Bell (1) at 293.15 K and by range 273.65 K to 315.95 K. The mole f Bell's measurement is in sharp contrast temperature by interpolation of Gerrard measurements are consistent over the te be the more reliable.	Gerrard <i>et al.</i> (2) over the temperature raction solubility of 0.0275 from to the value of 0.0449 at this 's measurements. Gerrard's
range 279 K to 353 K. The measurements other measurements on this system with authors also published data for solubil	barometric pressure over the temperature are self consistent but there are no which comparisons may be made. These ity in mixtures of this solvent with zenes. The compiler has noted errors in
Ahmed (10) reported the solubility in the equal to barometric pressure over the the 293.15 K. Mole fraction solubilities for self-consistent and lower than values for the carbonyl group. No other available for comparison.	emperature range 253.15 K to rom these measurements are or chlorobenzene and other solvents
REFERENCES	
1. Bell, R. P. J. Chem. Soc. <u>1931</u> , 1	371 - 1382.
	, P. L. J. Appl. Chem. 1959, 9, 89 - 93.
3. Zetkin, V. I.; Kosorotov, V. I.; S Khim. Prom. <u>1971</u> , 47, 102 - 103.;	tul, B. Ya.; Dzhagatspanyan, R. V. <i>Soviet Chem. Ind. <u>1971</u>, 3, 89 - 90.</i>
4. O'Brien, S. J.; Byrne, J. B. J. A	m. Chem. Soc. <u>1940</u> , 62, 2063 – 2065.
5. O'Brien, S. J. J. Am. Chem. Soc.	<u>1941</u> , 63, 2709 - 2712.
 Wyrzykwoska-Stankiewicz, D.; Szfra Polon. Sci., Ser. Sci. Chim. <u>1971</u>, 	nski, A.; Kaminski, M. Bull. Acad. 19, 199 - 205.
 Strepikheev, Yu. A.; Babkin, B. M. 38 - 39. 	Khim. Prom_st (Moscow) <u>1963</u> , No. 1,
8. Lavrova, E. M.; Tudorovskaya, G. L 2105 - 2106.; J. Appl. Chem. USSR	. Zh. Prikl. Khim. (Leningrad) <u>1977</u> , 50, <u>1977</u> , 50, 2005 - 2006.
9. Ushakov, A. A.; Kosorotov, V. I.; Dzhagatspanyan, R. V. Zh. Prikl. J. Appl. Chem. USSR <u>1977</u> , 50, 403	Khim. (Leningrad) <u>1977</u> , 50, 425 - 427.;
10. Ahmed, W. Thesis, <u>1970</u> , Universit	y of London.

	chloride; 0]	HCl;	ORIGINAL MEASUREMENTS: O'Brien, S. J.; Byrne, J. B. J. Am. Chem. Soc. <u>1940</u> , 62, 2063 - 2065.			
(2) Fluoroben	.zene; C ₆ H ₅	F; [462-06-6]				
VARIABLES: T/K: P/kPa:	298.15 6.52 - 34 (48.9 - 2		PREPARED	BY: W. Ger	rard	
EXPERIMENTAL VAL	WES:		1			
<u>т/к</u>	Pressure P ₁ /mmHg	-	Henry's Constant k ¹	Mol Ratio	Mol Fraction ^x 1	
² Value c constan gives a	alculated t. Use of	the high and 0.0281 to 0.03	r from th low value	e average v s of Henry'	alue of Henry's	
· · · · · · · · · · · · · · · · · · ·						
		AUXILIARY	INFORMATIO	N		
Saylor (1) as al. (2). The use of a 1 to to 7 day equi The apparatus which are sep solvent is pa the gas, and the lower bul partially eva and the whole thermostat fr The tap is cl	ad apparatu modified main diff 2 day ins libration consists arated by artially sa the soluti b. The bu cuated, the apparatus com 1 to 2 cosed. The aquantitat	is are those of by O'Brien <i>et</i> erence is the tead of a 5 time. of two bulbs a tap. The turated with on added to the tap opened, put in a days. HC1 in the tively removed	SOURCE ANI (1) Hydr from chlc Drie (2) Fluc Atte	O PURITY OF MA ogen chlori a chemically bride and su ord by phosph probenzene. ested by ref 1.4650.	de. Prepared pure potassium lfuric acid. orus pentoxide. Eastman Kodak Co. ractive index,	

	Hyurc	gen Chioriae in i	von-Aquec	ous Solvents	295	
COMPONENTS:			ORIGINAL N	EASUREMENTS:		
	<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>			Ushakov, A. A.; Kosorotov, V. I.; Stul, B. Ya.; Motsarev, G. V.; Dzhagatspanyan, R. V.		
(2) (Trifluorom	(2) (Trifluoromethyl)-benzene or benzotrifluoride; C ₇ H ₅ F ₃ ;			kl. Khim. (Leningrad	() <u>1977</u> ,	
[98-08-8]	02140, 0	7-5-3'	J. Appl	- 427. . Chem. USSR (Engl.	Transl.)	
		·····	<u>1977,</u> 5	0, 403 - 405.		
VARIABLES: T/K =	: 279 - 3	53	PREPARED			
	101.325		(smooth	W. Gerrard ed data calculated by H.	L. Clever)	
EXPERIMENTAL VALUES	:					
	T/K	Hydrogen Chl	oride	Mol Fraction		
		w ₁ /wt % Mc	ol Ratio n_1/n_2	<i>x</i> 1		
	279	1.280 (0.0512	0.0487		
	298	0.540 0	.0216	0.0211		
	313		0.0137	0.0135		
	323 333		0.0098	0.0097		
	353		0.0071 0.0036	0.00705 0.0036		
Smoothed Data:	For use	between 278 a	nd 353 K	•		
	$\ln x_{\tau} =$	-15.1689 + 33	.8866/(T	/100 к)		
The sta	1			on line is 7.55 x 10	- 4	
		T/K Mol Fra			•	
		x 1				
		278 0.05 288 0.03				
		298 0.02				
		313 0.01 323 0.00				
		333 0.00				
		343 0.00 353 0.00				
	-				· · · · · · · · · · · · · · · · · · ·	
		AUXILIARY	INFORMATIO			
METHOD/APPARATUS/PR		heric pressure		D PURITY OF MATERIALS: rogen chloride. Pre	nared	
in a thermostat	ed cylind	irical vessel	fro	m cp grade NaCl and	concen-	
of 200 cm ³ capa	city fit	ted with a		ted H_SO4. Dried by		
reflux condense			(2) (50	ifluoromethyl)-benze	-	
and the HCl con	s a samp. tent dete	ermined by		tified, purity 99.8		
alkalimetry, un				cirica, paricy solo	per cent.	
tration was att	ained.					
			DOBTICATION			
			ESTIMATEI	ERROR:		
ļ				· · · · · · · · · · · · · · · · · · ·		
			REFERENCI	2S :		
1			1			
			1			

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0] (2) (Trifluoromethyl)-benzene or benzotrifluoride; $C_7H_5F_3$; [98-08-8] (3) Chloro(trifluoromethyl)-benzene; $C_7H_4ClF_3$; [52181-51-8] VARIABLES: T/K = 298 - 353 p/kPa = 101.325 (1 atm)	ORIGINAL MEASUREMENTS: Ushakov, A. A.; Kosorotov, V. I.; Stul, B. Ya.; Motsarev, G. V.; Dzhagatspanya, R. V. Zh. Prikl. Khim. (Leningrad) <u>1977</u> , 50, 425 - 427. J. Appl. Chem. USSR (Engl. Transl.) <u>1977</u> , 50, 403 - 405. PREPARED BY: W. Gerrard		
EXPERIMENTAL VALUES: T/K Composition of Initial Mixt	ture Hydrogen Chloride		
	$\frac{\omega_1/\text{wt } \text{\% Mol Ratio}}{n_1/(n_2 + n_3)}$		
298 84.84 15.16 313 323 333 353	$\begin{array}{ccccccc} 0.544 & 0.0116 & (0.0225)^{1} \\ 0.348 & 0.0074 & (0.0144)^{1} \\ 0.258 & 0.0055 & (0.0107)^{1} \\ 0.188 & 0.0040 & (0.0078)^{1} \\ 0.102 & 0.0024 & (0.0042)^{1} \end{array}$		
The probable source of the discrepa molecular weight in place of the H The authors tabulated values of the	e Gibbs energy, enthalpy, and entropy atio values. The values need to be		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: Determined under atmospheric pressure in a thermostated cylindrical vessel of 200 cm capacity fitted with a reflux condenser and a bubbler. Every 20 minutes a sample was removed, and the HCl content deter- mined by alkalimetry, until a con- stant concentration was attained. Component (3) is probably mostly 1-chloro-3-(trifluoromethyl)-benzene [98-15-7].	SOURCE AND PURITY OF MATERIALS:		

		,					
COMPONENTS	:			ORIGINAL MEASUREME	NTS:		
		oride; HCl;		Ushakov, A. A.; Kosorotov, V. I.;			
	7-01-0]			Stul, B. Ya.;	Motsarev,	G. V.;	
		chyl)-benzer		Dzhagatspanya, R. V.			
(3) Chlo	oro(triflu	ride; C ₇ H ₅ F loromethyl)	benzene:	2n. Frikt. Knim. (Leningrad) 1917,			
C-H,	ClF ₂ ; [52	2181-51-8]		50, 425 - 427.			
(4) Dích C ₇ H ₃	lorŏ(trii Cl ₂ F ₃ ; []	fluoromethy: 30498-35-2]	l)-benzene;	J. Appl. Chem. 1977 , 50, 403		gl. Transl.)	
VARIABLES	:	298 - 353		PREPARED BY:	<u></u>		
		L01.325 (1	atm)	w.	Gerrard		
			,				
EVDEDTMEN	TAL VALUES:						
T/K		ion of Init	iol Mivtur	o Hudre	ogen Chlo		
1/K			MIXCUL		Mol F		
		C7H4ClF3		w_1 /wt %		$+ n_3 + n_4)$	
	_						
298	58.29	39.47	2.24	0.540	0.0123		
313 323				0.362		$(0.0159)^{1}$	
323				0.280 0.212	0.0064		
353				0.140	0.0048	$(0.0093)^{1}$ $(0.0061)^{1}$	
				01110	0.0001	(,	
298	22.82	60.86	16.32	0.550	0.0138		
313				0.374		$(0.0181)^{1}$	
323				0.302	0.0076		
353				0.230 0.152	0.0035	$(0.0111)^{1}$ $(0.0073)^{1}$	
The a of di	uthors ta ssolution	bulated val based on t	ues of the he mole ra	l molecular weig Gibbs energy, e tio values. The e ratio values.	enthalpy,	and entropy eed to be	
			AUXILIARY	INFORMATION			
METHOD /AP	PARATUS/PRO	CEDURE :		SOURCE AND PURITY	OF MATERIA	1.5 :	
		atmospheri	c pressure				
in a th of 200 reflux	ermostate cm³ capac condenser	ed cylindric ity fitted and a bubb a sample w	al vessel with a pler.	(1) Hydrogen ch	Cl and c	oncentrated	
removed mined b	, and the y alkalim	HCl conten etry, until ion was att	it deter- . a con-	(2, 3, 4) Mixtu chlorinatic benzene at of FeCl ₃ .	on of (tr	ared by ifluoromethyl the presence	
				ESTIMATED ERROR:			

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Bell, R. P.
(2) Chlorobenzene and (chloromethyl)- benzenes	J. Chem. Soc. <u>1931</u> , 1371 - 1382.
VARIABLES:	PREPARED BY:
T/K: 293.15 P/kPa: 101.325 (1 atm)	W. Gerrard
EXPERIMENTAL VALUES:	
T/K Partition Coefficient c1,1/c1,g	
Chlorobenzene; C	5H ₅ Cl; [108-90-7]
293.15 7.63	0.0315
(Chloromethyl)ber [100-44-7]	<pre>izene; C7H7Cl;</pre>
293.15 9.75	0.0448
(Trichloromethyl) C7 ^H 5 ^{Cl} 3; [98-07-	benzene; 7]
293.15 4.77	0.0275
The ideal gas concen is c _{l,g} /mol dm ⁻³ = n	tration at $p_1 = 1$ atm / $v = p/RT = 0.0417$.
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The apparatus consisted of a 50 cm ³ bulb extended at the top as a graduated tube, and sealed at the bottom to a capillary U-tube. The liquid was saturated with gas at atmospheric pressure. The gas was displaced from the saturated solu- tion by a current of dry CO_2 free air, absorbed in water, and titrated with a solution of NaOH.	 (1) Hydrogen chloride. Prepared by dropping pure concentrated hydrochloric acid into pure sulfuric acid. (2) Chlorobenzene and (chloromethyl)- benzenes. Good specimens were dried over calcium chloride, and distilled. Boiling points are given in paper.
The solubility, $c/mol dm^{-3}$, was converted to a partition coefficient	ESTIMATED ERROR:
by dividing by the ideal gas con- centration of HCl in the gas phase.	$\begin{array}{rcl} \delta T/K &= & 0.01 \\ \delta c/c &= & 0.01 \end{array}$
The mole fraction solubility was calculated on the assumption that the density of the solution obeys the ideal mixture law.	REFERENCES :

	пуа	rogen Unioriae in	Non-Aqueo	us Solvents		299
COMPONENTS :			ORIGINAL M	EASUREMENTS:		
(1) Hydrogen [7647-01-		HCl;	O'Brien, S. J.; Byrne, J. B.			
(2) Chloroben	(2) Chlorobenzene; C ₆ H ₅ Cl; [108-90-7]			J. Am. Chem. Soc. <u>1940</u> , 62, 2063 - 2065.		
			Į			
			<u> </u>			
VARIABLES: T/K:	298.15		PREPARED B	Υ:		
P/kPa:	4.01 - 45 (30.1 - 3			W. Gerr	ard	
THERE AND THE TAX			I		<u> </u>	
EXPERIMENTAL VAL	Pressure	Molality	Henry's	Mol Ratio	Mol Fraction	- '
	p1/mmHg	-	Constant k ¹	ⁿ 1 ^{/n} 2		
298.15	30.1	0.0081	4.85	0.00091	0.00091	
	48.0	0.0152	4.16	0.00171	0.00171	
	108	0.0310	4.58	0.00349	0.00346	1
1	193	0.0578	4.39	0.00650	0.00646	
	198	0.0597	4.31	0.00672 0.0116	0.00667 0.0114	
	340	0.1027	4.35	0.0110	0.0114	
	(760	0.228	4.38 av.	0.0257	0.0251) ²	
² Value c	alculated	$(p_1/atm)/(m_1/m)$ by the compile the high and	r from the	e average v	value of Henry's	
		AUXILIARY	INFORMATION	N		
Saylor (1) as al. (2). The use of a 1 to to 7 day equi The apparatus which are sep solvent is pa the gas, and the lower bul partially eva and the whole	d apparatu modified main diff 2 day ins libration consists arated by rtially sa the soluti b. The bu cuated, th apparatus	by O'Brien et erence is the tead of a 5 time. of two bulbs a tap. The turated with on added to lbs are e tap opened, put in a	<pre>(1) Hydro chemi chloi Dried (2) Chloi Attes ^{n²⁰},</pre>	ically pure ride and su l by phosph robenzene. sted by ref 1.5240.	ATERIALS: de. Prepared f potassium lfuric acid. orus pentoxide. Eastman Kodak ractive index,	
thermostat fr	om 1 to 2	days.	ESTIMATED	ERROR:		
and titrated	quantitat with NaOH.	ively removed The HCl		δ τ/ Κ =	0.02	
partial press the bulb volu moles of HCl behavior. A is removed fr titrated with	me and the assuming i weighed so om the low	number of deal gas lution sample	J. An 2. O'Bri Zeuro	or, J. H. n. <i>Chem. So</i> len, S. J.; cher, R. A.	c. <u>1937</u> , 59, 17 Kenny, C. L. c. <u>1939</u> , 61, 25	
L			L	······		

COMPONENTS :		-	IODICINAL A	T LOUDEL THE		
		wol .		ÆASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0] (2) Chlorobenzene; C₆H₅Cl; [108-90-7]</pre>		O'Brien, S. J. J. Am. Chem. Soc. <u>1941</u> , 63, 2709 - 2712.				
VARIABLES: T/K: P/kPa:	303.15, 3 3.03 - 33 (22.7 - 2	•/5	PREPARED I	W. Gerrar	đ	
EXPERIMENTAL VAL	JES:	*				
T/K	Pressure P1 ^{/mmHg}		Henry's Constant k ¹	Mol Ratio	Mol Fraction	
303.15	22.7 23.9 113 103 156 253	0.0058 0.0069 0.0311 0.0312 0.0449 0.0726	5.16 4.59 4.78 4.30 4.58 4.76	0.000652 0.000776 0.00350 0.00351 0.00505 0.00817	0.000775 0.00349 0.00350 0.00803	
313.15	38.8 75.2 118 139 203	0.0093 0.0170 0.0291 0.0314 0.0470	5.48 5.82 5.34 5.82 5.68		0.00105 0.00191	
' (760 r ¹ The uni	nmHg). ts of Henr	y's constant, (p ₁ /atm)/(m ₁ /m	k, are at	-	93 for 101.325	
		AUXILIARY	INFORMATIO			
METHOD /APPARATUS	PROCEDURE .		SOURCE ANI	D PURITY OF MA	TEDIAIC	
The method and Saylor (1) as al . (2). The	d apparatu modified main diff 2 day ins	erence is the tead of a 5 to	(1) Hydr from chlo	ogen chlori chemically ride and su	de. Prepared pure potassium lfuric acid. orus pentoxide	
The apparatus which are sepa solvent is par- the gas, and the lower bull partially evac and the whole	arated by rtially sa the soluti b. The bu cuated, th	a tap. The turated with on added to lbs are e tap opened,	calc ⁿ²⁰ ,	1.5420.	Stored over e and distilled	1,
thermostat fro			ESTIMATED	ERROR:		
The tap is cld upper bulb is and titrated up artial press the bulb volum moles of HCl a behavior. A u	quantitat with NaOH. Ire is cal- ne and the assuming i weighed so	ively removed The HCl culated from number of deal gas lution sample	J. A	or, J. H. m. Chem. So	c. <u>1937</u> , 59, 1	712.
is removed fro titrated with		er bulb and	Zeur	cher, R. A.	Kenny, C. L. c. <u>1939</u> , 61, 2	504.

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
(2) Chlorobenzene; C ₆ H ₅ Cl; [108-90-7]	J. Appl. Chem. <u>1959</u> , 9, 89 – 93.
VARIABLES: T/K: 273.15 - 315.15	PREPARED BY:
Total P/kPa: 101.325 (1 atm)	W. Gerrard
	(smoothed data calculated by H.L. Clever)
EVDEDTAENTAL VALUES.	
EXPERIMENTAL VALUES:	
T/K Mol Ratio	
ⁿ HC1/ ⁿ C ₆ H ₅ C	l ^x HCl
	- <u></u> -
273.15 0.0561 280.55 0.0498	0.0531 0.0474
288.15 0.0498	0.0392
298.55 0.0322	0.0312
307.35 0.0210	0.0206
315.15 0.0185	0.0182
The mole fraction values were calculat	ted by the compiler.
Smoothed Data: $\ln x_{1101} = 97.858 - 130$	0.990/(T/100) - 52.571 ln (T/100)
Standard error about i	regression line = 1.63×10^{-3}
······································	
T/K Ma	ol Fraction
	^x HCl
273.15	0.0538
283.15	0.0442
293.15 303.15	0.0345 0.0258
313.15	0.0186
323.15	0.0130
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solvent was weighed in a bubbler	(1) Hydrogen chloride. Good specimen
tube. The amount of gas absorbed was	from a commercial cylinder was
determined by reweighing to constant	dried.
weight. The total pressure was barometric, very nearly 1 atm.	(2) Chlorobenzene. Carefully puri-
balometric, very hearry r atm.	fied, and purity rigorously
	attested.
	ESTIMATED ERROR:
	CONTRACTED BANDA:
	$\delta x/x = 0.01$
	REFERENCES :
	L

ORIGINAL MEASUREMENTS: Strepikheev, Yu. A.; Babkin, B. M.
Strepikheev, Yu. A.; Babkin, B. M.
Khim. Prom_st (Moscow) <u>1963</u> , No. 1, 38 - 39.
PREPARED BY: W. Gerrard
raction x ₁
0.0320 (4 points) 0.0175 27 L9 D1 98 D.0060 L0 ne data are displayed in two diagrams.
g. 1 by the compiler. The figure shows a tmospheric) $vs. t/^{\circ}C$. The in- e due to the chlorobenzene is clearly boncave upward plot over the 333 to
Pressure Mol Fraction
$\frac{x_1}{50}$ $\frac{x_2}{0.29}$
0.24 0.22 0.17 0.155
ler from Fig. 2 which shows a plot of for five isotherms from 443 to 523 K ginal paper.)
INFORMATION
SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Prepared by action of concentrated sulfuric acid on chemically pure sodium chloride, dried with calcium chlorides, and filtered through glass wool.
<pre>(2) Chlorobenzene. Dried over calcium chloride and distilled. B.p. (l atm)/°C = 132 ± 0.2.</pre>
For the high pressure measurements $\delta T/K = \pm 1$ $\delta p/atm = \pm 0.5$
REFERENCES :

COMPONENTS :		ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HO [7647-01-0]</pre>	:1;	Wyrzykwoska-Stankiewicz, D.; Szafranski, A.; Kaminski, M.
(2) Chlorobenzene; C ₆ H ₅ C] [108-90-7]	.;	Bull. Acad. Polon. Sci., Ser. Sci. Chim. <u>1971</u> , 19, 199 - 205.
VARIABLES: K = 293.15 kPa = 20.265 - 10 (152 - 760 m)		PREPARED BY: W. Gerrard
EXPERIMENTAL VALUES:		
	lydrogen Mo Chloride 2 ₁ /mmHg	1 Fraction x ₁
293.15	152 204 380 500 608 760	0.0059 0.0081 0.0151 0.0203 0.0248 0.0312
	AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
The design of the equilib was stated to be based on method, or on the dynamic although each procedure w and diagram of each was d not clear which data were a particular method. The	the static method; and as described rawn, it is obtained by dynamic	(2) Chlorobenzene. Technical grade.
method required a bubble hydrogen chloride in a sa saturated solution was de titration with standard a presence of bromothymol b phenol red.	mple of the termined by lkali in the	B. p. $(755 \text{ mmHg})/C = 131.5;$ refractive index, $n_D^{20} = 1.5245;$ density $\rho_4^{20}/\text{g cm}^{-3} = 1.106.$ ESTIMATED ERROR:
method required a bubble hydrogen chloride in a sa saturated solution was de titration with standard a presence of bromothymol b	mple of the termined by lkali in the	

304 Hydrogen Chlonde in	Non-Aqueous Solvents
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Zetkin, V. I.; Kosorotov, V. I.; Stul, B. Ya.; Dzhagatspanyan, R. V.
(2) Chlorobenzene; C ₆ H ₅ Cl; [108-90-7]	Khim. Prom. <u>1971</u> , 47, 102 - 103.
	Soviet Chem. Ind. <u>1971</u> , 3, 89 - 90.
VARIABLES:	PREPARED BY:
T/K = 283.15 - 333.15 p/kPa = 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
Temperature	
$t/^{\circ}C$ T/K	<u>x</u>
10 283.15	0.0407
30 303.15 40 313.15	0.0269 0.0224
50 323.15	0.0178
60 333.15	0.0148
The measurements were stated to be for	or atmospheric pressure
Smoothed Data: For use between 283.1	L5 and 333.15 K.
$\ln x_{\tau} = 15.0758 - 17.0226/(T)$	/100 K) - 11.7856 ln (T/100 K)
1	regression line is 2.51×10^{-4} .
	Mol Fraction
. 1/K	
	<i>x</i>
283.15	
293.15	0.0332
298.15	0.0299
303.15	0.0270
313.15 323.15	
333.15	0.0180 0.0147
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Gas absorbed at atmospheric pressure	
as described by Zetkin and Kosorotov	(1) Hydrogen chloride. Self prepared from sodium chloride and concen-
(1). The amount of gas absorbed	trated sulfuric acid. Dried
was determined by a chemical	with sulfuric acid.
titration.	(2) Chlorobenzene. Purity stated
The author's fitted the data to the	to be greater than 99%. Dried
linear equation	with calcium chloride.
$\log x_1 = -4.54 + 900/(T/K)$.	
However, the three constant equation	
above fits the data much better. The	ESTIMATED ERROR:
author's equation gives an enthalpy of solution of $-4.1 \text{ kcal mol}^{-1}$.	
- Joracron of -4.1 Koar mor .	
	REFERENCES:
	1. Zetkin, V. I.; Kosorotov, V. I.
	<i>Zh. Fiz. Khim.</i> 1970, 44, 830.
	{

· · ·	
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HC1; [7647-01-0]</pre>	Zetkin, V. I.; Kosorotov, V. I.; Stul, B. Ya.; Dzhagatspanyan, R. V.
(2) 1,2-Dichlorobenzene; C ₆ H ₄ Cl ₂ ; [95-50-1]	Khim. Prom. <u>1971</u> , 47, 102 - 103.
	Soviet Chem. Ind. <u>1971</u> , 3, 89 - 90.
VARIABLES:	PREPARED BY:
T/K = 288.15 - 333.15	W. Gerrard
p/kPa = 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
	(smoothed data carculated by h.b. crever)
EXPERIMENTAL VALUES: Temperature	Mol Fraction
<i>t/</i> °C <i>T/</i> K	<i>x</i> ₁
15 288.15	
20 293.15	
30 303.15	0.0166
40 313.15	
50 323.15 60 333.15	
The measurements were stated to be for	or atmospheric pressure.
Smoothed Data: For use between 288.]	.5 and 333.15 K.
$\ln x_{\star} = -42.6859 + 60.6173/(2)$	7/100 K) + 16.7806 ln (T/100 K)
1 1	regression line is 4.82×10^{-4} .
	ol Fraction
	<u>x</u> 1
288.15	
293.15 298.15	0.0191 0.0179
303.15	0.0179
313.15	0.0154
323.15	0.0143
333.15	0.0136
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Gas absorbed at atmospheric pressure	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Self prepared
as described by Zetkin and Kosorotov	from sodium chloride and concen-
(1). The amount of gas absorbed was	trated sulfuric acid. Dried
determined by a chemical titration.	with sulfuric acid.
The author's fitted the data to the	(2) 1,2-Dichlorobenzene. Purity
linear equation	stated to be greater than 99%.
$\log x_1 = -2.86 + 330/(T/K)$	Dried with calcium chloride.
1 *	
However, the three constant equation above fits the data much better.	
The author's equation gives an	PETIMATED EDDODA
enthalpy of solution of -1.5 kcal	ESTIMATED ERROR:
mol ⁻¹ .	1
	REFERENCES :
	1. Zetkin, V. I.; Kosorotov, V. I.
	<i>Zh. Fiz. Khim.</i> 1970, 44, 830.
	,,,
])

COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Lavrova, E. M.; Tudorovskaya, G. L. Zh. Prikl. Khim. (Leningrad) <u>1977</u> ,	
(2) 1,2-Dichlorobenzene; C ₆ H ₄ Cl ₂ ; [95-50-1]	50, 2105 - 2106. J. Appl. Chem. USSR (Engl. Transl.)	
	<u>1977</u> , <i>50</i> , 2005 - 2006.	
VARIABLES: T/K = 293 - 438	PREPARED BY:	
Total $p/kPa = 101.3$ (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)	
EXPERIMENTAL VALUES:		
Temperature Mol	Ratio ¹ Mol Fraction ²	
$\frac{t/^{\circ}C}{T/K}$	$\frac{1^{n_2}}{2}$ $\frac{x_1}{2}$	
20 293 0.0224	6 0.0220	
40 313 0.0160 60 333 0.0129	000 [sic] 0.0157 7 0.0128	
80 353 0.0092		
100 373 0.0090	10 0.00892	
140 413 0.0062 165 438 0.0044		
¹ corrected by authors to $p_1 = 101.3$ k Smoothed Data: For use between 293 a $\ln x_1 = \pm 8.2612 + 12.$	nd 438 K.	
1	regression line is 6.90×10^{-4} .	
T/K	Mol Fraction	
293	$\frac{x_1}{0.0216}$	
313		
333	0.0127	
353	0.0102	
373	0.0084	
393 413	0.0070 0.0060	
413	0.0050	
	INFORMATION	
METHOD/APPARATUS/PROCEDURE: The gas was passed into the liquid in	SOURCE AND PURITY OF MATERIALS:	
a bubbler tube, to which a reflux condenser was fitted. The HCl con- tent in a sample of the saturated solution (p _{total} , 1 atm) was deter-	from sulfuric acid and chemically pure concentrated hydrochloric acid, and dried.	
mined by an acid-alkali titration.	<pre>(2) 1,2-Dichlorobenzene. Distilled. B.p. (l atm)/°C = 183.</pre>	
The compiler's smoothed data equation confirms the authors thermodynamic values for the enthalpy and entropy of dilution		
$\Delta H/kcal mol^{-1} = -2.603$	ESTIMATED ERROR:	
$\Delta S/cal K^{-1} mol^{-1} = -16.464$	1	
However the signs in the authors smoothed data equation appear to be reversed and the calculated values of mol mol^{-1} and wt % of Table 1	REFERENCES :	
appear to be in error.		
L		

	Non-Aqueous Solvents 307
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Zetkin, V. I.; Kosorotov, V. I.; Stul, B. Ya.; Dzhagatspanyan, R. V.
(2) 1,2,4-Trichlorobenzene; C ₆ H ₃ Cl ₃ ; [120-82-1]	Khim. Prom_st. (Moscow) <u>1971</u> , 47, 102 - 103.
	Sov. Chem. Ind. (Engl. Transl.) <u>1971</u> , 3, 89 - 90.
VARIABLES: $T/K = 288.15 - 333.15$	PREPARED BY:
p/kPa = 101.325 (1 atm)	W. Gerrard
	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES: Temperature	Mol Fraction
$t/^{\circ}C$ T/K	
$\frac{27-6}{15} = \frac{17}{288.15}$	0.0301
20 293.15	0.0251
30 303.15 40 313.15	
40 313.15 50 323.15	0.0151 0.0141
60 333.15	0.0117
The measurements were stated to be for	or atmospheric pressure.
Smoothed Data: For use between 288.]	
1 -	(T/100 K) + 48.4095 ln (T/100 K)
	regression line is 6.35 x 10 ⁻⁴ .
	Nol Fraction
	<u>x</u>
288.15 293.15	0.0298 0.0251
298.15	0.0217
303.15	0.0190
313.15 323.15	0.0154 0.0133
333.15	0.0120
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Gas absorbed at atmospheric pressure as described by Zetkin and Kosorotov	(1) Hydrogen chloride. Self prepared
(1). The amount of gas absorbed was	from sodium chloride and concen- trated sulfuric acid. Dried
determined by a chemical titration.	with sulfuric acid.
The author's fitted the data to the	(2) 1,2,4-Trichlorobenzene. Purity
linear equation	stated to be greater than 99%.
$\log x_1 = -4.83 + 940/(T/K)$.	Dried with calcium chloride.
However, the three constant equation above fits the data much better. The	
author's equation gives an enthalpy	ESTIMATED ERROR:
of solution of -4.4 kcal mol ⁻¹ .	1
1	REFERENCES:
	1. Zetkin, V. I.; Kosorotov, V. I. <i>2h. Fiz. Khim.</i> <u>1970</u> , <i>44</i> , 830.
	<u> </u>

Hydrogen Chloride in Non-Aqueous Solvents

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
(2) (Trichloromethyl) benzene; C ₇ H ₅ Cl ₃ ; [98-07-7]	J. Appl. Chem. <u>1959</u> , 9, 89-93.
VARIABLES:	PREPARED BY:
T/K: 273.65 - 315.95	W. Gerrard
Total P/kPa: 101.325 (l atm)	(smoothed data calculated by H.L. Clever)
	1
EXPERIMENTAL VALUES:	
	Mol Fraction
ⁿ HCl/ ⁿ C7 ^H 5	с1 ₃ ^ж нс1
273.65 0.0751	
279.15 0.0664	
285.15 0.0600	0.0566
293.75 0.0465	
294.85 0.0457 303.65 0.0340	
315.95 0.0275	
The mole fraction values were calcula	
Smoothed Data: $\ln x_{HC1} = 20.018 - 22$	2.099/(T/100) - 14.488 ln (T/100)
Standard error about	regression line = 1.75×10^{-3}
Scandard error about	$10 = 1.75 \times 10$
	Mol Fraction
1/1.	^x HCl
	HCI
273.15	0.0720
283.15 293.15	0.0569
293.15	0.0449
303.15 313.15	0.0354
313.15 323.15	0.0280 0.0221
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solvent was weighed in a bubbler	(1) Hydrogen chloride. Good specimen
tube. The amount of gas absorbed was	
determined by reweighing to constant	dried.
weight. The total pressure was	
barometric, very nearly 1 atm.	(2) (Trichloromethyl) benzene. Care-
	fully purified, and purity rigorously attested.
	rigorousry accested.
	ESTIMATED ERROR:
	$\delta x/x = 0.03$
	REFERENCES:
f	1

OPTOTNAL MEASUREMENTS .
ORIGINAL MEASUREMENTS:
Bell, R. P.
J. Chem. Soc. <u>1931</u> , 1371 - 1382.
PREPARED BY: W. Gerrard
1 <u></u>
on Mol Fraction
.ent "
x1
0.0305
centration at $p_{1} = 1$ atm
-
n/V = p/RT = 0.0417.
INFORMATION
SOURCE AND PURITY OF MATERIALS:
 (1) Hydrogen chloride. Prepared by dropping pure concentrated hydrochloric acid into pure sulfuric acid. (2) Bromobenzene. Good specimen was dried over calcium chloride, and distilled. Boiling point is given in paper.
ESTIMATED ERROR: $\delta T/K = 0.01$ $\delta c/c = 0.01$
REFERENCES :

COMPONENTS: (1) Hydrogen chloride; HCl;			
() Hydroden chioride, HCL,		MEASUREMENTS:	
	O'Brien,	S. J.; Byr	ne, J. B.
[7647-01-0]	J. Am. Chem. Soc. 1940, 62,		
(2) Bromobenzene; C ₆ H ₅ Br;	2063 - 2		<u>, , , , , , , , , , , , , , , , , , , </u>
[108-86-1]			
	1		
VARIABLES:	PREPARED	BY:	
T/K: 298.15			-
P/kPa: 7.09 - 38.71	1	W. Gerr	ard
(53.2 - 290 mmHg)			
EXPERIMENTAL VALUES:			
	Henry's	Mol Ratio	Mol Fraction
	Constant	n_1/n_2	<i>x</i> ₁
p ₁ /mmHg m ₁ /mol kg ⁻¹	k ¹	1, 2	1
	E 25	0.00206	0.00205
298.15 53.2 0.0131 110 0.0272	5.35 5.30	0.00427	0.00425
116 0.0272	5.51	0.00436	0.00435
128 0.0328	5.12	0.00515	0.00512
134 0.0346	5.11	0.00543	0.00540
189 0.0447	5.57	0.00702	0.00700
290 0.0686	5.56	0.0108	0.0107
			•
(760 0.185	5.40	0.0291	$0.0283)^{2}$
¹ k/atm mol ⁻¹ kg = $(p_1/atm)/(m_1/m_1)$	$(01 ka^{-1})$		
² Value calculated by the compile			
AUXILIARY	INFORMATIC	DN	
AUXILIARY METHOD/APPARATUS/PROCEDURE:		DN D PURITY OF MA	ATERIALS :
METHOD/APPARATUS/PROCEDURE:	SOURCE AN	D PURITY OF MA	
· · · · · · · · · · · · · · · · · · ·	SOURCE AN (1) Hydi cher	D PURITY OF MA rogen chlori nically pure	de. Prepared from potassium
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the	SOURCE AN (1) Hydd cher chlo	D PURITY OF MA rogen chlori nically pure oride and su	de. Prepared from potassium lfuric acid.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to	SOURCE AN (1) Hydd cher chlo	D PURITY OF MA rogen chlori nically pure oride and su	de. Prepared from potassium
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the	SOURCE AN (1) Hydi cher chlo Drie	D PURITY OF MA rogen chlori mically pure oride and su ed by phosph	de. Prepared from potassium llfuric acid. Norus pentoxide.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time.	SOURCE AN (1) Hydi cher chlo Drie (2) Bron	D PURITY OF MA rogen chlori nically pure oride and su ed by phosph mobenzene.	de. Prepared from potassium llfuric acid. lorus pentoxide. Eastman Kodak Co.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs	SOURCE AN (1) Hydi cher chlo Drie (2) Bron Atte	D PURITY OF MA rogen chlori nically pure oride and su ed by phosph mobenzene. ested by ref	de. Prepared from potassium llfuric acid. Norus pentoxide.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The	SOURCE AN (1) Hydi cher chlo Drie (2) Bron Atte	D PURITY OF MA rogen chlori nically pure oride and su ed by phosph mobenzene.	de. Prepared from potassium llfuric acid. lorus pentoxide. Eastman Kodak Co.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with	SOURCE AN (1) Hydi cher chlo Drie (2) Bron Atte	D PURITY OF MA rogen chlori nically pure oride and su ed by phosph mobenzene. ested by ref	de. Prepared from potassium llfuric acid. lorus pentoxide. Eastman Kodak Co.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The	SOURCE AN (1) Hydi cher chlo Drie (2) Bron Atte	D PURITY OF MA rogen chlori nically pure oride and su ed by phosph mobenzene. ested by ref	de. Prepared from potassium llfuric acid. lorus pentoxide. Eastman Kodak Co.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to	SOURCE AN (1) Hydi cher chlo Drie (2) Bron Atte	D PURITY OF MA rogen chlori nically pure oride and su ed by phosph mobenzene. ested by ref	de. Prepared from potassium llfuric acid. lorus pentoxide. Eastman Kodak Co.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a	SOURCE AN (1) Hydi cher chlo Drie (2) Bron Atte n D	D PURITY OF MA rogen chlori nically pure oride and su ed by phosph nobenzene. ested by ref , 1.3741.	de. Prepared from potassium llfuric acid. lorus pentoxide. Eastman Kodak Co.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened,	SOURCE AN (1) Hydi cher chlo Drie (2) Bron Atte	D PURITY OF MA rogen chlori nically pure oride and su ed by phosph nobenzene. ested by ref , 1.3741.	de. Prepared from potassium llfuric acid. lorus pentoxide. Eastman Kodak Co.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et a7. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days.	SOURCE AN (1) Hydi cher chlo Drie (2) Bron Atte n D	D PURITY OF MA rogen chlori nically pure oride and su ed by phosph mobenzene. ested by ref , 1.3741.	de. Prepared from potassium alfuric acid. orus pentoxide. Eastman Kodak Co. fractive index,
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the	SOURCE AN (1) Hydi cher chlo Drie (2) Bron Atte n D	D PURITY OF MA rogen chlori nically pure oride and su ed by phosph nobenzene. ested by ref , 1.3741.	de. Prepared from potassium alfuric acid. orus pentoxide. Eastman Kodak Co. fractive index,
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the upper bulb is quantitatively removed	SOURCE AN (1) Hydi cher chlo Drie (2) Bron Atte n D	D PURITY OF MA rogen chlori nically pure oride and su ed by phosph mobenzene. ested by ref , 1.3741.	de. Prepared from potassium alfuric acid. orus pentoxide. Eastman Kodak Co. fractive index,
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH. The HCl	SOURCE AN (1) Hydi cher chlo Drie (2) Bron Atte n D	D PURITY OF MA rogen chlori nically pure oride and su ed by phosph mobenzene. ested by ref , 1.3741. D ERROR: $\delta T/K = 0$	de. Prepared from potassium alfuric acid. orus pentoxide. Eastman Kodak Co. fractive index,
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH. The HCl partial pressure is calculated from	SOURCE AN (1) Hydd cher chlo Drie (2) Bron Atte n ² 0 D ESTIMATER	D PURITY OF MA rogen chlori nically pure oride and su ed by phosph mobenzene. ested by ref , 1.3741. D ERROR: &T/K = 0	de. Prepared from potassium alfuric acid. orus pentoxide. Eastman Kodak Co. fractive index,
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH. The HCl partial pressure is calculated from the bulb volume and the number of	SOURCE AN (1) Hydi cher chlc Dric (2) Bron Atte n ² 0 D ESTIMATER REFERENCE 1. Say	D PURITY OF MA rogen chlori nically pure bride and su ed by phosph mobenzene. ested by ref , 1.3741. D ERROR: $\delta T/K = 0$ CS: lor, J. H.	de. Prepared from e potassium llfuric acid. orus pentoxide. Eastman Kodak Co. Fractive index,
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH. The HCl partial pressure is calculated from the bulb volume and the number of moles of HCl assuming ideal gas	SOURCE AN (1) Hydi cher chlc Dric (2) Bron Atte n ² 0 D ESTIMATER REFERENCE 1. Say	D PURITY OF MA rogen chlori nically pure bride and su ed by phosph mobenzene. ested by ref , 1.3741. D ERROR: $\delta T/K = 0$ CS: lor, J. H.	de. Prepared from potassium alfuric acid. orus pentoxide. Eastman Kodak Co. fractive index,
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH. The HCl partial pressure is calculated from the bulb volume and the number of	SOURCE AN (1) Hydd cher chla Dria (2) Bron Atta n ² 0 D ESTIMATEL REFERENCH 1. Say	D PURITY OF MA rogen chlori nically pure bride and su ed by phosph mobenzene. ested by ref , 1.3741. D ERROR: $\delta T/K = 0$ ES: lor, J. H. Am. Chem. Sc	de. Prepared from e potassium llfuric acid. orus pentoxide. Eastman Kodak Co. Fractive index,
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH. The HCl partial pressure is calculated from the bulb volume and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample	SOURCE AN (1) Hydd cher chlo Drie (2) Bron Atte n ² 0 n D ESTIMATEL REFERENCH 1. Say J. A 2. O'B: Zeux	D PURITY OF MA rogen chlori nically pure pride and su ed by phosph nobenzene. ested by ref , 1.3741. D ERROR: &T/K = 0 ES: lor, J. H. Am. Chem. Sc rien, S. J.; rcher, R. A.	de. Prepared from potassium lfuric acid. norus pentoxide. Eastman Kodak Co. ractive index, 0.02 0.02 Market State Stat
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH. The HCl partial pressure is calculated from the bulb volume and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and	SOURCE AN (1) Hydd cher chlo Drie (2) Bron Atte n ² 0 n D ESTIMATEL REFERENCH 1. Say J. A 2. O'B: Zeux	D PURITY OF MA rogen chlori nically pure pride and su ed by phosph nobenzene. ested by ref , 1.3741. D ERROR: &T/K = 0 ES: lor, J. H. Am. Chem. Sc rien, S. J.; rcher, R. A.	de. Prepared from potassium lfuric acid. sorus pentoxide. Eastman Kodak Co. ractive index, 0.02 0.02 0.02 Kenny, C. L.

	311
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
(2) Bromobenzene; C ₆ H ₅ Br; [108-86-1]	J. Appl. Chem. <u>1959</u> , 9, 89 - 93.
VARIABLES:	PREPARED BY:
T/K: 273.45 - 316.75	
Total P/kPa: 101.325 (1 atm)	W. Gerrard
	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Ratio	Mol Fraction
n _{HCl} /n _{C6} H ₅ Br	*HC1
273.45 0.0545	0.0517
279.55 0.0469	0.0448
287.15 0.0384	0.0370
296.95 0.0313	0.0303
306.15 0.0228	0.0223 0.0149
316.75 0.0151	0.0149
	$\frac{49.228}{(T/100)} = 58.997 \text{ In } (T/100)$ regression line = 1.15 x 10 ⁻³
1/K -4	^x HCl
273.15	0.0510
283.15	0.0421
293.15 303.15	0.0328 0.0243
313.15	0.0172
323.15	0.0118
The mole fraction values were calcula	ted by the compiler.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solvent was weighed in a bubbler tube. The amount of gas absorbed was determined by reweighing to constant weight. The total pressure was	 Hydrogen chloride. Good specimen from a commercial cylinder was dried.
barometric, very nearly 1 atm.	(2) Bromobenzene. Carefully purified, and purity rigorously attested.
	ESTIMATED ERROR:
	$\delta x/x = 0.02$
	REFERENCES:

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: O'Brien, S. J.; Byrne, J. B.		
(2) Iodobenzene; C ₆ H ₅ I; [591-50-4]	J. Am. Chem. Soc. <u>1940</u> , 62, 2063 - 2065.		
VARIABLES: T/K: 298.15	PREPARED BY:		
P/kPa: 5.57 - 34.96 (41.8 - 262 mmHg)	W. Gerrard		
EXPERIMENTAL VALUES:			
	Henry's Mol Ratio Mol Fraction		
- · · · ·	Constant n_1/n_2 x_1		
298.15 41.8 0.0064	8.56 0.00131		
71.8 0.0118	8.47 0.00241		
85.8 0.0133	8.48 0.00271 8.82 0.00343		
113 0.0168 164 0.0247	8.82 0.00343 8.75 0.00504 0.00504		
262 0.0403	8.56 0.0082 0.0082		
(760 0.117	8.58 av. 0.0238 $0.0232)^2$		
1 k/atm mol ⁻¹ kg = $(p_{1}/atm)/(m_{1}/m_{2})$			
	from the average value of Henry's		
at one atm (101.325 kPa). Note: Iodobenzene was incorrectly named bromobenzene in the original paper.			
AUXILIARY	INFORMATION		
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
	 Hydrogen chloride. Prepared from chemically pure potassium chloride and sulfuric acid. 		
The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened,	(2) Iodobenzene. Eastman Kodak Co. Attested by refractive index, n ²⁰ _D , 1.6192.		
and the whole apparatus put in a thermostat from 1 to 2 days.	ESTIMATED ERROR:		
The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH. The HCl	δT/K = 0.02		
partial pressure is calculated from the bulb volume and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and titrated with NaOH.	<pre>REFERENCES: 1. Saylor, J. H. J. Am. Chem. Soc. 1937, 59, 1712. 2. O'Brien, S. J.; Kenny, C. L. Zeurcher, R. A.</pre>		
	J. Am. Chem. Soc. <u>1939</u> , 61, 2504.		

COMPONENTS:ORIGINAL MEASUREMENTS:1. Hydrogen Chloride; HCl; [7647-01-0]Ahmed, W.2. Benzoyl Chloride; C7H5ClO;Thesis, 1970 University of London	
[7647-01-0] 2. Benzoyl Chloride; C ₇ H ₅ ClO; University of London	
2. Benzoyl Chloride; C ₇ H ₅ ClO; Thesis, 1970 University of London	
2. Benzoyl Chloride; C ₇ H ₅ ClO; University of London	
[98-88-4]	
VARIABLES: PREPARED BY:	
T/K: 253.15 - 293.15 W. Gerrard	
10tal P/KPa: 101.325 (1 atm)	
(smoothed data calculated by H.L. Clever	,
EXPERIMENTAL VALUES:	
T/K Mol Ratio Mol Fraction	
ⁿ HC1/ ⁿ C7H5C10 ^X HC1	
253.15 0.200 0.167	
258.15 0.172 0.147	
268.15 0.117 0.105 273.15 0.098 0.089	
278.15 0.090 0.083	
283.15 0.080 0.074	
288.15 0.072 0.067	
293.15 0.067 0.063	
The mole fraction solubilities were calculated from the mole ratio by the compiler.	Э
-	
Smoothed Data: $\ln X_{HC1} = -65.829 + 95.702/(T/100) + 28.273 \ln (T/100)$	
Standard Error About Regression Line = 3.05×10^{-3}	
T/K Mol Fraction	
x _{HC1}	
253.15 0.171	
263.15 0.122	
273.15 0.0923	
283.15 0.0740 293.15 0.0624	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:	
Hydrogen chloride was passed into the 1. Hydrogen chloride. Good qualit	
weighed amount of benzoyl chloride in gas was obtained from a cylinde	er.
a bubbler tube, as described in the It was passed through concen-	
main paper (1). For temperatures trated sulfuric acid and calciu below 268 K the final mixture was chloride.	ım
below 268 K the final mixture was chloride. quantitatively treated with water and	
the total chloride was estimated by 2. Benzoyl chloride. The best	
titration. specimen was purified and	
attested.	
ESTIMATED ERROR:	
$\delta T/K = 0.2$	
$\delta x_1 / x_1 = 0.02$	
REFERENCES :	
<pre>1. Ahmed, W.; Gerrard, W.; Maladkar, V. K.</pre>	
J. Appl. Chem. <u>1970</u> , 20, 109.	

COMPONENTS:	EVALUATOR:
 Hydrogen Chloride; HCl; 	Peter G. T. Fogg
[7647-01-0]	Department of Applied Chemistry and Life Sciences,
2. Solvents Containing Nitrogen	Polytechnic of North London, Holloway, London, N7 8DB, U.K.
	January 1989

CRITICAL EVALUATION:

Solubility of Hydrogen Chloride in Solvents Containing Nitrogen.

Solubility in nitrobenzene has been measured at barometric pressure over a temperature range by Zetkin *et al.*(1) and by Ahmed *et al.*(2). O'Brien (3) measured solubilities at various temperatures over a partial pressure range to 69.8 kPa. The evaluator has estimated solubilities at a partial pressure of 101.3 kPa from O'Brien's measurements by assuming that the change in mole fraction solubility with partial pressure can be approximated by an equation of the the Krichevskii-Il'inskaya type. The evaluator has also estimated mole fraction solubilities at a partial pressure of 101.3 kPa from mole fraction solubilities of total pressures of approximately 101.3 kPa published by Zetkin *et al.* and by Ahmed *et al.* Mole fraction solubilities at a partial pressure of 101.3 kPa not the three sources fit the equation:

 $\ln x_{HC1} = -39.613 + 3208.7/(T/K) + 4.5790 \ln (T/K)$

Standard deviation in values of $x_{\rm HC1} = 5.02 \times 10^{-3}$

The solubility of hydrogen chloride in nitrobenzene in the presence of water for partial pressures of gas up to 133.5 kPa at 298.15 K may be calculated from data published by Wynne-Jones (4). The mole fraction solubility for a partial pressure of 101.3 kPa has been estimated from these data by the evaluator to be 0.070. The value for solubility in dry nitrobenzene from the equation given above is 0.063 ± 0.005 . The presence of water may therefore have little effect on the solubility of hydrogen chloride in nitrobenzene.

Solubility in chloronitrobenzenes and dichloronitrobenzenes were measured by Zetkin $et \ al.(1)$ over temperature ranges. Measurements indicate that substitution of chlorine into the benzene nucleus reduces mole fraction solubility of hydrogen chloride as can be seen in the following table:

Mole fraction solubilities at $P_{HC1} = 101.3$ kPa

333.15 К 373.15 К

Nitrobenzene (1)	0.0332	0.0196
1-Chloro-2-nitrobenzene	0.0250	0.0150
1-Chloro-3-nitrobenzene	0.0228	0.0140
1-Chloro-4-nitrobenzene		0.0175
1,2-Dichloro-4-nitrobenzene	0.0206	0.0127
1,3-Dichloro-2-nitrobenzene	0.0222	0.0112

Data presented by Zetkin are self-consistent and may be accepted on a tentative basis. No measurements by other workers on these chlorinated compounds are available for comparison.

O'Brien *et al.*(5) measured the solubility of hydrogen chloride over pressure ranges below barometric pressure in 1-methyl-2-nitrobenzene at 298.15 K and in 1-methyl-3-nitrobenzene at 298.15 K and 308.15 K. Mole fraction solubilities for partial pressures of 1.013 bar may be found by extrapolation of measurements at lower pressures. These are slightly higher than corresponding values for nitrobenzene itself as estimated from the smoothing equation given above.

COMPONE		EVALUATOR:
	lydrogen Chloride; HCl; 7647-01-0]	Peter G. T. Fogg Department of Applied Chemistry
L L	/04/-01-0]	and Life Sciences,
2. 5	Solvents Containing Nitrogen	Polytechnic of North London,
		Holloway, London, N7 8DB, U.K.
		January 1989
CRITICAL	L EVALUATION:	
	Mole fraction solubilities a	$t P_{1} = 101.3 \text{ kPa}$
		298.15 К 308.15 К
	Nitrobenzene	0.0632 0.0518
	1-Methyl-2-nitrobenzene 1-Methyl-3-nitrobenzene	0.0719 0.0767 0.0618
	-Methyl-3-hittobenzene	0.0707 0.0018
compa		lnıtrobenzenes are avaılable for ted on a tentative basis until further
under	otov et al.(6) measured solubil barometric pressure in the tem owing compounds were studied:	ities in chlorinated methylpyridines perature range 333 K to 473 K. The
	2-(trichloromethyl)pyridine	(A)
Į	2-chloro-6-(trichloromethyl)pyr	
	3,5-dichloro-2-(trichloromethyl 3,4,5-trichloro-2-(dichloromethy	
		concentrations except in the case of ted the mole ratio composition of
the "	thick pasty substance" which was	s formed. Solvents B, C & D, show a
		mol dm ⁻³) with $1/(T/K)$. Solvent A out 423 K. Between 378 K and 423 K
there	is a marked decrease in the mo	lar concentration and mole fraction of
hydro	gen chloride. The mole fraction	n of hydrogen chloride in the "pasty
subst 393 K	ance at 378 K is 0.28. The mo	le fractions in the liquid phase at 4, 0.063, and 0.026, respectively.
This	decline is consistent with decre	easing stability of an ionic compound
from	the components.	
Molar	concentrations of hydrogen chlo	oride in the four solvents at the same
tempe	erature are in the order : $\mathbf{A} > 0$	C = D > B. This is not in order of nes of B, C, and D are not available
	ole fraction solubilities cannot	
{		-
		ability of the measurements which may urther measurements are required for
	rmation of the data.	
REFER	ENCES	
1.	Zetkin, V. I.; Kolesnıkov, I. I	M.; Zakharov, E. V.:
		om_st. (Moscow) <u>1966</u> , 42, (8), 624-626.
2.	Abmed. W.: Gerrard, W.: Maladka	ar, V. K. J. Appl. Chem. <u>1970</u> , 20,
	109-115.	22,
3.	O'Brien S. T. Kenny C. T.	Zeurcher, R. A. J. Am. Chem. Soc.
· · ·		S. J. J. Am. Chem. Soc. <u>1941</u> , 63,
	2709-2712.	· · ·
4.	Wynne-Jones, V. F. K. J. Chem	. Soc. <u>1930</u> , 1064 - 1071.
	•	
5.	O'Brien, S. J.; Kenny, C. L. C. O'Brien, S. J.; King, C. V. J.	J. Am. Chem. Soc. <u>1940</u> , 62, 1189–1192. . Am. Chem. Soc. <u>1949</u> , 71, 3632–3634.
E		
6.	Kosorotov, V. I.; Stul, B. Ya. Zh. Prikl. Khim. (Leningrad) 19	978, 51, 887-889;
	J. Appl. Chem. USSR <u>1978</u> , 51, 8	3858-860.
1		

COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Wynne-Jones, W. F. K.		
(2) Nitrobenzene; C ₆ H ₅ NO ₂ ; [98-95-3]	J. Chem. Soc. <u>1930</u> , 1064 - 1071.		
(3) Water; H ₂ O; [7732-18-5]			
VARIABLES:	PREPARED BY:		
T/K: 298.15	W. Gerrard		
$p_1/kPa: 0.404 - 133.3$ (3.03 - 1000 mmHg)			
EXPERIMENTAL VALUES:			
T/K Pressure' Water Phase Nit	robenzene HCl Activity Mole Phase Fraction ²		
$p_1/mmHg \qquad m_1/mol kg^{-1} \qquad m_1$	/mol kg ⁻¹ $10^{-5}a_1$ x_1		
298.15 3.03 9.635	0.0027 0.0828 0.000332		
	0.0029 0.0912 0.000357		
8.8/ 11.14/ 12.13 ³ 11.61	0.0080 0.242 0.000983 0.0109 0.331 0.00134		
26.4 12.84	0.0229 0.721 0.00281		
48.7 13.84 86.8 14.84	0.0396 1.33 0.00485		
86.8 14.84	0.0707 2.37 0.00862		
	0.0773 2.77 0.00942 0.0833 2.93 0.0101		
	0.164 5.70 0.0198		
303.4 17.19	0.223 8.28 0.0267		
388. 17.76			
436. 18.05	0.292 10.6 0.0347 0.335 11.9 0.0396 0.394 13.4 0.0462		
491. 689.(760) ⁶ 19.33 ⁴ 751. 19.52	0.394 13.4 0.0462 0.556 ⁵ 18.8 0.0640		
751. 19.52	0.603 20.5 0.0690		
1000. 20.42	0.833 27.3 0.0929		
¹ Calculated by the compiler from the log $\gamma = \log (a_{\pm}/m_{1}) = \log (a_{1}^{2}/m_{1}) =$			
$\log \gamma = \log (a_{\pm}/m_{1}) = \log (a_{1}/m_{1}) =$	$(10g (p_1/m_1) + 1.716 \text{ which})$		
rearranges to log $a_1 = \log p_1 + (2)^2$ The mole fraction of HCl in nitrobe This experiment done by the stopper)(1.718). $[p_1/mmHg \text{ and } m_1/mol kg^{-1}]$ nzene was calculated by the compiler. red bottle method.		
	INFORMATION		
ME THOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
An H shaped vessel was used, one liquid being in one limb, and the oth	(1) Hydrogen chloride. The gas was		
in the other limb. Equilibrium was			
stated to be attained through the	acid (analytical grade) into sulfuric acid.		
vapor phase. The vessel was shaken	Suffutic actu.		
occasionally over a period of 2-5 days. An acid base titration was used	(2) Nitrobenzene. "Pure" quality		
to determine the amount of HCl in	nitrobenzene was shaken with		
weighed samples of each liquid phase.	caustic soda, and distilled from P_2O_5 at 20 mmHg.		
In one experiment the two liquids were shaken in a stoppered bottle.	(3) Water. Not stated.		
* The average of two runs of a sepa-	ESTIMATED ERROR:		
rate experiment in which HCl was passed into water. Author corrected			
value to 760 mmHg HCl.	$\delta T/K = \pm 0.01$		
⁵ The average of three runs of a			
separate experiment in which HCl was	DEFERENCES		
passed into water saturated nitro-	REFERENCES :		
benzene. Author corrected value to 760 mmHg HC1.	 Randall, M.; Young, L. E. J. Am. Chem. Soc. <u>192</u>8, 50, 989. 		
⁶ The author states the molalities are for an HCl pressure of 760 mmHg.	2. International Critical Tables		
The vapor pressure curve (1,2) and	2. International Critical Tables Volume III, page 301		
the equation indicate a lower HCl	McGraw Hill Co., New York, 1928.		
partial pressure.			

COMPONENTS .		ORIGINAL MEASUREM	
COMPONENTS:			
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>		Zeurcher, R. A	; Kenny, C. L.; A.
(2) Nitrobenzene; C ₆ H ₅ NO ₂ ; [98-95-3]		J. Am. Chem. Soc. <u>1939</u> , 61, 2504 - 2507.	
VARIABLES:	·····	PREPARED BY:	
T/K: 298.15 P/kPa: 5.98 - 69.81 (0.059 - 0.689 atm)		W. Gerrard	
EXPERIMENTAL VALUES:			
т/к	Pressure Molali p _l /atm m _l /mol	4	Mol Fraction
298.15	0.059 0.03 0.213 0.11 0.278 0.14 0.312 0.16 0.428 0.22	0 0.0135 5 0.0180 1 0.0198	0.00368 0.0133 0.0176 0.0194 0.0269
	0.654 0.31 0.636 0.32 0.689 0.33	9 0.0392 3 0.0397	0.0378 0.0382 0.0399
	(1.0		$(0.06)^{1}$
The mole by the co	ratio and mole fra mpiler.	ction values we	re calculated
	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCED The method and app identical to those The main differenc 1 to 2 day instead equilibration time The apparatus cons	aratus are almost of Saylor (1). e is the use of a of a 5 to 7 day	chemicall chloride	chloride. Prepared from y pure potassium and sulfuric acid. phosphorus pentoxide. ene. Eastman Kodak Co.
which are separate solvent is partial the gas, and the s the lower bulb. T partially evacuate	d by a tap. The ly saturated with olution added to he bulbs are d, the tap opened,		
and the whole appa thermostat from 1	ratus put in a to 2 days.	ESTIMATED ERROR:	
The tap is closed. upper bulb is quan and titrated with	The HCl in the titatively removed NaOH. The HCl		K = 0.02
partial pressure i the bulb volume an moles of HCl assum behavior. A weigh is removed from th titrated with NaOH	s calculated from d the number of ing ideal gas ed solution sample e lower bulb and	REFERENCES: 1. Saylor, J J. Am. Ch 1712.	. H. em. Soc. <u>1937</u> , 59,
	•		

COMPONENTS:		ORI	GINAL MEASU	IREMENTS :
(1) Hydrogen chlor [7647-01-0]	ide; HCl;		Brien, S. J	
(2) Nitrobenzene; [98-95-3]	с _{6^н5^{NO}2;}		Am. Chem. 3, 2709 - 27	
XPERIMENTAL VALUES	3 :			<u></u>
T/K	Pressure P1 ^{/mmHg}	Molality m _l /mol kg ⁻¹	Mol Ratio n1 ^{/n} 2	Mol Fraction ^x 1
293.15	56 64 111 160 288 305	0.0507 0.0549 0.0896 0.1310 0.239 0.249	0.00624 0.00675 0.0110 0.0161 0.0294 0.0306	0.00620 0.00670 0.0109 0.0159 0.0286 0.0297
	(760			0.072)1
298.15	42.4 45.1 102 127 173 171	0.0319 0.0332 0.075 0.092 0.126 0.134	0.00392 0.00408 0.00923 0.0113 0.0155 0.0165	0.00391 0.00407 0.00914 0.0112 0.0153 0.0162
	(760			0.067)1
303.15	20.7 24.1 74.8 99 144 214 248 318 402	0.0140 0.0156 0.047 0.063 0.093 0.132 0.157 0.203 0.253	0.00172 0.00192 0.00578 0.00775 0.0114 0.0162 0.0193 0.0250 0.0311	0.00172 0.00192 0.00575 0.00769 0.0113 0.0160 0.0189 0.0244 0.0302
	(760			0.057)1
313.15	4.1 7.5 90.6 95.8 351 391	0.0023 0.0038 0.0490 0.0500 0.169 0.201	0.00028 0.00047 0.00603 0.00615 0.0208 0.0247	0.00028 0.00047 0.00600 0.00611 0.0204 0.0241
	(760			0.047)1

¹ Obtained from a speculative extrapolation of the nonlinear plot of x_1 vs. p_1 up to 101.325 kPa (760 mmHg).

The mole ratio and mole fraction values were calculated by the compiler.

A summary of the author's Henry's constant values is on the next page.

	Non-Aqueous Solvents	319
COMPONENTS: ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	O'Brien, S. J. J. Am. Chem. Soc. 1941,	
(2) Nitrobenzene; C ₆ H ₅ NO ₂ ; [98-95-3]	63, 2709 - 2712.	
VARIABLES:	PREPARED BY:	
T/K: 293.15 - 313.15 P/kPa: 0.547 - 53.60 (4.1 - 402 mmHg)	W. Gerrard	
EXPERIMENTAL VALUES: See preces	ding page.	
T/K Henry's constant, k/atm mo	ol ⁻¹ kg Mol Fraction at 101.325 kPa	
Range Mean	n Range Mean	
293.15 1.46 - 1.61 ¹ 1.59 ± 0	0.04 0.0710 - 0.0777 0.0718	i
298.15 1.68 - 1.82 1.77 ± (0.05 0.0633 - 0.0682 0.0650	
303.15 1.95 - 2.09 2.08 ± 0	0.04 0.0555 - 0.0593 0.0558	
313.15 $2.35^{1}-2.73^{1}$ 2.51 ± 0	0.12 0.0431 - 0.0497 0.0467	
AUXILIARY	INFORMATION	
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
The method and apparatus are those of Saylor (1) as modified by O'Brien et al . (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time.	(1) Hydrogen chloride. Prepared from chemically pure potassium chloride and sulfuric acid. Dried by phosphorus pentoxide.	
The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened,	(2) Nitrobenzene. Purified and distilled, m.p. 278.63 K.	
and the whole apparatus put in a thermostat from 1 to 2 days.	ESTIMATED ERROR:	
The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH. The HCl partial pressure is calculated from the bulb volume and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and titrated with NaOH.	$\delta T/K = 0.02$	
	<pre>REFERENCES: 1. Saylor, J. H. J. Am. Chem. Soc. <u>1937</u>, 59, 171 2. O'Brien, S. J.; Kenny, C. L. Zeurcher, R. A. J. Am. Chem. Soc. <u>1939</u>, 61, 250</pre>	

COMPONENTS:	ORIGINAL MEASUREMENTS:		
 (1) Hydrogen chloride; HCl; [7647-01-0] (2) Nitrobenzene, chloro- 	Zetkin, V. I.; Kolesnikov, I. M.; Zakharov, E. V.; Dzhagatspanyan, B. V. Khim. Prom_st. (Moscow) <u>1966</u> ,		
and dichloronitrobenzenes	42 (8), 624 - 626.		
VARIABLES: T/K: 313 - 433 P/kPa : 101.325 (1 atm)	PREPARED BY: W. Gerrard		
EXPERIMENTAL VALUES:			
T/K Wt% of HCl	$n_{\rm HC1}/n_2$ fraction mole fraction		
Nitrobenzene; C ₆ H ₅ NO ₂ ; 313 1.47 [98-95-3] 333 1.01 353 0.78 373 0.59 393 0.45 413 0.36 433 0.29	70.03430.03320.033900.02630.02560.025230.02000.01960.019390.01550.01530.015250.01230.01220.0122		
$\Delta H^{\circ}/kcal mol^{-1} = -3.61$; $\Delta S^{\circ}/ca$ Smoothing equation: $\ln x_{HC1} = -8.65$ (f Standard error $\ln x_{HC1}$ about the re	39 + 17.5522/(T/100) or use between 313 K and 433 K)		
1-Chloro-2-nitro- benzene; C ₆ H ₄ ClNO ₂ ; 333 0.59 [88-73-3] 353 0.45 373 0.35 393 0.28 413 0.23 433 0.19	3 0.0256 0.0250 0.0252 9 0.0198 0.0194 0.0192 2 0.0152 0.0150 0.0150 5 0.0123 0.0122 0.0121 2 0.0100 0.0099 0.0099		
$\Delta H^{\circ}/kcal \text{ mol}^{-1} = -3.21 ; \Delta S^{\circ}/cal K^{-1} \text{ mol}^{-1} = -16.9 $ Smoothing equation: $\ln x_{HC1} = -8.5017 + 16.0531/(T/100)$ (for use between 313 K and 433 K) Standard error in x_{HC1} about the regression line = 1.56×10^{-4}			
 * calculated by the compiler ** smoothing equation and smoothed values were calculated by H.L. Clever § the authors used a van't Hoff type equation to calculate enthalpy and entropy of solution from the mole ratio values. 			
AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE			
Gas was passed into 0.5 mole of component (2) in a flask of 10 cm ³ capacity; a sample was removed every ten minutes for acid-alkali titration.			
SOURCE AND PURITY OF MATERIALS:			
(1) Hydrogen chloride. Prepared from sodium chloride, and dried by calcium chloride.			
 (2) Nitrobenzene. Distilled through a column of 20 theoretical plates. 1-Chloro-2-nitrobenzene. Purified by crystallization. 1-Chloro-3-nitrobenzene. Self prepared by the chlorination of nitrobenzene. Purified by distillation and crystallization. 1-Chloro-4-nitrobenzene. Purified by crystallization. 1,2-Dichloro-4-nitrobenzene. Self prepared by chlorination of 1,4-chloronitrobenzene. Purified by distillation and crystallization. 1,3-Dichloro-2-nitrobenzene. Purified by crystallization. 			

COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Hydrogen chloride; HCl; [7647-01-0] (2) Nitrobenzene, chloro- and dichloronitrobenzenes 	Zetkin, V. I.; Kolesnikov, I. M.; Zakharov, E. V.; Dzhagatspanyan, B. V. Khim. Prom_st. (Moscow) <u>1966</u> , 42 (8), 624 - 626.
EXPERIMENTAL VALUES: T/K Wt% of HCl	Mole ratio Mole* Smoothed** ⁿ HCl ^{/n} 2 fraction mole fraction [*] HCl [*] HCl
1-Chloro-3-nitro- benzene; C ₆ H ₄ ClNO ₂ ; 353 0.419 [121-73-3] 373 0.329 393 0.237 413 0.192 433 0.150	0.0181 0.0178 0.0182 0.0142 0.0140 0.0135 0.0104 0.0103 0.0103
$\Delta H^{\circ}/kcal mol^{-1} = -3.66$; $\Delta S^{\circ}/cal$ Smoothing equation: $\ln x_{HC1} = -9.5528$ (for Standard error in x_{HC1} about the regr	<pre>3 + 19.5784/(T/100) use between 353 K and 433 K)</pre>
1-Chloro-4-nitro- 373 0.412 benzene; C ₆ H ₄ ClNO ₂ ; 393 0.306 [100-00-5] 413 0.232 433 0.183	0.0132 0.0130 0.0130 0.0100 0.0099 0.0099
$\Delta H^{\circ}/kcal mol^{-1} = -4.34$; $\Delta S^{\circ}/cal$ Smoothing equation: $\ln x_{HC1} = -9.8883$ (for Standard error in x_{HC1} about the regr	$K^{-1} \text{ mol}^{-1} = -19.65 \$ + 21.7914/(T/100) use between 373 K and 433 K) ression line = 2.71 × 10 ⁻⁵
1,2-Dichloro-4-nitro- benzene; C ₆ H ₃ Cl ₂ NO ₂ ; 353 0.312 [99-54-7] 373 0.245 393 0.203 413 0.165 433 0.141	0.01640.01610.01600.01290.01270.01280.01070.01060.01040.00870.00860.0087
$\Delta H^{\circ}/kcal mol^{-1} = -3.00$; $\Delta S^{\circ}/cal$ Smoothing equation: $\ln x_{HC1} = -8.3733$ (for Standard error in x_{HC1} about the regr	+ 14.9693/(T/100) use between 333 K and 433 K)
1,3-Dichloro-2-nitro- benzene; C ₆ H ₃ Cl ₂ NO ₂ ; 353 0.304 [601-88-7] 373 0.217 393 0.158 413 0.122 433 0.095	0.0144[sic] ¹ 0.0112 0.01115 0.0083 0.0082 0.0083 0.0064 0.0064 0.0064
¹ The value appears to be in error. which corresponds to the value of 0 $\Delta H^{\circ}/kcal mol^{-1} = -4.36$; $\Delta S^{\circ}/cal$ Smoothing equation: $\ln x_{HC1} = -10.288$ (for Standard error in x_{HC1} about the regr	$K^{-1} \text{ mol}^{-1} = -20.6 \ $ 2 + 21.6070/(T/100) use between 333 K and 433 K)
* calculated by the compiler ** smoothing equation and smoothed v § the authors used a van't Hoff type entropy of solution from the mole	alues were calculated by H.L. Clever equation to calculate enthalpy and ratio values.

322 Hydrogen Chloride in N	on-Aqueous Solvents
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen chloride; HCl; [7647-01-0]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.
2. Nitrobenzene; C ₆ H ₅ NO ₂ ; [98-95-3]	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.
VARIABLES:	PREPARED BY:
т/к: 253.15 - 293.15	W. Gerrard
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	tio Mol Fraction
_,	
$ \frac{{}^{n}\text{HCl}/{}^{n}\text{C}_{6}}{}$	^H 5 ^{NO} 2 HCI
253.15 0.24 263.15 0.18	
273.15 0.14	
283.15 0.10 293.15 0.08	
The mole fraction solubilities were c compiler.	
	72/(T/100) - 6.890 ln (T/100)
Standard error about	regression line = 1.97×10^{-3}
. T/K	Mol Fraction
	x _{HC1}
253.15	0.198
263.15 273.15	0.155 0.122
283.15	0.0969
293.15	0.0776
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Hydrogen chloride was passed into a	1. Hydrogen chloride. Obtained from a cylinder containing a good com-
known weight of liquid in a bubbler tube at a total pressure measured by	mercial specimen. Was dried by
a manometer assembly. The absorbed	passage through concentrated sulfuric acid.
gas was weighed by re-weighing the bubbler tube. The temperature was	2. Nitrobenzene. Best obtainable
manually controlled to within 0.2 K. The procedure and apparatus are	specimen was suitably purified,
described by Gerrard (1,2).	dried, and fractionally distilled and attested.
For temperatures below 268 K a chem-	
ical titration was conducted.	POTIMATED EDDOD.
	ESTIMATED ERROR: $\delta T/K = 0.2$
	$\delta x/x = 0.015$
	REFERENCES :
	1. Gerrard, W. J. Appl. Chem. Biotechnol. <u>1972</u> ,
	22, 623 - 650.
	2. Gerrard, W. "Solubility of Gases and Liquids" Plenum Press, New York, 1976
L	i

COMPONENTS:						
(1) Hudrogon			ORIGINAL M	EASUREMENTS :		
(1) Hydrogen [7647-01-	chloride; -0]	HC1;		S. J.; Ken	•	
(2) 1-Methyl- nitrotolu	-2-nitroben 1ene; C ₇ H ₇ N		J. Am. C 1189 - 1	hem. Soc. <u>1</u> 192.	.940, 62,	
[88-72-2]						
VARIABLES:			PREPARED B	Y:		
T/K: P/kPa:		.33 40 mmHg)		W. Gerra	ard	
EXPERIMENTAL VAL	UES:					
T/K	Pressure p ₁ /mmHg	Molality m _l /mol kg ⁻¹	Henry's Constant k ¹	Mol Ratio n _l /n ₂	Mol Fraction ^x 1	_
298.15	31.9 53.1 112 113 224 269 340	0.0382 0.0821 0.0839 0.164 0.202 0.259	L.80 L.82,1.83 ³ L.79 L.78,1.77 ³ L.79,1.80 ³ L.75 L.72,1.73 ⁸	0.0113 0.0115 0.0225 0.0277 0.0355	0.00319 0.00521 0.0111 0.0114 0.0220 0.0270 0.0343	
	(760	0.565	1.77 av.	0.0775	$0.0719)^{2}$	
- values	as calcula	ted by compile	kPa). er.			
- values	as calcula	ted by compile				
- values	as calcula					
METHOD/APPARATUS The method ar Saylor (1) as <i>al</i> . (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul	/PROCEDURE: nd apparatu s modified e main diff o 2 day ins paration tim s consists parated by artially sa the soluti lb. The bu acuated, th	AUXILIARY s are those or by O'Brien <i>et</i> erence is the tead of a 5 to e. of two bulbs a tap. The turated with on added to lbs are e tap opened, put in a	INFORMATION SOURCE AND (1) Hydr from chlo Drie (2) 1-Me Koda	PURITY OF MA ogen chlori chemically ride and su d by phosph thyl-2-nitr k Co. Atte x, n ²⁰ , 1.5	de. Prepared pure potassium alfuric acid. morus pentoxide cobenzene. Eastr ested by refract	nan

COMPORENTS: (1) Hydrogen chloride; HCl; [7647-01-0] (2) 1-Aethyl-3-nitrobenzene or m- nitrotoluens; C,H,NO ₂ ; [99-08-1] VARIABLES: T/K: 298.15 P/KPa: 1.85 - 22.27 P/KPa: 1.85 - 0.22.37 N. Gerrard T/K: 298.15 13.9 0.016 1.58 0.0016 0.0016 1.60 0.0016 1.60 0.0016 1.60 0.0016 1.60 0.0016 0.0017 0.0016 0.0016 0.0016 0.0016 0.0016 0.0012 0.0124 0.0126 0.0127 132 0.039 0.0126 0.0127 132 0.039 0.0126 0.0127 14 Values calculated by compiler. AUXILIARY INFORMATION METHOD/APFAALUS/FROCEDURE: The method ad apparatus are those of 1.9 Mydrogen chloride. Prepared from chemically pure potassium cit. (2) The main difference is the solution adde to the bulb volume and the number of moles of KI assuming ideal gas bahavior. A weighed solution asample is removed from the buw bulb and thermostat from the number of moles of KI assuming ideal gas bahavior. A weighed solution sample is removed from the lower bulb and thrated with NaOH. The Theoremical solution adde from the bulb volume and the number of moles of KI assuming ideal gas bahavior. A weighed solution sample the removed from the lower bulb and thermostat from the burb solutin sample the		
<pre>(2) 1-Methyl-3-nitrobenzene or m- nitrotoluene; C₇H₇NO₂; [99-06-1]</pre> 1189 - 1192.	(1) Hydrogen chloride; HCl;	O'Brien, S. J.; Kenny, C. L.
T/K: 298.15 P/kP2: 1.85 - 22.27 (13.9 - 167 mmHg) EXPERIENTAL VALUES: T/K Pressure Molality Henry's Mol Ratio Mol Fraction $\frac{p_1/mmHg}{m_1/mol kg^{-1}}$ Constant n_1/n_2 x_1 $\frac{p_1/mmHg}{k_1}$ 0.0116 1.58 0.0016 0.0016 44.3 0.0334 1.69,1.70 ³ 0.047 0.0047 56.7 0.0433 1.70 0.0060 0.0060 116 0.0939 1.71 0.0126 0.0124 122 0.0939 1.71 0.0126 0.0127 132 0.1037 1.68 0.0142 0.0140 (760 0.606 1.65 av. 0.0831 0.0767) ² ¹ k/atm mol ⁻¹ kg ² Value calculated by the compiler from the average value of Henry's constant. gives a range of 0.0742 to 0.0818 for the mole fraction solubility at one atm (101.325 kPa). ³ Values recalculated by compiler. METHOD/APPARATUS/PROCEDURE: The mothod and apparatus are those of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the bulbs are partially evacuated, the tap opend, and the wolke of the solution added to that wolk apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the bulbs are partially evacuated, the tap opend and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and the number of moles of HCl assuming ideal gas beha	nitrotoluene; C ₇ H ₇ NO ₂ ;	
T/K: 298.15 P/kP2: 1.85 - 22.27 (13.9 - 167 mmHg) EXPERIENTAL VALUES: T/K Pressure Molality Henry's Mol Ratio Mol Fraction $\frac{p_1/mmHg}{m_1/mol kg^{-1}}$ Constant n_1/n_2 x_1 $\frac{p_1/mmHg}{k_1}$ 0.0116 1.58 0.0016 0.0016 44.3 0.0334 1.69,1.70 ³ 0.047 0.0047 56.7 0.0433 1.70 0.0060 0.0060 116 0.0939 1.71 0.0126 0.0124 122 0.0939 1.71 0.0126 0.0127 132 0.1037 1.68 0.0142 0.0140 (760 0.606 1.65 av. 0.0831 0.0767) ² ¹ k/atm mol ⁻¹ kg ² Value calculated by the compiler from the average value of Henry's constant. gives a range of 0.0742 to 0.0818 for the mole fraction solubility at one atm (101.325 kPa). ³ Values recalculated by compiler. METHOD/APPARATUS/PROCEDURE: The mothod and apparatus are those of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the bulbs are partially evacuated, the tap opend, and the wolke of the solution added to that wolk apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the bulbs are partially evacuated, the tap opend and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and the number of moles of HCl assuming ideal gas beha		
$P/kPa: 1.85 - 22.27$ (13.9 - 167 mmHg)W. GerrardEFFERMENTAL VALUES:T/KPressure $p_1/mmHg$ Molality $m_1/mol kg^{-1}$ Constant n_1/n_2 n_1/n_2 x_1 298.1513.90.0161.580.0160.001614.30.03431.69,1.70°0.00470.004756.70.04381.670.01260.01241220.09391.710.01290.01271320.10371.680.01420.0146(7600.6061.65 av.0.08310.0767)²*k/atm mol ⁻¹ kg*Values calculated by the compiler from the average value of Henry's constant.0.0712 to 0.0818 for the mole fraction solubility at one atm (101.325 kPa).*Values recalculated by compiler.SOURCE AND FURITY OF MATERIALS:The method and apparatus are those of a 1 to 2 day instead of a 5 to 7 day equilibration time.SOURCE AND FURITY OF MATERIALS: (1) Hydrogen chloride. Prepared from chemically pure potassium chloride and sultric acid. Dried by phosphorus pentoxide.The apparatus consists of two bulbs which are separated by a tap. The apparatus consists of two bulbs the jopened, and the wolfe apparatus put in a thermostat from 1 to 2 days.SOURCE AND FURITY OF MATERIALS: (2) 1-Methyl-3-nitrobenzene.Eastman Kodak Co. Attested by refractive index, n_D^{+} , 1.5479.STIMITED EREOR:Colspan=1 to 2 colspan=1		PREPARED BY:
EXPERIMENTAL VALUES: T/K Pressure Molality Henry's Mol Ratio Mol Fraction $\frac{P_1/mmHg}{298.15}$ Molality Henry's Mol Ratio Mol Fraction $\frac{P_1/mmHg}{13.9}$ Molality Henry's Mol Ratio Mol Fraction $\frac{P_1/mmHg}{13.9}$ Molality Henry's Mol Ratio Mol Fraction $\frac{P_1/mmHg}{13.9}$ Molality Henry's Mol Ratio Mol Fraction $\frac{P_1/mmHg}{13.2}$ Molality Henry's Molality Mola Mole Mole Mole Mole Mole Mole Mole Mole	P/kPa: 1.85 - 22.27	W. Gerrard
T/KPressureMolalityHenry'sMol RatioMol Fraction $P_1/mmHg$ $m_1/mol kg^{-1}$ $Constantn_1/n_2n$	(13.9 - 107 multig)	
$\frac{P_1/mmHg}{299.15} = \frac{m_1/mol kg^{-1}}{13.9} = \frac{\cos tant}{h} \frac{m_1/m_2}{m_1/m_2} = \frac{x_1}{x_1}$ $\frac{p_1/mmHg}{44.3} = 0.0343 = 1.69, 1.70^3 = 0.0016 = 0.0016$ $\frac{142}{56.7} = 0.0438 = 1.70 = 0.0047 = 0.0047$ $\frac{166}{122} = 0.0393 = 1.71 = 0.0126 = 0.0124$ $\frac{132}{132} = 0.1037 = 1.68 = 0.0142 = 0.0140$ $\frac{167}{167} = 0.1385 = 1.54, 1.59^3 = 0.0190 = 0.0186$ $\frac{(760}{(760)} = 0.606 = 1.65 \text{ av.} = 0.0831 = 0.0767)^2$ $\frac{1}{k/atm mol^{-1} kg}$ $\frac{1}{k/atm$	EXPERIMENTAL VALUES:	
298.15 13.9 0.0116 1.58 0.0017 298.15 13.9 0.0116 1.58 0.0017 0.0017 116 0.0318 1.67 0.0129 0.0121 122 0.0391 1.71 0.0129 0.0127 132 0.1037 1.68 0.0142 0.0140 167 0.1385 1.54,1.59 ³ 0.0190 0.0186 (760 0.606 1.65 av. 0.0831 0.0767) ² 1 k/atm mol ⁻¹ kg * Yalue calculated by the compiler from the average value of Henry's constant gives a range of 0.0742 to 0.0818 for the mole fraction solubility at one atm (101.325 kPa). AUXILARY INFORMATION METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et at. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the solution added to the lower bulb. The bulbs are partial pressure is calculated from the Collar the collar of the lower bulb and titrated with NOR. Strike 0.02 REFERENCES: Thetap is closed. The H	T/K Pressure Molality	
44.3 0.0343 1.69,1.70 ³ 0.0047 0.0047 116 0.0318 1.70 0.0060 0.0060 112 0.0339 1.71 0.0126 0.0127 132 0.0339 1.71 0.0120 0.0127 132 0.1385 1.54,1.59 ³ 0.0190 0.0186 (760 0.606 1.65 av. 0.00831 0.0767) ² * Value calculated by the compiler from the average value of Henry's constant. use of the high and low values of Henry's constant gives a range of 0.0742 to 0.0818 for the mole fraction solubility at one atm (101.325 kPa). * Values recalculated by compiler. SOURCE AND FURITY OF MATERIALS; The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. SOURCE AND FURITY OF MATERIALS; The aparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with hach. The bulbs are partially evacuated, the tap opened, and the solution added to the lower bulb. The bulbs are partial pressure is calculated from the HCl in the upper bulb is quantitatively removed and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and titrated with NAOH. The HCl in samule is removed from the lower bulb and titrated with NAOH. Str/K = 0.02	$ \frac{p_1/mmHg}{m_1/mol kg^{-1}}$	$\frac{\text{Constant}}{k^{1}} \frac{n_{1}/n_{2}}{2} \frac{x_{1}}{2}$
55.7 0.0438 1.70 0.0060 0.0060 112 0.0918 1.67 0.0129 0.0127 132 0.1037 1.68 0.0142 0.0140 167 0.1385 1.54,1.59 ³ 0.0190 0.0186 (760 0.606 1.65 av. 0.0831 0.0767) ² (760 0.601 1.65 av. 0.0818 for the mole fraction solubility at one atm (101.325 kPa). (710 Suppote Suppote Suppote Suppote Suppote Suppote Suppote Suppote Suppared Suppote Suppote Suppote Suppote Suppared Suppote Suppote Supp	298.15 13.9 0.0116	1.58 0.0016 0.0016
55.7 0.0438 1.70 0.0060 0.0060 112 0.0918 1.67 0.0129 0.0127 132 0.1037 1.68 0.0142 0.0140 167 0.1385 1.54,1.59 ³ 0.0190 0.0186 (760 0.606 1.65 av. 0.0831 0.0767) ² (760 0.601 1.65 av. 0.0818 for the mole fraction solubility at one atm (101.325 kPa). (710 Suppote Suppote Suppote Suppote Suppote Suppote Suppote Suppote Suppared Suppote Suppote Suppote Suppote Suppared Suppote Suppote Supp		1.69,1.70 ³ 0.0047 0.0047
122 0.0939 1.71 0.0129 0.0127 132 0.1037 1.68 0.0142 0.0140 167 0.1385 1.54,1.59 ³ 0.0190 0.0186 (760 0.606 1.65 av. 0.0831 0.0767) ² ¹ k/atm mol ⁻¹ kg Value calculated by the compiler from the average value of Henry's constant. (JOS2 Constant. Use of the high and low values of Henry's constant gives a range of 0.0742 to 0.0818 for the mole fraction solubility at one atm (101.325 kPa). Values recalculated by compiler. AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brie et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with had, at the value apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the upper bulb is quantitatively removed and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and titrated with NAOH. REFERENCES: 1. Saylor, J. H. J. Am. Chem. Soo. 1937, 59, 1712. 2. O'Brien,	56.7 0.0438	
132 0.1037 1.68 0.0142 0.0140 167 0.1385 1.54,1.59 ³ 0.0190 0.0186 (760 0.606 1.65 av. 0.0081 0.0767) ² ¹ k/atm mol ⁻¹ kg ² Value calculated by the compiler from the average value of Henry's constant. 0.0142 0.0186 gives a range of 0.0742 to 0.0018 for the mole fraction solubility at one atm (101.325 kPa). 3 Values recalculated by compiler. AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of 32 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole appratus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the upper bulb is quantitatively removed and thr anumber of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and titrated with NAOH. REFERENCES: 1. Saylor, J. H. J. Am. Chem. Soc. 1937, 59, 1712.		
167 0.1385 1.54,1.59 ³ 0.0190 0.0186 (760 0.606 1.65 av. 0.0031 0.0767) ² ¹ k/atm mol ⁻¹ kg * ² Value calculated by the compiler from the average value of Henry's constant gives a range of 0.0742 to 0.0018 for the mole fraction solubility at one atm (101.325 kPa). * * Values recalculated by compiler. * * Values recalculated by compiler. * METHOD/APPARATUS/PROCEDURE: 1.152,112,112,112,112,112,112,112,112,112,		
(760 0.606 1.65 av. 0.0831 0.0767) ² ¹ k/atm mol ⁻¹ kg ¹ k/atm mol ⁻¹ kg ² Value calculated by the compiler from the average value of Henry's constant gives a range of 0.0742 to 0.0818 for the mole fraction solubility at one atm (101.325 kPa). ³ Values recalculated by compiler. AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of 32 kJor (1) as modified by O'Brien et al. (2). The main difference is the alse of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are paratus from 1 to 2 days. The tap is closed. The HCl in the upper bulb is quantitatively removed an titrated with NAOH. REFERENCES: Closed. The HCl in the upper bulb is guantitatively removed from the lower bulb and titrated with NAOH. REFERENCES: Closed. The HCl in the upper bulb is quantitatively removed from the lower bulb and titrated with NAOH. REFERENCES: (Am. Chem. Soc. 1937, 59, 1712.		
¹ k/atm mol ⁻¹ kg ¹ k/atm mol ⁻¹ kg ² Value calculated by the compiler from the average value of Henry's constant gives a range of 0.0742 to 0.0818 for the mole fraction solubility at one atm (101.325 kPa). ³ Values recalculated by compiler. ³ Values recalculated by compiler. AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by 0'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH. REFERENCES: 1. Saylor, J. H. o'. Am. Chem. Soc. 1937, 59, 1712. 2. O'Brien, S. J.; Kenny, C. L. Zeurcher, R. A.	167 0.1385	1.54,1.59° 0.0190 0.0186
 ² Value calculated by the compiler from the average value of Henry's constant gives a range of 0.0742 to 0.0818 for the mole fraction solubility at one atm (101.325 kPa). ³ Values recalculated by compiler. ⁴ Values recalculated by compiler. ⁵ Values recalculated by compiler. ⁵ Values recalculated by compiler. ⁶ Values recalculated by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. ⁶ The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with et ap opened, and the whole apparatus put in a thermostat from 1 to 2 days. ⁶ The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH. The HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and titrated with NAOH. ⁶ C'Brien, S. J.; Kenny, C. L. Zeurcher, R. A. 	(760 0.606	1.65 av. 0.0831 0.0767) ²
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:The method and apparatus are those of Saylor (1) as modified by 0'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time.SOURCE AND PURITY OF MATERIALS: from chemically pure potassium chloride and sulfuric acid. Dried by phosphorus pentoxide.The apparatus consists of two bulbs which are separated by a tap. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days.SOURCE AND PURITY OF MATERIALS: from chemically pure potassium chloride and sulfuric acid. Dried by phosphorus pentoxide.The tap is closed. The tap is closed. The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH.Source AND PURITY OF MATERIALS: (1) Hydrogen chloride. Dried by phosphorus pentoxide.References: δ T/K = 0.02References: 1. Saylor, J. H. J. Am. Chem. Soc. 1937, 59, 1712.2. O'Brien, S. J.; Kenny, C. L. Zeurcher, R. A.	constant. Use of the high and gives a range of 0.0742 to 0.0 at one atm (101.325 kPa).	d low values of Henry's constant 0818 for the mole fraction solubility
The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> a1. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH. The HCl partial pressure is calculated from the bulb volume and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and titrated with NaOH.	AUXILIA	RY INFORMATION
Saylor (1) as modified by O'Brien <i>et</i> al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH. The HCl partial pressure is calculated from the bulb volume and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and titrated with NaOH.	METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
<pre>partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH. The HCl partial pressure is calculated from the bulb volume and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and titrated with NaOH.</pre> ESTIMATED ERROR: ESTIMATED ERROR: ESTIMATED ERROR: *********************************	Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to	 (1) Hydrogen chloride. Prepared from chemically pure potassium chloride and sulfuric acid. Dried by phosphorus pentoxide. (2) 1-Methyl-3-nitrobenzene. Eastman Kodak Co. Attested by refractive index, n₂⁰, 1.5479.
thermostat from 1 to 2 days. The tap is closed. The HCl in the upper bulb is quantitatively removed and titrated with NaOH. The HCl partial pressure is calculated from the bulb volume and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and titrated with NaOH. REFERENCES: 1. Saylor, J. H. J. Am. Chem. Soc. <u>1937</u> , 59, 1712. 2. O'Brien, S. J.; Kenny, C. L. Zeurcher, R. A.	partially evacuated, the tap opened	
upper bulb is quantitatively removed and titrated with NaOH. The HCl partial pressure is calculated from the bulb volume and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and titrated with NaOH. REFERENCES: 1. Saylor, J. H. J. Am. Chem. Soc. 1937, 59, 1712. 2. O'Brien, S. J.; Kenny, C. L. Zeurcher, R. A.		ESTIMATED ERROR:
ł	upper bulb is quantitatively removed and titrated with NaOH. The HCl partial pressure is calculated from the bulb volume and the number of moles of HCl assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and	<pre>d REFERENCES: 1. Saylor, J. H. J. Am. Chem. Soc. <u>1937</u>, 59, 1712. e 2. O'Brien, S. J.; Kenny, C. L. Zeurcher, R. A.</pre>

Hyd	drogen Chloride in I	Non-Aqueous Solvents	325
COMPONENTS :	· · · · · · · · · · · · · · · · · · ·	ORIGINAL MEASUREMENTS:	
<pre>(1) Hydrogen chloride; [7647-01-0]</pre>	; HCl;	O'Brien, S. J.; King, C. V.	
(2) 1-Methyl-3-nitrobe m-nitro toluene; (enzene or C7 ^H 7 ^{NO} 2;	J. Am. Chem. Soc. <u>1949</u> , 71, 3632 - 3634.	
[99-08-1]			
VARIABLES:		PREPARED BY:	
T/K: 298.15, P/kPa: 101.325		W. Gerrard	
EXPERIMENTAL VALUES:			
т/к	Constant ¹	I Ratio Mol Fraction n_1/n_2 x_1	
298.15	$\frac{1}{1.65 \pm 0.05^3}$	0.0830 0.0768 0.0830 ² 0.0767 ²	
308.15	2.08 + 0.04 0	0.0654 0.0614 0.0659 ² 0.0618 ²	
¹ k/atm mc	ol ⁻¹ kg = (p ₁ /atm		
	-	by the compiler.	
		O'Brien, S. J.; Kenny, C. L.	
J. Am. (Chem. Soc. 1940,	62, 1189.	
All of the mole ratio values were calculated by the compiler.			
The experimental measurements were probably carried out at pressures below one-half atm partial pressure of HCl. The Henry's constant values are the mean of from 2 to 6 values followed by the average deviation of the mean.			
From the solution	slope of log x_1 is -3.90 k cal m	vs. $1/T$. The enthalpy of $no1^{-1}(-16.32 \text{ kJ mol}^{-1})$.	
<u></u>	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:	
The method and apparat Saylor (1) as modified <i>al</i> . (2). The main dif use of a 1 to 2 day in 7 day equilibration ti	by O'Brien <i>et</i> ference is the stead of a 5 to	Probably prepared from potassi chloride and sulfuric acid as	um
The apparatus consists which are separated by solvent is partially s the gas, and the solut the lower bulb. The b partially evacuated, t	a tap. The aturated with ion is added to ulbs are he tap opened,	(2) 1-Methyl-3-nitrobenzene. Eastman Kodak Co. Dried and distilled.	
and the whole apparatu thermostat from 1 to 2		ESTIMATED ERROR:	
The tap is closed. Th upper bulb is quantita and titrated with NaOH partial pressure is ca	tively removed . The HCl	δ τ /K = 0.02	
the bulb volume and the moles of HCl assuming behavior. A weighed so is removed from the lo	e number of ideal gas olution sample	REFERENCES: 1. Saylor, J. H. J. Am. Chem. Soc. <u>1937</u> , 59, 17	12.
titrated with NaOH.		 O'Brien, S. J.; Kenny, C. L. Zeurcher, R. A. J. Am. Chem. Soc. <u>1939</u>, 61, 25 	604.

COMPONENTS :	ORIGINAL MEASUREMENTS: Kosorotov, V. I.; Stul, B. Ya.;
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Dzhagatspanya, R. V. Zh. Prikl. Khim. (Leningrad) <u>1978</u> ,
(2) 2-(Trichloromethyl)pyridine;	51, 887 - 889.
C ₆ H ₄ Cl ₃ N; [4377-37-1]	J. Appl. Chem. USSR (Engl. Transl.) <u>1978</u> , 51, 858 - 860.
VARIABLES: $T/K = 378.15 - 473.15$	PREPARED BY:
$p_1/kPa = 101.325$ (1 atm)	W. Gerrard
EXPERIMENTAL VALUES:	
т/к нус	drogen Chloride Solubility c ₁ /mol dm ⁻³
378.15	0.391
393.15 408.15	2.3 0.50
423.15	0.20
443.15 473.15	0.15 0.103
	· · · · · · · · · · · · · · · · · · ·
$n_1/n_2.$	is mole ratio,
high". At 378.15 K (105°C) the syst	nd 393.15 K the solubilities are "very em consisted of a "thick pasty sub- that temperature was given as a mole
In the author's diagram the plot of straight from 473 to 423 K, at which No parameters for the straight line	point the line rose steeply to 393 K.
AUXILIAR	/ INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The liquid was saturated with gas at atmospheric pressure. The amount of gas absorbed was determined by "a back titration. The results were	(1) Hydrogen chloride. Obtained
subsequently reduced to 760 mmHg pressure."	(2) 2-(Trichloromethyl)pyridine. Self prepared, and purified. Purity assessed as 95-99% by chromatography.
	ESTIMATED ERROR:
	REFERENCES :

Hydrogen Chloride in	Non-Aqueous Solvents 327
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Kosorotov, V. I.; Stul, B. Ya.; Dzhagatspanya, R. V.
(2) 2-Chloro-6-(trichloromethyl)- pyridine; C ₆ H ₃ Cl ₄ N; [1929-82-4]	2h. Prikl. Khim. (Leningrad) <u>1978</u> , 51, 887 - 889.
	J. Appl. Chem. USSR (Engl. Transl.) <u>1978</u> , 51, 858 - 860.
VARIABLES:	PREPARED BY:
T/K = 363.15 - 423.15 $p_1/kPa = 101.325$ (1 atm)	W. Gerrard
EXPERIMENTAL VALUES:	
i Su	gen Chloride olubility 1 ^{/mol dm⁻³}
363.15 0	.062
	.046 .037
	.032
It was stated that the plot of log [line. The equation	solubility] vs. l/T was a straight
$\log(c_1/p_1) = (\Delta)$	H/2.303 RT) - A
was given with $p_1 =$ the HCl partial p	pressure in atm.
$\Delta H/kcal mol^{-1} =$	3.4
A =	3.23
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The liquid was saturated with gas at atmospheric pressure. The amount of gas absorbed was determined by "a back titration. The results were subsequently reduced to 760 mmHg pressure."	 (1) Hydrogen chloride. Obtained from a cylinder, and dried by sulfuric acid. (2) 2-Chloro-6-(trichloromethyl)- pyridine. Self prepared and purified. Purity assessed as 95-99% by chromatography.
	ESTIMATED ERROR:
	REFERENCES:

328 Hydrogen Chio	nue m	Non-Aqueous Solvents
COMPONENTS :		ORIGINAL MEASUREMENTS:
(1) Hydrogen chloride; HCl; [7647-01-0]		Kosorotov, V. I.; Stul, B. Ya.; Dzhagatspanya, R. V.
<pre>(2) 3,5-Dichloro-2-(trichlorome pyridine; C₆H₂Cl₅N; [1128-]</pre>		51, 887 - 889.
		J. Appl. Chem. USSR (Engl. Transl.) <u>1978</u> , 51, 858 - 860.
VARIABLES:		PREPARED BY:
T/K = 333.15 - 423.15 $p_1/kPa = 101.325$ (1 atm)		W. Gerrard
EXPERIMENTAL VALUES:		
т/к	S	gen Chloride olubility /mol dm ⁻³
333.15		0.30
363.15		0.10
393.15 423.15		0.07 0.051
It was stated that the plot of line. The equation	log [:	solubility] vs. l/T was a straight
$\log(c_{\star}/p_{\star})$	= (∆I	H/2.303 RT) - A
was given with $p_1 =$ the HCl par		
ΔH/kcal mo	$1^{-1} =$	3.6
	Α =	3.15
	••	
KUA	(ILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :		SOURCE AND PURITY OF MATERIALS:
The liquid was saturated with g		(1) Hydrogen chloride. Obtained
atmospheric pressure. The amou gas absorbed was determined by back titration. The results we	"a	from a cylinder, and dried by sulfuric acid.
subsequently reduced to 760 mmH		(2) 3,5-Dichloro-2-(trichloromethyl)-
pressure."		pyridine. Self prepared, and purified. Purity assessed as
		95-99% by chromatography.
		ESTIMATED ERROR:
		REFERENCES :
		1
) · · ·

Hydrogen Chloride in i	Non-Aqueous Solvents	329
COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Kosorotov, V. I.; Stul, B. Ya.; Dzhagatspanya, R. V.	
(2) 3,4,5-Trichloro-2-(dichloro- methyl)-pyridine; C ₆ H ₂ Cl ₅ N;	2h. Prikl. Khim. (Leningrad) <u>1978</u> , 51, 887 - 889.	
[7041-22-7]	J. Appl. Chem. USSR (Engl. Transl. <u>1978</u> , 51, 858 - 860.	.)
VARIABLES:	PREPARED BY:	
T/K = 363.15 - 408.15 $p_1/kPa = 101.325$ (1 atm)	W. Gerrard	
EXPERIMENTAL VALUES:	······································	
T/K Hyd:	rogen Chloride Solubility 2,/mol dm ⁻³	
363.15	0.1	
378.15	0.08	
393.15 408.15	0.07 0.052	
It was stated that the plot of log [s line. The equation	solubility] vs. l/T was a straight	
$\log(c_1/p_1) = (\Delta H/2)$	2.303 RT) - A	
was given with p_1 = the HCl partial p	pressure in atm.	
$\Delta H/kcal mol^{-1} = 3$	6	
A = 3.	15	
AUXILIARY	INFORMATION	-
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The liquid was saturated with gas at atmospheric pressure. The amount of gas absorbed was determined by "a back titration. The results were	(1) Hydrogen chloride. Obtained from a cylinder, and dried by sulfuric acid.	
subsequently reduced to 760 mmHg pressure."	(2) 3,4,5-Trichloro-2-(dichloro- methyl)-pyridine. Self pre- pared, and purified. Purity assessed as 95-99% by chromatography.	
	ESTIMATED ERROR:	
	REFERENCES :	<u></u>

COMPONENTS :		EVALUATOR:
1. Hydroge [7647-0	en Chloride; HCl; 1-0]	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2. Solvent	s Containing Sulfur	Polytechnic of North London, Holloway, London, N7 8DB, U.K.
		January 1989
		I

CRITICAL EVALUATION:

The Solubility of Hydrogen Chloride in Solvents Containing Sulfur.

The solubilities of hydrogen chloride in a wide range of sulfur compounds have been measured by Gerrard and co-workers (1-3) at a total pressure equal to barometric pressure and at one or more temperatures.

The mole fraction solubility in sulfuric acid at 273.15 K and 1.013 bar is low (< 0.0196) but is appreciably higher in the butyl esters of sulfonic acids in which one of the hydroxyl groups in sulfuric acid has been replaced by an alkyl or aryl group and the other hydroxyl group esterified. Solubility is greater in alkyl sulfonic acids than in benzenesulfonic acid. Substitution of a methyl group into the benzene nucleus of benzenesulfonic acid increases the solubility. Substitution of a chlorine atom lowers the solubility.

Mole fraction solubilities are high in sulfones in which both hydroxyl groups of sulfuric acid have been replaced by alkyl groups. Solubility is appreciably lower but still above the reference line value in benzene sulfuryl chloride in which one group has been replaced by the phenyl group and the other by chlorine. Solubility falls below the reference line in the case of sulfuryl chloride in which both hydroxyl groups have been replaced by chlorine.

The available mole fraction solubility data are in the order :

sulfuric acid < sulfuryl chloride < benzene sulfonyl chloride <
methanesulfonyl chloride < ethanesulfonyl chloride < chlorosulfonic acid
butyl ester < 2-propanesulfonyl chloride < 4-chlorobenzenesulfonic acid,
butyl ester < benzenesulfonic acid, butyl ester < 4-methylbenzenesulfonic
acid, butyl ester < methanesulfonic acid, butyl ester < ethanesulfonic
acid, butyl ester < tetrahydrothiophene-1,1-dioxide (tetramethylene
sulfone) < 1,1'-sulfonylbispropane (dipropyl sulfone) < 1,1'-sulfonylbispropane
(dibutyl sulfone) < 2,2'-sulfonylbispropane
(diisopropyl sulfone)</pre>

There is a discrepancy between the mole fraction solubility in sulfuryl chloride at 273.15 K and a total pressure of 1.013 bar from Ahmed's (3) data (0.043), and that from Charalambous *et al.*(2) (0.031). There is also a discrepancy between data from these two sources for mole fraction solubility at 298.15 K and this total pressure in benzenesulfonyl chloride. The value from Charalambous *et al.* is 0.0403 but the value from an extrapolation of Ahmed's data is 0.046.

In general the data for sulfuric acid and its derivatives fall into a consistent overall pattern and there is no reason to doubt the reliability of this pattern. Further work is needed to confirm the precise magnitude of solubilities in this class of solvents.

The solubility in thionyl chloride, at a total pressure equal to barometric, was measured by Ahmed in the temperature range 248.15 K to 273.15 K and by Domeniconi *et al.*(4) at 298.15 K. Extrapolation of Ahmed's data indicates a mole fraction solubility of 0.0095 at 298.15 K. This is in sharp contrast to the value of 0.0195 from the data published by Domeniconi *et al.* Further work on this system is required.

The measurement of the solubility in liquid hydrogen sulfide by Quam & Wilkinson (5) must be considered to be semi-quantitative. The solubility in several solvents, in which one or both hydrogen atoms have been replaced by an alkyl or the phenyl group, have been measured by Frazer and Gerrard (1). Data for 273.15 K and a total pressure of 101.3 kPa indicate that the mole fraction solubilities in the compounds studied lie above the reference line value corresponding to Raoult's law and are in the order :

benzenethiol < 1-butanethiol < 1,1'-thiobisbenzene < 2-propanethiol <
1,1'-thiobisbutane < 1,1'-thiobispropane.</pre>

COMPONENTS:	EVALUATOR:	
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,	
2. Solvents Containing Sulfur	Polytechnic of North London, Holloway, London, N7 8DB, U.K.	
	January 1989	

CRITICAL EVALUATION:

Frazer & Gerrard (1) also reported solubilities in thiophene and tetrahydrothiophene at 273.15 K and a total pressure equal to barometric. In line with the behaviour of other sulfur compounds, the solubility was markedly greater in tetrahydrothiophene than in the unsaturated thiophene.

The data for thiols, thioethers, thiophene and tetrahydrothiophene published by Frazer & Gerrard are self consistent and likely to be reliable. However further measurements on these systems are needed for confirmation of data.

Solubilities at a total pressure equal to barometric pressure have been reported by Ahmed (3) for dissolution in sulfur dioxide over the temperature range 218.15 K to 253.15 K and by Chesterman (6) for dissolution in carbon disulfide at 298.15 K. Data for these two solvents require confirmation by other workers.

REFERENCES

1. Frazer, M. J.; Gerrard, W. Nature, <u>1964</u>, 204, 1299-1300.

- Charalambous, J.; Frazer, M. J.; Gerrard, W. J. Chem. Soc. <u>1964</u>, 1520-1521.
- 3. Ahmed, W. Thesis, 1970, University of London.
- 4. Domeniconi, M.; Klinedınst, K.; Marıncıc, N.; Schlaıkjer, C.; Staniewicz, R.; Swette, L. ONR Contract & N00014-76-C-0524 Interim Report Jan. <u>1976</u> - Oct. <u>1977</u>.
- Quam, G. N. J. Am. Chem. Soc. <u>1925</u>, 47, 103-108.;
 Quam, G. N.; Wilkinson, J. A. J. Am. Chem. Soc. <u>1925</u>, 47, 989-994.
- 6. Chesterman, D. R. J. Chem. Soc. <u>1935</u>, 906-910.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Charalambous, J.; Frazer, M. J.; Gerrard, W.
(2) Organic compounds of sulfur	J. Chem. Soc. <u>1964</u> , 1520 - 1521.
VARIABLES:	PREPARED BY:
T/K: 273.15, 298.15 Total P/kPa : 101.3 (barometric, nearly 1 atm)	W. Gerrard
EXPERIMENTAL VALUES:	T/K Mole ratio Mole n _{HCl} /n ₂ fraction* [×] HCl
Sulfuric acid; H ₂ O ₄ S; [7664-93-9]	273.15 <0.020 <0.0196
Dichlorosulfuric acid, (<i>sulfuryl chloride</i>); Cl ₂ O ₂ S;	273.15 0.032 0.0310
[7791-25-5] ² ² The solvent was too volatile at 298.1	5 K for a measurement to be taken.
Methanesulfonyl chloride; CH ₃ ClO ₂ S; [124-63-0]	298.15 0.044 0.0421
The observation was restricted to tha was solid at 273.15 K. The solvent	t for 298.15 K because the system structure is CH ₃ SO ₂ C1.
Ethanesulfonyl chloride; C ₂ H ₅ ClO ₂ S; [594-44-5] The solvent structure is C ₂ H ₅ SO ₂ Cl.	273.15 0.098 0.089 298.15 0.056 0.053
2-Propanesulfonyl chloride; $C_{3}H_{7}ClO_{2}S_{10147-37-2}$ The solvent was too volatile at 298.1 The solvent structure is $iC_{3}H_{7}SO_{2}Cl$. * calculated by the compiler	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE	SOURCE AND PURITY OF MATERIALS:
The amount of hydrogen chloride absorbed at a total pressure, very nearly 1 atm, was measured by weighing the absorption vessel as described by Gerrard and Macklen (1), except that a U-tube was used instead of a bubbler tube.	 Hydrogen chloride. Good specimen, dried by sulfuric acid. Ethanesulfonic acid, butyl ester: self prepared. Benzenesulfonic acid, butyl ester: self prepared. 4-Methylbenzene sulfonic acid,
In the case of the sulfones the gas was passed into the melt for 0.5 hour, and the system was cooled to the recorded temperature. Even after this treatment the 1,1'-sulfonylbisbutane/HCl system was solid at 273.15 K.	 4-Methylbehzene sulfonic acid, butyl ester: self prepared. 4-Chlorobenzenesulfonic acid, butyl ester: self prepared. 2-Propanesulfonyl chloride: prepared by the chlorination of the disulfide. Other solvents were commercial specimens. All solvents were carefully purified and rigorously attested. ESTIMATED ERROR:
	REFERENCES :
	 Gerrard, W.: Macklen, E. D. J. Appl. Chem. <u>1956</u>, 6, 241.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Charalambous, J.; Frazer, M. J.; Gerrard, W.
(2) Organic compounds of sulfur	J. Chem. Soc. <u>1964</u> , 1520 - 1521.
EXPERIMENTAL VALUES:	T/K Mole ratio Mole n _{HCl} /n ₂ fraction* ^x HCl
Benzenesulfonyl chloride; C ₆ H ₅ ClO ₂ S; [98-09-9]	298.15 0.042 0.0403
Even after the gas had been passed int the system was solid at 273.15 K. The	to the melt at higher temperatures, e solvent structure is C ₆ H ₅ SO ₂ Cl.
Chlorosulfuric acid, butyl ester, (<i>butyl chlorosulfate</i>); C ₄ H ₉ ClO ₃ S; [763-23-5] The solvent structure is Cl-SO ₂ -OC ₄ H ₉ .	273.15 0.117 0.105 298.15 0.057 0.0539
Methanesulfonic acid, butyl ester, (butyl methanesulfonate); C ₅ H ₁₂ O ₃ S;	273.15 0.510 0.338 298.15 0.255 0.203
[1912-32-9] The structure is $CH_3 - SO_2 - OC_4H_9$.	
Ethanesulfonic acid, butyl ester, (butyl ethanesulfonate); C ₆ H ₁₄ O ₃ S; [14245-63-7] The structure is C ₂ H ₅ -SO ₂ -OC ₄ H ₉ .	273.15 0.630 0.387 298.15 0.316 0.240
Benzenesulfonic acid, butyl ester, (butyl benzenesulfonate); $C_{10}H_{14}O_{3}S$; [80-44-4] The structure is $C_{6}H_{5}-SO_{2}-OC_{4}H_{9}$.	273.15 0.419 0.295 298.15 0.213 0.176
4-Methylbenzenesulfonic acid, butyl ester, (butyl p-toluenesulfonate); C ₁₁ H ₁₆ O ₃ S; [778-28-9] The structure is p-CH ₃ -C ₆ H ₄ -SO ₂ -OC ₄ H ₉ .	273.15 0.445 0.308 298.15 0.249 0.199
4-Chlorobenzenesulfonic acid, butyl ester, (butyl p-chlorobenzene- sulfonate); C ₁₀ H ₁₃ ClO ₃ S; [6421-41-6]	273.15 0.210 0.174 298.15 0.083 0.0766
The structure is $p-Cl-C_6H_4-SO_2-OC_4H_9$. 1,1'-Sulfonylbispropane, (dipropyl- sulfone); $C_6H_14O_2S$; [598-03-8]	273.15 1.010 0.502 298.15 0.622 0.383
The structure is $(C_3^{H_7})_2^{SO_2}$ 2,2'-Sulfonylbispropane, (diisopropyl- sulfone); $C_6^{H_1} 4^{O_2}S$; [595-50-6] The structure is $(iC_3^{H_7})_2^{SO_2}$	- 273.15 1.174 0.540 298.15 0.712 0.416
1,1'-Sulfonylbisbutane, $(dibutyl sulfone)$; C ₈ H ₁₈ O ₂ S; [598-04-9] The structure is $(C_4H_9)_2SO_2$.	298.15 0.627 0.385
Tetrahydrothiophene-1,1-dioxide, (tetramethylene sulfone); $C_4H_8O_2S$; [126-33-0] The structure is CH_2-CH_2 $I_2O_2CH_2-CH_2$	273.15 0.763 0.463 298.15 0.402 0.287
* calculated by the compiler	

333

COMPONENTS:	ORIGINAL ME	EASUREMENTS:	
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Frazer, M.	J.; Gerrard,	₩.
<pre>(2) Thiols, thioethers, thiophene and tetrahydrothiophene</pre>	Nature <u>1964</u>	<u>4</u> , 204, 1299 -	- 1300
VARIABLES:	PREPARED BY	ζ:	
T/K: 273.15 Total P/kPa : 101.3 (barometric, nearly 1 atm)	W. Ge	errard	
EXPERIMENTAL VALUES:			<u></u>
	T/K	Mole ratio ⁿ HCl ^{/n} 2	Mole fraction* ^x HCl
2-Propanethiol, (2-propylmercaptan); C ₃ H ₈ S; [75-33-2]	273.15	0.225	0.184
1-Butanethiol, (<i>l-butylmercaptan</i>); C ₄ H ₁₀ S; [109-79-5]	273.15	0.125	0.111
Benzenethiol, (thiophenol, mercapto- benzene); C ₆ H ₆ S; [108-98-5]	273.15	0.093	0.085
2,2'-Thiobispropane, (diisopropyl sulfide); C ₆ H ₁₄ S; [625-80-9]	273.15	0.659	0.397
1,1'-Thiobisbutane, (dibutyl sulfide) C ₈ H ₁₈ S; [544-40-1]	; 273.15	0.640	0.390
1,1'-Thiobisbenzene, (diphenyl sulfid C ₁₂ H ₁₀ S; [139-66-2]	le); 273.15	0.144	0.126
Thiophene; C ₄ H ₄ S; [110-02-1]	273.15	0.034	0.0329
Tetrahydrothiophene; C ₄ H ₈ S; [110-01-0	273.15	0.673	0.402
* calculated by the compiler			
	INFORMATION		
METHOD/APPARATUS/PROCEDURE		PURITY OF MAT	
The gas was passed into a weighed amount of solvent (about 2 g) in a		chloride. Se y purifed.	elf made and
U-tube kept at 273.15 K. The pres- sure was atmospheric, approximately 1 atm. The maximum amount of gas absorbed was determined by weighing.	2. Sulfur co were chec gas-liqu: each meas the gas with wate recovered	ompounds. The cked by boilin id chromatogra surement of so was removed by er, the liquid d and identific compound.	ng points and aphy. After olubility y treatment d was
	ESTIMATED EN	RROR:	
	REFERENCES:	······	
	VPI PVPMCP9 ;		

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen Chloride; HCl; [7647-01-0</pre>	Ahmed, W.
2 Sulfuryl Chloride: Cl O St	Thesis, 1970 University of London
<pre>2. Sulfuryl Chloride; Cl₂O₂S; [7791-25-5]</pre>	University of London
[//91-25-5]	
VARIABLES:	PREPARED BY:
T/K: 248.15 - 288.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol R	
ⁿ HC1/ ⁿ C	1202s XHCI
	.27 0.113
253.15 0.1	.09 0.0983
	075 0.0698 045 0.0431
	024 0.0234
288.15 0.0	0.0157
The mole fraction solubilities were c compiler.	alculated from the mole ratio by the
	02.781/(T/100) - 126.317 ln (T/100)
	Regression Line = 1.38×10^{-3}
T/K	Mol Fraction
	x _{HC1}
243.15	0.119
253.15	0.0998
263.15	0.0705
273.15 283.15	0.0428 0.0229
293.15	0.0109
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Hydrogen chloride was passed into a	1. Hydrogen chloride. Good quality
weighed amount of sulfuryl chloride in a bubbler tube as described in the	gas was obtained from a cylinder.
main paper (1). The final liquid was	
treated quantitatively with water.	chloride.
Total acid and total chloride were determined by titrations.	2. Sulfuryl chloride. Best specimen
	was purified and attested.
	ESTIMATED ERROR:
	$\delta T/K = 0.2$
	$\delta X_1 / X_1 = 0.02$
	REFERENCES:
	1. Ahmed, W.; Gerrard, W.;
	Maladkar, V. K.
	J. Appl. Chem. <u>1970</u> , 20, 109.

COV/DOVIDVING -	
COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen Chloride; HCl;	Ahmed, W.
[7647-01-0]	
	Thesis, 1970
2. Benzenesulfonyl Chloride;	University of London
C ₆ H ₅ ClO ₂ S; [98-09-9]	
652	
VARIABLES:	PREPARED BY:
m/v_{2} 252 15 - 202 15	
T/K: 253.15 - 293.15	W. Gerrard
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
	(Smoothed data cartaided by mpr orever,
EXPERIMENTAL VALUES:	
T/K Mol Ra	tio Mol Fraction
ⁿ HC1/ ⁿ C6H	5C102S XHC1
	5 2 102
253.15 0.26	2 0.208
258.15 0.19	
263.15 0.15	
268.15 0.13	
273.15 0.09	
278.15 0.08	
283.15 0.07	
288.15 0.06	
293.15 0.05	
The mole fraction solubilities were c	alculated from the mole ratio by the
compiler.	-
Smoothed Data: $\ln X_{max} = -42.713 + 6$	7.585/(T/100) + 15.537 ln (T/100)
HCl ,	(1,100) + 13.337 III (1,100)
Standard Error About	Regression Line = 3.38×10^{-3}
	$\frac{1}{10}$
T/K	Mol Fraction
	x _{HCl}
253.15	0.205
263.15	0.136
273.15	0.0946
283.15	0.0690
293.15	0.0524
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Hydrogen chloride was passed into a	1. Hydrogen chloride. Good quality
weighed specimen of the sulfur com-	I =
	gas was obtained from a cylinder
pound in a bubbler tube as described	gas was obtained from a cylinder.
pound in a bubbler tube as described in the main paper (1). For temper-	It was passed through concen-
in the main paper (1). For temper-	It was passed through concen- trated sulfuric acid and calcium
in the main paper (1). For temper- atures below 268 K the final mixture	It was passed through concen-
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with	It was passed through concen- trated sulfuric acid and calcium chloride.
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with water and the total chloride esti-	It was passed through concen- trated sulfuric acid and calcium chloride. 2. Benzenesulfonyl chloride. The
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with	It was passed through concen- trated sulfuric acid and calcium chloride.
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with water and the total chloride esti-	 It was passed through concentrated sulfuric acid and calcium chloride. 2. Benzenesulfonyl chloride. The best specimen was purified and
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with water and the total chloride esti-	 It was passed through concentrated sulfuric acid and calcium chloride. 2. Benzenesulfonyl chloride. The best specimen was purified and
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with water and the total chloride esti-	 It was passed through concentrated sulfuric acid and calcium chloride. 2. Benzenesulfonyl chloride. The best specimen was purified and
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with water and the total chloride esti-	 It was passed through concentrated sulfuric acid and calcium chloride. 2. Benzenesulfonyl chloride. The best specimen was purified and
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with water and the total chloride esti-	 It was passed through concentrated sulfuric acid and calcium chloride. 2. Benzenesulfonyl chloride. The best specimen was purified and attested.
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with water and the total chloride esti-	<pre>It was passed through concen- trated sulfuric acid and calcium chloride. 2. Benzenesulfonyl chloride. The best specimen was purified and attested. ESTIMATED ERROR:</pre>
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with water and the total chloride esti-	 It was passed through concentrated sulfuric acid and calcium chloride. 2. Benzenesulfonyl chloride. The best specimen was purified and attested.
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with water and the total chloride esti-	<pre>It was passed through concen- trated sulfuric acid and calcium chloride. 2. Benzenesulfonyl chloride. The best specimen was purified and attested. ESTIMATED ERROR:</pre>
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with water and the total chloride esti-	<pre>It was passed through concen- trated sulfuric acid and calcium chloride. 2. Benzenesulfonyl chloride. The best specimen was purified and attested. ESTIMATED ERROR:</pre>
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with water and the total chloride esti-	<pre>It was passed through concen- trated sulfuric acid and calcium chloride. 2. Benzenesulfonyl chloride. The best specimen was purified and attested. ESTIMATED ERROR:</pre>
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with water and the total chloride esti-	It was passed through concen- trated sulfuric acid and calcium chloride. 2. Benzenesulfonyl chloride. The best specimen was purified and attested. ESTIMATED ERROR: $\delta T/K = 0.2$ $\delta X_1/X_1 = 0.02$ REFERENCES: 1. Ahmed, W.; Gerrard, W.;
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with water and the total chloride esti-	It was passed through concen- trated sulfuric acid and calcium chloride. 2. Benzenesulfonyl chloride. The best specimen was purified and attested. ESTIMATED ERROR: $\delta T/K = 0.2$ $\delta X_1/X_1 = 0.02$ REFERENCES: 1. Ahmed, W.; Gerrard, W.; Maladkar, V. K.
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with water and the total chloride esti-	<pre>It was passed through concen- trated sulfuric acid and calcium chloride. 2. Benzenesulfonyl chloride. The best specimen was purified and attested. ESTIMATED ERROR:</pre>
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with water and the total chloride esti-	It was passed through concen- trated sulfuric acid and calcium chloride. 2. Benzenesulfonyl chloride. The best specimen was purified and attested. ESTIMATED ERROR: $\delta T/K = 0.2$ $\delta X_1/X_1 = 0.02$ REFERENCES: 1. Ahmed, W.; Gerrard, W.; Maladkar, V. K.
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with water and the total chloride esti-	It was passed through concen- trated sulfuric acid and calcium chloride. 2. Benzenesulfonyl chloride. The best specimen was purified and attested. ESTIMATED ERROR: $\delta T/K = 0.2$ $\delta X_1/X_1 = 0.02$ REFERENCES: 1. Ahmed, W.; Gerrard, W.; Maladkar, V. K.
in the main paper (1). For temper- atures below 268 K the final mixture was quantitatively treated with water and the total chloride esti-	It was passed through concen- trated sulfuric acid and calcium chloride. 2. Benzenesulfonyl chloride. The best specimen was purified and attested. ESTIMATED ERROR: $\delta T/K = 0.2$ $\delta X_1/X_1 = 0.02$ REFERENCES: 1. Ahmed, W.; Gerrard, W.; Maladkar, V. K.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Ahmed, W.
	Thesis, 1970
2. Thionyl chloride; Cl ₂ OS;	University of London
[7719-09-7]	
VARIABLES:	PREPARED BY:
T/K: 248.15 - 273.15	W. Gerrard
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Ra	
ⁿ HCl/ ⁿ C	1 ₂ 0s ^X HCl
248.15 0.11	
253.15 0.09	
273.15 0.03	
The mole fraction solubilities were c compiler.	alculated from the mole ratio by the
_	$22 862/(\pi/100) = 62 202 1 = (\pi/100)$
	33.863/(T/100) - 62.293 ln (T/100)
Standard Error About	Regression Line = 1.11×10^{-3}
	Mol Fraction
	x _{HCl}
	·
243.15 253.15	0.121 0.0868
263.15	0.0579
273.15	0.0365
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Hydrogen chloride was passed through	1. Hydrogen chloride. Good quality
a weighed amount of liquid in a bub-	gas was obtained from a cylinder.
bler tube as described in the main	It was passed through concen-
paper (1). The final liquid was quantitatively treated with water.	trated sulfuric acid and calcium chloride.
The sulfurous acid and total chloride	
were determined by titrations. Repeated observations ensured that	2. Thionyl chloride. The best specimen was purified and
saturation has been reached.	attested.
	ESTIMATED ERROR:
	$\delta T/K = 0.2$
	$\delta x_1 / x_1 = 0.01$
	REFERENCES :
	1. Ahmed, W.; Gerrard, W.;
	Maladkar, V. K. J. Appl. Chem. <u>1970</u> , 20, 109.
1	1

•

	· · ·	·	
COMPONENTS:		ORIGINAL MEASUREME	
(1) Hydrogen chlor [7647-01-0]		Marincic, N.; S Staniewicz, R.;	
(2) Thionyl chlor: [7719-09-7]	ide; SOCl ₂ ;		N00014-76-C-0524 Jan. <u>1976</u> - Oct. <u>1977</u> .
VARIABLES: T/K: 298 P: Atmo	ospheric	PREPARED BY:	. L. Clever
at the same	nges observed on pa e flow rate for one t(298 ± 2) K.		
Gas	Experiment	Weight Change g	Average weight change/ g
Argon	1 2 3 4	-0.0590 -0.0500 -0.0546 -0.0608	
			-0.0561
Hydrogen	·1	0.3433	
chloride	2 3	0.3463 0.3652	
			0.3516
Mol HCl dm ⁻³ SOCl ₂ = $(0.3516 + 0.0561)g$ HCl/ $(36.45 g$ mol ⁻¹ $)(0.040 l$ = 0.28_0 The HCl was also bubbled through a solution which was 2 mol AlCl ₃ dm ⁻³ SOCl ₂ solution. The weight change indicated only the change expected for the HCl solubility in SOCl ₂ .			
		INFORMATION	
METHOD APPARATUS / PROCE	DURE :	SOURCE AND PURITY	OF MATERIALS:
gravimetrically.		(1) Hydrogen cl Inc. Electi	nloride. Matheson Co., conic grade.
to determine the from the passage of anhydrous HCl, pre was passed through	saturated with SOC1 h an 0.040 dm ⁻³ or one hour and the	(2) Thionyl chi Fractional 2' metal in a humidity). of IR absor	loride. Mobay (?). distillation from Li dry room (3 % relative The material was devoid rptions above 2500 cm ⁻¹ cm quartz cell.
of 5 x 10^{-7} (ohm)	pecific conductivit cm) ⁻¹ and no change noted upon saturati	-	
the solution with tion of the disso cm ⁻¹ . On heating solution to about	HCl. The IR absorp lved HCl is at 2800 the HCl saturated 323 K the 2800 cm ⁻ Apparently the HCl		ST/K = 2 SM/M = 0.025 (Compiler)
between HC1 and Al		or	
	e carried out in a between 2 to 3 ppm		

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0] (2) Hydrogen sulfide; H₂S; [7783-06-4] VARIABLES:</pre>	Quam, G. N. J. Am. Chem. Soc. <u>1925</u> , 47, 103 - 8. Quam, G. N.; Wilkinson, J. A. J. Am. Chem. Soc. <u>1925</u> , 47, 989 - 94. PREPARED BY:
T/K = 194.7 p/kPa = 101.3 (l atm)	H. L. Clever
EXPERIMENTAL VALUES:	
Temperature t/°C T/K	Mol Fraction
-78.5 194.7	0.432
The compiler estima from the statement was determined at t a diethylether + so bath.	that the solubility he temperature of
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS;
Sealed tube. Solubility at temperature of ether + solid carbon dioxide bath. Since HCl boils about 6 degrees	 tion. (2) Hydrogen sulfide. Prepared by the action of hydrochloric acid
lower temperature than the solubility experiment, it is assumed that the result is for gaseous HCL.	on iron sulfide. Freed of HCl, arsine, and moisture.
	ESTIMATED ERROR:
	REFERENCES:

n Non-Aqueous Solvents
ORIGINAL MEASUREMENTS:
Ahmed, W.
Thesis, 1970 University of London
PREPARED BY: W. Gerrard (smoothed data calculated by H.L. Clever)
Ratio Mol Fraction $\frac{\sqrt{^{n}SO_{2}}}{\frac{^{X}HCl}{293}} \frac{^{X}HCl}{0.267}$.293 0.227 .234 0.190 .185 0.156 .096 0.0876 .057 0.0539 .018 0.0177 calculated from the mole ratio by the 620.308/(T/100) - 280.090 ln (T/100) t Regression Line = 2.42 x 10 ⁻² Mol Fraction $\frac{^{X}HCl}{0.242}$ 0.242 0.170 0.0223
RY INFORMATION
SOURCE AND PURITY OF MATERIALS:
<pre>1. Hydrogen chloride. Good quality gas was obtained from a cylinder. It was passed through concen- trated sulfuric acid and calcium chloride. 2. The best specimen was passed through tubes at 263 K, and liquefied at the required temperature. ESTIMATED ERROR:</pre>

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Hydrogen chloride; HCl;	Chesterman, D. R.
[7647-01-0]	J. Chem. Soc. 1935, 906 - 910.
(2) Carbon disulfide; CS ₂ ; [75-15-0]	<i>o. chem. 500.</i> <u>1935</u> , 900 - 910.
1	
VARIABLES:	PREPARED BY:
т/к: 298.15	I WIND DI
Total P/kPa: 101 (∿1 atm)	W. Gerrard
EXPERIMENTAL VALUES:	•
	lubility Mol Fraction
Pressure q HCL	lubility Mol Fraction g ⁻¹ Solution x ₁
p/mmHg	
298.15 766	0.004 0.008
	ty value was calculated by
the compiler.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
	(1) Hydrogen chloride. Prepared
The apparatus was that used for the conductivity. A sample of the	from conc. sulfuric acid and pure
saturated solution was removed,	sodium chloride. Passed through
weighed, the hydrogen chloride was	sulfuric acid and over P ₂ O ₅ .
reacted with excess standard base	2 5
which is back titrated with a standard acid solution.	(2) Carbon disulfide. Was stated to be the purest obtainable.
Standard acto Solution.	Undried, b.p./°C (759 mmHg) =
	46 - 47.
	ESTIMATED ERROR:
]
	REFERENCES ;
1	

COMPONENTS:	EVALUATOR:	
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,	
2. Solvents Containing Boron	Polytechnic of North London, Holloway, London, N7 8DB, U.K.	
	January 1989	
CRITICAL EVALUATION:		
Solubility of Hydrogen Chloride in Solvents Containing Boron.		
Solubilities in various boron compounds over temperature ranges at barometric pressure have been measured by Gerrard and his co-workers (1-3). The data are self-consistent and likely to be reliable but there are no data by other workers for comparison.		
Solubilities in the triethyl, tributyl and tripentyl esters of boric acid were investigated over a temperature range of 199.15 K to 321.15 K. As with many solvents containing oxygen, mole fraction solubilities are higher than reference line values corresponding to the Raoult's law equation i.e. ratio of partial pressure of hydrogen chloride to vapor pressure of liquid hydrogen chloride at the same temperature.		
Mole fraction solubilities in dioxaboroles are lower than in the non-cyclic borates. The solubility increases with size of the substituent alkoxy group. The presence of a benzene ring lowers the solubility. Mole fraction solubilities at 101.3 kPa and 293.15 K are as follows :		
<pre>(reference line value 2-butoxy-1,3,2-dioxaborolane 2-methoxy -1,3,2-benzodioxaborole 2-ethoxy-1,3,2-benzodioxaborole 2-propoxy-1,3,2-benzodioxaborole 2-butoxy-1,3,2-benzodioxaborole 2-pentoxy-1,3,2-benzodioxaborole</pre>	0.024) 0.123 0.0853 0.109 0.115 0.118 0.119	
Mole fraction solubilities in solvents of investigated, are appreciably lower. Va follows :	containing chlorine and boron, which were clues corresponding to 293.15 K are as	
butoxydichloroborane dichlorophenylborane	0.0213 0.0451 (extrapolated)	
Mole fraction solubilities in boron trichloride, at a partial pressure of hydrogen chloride of 101.3 kPa, fall below the reference line in the temperature range of 208.15 K to 263.15 K. Measurements have not been made outside this range.		
REFERENCES		
 Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L. J. Appl. Chem. <u>1959</u>, 9, 89-93; <u>1960</u>, 10, 115-121. 		
2. Ahmed, W.; Gerrard, W.; Maladkar, V. K. J. Appl. Chem. <u>1970</u> , 20, 109–115.		
3. Ahmed, W. Thesis, <u>1970</u> , University	v of London.	
1		

	·
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Hydrogen chloride; HCl;	Gerrard, W.; Mincer, A. M. A.;
[7647-01-0]	Wyvill, P. L.
(2) David paid twistbul astan an	
(2) Boric acid triethyl ester or	J. Appl. Chem. <u>1960</u> , 10, 115-121.
triethyl borate; C ₆ H ₁₅ BO ₃ ;	
[150-46-9]	
VARIABLES:	PREPARED BY:
т/к: 230.65 - 317.35	
Total P/kPa: 101.325 (1 atm)	W. Gerrard
	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES: T/K Mol Rat	
	$-BO_{-}$ x_{1}
	<u>1503</u>
230.65 1.782	0.641
273.95 0.454	0.312
274.15 0.446	0.308
278.55 0.388 282.15 0.340	0.280 0.254
282.15 0.340 286.15 0.287	0.223
292.95 0.224	0.183
302.75 0.156	0.135
312.15 0.120	0.107
317.35 0.0985	
The compiler calculated the mole fract	
Smoothed Data: $\ln x_1 = 58.003 - 71.60$)5/(T/100) - 32.786 ln (T/100)
Standard error about t	the regression line is 3.72×10^{-3}
T/K M	All Fraction
	x1
233.15	0.630
243.15	0.562
253.15	0.480
263.15	0.395
273.15	0.315
283.15 293.15	0.244 0.185
303.15	0.138
313.15	0.101
323.15	0.0734
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The liquid component was weighed in	(1) Hydrogen chloride. Good specimen
a bubbler tube. The amount of gas	from a commercial cylinder was
absorbed was determined by re-	dried.
weighing to constant weight. The total pressure was barometric, very	(2) Boric acid triethyl ester.
nearly 1 atm (101.325 kPa).	Carefully purified, and purity
HEATTA T GOW (TAT. 252 VLd).	rigorously attested.
The hydrogen chloride absorbed at	rigoroubry accepted.
230.65 K was determined by attaching	
the bubbler-tube to a flask containing	7
water, and allowing the assembly to	1
warm to room temperature, after which	
the chloride ion content was estimated	ESTIMATED ERROR:
by a Volhard titration.	ESTIMATED ERKOR:
1	
	$\delta x_1 / x_1 = 0.02$
1	
	PEPEDENCES .
	REFERENCES:
[
	1
Į	
1	1

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
<pre>(2) Boric acid, tripentyl ester or tripentyl borate; C₁₅H₃₃BO₃; [621-78-3]</pre>	J. Appl. Chem. <u>1960</u> , 10, 115-121.
VARIABLES:	PREPARED BY:
T/K: 273.15 - 321.15	W. Gerrard
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
	(shoothed data calculated by h.L. clevel)
EXPERIMENTAL VALUES: T/K MOL R	atio Mol Fraction
ⁿ HCl ^{/n} C _l	5 ¹ 33 ¹⁰ 3
273.15 0.4	
283.65 0.3 290.95 0.2	
301.95 0.1	
308.15 0.1	
314.25 0.1	22 0.109
321.15 0.1	08 0.0975
The compiler calculated the mole frac	tion values.
	/(T/100) - 8.950 ln (T/100)
	$(1/100)^{-3}$
	the regression line is 6.67×10^{-3}
T/K	Mol Fraction
	^x 1
273.15	0.339
283.15	0.256
293.15	0.195
303.15 313.15	0.149 0.115
323.15	0.0897
AUXILIARY	INFORMATION
METHOD APPARATUS/PROCEDURE: The liquid component was weighed in a bubbler tube. The amount of gas absorbed was determined by re- weighing to constant weight. The total pressure was barometric, very nearly 1 atm (101.325 kPa).	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Good specimen from a commercial cylinder was dried. (2) Boric acid, tripentyl ester. Carefully purified and purity rigorously attested.
	ESTIMATED ERROR: $\delta x_1 / x_1 = 0.025$ REFERENCES:
]

Hydrogen Chioride in	Non-Aqueous Solvents 345	
COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0]	ORIGINAL MEASUREMENTS: Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.	
(2) Organic derivatives of boric acid.	J. Appl. Chem. <u>1959</u> , 9, 89-93.	
VARIABLES:	PREPARED BY:	
T/K: See below Total P/kPa : 101.325 (1 atm)	W. Gerrard	
EXPERIMENTAL VALUES: T/K	Mole ratio Mole* Smoothed** HCl ^{/n} borate fraction mole fraction ^x HCl ^x HCl	
Boric acid, tributyl ester, 199.15 (tributyl borate, 203.15 tributoxyborane); C _{1.2} H _{2.7} BO ₂ ; 213.15	0.850	
tributoxyborane); C ₁₂ H ₂₇ BO ₃ ; 213.15 [688-74-4] 219.15 223.15 233.15	2.568 0.720 0.709	
233.15		
243.15	0.549	
253.15		
255.15		
263.15 273.15		
281.55		
283.15	0.253	
287.05		
293.15 298.75		
303.15		
304.15		
305.45		
312.15		
313.15 319.35		
323.15	0.081	
Smoothing equation: $\ln x_{HC1} = -29.9216 + 47.0282/(T/100) + 51.5412 \ln(T/100) - 14.7289 (T/100K)$ Standard error in x_{HC1} about the regression line = 1.03×10^{-2} * calculated by the compiler ** smoothing equation and smoothed values were calculated by H.L. Clever		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: The liquid component was weighed in a bubbler tube. The amount of gas absorbed was determined by reweighing to constant weight. The total pressure was barometric, very nearly 1 atm (101.325 kPa).	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride: good specimen from a commercial cylinder was dried. (2) Borates : carefully purified, and purity rigourously attested. 	
For determination at temperatures below 273 K, a chemical titration was carried out. After the maximum	ESTIMATED ERROR: $\delta T/K = \pm 2$ below 273 K	
absorption at the stated temperature, the bubbler was attached to a flask	$\delta x_{\rm HCl} / x_{\rm HCl} = \pm 0.005 \text{ to } 0.01$	
containing one dm ³ of water, and allowed to warm slowly to room temperature (12 hours). The contents of the bubbler tube were then added to the water, and the total chloride ion was determined by the Volhard method. A low temperature, Teddington-type YM thermostat was used for temperatures	NOTE: The smoothing equation for boric acid, tributyl ester deviates from the data. It is 4% low at 283 K, 5% high at 303 K, and 6.5% low at 320 K. Estimated error for this system: $\delta x_{\rm HC1}/x_{\rm HC1} = \pm 0.04$	
below 273 K, the control being to ±2 K.	REFERENCES:	

Hydrogen	Chloride	in Non-Aqueous	Solvents
----------	----------	----------------	----------

<pre>COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0] (2) Organic derivatives of boric acid.</pre>	Wyvill, P.	; Mincer, A. M.	
EXPERIMENTAL VALUES: T/K	Mole ratio HCl ^{/n} borate	fraction mole	oothed** fraction ^x HCl
2-Butoxy-1,3,2-dioxaborolane, 273.15 (cyclic ethylene butyl 273.25 borate); C ₆ H ₁₃ BO ₃ ; [1124-68-1] 277.65 283.15	0.262 0.220	0.208 0.180	0.206
283.95 287.05 290.15 293.15 297.55	0.184 0.168 0.150 0.141 0.124	0.155 0.144 0.130 0.124 0.110	0.123
303.15 308.45 313.15 313.75	0.0922 0.0806	0.0844 0.0746	0.0957 0.0753
		0.0657) - 7.925 ln(T/ ine = 1.78 × 10	
2-Methoxy-1,3,2-benzodioxa- 273.15 borole, (cyclic o-phenylene 273.35 methyl borate); C7H7BO3; 273.95 [72035-41-7] 277.65	0.184 0.177 0.153	0.155 0.150 0.133	0.155
281.15 283.15 292.85 293.15	0.135 0.0967	0.119 0.0882	0.114 0.0853
299.15 303.15 304.95 311.45	0.0819 0.0647 0.0572	0.0757 0.0608 0.0541	0.0651
313.15 319.15 323.15	0.0438	0.0420	0.0399
Standard error in x_{HC1}^{HC1} about the	+ 24.009/(T/ regression 1	ine = 2.14×10	
2-Ethoxy-1,3,2-benzodioxa- borole, (cyclic o-phenylene 273.45 ethyl borate); C ₈ H ₉ BO ₃ ; 280.65 [72035-40-6] 283.15 286.65	0.217 0.173 0.141	0.178 0.147 0.124	0.177 0.139
292.65 293.15 303.15 303.65	0.125	0.111	0.109 0.0847
313.15 319.15 323.15	0.0718 0.0580	0.0670 0.0548	0.0655 0.0505
Smoothing equation: $\ln x_{HC1} = 31.213 - Standard error in x_{HC1}$ about the * calculated by the compiler	regression 1	ine = 2.64 × 10	- 3
** smoothing equation and smoothed val	ues were cal	culated by H.L.	Clever

COMPONENTS: (1) Hydrogen chloride; HCl; [7647-01-0] (2) Organıc derivatives of boric	Gerrard, W Wyvill, P.	EASUREMENTS: .; Mincer, A. M L. hem. <u>1959</u> , 9, 8	
EXPERIMENTAL VALUES:	r/K Mole ratio "HCl ^{/n} borate		moothed** e fraction ^x HCl
borole, (cyclic o-phenylene 27 propyl borate); C ₉ H ₁₁ BO ₃ ; 27	73.15 73.65 0.225 78.65 0.191	0.184 0.160	0.183
28	33.15 34.65 0.160 93.15	0.138	0.145
29	95.15 0.120 98.45 0.115	0.107 0.103	
30	03.15 08.15 0.0900 13.15	0.0826	0.0904
31	19.65 0.0634 23.15	0.0596	0.0556
	.967 - 29.156/(T/ the regression		
borole, (cyclic o-phenylene 27	73.15 0.242 76.45 0.215	0.195 0.177	0.195
[3488-87-7] 1013 3 28	33.15 33.65 0.171 93.15	0.146	0.150 0.118
29	93.65 0.132 00.75 0.110	0.117 0.0991	0.118
30	03.15 07.15 0.0981	0.0893	0.0937
31	13.15 14.15 0.0814 19.65 0.0679	0.0753 0.0636	0.0758
32	23.15		0.0621
Smoothing equation: $\ln x_{HCl} = -9$. Standard error in x_{HCl} about	.027 + 20.188/(T/ the regression	line = 2.14×1	0 - 3
dioxaborole, (cyclic 27	73.15 73.45 0.237 30.95 0.187	0.192 0.158	0.196
C _{11^H15^{BO}3} ; [72035-38-2] 28 28	33.15 38.45 0.154	0.133	0.151
29	93.15 99.95 0.117 03.15	0.105	0.119
30	08.55 0.0960 13.15	0.0876	0.0770
32	19.15 0.0700 23.15	0.0654	0.0632
Smoothing equation: $\ln x_{HC1} = -8$. Standard error in x_{HC1} about	928 + 19.929/(T/ the regression	100) line = 2.90 × 1	0-3
dioxaborole, (cyclic 27	73.15 75.15 0.232 32.65 0.192	0.188 0.161	0.196
$\begin{bmatrix} C_{14}H_{21}BO_3; [72035-37-1] & 28 \end{bmatrix}$	33.15 90.65 0.153	0.133	0.158
29	93.15 98.25 0.127	0.113	0.127
30)3.15)5.85 0.1050 0.75 0.0917	0.0950 0.0840	0.101
31 31	3.15 9.65 0.0730	0.0680	0.0785
32 Smoothing equation: ln x _{HCl} = 31. Standard error in x _{HCl} about HCl	23.15 603 - 37.452/(T/ the regression 1	100) - 19.426 l line = 7.57 × 1	0.0625 n(T/100) 0 ⁻⁺
* calculated by the compiler ** smoothing equation and smoothe			

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
(2) Butoxydichloroborane; C ₄ H ₉ BCl ₂ O; [16339-30-3]	J. Appl. Chem. <u>1960</u> , 10, 115-121.
VARIABLES :	PREPARED BY:
T/K: 277.75 - 294.15	
Total P/kPa: 101.325 (1 atm)	W. Gerrard
	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
277.75 0.067 284.35 0.047	
294.15 0.019	
The compiler calculated the mole frac	tion values.
Smoothed Data: $\ln x_1 = -24.564 + 60.$	734/(T/100)
-	regression line is 6.53×10^{-3}
T/K	Mol Fraction ^x 1
,	
273.15 283.15	0.0444
293.15 303.15	0.0214 0.0109
	0.0109
AUXILIARY	INFORMATION
METHOD APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The liquid component was weighed in a bubbler tube. The amount of gas absorbed was determined by re- weighing to constant weight. The total pressure was barometric, very nearly 1 atm (101.325 kPa).	 Hydrogen chloride. Good specimen from a commercial cylinder was dried. Butoxydichloroborane. Carefully purified, and purity rigorously
	attested.
Solvent name is n-butyl dichloroboronite in paper.	ESTIMATED ERROR:
	$\delta x_1 / x_1 = 0.05$
	REFERENCES :
1	[

nyaroger		Non-Aqueous Solvents 349	
COMPONENTS :		ORIGINAL MEASUREMENTS:	
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>		Ahmed, W.	
<pre>2. Dichlorophenylborane; C [873-51-8]</pre>	6 ^H 5 ^{BC1} 2;	Thesis, 1970 University of London	
VARIABLES: T/K: 258.15 - Total P/kPa: 101.325		PREPARED BY: W. Gerrard (smoothed data calculated by H.L. Clever)	
EXPERIMENTAL VALUES:			
T/K	Mol Ratio		
258.15 263.15 268.15 273.15 278.15 283.15	0.100 0.092 0.082 0.073 0.066 0.059	0.084 0.076 0.068 0.062	
The mole fraction solubili compiler.	ties were c	alculated from the mole ratio by the	
Smoothed Data: $\ln X_1 = 30$.195 - 37.2	94/(T/100) - 19.128 ln (T/100)	
-			
The standa	rd error ab	out the regression line = 5.96×10^{-4}	
-	Т/К МО	l Fraction X _{HCl}	
	253.15	0.0999	
	263.15	0.0834	
	273.15 283.15	0.0686 0.0559	
	293.15	0.0451	
	AUXILIARY	INFORMATION	
METHOD / APPARATUS / PROCEDURE :		SOURCE AND PURITY OF MATERIALS:	
Hydrogen chloride was passe weighed amount of the borar bubbler tube as described i paper (1). For temperature 268 K the final mixture was tatively treated with water total chloride determined b tion.	ne in a in the main es below s quanti- c, and the	 Hydrogen chloride. Good quality gas was obtained from a cylinder. It was passed through concentrated sulfuric acid and calcium chloride. Dichlorophenylborane. The borane was an internal specimen, prepared by another group. It was rigorously purified and attested. 	
		ESTIMATED ERROR: $\delta T/K = 0.2$ $\delta X_1/X_1 = 0.01$ REFERENCES: 1. Ahmed, W.; Gerrard, W.; Maladkar, V. K. J. Appl. Chem. <u>1970</u> , 20, 109.	

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Ahmed, W.	
2. Trichloroborane; BCl ₃ ;	Thesis, 1970 University of London	
[10294-34~5]		
VARIABLES:	PREPARED BY:	
T/K: 208.15 ~ 258.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)	
EXPERIMENTAL VALUES:		
T/K Mol R. ⁿ HCl/ ^r	· · · · · · · · · · · · · · · · · · ·	
208.15 0.09 213.15 0.08		
223.15 0.05		
233.15 0.03 243.15 0.02	1	
253.15 0.01 258.15 0.01	.9 0.0186	
······································		
The mole fraction solubilities were c compiler.	-	
Smoothed Data: $\ln x_{HC1} = -20.864 + 3$	0.290/(T/100) + 5.325 ln (T/100)	
Standard Error About	Regression Line = 2.47×10^{-3}	
т/к	Mol Fraction	
1/ K	x _{HC1}	
203.15 0.113 213.15 0.0726		
223.15 233.15	0.0490 0.0346	
243.15	0.0253	
253.15 263.15	0.0192 0.0150	
AUXILIARY	INFORMATION	
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
Trichloroborane was distilled into	1. Hydrogen chloride. Good quality	
the bubbler tube at low temperature. Hydrogen chloride was passed through	was obtained from a cylinder. It was passed through concen-	
for 2 hours. The final liquid was	trated sulfuric acid and calcium	
quantitatively treated with an aqueous solution of sodium hydroxide.	chloride.	
Borate and total chloride were	2. Trichloroborane. The purest	
determined by titrations. See the main paper (1).	obtainable specimen was obtained from a sealed ampoule at low	
	temperature.	
	ESTIMATED ERROR:	
	$\delta T/K = 0.2$ $\delta X_1/X_1 = 0.02$	
	REFERENCES:	
	1. Ahmed, W.; Gerrard, W.; Maladkar, V. K.	
	J. Appl. Chem. <u>1970</u> , 20, 109.	

nyarogen Unioriae in i	Non-Aqueous Solvents 351
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen chloride; HCl; [7647-01-0]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.
2. Trichloroborane; BCl ₃ ; [10294-34-5]	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.
VARIABLES:	PREPARED BY:
T/K: 223.15 - 263.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
Standard error about	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Hydrogen chloride was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The tempera- ture was manually controlled to within 0.2 K. The procedure and apparatus are described by Gerrard (1, 2). The absorbed gas was determined by a chemical titration for boron and chloride.	 Hydrogen chloride. Obtained from a cylinder containing a good commerical specimen. Was dried by passage through con- centrated sulfuric acid. Trichloroborane. Best ob- tainable specimen was suitably purified, dried, and fraction- ally distilled, and attested.
	ESTIMATED ERROR:
	$\delta T/K = 0.2$ $\delta X/X = 0.005$
	<pre>REFERENCES: 1. Gerrard, W. J. Appl. Chem. Biotechnol. <u>1972</u>, 22, 623 - 650. 2. Gerrard, W. "Solubility of Gases and Liquids" Plenum Press, New York, 1976</pre>

COMPONENTS: 1. Hydrogen Chloride; HCl; [7647-01-0]	EVALUATOR: Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2. Solvents Containing Phosphorus	Polytechnic of North London, Holloway, London, N7 8DB, U.K.
	January 1989

CRITICAL EVALUATION:

The Solubility of Hydrogen Chloride in Solvents Containing Phosphorus.

Solubilities in a variety of solvents containing phosphorus have been measured by Gerrard and his co-workers (1-4) over temperature ranges at barometric pressure. Data are self-consistent but, only in the case of tributyl phosphate can comparison be made with measurements by other workers. Borissov & Ionin (5) have published a small diagram showing a plot of the logarithm of the mole ratio solubility at 298.15 K and 101.3 kPa in five trialkyl esters against the carbon number of the alkyl group. In the case of tributyl ester the corresponding mole fraction solubility is about 0.6 which may be compared with a value of 0.684 by extrapolation of measurements by Gerrard *et al*.

REFERENCES

- Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L. J. Appl. Chem. 1959, 9, 89-93; 1960, 10, 115-121.
- Ahmed, W.; Gerrard, W.; Maladkar, V. K. J. Appl. Chem. <u>1970</u>, 20, 109-115.
- 3. Cook, T. M. Thesis, 1966, University of London.
- 4. Ahmed, Thesis, 1970, University of London.
- 5. Borissov, R. S.; Ionin, M. V. Tr. Gor'k. Politekh. Inst. <u>1973</u>, 29, 11-15.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen chloride; HCl; [7647-01-0]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.
2. Phosphorous trichloride; PCl ₃ ; [7719-12-2]	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.
VARIABLES:	PREPARED BY:
Т/К: 213.15 - 273.15	
Total P/kPa: 101.325 (1 atm)	ii. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Rat	
ⁿ HCl/ ⁿ P	
213.15 0.24	0.194
223.15 0.13	0.115
233.15 0.09 243.15 0.063	0.0826 0.0593
253.15 0.048	
263.15 0.033	0.0319
273.15 0.027	0.0263
The mole fraction solubilities were ca compiler.	lculated from the mole ratio by the
	.360/(T/100) + 7.575 ln (T/100)
Standard error about r	egression line 4.54×10^{-3}
T/K M	ol Fraction
	^х ис1
213.15	0.188
223.15	0.121
233.15	0.0826
243.15 253.15	0.0587
253.15	0.0434 0.0332
273.15	0.0262
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Hydrogen chloride was passed into a	(1) Obtained from a cylinder con-
known weight of liquid in a bubbler	taining a good commercial speci-
tube at a total pressure measured by	men. Was dried by passage
a manometer assembly. The absorbed gas was weighed by re-weighing the	through concentrated sulfuric acid.
bubbler tube. The temperature was	
manually controlled to within 0.2 K.	(2) Best obtainable specimen was suitably purified, dried, and
The procedure and apparatus are described by Gerrard (1, 2).	fractionally distilled, and
	attested.
For temperatures below 253 K, a chemical titration was conducted.	
	ESTIMATED ERROR:
	$\delta T/K = 0.2$ $\delta X/X = 0.02$
	REFERENCES :
	 Gerrard, W. J. Appl. Chem. Biotechnol. <u>1972</u>, 22, 623 - 650.
	2. Gerrard, W. "Solubility of Gases and Liquids"
	Plenum Press, New York, 1976

<pre>COMPONENTS: 1. Hydrogen Chloride; HCl; [7647-01-0] 2. Phosphoryl Chloride; Cl₃OP; [10025-87-3]</pre>	ORIGINAL MEASUREMENTS: Ahmed, W. Thesis, 1970 University of London PREPARED BY:
T/K: 273.15 - 288.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Ra nHCl/ ⁿ C 273.15 0.32 278.15 0.20 283.15 0.13 288.15 0.12 The mole fraction solubilities were c	$\begin{array}{c} 1_{3} OP & X_{HC1} \\ \hline 0 & 0.242 \\ 8 & 0.172 \\ 7 & 0.120 \\ 5 & 0.111 \end{array}$
compiler.	
	2.613/(T/100) Regression Line = 1.1×10^{-2} Mol Fraction XHCl 0.231 0.133 0.080
AUXILIARY METHOD/APPARATUS/PROCEDURE: Hydrogen chloride was passed into a weighed amount of phosphoryl chloride in a bubbler tube as described in the main paper (1). The gas absorbed was weighed; and the result was checked by quantitative treatment with water followed by titrations of total chloride and acid.	
	ESTIMATED ERROR: $\delta T/K = 0.2$ $\delta X_1/X_1 = 0.02$ REFERENCES: 1. Ahmed, W.; Gerrard, W.; Maladkar, V. K. J. Appl. Chem. 1970, 20, 109.

Hydrogen Chloride in I	Non-Aqueous Solvents 35
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Ahmed, W. Thesis, 1970
2. Phenylphosphonous Dichloride; C ₆ ^H 5 ^{Cl} 2 ^P ; [644-97-3]	University of London
VARIABLES:	PREPARED BY:
T/K: 268.15 - 283.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard
,	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Rat	tio Mol Fraction
ⁿ HCl/ ⁿ C ₆ H	5C12P XHC1
268.15 0.14	
273.15 0.12	5 0.111
278.15 0.11 283.15 0.10	
The mole fraction solubilities were ca compiler.	alculated from the mole ratio by the
Smoothed Data: $\ln X_{101} = -59.555 + 81$	6.494/(T/100) + 25.568 ln (T/100)
	regression line = 8.41×10^{-5}
T/K Ma	ol Fraction
	X _{HC1}
263.15	0.143
273.15	0.111
283.15 293.15	0.0910 0.0780
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
	1. Hydrogen Chloride. Good quality
Hydrogen chloride was passed into the phosphine in a bubbler tube as	gas was obtained from a cylinder. It was passed through concen-
described in the main paper (1).	trated sulfuric acid and calcium chloride.
	 Phenylphosphonous dichloride. The best specimen was rigorously purified and attested.
	ESTIMATED ERROR:
	$\delta x_1 / x_1 = 0.005$
	REFERENCES :
	<pre>1. Ahmed, W.; Gerrard, W.; Maladkar, V. K. J. Appl. Chem. <u>1970</u>, 20, 109.</pre>

COMPONENTS :	ORIGINAL MEASUREMENTS:
1. Hydrogen Chloride; HCl;	Ahmed, W.
[7647-01-0]	
2. Phenylphosphonic dichloride;	Thesis, 1970 University of London
$C_6H_5Cl_2OP; [824-72-6]$	University of London
VARIABLES: T/K: 273.15 - 288.15	PREPARED BY:
Total P/kPa: 101.325 (1 atm)	W. Gerrard
	(smoothed data calculated by H.L. Clever)
	· · · · · · · · · · · · · · · · · · ·
EXPERIMENTAL VALUES:	
T/K Mol Ra	
ⁿ HCl/ ⁿ C ₆ I	H _c Cl _o OP ^X HCl
273.15 0.7	
278.15 0.5 283.15 0.4	
288.15 0.4	
The mole fraction solubilities were a compiler.	calculated from the mole ratio by the
Smoothed Data: $\ln X_1 = -326.855 + 45$	56.641/(T/100) + 158.028 ln (T/100)
-	
The standard error al	bout the regression line = 6.04×10^{-4}
· <u>T/K</u>	Mol Fraction
	x _{HC1}
	HCI
273.15	0.413
283.15	0.331
293.15	0.325
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Hydrogen chloride was passed into a weighed amount of the phosphorus	1. Hydrogen chloride. Good quality
compound in a bubbler tube, as	gas was obtained from a cylinder. It was passed through concentrated
described in the main paper (1).	sulfuric acid and calcium
	chloride.
	2. Phenylphosphonic dichloride. The best quality specimen was purified
	and attested.
	ESTIMATED ERROR:
	$\delta T/K = 0.2$
	$\delta x_1 / x_1 = 0.005$
	REFERENCES :
	<pre>1. Ahmed, W.; Gerrard, W.; Maladkar, V. K.</pre>
	J. Appl. Chem. 1970. 20. 109.
	J. Appl. Chem. <u>1970</u> , 20, 109.
	J. Appl. Chem. <u>1970</u> , 20, 109.
	J. Appl. Chem. <u>1970</u> , 20, 109.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Ahmed, W.
	Thesis, 1970
2. Phenylphosphonothioic Dichloride;	University of London
C ₆ ^H 5 ^{C1} 2 ^{PS;} [3497-00-5]	
VARIABLES:	PREPARED BY:
T/K: 263.15 - 278.15	FREFARED BI;
Total P/kPa : 101.325 (1 atm)	W. Gerrard
· · ·	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Ra	Atio Mol Fraction
ⁿ HCl/ ⁿ C ₆ H	<u><u><u></u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>
263.15 0.17	
268.15 0.15 273.15 0.13	
278.15 0.11	
The mole fraction solubilities were c compiler.	alculated from the mole ratio by the
-	
Smoothed Data: ln X _{HCl} = 42.041 - 51	.456/(T/100) - 25.227 ln (T/100)
Standard Error About	Regression Line = 1.33×10^{-3}
	Keyression line - 1.55 x 10
т/к	Mol Fraction
	x _{HC1}
	A 17 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
263.15	
273.15 283.15	0.117 0.0918
ΑΠΥΤΙΤΑΟΥ	TNEODNATION
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Hydrogen chloride was passed into a	1. Hydrogen Chloride. Good quality
weighed amount of the phosphorus	gas was obtained from a cylinder.
compound in a bubbler tube as described in the main paper (1).	It was passed through concen- trated sulfuric acid and calcium
For temperatures below 268 K the	chloride.
final mixture was quantitatively	
treated with water and the total chloride titrated.	2. Phenylphosphonothioic Dichloride.
	The best available specimen was rigorously purified and
	attested.
1	ESTIMATED ERROR:
	$\delta T/K = 0.2$
	$\delta X_1 / X_1 = 0.005$
	1 L
	REFERENCES :
	1. Ahmed, W.; Gerrard, W.; Maladkar, V. K.
	J. Appl. Chem. <u>1970</u> , 20, 109.

358 Hydrogen Chloride in Non-Aqueous Solvents			
COMPONENTS :	······································	ORIGINAL MEASUREMENTS:	
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>		Borissov, R. S.; Ionin, M. V.	
(2) Phosphoric esters	c acid, trialkyl	Tr. Gor'k. Politekh. Inst. <u>1973</u> , 29, 11 - 15.	
VARIABLES:		PREPARED BY:	
T/K =	= 298.15 = 101.325	W. Gerrard	
EXPERIMENTAL VALU	ES:		
	Temperature Mol Ra	tio Mol Fraction	
	T/K n ₁ /n	2 ^x 1	
	Phosphoric acid, trim $C_{3}H_{9}O_{4}P$; [512-56-1]	ethyl ester;	
	298.15 0.6	6 0.398	
	Phosphoric acid, trie C ₆ H ₁₅ O ₄ P; [78-40-0]	thyl ester;	
	298.15 1.0		
	Phosphoric acid, trip C ₉ H ₂₁ O ₄ P; [513-08-6]	ropyl ester;	
	298.15 1.5	85 0.613	
Phosphoric acid, tributyl ester; C ₁₂ H ₂₇ O ₄ P; [126-73-8]			
	298.15 1.6	6 0.624	
	Phosphoric acid, tris C ₁₂ H ₂₇ O ₄ P; [126-71-6]	(2-methylpropyl) ester;	
	298.15 1.6	6 0.624	
AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:	
Not described.		(1) Hydrogen chloride. Not stated.	
Numerical data were not reported. The compiler has read the mole ratio values from a small diagram showing a plot of log (mole ratio) vs . number of carbon atoms in R of (RO) ₃ PO. The corresponding mole fraction, x_1 , was calculated by the compiler.		They were twice distilled from	
		ESTIMATED ERROR:	

REFERENCES:

	1011-Adacods 2017etits 353
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
<pre>2. Phosphoric acid tributyl ester; C₁₂^H27^O4^P; [126-73-8]</pre>	J. Appl. Chem. <u>1959</u> , 9, 89 - 93.
VARIABLES:	PREPARED BY:
T/K: 197.15 - 279.15	W. Countral
Total P/kPa: 101.325 (1 atm)	W. Gerrard
	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	io Mol Fraction
ⁿ HCl/ ⁿ C ₁₂ ^H	H ₂₇ O ₄ P ^X HC1
	2/ 4
197.15 8.74 211.15 6.65	
233.15 4.47	
273.95 2.79	
279.15 2.54	
	59/(T/100) - 1.559 ln (T/100) -3
	Regression Line = 4.39×10^{-3}
T/K N	Aol Fraction
	X _{HC1}
193.15	0.906
203.15 213.15	0.885 0.864
223.15	0.842
233.15	0.820
243.15	0.798
253.15 263.15	0.776 0.755
273.15	0.734
283.15	0.713
At higher temperatures there is react The mole fraction values were	
AUXILIARI	INFORMATION
METHOD/APPARATUS/PROCEDURE: The solvent was weighed in a bubbler tube. The amount of gas absorbed at temperatures above 273 K was deter-	SOURCE AND PURITY OF MATERIALS: 1. Hydrogen Chloride. Good specimen from a commercial cylinder was dried.
mined by reweighing to constant	2 Dhoanhorig agid tuikutul astar
weight. The total pressure was barometric, very nearly 1 atm	2. Phosphoric acid tributyl ester. Carefully purified, and purity
(101.325 kPa).	rigorously attested.
For determinations below 273 K, a chemical titration was carried out. After the maximum absorption at the stated temperature, the bubbler tube	
was attached to a flask containing 1 dm ³ of water, and allowed to warm	ESTIMATED ERROR:
slowly (12 hours) to room temperature.	
The contents of the bubbler tube were	
then added to the water, and the total	
chloride ion was determined by the Volhard method.	
	REFERENCES:
A low temperature, Teddington type YM thermostat was used for tempera-	
tures below 273 K, the control being	
within ± 2 K.	
Other solvent name Tributyl phosphate	
1	1

COMPONENTS:	ORIGINAL MEASUREMENTS:		
1. Hydrogen Chloride; HCl;	Cook, T. M.		
[7647-01-0]	Thesis 1066		
2. Phosphorous acid di-2-propenyl	Thesis, <u>1966</u> University of London		
ester or diallyl hydrogen	chiversitey of bondom		
phosphite; C ₆ H ₁₁ O ₃ P; [23679-20-1]			
0 11 3			
VARIABLES: T/K: 277.95 - 287.15	PREPARED BY:		
Total P/kPa: 101.325 (1 atm)	W. Gerrard		
	(smoothed data calculated by H.L. Clever)		
EXPERIMENTAL VALUES: T/K Mol Rat	io Mol Fraction		
ⁿ HCl/ ⁿ C ₆ H	ll ⁰ 3 ^P HCl		
277.95 1.594			
281.15 1.535			
282.65 1.495	0.599		
282.75 1.492	0.599		
283.15 1.478	0.596		
287.15 1.384	0.581		
	ad he the compiler		
The mole fraction values were calculat	ted by the compiler.		
Smoothed Data: $\ln X_{mo1} = 62.508 - 84$.847/(T/100) - 31.762 ln (T/100)		
Standard Error About 1	Regression Line = 1.18×10^{-3}		
· · · · · · · · · · · · · · · · · · ·			
T/K I	All Fraction		
	X _{HC1}		
273.15	0.625		
283.15 293.15	0.597 0.551		
AUXILIARY	INFORMATION		
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
	1. Hydrogen chloride. Sample of best		
The data were cited by Gerrard (1).	quality was self prepared, and was		
Hydrogen chloride was passed into a	passed through concentrated sul-		
bubbler tube containing a weighed	furic acid and calcium chloride.		
amount of solvent at the specified	2. Phosphorous acid, di-2-propenyl ester. Fractionally distilled,		
temperature until the increase in	-		
weight was constant at the	boiling point (10 mmHg) = $110-114^{\circ}C$,		
barometric pressure (2).	and refractive index, $n_D^{25}=1.4443$,		
	$d_A^{20} = 1.0841.$		
	-4		
	ESTIMATED ERROR:		
	$\delta x_1 / x_1 = 0.005$		
	T. T. T. T.		
	REFERENCES :		
	1. Gerrard, W.		
	J. Chim. Phys. <u>1964</u> , 61, 73;		
	Solubility of Gases in Liquids,		
1	Plenum Press, New York, 1976.		
	2. Ahmed, W.; Gerrard, W.; Maladkar V.K. J. Appl. Cham		
	Maladkar, V. K. J. Appl. Chem. <u>1970</u> , 20, 109.		

, ,	
COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen Chloride; HCl;	Gerrard, W.; Mincer, A. M. A.;
[7647-01-0]	Wyvill, P. L.
<pre>2. Phosphorous acid triphenyl ester; C₁₈^H15^O3^P; [101-02-0]</pre>	J. Appl. Chem. <u>1959</u> , 9, 89 - 93.
VARIABLES:	PREPARED BY:
T/K: 274.45 - 324.15	
Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
	(smoothed data catculated by h.b. clevel)
EXPERIMENTAL VALUES: T/K Mol Rat	tio Mol Fraction
-,	
	<u> </u>
274.45 0.79	
290.35 0.600 293.65 0.574	
298.65 0.52	
304.15 0.48	
310.95 0.44	
313.15 0.43	
324.15 0.36	L3 0.265
	.851/(T/100) - 7.707 ln (T/100)
Standard Error about 1	Regression Line = 1.30×10^{-3}
T/K I	101 Fraction
	X _{HC1}
273.15	0.448
283.15 293.15	0.406 0.367
303.15	0.331
313.15	0.299
323.15	0.269
333.15	0.242
The mole fraction values were	calculated by the compiler.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solvent was weighed in a bubbler tube. The amount of gas absorbed was	1. Hydrogen Chloride. Good specimen from a commercial cylinder was
determined by reweighing to constant	dried.
weight. The total pressure was	
barometric, very nearly 1 atm	2. Phosphorous acid triphenyl ester.
(101.325 kPa).	Carefully purified, and purity rigorously attested.
	Ingorousiy accesced.
1	ESTIMATED ERROR:
	$\delta x_1 / x_1 = 0.005$
1	
1	
	REFERENCES:
Other solvent name	REFERENCES:
Other solvent name triphenyl phosphite (IUPAC)	REFERENCES :
	REFERENCES :
	REFERENCES:
	REFERENCES:
	REFERENCES:

362 Hydrogen Chloride II	Non-Aqueous Solvents	
COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.	
<pre>(2) Phosphorochloridic acid mono- phenyl ester; C₆H₆ClO₃P or C₆H₅OP(O)Cl₂; [13929-83-4]</pre>	J. Appl. Chem. <u>1960</u> , 10, 115-121.	
VARIABLES: T/K: 273.15 - 311.95	PREPARED BY:	
Total P/kPa: 101.325 (1 atm)	W. Gerrard	
	(smoothed data calculated by H.L. Clever)	
EXPERIMENTAL VALUES:		
T/K Mol Rat ⁿ HCl ^{/n} C ₆ H ₆		
273.15 0.488		
282.15 0.372	0.271	
291.75 0.293 298.05 0.251		
303.45 0.210		
311.95 0.163	0.140	
The compiler calculated the mole frac	tion values.	
Smoothed Data: $\ln x_1 = 58.681 - 75.2$	68/(T/100) - 32.094 ln (T/100)	
Standard error about	the regression line is 4.19 $\times 10^{-3}$	
т/К	Mol Fraction	
	<u> </u>	
273.15 283.15		
293.15		
303.15		
313.15	0.137	
AUXILIARY	INFORMATION	
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS;	
The liquid component was weighed in	(1) Hydrogen chloride. Good specimen	
a bubbler tube. The amount of gas	from a commercial cylinder was	
absorbed was determined by re- weighing to constant weight. The	dried.	
total pressure was barometric, very	(2) Phosphorochloridic acid, mono-	
nearly 1 atm (101.325 kPa).	phenyl ester. Carefully	
	purified, and purity rigorously attested.	
Columnt name is shown showners	ESTIMATED ERROR:	
Solvent name is phenyl phosphoro- chloridate in paper, IUPAC name is		
phenyl hydrogen phosphorochloridate.	$\delta x_1 / x_1 = 0.01$	
	REFERENCES :	
	X	

,	· · · · · · · · · · · · · · · · · · ·
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
(2) Phosphorochloridic acid, diphenyl ester; C ₁₂ H ₁₀ ClO ₃ P or	J. Appl. Chem. <u>1960</u> , 10, 115-121.
(C ₆ H ₅ O) ₂ P(O)Cl; [2524-64-3]	
VARIABLES:	PREPARED BY:
т/к: 273.15 - 313.45	
Total P/kPa: 101.325 (1 atm)	W. Gerrard
	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Ra	
ⁿ HCl ^{/n} C ₁₂ H	10^{10} P x_1
273.15 0.77	
279.15 0.66 285.15 0.58	
290.25 0.51	3 0.339
298.15 0.40	
307.55 0.30	
313.45 0.24	6 0.197
The compiler calculated the mole frac	tion values.
-	
Smoothed Data: $\ln x_1 = 94.089 - 125.$	672/(T/100) - 48.682 ln (T/100)
Standard error about	the regression line is 3.08×10^{-3}
T/K	Mol Fraction
	x_1
273.15	0.433
283.15	
293.15	0.320
303.15	
313.15	0.199
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS;
The liquid component was weighed in	(1) Hydrogen chloride. Good specimen
a bubbler tube. The amount of gas	from a commercial cylinder was
absorbed was determined by re-	dried.
weighing to constant weight. The	
total pressure was barometric, very	(2) Phosphorochloridic acid, diphenyl ester. Carefully purified, and
nearly 1 atm (101.325 kPa).	purity rigorously attested.
	Furty regeroused accorden.
	ESTIMATED ERROR:
Solvent IUPAC name in paper is	$\delta x_1 / x_1 = 0.005$
diphenyl phosphorochloridate.	1, "1 "1 "1
	REFERENCES:

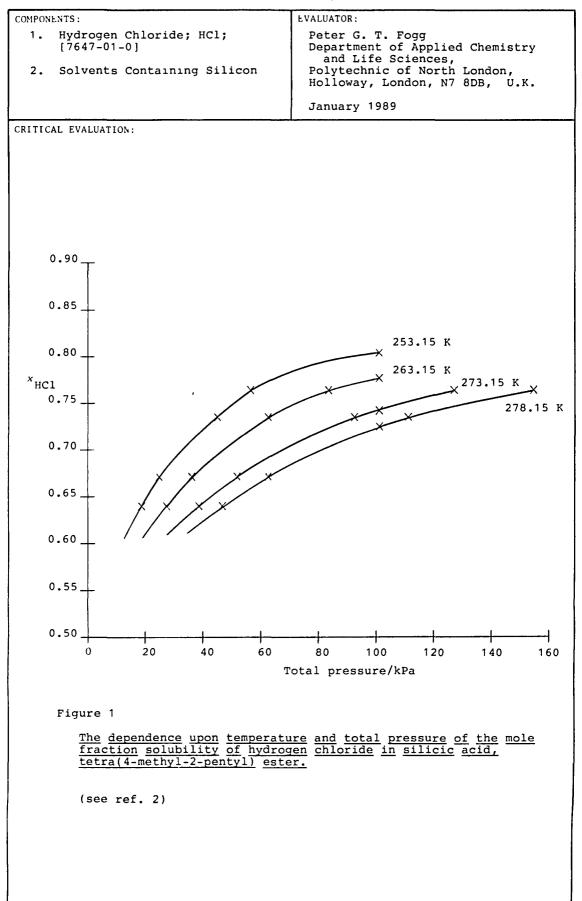
COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.		
<pre>2. 2,2,2-Trichloroethanol phosphite (3:1); C₆H₆Cl₉O₃P; [1069-93-8]</pre>	J. Appl. Chem. <u>1959</u> , 9, 89 – 93.		
VARIABLES:	PREPARED BY:		
T/K: 273.35 - 313.95 Total P/kPa: 101.325 (1 atm)	W. Gerrard		
	(smoothed data calculated by H.L. Clever)		
EXPERIMENTAL VALUES:			
T/K Mol Rat			
ⁿ HCl/ ⁿ C6 ^H 6	Cl ₉ 0 ₃ P ^X HCl		
273.35 0.55	72 0.358		
290.25 0.39 294.05 0.35			
294.05 0.35 295.15 0.34			
300.65 0.30	29 0.232		
302.55 0.28			
306.15 0.26 310.55 0.25			
313.95 0.25			
Smoothed Data: $\ln X_{HC1} = -5.817 + 13$.129/(T/100)		
Standard Error About	Regression Line = 6.58×10^{-3}		
	Mol Fraction		
	× _{HC1}		
273.15	0.364		
283.15	0.307		
293.15	0.262		
303.15 313.15	0.226 0.197		
323.15	0.173		
The mole fraction values were	calculated by the compiler		
······································			
AUXILIARY	INFORMATION		
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
The solvent was weighed in a bubbler	1. Hydrogen Chloride. Good specimen		
tube. The amount of gas absorbed	from a commercial cylinder was		
was determined by reweighing to	dried.		
constant weight. The total pres- sure was barometric, very nearly	2. 2,2,2-Trichloroethanol phosphite		
1 atm (101.325 kPa).	(3:1). Carefully purified, and		
	purity rigorously attested.		
	ESTIMATED ERROR:		
	$\delta x_1 / x_1 = 0.02$		
	REFERENCES :		
Other solvent name			
Tris(2,2,2-trichloroethyl) phosphite			
L	dana and a second s		

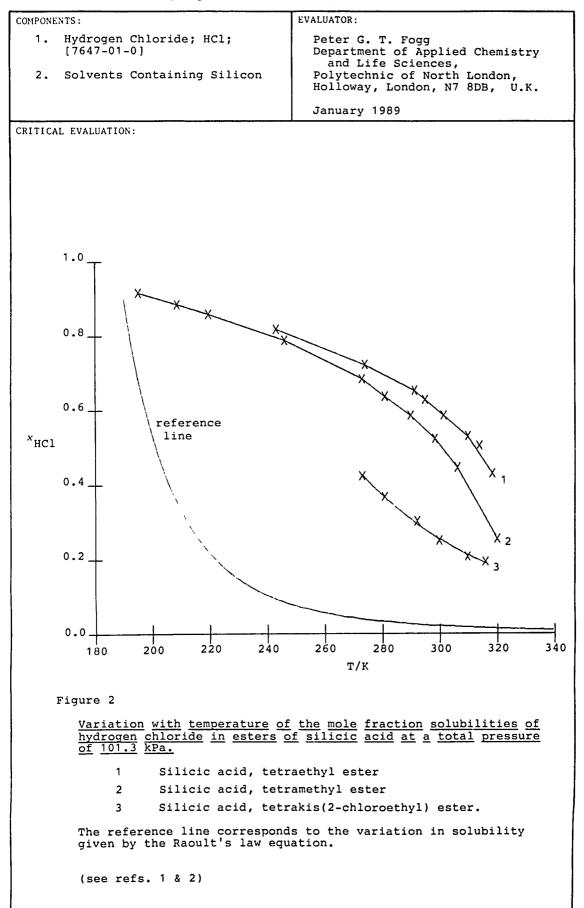
COMPO	NENTS:	EVALUATOR:
1.	Hydrogen Chloride; HCl; [7647-01-0]	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2.	Solvents Containing Silicon	Polytechnic of North London, Holloway, London, N7 8DB, U.K.
		January 1989

CRITICAL EVALUATION:

The Solubility of Hydrogen Chloride in Solvents Containing Silicon.

Gerrard et al.(1) measured solubilities in four tetraalkyl esters of silicic acid over temperature ranges at a total pressure equal to 101.3 kPa. Solubility over a pressure and temperature range in one of these esters, the tetra(4-methyl-2-pentyl) ester, was reported by these authors in a later publication (2). Solubilities are very high under the conditions of measurement. The later measurements show that, at a total pressure of 101.3 kPa, mole fraction solubilities are not very sensitive to changes in pressure (see fig. 1). It follows that mole fraction solubilities at a total pressure of 101.3 kPa may be equated with mole fraction solubilities at a partial pressure of 101.3 kPa for the purpose of comparison of data with those for different systems.


Mole fraction solubilities at a total pressure of 101.3 kPa in the tetraethyl, tetrapropyl and tetra(4-methyl-2-pentyl) esters are close to each other over the temperature ranges in which comparison can be made. Mole fraction solubilities in the tetramethyl ester are close to those in the tetra(4-methyl-2-pentyl) ester at temperatures less than about 240 K. Solubilities in all four esters show a marked decrease with increase in temperature at temperatures above about 283.15 K but this decrease is especially marked in the case of the tetramethyl ester (see fig. 2).


Gerrard *et al.*(2) also measured solubilities in the tetrakis(2-chloroethyl) ester. Mole fraction solubilities at a total pressure of 101.3 kPa are again higher compared with the reference line based upon the Raoult's law equation but the presence of chlorine reduces solubility relative to the tetraethyl ester (see fig. 2).

Measurements of solubilities in the esters of silicic acid discussed above are consistent over wide temperature ranges. The only measurements available for comparison are those of the solubilities in the tetraethyl ester at three temperatures by Ditsent and co-workers which were cited by Gorshkov *et al.*(3). They correspond to lower solubilities than found by Gerrard *et al.* Details are not available. They should not be considered to cast serious doubt on the reliability of Gerrard's data.

Data published by Gorshkov *et al.*(3) show that the solubility of hydrogen chloride in triethoxy silane is also very high with a mole fraction solubility of about 0.6 at 293.15 K. The solubility was, however, found by an indirect method based upon kinetic measurements because of chemical reaction of hydrogen chloride with the solvent. This work must be considered to have only semi-quantitative significance.

Ahmed, Gerrard & Maladkar (4) measured solubilities in tetrachlorosilane over the temperature range 243.15 K to 293.15 K at a total pressure of 101.3 kPa. Solubilities are very low compared with those reported for dissolution in alkyl esters of silicic acid. The solvent is appreciably volatile at the higher temperatures of measurement (25.5 kPa at 293.15 K) and will make a significant contribution to the total pressure. The evaluator has estimated the mole fraction solubility at a partial pressure of 101.3 kPa from the solubility data at each temperature given by Ahmed *et al.* Rau (5) has measured solubilities in the same solvent over partial pressure ranges to a maximum of 0.298 kPa in the temperature range 290 K to 410.5 K. Mole fraction solubilities for a partial pressure of 101.3 kPa are inconsistent with solubilities for lower temperatures from data by Ahmed *et al.* Further work on this system is required.

COMPO	NENTS:	EVALUATOR:	
	Hydrogen Chloride; HCl; [7647-01-0] Solvents Containing Silicon	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London, N7 8DB, U.K.	
		January 1989	
CRITI	CAL EVALUATION:		
REFE	CRENCES		
1.	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L. <i>J. Appl. Chem.</i> <u>1959</u> , 9, 89-93.		
2.	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L. J. Appl. Chem. <u>1960</u> , 10, 115–121.		
3.	 Gorshkov, A. S.; Reibakh, M. S.; Tsirlin, A. M. Zh. Prikl. Khim. (Leningrad) <u>1967</u>, 40, 151-155. J. Appl. Chem. USSR <u>1967</u>, 40, 131-135. 		
4.	Ahmed, W.; Gerrard, W.; Maladkar, V. K. J. Appl. Chem. <u>1970</u> , 20, 109-115.		
5.	Rau, H. J. Chem. Thermodyn. <u>1982</u> , 14, 77-82.		

· •	
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
<pre>2. Silicic acid tetramethyl ester; C4H12O4Si; [681-84-5]</pre>	J. Appl. Chem. <u>1959</u> , 9, 89 - 93.
VARIABLES: T/K: 195.15 - 320.15 Total P/kPa: 101.325 (l atm)	PREPARED BY: W. Gerrard
EXPERIMENTAL VALUES:	io Mol Fraction
ⁿ HCl/ ⁿ C ₄ H	
195.15 11.03	
208.65 7.70 219.65 6.08	
273.15 2.15	
281.15 1.74	
290.15 1.40	
298.55 1.09	
306.35 0.80	
320.15 0.34	0.254
The mole fraction values were	calculated by the compiler.
	INFORMATION
METHOD/APPARATUS/PROCEDURE: The solvent was weighed in a bubbler tube. The amount of gas absorbed at temperatures above 273 K was deter- mined by reweighing to constant weight. The total pressure was barometric, very nearly 1 atm (101.325 kPa).	 SOURCE AND PURITY OF MATERIALS: 1. Hydrogen Chloride. Good specimen from a commercial cylinder was dried. 2. Silicic acid tetramethyl ester. Carefully purified, and purity rigorously attested.
For determinations below 273 K, a chemical titration was carried out. After the maximum absorption at the stated temperature, the bubbler tube was attached to a flask containing 1 dm ³ of water, and allowed to warm slowly (12 hours) to room temperature.	ESTIMATED ERROR: $\delta T/K = 2$ below 273 K
The contents of the bubbler tube were then added to the water, and the total chloride ion was determined by the Volhard method.	$\delta x_1 / x_1 = 0.03$ REFERENCES:
A low temperature, Teddington type YM thermostat was used for tempera- tures below 273 K, the control being within ± 2 K.	
Other solvent names are Tetramethyl orthosilicate Tetramethoxysilane	

COMPONENTS :			ORIGINAL MEASURE	MENTS:	
	Hydrogen Chloride; HCl; [7647-01-0]		Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.		
2. Silicic a $C_8^{H_{20}O_4^{Si}}$	cid tetraethyl ; [78-10-4]	ester;	J. Appl. Che	m. <u>1959</u> , 9, 89	- 93.
VARIABLES :			PREPARED BY:		
	243.15 - 318	. 55	FREFARED DI:		
	101.325 (1 a		W	. Gerrard	
,			(smoothed data	a calculated by H	L. Clever)
EXPERIMENTAL VA	LUES: T/K	Mol Rat			
		ⁿ HCl/ ⁿ C ₈ H	oo₄si ^X HC	1	
	243.15		0.8	18	
	274.15				
	291.45	1.872	2 0.6	52	
	295.15				
1	301.65 310.05				
	310.05				
	318.55				
			······································		
Smoothed Dat	-) + 402.1428 11	n (T/100K)
	-75	.5649 (T/100)K)		
	Standard er	ror about re	gression line	$= 1.28 \times 10^{-2}$	
	Т/К М	ol Fraction	T/K	Mol Fraction	
		x_1		x_1	
{	243.15	0.819	293.15	0.646	
1	253.15	0.819	303.15	0.580	
	263.15	0.737	313.15	0.494	
	273.15	0.717	323.15	0.396	
	283.15	0.690			
The	The mole fraction values were calculated by the compiler.				
		AUXILIARY	INFORMATION		
METHOD APPARATUS/PROCEDURE: The solvent was weighed in a bubbler tube. The amount of gas absorbed at temperatures above 273 K was deter- mined by reweighing to constant weight. The total pressure was barometric, very nearly 1 atm (101.325 kPa).		 Hydrogen from a co dried. Silicic a Carefully 	TY OF MATERIALS: Chloride. Goo mmercial cylin cid tetraethyl purified, and y attested.	der was ester.	
For determinations below 273 K, a chemical titration was carried out. After the maximum absorption at the stated temperature, the bubbler tube was attached to a flask containing 1 dm ³ of water, and allowed to warm slowly (12 hours) to room temperature. The contents of the bubbler tube were then added to the water, and the total chloride ion was determined by the Volhard method.			$\delta T/K = 2 belo X_1/X_1 = 0.025$	w 273 K	
A low temperature, Teddington type YM thermostat was used for tempera- tures below 273 K, the control being within ± 2 K.					
Other solvent names Tetraethyl orthosilicate Tetraethoxysilane					

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>1. Hydrogen Chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.		
2. Silicic acid tetrapropyl ester; C ₁₂ H ₂₈ O ₄ S; [682-01-9]	J. Appl. Chem. <u>1959</u> , 9, 89 - 93.		
VARIABLES: T/K: 273.15 - 331.15 Total P/kPa: 101.325 (1 atm)	PREPARED BY: W. Gerrard (smoothed data calculated by H.L. Clever)		
EXPERIMENTAL VALUES:			
$\frac{T/K}{mHCl/nC_{12}}$			
273.15 2.64			
283.15 2.21 298.15 1.60			
311.15 1.15			
	$.006/(T/100) - 22.925 \ln (T/100)$ Regression Line = 2.61 x 10^{-3}		
T/K I	Mol Fraction		
	хнсі		
273.15	0.726		
283.15	0.692		
293.15	0.643		
303.15 313.15	0.586 0.524		
The mole fraction values were calculated by the compiler.			
AUXILIARY	INFORMATION		
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
The solvent was weighed in a bubbler tube. The amount of gas absorbed was determined by reweighing to constant weight. The total pressure was barometric, very nearly 1 atm	 Hydrogen Chloride. Good specimen from a commercial cylinder was dried. Silicic acid tetrapropyl ester. 		
(101.325 kPa).	Carefully purified, and purity rigorously attested.		
	ESTIMATED ERROR:		
	$\delta x_{1}/x_{1} = 0.005$		
Other solvent names tetrapropyl orthosilicate tetrapropoxysilane	REFERENCES :		

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.	
<pre>(2) Silicic acid tetra(4-methyl-2- pentyl) ester or tetra-(4-methyl- pent-2-yloxy)silane; C₂₄H₅₂O₄Si; [18765-36-1]</pre>	J. Appl. Chem. <u>1959</u> , 9, 89 - 93.	
VARIABLES:	PREPARED BY:	
T/K: 211.15 - 321.55 Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)	
EXPERIMENTAL VALUES:		
	Ratio Mol Fraction	
ⁿ HC1 ^{/n} C ₂	4 ^H 52 ^O 4 ^{Si} ^x 1	
211.15 8.2		
222.15 6.7		
229.85 5.9 248.15 4.8		
259.15 3.7		
275.15 2.8		
280.65 2.5 289.15 2.1		
289.15 2.1 291.65 1.9		
299.65 1.6	91 0.628	
314.05 1.0		
320.55 0.8 321.55 0.8		
The compiler calculated the mole frac		
—		
	$52/(T/100K) - 11.990 \ln (T/100K)$	
Standard error about	the regression line is 2.55 x 10^{-2}	
•	Mol Fraction	
The smoothed data equation is for use	x_1	
botween the temper-	0.795	
atures of 263.15 and 283.15	0.745 0.690	
323.15 К. 293.15	0.634	
303.15	0.577	
313.15 323.15	0.523 0.470	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The liquid component was weighed in	(1) Hydrogen chloride. Good specimen	
a bubbler tube. The amount of gas	from a commercial cylinder was	
absorbed was determined by re-	dried.	
weighing to constant weight. The total pressure was barometric, very	(2) Silicic acid tetra(4-methyl-2-	
nearly 1 atm (101.325 kPa).	pentyl)ester. Carefully	
-	purified, and purity rigorously	
For determination at temperatures	attested.	
below 273 K, a chemical titration was carried out. After the maximum		
absorption at the stated temperature,		
the bubbler tube was attached to a		
flask containing one dm ³ of water, and allowed to warm slowly (12 hours)	ESTIMATED ERROR:	
to room temperature. The contents of		
the bubbler tube were then added to	$\delta x_1 / x_1 = 0.03$	
the water, and the total chloride ion		
was determined by the Volhard method. A low temperature, Teddington-type YM	REFERENCES:	
thermostat was used for temperatures		
below 273 K, the control being to		
± 2 K.		

COMPONENTS :			ORIGINAL MEASUREMENTS:		
	<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>			W.; Mincer	
<pre>(2) Silicic acid tetra(4-methyl-2- pentyl)ester or tetra-(4-methyl- pent-2-yloxy)silane; C₂₄H₅₂O₄Si; [18765-36-1]</pre>			1 -		, 10, 115 - 121.
EXPERIMENT					
		ature and pres- le fraction.			re and mole t temperature.
т/к	Pressure P1 ^{/mmHg}	Mol Fraction $\frac{x_1}{2}$	т/к	Pressure p _l /mmHg	Mol Fraction
225.15 238.15 249.65 255.85 264.85	65 103 159 208 287	0.671	253.15	141 187 338 425 760	0.640 0.671 0.735 0.764 0.804
273.15 282.15 286.35 291.55 296.15 300.55	393 557 648 764 879 966		263.15	206 272 470 628 760	0.640 0.671 0.735 0.764 0.777
304.15 305.75 308.15	1046 1095 1141	0.764	273.15	290 390 695 760	0.640 0.671 0.735 0.742
229.65 231.15 241.95 252.15 255.15 256.15 259.65 263.55 266.65	165 177 265 420 441 492 560 636 722	0.764			0.764 0.640 0.671 0.725 0.735 0.764 ube through which
273.15 277.15 225.15 227.15 238.15 247.15 247.15 247.75 258.65 273.15 273.15 278.75 283.35 286.35 287.95 291.35	955 1117 105 124 197 273 279 408 539 702 854 984 1080 1125 1231	0.735	room temp flask was of a U-tu the other the oress nearest m equilibri ature. Fr the value read; and x_1 for th the x_1 va 4 series the set of	perature (c s attached ube manomet c limb bein sure, p_1 , w mmHg for th ium at each com a plot e of T/K fo d the separ hat T/K (l) alue for th were repor of p_1 vs. T	into the liquid at controlled). The to the tapped end er containing Hg, g open to the atm; as measured to the e condition of recorded temper- of p_1 /mmHg vs. T/K or $p_1 = 1$ atm was ately determined was taken to be e series. Data for ted as above. From /K curves data table above were
224.65 230.65 243.15 248.65 256.15 261.75 269.75 272.65 278.15 283.65 290.95 296.55 300.75	57 64 101 121 158 200 255 285 353 458 600 746 856	0.640	Obtained SOURCE AN (1) Hydro was o dried (2) Silar purif and i REFERENCE 1. Gerra	ND PURITY O ogen chlori obtained fr 1. ne. It was fied by a s its purity	F MATERIALS: de. A good specimer om a cylinder and prepared and tandard technique, was attested. ncer, A. M. A.;
METHOD/APPARATUS/PROCEDURE: To measure the total pressure, taken to be p_1 , a weighed amount of silane was put into a flask fitted with a					<u>1959</u> , 9, 89.

	Non-Aqueous Solvents
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
<pre>(2) Silicic acid tetrakis(2-chloro ethyl) ester or tetra-(2-chloro- ethoxy)silane; CgH₁₆Cl₄O₄Si; [18290-84-1]</pre>	J. Appl. Chem. <u>1960</u> , 10, 115-121.
VARIABLES:	PREPARED BY:
T/K: 273.15 - 316.05 Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	(smoothed data calculated by n.b. clever)
T/K Mol R	atio Mol Fraction
ⁿ HCl ^{/n} C ₈ H	16 ^{C1} 4 ⁰ 4 ^{Si}
273.15 0.7	
280.95 0.5 292.25 0.4	
299.85 0.3	33 0.250
309.75 0.2	
316.05 0.2	
The compiler calculated the mole frac	ction values.
1	4/(T/100) - 7.764 ln (T/100)
Standard error about	the regression line is 7.06×10^{-3}
T/K	Mol Fraction ^x 1
273.15	0.426
283.15	
293.15 303.15	0.289 0.239
313.15	0.199
323.15	0.166
AUXILIAR	/ INFORMATION
METHOD APPARATUS/PROCEDURE:	COUDCE AND DUDITY OF MATERIALS.
The liquid component was weighed in a bubbler tube. The amount of gas absorbed was determined by re- weighing to constant weight. The total pressure was barometric, very nearly 1 atm (101.325 kPa).	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen chloride. Good specimen from a commercial cylinder was dried. (2) Silicic acid tetrakis (2-chloro- ethyl) ester. Carefully purified, and purity rigorously attested.
	ESTIMATED ERROR:
	$\delta x_{1}/x_{1} = 0.025$
	REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl;</pre>	Gorshkov, A. S.; Reibakh, M. S.;		
[7647-01-0]	Tsirlin, A. M.		
(2) Triethoxysilane; C ₆ H ₁₆ O ₃ Si or	Zh. Prikl. Khim. (Leningrad) <u>1967</u> ,		
(C ₂ H ₅ O) ₃ SiH; [998-30-1]	40, 151 - 155.		
<pre>(3) Silicic acid, tetraethyl ester;</pre>	J. Appl. Chem. USSR (Engl. Transl.)		
C ₈ H ₂₀ O ₄ Si; [78-10-4]	<u>1967</u> , 40, 131 - 135.		

EXPERIMENTAL VALUES:

The objective of this work was to determine the solubility of HCl in component 2, Triethoxysilane. A kinetic method was used. The hydrogen chloride reacted with the solvent, which was initially 95.9 % triethoxysilane and 4.1 % silicic acid, tetraethyl ester or tetraethoxysilane, to form an intermediate chlorosilane. (chlorodiethoxysilane, C $_4^{H}$ 11 2

[6485-91-2]), ethanol [64-17-5], and hydrogen [1333-74-0].

Tempe	rature	Mol Ratio	Mol Fraction ¹	Ratio of Mol Ratios ²
t∕°C	T/K	n ₁ /n ₂	<i>x</i> ₁	$(n_1/n_2)/(n_1/n_3)$
20	293.15	1.365	0.577	0.975
35	308.15	0.6785	0.404	0.715
60	333.15	0.1399	0.123	0.680

 $^1\,$ Mol fraction values calculated by the compiler. The hydrogen chloride partial pressure, $p_{\,1}\,$, was stated to be 760 mmHg.

² The values are based on the solubility of HCl in silicic acid, tetraethyl ester at one atm HCl reported by V. E. Ditsent and co-workers.

The conventional method of determination is frustrated by the occurrence of an irreversible conversion of the triethoxysilane into tetraethoxysilane and hydrogen, via an intermediate chlorosilane formulated as $(C_2H_5O)_2$ SiHCl. It was stated that the solubility was determined from kinetic curves, and the known solubility of HCl in ethanol (1) and in tetraethoxysilane (the

citation being given merely as V. E. Ditsent and co-workers).

The solubility of HCl in monochloridiethoxysilane, $(C_{2}H_{5}O)_{2}$ SiHCl [6485-91-2], could not be determined from the kinetic curves; it was assumed to be half its solubility in triethoxysilane. It was stated that the data on the solubility of HCl in tetraethoxysilane for pressures below 760 mmHg (not recorded, but presumably those attributed to Ditsent, *et al.*) were used to convert the mole ratio values for 1 atm (Table above) to those for pressures below 1 atm by assuming that the solubility ratio, $(n_1/n_2)/(n_1/n_3)$, for 1 atm, at the chosen T/K remains constant at all partial pressures, p_1 , below 1 atm. These calculated data were presented as mole fractions, x_1 , for triethoxysilane, as shown on the next page.

Hydrogen Chloride in Non-Aqueous Solvents

	gen chlo -01-0]	oride; HCl; [76	647-01-	ORIGINAL MEASUREME Gorshkov, A. S. Tsirlin, A.	; Reibak	th, M. S.;
		ane; C ₆ H ₁₆ O ₃ Si [998-30-1]	or	2h. Prikl. Khim 40, 151 - 155.	. (Lenin	grad) <u>1967</u> ,
2.5				J. Appl. Chem. 1967, 40, 131 -	USSR (En 135.	gl. Transl.)
VARIABLES:				PREPARED BY:		
р		293.15 - 333.1 101.325 (1 atm		W. Gerrard		
EXPERIMENTA	L VALUES:					
p ₁ /mmHg	T/K	Mol Fraction x_1	T/K	Mol Fraction x_{j}	T/K	Mol Fraction x_1
25	293.15	0.077	308.15		333.15	
50		0.143		0.0611	555.15	0.01525
100		0.247 0.371		0.1155 0.209		0.0301
300		0.448		0.275		0.0549 0.0720
400 500		0.498				0.0883
600		0.533 0.555		0.333		0.1005 0.1135
700		0.573		0.398		0.1225
		A	UXILIARY	INFORMATION		
METHOD/APPA			_	SOURCE AND PURITY		
mined by	titrati	l absorbed was on by the Mohr unt of HCl abs	's		us hydro	Obtained chloric acid (concentrated).
was found	l by the	difference be	tween			
		d through the that emerging				contained e (95.9%) and
the absor	ption v	essel as an ef	fluent	tetraethox	ysilane	(4.1%).
		he former bein r, and the lat				
being col	lected	over water in .	a			
		me of hydrogen 0 seconds.	was			
	-			ESTIMATED ERROR:		
		wed the variat nt in the solu				
with time	e, for e	ach T/K. Thei:	r			
		e volume of hydre reaction mixt				
with time		reaction mixt	ar G	REFERENCES:		
The liqui	d phase	contained mono	o -	 Technical E of Chemical 	Incyclope	edia. Handbook
chlorodie	thoxysi	lane, ethanol,	tetra-	Technologic	al Data	(in Russian),
ethoxysil hydrogen		iethoxysilane,	and	<u>1930</u> , 5, 42	22.	
"yurogen	CHILOTIC	- •				
1		_				

	Non-Aqueous Solvents 3/7
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen chloride; HCl; [7647-01-0]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.
2. Tetrachlorosilane; SiCl _{4;} [10026-04-7]	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.
VARIABLES: T/K: 243.15 - 293.15	PREPARED BY:
Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES: T/K MOL Ra	tio Mol Fraction
ⁿ HC1/ ⁿ S	icl ₄ X _{HCl}
243.15 0.08	
253.15 0.06 263.15 0.05	
273.15 0.04	0 0.0385
283.15 0.03 293.15 0.02	
	······································
The mole fraction solubilities were compiler.	alculated from the mole ratio by the
-	722/(T/100) - 3.170 ln (T/100)
	-
Standard error about :	regression line = 1.27×10^{-3}
T/K I	Mol Fraction
	X _{HC1}
243.15	0.0804
253.15 263.15	0.0624 0.0491
273.15	0.0392
283.15 293.15	0.0317 0.0258
	0.0250
	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Hydrogen chloride was passed into a known weight of liquid in a bubbler	1. Hydrogen chloride. Obtained from a cylinder containing a good com-
tube at a total pressure measured by	mercial specimen. Was dried by
a manometer assembly. The absorbed	passage through concentrated sulfuric acid.
gas was weighed by re-weighing the bubbler tube. The temperature was	
manually controlled to within 0.2 K.	2. Tetrachlorosilane. Best obtain- able specimen was suitably
The procedure and apparatus are described by Gerrard (1,2).	purified, dried, and fractionally
For the first three temperatures a	distilled, and attested.
chemical titration was conducted.	
	ESTIMATED ERROR:
	$\delta T/K = 0.2$
	$\delta x/x = 0.005$
	REFERENCES:
	1. Gerrard, W.
	J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623 - 650.
	2. Gerrard, W. "Solubility of Gases and Liquids"
	Plenum Press, New York, 1976
	1

Hydrogen Chloride in Non-Aqueous Solvents

COMPONENTS:			ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen chloride; HCl; [7647-01-0]</pre>			Rau, H.		
(2) Tetrachlo tetrachlo [10026-04	oride; SiCl		J. Chem. Ther	rmodyn. <u>19</u>	<u>82</u> , <i>14</i> , 77 - 82
VARIABLES:			PREPARED BY:		
T/K	= 290.0 - = 3.1 - (0.031 -			H. L. Clev	ver
EXPERIMENTAL VAL	UES:				
Temperature	Pressure	Mol Fraction	Temperature	Pressure	Mol Fraction
T/K	p ₁ /kPa	10 ² x ₁	T/K	p ₁ /kPa	10 ² x ₁
290.0	46.4	0.869	364.0	3.1	0.066
290.5	84.8	1.380	364.0	97.6	0.866
293.0	124.4	2.054	364.0	165.8	1.367
295.5	30.8	0.456	364.0	243.3	2.162
295.5	5.3	0.456	204.0	640.0	2.102
296.0	5.3	0.057	276 5	56.0	0 470
23.5.5	150 7	2 255	376.5	56.0	0.473
315.5	159.7	2.055	377.0	11.3	0.055
318.5	42.3	0.453	377.5	111.2	0.872
320.0	7.2	0.055	378.0	183.7	1.378
320.5	69.4	0.857	378.0	271.0	2.128
320.5	116.0 '	1.365			
1			389.5	74.4	0.475
333.0	47.1	0.455	390.0	298.0	2.154
333.5	134.9	1.351	392.0	13.0	0.055
334.0	10.0	0.051	392.0	123.3	0.883
334.0	193.1	2.062	392.0	208.3	1.389
348.0	49.1	0.463	404.0	81.7	0.487
349.0	148.1	1.360	406.5	152.7	0.896
349.0	219.6	2.078	406.5	233.3	1.407
349.5	9.1	0.055	408.0	94.2	0.490
349.5	87.4	0.860	408.5	4.0	0.067
545.5	0/.4	0.000	410.5	94.1	0.491
362.0	54.1	0.466	410.5	24.1	0.491
AUXILIARY INFORMATION					
METHOD / APPARATUS	/PROCEDURE ·		SOURCE AND PURIT	V OF MATERI	AT C .
		all ailiga			
		all-silica	(1) Hydrogen	chloride	Commercial
Bourdon gage.	-				d in a glass
known pressur					zed to a pre-
Ithe silca spi	ral. The S:	iCl ₄ was added	1	-	e in a calibra-
		ule containing	ted volum	-	, in a cartora-
a known weigh	t of the ma	aterial.			
	. -				Merck/Darmstadt
		paratus was			in high vac-
mounted in an					glass) and
windows so th				glass amp	
to the end of]	2t	1
		as brought to		· /	
		known pressure	ESTIMATED ERROR		
of argon gas.	-		m 1	$V/K = \pm 0.5$	
1 .					
The total pressure was measured			op t/	$p_t = \pm 0.0$	10 T
		ature. The gas	ox1/	$x_1 = \pm 0.1$	LU
volume, the v			L	·	**
the HCl partial pressure are determined assuming that liquid HCl has a					
density of 0.8 g cm ⁻³ , the liquid SiCl ₄ has the density of the pure liqu					ne pure liquid.
the gas compr	tors can be cal	loulated from	correspond	ling-state	
		do not intera			
		thor calculated			
C/pa=1 //	r_{1} The automatic n_{1} (Pa)	linor calculated	a nenry's cons	cant in th	le torm
$= \frac{x_1}{1}$	$(\pi/ra) \cdot A$	linear regress:	ton gave the e	quation 1	$\log (C/Pa^{-1}) =$
$-8.279 + 437/(\bar{T}/K)$. The author states that Henry's law is obeyed within experimental error					eyea within
experimental	error.				

COMPONENTS:		EVALUATOR:
1.	Hydrogen Chloride; HCl; [7647-01-0]	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2.	Tetrachlorostannane; SnCl ₄ ; [7646-78-8] Titanium Chlorıde; TiCl ₄ : [7550-45-0]	Polytechnic of North London, Holloway, London, N7 8DB, U.K. January 1989

CRITICAL EVALUATION:

The Solubility of Hydrogen Chloride in Tetrachlorostannane and in Titanium Chloride.

Ahmed *et al.*(1) have reported the solubility in tetrachlorostannane at a total pressure of 101.3 kPa over the temperature range 243.15 K to 293.15 K. The data are self-consistent and likely to be more reliable than the measurements at 273 K and 300 K reported by Howald & Willard (2) which correspond to lower solubilities. The mole fraction solubility at 273 K from Ahmed's data is 0.061 compared with 0.050 from Howald & Willard's data. The values for 300 K are 0.048 and 0.040 respectively.

Ahmed *et al.* also reported solubility in titanium chloride at the same pressure over a temperature range of 243.15 K to 293.15 K. Measurements are self consistent and indicate mole fraction solubilities lower than for dissolution in tetrachlorostannane. The value of the mole fraction solubility at 273.15 K is 0.051.

REFERENCES

- Ahmed, W.; Gerrard, W.; Maladkar, V. K. J. Appl. Chem. 1970, 20, 109-115.
- 2. Howald, R. A.; Willard, J. E. J. Am. Chem. Soc. 1955, 77, 2046-2049.

COMPONENTS:			ORIGINAL MEASUREN	ÆNTS:
(1) Hydrogen chl [7647-01-0]	oride; HC	1;	1	.; Willard, J. E.
<pre>(2) Tetrachlorostannane; SnCl₄; [7646-78-8]</pre>			J. Am. Chem. 2046 - 2049.	<i>Soc</i> . <u>1955</u> , 77,
VARIABLES:			PREPARED BY:	
T/K: P/kPa:	273, 300 not giv			W. Gerrard
EXPERIMENTAL VALUES:		<u> </u>	• <u>• • • • • • • • • • • • • • • • • • </u>	
	T/ K	Henry's Constant ¹ K x 10 ⁵	Mol Fraction ²	_
	273 300	6.6 ± 0.5 5.2 ± 1.	0.050 0.040	_
	¹ K/(mmHg	$x_{1}^{-1} = x_{1}^{-1} (y_{1}^{-1})$	p1/mmHg)	
	for a p 101.325 assumed	artial press kPa (760mm a linear fu	ility calculate sure of HCl of Hg). The compi unction of mole ure up to 760 m	ler
	The pressures of the not stated. They coul as 40 mmHg.			vere : low
		AUXILIARY	INFORMATION	
METHOD/APPARATUS/PRO	CEDURE:		SOURCE AND PURIT	
The solubility s small part of th	e paper.	The complete	(1) Hydrogen Gas taker	chloride. Matheson Co. from cylinder.
statement about measurement is a solubility of HC determined by me exerted by a kno metered into a volume containin SnCl ₄ ."	the solub is follows il in SnCl asuring t own amount flask of	ility : "the 4 was he pressure of HCl known	(2) Tetrachlo given. Ch	prostannane. Source not memically pure, and anhydrous.
			ESTIMATED ERROR:	
			REFERENCES :	

COMPONENTS:	ORIGINAL MEASUREMENTS:
1 Wednesses ablenides UCL [7647-0]-01	Abmod M & Command M
1. Hydrogen chloride; HCl; [7647-01-0]	Ahmed, W.; Gerrard, W.; Maladkar, V. K.
<pre>2. Tetrachlorostannane; SnCl₄; [7646-78-8]</pre>	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.
VARIABLES :	
T/K: 243.15 - 293.15	PREPARED BY: W. Gerrard
P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Ratio	Mol Fraction
n _{HCl} /n _{SnCl4}	XHCl
243.15 0.115	0.103
253.15 0.092 263.15 0.076	0.0842 0.0706
273.15 0.065	0.0610
283.15 0.058 293.15 0.053	0.0548 0.0503
Smoothed Data: $\ln \chi_{HCl} = -34.460 + 4$	
Standard error about	regression line 3.49 x 10^{-4}
T/K Mol F	raction
X	HCl
243.15 0.1	03
253.15 0.0	
263.15 0.0 273.15 0.0	705
283.15 0.0	548
293.15 0.0	502
298.15 0.0	485
The mole fraction solubilities were ca	lculated from the mole ratio by the
compiler. AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Hydrogen chloride was passed into a	1. Hydrogen chloride. Obtained from
known weight of pure liquid in a bubbler tube at a total pressure	a cylinder containing a good commercial specimen. The HCl was
measured by a manometer assembly. The	dried by passage through concen-
absorbed gas was weighed by re-weighin the bubbler tube. The temperature was	trated sulfuric acid.
manually controlled to within 0.2 K.	2. Tetrachlorostannane. Best obtain-
For the two lowest temperatures the ga	able specimen was suitably purified, dried, fractionally
absorbed was determined by a chemical titration.	distilled, and attested.
The apparatus and procedure are	ESTIMATED ERROR:
described by Gerrard (1,2).	$\delta T/K = 0.2$
	$\delta X/X = 0.005$
	REFERENCES :
	1. Gerrard, W.
	J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623 - 650.
	2. Gerrard, W.
	"Solubility of Gases and Liquids" Plenum Press, New York, 1976
L	

ORIGINAL MEASUREMENTS:
Ahmed, W.; Gerrard, W.; Maladkar, V. K.
J. Appl. Chem. <u>1970</u> , 20, 109 - 115.
PREPARED BY:
W. Gerrard (smoothed data calculated by H.L. Clever)
atio Mol Fraction
ricl ₄ ^X HCl
05 0.0950 30 0.0741
54 0.0602
54 0.0512
47 0.0449 40 0.0385
alculated from the mole ratio by the
$1.417/(T/100) + 10.794 \ln (T/100)$
regression line 7.31 x 10^{-4}
x _{HCl}
0.0945
0.0745
0.0608
0.0511 0.0441
0.0389
0.0368
INFORMATION
SOURCE AND PURITY OF MATERIALS:
1. Hydrogen chloride. Obtained from
a cylinder containing a good com-
mercial specimen. Was dried by passage through concentrated
sulfuric acid.
2. Titanium chloride. Best obtain-
able specimen was suitably puri-
fied, dried, and fractionally distilled, and attested.
arberreu, and arbeoteu.
ESTIMATED ERROR:
$\delta T/K = 0.2$
$\delta X/X = 0.01$
REFERENCES :
<pre>1. Gerrard, W. J. Appl. Chem. Biotechnol. 1972, 22, 623 - 650.</pre>
2. Gerrard, W. "Solubility of Gases and Liquids" Plenum Press, New York, 1976

COMPONENTS :	EVALUATOR:	
<pre>1. Hydrogen Bromide; HBr; [10035-10-6]</pre>	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,	
2. Organic Solvents	Polytechnic of North London, Holloway, London, N7 8DB, U.K. January 1989	

The Solubility of Hydrogen Bromide in Organic Solvents

Alkanes

Solubility in hexane was measured by Fontana & Herold (1) at 278.15 K and 293.15 K over the pressure range 41.4 kPa to 213.7 kPa and by Boedeker & Lynch (2) at 298.15 K, 308.15 K and 318.15 K over the pressure range 6.7 kPa to 93.3 kPa. Results were expressed as Henry's constants. Mole fraction solubilities at a partial pressure of 101.3 kPa from the sets of data may be fitted to the equation :

 $\ln x_{\text{HBr}} = -44.591 + 2912.4/(T/K) + 5.5481 \ln(T/K)$

This equation is based upon data for the temperature range 278.15 K to 318.15 K. Extrapolation outside this range may lead to error. The standard deviation in values of $x_{\rm HBr}$ is 0.00089.

Solubility in decane at a total pressure of 101.3 kPa over the temperature range 243.15 K to 293.15 K has been measured by Ahmed *et al.*(3) and at 298.15 K to 319.15 K in the pressure range 6.7 kPa to 92.3 kPa by Boedeker & Lynch (2). The latter reported Henry's constants for three temperatures rather than measurements of solubility at individual pressures. Mole fraction solubilities at a partial pressure of 101.3 kPa from these Henry's constants show good consistency with values for lower temperature from Ahmed's data. The mole fraction solubility at 101.3 kPa by extrapolation of values based upon Ahmed's data is 0.0497 compared with the value of 0.0519 from the Henry's constant at this temperature published by Boedeker & Lynch. Mole fraction solubilities at 101.3 kPa from the two sources may be fitted to the equation :

 $\ln x_{\text{HBr}} = -73.774 + 4380.1/(T/K) + 9.8532 \ln(T/K)$

The standard deviation in values of x_{HBr} is 0.0020.

Solubility in butane at 278.15 K and 298.15 K over a pressure range from 41.4 kPa to 213.7 kPa was measured by Fontana & Herold (1). Solubility in octane at partial pressures from 0.067 to 93.3 kPa at 298.15 K, 308.15 K and 318.15 K was measured by Boedeker & Lynch (2). In each case data were reported as Henry's constants from which mole fraction solubilities at a partial pressure of 101.3 kPa may be calculated.

Solubility in heptane at a total pressure of 101.3 kPa over a temperature range from 233.15 K to 293.15 K was measured by Ahmed *et al.*(3).

Mole fraction solubilities at 298.15 K for a partial pressure of hydrogen bromide of 101.3 kPa, on the basis of the available data, are as follows :

butane	0.0332		
hexane	0.0402		
heptane	0.0446	(extrapolated and corrected to P _{HBr} = 101.3 kPa)	
octane	0.0448	HBr	
decane	0.0527		
(referenc	ce value	from Raoult's law equation = 0.0410)	

Mole fraction solubilities at this temperature are close to the reference value from the Raoult's law equation and show an increase in mole fraction solubility with increase in carbon number of the solvent. The solubilities of hydrogen chloride in alkanes are also close to reference line values but, in this case, the data do not clearly indicate an increase with carbon number of the alkane.

COMPONENTS.	EVALUATOR:
<pre>1. Hydrogen Bromide; HBr; [10035-10-6]</pre>	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2. Organic Solvents	Polytechnic of North London, Holloway, London, N7 8DB, U.K.
	January 1989

The available data for solubilities of hydrogen bromide in butane, heptane and octane are consistent with measurements of the solubilities of this gas in hexane and in decane which have been studied by more than one group. Solubilities in these three solvents may be accepted on a tentative basis.

Fontana & Herold (1) also showed that the mole fraction solubility in butane and in hexane are reduced in the presence of aluminium bromide under the conditions of their measurements. The accuracy of these additional measurements cannot be evaluated.

Aromatic hydrocarbons

Mole fraction solubilities in aromatic hydrocarbons at a partial pressure of gas of 101.3 kPa over the temperature range in which measurements are available lie above the reference line based upon the Raoult's law equation and increase in the order:

benzene < methylbenzene < 1,3-dimethylbenzene < 1,3,5-trimethylbenzene</pre>

Solubility in benzene in the range 263.15 K to 293.15 K at a total pressure of 101.3 kPa was measured by Ahmed *et al.*(3). O'Brien & Bobalek (4) reported solubility at 298.15 K over the partial pressure range 0.111 kPa to 57.2 kPa, Kapustinskii & Mal'tsev (5) at 303.15 K & 323.15 K over the range 1.02 kPa to 84.35 kPa and Brown & Wallace (6) at 278.85 K at pressures to 20 kPa. Ahmed's data have been corrected to give values of the mole fraction solubility at a partial pressure. The smoothing equation for mole fraction solubility at a partial pressure of 101.3 kPa. Other data available for the temperature range 263.15 K to 323.15 K is :

 $\ln x_{HRr} = 115.68 - 3357.2/(T/K) - 18.780 \ln(T/K)$

Values of x_{HBr} fit this equation with a standard deviation of 0.0054.

Ahmed et al.(3) have also reported the solubility in methylbenzene at a total pressure of 101.3 kPa in the temperature range 233.15 K to 293.15 K. O'Brien & Bobalek (4) measured the solubility at 298.15 K over a partial pressure range of 19.47 kPa to 47.73 kPa and Brown & Wallace (6) at 273.15 K and pressures to 18.7 kPa. Mole fraction solubilities by extrapolation or by correction to a partial pressure of 101.3 kPa may be fitted to the equation :

 $\ln x_{\text{HBr}} = 71.850 - 1427.6/(T/K) - 12.212 \ln(T/K)$

Values of x_{HBr} fit this equation with a standard deviation of 0.0091.

Ahmed et a1.(3) measured the solubility in 1,3-dimethylbenzene at a total pressure of 101.3 kPa over the temperature range 233.15 K to 293.15 K. The difference between these measurements and the solubility at a partial pressure of gas of 101.3 kPa is likely to be less than experimental error. The mole fraction solubility for a partial pressure of 101.3 kPa at 273.15 K based upon these measurements is 0.134. This differs from the value of 0.204 corresponding to the Henry's constant from measurements to 15.3 kPa reported by Brown & Wallace (6) and based upon the assumption that the variation of mole fraction solubility with pressure is linear to 101.3 kPa. If the variation approximates to that expressed by the Margules equation then the mole fraction solubility at 101.325 kPa, corresponding to Brown & Wallace's measurement, would be about 0.16. This is closer to Ahmed's value.

Ahmed's data are likely to give a better measure of the solubility at a partial pressure of 101.3 kPa. They should be treated as tentative values until further measurements on the system are available.

COMPONENTS.		EVALUATOR:
 Hydrogen Bromide; HBr; [10035-10-6] Organic Solvents 		Peter G. T. Fogg Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London, N7 8DB, U.K.
[January 1989

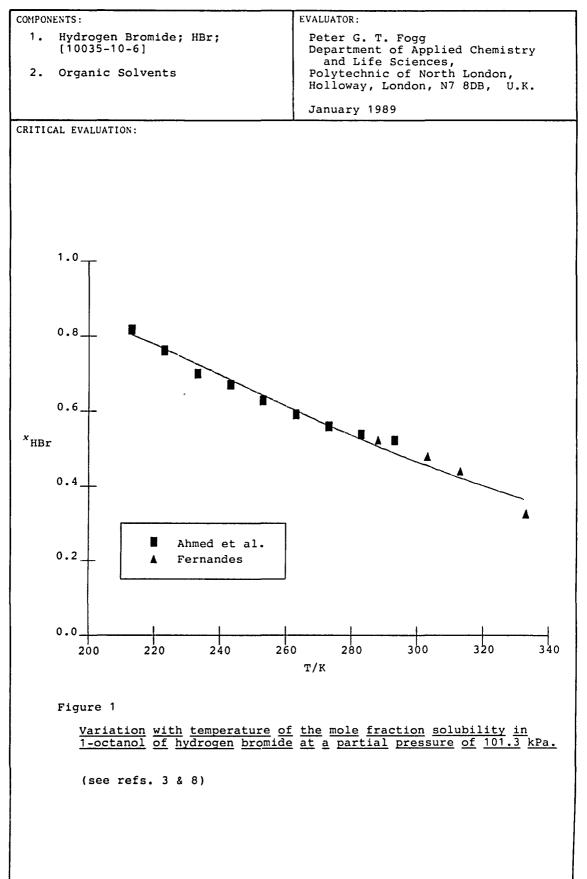
Brown & Wallace (6) also measured the solubility in 1,3,5-trimethylbenzene at 273.15 K to 14.67 kPa. Measurements indicate that, to this pressure at least, solubility is greater than in 1,3-dimethylbenzene. Linear extrapolation to a partial pressure of 101.3 kPa gives a value of the mole fraction solubility of 0.226. If, however, the variation of mole fraction solubility with change of partial pressure approximates to the Margules equation then the mole fraction solubility at a partial pressure of 101.3 kPa would be about 0.17. These extrapolated values should be considered to be of semi-guantitative significance only.

Alkanols

Mole fraction solubilities in alkanols at a partial pressure of 101.3 kPa are appreciably higher than values represented by a reference line based upon the Raoult's law equation applied to hydrogen bromide. Mole fraction solubilities of hydrogen chloride show similar high values relative to the corresponding reference line for hydrogen chloride.

The mole fraction solubility in ethanol from data reported by Dorofeeva (7) is 0.285 at 298.15 K. It is not clear whether this corresponds to a total or to a partial pressure of 101.325 kPa as no details of the measurements were given. No other measurements of the solubility of hydrogen bromide in this solvent are available for comparison. The value is low in comparison with solubilities in higher alkanols and in chlorinated ethanols discussed below. Further measurements are needed.

Solubility in 1-octanol at a total pressure of 101.3 kPa was measured by Ahmed *et al.*(3) for the temperature range 213.15 K to 293.15 K. The partial pressure of the solvent makes insignificant contribution to the total pressure in this temperature range. Solubility at a partial pressure of 101.3 kPa in the range 288.15 K to 333.15 was measured by Fernandes (8). There is good agreement between solubilities over the few degrees in which the measurements overlap. At 288.15 K the interpolated value of mole fraction solubility from Ahmed's data is 0.530. The value given by Fernandes is 0.519. However the slopes of the curves of mole fraction solubility against temperature differ in the two cases so that extrapolated data from one source are not compatible with data from the other source. (fig. 1)


Mole fraction solubilities for a partial pressure of 101.3 kPa from the two sources may be represented by the equation :

 $\ln x_{\rm HBr} = 31.5861 - 892.58/(T/K) - 5.1505 \ln(T/K)$

The standard deviation in values of $x_{\rm HBr}$ is 0.021.

In view of the differences between the two sets of data this equation is considered to be tentative. It should not be used to estimate solubilities outside the temperature range of 213.15 K to 333.15 K.

Fernandes (7) also reported solubilities at a partial pressure of 101.3 kPa over temperature ranges of various extent in 1-pentanol, 1-hexanol, 1-heptanol, 1-nonanol, 1-decanol, 1-dodecanol. 1-tetradecanol and 1-hexadecanol. Variation of mole fraction solubility with chain length is rather irregular as may be seen below :

COMPONENTS:		EVALUATOR:			
<pre>1. Hydrogen Bromide; HBr; [10035-10-6]</pre>		Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,			
2. Organi	ic Solvents	Polytechnic of North London, Holloway, London, N7 8DB, U.K.			
		January 1989			
CRITICAL EVALUATION:					
<u>Mole fraction solubilities of hydrogen bromide in alcohols at a</u> partial pressure of 101.3 kPa at 333.15 K measured by Fernandes					
	1-pentanol	0.334			

1-pentanol	0.334
1-hexanol	0.318
1-heptanol	0.305
1-octanol	0.322
1-nonanol	0.325
1-decanol	0.351
1-dodecanol	0.351
1-tetradecanol	0.301
1-hexadecanol	0.301

The solubility in 2,2-dimethyl-1-propanol at 268.15 K to 283.15 K was reported by Whitmore & Rothrock (9) as an incidental part of a study of chemical reaction. The pressure of hydrogen bromide was probably about 101.3 kPa. The mole fraction solubility at 283.15 K, calculated from these data, is 0.286. This may be compared with the value of 0.533 for the isomeric 1-pentanol, by extrapolation of Fernandes' data. Data for solubility of hydrogen chloride in 2,2-dimethyl-1-propanol are not available for comparison but the solubility of hydrogen chloride at a partial pressure of 101.3 kPa, at temperatures around 283.15 K, in the isomeric branched chain alcohol, 2-methyl-1-butanol, is close to that in 1-pentanol. Solubility of hydrogen chloride in 2-methyl-1-propanol is also close to that in 1-butanol. In the absence of any supporting evidence for low solubility of hydrogen halides in 2,2-dimethyl-1-propanol, compared with solubility in isomeric alcohols, the data reported by Whitmore and Rothrock should be rejected.

Substitution of chlorine into an alcohol lowers the solubility of hydrogen chloride in that alcohol. The solubility of hydrogen bromide in 2-chloroethanol, 2,2-dichloroethanol and in 2,2,2-trichloroethanol have been reported by Gerrard & co-workers for a pressure of 101.3 kPa within the temperature range of 253.15 K to 312.15 K. The work shows that mole fraction solubility decreases with increase in chlorine content. Data for solubility in 2,2,2-trichloroethanol are contained in two papers from the same laboratory with some disagreement between the two sets of data at the higher end of the temperature ranges. Mole fraction solubilities at 273.15 K, 283.15 K and 293.15 K from the earlier paper (10) are respectively 0.161, 0.130 and 0.0944. Values for these temperatures from the later paper (11) are, respectively, 0.149, 0.133 & 0.128.

The mole fraction solubility of hydrogen bromide in ethanol at 298.15 K and 101.325 kPa, from Dorofeeva's measurements discussed above, does not fit into the pattern. This value of 0.285 is less than the corresponding value of 0.377 for dissolution in 2-chloroethanol. The data for the chlorinated compound are likely to be the more reliable.

Ethers

The solubility in 1,1'-oxybisoctane was measured by Ahmed, Gerrard & Maladkar (11) at a total pressure of 101.3 kPa over the temperature range 223.15 K to 293.15 K. Data are self-consistent. Mole fraction solubility is very high, as is the solubility of hydrogen chloride in alkyl ethers under similar conditions. No other data for solubility of hydrogen bromide are available for comparison but these data may be accepted on a tentative basis.

COMPO	NENTS.	EVALUATOR:
1.	Hydrogen Bromide; HBr; [10035-10-6]	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2. Organic Solvents		Polytechnic of North London, Holloway, London, N7 8DB, U.K.
		January 1989

Alkanoic acids

Ahmed, Gerrard & Maladkar (11) repofted solubilities in acetic acid and in hexanoic acid at a total pressure of 101.3 kPa and over temperature ranges of 253.15 K to 293.15 K and 223.15 K to 293.15 K respectively. Mole fraction solubilities lie above the reference line corresponding to the Raoult's law equation. Values for hexanoic acid are greater than those for acetic acid. This is consistent with the observation that mole fraction solubilities of hydrogen chloride in alkanoic acids increase with chain length. At 293.15 K the value for acetic acid is 0.324 and that for hexanoic acid is 0.398. These data should be accepted on a tentative basis.

Halogenated alkanes

Howland *et al.*(12) measured solubilities in trichloromethane over the temperature range 273.15 K to 298.15 K at partial pressures from 20.7 kPa to 88.5 kPa. They also measured solubilities in tetrachloromethane over this temperature range at pressures from 39.7 kPa to 74.0 kPa. The values of Henry's constant which were reported may be used to estimate mole fraction solubility at a partial pressure of 101.3 kPa.

Ahmed *et al.*(11) measured solubilities in these two solvents at a total pressure equal to 101.3 kPa over the temperature range 233.15 K to 293.15 K. Values of mole fraction solubilities at a partial pressure of 101.3 kPa may be estimated from these data by allowing for the vapor pressure of the solvents.

Mole fraction solubilities at a partial pressure of 101.3 kPa from the two sources are in reasonably good agreement for trichloromethane over the temperature range in which measurements overlap. The value of the mole fraction solubility at 273.15 K under a partial pressure of hydrogen bromide of 101.3 kPa is 0.0734 from Howland's data and 0.077 from Ahmed's data. Mole fraction solubilities for the temperature range 233.15 K to 298.15 K may be represented by the equation :

 $\ln x_{\text{HBr}} = -58.395 + 3772.6/(T/K) + 7.4877 \ln(T/K)$

The standard deviation in values of $x_{\rm HBr}$ is 0.0015.

The agreement between mole fraction solubilities in tetrachloromethane at a partial pressure of 101.3 kPa and based upon data from the two sources is less satisfactory. Values from Howland's data are about 14% greater than values from Ahmed's data, extrapolated to 298.15 K. The two values for 273.15 K are 0.0628 and 0.054 respectively. The relative merits of the two sources of data cannot be judged. The available data may be represented by the equation :

 $\ln x_{\text{HBr}} = 17.294 + 684.90/(T/K) - 4.0365 \ln(T/K)$

Values of $x_{\rm HBr}$ fit this equation with a standard deviation of 0.0061.

Disparity between the data from the two sources should be borne in mind when this equation is used.

Ahmed et al.(11) also measured solubilities in dichloromethane at a total pressure of 101.3 kPa over the temperature range 233.15 K to 293.15 K. The pure solvent has a vapor pressure at 293.15 K of 46.8 kPa. Mole fraction solubilities at a partial pressure of 101.3 kPa lie close to values for trichloromethane at the same temperature but are higher than values for tetrachloromethane. Mole fraction solubilities at 273.15 K for

Hydrogen Bromide in Non-Aqueous Solvents 389		
COMPONENTS :	EVALUATOR:	
<pre>1. Hydrogen Bromide; HBr; [10035-10-6]</pre>	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,	
2. Organic Solvents	Polytechnic of North London, Holloway, London, N7 8DB, U.K.	
	January 1989	
CRITICAL EVALUATION:		
tetrachloromethane and for trichlorom and the value for dichloromethane bas		
tetrachloromethane 0.058 trichloromethane 0.076 dichloromethane 0.069 (reference value from the Raoult's	law equation = 0.078)	
Solubility in iodomethane at a total temperature range 254.65 K to 293.15 solubility at 273.15 K and a partial correcting the measurements to allow solvent, 1s 0.12. No other data on t comparison.	K was measured by Maladkar (13). T pressure of 101.3 kPa, obtained by for the partial pressure of the	he
Solubility at a total pressure of 101 in 1-bromopropane at 273.15 K to 293. 1-bromohexane at 273.15 K. Ahmed <i>et</i> 1-bromooctane also at a total pressur to 293.15 K. Maladkar also measured total pressure for the temperature ra fraction solubilities at 273.15 K and bromide of 101.3 kPa, based upon meas	15 K and in 1-bromobutane and al. (11) reported the solubility in e of 101.3 kPa over the range 233.1 solubility in 1-iodopropane at this nge 253.15 K to 293.15 K. Mole a partial pressure of hydrogen	і 5 К
follows : 1-bromopropane 0.139 1-bromobutane 0.153 1-bromohexane 0.170 1-bromooctane 0.141 1-10dopropane 0.141		
These values are greater than values a alkanes of the same carbon number at highly volatile at the highest temper. 14.6 kPa at 293.15 K). The other three volatile at the temperatures at which Measurements were made at three temper and at one temperature in the case of Measurements were made at seven temper and are self-consistent over this rand solvent may therefore be more reliable solvents and may be accepted on a tem 1-bromoalkanes should be considered to until the measurements are confirmed 1-icodopropane was measured at five tem self consistent and may be accepted on	this temperature. 1-Bromopropane i ature of measurement (vapor pressur- ee alkyl bromides are not appreciab solubilities were determined. ratures in the case of this solvent 1-bromobutane and of 1-bromohexane ratures in the case of 1-bromooctan- ge. Solubility data for this last e than data for the other three tative basis. The data for the other o be of semi-quantitative significa- by other workers. Solubility in mperatures. The measurements are a	e ly e er nce
Solubilities in 1-chlorooctane and in	1-iodooctane were also reported by	

Solubilities in 1-chlorooctane and in 1-iodooctane were also reported by Ahmed *et al.*(11) for a total pressure of 101.3 kPa and a temperature range of 213.15 K to 293.15 K. Mole fraction solubilities in these two solvents are greater than in 1-bromooctane in the overlapping temperature range. At 273.15 K mole fraction solubilities from these measurements are :

1-bromooctane 0.141; 1-chlorooctane 0.194; 1-iodooctane 0.200.

The data for the chloro and the iodo compound are also self consistent and may be accepted on a tentative basis.

Maladkar (13) measured solubilities in 1,2-dibromoethane, 1,3-dibromopropane, 1,4-dibromobutane, and 1,6-dibromohexane at 273.15 K and a total pressure of 101.3 kPa. The partial pressures of the solvents were insignificant at this temperature. Mole fraction solubilities increase with carbon number of the solvent and may be accepted on a

COMPONENTS:		EVALUATOR:
1.	Hydrogen Bromide; HBr; [10035-10-6]	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2.	Organic Solvents	Polytechnic of North London, Holloway, London, N7 8DB, U.K.
		January 1989

tentative basis. Maladkar also measured the solubility in 1,2-dichloroethane at this pressure but over the temperature range 233.15 K to 273.15 K. These measurements may also be accepted on a tentative basis. The mole fraction solubility at 273.15 K in this solvent, corrected to give the value for a partial pressure of 101.3 kPa, is 0.114 compared with a value of 0.124 for solubility in 1,2-dibromoethane.

<u>Halobenzenes</u>

Ahmed *et al.* (11) reported solubilities at a total pressure of 101.3 kPa in chlorobenzene, bromobenzene and iodobenzene for the temperature range 233.15 K to 293.15 K. Mole fraction solubilities increase under these conditions in the order:

chlorobenzene < bromobenzene < iodobenzene. This is contrary to the trend indicated from data for solubility of hydrogen chloride in halobenzenes. However these data for hydrogen bromide solubilities are self consistent and may be accepted on a tentative basis.

Nitrogen compounds

Ahmed, Gerrard & Maladkar (11) measured the solubility of hydrogen bromide in nitrobenzene at a pressure of 101.3 kPa and at four temperatures from 263.15 K to 293.15 K. O'Brien & Bobalek (4) measured solubility in 1-methyl-2-nitrobenzene and 1-methyl-3-nitrobenzene at 298.15 K over pressure ranges below barometric pressure. The mole fraction solubility in nitrobenzene at 298.15 K by extrapolation of Gerrard's data is 0.0997 which is greater than the values for mole fraction solubility in 1-methyl-2-nitrobenzene and 1-methyl-3-nitrobenzene of 0.0941 and 0.0881 respectively. In the case of data for mole fraction solubilities of hydrogen chloride in these compounds the corresponding value for nitrobenzene is less than values for the methyl nitrobenzenes. Despite this apparent inconsistency these data for dissolution of hydrogen bromide may be accepted on a tentative basis.

Solvents containing sulfur

Frazer & Gerrard (14) reported solubilities at 273.15 K and a total pressure of 101.3 kPa in thiols and sulfides. Mole fraction solubilities were, in each case, above the reference values from the Raoult's law equation. The pattern of solubilities is similar to that for hydrogen chloride. Values for thiols are less than those for sulfides and values for aromatic compounds less than those for non-aromatic compound i.e.

Mole fraction solubilities at 273.15 K, corrected where necessary, at a partial pressure of 101.3 kPa

thiophene	0.126	
benzenethiol	0.153	
1,1'-thiobisbenzene	0.187	
2-propanethiol	0.248	
1-butanethiol	0.261	
2,2'-thiobispropane	0.734	
1,1'-thiobisbutane	0.717	
(reference value from	the Raoult's law equation	0.078)

The overall pattern of these data is likely to be reliable but individual values for the different solvents must be considered to be tentative values.

Ahmed (15) measured the solubility of hydrogen bromide in liquid sulfur dioxide over the temperature range 228.15 K to 253.15 K in addition to measuring the solubility of hydrogen chloride in this solvent over a

COMPONENTS:	EVALUATOR:	
<pre>1. Hydrogen Bromide; HBr; [10035-10-6]</pre>	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,	
2. Organic Solvents	Polytechnic of North London, Holloway, London, N7 8DB, U.K.	
	January 1989	

similar temperature range. Despite liquid hydrogen bromide having a higher vapor pressure than hydrogen chloride at the same temperature the measurements indicate that hydrogen bromide has the lower mole fraction solubility. Further work on these two systems is desirable and these data should be considered to be of semi-quantitative significance until they can be verified by other workers.

Solvents containing boron

Gerrard et al.(10) measured the solubility of hydrogen bromide in tripentyl borate over a temperature range at a total pressure equal to barometric pressure in addition to measuring the solubility of hydrogen chloride in this solvent under similar conditions. Mole fractions solubilities are greater in the case of hydrogen bromide. This is to be expected because of the lower volatility of liquid hydrogen bromide at the same temperature. In each case experimental values are greater than those calculated from the Raoult's law equation. The variation of mole fraction solubility with variation of temperature shows a similar relationship to the reference line based upon the Raoult's law equation for hydrogen bromide as does the variation of mole fraction solubility of hydrogen chloride to the reference line for that gas. The measurements are likely to be reliable but no comparison with independent measurements on this system is possible.

REFERENCES

- 1. Fontana, C. M.; Herold, R. J. J. Am. Chem. Soc. <u>1948</u>, 70, 2881-2883.
- 2. Boedeker, E. R.; Lynch, C. C. J. Am. Chem. Soc. 1950, 72, 3234-3236.
- 3. Ahmed, W.; Gerrard, W. J. Appl. Chem. 1970, 20, 109-115.
- 4. O'Brien S. J.; Bobalek, E. G. J. Am. Chem. Soc. <u>1940</u>, 62, 3227-3230.
- 5. Kapustinskii, A. F.; Mal'tsev, B. A. Zh. Fiz. Khim. <u>1940</u>, 14, Russ. J. Phys. Chem. <u>1940</u>, 14, 105-109.
- 6. Brown, H. C.; Wallace, W. J. J. Am. Chem. Soc. <u>1953</u>, 75, 6268-6274.
- Dorofeeva, N. G. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Teknol. 1962, 5, 188-193.
- 8. Fernandes, J. B. J. Chem. Eng. Data <u>1972</u>, 17, 377-379.
- 9. Whitmore, F. C.; Rothrock, H. S. J. Am. Chem. Soc. <u>1932</u>, 54, 3431-3435.
- Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L. J. Appl. Chem. <u>1960</u>, 10, 115-121.
- Ahmed, W.; Gerrard, W.; Maladkar, V. K. J. Appl. Chem. <u>1970</u>, 20, 109-115.
- 12. Howland, J. J.; Miller, D. R.; Willard, J. E. J. Am. Chem. Soc. <u>1941</u>, 63, 2807-2811.
- 13. Maladkar, V. K. Thesis, <u>1970</u>, University of London.
- 14. Frazer, M. J.; Gerrard, W. Nature, <u>1964</u>, 204, 1299-1300.
- 15. Ahmed, W. Thesis, 1970, University of London.

COMPONENTS :				ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen bromide; HBr; [10035-10-6]</pre>		Fontana, C. M.; Herold, R. J. J. Am. Chem. Soc. 1948, 70,				
(2) Butane; C ₄ H ₁₀ ; [106-97-8]			-97-8]	2881 -		
VARIA	BLES:			PREPARED B	Y:	
		K: 278.15, a: 41.4 - (6 - 3			W. Gerrard	
EXPER	IMENTAL VALU	ES:				
	т/к	Henry's	Constants M	ol Ratio	Mol Fraction	
		K/psia	K/atm	n1/n2	<i>x</i> 1	
	278.15	326	22.18	0.0472	0.0451	
	298.15	443	30.14	0.0343	0.0332	
	values we:	re calcula	ted by the com	piler. Th	o and mole fraction he mole ratio and essure of 101.325 kPa	
	Henry's co	onstants:	,			
	K/psia =	=(p ₁ /psia)	$/x_1$ where psi	a is poun	nds per square inch absolute.	
		(p ₁ /atm)/				
			T			
			AUXILIARY	INFORMATION	N	
METHOD / AP PARATUS / PROCEDURE :				SOURCE AND	PURITY OF MATERIALS:	
The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging		co.	rogen bromide. Dow Chemical It was stored in a small inless steel cylinder.			
and pressure measuring apparatus. A weighed amount of butane was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured			tane was added por pressure bromide was ontainer, a the amount	was	ane. Purity 99 ⁺ percent. It dried and degassed.	
The solubility values at 298.15 K were shown on a graph. The Henry's constants were tabulated. The heat of solution was stated to be -2.51 kcal mol ⁻¹ (-10.5 kJ mol ⁻¹).		ESTIMATED	ERROR:			
		REFERENCES	ç.			

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen bromide; HBr; [10035-10-6]</pre>	Fontana, C. M.; Herold, R. J.
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	J. Am. Chem. Soc. <u>1948</u> , 70, 2881 - 2883.
VARIABLES:	PREPARED BY:
T/K: 278.15, 293.15 P/kPa: 41.4 - 213.7 (6 - 31 psia)	W. Gerrard
EXPERIMENTAL VALUES:	
T/K Henry's Constant	s Mol Ratio Mol Fraction
K/psia K/at	n_1/n_2 x_1
278.15 265 18.0	3 0.0587 0.0555
293.15 348 23.6	7 0.0441 0.0422
The Henry's constant, K/at fraction values were calcu mole ratio and mole fracti pressure of 101.325 kPa (1	lated by the compiler. The on values are for a partial
Henry's constants:	
K/psia = $(p_1/psia)/x_1$ wher	e psia is pounds per square inch absolute.
$K/atm = (p_1/atm)/x_1$	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. The heat of solution was stated to be	<pre>stainless steel cylinder. (2) Hexane. The commercial specimen was rigorously purified and distilled; n²⁵_D, 1.3721.</pre>
-3.05 kcal mol ⁻¹ (-12.8 kJ mol ⁻¹).	
	ESTIMATED ERROR:
	DEFENSIVE.
	REFERENCES:
1	1

394 Hydrogen bronn	nde in Non-Aqueous Solvents
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen bromide; HBr; [10035-10-6]</pre>	Boedeker, E. R.; Lynch, C. C.
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	J. Am. Chem. Soc. <u>1950</u> , 72, 3234 - 3236.
VARIABLES: T/K: 298.15 - 318.15 P/kPa: 6.67 - 93.33 (50 - 700 mmHg)	PREPARED BY: W. Gerrard
EXPERIMENTAL VALUES:	
T/K Henry's Constant 10 ⁻³ K	Mol Ratio Mol Fraction t ¹ n_1/n_2 x_1
298.15 1.64±0.0	02 0.0434 0.0416
308.15 1.97±0.0	08 0.0361 0.0349
318.15 2.20±0.0	08 0.0323 0.0313
¹ K/mmHg kg solut: concentration of kg of <i>solution</i> .	ion mol ⁻¹ . Note that the f HBr is given as mol HBr per
AUX	ILIARY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus was stated to be modified form of that used by Ho et al. (1). The solvent in the absorption flask was saturated hydrogen bromide at a known pre measured on a manometer. The hy rogen bromide in a known weight sample of the saturated solutio determined by a chemical titrat	wland, Co. Degassed by alternate freezing and thawing. with essure (2) Hexane. Phillips Petroleum Co. b.p. at 1 atm T/K 341.9; of a n_D^{25} 1.3730.
The heat of solution was stated be -2.62 kcal mol ⁻¹ (-10.96 kJ	$ \frac{1}{mol^{-1}} = \frac{\text{ESTIMATED ERROR:}}{\delta K/K} = 0.05 $
	REFERENCES: 1. Howland, J. J.; Miller, D. R.; Willard, J. E. J. Am. Chem. Soc. <u>1941</u> , 63, 2807.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen bromide; HBr; [10035-10-6]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.
2. Heptane; C _{7^H16} ; [142-82-5]	J. Appl. Chem. <u>1970</u> , 20, 109-115.
VARIABLES :	PREPARED BY:
T/K: 233.15 - 293.15	
Total P/kPa: 101.325 (1 atm)	W. Gerrard
	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Rat	
ⁿ HBr/ ⁿ C ₇	H ₁₆ X _{HBr}
	<u>16</u>
233.15 0.22	
243.15 0.14	
253.15 0.10 263.15 0.08	
273.15 0.07	
283.15 0.05	
293.15 0.04	7 0.0449
The mole fraction solubilities were c	alculated from the mole ratio by the
compiler. Smoothed Data: ln X _{HBr} = -22.304 + 3	4.013/(T/100) + 7.072 ln (T/100)
	Regression Line = 2.42×10^{-3}
<u> </u>	ol Fraction
	X _{HBr}
233.15 243.15	0.177 0.131
243.13	0.100
263.15	0.0791
273.15	0.0642
283.15	0.0533
293.15	0.0452
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	COURCE AND DUDITY OF MATERIALS.
	SOURCE AND PURITY OF MATERIALS:
Hydrogen bromide was passed into a known weight of pure liquid in a	1. Hydrogen bromide. High quality HBr was obtained from a cylinder
bubbler tube at a total pressure	and passed through a tube at 223 K.
measured by a manometer assembly.	For repeat runs it was prepared
The absorbed gas was weighed by re-	from phosphorus tribromide,
weighing the bubbler tube. The	dried by phosphorus pentoxide,
temperature was manually controlled	and stored at 193 K.
to within 0.2 K.	2. Heptane. Best obtainable specimen
For the four lowest temperatures the gas absorbed was determined by a chemical titration.	was purified, fractionally dis- tilled, and attested.
The apparatus and procedure are	
described by Gerrard (1,2).	ESTIMATED ERROR:
	$\delta T/K = 0.2$ $\delta X/X = 0.02$
	0.02
1	
	REFERENCES :
	1. Gerrard, W.
	J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623-650.
	2. Gerrard, W. "Solubility of Gases and Liquids"
1	Plenum Press, New York, 1976.

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen bromide; HBr; [10035-10-6]</pre>	Boedeker, E. R.; Lynch, C. C.
(2) Octane; C ₈ H ₁₈ ; [111-65-9]	J. Am. Chem. Soc. <u>1950</u> , 72, 3234 - 3236.
VARIABLES:	PREPARED BY:
T/K: 298.15 - 318.15 P/kPa: 6.67 - 93.33 (50 - 700 mmHg)	W. Gerrard
EXPERIMENTAL VALUES:	
T/K Henry's Mo Constant ¹ 10 ⁻³ K	Dl Ratio Mol Fraction n_1/n_2 x_1
298.15 2.01 + 0.05	0.0469 0.0448
308.15 2.33 <u>+</u> 0.07	0.0404 0.0389
at 101.325 (1 atm) HBr pa calculated by the compile	s given as mol HBr per atio and the mole fraction artial pressure were er.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The apparatus was stated to be a modified form of that used by Howland, et al. (1). The solvent in the absorption flask was saturated with hydrogen bromide at a known pressure measured on a manometer. The hydrogen bromide in a known weight of a sample of the saturated solution was determined by a chemical titra- tion.	freezing and thawing. (2) Octane. Connecticut Hard Rubber Co. Purified and distilled. B.p. at 1 atm T/K 398.15;
The heat of solution was stated to be -2.49 kcal mol ⁻¹ (-10.42 kJ mol ⁻¹).	ESTIMATED ERROR: δK/K = 0.05
	REFERENCES :
	<pre>1. Howland, J. J.; Miller, D. R.; Willard, J. E. J. Am. Chem. Soc. <u>1941</u>, 63, 2807.</pre>

COMPONENTS: (1) Hydrogen bromide; HBr; [10035-10-6]	ORIGINAL MEASUREMENTS: Boedeker, E. R.; Lynch, C. C.
(2) Decane; C ₁₀ H ₂₂ ; [124-18-5]	J. Am. Chem. Soc. <u>1950</u> , 72, 3234 - 3236.
VARIABLES:	PREPARED BY:
T/K: 298.15 - 318.15 P/kPa: 6.67 - 93.33 (50 - 700 mmHg)	W. Gerrard
EXPERIMENTAL VALUES:	
	1 Ratio Mol Fraction n_1/n_2 x_1
298.15 2.15 ± 0.07 0	.0548 0.0519
308.15 2.49 <u>+</u> 0.07 0	.0473 0.0452
318.15 2.75 <u>+</u> 0.07 0	.0428 0.0411
¹ K/mmHg kg solution mol concentration of HBr is kg of <i>solution</i> .	
The values of the mole ra at 101.325 (1 atm) HBr pa calculated by the compile	rtial pressure were
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus was stated to be a modified form of that used by Howland, <i>et al.</i> (1). The solvent in the absorption flask was saturated with hydrogen bromide at a known pressure measured on a manometer. The hydrogen bromide in a known weight of a sample of the saturated solution was determined by a chemical titration.	 Hydrogen bromide. Dow Chemical Co. Degassed by alternate freezing and thawing. Decane. Connecticut Hard Rubber Co. Purified and distilled. B.p. at 1 atm T/K 447.15; n²⁵ 1.4118.
The heat of solution was stated to be $-2.34 \text{ kcal mol}^{-1}$ (-9.79 kJ mol ⁻¹).	ESTIMATED ERROR:
	δK/K = 0.05
	REFERENCES :
	<pre>kipekences: I. Howland, J. J.; Miller, D. R.; Willard, J. E. J. Am. Chem. Soc. <u>1941</u>, 63, 2807.</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen bromide; HBr; [10035-10-6]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.
2. Decane; C ₁₀ H ₂₂ ; [124-18-5]	J. Appl. Chem. <u>1970</u> , 20, 109-115.
VARIABLES:	PREPARED BY:
T/K: 243.15 - 293.15 Total P/kPa: 101.325 (l atm)	W. Gerrard
10tal F/KFa. 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	tio Mol Fraction
ⁿ HBr/ ⁿ C ₁	0 ^H 22 ^X HBr
243.15 0.24	
253.15 0.17	3 0.147
263.15 0.12 273.15 0.09	
283.15 0.07	5 0.0698
293.15 0.05	9 0.0557
The mole fraction solubilities were c compiler.	alculated from the mole ratio by the
Smoothed Data: $\ln x_{HBr} = -9.021 + 17$.947/(T/100)
Standard Error about	Regression Line = 2.31×10^{-3}
· <u>T/K M</u>	ol Fraction
	X _{HBr}
243.15	0.194
253.15 263.15	0.145
273.15	0.0863
283.15 293.15	0.0684 0.0551
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Hydrogen bromide was passed into a	1. Hydrogen bromide. High quality HBr was obtained from a cylinder
known weight of pure liquid in a bubbler tube at a total pressure	and passed through a tube at 223 K.
measured by a manometer assembly.	For repeat runs it was prepared
The absorbed gas was weighed by re- weighing the bubbler tube. The	from phosphorus tribromide, dried by phosphorus pentoxide,
temperature was manually controlled	and stored at 193 K.
to within 0.2 K.	2. Decane. Best obtainable specimen
For the 3 lowest temperatures the gas absorbed was determined by a chemical titration.	was purified, fractionally dis- tilled, and attested.
The apparatus and procedure are	ESTIMATED ERROR:
described by Gerrard (1,2).	$\delta T/K = 0.2$
	$\delta X/X = 0.02$
	REFERENCES :
	1. Gerrard, W. J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623-650.
	2. Gerrard, W.
	"Solubility of Gases and Liquids" Plenum Press, New York, 1976.

Hydrogen Bromide in	Non-Aqueous Solvents 3	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Hydrogen bromide; HBr; [10035-10-6]</pre>	Fontana, C. M.; Herold, R. J.	
<pre>(2) Aluminum bromide; AlBr₃; [7727-15-3]</pre>	J. Am. Chem. Soc. <u>1948</u> , 70, 2881 - 2883.	
(3) Butane; C ₄ H ₁₀ ; [106-97-8]		
VARIABLES:	PREPARED BY:	
T/K: 278.15, 298.15 P/kPa: up to 241.3 (up to 35 psia)	W. Gerrard	
EXPERIMENTAL VALUES:		
T/K Aluminum	Henry's Constants	
Bromide		
Al ₂ Br ₆ mol per cent	K/psia K/atm	
278.15 0	326 22.18	
1.30	346 25.54	
298.15 0	443 30.14	
2.80	479 32.59	
K/psia = (p _l /psia)/x _l where psia i K/atm = (p _l /atm)/x _l		
1 1		
$K/atm = (p_1/atm)/x_1$	INFORMATION	
$K/atm = (p_1/atm)/x_1$		
K/atm = (p ₁ /atm)/x ₁ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical	
K/atm = (p ₁ /atm)/x ₁ K/atm = (p ₁ /atm)/x ₁ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under 	
K/atm = (p ₁ /atm)/x ₁ K/atm = (p ₁ /atm)/x ₁ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Butane. Purity 99+ percent. 	
K/atm = (p ₁ /atm)/x ₁ K/atm = (p ₁ /atm)/x ₁ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Butane. Purity 99+ percent. 	
K/atm = (p ₁ /atm)/x ₁ K/atm = (p ₁ /atm)/x ₁ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Butane. Purity 99+ percent. It was dried and degassed. 	
K/atm = (p ₁ /atm)/x ₁ K/atm = (p ₁ /atm)/x ₁ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Butane. Purity 99+ percent. It was dried and degassed. 	
K/atm = (p ₁ /atm)/x ₁ K/atm = (p ₁ /atm)/x ₁ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Butane. Purity 99+ percent. It was dried and degassed. 	
K/atm = (p ₁ /atm)/x ₁ K/atm = (p ₁ /atm)/x ₁ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Butane. Purity 99+ percent. It was dried and degassed. 	

CMFORENTS: (1) Hydrogen bromide; HBr; (1) Aluminum bromide; AlBr ₃ ; (2) Aluminum bromide; AlBr ₃ ; (3) Hexane; C _g H ₁₄ ; [110-54-3] VARIABLES: T/K: 278.15, 293.15 P/KPa: up to 241.3 (up to 35 psia) EXPERIMENTAL VALUES: T/K Aluminum Bromide Al ₃ Dr ₆ (up to 35 psia) EXPERIMENTAL VALUES: T/K Aluminum Bromide Al ₃ Dr ₆ (1, 05 293.15 C, 65 385 26.20 Henry's constants: K/psia = (p ₁ /psia)/z ₁ where psia is pounds per square inch absolute. K/atm = (p ₁ /atm)/z ₁ MIXILIARY INFORMATION HETHOD/APPARATUS/FROCEDURE: The apparatus consisted of a stain- cass steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bond nit supor pressure was measured. Hydrogen bromide was added from a weighed conclairer, a second weighing giving the amount added, and the pressure was measured. Herror state of the pressure was measured. Herror state of the pressure was measured. (3) Hexane. A commercial sample was rigorously purified and distilled, ng, 1.3721. ESTIMATED ERMOR:
<pre>(2) Aluminum bromide; AlBr₃; [7727-15-3] (3) Hexane; C₆H₁₄; [110-54-3] VARIABLES: T/K: 278.15, 293.15 P/KPa: up to 241.3 (up to 35 psia)</pre> PREPARED BY: T/K Aluminum Bromide Al_2Dr ₆ (b) 203 19.94 293.15 0 265 18.03 1.05 293 19.94 293.15 0 348 23.68 2.65 385 26.20 Henry's constants: K/psia = (p ₁ /psia)/z ₁ where psia is pounds per square inch absolute. K/atm = (p ₁ /atm)/z ₁ MUXILLARY INFORMATION METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm appacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bom and its vapor pressure was measured. Hydrogen bromide was second weighing giving the amount added, and the pressure was measured. (3) Hexane. A commercial sample was rigorously purified and distilled, n _D , 1.3721.
VARIABLES: T/K: 278.15, 293.15 P/kPa: up to 241.3 (up to 35 psia) EXPERIMENTAL VALUES: T/K Aluminum Bromide Al ₂ Br ₆ Z78.15 0 265 18.03 1.05 293 19.94 293.15 0 348 23.68 2.65 385 26.20 Henry's constants: K/psia = (p ₁ /psia)/x ₁ where psia is pounds per square inch absolute. K/atm = (p ₁ /atm)/x ₁ MIXILIARY INFORMATION METROD/APPARATUS/FROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm3 capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added to the pressure was measured. Hency's constanter, a second weighing giving the amount added, and the pressure was measured. Hydrogen bromide was added (3) Hexane. A commercial sample was rigorously purified and distilled, n _D , 1.3721.
T/K: 278.15, 293.15 P/kPa: up to 241.3 (up to 35 psia) EXPERIMENTAL VALUES: T/K Aluminum Bronide Al_2Br ₆ Menry's Constants T/K Aluminum Menry's Constants T/K Aluminum Menry's Constants T/K Aluminum Menry's Constants Constants: K/psia = (p_1/psia)/x ₁ where psia is pounds per square inch absolute. K/atm = (p_1/atm)/x ₁ METNOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added to the bomb and its vapor pressure second weighing giving the amount added, and the pressure was measured. Hency's constants: Constants
T/K: 278.15, 293.15 P/kPa: up to 241.3 (up to 35 psia) EXPERIMENTAL VALUES: T/K Aluminum Bronide Al_2Br ₆ Menry's Constants T/K Aluminum Menry's Constants T/K Aluminum Menry's Constants T/K Aluminum Menry's Constants Constants: K/psia = (p_1/psia)/x ₁ where psia is pounds per square inch absolute. K/atm = (p_1/atm)/x ₁ METNOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added to the bomb and its vapor pressure second weighing giving the amount added, and the pressure was measured. Hency's constants: Constants
P/kPa: up to 241.3 (up to 35 psia) W. Gerrard EXPERIMENTAL VALUES: T/K Aluminum Bromide Al_2Br6 Henry's Constants K/psia K/atm 278.15 0 265 18.03 293.15 0 348 23.68 293.15 0 348 23.68 293.15 0 348 23.68 293.15 0 348 26.20 Henry's constants: K/psia = (p_1/psia)/x_1 where psia is pounds per square inch absolute. K/atm = (p_1/atm)/x_1 METNOD/APPARATUS/PROCEDURE: SOURCE AND FURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. Response the bomb and its vapor pressure measuring apparatus. A weighed amount of solvent was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. Source and provision bromide. Doubly distilled from aluminum chips, was measured. (3) Hexane. A commercial sample was rigorously purified and distilled, $n_2^{(5)}$, 1.3721. (3) Hexane. A commercial sample was rigorously purified and distilled, $n_2^{(5)}$, 1.3721.
EXPERIMENTAL VALUES: T/K Aluminum Bromide Al_2Br ₆ mol per cent 278.15 0 265 18.03 1.05 293 19.94 293.15 0 348 23.68 2.65 385 26.20 Henry's constants: K/psia = $(p_1/psia)/x_1$ where psia is pounds per square inch absolute. K/atm = $(p_1/atm)/x_1$ METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. Henry's constants: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, seed weighing giving the amount added, and the pressure was measured. (3) Hexane. A commercial sample was rigorously purified and distilled, $n_2^{0'}$, 1.3721.
T/KAluminum Bromide M12Br6Henry's Constantsmol per cent
T/KAluminum Bromide M12Br6Henry's Constantsmol per cent
$\frac{Al_2Br_6}{mol \ per \ cent} = \frac{M_1 \ per \ cent}{278.15} \frac{mol \ per \ cent}{1.05} = \frac{265}{18.03} \frac{19.94}{19.94} \frac{293.15}{293.15} \frac{0}{2.65} \frac{348}{385} \frac{23.68}{26.20}$ Henry's constants: K/psia = $(p_1/psia)/x_1$ where psia is pounds per square inch absolute. K/atm = $(p_1/atm)/x_1$ MUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. (1) Hexane. A commercial sample was rigorously purified and distilled, $\frac{\pi_D^{5}}{1.3721}$.
mol per cent mol per cent 278.15 278.15 265 18.03 293.15 18.20 XIVILLARY INFORMATION MUXILLARY INFORMATION
$278.15 \\ 0 \\ 1.05 \\ 293 \\ 19.94 \\ 293.15 \\ 0 \\ 348 \\ 2.65 \\ 385 \\ 26.20 \\ 19.94 \\ 293.15 \\ 2.65 \\ 385 \\ 26.20 \\ 19.94 \\ 293.15 \\ 2.65 \\ 385 \\ 26.20 \\ 19.94 \\ 20.20 \\ 20.2$
1.05 293 19.94 $293.15 0 348 23.68$ $2.65 385 26.20$ Henry's constants: K/psia = (p ₁ /psia)/x ₁ where psia is pounds per square inch absolute. K/atm = (p ₁ /atm)/x ₁ $MXILIARY INFORMATION$ METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. 1.05 293 19.94 23.65 385 26.20 MULLARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n_D^{2} , 1.3721.
1.05 293 19.94 $293.15 0 348 23.68$ $2.65 385 26.20$ Henry's constants: K/psia = (p ₁ /psia)/x ₁ where psia is pounds per square inch absolute. K/atm = (p ₁ /atm)/x ₁ $MXILIARY INFORMATION$ METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. 1.05 293 19.94 23.65 385 26.20 MULLARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n_D^{2} , 1.3721.
$\frac{293.15 0 \qquad 348 \qquad 23.68}{2.65 \qquad 385 \qquad 26.20}$ Henry's constants: K/psia = $(p_1/psia)/x_1$ where psia is pounds per square inch absolute. K/atm = $(p_1/atm)/x_1$ METHOD/AFPARATUS/PROCEDURE: The apparatus consisted of a stain- less stel solubility bomb, 217.5 cm capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. $(3) Hexane. A commercial sample was rigorously purified and distilled, n_D^{\pm}, 1.3721.$
$\frac{2.65}{385} \frac{26.20}{26.20}$ Henry's constants: K/psia = $(p_1/psia)/x_1$ where psia is pounds per square inch absolute. K/atm = $(p_1/atm)/x_1$ AUXILIARY INFORMATION NETHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm3 capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. Henry's constants: (1) Hydrogen bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, $n_D^{2^*}$, 1.3721.
$\frac{2.65}{385} \frac{26.20}{26.20}$ Henry's constants: K/psia = $(p_1/psia)/x_1$ where psia is pounds per square inch absolute. K/atm = $(p_1/atm)/x_1$ AUXILIARY INFORMATION NETHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm3 capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. Henry's constants: 1.1 Hydrogen bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was n_2^{10} , 1.3721.
Henry's constants: $K/psia = (p_1/psia)/x_1$ where psia is pounds per square inch absolute. $K/atm = (p_1/atm)/x_1$ AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. Henry's constants: $K/psia = (p_1/psia)/x_1$ where psia is pounds per square inch absolute. $K/atm = (p_1/atm)/x_1$ SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, $n_D^{2^*}$, 1.3721.
K/psia = (p ₁ /psia)/x ₁ where psia is pounds per square inch absolute. K/atm = (p ₁ /atm)/x ₁ AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain-less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. SOURCE AND FURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly distilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n_2^{25} , 1.3721.
K/psia = (p ₁ /psia)/x ₁ where psia is pounds per square inch absolute. K/atm = (p ₁ /atm)/x ₁ AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain-less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. SOURCE AND FURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly distilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n_2^{25} , 1.3721.
K/atm = (p ₁ /atm)/x ₁ AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, $n_D^{2^5}$, 1.3721.
AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, m_D^2 , 1.3721.
AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm ³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, $\frac{\pi_D^{5}}{2}, 1.3721.$
 METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n²_D⁵, 1.3721.
 METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n²⁵, 1.3721.
 METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n²⁵, 1.3721.
 METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n²_D⁵, 1.3721.
 METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n²⁵, 1.3721.
 METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n²⁵, 1.3721.
 METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n²⁵, 1.3721.
 METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. SOURCE AND PURITY OF MATERIALS: Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. Hexane. A commercial sample was rigorously purified and distilled, n²_D⁵, 1.3721.
 METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain- less steel solubility bomb, 217.5 cm³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly dis- tilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n²⁵, 1.3721.
 METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain-less steel solubility bomb, 217.5 cm³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly distilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n²_D⁵, 1.3721.
 METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain-less steel solubility bomb, 217.5 cm³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly distilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n²_D⁵, 1.3721.
 METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a stain-less steel solubility bomb, 217.5 cm³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly distilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n²_D⁵, 1.3721.
 The apparatus consisted of a stain-less steel solubility bomb, 217.5 cm³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. (1) Hydrogen bromide. Dow Chemical Co. It was stored in a small stainless steel cylinder. (2) Aluminum bromide. Doubly distilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n²_D⁵, 1.3721.
 less steel solubility bomb, 217.5 cm³ capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. (2) Aluminum bromide. Doubly distilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n²_D⁵, 1.3721.
 capacity, fitted with a charging and pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. (2) Aluminum bromide. Doubly distilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n²_D⁵, 1.3721.
 pressure measuring apparatus. A weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. (2) Aluminum bromide. Doubly distilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n²_D, 1.3721.
 weighed amount of solvent was added to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. (2) Aluminum bromide. Doubly distilled from aluminum chips, sealed into ampoules under vacuum for storage until used. (3) Hexane. A commercial sample was rigorously purified and distilled, n²_D, 1.3721.
<pre>to the bomb and its vapor pressure was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. (3) Hexane. A commercial sample was rigorously purified and distilled, n²⁵, 1.3721.</pre>
was measured. Hydrogen bromide was added from a weighed container, a second weighing giving the amount added, and the pressure was measured. (3) Hexane. A commercial sample was rigorously purified and distilled, n_D^{25} , 1.3721.
added from a weighed container, a second weighing giving the amount added, and the pressure was measured. (3) Hexane. A commercial sample was rigorously purified and distilled, n_D^{25} , 1.3721.
second weighing giving the amount added, and the pressure was measured. (3) Hexane. A commercial sample was rigorously purified and distilled, $n_D^{2^\circ}$, 1.3721.
added, and the pressure was measured. (3) Hexane. A commercial sample was rigorously purified and distilled, $n_D^{2^\circ}$, 1.3721.
rigorously purified and distilled, $n_{\rm D}^{25}$, 1.3721.
ESTIMATED ERROR:
1
REFERENCES :
I I I I I I I I I I I I I I I I I I I

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Hydrogen bromide; HBr;	O'Brien, S. J.; Bobalek, E. G.
[10035-10-6]	J. Am. Chem. Soc. 1940, 62,
(2) Benzene; C ₆ H ₆ ; [71-43-2]	3227 - 3230.
(2) Benzene, C6 ⁶ 6, [12 35 2]	5227 52501
VARIABLES:	PREPARED BY:
T/K: 298.15 P/kPa: 11.11 - 57.20	W. Gerrard
(83.3 - 429 mmHg)	
	<u> </u>
EXPERIMENTAL VALUES:	
	Henry's Mol Ratio Mol Fraction
p _l /mmHg m _l /mol kg ⁻¹	$\frac{\text{Constant}}{k^1} n_1 n_2 x_1$
298.15 83.3 0.097	1.13 0.00757 0.00751
125 0.162	1.01 0.0126 0.0125
128 0.167	1.01 0.0130 0.0129 0.99 0.0176 0.0173
170 0.226 233 0.302	0.99 0.0176 0.0173 1.02 0.0236 0.0230
233 0.302 429 0.477	1.18 0.0372 0.0359
427 U.4//	
(760 0.971	1.03 av. 0.0757 $0.0704)^2$
¹ k/atm mol ⁻¹ kg	
Kyatin mor Ky	
² Value calculated by the compile:	r from the average value of Henry's
constant. Use of the high and	tow values of Henry's constant
	30 for the mole fraction solubility
at one atm (101.325 kPa).	
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i>	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time.	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium and distilled, m.p. 278.63 K.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium and distilled, m.p. 278.63 K.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium and distilled, m.p. 278.63 K.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium and distilled, m.p. 278.63 K.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened,	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium and distilled, m.p. 278.63 K.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium and distilled, m.p. 278.63 K. Good quality.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened,	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium and distilled, m.p. 278.63 K.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days.	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium and distilled, m.p. 278.63 K. Good quality.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium and distilled, m.p. 278.63 K. Good quality.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the upper bulb is quantitatively removed	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium and distilled, m.p. 278.63 K. Good quality.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the upper bulb is quantitatively removed and titrated with NaOH. The HBr	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium and distilled, m.p. 278.63 K. Good quality. ESTIMATED ERROR:</pre>
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the upper bulb is quantitatively removed and titrated with NaOH. The HBr partial pressure is calculated from	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium and distilled, m.p. 278.63 K. Good quality. ESTIMATED ERROR:</pre>
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the upper bulb is quantitatively removed and titrated with NaOH. The HBr partial pressure is calculated from the bulb volume and the number of	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium and distilled, m.p. 278.63 K. Good quality. ESTIMATED ERROR:</pre>
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> <i>al</i> . (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the upper bulb is quantitatively removed and titrated with NaOH. The HBr partial pressure is calculated from the bulb volume and the number of moles of HBr assuming ideal gas behavior. A weighed solution sample	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium and distilled, m.p. 278.63 K. Good quality. ESTIMATED ERROR:</pre>
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> <i>al</i> . (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the upper bulb is quantitatively removed and titrated with NaOH. The HBr partial pressure is calculated from the bulb volume and the number of moles of HBr assuming ideal gas behavior. A weighed solution sample	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium and distilled, m.p. 278.63 K. Good quality. ESTIMATED ERROR:</pre>
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> <i>al</i> . (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the upper bulb is quantitatively removed and titrated with NaOH. The HBr partial pressure is calculated from the bulb volume and the number of moles of HBr assuming ideal gas	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium and distilled, m.p. 278.63 K. Good quality.</pre> ESTIMATED ERROR:
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the upper bulb is quantitatively removed and titrated with NaOH. The HBr partial pressure is calculated from the bulb volume and the number of moles of HBr assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium and distilled, m.p. 278.63 K. Good quality.</pre> ESTIMATED ERROR: $\delta T/K = 0.02$ REFERENCES: 1. Saylor, J. H. J. Am. Chem. Soc. 1937, 59, 1712. 2. O'Brien, S. J.; Kenny, C. L. Zeurcher, R. A.
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> <i>al</i> . (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the upper bulb is quantitatively removed and titrated with NaOH. The HBr partial pressure is calculated from the bulb volume and the number of moles of HBr assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed successively over red phosphorus and phosphorus pentoxide. (2) Benzene. Stored over sodium and distilled, m.p. 278.63 K. Good quality.</pre> ESTIMATED ERROR:

COMPONENTS :		ORIGINAL M	EASUREMENTS:
(1) Hydrogen bromide; [10035-10-6]	HBr;		nskii, A. F.; Mal'tsev, B. A.
(2) Benzene; C ₆ H ₆ ; [7]	-43-2]	J. Phys 105 - 1	. Chem. (USSR) <u>1940</u> , 14, 09.
VARIABLES :		PREPARED B	y ·
T/K: 303.15, P/kPa: 1.016 -	84.353		W. Gerrard
(0.01003 EXPERIMENTAL VALUES:	- 0.8325 atm)	<u> </u>	
т/к	Pressure Mol p1/atm	raction ^x 1	Henry's Constant K/atm = p_1/x_1
303.15	0.01003 0.0 0.0835 0.0 0.2634 0.0 0.3953 0.0 0.4622 0.0 0.7455 0.0 [1.0 0.0	005459 01649 02535 02913 04713	16.3 15.3 16.0 15.6 15.9 15.8 Mean: 15.8
323.15	0.8325 0.0)2226)3418	24.3 25.0 24.0 24.4 Mean: 24.4
The auth HBr in b	of x_1 and p_1 . Hors give the here as 4197 heat of mixing al mol ⁻¹ (732 J	at of sol cal mol-1 of liquid mol-1)	ution of gaseous (17.56 kJ mol ⁻¹), HBr with benzene
	AUXILIARY	INFORMATIO	N
METHOD APPARATUS / PROCEDURE :		SOURCE AND	PURITY OF MATERIALS:
An improved form of th described by Saylor (1 Constant weight mixtur hydrogen bromide and b obtained after not les days. The weight of hy was determined separat gaseous and the liquid chemical titration.) was used. es of dry enzene were s than five drogen bromide sely in the	acti trib (2) Benz acid	ogen bromide. Prepared by the on of water on phosphorus romide. ene. Treated with sulfuric and water. Dried over sodium. illed, b.p./°C 80.1 - 80.3.
The ICT (2) gives the of HBr as 26.1 atm at 40.2 atm at 323.15 K.	vapor pressure 303.15 K, and	ESTIMATED	ERROR:
		REFERENCE	S :
		1. Saylo	r, J. H. . Chem. Soc. <u>1937</u> , 59, 1712.
		McGra	national Critical Tables, w-Hill Co., New York, <u>1928</u> , 3, p. 228.

(1) Hydrogen bromide; HBr; [10035-10-6] (2) Benzene; C ₆ H ₆ ; [71-43-2] VARIABLES: T/K: 278.85 P/kPa: up to 20 (150 mmHg) EXPERIMENTAL VALUES: T/K Highest Pressure Henry's Constant Mol Fraction Reported (graph) K = p_1/x_1 at 101.325 kI P1/mmHg Z78.85 150 The values of Henry's constant, K/atm, and the mole fraction solubility at one atm were calculated by the compiler. The data were given simply as Henry's constant, K/mmHg, and a straight line plot of x_1 and total pressure (4 points). Henry's constant for an "ideal solution" was taken as the vapor pressure of pure liquid HBr (11850 mmHg or 15.59 atm) estimated from data reported by Bates, Halford and Anderson The value from the International Critical Tables (2) is 14.3 atm. The mole fraction solubility was calculated assuming Henry's law is obeyed up to a pressure of one atm, thus $x_1 = 1/(K/atm)$ AUXILIARY INFORMATION METHOD APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:	'a
(2) Benzene; $C_{6}H_{6}$; $[71-43-2]$ VARIABLES: T/K: 278.85 P/kPa: up to 20 (150 mmHg) EXPERIMENTAL VALUES: T/K Highest Pressure Henry's Constant Mol Fraction Reported (graph) P1/mmHg Z78.85 150 The values of Henry's constant, K/atm, and the mole fraction solubility at one atm were calculated by the compiler. The data were given simply as Henry's constant, K/mmHg, and a straight line plot of x_1 and total pressure (4 points). Henry's constant for an "ideal solution" was taken as the vapor pressure of pure liquid HBr (11850 mmHg or 15.9 atm) estimated from data reported by Bates, Halford and Anderson The value from the International Critical Tables (2) is 14.3 atm. The mole fraction solubility was calculated assuming Henry's law is obeyed up to a pressure of one atm, thus $x_1 \approx 1/(K/at)$ METHOD APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:	 a
T/K:278.85 P/kPa:W. GerrardEXPERIMENTAL VALUES:T/KHighest Pressure Reported (graph) $P_1/mmHg$ Henry's Constant $K = p_1/x_1$ at 101.325 kf $p_1/mmHg$ 278.8515059207.790.128The values of Henry's constant, K/atm, and the mole fraction solubility at one atm were calculated by the compiler.The data were given simply as Henry's constant, K/mmHg, and a straight line plot of x_1 and total pressure (4 points).Henry's constant for an "ideal solution" was taken as the vapor pressure of pure liquid HBr (l1850 mmHg or 15.59 atm) estimated from data reported by Bates, Halford and Anderson The value from the International Critical Tables (2) is 14.3 atm.The mole fraction solubility was calculated assuming Henry's law is obeyed up to a pressure of one atm, thus $x_1 = 1/(K/at)$ AUXILIARY INFORMATIONMUXILIARY INFORMATIONMUXILIARY INFORMATION	'a
T/K:278.85 P/kPa:W. GerrardEXPERIMENTAL VALUES:T/KHighest Pressure Reported (graph) $P_1/mmHg$ Henry's Constant $K = p_1/x_1$ at 101.325 kf $p_1/mmHg$ 278.8515059207.790.128The values of Henry's constant, K/atm, and the mole fraction solubility at one atm were calculated by the compiler.The data were given simply as Henry's constant, K/mmHg, and a straight line plot of x_1 and total pressure (4 points).Henry's constant for an "ideal solution" was taken as the vapor pressure of pure liquid HBr (l1850 mmHg or 15.59 atm) estimated from data reported by Bates, Halford and Anderson The value from the International Critical Tables (2) is 14.3 atm.The mole fraction solubility was calculated assuming Henry's law is obeyed up to a pressure of one atm, thus $x_1 = 1/(K/at)$ AUXILIARY INFORMATIONMUXILIARY INFORMATIONMUXILIARY INFORMATION	 'a
P/kPa: up to 20 (150 mmHg)W. GerrardEXPERIMENTAL VALUES:T/K Highest Pressure Henry's Constant Mol Fraction Reported (graph) $p_1/mmHg$ K/mmHg K/atm x_1 278.85 150 5920 7.79 0.128The values of Henry's constant, K/atm, and the mole fraction solubility at one atm were calculated by the compiler.The data were given simply as Henry's constant, K/mmHg, and a straight line plot of x_1 and total pressure (4 points).Henry's constant for an "ideal solution" was taken as the vapor pressure of pure liquid HBr (11850 mmHg or 15.5 atm) estimated from data reported by Bates, Halford and Anderson The value from the International Critical Tables (2) is 14.3 atm.The mole fraction solubility was calculated assuming Henry's law is obeyed up to a pressure of one atm, thus $x_1 = 1/(K/at)$ AUXILIARY INFORMATIONMUXILIARY INFORMATIONMUXILIARY INFORMATION	
T/KHighest Pressure Reported (graph) $p_1/mmHg$ Henry's Constant p_1/x_1 Mol Fraction at 101.325 kg x_1 278.8515059207.790.128The values of Henry's constant, K/atm, and the mole fraction solubility at one atm were calculated by the compiler.The data were given simply as Henry's constant, K/mmHg, and a straight line plot of x_1 and total pressure (4 points).Henry's constant for an "ideal solution" was taken as the vapor pressure of pure liquid HBr (11850 mmHg or 15.59 atm) estimated from data reported by Bates, Halford and Anderson The value from the International Critical Tables (2) is 14.1 atm.The mole fraction solubility was calculated assuming Henry's law is obeyed up to a pressure of one atm, thus $x_1 = 1/(K/at)$ AUXILIARY INFORMATIONMUXILIARY INFORMATIONMUXILIARY INFORMATION	'a
Reported (graph) $p_1/mmHg$ $K = p_1/x_1$ at 101.325 kF $p_1/mmHg$ $K/mmHg$ K/atm x_1 278.8515059207.790.128The values of Henry's constant, K/atm, and the mole fraction solubility at one atm were calculated by the compiler.The data were given simply as Henry's constant, K/mmHg, and a straight line plot of x_1 and total pressure (4 points).Henry's constant for an "ideal solution" was taken as the vapor pressure of pure liquid HBr (ll850 mmHg or 15.59 atm) estimated from the International Critical Tables (2) is 14.3 atm.The mole fraction solubility was calculated assuming Henry's law is obeyed up to a pressure of one atm, thus $x_1 = 1/(K/at)$ AUXILIARY INFORMATIONMUXILIARY INFORMATIONMUXILIARY INFORMATION	a
278.8515059207.790.128The values of Henry's constant, K/atm, and the mole fraction solubility at one atm were calculated by the compiler.The data were given simply as Henry's constant, K/mmHg, and a straight line plot of x_1 and total pressure (4 points).Henry's constant for an "ideal solution" was taken as the vapor pressure of pure liquid HBr (11850 mmHg or 15.59 atm) estimated from data reported by Bates, Halford and Anderson The value from the International Critical Tables (2) is 14.1 atm.The mole fraction solubility was calculated assuming Henry's law is obeyed up to a pressure of one atm, thus $x_1 = 1/(K/at)$ AUXILIARY INFORMATIONMETHOD 'APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:	
The values of Henry's constant, K/atm, and the mole fraction solubility at one atm were calculated by the compiler.The data were given simply as Henry's constant, K/mmHg, and a straight line plot of x_1 and total pressure (4 points).Henry's constant for an "ideal solution" was taken as the vapor pressure of pure liquid HBr (ll850 mmHg or 15.59 atm) estimated from data reported by Bates, Halford and Anderson The value from the International Critical Tables (2) is 14.3 atm.The mole fraction solubility was calculated assuming Henry's law is obeyed up to a pressure of one atm, thus $x_1 = 1/(K/at)$ AUXILIARY INFORMATIONMETHOD 'APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:	
solubility at one atm were calculated by the compiler.The data were given simply as Henry's constant, K/mmHg, and a straight line plot of x_1 and total pressure (4 points).Henry's constant for an "ideal solution" was taken as the vapor pressure of pure liquid HBr (11850 mmHg or 15.59 atm) estimated from data reported by Bates, Halford and Anderson The value from the International Critical Tables (2) is 14.3 atm.The mole fraction solubility was calculated assuming Henry's law is obeyed up to a pressure of one atm, thus $x_1 = 1/(K/at)$ AUXILIARY INFORMATIONMETHOD APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:	
a straight line plot of x_1 and total pressure (4 points).Henry's constant for an "ideal solution" was taken as the vapor pressure of pure liquid HBr (11850 mmHg or 15.59 atm) estimated from data reported by Bates, Halford and Anderson The value from the International Critical Tables (2) is 14.3 atm.The mole fraction solubility was calculated assuming Henry's law is obeyed up to a pressure of one atm, thus $x_1 = 1/(K/at)$ AUXILIARY INFORMATIONMETHOD 'APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:	L
vapor pressure of pure liquid HBr (l1850 mmHg or 15.59 atm) estimated from data reported by Bates, Halford and Anderson The value from the International Critical Tables (2) is 14.3 atm.The mole fraction solubility was calculated assuming Henry's law is obeyed up to a pressure of one atm, thus $x_1 = 1/(K/at)$ AUXILIARY INFORMATIONMETHOD 'APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:	as
law is obeyed up to a pressure of one atm, thus $x_1 = 1/(k/at)$ AUXILIARY INFORMATION METHOD APPARATUS/PROCEDURE: Source AND PURITY OF MATERIALS:	
METHOD APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:	:m).
METHOD APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:	
The amount of HBr absorbed at the observed total pressure was measured by the change in pressure in a calibrated bulb containing the gas. A high precision high vacuum appara- tus was used. (1) Hydrogen bromide. Pure alumin bromide was allowed to hydrat approximately AlBr ₃ 'H ₂ O, which was then heated in an evacuat tube. HBr was distilled from bath at 193 K.	e to h ed
The amount of solvent was probably about 0.03 mole. (2) Benzene. The liquid may be ta as of high quality.	ken
ESTIMATED ERROR:	<u></u>
REFERENCES :	<u>-</u>
<pre>1. Bates, J. R.; Halford, J. 0.; Anderson, L. C. J. Chem. Phys. <u>1935</u>, 3, 531.</pre>	
2. International Critical Tables, McGraw-Hill Co., New York, <u>192</u> Vol. 3, p. 228.	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen bromide; HBr; [10035-10-6]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.
2. Benzene; C ₆ H ₆ ; [71-43-2]	J. Appl. Chem. <u>1970</u> , 20, 109-115.
VARIABLES:	PREPARED BY:
T/K: 243.15 - 293.15	W. Gerrard
Total P/kPa: 101.325 (1 atm)	
	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Rat	
ⁿ HBr/ ⁿ C	6 ^H 6 X _{HBr}
263.15 0.21	.0 0.174
273.15 0.15	
283.15 0.11 293.15 0.09	
The mole fraction solubilities were o	alculated from the mole ratio by the
compiler.	
Smoothed Data: $\ln X_{HBr} = -55.228 + 8$	1.862/(T/100) + 23.118 ln (T/100)
Standard error about	regression line = 2.06×10^{-3}
T/K N	lol Fraction
	X _{HBr}
263.15	
273.15 283.15	0.131
293.15	0.0872
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Hydrogen bromide was passed into a	1. Hydrogen bromide. High quality
known weight of pure liquid in a bubbler tube at a total pressure	HBr was obtained from a cylinder and passed through a tube at 223 K.
measured by a manometer assembly.	For repeat runs it was prepared
The absorbed gas was weighed by re-	from phosphorus tribromide
weighing the bubbler tube. The temperature was manually controlled	dried by phosphorus pentoxide, and stored at 193 K.
to within 0.2 K.	2. Benzene. Best obtainable speci-
	men was purified, fractionally
	distilled, and attested.
The apparatus and procedure are	ESTIMATED ERROR:
described by Gerrard (1,2).	$\delta T/K = 0.2$
	$\delta X/X = 0.01$
	REFERENCES :
	1. Gerrard W.
	J. Appl. Chem. Biotechnol. 1972,
	J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623-650.
	J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623-650. 2. Gerrard, W.
	J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623-650.

COMPONENTS :	ORIGINAL MEASUREMENTS:					
(1) Hydrogen bromide; HBr;		O'Brien, S. J.; Bobalek, E. G.				
[10035-10-6]		J Am CI	hem. Soc. 1	940. 62.		
(2) Methylbenzene or toluene; C ₇ H ₈ ; [108-88-3]		3227 - 32		,		
		5227 52	200.			
(100 00 0						
		-				
VARIABLES: T/K:	298.15	PREPARED B	PREPARED BY:			
P/kPa:	19.47 - 47.73	1	W. Gerra	ırd		
-,	(146 - 358 mmHg)	1				
			_			
EXPERIMENTAL VAL	JES:					
T/K		Henry's	Mol Ratio	Mol Fraction		
	p ₁ /mmHg m ₁ /mol kg ⁻¹	Constant	n_1/n_2	<i>x</i> ₁		
		<u>k</u> 1				
298.15	146 0.185	1.03	0.0170	0.0167		
250.25	171 0.194	1.15	0.0178	0.0175		
	210 0.286	0.97	0.0263	0.0256		
	299 0.407	0.97	0.0374	0.0361		
	335 0.446	0.97	0.0410	0.0394		
	358 0.477	0.99	0.0439	0.0420		
				0.00501		
	(760 1.010	0.99 av.	0.0929	0.0850) ²		
¹ k/atm m	ol ⁻¹ kg					
2 -						
	alculated by the compile	er from the	e average v	Value of Henry's		
constan	t. Use of the high and	low values	s of Henry	s constant		
gives a	range of 0.0741 to 0.08	366 for the	e mole frac	ction solubility		
	atm (101.325 kPa).					
	AUXILIARY	INFORMATION	N			
METHOD /APPARATIIS				ATERIALS :		
METHOD/APPARATUS	/PROCEDURE:	SOURCE AND	PURITY OF M			
The method an	/PROCEDURE: d apparatus are those of	SOURCE AND	PURITY OF M	le. Prepared fro		
The method an Savlor (1) as	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i>	SOURCE AND (1) Hydro brom	PURITY OF M ogen bromic ine and tet	le. Prepared fro tralin, and passe		
The method an Saylor (1) as al . (2). The	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the	SOURCE AND (1) Hydro brom: succe	PURITY OF M ogen bromid ine and ten essively ov	le. Prepared fro tralin, and passe ver red phosphoru		
The method an Saylor (1) as al . (2). The use of a 1 to	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to	SOURCE AND (1) Hydro brom: succe	PURITY OF M ogen bromid ine and ten essively ov	le. Prepared fro tralin, and passe		
The method an Saylor (1) as al . (2). The	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to	SOURCE AND (1) Hydro brom succo and	PURITY OF M ogen bromid ine and tet essively ov phosphorus	de. Prepared fro tralin, and passe ver red phosphoru pentoxide.		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to ration time.	SOURCE AND (1) Hydro brom succo and p (2) Tolu	PURITY OF M ogen bromid ine and tet essively ov phosphorus ene. Good	de. Prepared fro tralin, and passe ver red phosphoru pentoxide. quality. Stored		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to ration time. consists of two bulbs	SOURCE AND (1) Hydro brom succo and y (2) Tolucover	PURITY OF M ogen bromid ine and tet essively ov phosphorus ene. Good sodium and	de. Prepared fro tralin, and passe ver red phosphoru pentoxide.		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to ration time. consists of two bulbs arated by a tap. The	SOURCE AND (1) Hydro brom succo and y (2) Tolucover	PURITY OF M ogen bromid ine and tet essively ov phosphorus ene. Good	de. Prepared fro tralin, and passe ver red phosphoru pentoxide. quality. Stored		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to ration time. consists of two bulbs arated by a tap. The rtially saturated with	SOURCE AND (1) Hydro brom succo and y (2) Tolucover	PURITY OF M ogen bromid ine and tet essively ov phosphorus ene. Good sodium and	de. Prepared fro tralin, and passe ver red phosphoru pentoxide. quality. Stored		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to ration time. consists of two bulbs arated by a tap. The rtially saturated with the solution added to	SOURCE AND (1) Hydro brom succo and y (2) Tolucover	PURITY OF M ogen bromid ine and tet essively ov phosphorus ene. Good sodium and	de. Prepared fro tralin, and passe ver red phosphoru pentoxide. quality. Stored		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to ration time. consists of two bulbs arated by a tap. The rtially saturated with the solution added to b. The bulbs are	SOURCE AND (1) Hydro brom succo and y (2) Tolucover	PURITY OF M ogen bromid ine and tet essively ov phosphorus ene. Good sodium and	de. Prepared fro tralin, and passe ver red phosphoru pentoxide. quality. Stored		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul partially eva	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to ration time. consists of two bulbs arated by a tap. The rtially saturated with the solution added to b. The bulbs are cuated, the tap opened,	SOURCE AND (1) Hydro brom succe and p (2) Tolue over n ²⁰ ,	PURITY OF M ogen bromid ine and tet essively ov phosphorus ene. Good sodium and 1.4959.	de. Prepared fro tralin, and passe ver red phosphoru pentoxide. quality. Stored		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul partially eva and the whole	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to ration time. consists of two bulbs arated by a tap. The rtially saturated with the solution added to b. The bulbs are cuated, the tap opened, apparatus put in a	SOURCE AND (1) Hydro brom succo and y (2) Tolucover	PURITY OF M ogen bromid ine and tet essively ov phosphorus ene. Good sodium and 1.4959.	de. Prepared fro tralin, and passe ver red phosphoru pentoxide. quality. Stored		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul partially eva and the whole	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to ration time. consists of two bulbs arated by a tap. The rtially saturated with the solution added to b. The bulbs are cuated, the tap opened,	SOURCE AND (1) Hydro brom succe and p (2) Tolue over n ²⁰ ,	PURITY OF M ogen bromid ine and tet essively ov phosphorus ene. Good sodium and 1.4959.	de. Prepared fro tralin, and passe ver red phosphoru pentoxide. quality. Stored		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul partially eva and the whole thermostat fr	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to ration time. consists of two bulbs arated by a tap. The rtially saturated with the solution added to b. The bulbs are cuated, the tap opened, apparatus put in a om 1 to 2 days.	SOURCE AND (1) Hydro brom succe and p (2) Tolue over n ²⁰ ,	PURITY OF M ogen bromid ine and tel essively or phosphorus ene. Good sodium and 1.4959. ERROR:	de. Prepared fro tralin, and passe ver red phosphoru pentoxide. quality. Stored distilled;		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul partially eva and the whole thermostat fr The tap is cl	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to ration time. consists of two bulbs arated by a tap. The rtially saturated with the solution added to b. The bulbs are cuated, the tap opened, apparatus put in a om 1 to 2 days. osed. The HBr in the	SOURCE AND (1) Hydro brom succe and p (2) Tolue over n ²⁰ ,	PURITY OF M ogen bromid ine and tet essively ov phosphorus ene. Good sodium and 1.4959.	de. Prepared fro tralin, and passe ver red phosphoru pentoxide. quality. Stored distilled;		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul partially eva and the whole thermostat fr The tap is cl upper bulb is	<pre>/PROCEDURE: d apparatus are those of modified by O'Brien et main difference is the 2 day instead of a 5 to ration time. consists of two bulbs arated by a tap. The rtially saturated with the solution added to b. The bulbs are cuated, the tap opened, apparatus put in a om 1 to 2 days. osed. The HBr in the cuantitatively removed</pre>	SOURCE AND (1) Hydro brom succe and p (2) Tolue over n ²⁰ ,	PURITY OF M ogen bromid ine and tel essively or phosphorus ene. Good sodium and 1.4959. ERROR:	de. Prepared fro tralin, and passe ver red phosphoru pentoxide. quality. Stored distilled;		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul partially eva and the whole thermostat fr The tap is cl upper bulb is and titrated	<pre>/PROCEDURE: d apparatus are those of modified by O'Brien et main difference is the 2 day instead of a 5 to ration time. consists of two bulbs arated by a tap. The rtially saturated with the solution added to b. The bulbs are cuated, the tap opened, apparatus put in a om 1 to 2 days. osed. The HBr in the quantitatively removed with NaOH. The HBr</pre>	SOURCE AND (1) Hydro brom succe and p (2) Tolue over n ²⁰ ,	PURITY OF M ogen bromid ine and tet essively ov phosphorus ene. Good sodium and 1.4959. ERROR: $\delta T/K = 0$	de. Prepared fro tralin, and passe ver red phosphoru pentoxide. quality. Stored distilled;		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul partially eva and the whole thermostat fr The tap is cl upper bulb is and titrated partial press	<pre>/PROCEDURE: d apparatus are those of modified by O'Brien et main difference is the 2 day instead of a 5 to ration time. consists of two bulbs arated by a tap. The rtially saturated with the solution added to b. The bulbs are cuated, the tap opened, apparatus put in a om 1 to 2 days. osed. The HBr in the quantitatively removed with NaOH. The HBr ure is calculated from</pre>	SOURCE AND (1) Hydro brom succo and f (2) Toluc over n ²⁰ , ESTIMATED REFERENCES	PURITY OF M ogen bromid ine and tet essively ov phosphorus ene. Good sodium and 1.4959. ERROR: $\delta T/K = 0$	de. Prepared fro tralin, and passe ver red phosphoru pentoxide. quality. Stored distilled;		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul partially eva and the whole thermostat fr The tap is cl upper bulb is and titrated partial press the bulb volu	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to ration time. consists of two bulbs arated by a tap. The rtially saturated with the solution added to b. The bulbs are cuated, the tap opened, apparatus put in a om 1 to 2 days. osed. The HBr in the quantitatively removed with NaOH. The HBr ure is calculated from me and the number of	SOURCE AND (1) Hydro brom succe and (2) Tolue over n ² ⁰ , ESTIMATED REFERENCES 1. Sayle	PURITY OF M ogen bromid ine and tet essively or phosphorus ene. Good sodium and 1.4959. ERROR: $\delta T/K = 0$ S: or, J. H.	de. Prepared fro tralin, and passe ver red phosphoru pentoxide. quality. Stored distilled;		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul partially eva and the whole thermostat fr The tap is cl upper bulb is and titrated partial press the bulb volu moles of HBr	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to ration time. consists of two bulbs arated by a tap. The rtially saturated with the solution added to b. The bulbs are cuated, the tap opened, apparatus put in a om 1 to 2 days. osed. The HBr in the quantitatively removed with NaOH. The HBr ure is calculated from me and the number of assuming ideal gas	SOURCE AND (1) Hydro brom succe and (2) Tolue over n ² ⁰ , ESTIMATED REFERENCES 1. Sayle	PURITY OF M ogen bromid ine and tet essively or phosphorus ene. Good sodium and 1.4959. ERROR: $\delta T/K = 0$ S: or, J. H.	de. Prepared fro tralin, and passe ver red phosphoru pentoxide. quality. Stored distilled;		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul partially eva and the whole thermostat fr The tap is cl upper bulb is and titrated partial press the bulb volu moles of HBr behavior. A	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to ration time. consists of two bulbs arated by a tap. The rtially saturated with the solution added to b. The bulbs are cuated, the tap opened, apparatus put in a om 1 to 2 days. osed. The HBr in the quantitatively removed with NaOH. The HBr ure is calculated from me and the number of assuming ideal gas weighed solution sample	SOURCE AND (1) Hydro brom succe and (2) Tolue over n ² _D , ESTIMATED REFERENCES 1. Sayle J. An	PURITY OF M ogen bromid ine and tet essively or phosphorus ene. Good sodium and 1.4959. ERROR: $\delta T/K = 0$ S: or, J. H. m. Chem. So	<pre>de. Prepared fro tralin, and passe yer red phosphoru pentoxide. quality. Stored d distilled; 0.02 pc. <u>1937</u>, <i>\$9</i>, 171</pre>		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul partially eva and the whole thermostat fr The tap is cl upper bulb is and titrated partial press the bulb volu moles of HBr behavior. A is removed fr	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to ration time. consists of two bulbs arated by a tap. The rtially saturated with the solution added to b. The bulbs are cuated, the tap opened, apparatus put in a om 1 to 2 days. osed. The HBr in the quantitatively removed with NaOH. The HBr ure is calculated from me and the number of assuming ideal gas weighed solution sample om the lower bulb and	SOURCE AND (1) Hydro brom succe and (2) Tolue over n ² 0, ESTIMATED REFERENCES 1. Sayle J. An 2. O'Br	PURITY OF M ogen bromid ine and ten essively of phosphorus ene. Good sodium and 1.4959. ERROR: $\delta T/K = 0$ S: or, J. H. m. Chem. So ien, S. J.	 de. Prepared fro tralin, and passe yer red phosphoru pentoxide. quality. Stored distilled; 0.02 bc. <u>1937</u>, 59, 171 ; Kenny, C. L. 		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul partially eva and the whole thermostat fr The tap is cl upper bulb is and titrated partial press the bulb volu moles of HBr behavior. A	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to ration time. consists of two bulbs arated by a tap. The rtially saturated with the solution added to b. The bulbs are cuated, the tap opened, apparatus put in a om 1 to 2 days. osed. The HBr in the quantitatively removed with NaOH. The HBr ure is calculated from me and the number of assuming ideal gas weighed solution sample om the lower bulb and	SOURCE AND (1) Hydro brom succo and f (2) Toluc over n ²⁰ , ESTIMATED REFERENCES 1. Saylo J. An 2. O'Br Zeur	PURITY OF M. ogen bromid ine and tet essively or phosphorus ene. Good sodium and 1.4959. ERROR: $\delta T/K = 0$ S: or, J. H. m. Chem. So ien, S. J. cher, R. A	 de. Prepared fro tralin, and passe yer red phosphoru pentoxide. quality. Stored distilled; 0.02 bc. <u>1937</u>, <i>59</i>, 171 ; Kenny, C. L. 		
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul partially eva and the whole thermostat fr The tap is cl upper bulb is and titrated partial press the bulb volu moles of HBr behavior. A is removed fr	/PROCEDURE: d apparatus are those of modified by O'Brien <i>et</i> main difference is the 2 day instead of a 5 to ration time. consists of two bulbs arated by a tap. The rtially saturated with the solution added to b. The bulbs are cuated, the tap opened, apparatus put in a om 1 to 2 days. osed. The HBr in the quantitatively removed with NaOH. The HBr ure is calculated from me and the number of assuming ideal gas weighed solution sample om the lower bulb and	SOURCE AND (1) Hydro brom succo and f (2) Toluc over n ²⁰ , ESTIMATED REFERENCES 1. Saylo J. An 2. O'Br Zeur	PURITY OF M. ogen bromid ine and tet essively or phosphorus ene. Good sodium and 1.4959. ERROR: $\delta T/K = 0$ S: or, J. H. m. Chem. So ien, S. J. cher, R. A	 de. Prepared fro tralin, and passe yer red phosphoru pentoxide. quality. Stored distilled; 0.02 bc. <u>1937</u>, 59, 171 ; Kenny, C. L. 		

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen bromide; HBr; [10035-10-6]</pre>	Brown, H. C.; Wallace, W. J.
<pre>(2) Methylbenzene or toluene; C₇H₈; [108-88-3]</pre>	J. Am. Chem. Soc. <u>1953</u> , 75, 6268 - 6274.
[109-09-2]	
VARIABLES:	PREPARED BY:
T/K: 273.15 P/kPa: up to 18.67 (140 mmHg)	W. Gerrard
EXPERIMENTAL VALUES:	······································
T/K Highest Pressure He Reported (graph)	mry's Constant Mol Fraction $K = p_1/x_1$ at 101.325 kPa mmHg K/atm x_1
	440 5.84 0.171
The values of Henry's constant solubility at one atm were cal	, K/atm, and the mole fraction culated by the compiler.
The data were given simply as a straight line plot of x_1 and	Henry's constant, K/mmHg, and as total pressure (4 points).
Henry's constant for an "ideal vapor pressure of pure liquid estimated from data reported b (1). The value from the <i>Inter</i> is 12.3 atm.	HBr (10070 mmHg or 13.25 atm) y Bates, Halford and Anderson
Note that the mole fraction so is calculated with the assumpt up to a pressure of one atm, t	lubility at 101.325 kPa (1 atm) ion that Henry's law is obeyed hus $x_1 = 1/(K/atm)$.
but they gave no information a	K/mmHg = 100 (0.132 atm, compiler), bout the pressure range studied. onstant was given as 404 mmHg.
AUXILIARY	INFORMATION
	COURCE AND BUDITY OF MATERIALC.
METHOD/APPARATUS/PROCEDURE: The amount of HBr absorbed at the observed total pressure was measured by the change in pressure in a calibrated bulb containing the gas.	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Pure aluminum bromide was allowed to hydrate to approximately AlBr₃·H₂O, which
A high precision high vacuum appara- tus was used.	was then heated in an evacuated tube. HBr was distilled from a bath at 193 K.
The amount of solvent was probably about 0.03 mole.	(2) Methylbenzene. The liquid may be taken as of high quality.
	ESTIMATED ERROR:
	REFERENCES: 1. Bates, J. R.; Halford, J. O.; Anderson, L. C. J. Chem. Phys. <u>1935</u> , 3, 531.
	2. International Critical Tables, McGraw-Hill Co., New York, <u>1928</u> , Vol. 3, p. 228.

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen bromide; HBr; [10035-10-6]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.
2. Methylbenzene (toluene);C ₇ H ₈ ;	J. Appl. Chem. <u>1</u> 970, 20, 109–115.
[108-88-3]	
[100 00 3]	
VARIABLES:	PREPARED BY:
T/K: 233.15 - 293.15	W. Gerrard
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Ra	
ⁿ HBr/ ⁿ C	7 ^H 8 ^X HBr
222.15 0.7	
	55 0.430 65 0.317
253.15 0.3	
263.15 0.2	
273.15 0.1 283.15 0.1	
The mole fraction solubilities were c compiler.	alculated from the mole ratio by the
Smoothed Data: $\ln X_{upr} = 22.521 - 22$	2.991/(T/100) - 15.959 ln (T/100)
Standard Error about	Regression Line = 5.45×10^{-3}
Standila Erfor anout	Regression Line 5.45 a re
T/K M	ol Fraction
	× _{HBr}
233.15	0.428
	0.328
	0.251
	0.191 0.145
	0.110
293.15	0.0833
	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Hydrogen bromide was passed into a	1. Hydrogen bromide. High quality
known weight of pure liquid in a	HBr was obtained from a cylinder
bubbler tube at a total pressure measured by a manometer assembly.	and passed through a tube at 223 K. For repeat runs it was prepared
The absorbed gas was weighed by re-	from phosphorus tribromide,
weighing the bubbler tube. The	dried by phosphorus pentoxide,
temperature was manually controlled	and stored at 193 K.
to within 0.2 K.	2. Methylbenzene. Best obtainable
For the 4 lowest temperatures the	specimen was purified, fraction- ally distilled, and attested.
gas absorbed was determined by a chemical titration.	arty utsettieu, and accested.
The apparatus and procedure are	
described by Gerrard (1,2).	ESTIMATED ERROR:
	$\delta T/K = 0.2$ $\delta X/X = 0.03$
	REFERENCES :
	1. Gerrard, W.
	J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623-650.
	2. Gerrard, W. "Solubility of Gases and Liquids"
	Plenum Press, New York, 1976.

408 Hydrogen Bromide in				
COMPONENTS: (1) Hydrogen bromide; HBr; [10035-10-6]	ORIGINAL MEASUREMENTS: Brown, H. C.; Wallace, W. J.			
<pre>(2) 1,3-Dimethylbenzene or m-xylene; C₈H₁₀; [108-38-3]</pre>	J. Am. Chem. Soc. <u>1953</u> , 75, 6268 - 6274.			
VARIABLES:	PREPARED BY:			
T/K: 273.15 P/kPa: up to 15.33 (115 mmHg)	W. Gerrard			
EXPERIMENTAL VALUES:				
Reported (graph)	mry's Constant Mol Fraction $K = p_1/x_1$ at 101.325 kPa mmHg K/atm x_1			
273.15 115 3	4.908 0.204			
solubility at one atm were cal The data were given simply as	Henry's constant, K/mmHg, and			
as a straight line plot of x_1 and total pressure (4 points). Henry's constant for an "ideal solution" was taken as the vapor pressure of pure liquid HBr (10070 mmHg or 13.25 atm) estimated from data reported by Bates, Halford and Anderson (1). The value from the <i>International Critical</i> <i>Tables</i> (2) is 12.3 atm. Note that the mole fraction solubility at 101.325 kPa (1 atm) is calculated with the assumption that Henry's law is obeyed up to a pressure of one atm, thus $x_1 = 1/(K/atm)$.				
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE: The amount of HBr absorbed at the observed total pressure was measured by the change in pressure in a calibrated bulb containing the gas. A high precision high vacuum apparatus was used.	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Pure aluminum bromide was allowed to hydrate to approximately AlBr₃·H₂O, which was then heated in an evacuated tube. HBr was distilled from a bath at 193 K. 			
The amount of solvent was probably about 0.03 mole.	(2) 1,3-Dimethylbenzene. The liquid may be taken as of high quality.			
	ESTIMATED ERROR:			
	<pre>REFERENCES: 1. Bates, J. R.; Halford, J. O.; Anderson, L. C. J. Chem. Phys. <u>1935</u>, 3, 531. 2. International Critical Tables, McGraw-Hill Co., New York, <u>1928</u>, Vol. 3, p. 228.</pre>			

.

,	von-Aqueous Solvents 409			
COMPONENTS:	ORIGINAL MEASUREMENTS:			
<pre>1. Hydrogen bromide; HBr; [10035-40-6]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.			
<pre>2. 1,3-Dimethylbenzene (m-xylene); C₈H₁₀; [108-38-3]</pre>	J. Appl. Chem. 1970, 20, 109-115.			
VARIABLES:	PREPARED BY:			
T/K: 233.15 - 293.15 Total P/kPa: 101.325 (l atm)	W. Gerrard			
	(smoothed data calculated by H.L. Clever)			
EXPERIMENTAL VALUES: T/K MOL Rat				
ⁿ HBr/ ⁿ C ₈	H ₁₀ X _{HBr}			
233.15 0.85 243.15 0.45 253.15 0.34 263.15 0.21 273.15 0.15 283.15 0.12 293.15 0.10 The mole fraction solubilities were c compiler.	0.310 0.254 0.174 5 0.134 5 0.111 5 0.0950 alculated from the mole ratio by the			
Smoothed Data: $\ln x_{HBr} = -27.542 + 4$ Standard error about	$3.370/(T/100) + 9.644 \ln (T/100)$ regression line = 1.18×10^{-2}			
т/к м	ol Fraction X _{HBr}			
233.15 243.15 253.15 263.15 273.15 283.15 293.15	0.460 0.321 0.234 0.177 0.139 0.112 0.0930			
AUXILIARY	INFORMATION			
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:			
 Hydrogen bromide was passed into a known weight of pure liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by reweighing the bubbler tube. The temperature was manually controlled to within 0.2 K. For the 4 lowest temperatures the gas absorbed was determined by a chemical titration. 	 Hydrogen bromide. High quality HBr was obtained from a cylinder and passed through a tube at 223 K. For repeat runs it was prepared from phosphorus tribromide, dried by phosphorus pentoxide, and stored at 193 K. 1,3-Dimethylbenzene. Best obtainable specimen was purified, fractionally distilled, and attested. 			
The apparatus and procedure are described by Gerrard (1,2).	ESTIMATED ERROR:			
	$\begin{array}{l} \delta T/K = 0.2\\ \delta X/X = 0.03 \end{array}$			
	<pre>REFERENCES: 1. Gerrard, W. J. Appl. Chem. Biotechnol. 1972, 22, 623-650. 2. Gerrard, W. "Solubility of Gases and Liquids" Plenum Press, New York, 1976.</pre>			

<pre>COMPONENTS: (1) Hydrogen bromide; HBr; [10035-10-6] (2) 1,3,5-Trimethylbenzene or mesitylene; C₉H₁₂; [108-67-8]</pre>	ORIGINAL MEASUREMENTS: Brown, H. C.; Wallace, W. J. J. Am. Chem. Soc. <u>1953</u> , 75, 6268 - 6274.			
VARIABLES: T/K: 273.15 P/kPa: up to 14.67 (110 mmHg)	PREPARED BY: W. Gerrard			
EXPERIMENTAL VALUES:				
Reported (graph) p1 ^{/mmHg} K/m	ry's Constant Mol Fraction $K = p_1/x_1$ at 101.325 kPa mHg K/atm x_1			
273.15 110 33	70 4.434 0.226			
The values of Henry's constant, solubility at one atm were calc The data were given simply as H	ulated by the compiler. enry's constant, K/mmHg, and as			
a straight line plot of x_1 and total pressure (4 points). Henry's constant for an "ideal solution" was taken as the vapor pressure of pure liquid HBr (10070 mmHg or 13.25 atm) estimated from data reported by Bates, Halford and Anderson (1). The value from the International Critical Tables (2) is 12.3 atm.				
to a pressure of 1 atm, thus x_I	on that Henry's law is obeyed up = l/(K/atm).			
	THEODINETION			
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE: The amount of HBr absorbed at the observed total pressure was measured by the change in pressure in a calibrated bulb containing the gas. A high precision high vacuum apparatus was used. The amount of solvent was probably about 0.03 mole.	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Pure aluminum bromide was allowed to hydrate to approximately AlBr₃·H₂O, which was then heated in an evacuated tube. HBr was distilled from a bath at 193 K. (2) 1,3,5-Trimethylbenzene. The liquid may be taken as of high quality. 			
	ESTIMATED ERROR:			
	<pre>REFERENCES: 1. Bates, J. R.; Halford, J. O.; Anderson, L. C. J. Chem. Phys. <u>1935</u>, 3, 531. 2. International Critical Tables, McGraw-Hill Co., New York, <u>1928</u>, Vol. 3, p. 228.</pre>			

COMPONENTS :	ORIGINAL MEASUREMENTS:			
<pre>(1) Hydrogen bromide; HBr; [10035-10-6]</pre>	Dorofeeva, N. G. Izv. Vyssh. Uchebn. Zaved., Khim.			
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	12v. Vyssn. Uchebn. Zavea., Khim. Khim. Tekhnol. <u>1962</u> , 5, 188-93.			
VARIABLES: $T/K = 298.15$ $p_1/kPa = 101.325$	PREPARED BY: H. L. Clever			
EXPERIMENTAL VALUES:				
Temperature Hydrogen Bromide t/°C T/K /wt %	_			
	<u>n₁/n₂</u> <u>x₁</u>			
25 298.15 41.2	0.399 0.285			
values.				
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE: No information on the solubility measurement.	SOURCE AND PURITY OF MATERIALS:			
	ESTIMATED ERROR: REFERENCES:			

COMPONENTS :			ORIGINAL MEASUREMENTS:			
<pre>(1) Hydrogen bromide; HBr; [10035-10-6]</pre>			Whitmore, F. C.; Rothrock, H. S. J. Am. Chem. Soc. 1932, 54, 3431-5.			
<pre>(2) 2,2,-Dimethyl-1-propanol or neo- pentyl alcohol or t-butyl carbi- ol; C₅H₁₂O; [75-84-3]</pre>			J. An	n. Chem.	Soc. <u>1932</u>	, 54, 3431-5.
VARIABLES:			PREPAR	ED BY:		
	T/K = 268 - 283 $p_1/kPa = 101.3$			Н	. L. Clever	
EXPERIMENTAL VALUES:						
Temperature	2,2-Dime propano	ethyl-l- l	Hy	drogen		
t∕°C T∕K	wt/g	mol	wt/g		Mole Ratio n_1/n_2	Mole Fraction x_1
-5 268	188	2.13	140	1.73	0.812	0.448
4 277	188	2.13	106	1.31	0.615	0.381
10 283	188	2.13	69	0.854	0.400	0.286
The saturated erature for 2 compounds.	The saturated solution was heated erature for 20 days. Reactions too compounds.			°C and ewhich	maintained yielded sev	at that temp- eral bromo-
		AUXILIARY	INFORMATION			
METHOD/APPARATUS/PRO	CEDURE:		SOURCE AND PURITY OF MATERIALS:			
This is not a measurement. Th interested in s obtaining the 1 in the alcohol the rearrangeme place at higher The alcohol m HBr is passed o liquid forms wh	e authors olubility, argest amo as possibl nt reaction temperature elts at 52 ver the al	were not , but in bunt of HBr le to study on that take ures. 2 °C. As Loohol a	(2)	2,2,-Di Prepare magnesi	methyl-l-pr d by reacti um chloride e. Melting	on of t-butyl
⁰ C, and saturat ing HBr through the sample was resaturated, th saturated again ments were carr	liquid forms which was cooled to 10 $^{\circ}$ C, and saturated with HBr by pass- ing HBr through the liquid. Later the sample was cooled to 4 $^{\circ}$ C and resaturated, then to -5 $^{\circ}$ C, and saturated again. Thus all measure- ments were carried out on the same			TED ERROR	::	
alcohol sample as presented in The compiler pressure of the from the soluti	the table assumed at HBr as it	above. mospheric	1. E	eattie, Intermed Public H	iate Labora	tute, Chicago,

Hydrogen Bromide in Non-Aqueous Solvents

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Hydrogen bromide; HBr; Fernandes, J. B. [10035-10-6] J. Chem. Eng. Data 1972, 17, (2) Alkanols 377-379. PREPARED BY: VARIABLES: T/K: See below H. L. Clever p₁/kPa : 101.325 (1 atm) EXPERIMENTAL VALUES: t/°C T/K Mole ratio Mole* Smoothed* fraction mole fraction ⁿHBr^{/n}alcohol ^xHBr ^xHBr 1-Pentanol, (amy1 15 288.15 1.062 0.515 0.518 alcohol); C₅H₁₂O; 0.953 0.482 25 298.15 0.488 [71-41-0] 40 313.15 0.710 0.415 0.419 0.376 50 323.15 0.501 60 333.15 0.334 0.333 343.15 70 0.291 80 353.15 0.338 0.253 0.253 Smoothing equation for use between 288.15 K and 353.15 K : $\ln x_{\text{HBr}} = 38.4282 - 52.0537/(T/100) - 19.8635 \ln(T/100)$ $HBr \text{Standard error in } x_{\text{HBr}} \text{ about the regression line} = 5.77 \times 10^{-3}$ 1-Hexanol; $C_6H_{14}O$; 15 288.15 1.078 0.519 0.521 [111-27-3] 25 298.15 0.475 0.7041 40 313.15 0.413 0.407 50 323.15 0.364 0.46551 60 333.15 0.318 0.324 70 343.15 0.286 0.341 80 353.15 0.254 0.252 Smoothing equation for use between 288.15 K and 353.15 K : $\ln x_{\text{HBr}} = 24.5414 - 31.5332/(T/100) - 13.4652 \ln(T/100)$ Standard error in x_{HBr} about the regression line = 8.62 × 10⁻³ * calculated by the compiler. 1 The vapor pressure correction was applied to the acid-base titration method. AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: Two methods were used: Weight increase method. This method was used when the estimated vapor pressure of the alcohol was less than one mmHg. A 15-20 g sample of alcohol was placed in a clean, dry, weighed saturator and weiged. The saturator and contents were thermostatted. HBr gas was passed through the liquid for about one hour. The saturator and contents were weighed. The process was repeated until two successive readings agreed. Acid-base titration method. The alcohol was saturated with HBr as in the weight increase method. A 1-2 cm³ sample of the saturated solution was taken in a clean, dry and weighed sample tube; weighed and transferred to a flask containing a known amount of chilled standard NaOH solution. After reaction of the HBr and NaOH the excess base was titrated with a standard HCl solution. The methods agreed within 1% by weight. SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Matheson Co., Inc. Stated to be 99.8% pure. Used as received (2) Alkanols. K and K Labs. Reagent grade. Minimum purity 99%. Used as received. ESTIMATED ERROR:

One percent by weight.

413

COMPONENTS:			ORIGINAL ME	CASUREMENTS	:
<pre>(1) Hydrogen bromide; [10035-10-6]</pre>	HBr;		Fernandes,	J. B.	
(2) Alkanols			J. Chem. Er 377-379.	ng. Data <u>19</u>	<u>72</u> , 17,
EXPERIMENTAL VALUES:	t/°C		Mole ratio HBr ^{/n} alcohol	Mole* fraction [*] HBr	Smoothed* mole fraction [×] HBr
1-Heptanol; C ₇ H ₁₆ O; [111-70-6]	15 25 30 40 50 60	288.15 298.15 303.15 313.15 323.15 333.15	1.04 0.964 0.72 0.438	0.510 0.491 0.419 0.305	0.513 0.497 0.479 0.429 0.368 0.304
Smoothing equation for ln x _{HBr} = 104.3866 - Standard error	use bet 146.933/ ^{in x} HBr	ween 288 (T/100) about t	3.15 K and 33 - 51.0831 lr the regressio	33.15 K : n(T/100) on line = 1	$.61 \times 10^{-2}$
1-Octanol; C ₈ H ₁₈ O; [111-87-5]	15 25 30 40 50 * 60	288.15 298.15 303.15 313.15 323.15 333.15	1.08 0.91 0.772 0.474	0.519 0.476 0.436 0.322	0.518 0.497 0.479 0.433 0.379 0.322
Smoothing equation for ln ^x _{HBr} = 80.3287 - 1 Standard error	use bet 12.5332/ ^{1n x} HBr	ween 288 (T/100) about t	8.15 K and 33 - 39.6221 lr the regressio	33.15 K : n(T/100) on line = 4	.23 × 10 ⁻³
1-Nonanol; C ₉ H ₂₀ O; [143-08-8]	15 25 30 40 50 60 70 80	288.15 298.15 303.15 313.15 323.15 333.15 343.15 353.15	1.05 0.797 0.481 0.242	0.512 0.444 0.325 0.195	0.511 0.508 0.494 0.449 0.388 0.321 0.255 0.196
Smoothing equation for ln x _{HBr} = 117.492 - 1 Standard error	66.5975/	(T/100)	- 57.023 ln(т/100)	.80 × 10 ⁻³
1-Decanol; C ₁₀ H ₂₂ O; [112-30-1]	15 25 30 40 50 60 70 80 90 100 110 120 130 140	288.15 298.15 303.15 313.15 333.15 343.15 353.15 363.15 363.15 383.15 393.15 403.15 413.15	1.06 0.94 0.89 0.771 0.54 0.39 0.303 0.124 0.063	0.515 0.485 0.471 0.435 0.351 0.281 0.233 0.110 0.059	0.468 0.434 0.398 0.359 0.317 0.273 0.229 0.186 0.147 0.112 0.082 0.059
^{nbr} Standard error	28.034/(in x _{HBr}	T/100) + about t	220.254 ln(the regression	$T/100) - 3^{\circ}$ on line = 6	
The solubility values a smoothed data fit.	at 288.1	5 K and	373.15 K wer	e omitted :	from the
* calculated by the co	mpiler.				

COMPONENTS:		ORIGINAL ME	ASUREMENTS	:
(1) Hydrogen bromide; HBr	;;	Fernandes,	J. B.	
[10035-10-6] (2) Alkanols		J. Chem. En 377-379.	g. Data <u>19</u>	<u>72</u> , 17,
EXPERIMENTAL VALUES:	:/°C T/K n ₁	Mole ratio HBr ^{/n} alcohol	Mole* fraction ^x HBr	Smoothed* mole fraction ^x HBr
1 1 1 1 1 1	25 298.15 40 313.15 50 323.15 60 333.15 70 343.15 80 353.15 90 363.15 90 363.15 10 383.15 20 393.15 30 403.15 40 413.15 50 423.15 60 433.15	0.79 0.54 0.391 0.312 0.132 0.052 0.031	0.471 0.441 0.351 0.281 0.238 0.117 0.050 0.030 3.15 K :	0.441 0.423 0.386 0.285 0.2232 0.184 0.142 0.107 0.079 0.057 0.041 0.028
<pre>Smoothing equation for use</pre>	943/(T/100) * _{HBr} about 60 333.15 70 343.15	- 55.062 ln(the regressi 0.43	T/100) on line ≈ 0.301	3.64×10^{-2} 0.301 0.271
	80 353.15 90 363.15 00 373.15 10 383.15 20 393.15 30 403.15 40 413.15 50 423.15 60 433.15	0.306 0.057 0.029	0.234 0.054 0.028	0.234 0.196 0.159 0.125 0.097 0.073 0.054 0.039 0.028
Smoothing equation for use ln x _{HBr} = 116.547 - 172. HBrStandard error in	between 33 97/(T/100) ^{A ×} HBr about	3.15 K and 43 - 54.702 ln(T the regressi	3.15 K : /100) on line =	5.76 × 10 ⁻⁺
1 1 1	60 333.15 70 343.15 80 353.15 90 363.15 00 373.15 10 383.15 20 393.15 30 403.15 40 413.15	0.461 0.236 0.051	0.316 0.191 0.049	0.316 0.245 0.191 0.150 0.119 0.094 0.075 0.061 0.049
Smoothing equation for use ln * _{HBr} = 9.991 - 1.1 * calculated by the compil	e between 33 53/(T/100)	3.15 K and 41	3.15 к :	0.045

COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>1. Hydrogen bromide; HBr; [10035-10-6]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.		
2. 1-Octanol; C ₈ H ₁₈ O; [111-87-5]	J. Appl. Chem. 1970, 20, 109 - 115.		
	<u> </u>		
VARIABLES: m/r , 212 15 - 202 15	PREPARED BY:		
T/K: 213.15 - 293.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard		
	(smoothed data calculated by H.L. Clever)		
EXPERIMENTAL VALUES: T/K MO1 R	atio Mol Fraction		
ⁿ HBR/ ⁿ C			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
233.15 2.34			
243.15 2.04			
253.15 1.7			
263.15 1.4 273.15 1.2			
293.15 1.09			
The mole fraction solubilities were ca compiler.	alculated from the mole ratio by the		
-	288/(T/100) + 0.2867 ln(T/100)		
HBr Standard error about a	regression line = 5.12×10^{-3}		
T/K M	Nol Fraction		
	X _{HBr}		
213.15 223.15	0.820 0.759		
233.15	0.708		
243.15	0.664		
253.15	0.627		
263.15 273.15	0.594 0.566		
283.15	0.541		
293.15	0.519		
AUXILIARY	INFORMATION		
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
Hydrogen bromide was passed into a	1. Hydrogen bromide of high quality		
known weight of liquid in a bubbler	was obtained from a cylinder and		
tube at a total pressure measured by a manometer assembly. The gas ab-	passed through a tube at 223 K. For repeat runs it was prepared		
a manometer assembly. The gas ab- sorbed was weighed by re-weighing the			
tube. The temperature was manually	dried by phosphorus pentoxide,		
controlled to within 0.2 K. For full	and stored at 193 K.		
description see Gerrard (2,3).	2. 1-Octanol. Best obtainable speci-		
For temperatures below about 268 K a	men was purified, fractionally		
chemical titration was conducted.	distilled, and attested.		
	ESTIMATED ERROR:		
	$\delta T = 0.2$		
	$\delta X/X = 0.01$		
	REFERENCES:		
	1. Gerrard, W. Research, Lond.		
	$\frac{1954}{2}$, 7, S20.		
	2. Gerrard, W. J. Appl. Chem. Biotechnol. 1972, 22, 623.		
	3. Gerrard, W. "Solubility of		
	Gases and Liquids," Plenum Press,		
	New York, 1976.		

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>1. Hydrogen bromide; HBr; [10035-10-6]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.		
2. 2,2-Dichloroethanol; C ₂ H ₄ OCl ₂ ; [598-38-9]	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.		
VARIABLES:	PREPARED BY:		
T/K: 253.15 - 293.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)		
EXPERIMENTAL VALUES: T/K Mol R	atio Mol Fraction		
ⁿ HBr/ ⁿ C ₂			
253.15 0.88	<u> </u>		
263.15 0.66	0 0.398		
273.15 0.53 283.15 0.43			
293.15 0.35			
The mole fraction solubilities were c compiler.	alculated from the mole ratio by the		
Smoothed Data: ln X _{HBr} = 4.027 - 1.5	06/(T/100) - 4.515 ln (T/100)		
Standard error about	regression line = 3.43×10^{-3}		
	Mol Fraction		
	X _{HBr}		
253.15	0.467		
263.15	0.401		
273.15 283.15	0.346 0.300		
293.15	0.261		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: Hydrogen bromide was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The gas ab- sorbed was weighed by re-weighing the tube. The temperature was man- ually controlled to within 0.2 K. For full description see Gerrard (2,3). For the first two temperatures a chemical titration was conducted.	 SOURCE AND PURITY OF MATERIALS: 1. Hydrogen bromide of high quality was obtained from a cylinder and passed through a tube at 223 K. For repeat runs it was prepared from phosphorus tribromide (1), dried by phosphorus pentoxide, and stored at 193 K. 2. 2,2-Dichloroethanol.Best obtain- able specimen was purified, frac- tionally distilled, and attested. 		
	ESTIMATED ERROR:		
	$\begin{array}{rcl} \delta T/K &= & 0.2 \\ \delta X/X &= & 0.01 \end{array}$		
	REFERENCES :		
	 Gerrard, W. Research, Lond. <u>1954</u>, 7, S20. Gerrard, W. J. Appl. Chem. Biotechnol. 1972, 22, 623. Gerrard, W. "Solubility of Gases and Liquids," Plenum Press, New York, 1976. 		

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen Bromide; HBr; [10035-10-6]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
(2) 2-Chloroethanol; C ₂ H ₅ ClO; [107-07-3]	J. Appl. Chem. <u>1960</u> , 10, 115-121.
VARIABLES:	PREPARED BY:
T/K: 277.35 - 312.15	W. Gerrard
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
	(smoothed data carculated by http: crever)
EXPERIMENTAL VALUES:	
T/K Mol Rat	tio Mol Fraction
$\qquad \qquad $	
277.35 0.776	0.437
281.95 0.744	0.427
285.15 0.715	
289.35 0.682	
294.35 0.638	
297.65 0.599	
307.15 0.541	
312.15 0.509	
The compiler calculated the mole fraction values.	
Smoothed Data: $\ln x_1 = 15.229 - 19.442/(T/100) - 8.864 \ln (T/100)$	
Smoothed Data: In $x_1 = 15.229 = 19.4$	42/(1/100) - 8.864 IN (1/100)
Standard error about	the regression line is 2.20 x 10^{-3}
T/K	Mol Fraction
	<i>x</i> ₁
272.15	
273.15	0.451 0.422
293.15	0.392
303.15	0.362
313.15	0.334
AUXILIARY INFORMATION	
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The liquid component was weighed in a bubbler tube. The amount of gas	(1) Hydrogen bromide. Prepared by adding calculated amount of
absorbed was determined by re-	water to pure phosphorus tri-
weighing to constant weight. The	bromide (1). Dried over P ₂ O ₅
total pressure was barometric, very	2.3
nearly 1 atm (101.325 kPa).	and cooled to 243 K to remove traces of bromine.
	traces of biomine.
	(2) 2-Chloroethanol. Carefully
	purified, and purity rigorously
	attested.
	ESTIMATED ERROR:
	$\delta m / m = 0.005$
	$\delta x_1 / x_1 = 0.005$
	REFERENCES:
	REFERENCES;
	1. Gerrard, W.
	Research, London, <u>1954</u> , 7, S20.

Hydrogen Bromide in	Non-Aqueous Solvents 419
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen bromide; HBr; [10035-10-6]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
(2) 2,2,2-Trichloroethanol; C ₂ H ₃ Cl ₃ O; [115-20-8]	J. Appl. Chem. <u>1960</u> , 10, 115-121.
VARIABLES :	PREPARED BY:
Т/К: 273.15 - 299.45	W. Gerrard
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Rat	
ⁿ HBr ^{/n} C ₂ H	2 ^{c1} 20 ^x 1
273.15 0.192	0.161
275.15 0.186	0.157
279.35 0.163 285.95 0.140	
291.95 0.107	
299.45 0.080	0 0.0741
The compiler calculated the mole frac	tion values.
-	
Smoothed Data: $\ln x_1 = 186.182 - 250$	_
Standard error about	the regression line is 2.74 x 10^{-3}
т/к	Mol Fraction
	<i>x</i> 1
273.15	0.161
283.15	0.130
293.15 303.15	0.0944 0.0630
·	
AUXILIARY	INFORMATION
METHOD ADDADATHS (DDOCEDHDE -	POUNCE AND DUDITY OF MATERIALS.
METHOD/APPARATUS/PROCEDURE: The liquid component was weighed in	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared by
a bubbler tube. The amount of gas	adding calculated amount of
absorbed was determined by re- weighing to constant weight. The	water to pure phosphorus tri- bromide (1). Dried over P ₂ O ₅
total pressure was barometric, very	and cooled to 243 K to remove
nearly 1 atm (101.325 kPa).	traces of bromine.
	(2) 2,2,2-Trichloroethanol.
	Carefully purified, and purity
	rigorously attested.
	ESTIMATED ERROR:
	$\delta x_1 / x_1 = 0.02$
	REFERENCES :
	1. Gerrard, W.
	Research, London, <u>1954</u> , 7, 520.
	<u></u>

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen bromide; HBr; [10035-10-6]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.
<pre>2. 2,2,2-Trichloroethanol;C2H3Cl3O; [115-20-8]</pre>	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.
VARIABLES:	PREPARED BY:
Т/К: 253.15 - 293.15	W. Gerrard
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES: T/K MO1 R	atio Mol Fraction
$\frac{n_{\rm HBr}/n_{\rm C_2}}{2}$	H ₃ Cl ₃ O X _{HBr}
263.15 0.21 273.15 0.17	
283.15 0.15	
293.15 0.14	6 0.127
The mole fraction solubilities were c compiler.	-
Smoothed Data: $\ln X_{HBr} = -101.97 + 1$	41.75/(T/100) + 47.942 ln (T/100)
Standard error about	regression line = 1.53×10^{-3}
. T/K	Mol Fraction X _{HBr}
253.15 263.15	0.234 0.179
273.15	0.149 0.133
283.15 293.15	0.128
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Hydrogen bromide was passed into a known weight of liquid in a bubbler tube at a total pressure measured by a manometer assembly. The gas ab- sorbed was weighed by re-weighing the tube. The temperature was man- ually controlled to within 0.2 K. For full description see Gerrard	 Hydrogen bromide of high quality was obtained from a cylinder and passed through a tube at 223 K. For repeat runs it was prepared from phosphorus tribromide (1), dried by phosphorus pentoxide, and stored at 193 K.
(2,3). For the first two temperatures a chemical titration was conducted.	2. 2,2,2-Trichloroethanol. Best obtainable specimen was purified, fractionally distilled, and attested.
	ESTIMATED ERROR: $\delta T/K = 0.2$ $\delta X/X = 0.005$
	<pre>REFERENCES: 1. Gerrard, W. Research, Lond. 1954, 7, S20. 2. Gerrard, W. J. Appl. Chem. Biotechnol. 1972, 22, 623. 3. Gerrard, W. "Solubility of Gases and Liquids," Plenum Press, New York, 1976.</pre>

.,	a in Non-Aqueous Solvents 421
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen bromide; HBr; [10035-10-6]</pre>	Ahmed, W.; Gerrard, V.; Maladkar, V. K.
2. l,l'-Oxybisoctane or dioctyl ether; C ₁₆ H ₃₄ O; [629-82-3]	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.
VARIABLES:	PREPARED BY:
T/K: 223.15 - 293.15	W. Gerrard
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	Ratio Mol Fraction
ⁿ HBr/	^{'ⁿC₁₆H₃₄O ^XHBr}
223.15 5	5.64 0.849
	0.821
	0.791
	0.766
	2.84 0.740 2.32 0.699
	2.01 0.668
	.53 0.605
The mole fraction solubilities wer compiler.	re calculated from the mole ratio by the
Smoothed Data: $\ln X_{up} = 12.416$ -	- 15.294/(T/100) - 7.145 ln (T/100)
	2
Standard error abo	but regression line 9.83 x 10^{-3}
T/K	Mol Fraction
	x
	X _{HBr}
223.1	
233.1	
243.1 253.1	
263.1	
273.1	.5 0.696
283.1	
293.1	.5
AUXILI	IARY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Hydrogen bromide was passed into a	1. Hydrogen bromide of high quality
known weight of liquid in a bubble	er was obtained from a cylinder and
tube at a total pressure measured	
a manometer assembly. The gas	For repeat runs it was prepared from phosphorus tribromide (1),
absorbed was weighed by re-weighin the tube. The temperature was	dried by phosphorus pentoxide,
manually controlled to within 0.2	
For full description see Gerrard	
(2,3).	 Best obtainable specimen was purified, fractionally distilled,
For temperatures below about 268 K	
chemical titration was conducted.	
	ESTIMATED ERROR:
	$\delta T/K = 0.2$
	$\delta X/X = 0.015$
	REFERENCES:
	1. Gerrard, W. Research, Lond.
	<u>1954</u> , 7, S20. 2. Gerrard, W. J. Appl. Chem.
	Biotechnol. <u>1972</u> , 22, 623.
	3. Gerrard, W. "Solubility of
	Gases and Liquids," Plenum Press,
	New York, 1976.

Hzz Hydrogen bronnae in i	ton-Aqueous oolvenis	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>1. Hydrogen bromide; HBr; [10035-10-6]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.	
2. Acetic Acid; C ₂ H ₄ O ₂ ;	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.	
[64-19-7]	<u> </u>	
VARIABLES:	PREPARED BY:	
T/K: 253.15 - 293.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)	
EXPERIMENTAL VALUES:		
T/K Mol Rat	io Mol Fraction	
ⁿ HBR/ ⁿ C	2 ^H ₄ O ₂ X _{HB} r	
253.15 1.1		
273.15 0.7 283.15 0.6		
293.15 0.4		
The mole fraction solubilities were ca compiler.	alculated from the mole ratio by the	
-	.505/(T/100) - 10.464 ln (T/100)	
	regression line = 7.17×10^{-3}	
۰		
T/K I	Mol Fraction	
	X _{HBr}	
253.15	0.529	
263.15 273.15	0.473 0.420	
283.15	0.371	
293.15 0.326		
AUXILIARY	INFORMATION	
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
Hydrogen bromide was passed into a	1. Hydrogen bromide of high quality	
known weight of liquid in a bubbler tube at a total pressure measured by	was obtained from a cylinder and passed through a tube at 223 K.	
a manometer assembly. The gas	For repeat runs it was prepared	
absorbed was weighed by re-weighing the tube. The temperature was man-	from phosphorus tribromide (1), dried by phosphorus pentoxide,	
ually controlled to within 0.2 K.	and stored at 193 K.	
For full description see Gerrard (2,3).	2. Acetic Acid. Best obtainable specimen was purified, frac-	
For the first two temperatures a	tionally distilled, and attested.	
chemical titration was conducted.		
	ESTIMATED ERROR: $\delta T/K = 0.2$	
	$\delta X/X = 0.015$	
	REFERENCES :	
	1. Gerrard, W. Research, Lond.	
	<u>1954</u> , 7, S20. 2. Gerrard, W. J. Appl. Chem.	
	Biotechnol. <u>1972</u> , 22, 623. 3. Gerrard, W. <u>"Solubility</u> of	
	Gases and Liquids," Plenum Press,	
	New York, 1976.	

Hydrogen Bromide in Non-Aqueous Solvents

	······································
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen bromide; HBr; [10035-10-6]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.
2. Hexanoic acid; C ₆ H ₁₂ O ₂ ; [142-62-1]	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.
VARIABLES:	PREPARED BY:
T/K: 223.15 - 293.15	W. Gerrard
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES: T/K Mol Rat	tio Mol Fraction
ⁿ HBr/ ⁿ C ₆	H ₁₂ O ₂ X _{HBr}
223.15 2.64	
233.15 1.97	
243.15 1.65	
	-
263.15 1.16 273.15 0.91	
283.15 0.80	
293.15 0.66	0.398
The mole fraction solubilities were ca compiler.	alculated from the mole ratio by the
-	.476/(T/100) - 7.435 ln (T/100)
Standard error about :	regression line = 7.33×10^{-3}
T/K I	Mol Fraction
}	X _{HBr}
223.15	0.719
233.15	0.672
243.15	0.624
253.15 263.15	0.576 0.528
273.15	0.483
283.15	0.440
293.15	0.400
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Hydrogen bromide was passed into a	1. Hydrogen bromide of high quality
known weight of liquid in a bubbler	was obtained from a cylinder and
tube at a total pressure measured by	passed through a tube at 223 K.
a manometer assembly. The gas ab- sorbed was weighed by re-weighing the	For repeat runs it was prepared from phosphorus tribromide (1),
tube. The temperature was manually	dried by phosphorus pentoxide,
controlled to within 0.2 K. For full	
description see Gerrard (2,3).	2. Hexanoic acid. Best obtainable
For the first 5 temperatures a chem-	specimen was purified, frac-
ical titration was conducted.	tionally distilled, and attested.
	ESTIMATED ERROR:
	$\delta T/K = 0.2$
	$\delta x/x = 0.015$
	REFERENCES ;
	1. Gerrard, W. Research, Lond.
	<u>1954, 7, 820.</u>
	2. Gerrard, W. J. Appl. Chem.
	Biotechnol. 1972, 22, 623.
	3. Gerrard, W. "Solubility of
}	Gases and Liquids," Plenum Press, New York, 1976.

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen bromide; HBr; [10035-10-6]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.		
(2) Haloalkanes	J. Appl. Chem. <u>1970</u> , 20, 109-115.		
VARIABLES:	PREPARED BY:		
T/K: 233.15 - 293.15 Total P/kPa : 101.325 (1 atm)	W. Gerrard		
EXPERIMENTAL VALUES: T/K	Mole ratio Mole* Smoothed** ⁿ HBr ^{/n} haloalk. ^x HBr ^x HBr		
253. 263. 273.	50.2180.1790.17450.1420.1240.11950.0930.08510.083450.0600.05660.059850.0430.04120.0438		
Smoothing equation: $\ln x_{\text{HBr}} = -7.132 + 17.892/(T/100) - 2.224 \ln(T/100)$ Standard error in x_{HBr}^{+} about the regression line = 6.19 × 10 ⁻³			
263.1 273.1	50.3280.2470.24850.2140.1760.17550.1450.1270.12750.1030.0930.093750.0780.0720.070850.0560.0530.054450.0450.0430.0425		
<pre>Smoothing equation: ln x_{HBr} = -7.140 + 16.283/(T/100) - 1.462 ln(T/100) Standard error in x_{HBr} about the regression line = 1.26 × 10⁻³ * calculated by the compiler ** smoothing equation and smoothed values were calculated by H.L. Clever</pre>			
	INFORMATION		
METHOD/APPARATUS/PROCEDURE Hydrogen bromide was passed into a known weight of pure liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re- weighing the bubbler tube. The temperature was manually controlled to within 0.2 K. For full description see Gerrard (2,3). For temperatures below about 268 K a chemical titration was performed.	<pre>SOURCE AND PURITY OF MATERIALS: 1. Hydrogen bromide. High quality HBr was obtained from a cylinder and passed through a tube at 223 K. For repeat runs it was prepared from phosphorus tribromide (1), dried by phosphorus pentoxide, and stored at 193 K. 2. Haloalkanes. Best obtainable specimens were purified, fraction- ally distilled and attested. ESTIMATED ERROR:</pre>		
REFERENCES:	· · · · · · · · · · · · · · · · · · ·		
1. Gerrard, W. Research, Lond. <u>1954</u> , 7, S20.			
2. Gerrard, W. J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623-650.			
 Gerrard, W. "Solubility of Gases and Liquids" Plenum Press, New York, 1976. 			

	425
COMPONENTS: (1) Hydrogen bromide; HBr; [10035-10-6]	ORIGINAL MEASUREMENTS: Ahmed, W.; Gerrard, W.; Maladkar, V. K.
(2) Haloalkanes	J. Appl. Chem. <u>1970</u> , 20, 109-115.
EXPERIMENTAL VALUES:	
Т,	/K Mole ratio Mole* Smoothed** ⁿ HBr ^{/n} haloalk. fraction mole fraction
	HBr naloalk. ^x HBr ^x HBr
· 4·	3.15 0.19 0.160 0.165 3.15 0.155 0.134 0.129
253	3.15 0.112 0.101 0.0991
263	3.15 0.085 0.078 0.0749 3.15 0.055 0.052 0.0560
28	3.15 0.042 0.040 0.0415
29:	3.15 0.033 0.032 0.0305
Smoothing equation: ln x _{HBr} = 35.0 Standard error in x _{HBr} about	021 - 40.580/(T/100) - 22.935 ln(T/100) the regression line = 4.65 × 10 ⁻³
1,2-Dichloroethane; C ₂ H ₄ Cl ₂ ; 23	3.15 0.60 0.375 0.374
[107-06-2] 24 2 24	3.15 0.3/5 0.2/3 0.2/4
25.	3.15 0.250 0.200 0.202 3.15 0.180 0.153 0.150
273	3.15 0.125 0.111 0.112
Smoothing equation: ln x _{HBr} = 13.1 Standard error in x _{HBr} about	110 - 10.003/(T/100) - 11.581 ln(T/100) the regression line = 2.96 × 10 ⁻³
1-Chlorooctane; C.HCl; 213	3.15 2.00 0.667 0.704
[111-85-3] 017 223	3.15 1.45 0.592 0.558
	3.15 0.85 0.459 0.448 3.15 0.58 0.367 0.363
	3.15 0.43 0.301 0.297
	3.15 0.31 0.237 0.245 3.15 0.24 0.194 0.204
	3.15 0.20 0.167 0.171 3.15 0.18 0.153 0.144
Smoothing equation: ln × _{HBr} = 2.17 Standard error in × _{HBr} about _{HBr}	76 + 1.598/(T/100) - 4.329 ln(T/100) the regression line = 2.21 × 10 ⁻²
1-Bromooctane; C ₈ H ₁₇ Br; 233	3.15 0.750 0.429 0.432
[111-03-1] 243	3.15 0.488 0.328 0.324 3.15 0.330 0.248 0.246
263	3.15 0.231 0.188 0.190
	3.15 0.164 0.141 0.148 3.15 0.145 0.127 0.117
	3.15 0.100 0.0909 0.094
Smoothing equation: ln x _{HBr} = 0.84 Standard error in x _{HBr} about	425 + 5.261/(T/100) - 4.653 ln(T/100) the regression line = 6.91 × 10 ⁻³
1 Indonatane C H I. 213	3.15 2.4 0.706 0.725
	3.15 2.4 0.706 0.725 3.15 1.47 0.595 0.581
233	0.479 0.467
	3.15 0.43 0.301 0.304
	3.15 0.32 0.242 0.247 3.15 0.25 0.200 0.201
283	0.15 0.19 0.160 0.164
293	3.15 0.16 0.138 0.134
Smoothing equation: ln × _{HBr} = 10.2 Standard error in × _{HBr} about	$252 - 8.491/(T/100) - 8.707 \ln(T/100)$ the regression line = 1.12×10^{-2}
<pre>* calculated by the compiler ** smoothing equation and smoothe</pre>	ed values were calculated by H.L. Clever

COMPONENTS:		ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen bromide; HBr; [10035-10-6]</pre>		Howland, J. J.; Miller, D. R. Willard, J. E.		
(2) Trichloromethane or c CHCl ₃ ; [67-66-3]	hloroform;	J. Am. Chem. Soc. <u>1941</u> , 63, 2807 - 2811.		
VARIABLES: T/K: 273.15 - 298.15 P/kPa: 20.66 - 88.53 (155 - 664 mmHg)		PREPARED BY: W. Gerrard		
EXPERIMENTAL VALUES:				
T/K Pressure Range Pl/mmHg	Number o: Determinatio			
273.15 294 - 511	3	9.92 + 0.03 0.0734		
288.15 155 - 407	5	7.17 + 0.03 0.0545		
298.15 210 - 664	8	5.97 ± 0.03 0.0454		
Henry's constant, K/(mm	Hg) ⁻¹ = $x_1/(1)$	P ₁ /mmHg).		
² Values of the mole frac calculated by the compi		ity at 101.325 kPa (1 atm, 760 mmHg)		
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: A mercury manometer was a an absorption bulb. The added to the bulb, and th pressure was determined. sure, p_2° , was used to cal gas partial pressure, p_1 , total pressure, p_t , measur manometer: $p_1 = p_t - p_2^{\circ}(1 - x_1)$.	solvent was the vapor This pres- culate the from the tred by the	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared by passing hydrogen and bromine over a hot spiral of platinum. Residual bromine was removed by mercury, and hydrogen by freezing the HBr in liquid air trap. (2) Trichloromethane. Merck and Co. Technical grade, purified and distilled. 		
The amount of gas absorbe measured weight of soluti	on with-	ESTIMATED ERROR:		
drawn as a sample, was de by a chemical titration.	etermined	$\delta K/K = 0.01$		
The heat of solution was				
to be (-3.26 <u>+</u> 0.30) kcal (-13.64 kJ mol ⁻¹).	. mol ⁻¹	REFERENCES :		

COMFONENTS: (1) Hydrogen bromide; HBr; [10035-10-6]	ORIGINAL MEASUREMENTS: Howland, J. J.; Miller, D. R. Willard, J. E.
<pre>(2) Tetrachloromethane; CCl₄; [56-23-5]</pre>	J. Am. Chem. Soc. <u>1941</u> , 63, 2807 - 2811.
VARIABLES:	PREPARED BY:
T/K: 273.15 - 298.15 P/kPa: 39.73 - 73.99 (298 - 555 mmHg)	W. Gerrard
EXPERIMENTAL VALUES:	
T/K Pressure Range Number o P _l /mmHg Determinati	
273.15 304 - 430 2	8.26 + 0.01 0.0628
288.15 298 - 555 3	5.95 ± 0.02 0.0452
298.15 345 - 517 2	5.03 + 0.02 0.0382
¹ Henry's constant, K/(mmHg) ⁻¹ = x ₁ /(² Values of the mole fraction solubil calculated by the compiler.	-
	INFORMATION
METHOD/APPARATUS/PROCEDURE: A mercury manometer was attached to an absorption bulb. The solvent was added to the bulb, and the vapor pressure was determined. This pres- sure, p_2^0 , was used to calculate the gas partial pressure, p_1 , from the total pressure, p_t , measured by the manometer: $p_1 = p_t - p_2^0(1 - x_1)$.	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared by passing hydrogen and bromine over a hot spiral of platinum. Residual bromine was removed by mercury, and hydrogen by freezing the HBr in liquid air trap. (2) Tetrachloromethane. Merck and Co. Technical grade, purified and distilled.
The amount of gas absorbed in a measured weight of solution with-	ESTIMATED ERROR:
drawn as a sample, was determined by a chemical titration.	δK/K = 0.01
The heat of solution was determined	
to be (-3.23 ± 0.30) kcal mol ⁻¹ (-13.51 kJ mol ⁻¹).	REFERENCES:
(-13.51 KD 1001).	

COMPONENTS: (1) Hydrogen Bromide, HBr; [10035-10-6] (2) Alkyl halides VARIABLES: T/K: 253.15 - 293.15 Total P/kPa : 101.325 (1 atm) EXPERIMENTAL VALUES:		ORIGINAL ME. Maladkar, V Thesis, 197 University PREPARED BY W. Ger Mole ratio	. K. 0, of London. : rrard Mole*	Smoothed**
	ⁿ H	HBr ^{/n} alk.hal.	fraction ^X HBr	mole fraction ^X HBr
1-Bromopropane; C ₃ H ₇ Br; 2 [106-94-5] 2 2	73.15 83.15 93.15	0.153 0.0725 0.045	0.133 0.068 0.043	0.129 0.0721 0.0418
Smoothing equation: ln x _{HBr} = -1 Standard error in x _{HBr} about	8.625 the r	+ 45.289/(T/ regression lin	100) ne = 5.57 ×	10 ⁻³
	73.15	0.180	0.153	
[109-65-9] ^{4 9} 1-Bromohexane; C ₆ H ₁₃ Br; 2 [111-25-1]	73.15	0.205	0.170	
Iodomethane; CH ₃ I; [74-88-4] 2 2 2 2 2 2 2 2 3 3	53.15 54.65 63.15 73.15 83.15 93.15 03.15	0.0525		0.227 0.148 0.099 0.069 0.049 0.036
Smoothing equation: ln x _{HBr} = -1. Standard error in x _{HBr} about	3.993 the r	+ 30.165/(T/ regression lin	100) + 0.63 ne = 5.21 ×	8 ln(T/100) 10 ⁻³
[107-08-4] ³ / 2 2 2 2	53.15 63.15 73.15 83.15 93.15 03.15	0.242 0.161	0.245 0.195 0.139 0.097 0.076	0.250 0.187 0.139 0.102 0.074 0.054
Smoothing equation: ln x _{HBr} = 36 Standard error in x _{HBr} about	.916 - the r	41.575/(T/10 regression lin	00) - 23.55 ne = 7.42 ×	$7 \ln(T/100)$ 10 ⁻³
<pre>* calculated by the compiler ** smoothing equation and smoot</pre>	hed va	lues were cal	lculated by	H.L. Clever
AUXIL	IARY I	NFORMATION		
METHOD/APPARATUS/PROCEDURE The gas was passed into a weighed amount of liquid in a bubbler tube as described by Ahmed <i>et al.</i> (1). Temperature control was manual to within 0.5 K. Pressure control was within 1 mmHg. Because of the volatility of the alkyl halides,		and passed before use 2. Alkyl hal:	promide was obtained fr d through a e.	of best om a cylinder, tube at 223 K specimens were
and especially for measurements a the low temperatures, the hydroge bromide content was determined by quantitative addition of water to the bubbler assembly, and titrat:	at en y o	chloride, The purit:	and freshl les were at procedures.	y distilled. tested by the
with silver nitrate.	_	$\delta x_{\rm HBr} / x_{\rm HBr}$	= 0.01 -	0.02
The data were cited in reference	(2)	REFERENCES: 1. Ahmed, W.; Maladkar, J. Appl. C		
		2. Gerrard, W and Liquic New York <u>1</u>	is" Plenum 1	lity of Gases Press,

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen Bromide; HBr; [10035-10-6]	Maladkar, V. K.
2. Dibromoalkanes; C _n H _{2n} Br ₂ ;	Thesis, <u>1970</u> University of London
VARIABLES:	PREPARED BY:
T/K: 273.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard
EXPERIMENTAL VALUES:	
T/K Mol R HBr/ ⁿ Cn	atio Mol Fraction H ₂₂ Br ₂ X _{HBr}
	$c_{2} C_{2} C_{4} B C_{2}; [106-93-4]$
273.15 0.1	
	ne; C ₃ H ₆ Br ₂ ; [109-64-8]
	70 0.145
	e; C ₄ H ₈ Br ₂ ; [110-52-1] 99 0.166
273.15 0.2	e; $C_6 H_{12} Br_2$; [629-03-8]
	45 0.197
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The gas was passed into the weighed	SOURCE AND PURITY OF MATERIALS: 1. Hydrogen bromide. Sample was of
amount of liquid in a bubbler tube	best quality, obtained from a
as described by Ahmed et al. (1). Temperature control was manual to	cylinder, and passed through a tube at 233 K before use.
within 0.2 K, and pressure control to within 1 mmHg.	2. Dibromoalkanes. The best speci-
The data were cited in reference 2.	mens were washed and dried, and fractionally distilled under
	reduced pressure.
	ESTIMATED ERROR:
	$\delta x_1 / x_1 = 0.005$
	REFERENCES :
	<pre>1. Ahmed, W.; Gerrard, W.; Maladkar, V. K.</pre>
	J. Appl. Chem. <u>1970</u> , 20, 109.
	 Gerrard, W. "Solubility of Gases and Liquids" Plenum Press, New York, 1976.

Hydrogen Bromide in Non-Aqueous Solvents

COMPONENTS: (1) Hydrogen bromide; HBr; [10035-10-6]	ORIGINAL MEASUREMENTS: Ahmed, W.; Gerrard, W.; Maladkar, V. K.	
(2) Halobenzenes	J. Appl. Chem. <u>1970</u> , 20, 109-115.	
VARIABLES:	PREPARED BY:	
T/K: 233.15 - 293.15 Total P/kPa : 101.325 (1 atm)	W. Gerrard	
EXPERIMENTAL VALUES:	Mole ratio Mole* Smoothed**	
	Mole ratio Mole* Smoothed** ⁿ HBr ^{/n} halobenz.fraction mole fraction	
	HBr KHBr	
Chlorobenzene; C_H_Cl; 233.1	5 0.48 0.324 0.333	
Chlorobenzene; C ₆ H ₅ Cl; 233.1 [108-90-7] 243.1	5 0.32 0.242 0.233	
253.1		
263.1 273.1		
273.1		
293.1		
Smoothing equation: ln x _{HBr} = -9.812 Standard error in x _{HBr} about th	+ 20.312/(T/100) e regression line = 6.06 × 10 ⁻³	
Bromobenzene; $C_6H_5Br;$ 233.1	5 0.610 0.379 0.386	
[100-00-1] 243.1		
253.1	5 0.230§ 0.187 0.183	
	5 0.155 0.134 0.136 5 0.115 0.102 0.106	
273.1 283.1	5 0.115 0.103 0.106 5 0.095 0.0868 0.0858	
293.1		
<pre>§ printed in error as 0.130 in origi Smoothing equation: ln x_{HBr} = -41.07 Standard error in x_{HBr} about th HBr</pre>	nal paper. 6 + 61.493/(T/100) + 16.240 ln(T/100) e regression line = 5.10 × 10 ⁻³	
Iodobenzene; C ₆ H ₅ I; 233.1		
[591-50-4] 243.1		
253.1		
263.1 273.1		
	5 0.110 0.0991 0.101	
293.1		
Smoothing equation: $\ln x_{\text{HBr}} = -8.366 + 17.189/(T/100)$ Standard error in $x_{\text{HBr}}^{\text{HBr}}$ about the regression line = 1.41 × 10 ⁻²		
* calculated by the compiler ** smoothing equation and smoothed	values were calculated by H.L. Clever	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE	SOURCE AND PURITY OF MATERIALS:	
Hydrogen bromide was passed into a	1. Hydrogen bromide. High quality	
known weight of pure liquid in a	HBr was obtained from a cylinder	
bubbler tube at a total pressure	and passed through a tube at 223 K.	
measured by a manometer assembly.	For repeat runs it was prepared	
The absorbed gas was weighed by re-	from phosphorus tribromide,	
weighing the bubbler tube. The	dried by phosphorus pentoxide, and stored at 193 K.	
temperature was manually controlled to within 0.2 K. For the four	and stored at 193 K.	
lowest temperatures the gas	2. Halobenzenes. Best obtainable	
absorbed was determined by a	specimens were purified, fraction-	
chemical titration.	ally distilled and attested.	
The apparatus and procedure are	ESTIMATED ERROR:	
described by Gerrard (1,2).	$\delta T/K = 0.2 \delta x_{HBr}/x_{HBr} = 0.02-0.05$	
REFERENCES:		
 Gerrard, W. J. Appl. Chem. Biot Gerrard, W. "Solubility of Gase New York, 1976. 	echnol. <u>1972</u> , 22, 623–650. s and Liquids" Plenum Press,	
	······································	

COMPONENTS:	
	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen bromide; HBr; [10035-10-6]</pre>	Ahmed, W.; Gerrard, W. Maladkar, V. K.
<pre>2. Nitrobenzene; C₆H₅NO₂; [98-95-3]</pre>	J. Appl. Chem. <u>1970</u> , 20, 109-115.
VARIABLES:	PREPARED BY:
T/K: 263.15 - 293.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES: T/K Mol F	atio Mol Fraction
ⁿ HBr/ ⁿ C	
	252 0.201 171 0.146
	130 0.115
	115 0.103
The mole fraction solubilities were compiler.	calculated from the mole ratio by the
Smoothed Data: $\ln X_{mp} = -145.956$	+ 206.442/(T/100) + 68.114 ln (T/100)
	t Regression Line = 1.84×10^{-3}
Standard Error abou	
T/K	Mol Fraction
	X _{HBr}
263.15	0.202
273.15	0.145
283.15 293.15	0.116 0.103
AUXILIA	RY INFORMATION
AUXILIA METHOD/APPARATUS/PROCEDURE: Hydrogen bromide was passed into a known weight of pure liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re- weighing the bubbler tube. The temperature was manually controlled to within 0.2 K.	SOURCE AND PURITY OF MATERIALS: 1. Hydrogen bromide. High quality HBr was obtained from a cylinder and passed through a tube at 223 K. For repeat runs it was prepared from phosphorus tribromide, dried by phosphorus pentoxide,
METHOD/APPARATUS/PROCEDURE: Hydrogen bromide was passed into a known weight of pure liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re- weighing the bubbler tube. The temperature was manually controlled to within 0.2 K.	 SOURCE AND PURITY OF MATERIALS: 1. Hydrogen bromide. High quality HBr was obtained from a cylinder and passed through a tube at 223 K. For repeat runs it was prepared from phosphorus tribromide, dried by phosphorus pentoxide, and stored at 193 K. 2. Nitrobenzene. Best obtainable specimen was purified, fraction- ally distilled, and attested.
METHOD/APPARATUS/PROCEDURE: Hydrogen bromide was passed into a known weight of pure liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re- weighing the bubbler tube. The temperature was manually controlled to within 0.2 K.	 SOURCE AND PURITY OF MATERIALS: Hydrogen bromide. High quality HBr was obtained from a cylinder and passed through a tube at 223 K. For repeat runs it was prepared from phosphorus tribromide, dried by phosphorus pentoxide, and stored at 193 K. Nitrobenzene. Best obtainable specimen was purified, fraction-
METHOD/APPARATUS/PROCEDURE: Hydrogen bromide was passed into a known weight of pure liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re- weighing the bubbler tube. The temperature was manually controlled to within 0.2 K.	<pre>SOURCE AND PURITY OF MATERIALS: 1. Hydrogen bromide. High quality HBr was obtained from a cylinder and passed through a tube at 223 K. For repeat runs it was prepared from phosphorus tribromide, dried by phosphorus pentoxide, and stored at 193 K. 2. Nitrobenzene. Best obtainable specimen was purified, fraction- ally distilled, and attested. ESTIMATED ERROR:</pre>
METHOD/APPARATUS/PROCEDURE: Hydrogen bromide was passed into a known weight of pure liquid in a bubbler tube at a total pressure measured by a manometer assembly. The absorbed gas was weighed by re- weighing the bubbler tube. The temperature was manually controlled to within 0.2 K.	<pre>SOURCE AND PURITY OF MATERIALS: 1. Hydrogen bromide. High quality HBr was obtained from a cylinder and passed through a tube at 223 K. For repeat runs it was prepared from phosphorus tribromide, dried by phosphorus pentoxide, and stored at 193 K. 2. Nitrobenzene. Best obtainable specimen was purified, fraction- ally distilled, and attested. ESTIMATED ERROR:</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Hydrogen bromide; HBr;	O'Brien, S. J.; Bobalek, E. G.			
[10035-10-6]	t in them for 1940 62			
(a) 1 Matheal 2 mituchengene en e-	J. Am. Chem. Soc. <u>1940</u> , 62, 3227 - 3230.			
(2) 1-Methyl-2-nitrobenzene or o-	3227 - 3230.			
nitrotoluene; C ₇ H ₇ NO ₂ ; [88-72-2]				
VARIABLES:	PREPARED BY:			
т/К: 298.15				
P/kPa: 2.93 - 44.40	W. Gerrard			
(22.0 - 333 mmHg)				
EXPERIMENTAL VALUES:				
T/K Pressure Molality	Henry's Mol Ratio Mol Fraction			
	Constant $n_1/n_2 = x_1$			
p1/mmHg m1/mol kg ⁻¹	k^{1} 1^{\prime} 2 1			
	1.27 0.00310 0.00309			
298.15 22.0 0.0226 28.6 0.0300	1.25 0.00411 0.00410			
43.9 0.0450	1.28 0.00617 0.00613			
60.5 0.0632	1.26 0.00867 0.00859			
147 0.147	1.31 0.0202 0.0198			
333 0.323	1.35 0.0443 0.0424			
(760 0.758	1.32 av. 0.104 $0.0941)^2$			
$\frac{1}{1} \text{ k/atm mol}^{-1} \text{ kg} = (p_1/\text{atm})/(m_1/m_1)$	nol kg ⁻¹)			
² Value calculated by the compile	er from the average value of Henry's			
constant. Use of the high and	low values of Henry's constant			
	988 for the mole fraction solubility			
at one atm (101.325 kPa).				
AUXILIARY	INFORMATION			
	INFORMATION			
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:			
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the	SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide.			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time.	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) e-Nitrotoluene. Stored over 			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> <i>al.</i> (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) o-Nitrotoluenc. Stored over calcium oxide and distilled; 			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> <i>al</i> . (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) e-Nitrotoluene. Stored over 			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> <i>al</i> . (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) o-Nitrotoluenc. Stored over calcium oxide and distilled; 			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) o-Nitrotoluenc. Stored over calcium oxide and distilled; 			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> <i>al</i> . (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) o-Nitrotoluenc. Stored over calcium oxide and distilled; 			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> <i>al</i> . (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened,	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) o-Nitrotoluenc. Stored over calcium oxide and distilled; n²⁰_D, 1.5453. 			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> <i>al</i> . (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) o-Nitrotoluenc. Stored over calcium oxide and distilled; 			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> <i>al</i> . (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened,	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) o-Nitrotoluenc. Stored over calcium oxide and distilled; n²⁰_D, 1.5453. 			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) o-Nitrotoluenc. Stored over calcium oxide and distilled; n²_D, 1.5453. ESTIMATED ERROR: 			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the upper bulb is quantitatively removed	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) o-Nitrotoluenc. Stored over calcium oxide and distilled; n²_D, 1.5453. ESTIMATED ERROR: 			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the upper bulb is quantitatively removed and titrated with NaOH. The HBr	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) o-Nitrotoluenc. Stored over calcium oxide and distilled; n²⁰_D, 1.5453. ESTIMATED ERROR: δT/K = 0.02</pre>			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the upper bulb is quantitatively removed and titrated with NaOH. The HBr partial pressure is calculated from	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) o-Nitrotoluene. Stored over calcium oxide and distilled; n²⁰, 1.5453. ESTIMATED ERROR:</pre>			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the upper bulb is quantitatively removed and titrated with NaOH. The HBr partial pressure is calculated from the bulb volume and the number of	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) o-Nitrotoluenc. Stored over calcium oxide and distilled; n²⁰, 1.5453. ESTIMATED ERROR:</pre>			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> <i>al.</i> (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the upper bulb is quantitatively removed and titrated with NaOH. The HBr partial pressure is calculated from the bulb volume and the number of moles of HBr assuming ideal gas	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) o-Nitrotoluenc. Stored over calcium oxide and distilled; n²⁰, 1.5453. ESTIMATED ERROR:</pre>			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> <i>al.</i> (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the upper bulb is quantitatively removed and titrated with NaOH. The HBr partial pressure is calculated from the bulb volume and the number of moles of HBr assuming ideal gas behavior. A weighed solution sample	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) o-Nitrotoluene. Stored over calcium oxide and distilled; n²⁰, 1.5453. ESTIMATED ERROR: δT/K = 0.02 REFERENCES: 1. Saylor, J. H. J. Am. Chem. Soc. <u>1937</u>, 59, 1712.</pre>			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the upper bulb is quantitatively removed and titrated with NaOH. The HBr partial pressure is calculated from the bulb volume and the number of moles of HBr assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) o-Nitrotoluene. Stored over calcium oxide and distilled; n²⁰, 1.5453. ESTIMATED ERROR: δT/K = 0.02 REFERENCES: 1. Saylor, J. H. J. Am. Chem. Soc. <u>1937</u>, 59, 1712. 2. O'Brien, S. J.; Kenny, C. L.</pre>			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien <i>et</i> <i>al.</i> (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the upper bulb is quantitatively removed and titrated with NaOH. The HBr partial pressure is calculated from the bulb volume and the number of moles of HBr assuming ideal gas behavior. A weighed solution sample	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) o-Nitrotoluenc. Stored over calcium oxide and distilled; n²⁰_D, 1.5453.</pre> ESTIMATED ERROR:			
METHOD/APPARATUS/PROCEDURE: The method and apparatus are those of Saylor (1) as modified by O'Brien et al. (2). The main difference is the use of a 1 to 2 day instead of a 5 to 7 day equilibration time. The apparatus consists of two bulbs which are separated by a tap. The solvent is partially saturated with the gas, and the solution added to the lower bulb. The bulbs are partially evacuated, the tap opened, and the whole apparatus put in a thermostat from 1 to 2 days. The tap is closed. The HBr in the upper bulb is quantitatively removed and titrated with NaOH. The HBr partial pressure is calculated from the bulb volume and the number of moles of HBr assuming ideal gas behavior. A weighed solution sample is removed from the lower bulb and	<pre>SOURCE AND PURITY OF MATERIALS: (1) Hydrogen bromide. Prepared from bromine and tetralin, and passed over red phosphorus and then phosphorus pentoxide. (2) o-Nitrotoluene. Stored over calcium oxide and distilled; n²⁰, 1.5453. ESTIMATED ERROR: δT/K = 0.02 REFERENCES: 1. Saylor, J. H. J. Am. Chem. Soc. <u>1937</u>, 59, 1712. 2. O'Brien, S. J.; Kenny, C. L.</pre>			

(1) Hydrogen			ORIGINAL ME	ACTIDE MENTER -	
	COMPONENTS: (1) Hydrogen bromide; HBr; [10035-10-6]		O'Brien,	S. J.; Bob	alek, E. G.
<pre>(2) 1-Methyl-3-nitrobenzene or m- nitrotoluene; C₇H₇NO₂; [99-08-1]</pre>		J. Am. Chem. Soc. <u>1940</u> , 62, 3227 - 3230.			
VARIABLES:			PREPARED BY	:	
T/K: P/kPa:	298.15 4.29 - 65. (32.2 - 49			W. Ger	rard
EXPERIMENTAL VAL	UES:		·	<u></u>	
T/K	Pressure P1 ^{/mmHg}	-	Henry's Constant k ¹	Mol Ratio ⁿ l ^{/n} 2	Mol Fraction ^x 1
298.15	32.2 73.5 116 402 493	0.0315 0.0688 0.112 0.374 0.449	1.35 1.41 1.36 1.42 1.45	0.00432 0.00943 0.0154 0.0513 0.0616	0.00430 0.00935 0.0152 0.0488 0.0580
	(760	0.704	1.42 av.		$0.0881)^{2}$
	(780	0.704	1.42 dv.	0.0900	0.0001)
		AUXILIARY	INFORMATION		
METHOD /APPARATUS	PROCEDURE :	AUXILIARY			TERIALS :
The method an Saylor (1) as al . (2). The	d apparatus modified h main diffe 2 day inst	s are those of by O'Brien <i>et</i> erence is the tead of a 5 to	SOURCE AND (1) Hydro bromi succe	PURITY OF MA gen bromid ne and tet	e. Prepared from ralin, and passed er red phosphorus
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul	d apparatus modified H main diffe 2 day inst ration time consists c arated by a rtially sat the solutic b. The bul	s are those of by O'Brien <i>et</i> erence is the tead of a 5 to a. bf two bulbs a tap. The turated with bn added to lbs are	SOURCE AND (1) Hydro bromi succe and p (2) m-Nit calci	PURITY OF MA gen bromid ne and tet ssively ov hosphorus ro toluene um oxide,	e. Prepared from ralin, and passed er red phosphorus
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul partially eva and the whole	d apparatus modified H main diffe 2 day inst ration time consists c arated by a rtially sat the solutio b. The bul cuated, the apparatus	s are those of by O'Brien <i>et</i> erence is the tead of a 5 to be. of two bulbs a tap. The turated with bon added to lbs are tap opened, put in a	SOURCE AND (1) Hydro bromi succe and p (2) m-Nit calci	PURITY OF MA gen bromid ne and tet ssively ov hosphorus ro toluene um oxide, 288.50 K,	 e. Prepared from ralin, and passed er red phosphorus pentoxide. . Stored over and distilled,
The method an Saylor (1) as al. (2). The use of a 1 to 7 day equilib The apparatus which are sep solvent is pa the gas, and the lower bul partially eva	d apparatus modified H main diffe 2 day inst ration time consists of arated by a rtially sat the solutio b. The bul cuated, the apparatus om 1 to 2 d osed. The quantitati with NaOH.	a are those of by O'Brien <i>et</i> erence is the tead of a 5 to be of two bulbs a tap. The turated with on added to lbs are tap opened, put in a days. HBr in the ively removed The HBr	SOURCE AND (1) Hydro bromi succe and p (2) <i>m</i> -Nit calci m.p.	PURITY OF MA gen bromid ne and tet ssively ov hosphorus ro toluene um oxide, 288.50 K, ERROR: &T/K	 e. Prepared from ralin, and passed er red phosphorus pentoxide. . Stored over and distilled,

Hydrogen Bromide in Non-Aqueous Solvents

COMPONENTS:	ORIGINAL MI	EASUREMENTS:	
(1) Hydrogen bromide; HBr;	Frazer, M.	J.; Gerrard,	w.
[10035-10-6]	Nature <u>196</u> 4	<u>4</u> , 204, 1299	- 1300
(2) Thiols, thioethers, thiophene and tetrahydrothiophene			
VARIABLES: T/K: 273.15	PREPARED BY	Y:	
Total P/kPa : 101.3 (barometric, nearly 1 atm)	W. Ge	errard	
EXPERIMENTAL VALUES:	· ' <u></u>	· · · · · · · · · · · · · · · · · · ·	
	т/к	Mole ratio ⁿ HBr ^{/n} 2	Mole fraction* [×] HBr
2-Propanethiol, (2-propylmercaptan); C ₃ H ₈ S; [75-33-2]	273.15	0.29	0.225
1-Butanethiol, (<i>l-butylmercaptan</i>); C ₄ H ₁₀ S; [109-79-5]	273.15	0.35	0.259
Benzenethiol, (thiophenol, mercapto- benzene); C ₆ H ₆ S; [108-98-5]	273.15	0.18	0.153
2,2'-Thiobispropane, (d11sopropyl sulfide); C ₆ H ₁₄ S; [625-80-9]	273.15	2.76	0.734
1,1'-Thiobisbutane, (<i>dibutyl sulfide</i>) C ₈ H ₁₈ S; [544-40-1]	; 273.15	2.53	0.717
1,1'-Thiobisbenzene, (diphenyl sulfid C ₁₂ H ₁₀ S; [139-66-2]	e); 273.15	0.23	0.187
Thiophene, (thiofuran); C ₄ H ₄ S; [110-02-1]	273.15	0.14	0.123
Tetrahydrothiophene; C ₄ H ₈ S; [110-01-0] 273.15	1.0 (white solid	formed)
* calculated by the compiler			
	INFORMATION		
METHOD/APPARATUS/PROCEDURE		PURITY OF MAT	FRIALS
The gas was passed into a weighed amount of solvent (about 2 g) in a	1. Hydrogen	bromide. Se	
U-tube kept at 273.15 K. The pres- sure was atmospheric, approximately 1 atm. The maximum amount of gas absorbed was determined by weighing.	2. Sulfur compounds. The purities were checked by boiling points and gas-liquid chromatography. After each measurement of solubility the gas was removed by treatment with water, the liquid was recovered and identified with the original compound. ESTIMATED ERROR: REFERENCES:		
		,	

nyarogen bronnae na	455 Addebus 501/ents
COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen Bromide; HBr;	Ahmed, W.
[10035-10-6]	Thesis, 1970
2. Sulfur dioxide; SO ₂ ; [7446-09-5]	University of London
2	
VARIABLES: T/K: 228.15 - 253.15	PREPARED BY:
Total P/kPa: 101.325 (1 atm)	W. Gerrard
	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
	tio Mol Fraction
ⁿ HBr/ ^r	SO ₂ X _{HBr}
228.15 0.25	
233.15 0.22	
243.15 0.13	
248.15 0.09 253.15 0.05	
······································	* _**** <u>*******************************</u>
The mole fraction solubilities were c compiler.	alculated from the mole ratio by the
-	C7 246/(m/100) 207 000 10 (m/100)
	67.346/(T/100) - 207.280 ln (T/100)
Standard Error About	Regression Line = 8.03×10^{-4}
T/K	Mol Fraction x
	X _{HBr}
223.15	0.204
233.15	0.184
243.15 253.15	0.116 0.0541
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Hydrogen bromide was passed into the	1. Hydrogen Bromide. Good quality
liquid sulfur dioxide to saturation,	gas was obtained from a cylinder.
as determined by repeated observa-	It was passed through a tube at
tions. The final liquid was quan- titatively treated with water, and	223 K before use.
the sulfurous acid and total bromide	2. Sulfur dioxide. The best speci-
was determined by titrations.	men was passed through tubes at
	263 K, and liquefied at the required temperature.
	ESTIMATED ERROR:
	$\delta T/K = 0.2$
	$\delta X_1 / X_1 = 0.005$
	REFERENCES :
	1. Ahmed, W.; Gerrard, W.;
	Maladkar, V. K.
	J. Appl. Chem. <u>1970</u> , 20, 109.
	1

450 Hydrogen Bronnde m	Non-Aqueous Solvenis
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen bromide; HBr; [10035-10-6]</pre>	Gerrard, W.; Mincer, A. M. A.; Wyvill, P. L.
<pre>(2) Boric acid, tripentyl ester or tripentyl borate; C₁₅H₃₃BO₃; [621-78-3]</pre>	J. Appl. Chem. <u>1960</u> , 10, 115-121.
VARIABLES :	PREPARED BY:
т/к: 273.15 - 307.15	1
Total P/kPa: 101.325 (1 atm)	W. Gerrard (smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Ra	tio Mol Fraction
$\underline{\qquad \qquad }^{n} HBr^{/n}C_{15}$	H ₂₂ BO ₂ ^x 1
273.15 0.71	
280.45 0.61 285.95 0.52	
285.55 0.52	
290.65 0.46	
298.35 0.39	
306.05 0.31	
307.15 0.30	0 0.231
The compiler calculated the mole frac	tion values.
Smoothed Data: $\ln x_1 = 51.682 - 66.7$	22/(T/100) - 27.993 ln (T/100)
1	-
Standard error about	the regression line is 3.26×10^{-3}
т/к м	ol Fraction
	^x 1
273.15	0.417
283.15	0.362
293.15 303.15	0.307 0.253
313.15	0.206
AUXILIARY	INFORMATION
METHOD APPARATUS/PROCEDURE	SOURCE AND PURITY OF MATERIALS:
The liquid component was weighed in	(1) Hydrogen bromide. Prepared by
a bubbler tube. The amount of gas	adding calculated amount of
absorbed was determined by re-	water to pure phosphorus tri-
weighing to constant weight. The	bromide (1). Dried over P205
total pressure was barometric, very nearly 1 atm (101.325 kPa).	and cooled to 243 K to remove traces of bromine.
	(2) Denie and two perturbations
	(2) Boric acid, tripentyl ester. Carefully purified, and purity
	rigorously attested.
	ISTIMATED ERROR:
	$\delta x_1 / x_1 = 0.01$
	REFERENCES :
	1. Gerrard, W. Research, London, 1954, 7, S20.
	1

COMPONENTS:	EVALUATOR.
<pre>1. Hydrogen Iodide; HI; [10034-85-2]</pre>	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2. Organic Solvents	Polytechnic of North London, Holloway, London, N7 8DB, U.K.
	January 1989

CRITICAL EVALUATION

The Solubility of Hydrogen Iodide in Organic Solvents.

Alkyl halides

Ahmed, Gerrard & Maladkar (1) reported the solubility at a total pressure of 101.3 kPa over the temperature range 243.15 K to 293.15 K in 1-chlorooctane, 1-bromooctane and 1-iodooctane. Solubility in lower 1-haloalkanes at this total pressure in the range 273.15 K to 303.15 K were also reported by Maladkar (2). The lower alkyl halides which were investigated are: 1-chloropropane, 1-chlorobutane, bromoethane, 1-bromopropane, 1-bromobutane, iodomethane, iodoethane, 1-iodopropane. Mole fraction solubilities at a total pressure of 101.3 kPa show an almost consistent pattern with values increasing with chain length for each series of halides and with values increasing from chloride to bromide to iodide for a fixed alkyl group. 1-Iodopropane spoils the pattern, however, as the mole fraction solubility in this solvent is less than in iodoethane.

Under the experimental conditions the difference between solubility at 101.3 kPa total pressure and solubility at 101.3 kPa partial pressure of hydrogen iodide can be neglected in the case of the 1-halooctanes. The lower halides have, however, significant vapor pressure at the temperatures of measurement. The vapor pressure of iodomethane at 303.15 K, the highest temperature of measurement, is 64.0 kPa. That of 1-bromoethane is 53.3 kPa at 294.15 K. Other alkyl halides have lower vapor pressures at the highest temperature of the measurement of solubility. Estimation of mole fraction solubility at a partial pressure of 101.3 kPa becomes more unreliable the greater the vapor pressure of the solvent. The evaluator has used two approximate methods to correct the measurements to give solubility at a partial pressure of 101.3 kPa. One method makes use of the relationship :

$$x_{\rm HI} = \frac{101.3 \ x_{\rm HI}}{101.3 \ - (1 - x_{\rm HI}') P_{\rm s}^{\circ}/k Pa}$$

 $x_{\rm HI}$ is the mole fraction solubility at a partial pressure of 101.3 kPa. $x_{\rm HI}^{+}$ is the mole fraction solubility at a total pressure of 101.3 kPa. $P_{\rm s}^{\circ}$ is the vapor pressure of pure solvent at the temperature of the solubility measurement.

The other method is based upon the assumption that partial vapor pressures of solute and solvent, s, change with composition of solution according to the Margules relationships. 1.e.

$$P_{HI} = P_{HI}^{\circ} x_{HI} \exp(\alpha x_{s}^{2})$$

$$P_{s} = P_{s}^{\circ} x_{s} \exp(\alpha x_{HI}^{2})$$

$$total = P_{HI} + P_{s}$$

 $\mathtt{P}^{\circ}_{\mathrm{HI}}$ is the vapor pressure of pure liquid hydrogen iodide.

Р

In the case of the systems under consideration the two methods of correction give very similar values of mole fraction solubility when the vapor pressure of pure solvent is less than about 13.3 kPa (100 mmHg). The vapor pressure of pure 1-chlorobutane is 11.1 kPa (83.5 mmHg) at 293.15 K. The mole fraction solubility at a total pressure of 101.3 kPa from Maladkar's measurements is 0.160. The corrected value for a partial pressure of 101.3 kPa according to the first method of correction is 0.218. The second method gives a value of 0.217.

COMPONENTS.

1.	Hydrogen Iodia	de;	HI;
	[10034-85-2]		

2. Organic Solvents

EVALUATOR.

Peter G. T. Fogg Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London, N7 8DB, U.K.

January 1989

CRITICAL EVALUATION:

Corrected values obtained by either method maintain a similar pattern to the uncorrected values in cases in which the vapor pressure of pure solvent is less than 13.3 kPa (100 mmHg). The mole fraction solubility usually increases with carbon number for a particular temperature and halide series and also from chloride to iodide for a fixed carbon number. The order of the 1-iodopropane and iodoethane is, however, again inverted. pattern does not persist with the corrected values of the more volatile The solvents.

The data for the 1-halooctanes published by Ahmed et al. and measured at six temperatures are self-consistent and may be accepted on a tentative basis. The data for the more volatile solvents, obtained at three temperatures in each case, may be accepted as approximating to a general pattern for these solvents but individual measurements should be used with caution.

Solvents containing oxygen

The solubility in 1-octanol was measured by Ahmed, Gerrard & Maladkar (1) at a total pressure of 101.3 kPa in range 243.15 K to 293.15 K. Mole fraction solubility is high in this solvent which has a vapor pressure of less than 1 mmHg under the conditions of measurement. The pattern of data is similar to that for hydrogen chloride and bromide in this solvent. Measurements may be accepted on a tentative basis.

Ahmed, Gerrard & Maladkar (1) also measured the solubility of hydrogen lodide in 1,1'-oxybisoctane at a total pressure of 101.3 kPa over a temperature range of 243.15 K to 283.15 K. Measured values are very high relative to a reference line based upon the Raoult's law equation. The variation in mole fraction solubility over the temperature range is small and almost linear with change in temperature. The value is 0.868 at 243.15 K and 0.723 at 283.15 K. The reference value for hydrogen iodide at 283.15 K from the Raoult's law equation is 0.138. The behaviour of hydrogen chloride and bromide in dialkyl ethers is similar. Other measurements of solubilities of hydrogen iodide in ethers are not available for comparison. The data should be accepted on a tentative basis.

Ahmed, Gerrard & Maladkar (1) published solubilities at a total pressure of 101.3 kPa in acetic acid over the range 259.15 K to 283.15 K and in hexanoic acid over the range 243.15 K to 293.15 K. In common with dissolution of hydrogen halides in other solvents containing oxygen, solubility of hydrogen iodide in these two acids is high relative to the reference line based on the Raoult's law equation. The mole fraction solubility of hydrogen iodide in acetic acid, as well as that of hydrogen chloride and bromide, is less than that in hexanoic acid. These measurements may be accepted on a tentative basis.

Solvents containing sulfur

Frazer & Gerrard (3) reported solubilities in thiols and sulfides at 273.15 K and a total pressure of 101.3 kPa. Solubilities at a partial pressure of 101.3 kPa are likely to be close to the measured solubilities. Mole fraction solubilities are above the value from the Raoult's law equation and increase in the order: benzenethiol < 1,1'-thiobisbenzene = 2~propanethiol < 1-butanethiol

< 1,1'-thiobisbutane < 2,2'-thiobispropane.

Solubilities in the last named solvents are very high with mole fraction solubilities of 0.743 and 0.761 respectively. Frazer & Gerrard reported a similar pattern of solubilities of hydrogen chloride and of hydrogen bromide in thiols and sulfides. These data may be accepted on a tentative basis.

COMPO	NFN TS :	EVALUATOR.
1.	Hydrogen Iodide; HI; [10034-85-2]	Peter G. T. Fogg Department of Applied Chemistry and Life Sciences,
2.	Organic Solvents	Polytechnic of North London, Holloway, London, N7 8DB, U.K.
1		January 1989

CRITICAL EVALUATION.

Solvents containing boron

Ahmed (^) reported the solubility in trichloroborane at 273.15 K and 256.15 K at a total pressure of 101.3 kPa. Values of the mole fraction solubility, corrected to a partial pressure of 101.3 kPa, are relatively low and fall below the reference line based upon Raoult's law. According to data reported by Ahmed, the pattern of behaviour of hydrogen chloride in this solvent is similar. The general pattern of solubility of hydrogen iodide is likely to be reliable but the two individual measurements should be considered to be semi-quantitative until they are supported by other measurements on the system.

REFERENCES

- Ahmed, W.; Gerrard, W.; Maladkar, V. K. J. Appl. Chem. <u>1970</u>, 20, 109-115.
- 2. Maladkar, V. R. Thesis, 1970, University of London.
- 3. Frazer, M. J.; Gerrard, W. Nature, <u>1964</u>, 204, 1299-1300.
- 4. Ahmed, W. Thesis, 1970, University of London.

440 F	iyarogen louide in iy	on-Aqueous Solvents
COMPONENTS: 1. Hydrogen iodide; HI; [10034-85-2]		ORIGINAL MEASUREMENTS: Ahmed, W.; Gerrard, W.;
2. 1-Octanol; C ₃ H ₁₈ O;	[111-87-5]	Maladkar, V. K. J. Appl. Chem. <u>1970</u> , 20, 109 - 115.
VARIABLES:		PREPARED BY:
T/K: 243.15 Total P/kPa: 101.325		(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:		
	T/K Mol Rat	
	ⁿ HI/ ⁿ C ₈	H ₁₈ 0 X _{HI}
	243.15 4.65	0.823
	253.15 2.65	
	263.15 1.98 273.15 1.62	
	283.15 1.38	0.580
	293.15 1.20	0.545
The mole fraction sol compiler.	ubilities were ca	alculated from the mole ratio by the
Smoothed Data: ln X _H	I = -15.376 + 22	.953/(T/100) + 6.456 ln (T/100)
		regression line = 5.15×10^{-3}
	T/K I	101 Fraction
		× _{HI}
243.15 0.819		
	253.15 263.15	0.732 0.666
	273.15	0.616
	283.15	0.577
	293.15	0.548
	AUXILIARY	INFORMATION
METHOD APPARATUS / PROCEDURE		SOURCE AND PURITY OF MATERIALS:
Hydrogen iodide was p bubbler tube at a tot		1. Hydrogen iodide. Good quality hydrogen iodide was obtained from
sured by a manometer	assembly. The	a cylinder, and passed through a
weight of the gas abso mined by re-weighing		tube at 243 K. Check measure- ments were made by using gas
temperature was manual		obtained from freshly prepared
to within 0.2 K. For		phosphorus triiodide.
tion, see Gerrard (1,		2. 1-Octanol. Best obtainable
For temperatures belo cal titration was per		specimen was purified, frac- tionally distilled, and attested.
cal citracion was per	rormed.	cionally distilled, and accested.
		ESTIMATED ERROR:
		$\delta T/K = 0.2$
		$\delta X/X = 0.01$
	3	REFERENCES :
		1. Gerrard, W.
		J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623 - 650.
		2. Gerrard, W. "Solubility of Gases and Liquids" Plenum Press, New York, 1976

COMPONENTS :	ORIGINAL MEASUREMENTS:
1. Hydrogen iodide; HI; [10034-85-2]	Ahmed, W.; Gerrard, W.;
	Maladkar, V. K.
2. 1,1'-Oxybisoctane or Dioctylether; C ₁₆ ^H ₃₄ ^{O;} [629-82-3]	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.
VARIABLES:	PREPARED BY:
T/K: 243.15 - 283.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard
	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Ra	
	5 ^H 34 ^O
243.15 6.50	
253.15 5.20 263.15 3.93	
273.15 2.9	
283.15 2.63	0.723
The mole fraction solubilities were ca compiler.	alculated from the mole ratio by the
Smoothed Data: ln X _{HI} = 6.355 - 7.162	
Standard error about i	regression line = 8.32×10^{-3}
	101 Fraction
_, _, _,	x _{HI}
243.15	0.871
253.15	0.833
263.15 273.15	0.795
273.15 283.15	0.757 0.719
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Hydrogen iodide was passed into a bubbler tube at a total pressure mea- sured by a manometer assembly. The weight of the gas absorbed was deter- mined by re-weighing the tube. The temperature was manually controlled to within 0.2 K. For full descrip- tion, see Gerrard (1,2).	 Hydrogen iodide. Good quality hydrogen iodide was obtained from a cylinder, and passed through a tube at 243 K. Check measurements were made by using gas obtained from freshly pre- pared phosphorus triiodide.
For temperatures below 268 K a chem- ical titration was performed.	2. 1,1'-Oxybisoctane or Dioctylether. Best obtainable specimen was purified, fractionally distilled, and attested.
	ESTIMATED ERROR: $\delta T/K = 0.2$ $\delta X/X = 0.01$
	REFERENCES: 1. Gerrard, W. J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623 - 650.
	2. Gerrard, W. "Solubility of Gases and Liquids" Plenum Press, New York, 1976

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen iodide; HI; [10034-85-2]</pre>	Ahmed, W.; Gerrard, W.; Maladkar, V. K.
2. Acetic Acid; C ₂ H ₄ O; [64-19-7]	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.
VARIABLES:	PREPARED BY:
T/K: 259.15 - 283.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard
10tal 1/kla. 101.525 (1 atm)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	· · · · · · · · · · · · · · · · · · ·
T/K Mol Rat	tio Mol Fraction
ⁿ HI/ ⁿ C	NH O XHI
······································	
259.15 0.7 273.15 0.6	78 0.438 525 0.385
283.15 0.6	
The mole fraction solubilities were ca	alculated from the mole ratio by the
compiler.	neuropea riom ene more racio by the
Smoothed Data: $\ln X_{HI} = -2.6106 + 4.5$	598/(T/100)
Standard error about a	regression line = 1.32×10^{-2}
	101 Fraction
	× _{HI}
263.15 273.15	0.422 0.396
283.15 293.15	0.373 0.353
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Hydrogen iodide was passed into a	1. Hydrogen Iodide. Good quality
bubbler tube at a total pressure mea- sured by a manometer assembly. The	hydrogen iodide was obtained from a cylinder, and passed
weight of the gas absorbed was	through a tube at 243 K. Check
determined by re-weighing the tube. The temperature was manually con-	measurements were made by using gas obtained from freshly pre-
trolled to within 0.2 K. For full description, see Gerrard (1,2).	pared phosphorus trilodide.
	2. Acetic Acid. Best obtainable specimen was purified, frac-
	tionally distilled, and attested.
	ESTIMATED ERROR:
	$\delta T/K = 0.2$ $\delta X/X = 0.03$
	REFERENCES :
	1. Gerrard, W.
	J. Appl. Chem. Biotechnol. <u>1972</u> ,
	22, 623 - 650.
	2. Gerrard, W. "Solubility of Gases and Liquids"
	Plenum Press, New York, 1976
	1

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Hydrogen iodide; HI; [10034-85-2] 	Ahmed, W.; Gerrard, W.; Maladkar, V. K.
2. Hexanoic acid; C ₆ H ₁₂ O ₂ ;	
	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.
VARIABLES:	PREPARED BY:
T/K: 243.15 - 293.15	W. Gerrard
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
EXPERIMENTAL VALUES:	
T/K Mol Ra	tio Mol Fraction
ⁿ HI/ ⁿ C ₆	
243.15 2.7 253.15 2.0	
263.15 1.4	
273.15 1.0	
283.15 0.7 293.15 0.6	
The mole fraction solubilities were c compiler.	alculated from the mole ratio by the
-	236/(T/100) - 17.571 ln (T/100)
	2
	regression line = 5.11 x 10^{-3}
T/K	Mol Fraction
	X _{HI}
243.15	0.734
253.15	0.662
263.15 273.15	0.586 0.511
283.15	0.439
293.15	0.374
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Hydrogen iodide was passed into a	1. Hydrogen iodide. Good quality
bubbler tube at a total pressure mea- sured by a manometer assembly. The	hydrogen iodide was obtained from a cylinder, and passed through a
weight of the gas absorbed was deter-	tube at 243 K. Check measure-
mined by re-weighing the tube. The	ments were made by using gas
temperature was manually controlled to within 0.2 K. For full descrip-	obtained from freshly prepared phosphorus triiodide.
tion, see Gerrard (1,2).	2. Hexanoic acid. Best obtainable
For temperatures less than 268 K a	specimen was purified, frac-
chemical titration was conducted.	tionally distilled, and attested.
	ESTIMATED ERROR:
	$\begin{array}{rcl} \delta T/K &= & 0.2\\ \delta X/X &= & 0.01 \end{array}$
	REFERENCES :
	1. Gerrard, W.
	J. Appl. Chem. Biotechnol. <u>1972</u> ,
	22, 623 - 650.
	2. Gerrard. W.
	"Solubility of Gases and Liquids" Plenum Press, New York, 1976

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Hydrogen Iodıde; HI;[10034-85-2](2) Alkyl halides	Maladkar, V. K. Thesis, 1970, University of London.		
VARIABLES: T/K: 243.15 - 303.15 Total P/kPa : 101.325 (1 atm)	PREPARED BY: W. Gerrard		
EXPERIMENTAL VALUES: T/K	Mole ratio Mole [*] Smoothed ^{**} ⁿ HI ^{/n} alk.hal. fraction mole fraction ^x HI ^x HI		
1-Chloropropane; C ₃ H ₇ Cl; 273.1 [340-54-5] 283.1 293.1	5 0.38 0.275 0.274 5 0.25 0.200 0.202 5 0.18 0.153 0.152		
Smoothing equation: ln x _{HI} = -9.895 Standard error in x _{HI} about the	+ 23.489/(T/100) regression line = 2.52 × 10 ⁻³		
	5 0.42 0.296 0.292 5 0.26 0.206 0.212 5 0.19 0.160 0.158		
Smoothing equation: ln x _{HI} = -10.244 Standard error in x _{HI} about the	+ 24.672/(T/100) regression line = 7.79 × 10 ⁻³		
293.1	5 0.16 0.138		
Smoothing equation: $\ln x_{\text{HI}} = -11.466 + 27.874/(T/100)$ Standard error in $x_{\text{HI}}^{\text{HI}}$ about the regression line = 4.65 × 10 ⁻³ * calculated by the compiler ** smoothing equation and smoothed values were calculated by H.L. Clever			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE The gas was passed into a weighed amount of liquid in a bubbler tube as described by Ahmed <i>et al.</i> (1). Temperature control was manual to within about 0.5 K. Pressure control was within 1 mmHg. In addition to direct weighing of the gas absorbed, hydrogen iodide was quantitatively absorbed in water and titrated by silver nitrate. The data were cited in reference (2)	 SOURCE AND PURITY OF MATERIALS: Hydrogen iodide was prepared from self prepared phosphorus tri-iodide, and dried by phosphorus pentoxide. It was passed through a tube at 243 K, and then frozen to a white solid, from which it was obtained by temperature control. Alkyl halides: Best specimens were dried over anhydrous calcium chloride, and freshly distilled. The purities were attested by the standard procedures. ESTIMATED ERROR:		
DEFEDENCES			
REFERENCES: 1. Ahmed, W.; Gerrard, W.; Maladkar	, V. K.		
J. Appl. Chem. <u>1970</u> , 20, 109. 2. Gerrard, W. "Solubility of Gases New York, <u>1976</u> .	and Liquids" Plenum Press,		

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Hydrogen Iodide; HI; [10034-85-2]</pre>	Maladkar, V. K. Thesis, 1970, University of London.
(2) Alkyl halides	
EXPERIMENTAL VALUES: T/K	Mole ratio Mole* Smoothed** HI ^{/n} alk.hal. fraction mole fraction ^x HI ^x HI
[106-94-5] 5 / 283.15	0.470.3200.3210.290.2250.2240.190.1600.1600.117
Smoothing equation: $\ln x_{HI} = -11.294$ Standard error in x_{HI} about the	+ 27.745/(T/100) regression line = 1.25 × 10 ⁻³
1-Bromobutane; C ₄ H ₅ Br; 273.15 [109-65-9] 283.15 293.15	0.4950.3310.3240.300.2310.2410.230.1870.183
Smoothing equation: ln x _{HI} = -9.518 + Standard error in x _{HI} about the	22.922/(T/100) regression line = 1.28×10^{-2}
Iodomethane; CH ₃ I; [74-88-4] 283.15 293.15 303.15	0.460.3150.3130.270.2130.2150.180.1530.152
Smoothing equation: ln x _{HI} = -12.113 Standard error in x _{HI} about the	+ 31.010/(T/100) regression line = 3.27 × 10 ⁻³
Iodoethane; C ₂ H ₅ I; 273.15 [75-03-6] 283.15 293.15 299.15 303.15	0.46 0.315 0.33 0.248 0.237 0.24 0.194 0.179
Smoothing equation: $\ln x_{HI} = -9.967 + Standard error in x_{HI}^{HI} about the$	24.997/(T/100) regression line = 1.35 × 10 ⁻²
1-Iodopropane; C ₃ H ₇ I: 273.15 [107-08-4] 283.15 293.15	0.573 0.364 0.369 0.375 0.273 0.265 0.238 0.192 0.195
Smoothing equation: $\ln x_{HI} = -10.357$ Standard error in x_{HI} about the r	+ 25.569/(T/100) egression line = 9.76 × 10 ⁻³
<pre>* calculated by the compiler ** smoothing equation and smoothed v</pre>	alues were calculated by H.L. Clever

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen iodide; HI; [10034-85-2]	Ahmed, W.; Gerrard, W.;
2 1 Chlemesters, C. H. Cl.	Maladkar, V. K.
2. 1-Chlorooctane; C ₈ H ₁₇ C1;	J. Appl. Chem. 1970 , 20, 109 - 115.
[111-85-3]	2. npp. onom <u>1970</u> , 20, 203 123.
VARIABLES:	PREPARED BY:
T/K: 243.15 - 293.15	W. Gerrard
Total P/kPa: 101.325 (1 atm)	(smoothed data calculated by H.L. Clever)
1 ••••••••••••••••••••••••••••••••••••	(smoothed data calculated by h.b. clevel)
EXPERIMENTAL VALUES: T/K MOL RA	
ⁿ HI/ ⁿ C ₈	H ₁₇ Cl ^X HI
243.15 5.0 253.15 1.7	0.833 5 0.636
263.15 1.0	
273.15 0.6	
283.15 0.5	
293.15 0.3	75 0.273
The mole fraction solubilities were ca	alculated from the mole ratio by the
compiler.	
Smoothed Data: $\ln X_{HI} = -15.978 + 28$.304/(T/100) + 4.676 ln (T/100)
Standard error about :	regression line = 4.66×10^{-3}
·	Mol Fraction
-,	× _{HI}
243.15	0.833
253.15 263.15	0.635 0.498
273.15	0.400
283.15	0.328
293.15	0.274
	·
AUXILIARY	INFORMATION
METHOD APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
	1. Hydrogen iodide. Good quality
Hydrogen iodide was passed into a bubbler tube at a total pressure mea-	hydrogen iodide was obtained from
sured by a manometer assembly. The	a cylinder, and passed through a
weight of the gas absorbed was deter-	tube at 243 K. Check measure-
mined by re-weighing the tube. The	ments were made by using gas
temperature was manually controlled to within 0.2 K. For full descrip-	obtained from freshly prepared phosphorus triiodide.
tion, see Gerrard (1,2).	
	2. 1-Chlorooctane. Best obtainable specimen was purified, frac-
For temperatures below 268 K a chem- ical titration was conducted.	tionally distilled, and attested.
	ESTIMATED ERROR:
	$\delta T/K = 0.2$
	$\delta 1/K = 0.2$ $\delta X/X = 0.01$
	,
	REFERENCES:
	1. Gerrard, W.
	J. Appl. Chem. Biotechnol. <u>1972</u> ,
	22, 623 - 650.
	2. Gerrard, W.
	"Solubility of Gases and Liquids"
	Plenum Press, New York, 1976

Hydrogen Iodiae in Non-Aqueous Solvents 447				
COMPONENTS: 1. Hydrogen iodide: H	I; [10034-85-2]	ORIGINAL MEASUREMENTS: Ahmed, W.; Gerrard, W.;		
1. Hydrogen iodide; HI; [10034-85-2]		Maladkar, V. K.		
2. 1-Bromooctane; C ₈ H [111-83-1]	17 ^{Br;}	J. Appl. Chem. <u>1970</u> , 20, 109 - 115.		
VARIABLES: T/K: 243.15	- 202 15	PREPARED BY:		
Total P/kPa: 101.325		W. Gerrard (smoothed data calculated by H.L. Clever)		
EXPERIMENTAL VALUES:	T/K Mol R	atio Mol Fraction		
	ⁿ HI/ ⁿ C ₈	H ₁₇ Br X _{HI}		
	243.15 5.7			
	253.15 1.8 263.15 1.1			
	273.15 0.6	8 0.405		
	283.15 0.4 293.15 0.3			
	·			
compiler.		alculated from the mole ratio by the		
	-	499/(T/100) - 2.213 ln (T/100)		
Stand	ard error about	regression line = 7.40×10^{-3}		
	T/K	Mol Fraction		
		x _{HI}		
	243.15	0.850		
	253.15	0.656		
	263.15 273.15	0.514 0.409		
	283.15	0.330		
293.15 0.269				
		INFORMATION		
METHOD/APPARATUS/PROCEDURE		SOURCE AND PURITY OF MATERIALS:		
Hydrogen iodide was p bubbler tube at a tot		1. Hydrogen iodide. Good quality hydrogen iodide was obtained from		
sured by a manometer	assembly. The	a cylinder, and passed through a		
weight of the gas abs mined by re-weighing	orbed was deter- the tube. The	tube at 243 K. Check measure- ments were made by using gas		
temperature was manua	lly controlled	obtained from freshly prepared		
to within 0.2 K. For tion, see Gerrard (1,		phosphorus triiodide.		
, , , , , , , , , , , , , , , , , , , ,		2. 1-Bromooctane. Best obtainable specimen was purified, frac-		
For temperatures below 268 K a chemi- cal titration was conducted.		tionally distilled, and attested.		
		_		
		ESTIMATED ERROR:		
		$\delta T/K = 0.2$ $\delta X/X = 0.015$		
		REFERENCES :		
		1. Gerrard, W.		
		J. Appl. Chem. Biotechnol. <u>1972</u> ,		
		22, 623 - 650.		
		2. Gerrard, W. "Solubility of Gases and Liquids" Plenum Press, New York, 1976		
L				

,			
COMPONENTS :	ORIGINAL MEASUREMENTS:		
1. Hydrogen iodide; HI; [10034-85-2]	Ahmed, W.; Gerrard, W.;		
2. 1-Iodooctane; C ₈ H ₁₇ I; [629-27-6]	Maladkar, V. K.		
$2.11000000000, 0_{8,17}, 000000000000000000000000000000000000$	J. Appl. Chem. 1970, 20, 109 - 115.		
	PREPARED BY:		
T/K: 243.15 - 293.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard		
	(smoothed data calculated by H.L. Clever)		
EXPERIMENTAL VALUES:			
T/K Mol Rat			
ⁿ HI/ ⁿ C ₈ H	A ₁₇ I ^X HI		
243.15 5.8	0.853		
253.15 2.03	0.670		
263.15 1.13 273.15 0.73	0.531 0.422		
233.15 0.53	0.346		
293.15 0.425	0.298		
The mole fraction solubilities were ca	alculated from the mole ratio by the		
compiler.			
Smoothed Data: $\ln X_{HI} = -13.267 + 24$.	441/(T/100) + 3.447 ln (T/100)		
Standard error about r	regression line = 7.19 x 10^{-3}		
	101 Fraction		
	X _{HI}		
243.15	0.859		
253.15	0.664		
263.15 273.15	0.526 0.425		
283.15	0.351		
293.15	0.295		
AUXILIARY	INFORMATION		
METHOD APPARATUS/PROCEDURE:			
Hydrogen iodide was passed into a	SOURCE AND PURITY OF MATERIALS: 1. Good quality hydrogen iodide was		
bubbler tube at a total pressure mea-	obtained from a cylinder, and		
sured by a manometer assembly. The	passed through a tube at 243 K.		
weight of the gas absorbed was deter-	Check measurements were made by		
mined by re-weighing the tube. The temperature was manually controlled	using gas obtained from freshly prepared phosphorus triiodide.		
to within 0.2 K. For full descrip-	2. 1-Iodooctane. Best obtainable		
tion, see Gerrard (1,2).	specimen was purified, fraction-		
For temperatures below 268 K a chem-	ally distilled, and attested.		
ical titration was conducted.			
1			
	ESTIMATED ERROR:		
	$\delta T/K = 0.2$		
	$\delta X/X = 0.01$		
	REFERENCES:		
	1. Gerrard, W.		
	J. Appl. Chem. Biotechnol. 1972,		
	22, 623 - 650.		
	2. Gerrard, W.		
1			
	"Solubility of Gases and Liquids" Plenum Press, New York, 1976		

	Un-Aqueous 30	IVENILS	445
COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Hydrogen iodıde; HI; [10034-85-2]	Frazer, M.	J.; Gerrard,	₩.
(2) Thiols, thioethers, thiophene and tetrahydrothiophene	Nature <u>196</u>	<u>4</u> , 204, 1 2 99 ·	- 1300
VARIABLES:	PREPARED B	Y:	
T/K: 273.15 Total P/kPa : 101.3 (barometric, nearly 1 atm)	W. G	errard	
EXPERIMENTAL VALUES:	- <u></u>		
	т/к	Mole ratio ⁿ HI ^{/n} 2	Mole fraction* ^x HI
2-Propanethiol, (2-propylmercaptan); C ₃ H ₈ S; [75-33-2]	273.15	0.45	0.310
1-Butanethiol, (<i>l-butylmercaptan</i>); C ₄ H ₁₀ S; [109-79-5]	273.15	0.67	0.401
Benzenethiol, (thiophenol, mercapto- benzene); C ₆ H ₆ S; [108-98-5]	273.15	0.39	0.281
2,2'-Thiobispropane, (d11sopropyl sulfide); C ₆ H ₁₄ S; [625-80-9]	273.15	3.18	0.761
1,1'-Thiobisbutane, (dibutyl sulfide) C ₈ H ₁₈ S; [544-40-1]	; 273.15	2.89	0.743
1,1'-Thiobisbenzene, (diphenyl sulfid ^C 12 ^H 10 ^S ; [139-66-2]	e); 273.15	0.50	0.333
Thiophene, (<i>thiofuran</i>); C ₄ H ₄ S; [110-02-1]	273.15	- (reacts furt)	ner)
Tetrahydrothiophene; C ₄ H ₈ S; [110-01-0] 273.15	1.0 (white solid	formed)
* calculated by the compiler			
	INFORMATION		
METHOD/APPARATUS/PROCEDURE		PURITY OF MATH	
The gas was passed into a weighed amount of solvent (about 2 g) in a U-tube kept at 273.15 K. The pres- sure was atmospheric, approximately 1 atm. The maximum amount of gas absorbed was determined by weighing.	 Hydrogen iodide. Self made and carefully purifed. Sulfur compounds. The purities were checked by boiling points and gas-liquid chromatography. After each measurement of solubility the gas was removed by treatment 		
	with water, the liquid was recovered and identified with the original compound.		
	ESTIMATED ERROR:		
	REFERENCES:	<u> </u>	
			_

	ORIGINAL MEASUREMENTS:
1. Hydrogen Iodide; HI;	Ahmed, W.
[10034-85-2]	Mhosis 1070
2. Trichloroborane; BCl ₃ ;	Thesis, 1970 University of London
	University of London
[10294-34-5]	
VARIABLES:	
	PREPARED BY:
T/K: 256.15 - 273.15 Total P/kPa: 101.325 (1 atm)	W. Gerrard
10001 1/ A10. 101.525 (1 atm)	
EXPERIMENTAL VALUES:	
T/K Mol Ra	
ⁿ HI/ ⁿ B	Cl ₃ X _{HI}
272.15 0.00	<u> </u>
273.15 0.08 256.15 0.17	
	8 0:150
The mole fraction solubilities were c	alculated from the mole ratio by the
compiler.	
	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Trichloroborane was distilled into	1. Hydrogen iodide was prepared
the bubbler tube at low temperature.	from self prepared phosphorus
Hydrogen iodide was passed through	triiodide, and dried by phospho-
for two hours. The final liquid was	rus pentoxide. It was passed
quantitatively treated with an	through a tube at 243 K, and
aqueous solution of sodium hydroxide. Borate and total halide were then	frozen to a white solid, from
determined by titrations.	which it was obtained by temperature control.
determined by citracions.	cemperature control.
	2. Trichloroborane. The purest
	obtainable specimen was used.
	ESTIMATED ERROR:
	$\delta m/r = 0.2$
	REFERENCES :
	1. Ahmed, W.; Gerrard, W.;
	Maladkar, V. K.
	J. Appl. Chem. <u>1970</u> , 20, 109.
	1

COMPONENTS:	
COMPONENTS: (1) Hydrogen fluoride; HF; [7664-39-3] Hydrogen chloride; HCl; [7647-01-0] Hydrogen bromide; HBr; [10035-10-6] Hydrogen iodide; HI;[10034-85-2]	Appendix I Some Physical Properties of the Hydrogen Halides.

Appendix I summarizes some physical property values of the hydrogen halides which will be of interest to the users of the solubility data. The property values are based on data in the International Critical Tables (ref 1), NBS Circular 500(ref 2), The Handbook of Chemistry and Physics, 64th Ed. (ref 3), and recent measurements of Henderson at al. (ref 4) on hydrogen chloride. The data were evaluated at time of publication, but the user should be alert for more up to date values in future publications. The data given here are believed to be adequate for most applications related to the solubility of the hydrogen halides.

Below are values of the enthalpy, entropy and heat capacity changes on fusion and on vaporization at atmospheric pressure. The values have been recalculated in kJ and J from values given in NBS Circular 500. The temperatures for fusion and vaporization from Circular 500 are given in Table I on the following page.

Substance	$\Delta H/$	kJ mol-1	$\Delta S/\mathbf{J}$	K ⁻¹ mol ⁻¹	$\Delta C_p / \mathbf{J}$	K^{-1} mol ⁻¹
	Fusion	Vaporization	Fusion	Vaporization	Fusion	Vaporization
HF	4.58	7.5	24.1	25.5	10.7	-46
HC1	1.99	16.2	12.5	85.8	8.8	-29.9
HBr	2.41	17.6	12.9	85.3	6.9	-30.8
ΗI	2.87	19.8	12.9	83.1	4.6	-29.9

The enthalpy change on vaporization of HCl is 16.194 kJ mol⁻¹ at the normal boiling point according to Henderson $et \ al$. (ref 4).

Table I gives the fusion and normal boiling point temperatures, the critical temperatures and pressures, and the ideal mole fraction solubility at a number of temperatures at a gas partial pressure of one atmosphere.

The fusion and normal boiling point temperatures of HF, HBr and HI were taken from *Circular 500*, the values of HCl are from Henderson *et al*. The critical property values were taken from the compilation of R. Loebel in the *Handbook of Chemistry and Physics*. The critical temperature and pressure of HCl are from Henderson *et al*. The critical values differ by only about one percent from values given in the *International Critical Tables* which were compiled from data taken before 1928.

The ideal mole fraction solubilities are based on Raoults law. The values are for a gas partial pressure of one atm. For HF the required vapor pressures were calculated from the equation given in the Handbook of Chemistry and Physics. For HCl, HBr and HI the vapor pressures were taken from the International Critical Tables. The ideal mole fraction solubility values are useful in discussions about the departure of solubility from ideal behavior and the Gerrard Reference Line.

REFERENCES:

- 1. International Critical Tables, E. W. Washburn, Editor, McGraw-Hill Book Co., New York, <u>1928</u>, Volume III, p. 228.
- 2. Selected Values of Chemical Thermodynamic Properties [NBS Circular 500] Rossini,F.D.; Wagman,D.D.; Evans,W.H.; Levine,S.; Jaffe,I. U. S. Government Printing Office, Washington, DC <u>1952</u> (reprinted 1961), Part I, Series II, pp. 548-551.
- 3. Handbook of Chemistry and Physics, Weast, R. C., Editor, CRC Press, Inc., Boca Raton, FL, <u>1983</u>, 64th. Edition.
- 4. Henderson, C.; Lewis, D.G.; Prichard, P.C.; Staveley, L.A.K.; Fonseca, I.M. A.; Lobo, L.Q. J. Chem. Thermodynam. <u>1986</u>, 18, 1077-1088.

COMPONENTS :	····		<u> </u>			
	(1) Hydrogen fluoride; HF;		Appendix I (continued)			
[7664-	[7664-39-3] Hydrogen chloride; HCl;		ĺ		ence Clever ent of Chemis	
[7647-	01-0]			Emory U	niversity	-
	en bromi	de; HBr;		Atlanta	, GA 30322	USA
	[10035-10-6] Hydrogen iodide; HI; [10034-85-2]			1983, J	uly; revised	1986, Nov
Table l.	Some ph normal solubil	ysical proper boiling, and ities.	ties of critica	the hyd: 1 tempera	rogen halides atures. Estim	. Melting, nated "ideal"
Tempera	ture	Hydrogen Fluoride		ogen ride	Hydrogen Bromide	Hydrogen Iodide
t∕°C	Т/К					
-114.10	159.05	-	Fusi	on(t.p.)	-	_
- 86.82	186.28	-		_	Fusion	-
- 84.95 - 83.07	188.20 190.09	- Fusion	n.b. -	p.	-	-
- 80	193.15		0.75	1		
- 70	203.15		0.46			
- 66.73	206.43	-	-		n.b.p.	-
- 60	213.15	4	0.29	I.	0.71	
- 50.8	222.36	-	-		-	Fusion
- 50	223.15		0.19		0.46	
- 40	233.15		0.13		0.30	
- 35.36	237.80	-	-		-	n.b.p.
- 30	243.15		0.09		0.21 0.15	0.79 0.54
- 20 - 10	253.15 263.15		0.05	2	0.11	0.38
0	273.15 283.15		0.03		0.081 0.063	0.27 0.20
19.9		n.b.p.	_		_	_
[293.15	0.995	0.02	A.	0.049	0.15
20 25	298.15	0.84	0.02	1	0.043	0.13
30 40	303.15 313.15	0.71 0.51	0.01 0.01		0.038 0.031	0.12 0.090
50	323.15	0.38	0.01		0.025	0.072
51.53	324.68	-	[p _c /M	Pa = .256]	-	-
60	333.15		Ŭ		0.020	0.058
70 80	343.15 353.15				0.017 0.014	0.047 0.039
90	363.2	-	~		[p _c /MPa = 8.56]	
90	363.15					0.032 0.027
100 110	373.15 383.15					0.023
120 130	393.15 403.15					0.019 0.017
140	413.15					0.014
150	423.15					
150	423	-	-		-	[p _c /MPa = 8.30]
188	461	[p _c /MPa = 6.48]	-		-	-
190	463.15					

SYSTEM INDEX

Page numbers preceded by E refer to evaluation texts. Substances are indexed in the same manner as in Chemical Abstracts, e.g. toluene appears as benzene, methyl-; boron trichloride as borane, trichloro- etc.

Acetic acid		
	+ hydrogen bromide + hydrogen chloride + hydrogen 10dide	E388, 422 E196, 197, 199-203 E438, 442
Acetic acid, bromo		E208, 222
Acetic acid, butyl	ester	
Acetic acid, chlor		E207-E209, 212, 216
Acetic acid, chlore	+ hydrogen chloride o-, ethyl ester	E196, 205
Acetic acid, chlore	+ hydrogen chloride o-, phenyl ester	E208, 226
Acetic acid, dichle	+ hydrogen chloride	E208, 230
	+ hydrogen chloride	E208, 222
Acetic acid, ethyl	ester + hydrogen chloride	E207-E209, 210, 211, 214, 215
Acetic acid, methy	l ester + hydrogen chlorıde	E207-E209, 214, 215
Acetic acid, 1-met		E207-E209, 211, 216
Acetic acid, 1-met	hylpropyl ester	
Acetic acid, 2-met		E207-E209, 212
Acetic acid, octyl	+ hydrogen chloride ester	E207-E209, 212
Acetic acid, penty	+ hydrogen chloride l ester	E207-E209, 212
Acetic acid, pheny	+ hydrogen chloride	E207-E209, 217
	+ hydrogen chloride	E207-E209, 213
Acetic acid, pheny	see benzeneacetic acid, ethyl es	ter
Acetic acid, pheny	lmethyl ester + hydrogen chlorıde	E207-E209, 213
Acetic acid, propy	l ester + hydrogen chlorıde	E207-E209, 211, 216
Acetic acid, trich		E196, 206
Acetic acid, trich		
Allyl acetate '		E208, 220
Allyl alcohol	see 1-propen-2-ol, acetate	
Allyl butyrate	see 2-propen-1-ol	
Allyl chloride	see butanoic acid, 2-propenyl es	ter
Allyl propionate	see propene, 3-chloro-	
	see propanoic acid, 2-propenyl-	
Anisole	see benzene, methoxy-	
Benzene		
	+ hydrogen bromide + hydrogen chloride	E384, 401-404 E53, E54, 56-63
	+ hydrogen fluoride	E1, 3, 4
Benzene (aqueous)	+ hydrogen chloride	E53, E54, 64, 65
Benzene (ternary)	+ hydrogen chloride	E21, E22, 38, E54, 71
1		

Benzene, bromo-	
+ hydrogen bromide + hydrogen chloride	E390, 430 E291, 309-311
Benzene, bromo-, (ternary) + hydrogen chloride	E21, E22, 40
Benzene, butoxy- + hydrogen chloride	E150-E155, 184
Benzene, (butoxymethyl)- + hydrogen chloride	E150-E155, 170
Benzene, chloro- + hydrogen bromide	E390, 430
+ hydrogen blomide + hydrogen chloride Benzene, chloro- (ternary)	E291-E293, 298-304
+ hydrogen chloride	E21, E22, 40, E54, 70
Benzene, (chloromethyl)- + hydrogen chloride	E293, 298
Benzene, 1-chloro-2-nitro- + hydrogen chloride	E314, E315, 320
Benzene, 1-chloro-3-nitro- + hydrogen chloride	E314, E315, 321
Benzene, 1-chloro-4-nitro- + hydrogen chloride	E314, E315, 322
Benzene, chloro(trifluoromethyl)-, (ternary)	E293, 296
+ hydrogen chloride Benzene, chloro(trifluoromethyl)-, (multicomponent)	
+ hydrogen chloride Benzene, 1,2-dichloro~	E293, 297
+ hydrogen chloride Benzene, 1,2-dichloro-2-nitro-	E291, 305, 306
+ hydrogen chloride Benzene, 1,2-dichloro-4-nitro-	E314, E315, 321
+ hydrogen chloride Benzene, dichloro(trifluoromethyl)-, (multicomponer	E314, E315, 321
+ hydrogen chloride	E293, 297
Benzene, dimethyl- + hydrogen chloride	77
Benzene, 1,2-dimethyl- + hydrogen chloride	E53, E54, 71, 74
Benzene, 1,3-dimethyl- + hydrogen bromide	E384, E385, 408, 409
+ hydrogen chloride Benzene 1,3-dimethyl- (ternary)	E53, E54, 74
+ hydrogen chloride Benzene, 1,4-dimethyl-	E21, E22, 39, E54, 71
+ hydrogen chloride	E53, E54, 76
Benzene 1,4-dimethyl- (ternary) + hydrogen chloride	E54, 71
Benzene, ethoxy- + hydrogen chloride	E150-E155, 169, 183
Benzene, (ethoxymethyl)- + hydrogen chloride	E150-E155, 170
Benzene, ethyl- (ternary) + hydrogen chloride	E21, E22, 39
Benzene, fluoro- + hydrogen chloride	E291, E293, 294
Benzene, fluoro- (ternary)	
+ hydrogen chloride Benzene, 10d0-	E21, E22, 40
+ hydrogen bromide + hydrogen chloride	E390, 430 E291, 312
Benzene, 10do- (ternary) + hydrogen chloride	E21, E22, 40
Benzene, methoxy- + hydrogen chloride	E150-E155, 163, 168, 181, 182
Benzene, methoxy~, (ternary) + hydrogen chloride	E21, E22, 27
Benzene, 1-methoxy-2-methyl- + hydrogen chloride	E150-E155, 169
Benzene, (methoxymethyl)-	
+ hydrogen chloride	E150-E155, 169

Benzene, methyl-+ hydrogen bromide E384, 405-407 + hydrogen chloride E53, E54, 57, 66-69, 72 Benzene, methyl- (ternary) E21, E22, 38, E53, E54, 70-73 + hydrogen chloride Benzene, (1-methylethyl) (ternary) E21, E22, 39 + hydrogen chloride Benzene, 1-methyl-2-nitro-E390, 432 E314, E315, 323 + hydrogen bromide + hydrogen chloride Benzene, 1-methyl-2-nitro-, (ternary) + hydrogen chloride E21, E22, 35 Benzene, 1-methyl-3-nitro-+ hydrogen bromide E390, 433 + hydrogen chloride E314, E315, 324, 325 Benzene, (2-methylpropyl)- (ternary) + hydrogen chloride E21, E22, 40 Benzene, nitro-+ hydrogen bromide E390, 431 + hydrogen chloride E314, E315, 317-322 Benzene, nitro- (ternary) + hydrogen chloride E21, E22, 34, 316 Benzene, 1,1'-oxybis-+ hydrogen chloride E150-E155, 170, 185, 186 + hydrogen fluoride E1, 5 Benzene, 1,1'-oxybis (methyl-+ hydrogen chloride E21, E22, 28 Benzene, 1,1'-[oxybis(methylene)]bis-E150-E155, 171 + hydrogen chloride Benzene, 1,1'-[oxybis(methylene)]bis-, (ternary) E21, E22, 29 🕨 hydrogen chloride Benzene, 1,2,3,4-tetramethyl- (ternary) + hydrogen chloride E54, 72 Benzene, 1,2,3,5-tetramethyl- (ternary) E54, 72 + hydrogen chloride Benzene, 1,1'-thiobis-E438, 449 hydrogen 10dide Benzene, 1,2,4-trichloro-E291, 307 hydrogen chloride Benzene, (trichloromethyl)-+ hydrogen chloride E293, 298, 308 Benzene, (trifluoromethyl)-+ hydrogen chloride E293, 295 Benzene, (trifluoromethyl)-, (multicomponent) + hydrogen chloride E293, 297 Benzene, (trifluoromethyl)-, (ternary) E21, E22, 40, E54, 72, E293, 296 + hydrogen chloride Benzene, 1,2,3-trimethyl- (ternary) E54, 71 + hydrogen chloride Benzene, 1,2,4-trimethyl- (ternary) + hydrogen chloride E54, 71 Benzene, 1,3,5-trimethyl-+ hydrogen bromide E384, E385, 410 Benzene, 1,3,5-trimethyl- (ternary) E21, E22, 39, E54, 71 + hydrogen chloride Benzeneacetic acid, ethyl ester + hydrogen chloride E207-E209, 218 Benzenemethanol + hydrogen chloride E145, 147 Benzenephenol + hydrogen chloride E330, E331, 334 Benzenepropanol + hydrogen chloride E145, 149 Benzenesulfonic acid, butyl ester + hydrogen chloride E330, E331, 333 Benzenesulfonic acid, 4-chloro-, butyl ester + hydrogen chloride E330, E331, 333 Benzenesulfonic acid, 4-methyl-, butyl ester + hydrogen chloride E330, E331, 333

Benzenesulfonyl chlorıde + hydrogen chloride	E330,	E331,	333,	335
Benzenethiol + hydrogen bromide	E390,	434		
+ hydrogen iodide	E438,			
1,3,2-Benzodioxaborole, 2-butoxy- + hydrogen chloride	E342,	348		
1,3,2-Benzodioxaborole, 2-ethoxy- + hydrogen chloride	E342,	346		
1,3,2-Benzodloxaborole, 2-methoxy- + hydrogen chloride	E342,			
1,3,2-Benzodioxaborole, 2-octyloxy-				
+ hydrogen chloride 1,3,2-Benzodioxaborole, 2-pentoxy-	E342,	348		
+ hydrogen chloride 1,3,2-Benzodioxaborole, 2-propoxy-	E342,	348		
+ hydrogen chloride 1,4-Benzodioxan, 2-methyl-	E342,	347		
+ hydrogen chloride	E155,	194		
1,2-Benzodioxepin, 3,4-dıhydro- + hydrogen chloride	E155,	193		
1,4-Benzodioxin, 2,3-dihydro- + hydrogen chloride	E155,	192		
1,3-Benzodioxole				
+ hydrogen chloride Benzotrichloride	E155,	191		
see benzene, (trichloromethyl)- Benzoyl chloride				
+ hydrogen chloride Benzyl acetate	E293,	313		
see acetic acid, phenylmethyl es	ter			
Benzyl alcohol see benzenemethanol				
Benzyl butyl ether see benzene, (butoxymethyl)-				
Benzyl chloride				
see benzene, (chloromethyl)- Benzyl ethyl ether				
see benzene, (ethoxymethyl)- Benzyl methyl ether				
see benzene (methoxymethyl)- Borane, butoxydichloro-				
+ hydrogen chloride	E342,	348		
Borane, dichlorophenyl- + hydrogen chloride	E342,	349		
Borane, trichloro- + hydrogen chloride	E342,	350,	351	
+ hydrogen 10dide Boric acid, tributyl ester	E438,	450		
+ hydrogen chloride	E342,	345		
Boric acid, triethyl ester + hydrogen chlorıde	E342,	343		
Boric acid, tripentyl ester + hydrogen chloride	E342,	344		
+ hydrogen bromide Boron trichloride	E391,			
see borane, trichloro-				
Bromobenzene see benzene, bromo-				
Bromobutane see butane, 1-bromo-				
Bromoethane				
see ethane, bromo- 2-Bromoethanol				
see ethanol, 2-bromo- Bromoform				
see methane, tribromo- Bromohexane				
see hexane, 1-bromo-				
Bromo-octane see octane, 1-bromo-				
1-Bromo-octane see octane, 1-bromo-				
···· · · · · · ·				

1,3-Butadiene, 2,3-dimethyl- + hydrogen chloride 1,3-Butadiene, 2-methyl- + hydrogen bromide Butane + hydrogen bromide Butane (ternary) + hydrogen bromide Butane, 1,4-dibromo- + hydrogen chloride Butane, 1,1'-oxybis- + hydrogen chloride Butane, 1,1'-oxybis (3-methyl- + hydrogen chloride Butane, 1,1'-oxybis (3-methyl- + hydrogen chloride Butane, 1-bromo- hydrogen chloride Butane, 1-chloro- + hydrogen chloride Butane, 1-chloro- Butane, 1-ethoxy- + hydrogen chloride Butane, 1-ethoxy- Butane, 1-renoxy- + hydrogen chloride Butane, 1-propoxy- Butane, 1,1'-sulfonylbis- Butane, 1,1'-sulfonylbis- + hydrogen chloride + hydrogen chloride 1,3-Butanediol + hydrogen chloride Butane, 1,1'-thioblis- + hydrogen chloride Butanei (thylegen chloride Butane, 1,1'-thioblis- + hydrogen chloride Butanei (thylegen chloride Butane, 1,1'-thioblis- + hydrogen chloride Butanei (thylegen chloride Butanei (thylegen chloride Butanei (thylegen chloride Butanei (thylegen chloride Butanei (thylegen chloride Butanoic acid, thylegen chloride Butanoic acid, propylester + hydrogen chloride 2-Butanol + hydrogen chloride + h	
<pre>+ hydrogen chloride 1,3-Butadiene, 2-methyl- hydrogen bromide Butane + hydrogen bromide Butane (ternary) butane, 1,4-dibromo- + hydrogen bromide Butane, 1,4-dibromo- + hydrogen bromide Butane, 1,1'-oxybis- + hydrogen chloride Butane, 1,1'-oxybis (3-methyl- + hydrogen chloride Butane, 1,1'-oxybis (3-methyl- + hydrogen chloride Butane, 1-bromo- + hydrogen chloride Butane, 1-chloro- + hydrogen chloride Butane, 1-chloro- + hydrogen chloride Butane, 1-ethoxy- Butane, 1-ethoxy- + hydrogen chloride Butane, 1-methoxy- Butane, 1-propoxy- + hydrogen chloride Butane, 1,1'-sulforybis- + hydrogen chloride Butane, 1,1'-sulforybis- + hydrogen chloride Butane, 1,1'-thiobis- + hydrogen chloride 1,3-Butanediol Butanethiol Butanethiol Butanethiol Butanei cacid, ethyl ester + hydrogen chloride Butanoic acid, propen chloride + hydrogen chlori</pre>	1,3-Butadiene, 2,3-dimethyl-
<pre>hydrogen chloride Butane + hydrogen bromide Butane (ternary) + hydrogen bromide Butane, 1,4-dibromo-</pre>	
<pre>+ hydrogen bromide Butane (ternary) + hydrogen bromide Butane, 1,4-dibromo- + hydrogen bromide Butane, 1,1'-oxybis- + hydrogen chloride Butane, 1,1'-oxybis (3-methyl- + hydrogen chloride Butane, 1,1'-oxybis (3-methyl- + hydrogen chloride Butane, 1,1'-oxybis (3-methyl- + hydrogen chloride + hydrogen chloride + hydrogen chloride Butane, 1-bromo- + hydrogen chloride Butane, 1-chloro- + hydrogen chloride Butane, 1-ethoxy- Butane, 2-ethoxy- + hydrogen chloride Butane, 1-methoxy- + hydrogen chloride Butane, 1-propoxy- + hydrogen chloride Butane, 1,1'-sulfonylbis- + hydrogen chloride Butane, 1,1'-thiobbis- Hydrogen chloride 1,3-Butanediol + hydrogen chloride Butanethiol + hydrogen chloride Butanethiol + hydrogen chloride Butanethiol + hydrogen chloride Butanethiol + hydrogen chloride Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, propyn] ester + hydrogen chloride 1-Butanol + hydrogen chloride - hydrogen chloride - hydrogen chloride - hydrogen chloride + hydrogen chloride - hydrogen chloride + hydrogen chloride - hydrogen chloride + hydrogen chloride - hydrogen chloride - hydrogen chloride + hydrogen chloride - hydrogen chloride - hydrogen chloride - hydrogen chloride - hydrogen chloride - hydrogen chloride - Butanol, 3-methyl- + hydrogen chloride - Butanol, 3-methyl- + hydrogen chloride - Butanol, 3-methyl- + hydrogen chloride - Butanol, 3-methyl- + hydrogen chloride - Buta</pre>	+ hydrogen chloride
<pre>hydrogen bromide Butane, 1,4-dibromo-</pre>	+ hydrogen bromide
<pre>+ hydrogen bromide Butane 1,1'-oxybis- + hydrogen chloride + hydrogen chloride Butane, 1,1'-oxybis (famethyl- + hydrogen chloride Butane, 1-bromo- + hydrogen chloride + hydrogen chloride Butane, 1-chloro- + hydrogen chloride Butane, 1-chloro- + hydrogen chloride Butane, 1-chloro- + hydrogen chloride Butane, 1-ethoxy- Butane, 2-ethoxy- Butane, 1-methoxy- + hydrogen chloride Butane, 1-forpopxy- Butane, 1,1'-sulfonylbis- + hydrogen chloride Butane, 1,1'-sulfonylbis- + hydrogen chloride 1,3-Butanediol + hydrogen chloride Butanethiol + hydrogen chloride butanethiol + hydrogen chloride butanethiol + hydrogen chloride butanethiol + hydrogen chloride butanethiol + hydrogen chloride butanethiol + hydrogen chloride Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride 1-Butanol + hydrogen chloride 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl- + hydrogen chloride - Butanoic, 3-methyl- + hydrogen chloride + hydrogen chloride - Butanoi, 3-methyl- + hydrogen chloride</pre>	+ hydrogen bromide
<pre>hydrogen chloride hydrogen bromide Butane, 1,1'-oxybis (ternary) hydrogen chloride Butane, 1,1'-oxybis (3-methyl- hydrogen chloride hydrogen chloride hydrogen chloride hydrogen chloride hydrogen chloride hydrogen chloride hydrogen chloride butane, 1-chloro- hydrogen chloride Butane, 1-ethoxy- hydrogen chloride Butane, 1-methoxy- hydrogen chloride Butane, 1-propoxy- hydrogen chloride Butane, 1,1'-sulfonylbis- hydrogen chloride Butane, 1,1'-thiobis- hydrogen chloride 1,3-Butanediol hydrogen chloride Butanethiol butanethiol butanethiol hydrogen chloride butanethiol hydrogen chloride butanethiol hydrogen chloride butanethiol hydrogen chloride butanoic acid, ethyl ester hydrogen chloride butanoic acid, propyl ester hydrogen chloride hydrogen ch</pre>	+ hydrogen bromide
Butane, 1,1'-oxybis - (ternary) + hydrogen chloride Butane, 1,1'-oxybis (3-methyl- + hydrogen chloride + hydrogen chloride + hydrogen chloride + hydrogen chloride Butane, 1-chloro- + hydrogen chloride Butane, 1-ethoxy- Butane, 1-methoxy- + hydrogen chloride Butane, 1-methoxy- + hydrogen chloride Butane, 1-propoxy- + hydrogen chloride Butane, 1,1'-sulfonylbis- + hydrogen chloride Butane, 1,1'-sulfonylbis- + hydrogen chloride Butane, 1,1'-thiobis- + hydrogen chloride 1,3-Butanediol 4,4-Butanediol + hydrogen chloride Butanethiol Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, propnyl ester + hydrogen chloride 1-Butanol + hydrogen chloride + h	+ hydrogen chloride
Butane, 1,1'-oxybis (3-methyl- + hydrogen chloride + hydrogen chloride + hydrogen chloride + hydrogen chloride + hydrogen chloride Butane, 1-chloro- + hydrogen chloride Butane, 1-ethoxy- Butane, 2-ethoxy- + hydrogen chloride Butane, 1-methoxy- + hydrogen chloride Butane, 1-propoxy- + hydrogen chloride Butane, 1,1'-sulfonylbis- + hydrogen chloride Butane, 1,1'-thiobis- Butane, 1,1'-thiobis- + hydrogen chloride 1,3-Butanediol + hydrogen chloride 2,3-Butanediol + hydrogen chloride Butanethiol Butanoic acid Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, gropenyl ester + hydrogen chloride Butanoic acid, propynyl ester + hydrogen chloride 1-Butanol + hydrogen chloride + hydrog	
<pre>+ hydrogen chloride + hydrogen fluoride + hydrogen chloride + hydrogen chloride + hydrogen chloride Butane, 1-chloro- + hydrogen chloride Butane, 1-ethoxy- + hydrogen chloride Butane, 1-methoxy- + hydrogen chloride Butane, 1-methoxy- + hydrogen chloride Butane, 1-propoxy- + hydrogen chloride Butane, 1,1'-sulfonylbis- + hydrogen chloride Butane, 1,1'-thiobis- + hydrogen chloride 1,3-Butanediol + hydrogen chloride 1,4-Butanediol + hydrogen chloride Butanethiol + hydrogen chloride butanethiol + hydrogen chloride + hydrogen chloride butanoic acid Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, propeyl ester + hydrogen chloride Butanoic acid, propyl ester + hydrogen chloride 1-Butanol + hydrogen chloride 1-Butanol, 2-methyl- + hydrogen chloride + hydrogen chloride - Butanol, 3-methyl- + hydrogen chloride - But</pre>	+ hydrogen chloride
Butane, 1-bromo- + hydrogen chloride + hydrogen iodide Butane, 1-chloro- + hydrogen chloride Butane, 1-ethoxy- Butane, 2-ethoxy- + hydrogen chloride Butane, 1-methoxy- Butane, 1-propoxy- + hydrogen chloride Butane, 1,1'-sulfonylbis- + hydrogen chloride Butane, 1,1'-thiobis- + hydrogen chloride Butane, 1,1'-thiobis- + hydrogen chloride 1,3-Butanediol 1,4-Butanediol + hydrogen chloride Butanethiol Butanoic acid Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, groepnyl ester + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propyl ester + hydrogen chloride Butanoic acid, propynyl ester + hydrogen chloride Butanoic acid, propynyl ester + hydrogen chloride Butanoic acid, propynyl ester + hydrogen chloride 1-Butanol, 2-methyl- + hydrogen chloride + hydrogen chloride	
<pre>+ hydrogen chloride + hydrogen iodide = hydrogen chloride + hydrogen chloride = butanoic acid, propyl ester = hydrogen chloride = butanoic acid, propyl ester = hydrogen chloride = butanoic acid, propyl ester = hydrogen chloride = hydrogen chloride = butanoic acid, propyl ester = hydrogen chloride = butanoic acid, propyl ester = hydrogen chloride = hydrogen chloride = hydrogen chloride = hydrogen iodide 1-Butanol = hydrogen chloride = hydrogen iodide 1-Butanol, 2-methyl= = hydrogen chloride = hydr</pre>	
Butane, 1-chloro- + hydrogen chloride + hydrogen chloride Butane, 1-ethoxy- Butane, 2-ethoxy- + hydrogen chloride Butane, 1-methoxy- + hydrogen chloride Butane, 1.propoxy- + hydrogen chloride Butane, 1,1'-sulfonylbis- + hydrogen chloride Butane, 1,1'-thiobis- + hydrogen bromide + hydrogen chloride 1,3-Butanediol + hydrogen chloride 2,3-Butanediol + hydrogen chloride Butanethiol + hydrogen chloride Butanoic acid Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, propyl ester + hydrogen chloride 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate	+ hydrogen chloride
<pre>+ hydrogen iodide Butane, 1-ethoxy- Butane, 2-ethoxy- + hydrogen chloride Butane, 1-methoxy- Butane, 1-propoxy- + hydrogen chloride Butane, 1,1'-sulfonylbis- + hydrogen chloride Butane, 1,1'-thiobis- + hydrogen bromide + hydrogen chloride 1,3-Butanediol + hydrogen chloride 1,4-Butanediol + hydrogen chloride Butanethiol + hydrogen chloride Butanoic acid Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, gropenyl ester + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propynyl ester + hydrogen chloride 1-Butanol + hydrogen chloride 1-Butanol, 3-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate</pre>	Butane, 1-chloro-
<pre>+ hydrogen chloride Butane, 2-ethoxy- Butane, 1-methoxy- Butane, 1-propoxy- + hydrogen chloride Butane, 1,1'-sulfonylbis- + hydrogen chloride Butane, 1,1'-thiobis- + hydrogen chloride Butane, 1,1'-thiobis- + hydrogen bromide + hydrogen chloride 1,3-Butanediol + hydrogen chloride 2,3-Butanediol Butanethiol + hydrogen chloride Butanoic acid Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, gropenyl ester + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propynyl ester + hydrogen chloride 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate</pre>	+ hydrogen iodide
<pre>+ hydrogen chloride Butane, 1-methoxy- + hydrogen chloride Butane, 1,1'-sulfonylbis- + hydrogen chloride Butane, 1,1'-thiobis- + hydrogen bromide + hydrogen bromide + hydrogen chloride 1,3-Butanediol + hydrogen chloride 2,3-Butanediol + hydrogen chloride Butanethiol + hydrogen chloride Butanoic acid Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, gropenyl ester + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propynyl ester + hydrogen chloride 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate</pre>	
Butane, 1-methoxy- + hydrogen chloride Butane, 1-propoxy- + hydrogen chloride Butane, 1,1'-sulfonylbis- + hydrogen chloride Butane, 1,1'-thiobis- + hydrogen bromide + hydrogen chloride 1,3-Butanediol + hydrogen chloride 1,4-Butanediol + hydrogen chloride 2,3-Butanediol + hydrogen chloride Butanethiol + hydrogen chloride Butanoic acid Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, 3-methyl- + hydrogen chloride Butanoic acid, propyl ester + hydrogen chloride 1-Butanol + hydrogen chloride + hydroge	
Butane, 1-propoxy- + hydrogen chloride Butane, 1,1'-sulfonylbis- + hydrogen chloride Butane, 1,1'-thiobis- + hydrogen bromide + hydrogen bromide + hydrogen chloride 1,3-Butanediol + hydrogen chloride 2,3-Butanediol + hydrogen chloride Butanethiol + hydrogen chloride Butanoic acid + hydrogen chloride Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, 3-methyl- + hydrogen chloride Butanoic acid, propyl ester + hydrogen chloride 1-Butanol + hydrogen chloride 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate	Butane, 1-methoxy-
<pre>+ hydrogen chloride Butane, 1,1'-sulfonylbis- + hydrogen chloride Butane, 1,1'-thiobis- + hydrogen bromide + hydrogen iodide 1,3-Butanediol + hydrogen chloride 1,4-Butanediol + hydrogen chloride 2,3-Butanediol + hydrogen chloride Butanethiol + hydrogen bromide + hydrogen chloride Butanoic acid Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propyl ester + hydrogen chloride 1-Butanol + hydrogen chloride 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl- + hydrogen chloride + hydr</pre>	
<pre>+ hydrogen chloride Butane, 1,1'-thiobis-</pre>	+ hydrogen chloride
<pre>+ hydrogen bromide + hydrogen iodide 1,3-Butanediol 1,4-Butanediol 2,3-Butanediol butanethiol + hydrogen chloride Butanethiol + hydrogen chloride + hydrogen chloride Butanoic acid Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, 3-methyl- + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propyl ester + hydrogen chloride 1-Butanol + hydrogen chloride 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate</pre>	+ hydrogen chloride
<pre>+ hydrogen iodide 1,3-Butanediol 1,4-Butanediol 2,3-Butanediol butanethiol + hydrogen chloride Butanethiol + hydrogen chloride + hydrogen chloride Butanoic acid Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, a-methyl- + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propyl ester + hydrogen chloride 1-Butanol + hydrogen chloride 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate</pre>	Butane, 1,1 -thiodis-
<pre>+ hydrogen chloride 1,4-Butanediol 2,3-Butanediol Butanethiol + hydrogen chloride Butanoic acid Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, gropenyl ester + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propyl ester + hydrogen chloride Butanoic acid, propynyl ester + hydrogen chloride 1-Butanol + hydrogen chloride 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate</pre>	+ hydrogen iodide
<pre>+ hydrogen chloride 2,3-Butanediol Butanethiol + hydrogen chloride + hydrogen bromide + hydrogen chloride Butanoic acid Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propyl ester + hydrogen chloride Butanoic acid, propyl ester + hydrogen chloride Butanoic acid, propynyl ester + hydrogen chloride 1-Butanol + hydrogen chloride 2-Butanol + hydrogen chloride 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate</pre>	+ hydrogen chloride
+ hydrogen chloride Butanethiol + hydrogen bromide + hydrogen chloride + hydrogen chloride Butanoic acid Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, 3-methyl- + hydrogen chloride Butanoic acid, propyl ester + hydrogen chloride Butanoic acid, propynyl ester + hydrogen chloride Butanoic acid, propynyl ester + hydrogen chloride 1-Butanol 2-Butanol + hydrogen chloride + hydrogen chloride 1-Butanol, 3-methyl- + hydrogen chloride - Butanol, 3-methyl-, carbonate	+ hydrogen chloride
<pre>+ hydrogen bromide + hydrogen chloride + hydrogen iodide Butanoic acid Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, 3-methyl- + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propyl ester + hydrogen chloride Butanoic acid, propynyl ester + hydrogen chloride 1-Butanol 2-Butanol + hydrogen chloride + hydrogen iodide 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate</pre>	+ hydrogen chloride
<pre>+ hydrogen iodide Butanoic acid Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propyl ester + hydrogen chloride Butanoic acid, propynyl ester + hydrogen chloride 1-Butanol + hydrogen chloride 2-Butanol + hydrogen chloride 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate</pre>	+ hydrogen bromide
Butanoic acid + hydrogen chloride Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, 3-methyl- + hydrogen chloride Butanoic acid, propyl ester + hydrogen chloride Butanoic acid, propynyl ester + hydrogen chloride 1-Butanol 2-Butanol + hydrogen chloride + hydrogen chloride + hydrogen chloride + hydrogen chloride + hydrogen chloride + hydrogen chloride 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate	+ hydrogen chloride
<pre>+ hydrogen chloride Butanoic acid, ethyl ester + hydrogen chloride Butanoic acid, 3-methyl- + hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propynyl ester + hydrogen chloride 1-Butanol 2-Butanol + hydrogen chloride + hydrogen chloride + hydrogen iodide 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate</pre>	
<pre>+ hydrogen chloride Butanoic acid, 3-methyl-</pre>	+ hydrogen chloride
<pre>+ hydrogen chloride Butanoic acid, propenyl ester + hydrogen chloride Butanoic acid, propyl ester + hydrogen chloride Butanoic acid, propynyl ester + hydrogen chloride 1-Butanol 2-Butanol + hydrogen chloride + hydrogen iodide 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate</pre>	+ hydrogen chloride
<pre>+ hydrogen chloride Butanoic acid, propyl ester + hydrogen chloride Butanoic acid, propynyl ester + hydrogen chloride 1-Butanol 2-Butanol + hydrogen chloride + hydrogen iodide 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate</pre>	
Butanoic acid, propyl ester + hydrogen chloride Butanoic acid, propynyl ester + hydrogen chloride 1-Butanol 2-Butanol + hydrogen chloride + hydrogen iodide 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate	
Butanoic acid, propynyl ester + hydrogen chloride 1-Butanol 2-Butanol + hydrogen chloride + hydrogen iodide 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate	Butanoic acid, propyl ester
1-Butanol + hydrogen chloride 2-Butanol + hydrogen chloride + hydrogen iodide 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate	Butanoic acid, propynyl ester
2-Butanol + hydrogen chloride + hydrogen iodide 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate	1-Butanol
+ hydrogen chloride + hydrogen iodide 1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate	
1-Butanol, 2-methyl- + hydrogen chloride 1-Butanol, 3-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate	+ hydrogen chloride
+ hydrogen chloride 1-Butanol, 3-methyl- + hydrogen chloride 1-Butanol, 3-methyl-, carbonate	+ hydrogen iodide 1-Butanol, 2-methyl-
+ hydrogen chloride 1-Butanol, 3-methyl-, carbonate	+ hydrogen chloride
	+ hydrogen chloride

E41, E42, 51 E41, E42, 50 E383, E384, 392 E383, E384, 399 E389, E390, 429 E150-E155, 160, 168 E389, 428 E21, E22, 25 E150-E155, 161, 168, 178, 179 E1, 5 E241, 276 E437, E438, 445 E240, E241, 268 E437, E438, 444 E150-E155, 176, 177 E150-E155, 158 E150-E155, 167, 173-175 E150-E155, 159 E330, E331, 333 E390, 434 E438, 449 E138, 139, 143 E138, 139, 144 E138, 139, 144 E390, 434 E330, E331, 334 E438, 449 E196, 198 E207-E209, 213 E196, 198 E209, 220 E209, 220 E209, 220 E78-E93, 98, 106, 108, 111, 114 E78-E93, 98, 109 E78-E93, 99 E78-E93, 115 E208, 234

System Index

2-Butenoic acid, ethyl ester E209, 219 + hydrogen chloride 2-Buten-1-ol E133, 134, 135 + hydrogen chloride 3-Buten-1-ol E133, 134, 136 + hydrogen chloride 2-Buten-1-ol acetate E209, 219 + hydrogen chloride Butoxydichloroborane see borane, butoxydichloro-Butyl acetate see acetic acid, butyl ester Butyl benzenesulfonate see benzenesulfonic acid, butyl ester Butyl p-chlorobenzenesulfonate see benzenesulfonic acid, 4-chloro-, butyl ester Butyl chloroformate see carbonochloridic acid, butyl ester Butyl chlorosulfate see chlorosulfuric acid, butyl ester Butyl ethanesulfonate see ethanesulfonic acid, butyl ester 2-Butyl ethyl ether see butane, 2-buty1-Butyl phenyl ether see benzene, butoxy-Butyl propyl ether see butane, 1-propoxy-Butyl methanesulfonate see methanesulfonic acid, butyl ester Butyl p-toluenesulfonate see benzenesulfonic acid, 4-methyl-, butyl ester tert-Butylbenzene see benzene, (2-methylpropyl)-Butylbromide see butane, 1-bromo-Butylchloride see butane, 1-choro-1,3-Butylene glycol see 1,3-butanediol 2,3-Butylene glycol see 2,3-butanediol 1-Butylmercaptan see 1-butanethiol Butyric acid see butanoic acid 3-Butyn-1-ol E133, 134, 135 + hydrogen chloride 3-Butyn-2-ol E133, 134, 135 + hydrogen chloride Carbon disulfide + hydrogen chloride E330, E331, 341 Carbon tetrachloride see methane, tetrachloro-Carbonochloridic acid, butyl ester E208, 227 hydrogen chloride Carbonochloridic acid, ethyl ester + hydrogen chloride E208, 221, 224 Carbonochloridic acid, hexyl ester hydrogen chloride E208, 229 Carbonochloridic acid, propyl ester E208, 221, 225 + hydrogen chloride Chloroacetic acid see acetic acid, chloro-Chlorobenzene see benzene, chloro-Chlorobutane see butane, 1-chloro-2-Chloroethanol see ethanol, 2-chloro-Chloroform see methane, trichloro-

```
1-Chlorohexadecane
                   see hexadecane, 1-chloro-
1-Chlorohexane
                   see hexane, 1-chloro-
1-Chloro-2-propanol
                   see 2-propanol, 1-chloro-
1-Chloro-octane
                   see octane, 1-chloro-
Crotyl acetate
               see 2-buten-1-ol acetate
Cumene
                   see benzene, (1-methylethyl)-
Cyclic ethylene butyl borate
               see 1,3,2-dioxaborolane, 2-butoxy-
Cyclic o-phenylene butyl borate
               see 1,3,2-benzodioxaborole, 2-butoxy-
Cyclic o-phenylene ethyl borate
               see 1,3,2-benzodioxaborole, 2-ethoxy-
Cyclic o-phenylene methyl borate
               see 1,3,2-benzodioxaborole, 2-methoxy-
Cyclic o-phenylene octyl borate
               see 1,3,2-benzodioxaborole, 2-octyloxy-
Cyclic o-phenylene pentyl borate
               see 1,3,2-benzodioxaborole, 2-pentyloxy-
Cyclic o-phenylene propyl borate
               see 1,3,2-benzodioxaborole, 2-propoxy-
Cyclohexane
                                                      E41, E42, 44-46
                    + hydrogen chloride
Cyclohexanol
                    + hydrogen chloride
                                                      E145, 146
Cyclohexanol, 2-methyl-
                    + hydrogen chloride
                                                      E145, 146
Cyclohexene (ternary)
                    + hydrogen chloride
Decane
                    + hydrogen bromide
                                                      E383, 397,
                                                                 398
                                                     E9-E11, 19
                    + hydrogen chloride
1-Decanol
                    + hydrogen bromide
                                                      E385, E387, 414
                                                      E78-E93, 117, 119,
                    + hydrogen chloride
                                                      123
Dibenzyl ether
                   see benzene, 1,1'-[oxybis (methylene)]bis-
1,2-Dibromoethane
                    see ethane, 1,2-dibromo-
1,2-Dibromo-2-propanol
                    see 2-propanol, 1,2-dibromo-
1,3-Dibromo-2-propanol
                   see 2-propanol, 1,3-dibromo-
Dibutyl ether
                   see butane, 1,1'-oxybis-
Dibutyl sulfide
               see butane, 1,1-thiobis-
Dibutyl sulfone
               see butane, 1,1'-sulfonylbis-
1,2-Dichloroethane
                   see ethane, 1,2-dichloro-
\alpha\beta-Dichloroethyl ether
               see ethane, 1-chloro-1-(2-chloroethoxy)-
BB'-Dichloroethyl ether
               see ethane, 1,1'-oxybis[2-chloro-
2,2-Dichloroethyl ether
                    see ethane, 1,1-oxybis (2-chloro-
1,1-Dichloro-3-hydroxypropane
                   see 1-propanol, 3,3-dichloro-
Dichloromethane
                   see methane, dichloro-
Dichloromethyl ether
               see methane oxybis[chloro-
Dichlorophenylborane
               see borane, dichlorophenyl-
γγ'-Dichloropropyl ether
               see propane, 1,1'-oxybis[3-chloro-
```

Diethyl ether see ethane, 1,1-oxybis-Diethyl sulfide see ethane, 1,1-thiobis-Diheptyl ether see heptane, 1,1'-oxybis-Dihexyl ether see hexane, 1,1'-oxybis-Diisoamyl ether see butane, 1,1'-oxybis[3-methyl-Diisopropyl sulfide see propane, 2,2'-thiobis-Dissopropyl sulfone see propane, 2,2'-sulfonylbis-Dissopentyl ether see butane, 1,1'-oxybis (3-methyl-Diphenyl sulfide see benzene, 1,1'-thiobis-Dipropyl sulfone see propane, 1,1'-sulfonylbis-1,2-Dimethylbenzene see benzene, 1,2-dimethy1-1,3-Dimethylbenzene see benzene, 1,3-dimethyl-1,4-Dimethylbenzene see benzene, 1,4-dimethyl-2,3-Dimethyl-1,3-butadiene see 1,3-butadiene, 2,3-dimethyl-Dioctyl ether see octane, 1,1'-oxybis-1,3,2-Dioxaborolane, 2-butoxy-+ hydrogen chloride E342, 346 1,4-Dioxane E150-E155, 171, 189 + hydrogen chloride 1,4-Dioxane (ternary) + hydrogen chloride E21, E22, 26 Dipentyl ether see pentane, 1,1'-oxybis-Diphenyl ether see benzene, 1,1'-oxybis-Dipropyl ether see propane, 1,1'-oxybis-Dodecane + hydrogen chloride E9, E11, 13 Dodecane, 1-chloro-+ hydrogen chloride E240, E241, 271 1-Dodecanol E385, E387, 415 + hydrogen bromide E78-E93, 124 + hydrogen chloride Ethane, bromo-E241, 274 E437, E438, 444 + hydrogen chloride + hydrogen iodide Ethane, 1-chloro-1-(2-chloroethoxy)-+ hydrogen chloride E150-155, 172 Ethane, 1,2-dibromo-E389, E390, 429 E241, 274, 275 + hydrogen bromide + hydrogen chloride Ethane, 1,1-dichloro-E240, 259, 260 hydrogen chloride Ethane, 1,2-dichloro-E389, E390, 425 E236, E239, E240, + hydrogen bromide + hydrogen chloride E242, 256-258, 261-263 Ethane, 1-iodo-+ hydrogen iodide E437, E438, 445 Ethane, 1-methoxy-E150-E155, 156 + hydrogen chloride Ethane, 1,1'-oxybis-+ hydrogen chloride E150-E155, 157, 164-166 Ethane, 1,1'-oxybis- (ternary) + hydrogen chloride E21, E22, 23, E54, 73

Ethane, 1,1'-oxybis(2-chloro- + hydrogen chloride	E150-E155, 172, 187,
Ethane, 1,1'-oxybis(2-chloro-, (ternary)	188
+ hydrogen chloride Ethane, pentachloro-	E21, E22, 26
+ hydrogen chloride Ethane, 1,1,2,2-tetrabromo-	E240, E242, 256, 267
+ hydrogen chloride Ethane, 1,1,2,2-tetrachloro-	E241, 274
+ hydrogen chloride	E240, E242, 256, 258, 265, 266
Ethane, 1,1-thiobis-, (ternary) + hydrogen chloride	E21, E22, 33
Ethane, 1,1,1-triethoxy- + hydrogen chloride	E150-E155, 190
1,2-Ethanediol + hydrogen chloride	E138, E139, 140-142
+ hydrogen fluoride Ethanesulfonic acid, butyl ester	E1, 5
+ hydrogen chloride	E330, E331, 333
Ethanesulfonyl chloride + hydrogen chloride	E330, E331, 332
Ethanol	E385, 411
+ hydrogen bromide + hydrogen chloride	E385, 417 E78-E93, 95-97, 101, 104, 105
Ethanol, 2-bromo- + hydrogen chloride	E127, 129
Ethanol, 2-chloro- + hydrogen bromide	E387, 418
+ hydrogen chloride	E127, 128, 129
Ethanol, 2,2-dichloro- + hydrogen bromide	E387, 417
Ethanol, phenyl- + hydrogen chloride	E145, 148
Ethanol, 2,2,2-trichloro-	·
+ hydrogen bromide + hydrogen chloride	E387, 419, 420 E127, 131, 132
Ethanol, 2,2,2-trichloro-, phosphite + hydrogen chloride	E342, 364
Ethanol, 2,2,2-trifluoro-	E127, 131
+ hydrogen chloride Ethanol, 2,2,2-trichloro-, acetate	
+ hydrogen chloride Ethene, chloro-	E209, 223
+ hydrogen chloride Ethene, tetrachloro-	E241, 281-283
+ hydrogen chloride Ethene, tetrachloro-, (ternary)	E241, 286, 288
+ hydrogen chloride	E54, 72
Ethene, trichloro- + hydrogen chloride	E241, 258, 286, 287
Ethyl acetate see acetic acid, ethyl ester	
Ethyl bromoacetate see acetic acid, ethyl ester	
Ethyl butanoate see butanoic acid, ethyl ester	
Ethyl butyl ether see butane, 1-ethoxy-	
Ethyl butylrate see butanoic acid, ethyl ester	
Ethyl chloroformate see carbonochloridic acid ethyl e	
Ethyl crotonate see 2-butenoic acid, ethyl ester	
Ethyl dichloroacetate	
see acetic acid, dichloro-, ethyl Ethyl formate	lester
see formic acid, ethyl ester Ethyl nitrate	
see nitric acid, ethyl ester	

```
System Index
```

Ethyl phenyl ether see benzene, ethoxy-Ethyl propanoate see propanoic acid, ethyl ester Ethyl propionate see propanoic acid, ethyl ester Ethyl sec-butyl ether see butane, 2-ethoxy-Ethyl trichloroacetate see acetic acid, trichloro-, ethyl ester Ethylbenzene see benzene, ethyl-Ethylene dichloride see ethane, 1,2-dichloro-Ethylene glycol see 1,2-ethanediol Fluorobenzene see benzene, fluoro-Fluorosulfuric acid + hydrogen fluoride E1, 6 Formic acid + hydrogen chloride E196, 197 Formic acid, ethyl ester + hydrogen chloride E207-E209, 210 Furan, tetrahydro-+ hydrogen chloride E150-E155, 171 Furan, tetrahydro-, (ternary) + hydrogen chloride E21, E22, 30 Glycerol see 1,2,3-propanetriol Hemimellitene see benzene, 1,2,3-trimethyl-Heptane E383, E384, 395 + hydrogen bromide + hydrogen chloride E7-E11, 12, 17, 18, 40 Heptane (ternary) E21, E22, 23-40, E54, + hydrogen chloride E55, 70 Heptane, 1,1'-oxybis-+ hydrogen chloride E150-E155, 162 Heptane, 1-methoxy-+ hydrogen chloride E150-E155, 159 1-Heptanol E385, E387, 414 + hydrogen bromide E78-E93, 117, 119 + hydrogen chloride 4-Heptanol + hydrogen chloride E78-E93, 100 3-Hepten-1-ol + hydrogen chloride E133, 134, 137 1-Heptoxyoctane see octane, 1-heptoxy-Heptyl methyl ether see heptane, 1-methoxy-Hexadecane + hydrogen chloride E8-E11, 13, 20 Hexadecane, 1-chloro-+ hydrogen chloride E240, E241, 272, 273 1-Hexadecanol + hydrogen bromide E385, E387, 415 + hydrogen chloride E78~E93, 126 1-Hexadecene E41, E42, 52 + hydrogen chloride Hexane E383, 393, 394 + hydrogen bromide + hydrogen chloride E7-E11, 12-16 Hexane (ternary) E383, E384, 400 + hydrogen bromide Hexane, 1-bromo-E389, 428 E241, 277 + hydrogen bromide + hydrogen chloride

Hexane, 1-chloro-	+ hydrogen chloride	E240, E241, 269
Hexane, 1,6-dibrom	o- + hydrogen bromide	E389, E390, 429
Hexane, 1-methoxy-	+ hydrogen chloride	E150-E155, 159
Hexane, 1,1'-oxybi:	s- + hydrogen chloride	E150-E155, 162
Hexane, 1-pentoxy-	+ hydrogen chloride	E150-E155, 161
1-Hexanol	+ hydrogen bromide	E385, E387, 413
	+ hydrogen chloride	E78-E93, 113, 116, 118
1-Hexanol, 3,5,5-t	rimethyl- + hydrogen chloride	E78-E93, 100
Hexanoic acıd	+ hydrogen bromide	E388, 423
	+ hydrogen chloride + hydrogen iodide	E196, 204 E438, 443
3-Hexen-1-ol	+ hydrogen chloride	E133, 134, 137
Hexylbromide	see hexane, 1-bromo-	121 124 121
Hexylchloride		
Hexyl chloroformate		
Hexyl methyl ether	see carbonochloridic acid, hexyl	ester
Hydroxybenzene	see hexane, 1-methoxy-	
Hydrogen sulfide	see phenol	
	+ hydrogen sulfide	E330, E331, 339
Iodobenzene,	see benzene, 10do-	
1-Iodo-octane	see octane, 1-iodo-	
Isobutyl acetate	see acetic acid, 2-methyl propyl	ester
Isobutylbenzene	see benzene, (2-methylpropyl)-	
Isodurene	see benzene 1,2,3,5-tetramethy1-	
Isopropylbenzene	see benzene, (1-methylethyl)-	
Isovaleric acid,	see butanoic acid, 3-methyl-	
Mercaptobenzene		
Mesitylene	see benzenethiol	
Methane, dichloro-	see benzene, 1,3,5-trimethyl-	
Methane, dichiolo	+ hydrogen bromide + hydrogen chloride	E388, E389, 424
Methane, 1-iodo-	+ hydrogen bromide	E236, 244
Nathana awybic(ch)	+ hydrogen iodide	E389, 428 E437, E438, 445
Methane, oxybis[ch]	+ hydrogen chloride	E150-E155, 172
Methane, tetrachlor	+ hydrogen bromide	E388, E389, 425, 427
	+ hydrogen chloride	E236, E237, 245, 246, 250-255
Methane, tetrachlor	- (ternary) + hydrogen chloride	E21, E22, 36
Methane, tribromo-	+ hydrogen chloride	
Methane, trichloro-	+ hydrogen bromide	E388, E389, 424, 426
	+ hydrogen chloride	E236, E238, 245-249
1		

463

Methanesulfonic acid, butyl ester E330, E331, 333 hydrogen chloride Methanesulfonyl chloride E330, E331, 332 + hydrogen chloride Methanol + hydrogen chloride E78-E93, 94-97, 101-103 Methyl acetate see acetic acid, methyl ester 3-Methylallyl alcohol see 2-buten-1-ol 2-Methyl-1,3-butadiene see 1,3-butadiene, 2-methyl-3-Methyl butanoic acid see butanoic acid, 3-methyl-2-Methyl-1-butanol see 1-butanol, 2-methyl Methyl butyl ether see butane, 1-methoxy-2-Methyl cyclohexanol see cyclohexanol, 2-methyl Methyl ethyl ether see ethane, 1-methoxy-Methyl heptyl ether see heptane, 1-methoxy-Methyl hexyl ether see hexane, 1-methoxy-Methyl octyl ether see octane, 1-methoxy-4-Methyl-2-pentanol see 2-pentanol, 4-methyl Methyl pentyl ether see pentane, 1-methoxy-Methyl phenyl ether see benzene, methoxy-2-Methyl propanoic acid see propanoic acid, 2-methyl-2-Methyl propanol see 1-propanol, 2-methyl-2-Methyl-1-propanol see 1-propanol, 2-methyl 2-Methyl-2-propen-1-ol E133, 134, 136 + hydrogen chloride 2-Methylpropyl acetate see acetic acid, 2-methyl propyl ester 3-Methylpropyl acetate see acetic acid, 1-methyl propyl ester 2-Methylpropylbenzene see benzene, 2-methylpropyl-Methyl propyl ether see propane, 1-methoxy-Methyl o-tolyl ether see benzene, 1-metoxy-2-methyl-Monochloroacetic acid see acetic acid, chloro-Nitric acid, ethyl ester (ternary) E21, E22, 37 + hydrogen chloride Nitrobenzene see benzene, nitrom-Nitrotoluene see benzene, 1-methyl-3-nitroo-Nitrotoluene see benzene, 1-methyl-2-nitro-1-Nonanol + hydrogen bromide E385, E387, 414 + hydrogen chloride E78-E93, 119 Nonyl acetate see acetic acid, nonyl ester 1-Octadecanol + hydrogen chloride E78-E93, 125

Octame+ hydrogen bromideE383, E384, 396Octane, 1-bromo-+ hydrogen follorideE389, 425Octane, 1-chloro-+ hydrogen iodideE389, 425Octane, 1-chloro-+ hydrogen iodideE389, 425Octane, 1-heptoxy-+ hydrogen iodideE389, 425Octane, 1-heptoxy-+ hydrogen chlorideE389, 425Octane, 1-heptoxy-+ hydrogen chlorideE389, 425Octane, 1-heptoxy-+ hydrogen chlorideE389, 425Octane, 1-methoxy-+ hydrogen chlorideE389, 425Octane, 1-methoxy-+ hydrogen chlorideE387, E384, 448Octane, 1,1'-oxybis-+ hydrogen chlorideE387, 421+ hydrogen chlorideE387, 421E300, 110, 110, 116-Octanel+ hydrogen chlorideE385, 437, 414, 416+ hydrogen chlorideE385, 440E385, 4401-Octanol+ hydrogen chlorideE385, 4401-Octanol+ hydrogen chlorideE385, 4401-Octanol+ hydrogen chlorideE385, 4401-Octane (ternary)+ hydrogen chlorideE54, 71Octyl acetatesee actic acid, octyl esteroctylbromidesee actic acid, octyl esteroctylbromide+ hydrogen chloride1,3-Pentadiene+ hydrogen chloride+ hydrogen chlorideE150-E155, 160, 168Pentane, 1,1'-oxybis-Pentane, 1,1'-oxybis-+ hydrogen chlorideE150-E155, 158Pentane, 1,1'-oxybis-+ hydrogen chlorideE138, 139, 1441-S-Pentanedi+ hydrogen chloride	Octane	
 hydrogen fluoride bydrogen chloride hydrogen chloride hydrogen chloride hydrogen iodide bydrogen iodide bydrogen iodide bydrogen chloride ctans, 1-heptoxy- hydrogen chloride ctans, 1-heptoxy- hydrogen chloride ctans, 1-heptoxy- hydrogen chloride ctans, 1-heptoxy- hydrogen chloride ctans, 1-methoxy- hydrogen chloride ctans, 1, 1'-oxybis- hydrogen chloride thydrogen chloride thydrogen chloride ctans, 441 ctans, 1, 1'-oxybis- hydrogen chloride thydrogen chloride<	+ hydrogen bromide	
Octane, 1-bromo- hydrogen chloride hydrogen iodideE389, 425 E241, 278, 279 E437, E438, 447Octane, 1-chloro- hydrogen iodideE389, 425 E240, E241, 270 E241, 280 E389, 425 E391, 424 E438, 448Octane, 1-nethoxy- thydrogen chloride thydrogen chloride thydrogen chloride thydrogen chloride thydrogen chloride thydrogen chloride thydrogen chloride thydrogen chloride E385, 4441-Octanol thydrogen chloride thydrogen chloride t		
<pre>bydrogen chloride E241, 278, 279 bydrogen iodide E389, 425 E389, 425 E240, E241, 270 bydrogen chloride E389, 425 E240, E241, 270 bydrogen chloride E150-E155, 162 Cctane, 1-heptoxy- bydrogen bromide E389, 425 bydrogen chloride E437, E438, 448 Cctane, 1-methoxy- bydrogen iodide E150-E155, 162 Cctane, 1-methoxy- bydrogen chloride E389, 425 E241, 280 bydrogen chloride E150-E155, 163, 180 E150-E155, 160, 163 E10-E150 Cctyl acetate see acetic acid, octyl ester Cctylbromide see ethane, pantachloro- 1,3-Pentadien + hydrogen chloride E150-E155, 160, 168 Pentane, 1,1'-oxybis- + hydrogen chloride E150-E155, 160, 168 Pentane, 1,1'-oxybis- + hydrogen chloride E150-E155, 160, 168 Pentane, 1,1'-oxybis- + hydrogen chloride E138, 139, 144 1-Pentanol 1,5-Pentanoliol + hydrogen chloride E138, 139, 144 + hydrogen chloride E38, 5387, 413 E78-E93, 100, 113, 115, 116 1-Pentanol, 4-methyl- + hydrogen chloride E78-E93, 100, 113, 115, 115 Pentane, 2,4,4-trimethyl- + hydrogen chloride E78-E93, 100, 113, 115, 116 2-Pentanol, 4-methyl- + hydrogen chloride E385, E387, 413 E78-E93, 100, 113, 115, 116 2-Pentanol, 4-methyl- + hydrogen chloride E78-E93, 100, 113, 115, 116 2-Pentanol, 4-methyl- + hydrogen chloride E78-E93, 100, 113, 115, 116 2-Pentanol, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 47 2-Pentanol, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl- + hydrogen</pre>	Octane, 1-bromo-	
<pre>b hydrogen iodide E437, E438, 447 Cottane, 1-holoro-</pre>		E389, 425 E241, 278, 279
<pre>+ hydrogen bromide by definition between the set of the set o</pre>	+ hydrogen iodide	
+ hydrogen chloride E240, E241, Z70 Octane, 1-heptoxy- hydrogen chloride E150-E155, 162 Octane, 1-iodo- hydrogen chloride E389, 425 - hydrogen chloride E247, E438, 448 Octane, 1-methoxy- hydrogen chloride E150-E155, 160 Octane, 1-methoxy- hydrogen bromide E387, 421 - hydrogen chloride E150-E155, 163,180 Octane, 1,1'-oxybis- hydrogen bromide E387, 421 - hydrogen chloride E387, 421 E150-E155, 163,180 - hydrogen bromide Hydrogen chloride E387, 421 - hydrogen chloride E385-E387, 414, 416 E78-E93, 100, 110, 119-121 - Octanol + hydrogen chloride E78-E93, 100, 110, 119-121 - Octanol + hydrogen chloride E54, 71 - Octanol <td></td> <td>F389 425</td>		F389 425
Octane, 1-heptoxy- thydrogen chlorideE150-E155, 162Octane, 1-iodo- hydrogen chlorideE389, 425 E241, 280 E437, E438, 448Octane, 1-methoxy- hydrogen chlorideE150-E155, 160Octane, 1,1'-oxybis- hydrogen chlorideE387, 421 E150-E155, 163,1801-Octanol hydrogen bromide hydrogen chlorideE387, 421 E150-E155, 163,1801-Octanol hydrogen chlorideE385-E387, 414, 416 E78-E93, 100, 110, 119-1212-Octanol thydrogen chlorideHydrogen chloride1-Octene (ternary) octyl acetatehydrogen chloride0ctyl acetate see octane, 1-bromo-E54, 71Pentachloroethane see octane, 1-bromo-E41, E42, 49Pentane, 1,1'-oxybis- hydrogen chlorideE41, E42, 49Pentane, 1,1'-oxybis- hydrogen chlorideE54, 71Octanesee ethane, pentachloro- 1,3-PentadieneF, E8, E11, 12Pentane, 1,1'-oxybis- hydrogen chlorideE41, E42, 49Pentane, 1,1'-oxybis- hydrogen chlorideE150-E155, 160, 168Pentane, 1,1'oxybis- hydrogen chlorideE150-E155, 160, 168Pentane, 1, 1'oxybis- hydrogen chlorideE160-E155, 158Pentane, 1, 1'oxybis- hydrogen chlorideE38, 139, 1441-Pentanolhydrogen chlorideE78-E93, 199, 113, 115, 1161-Pentanolhydrogen chlorideE78-E93, 199, 113, 115, 1161-Pentane, 2,4,4-trimethyl- hydrogen chlorideE41, E42, 482-Pentanol, 4-methyl- hydrogen chlorideE41, E42, 482-Pentanol, 4-methyl- hydrogen chlorideE41, E42, 482-Pentanol,		
hydrogen chlorideE150-E155, 162Octane, 1-indo- hydrogen chloride hydrogen chloride hydrogen chloride hydrogen chloride hydrogen chloride hydrogen chloride hydrogen chloride thydrogen chloride E387, 421 E150-E155, 160Octane, 1.1"-oxybis- hydrogen chloride hydrogen chloride hydrogen chloride hydrogen chloride thydrogen chloride thydr	· ·	E437, E438, 446
Octane, 1-iodo- hydrogen bromide hydrogen chloride E389, 425 E241, 280 E437, E438, 448 Octane, 1methoxy- hydrogen chloride hydrogen chloride E150-E155, 160 Octane, 1,1'-oxybis- hydrogen chloride hydrogen chloride E387, 421 E150-E155, 163,180 1-Octanol hydrogen bromide hydrogen chloride E387, 421 E150-E155, 163,180 2-Octanol hydrogen bromide hydrogen chloride E385-E387, 414, 416 E78-E93, 100, 110, 119-121 2-Octanol hydrogen chloride E78-E93, 122 1-Octene (ternary) + hydrogen chloride E54, 71 Octyl acetate see acetic acid, octyl ester Octyl acetate See octane, 1-bromo- see it, 5-pentanediol E150-E155, 160, 168 Pentamethylene glycol see it, 5-pentanediol E150-E155, 160, 168 Pentane, 1,1'-oxybis- hydrogen chloride E7, E8, E11, 12 Pentane, 1,1'-oxybis- + hydrogen chloride E150-E155, 160, 168 Pentane, 1,1'-oxybis- + hydrogen chloride E13, 139, 114 Pentane, 2,2,4-trimethyl- + hydrogen chloride E138, 139, 114 1-Pentanol + hydrogen chloride E78-E93, 109, 113, 115, 116 1-Pentanol + hydrogen chloride E78-E93, 109, 113,		E150-E155, 162
<pre>+ hydrogen holoride E241, 280 E437, E438, 448 Octane, 1-methoxy- Octane, 1,1'-oxybis- Cotane, 1,1'-oxybis- + hydrogen chloride E150-E155, 160 + hydrogen bromide E387, 421 + hydrogen chloride E438, 441 1-Octanol + hydrogen bromide E438, 441 1-Octanol + hydrogen chloride E438, 440 2-Octanol + hydrogen chloride E438, 440 2-Octanol + hydrogen chloride E54, 71 Octyl acetate see acetic acid, octyl ester Octylbromide see octane, 1-bromo- Pentachloroethame see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride E150-E155, 160, 168 Pentame thylene glycol see 1,5-pentamediol Pentane, 1.1'-oxybis- + hydrogen chloride E150-E155, 160, 168 Pentane, 1.1'-oxybis- + hydrogen chloride E150-E155, 160, 168 Pentane, 1.1'-oxybis- + hydrogen chloride E150-E155, 160, 168 Pentane, 2,2,4-trimethyl- + hydrogen chloride E138, 139, 144 1-Pentanol + hydrogen chloride E138, 139, 144 1-Pentanol + hydrogen chloride E78-E93, 199, 113, 115, 116 9-Pentanel + hydrogen chloride E78-E93, 99 2-Pentanol, 4-methyl- + hydrogen chloride E78-E93, 199, 113, 115, 116 9-Pentanol + hydrogen chloride E78-E93, 199, 113, 115, 116 9-Pentanol, 4-methyl- + hydrogen chloride E78-E93, 199, 113, 115, 116 9-Pentene, 2,4,4-trimethyl- + hydrogen chloride E44, 70 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E54, 70 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E54, 71 3-Pentan-1-ol + hydrogen chloride E54, 71 3-Pentan-1-ol + hydrogen chloride E41, 134, 136</pre>	Octane, 1-iodo-	
<pre>+ hydrogen lodide E437, E438, 448 Octane, 1-methoxy- + hydrogen chloride E150-E155, 160 Octane, 1,1'-oxybis- + hydrogen chloride E387, 421 + hydrogen chloride E385-E387, 413, 416 E50-E155, 163,180 E438, 441 1-Octanol + hydrogen chloride E385-E387, 414, 416 E78-E93, 100, 110, 119-121 2-Octanol + hydrogen chloride E78-E93, 100, 110, 119-121 0-Ottane (ternary) -Octyl acetate see acetic acid, octyl ester Octylbromide see acetic acid acid pentame + hydrogen chloride E41, E42, 49 Pentamethylene glycol Pentane, 1,1'-oxybis- + hydrogen chloride E150-E155, 160, 168 Pentane, 1-methoxy- + hydrogen chloride E150-E155, 158, 158 Pentane, 2,2,4-trimethyl- + hydrogen chloride E150-E155, 158 Pentane, 2,2,4-trimethyl- + hydrogen chloride E138, 139, 144 1-Pentanol + hydrogen chloride E138, 5387, 413, 115, 116 3-Pentanol + hydrogen chloride E78-E93, 109, 113, 115, 116 3-Pentanol + hydrogen chloride E78-E93, 109, 113, 115, 116 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E78-E93, 109, 113, 115, 116 3-Pentanol, 4-methyl- + hydrogen chloride E41, E42, 47 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E44, 71 3-Penten-1-ol + hydrogen chloride E133, 134, 136</pre>		
<pre>hydrogen chloride E150-E155, 160 Octane, 1,1'-oxybis- + hydrogen bromide + hydrogen chloride E387, 421 + hydrogen chloride E385-E387, 414, 416 E78-E93, 100, 110, 119-121 2-Octanol + hydrogen chloride E385-E387, 414, 416 E78-E93, 100, 110, 119-121 2-Octanol + hydrogen chloride E54, 71 Octyl acetate see acetic acid, octyl ester Octylbromide see octane, 1-bromo- Pentachloroethame 1,3-Pentadiene + hydrogen chloride E150-E155, 160, 168 Pentame thylene glycol See 1,5-pentanediol Pentane, 1,1'-oxybis- + hydrogen chloride E150-E155, 160, 168 Pentane, 1,-methoxy- + hydrogen chloride E150-E155, 158 Pentane, 2,2,4-trimethyl- + hydrogen chloride E385, E387, 413, 113, 1,5-Pentanol + hydrogen chloride E138, 139, 144 + hydrogen chloride E385, E387, 413 + hydrogen chloride E385, E387, 413 + hydrogen chloride E78-E93, 109, 113, 115, 116 -Pentanol + hydrogen chloride E78-E93, 109, 113, 115, 116 -Pentene, 2,4,4-trimethyl- + hydrogen chloride E78-E93, 100 -Pentene, 2,4,4-trimethyl- + hydrogen chloride E78-E93, 100 -Pentene, 2,4,4-trimethyl- + hydrogen chloride E78-E93, 100 -Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 47 -Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 47 -Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 -Penten-1-ol + hydrogen chloride E54, 70 -Penten-1-ol + hydrogen chloride E54, 71 -Penten-1-ol + hydrogen chloride E133, 134, 136</pre>	+ hydrogen 10dide	
Octane, 1,1'-oxybis- hydrogen chloride hydrogen iodideE387, 421 E150-E155, 163,180 E438, 4101-Octanol+ hydrogen chloride + hydrogen chlorideE385-E387, 414, 416 E78-E93, 100, 110, 119-1212-Octanol+ hydrogen chloride + hydrogen chlorideE78-E93, 100, 110, 119-1211-Octene (ternary)+ hydrogen chloride see acetic acid, octyl esterE54, 71Octyl acetate See octane, 1-bromo-E54, 71Pentachloroethane see ethane, pentachloro- 1,3-Pentadiene Pentane, 1,1'-oxybis- thydrogen chlorideE41, E42, 49Pentame + hydrogen chloride see 1,5-pentanediolE150-E155, 160, 168Pentane, 1,1'-oxybis- + hydrogen chlorideE150-E155, 156, 158Pentane, 1,1'-oxybis- + hydrogen chlorideE10-E155, 158, 139, 1441-Pentane, 1,2,2,4-trimethyl- + hydrogen chlorideE385, E387, 413, E78-E93, 109, 113, 115, 1163-Pentanol + hydrogen chlorideE78-E93, 100, 110, 113, 115, 1163-Pentanol + hydrogen chlorideE78-E93, 100, 113, 115, 1163-Pentanol + hydrogen chlorideE78-E93, 100, 113, 115, 1163-Pentanol + hydrogen chlorideE78-E93, 100, 113, 115, 1163-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE78-E93, 1001-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE41, E42, 471-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE54, 702-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE54, 713-Penten-1-ol + hydrogen chlorideE54, 713-Penten-1-ol + hydrogen chlorideE54, 714-Penten-1-ol + hydrogen chloride <td></td> <td>E150-E155. 160</td>		E150-E155. 160
<pre>+ hydrogen chloride F150=E155, 163,180 + hydrogen iodide E438, 441 + hydrogen chloride F78=E33, 100, 110, 119-121 + hydrogen chloride E78=E33, 100, 110, 119-121 -Octanol + hydrogen chloride E54, 71 Octyl acetate see acetic acid, octyl ester Octylbromide see ottane, 1-bromo- Pentachloroethame see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride E41, E42, 49 Pentamethylene glycol see 1,5-pentanediol Pentane, 1,1'-oxybis + + hydrogen chloride E150=E155, 160, 168 Pentane, 1.=methoxy + + hydrogen chloride E150=E155, 160, 168 Pentane, 1.=methoxy + + hydrogen chloride E10=E155, 158 Pentane, 2,2,4-trimethyl- 1,5-Pentanol + hydrogen chloride E138, 139, 144 1-Pentanol + hydrogen chloride E78=E33, 100, 113, 115, 116 3-Pentanol + hydrogen chloride E78=E33, 100 + hydrogen chloride E78=E33, 100, 113, 15, 116 3-Pentanol + hydrogen chloride E78=E33, 100 + hydrogen chloride E78=E33, 100, 113, 15, 116 3-Pentanol + hydrogen chloride E78=E33, 100 + hydrogen chloride E78=E33, 100, 113, 15, 116 3-Pentanol + hydrogen chloride E78=E33, 100 + hydrogen chloride E41, E42, 47 1-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E54, 70 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E54, 70 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E54, 70 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E54, 71 4-Penten-1-ol + hydrogen chloride E54, 71</pre>	Octane, 1,1'-oxybis-	
+ hydrogen iodide E438, 441 1-Octanol + hydrogen chloride E385-E387, 414, 416 E78-E93, 100, 110, 119-121 + hydrogen chloride E438, 440 2-Octanol + hydrogen chloride E54, 71 Octyl acetate see acetic acid, octyl ester Octylacetate see octane, 1-bromo- Pentachloroethane see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride E41, E42, 49 Pentamethylene glycol set 7, E8, E11, 12 Pentane, 1ir-cybis- + hydrogen chloride E150-E155, 160, 168 Pentane, 2,2,4-trimethyl- + hydrogen chloride E385, E387, 413, 1-Pentanol + hydrogen chloride E385, E387, 413 E78-E93, 100, 110, 119-121 Pentane, 1ir-cybis- + hydrogen chloride E138, 139, 144 1-Pentanol + hydrogen chloride E138, 139, 144 1-Pentanol + hydrogen chloride E78-E93, 100, 113, 15-Pentanelol + hydrogen chloride E78-E93, 100, 113, 15-Pentanelol + hydrogen chloride E385, E387, 413 E78-E93, 109, 113, 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E78-E93, 110 - Pentanol + hydrogen chloride E78-E93, 110 - Pentene, 2,4,4-trimethyl- (ternary) + hydrogen chloride E78-E93, 110 - Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E41, E42, 47 - Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E54, 70 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E54, 71 - Pontene-1-ol		
<pre>+ hydrogen bromide E385-E387, 414, 416 F78-E93, 100, 110, 119-121 + hydrogen chloride E78-E93, 100, 110, 119-121 + hydrogen chloride E54, 71 Octyl acetate See acetic acid, octyl ester Octylbromide See octane, 1-bromo- Pentachloroethane + hydrogen chloride E41, E42, 49 Pentamethylene glycol See 1,5-pentanediol Pentane + hydrogen chloride E150-E155, 160, 168 Pentane, 1,1'-oxybis- + hydrogen chloride E150-E155, 158 Pentane, 1-methoxy- + hydrogen chloride E150-E155, 158 Pentane, 2,2,4-trimethyl- + hydrogen chloride E138, 139, 144 + hydrogen chloride E38, 5387, 414, 416 E78-E93, 100, 110, 115, Pentanel + hydrogen chloride E150-E155, 158 Pentane, 1-methoxy- + hydrogen chloride E9, E11, 12 1,5-Pentanediol + hydrogen chloride E138, 139, 144 + hydrogen chloride E38, 5387, 413, 115, 116 3-Pentanol + hydrogen chloride E78-E93, 109, 113, 115, 116 3-Pentanol + hydrogen chloride E78-E93, 109, 113, 115, 116 3-Pentanol, 4-methyl- + hydrogen chloride E78-E93, 99 2-Pentanol, 4-methyl- + hydrogen chloride E41, E42, 47 + hydrogen chloride E41, E42, 47 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 47 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E41, E42, 48 2-Penten-1-ol + hydrogen chloride E54, 70 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E54, 71</pre>		
<pre>+ hydrogen chloride E78-E93, 100, 110, 119-121 E438, 440 2-Octanol + hydrogen chloride E78-E93, 122 1-Octene (ternary) + hydrogen chloride E54, 71 Octyl acetate see acetic acid, octyl ester Octylbromide see octane, 1-bromo- Pentachloroethane see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride E41, E42, 49 Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride E150-E155, 160, 168 Pentane, 1-methoxy- Pentane, 1-methoxy- Pentane, 2,2,4-trimethyl- 1,5-Pentanol + hydrogen chloride E138, 139, 144 1-Pentanol + hydrogen chloride E138, 139, 144 1-Pentanol + hydrogen chloride E78-E93, 100, 113, 115, 116 3-Pentane + hydrogen chloride E138, 139, 144 1-Pentanol + hydrogen chloride E138, 139, 144 1-Pentanol + hydrogen chloride E138, 139, 144 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E78-E93, 99 2-Pentanol, 4-methyl- + hydrogen chloride E141, E42, 47 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E54, 70 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E54, 71</pre>		F385_F387 /1/ /16
+ hydrogen iodide119-121 E438, 4402-Octanol+ hydrogen chlorideE78-E93, 1221-Octene (ternary)+ hydrogen chlorideE54, 71Octyl acetatesee acetic acid, octyl esterOctyl acetatesee octane, 1-bromo-Pentachloroethame+ hydrogen chlorideE41, E42, 49Pentamethylene glycolsee 1,5-pentanediolE7, E8, E11, 12Pentane, 1,1'-oxybis- + hydrogen chlorideE150-E155, 160, 168Pentane, 1-methoxy- + hydrogen chlorideE130-E155, 158Pentane, 2,2,4-trimethyl- + hydrogen chlorideE138, 139, 1441-Pentanol+ hydrogen chlorideE78-E93, 109, 113, 115, 1163-Pentanol + hydrogen chlorideE78-E93, 109, 113, 115, 1163-Pentanol + hydrogen chlorideE78-E93, 100+ hydrogen chlorideE78-E93, 110-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE41, E42, 47-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE54, 70-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE54, 702-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE54, 702-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE54, 702-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE41, E42, 482-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE54, 713-Penten-1-ol + hydrogen chlorideE41, E42, 482-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE54, 713-Penten-1-ol + hydrogen chlorideE41, E42, 482-Penten-1-ol + hydrogen chlorideE54, 713-Penten-1-ol +		
2-Octanol + hydrogen chloride E78-E93, 122 1-Octene (ternary) + hydrogen chloride E54, 71 Octyl acetate see acetic acid, octyl ester Octylbromide see octane, 1-bromo- Pentachloroethane see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride E41, E42, 49 Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride E7, E8, E11, 12 Pentane, 1,1'-oxybis- Pentane, 1-methoxy- + hydrogen chloride E150-E155, 160, 168 Pentane, 2,2,4-trimethyl- + hydrogen chloride E9, E11, 12 1,5-Pentanediol + hydrogen chloride E138, 139, 144 1-Pentanol + hydrogen chloride E385, E387, 413 + hydrogen chloride E78-E93, 109, 113, 115 3-Pentanol + hydrogen chloride E78-E93, 99 2-Pentanol, 4-methyl- + hydrogen chloride E41, E42, 47 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 47 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 47 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E54, 70 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E41, E42, 48 4-Penten-1-ol		
1-Octene (ternary) Octyl acetate see acetic acid, octyl ester Octylbromide see octane, 1-bromo- Pentachloroethane see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride E41, E42, 49 Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride E7, E8, E11, 12 Pentane, 1,1'-oxybis- + hydrogen chloride E150-E155, 160, 168 Pentane, 1-methoxy- Pentane, 2,2,4-trimethyl- + hydrogen chloride E130-E155, 158 Pentanel + hydrogen chloride E138, 139, 144 1-Pentanol + hydrogen chloride E385, E387, 413 + hydrogen chloride E78-E93, 109, 113, 115, 116 3-Pentanol + hydrogen chloride E78-E93, 109, 113, 115, 116 3-Pentane, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 47 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 47 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 47 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E54, 70 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E133, 134, 136		E438, 440
<pre>+ hydrogen chloride E54, 71 Octyl acetate see acetic acid, octyl ester Octylbromide see octane, 1-bromo- Pentachloroethane 1,3-Pentadiene + hydrogen chloride E41, E42, 49 Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride E7, E8, E11, 12 Pentane, 1,1'-oxybis- + hydrogen chloride E150-E155, 160, 168 Pentane, 1-methoxy- + hydrogen chloride E9, E11, 12 1,5-Pentanediol + hydrogen chloride E9, E11, 12 1,5-Pentanediol + hydrogen chloride E138, 139, 144 1-Pentanol + hydrogen chloride E78-E93, 109, 113, 115, 116 3-Pentanel, 4-methyl- + hydrogen chloride E78-E93, 109, 113, 115, 116 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 47 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 47 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E133, 134, 136</pre>		E78-E93, 122
Octyl acetatesee acetic acid, octyl esterOctylbromidesee acetic acid, octyl esterOctylbromidesee octane, 1-bromo-Pentachloroethanesee ethane, pentachloro-1,3-Pentadiene+ hydrogen chlorideE41, E42, 49Pentamethylene glycolsee 1,5-pentanediolPentane+ hydrogen chlorideE7, E8, E11, 12Pentane, 1,1'-oxybis- + hydrogen chlorideE150-E155, 160, 168Pentane, 1-methoxy- + hydrogen chlorideE150-E155, 158Pentane, 2,2,4-trimethyl- + hydrogen chlorideE138, 139, 1441-Pentanol+ hydrogen chlorideE385, E387, 413 E78-E93, 109, 113, 115, 1163-Pentanol+ hydrogen chlorideE78-E93, 992-Pentanol, 4-methyl- + hydrogen chlorideE78-E93, 1101-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE41, E42, 471-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE54, 702-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE41, E42, 482-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE54, 713-Penten-1-ol+ hydrogen chlorideE133, 134, 136		E54, 71
Octylbromidesee octane, 1-bromo-Pentachloroethanesee ethane, pentachloro-1,3-Pentadiene+ hydrogen chlorideE41, E42, 49Pentamethylene glycolsee 1,5-pentanediolE150-E155, 160, 168Pentane+ hydrogen chlorideE150-E155, 160, 168Pentane, 1.1'-oxybis- + hydrogen chlorideE150-E155, 150, 168Pentane, 1-methoxy- + hydrogen chlorideE150-E155, 158Pentane, 2,2,4-trimethyl- + hydrogen chlorideE138, 139, 1441Pentanediol+ hydrogen chlorideE385, E387, 413 E78-E93, 109, 113, 115, 1163-Pentanol+ hydrogen chlorideE78-E93, 109, 113, 115, 1163-Pentanol+ hydrogen chlorideE78-E93, 1101-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE41, E42, 471-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE54, 702-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chlorideE54, 712-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chlorideE54, 713-Penten-1-ol+ hydrogen chlorideE54, 71	Octyl acetate	
see octane, 1-bromo-Pentachloroethane see ethane, pentachloro-1,3-Pentadiene + hydrogen chlorideE41, E42, 49Pentamethylene glycol see 1,5-pentanediolE41, E42, 49Pentame Pentane + hydrogen chlorideE7, E8, E11, 12Pentane, 1,1'-oxybis- + hydrogen chlorideE150-E155, 160, 168Pentane, 1-methoxy- + hydrogen chlorideE150-E155, 150, 168Pentane, 2,2,4-trimethyl- + hydrogen chlorideE130-E155, 158Pentane, 2,2,4-trimethyl- + hydrogen chlorideE385, E387, 4131,5-Pentanediol + hydrogen chlorideE385, E387, 4131-Pentanol + hydrogen chlorideE78-E93, 109, 113, 115, 1163-Pentanol + hydrogen chlorideE78-E93, 1101-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE41, E42, 471-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chlorideE54, 702-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chlorideE54, 713-Penten-1-ol + hydrogen chlorideE54, 71		
see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis- + hydrogen chloride Pentane, 1methoxy- + hydrogen chloride Pentane, 2,2,4-trimethyl- + hydrogen chloride 1,5-Pentanediol 1-Pentanol + hydrogen chloride - hydrogen chloride Pentane, 2,4,4-trimethyl- + hydrogen chloride - Pentanol, 4-methyl- + hydrogen chloride 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride 2-Penten-1-ol + hydrogen chloride 2-Penten-1-ol	-	
1,3-Pentadiene+ hydrogen chlorideE41, E42, 49Pentamethylene glycolsee 1,5-pentanediolF41, E42, 49Pentane+ hydrogen chlorideE7, E8, E11, 12Pentane, 1,1'-oxybis- + hydrogen chlorideE150-E155, 160, 168Pentane, 1-methoxy- + hydrogen chlorideE150-E155, 150, 168Pentane, 2,2,4-trimethyl- + hydrogen chlorideE9, E11, 121,5-Pentanediol + hydrogen chlorideE138, 139, 1441-Pentanol * hydrogen chlorideE385, E387, 413 E78-E93, 109, 113, 115, 1163-Pentanol * hydrogen chlorideE78-E93, 992-Pentanol, 4-methyl- + hydrogen chlorideE78-E93, 1101-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chlorideE41, E42, 472-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE54, 702-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE41, E42, 482-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE41, E42, 482-Penten-1-ol + hydrogen chlorideE41, E42, 48		
+ hydrogen chlorideE41, E42, 49Pentamethylene glycolsee 1,5-pentanediolPentane+ hydrogen chlorideE7, E8, E11, 12Pentane, 1,1'-oxybis- + hydrogen chlorideE150-E155, 160, 168Pentane, 1-methoxy- + hydrogen chlorideE150-E155, 150, 168Pentane, 2,2,4-trimethyl- + hydrogen chlorideE9, E11, 121,5-Pentanediol+ hydrogen chlorideE138, 139, 1441-Pentanol+ hydrogen chlorideE385, E387, 413 E78-E93, 109, 113, 115, 1163-Pentanol+ hydrogen chlorideE78-E93, 992-Pentanol, 4-methyl- + hydrogen chlorideE41, E42, 471-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE54, 702-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE54, 712-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE41, E42, 482-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE54, 713-Penten-1-ol + hydrogen chlorideE54, 71	Pentachloroethane	
Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride E7, E8, E11, 12 Pentane, 1,1'-oxybis- + hydrogen chloride E150-E155, 160, 168 Pentane, 1-methoxy- + hydrogen chloride E150-E155, 158 Pentane, 2,2,4-trimethyl- + hydrogen chloride E9, E11, 12 1,5-Pentanediol + hydrogen chloride E138, 139, 144 1-Pentanol + hydrogen bromide E385, E387, 413 E78-E93, 109, 113, 115, 116 3-Pentanol + hydrogen chloride E78-E93, 99 2-Pentanol, 4-methyl- + hydrogen chloride E78-E93, 99 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 47 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E54, 70 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E133, 134, 136	see ethane, pentachloro-	
Pentane+ hydrogen chloride $E7, E8, E11, 12$ Pentane, 1,1'-oxybis- + hydrogen chloride $E150-E155, 160, 168$ Pentane, 1-methoxy- + hydrogen chloride $E150-E155, 150$ Pentane, 2,2,4-trimethyl- + hydrogen chloride $E150-E155, 158$ Pentane, 2,2,4-trimethyl- + hydrogen chloride $E138, 139, 144$ 1.5-Pentanediol+ hydrogen chloride $E138, 139, 144$ 1-Pentanol+ hydrogen chloride $E385, E387, 413$ $E78-E93, 109, 113, 115, 116$ 3-Pentanol+ hydrogen chloride $E78-E93, 99$ 2-Pentanol, 4-methyl- + hydrogen chloride $E78-E93, 110$ 1-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride $E41, E42, 47$ 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride $E54, 70$ 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride $E54, 71$ 3-Penten-1-ol+ hydrogen chloride $E54, 71$	see ethane, pentachloro- 1,3-Pentadiene	E41, E42, 49
+ hydrogen chloride Pentane, $1,1'-oxybis-$ + hydrogen chloride Pentane, $1-methoxy-$ + hydrogen chloride Pentane, $2,2,4-trimethyl-$ + hydrogen chloride 1,5-Pentanediol 1,5-Pentanediol + hydrogen chloride 1,5-Pentanel + hydrogen chloride 1-Pentanol + hydrogen chloride 2-Pentanol, 4-methyl- + hydrogen chloride 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride 2-Pentene, 2,4,4-trimethyl- (ternary) + hydrogen chloride 2-Penten-1-ol + hydrogen chloride 2-Penten-1-ol	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol	E41, E42, 49
+ hydrogen chloride E150-E155, 160, 168 Pentane, 1-methoxy- + hydrogen chloride E150-E155, 158 Pentane, 2,2,4-trimethyl- + hydrogen chloride E9, E11, 12 1,5-Pentanediol + hydrogen chloride E138, 139, 144 1-Pentanol + hydrogen bromide E385, E387, 413 E78-E93, 109, 113, 115, 116 3-Pentanol + hydrogen chloride E78-E93, 99 2-Pentanol, 4-methyl- + hydrogen chloride E78-E93, 110 1-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E41, E42, 47 1-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E54, 70 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E133, 134, 136	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol	E41, E42, 49
Pentane, 1-methoxy- + hydrogen chlorideE150-E155, 158Pentane, 2,2,4-trimethyl- + hydrogen chlorideE9, E11, 121,5-Pentanediol + hydrogen chlorideE138, 139, 1441-Pentanol + hydrogen chlorideE385, E387, 413 E78-E93, 109, 113, 115, 1163-Pentanol + hydrogen chlorideE78-E93, 992-Pentanol, 4-methyl- + hydrogen chlorideE78-E93, 1101-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE41, E42, 471-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE54, 702-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE41, E42, 482-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chlorideE54, 713-Penten-1-ol + hydrogen chlorideE54, 71	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride	
Pentane, 2,2,4-trimethyl- + hydrogen chlorideE9, E11, 121,5-Pentanediol+ hydrogen chlorideE138, 139, 1441-Pentanol+ hydrogen chlorideE385, E387, 4131-Pentanol+ hydrogen chlorideE78-E93, 109, 113, 115, 1163-Pentanol+ hydrogen chlorideE78-E93, 992-Pentanol, 4-methyl- + hydrogen chlorideE78-E93, 1101-Pentene, 2,4,4-trimethyl- + hydrogen chlorideE41, E42, 471-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chlorideE54, 702-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chlorideE54, 713-Penten-1-ol + hydrogen chlorideE54, 71	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis-	E7, E8, E11, 12
+ hydrogen chloride E9, E11, 12 1,5-Pentanediol + hydrogen chloride E138, 139, 144 1-Pentanol + hydrogen bromide E385, E387, 413 + hydrogen chloride E78-E93, 109, 113, 115, 116 3-Pentanol + hydrogen chloride E78-E93, 99 2-Pentanol, 4-methyl- + hydrogen chloride E78-E93, 110 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 47 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E54, 70 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E133, 134, 136	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis- + hydrogen chloride Pentane, 1-methoxy-	E7, E8, E11, 12 E150-E155, 160, 168
+ hydrogen chloride E138, 139, 144 1-Pentanol + hydrogen bromide E385, E387, 413 + hydrogen chloride E78-E93, 109, 113, 115, 116 3-Pentanol + hydrogen chloride E78-E93, 99 2-Pentanol, 4-methyl- + hydrogen chloride E78-E93, 110 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 47 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E54, 70 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E133, 134, 136	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis- + hydrogen chloride Pentane, 1-methoxy- + hydrogen chloride	E7, E8, E11, 12 E150-E155, 160, 168
1-Pentanol + hydrogen bromide + hydrogen chloride 3-Pentanol 2-Pentanol, 4-methyl- + hydrogen chloride 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride 3-Penten-1-ol + hydrogen chloride 4-Penten-1-ol	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis- + hydrogen chloride Pentane, 1-methoxy- + hydrogen chloride Pentane, 2,2,4-trimethyl- + hydrogen chloride	E7, E8, E11, 12 E150-E155, 160, 168 E150-E155, 158
+ hydrogen chloride $= 78-E93, 109, 113, 115, 116$ 3-Pentanol + hydrogen chloride $= 78-E93, 99$ 2-Pentanol, 4-methyl- + hydrogen chloride $= 78-E93, 110$ 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride $= E41, E42, 47$ 1-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride $= E54, 70$ 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride $= E41, E42, 48$ 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride $= E54, 71$ 3-Penten-1-ol + hydrogen chloride $= E133, 134, 136$	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis- + hydrogen chloride Pentane, 1-methoxy- + hydrogen chloride Pentane, 2,2,4-trimethyl- + hydrogen chloride 1,5-Pentanediol	E7, E8, E11, 12 E150-E155, 160, 168 E150-E155, 158 E9, E11, 12
3-Pentanol + hydrogen chloride = 54, 70 $2-Pentene, 2,4,4-trimethyl- + hydrogen chloride = 54, 70$ $2-Pentene, 2,4,4-trimethyl- (ternary) + hydrogen chloride = 54, 70$ $2-Pentene, 2,4,4-trimethyl- (ternary) + hydrogen chloride = 54, 70$ $2-Pentene, 2,4,4-trimethyl- (ternary) + hydrogen chloride = 54, 70$ $3-Penten-1-ol + hydrogen chloride = 54, 71$ $4-Penten-1-ol = 54, 71$	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis- + hydrogen chloride Pentane, 1-methoxy- + hydrogen chloride Pentane, 2,2,4-trimethyl- + hydrogen chloride 1,5-Pentanediol + hydrogen chloride 1-Pentanol	E7, E8, E11, 12 E150-E155, 160, 168 E150-E155, 158 E9, E11, 12 E138, 139, 144
+ hydrogen chloride E78-E93, 99 2-Pentanol, 4-methyl- + hydrogen chloride E78-E93, 110 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 47 1-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E54, 70 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E133, 134, 136	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis- + hydrogen chloride Pentane, 1-methoxy- + hydrogen chloride Pentane, 2,2,4-trimethyl- + hydrogen chloride 1,5-Pentanediol + hydrogen chloride 1-Pentanol + hydrogen bromide	E7, E8, E11, 12 E150-E155, 160, 168 E150-E155, 158 E9, E11, 12 E138, 139, 144 E385, E387, 413
2-Pentanol, 4-methyl- + hydrogen chloride E78-E93, 110 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 47 1-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E54, 70 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E133, 134, 136	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis- + hydrogen chloride Pentane, 1-methoxy- + hydrogen chloride Pentane, 2,2,4-trimethyl- + hydrogen chloride 1,5-Pentanediol + hydrogen chloride 1-Pentanol + hydrogen bromide + hydrogen chloride	E7, E8, E11, 12 E150-E155, 160, 168 E150-E155, 158 E9, E11, 12 E138, 139, 144 E385, E387, 413 E78-E93, 109, 113,
1-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 47 1-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E54, 70 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E133, 134, 136 4-Penten-1-ol	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis- + hydrogen chloride Pentane, 1-methoxy- + hydrogen chloride Pentane, 2,2,4-trimethyl- + hydrogen chloride 1,5-Pentanediol + hydrogen chloride 1-Pentanol + hydrogen bromide + hydrogen chloride 3-Pentanol	E7, E8, E11, 12 E150-E155, 160, 168 E150-E155, 158 E9, E11, 12 E138, 139, 144 E385, E387, 413 E78-E93, 109, 113, 115, 116
+ hydrogen chloride 1-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride 3-Penten-1-ol + hydrogen chloride 4-Penten-1-ol + hydrogen chloride 4-Penten-1-ol	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis- + hydrogen chloride Pentane, 1-methoxy- + hydrogen chloride Pentane, 2,2,4-trimethyl- + hydrogen chloride 1,5-Pentanediol + hydrogen bromide + hydrogen bromide 3-Pentanol + hydrogen chloride 3-Pentanol + hydrogen chloride 2-Pentanol, 4-methyl-	E7, E8, E11, 12 E150-E155, 160, 168 E150-E155, 158 E9, E11, 12 E138, 139, 144 E385, E387, 413 E78-E93, 109, 113, 115, 116 E78-E93, 99
+ hydrogen chloride E54, 70 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E133, 134, 136 4-Penten-1-ol	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis- + hydrogen chloride Pentane, 1-methoxy- + hydrogen chloride 1,5-Pentanediol + hydrogen chloride 1Pentanol + hydrogen chloride 3-Pentanol + hydrogen chloride 3-Pentanol + hydrogen chloride 2-Pentanol, 4-methyl- + hydrogen chloride	E7, E8, E11, 12 E150-E155, 160, 168 E150-E155, 158 E9, E11, 12 E138, 139, 144 E385, E387, 413 E78-E93, 109, 113, 115, 116 E78-E93, 99
2-Pentene, 2,4,4-trimethyl- + hydrogen chloride E41, E42, 48 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride E54, 71 3-Penten-1-ol + hydrogen chloride E133, 134, 136 4-Penten-1-ol	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis- + hydrogen chloride Pentane, 1-methoxy- + hydrogen chloride 1,5-Pentanediol + hydrogen chloride 1-Pentanol + hydrogen chloride 3-Pentanol + hydrogen chloride 3-Pentanol + hydrogen chloride 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride	E7, E8, E11, 12 E150-E155, 160, 168 E150-E155, 158 E9, E11, 12 E138, 139, 144 E385, E387, 413 E78-E93, 109, 113, 115, 116 E78-E93, 99 E78-E93, 110
+ hydrogen chloride 2-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride 3-Penten-1-ol + hydrogen chloride 4-Penten-1-ol	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis- + hydrogen chloride Pentane, 1-methoxy- + hydrogen chloride Pentane, 2,2,4-trimethyl- + hydrogen chloride 1,5-Pentanediol + hydrogen chloride 1-Pentanol + hydrogen chloride 3-Pentanol + hydrogen chloride 3-Pentanol + hydrogen chloride 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride 1-Pentene, 2,4,4-trimethyl-(ternary)	E7, E8, E11, 12 E150-E155, 160, 168 E150-E155, 158 E9, E11, 12 E138, 139, 144 E385, E387, 413 E78-E93, 109, 113, 115, 116 E78-E93, 99 E78-E93, 110 E41, E42, 47
+ hydrogen chloride E54, 71 3-Penten-1-ol 4-Penten-1-ol	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis- + hydrogen chloride Pentane, 1-methoxy- + hydrogen chloride Pentane, 2,2,4-trimethyl- + hydrogen chloride 1,5-Pentanediol + hydrogen chloride 1-Pentanol + hydrogen chloride 3-Pentanol + hydrogen chloride 3-Pentanol + hydrogen chloride 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride 2-Pentene, 2,4,4-trimethyl- (ternary) + hydrogen chloride 2-Pentene, 2,4,4-trimethyl-	E7, E8, E11, 12 E150-E155, 160, 168 E150-E155, 158 E9, E11, 12 E138, 139, 144 E385, E387, 413 E78-E93, 109, 113, 115, 116 E78-E93, 99 E78-E93, 110 E41, E42, 47 E54, 70
3-Penten-1-ol + hydrogen chloride E133, 134, 136 4-Penten-1-ol	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis- + hydrogen chloride Pentane, 1-methoxy- + hydrogen chloride Pentane, 2,2,4-trimethyl- + hydrogen chloride 1,5-Pentanediol + hydrogen chloride 1-Pentanol + hydrogen chloride 3-Pentanol + hydrogen chloride 2-Pentanol, 4-methyl- + hydrogen chloride 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride	E7, E8, E11, 12 E150-E155, 160, 168 E150-E155, 158 E9, E11, 12 E138, 139, 144 E385, E387, 413 E78-E93, 109, 113, 115, 116 E78-E93, 99 E78-E93, 110 E41, E42, 47 E54, 70
4-Penten-1-ol	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis- + hydrogen chloride Pentane, 1-methoxy- + hydrogen chloride Pentane, 2,2,4-trimethyl- + hydrogen chloride 1,5-Pentanediol + hydrogen chloride 1-Pentanol + hydrogen chloride 3-Pentanol + hydrogen chloride 2-Pentanol, 4-methyl- + hydrogen chloride 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride 2-Pentene, 2,4,4-trimethyl- (ternary) + hydrogen chloride 2-Pentene, 2,4,4-trimethyl-(ternary)	E7, E8, E11, 12 E150-E155, 160, 168 E150-E155, 158 E9, E11, 12 E138, 139, 144 E385, E387, 413 E78-E93, 109, 113, 115, 116 E78-E93, 99 E78-E93, 110 E41, E42, 47 E54, 70 E41, E42, 48
	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol see 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis- + hydrogen chloride Pentane, 1-methoxy- + hydrogen chloride Pentane, 2,2,4-trimethyl- + hydrogen chloride 1,5-Pentanediol + hydrogen chloride 1-Pentanol + hydrogen bromide + hydrogen chloride 3-Pentanol + hydrogen chloride 2-Pentanol, 4-methyl- + hydrogen chloride 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride 1-Pentene, 2,4,4-trimethyl-(ternary) + hydrogen chloride 2-Pentene, 2,4,4-trimethyl- (ternary) + hydrogen chloride 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride 3-Pentene, 2,4,4-trimethyl- (ternary) + hydrogen chloride 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride 3-Penten-1-ol	E7, E8, E11, 12 E150-E155, 160, 168 E150-E155, 158 E9, E11, 12 E138, 139, 144 E385, E387, 413 E78-E93, 109, 113, 115, 116 E78-E93, 99 E78-E93, 110 E41, E42, 47 E54, 70 E41, E42, 48 E54, 71
	see ethane, pentachloro- 1,3-Pentadiene + hydrogen chloride Pentamethylene glycol See 1,5-pentanediol Pentane + hydrogen chloride Pentane, 1,1'-oxybis- + hydrogen chloride Pentane, 1-methoxy- + hydrogen chloride Pentane, 2,2,4-trimethyl- + hydrogen chloride 1,5-Pentanediol + hydrogen chloride 1-Pentanol + hydrogen chloride 3-Pentanol + hydrogen chloride 3-Pentanol + hydrogen chloride 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride 1-Pentene, 2,4,4-trimethyl- + hydrogen chloride 2-Pentene, 2,4,4-trimethyl- + hydrogen chloride 3-Penten-1-ol + hydrogen chloride 3-Penten-1-ol	E7, E8, E11, 12 E150-E155, 160, 168 E150-E155, 158 E9, E11, 12 E138, 139, 144 E385, E387, 413 E78-E93, 109, 113, 115, 116 E78-E93, 99 E78-E93, 110 E41, E42, 47 E54, 70 E41, E42, 48 E54, 71

Pentyl acetate see acetic acid, pentyl ester Pentyl hexyl ether see hexane, 1-pentoxy-Petroleum + hydrogen chloride E41, E42, 43 Phenetole see benzene, ethoxy-Phenol + hydrogen chloride E155, 195 Phenyl acetate see acetic acid, phenyl ester Phenyl ethyl ether see benzene, ethoxy-Phenyl chloroformate see carbonochloridic acid, phenyl ester Phenylethanol see ethanol, phenyl-Phenylphosphonic dichloride see phosphonic dichloride phenyl-Phenylphosphonothioic dichloride see phosphonothioic dichloride, phenyl-Phenylphosphonous dichloride see phosphonous dichloride, phenyl-, Phenyl-1-propanol see 1-propanol, phenyl-3-Phenylpropanol see benzenepropanol Phosphonic dichloride, phenyl-E342, 356 + hydrogen chloride Phosphonochloridic acid, diphenyl ester E342, 363 + hydrogen chloride Phosphonochloridic acid, monophenyl ester + hydrogen chloride E342, 362 Phosphonothioic dichloride, phenyl-E342, 357 + hydrogen chloride Phosphonous dichloride, phenyl-+ hydrogen chloride E342, 355 Phosphoric acid, tributyl ester E342, 358, 359 + hydrogen chloride Phosphoric acid, triethyl ester + hydrogen chloride E342, 358 Phosphoric acid, trimethyl ester E342, 358 + hydrogen chloride Phosphoric acid, tripropyl ester + hydrogen chloride E342, 358 Phosphoric acid, tris(2-methylpropyl) ester E342, 358 + hydrogen chloride Phosphorus trichloride E342, 353 + hydrogen chloride Phosphorous acid, di-2-propenyl ester E342, 360 + hydrogen chloride Phosphorous acid, triphenyl ester E342, 361 + hydrogen chloride Phosphoryl chloride E342, 354 + hydrogen chloride Piperylene see 1,3-pentadiene Prehnitene see benzene, 1,2,3,4-tetramethyl-Propane, 1-bromo-+ hydrogen bromide E389, 428 E437, E438, 445 + hydrogen iodide Propane, 1-chloro-E437, E438, 444 + hydrogen iodide Propane, 1,3-dibromo-E389, E390, 429 + hydrogen bromide Propane, 1-iodo-+ hydrogen bromide E389, 428 E437, E438, 445 + hydrogen iodide Propane, 1-methoxy-+ hydrogen chloride E150-E155, 157 Propane, 1,1'-oxybis-+ hydrogen chloride E150-E155, 158, 167 Propane, 1,1'-oxybis- (ternary) + hydrogen chloride Propane, 1,1'-oxybis(3-chloro-+ hydrogen chloride E150-E155, 172 Propane, 2,2-thiobis-E390, 434 E438, 449 + hydrogen bromide + hydrogen iodide Propane, 1,1'-sulfinylbis-E330, E331, 333 + hydrogen chloride Propane, 2,2'-sulfinylbis-E330, E331, 333 + hydrogen chloride 1,3-Propanediol + hydrogen chloride E138, 139, 143 2-Propanethiol E390, 434 + hydrogen bromide E330, E331, 334 E438, 449 + hydrogen chloride + hydrogen iodide 1,2,3-Propanetriol + hydrogen fluoride E1, 4 2-Propanesulfonyl chloride E330, E331, 332 + hydrogen chloride Propanoic acid + hydrogen chloride E196, 198 Propanoic acid, 2-methyl-+ hydrogen chloride E196, 198 Propanoic acid, ethyl ester + hydrogen chloride E207-E209, 213 1-Propanol + hydrogen chloride E78-E93, 98, 106, 107 2-Propanol + hydrogen chloride E78-E93, 96, 98 2-Propanol, 1-bromo-+ hydrogen chloride E127, 130 2-Propanol, 1-chloro-+ hydrogen chloride E127, 130 2-Propanol, 1,3-dibromo-+ hydrogen chloride E127, 130 1-Propanol, 2,3-dibromo-+ hydrogen chloride E127, 131 1-Propanol, 2,2-dimethyl-+ hydrogen bromide E385, 412 1-Propanol, 2-methylhydrogen chloride E78-E93, 99 1-Propanol, phenyl-+ hydrogen chloride E145, 149 Propargyl alcohol see 2-propyn-1-ol Propargyl butyrate see butanoic acid, 2-propynyl ester Propene, 3-chloro-1-+ hydrogen chloride E241, 289, 290 2-Propen-1-ol + hydrogen chloride E133, 134, 135 Propyl acetate see acetic acid, propyl ester 1-Propylchloroformate see carbonochloridic acid, propyl ester Propylene glycol see 1,3-propanetriol 2-Propyl mercaptan see 2-propanethiol 2-Propyn-1-ol + hydrogen chloride E133, 134, Pseudocumene see benzene, 1,2,4-trimethyl-2H-Pyran, tetrahydro-, (ternary) + hydrogen chloride E21, E22, 32 Pyridine, 2-chloro-6-(trichloromethyl)-+ hydrogen chloride E314, E315, 327

```
Pyridine, 3,5-dichloro-2-(trichloromethyl)-
                                                     E314, E315, 328
                   + hydrogen chloride
Pyridine, 3,4,5-trichloro-2-(dichloromethyl)-
                    + hydrogen chloride
                                                     E314, E315, 329
Pyridine, 2-(trichloromethyl)-
                                                     E314, E315, 326
                   + hydrogen chloride
Sec-butanol
                   see 2-butanol
Sec-butyl acetate
                   see acetic acid, 1-methylpropyl ester
Sec-butyl alcohol
                   see 2-butanol
Silane, tetrachloro-
                                                     E365, 377, 378
                   + hydrogen chloride
Silane, triethoxy-
                                                     E365, 376
                    + hydrogen chloride
Silane, triethoxy- (ternary)
                   + hydrogen chloride
                                                     E365, 375
Silicic acid, tetraethyl ester
                                                     E365, E367, 370
                   + hydrogen chloride
Silicic acid, tetraethyl ester (ternary)
                                                     E365, 375
                    + hydrogen chloride
Silicic acid, tetrakis(2-chloroethyl) ester
                                                     E365, E367, 374
                   + hydrogen chloride
Silicic acid, tetramethyl ester
                                                     E365, E367, 369
                   + hydrogen chloride
Silicic acid, tetra(4-methyl-2-pentyl) ester
                   + hydrogen chloride
                                                     E365, E366, 372, 373
Silicic acid, tetrapropyl ester
                                                     E365, 371
                   + hydrogen chloride
Silicon tetrachloride
                   see silane, tetrachloro-
Stannane, tetrachloro-
                                                     E379, 380, 381
                   + hydrogen chloride
Sulfuric acid
                                                     E330, E331, 332
                   + hydrogen chloride
Sulfuric acid, chloro-, butyl ester
                   + hydrogen chloride
                                                     E330, E331, 333
Sulfuric acid, dichloro-
                   + hydrogen chloride
                                                     E330, E331, 332
Sulfur dioxide
                                                     E390, E391, 435
                   + hydrogen bromide
                   + hydrogen chloride
                                                     E330, E331, 340
Sulfuryl chloride
                                                     E330, E331, 333
                   + hydrogen chloride
1,1,2,2-Tetrabromoethane
                   see ethane, 1,1,2,2-tetrabromo-
1,1,2,2-Tetrachloroethane
                   see ethane, 1,1,2,2-tetrachloro-
Tetrachloroethene
                   see ethene, tetrachloro-
1-Tetradecanol
                                                     E385, E387, 415
                   + hydrogen bromide
                                                     E78-E93, 125
                   + hydrogen chloride
Tetrahydrofuran
                   see furan, tetrahydro-
Tetrahydropyran
                   see 2H-pyran,tetrahydro-
1,2,3,4-Tetramethylbenzene
                   see benzene, 1,2,3,4-tetramethy1-
Tetramethylene glycol
                   see 1,4-butanediol
Tetramethylene sulfone
                   see thiophene, tetrahydro-, 1,1-dioxide
Thionyl chloride
                                                     E330, E331, 337, 338
                   + hydrogen chloride
1,1,2-Trichloroethane
                   see ethane, 1,1,2-trichloro-
1,2,3-Trimethylbenzene
                   see benzene, 1,2,3-trimethyl-
1,2,4-Trimethylbenzene
                   see benzene, 1,2,4-trimethyl-
```

3,5,5-Trimethyl-1-hexanol see 1-hexanol, 3,5,5-trimethyl-Thiofuran see thiophene Thiophene + hydrogen bromide E390, 434 E330, E331, 334 + hydrogen chloride E438, 449 + hydrogen iodide Thiophene (ternary) E54, 72 + hydrogen chloride Thiophene, tetrahydro-E390, 434 + hydrogen bromide + hydrogen iodide E438, 449 Thiophene, tetrahydro-, 1,1-dioxide E330, E331, 333 + hydrogen chloride Thiophenol see benzenethiol Tin tetrachloride see stannane, tetrachloro-Titanium chloride E379, 382 + hydrogen chloride Titanium tetrachloride see titanium chloride Toluene see benzene, methyl-Tribromomethane see methane, tribromo-Tributyl borate see boric acid, tributyl ester Trichloroacetic acid see acetic acid, trichloro-2,2,2-Trichloroethanol phosphite see ethanol, 2,2,2-trichloro-, phosphite Trichloroethene see ethene, trichloro-Trichloromethane see methane, trichloro-Triethyl borate see boric acid, triethyl ester Trifluoromethylbenzene see benzene, trifluoromethyl-2,2,4-Trimethylpentane see pentane, 2,2,4-trimethyl-2,2,4-Trimethyl-1-pentene see 1-pentene, 2,2,4-trimethyl-2,2,4-Trimethyl-2-pentene see 2-pentene, 2,2,4-trimethyl-Vinyl chloride see ethene, chlorom-Xylene see benzene, 1-2-dimethylo-Xylene see benzene, 1,3-dimethy1p-Xylene see benzene, 1,4-dimethy1-

REGISTRY NUMBER INDEX

Page numbers preceded by E refer to evaluation texts. E21, E22, 36, E236, E238, 245, 246, 250-255, E368, E389, 56-23-5 425, 427 E1, 5 56-81-5 60-29-7 E21, E22, 23, 73, E150, E152, E153, 157, 164-166, 175 E78-E84, E87, E89, E92, 95-97, 101, 104, 105, E385, E387, 64-17-5 411 E196, 197 64-18-6 64-19-7 E196, 197, 199-203, E388, 422, E438, 442 E78-E84, E86, E89, E92, 94-97, 101-103 E78, E79, E88, E91, E92, 96, 98 67-56-1 67-63-0 E236, E238, 247, 248, 249, E338, E389, 424, 426 67-66-3 E78, E79, E83, E84, E87, E89, E92, 98, 106, 107 71-23-8 E78-E80, E82-E84, E86, E87, E89, E92, 98, 106, 108, 71-36-3 111-114 E78, E79, E83, E84, E87, E89, E92, 109, 113, 115, 116, E385, E387, 413 71-41-0 E21, E22, 38, E53, E54, 56-65, 71, E384, 401-404 71-43-2 E389, E390, 428, E437, E438, 445 E241, 274, E437, E438, 444 74-88-4 74-96-4 75-01-4 E241, 281-283 E437, E438, 445 E236, E237, 244, 245, 246, E388, E389, 424 75-03-6 75-09-2 E330, E331, 341 E241, 274 75-15-0 75-25-2 75-33-2 E330, E331, 334, E390, 434, E438, 449 E240, 259, 260 E385, E387, 412 E127, 131 E240, E241, 256, 267 75-34-3 75-84-3 75-89-8 76-01-7 76-03-9 E196, 206 E155, 190 E352, 358 78-39-7 78-40-0 78-79-5 E41, E42, 50 78-83-1 E78, E79, E88, E90, 99 E78, E79, E86, E88, E91, E92, 98, 109 78-92-2 E240, E242, 258, 264 79-00-5 E240, 258, 286, 287 E196, 198 E196, 205 79-01-6 79-09-4 79-11-8 79-20-9 E207, E208, 210, 214, 215 79-27-6 E241, 274 E196, 198 E236, E239, E240, E242, 256, 258, 265, 266 E330, E331, 333 79-31-2 79-34-5 80-44-4 88-72-2 E21, E22, 35, E314, E315, 323, E390, 432 E314, 320 71, 74 88-73-3 95-47-6 95-50-1 E291, 305, 306 95-63-6 71 E127, 131 E127, 130 E293, 298, 308 96-13-9 96-21-9 98-07-7 E21, E22, 40, 72, E293, 295, 296, 297 98-08-8 98-09-9 E330, E331, 333

98-88-4 E293, 313 39 E21, E22, 98-82-8 98-95-3 E21, E22, 34, E314, E315, 316-320, 322, E390, 431 E314, E315, 324, 325, E390, 433 99-08-1 E330, E331, 336 98-09-9 99-54-7 E314, 321 100-00-5 E314, 321 E21, E22, 39 100 - 41 - 4E293, 298 E145, 147 100-44-7 100-51-6 E21, E22, 27, E153, E154, 163, 168, 181, 182 100-66-3 E1, 5, E21, E22, 28, E153, E154, 170, 185, 186 E207, 218 101-02-0 101-84-8 101 - 97 - 3E21, E22, 29, E153, E154, 171 103-50-4 103-73-1 E153, E154, 169, 183 E208, 222 105-36-2 105-37-3 E207, E208, 213 105-39-5 E208, 226 E207, E208, 212 105-46-4 E207, E208, 213 105-54-4 105-58-8 E208, E209, 231 105-66-8 E209, 220 106-42-3 71, 76 106-93-4 E241, 274, 275, E389, E390, 429 E389, E390, 428 106-94-5 E383, E384, 392, 399 E281, 289, 290 E236, E239, E242, 256-258, 261-263, E389, E390, 425 E127, 128, 129, E387, 418 106-97-8 107-05-1 107-06-2 107 - 07 - 3107-08-4 E389, E390, 428, E437, E438, 445 107-18-6 E133, 135 E133, 134 107-19-7 107-21-1 E1, 5, E138, E139, 140-142 107-39-1 E41, E42, 47, 70 E41, E42, 48, 70 107-40-4 E138, E139, 143 107-88-0 107-92-6 E196, 198 E78, E79, E88, E91, E92, 110, 117 108-11-2 E150, E152, E153, 175 108-20-3 E207, E208, 211, 216 108 - 21 - 4E209, 219 108-22-5 E21, E22, 39, 71, 75, E384, E385, 408, 409 E21, E22, 39, 72, E384, E385, 410 E21, E22, 40, E291, 309, 310, 311, E390, 430 108-38-3 108-67-8 108-86-1 E21, E22, 38, E53, E54, 57, 66-73, E384, 405-407 E21, E22, 40, 72, E291, E293, 299-304, E390, 430 108-88-3 108-90-7 E145, 146 108-93-0 108-95-2 E155, 195 E330, E331, 334, E390, 434, E438, 449 108-98-5 E207, E208, 211, 216 109-60-4 E209, 221, 225 109-61-5 E389, E390, 429 109-64-8 E241, 276, E437, E438, 445 109-65-9 E7-E11, 12 109-66-0 E240, E241, 268, E437, E438, 444 109-69-3 E330, E331, 334, E390, 434, E438, 449 E207, E208, 210 109 - 79 - 5E207, E208, 109-94-4 E21, E22, 30, E153, E154, 171 109-99-9 E330, E331, 334, E390, 434, E438, 449 110-01-0

110-02-1	72, E330, E331, 334, E390, 434, E438, 449
110-19-0	E207, E208, 212
110-52-1	E389, E390, 429
110-54-3	E7-E11, 12-16, E383, E384, 393, 394, 400
110-63-4	E138, E139, 144
110-82-7 111-25-1 111-27-3 111-29-5 111-43-3	E41, E42, 44-46, E53, E54, 70 E241, 277, E389, E390, 428 E78, E79, E83, E84, E86, E87, E89, E92, 113, 116, 118, E385, E387, 413 E138, E139, 144 E21, E22, 24, E150, E152, E153, 158, 167
111-44-4 111-65-9 111-66-0 111-70-6 111-83-1	E21, E22, 26, E154, 172, 187, 188 E1, 2-4, E7-E11, 12, 13, E383, E384, 396 71 E78, E79, E83, E84, E87, E89, E92, 117, 119,E385, E387, 414 E241, 278, 279, E387, E389, 425, E437, E438, 447
111-85-3 111-87-5 112-14-1 112-30-1 112-40-3	E240, E241, 270, E388, E389, 425, E437, E438, 446 E78, E79, E83, E85-E87, E89, E92, 100, 110, 119-121, E385-E387, 414, 416, E438, 448 E207, E208, 212 E78, E79, E83, E87, E90, 117, 119, 123, E385, E387, 414 E7-E11, 13
112-52-7	E240, E241, 271
112-53-8	E78, E79, E83, E85, E87, E90, E92, 124, E385, E387, 415
112-58-3	E150, E152, E153, 162
112-72-1	E78, E85, E87, E90, E92, 125, E385, E387, 415
112-92-5	E78, E85, E87, E90, E92, 125
115-20-8	E127, 131, 132, E387, 419, 420
120-82-1	E291, 307
121-73-3	E314, 321
122-79-2	E207, E208, 213
123-51-3	E78, E79, E88, E90, E92, 115
123-86-4	E207, E208, 212, 216
123-91-1	E21, E22, 31, E153, E154, 171, 189
123-96-6	E78, E79, E88, E91, E92, 122
124-18-5	E7-E11, 19, E383, E384, 395, 396
124-63-0	E330, E331, 332
126-33-0	E330, E331, 333
126-71-6	E352, 358
126-73-8	E352, 358, 359
127-00-4	E127, 130
127-18-4	72, E241, 286, 288
137-32-6	E78, E79, E88, E90, E92, 99
139-66-2	E330, E331, 334, E390, 434, E438, 449
140-11-4	E207, E208, 213
141-78-6	E207, E208, 211, 214, 215
142-62-1	E196, 204, E388, 423, E438, 443
142-68-7	E21, E22, 32
142-82-5	E7-E11, 12, 17, 18, E21, E22, 23-40, 70, E383, E384, 395
142-96-1	E150, E152, E153, 160, 168, 175
143-08-8	E78, E79, E83, E87, E89, E92, 119, E385, E387, 414
150-46-9	E342, 343
156-60-5	E241, 284, 285
274-09-9	E155, 191
340-54-5	E437, E438, 444
352-93-2	E21, E22, 33
462-06-6	E21, E22, 40, E291, 294

488-23-3 72 E155, 192 E196, 198 493-09-4 503-74-2 E41, E42, 49 504-60-9 504-63-2 E138, E139, 143 E352, 358 512-56-1 E352, 358 513-08-6 513-42-8 E133, 136 E41, E42, 513-81-5 51 E138, E139, 144 513-85-9 E208, 222 515-84-4 526-73-8 71 527-53-7 72 535-15-9 E208, 222 E153, E154, 169 538-86-3 E21, E22, 40 E153, E154, 538-93-2 170 539-30-0 E208, E209, 233 539-92-4 540-51-2 E127, 129 E150-E153, 156 540-67-0 540-84-1 E7-E11, 12 E208, 221, 224 541 - 41 - 3E208, E209, 232 542-52-9 E208, 223 E154, 172 542-58-5 542-88-1 544-01-4 E1, 5, E150, E152, E153, 161, 168, 178, 179 E240, E241, 269 544-10-5 E330, E331, 334, E390, 434, E438, 449 E7-E11, 13, 20 544 - 40 - 1544-76-3 557-17-5 E150, E152, E153, 157 E153, E154, 169 578-58-5 583-59-5 E145, 146 E78, E79, E88, E91, E92, 99 584-02-1 E154, 170 588-67-0 E78, E79, E88, E91, E92, 100 589-55-9 E21, E22, 40, E291, 312, E390, 430 591-50-4 E208, 227 592-34-7 594-44-5 E330, E331, 332 E330, E331, 333 E330, E331, 333 595-50-6 598-03-8 E330, E331, 333 598-04-9 598-38-9 E387, 417 601-88-7 E314, 321 E208, 230 E342, 344, E391, 436 620-73-5 621-78-3 623-71-2 E208, 228 625-24-1 E208, 223 E21, E22, 37 625-58-1 625-80-9 E330, E331, 334, E390, 434, E438, 449 E133, 136 627-27-0 628-08-0 E209, 219 E150, E152, E153, 167, 173, 174 628-28-4 628-63-7 E207, 217 E150, E152, E153, 158 628-80-8 628-81-9 E150, E152, E153, 176, 177 E389, E390, 429 629-03-8 629-27-6 280, E388, E389, 425, E437, E438, 448 E150, E152, E153, 159 629-32-3 629-36-7 E154, 172 E150, E152, E153, 162 629-64-1

629-73-2	E41, E42, 52
629-82-3	E150, E152, E153, 163, E387, 421, E438, 441
644-97-3	E342, 355
681-84-5	E365, E367, 369
682-01-9	E365, 371
688-74-4	E342, 345
693-65-2	E150, E152, E153, 160, 168
763-23-5	E330, E331, 333
778-28-9	E330, E331, 333
821-09-0	E133, 136
824-72-6	E342, 356
873-51-8	E342, 349
927-74-2	E133, 135
929-56-6	E150, E152, E153, 160
998-30-1	E365, 375, 376
1069-93-8	E352, 364
1124-68-1	E342, 346
1126-79-0	E153, E154, 184
1128-16-1	E315, 328
1321-27-3	E145, 148
1330-20-7	77
1335-12-2	E145, 149
1462-34-6	E154, 172
1912-32-9	E330, E331, 333
1929-82-4	E315, 327
1932-93-0	E209, Ż20
2028-63-9	E133, 135
2050-95-5	E208, E209, 234
2051-78-7	E209, 220
2305-21-7	E133, 137
2408-20-0	E209, 220
2524-64-3	E352, 363
2679-87-0	E150, E152, E153, 158
3073-92-5	E150, E152, E153, 159
3452-97-9	E78, E79, E88, E91, 100
3488-87-7	E342, 347
3497-00-5	E352, 357
4377-37-1	E315, 326
4747-07-3	E150, E152, E153, 159
4860-03-1	E240, E241, 272, 273
5966-54-1	E155, 194
6092-54-2	E208, 229
6117-91-5	E133, 135
6421-41-6	E330, E331, 333
7041-22-7	E315, 329
7216-18-4 7446-09-5 7550-45-0 7646-78-8 7647-01-0	E155, 193 E330, E331, 340, E390, E391, 435 E379, 380, 382 E379, 380 E7-E11, 12-20, E21, E22, 23-40, E41, E42, 43-52, E53- E55, 56-77, E78-E93, 94-126, E127, 128-132, E133, E134, 135-137, E138, E139, 140-144, E145, 146-149, E150-E155, 156-195, E196, 197-206, E207-E209, 210-235, E236-E243, 244-290, E291-E293, 294-313, E314, E315, 316-329, E330, E331, 332-341, E342, 343-351, E352, 353-364, E365-E368, 369-378, E379, 380-382
7664-39-3	E1, 2-6
7664-93-9	E330, E331, 332
7719-09-7	E330, E331, 337, 338
7719-12-2	E352, 353
7727-15-3	E383, E384, 399, 400

7783-06-4 7789-21-1	64, 65, 316 E330, E331, 339 E1, 6 E330, E331, 332, 335 E352, 354
10034-85-2 10035-10-6 10147-37-2	E352, 377, 378 E437-E439, 440-453 E383-E391, 392-436 E330, E331, 332 E342, 350, 351, E438, 450
10544-63-5 10606-47-0 13929-83-4 14245-63-7 16339-30-3	E133, 137 E342, 362 E330, E331, 333
19686-73-8	E365, 374 E365, E366, 372, 373 E127, 130 E342, 360 E293, 297
36653-82-4 39161-19-8 50780-47-7	E150, E152, E153, 161, 162 E78, E85-E87, E90, E92, 126, E385, E387, 415 E133, 136 E208, E209, 235 E293, 296, 297
72035-37-1 72035-38-2 72035-39-3 72035-40-6 72035-41-7	E342, 347 E342, 347 E342, 346

AUTHOR INDEX

Page numbers preceded by E refer to evaluation texts. E236, E243, 263, 287 E21, E22, E53, E54, 74-76, E78, E79, E85, E87, E93, 120, E150, E152, E155, 180, E196, 202, 204, E240, Abdullaev, A.I. Ahmed, W. E241, E243, 279, 280, E293, 313, E315, 322, E330, E331, 335-337, 340, E342, 349-351, E352, 353-357, E365, E368, 377, E379, 381, 382, E383-E385, E387-E391, 395, 398, 404, 407, 409, 416, 417, 420-425, 430, 431, 435, E437-E439, 440-443, 446-448, 450 E236, E243, 263, 287 Allev, A.M. Avet'yan, M.G. E236, E240, E241, E243, 258 E291-E293, 302 Babkin, B.M. Bell, R.P. E7-E11, 13, E41, E42, 44, E53, E54, 57, E236, E238, E240, E241, E243, 245, 256, 274, 286, E291-E293, 298, 309 E53, E54, 66, E384-E390, E391, 401, 405, 432, 433 E383, E384, 394, 396, 397 Bobalek, E.G. Boedeker, E.R. Borissov, R.S. E352, 358 E7-E11, 17, E21, E22, 38-40, E41, E42, 47, 48, Brady, J.D. E53-E55, 67, 70-72 E7-E11, 17, E21, E22, 38-40, E41, E42, 47, 48, E53-E55, 67, 70-72, E384, E385, E391, 403, 406, 408, Brown, H.C. 410 E7-E11, 12, 15, 16 E291, E293, 294, 299, 310, 312 Bugaichuk, A.M. Byrne, J.B. E330, E331, 332, 333 Charalambous, J. E41, E42, 43, E53, E54, 58, E78, E79, E84, E85, E87, E88, E93, 96, E152, E155, 165, E207, E209, 214, E236, Chesterman, D.R. E243, 246, E330, E331, 341 E78, E79, E84, E87, E93, 107, E133, 134-137, E207, E208, 219, 220, E241, E243, 290, E352, 360 Cook, T.M. E196, 199 E236, E241, E243, 253, 288, 289 Cupr, V. Curda, M. E240, E241, E243, 259, 260, 282-285 Danov, S.M. Dement'seva, G.M. E41, E42, 49, 50 E53, E54, 62, 68, 77 Despande, A.B. Domeniconi, M. E330, E331, 338 Dorofeeva, N.G. E385, E391, 411 E53, E54, 63, E291-E293, 295-297, 304, 305, 307, Dzhagatspanyan, R.V. E315, 320, 321, 326-329 E53, E54, 69, 73, E152, E155, 166 Dzhuraev, Kh.Sh. Echte, A. Evans, W.H. E7-E11, 18, E21, E22, 23-37 451, 452 E196, 200 Ewart, R.H. E78, E79, E84-E88, E93, 114, 118, 121-126, E240, E243, 271, 272, 271, 272, E386, E391, 413-415 Fernandes, J.B. E236, E240, E241, E243, 258 Flid, R.M. 451, 452 Fonseca, I.M. E383, E384, E391, 392, 393, 399, 400 E21, E22, E330, E331, 332-334, E390, E391, 434, E438, Fontana, C.M. Frazer, M.J. E439, 449 E78, E79, E81, E93, 101 Fritz, J.J. E196, 201 Gehlawat, J.K.

Gerrard, W. Gill, W.N. Golubev, Yu.D. Gorshkov, A.S.	E1, E7, E10, E11, 19, E21, E22, E53, E54, 74-76, E78-E80, E82, E84, E85, E87, E88, E93, 97-100, 108-112, 115, 117, 120, E127, 128-132, E138, E139, 142-144, E145, 146-149, E150, E152-E155, 167-172, 180, 190-195, E196, 197, 198, 202, 204-206, E207-E209, 210-213, 217, 218, 221-235, E240, E241, E243, 268-270, 276-280, E291-E293, 301, 308, 311, E315, 322, E330, E331, 332-334, E342, 343-348, 351, E352, 353, 359, 361-364, E365-E368, E379, 381, 382, E387-E391, 395, 398, 404, 407, 409, 416-425, 430, 431, 434, 436, E437-E439, 440-443, 446-449 E41, E42, 52, E240, E243, 273 E240, E241, E243, 259, 260, 282-285 E365, E368, E375, 376
Haccuria, M.	E236, E241, E243, 262, 281
Hannaert, M.	E236, E241, E243, 262, 281
Hartman, B.F.	E1, 6
Hamai, S.	E236, E240, E241, E243, 250, 257, 264, 265, 267, 275
Henderson, C.	451, 452
Herold, R.J.	E383, E384, E391, 392, 393, 399, 400
Hinshelwood, C.N.	E53, E54, 56
Holas, J.	E236, E241, E243, 253, 288, 289
Howald, R.A.	E379, 380
Howland, J.J.	E236, E238, E243, 247, 251, E388, E391, 426, 427
Ionin, M.V.	E78, E79, E84, E85, E87, E93, 113, 119, E152, E155, 175, E207, E209, 215, 216, E352, 358
Jaffe, I.	451, 452
Jelınek, R.V.	E41, E42, 52
Jones, W.J.	E78-E82, E86, E93, 105
Kaminski, M. Kapoor, K.P. Kapova, Z.K. Kapustinskii, A.F. Kenny, C.L. Ketov, A.N. Khodeeva, S.M. King, C.V. Kitvinenko, V.I. Klinedinst, K. Knight, R.W. Kohn, G. Kolesnikov, I.M. Kondratenko, V.I.	E291-E293, 338 E21, E22, E150, E152, E155, 156-163, 173,174, 176, 177 E196, 203 E384, E391, 402 E7, E8, E10, E11, 14, E21, E22, E41, E42, E53, E54, 60, E138, E139, 140, E315, 317, 323, 324 E7-E11, 12, 15, 16 E236, E243, 255 E153-E155, 183-185, E315, 325 E196, 203 E330, E331, 338 E53, E54, 56 E78, E79, E84, E87, E88, E93, 95, 106, 115, 122 E314, E315, 320, 321 E236, E238, E240, E243, 244, 249, 254
Kororotov, V.I.	E53, E54, 63, E291-E293, 295-297, 304, 305, 307, E315, 326-329
Kshirsagar, S.N.	E53, E54, 62, 68, 77
Kumar, S.	E196, 201
Kurina, N.V.	E78, E79, E84, E85, E87, E93, 113, 119
Lapworth, A.	E78-E82, E86, E93, 105
Lavrova, E.M.	E291, E293, 306
Lewis, D.G.	451, 452
Levine, S.	451, 452
Lingford, H.M.	E78-E82, E86, E93, 105
Lobry de Bruyn, C.A	E78, E79, E84, E87, E93, 94, 104
Lobo, L.Q.	451, 452
Luckcock, R.G.	E21, E22, E150, E152, E155, 156-163, 173,174, 176, 177
Lynch, C.C.	E383, E391, 394, 396, 397
Macklen, E.D.	E1, E21, E22, E78, E79, E84, E85, E87, E88, E93, 97-100, 116 117 E127 129-131 E138 E139 142-144 E145 146-149, E150, E152-E155, 167-172, 195, E196, 198, 205, 206, E207-E209, 210-213, 217, 218, 221-223, 226, 228

E21, E22, E53, E54, 74-76, E78, E79, E85, E87, E93, Maladkar, V.K. 120, E150, E152, E155, 180, E196, 202, 204, E240, E241, E243, 270, 279, 280, E315, 322, E342, 351, E352, 353, E365, E368, 377, E379, 381, 382, E387-E391, 395, 398, 404, 407, 409, 416, 417, 420-425, 428-431, E437-E439, 440-448 E384, E391, 402 Mal'tsev, B.A. E330, E331, 338 E236, E243, 263, 287 Marincic, N. Mamedov, M.B. E78, E79, E81-E83, E93, 102, 103 E236, E241, E243, 262, 281 Maschka, A. Mathieu, M.P. E1, 5, E138, E139, 141, E152, E154, E155, 179, 186, Matuszak, M.P. 189 E236, E238, E243, 247, 251 E7, E10, E11, 19, E78-E80, E82, E84, E85, E87, E88, E93, 108-112, E127, 128, 132, E155, 190-194, E208, Miller, D.R. Mincer A.M.A. E209, 224, 225, 227, 229-235, E240, E241, E243, 208, 269, 276-278, E291-E293, 301, 308, 311, E342, 343-348, E352, 359, 361-364, E365, E368, 369-374, E387, E391, 418, 419, 436 E53, E54, 69, 73, E152, E155, 166 E293, 295-297 Mirsaidov, U. Motsarev, G.I. E7, E8, E10, E11, 14, E21, E22, E41, E42, E53, E54, 60, 61, 66, E138, E139, 140, E152-E155, 181-185, 187, 188, E291-E293, 294, 299, 300, 310, 312, E315, O'Brien, S.J. 317-319, 323-325, E384, E390, E391, 401, 405, 432, 433 E53, E54, 62, 68, 77 E152, E155, 178 Parande, M.G. Perkin, W.H. E7, E9-E11, 20, E41, E42 Prausnitz, J.M. E236, E240, E241, 243, 258 Pimenov, I.F. Quam, G.N. E330, E331, 339 Rajalo, G. E41, E42, 49, 50, 51 E365, E368, 378 E365, E368, E375, 376 E196, 200 Rau, H. Reibakh, M.S. Rodebush, W.H. Rossini, F.D. 451, 452 Rothrock, H.S. E387, E391, 412 E236, E243, 255 Rozovskii, M.B. Rupert, F.F. Ryabov, V.G. E78, E79, E93 E7-E11, 12, 15, 16 E21, E22, E150, E152, E155, 156-163, 173,174, 176, 177 Sandbach, J.A. E41, E42, 49, 50 E53, E54, 59, 65 Savich, T.O. Saylor, J.H. Scher, M. E41, E42, 52, E240, E243, 273 E330, E331, 338 Schlaikjer, C. E152, E155, 164 Schunke, J. E78, E79, E81-E83, E93, 102, 103 E53, E54, 69, 73, E152, E155, 166 Schmid, M. Semenenko, K.N. E78, E79, E85-E88, E93, 124-126, E240, E243, 271, 272 Sharma, M.M. E152, E155, 175, E207, E209, 215, 216 Shverina, V.G. E1, 2-4 Simons, J.H. E78, E79, E81-E83, E93, 102, 103 E7-E11, 12, 15, 16 Sofer, H. Solomonov, A.B. E330, E331, 338 Staniewicz, R. E291-E293, 302 Strepikheev, Yu.A. E7-E11, 18, E21, E22, 23-37 E53, E54, 63, E291-E293, 295-297, 304, 305, 307, E315, Strohmeir, W. Stul, B.Ya. 326-329 E78, E79, E84, E85, E87, E93, 113, 119 Sudoplatova, A.E. E41, E42, 46 Svetlova, G.M. E330, E331, 338 Swette, L. E291-E293, 303 Szfranski, M. E236, E240, E241, E243, 258 Treger, Yu.A. E7, E9-E11, 20, E41, E42 Tremper, K.L. Tsiklis, D.S. E41, E42, 46

Tsırlin, A.M. Tudorovskaya, G.L.	E365, E368, E375, 376 E291, E293, 306
Ushakov, S.S.	E293, 295-297
Vdovichenko, V.T. Volens, T.	E236, E238, E240, E243, 244, 249, 254 51
Wallace, W.J. Washburn, E.W. Weast, R.C. Whitmore, F.C. Wiegner, F. Wilkinson, J.A. Willard, J.E. Wynne-Jones, W.F.K.	451, 452 E384, E385, E391, 403, 406, 408, 410 451, 452 451, 452 E387, E391, 412 E41, E42, 45 E330, E331, 339 E236, E238, E243, 247, 251, E379, 380, E338, E391, 426, 427 E53, E54, 64, E315, 316 wicz, D. E291-293, 303 E7, E10, E11, 19, E78-E80, E82, E84, E85, E87, E88, E93, 108-112, E127, 128, 132, E155, 190-194, E208, E209, 224, 225, 227, 229-235, E240, E241, E243, 268, 269, 276-278, E291-E293, 301, 308, 311, E342, 343-348, E352, 359, 361-364, E365-E368, 369-374, E387, E391, 418, 419, 436
Zakhorov, E.V. Zetkın, V.I.	E315, 320, 321 E53, E54, 63, E291-E293, 304, 305, 307, E314, E315, 320, 321
Zeurcher, R.A. Zielinski, A.Z.	E53, E54, 60, E138, E139, 140, E315, 317 E236, E238, E240, E243, 248, 252, 261, 266

•

SOLUBILITY DATA SERIES

Volume 1	H. L. Clever, Helium and Neon
Volume 2	H. L. Clever, Krypton, Xenon and Radon
Volume 3	M. Salomon, Silver Azide, Cyanide, Cyanamides, Cyanate, Selenocyanate and Thiocyanate
Volume 4	H. L. Clever, Argon
Volume 5/6	C. L. Young, Hydrogen and Deuterium
Volume 7	R. Battino, Oxygen and Ozone
Volume 8	C. L. Young, Oxides of Nitrogen
Volume 9	W. Hayduk, Ethane
Volume 10	R. Battino, Nitrogen and Air
Volume 11	B. Scrosati and C. A. Vincent, <i>Alkali Metal, Alkalıne Earth Metal and Ammonium Halıdes. Amıde Solvents</i>
Volume 12	C. L. Young, Sulfur Dioxide, Chlorine, Fluorine and Chlorine Oxides
Volume 13	S. Siekierski, T. Mioduski and M. Salomon, <i>Scandium, Yttrium, Lanthanum and Lanthanide Nitrates</i>
Volume 14	H. Miyamoto, M. Salomon and H. L. Clever, Alkaline Earth Metal Halates
Volume 15	A. F. M. Barton, Alcohols with Water
Volume 16/17	E. Tomlinson and A. Regosz, Antibiotics: I. β-Lactam Antibiotics
Volume 18	O. Popovych, Tetraphenylborates
Volume 19	C. L. Young, Cumulative Index: Volumes 1–18
Volume 20	A. L. Horvath and F. W. Getzen, Halogenated Benzenes, Toluenes and Phenols with Water
Volume 21	C. L. Young and P. G. T. Fogg, Ammonia, Amines, Phosphine, Arsine, Stibine, Silane, Germane and Stannane in Organic Solvents
Volume 22	T. Mioduski and M. Salomon, <i>Scandium, Yttrium, Lanthanum and Lanthanıde Halıdes in Nonaqueous Solvents</i>
Volume 23	T. P. Dirkse, Copper, Silver, Gold, and Zinc, Cadmium, Mercury Oxides and Hydroxides
Volume 24	W. Hayduk, Propane, Butane and 2-Methylpropane
Volume 25	C. Hirayama, Z. Galus and C. Guminski, Metals in Mercury
Volume 26	M. R. Masson, H. D. Lutz and B. Engelen, Sulfites, Selenites and Tellurites
Volume 27/28	H. L. Clever and C. L. Young, <i>Methane</i>
Volume 29	H. L. Clever, Mercury in Liquids, Compressed Gases, Molten Salts and Other Elements
Volume 30	H. Miyamoto and M. Salomon, Alkalı Metal Halates, Ammonium lodate and lodic Acid
Volume 31	J. Eysseltová and T. P. Dirkse, Alkali Metal Orthophosphates
Volume 32	P. G. T. Fogg and C. L. Young, Hydrogen Sulfide, Deuterium Sulfide and Hydrogen Selenide
Volume 33	P. Franzosini, Molten Alkali Metal Alkanoates
Volume 34	A. N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part I: Non-cyclic Substituents
Volume 35	A. N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part II: 5-Membered Heterocyclic Substituents
Volume 36	A. N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part III: 6-Membered Heterocyclic Substituents and Miscellaneous Systems
Volume 37	D. G. Shaw, Hydrocarbons with Water and Seawater. Part I: Hydrocarbons C_5 to C_7
Volume 38	D. G. Shaw, Hydrocarbons with Water and Seawater. Part II: Hydrocarbons C_8 to C_{36}
Volume 39	C. L. Young, Cumulative Index: Volumes 20–38
Volume 40	J. Hala, Halides, Oxyhalides and Salts of Halogen Complexes of Titanium, Zirconium, Hafnium, Vanadium, Niobium and Tantalum
Volume 41	CY. Chan, I. N. Lepeshkov and K. H. Khoo, Alkaline Earth Metal Perchlorates
Volume 42	P. C. T. Fogg and W. Gerrard, Hydrogen Halides in Non-aqueous Solvents