SOLUBILITY DATA SERIES

Volume 50

CARBON DIOXIDE IN NON-AQUEOUS SOLVENTS AT PRESSURES LESS THAN 200 KPA

SOLUBILITY DATA SERIES

Editor-in-Chief
J. W. LORIMER
The University of Western Ontario
London, Ontario, Canada

H. L. Clever (USA)
Sub-editor
Gas/Liquid Systems
C. L. Young (Australia)
Sub-editor Indexes

EDITORIAL BOARD

R. W. Cargill (UK)
M.-T. Saugier-Cohen Adad (France)
F. W. Getzen (USA)
P. Scharlin (Finland)
E. Gryzlova (USSR)
D. G. Shaw (USA)
W. Hayduk (Canada)
R. P. T. Tomkins (USA)
G. T. Hefter (Australia) J. Vanderdeelen (Belgium)
A. E. Mather (Canada) D. A. Wiesenberg (USA)
R. Paterson (UK)
Yu P. Yampol'skii (USSR)
M. Salomon (USA)

Managing Editor

P. D. GUJRAL

IUPAC Secretariat, Oxford, UK

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY
IUPAC Secretariat: Bank Court Chambers, 2-3 Pound Way, Templars Square, Cowley, Oxford OX4 3YF, UK

NOTICE TO READERS

If your library is not already a standing-order customer or subscriber to the Solubility Data Series, may we recommend that you place a standing order or subscription order to receive immediately upon publication all new volumes published in this valuable series. Should you find that these volumes no longer serve your needs, your order can be cancelled at any time without notice.

A complete list of volumes published in the Solubility Data Series will be found on p. 484.

CARBON DIOXIDE IN NON-AQUEOUS SOLVENTS AT PRESSURES LESS THAN 200 KPA

Volume Editor
PETER G. T. FOGG
Polytechnic of North London, Holloway, London, UK

H. LAWRENCE CLEVER Emory University Atlanta, Georgia, USA
J. CHR. GJALDBAEK
Royal Danish School of Pharmacy
Copenhagen, Denmark
TRINA D. KITTREDGE Emory University
Atlanta, Georgia, USA

Contributors

ARDIS L. CRAMER
Emory University (deceased)

WALTER HAYDUK
University of Ottawa
Ottawa, Ontario, Canada

PATRICK L. LONG
Emory University
Atlanta, Georgia, USA

M. ELIZABETH DERRICK Valdosta State University Valdosta, Georgia, USA

SUSAN A. JOHNSON Emory University
Atlanta, Georgia, USA

COLIN L. YOUNG
University of Melbourne
Parkville, Victoria, Australia

PERGAMON PRESS

U.K.	Pergamon Press Ltd., Headington Hill Hall, Oxford OX3 0BW, England
U.S.A.	Pergamon Press Inc., 660 White Plains Road, Tarrytown, New York 10591-5153, USA
KOREA	Pergamon Press Korea, KPO Box 315, Seoul 110-603, Korea
JAPAN	Pergamon Press Japan, Tsunashima Building Annex, 3-2-12 Yushima, Bunkyo-ku, Tokyo 113, Japan

Copyright (C) 1992 International Union of Pure and Applied Chemistry

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the copyright holders.

First edition 1992

Library of Congress Cataloging in Publication Data

The Library of Congress has catalogued this serial title as follows:
Solubility data series.-Vol. 1-Oxford; New York:
Pergamon, c 1979-
v.; 28 cm .

Separately catalogued and classified in LC before no. 18.
ISSN 0191-5622=Solubility data series.

1. Solubility-Tables-Collected works.

QD543.S6629 541.3'42'05-dc19 85-641351
AACR 2 MARC-S
British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
ISBN 0080404952

CONTENTS

Foreword vii
Preface ix
William Gerrard 1900-1990 x
The Solubility of Gases in Liquids xi
Carbon Dioxide in Non-aqueous Solvents at Pressuresunder 200 kPa .
Alkanes and alkenes 1
Aromatic hydrocarbons 90
Alcohols 128
Miscellaneous solvents containing carbon, hydrogen and oxygen 178
Halogen compounds 255
Nitrogen compounds 302
Phosphorus, silicon and sulfur compounds 358
Mixed solvents 384
Mineral oils 417
Animal and vegetable oils and fats 430
Polymeric materials 448
Liquid gases 457
System Index 464
Registry Number Index 473
Author Index 477
Titles in the Solubility Data Series 484

FOREWORD

> If the knowledge is undigested or simply wrong, more is not better.

The Solubility Data Series is a project of Commission V. 8 (Solubility Data) of the International Union of Pure and Applied Chemistry (IUPAC). The project had its origins in 1973, when the Analytical Chemistry Division of IUPAC set up a Subcommission on Solubility Data under the chairmanship of the late Prof. A. S. Kertes. When publication of the Solubility Data Series began in 1979, the Committee became a full commission of IUPAC, again under the chairmanship of Prof. Kertes, who also became Editor-in-Chief of the Series. The Series has as its goal the preparation of a comprehensive and critical compilation of data on solubilities in all physical systems, including gases, liquids and solids.

The motivation for the Series arose from the realization that, while solubility data are of importance in a wide range of fields in science and technology, the existing data had not been summarized in a form that was at the same time comprehensive and complete. Existing compilations of solubility data indeed existed, but they contained many errors, were in general uncritical, and were seriously out-of-date.

It was also realized that a new series of compilations of data gave educational opportunities, in that careful compilations of existing data could be used to demonstrate what constitutes data of high and lasting quality. As well, if the data were summarized in a sufficiently complete form, any individual could prepare his or her own evaluation, independently of the published evaluation. Thus, a special format was established for each volume, consisting of individual data sheets for each separate publication, and critical evaluations for each separate system, provided sufficient data from different sources were available for comparison. The compilations and, especially, the evaluation were to be prepared by active scientists who were either involved in producing new data, or were interested in using data of high quality. With minor modifications in format, this strategy has continued throughout the Series.

In the standard arrangement of each volume, the Critical Evaluation gives the following information:
(i) A text which discusses the numerical solubility information which has been abstracted from the primary sources in the form of compilation sheets. The text concerns primarily the quality of the data, after consideration of the purity of the materials and their characterization, the experimental method used, the uncertainties in the experimental values, the reproducibility, the agreement with accepted test values, and finally, the fitting of the data to suitable functions, along with statistical tests of the fitted data.
(ii) A set of recommended data, whenever possible, including weighted averages and estimated standard deviations. If applicable, one or more smoothing equations which have been computed or verified by the evaluator are also given.
(iii) A graphical plot of the recommended data, in the form of phase diagrams where appropriate.

The Compilation part consists of data sheets which summarize the experimental data from the primary literature. Here much effort is put into obtaining complete coverage; many good data have appeared in publications from the late nineteenth and early twentieth centuries, or in obscure journals. Data of demonstrably low precision are not compiled, but are mentioned in the Critical Evaluation. Similarly, graphical data, given the uncertainty of accurate conversion to numerical values, are compiled only where no better data are available. The documentation of data of low precision can serve to alert researchers to areas where more work is needed.

A typical data sheet contains the following information:
(i) list of components: names, formulas, Chemical Abstracts Registry Numbers;
(ii) primary source of the data;
(iii) experimental variables;
(iv) compiler's name;
(v) experimental values as they appear in the primary source, in modern units with explanations if appropriate;
(vi) experimental methods used;
(vii) apparatus and procedure used;
(viii) source and purity of materials used;
(ix) estimated error, either from the primary source or estimated by the compiler;
(x) references relevant to the generation of the data cited in the primary source.

Each volume also contains a general introduction to the particular type of system, such as solubility of gases, of solids in liquids, etc., which contains a discussion of the nomenclature used, the principle of accurate determination of solubilities, and related thermodynamic principles. This general introduction is followed by a specific introduction to the subject matter of the volume itself.

The Series embodies a new approach to the presentation of numerical data, and the details continue to be.influenced strongly by the perceived needs of prospective users. The approach used will, it is hoped, encourage attention to the quality of new published work, as authors become more aware that their work will attain permanence only if it meets the standards set out in these volumes. If the Series succeeds in this respect, even partially, the Solubility Data Commission will have justified the labour expended by many scientists throughout the world in its production.

January, 1989

J. W. Lorimer, London, Canada

PREFACE

This volume of The Solubility Data Series contains evaluated data for the solubility in non-aqueous solvents of carbon dioxide at a partial pressure not greater than 200 kPa . In some cases a compiler has extrapolated published data for higher pressures to obtain a value for a solubility at a pressure below 200 kPa . Two further volumes in the series will include data for aqueous systems at all pressures and data for non-aqueous systems at pressures above 200 kPa .

Measurements of the solubility of carbon dioxide have been carried out for over a hundred years. New techniques have been developed and old techniques modified during this time but some of the early measurements are in close agreement with recent measurements. Reliance may be placed on data when there is good agreement between the measurements of different groups of workers. Unfortunately there are sometimes inconsistencies between measurements by different groups. Judgements have then to be made of the relative reliability of different experimental methods. Difficulties in attaining equilibrium between the gas and liquid phase are an important cause of discrepancies.

In some cases it has been possible to recommend equations relating mole fraction solubility at a partial pressure of 101.3 kPa with temperature. These equations are based on the data which have been considered to be the most reliable. The use of these equations for extrapolation more than a few degrees outside the temperature range of the experimental measurements can lead to errors.

The editor is grateful for support, encouragement and help from fellow members of the IUPAC Commission on Solubility Data. He would like to acknowledge the help given by Dr Elena Gryzlova in obtaining copies of papers from the less accessible Russian journals. He would also like to thank Dr Sim-wan Annie Bligh for her assistance in translating Chinese and Japanese papers.

Peter Fogg
London

September 1991

WILLIAM GERRARD 1900-1990

Members of the Solubility Data Commission of the International Union of Pure and Applied Chemistry were saddened by the death of Dr William Gerrard on 5th February 1990, shortly before his ninetieth birthday. William Gerrard was the oldest and one of the longest serving members of the Commission.

William Gerrard was born in Tyldesley, Lancashire, U.K. on 24th February, 1900. He studied part-time at a local technical college and eventually graduated as an external student of the University of London with first class honours in chemistry. Later he gained a PhD after part-time research at Battersea Polytechnic in London under the direction of Dr Joseph Kenyon, FRS. This gave him a life long interest in the mechanisms and stereochemistry of reactions of esters of phosphorus and sulfur. William Gerrard joined the staff of the Northern Polytechnic (now Polytechnic of North London) in 1934 after holding earlier academic posts. He became Head of the Department of Chemistry, Mathematics, Botany, Zoology, Biology and Geology in 1948, a post which he held until he retired in 1965.

During the Second World War he had responsibilities for a section of the London University Air Squadron training at the Northern Polytechnic and held the rank of Flight Lieutenant.

It is as an experimental organic chemist that he made his most important contribution to chemistry. He established a flourishing research school covering a wide range of organic chemistry and published over 200 research papers. He was awarded the degree of DSc in 1947. His monograph The Organic Chemistry of Boron was published in 1961. He also contributed a Chapter on boron chemistry to Mellor's Inorganic Chemistry and a chapter on the organic chemistry of phosphorous and thiophosphorous acids to the Kosolapoff and Maier series Organic Compounds of Phosphorus. For many years after his retirement he continued to direct the studies of part time and full time research students and to work at the bench himself. His interest in solubility phenomena arose from his observations of the behaviour of gases such as hydrogen chloride and sulfur dioxide during organic reactions in the liquid phase. As his many research students and collaborators can testify, once William Gerrard's enthusiasm was roused he had the ability to transmit his enthusiasm to others.

He and his co-workers published many papers containing solubility data for the hydrogen halides and other gases. His book entitled Solubility of Gases and Liquids was published in 1976. Gas Solubilities - Widespread Applications followed in 1980. At the time of his death he was co-operating with Peter Fogg in the preparation of Solubility of Gases in Liquids which was published later in the year.

Publications on the solubility of gases led to an invitation to assist in the Solubility Data Project shortly after its inception and continued to serve when Commission status was achieved in 1979. He contributed to several of the volumes on gas solubilities and was co-editor of Hydrogen Halides in Non-aqueous Solvents. He was always fearless in his determination to maintain high standards. Not one of his colleagues working in the Solubility Data Commission could escape his criticism if things did not meet his approval. Eventually failing hearing and eyesight and general frailty made it impossible for him to attend annual meetings of the Solubility Data Commission. Until the last he took a keen interest in the affairs of the Commission and continued to provide detailed comments.

He was awarded an OBE for services to chemistry in 1981.
William Gerrard had an infectious delight in many aspects of chemistry and former colleagues and students have been inspired by his unforgettable enthusiasms, scholarship and devotion to hard and careful work. It is a privilege to have worked with him.

THE SOLUBILITY OF GASES IN LIQUIDS

R. Battino, H. L. Clever and C. L. Young

INTRODUCTION

The Solubility Data Project aims to make a comprehensive search of the literature for data on the solubility of gases, liquids and solids in liquids. Data of suitable accuracy are compiled into data sheets set out in a uniform format. The data for each system are evaluated and where data of sufficient accuracy are available values recommended and in some cases a smoothing equation suggested to represent the variation of solubility with pressure and/or temperature. A text giving an evaluation and recommended values and the compiled data sheets are published on consecutive pages.

DEFINITION OF GAS SOLUBILITY

The distinction between vapor-liquid equilibria and the solubility of gases in liquids is arbitrary. It is generally accepted that the equilibrium set up at 300 K between a typical gas such as argon and a liquid such as water is gas liquid solubility whereas the equilibrium set up between hexane and cyclohexane at 350 K is an example of vapor-liquid equilibrium. However, the distinction between gas-liquid solubility and vapor-liquid equilibrium is of ten not so clear. The equilibria set up between methane and propane above the critical temperature of methane and below the critical temperature of propane may be classed as vapor-liquid equilibrium or as gas-liquid solubility depending on the particular range of pressure considered and the particular worker concerned.

The difficulty partly stems from our inability to rigorously distinguish between a gas, a vapor, and a liquid, which has been discussed in numerous textbooks. We have taken a fairly liberal view in these volumes and have. included systems which may be regarded, by some workers, as vapor-liquid equilibria.

UNITS AND QUANTITIES

The solubility of gases in liquids is of interest to a wide range of scientific and technological disciplines and not solely to chemistry. Therefore a variety of ways for reporting gas solubility have been used in the primary literature and inevitably sometimes, because of insufficient available information, it has been necessary to use several quantities in the compiled tables. Where possible, the gas solubility has been quoted as a mole fraction of the gaseous component in the liquid phase. The units of pressure used are bar, pascal, millimeters of mercury and atmosphere. Temperatures are reported in Kelvin.

EVALUATION AND COMPILATION

The solubility of comparatively few systems is known with sufficient accuracy to enable a set of recommended values to be presented. This is true both of the measurement near atmospheric pressure and at high pressures. Although a considerable number of systems have been studied by at least two workers, the range of pressures and/or temperatures is often sufficiently different to make meaningful comparison impossible.

Occasionally, it is not clear why two groups of workers obtained very different sets of results at the same temperature and pressure, although both sets of results were obtained by reliable methods and are internally consistent. In such cases, sometimes an incorrect assessment has been given. There are several examples where two or more sets of data have been classified as tentative although the sets are mutually inconsistent.

Many high pressure solubility data have been published in a smoothed form. Such data are particularly difficult to evaluate, and unless specifically discussed by the authors, the estimated error on such values can only be regarded as an "informed guess".

Many of the high pressure solubility data have been obtained in a more general study of high pressure vapor-liquid equilibrium. In such cases a note is included to indicate that additional vapor-liquid equilibrium data are given in the source. Since the evaluation is for the compiled data, it is possible that the solubility data are given a classification which is better than that which would be given for the complete vapor-liquid data (or vice versa). Fnr example, it is difficult to determine coexisting liquid and vapor compositions near the critical point of a mixture using some widely used experimental techniques which yield accurate high pressure solubility data. For example, conventional methods of analysis may give results with an expected error which would be regarded as sufficiently small for vapor-liquid equilibrium data but an order of magnitude too large for acceptable high pressure gas-liquid solubility.

It is occasionally possible to evaluate data on mixtures of a given substance with a member of a homologous series by considering all the available data for the given substance with other members of the homologous series. In this study the use of such a technique has been very limited.

The estimated error is often omitted in the original article and sometimes the errors quoted do not cover all the variables. In order to increase the usefulness of the compiled tables estimated errors have been included even when absent from the original article. If the error on any variable has been inserted by the compiler this has been noted.

PURITY OF MATERIALS

The purity of materials has been quoted in the compiled tables where given in the original publication. The solubility is usually more sensitive to impurities in the gaseous component than to liquid impurities in the liquid component. However, the most important impurities are traces of a gas dissolved in the liquid. Inadequate degassing of the absorbing liquid is probably the most often overlooked serious source of error in gas solubility measurements.

APPARATUS AND PROCEDURES

In the compiled tables brief mention is made of the apparatus and procedure. There are several reviews on experimental methods of determining gas solubilities and these are given in References 1-7.

METHODS OF EXPRESSING GAS SOLUBILITIES

Because gas solubilities are important for many different scientific and engineering problems, they have been expressed in a great many ways:

The Mole Fraction, $x(g)$

The mole fraction solubility for a binary system is given by:

$$
\begin{aligned}
x(g) & =\frac{n(g)}{n(g)+n(1)} \\
& =\frac{W(g) / M(g)}{[W(g) / M(g)]+[W(1) / M(1)]}
\end{aligned}
$$

here n is the number of moles of a substance (an amount of substance), N is the mass of a substance, and M is the molecular mass. To be unambiguous, the partial pressure of the gas (or the total pressure) and the temperature of measurement must be specified.

The Weight Per Cent Solubility, wti
For a binary system this is given by

$$
w t \%=100 W(g) /[W(g)+W(1)]
$$

where W is the weight of substance. As in the case of mole fraction, the pressure (partial or total) and the temperature must be specified. The weight per cent solubility is related to the mole fraction solubility by

$$
x(g)=\frac{[w t \% / M(g)]}{[w t \% / M(g)]+[(100-w t \%) / M(1)]}
$$

The Weight Solubility, C_{w}
The weight solubility is the number of moles of dissolved gas per gram of solvent when the partial oressure of gas is 1 atmosphere. The weight solubility is related to the mole fraction solubilitv at one atmosphere partial pressure by

$$
x(g) \quad(\text { partial pressure } 1 \mathrm{~atm})=\frac{C_{w} M(1)}{1+C_{w} M(1)}
$$

where $M(1)$ is the molecular weight of the solvent.
The Moles Per Unit Volume Solubility, n
Often for multicomponent systems the density of the liquid mixture is not known and the solubility is quoted as moles of gas per unit volume of liquid mixture. This is related to the mole fraction solubility by

$$
x=\frac{n v^{\circ}(1)}{1+n v^{\circ}(1)}
$$

where $v^{\circ}(1)$ is the molar volume of the liquid component.

The Bunsen Coefficient, α

The Bunsen coefficient is defined as the volume of gas reduced to 273.15 K and 1 atmosphere pressure which is absorbed by unit volume of solvent (at the temperature of measurement) under a partial pressure of 1 atmosphere. If ideal gas behavior and Henry's law is assumed to be obeyed,

$$
\alpha=\frac{V(g)}{V(1)} \frac{273.15}{T}
$$

where $V(g)$ is the volume of gas absorbed and $V(1)$ is the original (starting) volume of absorbing solvent. The mole fraction solubility is related to the Bunsen coefficient by

$$
x(\mathrm{~g}, 1 \mathrm{~atm})^{\prime}=\frac{\alpha}{\alpha+\frac{273.15}{T} \frac{\mathrm{v}^{0}(\mathrm{~g})}{\mathrm{v}^{0}(1)}}
$$

where $v^{\circ}(g)$ and $v^{\circ}(1)$ are the molar volumes of gas and solvent at a pressure of one atmosphere. If the gas is ideal,

$$
x(g)=\frac{\alpha}{\alpha+\frac{273.15 R}{v^{0}(1)}}
$$

Real gases do not follow the ideal gas law and it is important to establish the real gas law used for calculating α in the original publication and to make the necessary adjustments when calculating the mole fraction solubility.

The Kuenen Coefficient, S
This is the volume of gas, reduced to 273.15 K and 1 atmosphere pressure, dissolved at a partial pressure of gas of 1 atmosphere by 1 gram of solvent.

The Ostwald Coefficient, L

The Ostwald coefficient, L, is defined at the ratio of the volume of gas absorbed to the volume of the absorbing liquid, all measured at the same temperature.

$$
L=\frac{V(g)}{V(1)}
$$

If the gas is ideal and Henry's Law is applicable, the Ostwald coefficient is independent of the partial pressure of the gas. . It is necessary, in practice, to state the temperature and total pressure for which the ostwald coefficient is measured. The mole fraction solubility, x, is related to the Ostwald coefficient by -1
$x(g)=\frac{\mathrm{RT}}{\mathrm{P}(\mathrm{g}) \mathrm{L} \mathrm{v}^{\circ}(1)}+1$
where P is the partial pressure of gas. The mole fraction solubility will be at a partial pressure of $P(g)$.

The Absorption Coefficient, β

There are several "absorption coefficients", the most commonly used one being defined as the volume of gas, reduced to 273.15 K and 1 atmosphere, absorbed per unit volume of liquid when the total pressure is l atmosphere. β is related to the Bunsen coefficient by

$$
\beta=\alpha(1-P(1))
$$

where $P(1)$ is the partial pressure of the liquid in atmosphere.

The Henry's Law Contant

A generally used formulation of Henry's Law may be expressed as

$$
\mathrm{P}(\mathrm{~g})=\mathrm{K}_{\mathrm{H}} x(\mathrm{~g})
$$

where K_{H} is the Henry's Law constant and x the mole fraction solubility. Other formulations are

$$
P(g)=K_{2} C(1)
$$

or

$$
C(g)=K_{c} C(1)
$$

where K_{2} and K are constants, C the concentration, and (I) and (g) refer to the liquid and gas phases. Unfortunately, K_{H}, K_{2} and K_{c} are all sometimes referred to as Henry's Law constant ${ }^{\text {S }}$. Henry's ${ }^{c}$ Law is a limiting law but can sometimes be used for converting solubility data from the experimental pressure to a partial gas pressure of 1 atmosphere, provided the mole fraction of the gas in the liquid is small, and that the difference in pressures is small. Great caution must be exercised in using Henry's Law.

The Mole Ratio, N
The mole ratio, N, is defined bv

$$
N=n(g) / n(1)
$$

Table 1 contains a presentation of the most commonly used inter-conversions not already discussed.

For gas solubilities greater than about 0.01 mole fraction at a partial pressure of 1 atmosphere there are several additional factors which must be taken into account to unambiguously report gas solubilities. Solution densities or the partial molar volume of gases must be known. Corrections should be made for the possible non-ideality of the gas or the non-applicability of Henry's Law.

TABLE 1. Interconversion of parameters used for reporting solubility.

$$
\begin{aligned}
& L=\alpha(T / 273.15) \\
& C_{W}=\alpha / v_{0} \rho \\
& K_{H}=\frac{17.033 \times 10^{6} \rho(\text { soln })}{\alpha M(1)}+760 \\
& L=C_{W} v_{t, \text { gas }} \rho
\end{aligned}
$$

where v 。is the molal volume of the gas in $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$ at $0^{\circ} \mathrm{C}, \rho$ the density of the solvent at the temperature of the measurement, $\rho_{\text {soln }}$ the density of the solution at the temperature of the measurement, and $v_{t, g a s}$ the molal volume of the gas $\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$ at the temperature of the measurement.

REFERENCES

1. Battino, R.; Clever, H. L. Chem. Rev. 1966, 66, 395.
2. Clever, H. L.; Battino, R. in Solutions and Solubilities, Ed. M. R. J. Dack, J. Wiley \& Sons, New York, 1975, Chapter 7.
3. Hildebrand, J. H.; Prausnitz, J. M.; Scott, R. L. Regular and Related Solutions, Van Nostrand Reinhold, New York, 1970, Chapter 8.
4. Markham, A. E.; Kobe, K. A. Chem. Rev. 1941, 63, 449.
5. Wilhelm, E.; Battino, R. Chem. Rev. 1973, 73, 1.
6. Wilhelm, E.; Battino, R.; Wilcock, R. J. Chem. Rev. 1977, 77, 219.
7. Kertes, A. S.; Levy, O.; Markovits, G. Y. in Experimental Thermochemistry Vol. II, Ed. B. Vodar and B. LeNaindre, Butterworth, London, 1974, Chapter 15.

Revised: December 1984 (CLY)

COMPONENTS :

1. Carbon dioxide; CO_{2}; [124-38-9]
2. Alkanes, Cyclic Alkanes and Alkenes

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North Loncion, Holloway Road, London, N7 8́DB, U.K. July 1991

CRITICAL EVALUATION:

Solubility of carbon dioxide in alkanes, cyclic alkanes and alkenes.
The solubility of solid carbon dioxide in methane, ethane, propane and butane was measured by Cheung and Zander (1) at temperatures between 87.4 K and 194.6 K . Solubility in methane at 126.4 K and 137.5 K was measured by Preston et al. (2). There is satisfactory agreement with Cheung's data. The concentration of carbon dioxide in solution in the presence of solid carbon dioxide increases with increase in temperature. The partial vapor pressure also increases with temperature and mole fraction solubilities corrected to the same partial vapor pressure show a decrease with increase in temperature in line with the behaviour of the gas in other solvents. Data indicate that there are insignificant differences between solubilities in methane, propane and butane under the conditions of the measurements but that solubility is greatest in ethane. (see table below)

alkane	T / K	mole\% of CO_{2} in solution
methane	183.2	6.60
ethane	183.2	5.85
propane	180.3	7.54
butane	180.2	5.7
		5.6

Solubility of solid carbon dioxide in liquid ethane was also measured by Clark and Din (3) from 130 K to 180 K . Clark's measurements are close to those of Cheung at lower temperatures. Clark found a solubility of 0.9 . mol\% at 150 K and Cheung a value of 0.85 mol at 149 K . The agreement at higher temperatures is poor. Clark's value for 180 K is $6.7 \mathrm{~mol} \%$ and Cheung's value at 180.3 K is 7.54 mol\%

Nagahama et al. (4) studied phase equilibria between gaseous carbon dioxide and ethane, propane, butane or 2 -methylpropane. Measurements were extended to high pressures over the whole concentration range.
Approximate mole fraction solubilities for a partial pressure of 101.3 kPa show an increase with carbon number at constant temperature. These have been estimated by the evaluator from data for partial pressures of carbon dioxide from 71 to 214 kPa , assuming that mole fraction solubility is proportional to pressure, and are given below.

alkane	T / K	${ }^{x} \mathrm{CO}_{2}$
ethane	252.95	0.026
propane	252.95	0.029
butane	273.15	0.019
2-methylpropane	273.15	0.021
	273.15	0.019

Makranczy et al. (5) measured the solubility of carbon dioxide in straight chain alkanes from pentane to hexadecane at 298.2 K and 313.2 K . These measurements show a decrease in mole fraction solubility with increase in chain length at a partial pressure of gas of 101.3 kPa . This is not in accord with measurements reported by other workers and the bulk of evidence indicates that mole fraction solubility increases with chain length.

Solubility in pentane has been reported by Makranczy et al. (5) and by Cheng et al. (6). Cheng's data indicate a mole fraction solubility of approximately 0.0138 at 298.2 K and a partial pressure of carbon dioxide of 101.3 kPa . The mole fraction solubility from Makranczy's measurements under these conditions is 0.0125\%. The following equation for mole

COMPONENTS:

1. Carbon dioxide; CO_{2};
[124-38-9]
2. Alkanes, Cyclic Alkanes and Alkenes

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K.

July 1991

CRITICAL EVALUATION:
fraction solubility at a partial pressure of carbon dioxide of 101.3 kPa is based upon data from the two sources.

$$
\ln \mathrm{CO}_{2}=83.727-2635.9 /(T / \mathrm{K})-13.906 \ln (T / K)
$$

temperature range $=252.7-313.2 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=0.00033$
Solubility in 2,2-dimethylpropane (neopentane) was measured by Stead and Williams (7) at pressures below 516 kPa from 250 K to 300 K . The data are self-consistent. Mole fraction solubility at a partial pressure of 101.3 kPa estimated from these data fit the following equation

$$
\ln x_{\mathrm{CO}_{2}}=85.021-2788.0 /(T / K)-14.006 \ln (T / K)
$$

temperature range $=250-300 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=0.00071$
The mole fraction solubility at 298.2 K from this equation is 0.0161
compared with a value of 0.0130 from the equation for pentane.
Mole fraction solubilities of gas in hexane at a partial pressure of 101.3 kPa from work by various authors (5,8-13) show good agreement (Fig 1) and fit the equation

$$
\ln x_{\mathrm{CO}_{2}}=26.213-429.93 /(T / K)-5.1244 \ln (T / K)
$$

temperature range 238.2-313.2 K
standard deviation in $x_{\mathrm{CO}_{2}}=0.00018$
Data published by Tong et al. (14) appear to be inconsistent with other data and have not been used to derive the above equation.

Solubility of solid carbon dioxide at $177-216 \mathrm{~K}$ was measured by Im and Kurata (13). The data are self-consistent and may be accepted as reliable. Mole fraction solubilities for a partial pressure of carbon dioxide of 101.3 kPa estimated from these data for low temperatures are higher than values estimated from the equation given above.

Most of the data from various sources (5, 10,11, 15,16) for solubilities in heptane show a similar consistency. The following equation fits values of mole fraction solubilities at a partial pressure of gas of 101.3 kPa .

$$
\ln x_{\mathrm{CO}_{2}}=18.584-61.706 /(T / K)-4.0034 \ln (T / K)
$$

temperature range $=238.2-313.2 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=0.00035$
Data published by Tong et al. (14) appear to be inconsistent with data published by other authors and have not been included in the evaluation of the constants in this equation.

Im and Kurata (13) also measured the solubility of solid carbon dioxide in heptane over the temperature range $182-216 \mathrm{~K}$. Data for this system are self consistent. Mole fraction solubilities of solid carbon dioxide in heptane are lower than solubilities in hexane. The equation given above is not applicable to the solubility of solid carbon dioxide in heptane.

Data for the solubility of carbon dioxide in octane published by Wilcock et al. (17), Shenderei and Ivanovsky (11), King and Al-Najjar (10) are consistent with each other. Mole fraction solubilities at a partial

COMPONENTS:

1. Carbon dioxide; CO_{2}; [124-38-9]
2. Alkanes, Cyclic Alkanes and Alkenes

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K.

July 1991

CRITICAL EVALUATION:
pressure of gas of 101.2 kPa from these three sets of data fit the equation

$$
\ln x_{\mathrm{CO}_{2}}=-9.6225+1063.4 /(T / K)+0.2883 \ln (T / K)
$$

temperature range $=238.2-313.4 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=6.2 \times 10^{-5}$
The mole fraction solubility at 298.15 K published by Tong et al. (14) is close to the value from this equation (Tong 0.0119; eqn. 0.0121). Mole fraction solubilities at 298.15 and 313.15 K calculated from data given by Makranczy et al.(5), fall below values given by the equation.

Asano et al. (18) used a chromatographic method to measure K-values for dissolution of carbon dioxide in solutions of methane in octane. The K-values were defined as the ratio of mole fractions of CO_{2} in the vapor and in the liquid phases and correspond to very low concentrations of carbon dioxide. The data are self-consistent but no other data on this system are available for comparison.

Hiraoka and Hildebrand (19) measured solubility in the non-linear 2,2,4-trimethylpentane. The mole fraction solubility at 298.15 and a partial pressure of 101.3 kPa estimated from these data is 0.0139 compared with a value for solubility in octane from the above equation of 0.0121 . This difference may be compared with that between solubilities in pentane and 2,2-dimethylpropane which has been noted above.

Solubility in nonane was measured by Makranczy et al. (5). Measurements of solubilities of carbon dioxide in the higher alkanes by this group do not conform to the general trend indicated by other workers. A value for 298.15 K has also been published by Tong et al.(14). The data for nonane cannot be recommended until they are substantiated by other measurements on this system.

Solubility in decane has been measured by Wilcock et al.(17), King and Al-Najjar (10), Horvath et al.(20), Makranczy et al.(5), and Tong et al.(14). The following equation for mole fraction solubility at a partial pressure of 101.3 kPa is based upon data from the first three groups of workers.

$$
\ln x \mathrm{CO}_{2}=14.481-114.51 /(T / K)-3.2438 \ln (T / K)
$$

temperature range $=283.2-313.5 \mathrm{~K}$.
standard deviation in $x_{\mathrm{CO}_{2}}=0.00016$
Data published by Makranczy and by Tong are not consistent with this equation.

Values of the solubility in undecane, tridecane and pentadecane reported by Makranczy et al. appear to be too low and cannot be recommended until the measurements have been repeated by other workers. The mole fraction solubility in undecane at 298.15 K has been published by Tong et al. In contrast this value appears to be too high in comparison with data for other alkanes.

Solubility in dodecane has been measured by Hayduk et a1.(16), by King and Al-Najjar (10) and by Makranczy et al.(5). Measurements by Hayduk are consistent with those by King. Mole fraction solubilıties at a partial pressure of 101.3 kPa from these two sources fit the equation

$$
{ }^{\ln x} \mathrm{CO}_{2}=11.161+66.063 /(T / K)-2.7623 \ln (T / K)
$$

temperature range $=283.15-323.15 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=0.00014$

COMPONENTS:

1. Carbon dioxide; CO_{2}; [124-38-9]
2. Alkanes, Cyclic Alkanes and Alkenes

EVALUATOR:

Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:

Solubilities measured by Macranczy et al. are about 14% lower than those reported by the other authors.

Mole fraction solubility in tetradecane at a partial pressure of 101.3 kPa from measurements by King and Al-Najjar (10) fit the equation

$$
\ln x_{\mathrm{CO}_{2}}=-49.650+2870.5 /(T / K)+6.2703 \ln (T / K)
$$

temperature range $=$ 298.2-343.2 K
standard deviation in $x_{\mathrm{CO}_{2}}=1.2 \times 10^{-5}$
Measurements by Makranczy et al.(5) are about 208 lower and are less likely to be reliable.

Solubility in hexadecane has been measured by at least seven groups ($5,10,16,21-24$). Measurements by Macranczy et al. appear to be be too low and those by Lenoir et al.(21) to be too high. Values of mole fraction solubility from measurements by the other groups are mutually consistent and fit the equation

$$
\ln \mathrm{CO}_{2}=-26.045+1769.0 /(T / K)+2.7810 \ln (T / K)
$$

temperature range $=$ 298.2-475.0 K
standard deviation in $x_{\mathrm{CO}_{2}}=0.00015$
The solubility in heptadecane at 313.2 K was measured by Lenoir et al.(21) using a chromatographic method to find the limiting value of Henry's constant. The corresponding value of the mole fraction solubility at 101.3 kPa is 0.0139 . This may be compared with the value of 0.01210 for solubility in hexadecane at this temperature and pressure from the equation given above.

Henry's law constants for dissolution of carbon dioxide in eicosane $\left(\mathrm{C}_{2} \mathrm{OH}_{4}\right.$) were measured by Chai and Paulaitis (24), Gasem and Robinson (25) and by Huang et al. The sets of data are mutually consistent. The corresponding mole fraction solubilities for a partial pressure of 101.3 kPa fit the equation

$$
\operatorname{lnx}_{\mathrm{CO}_{2}}=-23.875+1622.2 /(T / K)+2.5006 \ln (T / K)
$$

temperature range $=313.2-573.4 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=0.00044$
Solubility in octacosane ($\mathrm{C}_{2} \mathrm{BH}_{58}$) was reported by Huang et al. (26), Gasem and Robinson (25) and by Lin and Parcher (22) with good agreement between the sets of data. Mole fraction solubilities at a partial pressure of 101.3 kPa fit the equation

$$
\ln x_{\mathrm{CO}_{2}}=-25.506+1747.4 /(T / K)+2.7523 \ln (T / K)
$$

temperature range $=348.2-573.2$
standard deviation in $x_{\mathrm{CO}_{2}}=4.2 \times 10^{-5}$
Solubilities in hexatriacontane $\left(\mathrm{C}_{3} \mathrm{~K}_{7} \mathrm{H}_{7}\right)$ have also been published by Gasem and Robinson (25) and by Lin and Parcher (22). There is again good agreement between sets of data. Mole fraction solubilities at a partial pressure of 101.3 kPa fit the equation

$$
\ln x_{\mathrm{CO}_{2}}=5.2340+123.53 /(T / \mathrm{K})-1.6712 \ln (T / \mathrm{K})
$$

temperature range $=353.2-423.2 \mathrm{~K}$
standard deviation in $\mathrm{x}_{\mathrm{CO}_{2}}=0.00014$

COMPONENTS:

1. Carbon dioxide; CO_{2}; [124-38-9]
2. Alkanes, Cyclic Alkanes and Alkenes

EVALUATOR:

Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:

Gasem and Robinson (25) measured solubility in tetratetracontane ($\mathrm{C}_{4} \mathrm{H}_{9}$) at 373.2 and 423.2 K . Mole fraction solubilities for a partial pressure of 101.3 kPa are in accord with the general trend of values with increase in chain length (see fig 2).

Chai and Paulaitis (24) have published Henry's constants at infinite dilution for the carbon dioxide - squalane ($\mathrm{C}_{30} \mathrm{H}_{62}$) system for 298.6330.2 K . Mole fraction solubilities at a partial pressure of 101.3 kPa estimated from these constants fit the equation

$$
\ln x_{\mathrm{CO}_{2}}=-16.170+1354.4 /(T / K)+1.3729 \ln (T / K)
$$

temperature range $=$ 298.6-330.2 K
standard deviation in $x_{\mathrm{CO}_{2}}=0.00011$
A plot of the mole fraction solubility at 101.3 kPa against temperature lies close to an extrapolation of a similar plot for hexatriacontane. Mole fraction solubilities are higher than extrapolated values for octacosane (Fig 3).

Phase equilibria between cyclopropane and carbon dioxide has been studied by Haselden and Snowden (27). They reported dew and bubble points from 179 K to 237 K . Data are self-consistent. The mole fraction solubility at 228.3 K and a partial pressure of carbon dioxide of approximately 99.51 kPa is 0.0489 . This may be compared with the ideal solubility of 0.119 estimated from Raoult's law.

Mole fraction solubilities in cyclic alkanes are lower than in the corresponding straight chain compounds. Eckert and Sandler (28) studied equilibria between cyclopentane and carbon dioxide at 310.9 K to 333.2 K and pressures to 8263 kPa . The mole fraction solubility at 310.9 K and a partial pressure of carbon dioxide of 101.3 kPa from this work is 0.0065 . The corresponding value for solubility in pentane from the smoothing equation given above is 0.0104 . The ideal solubility from Raoult's law is 0.0118 .

At least nine groups have measured solubility in cyclohexane ($8,9,12,15$, 29-33). Solubility at 293.2 K reported by Horsman-van den Dool and Warman (12) was measured by an unsatisfactory method and is not consistent with measurements by other workers. Mole fraction solubility at a partial pressure of $101.3 / \mathrm{kPa}$ from other sources fit the equation below.

$$
\ln x_{\mathrm{CO}_{2}}=0.11850+454.47 /(T / K)-1.1454 \ln (T / K)
$$

temperature range $=283.2-313.2 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=0.00016$
The mole fraction solubility at 298.15 from this equation is 0.00757 . The corresponding smoothed value for solubility in hexane is 0.01196.

Field et al.(34) measured solubility in methylcyclohexane at 283.9313.3 K . Horsman-van den Dool (12) also reported a value at 294.3 which is about 5% lower than the corresponding value from data published by Field et al. Field's value is the more reliable and can be recommended. The mole fraction solubility at 298.13 K and a partial pressure of 101.3 kPa from Field's work is 0.00928 compared with a smoothed value of 0.01188 for dissolution in heptane.

COMPONENTS:

1. Carbon dioxide; $\mathbf{C O}_{2}$; [124-38-9]
2. Alkanes, Cyclic Alkanes and Alkenes

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry,
Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:

Wilcock et al.(35) measured the solubility in cyclooctane at 289.1313.5 K . No other data on this system are available for comparison but this work is likely to be reliable. The mole fraction solublity at a partial pressure of 101.3 kPa and 298.27 K is 0.006860 compared with a smoothed value of 0.01210 for dissolution in octane under these conditions.

Geller et a1.(36) measured solubilities in various isomers of dimethylcyclohexane. The work is likely to be reliable but no other work on these systems is available for comparison. Mole fraction solubilities, corrected to 298.15 K and a partial pressure of 101.3 kPa are given below together with the smoothed value for octane.

(Z)-1,2-dimethylcyclohexane	0.00938
(E)-1,2-dimethylcyclohexane	0.01020
1,3-dimethylcyclohexane	
(59 mol\% $Z+41$ mol\% E)	0.01021
1,4-dimethylcyclohexane	
$(70$ mol\% $Z+30$ mol\% E)	0.01035
octane	0.01211

There is a significant difference between solubilities in (Z)- and (E)-1,2-dimethylcyclohexane.

Tremper and Prausnitz (23) published Henry's constants in
1, 1'-bicyclohexyl from 300 K to 475 K . Horsman-van den Dool reported an Ostwald coefficient at 295.2 K . This corresponds to a mole fraction solubility at a partial pressure of 101.3 kPa of 0.00854 . Extrapolation of Tremper's measurements indicates a mole fraction solubility of 0.00820 at 295.2 K and 101.3 K . Horsman-van den Dool used very simple apparatus and Tremper's data are likely to be the more reliable.

Solubility in decahydronaphthalene (decalin) was measured by Luhring and Schumpe (33) and by Horsman-van den Dool and Warman (12). The former group used a mixture of isomers and the latter made separate measurements on the two isomers. Lenoir et al.(21) measured limiting values of Henry's constant for a mixture of isomers by gas-liquid chromatography. Mole fraction solubilities at a partial pressure of 101.3 kPa from the available data are as follows

mixed isomers	293.2 K	0.00790	(33)
	298.2	0.00909	(21)
	323.2	0.00735	(21)
(Z)-decalin	296.6 K	0.00697	(12)
(E)-decalin	296.6 K	0.00816	(12)

Further measurements on this system need to be made before solubility data can be recommended.

Nagahama et al.(4) have studied phase equilibria between ethene and carbon dioxide to high pressures. At 252.95 K the mole fraction solubility in ethene at a partial pressure of carbon dioxide of 183 kPa is 0.071 . This may be compared with their value of 0.055 for the mole fraction solubility in ethane at 252.95 K and a partial pressure of carbon dioxide of 214 kPa . Clark and Din (3) measured the solubility of solid carbon dioxide in liquid ethene and in various mixtures with ethane at 130-180 K. Under these conditions carbon dioxide was again more soluble in ethene than in ethane.

Haselden and Snowden (27) have reported dew points and bubble points for mixtures of carbon dioxide and propene at $116-225 \mathrm{~K}$. Phase equilibria in

COMPONENTS:	EVALUATOR:		
1. Carbon dioxide; $\mathrm{CO}_{2} ;$			
$\quad[124-38-9]$		\quad	Peter G.T. Fogg,
:---			
School of Applied Chemistry,			
2. Alkanes, Cyclic Alkanes and			
Alkenes			
Holloway Road, London, N7 8DB, U.K.			
July 1991			

CRITICAL EVALUATION:

Fig. 3 Mole fraction solubility of carbon dioxide in various alkanes and cyclic alkanes at a partial pressure of gas of 101.3 kPa .

The curves showing the variation of solubility with temperature correspond to equations derived by the evaluator. The solubilility of methylcyclohexane is from ref. (34).

A reference line corresponding to values from the Raoult's law equation is also shown.

COMPONENTS :	
1.	$\begin{aligned} & \text { Carbon dioxide; } \mathrm{CO}_{2} \text {; } \\ & {[124-38-9]} \end{aligned}$
2.	Alkanes, Cyclic Alkanes and Alkenes

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:
this system have also been studied to high pressure by Nagahama et al. (4) Cheung and zander (1) have measured solubilities of solid carbon dioxide in propene. There is no obvious incompatibility between the three sets of measurements. Nagahama's measurements indicate a mole fraction solubility of 0.076 at 252.95 K and a partial pressure of carbon dioxide of 184 kPa and a solubility of 0.014 at 273.15 and a partial pressure of 81 kPa . The corresponding ideal solubilities from Raoult's law are 0.094 and 0.023

Nagahama et al.(4) also studied phase equilibria between carbon dioxide and 1 -butene to high pressures. The mole fraction solubilities of carbon dioxide given below are based upon their data and show an increase from ethene to 1 -butene.

Hydrocarbon	T / K	P / kPa	${ }^{x} \mathrm{CO}_{2}$
ethene	252.95	183	0.071
propene	252.95	184	0.076
1-butene	273.15	219	0.050
	273.15	193	0.059

Luhring and Schumpe (33) have published Henry's constant for dissolution in 1-tetradecene at 293.2 K. This corresponds to a mole fraction solubility of 0.001654 at a partial pressure of 101.3 kPa . The corresponding value for dissolution in tetradecane is 0.01442 .

Solubility in tetrahydronaphthalene has been measured by Luhring and Schumpe (33), by Horvath et al.(20), by Krauss and Gestrich (32) and by Bratzler et al.(37). The seven data points for mole fraction solubility at a partial pressure of 101.3 kPa fit the equation below.

$$
\ln x_{\mathrm{CO}_{2}}=22.419-306.70 /(T / K)-4.6125 \ln (T / K)
$$

temperature range $=283.15-313.15 \mathrm{~K}$.
standard deviation in values of $x_{\mathrm{CO}_{2}}=0.00031$
The mole fraction solubility at 293.15 K from this equation is
0.00799 ± 0.00034. The value for 296.6 K is 0.00766 ± 0.00034. These may be compared with solubility data for decahydronaphthalene given above. Further measurements are needed to determine the relative solubilities in the two solvents.

Just (38) measured solubility in 1-methyl-4-(1-methylethenyl)cyclohexene (d-1imonene, carvene). No other measurements on this compound are available for comparison.

Selected values of mole fraction solubilities in non-aromatic hydrocarbons are shown in Table 1 and Fig 3.

REFERENCES

1. Cheung, H.; Zander, E.H. Chem. Eng. Prog. Symp. Ser. 1968, 64(88), 34-43.
2. Preston, G.T.; Funk, E.W.; Prausnitz, J.M. J. Phys. Chem. 1971, 75, 2345-2352.
3. Clark, A.M.; Din, F. Disc. Faraday Soc. 1953, No.15, 202-207.

CoMPONENTS:	
1.	Carbon dioxide; CO2;
[124-38-9]	

2. Alkanes, Cyclic Alkanes and
Alkenes

COMPONENTS:

1. Carbon dioxide; CO_{2}; [124-38-9]
2. Alkanes, Cyclic Alkanes and Alkenes

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:
27. Haselden, G.G.; Snowden, P. Trans. Faraday Soc. 1962, 58, 1515-1528.
28. Eckert, C.J.; Sandler, S.I. J. Chem. Eng. Data 1986, 31, 26-28.
29. Dymond, J.; Hildebrand, J.H. Ind. Eng. Chem. Fundam. 1967, 6, 130-131.
30. Dymond, J. J. Phys. Chem. 1967, 71, 1829-1831.
31. Wilhelm, E.; Battino, R. J. Chem. Thermodyn. 1973, 5, 117-120.
32. Krauss, W.; Gestrich, W. Chem.-Tech. (Heidelberg), 1977, 6, 513-516.
33. Luhring, P.; Schumpe, A. J. Chem. Eng. Data 1989, 34, 250-252.
34. Field, L.R.; Wilhelm, E.; Battino, R. J. Chem. Thermodyn. 1974, 6, 237-243.
35. Wilcock, R.J.; Battino, R.; Wilhelm, E. J. Chem. Thermodyn. 1977, 9, 111-115.
36. Geller, E.B,; Battino, R.; Wilhelm, E. J. Chem. Thermodyn. 1976, 8, 197-202.
37. Bratzler, K.D.; Doerges, A.; Herbert, W. German Patent No. 1769197 to Metallgesellschaft $A G$ 1971.
38. Just, G. Z. Phys. Chem. 1901, 37, 342-367.

COMPONENTS: 1. Carbon dioxide; CO_{2}; [124-38-9] 2. Methane; CH_{4}; [74-82-8] Ethane; $\mathrm{C}_{2} \mathrm{H}_{6}$; [74-84-0] Propane; $\mathrm{C}_{3} \mathrm{H}_{8}$; [74-98-6] Propene; $\mathrm{C}_{3} \mathrm{H}_{6}$; [115-07-1] Butane; $\mathrm{C}_{4} \mathrm{H}_{1}$; [106-97-8]	ORIGINAL MEASUREMENTS: Cheung, H.; Zander, E.H. Chem. Eng. Prog. Symp. Ser. 1968, $64(88), \quad 34-43$
VARIABLES: $\begin{aligned} & T / \mathrm{K}=87.4-194.6 \\ & P_{\mathrm{CO}_{2}} / \mathrm{kPa}=0-100 \end{aligned}$	PREPARED BY: P.G.T. Fogg
EXPERIMENTAL VALUES: Compositions of solutions of carbon dioxide in liquid hydrocarbons in equilibrium with solid carbon dioxide at various temperatures.	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: Mixtures of carbon dioxide and the hydrocarbon gas under test flowed through a cell held in a cryostat. The carbon dioxide was in excess so that a solution of carbon dioxide and solid carbon dioxide condensed in the cell. Samples of the solution were withdrawn into a sample bulb through a fritted disc of fine porosity so that particles of solid were held back. The samples were then vaporized and analysed by gas chromatography. Some samples were also analysed by mass spectrometry. The authors claim good agreement between the two methods of analysis. Typical values given by the authors are within about 2% except at low concentration. Most of the measurements on solvents other than methane were made at a pressure less than 101.3 kPa using glass apparatus. Stainless steel apparatus was used for higher pressures.	SOURCE AND PURITY OF MATERIALS: No information ESTIMATED ERROR: $\delta\left(\text { mole } \mathrm{CO}_{2}\right)= \pm 2 \%$ REFERENCES: 1. Meyers, C.H.; van Dusen, M.S. Bur. Std. J. Res. 1933, 10, 381. 2. Giauque, W.F.; Egan, C.J. J. Chem. Phys. 1937, 5, 45.

COMPONENTS:

1. Carbon dioxide; CO_{2};
[124-38-9]
2. Methane; CH_{4}; [74-82-8]

Ethane; $\mathrm{C}_{2} \mathrm{H}_{6}$; [74-84-0]
Propane; $\mathrm{C}_{3} \mathrm{H}_{8}$; [74-98-6]
Propene; $\mathrm{C}_{3} \mathrm{H}_{6}$; [115-07-1] Butane; $\mathrm{C}_{4} \mathrm{H}_{10}$; [106-97-8]

ORIGINAL MEASUREMENTS:
Cheung, H.; Zander, E.H.
Chem. Eng. Prog. Symp. Ser. 1968, 64(88), 34-43.

EXPERIMENTAL VALUES:
Compositions of solutions of carbon dioxide in liquid hydrocarbons in equilibrium with solid carbon dioxide at various temperatures.

Solvent	T/K	$P_{\mathrm{CO}_{2}} / \mathrm{kPa}{ }^{\dagger}$	Mole\% of carbon dioxide
Ethane	137.80	0.132	0.40
	149.00	0.750	0.85
	161.20	3.65	2.06 *
	164.20	5.20	2.50 (2.50; 2.48)**
	167.30	7.39	3.33 (3.33; 3.36)**
	172.90	13.5	4.88 (4.88; 5.07)*
	175.40	17.5	5.62 (7.54; 7.60$)^{*}$
	180.30	28.4	7.54 (7.54; 7.60)*
Propane	87.40	0.0000002	<0.00001
	105.00	0.0009	0.009
	106.70	0.0014	0.010
	123.30	0.0085	0.07
	149.70	0.829	0.80
	180.10	27.8	5.8
	180.20	28.1	5.7
Butane			0.35
	150.20	0.880	0.66
	160.00	3.15	1.71
	160.20	3.23	1.58
	180.20	28.1	6.1
	180.30	28.4	5.6
Propene	120.40	0.0045	0.68
	140.00	0.190	2.4
	140.00	0.190	2.1

* mole\% of CO_{2} measured by mass spectrometry and chromatography respectively.
$+$
calculated by the compiler from equations given in ref.(1) for $T / K=87-150$ and ref.(2) for $T / K=150-194$.

COMPONENTS : 1. Carbon dioxide; CO_{2}; $[124-38-9]$ 2. Pentane; $\mathrm{C}_{5} \mathrm{H}_{12}$; [109-66-0]	ORIGINAL MEASUREMENTS: Cheng, H.; Fernandez, M.E.P.; Zollweg, J.A.; Streett, W.B. J. Chem. Eng. Data 1989, 34, 319-323.
VARIABLES: $\begin{aligned} & T / \mathrm{K}=252-458 \\ & P / \mathrm{MPa}=0.16-9.62 \end{aligned}$	PREPARED BY: P.G.T. Fogg
EXPERIMENTAL VALUES:	
(other measurements extend to higher pressures) * calculated by the compiler on the assumption that $P_{\mathrm{CO}_{2}}=P_{\text {total }}{ }^{\times}{ }^{y} \mathrm{CO}_{2}$	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: A vapor-recirculating equilibrium apparatus described in ref. (1) was used. Gas and liquid phases were analysed by gas chromatography.	SOURCE AND PURITY OF MATERIALS: 1. Supplied by Air Products and Chemicals Inc.; purity 99.99\% 2. Fisher Infra-red Spectranalyzed grade.
	ESTIMATED ERROR: $\begin{aligned} & \delta T / \mathrm{K}= \pm 0.01 \\ & \delta P / \mathrm{kPa}= \pm 7 \end{aligned}$ (authors)
	REFERENCES: 1. Pozo, M.E.; Streett, W.B. J. Chem. Eng. Data 1984, 29, 324.

COMPONENTS: 1. Carbon dioxide; CO_{2}; [124-38-9] 2. Hexane; $\mathrm{C}_{6} \mathrm{H}_{14}$; [110-54-3]	
VARIABLES: $\begin{aligned} & T / \mathrm{K}=177.2-215.7 \\ & \mathrm{P}_{\mathrm{CO}_{2}} / \mathrm{KPa}=34-474 \end{aligned}$	PREPARED BY: P.G.T. Fogg
EXPERIMENTAL VALUES:	$\mathrm{kPa} \quad \mathrm{P}_{\mathrm{CO}_{2}} / \mathrm{kPa}^{*} \quad{ }^{x} \mathrm{CO}_{2}$ ref. (1).
aUXILIARY	information
METHOD/APPARATUS/PROCEDURE: The solubility of solid carbon dioxide was measured as described earlier (2). The components were introduced into the glass cell and 1 to 2 hr allowed for equilibrium to be reached. Samples of liquid were withdrawn at various temperatures from the glass equilibrium cell for analysis by gas chromatography. Alternatively the equilibrium temperature of mixtures of known composition were measured. Temperatures were controlled by an air bath cooled by liquid nitrogen and measured by a calibrated platinum resistance thermometer. Pressures were measured by a calibrated Heise gage.	SOURCE AND PURITY OF MATERIALS: 1. Coleman Instrument grade obtained from Matheson Gas Products. Analysis showed that the purity was better than 99.9% 2. Supplied by Phillips Petroleum Co. Analysis showed that the purity was better than 99.9% ESTIMATED ERROR: $\begin{aligned} & \delta T / \mathrm{K}= \pm 0.2 \\ & \delta P / \mathrm{atm}= \pm 0.03 \end{aligned}$ REFERENCES: 1. Giauque, W.F.; Egan, C.J.; J. Chem. Phys. 1937, 5, 45. 2. Im, U.K. PhD thesis, University of Kansas, Lawrence, Kan., 1969.

COMPONENTS: 1. Carbon dioxide; CO_{2}; [124-38-9] 2. Hexane; $\mathrm{C}_{6} \mathrm{H}_{14}$; [110-54-3]	ORIGINAL MEASUREMENTS: Patyi, L.; Furmer, I. E.; Makranczy, J.; Sadilenko, A. S.; Stepanova, Z. G.; Berengarten, M. G. Zh. PrikZ. Khim. 1978, 51, 12961300.
VARIABLES:	PREPARED BY: C. L. Young
EXPERIMENTAL VALUES:	
298.15 2.08	0.01215
\dagger volume of gas (measured at 101.325 kPa and 273.15 K) dissolved by one volume of hexane.	
aUXilitary information	
METHOD/APPARATUS/PROCEDURE: Volumetric method. Pressure measured when known amounts of gas were added, in increments, to a known amount of liquid in a vessel of known dimensions. Corrections were made for the partial pressure of solvent. Details in ref. (1).	SOURCE AND PURITY OF MATERIALS: Purity better than 99 mole per cent as determined by gas chromatography.

COMPONENTS: 1. Carbon dioxide; CO_{2}; $[124-38-9]$ 2. Hexane, $\mathrm{C}_{6} \mathrm{H}_{14}$; [110-54-3]	```ORIGINAL MEASUREMENTS: Kaminishi, G-I.; Yokoyama, C.; Takahashi, S. Fluid Phase Equilibria, 1987, 34, 83-99.```
VARIABLES: $\begin{aligned} & T / K=273.15-303.15 \\ & P / \mathrm{MPa}=1.066-6.109 \end{aligned}$	PREPARED BY: P.G.T. Fogg
EXPERIMENTAL VALUES:	
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE: Apparatus able to withstand pressures to 20 MPa was used to determine phase equilibria by the bubble point method. Henry's constants at zero pressure were obtained from the experimental data by using the method described by Prausnitz and Chueh (1)	SOURCE AND PURITY OF MATERIALS: 1. Supplied by Showa Tansan Industry Co., Ltd; purity better than 99.9\% 2. Supplied by Dojin Yakugaku Research Institute; purity better than 99.8% ESTIMATED ERROR: $\begin{aligned} & \delta T / K= \pm 0.01 \quad \text { (authors) } \\ & \delta P / \mathrm{kPa}= \pm 0.1 \end{aligned}$ REFERENCES: 1. Prausnitz, J.M.; Chueh, P.L. Computer Calculations for High Pressure Vapor-Liquid Equilibria, Prentice-Hall, Englewood Cliffs, USA, 1968.

COMPONENTS: (1) Carbon dioxide; CO_{2}; [124-38-9] (2) Heptane; $\mathrm{C}_{7} \mathrm{H}_{16}$; [142-82-5]	ORIGINAL MEASUREMENTS: Gjaldbaek, J. C. Acta Chem. Scand. 1953, 7, 537-544.
VARIABLES: $\begin{aligned} T / \mathrm{K} & =293.65-307.65 \\ p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm}) \end{aligned}$	PREPARED BY: \quad J. Chr. Gjaldbaek
EXPERIMENTAL VALUES:	
$\left.\begin{array}{lllll}T / K & \begin{array}{l}\text { Carbon } \\ \text { Dioxide } \\ \text { Pressure }\end{array} & 10^{2} x_{1} & \alpha / \\ & p_{1} / \mathrm{mmHg}\end{array}\right)$	Bunsen Coefficient (STP $\mathrm{cm}^{-3} \mathrm{~atm}^{-1}$ Ostwald Coefficient $L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}$ 1.98 2.13 1.84 2.01 1.85 2.02 1.62 1.82
${ }^{1}$ Mole fraction solubility values adjusted to a gas partial pressure of $101.325 \mathrm{kPa}(1 \mathrm{~atm})$ by the compiler. Smoothed Data: For use between 293.65 and 307.65 K . $\ln x_{1}=-8.7743+13.0435 /(T / 100 \mathrm{~K})$ The standard error about the regression line is 1.78×10^{-4}	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined manometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as confining liquid. The solventwas degassed in the apparatus. The absorbed volume of gas is calculated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent is determined by the weight of displaced mercury. The mole fraction solubility values are at 1 atm assuming Henry's law is obeyed. Details of the apparatus and procedure are given in ref. 1 and 2.	SOURCE AND PURITY OF MATERIALS: (1) Carbon dioxide. Prepared from potassium bicarbonate (analytical reagent) and concentrated sulfuric acid. 99.9 per cent CO_{2}. (2) Heptane. Phillips Petroleum Co. Pure grade. B.p. $(760 \mathrm{mmHg}) /{ }^{\circ} \mathrm{C}=$ $98.3-98.4 . \mathrm{n}_{\mathrm{D}}\left(25^{\circ} \mathrm{C}\right)=1.3855$. ESTIMATED ERROR: $\begin{aligned} \delta T / K & = \pm 0.05 \\ \delta x_{1} / x_{1} & = \pm 0.015 \end{aligned}$ REFERENCES: 1. Lannung, A. J. Am. Chem. Soc. 1930, 52, 68. 2. Gjaldbaek, J. C. Acta Chem. Scand. 1952, 6, 623.

COMPONENTS: 1. Carbon dioxide; CO_{2}; [124-38-9] 2. Heptane; $\mathrm{C}_{7} \mathrm{H}_{16}$; [142-82-5]	ORIGINAL MEASUREMENTS: $\begin{aligned} & \text { Im, U.K.; Kurata, } F \text {. } \\ & \text { J. Amer. Chem. Soc. 1971, 16, } \\ & \text { 412-415. } \end{aligned}$
VARIABLES: $\begin{aligned} & T / \mathrm{K}=182.2-215.6 \\ & P_{\mathrm{CO}_{2}} / \mathrm{kPa}=34-474 \end{aligned}$	PREPARED BY: P.G.T. Fogg
EXPERIMENTAL VALUES: 215.6 215.2 4.70 476 214.2 438 211.7 210.2 383 337 207.2 337 269 204.2 217 200.2 195.2 159 190.2 112 73 183. 0.41 42 182.2 42 * vapor pressure of solid CO_{2} from	$\mathrm{kPa} \quad$ $P_{\mathrm{CO}_{2}} / \mathrm{kPa}$ ${ }^{*} \mathrm{CO}_{2}$ 473.7 0.6801 461.3 0.5810 431.5 0.4440 364.0 0.2908 328.1 0.2592 265.2 0.2152 213.0 0.1737 157.3 0.1544 105.8 0.1108 69.6 0.0798 44.8 0.0608 37.3 0.0550 34.0 0.0519 ref. (1).
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE: The solubility of solid carbon dioxide was measured as described earlier (2). The components were introduced into the glass cell and 1 to 2 hr allowed for equilibrium to be reached. Samples of liquid were withdrawn at various temperatures from the glass equilibrium cell for analysis by gas chromatography. Alternatively the equilibrium temperatures of mixtures of known composition were measured. Temperatures were controlled by an air bath cooled by liquid nitrogen and measured by a calibrated platinum resistance thermometer. Pressures were measured by a calibrated Heise gage.	SOURCE AND PURITY OF MATERIALS: 1. Coleman Instrument grade obtained from Matheson Gas Products. Analysis showed that the purity was better than 99.9% 2. Supplied by Phillips Petroleum Co. Analysis showed that the purity was better than 99.9\% ESTIMATED ERROR: $\begin{aligned} & \delta T / \mathrm{K}= \pm 0.2 \\ & \delta P / \mathrm{atm}= \pm 0.03 \end{aligned}$ REFERENCES: 1. Giauque, W.F.; Egan, C.J.; J. Chem. Phys. 1937, 5, 45. 2. Im, U.K. PhD thesis, University of Kansas, Lawrence, Kan., 1969.

COMPONENTS : 1. Carbon dioxide; CO_{2}; [124-38-9] 2. Heptane; $\mathrm{C}_{7} \mathrm{H}_{16}$; [142-82-5]	ORIGINAL MEASUREMENTS: King, M. B.; Al-Najjar, H. Chem. Eng. Sci. 1977, 32, 1241-1246.
VARIABLES: Temperature	PREPARED BY: C. L. Young
EXPERIMENTAL VALUES:$T / K \quad \text { Mole fraction }{ }^{*} \text { of carbon dioxide at a partial pressure }$	
$\begin{aligned} & 293.2 \\ & 298.2 \\ & 303.2 \end{aligned}$	$\begin{aligned} & 0.0126 \\ & 0.0119 \\ & 0.0113 \end{aligned}$
allowance was made for the no carbon dioxide.	-ideal gas behaviour of
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Solvent degassed by spraying into a continuously evacuated chamber. Solvent flows in a thin film down a glass spiral into a buret system containing the gas to be dissolved. Flow rates may be varied over a wide range without affecting the solubility. Similar to the apparatus of Morrison and Billett.	

COMPONENTS: 1. Carbon dioxide; CO_{2}; [124-38-9] 2. Octane; $\mathrm{C}_{8} \mathrm{H}_{18}$; [111-65-9]	ORIGINAL MEASUREMENTS: King, M. B.; Al-Najjar, H. Chem. Eng. Sci. 1977, 32, 1241-1246.
VARIABLES: $\begin{aligned} & T / K=293.2-303.2 \\ & P / \mathrm{kPa}=101.3^{2} \end{aligned}$	PREPARED BY: C. L. Young
```EXPERIMENTAL vALUES: T/K Mole fraction* of carbon dioxide at a partial pressure```	
$\begin{aligned} & 293.2 \\ & 298.2 \\ & 303.2 \end{aligned}$	$\begin{aligned} & 0.0128 \\ & 0.0121 \\ & 0.0115 \end{aligned}$
allowance was made for the no carbon dioxide.	n-ideal gas behaviour of
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   Solvent degassed by spraying into a continuously evacuated chamber. Solvent flows in a thin film down a glass spiral into a buret system containing the gas to be dissolved. Flow rates may be varied over a wide range without affecting the solution.   Similar to the apparatus of Morrison and Billett.	SOURCE AND PURITY OF MATERIALS:   No details given.   ESTIMATED ERROR:   $\delta T / K= \pm 0.1 ; \quad \delta x_{\mathrm{CO}_{2}}= \pm 28$   (estimated by compiler).   REFERENCES:   1. Morrison, T. J.; Billett, F. J. Chem. Soc.   1952, 3819.


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) Octane; $\mathrm{C}_{8} \mathrm{H}_{18}$; [111-65-9]	ORIGINAL MEASUREMENTS:   Wilcock, R. J.; Battino, R.; Danforth, W. F.; Wilhelm, E.   J. Chem. Thermodyn. 1978, 10, 817-822.
VARIABLES:    $T / \mathrm{K}:$ $283.44-313.43$   $p / \mathrm{kPa}:$ $101.325(1 \mathrm{~atm})$	PREPARED BY:   H. L. Clever
EXPERIMENTAL VALUES:   The Bunsen coefficients were calculated by the compiler.   It is assumed that the gas is ideal and that Henry's law is obeyed.   Smoothed Data: For use between 283.15 and 313.15 K $\ln x_{1}=-7.6969+9.7909 /(T / 100 \mathrm{~K})$   The standard error about the regression line is $1.51 \times 10^{-4}$.	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:   The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3).   Degassing. Up to $500 \mathrm{~cm}^{3}$ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid $N_{2}$ trap until the permanent gas residual pressure drops to 5 microns.   Solubility Determination. The degassed solvent is passed in a thin film down a glass helical tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Air Products and Chemicals, Inc. Minimum mole per cent purity stated to be 99.8 .   (2) Octane. Phillips Petroleum Co. 99 mole per cent, distilled, density at 298.15 K , $\mathrm{p} / \mathrm{g} \mathrm{cm}^{-3} \quad 0.6988$.   ESTIMATED ERROR: $\begin{aligned} \delta T / \mathrm{K} & =0.02 \\ \delta P / \mathrm{mmHg} & =0.5 \\ \delta x_{1} / x_{1} & =0.01 \end{aligned}$   REFERENCES:   1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033.   2. Battino, R.; Evans, F. D.; Danforth, W, F.   J. Am. Oil Chem. Soc. 1968, 45,830 .   3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.

```
COMPONENTS:
1. Carbon dioxide; }\mp@subsup{\textrm{CO}}{2}{}\mathrm{ ;
 [124-38-9]
 2. Octane; C }\mp@subsup{\textrm{C}}{8}{}\mp@subsup{\textrm{H}}{18}{}\mathrm{ ; [111-65-9]
 3. Methane; CH4; [74-82-8]
VARIABLES:
 T/K = 233-293
 P}\mp@subsup{\textrm{CH}}{4}{}=138-10342\textrm{kPa
EXPERIMENTAL VALUES:
```


## ORIGINAL MEASUREMENTS:

```
Asano, K.; Nakahara, T.;
Kobayashi, R.
J. Chem. Eng. Data 1971, 16, 16-18.
PREPARED BY:
P.G.T. Fogg
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(T / \mathrm{K}\) & \(\mathrm{P}_{\mathrm{CH}_{4}} /\) psia & \(P_{\mathrm{CH}_{4}} / \mathrm{kPa}\) & Mole fraction of \(\mathrm{CH}_{4}\) in liquid phase* & \[
\begin{aligned}
& K \text {-value } \\
& \text { Exptl. }
\end{aligned}
\] & for \(\mathrm{CO}_{2}\) Smoothed \({ }^{\dagger}\) \\
\hline \multirow[t]{9}{*}{233.15} & 20 & 138 & 0.0104 & 16.5 & 16.5 \\
\hline & 100 & 689 & 0.0515 & 3.78 & 3.80 \\
\hline & 200 & 1379 & 0.1000 & 2.06 & 2.11 \\
\hline & 400 & 2758 & 0.1923 & 1.16 & 1.20 \\
\hline & 600 & 4137 & 0.2725 & 0.88 & 0.88 \\
\hline & 800 & 5516 & 0.3509 & 0.79 & 0.80 \\
\hline & 1000 & 6895 & 0.4167 & 0.74 & 0.74 \\
\hline & 1250 & 8618 & 0.4902 & 0.73 & 0.71 \\
\hline & 1500 & 10342 & 0.5525 & 0.81 & 0.80 \\
\hline
\end{tabular}
The \(K\)-value for \(\mathrm{CO}_{2}\) was defined as:
mole fraction of \(\mathrm{CO}_{2}\) in the vapor phase/mole fraction in the liquid phase These \(K\)-values correspond to essentially infinite dilution.
* calculated by the compiler from \(K\)-values for methane in octane from ref. (1).
+ given by the authors
```


## AUXILIARY INFORMATION

## METHOD/APPARATUS/PROCEDURE:

Retention volumes for small samples of carbon dioxide were measured by gas chromatography with octane as the stationary phase and methane as the carrier gas. Temperatures were maintained to $\pm 0.1 \mathrm{~K}$ and the pressure of methane measured to $\pm 0.2 \%$. Experimental details are given in refs (2)-(4).

SOURCE AND PURITY OF MATERIALS:

1. At least $99.6 \%$ pure.
2. $99.88 \%$ pure.
3. $99.99 \%$ pure.

ESTIMATED ERROR:
$\delta T / \mathrm{K}= \pm 0.1 ; \quad \delta \mathrm{CH}_{4}= \pm 2 \%$
(authors)
REFERENCES:

1. Kohn, J.P.; Bradish, W.F. J. Chem. Eng. Data 1964, 9, 5.
2. van Horn, L. D.; Kobayashi, R. J. Chem. Eng. Data 1967, 12, 294.
3. Masukawa, S.; Kobayashi, R. J. Gas Chromatography 1968, 6, 257.
4. Koonce, K.T.; Kobayashi, R. J. Chem. Eng. Data 1964, 9, 494.

1. Carbon dioxide; $\mathrm{CO}_{2}$;[124-38-9]				Asano, K.; Nakahara, T.; Kobayashi, R.		
2. Octane; $\mathrm{C}_{8} \mathrm{H}_{18}$; [111-65-9]				J. Chem. Eng. Data 1971, 16, 16-18.		
EXPERIMENTAL VALUES:						
T/K	$P_{\mathrm{CH}_{4}} /$ psia	$P_{\mathrm{CH}_{4}} / \mathrm{kPa}$	Mole fraction of $\mathrm{CH}_{4}$ in liquid phase*		$K$-value for $\mathrm{CO}_{2}$ Exptl. Smoothed ${ }^{\dagger}$	
253.15	20	138		0.0090	28.1	25.4
	100	689		0.0429	6.17	5.87
	200	1379		0.5556	3.11	3.24
	400	2758		0.1639	1.77	1.75
	600	4137		0.2336	1.33	1.30
	800	5516		0.2985	1.11	1.11
	1000	6895		0.3546	0.99	1.00
	1250	8618		0.4149	0.95	0.95
	1500	10342		0.4695	0.95	0.95
273.15	20	138		0.0078	37.2	37.2
	100	689		0.0376	8.45	8.60
	200	1379		0.0746	4.46	4.71
	400	2758		0.1429	2.41	2.47
	600	4137		0.2075	1.80	1.80
	800	5516		0.2667	1.46	1.46
	1000	6895		0.3226	1.31	1.30
	1250	8618		0.3774	1.19	1.22
	1500	10342		0.4310	1.13	1.15
293.15	20	138		0.0070	57.7	51.0
	100	689		0.0336	12.3	11.9
	200	1379		0.0658	6.19	6.50
	400	2758		0.1282	3.35	3.32
	600	4137		0.1869	2.34	2.35
	800	5516		0.2410	1.88	1.88
	1000	6895		0.2882	1.62	1.64
	1250	8618		0.3367	1.51	1.51
	1500	10342		0.3774	1.41	1.41

The $K$-value for $\mathrm{CO}_{2}$ was defined as:
mole fraction of $\mathrm{CO}_{2}$ in the vapor phase/mole fraction in the liquid phase
These $K$-values correspond to essentially infinite dilution.

* calculated by the compiler from $K$-values for methane in octane from ref. (1).
$\dagger$ given by the authors

COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) 2,2,4-Trimethylpentane or isooctane: $\mathrm{C}_{8} \mathrm{H}_{18}$; [540-84-1]	ORIGINAL MEASUREMENTS:   Hiraoka, H.; Hildebrand, J. H.   J. Phys. Chem. 1964, 68, 213-214.
VARIABLES: $\begin{aligned} T / \mathrm{K} & =277.63-308.20 \\ p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm}) \end{aligned}$	
EXPERIMENTAL VALUES:   The Bunsen and Ostwald coefficients w assuming ideal gas behavior.   Smoothed Data: For use between 277.63 $\ln x_{1}=-8.0643+11 .$   The standard error about the	Bunsen   Coefficient   $\alpha / \mathrm{cm}^{3}(\mathrm{STP}) \mathrm{cm}^{-3} \mathrm{~atm}^{-1}$ Ostwald   Coefficient   $L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}$    2.59   2.18 2.63   1.90 2.30   1.66 2.07    1.87   were calculated by the compiler   63 and 308.20 K.   2899/(T/100 K)   regression line is $4.34 \times 10^{-5}$. $\begin{aligned} & \text { Fraction } \\ & 10^{2} x_{1} \\ & \hline 1.820 \\ & 1.581 \\ & 1.387 \\ & 1.226 \end{aligned}$
aUxiliary information	
METHOD/APPARATUS/PROCEDURE:   The apparatus consists of a gas measuring buret, an absorption pipet, and a reservoir for the solvent. The buret is thermostated at $25^{\circ} \mathrm{C}$, the pipet at any temperature from 5 to $30^{\circ} \mathrm{C}$. The pipet contains an iron bar in glass for magnetic stirring. The pure solvent is degassed by freezing with liquid nitrogen, evacuating, then boiling with a heat lamp. The degassing process is repeated three times. The solvent is flowed into the pipet where it is again boiled for final degassing. Manipulation of the apparatus is such that the solvent never comes in contact with stopcock grease. The liquid in the pipet is sealed off by mercury. Its volume is the difference between the capacity of the pipet and the volume of mercury that confines it. Gas is admitted into the pipet. Its exact amount is determined by $\mathrm{P}-\mathrm{V}$ measurements in the buret before and after introduction of the gas into the pipe	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Western Gas Inc. Gas passed through a cold trap.   (2) Isooctane. Source not given. Distilled, purity checked by ultraviolet absorbance.   ESTIMATED ERROR: $\begin{aligned} \delta T / K & =0.02 \\ \delta x_{1} / x_{1} & =0.003 \end{aligned}$   REFERENCES:   1. Kobatake, Y.; Hildebrand, J. H.   J. Phys. Chem. 1961, 65, 331.   The stirrer is set in motion.





COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) Decane; $\mathrm{C}_{10} \mathrm{H}_{22}$; [124-18-5]	ORIGINAL MEASUREMENTS:   Wilcock, R. J.; Battino, R.; Danforth, W. F.; Wilhelm, E. J. Chem. Thermodyn. 1978, 10, 817-822.
VARIABLES:    $T / \mathrm{K}:$ $283.16-313.50$   $\mathrm{p} / \mathrm{kPa}:$ $101.325(1 \mathrm{~atm})$	PREPARED BY:   H. L. Clever
EXPERIMENTAL VALUES:   The Bunsen coefficients were calculate It is assumed that the gas is ideal and   Smoothed Data: For use between 283.15 $\ln x_{1}=-7.1707+8.3$   The standard error about the	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:   The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3).   Degassing. Up to $500 \mathrm{~cm}^{3}$ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid $N_{2}$ trap until the permanent gas residual pressure drops to 5 microns.   Solubility Determination. The degassed solvent is passed in a thin film down a glass helical tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Air Products and Chemicals, Inc. Minimum mole per cent purity stated to be 99.8.   (2) Decane. Phillips Petroleum Co. 99 mol \%, distilled, density at $298.15 \mathrm{~K}, \mathrm{\rho} / \mathrm{g} \mathrm{cm}^{-} 0.7264$.   ESTIMATED ERROR: $\begin{aligned} \delta T / \mathrm{K} & =0.02 \\ \delta p / \mathrm{mmHg} & =0.5 \\ \delta x_{1} / x_{1} & =0.01 \end{aligned}$   REFERENCES:   1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033.   2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. 1968, 45, 830 .   3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.



COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) Undecane; $\mathrm{C}_{11} \mathrm{H}_{24} ;$ [1120-21-4]	ORIGINAL MEASUREMENTS:   Makranczy, J.; Megyery-Balog, K.;   Rusz, L.; Patyi, L.   Hung. J. Ind. Chem. 1976, 4,   269-280.
	PREPARED BY:   S. A. Johnson   H. L. Clever
EXPERIMENTAL VALUES:   The Bunsen coefficient and mole fraction values were calculated by the compiler assuming that the gas is ideal and that Henry's law is obeyed.	
auxiliary information	
METHOD/APPARATUS/PROCEDURE:   Volumetric method. The apparatus described by Bodor, Bor, Mohai and Sipos was used (1).	SOURCE AND PURITY OF MATERIALS:   Both the gas and the liquid were analytical grade reagents of Hungarian or foreign origin. No further information.
	ESTIMATED ERROR: $\delta L / L= \pm 0.03$
	REFERENCES:   1. Bodor, E.; Bor, Gy.;   Mohai, B.; Sipos, G.   Veszpremi Vegyip. Egy. Kozi.   1957, 1, 55.   Chem. Abstr. 1961, 55, 3175h.



COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Dodecane; $\mathrm{C}_{12} \mathrm{H}_{26}$; [112-40-3]	ORIGINAL MEASUREMENTS: ```King, M. B.; Al-Najjar, H. Chem. Eng. Sci. 1977, 32, 1241-1246.```
VARIABLES: $\begin{aligned} & T / K=293.2-323.2 \\ & P / \mathrm{kPa}=101.3 \end{aligned}$	PREPARED BY:   C. L. Young
EXPERIMENTAL VALUES:$T / K \quad \text { Mole fraction }{ }^{*} \text { of carbon dioxide at a partial pressure } \begin{gathered} \text { of } 101.3 \mathrm{kPa} \end{gathered}$	
$\begin{aligned} & 293.2 \\ & 298.2 \\ & 303.2 \\ & 323.2 \end{aligned}$	$\begin{aligned} & 0.0137 \\ & 0.0129 \\ & 0.0122 \\ & 0.0102 \end{aligned}$
* allowance was made for the no carbon dioxide.	-ideal gas behaviour of
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   Solvent degassed by spraying into a continuously evacuated chamber. Solvent flows in a thin film down a glass spiral into a buret system containing the gas to be dissolved. Flow rates may be varied over a wide range without affecting the solubility.   Similar to the apparatus of Morrison and Billett.	SOURCE AND PURITY OF MATERIALS:   No details given.   ESTIMATED ERROR:   $\delta T / K= \pm 0.1 ; \quad \delta x_{\mathrm{CO}_{2}}= \pm 2 \%$   (estimated by compiler).   REFERENCES:   1. Morrison, T. J.; Billett, F. $J$. Chem. Soc.   1952, 3819.




COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Tetradecane; $\mathrm{C}_{14} \mathrm{H}_{3}$; [629-59-4]	ORIGINAL MEASUREMENTS:   King, M. B.; Al-Najjar, H.   Chem. Eng. Sci.   1977, 32, 1241-1246.
VARIABLES: $\begin{aligned} & T / \mathrm{K}=298.2-343.2 \\ & P / \mathrm{kPa}=101.3 \end{aligned}$	PREPARED BY:   C. L. Young
EXPERIMENTAL VALUES:$T / \mathrm{K} \quad \text { Mole fraction }{ }^{*} \text { of carbon dioxide at a partial pressure }$	
$\begin{aligned} & 298.2 \\ & 30.2 \\ & 323.2 \\ & 343.2 \end{aligned}$	$\begin{aligned} & 0.0136 \\ & 0.0129 \\ & 0.0107 \\ & 0.0093 \end{aligned}$
allowance was made for the carbon dioxide.	-ideal gas behaviour of
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   Solvent degassed by spraying into a continuously evacuated chamber. Solvent flows in a thin film down a glass spiral into a buret system containing the gas to be dissolved. Flow rates may be varied over a wide range without affecting the solubility.   Similar to the apparatus of Morrison and Billett.	SOURCE AND PURITY OF MATERIALS:   No details given.   ESTIMATED ERROR:   $\delta T / K= \pm 0.1 ; ~ \delta x_{\mathrm{CO}}^{2}$$= \pm 2 \%$   (estimated by compiler).   REFERENCES:   1. Morrison, T. J.; Billett, F.   J. Chem. Soc.   I952, 3819.


COMPONENTS :   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) Pentadecane; $\mathrm{C}_{15} \mathrm{H}_{32}$; [629-62-9]	ORIGINAL MEASUREMENTS: Makranczy, J.; Megyery-Balog, K.; Rusz, L.; Patyi, L. Hung. J. Ind. Chem. 1976. 4, $269-280$.
VARIABLES: $\begin{array}{rll} T / \mathrm{K}: & 298.15, & 313.15 \\ \mathrm{p} / \mathrm{kPa}: & 101.325 & (1 \mathrm{~atm}) \end{array}$	PREPARED BY:   S. A. Johnson   H. L. Clever
EXPERIMENTAL VALUES:   The Bunsen coefficient and mole fraction values were calculated by the compiler assuming that the gas is ideal and that Henry's law is obeyed.	
auxiliary information	
METHOD/APPARATUS/PROCEDURE: Volumetric method. The apparatus described by Bodor, Bor, Mohai and Sipos was used (1).	SOURCE AND PURITY OF MATERIALS: Both the gas and the liquid were analytical grade reagents of Hungarian or foreign origin. No further information.
	ESTIMATED ERROR: $\delta L / L= \pm 0.03$
	REFERENCES:   1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G.   Veszpremi Vegyip. Egy. KozZ.   1957, 1, 55.   $\overline{\text { Chem. Abstr. 1961, } 55,3175 \mathrm{~h} .}$


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Hexadecane; $\mathrm{C}_{16} \mathrm{H}_{34}$; [544-76-3] or Heptadecane; $\mathrm{C}_{17} \mathrm{H}_{36}$; [629-78-7]	ORIGINAL MEASUREMENTS: $\begin{aligned} & \text { Lenoir, J-Y.; Renault, P.; Renon, H. } \\ & \text { J. Chem. Eng. Data, 1971, } 16,340-2 . \end{aligned}$
VARIABLES: $T / K=298.2 \text { or } 323.2$	PREPARED BY:   C. L. Young
EXPERIMENTAL VALUES:	
auxiliary	information
METHOD/APPARATUS/PROCEDURE:   A conventional gas-liquid chromatographic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at 1 atm . pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.	SOURCE AND PURITY OF MATERIALS:   (1) L'Air Liquide sample, minimum purity 99.9 mole per cent.   (2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent.   ESTIMATED ERROR: $\delta T / K= \pm 0.1 ; \delta H / a t m= \pm 6 \%$   (estimated by compiler).
	REFERENCES:



COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Hexadecane; $\mathrm{C}_{16} \mathrm{H}_{34}$; [544-76-3]	ORIGINAL MEASUREMENTS:   Tremper, K.K.; Prausnitz, J.M.   J. Chem. Engng.Data 1976, 21,295-9
VARIABLES: $T / K=300-475$	PREPARED BY C.L. Young
EXPERIMENTAL VALUES:	
300 74.3   325 93.2   350 112.0   375 129.0   400 144.0   425 157.0   450 168.0   475 176.0   a. Authors stated measurem pressures and values of within the Henry's-Law   b. Calculated by compiler between mole fraction a	$\begin{aligned} & 0.0135 \\ & 0.0107 \\ & 0.00893 \\ & 0.00775 \\ & 0.00694 \\ & 0.00637 \\ & 0.00595 \\ & 0.00568 \end{aligned}$   ents were made at several solubility used were all region.   assuming linear relationship and pressure.
auxiliary	information
METHOD /APPARATUS/PROCEDURE Volumetric apparatus similar to that described by Dymond and Hildebrand (1) Pressure measured with a null detector and precision gauge. Details in ref. (2).	SOURCE AND PURITY OF MATERIALS:   Solvent degassed, no other details given.   ESTIMATED ERROR: $\delta T / K= \pm 0.1 ; \delta x_{\mathrm{CO}_{2}}= \pm 1 \% .$   REFERENCES:   1. Dymond, J.; Hildebrand, J.H. Ind. Eng. Chem. Fundam. 1967, 6, 130. 2. Cukor, P.M.; Prausnitz, J.M. Ind.Eng. Chem. Fundam. 1971,20,638.



COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Hexadecane; $\mathrm{C}_{16} \mathrm{H}_{34} ;$ [544-76-3]	ORIGINAL MEASUREMENTS: Chai, C-P.; Paulaitis, M. E.; J. Chem. Eng. Data, 1981, 26, 277-279.
VARIABLES: $T / K=298.6-330.2$	$\begin{aligned} & \hline \text { PREPARED BY: } \\ & \text { C. L. Young } \end{aligned}$
EXPERIMENTAL VALUES:	
T/K Henry's consta	Mole fraction of ${ }^{\text {a }}$ carbon dioxide
298.6 71.42   298.6 71.92   304.3 75.78   304.3 85.98   311.0 80.77   311.0 84.40   316.2 85.66   316.2 89.46   323.6 9.13   323.6 95.11   330.2 95.47   330.2	$\begin{aligned} & 0.01400 \\ & 0.01390 \\ & 0.01320 \\ & 0.01316 \\ & 0.01238 \\ & 0.01229 \\ & 0.01182 \\ & 0.01167 \\ & 0.01118 \\ & 0.01097 \\ & 0.01051 \\ & 0.01047 \end{aligned}$
${ }^{\text {a }}$ Calculated by compiler for a partial pressure of 1 atm .	
auxiliary information	
METHOD/APPARATUS/PROCEDURE:   Volumetric apparatus similar to that described in ref.('l). Known amount of carbon dioxide brought into contact with known amount of solvent. Reduction in pressure measured.	SOURCE AND PURITY OF MATERIALS:   1. Linde "bone dry" grade.   2. Fisher certified grade.
	EStimated error:
	REFERENCES: I. Dymond, J. H.; Hildebrand, J. H.; Ind. Eng. Chem. Fundam., I967, 6, 130.


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9   2. Alkanes	ORIGINAL MEASUREMENTS:   Lin, P. J.; Parcher, J. F.   J. Chromatog. Sci.   1982, 20, 33-38.
VARIABLES: $T / K=298.2-413.2$	prepared by:   C. L. Young
EXPERIMENTAL VALUES:	
Hexadecane; $\mathrm{C}_{16} \mathrm{H}_{34} ;$   298.2 72.8    313.2 82.7    328.2 91.6	$\begin{array}{ll} {[544-76-3]} & \\ & 0.0138 \\ & 0.0121 \\ & 0.0109 \end{array}$
Octacosane; $\mathrm{C}_{28} \mathrm{H}_{58} ;$   353.2 82.0   373.2 92.4   393.2 101	$\begin{array}{ll} {[630-02-4]} & \\ & 0.0122 \\ & 0.0108 \\ & 0.00990 \end{array}$
Hexatriacontane; $C_{3}$   353.2 68.6   373.2 74.8   393.2 85.2   413.2 93.1	$\begin{aligned} & \mathrm{H}_{74} ; \quad[630-06-8] \\ & 0.0146 \\ & 0.0134 \\ & 0.0117 \\ & 0.0107 \end{aligned}$
aUxiliary information	
METHOD/APPARATUS/PROCEDURE:   Henry's law constant determined from retention volume of gas on a chromatographic column. Helium was used as a carrier gas and a mass spectrometer was used as a detector. The measured Henry's law constants were independent of sample size, flow rate and composition of injected sample. The dead volume was determined by two independent methods and the values agreed within experimental error.	SOURCE AND PURITY OF MATERIALS:   No details given.   ESTIMATED ERROR: $\delta T / \mathrm{K}= \pm 0.1 ; \quad \delta x_{\mathrm{CO}_{2}}= \pm 5 \%$   (estimated by compiler).
	References:


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Eicosane; $\mathrm{C}_{20} \mathrm{H}_{42}$; [112-95-8]	ORIGINAL MEASUREMENTS:   Chai, C-P.; Paulaitis, M. E.;   J. Chem. Eng. Data, 1981, 26, 277-279.
VARIABLES: $T / K=314.3-330.2$	PREPARED BY:   C. L. Young
EXPERIMENTAL VALUES:	
T/K Henry's constan	Mole fraction of ${ }^{a}$ carbon dioxide
314.3 75.58   321.0 80.62   321.0 80.24   325.3 83.03   325.3 82.75   330.2 86.20   330.2 86.21	$\begin{aligned} & 0.01323 \\ & 0.01240 \\ & 0.01246 \\ & 0.01204 \\ & 0.01208 \\ & 0.01160 \\ & 0.01160 \end{aligned}$
${ }^{\text {a }}$ Calculated by compiler for a partial pressure of 1 atm.	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:   Volumetric apparatus similar to that described in ref.(1). Known amount of carbon dioxide brought into contact with known amount of solvent. Reduction in pressure measured.	SOURCE AND PURITY OF MATERIALS:   1. Linde "bone dry" grade.   2. Fisher certified grade.
	ESTIMATED ERROR:
	REFERENCES:   1. Dymond, J. H.;Hildebrand, J. H.;   Ind. Eng. Chem. Fundam., 1967, 6, 130.


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; $[124-38-9]$   2. Eicosane; $\mathrm{C}_{2} \mathrm{OH}_{42}$; [112-95-8]	ORIGINAL MEASUREMENTS: ```Huang, S.H.; Lin, H.M.; Chao, K.C. J. Chem. Eng. Data. 1988, 33, 145-147.```
VARIABLES : $\begin{aligned} & T / K=323.2-573.2 \\ & P / k P a=992-5063 \end{aligned}$	PREPARED BY:   P.G.T. Fogg
EXPERIMENTAL VALUES:	
323.3 $(75)^{\dagger}$   373.5 114   473.2 160   573.4 171   The Henry's law constant, $H$, is here $H={ }_{P \rightarrow 0}\left[\frac{f}{x}\right]$   where   $x=$ mole fraction solubi   $f=$ fugacity of carbon di   $P=$ pressure of carbon di   † estimated by the compiler from data   * calculated by the compiler.	7646 0.0131   11551 0.0088   16212 0.0063   17327 0.0058       defined as    ity of carbon dioxide oxide oxide   given in the paper.
AUXILIARY	Information
METHOD/APPARATUS/PROCEDURE:   The solubility of carbon dioxide in eicosane was measured at four temperatures at pressures from 992 to 5063 kPa . Apparatus and procedure are described in an earlier paper (1). Gas was passed through the liquid in a thermostatted cell until saturation was achieved. Samples of solution were then withdrawn. The volume of the gas evolved when the pressure was reduced was measured and the eicosane weighed when it had cooled and solidified. The fugacity, $f$, of the carbon dioxide at various pressures was estimated by the method described by Lee and Kesler (2). The variation of $\ln (f / x)$ with pressure was linear to within a deviation of less than $0.8 \%$ The value of $f / x$ at zero pressure was taken to be the limiting value of the Henry's law constant.	SOURCE AND PURITY OF MATERIALS:   1. Supplied by Matheson Gas Products. Minimum purity 99.8\%   2. Supplied by Alfa Products, Morton Thiokol Inc. Minimum purity 998. Gas chromatographic analysis showed no thermal degradation after the solubility measurements were carried out.   ESTIMATED ERROR: $\delta H= \pm 3 \% \text { (authors) }$   REFERENCES:   1. Huang, S.H.; Lin, H.M.; Chao, K.C. Fluid Phase Equilib. 1987, 36, 141.   2. Lee, B.I.; Kesler, M.G. AIChE J. 1975, 21, 510.


COMPONENTS :   1. Carbon dioxide; $\mathrm{CO}_{2}$;   [124-38-9]   2. Octacosane; $\mathrm{C}_{28} \mathrm{H}_{58}$; [630-02-4]	ORIGINAL MEASUREMENTS:
VARIABLES: $\begin{aligned} & T / \mathrm{K}=373.2-573.2 \\ & P / \mathrm{kPa}=1013-5066 \end{aligned}$	PREPARED by:   P.G.T. Fogg
experimental values:	
373.2 94 $\pm 2$   473.2 137 $\pm 1$   573.2 156 $\pm 2$	9530 $\pm 200$ 0.0106   13880 $\pm 100$ 0.0073   15810 $\pm 200$ 0.0064
The Henry's law constant, $H$, is here defined as $H={ }_{P \rightarrow 0}\left[\frac{f}{x}\right]$   where $\quad x=$ mole fraction solubility of carbon dioxide   $f=$ fugacity of carbon dioxide   $P=$ pressure of carbon dioxide   * calculated by the compiler.	
auxiliary	information
METHOD/APPARATUS/PROCEDURE:   The solubility of carbon dioxide in octacosane was measured at three temperatures at pressures from 1013 to 5066 kPa . Apparatus and procedure are described in an earlier paper (1). Gas was passed through the liquid in a thermostatted cell until saturation was achieved. Samples of solution were then withdrawn. The volume of the gas evolved when the pressure was reduced was measured and the octacosane weighed when it had cooled and solidified. The fugacity, $f$, of the carbon dioxide at various pressures was estimated by the method described by Lee and Kesler (2). The variation of $\ln (f / x)$ with pressure was linear to within a deviation of less than 0.8\% The value of $f / x$ at zero pressure was taken to be the limiting value of the Henry's law constant.	SOURCE AND PURITY OF MATERIALS:   1. Supplied by Matheson Gas Products. Minimum purity 99.8\%   2. Supplied by Alfa Products, Morton Thiokol Inc. Minimum purity 99\%. Gas chromatographic analysis showed no thermal degradation after the solubility measurements were carried out.   ESTIMATED ERROR:   $\delta H= \pm 2 \%$ (authors)   REFERENCES:   1. Huang, S.H.; Lin, H.M.; Chao, K.C. Fluid Phase Equilib. 1987, 36, 141.   2. Lee, B.I.; Kesler, M.G. AIChE J. 1975, 21, 510.


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Alkanes	ORIGINAL MEASUREMENTS: $\begin{aligned} & \text { Gasem, K.A.M.; Robinson, R.L. } \\ & \text { J. Chem. Eng. Data 1985, 30, 53-56 } \end{aligned}$
VARIABLES: $\begin{aligned} & P / \mathrm{kPa}=524-8632 \\ & T / \mathrm{K}=313.2-423.2 \end{aligned}$	PREPARED BY:   P.G.T. Fogg
EXPERIMENTAL VALUES: Solvent	$\begin{array}{lcc} \begin{array}{l} \text { Henry's } \\ \text { constant } \\ / \mathrm{kPa} \end{array} & \bar{V}_{\mathrm{CO}_{2}}^{\infty} & \mathrm{x}_{\mathrm{CO}_{2}} \text { at } \\ \mathrm{mol}^{-1} & P_{\mathrm{CO}_{2}}=101.3 \mathrm{kPa}^{*} \end{array}$
Eicosane; $\mathrm{C}_{2} \mathrm{OH}_{42} ;$ 323.2   $[112-95-8]$ 373.2	$8230 \pm 30$ $48 \pm 3$ 0.0123   $11290 \pm 30$ $79 \pm 1$ 0.0090
Octacosane; $\mathrm{C}_{28} \mathrm{H}_{58} ;$ 348.2   $[630-02-4]$ 373.2    423.2	$8120 \pm 120$ $131 \pm 8$ 0.0125   $9380 \pm 90$ $139 \pm 6$ 0.0108   $11560 \pm 170$ $151 \pm 11$ 0.0088
$\begin{array}{lll} \text { Hexatriacontane; } \mathrm{C}_{36} \mathrm{H}_{74} ; & 373.2 \\ {[630-06-8]} & 423.2 \end{array}$	$7740 \pm 30$ $170 \pm 4$ 0.0131   $9850 \pm 70$ $189 \pm 5$ 0.0103
Tetratetracontane; $\mathrm{C}_{4} \mathrm{H}_{9} 0 ;$ 373.2   $[7098-22-8]$	$7060 \pm 80$ $211 \pm 11$ 0.0144   $8520 \pm 80$ $226 \pm 8$ 0.0119
The authors found that, at mole fract 0.45 , the variation in mole fraction pressure could be represented by the in the form: $\begin{equation*} \ln \left(f_{\mathrm{CO}_{2}} / x_{\mathrm{CO}_{2}}\right)=\ln H+\left(\bar{V}_{\mathrm{CO}_{2}}^{\infty} / R\right. \tag{1} \end{equation*}$   where $f_{\mathrm{CO}_{2}}=$ fugacity of $\mathrm{CO}_{2}$ in the   $H=$ Henry's constant $\begin{aligned} & \bar{V}_{\mathrm{CO}_{2}}^{\infty}=\text { partial molar volume at } i \\ & P_{\mathrm{b}}=\text { bubble point pressure } \\ & P_{\mathrm{hc}}=\text { hydrocarbon vapor pressure } \end{aligned}$   The authors found values of $H$ by plot extrapolating to zero pressure. Value slope of the line.   * calculated by the compiler from val paper	tions of carbon dioxide less than solubilities with variation in Krichevsky-Kasarnovsky equation   T) $\left(P_{b}-P_{h c}\right)$   ixture   nfinite dilution of $\mathrm{CO}_{2}$ in the   ting $\ln \left(f_{\mathrm{CO}_{2}} / x_{\mathrm{CO}_{2}}\right)$ against $\mathrm{P}_{\mathrm{b}}$ and ues of $\bar{V}_{\mathrm{CO}_{2}}^{\infty}$ were found from the   ues of $H$ and of $\bar{V}_{\mathrm{CO}_{2}}^{\infty}$ given in the
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:   The authors used a static equilibrium cell capable of handling solvents which were solid at room temperature. Bubble point pressures for various quantities of $\mathrm{CO}_{2}$ were found by decreasing the volume of the mixture and observing the break in the volume-pressure curve as the system changed from two phase to one phase. Mole fraction solubilities of $\mathrm{CO}_{2}$ for various pressures are given in the paper.	SOURCE AND PURITY OF MATERIALS:   1. Supplied by Linde Speciality   Gases; purity stated to be 99.99 mol\%   2. Supplied by Alfa Products;   purity stated to be 99 mol\%   ESTIMATED ERROR;   See above.   REFERENCES:   1. Krichevsky, I.R.;   Kasarnovsky, J.S.   J. Amer. Chem. Soc. 1935, 57, 2168.


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Tetracosane, $2,6,10,15,19,23$-hexa-methyl-, (squalane): $\mathrm{C}_{30} \mathrm{H}_{62}$; [111-01-3]	ORIGINAL MEASUREMENTS:   Chai, C-P.; Paulaitis, M. E.;   J. Chem. Eng. Data, 1981, 26, 277-279.
VARIABLES: $T / K=298.6-330.2$	PREPARED BY:   C. L. Young
EXPERIMENTAL VALUES:	
T/K Henry's consta	$t$ Mole fraction of ${ }^{\mathbf{a}}$ carbon dioxide
298.6 45.35   298.6 44.92   304.3 48.16   304.3 47.75   311.0 51.33   311.0 53.94   316.2 53.22   316.2 57.85   323.6 57.56   323.6 60.43   330.2	$\begin{aligned} & 0.02205 \\ & 0.02226 \\ & 0.02076 \\ & 0.02094 \\ & 0.01948 \\ & 0.01963 \\ & 0.01855 \\ & 0.01879 \\ & 0.01729 \\ & 0.01737 \\ & 0.01655 \end{aligned}$
${ }^{\text {a }}$ Calculated by compiler for a partia	pressure of 1 atm.
AUXILIARY	Information
METHOD/APPARATUS/PROCEDURE:   Volumetric apparatus similar to that described in ref.(1). Known amount of carbon dioxide brought into contact with known amount of solvent. Reduction in pressure measured.	


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Cyclopropane; $\mathrm{C}_{3} \mathrm{H}_{6}$; [75-19-4]				```ORIGINAL MEASUREMENTS: Haselden, G.G.; Snowden, P. Trans. Faraday Soc. 1962, 58, 1515-1528.```			
VARIABLES:$\begin{aligned} & T / \mathrm{K}=178.8-236.8 \\ & P_{\text {total }} / \mathrm{kPa}=27-210 \end{aligned}$				PREPARED BY:P.G.T. Fogg			
EXPERIMENTAL VALUES: Measurement of dew points							
${ }^{\mathrm{y}} \mathrm{CO}_{2}$	Total P/atm	${ }_{P / \mathrm{kPa}}^{\mathrm{Total}} *$	$T / K$	${ }^{\mathrm{y}} \mathrm{CO}_{2}$	Total   P/atm	$\underset{P / \mathrm{kPa}}{\mathrm{Total}^{*}}$	T/K
0.2255	0.2862	29.00	208.7	0.8454	1.4602	147.95	226.6
	0.4484	45.43	219.0		1.9145	193.99	232.8
	1.0191	103.26	234.2		0.2182	22.11	184.3
	1.4535	147.28	242.6		0.4794	48.58	192.7
	1.9195	194.49	249.8		0.9695	98.23	203.1
0.4008	0.2506	25.39	203.8	0.9066	1.4890	150.87	210.3
	0.5606	56.80	216.8		1.9354	196.10	215.8
	0.8776	88.92	225.2		0.2243	22.73	173.9
	1.4396	145.87	236.4		0.5025	50.92	184.2
	1.8298	185.40	242.4		0.9663	97.91	194.9
0.6200	0.2191	22.20	193.7		1.5050	152.49	203.7
	0.4497	45.57	205.5		1.8988	192.40	207.1
	0.9789	99.19	219.0				
Measurement of bubble points							
${ }^{x} \mathrm{CO}_{2}$	Total   P/atm	${\underset{P / \mathrm{kPa}}{\mathrm{Total}}}^{*}$	$T / K$	${ }^{\mathrm{CO}_{2}}$	Total   P/atm*	Total   P/kPa	T/K
0.048	2.0741	210.16	236.8	0.195	0.5480	55.53	192.7
	1.6788	170.10	230.1		0.4066	41.20	186.6
	1.4995	151.94	226.5		0.3258	33.01	182.3
	1.2410	125.74	221.0		0.2694	27.30	178.8
	1.0856	110.00	217.6		1.8600	188.46	208.8
	0.9723	98.52	21.4		1.6749	169.71	206.2
	0.7835	79.39	208.4		1.4083	142.70	202.0
	0.6354	64.38	203.0		1.1559	117.12	197.5
	0.4937	50.02	196.6		0.9007	91.26	192.3
	0.3533	35.80	188.6		0.7907	80.12	189.5
	0.2649	26.84	182.1		0.7187	72.82	187.6
0.087	1.9017	192.69	223.8	0.299	2.0577	208.50	205.3
	1.6101	163.14	219.2		1.7874	181.11	202.0
	1.2413	125.77	21.1	0.391	1.3730	139.12	195.9
	0.955	96.82	205.2		2.0382	206.52	202.7
	0.8946 0.5721	90.65 57.97	203.7 198.1		1.8213	184.54	200.1
	$\begin{aligned} & { }^{x} \mathrm{CO}_{2}= \\ & y^{y_{\mathrm{CO}_{2}}}= \\ & { }_{\mathrm{Calc}}= \end{aligned}$	nole fra nole fra ated by	ion of ion of com	rbon diox rbon diox er		liquid gas pha	se
AUXILIARY INFORMATION							
METHOD/APPARATUS/PROCEDURE:   Dew points and bubble points of various mixtures of carbon dioxide and cyclopropane were measured. The dew and bubble point cells were immersed in a cryostat. Full details of the apparatus are described in the paper.				SOURCE AND PURITY OF MATERIALS:   No information			
				ESTIMATED ERROR:$\delta T / K= \pm 0.02 \text { (authors) }$			
				REFERENCES:			



COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) Cyclohexane; $\mathrm{C}_{6} \mathrm{H}_{12}$; [110-82-7]	ORIGINAL MEASUREMENTS:   Gjaldbaek, J. C.   Acta Chem. Scand. 1953, 7, 537-544.
VARIABLES: $\begin{aligned} T / K & =298.15 \\ p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm}) \end{aligned}$	PREPARED BY:   J. Chr. Gjaldbaek
EXPERIMENTAL VALUES:	
	{f6d826af6-7cb7-4983-a9c7-a712767a81dd} Bunsen     Coefficient }$\alpha / \mathrm{cm}^{3}(\mathrm{STP}) \mathrm{cm}^{-3} \mathrm{~atm}^{-1}$Ostwald   Coefficient   $L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}$   1.57   1.59
${ }^{1}$ Mole fraction solubility values of 101.325 kPa ( 1 atm ) by the co	adjusted to a gas partial pressure mpiler.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:   A calibrated all-glass combined manometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as confining liquid. The solvent was degassed in the apparatus.   The absorbed volume of gas is calculated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent is determined by the weight of displaced mercury.   The mole fraction solubility values are at 1 atm assuming Henry's law is obeyed.   Details of the apparatus and procedure are given in ref. 1 and 2.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Prepared from potassium bicarbonate (analytical reagent) and concentrated sulfuric acid. 99.9 per cent $\mathrm{CO}_{2}$.   (2) Cyclohexane. Purified by fractional freezing, dried, and distilled. F.p. $/{ }^{\circ} \mathrm{C}=6.2-6.4$, b.p. $/{ }^{\circ} \mathrm{C}=80.69-80.71$.   ESTIMATED ERROR: $\begin{aligned} \delta T / K & = \pm 0.05 \\ \delta x_{1} / x_{1} & = \pm 0.015 \end{aligned}$   REFERENCES:   1. Lannung, A.   J. Am. Chem. Soc. 1930, 52, 68.   2. Gjaldbaek, J. C.   Acta Chem. Scand. 1952, 6, 623.



COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) Cyclohexane; $\mathrm{C}_{6} \mathrm{H}_{12}$; [110-82-7]	```ORIGINAL MEASUREMENTS: Dymond, J. H. J. Phys. Chem. 1967, 71, 1829-1831.```
VARIABLES:    $T / \mathrm{K}:$ $293.39-310.55$   $p / \mathrm{kPa}:$ $101.325(1 \mathrm{~atm})$	PREPARED BY:   M. E. Derrick   H. L. Clever
EXPERIMENTAL VALUES:   The Bunsen and Ostwald coefficients   Smoothed Data: For use between 293.1 $\ln x_{1}=-7.4372+7.6$   The standard error about the	Bunsen   Coefficient   $\alpha / \mathrm{cm}^{3}(\mathrm{STP}) \mathrm{cm}^{-3} \mathrm{~atm}^{-1}$ Ostwald   Coefficient   $L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}$   1.68    1.57 1.80   1.51 1.72   1.42 1.68       were calculated by the compiler.   15 and 310.55 k .   6609/(T/100K)   regression line is $5.37 \times 10^{-6}$.
auxiliary	Y information
METHOD/APPARATUS/PROCEDURE:   The liquid is saturated with the gas at a partial pressure of one atm.   The apparatus is that described by Dymond and Hildebrand (1). It uses an all-glass pumping system to spray slugs of degassed solvent into the gas. The amount of gas dissolved is calculated from the initial and final gas pressures.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Western Gas, Inc. Dried.   (2) Cyclohexane. Matheson, Coleman and Bell chromatoquality reagent. Dried and fractionally frozen. m.p. $6.45^{\circ} \mathrm{C}$.   ESTIMATED ERROR: $\delta x_{1} / x_{1}=0.01$   REFERENCES:   1. Dymond, J.; Hildebrand, J. H. Ind. Eng. Chem. Fundam. 1967, $6,130$.


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2} ;$ [124-38-9]   (2) Cyclohexane; $\mathrm{C}_{6} \mathrm{H}_{12}$; [110-82-7]	ORIGINAL MEASUREMENTS:   Wilhelm, E.; Battino, R.   J. Chem. Thermodyn. 1973, 5,   117-120.
VARIABLES: $\begin{array}{rlr} T / \mathrm{K}: & 283.82-313.34 \\ p / \mathrm{kPa}: & 101.325 \text { (1 atm) } \end{array}$	PREPARED BY:   H. L. Clever
EXPERIMENTAL VALUES:   The solubility values were adjusted of 101.325 kPa ( l atm ) by Henry's law calculated by the compiler.   Smoothed Data: For use between 283. $\ln x_{1}=-7.1298+6.7$   The standard error about the	$\left.\begin{array}{c}\begin{array}{c}\text { Bunsen } \\ \text { Coefficient } \\ \alpha\end{array}\end{array} \begin{array}{c}\text { Ostwald } \\ \text { Coefficient } \\ L\end{array}\right]$   to a carbon dioxide partial pressure . The Bunsen coefficients were   82 and 313.34 K   7089/(T/100K)   regression line is $9.86 \times 10^{-5}$.   raction   ${ }^{3} x_{1}$   22   60   06
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:   The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3).   Degassing. Up to $500 \mathrm{~cm}^{3}$ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid $N_{2}$ trap until the permanent gas residual pressure drops to 5 microns.   Solubility Determination. The degassed solvent is passed in a thin film down a glass spiral tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Matheson Co., Inc, Research grade. Minimum volume percent purity is 99.995.   (2) Cyclohexane. Phillips Petroleum Co. Pure Grade. Distilled.   ESTIMATED ERROR: $\begin{aligned} \delta T / \mathrm{K} & =0.03 \\ \delta \mathrm{P} / \mathrm{mmHg} & =0.5 \\ \delta x_{1} / x_{1} & =0.005 \end{aligned}$   REFERENCES:   1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033.   2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oiz Chem. Soc. 1968, 45, 830.   3. Battino, R. Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.



COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Cyclohexane; $\mathrm{C}_{6} \mathrm{H}_{12}$; [110-82-7]	ORIGINAL MEASUREMENTS:   Patyi, L.; Furmer, I. E.; Makranczy, J.; Sadilenko, A. S.; Stepanova, Z. G.; Berengarten, M. G.   Zh. Prikz. Khim. 1978, 51, 12961300.
VARIABLES: $T / K=298.15$	PREPARED BY:   C. L. Young
EXPERIMENTAL VALUES: $T / K$	Mole fraction of carbon dioxide at a partial pressure of 101.325 kPa ${ }^{x} \mathrm{CO}_{2}$
298.151 .57	0.00747
$\dagger$ volume of gas (measured a dissolved by one volume	$\begin{aligned} & t 101.325 \mathrm{kPa} \text { and } 273.15 \mathrm{~K} \text { ) } \\ & \text { f cyclohexane. } \end{aligned}$
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   Volumetric method. Pressure measured when known amounts of gas were added, in increments, to a known amount of liquid in a vessel of known dimensions. Corrections were made for the partial pressure of solvent. Details in ref. (1).	SOURCE AND PURITY OF MATERIALS:   Purity better than 99 mole per cent as determined by gas chromatography.   ESTIMATED ERROR: $\delta T / K= \pm 0.1 ; \quad \delta \alpha= \pm 4 \% \text { or less. }$   REFERENCES:   1. Bodor, E.; Bor, G. J.; Mohai, B.; Sipos, G.   Veszpremi. Vegyip. Egy. Kozl. 1957, 1, 55.



COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Alicyclics or 1 -Tetradecene	ORIGINAL MEASUREMENTS:   Luhring, P.; Schumpe, A. J. Chem. Eng. Data, 1989, 34, 250-252.
VARIABLES: $T / K=293.2$	EREPARED BY:   C.L. Young
EXPERIMENTAL VALUES:	
$T / \mathrm{K} \quad \begin{aligned} & \text { Henry's Constant* } \\ & /\left(\mathrm{Pa} \mathrm{~m}^{3} / \mathrm{mol}^{-1}\right) \end{aligned}$	Mole fraction of $\mathrm{CO}_{2}$ at 1 atm partial pressure ${ }^{+}$
Cyclohexane; $\mathrm{C}_{6}$   293.2 1414    Tetrahydronaphthalene, (te   293.2 1610    Decahydronaphthalene, (d   293.2 2001   293.2 $1-$ Tetradecene; $C_{1}$    1551	
*referred to as Henry's constant in source but appears to be usual Henry's constant multiplied by molar volume.   tcalculated by compiler using density data taken from ref.(1).	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE   Little infomation given in source. Method consisted of equilibrating known amounts of degassed liquid and gas and measuring the change in pressure. Equilibration was reached in 3 to 6 minutes. Some details given in ref.(2).	SOURCE AND PURITY OF MATERIALS:   Obtained from Merck at the highest available purity. No other details given.   ESTIMATED ERROR:   $\delta T / K= \pm 0.1$ (authors)   $\delta x / x= \pm 0.01$ to 0.15 (compiler)   REFERENCES:   1. Riddick, J.A.; Bunger, W.B.;1970 Organic Solvents, WileyInterscience, New York.   2. Schumpe, A.; Quiker, G.; Decker, W.D.   Adv. Biochem. Eng., 1982, 24, 1.


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) Cyclohexane; $\mathrm{C}_{6} \mathrm{H}_{12}$; [110-82-7] Methylcyclohexane; $\mathrm{C}_{7} \mathrm{H}_{14}$; $[108-87-2]$	ORIGINAL MEASUREMENTS:   Horsman-van den Dool, L. E. W.; Warman, J. W.   Interuniversity Reactor Institute (IRI)-Report 134-81-01
VARIABLES : $\begin{aligned} T / \mathrm{K} & =293.2,294.3 \\ p_{1} / \mathrm{kPa} & =\text { not given } \end{aligned}$	PREPARED BY:   H. L. Clever
EXPERIMENTAL VALUES:	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:   A cylindrical glass container of approximately $15 \mathrm{~cm}^{3}$ volume is partly filled with solvent and closed with a half-hole septum. amount of the gaseous solute is added to the container. The closed container is shaken for 30 minutes. Samples of both the vapor and liquid phases are taken in a calibrated syringes. The samples are injected into a gas chromatograph. The Ostwald coefficient is calculated from the known sample size and the measured peak areas.   The chromatograph is a HewlettPackard model 5750 equipped with a thermal conductivity cell detector. The carrier gas is helium. A 200 cm Porapak column is used for the separation.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Baker Chemical   Co. Instrument grade, 99.99   percent. Used as received.   (2) Cyclohexane. Merck and Co. Uvasol spektroskopie grade. Methylcyclohexane. Fluka. UV-Spektroskopie grade. Impurities which gave same retension times as the gas were removed by absorption or distillation. Otherwise used as rcvd.   ESTIMATED ERROR:   $\delta L / L= \pm 0.05$   REFERENCES:


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) Methylcyclohexane; $\mathrm{C}_{7} \mathrm{H}_{14}$; [108-87-2]	```ORIGINAL MEASUREMENTS: Field, L. R.; Wilhelm, E.; Battino, R. J. Chem. Thermodyn. 1974, 6, 237-243.```
VARIABLES: $\begin{aligned} T / K: & 283.89-313.28 \\ P / \mathrm{kPa}: & 101.325 \text { (1 atm) } \end{aligned}$	PREPARED BY:   H. L. Clever
EXPERIMENTAL VALUES:   The gas solubility values were adjus 101.325 kPa (1 atm) by Henry's law.   The Bunsen coefficients were calculat   Smoothed Data: For use between 283. $\ln x_{1}=-8.8123+12 .$   The standard error about the	Bunsen   efficient   (STP) $\mathrm{cm}^{-3} \mathrm{~atm}^{-1}$Ostwald   2.07   1.63   1.33Coefficient   $L / \mathrm{cm}^{3} \mathrm{~cm}^{-1}$2.151ted to a $\mathrm{CO}_{2}$ partial pressure of1.7841.521
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:   The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3).   Degassing. Up to $500 \mathrm{~cm}^{3}$ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid $N_{2}$ trap until the permanent gas residual pressure drops to 5 microns.   Solubility Determination. The degassed solvent is passed in a thin film down a glass spiral tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Either Matheson Co., Inc. or Air Products and Chemicals, Inc. Purest grade available, minimum purity greater than 99 mole per cent.   (2) Methylcyclohexane. Phillips Petroleum Co. Pure Grade. Distilled.   ESTIMATED ERROR: $\begin{aligned} \delta T / \mathrm{K} & =0.03 \\ \delta P / \mathrm{mmHg} & =0.5 \\ \delta x_{1} / x_{1} & =0.005 \end{aligned}$   REFERENCES:   1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033.   2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. 1968, 45, 830.   3. Battino, R. Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) Cyclooctane; $\mathrm{C}_{8} \mathrm{H}_{16}$; [292-64-8]	ORIGINAL MEASUREMENTS:   Wilcock, R. J.; Battino, R.; Wilhelm, E.   J. Chem. Thermodyn. 1977, 9, 111-115.
VARIABLES: $\begin{aligned} T / \mathrm{K}: & 289.09-313.52 \\ P / \mathrm{kPa}: & 101.325 \text { (1 atm) } \end{aligned}$	PREPARED BY:   H. I. Clever
EXPERIMENTAL VALUES:   The Bunsen coefficients were calculated by the compiler.   The solubility values were adjusted to a carbon dioxide partial pressure of 101.325 kPa by Henry's law.   Smoothed Data: For 288.15 to 313.15 K . $\ln x_{1}=-7.7453+8.2561 /(T / 100 \mathrm{~K})$   The standard error about the regression line is $4.11 \times 10^{-5}$.	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:   The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3).   Degassing. Up to $500 \mathrm{~cm}^{3}$ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid $N_{2}$ trap until the permanent gas residual pressure drops to 5 microns.   Solubility Determination. The degassed solvent is passed in a thin film down a glass spiral tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Air Products and Chemicals, Inc. Minimum mole per cent purity is 99.8 .   (2) Cyclooctane. Chemical Samples Co. 99 mole per cent, distilled, refractive index (NaD, 298.15 K ) 1.4562.   ESTIMATED ERROR: $\begin{aligned} \delta \mathrm{T} / \mathrm{K} & =0.03 \\ \delta P / \mathrm{mmg} & =0.5 \\ \delta x_{1} / x_{1} & =0.005 \end{aligned}$   REFERENCES:   1. Morrison, T. J.; Billett, F.   J. Chem. Soc. 1948, 2033.   2. Battino, R.; Evans, F. D.; Danforth, W. F.   J. Am. Oiz Chem. Soc. 1968, 45, 830.   3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.


EXPERIMENTAL VALUES:   The Bunsen coefficients were calculated by the compiler assuming ideal gas behavior.   The solubility values were adjusted to a carbon dioxide partial pressure of 101.325 kPa by Henry's law.   Smoothed Data: The equation is based on only two pair of experimental points and should be used with caution.   For use between 298.19 and 312.88 K   $\ln x_{1}=-7.7777+9.5187 /(7 / 100 \mathrm{~K})$   AUXILIARY INFORMATION   METHOD/APPARATUS/PROCEDURE:   The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3).   Degassing, Up to $500 \mathrm{~cm}^{3}$ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid $N_{2}$ trap until the permanent gas residual pressure drops to 5 microns.   Solubility Determination. The degassed solvent is passed in a thin film down a glass helical tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by differences between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.   SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Air Products and Chemicals Co. Stated to be 99.8 mole percent minimum.   (2) trans-l,2-Dimethylcyclohexane. Chemicals Samples Co. Fractionally distilled and stored in dark. Refractive index (Na-D, $298.15 \mathrm{~K}) 1.4248$.   ESTIMATED ERROR: $\begin{aligned} \delta T / \mathrm{K} & =0.03 \\ \delta p / \mathrm{mmHg} & =0.5 \\ \delta x_{1} / x_{1} & =0.005 \end{aligned}$   REFERENCES:   REFERENCES: I. MOrrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033.   2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. 1968, 45, 830.   3. Battino, R. Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.	


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) cis-1,2-Dimethylcyclohexane; $\mathrm{C}_{8} \mathrm{H}_{16} ; \quad[2207-0 \overline{1}-4]$	```ORIGINAL MEASUREMENTS: Geller, E. B.; Battino, R. Wilhelm, E. J. Chem. Thermodyn. 1976, 8, 197-202.```
	PREPARED BY: H . L. Clever
EXPERIMENTAL VALUES:   The Bunsen coefficients were calculated by the compiler assuming ideal gas behavior.   The solubility values were adjusted to a carbon dioxide partial pressure of 101.325 kPa by Henry's law.   Smoothed Data: The equation is based on only two pair of experimental points and should be used with caution.   For use between 297.88 and 312.99 K	
auxiliary information	
METHOD/APPARATUS/PROCEDURE:   The solubility apparatus is based on the design of Morrison and Billett   (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3).   Degassing. Up to $500 \mathrm{~cm}^{3}$ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid $\mathrm{N}_{2}$ trap until the permanent gas residual pressure drops to 5 microns.   Solubility Determination. The degassed solvent is passed in a thin film down a glass helical tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by differences between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Air Products and Chemicals Co. Stated to be 99.8 mole percent minimum.   (2) cis-1,2-Dimethylcyclohexane. Chemical Samples Co. Fractionally distilled and stored in dark. Refractive index (Na-D, 298.15 K) 1.4337.   ESTIMATED ERROR: $\begin{aligned} \delta \mathrm{T} / \mathrm{K} & =0.03 \\ \delta p / \mathrm{mmHg} & =0.5 \\ \delta x_{1} / x_{1} & =0.005 \end{aligned}$   REFERENCES:   1. Morrison, T. J.; Billett, F.   J. Chem. Soc. 1948, 2033.   2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. 1968, 45, 830.   3. Battino, R. B Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) trans-1,4-Dimethylcyclohexane, $30 \mathrm{~mol} \mathrm{\%}$; $\mathrm{C}_{8} \mathrm{H}_{16}$; [2207-04-7]   (3) cis-l,4-Dimethylcyclohexane, $70 \mathrm{~mol} \%$; $\mathrm{C}_{8} \mathrm{H}_{16}{ }^{\text {i }}$ [624-29-3]	$\begin{aligned} & \text { ORIGINAL MEASUREMENTS: } \\ & \text { Geller, E. B.; Battino, R. } \\ & \text { Wilhelm, E. } \\ & \text { J. Chem. Thermodyn. 1976, 8, } \\ & \text { 197-202. } \end{aligned}$
VARIABLES:     $T / \mathrm{K}:$ 298.32, 313.01   $p / \mathrm{kPa}:$ 101.325 $(1 \mathrm{~atm})$	PREPARED BY:   H. L. Clever
EXPERIMENTAL VALUES:   The Bunsen coefficients were calculated by the compiler.   The solubility values were adjusted to a carbon dioxide partial pressure of 101.325 kPa ( 1 atm ) by Henry's law.	
aUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan and Wilhelm (3).   Degassing. Up to $500 \mathrm{~cm}^{3}$ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid $N_{2}$ trap until the permanent gas residual pressure drops to 5 microns.   Solubility Determination. The degassed solvent is passed in a thin film down a glass helical tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by differences between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Air Products and Chemicals Co. Stated to be 99.8 mole percent minimum.   (2) trans-1,4-Dimethylcyclohexane.   (3) cis-1,4-Dimethylcyclohexane. Chemical Samples Co. Binary mixture used as received. Authors analyzed mixture by refractive index.   ESTIMATED ERROR: $\begin{aligned} \delta \mathrm{T} / \mathrm{K} & =0.03 \\ \delta p / \mathrm{mmHg} & =0.5 \\ \delta x_{1} / x_{1} & =0.005 \end{aligned}$   REFERENCES:   1. Morrison, T. J.; Billett, F.   J. Chem. Soc. 1948, 2033.   2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oit Chem. Soc. 1968, 45, 830.   3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) trans-1,3-Dimethylcyclohexane, 41 mole 8 ; $\mathrm{C}_{8} \mathrm{H}_{16}$; [2207-03-6]   (3) cis-1,3-Dimethylcyclohexane, 59 mole $8 ; \mathrm{C}_{8} \mathrm{H}_{16}$; [638-04-0]	```ORIGINAL MEASUREMENTS: Geller, E. B.; Battino, R. Wilhelm, E. J. Chem. Thermodyn. 1976, 8, 197-202.```
$\begin{array}{rlr}\text { VARIABLES: }{ }_{T} / \mathrm{K}: & 298.03, & 313.01 \\ \mathrm{p} / \mathrm{kPa}: & 101.325 & (1 \mathrm{~atm})\end{array}$	PREPARED BY: H. L. Clever
EXPERIMENTAL VALUES:   The Bunsen coefficients were calculated by the compiler.   The solubility values were adjusted to a carbon dioxide partial pressure of 101.325 kPa ( 1 atm ) by Henry's law.	
auxiliary information	
METHOD/APPARATUS/PROCEDURE:   The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3).   Degassing. Up to $500 \mathrm{~cm}^{3}$ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid $N_{2}$ trap until the permanent gas residual pressure drops to 5 microns.   Solubility Determination. The degassed solvent is passed in a thin film down a glass helical tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by differences between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Air Products and Chemicals Co. Stated to be 99.8 mole per cent minimum.   (2) trans-1,3-Dimethylcyclohexane.   (3) cis-1,3-Dimethylcyclohexane. Chemical Samples Co. Binary mixture used as received. Authors analyzed mixture by refractive index.   ESTIMATED ERROR: $\begin{aligned} \delta T / \mathrm{K} & =0.03 \\ \delta_{p} / \mathrm{mmHg} & =0.5 \\ \delta x_{1} / x_{1} & =0.005 \end{aligned}$   REFERENCES:   1. Morrison, T. J.; Billett, F.   J. Chem. Soc. 1948, 2033.   2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Diz Chem. Soc. 1968, 45, 830.   3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. 1, 1'-Bicyclohexyl; $\mathrm{C}_{12} \mathrm{H}_{22}$; [92-51-3]	```ORIGINAL MEASUREMENTS: Tremper, K.K.; Prausnitz, J.M. J. Chem.Engng.Data, 1976,21,295-9```
VARIABLES: $T / K=300-475$	PREPARED BY: C.L. Young
EXPERIMENTAL VALUES:   $T / K$   Henry's Cons /atm	stant $^{\mathrm{a}}$ Mole fraction   carbon dioxide of   latm partial pressure,    ${ }^{x_{\mathrm{CO}}^{2}}$
300 128.0   325 155.0   350 188.0   375 222.0   400 251.0   425 270.0   450 272.0   475 258.0   a. Authors stated measureme pressures and values of within the Henry's-Law   b. Calculated by compiler between mole fraction and	0.00781    0.00645    0.00532   0.00450     0.00398    0.00370    0.00368    0.00388   ents were made at several    solubility used were all    region.
AUXILIARY	InFormation
METHOD/APPARATUS/PROCEDURE   Volumetric apparatus similar to that described by Dymond and Hildebrand (1). Pressure measured with a null detector and precision gauge. Details in ref. (2).	SOURCE AND PURITY OF MATERIALS:   Solvent degassed, no other details given.   ESTIMATED ERROR: $\delta T / \mathrm{K}= \pm 0.1 ; \delta x_{\mathrm{CO}_{2}}= \pm 1 \% .$   REFERENCES:   1. Dymond, J.; Hildebrand, J.H. Ind.Eng. Chem. Fundam. 1967, 6, 130 . 2. Cukor, P.M.; Prausnitz, J.M. Ind.Eng. Chem. Fundam. 1971,20,638.


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) 1, 1'-Bicyclohexyl; $\mathrm{C}_{12} \mathrm{H}_{22}$; [92-51-3]	ORIGINAL MEASUREMENTS:   Horsman-van den Dool, L. E. W.; Warman, J. W.   Interuniversity Reactor Institute (IRI)-Report 134-81-01
VARIABLES : $\begin{aligned} T / \mathrm{K} & =295.2 \\ p_{1} / \mathrm{kPa} & =\text { not given } \end{aligned}$	PREPARED BY:   H. L. Clever
EXPERIMENTAL VALUES:	
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   A cylindrical glass container of approximately $15 \mathrm{~cm}^{3}$ volume is partly filled with solvent and closed with a half-hole septum. amount of the gaseous solute is added to the container. The closed container is shaken for 30 minutes. Samples of both the vapor and liquid phases are taken in a calibrated syringes. The samples are injected into a gas chromatograph. The Ostwald coefficient is calculated from the known sample size and the measured peak areas.   The chromatograph is a HewlettPackard model 5750 equipped with a thermal conductivity cell detector. The carrier gas is helium. A 200 cm Porapak column is used for the separation.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Baker Chemical Co. Instrument grade, 99.99 percent. Used as received.   (2) l,l'-Bicyclohexyl. Fluka. purum grade. Impurities which give the same retention time as the gas are removed before the experiment by adsorption or distillation.   ESTIMATED ERROR: $\delta L / L= \pm 0.05$   REFERENCES:



COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) cis-Decahydronaphthalene or cisdecalin; $\mathrm{C}_{10} \mathrm{H}_{18}$; [493-01-6]   trans-Decahydronaphthalene or trans-decalin; $\mathrm{C}_{10} \mathrm{H}_{18}$; [493-02-7]	```ORIGINAL MEASUREMENTS: Horsman-van den Dool, L. E. W.; Warman, J. W. Interuniversity Reactor Institute (IRI)-Report 134-81-01```
VARIABLES: $\begin{aligned} T / K & =296.3,296.6 \\ p_{1} / \mathrm{kPa} & =\text { not given } \end{aligned}$	PREPARED BY: H. L. Clever
EXPERIMENTAL VALUES:	
auxiliary	information
METHOD/APPARATUS/PROCEDURE:   A cylindrical glass container of approximately $15 \mathrm{~cm}^{3}$ volume is partly filled with solvent and closed with a half-hole septum. amount of the gaseous solute is added to the container. The closed container is shaken for 30 minutes. Samples of both the vapor and liquid phases are taken in a calibrated syringes. The samples are injected into a gas chromatograph. The Ostwald coefficient is calculated from the known sample size and the measured peak areas.   The chromatograph is a HewlettPackard model 5750 equipped with a thermal conductivity cell detector. The carrier gas is helium. A 200 cm Porapak column is used for the separation.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide.Baker Chemical Co. Instrument grade, 99.99 percent. Used as received.   (2) cis-Decalin and trans-Decalin. Merck. Zur Synthese grade. Impurities which give the same retention time as the gas are removed before the experiment by adsorption or distillation.   ESTIMATED ERROR: $\delta L / L= \pm 0.05$   REFERENCES:




COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Ethane; $\mathrm{C}_{2} \mathrm{H}_{6}$; [74-84-0]   3. Ethene; $\mathrm{C}_{2} \mathrm{H}_{4}$; [74-85-1]	```ORIGINAL MEASUREMENTS: Clark, A.M.; Din, F. Disc. Faraday Soc. 1953, No.15, 202-207.```
VARIABLES: $\begin{aligned} & T / \mathrm{K}=130-180 \\ & P_{\mathrm{CO}_{2}} / \mathrm{kPa}=0.033-27.6 \end{aligned}$	PREPARED BY: P.G.T. Fogg
EXPERIMENTAL VALUES:   Mole percent solubility of solid mixtures of ethane and ethene   * calculated by the compiler from vap given in the literature; $130-145 \mathrm{~K}$	carbon dioxide in various liguid   of liquid before $\mathrm{CO}_{2}$ added
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   The experimental method is described in ref. (3). Vapor pressures of saturated solutions of carbon dioxide with excess solid in various mixtures of ethane and ethene were measured over temperature ranges with a five junction copper constantin thermocouple. The vapor pressures of solutions of carbon dioxide of known composition were then measured at the point of appearance and of disappearance of the solid carbon dioxide. The corresponding   temperatures were then found from the relationship between temperature and vapor pressure which had been established in the first series of measurements.	SOURCE AND PURITY OF MATERIALS:   Components were obtained from   commercial sources and purified as   described in ref. (3).


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [123-38-9]   (2) Various solvents. See table below.	ORIGINAL MEASUREMENTS:   Bratzler, K. D.; Doerges, A.; Herbert, W.   German Patent No. 1,769,197 to Metallgesellschaft AG 6000 Frankfurt, FRG 1971, Oct 21
VARIABLES: $\begin{aligned} & T / \mathrm{K}=293 \\ & \mathrm{P}_{1} / \mathrm{kPa}=101.3 \end{aligned}$	PREPARED BY:   H. L. Clever
EXPERIMENTAL VALUES:   The Ostwald coefficient and were calculated by the comp The $\mathrm{CO}_{2}$ molar volume was ta	
AUXILIARY	Information
METHOD/APPARATUS/PROCEDURE:   Nothing specified.	SOURCE AND PURITY OF MATERIALS:   Nothing specified.   ESTIMATED ERROR:   Nothing specified.   REFERENCES:


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. 1,2,3,4- Tetrahydronaphthalene (Tetralin) ; $\mathrm{C}_{10} \mathrm{H}_{12}$; [119-64-2]	ORIGINAL MEASUREMENTS: ```Krauss, W.; Gestrich, W. Chem. - Tech (HeideZberg) 1977, 6, 513-6.```
VARIABLES: $T / K=283.15-313.15$	PREPARED BY:   C.L. Young
EXPERIMENTAL VALUES:	
283.15 0.06589   293.15 0.05795   303.15 0.05140   313.15 0.04595       +   	$\begin{aligned} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & 0.01 .00895 \\ & 0.00794 \\ & 0.00640 \end{aligned}$
auxiliary information	
METHOD/APPARATUS/PROCEDURE:   Volumetric apparatus in which gas was dissolved in liquid in glass cell. Pressure measured. Amount of gas dissolved estimated from pressure measurements when gas was repeatedly expanded into known volume. Details in source. Values of solubility calculated from equations and graphs in original.	SOURCE AND PURITY OF MATERIALS:   No details given.   ESTIMATED ERROR: $\delta T / \mathrm{K}= \pm 0.1 ; \delta x_{\mathrm{CO}_{2}}= \pm 1-2 \%$
	REFERENCES:


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. 1,2,3,4-Tetrahydronaphthalene (tetralin) ; $\mathrm{C}_{10} \mathrm{H}_{12}$; [119-64-2]	```ORIGINAL MEASUREMENTS: Horvath, M. J.; Sebastian, H. M.; Chao, K.-C. Ind. Eng. Chem. Fundam. 1981, 20, 394-396.```
VARIABLES: $\begin{aligned} & T / \mathrm{K}=300 \\ & P / \mathrm{kPa}=101.3 \end{aligned}$	PREPARED BY:   C. L. Young
EXPERIMENTAL VALUES:	
300144	0.00691
$\dagger$ at a partial pressure of carbon dioxide of 1 atmosphere calculated by compiler assuming $\phi=0.995$.	
auxiliary information	
METHOD/APPARATUS/PROCEDURE:   Gas chromatographic analysis of a saturated solution at barometric pressure. Henry's constants determined from formula $H=\left(p-p_{0}\right) \phi(m+1) / m$   where $p$ is the total pressure, $p_{0}$ the vapor pressure of the solvent and $\phi$ is the fugacity coefficient of the gas. The mole ratio, $m$, is defined by $\mathrm{m}=\frac{\text { Moles of carbon dioxide }}{\text { in gas phase }}$	SOURCE AND PURITY OF MATERIALS:   1. No details given.   2. Purity 99.06 mole per cent.   ESTIMATED ERROR:   $\delta T / \mathrm{K}= \pm 0.25 ; \quad \delta H / \mathrm{atm}= \pm 38$   (estimated by compiler).
	References :


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) 1-Methyl-4-(1-Methyletheny1)cyclohexene or $d$-limonene or carvene: $\mathrm{C}_{10} \mathrm{H}_{16}$; [138-86-3]	ORIGINAL MEASUREMENTS:   Just, G.   2. Phys. Chem. 1901, 37, 342-367.
VARIABLES: $\begin{aligned} T / \mathrm{K} & =288.15-298.15 \\ p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm}) \end{aligned}$	PREPARED BY:     M.   H..   L. Derrick   Llever
  The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 kPa ( 1 atm ) partial pressure of the gas.	
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket.   The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid.   (2) 1-Methyl-4-(1-Methylethenyl)cyclohexene. No information.   ESTIMATED ERROR: $\delta L / L=0.03 \text { (compiler) }$   REFERENCES:   1. Timofejew, W. $\text { 2. Phys. Chem. 1890, 6, } 141 .$   2. Steiner, P.   Ann. Phys. (Leipzig) 1894, 52, 275. 275.

COMPONENTS :

1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]
2. Aromatic Hydrocarbons

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

## CRITICAL EVALUATION:

Solubility of carbon dioxide in aromatic hydrocarbons
Solubility in benzene at pressures below 200 kPa has been studied by at least ten groups (1-10). Limiting values of Henry's constant from high pressure data published by Kaminishi et al.(11) can also be used to estimate the mole fraction solubility at lower pressures. Values of mole fraction solubility at a partial pressure of 101.3 kPa from the available data are not very consistent. Values for 283.2 K range from 0.0107 to 0.01208 and values for 293.2 K range from 0.0091 to 0.0099 with a value of 0.0105 at 293.6 K . There is better agreement at other temperatures. Over the whole temperature range the values of mole fraction solubility at a partial pressure of 101.3 kPa , based on (1-10), fit the equation given below.

$$
\ln \mathrm{CO}_{2}=-18.437+1296.5 /(T / K)+1.6511 \ln (T / K)
$$

temperature range $=283.2-313.2 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=0.00037$
At least ten groups ( $1,2,4,6,8,12-16$ ) have measured solubility of carbon dioxide in methylbenzene at pressures below 200 kPa . There is, in general, good agreement between values for mole fraction solubility in this solvent at a partial pressure of 101.3 kPa . However the solubility at 193.2 K reported by Williams seems to be too low. Values of the mole fraction solubility at a partial pressure of 101.3 kPa from other measurements by Williams and by other workers fit the equation below.

$$
\ln x_{\mathrm{CO}_{2}}=-13.921+1547.7 /(T / K)+0.72764 \ln (T / K)
$$

temperature range $=$ 203.2-316.2 K
standard deviation in $x_{\mathrm{CO}_{2}}=0.00128$
Three groups (1,9,17) measured solubility in 1,2 -dimethylbenzene. Values of mole fraction solubility at a partial pressure of 101.3 kPa are consistent with each other and fit the equation below.

$$
\operatorname{lnx}_{\mathrm{CO}_{2}}=-52.371+3066.3 /(T / K)+6.5757 \ln (T / K)
$$

temperature range $=$ 253.2-313.2
standard deviation in ${ }_{\mathrm{CO}_{2}}=0.00016$
Six groups ( $1,4,6,8,9,17$ ) measured solubility in 1,3 -dimethylbenzene. Again there is good consistency between different sets of data. Values of mole fraction solubility fit the following equation

$$
\ln x_{\mathrm{CO}_{2}}=-49.384+2960.3 /(T / K)+6.1263 \ln (T / K)
$$

temperature range $=233.2-313.1 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=0.00015$
Solubility in 1,4-dimethylbenzene was measured at 293.15 K by Rosenthal (9) and by Piskovsky and Lakomy (1). Byrne et al.(17) measured the solubility at $313.13 \mathrm{~K}, 298.12 \mathrm{~K}$ and three temperatures between 288 K and 289 K. Values of mole fraction solubility at a partial pressure of 101.3 kPa are consistent with each other but the temperature range is small in comparison with measurements of the solubility in the other two isomers of dimethylbenzene. These values fit the following equation

$$
\ln _{\mathrm{CO}_{2}}=-247.112+11816.1 /(T / K)+35.617 \ln (T / K)
$$

temperature range $=$ 288.2-313.1
standard deviation in $x_{\mathrm{CO}_{2}}=0.00021$

COMPONENTS:

1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]
2. Aromatic Hydrocarbons

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

## CRITICAL EVALUATION:

Mole fraction solubilities at a partial pressure of 101.3 kPa at 293.15 K from smoothing equations for the three isomers are as follows:

$$
\begin{array}{ll}
\text { 1,2-dimethylbenzene } & 0.0105 \\
\text { 1,3-dimethylbenzene } & 0.0113 \\
\text { 1,4-dimethylbenzene } & 0.0114
\end{array}
$$

Bratzler et al.(18) have published the Bunsen coefficient for a mixture of isomers of dimethylbenzene at 293 k . The corresponding mole fraction solubility at a partial pressure of 101.3 kPa is 0.011 . The mole fraction solubility in a mixture of isomers at 293.15 K and 101.3 kPa from measurements by Vitovec (19) is 0.0109 . These values are consistent with the values for the individual isomers.

Solubility in ethylbenzene has been measured by Piskovsky and Lakomy (1) from 198.2 K to 293.2 K and by Luhring and Schumpe (8) at 293.2 K . Piskovsky's measurements are self consistent. The mole fraction solubility at 293.2 K and a partial pressure of 101.3 kPa from Piskovsky's measurements is 0.0108 compared with Luhring's value of 0.01022 . Values from the two sources fit the equation

$$
\ln x_{\mathrm{CO}_{2}}=-52.108+3033.9 /(T / K)+6.5525 \ln (T / K)
$$

temperature range $=198.2-293.2 \mathrm{~K}$
standard deviation in $\mathrm{X}_{\mathrm{CO}_{2}}=0.00049$
Just (6) reported the solubility of carbon dioxide in (1-methylethyl)- . benzene at temperatures from 288.15 K to 298.15 K . Values of mole fraction solubility are close to those for ethylbenzene but no other data on this solvent are available for comparison.

Luhring and Schumpe ( 8 ) reported a Henry's constant for solubility in 1,2,4-trimethylbenzene at 293.2 K . This corresponds to a mole fraction solubility of 0.01125 at a partial pressure of 101.3 kPa which is close to values for solubility in the dimethylbenzenes under these conditions. No other measurements of the solubility in this solvent are available for comparison.

Tremper and Prausnitz (20) have published Henry's constants for 1, 1'-methylenebisbenzene for 300 K to 475 K . Horvath et al. (4) published a Henry's constant for 300 K of 124 atm . This is very close to Tremper's value of 123 atm . Mole fraction solubilities for a partial pressure of 101.3 kPa calculated from Henry's constants in the two papers fit the equation below.

$$
\ln \mathrm{CO}_{2}=-37.246+2368.7 /(T / K)+4.3008 \ln (T / K)
$$

temperature range $=300-475 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=6.2 \times 10^{-5}$
Measurements by Glazunova (21) show that the mole fraction solubility in 1, ${ }^{\prime}$ '-methylenebis (methylbenzene) in the temperature range 293 K to 393 K is greater than that in 1, $1^{\prime}$-methylenebisbenzene under the same conditions. Mole fraction solubility in methylbenzene is greater than that in benzene under similar conditions. No other measurements of the solubility in 1, ${ }^{\prime}$-methylenebis(methylbenzene) are available for comparison. Glazunova's measurements fit the equation given below. This equation can only be accepted on a tentative basis.

$$
\ln x_{\mathrm{CO}_{2}}=-8.3777+1156.2 /(T / K)
$$

temperature range $=293-393 \mathrm{~K}$
standard deviation in $\mathrm{X}_{\mathrm{CO}_{2}}=0.00019$

COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; $[124-38-9]$   2. Aromatic Hydrocarbons	EVALUATOR:   Peter G.T. Fogg,   School of Applied Chemistry,   Polytechnic of North London,   Holloway Road, London, N7 8DB, U.K.   July 1991
Critical evaluation:	
The solubility of carbon dioxide in ( 1 -methylethyl)-1, 1'-biphenyl has been measured to high pressures at $293.2 \mathrm{~K}, 373.2 \mathrm{~K}$ and 473.2 K by Bogdanov (22). The mole fraction solubility at 293.2 K and a partial pressure of 101.3 kPa is approximately 0.0113 . No measurements by other authors are available for comparison.	
Horvath et al.(4) have found a Henry's constant of 151 atm for dissolution in 1 -methylnaphthalene at 300 K . Chai and Paulaitis (23) reported Henry's constants at temperatures from 298.6 K to 330.2 K . The interpolated value at 300 K is 151.4 , close to the value reported by Horvath. Mole fraction solubilities calculated from Henry's constants published by the two groups fit the equation	
$\operatorname{lnx}_{\mathrm{CO}_{2}}=-1.8516+759.73 /(T / \mathrm{K})-0.99967 \ln (T / \mathrm{K})$	
temperature range $=298.6-311.0$   standard deviation in $x_{C O_{2}}=3.4 \times 10^{-5}$	
A selection of mole fraction solubilities in aromatic hydrocarbons is shown in Table 1 and Fig 1.	

## REFERENCES

1. Piskovsky, L.; Lakomy, J. Chem. Prumys1. 1965, 15, 745-746.
2. Krauss, W.; Gestrich, W. Chem.-Tech. (Heidelberg) 1977, 6, 513-516.
3. Patyi, L.; Furmer, I.E.; Makranczy, J.; Sadilenko, A.S.; Stepanova, Z.G.; Berengarten, M.G. Zh. Prikl. Khim. 1978, 51, 1296-1300.
4. Horvath, M.J.; Sebastian, H.M.; Chao, K.-C. Ind. Eng. Chem. Fundam. 1981, 20, 394-396.
5. Gjaldbaek, J.H. Acta Chem. Scand. 1953, 7, 537-544.
6. Just, G. Z. Phys. Chem. 1901, 37, 342-367.
7. Byrne, J.E.; Battino, R.; Danforth, W.F. J. Chem. Thermodyn. 1974, 6, 245-250.
8. Luhring, P.; Schumpe, A. J. Chem. Eng. Data 1989, 34, 250-252.
9. Rosenthal, W. Thes. Fac. Sci. Univ. Strasbourg (France) 1954.
10. Koudelka, L. Chem. Zvesti 1964, 18, 178-185.
11. Kaminishi, G-I.; Yokoyama, C.; Takahashi, S. Fluid Phase Equilibria 1987, 34, 83-99.
12. Williams, D.L. U.S. Atomic Energy Commission Report LA-1484, 1952.
13. Gjaldbaek, J.C.; Andersen, E.K. Acta Chem. Scand. 1954, 8, 1398-1413.
14. Field, L.R.; Wilhelm, E.; Battino, R. J. Chem. Thermodyn. 1974, 6, 237-243.
15. Chen, H.; Liu, M.; Zheng, L. Zhejiang Daxue Xuebao 1985, 19(1), 140-148.

COMPONENTS:	EVALUATOR:
1. Carbon dioxide; $\mathrm{CO}_{2} ;$	Peter G.T. Fogg,   School of Applied Chemistry,   Polytechnic of North London,   Holloway Road, London, N7 8DB, U.K.   2. Aromatic Hydrocarbons   July 1991

CRITICAL EVALUATION:
16. Shenderei, E.R.; Zel'venskii, Ya.D.; Ivanovskii, F.P. Khim. Prom. 1960, (5), 18-22.
17. Byrne, J.E.; Battino, R.; Wilhelm, E. J. Chem. Thermodyn. 1975, 7, 515-522.
18. Bratzer, K.D.; Doerges, A.; Herbert, W. German Patent No. 1769197 to Metallgesellschaft $A G$, 1971.
19. Vitovec, J. Collect. Czech. Chem. Comm. 1968, 33, 1203-1310.
20. Tremper, K.K.; Prausnitz, J.M. J. Chem. Eng. Data 1976, 21, 295-299.
21. Glazunova, T.V.; Ryabov, M.I.; Lipshtein, R.A. Sov. At. Energ. 1987, 62, 449-451.
22. Bogdanov, F.F. Issled. Teploprovodnosk. Inst. Telo. Mesoobmena Akad. Nauk. Beloruss. S.S.R. 1967, 230-236.
23. Chai, C-P.; Paulaitis, M.E. J. Chem. Eng. Data 1981, 26, 277-279.

## COMPONENTS :

1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]
2. Aromatic Hydrocarbons

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

## CRITICAL EVALUATION:



Fig. 1 Mole fraction solubility of carbon dioxide in various aromatic hydrocarbons at a partial pressure of gas of 101.3 kPa .
The curves showing the variation of solubility with temperature correspond to equations derived by the evaluator.

A reference line corresponding to values from the Raoult's law equation is also shown.

COMPONENTS:	EVALUATOR:
1. Carbon dioxide; $\mathrm{CO}_{2} ;$	
[124-38-9]	
2. Aromatic Hydrocarbons	Peter G.T. Fogg,   School of Applied Chemistry,   Polytechnic of North London,   Holloway Road, London, N7 8DB, U.K.   July 1991

CRITICAL EVALUATION:

Table 1.
Mole fraction solubilities of carbon dioxide at a partial pressure of 101.3 kPa in aromatic hydrocarbons.

Solvent	T/K	${ }^{\text {c }} \mathrm{CO}_{2}$		Reference
Benzene	293.15	0.00969	$\pm 0.00038$	*
	298.15	0.00926	$\pm 0.00038$	*
Methylbenzene	293.15	0.01102	$\pm 0.00128$	*
	298.15	0.01021	$\pm 0.00128$	*
1,2-Dimethylbenzene	293.15	0.01050	$\pm 0.00016$	*
	298.15	0.00984	$\pm 0.00016$	*
1,3-Dimethylbenzene	293.15	0.01129	$\pm 0.00015$	*
	298.15	0.01057	$\pm 0.00015$	*
1,4-Dimethylbenzene	293.15	0.01138	$\pm 0.00021$	*
	298.15	0.01057	$\pm 0.00021$	*
1,2,4-Trimethylbenzene				
	293.15	0.01125		8
Ethylbenzene	293.15	0.01072	上0.00049	*
	298.15	0.01006	$\pm 0.00049$	*
(1-Methylethyl)benzene				
	298.15	0.0101		6
1,1'-Methylenebisbenzene				
	298.15	0.00825	$\pm 0.00006$	*
1,1'-Methy'lenebis (methylbenzene)				
	293.15	0.01165		21
	298.15	0.01111		21 +
1-Methylnaphthalene	298.15	0.00674	$\pm 0.00003$	*


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) Benzene; $\mathrm{C}_{6} \mathrm{H}_{6}$; [71-43-2]	ORIGINAL MEASUREMENTS:   Just, G.   2. Phys. Chem. 1901, 37, 342-367.
VARIABLES: $\begin{aligned} T / \mathrm{K} & =288.15-298.15 \\ p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm}) \end{aligned}$	PREPARED BY:   M. E. Derrick   H. L. Clever
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket.   The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid.   (2) Benzene. No information.   ESTIMATED ERROR: $\delta L / L=0.03 \text { (compiler) }$   REFERENCES:   1. Timofejew, W. $\text { 2. Phys. Chem. 1890, 6, } 141 .$   2. Steiner, P.   Ann. Phys. (Leipzig) 1894, 52, 275.



COMPONENTS: $\mid$ ORIGINAL MEASUREMENTS:

1. Carbon dioxide; $\mathrm{CO}_{2} ; \quad$ Piskovsky, L.; Lakomy, J. [124-38-9]
2. Aromatic hydrocarbons

EXPERIMENTAL VALUES:

Solvent	T/K	Kuenen coeffici	$\begin{aligned} & x_{\mathrm{CO}_{2}} \mathrm{at} \\ & { }_{\mathrm{CO}_{2}}=101.3 \mathrm{kPa} * \end{aligned}$
1,3-Dimethylbenzene	233.15	8.09	0.0372
$\mathrm{C}_{8} \mathrm{H}_{10}$; [108-38-3]	243.15	6.20	0.0287
	253.15	4.88	0.0228
	263.15	3.94	0.0185
	273.15	3.26	0.0153
	283.15	2.75	0.0130
	293.15	2.35	0.0111
$\begin{aligned} & \text { 1,4-Dimethylbenzene; } \\ & \mathrm{C}_{8} \mathrm{H}_{10} ;[106-42-3] \end{aligned}$	293.15	2.38	0.0112
Ethylbenzene	198.15	27.92	0.1176
$\mathrm{C}_{8} \mathrm{H}_{10}$; [100-41-4]	213.15	14.22	0.0635
	233.15	7.48	0.0345
	253.15	4.58	0.0214
	273.15	3.11	0.0146
	283.15	2.65	0.0125
	293.15	2.29	0.0108
Kuenen coefficient is defined as the volume of gas, reduced to			
5 K and 101.325 kPa , dissolved by one gram of solvent when the partial			




COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Benzene; $\mathrm{C}_{6} \mathrm{H}_{6}$; [71-43-2]	ORIGINAL MEASUREMENTS:   Patyi, L.; Furmer, I. E.; Makranczy, J.; Sadilenko, A. S.; Stepanova, Z. G.; Berengarten, M. G. 2h. Prikl. Khim. 1978, 51, 1296- $1300 .$
VARIABLES: $T / K=298.15$	PREPARED BY:   C. L. Young
EXPERIMENTAL VALUES: $\begin{array}{ll} T / K & \alpha^{+} \end{array}$	Mole fraction of carbon dioxide at a partial pressure of 101.325 kPa ${ }^{x} \mathrm{CO}_{2}$
$298.15 \quad 2.23$	0.00888
${ }^{\dagger}$ volume of gas (measured dissolved by one volume	t 101.325 kPa and 273.15 K ) f benzene.
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   Volumetric method. Pressure measured when known amounts of gas were added, in increments, to a known amount of liquid in a vessel of known dimensions. Corrections were made for the partial pressure of solvent. Details in ref. (1).	SOURCE AND PURITY OF MATERIALS:   Purity better than 99 mole per   cent as determined by gas   chromatography.


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Benzene; $\mathrm{C}_{6} \mathrm{H}_{6}$; [71-43-2]	ORIGINAL MEASUREMENTS: ```Horvath, M. J.; Sebastian, H. M.; Chao, K.-C. Ind. Eng. Chem. Fundam. 1981, 20, 394-396.```
VARIABLES: $\begin{aligned} & T / \mathrm{K}=300 \\ & P / \mathrm{kPa} \underset{\approx}{201.3} \end{aligned}$	PREPARED BY: $\quad$ c. L. Young
EXPERIMENTAL VALUES:	
300109	0.0091
$\dagger$ at a partial pressure of carbon dioxide of 1 atmosphere calculated by compiler assuming $\phi=0.995$.	
auxiliary information	
METHOD/APPARATUS/PROCEDURE:   Gas chromatographic analysis of a saturated solution at barometric pressure. Henry's constants determined from formula $H=\left(p-p_{0}\right) \phi(m+1) / m$   where $p$ is the total pressure, $p$ 。 the vapor pressure of the solvent and $\phi$ is the fugacity coefficient of the gas. The mole ratio, $m$, is defined by $\mathrm{m}=\frac{\text { Moles of carbon dioxide }}{\text { in gas phase }} \begin{gathered} \text { Moles of carbon dioxide } \\ \text { in liquid phase } \end{gathered}$	SOURCE AND PURITY OF MATERIALS:   1. No details given.   2. Purity stated as "~ $100 \%$ ".   ESTIMATED ERROR: $\delta T / \mathrm{K}= \pm 0.25 ; \quad \delta P / \mathrm{atm}= \pm 3 \%$   (estimated by compiler).
	REFERENCES:


COMPONENTS :   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$; [71-43-2]	
VARIABLES: $\begin{aligned} & T / K=273.15-303.15 \\ & P / \mathrm{MPa}=0.826-5.688 \end{aligned}$	PREPARED BY: P.G.T. Fogg
EXPERIMENTAL VALUES:	constant   $H / \mathrm{kPa}$ Mole fraction   $x_{\mathrm{CO}_{2}}$at   $\mathrm{P}_{\mathrm{CO}_{2}}=101.3 \mathrm{kPa}^{*}$   8390 0.01208   10370 0.00977   11060 0.00916    given approximately by $\mathrm{P}_{\mathrm{CO}_{2}} / \mathrm{H}$
AUXILIARY I	Information
METHOD/APPARATUS/PROCEDURE:   Apparatus able to withstand pressures to 20 MPa was used to determine phase equilibria by the bubble point method. Henry's constants at zero pressure were obtained from the experimental data by using the method described by Prausnitz and Chueh (1)	SOURCE AND PURITY OF MATERIALS:   1. Supplied by Showa Tansan Industry Co., Ltd; purity better than 99.9\%   2. Supplied by Merck Co. Ltd; purity better than 99.7\%   ESTIMATED ERROR: $\begin{aligned} & \delta T / K= \pm 0.01 \text { (authors) } \\ & \delta P / \mathrm{kPa}= \pm 0.1 \end{aligned}$   REFERENCES:   1. Prausnitz, J.M.; Chueh, P.L. Computer Calculations for High Pressure Vapor-Liquid Equilibria, Prentice-Hall, Englewood Cliffs, USA, 1968.


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Benzene and methylbenzenes	ORIGINAL MEASUREMENTS:   Luhring, P.; Schumpe, A. J. Chem. Eng. Data, 1989, 34, 250-252.
VARIABLES: $T / K=293.2$	PREPARED BY:   C.I. Young
EXPERIMENTAL VALUES:	
$T / \mathrm{K} \quad$Henry's Constant*   $/\left(\mathrm{Pa} \mathrm{m}^{3} / \mathrm{mol}^{-1}\right)$	Mole fraction of $\mathrm{CO}_{2}$ at 1 atm partial pressure
Benzene; $\mathrm{C}_{6} \mathrm{H}_{6} ;$   293.2 946   293.2 Methylbenzene, (tolue    965   293.2 1,3-Dimethylbenzene, (m-x    1067   293.2 1,2,4-Trimethylbenze    Ethylbenzene; $\mathrm{C}_{8} \mathrm{H}_{10} ;$   293.2 11251	
*referred to as Henry's constant in source but appears to be usual Henry's constant multiplied by molar volume.   tcalculated by compiler using density data taken from ref. (1).	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE   Little infomation given in source. Method consisted of equilibrating known amounts of degassed liquid and gas and measuring the change in pressure. Equilibration was reached in 3 to 6 minutes. Some details given in ref	SOURCE AND PURITY OE MATERIALS:   Obtained from Merck at the highest available purity. No other details given.   ESTIMATED ERROR: $\begin{aligned} & \delta T / K= \pm 0.1 \text { (authors) } \\ & \delta x / x= \pm 0.01 \text { to } 0.15 \text { (compiler) } \end{aligned}$   REFERENCES:   1. Riddick, J.A.; Bunger, W.B.;1970 Organic Solvents, WileyInterscience, New York.   2. Schumpe, A.; Quiker, G.; Decker, W.D.   Adv. Biochem. Eng., 1982, 24, 1.


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) Methyl benzene or toluene; $\mathrm{C}_{7} \mathrm{H}_{8}$; [108-88-3]	ORIGINAL MEASUREMENTS:   Just, G.   z. Phys. Chem. 1901, 37, 342-367.
VARIABLES: $\begin{aligned} T / K & =288.15-298.15 \\ p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm}) \end{aligned}$	PREPARED BY:   M. E. Derrick   H. L. Clever
EXPERIMENTAL VALUES:   The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 kPa ( 1 atm ) partial pressure of the gas.	
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket.   The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid.   (2) Methyl benzene. No information.   ESTIMATED ERROR: $\delta L / L=0.03 \text { (compiler) }$   REFERENCES:   1. Timofejew, W.   2. Phys. Chem. 1890, 6, 141.   2. Steiner, P.   Ann. Phys. (Leipzig) 1894, 52, 275. 275.



COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) Methylbenzene or toluene; $\mathrm{C}_{7} \mathrm{H}_{8}$; [108-88-3]	ORIGINAL MEASUREMENTS:   Gjaldbaek, J. C.; Andersen, E. K.   Acta Chem. Scand. 1954, 8,   1398-1413.
VARIABLES: $\begin{aligned} T / \mathrm{K} & =298.15 \\ p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm}) \end{aligned}$	PREPARED BY:   J. Chr. Gjaldbaek
EXPERIMENTAL VALUES:   The mole fraction and Ostwald calculated by the compiler.	Bunsen   efficient   STP) $\mathrm{cm}^{-3} \mathrm{~atm}^{-1}$ Ostwald   Coefficient   $L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}$   2.22 2.42   2.20 2.40    coefficient values were
auxiliary information	
METHOD/APPARATUS/PROCEDURE:   The apparatus consists of a calibrated all-glass manometer and bulb enclosed in an air thermostat. The solvent is added and degassed in the apparatus. The gas is added. The apparatus and contents are shaken until equilibrium is attained. Mercury is used for calibration and as the confining liquid.   The absorbed volume of gas is calculated from the initial and final amounts of gas, both saturated with solvent vapor. The amount of solvent is determined by the weight of displaced mercury. Further details are in the references ( 1,2 ).   The mole fraction values are at one atm pressure assuming Henry's law is obeyed.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Prepared from potassium bicarbonate and   sulfuric acid. 99.8-99.9\% $\mathrm{CO}_{2}$.   (2) Methylbenzene. Riedel-de-Haën. Analytical reagent. Fractionated by distillation. B.p. $(760 \mathrm{mmHg}) /{ }^{\circ} \mathrm{C}=110.75-110.80$, refractive index $n_{D}\left(25.1^{\circ} \mathrm{C}\right)=$ 1.4936-1.4938.   ESTIMATED ERROR: $\begin{aligned} \delta T / K & = \pm 0.05 \\ \delta x_{1} / x_{1} & = \pm 0.015 \end{aligned}$   REFERENCES:   1. Lannung, A.   J. Am. Chem. Soc. 1930, 52, 68.   2. Gjaldbaek, J. C.   Acta Chem. Scand. 1952, 6, 623.

## COMPONENTS:

1. Carbon dioxide; $\mathrm{CO}_{2}$;
[124-38-9]
2. Methanol; $\mathrm{CH}_{4} \mathrm{O}$; [67-56-1]

2-Butanone; $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$; [78-93-3] Acetic acid, ethyl ester, (ethyl acetate); $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$; [141-78-6] Methylbenzene, (toluene); $\mathrm{C}_{7} \mathrm{H}_{8}$; [108-88-3]

VARIABLES:
$T / \mathrm{K}=228-248 \quad P / \mathrm{kPa}=101-1621$

## ORIGINAL MEASUREMENTS:

Shenderei, E.R.; Zel'venskii, Ya.D.; Ivanovskii, F.P.

Khim. Prom. 1960, (5), 18-22.

PREPARED BY:
P.G.T. Fogg

EXPERIMENTAL VALUES:

Solvent	T/K	$H^{*} / \mathrm{atm}$	$\begin{aligned} & \text { Henry's } \\ & H^{*} / \mathrm{kPa} \end{aligned}$	$\begin{gathered} \text { constant } \\ H^{*} / \mathrm{atm} \end{gathered}$	$\stackrel{H}{H * *}_{*} / \mathrm{kPa}$ §	$\begin{gathered} x_{\mathrm{CO}_{2}} \text { at } \\ P_{\mathrm{CO}_{2}}=101.3 \mathrm{kPa} t \end{gathered}$
Methanol 1	248.0	42.2	4276	41.5	4205	0.0241
	238.2	29.5	2989	27.5	2786	0.0364
	228.1	20.9	2118	19.8	2006	0.0505
2-Butanone	248.0	15.7	1591	15.3	1550	0.0654
	238.2	11.5	1165	11.6	1175	0.0862
	228.1	8.0	811	7.7	780	0.1299
Ethyl acetate	248.0	12.2	1236	12.3	1246	0.0813
	238.2	9.1	922	9.0	912	0.1111
	228.1	6.3	638	6.2	628	0.1613
Methylbenzene	248.0	41.4	4195	40.5	4104	0.0247
	238.2	33.2	3364	32.3	3273	0.0310
	228.1	24.8	2513	23.7	2401	0.0422

* Values of Henry's constant based upon measurements made in the pressure range 101-1621 kPa and calculated by a graphical method from the relationship

$$
R T \ln \left(f_{2} / x_{2}\right)=R T \ln H+\int_{0}^{P} \bar{V}_{2} d P-A x_{2}
$$

where $f_{2}$ is the fugacity of the carbon dioxide at pressure $P$
$\bar{V}_{2}$ is the partial molar volume of carbon dioxide at infinite dilution
$H$ is equal to the limiting value of $P_{2} / x_{2}$ at $P_{2}=0$; $A$ is a constant.
** Values of Henry's constant based upon measurements of the solubility of carbon dioxice at a partial pressure of 101.3 kPa .

+ calculated by the compiler and equal to the reciprocal of $H^{* *} / \mathrm{atm}$
§ calculated by the compiler
$\pi$ the authors used data for methanol which they had published earlier (1).

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A static method was used. A glass (low pressure) section of the	No information
	ESTIMATED ERROR
pressure section made of metal.	
Carbon dioxide in the low pressure section was allowed to condense in a	$\mathrm{CO}_{2}= \pm 5 \%$ (compiler)
cooled metal bulb in the high pressure section. The quantity of	REFERENCES:
gas collected was found from pressure changes in the glass	hend
section. The valve connecting the	Ivanovskii, F.P.
two section was then closed and the	Khim. Prom. 1959, (4), 328.
condensed gas allowed to evaporate to generate the required pressure and	to come in contact with the solvent
under test which was held in an absorption cell in a thermostat bath. The	
cell was stirred magnetically. The	ntity of unabsorbed gas when
equilibrium was reached was calculated from the final pressure and volume	


EXPERIMENTAL VALUES:   The gas solubility values were adjusted to a $\mathrm{CO}_{2}$ partial pressure of 101.325 kPa ( 1 atm ) by Henry's law.   The Bunsen coefficients were calculated by the compiler.   Smoothed Data: For use between 283.15 and 313.24 K . $\ln x_{1}=-8.3963+11.3873 /(T / 100 \mathrm{~K})$   The standard error about the regression line is $1.48 \times 10^{-4}$.   aUXILIARY information   METHOD/APPARATUS/PROCEDURE:   The solubility apparatus is based on the design of Morrison and Billett (I) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3).   Degassing. Up to $500 \mathrm{~cm}^{3}$ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid $\mathrm{N}_{2}$ trap until the permanent gas residual pressure drops to 5 microns.   Solubility Determination. The degassed solvent is passed in a thin film down a glass spiral tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.   SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Either Matheson Co., Inc. or Air Products and Chemicals, Inc. Purest grade available, minimum purity greater than 99 mole per cent.   (2) Methylbenzene. Phillips Petroleum. Pure Grade. Distilled.   ESTIMATED ERROR: $\begin{aligned} \delta T / \mathrm{K} & =0.03 \\ \delta P / \mathrm{mmHg} & =0.5 \\ \delta x_{1} / x_{1} & =0.005 \end{aligned}$   REFERENCES:   Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033.   2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. 1968, 45, 830.   3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.	



COMPONENTS :   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Methylbenzene, (toluene); $\mathrm{C}_{7} \mathrm{H}_{8}$; [108-88-3]	ORIGINAL MEASUREMENTS: ```Horvath, M. J.; Sebastian, H. M.; Chao, K.-C. Ind. Eng. Chem. Fundam. 1981, 20, 394-396.```
VARIABLES: $\begin{aligned} & T / K=298 \text { or } 300 \\ & P / \mathrm{kPa}=101.3 \end{aligned}$	Prepared by: $\begin{array}{ll}\text { c. L. Young }\end{array}$
EXPERIMENTAL VALUES:	
298 102 0.0098   300 106 0.0094	
† at a partial pressure of carbon dioxide of 1 atmosphere calculated by compiler assuming $\phi=0.995$.	
auxiliary information	
METHOD/APPARATUS/PROCEDURE:   Gas chromatographic analysis of a saturated solution at barometric pressure. Henry's constants determined from formula $H=\left(p-p_{0}\right) \phi(\mathrm{m}+1) / \mathrm{m}$   where $p$ is the total pressure, $p_{\text {。 }}$ the vapor pressure of the solvent and $\phi$ is the fugacity coefficient of the gas. The mole ratio, $m$, is defined by $\mathfrak{m}=\frac{\text { Moles of carbon dioxide }}{\text { in gas phase }}$	SOURCE AND PURITY OF MATERIALS:   1. No details given.   2. Purity stated as "~ $100 \%$ ".   ESTIMATED ERROR: $\delta T / K= \pm 0.25 ; \quad \delta P / \mathrm{atm}= \pm 3 \%$   (estimated by compiler).
	REFERENCES:



COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) Benzene; $\mathrm{C}_{6} \mathrm{H}_{6}$;   1,2-Dimethylbenzene; $\mathrm{C}_{8} \mathrm{H}_{10}$;	```ORIGINAL MEASUREMENTS: Rosenthal, W. Thes. fac. sci. Univ. Strasbourg (France) 1954.```
$\begin{aligned} & 95-47-6] \\ & 1,3-\text { Dimethylbenzene; } \mathrm{C}_{8} \mathrm{H}_{10} ; \\ & {[108-38-3]} \end{aligned}$	VARIABLES: $\begin{aligned} T / \mathrm{K} & =293.15 \\ p / \mathrm{kPa} & =101.325 \end{aligned}$
$\underset{\substack{\text { l } \\[106-42-3]}}{ } \mathrm{C}_{8} \mathrm{H}_{10}$;	PREPARED BY: H. L. Clever
EXPERIMENTAL VALUES:	
	Bunsen   (STficient $\mathrm{Sm}^{-3} \mathrm{~atm}^{-1}$ Mole   Fraction ${ }^{2}$   $x_{1}$   2.47   1.940 0.00988   2.04 0.01051   2.05 0.0112    0.0113   ng real gas molar volumes.
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   The prepared solvent solution was charged into an evacuated cell after degassing, and the mass of solvent was determined by weight. Gas was introduced into the cell from a measuring burette in which the gas was stored over mercury. The cell was agitated while the gas pressure was maintained by adjusting the gas volume. The Ostwald coefficient was determined from the mass of solvent and volume of gas used. Solubilities were measured at pressures above and below atmospheric.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Source and purity not given. An aqueous "soda" solution absorbed 99.8\% of the gas.   (2) Aromatic hydrocarbons.   ESTIMATED ERROR: $\begin{aligned} \delta T / \mathrm{K} & = \pm 0.2 \\ \delta p / \mathrm{kPa} & = \pm 0.1 \\ \delta L / L & = \pm 0.02 \text { (compiler) } \end{aligned}$   REFERENCES:   Some data in the thesis have been published. See:   1. Maillard, A.; Rosenthal, W. Compt. rend. 1952, 234, 2546-8.



COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) 1,3-Dimethylbenzene or m-xylene; $\mathrm{C}_{8} \mathrm{H}_{10}$; [108-38-3]	ORIGINAL MEASUREMENTS:   Just, G.   2. Phys. Chem. 1901, 37, 342 - 367.
VARIABLES: $\begin{aligned} T / \mathrm{K} & =288.15-298.15 \\ p_{I} / \mathrm{kPa} & =101.325(1 \mathrm{~atm}) \end{aligned}$	PREPARED BY: M. E. Derrick   H.
EXPERIMENTAL VALUES:   The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at $101.325 \mathrm{kPa}(\mathrm{l} \mathrm{atm})$ partial pressure of the gas.	
aUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket.   The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid.   (2) 1,3-Dimethylbenzene. No information.   ESTIMATED ERROR: $\delta L / L=0.03 \text { (compiler) }$   REFERENCES:   1. Timofejew, W.   Z. Phys. Chem. 1890, 6, 141.   2. Steiner, $P$.   Ann. Phys. (Leipzig) 1894, 52, 275.



COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. 1,3-Dimethylbenzene ( $m$-xylene); $\mathrm{C}_{8} \mathrm{H}_{10}$; [108-38-3]	ORIGINAL MEASUREMENTS:   Horvath, M. J.; Sebastian, H. M.;   Chao, K.-C.   Ind. Eng. Chem. Fundam.   1981, 20, 394-396.
VARIABLES: $\begin{aligned} & T / \mathrm{K}=298 \text { or } 300 \\ & \mathrm{P} / \mathrm{kPa} \approx 101.3 \end{aligned}$	PREPARED BY:   C. L. Young
EXPERIMENTAL VALUES:	
$\begin{array}{ll} 298 & 94 \\ 300 & 95 \end{array}$	$\begin{aligned} & 0.0106 \\ & 0.0105 \end{aligned}$
$\dagger$ at a partial pressure of carbon dioxide of 1 atmosphere calculated by compiler assuming $\phi=0.995$.	
auxiliary information	
METHOD/APPARATUS/PROCEDURE:   Gas chromatographic analysis of a saturated solution at barometric presisure. Henry's constants determined from formula $H=\left(p-p_{0}\right) \phi(\mathrm{m}+1) / \mathrm{m}$   where $p$ is the total pressure, $p_{\text {o }}$ the vapor pressure of the solvent and $\phi$ is the fugacity coefficient of the gas. The mole ratio, $m$, is defined by $\mathrm{m}=\frac{\text { Moles of carbon dioxide }}{\text { in gas phase }} \text { Moles of carbon dioxide }$	SOURCE AND PURITY OF MATERIALS:   1. No details given.   2. Purity 99.93 mole per cent.   ESTIMATED ERROR:   $\delta T / \mathrm{K}= \pm 0.25 ; \quad \delta P / \mathrm{atm}= \pm 38$   (estimated by compiler).
	REFERENCES:


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) 1,4-Dimethylbenzene or p-xylene; $\mathrm{C}_{8} \mathrm{H}_{10}$; [106-42-3]	ORIGINAL MEASUREMENTS:   Byrne, J. E.; Battino, R.;   Wilhelm, E.   J. Chem. Thermodyn. 1975, 7, 515-522.
VARIABLES: $\begin{aligned} T / \mathrm{K}: & 288.17-313.13 \\ p_{1} / \mathrm{kPa}: & 101.325(1 \mathrm{~atm}) \end{aligned}$	PREPARED B
EXPERIMENTAL VALUES:   The Bunsen coefficients were calculated by the compiler.   The solubility values were adjusted to a carbon dioxide partial pressure of 101.325 kPa (1 atm) by Henry's law.   Smoothed Data: For use between 288.17 and 313.15 K . $\ln x_{1}=-8.3698+11.4868 /(T / 100 \mathrm{~K})$   The standard error about the regression line is $1.15 \times 10^{-4}$.   AUXILIARY INFORMATION   METHOD/APPARATUS/PROCEDURE:   The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3).   Degassing. Up to $500 \mathrm{~cm}^{3}$ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid $N_{2}$ trap until the permanent gas residual pressure drops to 5 microns.   Solubility Determination. The degassed solvent is passed in a thin film down a glass helical tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.   SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Either Air Products \& Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better.   (2) 1,4-Dimethylbenzene. Phillips Petroleum Co. Pure grade. Used as received.   ESTIMATED ERROR: $\begin{aligned} \delta \mathrm{T} / \mathrm{K} & =0.01 \\ \delta P / \mathrm{mmg} & =0.5 \\ \delta x_{1} / x_{1} & =0.001 \end{aligned}$   REFERENCES:   1. Morrison, T. J.i Billett, F. J. Chem. Soc. 1948, 2033.   2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oiz Chem. Soc. 1968, 45, 830.   3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.	


COMPONENTS :	ORIGINAL MEASUREMENTS:
1. Carbon dioxide; $\mathrm{CO}_{2}$; $[124-38-9]$   2. Dimethylbenzene; $\mathrm{C}_{8} \mathrm{H}_{10}$; [1330-20-7]	Vitovec, J.   Collect. Czech. Chem. Comm. 1968, 33, 1203-1310.
VARIABLES: $\begin{aligned} & P / \mathrm{kPa}=101.3 \\ & T / \mathrm{K}=293.15 \end{aligned}$	$\begin{aligned} & \text { PREPARED BY: } \\ & \text { P.G.T. Fogg } \end{aligned}$
EXPERIMENTAL VALUES:   * calculated by the compiler.   The compiler has assumed that a mixture of dimethylbenzene isomers was used for the experiment and has taken the density of the solvent to be the average of the values for the three isomers.	
auxiliary information	
METHOD/APPARATUS/PROCEDURE:   The solubility of carbon dioxide was measured by a saturation method as described in ref. (1). Carbon dioxide was passed through the solvent and the final concentration in the solution was measured by a titration method as described in ref. (2).	SOURCE AND PURITY OF MATERIALS:   1. Obtained from a pressure vessel. Purity at least 99\%.   2. Technical grade material.
	REFERENCES:   1. Vitovec, J.; Fried, V. Collect. Czech. Chem. Comm. 1960, 25, 1522.   2. Emmert, R.E.; Pigford, R.L. Chem. Eng. Progr. 1955, 50, 86.


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) (1-Methylethyl)-benzene or isopropyl benzene or cumene; $\mathrm{C}_{9} \mathrm{H}_{12}$; [98-82-8]	ORIGINAL MEASUREMENTS:   Just, G.   2. Phys. Chem. 1901, 37, 342-367.
VARIABLES: $\begin{aligned} T / \mathrm{K} & =288.15-298.15 \\ p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm}) \end{aligned}$	PREPARED BY:    M. E. Derrick    H. L.    Clever
EXPERIMENTAL VALUES:   The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 kPa ( 1 atm ) partial pressure of the gas.	
AUXILIARY	InFORMATION
METHOD/APPARATUS/PROCEDURE:   An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket.   The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid.   (2) (1-Methylethyl)-benzene.   No information.   ESTIMATED ERROR: $\delta L / L=0.03 \text { (compiler) }$   REFERENCES:   1. Timofejew, W.   z. Phys. Chem. 1890, 6, 141.   2. Steiner, P.   Ann. Phys. (Leipzig) 1894, 52, 275.


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. 1,1'-Methylenebisbenzene; (Diphenyl methane); $\mathrm{C}_{13} \mathrm{H}_{12}$; [101-81-5]	```ORIGINAL MEASUREMENTS: Tremper, K.K.; Prausnitz, J.M. J. Chem.Engng.Data 1976,21,295-9```
VARIABLES: $T / K=300-475$	PREPARED bY: C.L. Young
EXPERIMENTAL VALUES:	
300 123.0   325 161.0   350 196.0   375 228.0   400 259.0   425 287.0   450 309.0   475 306.0   a. Authors stated measurem pressures and values of within the Henry's-Law   b. Calculated by compiler between mole fraction a	0.00813 0.00621 0.00510 0.00439 0.00386 0.00348 0.00324 0.00327 ents were made at several solubility used were all region. assuming linear relationship nd pressure.
aUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE Volumetric apparatus similar to that described by Dymond and Hildebrand (1) pressure measured with a null detector and precision gauge. Details in ref. (2).	SOURCE AND PURITY OF MATERIALS:   Solvent degassed, no other details given.
	ESTIMATED ERROR: $\delta T / \mathrm{K}= \pm 0.1 ; \delta x_{\mathrm{CO}_{2}}= \pm 1 \% .$
	REFERENCES:   7. Dymond, J.; Hildebrand J.H. Ind. Eng. Chem. Fundam. 1967,6,130. 2. Cukor, P.M.; Prausnitz, J.M. Ind.Eng. Chem. Fundam. 1971, 20, 638.


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Diphenylmethane (I,I'-methylenebisbenzene); $\mathrm{C}_{13} \mathrm{H}_{12}$; [101-81-5]	ORIGINAL MEASUREMENTS: ```Horvath, M. J.; Sebastian, H. M.; Chao, K.-C. Ind. Eng. Chem. Fundam. 1981, 20, 394-396.```
VARIABLES: $\begin{aligned} & T / K=300 \\ & P / \mathrm{kPa} \simeq 101.3 \end{aligned}$	PREPARED BY:   C. L. Young
EXPERIMENTAL VALUES:	
300124	0.0080
$\dagger$ at a partial pressure of carbon dioxide of 1 atmosphere calculated by compiler assuming $\phi=0.995$.	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:   Gas chromatographic analysis of a saturated solution at barometric pressure. Henry's constants determined from formula $H=\left(p-p_{0}\right) \phi(m+1) / m$   where $p$ is the total pressure, $p_{\text {o }}$ the vapor pressure of the solvent and $\phi$ is the fugacity coefficient of the gas. The mole ratio, $m$, is defined by	SOURCE AND PURITY OF MATERIALS:   1. No details given.   2. Purity 99.06 mole per cent.   ESTIMATED ERROR: $\delta T / K= \pm 0.25 ; \quad \delta P / \mathrm{atm}= \pm 38$   (estimated by compiler).
$\mathrm{m}=\frac{\text { Moles of carbon dioxide }}{\text { in gas phase }} \begin{gathered} \text { Moles of carbon dioxide } \\ \text { in liquid phase } \end{gathered}$	REFERENCES:


COMPONENTS:   1. Carbon   2. 1,1'-Me (ditoly [1335-4	$\begin{aligned} & \text { ide; } \mathrm{CO}_{2} \text {; [124-38-9] } \\ & \text { Enebis (methylbenzene), } \\ & \text { thane) ; } \mathrm{C}_{15} \mathrm{H}_{16} ; \end{aligned}$	ORIGINAL MEASUREMENTS:   Glazunova, T.V.; Ryabov, M.I.;   Lipshtein, R.A.   Sov. At. Energ.,   1987, 62, 449-451.
VARIABLES:	293-393   101.3	PREPARED BY:   C.L. Young
Experimental values:		
$t /{ }^{\circ} \mathrm{C}$	$T / K$   Bunsen coef	Mole fraction at partial pressure of 1 atm.a
$\begin{array}{r} 20 \\ 50 \\ 70 \\ 120 \end{array}$	293 131.63   323 93.63   343 77.40   393 47.83	0.01165   0.008314   0.006883 0.004265
- Calculated by compiler assuming the ideal gas law and the molar volume of component 2 is $200.7 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$		
aUXilitary information		
METHOD/APPARATUS/PROCEDURE   Single pass flow system. In which sample of solvent was saturated with gas at or near atmospheric pressure. Sample of solvent withdrawn and analysed using gas chromatography fitted with thermal conductivity detector.		SOURCE AND PURITY OF MATERIALS:   1. Purity at least 99.8 per cent by volume.   2. Technical grade to TU 3810298-76 standard.
		ESTIMATED ERROR: $\delta T / K= \pm 0.5 ; \quad \delta x / x= \pm 0.10$   REFERENCES:



COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. 1-Methylnaphthalene; $\mathrm{C}_{11} \mathrm{H}_{10}$; [90-12-0]	ORIGINAL MEASUREMENTS:   Chai, C-P.; Paulaitis, M. E.;   J. Chem. Eng. Data, 1981, 26, 277-279.
VARIABLES: $T / K=298.6-330.2$	PREPARED BY:   C. L. Young
EXPERIMENTAL VALUES:	
$T / \mathrm{K} \quad \begin{gathered}\text { Henry's } \\ \text { constant /atm }\end{gathered} \begin{gathered}\text { Mole fraction a } \\ \text { of } \\ \end{gathered}$	$T / \mathrm{K} \begin{gathered}\text { Henry's } \\ \text { constant /atm }\end{gathered} \begin{aligned} & \text { Mole fraction a } \\ & \text { of } \\ & \end{aligned}$
$298.6 \quad 147.75 \quad 0.0067682$	$316.2 \quad 180.78 \quad 0.0055316$
$298.6149 .80 \quad 0.0066756$	$316.2 \quad 183.29 \quad 0.0054558$
$298.6149 .24 \quad 0.0067006$	$316.2181 .10 \quad 0.0055218$
$302.7 \quad 157.04 \quad 0.0063678$	$320.2 \quad 191.32 \quad 0.0052268$
304.3 159.32 0.0062767	$323.6194 .79 \quad 0.0051337$
307.1 163.75 0.0061069	323.6198 .420 .0050398
$307.1 \quad 165.48$ 0.0060430	$323.6195 .13 \quad 0.0051248$
307.1 164.18 0.0060909	$330.2 \quad 210.850 .0047427$
$311.0 \quad 172.37 \quad 0.0058015$	
a   Calculated by compiler for a partial pressure of 1 atm.	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:   Volumetric apparatus similar to that described in ref.(1). Known amount of carbon dioxide brought into contact with known amount of solvent. Reduction in pressure measured.	SOURCE AND PURITY OF MATERIALS:   1. Linde "bone dry" grade.   2. Fisher certified grade.
	ESTIMATED ERROR:
	REFERENCES:   1. Dymond, J. H.;Hildebrand, J. H.; Ind. Eng. Chem. Fundam., 1967, 6, 130.


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. 1-Methylnaphthalene; $\mathrm{C}_{11} \mathrm{H}_{10}$; [90-12-0]	ORIGINAL MEASUREMENTS:   Horvath, M. J.; Sebastian, H. M.; Chao, K.-C.   Ind. Eng. Chem. Fundam.   1981, 20, 394-396.
VARIABLES: $\begin{aligned} & T / \mathrm{K}=300 \\ & P / \mathrm{kPa} \xlongequal{\approx} 101.3 \end{aligned}$	PREPARED BY: $\quad$ c. L. Young
EXPERIMENTAL VALUES:	
300151	0.00659
${ }^{\dagger}$ at a partial pressure of carbon dioxide of 1 atmosphere calculated by compiler assuming $\phi=0.995$.	
auxiliary information	
METHOD/APPARATUS/PROCEDURE:   Gas chromatographic analysis of a saturated solution at barometric pressure. Henry's constants determined from formula $H=\left(p-p_{0}\right) \phi(\mathrm{m}+1) / \mathrm{m}$   where $p$ is the total pressure, $p_{0}$ the vapor pressure of the solvent and $\phi$ is the fugacity coefficient of the gas. The mole ratio, $m$, is defined by	SOURCE AND PURITY OF MATERIALS:   1. No details given.   2. Purity 99.51 mole per cent.   ESTIMATED ERROR:   $\delta T / \mathrm{K}= \pm 0.25 ; \quad \delta P / \mathrm{atm}= \pm 38$   (estimated by compiler).
$\mathfrak{m}=\frac{\text { Moles of carbon dioxide }}{\text { in gas phase }} \frac{\text { Moles of carbon dioxide }}{\text { in liquid phase }}$	REFERENCES:

COMPONENTS:

1. Carbon dioxide; $\mathrm{CO}_{2}$;
[124-38-9]
2. Alcohols

## EVALUATOR:

Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, 77 8DB, U.K. July 1991

## critical evaluation:

Solubility of carbon dioxide in alcohols.
Measurements by Makranczy et al.(1) indicate that mole fraction solubilities in straight chain primary alkanols at 298.2 K and a partial pressure of carbon dioxide of 101.3 kPa increase linearly with carbon number from methanol to dodecanol. This trend has not been confirmed by other workers. In cases where comparison is possible, the higher the carbon number the greater the divergence of Makranczy's data from other data which are available (Fig. 1).

Shenderei et al.(2) published values of the solubility in methanol from 13.33 kPa to 101.3 kPa at 194.5 K to 273.2 K . These measurements show linear variation of mole fraction solubility with pressure at every temperature even to a value of 0.25 at 194.5 K and 93.33 kPa . Linear variation to such a high value appears to be inconsistent with the measurements at high pressures and higher temperatures by Krichevskii and Lebedeva (3). These authors found that mole fraction solubility curves at constant temperature were convex towards the pressure axis.

Values of the mole fraction solubility at a partial pressure of 101.3 kPa may be found from published data for 202.6 K to $307.2 \mathrm{~K}(1-14)$. Values for 293.2 range from 0.00602 (6) to 0.00719 (7) and for 298.2 from 0.00568 (6) to 0.00635 (10). The evaluator recommends the smoothing equation for mole fraction solubilities at a partial pressure of 101.3 kPa which is given below. This is based upon ten of the papers (2-4, $7-10,13,14)$.

$$
{ }^{\ln x} \mathrm{CO}_{2}=-49.919+3484.7 /(T / K)+5.8265 \ln (T / K)
$$

temperature range $=$ 202.6-323.0 K
standard deviation in $x_{\mathrm{CO}_{2}}=0.00139$
Solubility in ethanol at a partial pressure of 101.3 kPa in the temperature range 212.7 K to 333.4 K has been published in at least nine papers (1,2,4,6,10-12,15,16). Shenderei et al.(2) measured the solubility in ethanol from 13.33 kPa to 101.3 kPa at 212.7 K to 248.0 K . Data are self consistent and there is no reason to doubt the reliability. The value of the mole fraction solubility at 298.15 ranges from 0.00624 (Takahashi et al.(16)) to 0.00728 (Won et al.(11)). Takahashi calculated solubility from the rate of absorption of gas. The method is an interesting one but is likely to be less reliable than conventional methods. Kunerth's measurements (6) from 291.2 K to 307.2 K may again be too low. The evaluator considers that measurements by Cargill and MacPhee (15) to be the most reliable in the temperature range 277.9 K to 333.4 K . These measurements agree with the solubility at 298.15 K measured by Won et al. (11) and are close to measurements by Kosakewitsch (12), Makranczy et al.(1) and by Luhring and Schumpe (4). The only measurements below 277 K are by Shenderei et al.(2). These appear to be consistent with measurements at higher temperatures and can be tentatively recommended.

The following equation for mole fraction solubility at a partial pressure of 101.3 kPa is based upon measurements by Cargill and MacPhee and by Won et al.

$$
\ln x_{\mathrm{CO}_{2}}=-22.278+2027.1 /(T / K)+1.8521 \ln (T / K)
$$

temperature range $=277.9-333.4 \mathrm{~K}$
standard deviation in $\mathrm{X}_{\mathrm{CO}_{2}}=1.56 \times 10^{-5}$


Fig. 1
Values from various sources of the mole fraction solubility of carbon dioxide in straight chain primary alkanols at 298.15 K and a partial pressure of gas of 101.3 kPa .
[] from the smoothing equations given by the evaluator
X Makranczy et al. (1)
4 Dimet al. (21)
$\triangle$ Wilcock et al. (20)

COMPONENTS:

1. Carbon dioxide; $\mathrm{CO}_{2}$;
[124-38-9]
2. Alcohols

EVALUATOR:
Peter G.T. Fogg, School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:
The equation given below for mole fraction solubility at a partial pressure of 101.3 kPa is based upon measurements by Cargill and MacPhee, by Won et $a 1 .$, and by Shenderei et al.

$$
\ln x_{\mathrm{CO}_{2}}=-56.735+3560.0 /(T / K)+6.9952 \ln (T / K)
$$

temperature range $=212.7-333.4 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=0.00038$
Solubility in 1 -propanol was measured by Shenderei et al.(2) from 13.3 kPa to 101.3 kPa at 212.7 K to 248.0 K . There is no reason to doubt the reliability but no similar measurements in this temperature and pressure range are available for comparison. Tokunaga (17) reported Ostwald coefficients and Henry's constants measured at or close to 101.3 kPa from 283.2 K to 313.2 K . Mole fraction solubility at 298.2 K is available from work by Macranczy et al.(1), Takahashi et al.(16) and Just (10). These values range from 0.00470 (Takahashi) to 0.00782 (Makranczy). The interpolated value from Tokunaga's work is 0.00679 . Takahashi used a method which depended upon measuring absorption rates and the value is much too low. Measurements by Makranczy et a1. for primary alkanols show a trend which differs from that shown by other measurements. The equation for mole fraction solubility given below and based upon measurements by Shenderel et al. and by Tokunaga et al. is recommended on a provisional basis. i.e.

$$
\ln x_{\mathrm{CO}_{2}}=-52.708+3312.9 /(T / K)+6.4248 \ln (T / K)
$$

temperature range $=212.7-313.2 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=0.00028$
Solubility in 2-propanol was also measured by Shenderei et al.(2) from 13.3 kPa to 101.3 kPa at 212.7 K to 248.0 K . Again there is no reason to doubt the reliability of these measurements but no other measurements in this temperature and pressure range are available for comparison.
Tokunaga (17) measured the solubility in this solvent at about 101.3 kPa in the temperature range 283.2 K to 313.2 K . A measurement at 293.2 K by Luhring and Schumpe (4) corresponds to a mole fraction solubility of 0.00720 . The value from Tokunaga's work is 0.00685 .

An equation for mole fraction solubility at a partial pressure of 101.3 kPa which is based upon measurements by Shenderei et al. and by Tokunaga is recommended on a provisional basis. i.e.

$$
{ }^{\ln x_{\mathrm{CO}_{2}}=-83.277+4450.3 /(T / K)+11.112 \ln (T / K)}
$$

temperature range $=212.7-313.2 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=0.00032$
Shenderei et al.(2) measured solubility in 1 -butanol from 13.3 kPa to 101.3 kPa at 212.7 K to 248.0 K . The data is self consistent but no other measurements under these conditions are available for comparison. The solubility reported by Makranczy et al.(1) corresponds to a mole fraction of 0.008832 at 298.15 K and a partial pressure of 101.3 kPa . Luhring and Schumpe's data (4) correspond to a mole fraction solubility of 0.00781 at 293.15 K and a partial pressure of 101.3 kPa . This latter value is not compatible with Makranczy's data. The evaluator considers that Luhring's value is more likely to be reliable. The following smoothing equation based upon measurements by Shenderei et al. and by Luhring and Schumpe is

COMPONENTS :

1. Carbon dioxide; $\mathrm{CO}_{2}$;
[124-38-9]
2. Alcohols

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:
recommended on a tentative basis until further measurements on the system are available.

$$
{ }^{\ln x} \mathrm{CO}_{2}=-52.475+3272.5 /(T / K)+6.4171 \ln (T / K)
$$

temperature range $=212.7-293.2 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=0.00038$
Shenderei et al.(2) measured the solubility in 2 -methyl-1-propanol from 13.3 kPa to 101.3 kPa at 212.7 K to 248.0 K . The data is self consistent but no other measurements at these temperatures and pressures are available for comparison. Battino et a1.(18) measured solubility at 101.3 kPa from 274.0 K to 328.0 K . Battino's measurements are in satisfactory agreement with earlier measurements by Just (10) from 288.2 K to 298.2 K . Takahashi et al.(16) estimated the solubility from absorption studies. Their data correspond to a mole fraction solubility of 0.00628 at 298.2 compared with a value of 0.00697 from Battino and 0.0698 from Just.

The following equation based upon data from Battino et al. and from Just is recommended as likely to be reliable.

$$
\ln x_{\mathrm{CO}_{2}}=-7.5561+1195.7 /(T / K)-0.24941 \ln (T / K)
$$

temperature range $=274.0-328.0 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=9.7^{\mathrm{K}} \times 10^{-5}$
The following equation based upon data from Shenderei et al., Battino et al. and from Just can be accepted on a tentative basis

$$
{ }^{\ln x} \mathrm{CO}_{2}=-75.542+4061.4 /(T / K)+9.9928 \ln (T / K)
$$

temperature range $=212.7-328.0$
standard deviation in $\mathrm{X}_{\mathrm{CO}_{2}}=0.00055$
Shenderei et a1.(2) measured solubility in 2 -butanol from 13.3 kPa to 101.3 kPa at 211.7 K to 248.0 K . The data is self consistent. No other measurements of solubility of carbon dioxide in this solvent are available for comparison.

Solubility in 1 -pentanol has been measured by Just (10) in the range 288.2 K to 298.2 K and by Pedrosa et al.(19) in the range 288.2 K to 318.2 K . There is good agreement between the two sets of measurements. A smoothing equation for mole fraction solubility at a partial pressure of 101.3 kPa based on these two sets of measurements is given below.

Solubility reported by Makranczy et al.(1) for 298.15 K seems to be too high.

$$
\ln x_{\mathrm{CO}_{2}}=-119.31+6103.7 /(T / K)+16.501 \ln (T / K)
$$

temperature range $=288.3-318.2 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=5.9 \times 10^{-5}$
Kunerth (6) published values of the solubility in 3-methyl-1-butanol at 101.3 kPa for 293.2 K to 307.2 K . These are close to values for 1 -pentanol discussed above. A smoothing equation for mole fraction solubility at a partial pressure of 101.3 kPa is given below. It should be noted that values of solubility in methanol and in ethanol published in

COMPONENTS:	EVALUATOR:
1. Carbon dioxide; $\mathrm{CO}_{2} ;$	
$[124-38-9]$	Peter G.T. Fogg,   School of Applíed Chemistry,   Polytechnic of North London,   Holloway Road, London, N7 8DB, U.K.   July 1991

## CRITICAL EVALUATION:

the same paper are slightly low in comparison with values measured more recently.

$$
\ln x_{\mathrm{CO}_{2}}=9.5281+390.83 /(T / K)-2.7484 \ln (T / K)
$$

temperature range $=$ 293.2-307.2 K
standard deviation in $x_{\mathrm{CO}_{2}}=3.6 \times 10^{-5}$
Solubilities in 1 -hexanol and 1 -heptanol have been published by Makranczy et al.(1). Solubility in 1 -heptanol has also been measured by Dim et al.(21). Values from both sources are high compared with solubilities in other alkanols (Fig 1).

The solubility in 1-octanol at a partial pressure of 101.3 kPa was measured by Wilcock et al.(20) from 282.7 K to 313.6 K . Solubilities at 298.2 K reported by Makranczy et al.(1) and by Dim et al.(21) are high in comparison with Wilcock's measurements. Takahashi et al.(16) published a value at 298 K from a study of the rate of absorption of gas. This value is unlikely to be reliable and is low relative to Wilcock's values. Measurements by Wilcock et al. are recommended on a provisional basis.

The solubility in 1 -nonanol has been published by Macranczy et a1.(1). (Fig 1)

Wilcock et al.(20) published values of solubility in 1 -decanol at 284.0 K to 313.5 K . and a partial pressure of 101.3 kPa . The data can be recommended on a provisional basis. Macranczy et al.(1) published a value for 298.2 K which is very high in comparison with Wilcock's value (Fig 1).

Makranczy et al.(1) measured solubility in 1-undecanol and 1-dodecanol at 298.2 K (Fig 1).

Solubility in an equimolar mixture of 1 -decanol and 1 -dodecanol was measured by Luther and Hiemenz (22) from 293.2 K to 355.2 K . The mole fraction solubility at 293.2 K and a partial pressure of 101.3 kPa is given as 0.0107 compared with a value for the solubility in pure 1 -decanol of 0.0106 from measurements by Wilcock et al.(20).

The solubility in cyclohexanol was measured by Begley et al.(23) at a partial pressure of 101.3 kPa from 298.3 K to 321.0 K . The value of the mole fraction solubility at 298.3 K is 0.00442 which may be compared with a value of 0.00286 from much earlier measurements by Cauquil (24). Begley's measurements are likely to be the more reliable. It is clear that mole fraction solubility in cyclohexanol is much lower than solubility in 1 -hexanol or in cyclohexane under similar conditions.

The solubility in benzenemethanol to high pressures was measured by Emel'yanova et al. (25) over the temperature range 323.2 K to 398.2 K . Solubility at a partial pressure of 101.3 kPa can be estimated from the data. Extrapolation to 298.2 K and a partial pressure of 101.3 kPa gives a value of the mole fraction solubility of about 0.0044 . This is in contrast to the value of 0.00781 estimated from measurements of the limiting value of Henry's constant measured by gas-liquid chromatography and reported by Lenoir et al.(26). Surface adsorption can give erroneous values of Henry's constants measured by chromatography. Mole fraction solubility at a partial pressure of 101.3 kPa from Emel'yanova's measurements can be provisionally recommended in the absence of measurements conducted at barometric pressure.

Mole fraction solubilities in dihydric alkanols are lower than in monohydric alkanols. The mole fraction solubility at a partial pressure of 101.3 kPa in 1,2 -ethanediol from work by Byeseda et a1.(27) is 0.0031 at 297.1 K and from work by Hayduk and Malik (29) is 0.0022 at 298.2 K .

COMPONENTS:	EvALUATOR:
1. Carbon dioxide; $\mathrm{CO}_{2} ;$	Peter G.T. Fogg,   School of Applied Chemistry,   Polytechnic of North London,   Holloway Road, London, N7 8DB, U.   2. Alcohols
	July 1991

## REFERENCES

1. Makranczy, J.; Rusz, L.; Balog-Megyery, K. Hung. J. Ind. Chem. 1979, 7, 41-6.
2. Shenderei, E.R.; Zel'venskii, Ya. D.; Ivanovskii, F.P. Gaz. Prom. . 1958, 12, 36-42.
3. Krichevskii, I.R.; Lebedeva, E.S. Zhur. Fiz. Khim. 1947, 21(6), 715-718.
4. Luhring, P.; Schumpe, A.; J. Chem. Eng. Data 1989, 34, 250-252.
5. Bratzler, K.D.; Doerges, A.; Herbert, W. German Patent No. 1769197 to Metallgesellschaft $A G$ 1971.
6. Kunerth, W. Phys. Rev. 1922, 19, 512-524.
7. Vitovec, J. Collect. Czech. Chem. Comm. 1968, 33, 1203-1310.
8. Koudelka, L. Chem. Zvesti 1964, 18, 178-185.
9. Yorizane, M.; Sadamoto, S.; Masuoka, H.; Eto, Y. Kogyo Kagaku Zasshi 1969, 72, 2174-2177.
10. Just, G. Z. Phys. Chem. 1901, 37, 342-367.
11. Won, Y.S.; Chung, D.K.; Mills, A.F. J. Chem. Eng. Data 1981, 26, 140-141.
12. Kosakewitsch, P.P. Zeit. Phys. Chem. (A) 1929, 143, 216-224.
13. Usyukin, I.P.; Shleynikov, V.M. Neftepererab. Neftekhim. 1963, No.1, 39-43.
14. Shenderei, E.R.; Zel'venskii, Ya.D.; Ivanovskii, F.P. Khim. Prom. 1960, (5), 18-22.
15. Cargill, R.W.; MacPhee, D.E. J. Chem Research (S) 1981, 232; J. Chem. Research (M) 1981, 2743-2755.
```
\begin{tabular}{|l|l|}
\hline COMPONENTS: & EVALUATOR: \\
1. Carbon dioxide; \(\mathrm{CO}_{2} ;\) & \begin{tabular}{l}
Peter G.T. Fogg, \\
School of Applied Chemistry, \\
Polytechnic of North London, \\
Holloway Road, London, N7 8DB, U.K. \\
2. Alcohols \\
July 1991
\end{tabular} \\
\hline
\end{tabular}
CRITICAL EVALUATION:
16. Takahashi, M.; Kobayashi, Y.; Takeuchi, H. J. Chem. Eng. Data 1982, 27, 328-331.
17. Tokunaga, J. J. Chem. Eng. Data 1975, 20, 41-46.
18. Battino, R.; Evans, F.D.; Danforth, W.F.; Wilhelm, E. J. Chem. Thermodyn. 1971, 3, 743-751.
19. Pedrosa, G.C.; Salas, J.A.; Katz, M. Anal. Asoc. Quim. Argent. 1988, 76(3), 199-206.
20. Wilcock, R.J.; Battino, R.; Danforth, W.F.; Wilhelm, E. J. Chem. Thermodyn. 1978, 10, 817-822.
21. Dim, A.; Gardner, G.R.; Ponter, A.B.; Wood, T. J. Chem. Eng. Japan 1971, 4, 92-95.
22. Luther, H.; Hiemenz, W. Chem. Ing. Tech. 1957, 29, 530-535.
23. Begley, J.W.; Maget, J.R.; Williams, B. J. Chem. Eng. Data 1965, 10, 4-8.
24. Cauquil, G. J. Chim. Phys. 1927, 24, 53-55.
25. Emel'yanova, E.A.; Tsimmerman, S.S.; Semenova, A.I.; Tsiklis, D.S. Zhur. Fiz. Khim. 1980, 54, 382-384; Russian J. Phys. Chem. 1980, 54(2), 219-220.
26. Lenoir, J-Y.; Renault, P.; Renon, H. J. Chem. Eng. Data 1971, 16, 340-342.
27. Byeseda, J.J.; Deetz, J.A.; Manning, W.P. Proc. Laurance Reid Gas Cond. Conf. 1985
28. Semenova, A.I.; Tsimmerman, S.S.; Emel'yanova, E.A. Zhur. Fiz, Khım. 1981, 55, 1941-1943; Russian J. Phys. Chem. 1981, 55(8), 1105-1107.
29. Hayduk, W.; Malik, V.K. J. Chem. Eng. Data 1971, 16, 143-146.
```

COMPONENTS :

1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]
2. Alcohols

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:

Table 1.
Solubility of carbon dioxide at a partial pressure of 101.3 kPa in alcohols.

Solvent	$T / K$	${ }^{x} \mathrm{CO}_{2}$	Reference
Methanol	298.15	$0.006511 \pm 0.00139$	$*$
Ethanol	298.15	$0.007251 \pm 0.000016$	$*$
1-Propanol	298.15	$0.00680 \pm 0.00038$	$*$
2-Propanol	298.15	0.00654	17
1-Butanol	298.15	$0.00718 \pm 0.00038$	$*+$
2-Methyl-1-propanol	298.15	$0.006966 \pm 0.000097$	$*$
1-Pentanol	298.15	$0.008050 \pm 0.000059$	$*$
3-Methyl-1-butanol	298.15	$0.008064 \pm 0.000036$	6
1-Octanol	298.15	0.00938	20
1-Decanol	298.15	0.00973	20
Cyclohexanol	298.25	0.00442	23
1,2-Ethanediol	298.15	0.00382	26
	297.1	0.00306	27
* from the' equation given by the evaluator on a previous page			


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) Methanol; $\mathrm{CH}_{4} \mathrm{O}$; [67-56-1]	ORIGINAL MEASUREMENTS:   Just, G.   Z. Phys. Chem. 1901, 37, 342-367.
VARIABLES: $\begin{aligned} T / \mathrm{K} & =288.15-298.15 \\ p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm}) \end{aligned}$	PREPARED BY:   M. E. Derrick   H. L. Clever
EXPERIMENTAL VALUES:   The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at $101.325 \mathrm{kPa}(1 \mathrm{~atm})$ partial pressure of the gas.	
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket.   The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid.   (2) Methanol. No information.   ESTIMATED ERROR: $\delta L / L=0.03 \text { (compiler) }$   REFERENCES:   1. Timofejew, W. $\text { Z. Phys. Chem. 1890, 6, } 141 .$   2. Steiner, P.   Ann. Phys. (Leipzig)1894, 52, 275.



## AUXILIIARY INFORMATION



COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; $[124-38-9]$   2. Methanol; $\mathrm{CH}_{4} \mathrm{O}$; [67-56-1]   Ethanol; $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$; [64-17-5]	ORIGINAL MEASUREMENTS:   Kosakewitsch, P.P.   Zeit. Phys. Chem. (A) 1929, 143, 216-224.
VARIABLES : $\begin{aligned} & T / \mathrm{K}=288.15-296.15 \\ & P / \mathrm{kPa}=101.3 \end{aligned}$	PREPARED BY: P.G.T. Fogg
EXPERIMENTAL VALUES:   Solvent   T/K   P/kPa   $+100 \times$ (number of moles of $\left.\mathrm{CO}_{2}\right) /($ num	Solubility   $100 n\left(\mathrm{CO}_{2}\right)$   $/ n($ alkanol $)$ Mole fraction   solubility*   $x_{\mathrm{CO}_{2}}$   0.825 0.00818   0.813 0.00762   0.802 0.00796   0.788 0.00782   0.750 0.00744   0.739 0.00734   0.736 0.00731       mber of moles of alkanol)
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:   Carbon dioxide was bubbled through the solvent for two to four days. A portion of the saturated solution was then added to $\mathrm{CO}_{2}$-free water containing a measured quantity of sodium hydroxide. The mixture of sodium hydroxide and carbonate was then titrated against hydrochloric acid using phenolphthalein as indicator.   Solubilities were corrected to a partial pressure of carbon dioxide	SOURCE AND PURITY OF MATERIALS:   1. Carbon dioxide was prepaed by the action of hydrochloric acid on calcium carbonate. The gas was purified and dried by the usual methods.   2. Alcohols were said to be free of water.   ESTIMATED ERROR:
	REFERENCES :


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Methanol; $\mathrm{CH}_{4} \mathrm{O}$; [67-56-1]	```ORIGINAL MEASUREMENTS: Krichevskii, I.R.; Lebedeva, E.S. Zhur. Fiz. Khim. 1947, 21(6), 715-718.```
VARIABLES: $\begin{aligned} & T / \mathrm{K}=273.2-323.0 \\ & P / \mathrm{kPa}=101.3 \end{aligned}$	PREPARED BY:   P.G.T. Fogg
EXPERIMENTAL VALUES:	Solubility of $\mathrm{CO}_{2}$   $\mathrm{Cm}^{-1}$ Mole fraction   solubility   $x_{\mathrm{CO}_{2}}$   8.13 0.01157   4.33 0.00620   3.11 0.00446   $1.3 \mathrm{kPa}, 273.15 \mathrm{~K}$ dissolved by one gram
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   Apparatus described in an earlier   paper (1). The measurements at 101.3 kPa were part of a study which extended to 6970 kPa .	```SOURCE AND PURITY OF MATERIALS: 1. From a commercial source; purity 99.9% \\ 2. Synthetic purified sample; density indicated that the water content did not exceed several tenths of a percent. \\ ESTIMATED ERROR: \[ \delta(\text { solubility })= \pm 1 \% \] \\ REFERENCES: \\ 1. Krichevskii, I.R.; \\ Zhavoronkov, N.M.; Tsiklis, D.S. \\ Zhur. Fiz. Khim. 1937, 9, 317.```


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$ [124-38-9]   2. Methanol; $\mathrm{CH}_{4} \mathrm{O}$; [67-56-1]			ORIGINAL MEAS   Shenderei, E. Ivanovskii, F   Gaz. Prom. 19	UREMENTS   R.; Zel'   . P .   58, 12,
VARIABLES:			PREPARED BY:	
$\begin{aligned} & P / \mathrm{kPa}=13.3-101.3 \\ & T / \mathrm{K}=212.7-298.2^{3} \end{aligned}$			P.G.T.	Fogg
EXPERIMENTAL VALUES:				
T/K	$P / \mathrm{mmHg}$	$P / \mathrm{kPa}^{*}$	$\underset{\mathrm{cm}^{3} \mathrm{~g}^{-1}}{\text { Solubility }}$	${ }^{\text {c }} \mathrm{CO}_{2}$
194.5	100	13.33	25.745	0.0358
	300	40.00	83.343	0.1073
	500	66.66	138.647	0.1785
	700	93.33	231.130	0.2500
202.6	100	13.33	15.743	0.0222
	300	40.00	49.475	0.0666
	500	66.66	90.282	0.1138
	760	101.32	142.523	0.1705
212.7	100	13.33	9.132	0.0130
	300	40.00	24.383	0.0388
	500	66.66	48.129	0.0649
	760	101.32	74.909	0.0975
227.9	100	13.33	4.607	0.0066
	300	40.00	13.790	0.0195
	500	66.66	24.034	0.0335
	760	101.32	36.879	0.0505
240.7	100	13.33	2.715	0.0039
	300	40.00	8.209	0.0117
	500	66.66	14.064	0.0199
	760	101.32	28.870	0.0306
248.0273.2	100	13.33	1.212	0.00318
	300 500	40.00	6.672 11.196	0.00953
	500	66.66	11.196	0.01589
	760	101.32	17.123	0.02410
273.2	300	13.30	3.094	. 0.00470
	300 500	40.00 66.66	3.274 5.371	0.00470 0.00783
	760	101.32	8.351	0.01190
* calculated by the compiler.				
** defined as the volume of gas, corrected to 273.15 K and 101.325 kPa , dissolved by one gram of solvent at the stated temperature and pressure.				
AUXILIARY INFORMATION				
METHOD/APPARATUS/PROCEDURE:			SOURCE AND PURITY OF MATERIALS:	
A static method was used. A weighed quantity of solvent was placed in the absorption pipet which was subsequently cooled in a cryostat with automatic temperature control.			1. from commercial solid carbon dioxide; purified twice by	
			evaporation pumping wit	h a vace
aidwith automatic temperature control.The solvent was then degassed under			2. No information	
vacuum. Liquid lost during this process was collected in an				
absorption column and weighed soappropriated correction could be			ESTIMATED ERROR:	
made to the weight of solvent. Carbon dioxide was then supplied				
from a calibrated gas buret.			REFERENCES:	



COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Methanol; $\mathrm{CH}_{4} \mathrm{O}$; [67-56-1]	ORIGINAL MEASUREMENTS: ```Vitovec, J. Collect. Czech. Chem. Comm. 1968, 33, 1203-1310.```
VARIABLES: $\begin{aligned} & P / \mathrm{kPa}=101.3 \\ & T / \mathrm{K}=293.15 \end{aligned}$	PREPARED BY:   P.G.T. Fogg
EXPERIMENTAL VALUES:	$\frac{{ }^{x} \mathrm{CO}_{2} \text { at } P_{\mathrm{CO}_{2}}=101.3 \mathrm{kPa}^{*}}{0.00719}$
auxiliary	information
METHOD 'APPARATUS/PROCEDURE:   The solubility of carbon dioxide was measured by a saturation method as described in ref.(1). Carbon dioxide was passed through the solvent and the final concentration in the solution was measured by a titration method as described in ref.(2).	SOURCE AND PURITY OF MATERIALS:   1. Obtained from a pressure vessel. Purity at least 99\%.   2. Chemically pure reagent.   ESTIMATED ERROR: $\delta x_{\mathrm{CO}_{2}}= \pm 0.5 \%$   REFERENCES:   1. Vitovec, J.; Fried, V. 1960, 25, 1552.   2. Emmert, R.E.; Pigford, R.L. Chem. Eng. Progr. 1955, 50, 86.



COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Methanol; $\mathrm{CH}_{4} \mathrm{O}$; [67-56-1]	ORIGINAL MEASUREMENTS:   Makranczy, J.; Rusz, L.;   Balog-Megyery, K.   Hung. J. Ind. Chem. 1979, 7, 41-6
VARIABLES: $\begin{aligned} & T / K=298.15 \\ & P / \mathrm{kPa}=101.3 \end{aligned}$	PREPARED BY:   C.L. Young
EXPERIMENTAL VALUES:	
298.15101 .3	547 $0.005871$   ompiler   of carbon dioxide.
auxiliary information	
```Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.```	SOURCE AND PURITY OF MATERIALS:   No details given.
	ESTIMATED ERROR: $\delta x_{\mathrm{CO}_{2}}= \pm 38$
	REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos. G. Veszpremi Vegyip. Egy. KozZ. 1957, 1, 55. Chem. Abstr.1961, 55, 3175h

COMPONENTS: 1. Carbon dioxide; CO_{2}; [124-38-9] 2. Alcohols	ORIGINAL MEASUREMENTS: ```Luhring, P.; Schumpe, A. J. Chem. Eng. Data 1989, 34, 250-252```
VARIABLES: $T / K=293.2$	PREPARED BY: C.L. Young; P.G.T. Fogg
EXPERIMENTAL VALUES: T/K Henry's Constant* $/\left(\mathrm{Pa} \mathrm{m}^{3} / \mathrm{mol}^{-1}\right)$	Mole fraction of CO_{2} at $1 \mathrm{~atm}^{\dagger}$ partial pressure
	```O; [67-56-1] 0.00683 O; [64-17-5] 0.00737 \(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\); [67-63-0] 0.00720 \(\mathrm{H}_{10}\); [71-36-3] 0.00781 source but appears to be the usual molar volume ensity data taken from ref. (1).```
auxiliary	information
METHOD/APPARATUS/PROCEDURE:   Little information is given in source. Method consisted of equilibrating known amounts of degassed liquid and gas and measuring the change in pressure. Equilibration was reached in 3 to 6 minutes. Some details given in ref. 2.	SOURCE AND PURITY OF MATERIALS:   2. Obtained from Merck at the highest available purity. No other details given.   ESTIMATED ERROR:   $\delta T / K= \pm 0.1$ (authors)   $\delta x / x= \pm 0.01$ to 0.15 (compilers)   REFERENCES:   1. International Critical Tables McGraw Hill, New York 1929.   2. Schumpe, A.; Quiker, G.; Decker, W.D. Adv. Biochem. Eng. 1982, 24, 1.


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) Ethanol; $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$; [64-17-5]	ORIGINAL MEASUREMENTS:   Just, G.   2. Phys. Chem. 1901, 37, 342-367.
VARIABLES: $\begin{aligned} T / \mathrm{K} & =288.15-298.15 \\ p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm}) \end{aligned}$	PREPARED BY:   M. E. Derrick   H. L. Clever
EXPERIMENTAL VALUES:   The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 kPa ( 1 atm ) partial pressure of the gas.	
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket.   The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid.   (2) Ethanol. Source not given. Stated to be 97 per cent.   ESTIMATED ERROR: $\delta L / L=0.03 \text { (compiler) }$   REFERENCES:   1. Timofejew, W. $\text { 2. Phys. Chem. 1890, 6, } 141 .$   2. Steiner, P. $\begin{aligned} & \text { Ann. Phys. (Leipzig) 1894, 52, } \\ & \text { 275. } \end{aligned}$


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$ [124-38-9]   2. Alkanols	ORIGINAL MEASUREMENTS: ```Shenderei, E.R.; Zel'venskii, Ya.D.; Ivanovskii, F.P. Gaz. Prom. 1958, 12, 36-42.```
VARIABLES: $\begin{aligned} & P / \mathrm{kPa}=13.3-101.3 \\ & T / \mathrm{K}=212.7-298.2 \end{aligned}$	PREPARED BY: P.G.T. Fogg
EXPERIMENTAL VALUES:    Solvent $\quad T / K$	$P / \mathrm{kPa}^{*} \quad \underset{\mathrm{~cm}^{3} \mathrm{~g}^{-1}}{\text { Solubily }}{ }^{* *} \quad x_{\mathrm{CO}_{2}}$
Ethanol; 248.0 100   $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} ;$     $[64-17-5]$  300     500    227.9 760     100     300    212.7 760     100     300     500     760	13.33 1.37 0.00282   40.00 1.10 0.00842   66.66 6.89 0.01400   101.32 10.52 0.02130   13.33 2.78 0.00572   40.00 8.43 0.01715   66.66 14.23 0.02860   101.32 21.97 0.04350   13.33 5.30 0.01085   40.00 16.28 0.03260   66.66 27.80 0.05440   101.32 43.50 0.08260
1-Propanol; 248.0 100   $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O} ;$     $[71-23-8]$  300     500    227.9 760     100     300    212.7 700     100     300    500      760	13.33 0.836 0.00255   40.00 2.852 0.00764   66.66 4.785 0.01275   101.32 7.315 0.01936   13.33 1.851 0.00497   40.00 5.604 0.01490   66.66 9.445 0.02486   101.32 14.538 0.03776   13.33 3.345 0.00895   40.00 10.065 0.02645   66.66 17.011 0.04390   101.32 26.774 0.06740
* calculated by the compiler.   ** defined as the volume of gas, cort dissolved by one gram of solvent a	cted to 273.15 K and 101.325 kPa , the stated temperature and pressure.
aUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:   A static method was used. A weighed quantity of solvent was placed in the absorption pipet which was subsequently cooled in a cryostat with automatic temperature control. The solvent was then degassed under vacuum. Liquid lost during this process was collected in an absorption column and weighed so appropriate correction could be made to the weight of solvent. Carbon dioxide was then supplied from a calibrated gas buret. The liquid was stirred by an electromagnetic stirrer until equilibrium was reached.	SOURCE AND PURITY OF MATERIALS:   1. from commercial solid carbon dioxide; purified twice by evaporation, freezing and pumping with a vacuum pump.   2. No information   ESTIMATED ERROR:   REFERENCES:



COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Ethanol; $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$; [64-17-5]	ORIGINAL MEASUREMENTS:   Makranczy, J.; Rusz, L.;   Balog-Megyery, K.   Hung. J. Ind. Chem. 1979, 7, 41-6.
VARIABLES: $\begin{aligned} & T / \mathrm{K}=298.15 \\ & P / \mathrm{kPa}=101.3 \end{aligned}$	PREPARED BY:   C.L. Young
EXPERIMENTAL VALUES:	
$\begin{array}{ll} 298.15 & 101.3 \\ & \text { * calculated by } \\ & \\ & \text { partial pressur } \end{array}$	0.006889 of carbon dioxide
auxiliary information	
METHOD/APPARATUS/PROCEDURE:   Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND PURITY OF MATERIALS:   No details given
	ESTIMATED ERROR: $\delta x_{\mathrm{CO}_{2}}= \pm 38$
	REFERENCES:   1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G.   Veszpremi Vegyip. Egy. KozZ.   1957, 1, 55.   Chem. Abstr. 1961, 55, 3175h.


COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Ethanol; $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$; [64-17-5]	```Cargill, R.W.; MacPhee, D.E. J. Chem. Research (S) 1981, 232; J. Chem. Research (M) 1981, 2743-2755.```
VARIABLES: $\begin{aligned} & T / \mathrm{K}=277.9-334.6 \\ & P_{\mathrm{CO}_{2}} / \mathrm{kPa}=101.3 \end{aligned}$	PREPARED BY: P.G.T. Fogg
EXPERIMENTAL VALUES:   $S_{0}$ is the volume of gas, reduced to dissolved by 1 kg of solvent.   * smoothed data given by the authors	$S_{0} / \mathrm{cm}^{3} \mathrm{~kg}^{-1}$ ${ }^{\mathrm{x}_{\mathrm{CO}_{2}}{ }^{*}}$   4820 0.010451   4300 0.008977   3720 0.007729   3010 0.006670   2700 0.005770   2380 0.005002   2140 0.004346   1.013 bar and 273.15 K , which is
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:   The authors measured solubilities by the flowing film method as described by Morrison (1)'and modified by Cargill (2). Solubilities were corrected to a partial pressure of carbon dioxide of 1.013 bar (3).	SOURCE AND PURITY OF MATERIALS:   1. Supplied by British Oxygen Company; purity 99.9\%.   2. Purity 99.9\%   ESTIMATED ERROR:   REFERENCES:   1. Morrison, T.J.; Billett, F.   J. Chem. Soc. 1948, 2033;   J. Chem. Soc. 1952, 3819   2. Cargill, R.W.; Morrison, T.J.   J. Chem. Soc., Faraday Trans. 1, 1975, 618.   3. Private communication.


COMPONENTS :   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) Ethanol; $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$; [64-17-5]	```ORIGINAL MEASUREMENTS: Won, Y. S.; Chung, D. K.; Mills, A. F. J. Chem. Eng. Data 1981, 26, 140-141.```
VARIABLES: $\begin{aligned} T / \mathrm{K} & =298.15 \\ p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm})\end{aligned}$	PREPARED BY:   H. L. Clever
EXPERIMENTAL VALUES:   The mole fraction and Ostwald coefficients were calculated by the compiler.	
auxiliary information	
METHOD/APPARATUS/PROCEDURE:   The carbon dioxide solubility was determined by saturating the liquid phase in a gas bubbler immersed in an isothermal bath. The liquid phase carbon dioxide concentration was determined by using a standard wet chemistry technique (1). The partial pressure of the carbon dioxide over the liquid was calculated by subtracting the vapor pressure of the liquid from the measured total pressure.   The diffusivity of carbon dioxide was measured. $10^{9} \mathrm{C} / \mathrm{m}^{2} \mathrm{~s}^{-1}=3.88$.	


COMPONENTS :   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) Ethanol; $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$; [64-17-5]   (3) 1-Propanol; $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$; [71-23-8]	ORIGINAL MEASUREMENTS:   Takahashi, M.; Kobayashi, Y.; Takeuchi, H.   J. Chem. Eng. Data 1982, 27, 328-31.
$\begin{gathered} \text { VARIABLES: } \quad T / \mathrm{K}=298 \\ p_{1} / \mathrm{kPa}=101.3 \\ \text { Composition. } \end{gathered}$	PREPARED BY: H. L. Cleve
EXPERIMENTAL VALUES:   a Literature values taken from Ishikawa, T. "Kongoeki Nendo no Riron" (Theories of Viscosity for Mixed Solvents); Maruzen, Tokyo, 1968.	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:   An indirect method (1) was used in which the absorption rate of carbon dioxide into the mixed solvent was measured as a function of time.   It was assumed that the film-theory model of the gas absorption process applied. A plot of $\ln$ (absorption rate) vs. time is linear. The slope is a function of the diffusion coefficient and the intercept is a function of both the diffusion coefficient and the solubility.   A diaphram cell with interfacial area $5.81 \mathrm{~cm}^{2}$ and lower compartment volume for the liquid was $53.5 \mathrm{~cm}^{3}$. The diaphram was Millipore Teflon of mean pore size $10.0 \mu \mathrm{~m}$, thickness $125 \pm 15 \mu \mathrm{~m}$, and porosity 0.68 . The liquid was stirred at a constant rate of 1.33 rotations $s^{-1}$.   The solutions were prepared and then degassed by refluxing for five hours Their compositions were determined by density or refractive index. The $\mathrm{CO}_{2}$ was presat. with solvent vap.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Source not identified. From cylinder.   $(2,3)$ Ethanol and 1-Propanol. It was stated that the chemicals were of special grade.   ESTIMATED ERROR: $\begin{aligned} \delta T / K & = \pm 0.1 \\ \delta c_{1} / c_{1} & = \pm 0.05-0.10 \text { (compiler) } \end{aligned}$   REFERENCES:   1. Takeuchi, H.; Fujine, M.; Sato, T.; Onda, K. ${ }_{25}$ Chem. Eng. Jpn. 1975, 8, 25 and 252.


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) 1-Propanol; $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$; [71-23-8]	ORIGINAL MEASUREMENTS:   Just, G.   2. Phys. Chem. 1901, 37, 342 - 367.
VARIABLES: $\begin{aligned} T / K & =298.15 \\ p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm}) \end{aligned}$	PREPARED BY:   M. E. Derrick   H. L. Clever
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket.   The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.	


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. 1-Propanol; $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$; [71-23-8]   2-Propanol; $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$; [67-63-0]	ORIGINAL MEASUREMENTS:   Tokunaga, J.   J. Chem. Eng. Data 1975, 20, 41-46.
VARIABLES: $\begin{aligned} & T / \mathrm{K}=283.15-313.15 \\ & P_{\mathrm{CO}_{2}}=101.3 \mathrm{kPa} \end{aligned}$	PREPARED BY:   P.G.T. Fogg
EXPERIMENTAL VALUES:	$\mathrm{H} / \mathrm{atm} \quad \mathrm{H} / \mathrm{kPa}^{*}{ }^{\mathrm{x}} \mathrm{CO}_{2}{ }^{*} \text { at } \mathrm{CO}_{2}=101.3 \mathrm{kPa}$
1-Propanol 283.15 2.76    293.15 2.27    303.15 2.1    313.15 1.88   2 -Propanol 283.15 2.53    293.15 2.18    303.15 1.95    313.15 1.86   Henry's constant, $H$, was taken to b $H=\frac{\text { mole ratio solubil }}{\text { partial pressure o }}$   * calculated by the compiler	113 11450 0.00877   137 13882 0.00725   157 15908 0.00633   179 18137 0.00556   122 12362 0.00813   145 14692 0.00685   166 16820 0.00599   178 18036 0.00559   given by     ity of $\mathrm{CO}_{2}$     f $\mathrm{CO}_{2}, \mathrm{P}_{\mathrm{CO}_{2}}$
aUXILIARY information	
METHOD /APPARATUS/PROCEDURE:   Solvents were refluxed for several hours to remove' dissolved gases. a measured volume of the solvent was then transferred to an absorption chamber fitted with a magnetic stirrer and connected to a system of gas burets, vacuum line and mercury reservoir. A measured volume of the gas then came in contact with the liquid which was agitated until equilibrium was reached. The final volume of the gas was then measured.	SOURCE AND PURITY OF MATERIALS:   1. super pure grade from Nippon Tansan Co. Ltd.; $98.96 \%$ pure.   2. from Wako Pure Chemicals Ind.; fractionated before use.   1-propanol: $\begin{aligned} & \rho_{25}=0.7990 ; \eta_{25}=1.38345 \\ & 2 \text {-propanol: } \\ & \rho_{25}=0.78087 ; \eta_{25}=1.37500 \end{aligned}$   estimated error:
	REFERENCES:




COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   $\begin{aligned} & \text { (2) } \text { 2-Methyl-1-propanol; } \\ & {[78-83-1] }\end{aligned} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$;	ORIGINAL MEASUREMENTS:   Just, G.   2. Phys. Chem. 1901, 37, 342 - 367.
VARIABLES: $\begin{aligned} T / \mathrm{K} & =288.15-298.15 \\ p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm}) \end{aligned}$	prepared by:   M. E. Derrick   H. L. Clever
EXPERIMENTAL VALUES:   The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 kPa ( 1 atm ) partial pressure of the gas.	
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket.   The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid.   (2) 2-Methyl-1-propanol. No information.   ESTIMATED ERROR: $\delta L / L=0.03 \text { (compiler) }$   REFERENCES:   1. Timofejew, W. $\text { z. Phys. Chem. 1890, 6, } 141 .$   2. Steiner, P.   Ann. Phys. (Leipzig) 1894, 52, 275.


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) 2-Methyl-1-propanol or isobutyl alcohol; $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$; [78-83-1]	ORIGINAL MEASUREMENTS:   Battino, R.; Evans, F. D.; Danforth, W. F.; Wilhelm, E.   J. Chem. Thermodyn. 1971, 3, 743 - 751.
$\begin{array}{\|rl\|} \hline \text { VARIABLES: } & \\ T / \mathrm{K}: & 273.98-328.00 \\ \text { P/kPa: } & 101.325 \text { (1 atm) } \end{array}$	PREPARED BY:
EXPERIMENTAL VALUES:	Bunsen   Coefficient   $(\mathrm{STP}) \mathrm{cm}^{-3} \mathrm{~atm}^{-1}$ Ostwald   Coefficient   $L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}$   2.55 2.56   2.09 2.17   1.69 1.84   1.71 1.86   1.73 1.89   1.72 1.87   1.36 1.56   1.37    1.09
The Bunsen coefficients were calculate the gas was ideal.   Smoothed Data: For 273.15 to 328.15 k $\ln x_{1}=-9.2306+12.7$   The standard error about the regressio	ted by the compiler with the assumption   K   .7124/(T/100K)   ion line is $1.22 \times 10^{-4}$.
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3).   Degassing. Up to $500 \mathrm{~cm}^{3}$ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid $N_{2}$ trap until the permanent gas residual pressure drops to 5 microns.   Solubility Determination. The degassed solvent is passed in a thin film down a glass helical tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. The Matheson Co. Inc. Commercial grade stated to be better than 99 mol per cent.   (2) 2-Methyl-l-propanol. Fisher Co. Certified grade (99 mol per cent).   ESTIMATED ERROR: $\begin{aligned} \delta T / \mathrm{K} & = \pm 0.03 \\ \delta \mathrm{P} / \mathrm{mmHg} & = \pm 0.5 \\ \delta x_{1} / x_{1} & = \pm 0.005 \end{aligned}$   REFERENCES:   1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033.   2. Battino, R.; Evans, F. D.; Danforth, W. F.   J. Am. Oil Chem. Soc. 1968, 45, 830 .   3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) l-Pentanol or amyl alcohol; $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$; [71-41-0]	ORIGINAL MEASUREMENTS:   Just, G.   2. Phys. Chem. 1901, 37, 342-367.
VARIABLES: $\begin{aligned} T / K & =288.15-298.15 \\ p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm}) \end{aligned}$	PREPARED BY:M.E. Derrick   H. L. Clever
auxiliary	information
METHOD/APPARATUS/PROCEDURE:   An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket.   The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid.   (2) 1-Pentanol. No information.   ESTIMATED ERROR: $\delta L / L=0.03 \text { (compiler) }$   REFERENCES:   1. Timofejew, W. $\text { 2. Phys. Chem. 1890, 6, } 141 .$   2. Steiner, P.   Ann. Phys. (Leipzig) 1894, 52, 275.


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. 1-Pentanol; $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$; [71-41-0] or $\text { 1-Hexanol; } \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O} \text {; [111-27-3] }$	ORIGINAL MEASUREMENTS:   Makranczy, J.; Rusz, L.;   Balog-Megyery, K.   Hung. J. Ind. Chem. 1979, 7, 41-6.
VARIABLES: $\begin{aligned} & T / K=298.15 \\ & P / \mathrm{kPa}=101.3 \end{aligned}$	PREPARED BY:   C.L. Young
EXPERIMENTAL VALUES:	
	tanol    xanol 0.00974   128 0.0108   mpiler   of carbon dioxide
auxiliary information	
METHOD/APPARATUS/PROCEDURE:   Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND pURITY of materials:   No details given.
	ESTIMATED ERROR: $\delta x_{\mathrm{CO}_{2}}= \pm 38$
	REFERENCES:   1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G. Veszpremi Vegyip. Egy. KozZ. 1957, 1, 55.   Chem. Abstr. 1961, 55, 3175h





COMPONENTS :   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) 1-Octanol; $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{OH}$; [111-87-5]	```ORIGINAL MEASUREMENTS: Wilcock, R. J.; Battino, R.; Danforth, W. F.; Wilhelm, E. J. Chem. Thermodyn. 1978, 10, 817-822.```
VARIABLES: $/ \mathrm{K}:$ $282.66-313.64$   $p / \mathrm{kPa}:$ 101.325 (1 atm)	PREPARED BY:   H. L. Clever
EXPERIMENTAL VALUES:   The Bunsen coefficients were calculated by the compiler.   It is assumed that the gas is ideal and that Henry's law is obeyed.   Smoothed Data: For use between 283.15 to 313.15 K $\ln x_{1}=-8.3646+11.0172 /(\mathrm{T} / 100 \mathrm{~K})$   The standard error about the regression line is $9.97 \times 10^{-5}$.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:   The solubility apparatus is based on the design of Morrison and Billett   (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3).   Degassing. Up to $500 \mathrm{~cm}^{3}$ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid $N_{2}$ trap until the permanent gas residual pressure drops to 5 microns.   Solubility Determination. The degassed salvent is passed in a thin film down a glass helical tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Air Products and Chemicals, Inc. Minimum mole per cent purity stated to be 99.8.   (2) 1-Octanol. Eastman Organic Chemicals. Distilled, density at $298.15 \mathrm{~K}, / \mathrm{g} \mathrm{cm}-\quad 0.8247$.   ESTIMATED ERROR: $\begin{aligned} \delta T / \mathrm{K} & =0.02 \\ \delta p / \mathrm{mmHg} & =0.5 \\ \delta x_{1} / x_{1} & =0.01 \end{aligned}$   REFERENCES:   1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033.   2. Battino, R.; Evans, F. D.; Danforth, W. F.   J. Am. Oit Chem. Soc. 1968, 45, 830.   3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.



COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; $[124-38-9]$   (2) l-Decanol; $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{OH}$; [112-30-1]	ORIGINAL MEASUREMENTS:   Wilcock, R. J.; Battino, R.; Danforth, W. F.; Wilhelm, E.   J. Chem. Thermodyn. 1978, 10, 817-822.
VARIABLES:    $T / \mathrm{K}:$ $284.01-313.49$   $p / \mathrm{kPa}:$ 101.325 (1 atm)	PREPARED BY:   H. L. Cleve
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:   The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3).   Degassing. Up to $500 \mathrm{~cm}^{3}$ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid $N_{2}$ trap until the permanent gas residual pressure drops to 5 microns.   Solubility Determination. The degassed solvent is passed in a thin film down a glass helical tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Air Products and Chemicals, Inc. Minimum mole per cent purity stated to be 99.8.   (2) 1-Decanol. Eastman Organic Chemicals. Distilled, density at $298.15 \mathrm{~K}, \mathrm{\rho} / \mathrm{g} \mathrm{cm}^{-3} 0.8206$.   ESTIMATED ERROR: $\begin{aligned} \delta T / \mathrm{K} & =0.02 \\ \delta p / \mathrm{mmHg} & =0.5 \\ \delta x_{1} / x_{1} & =0.01 \end{aligned}$   REFERENCES:   1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033.   2. Battino, R.; Evans, F. D.; Danforth, W. F.   J. Am. Oil Chem. Soc. 1968, 45, 830.   3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.





## AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: $\quad$ SOURCE AND PURITY OF MATERIALS:

The apparatus appears to be of the Bunsen type.

The initial and final volumes of gas in contact with the Iiquid were measured. The vapor pressure of the liquid was ignored.
(1) Carbon dioxide. No information.
(2) Cyclohexanol. Distilled, boiling point $160.9^{\circ} \mathrm{C}$ at $766_{\mathrm{mmHg}}$. Degassed and tested to be air free.

ESTIMATED ERROR:
$\delta L / L= \pm 0.05$ (compiler)

REFERENCES:

COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Cyclohexanol; $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$; [108-93-0]	```ORIGINAL MEASUREMENTS: Begley, J.W.; Maget, J.R.; Williams, B. J. Chem. Eng. Data 1965, 10, 4-8.```
VARIABLES: $\begin{aligned} & P / \mathrm{kPa}=101.3 \\ & T / \mathrm{K}=298.25-320.95 \end{aligned}$	PREPARED BY:   P.G.T. Fogg
EXPERIMENTAL VALUES:	
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   The solvent was boiled to remove any gases in solution and was then introduced into the absorption vessel without coming into contact with the air. The volume of carbon dioxide absorbed by the liquid from gas buret was then measured. The composition of the solution after equilibrium was attained was measured by chemical analysis. This enabled a check to be made of solubility as calculated from the volume of gas absorbed. The absorption vessel and the gas buret were kept at constant temperature by circulation of water from a thermostat bath.	SOURCE AND PURITY OF MATERIALS:   1. Carbon dioxide - 99.998 pure, from a cylinder supplied by Mathiesen Chemical Company.   2. Cyclohexanol - technical grade from Dow Chemical Company. Impurities were phenol max.0.5 wt\%; cyclohexanone max. 0.1wt\%; water max. 0.5 wt\%   ESTIMATED ERROR: $\delta T / K= \pm 0.1 \quad \text { Solubility }$   measurements reproducible to about $\pm 0.5 \%$ (authors).
	REFERENCES :


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. Benzenemethanol (Benzyl alcohol); $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$; [100-51-6]   1,2-Ethanediol (Ethylene glycol); $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$; [107-21-1]	ORIGINAL MEASUREMENTS: Lenoir, J-Y.; Renault, P.; Renon, H. J. Chem. Eng. Data, 1971, 16, 340-2.
variables: $T / K=298.2$	PREPARED BY:   C. L. Young
EXPERIMENTAL VALUES:	
Benzenemethanol 298.2 128   1,2-Ethanediol 298.2 262   * Calculated by the compiler ${ }^{p} \mathrm{CO}_{2} \text { vs } x_{\mathrm{CO}_{2}} \text {, i.e. }$	$\begin{aligned} & 0.00781 \\ & 0.00382 \end{aligned}$   ssuming a linear function of $\mathrm{CO}_{2}(1 \mathrm{~atm})=1 / \mathrm{H}_{\mathrm{CO}_{2}}$
aUXILIARY information	
METHOD/APPARATUS/PROCEDURE:   A conventional gas-liquid chromatographic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at 1 atm . pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.	SOURCE AND PURITY OF MATERIALS:   (1) L'Air Liquide sample, minimum purity 99.9 mole per cent.   (2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent.   ESTIMATED ERROR: $\delta T / \mathrm{K}= \pm 0.1 ; \delta H / \mathrm{atm}= \pm 6 \%$   (estimated by compiler).
	References:


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; $[124-38-9]$   2. Benzenemethanol, (benzyl alcohol); $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$; [100-51-6]	ORIGINAL MEASUREMENTS:   Emel'yanova, E.A.; Tsimmerman, S.S.;   Semenova, A.I.; Tsiklis, D.S.   Zhur. Fiz. Khim. 1980, 54, 382-384.   Russian J. Phys. Chem.1980, 54(2), 219-220.
VARIABLES: $\begin{aligned} & T / \mathrm{K}=323.15-398.25 \\ & \mathrm{P} / \mathrm{kPa}=500-14000 \mathrm{kPa} \end{aligned}$	PREPARED BY: P.G.T. Fogg
EXPERIMENTAL VALUES:   Measurements were made over the pressure range $500-14000 \mathrm{kPa}$. Mole fraction solubilities were interpreted by the Krichevskii-Il'inskaya equation in the form $\log _{10} \frac{f_{2}}{x_{2}}-\frac{\bar{v}_{2} P}{2.303 R T}=\log _{10} H-\frac{A}{2.303 R T}\left(1-x_{1}^{2}\right)$   where $f_{2}$ is the fugacity of carbon dioxide, $x_{2}$ is the mole fraction of carbon dioxide in the liquid phase, $x_{1}$ is the mole fraction of benzenemethanol in the liquid phase, $\bar{\nu}_{2}$ is the partial molar volume of carbon dioxide as $x_{2} \rightarrow 0, H$ is the limiting value of Henry's constant at zero pressure and $A$ is a constant. Henry's constant is defined as the ratio of pressure of carbon dioxide to mole fraction solubility. $T / \mathrm{K} \quad \bar{v}_{2} / \mathrm{cm}^{3} \mathrm{~mol}^{-1} \quad H / \mathrm{bar} \quad A / \mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{bar}^{-1} \quad H / \mathrm{kPa}^{*} \quad P_{2}=101.3 \mathrm{kPa} *$	
323.15 38.7 282 2708   348.15 51.1 336 30200   373.15 63.5 392 31800   398.15 75.9 443 34870   * calculated by the compiler	28200 0.00360   33600 0.00303   39200 0.00260   44300 0.00230
aUxiliary information	
METHOD/APPARATUS/PROCEDURE:   Carbon dioxide and benzenemethanol were allowed to reach equilibrium at various pressures to a maximum of 14000 kPa . Samples of the liquid phase were removed and analysed.   Partial molar volumes of carbon dioxide were found by measuring the volume of the liquid phase at different temperatures in sealed glass tubes.	SOURCE AND PURITY OF MATERIALS:   1. From a cylinder; dried and freed from gaseous impurities by repeated refreezing with liquid nitrogen.   2. Purified by vacuum distillation; m.pt. $15.2-15.4^{\circ} \mathrm{C}$.   ESTIMATED ERROR: $\begin{aligned} & \delta T / K= \pm 0.5 \\ & \delta x_{2}= \pm 5 \% \end{aligned}$
	REFERENCES:




COMPONENTS:

1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]
2. Butane-1,4-diol; $\mathrm{C}_{4} \mathrm{H}_{1} \mathrm{O}_{2}$; [25265-75-2]

## VARIABLES:

$T / K=323.2-398.2$
$P / \mathrm{kPa}$ to 8000 kPa

ORIGINAL MEASUREMENTS:
Semenova, A.I.; Tsimmerman, S.S.; E.A. Emel'yanova

Zhur. Fiz. Khim. 1981, 55, 1941-1943
Russian J. Phys. Chem. 1981, 55(8), 1105-1107.

PREPARED BY:

> P.G.T. Fogg

EXPERIMENTAL VALUES:

$T /{ }^{\circ} \mathrm{C}$	$T / \mathrm{K}$	Henry's law constant,   $/ \mathrm{Mpa}$	$\mathrm{x}_{\mathrm{CO}_{2}} \mathrm{at}$   $/ \mathrm{kPa}$	${ }^{P_{\mathrm{CO}_{2}}=101.3 \mathrm{kPa}^{*}}$
50	323.2	36	36000	0.00280
75	348.2	46	46000	0.00219
100	373.2	56	56000	0.00180
125	398.2	76	76000	0.00133

* estimated by the compiler

The Henry's law constant, $H$ is defined as

$$
H=P \rightarrow 0\left[\frac{f}{x}\right]
$$

where $f$ is the fugacity of $\mathrm{CO}_{2}$ and $x$ is the mole fraction of $\mathrm{CO}_{2}$ in solution.

AUXILIARY INFORMATION

## METHOD/APPARATUS/PROCEDURE:

Solubilities were measured at pressures to 8000 kPa by a method described in ref. (1). The liquid phase was sampled and analysed after the systems had reached equilibrium. Mole fraction solubilities of carbon dioxide fitted the Krichevskii-Il'inskaya equation (3) from which limiting values of Henry's law were found.

SOURCE AND PURITY OF MATERIALS:

1. Obtained from a cylinder; frozen solid evacuated to remove gaseous impurities.
2. Purified by repeated freezing; M.pt $16.0-16.2^{\circ} \mathrm{C}$;
vapor pressure in the range $50-75^{\circ} \mathrm{C}$ measured with an isoteniscope and found to be consistent with literature data for a higher temperature (2).

## ESTIMATED ERROR:

$\delta T / K= \pm 0.5$
$\delta H= \pm 5 \%$ (authors)

## REFERENCES:

1. Tsiklis, D.S. The Technique of Physicochemical Studies at High and Ultrahigh Pressures, 1976, Izd. Khimiya, Moscow, p. 431
2. Handbook of Chemistry and Physics, 37th ed., 1955-56, Chemical Rubber Publ. Co., Vol.1, p. 812
3. Krichevskii, I.R.

Phase Equilibria in Solutions at High Pressures, 1952, Goskhimizdat, Moscow, p.67.

COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) 1,2,3-Propanetriol or glycerol; $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$; [56-81-5]	ORIGINAL MEASUREMENTS:   Just, G.   2. Phys. Chem. 1901, 37, 342-367.
VARIABLES: $\begin{aligned} T / \mathrm{K} & =298.15 \\ p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm}) \end{aligned}$	PREPARED BY:   M. E. Derrick   H. L. Clever
EXPERIMENTAL VALUES:   The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 kPa ( 1 atm ) partial pressure of the gas.	
auxiliary	information
METHOD/APPARATUS/PROCEDURE:   An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparátus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket.   The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.	SOURCE AND PURITY of materials;   (1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid.   (2) 1,2,3-propanetriol. No information.   ESTIMATED ERROR: $\delta L / L=0.03 \text { (compiler) }$   References:   1. Timofejew, W.   2. Phys. Chem. 1890, 6, 141.   2. Steiner, P.   Ann. Phys. (Leipzig) 1894, 52, 275.

COMPONENTS:

1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]
2. Solvents, other than Alcohols, Containing Carbon, Oxygen and Hydrogen

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

## CRITICAL EVALUATION:

Solubility of carbon dioxide in solvents, other than alcohols, containing carbon, hydrogen and oxygen.

Bodor et al.(1) measured solubility in 2-propanone from 198 K to 318.2 K at partial pressures of carbon dioxide of 7.7 kPa to 97.2 kPa with extrapolation to 101.3 kPa . This data is self consistent and there is no reason to doubt its reliability. Solubility at a partial pressure of 101.3 kPa is given in nine papers (1-9) which together cover the range 198 K to 307.2 K . The general pattern of data is consistent except at 293.2 K and 298.2 K . At 293.2 K values for the mole fraction solubility range from 0.02022 (Felsing(7)) to 0.02317 (Koudelka(4)) and at 298.15 K from 0.01870 (Just(8)) to 0.02108 (Gjaldbaek(9)). The only measurements above 298.2 K are those of Kunerth (5). These need to be confirmed by further work. The following equation for mole fraction solubility at a partial pressure of 101.3 kPa is based upon all the data mentioned above.

$$
\begin{equation*}
\ln x_{\mathrm{CO}_{2}}=-10.599+1980.7 /(T / K)-0.00280 \ln (T / K) \tag{I}
\end{equation*}
$$

temperature range $=198-318.2 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=0.0143$
The following equation is based on data for the temperature range 200.0-298.2 K from (1,6-9).

$$
\begin{equation*}
\ln x_{\mathrm{CO}_{2}}=-10.313+1905.1 /(T / K)+0.0017 \ln (T / K) \tag{II}
\end{equation*}
$$

temperature range $=200.1-298.2 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=0.0055$
Shenderei (10) measured the solubility of carbon dioxide in various solutions of ethyne in 2 -propanone at 217.2 K . Extrapolation of the mole fraction solubility for a partial pressure of carbon dioxide to zero concentration of ethyne gives a value of 0.234 for dissolution in pure 2-propanone. The value from equation II is 0.216 .

Balog-Megyery et al.(2) have published solubilities in sixteen alkanones at 298.15 K and a partial pressure of gas of 101.3 kPa . These range from 2 -propanone to 2 -undecanone. There is very little change in the mole fraction solubilities calculated from the data. The value for 2 -undecanone is 0.0212 and that for 2 -propanone is 0.0192 . This last value may be compared with the value of 0.0199 from equation II above.

Shenderei et al.(11) measured solubility in 2-butanone to high pressures and reported Henry's constants. Estimated mole fraction solubilities at 228.1 K and 248.0 K are 0.1299 and 0.0654 compared with smoothed values of 0.142 and 0.073 for 2 -propanone. No other data for 2 -butanone at these temperatures are available for comparison.

Mole fraction solubilities in cyclopentanone (12), cyclohexanone (13) and in 2,6-dimethylcyclohexanone (14) have been measured at a partial pressure of 101.3 kPa from 273.15 K to 303.15 K by Gallardo et al. Solubility curves lie below that for 2 -propanone. There is very little difference in mole fraction solubilities under the same conditions in the three solvents. Mole fraction solubilities are also close to that for 2-methyl-5- (1-methylethenyl)-2-cyclohexen-1-one from Just's data (8) (see Table 1). These measurements on cyclic ketones can be tentatively accepted as reliable.

Bodor et al.(1) measured solubilities in acetaldehyde at 33.2 kPa to 101.3 kPa from 198 K to 248.2 K . The data are self-consistent but no other measurements are available for comparison. Mole fraction solubility

COMPONENTS:

1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]
2. Solvents, other than Alcohols, Containing Carbon, Oxygen and Hydrogen

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:
values are lower than those for 2 -propanone under the same conditions. At 248.2 K and a partial pressure of 1.013 kPa the value for acetaldehyde is 0.047 compared with a value of 0.072 for 2 -propanone.

Just (8) measured solubility in benzaldehyde at about 101.3 kPa from 288.2 K to 298.2 K . These measurements are in close agreement with measurements by Kunerth (5) from 291.2 K to 309.2 K . An equation for mole fraction solubility at a partial pressure of 101.3 kPa given below is recommended. It is based on the two sets of data.

$$
\ln x_{\mathrm{CO}_{2}}=-90.097+5108.0 /(T / K)+12.023 \ln (T / K)
$$

temperature range $=288.2-309.2 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=8.9 \times 10^{-5}$
Solubility in 4-methyl-1,3-dioxolan-2-one (propylene carbonate) has been
measured to high pressures by Mantor et al.(15), Zubchenko et al.(16),
Shakhova et al.(17), Isaacs et al.(18) and by Murrieta-Guevara et al.(19).
These authors have used the data to obtain limiting values of Henry's constant from which the solubility at 101.3 kPa may be estimated.
Makranczy et al.(20) have also made measurements to high pressures but
values of solubility at 101.3 kPa from these measurements are inconsistent
with measurements by other groups. Lenoir et al.(21) have measured
limiting values of Henry's constant by a chromatographic method. These values are high compared with other values and may be subject to the limitations of the chromatographic method. Limiting values of Henry's constant from chromatographic measurements by Sweeney (22) are in better agreement with other data. Rivas and Prausnitz $(23,24)$ have reported values of Henry's constant at 263.2 K to 373.2 K calculated from volumes of gas absorbed. The solubility at 293.2 K is also given by Bratzer (25). The evaluator recommends an equation for mole fraction solubility at a partial pressure of gas of 101.3 kPa which is based upon data given in references (15-19,22-25). i.e.

$$
\ln x_{\mathrm{CO}_{2}}=-36.218+2856.7 /(T / K)+3.9003 \ln (T / K)
$$

temperature range $=228.2-423.2 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=0.00060$
Meder et al.(26) measured the solubility at partial pressures from 9.3 kPa to 93.0 kPa at 293.2 K . Extrapolation to 10.1 .3 kPa gives a value of $x^{2} \mathrm{CO}_{2}$ of about 0.015 compared with a value of 0.0133 from the above equation $\mathrm{CO}_{2}$ These measurements at lower pressures need confirmation by other workers.

Vilcu et al.(27) have reported the mole fraction solubility in 1,3-dioxolan-2-one (ethylene carbonate) to be 0.00703 at 101.3 kPa and 313.2 K . This compares with a value of 0.00926 for solubility in propylene carbonate under these conditions.

Just (8) measured solubilities in acetic, propanoic and butanoic acids at about 101.3 kPa from 288.2 K to 298.2 K . Kunerth (5) measured solubility in acetic acid at about the same pressure over the range 291.2 K to 309.2 K . These measurements are consistent with those of Just. A smoothing equation for solubility at a partial pressure of 101.3 kPa , based on the two sets of measurements, is given below.

## COMPONENTS:

1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]
2. Solvents, other than Alcohols, Containing Carbon, Oxygen and Hydrogen

EVALUATOR:
Peter G.T. Fogg, School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:

$$
\ln x_{\mathrm{CO}_{2}}=76.937-2231.8 /(T / K)-12.978 \ln (T / K)
$$

temperature range $=288.2-309.2 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=0.00012$
No other measurements are available to confirm Just's data for propanoic and butanoic acids.

Ouellet and Dubois (28) measured solubility in 9-octadecanoic acid at 11 kPa to 59 kPa from 296.2 K to 335.2 K . This work is self consistent but no measurements on this or other long chain carboxylic acids are available for comparison. These data for acetic, propanoic, butanoic and 9 -octadecanoic acids indicate that mole fraction solubility at a partial pressure of 101.3 kPa increases with carbon number. (Table 1)

Just (8) measured solubility in acetic acid anhydride from 288.2 K to 298.2 K . No other data are available.

Mole fraction solubilities in alkyl esters of carboxylic acids from the literature are higher than in carboxylic acids or ketones under the same conditions. There is a tendency for values of mole fraction solubilities at 298.2 K and 101.3 kPa to increase with chain length of the parent alkanol and of the parent carboxylic acid. (see Table 1)

Just (8) measured solubility in pentyl formate from 288.2 K to 298.2 K . No other data on this system are available for comparison. The mole fraction solubility in methyl acetate at 298.2 K and 101.3 kPa from Just (8) is 0.02260 and from Gjaldbaek and Andersen (9) is 0.00207. The latter measurements are probably the more reliable.

Bodor et al.(29) measured solubility in ethyl acetate at partial pressures from 9.6 kPa to 102.4 kPa at 198 K to 318.2 K . The data is self-consistent. Shenderei et al.(11) measured solubility to high pressures at 228.0 K to 248.0 K . Bodor's value of mole fraction solubility at 248.2 K and a partial pressure of 101.3 kPa is 0.0890 . The value at 248.0 K and 101.3 kPa from Shenderei is 0.0813 . The following smoothing equation for mole fraction solubility at a partial pressure of 101.3 kPa is based upon data from both sources. Differences between the two sets of data must be borne in mind when this equation is used.

$$
\ln _{\mathrm{CO}_{2}}=11.689+1063.1 /(T / \mathrm{K})-3.3435 \ln (T / K)
$$

temperature range $=198-318.2 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=0.0095$
Solubility in propyl acetate at 298.2 K and a partial pressure of 101.3 kPa was measured by Gjaldbaek and Andersen (9). Solubility in 2-methylpropyl acetate at 293.2 K and 298.2 K was measured by Just (8). There is no reason to doubt the reliability of these measurements but confirmation by other workers is needed.

Solubility in pentyl acetate at or close to 101.3 kPa was measured by Just (8) from 288.2 K to 298.2 K and by kunerth (5) from 291.2 K to 307.2 K . values of mole fraction solubility at 293.2 K are 0.0266 (Just) and 0.0280 (Kunerth). The following smoothing equation is based on the two sets of data.

## COMPONENTS:

1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]
2. Solvents, other than Alcohols, Containing Carbon, Oxygen and Hydrogen

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:

$$
\ln x_{\mathrm{CO}_{2}}=-79.380+4337.8 /(T / K)+10.737 \ln (T / K)
$$

temperature range $=288.2-307.2 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=0.00056$
Ouellet and Dubois (28) measured solubility in ethyl stearate at 8 kPa to 78 kPa from 307.2 K to 347.2 K . The data are self-consistent but no other measurements are available for comparison.

Arai et al.(30) measured solubility in methyl, ethyl and butyl oleate at 30 kPa to 90 kPa from 273.2 K to 343.2 K . There is very little difference between mole fraction solubilities in the three solvents. The data are self-consistent. No other measurements on these systems are available. Comparison with Oullet's measurements indicate that mole fraction solubility in oleates is greater than in stearates under the same conditions.

There are significant differences between solubilities in
1,2,3-propanetriol triacetate measured by Shakhova et al.(17) from 273.2 K to 328.2 K and those measured by Makranczy et al. 20 ) from 273.2 K to 303.2 K . Values of mole fraction solubility at a partial pressure of 101.3 kPa at 273.2 K are 0.0466 (Shakhova) and 0.0414 (Makranczy). At 298.2 K the two values are 0.0284 (Shakhova) and 0.0222 (Makranczy). Further measurements on this system are required.

The solubility in 1, 1'-oxybisethane was measured by Christoff (31) in 1912 at barometric pressure from 273.2 K to 288.2 K . This work indicates that mole fraction solubility, corrected to a partial pressure of 101.3 kPa is close to that in 2-propanone under the same conditions. There is no recent work on the system under these conditions.

Bodor (32) measured solubility in tetrahydrofuran at 10.5 kPa to 97.7 kPa from 198 K to 318.2 K . Measurements are self-consistent and there is no reason to doubt their reliability. Mole fraction solubility is high compared with other solvents. No other work on the system is available for comparison.

Gallardo et al.(33) reported the mole fraction solubility in 1,4-dioxane at a partial pressure of 101.3 kPa from 285.2 K to 303.2 K . Kassim et a1. (34) reported values from 303.2 K to 333.2 K . Values for 303.2 K are 0.01974 (Gallardo) and 0.0192 (Kassim). However Gallardo's measurements show a steep fall in mole fraction solubility with increase in temperature whereas Kassim's measurements show negligible change through the temperature range. The two sets of measurements are therefore not compatible. Further work on this system is required

The limiting value of Henry's constant for dissolution in dipropylene glycol at 298.2-343.2 K was measured by Lenoir et al.(21) by gas-liquid chromatography. No other measurements are available for comparison. Jou et al.(35) measured solubility in triethylene glycol to high pressures at 298.15 K to 398.15 K . Mole fraction solubility at 101.3 kPa can be calculated from the data. Makranczy et al.(36) also investigated this system at 273.15-303.15 K to high pressures. Values of mole fraction solubility at $298.15 \mathrm{~K} ; 101.3 \mathrm{kPa}$ from the two sources are 0.00677 (Makranczy); 0.00846 (Jou). The data from Jou et al. shows greater consistency over the pressure range in which studies were carried out and are likely to be the more reliable. Byeseda et al.(37) measured the solubility in this solvent at 297.1 K and a pressure of 101.6 K . The corresponding value of the mole fraction solubility is 0.0093 compared with a value of 0.0086 by extrapolation of Jou's measurements.

COMPONENTS:

1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]
2. Solvents, other than Alcohols, Containing Carbon, Oxygen and Hydrogen

## EVALUATOR:

Peter G.T. Fogg,
School of Appilied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

## CRITICAL EVALUATION:

Makarovet al.(38) measured solubility to high pressures at 293.15 K in two samples of polyethylene glycol having average relative molecular masses of 280 and 400 respectively. In one case the average degree of polymerisation was 6 and in the other case 8.7. Comparison with Jou's data (35) shows that, at a partial pressure of gas of 101.3 K the mole fraction solubility of carbon dioxide increases with the average number of ether linkages in molecules of the solvent. A plot of mole ratio solubility of these compounds with two hydroxyl groups against the number of ether linkages is close to a straight line passing through the mole ratio solubility in ethylene glycol which has no ether linkages (Fig. 1). This indicates that Makarov's data is consistent with Jou's data. The solubility of hydrogen sulfide in polyethylene glycols shows a similar variation with the number of ether linkages (39).

Bodor et al.(40) measured solubility in 2-methoxyethanol (ethylene glycol monomethyl ether) at pressures to 99 kPa from 198 K to 318.2 K . Data can be extrapolated to give the solubility at 101.3 kPa . The measurements are self consistent and may be accepted on a tentative basis. Sciamanna and Lynn (41) measured solubility in diethylene glycol monomethyl ether and in triethylene glycol monobutyl ether at 3 to 100 kPa from 288.2 K to 373.2 K . Comparison of these measurements with Bodor's measurements on ethylene glycol monomethyl ether shows again that mole fraction solubility at a pressure of gas of 101.3 kPa increases with the number of ether linkages. When mole ratio solubilities in these compounds with one hydroxyl group are plotted against the number of ether linkages values lie close to a stright line. This line is close to the solubility in ethanol which has no ether linkages (Fig 1).

Solubilities in polyethylene glycol diethers have been published by various authors. Makarov (38) measured solubilities in triethyleneglycol diethyl ether, polyethylene glycol diethyl, dipropyl and methylpropyl ethers to high pressures at 293.2 K to 323.2 K . Sciamanna and Lynn (41) measured solubilities in di- and tri- and tetraethylene glycol dimethyl ethers at pressures to 100 kPa from 288.2 K to 373.2 K . Zubchenko and Shakhova (42) also measured the solubility in tetraethylene glycol dimethyl ether at 298.15 K . Sweeney (22) measured the limiting value of Henry's constant at 298.2 K and 323.2 K . Values from both these sources are close to those from Sciamanna's work. Wolfer (43) reported solubility data for polyethylene glycol methyl isopropyl ether. Mole fraction solubilities at 101.3 kPa in all these compounds are greater than in polyglycols having no alkoxy groups but the same number of ether links. Mole ratio solubilities plotted against the number of ether links lie close to a straight line passing through the solubility in diethyl ether which has one ether link (Fig 1).

Makranczy et al.(20) measured solubility in methoxytriethylene glycol acetate and butoxytriethylene glycol acetate. Makarovet al.(38) measured solubility in polyethylene glycol diacetate. No other measurements on these solvents are available for comparison. Data for the two monoacetates fall close to values for glycol ethers and diethers having the same number of ether linkages. The data for the diacetate lies closer to corresponding data for polyglycols (Fig. 1)

The limiting value of Henry's constant for dissolution in phenol at 323.2 K was measured by Lenoir et a1.(21) using the gas-liquid chromatographic method. The mole fraction estimated for a partial pressure of 101.3 kPa is 0.00467 but this value is subject to the limitations associated with the method. Horvath et al.(44) measured solubility in 3 -methylphenol at 300.5 K . The value of the mole fraction solubility at a partial pressure of 101.3 kPa is 0.00592 . This value is compatible with the value for phenol at 323.2 K estimated from Lenoir's


Fig. 1 Mole ratio solubilities at 293.15 K and a partial pressure of 101.3 kPa in glycol ethers, glycols, glycol esters, diethyl ether and ethanol as a function of the number of -C-O-C- links in a molecule of the solvent.


Glycol monoethers and ethanol
1 - ethanol (smoothed value; see p.128) $n$ - diethylene glycol monomethyl ether(41)
$m$ - ethylene glycol monomethyl ether (40) o - triethylene glycol butyl ether (41)
$\nabla$ Glycols
$p$ - ethylene glycol ${ }^{2}$ (37) r-polyethylene glycol 280 (38)
q - triethylene glycol (35) s - polyethylene glycol 400 (38)
$X$ Glycol esters
t - methoxy triethylene glycol acetate(20) v - polyethylene glycol diacetate (38)
u - butoxy triethylene glycol acetate (20)

```
l 298.15 K 2 297.1 K
```


## COMPONENTS:

1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]
2. Solvents, other than Alcohols, Containing Carbon, Oxygen and Hydrogen

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry,
Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

## CRITICAL EVALUATION:

measurements. Just (8) measured solubility in 2 -methoxy-4-(2-propenyl)phenol at 288.2 K to 298.2 K . Extrapolated values of solubility at a partial pressure of 101.3 kPa are much higher than the apparent solubilities in phenol and 3-methylphenol. This is due to the presence of the methoxy group in this compound. Solubility data for phenols must be accepted on a tentative basis until further measurements on these compounds have been carried out.

Kassim et al.(34) measured solubility in dihydro-2-(3H)-furenone at 303.2-333.2 K; 101.3 kPa . Mole fraction solubility is high compared with the reference line based on Raoult's law. These measurements may be accepted on a tentative basis until measurements on this or similar systems are available for comparison.

Selected values of mole fraction solubilities in solvents containing oxygen are shown in Table 1 and in Fig 2.

## REFERENCES

1. Bodor, E.; Bor, Gy.; Maleczkine, M.; Mesko, G.; Mohai, B. Veszpremi. Vegyip. Egyet. Kozlemen. 1957, 1, 63-76.
2. Balog-Megyery, K.; Makranczy, J.; Rusz, L.; Mate, E. Hung. J. Ind. Chem. 1986, 14(1), 49-51.
3. Luhring, P.; Schumpe, A. J. Chem. Eng. Data 1989, 34, 250-252.
4. Koudelka, L. Chem. Zvesti 1964, 18, 178-185.
5. Kunerth, w. Phys. Rev. 1922, 19, 512-524.
6. Rosenthal, W. Thes. Fac. Sci. Univ. Strasbourg (France) 1954.
7. Felsing, W.A.; Durban, S.A. J. Amer. Chem. Soc. 1926, 48, 2885-2893.
8. Just, G. Z. Phys. Chem. 1901, 37, 342-367.
9. Gjaldbaek, J.C.; Andersen, E.K. Acta Chem. Scand. 1954, 8, 1398-1413.
10. Shenderei, E.R. Zhur. Prikl. Khim. 1965, 38(9), 2126-2128.
11. Shenderei, E.P.; Zel'venskii, Ya.D.; Ivanovskii, F.P. Khim. Prom. 1960, (5), 18-22.
12. Gallardo, M.A.; Lopez, M.C.; Urieta, J.S.; Gutierrez Losa, C. Fluid Phase Equilibria 1989, 50, 223-233.
13. Gallardo, M.A.; Melendo, J.M.; Urieta, J.S.; Gutierrez Losa, C. Can. J. Chem. 1987, 65, 2198-2202.
14. Gallardo, M.A.; Lopez, M.C.; Urieta, J.S.; Gutierrez Losa, C. Can. J. Chem. 1990, 68, 435-439.
15. Mantor, P.D.; Abib, O.; Song, K.Y.; Kobayashi, R. J. Chem. Eng. Data 1982, 27, 243-245.

COMPONENTS:

1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]
2. Solvents, other than Alcohols, Containing Carbon, Oxygen and Hydrogen

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:
16. Zubchenko, Yu. P.; Shakhova, S.F.; Ting Wei; Titel'man, L.I.; Kaplan, L.K. Zh. Prik1. Khim. 1971, 44(9), 2044-2047.
17. Shakhova, S.F.; Bondareva, T.I.; Zubchenko, Yu.P. Khim. Prom. 1966, (10), 753-754.
18. Isaacs, E.E.; Otto, F.D.; Mather, A.E. Can. J. Chem. Eng. 1977, 55, 751-752.
19. Murrieta-Guevara, F.; Romero-Martinez, A.; Trejo, A. Fluid Phase Equilibria, 1988, 44, 105-115.
20. Makranczy. J.; Mohai, B.; Papp, S.; Rusz, L. Veszpremi. Vegyip. Egyet. Kozlemen. 1964, 8, 225-234.
21. Lenoir, J-Y.; Renault, P.; Renon, H. J. Chem. Eng. Data, 1971, 16, 340-342.
22. Sweeney, C.W. Chromatographia, 1984, 18, 663-667.
23. Rivas, O.R.; Prausnitz, J.M. Ind. Eng. Chem. Fundam. 1979, 18, 289-292.
24. Rivas, O.R.; Prausnitz, J.M. Am. Inst. Chem. Eng. J. 1979, 25, 975-984.
25. Bratzler, K.D.; Doerges, A.; Herbert, W. German Patent No. 1769.197 to Metallgesellschaft $A G$. 1971.
26. Meder, A.P.; Tubolkin, A.F.; Tarat, E.Ya.; Durkina, A.G. Zhur. Fiz. Khim. 1974, 48(8), 1985-1987; Russian J. Phys. Chem. 1974, 48(8), 1172-1174
27. Vilcu, R.; Perisanu, St.; Cucuiat, M. Pol. J. Chem. 1980, 54(10), 2043-2050.
28. Ouellet, C.; Dubois. J.-T. Can. J. Research 1948, 26B, 54-58.
29. Bodor, E.; Bor, Gy.; Maleczkine, M.; Mesko, G.; Mohai, B.; Siposs, G. Veszpremi. Vegyip. Egyet. Kozlemen. 1957, 1, 77-87.
30. Arai, C.; Yoshitama, T.; Nishihara, K.; Sano, Y. Kagaku Kogaku Ronbunshu, 1989, 15(6), 1193-1195.
31. Christoff, A. Z. Phys. Chem. 1912, 79, 456-460.
32. Bodor, E.; Bor, Gy.; Maleczkine, M.; Mesko, G.; Mohai, B.; Siposs, G. Veszpremi. Vegyip. Egyet. Kozlemen. 1957, 1, 89-98.
33. Gallardo, M.A.; Urieta, J.S.; Gutierrez Losa, C. J. Chim. Phys. Phys.-Chim. Biol. 1983, 80, 621-625.
34. Kassim, D.M.; Zainel, H.A.; Al-Asof, S.A.; Talib, E.K. Fluid Phase Equilibria, 1988, 41, 287-294.
35. Jou, F-Y.; Deshmukh, R.D.; Otto, F.D.; Mather, A.E. Fluid Phase Equilibria 1987, 36, 121-140.
36. Makranczy. J.; Mohai, B.; Papp, S.; Rusz, L. Veszpremi. Vegyip. Egyet. Kozlemen. 1964, 8, 213-224.


COMPONENTS:

1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]
2. Solvents, other than Alcohols, Containing Carbon, Oxygen and Hydrogen

## EVALUATOR:

Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:

Table 1.
Mole fraction solubilities of carbon dioxide at a partial pressure of 101.3 kPa in solvents containing carbon, hydrogen and oxygen

Solvent	T/K	${ }^{x} \mathrm{CO}_{2}$	Reference
2-Propanone	298.15	0.0211	9
Cyclopentanone	298.15	0.01641	12
Cyclohexanone	298.15	0.0160	13
2,6-Dimethylcyclohexanone			
	298.15	0.0168	14
Benzaldehyde	298.15	$0.0115 \pm 0.0006$	*
4-Methyl-1,3-dioxolan-2-one			
	298.15	$0.01210 \pm 0.00060$	*
Acetic acid	298.15	$0.01120 \pm 0.00012$	*
Propanoic acid	298.15	0.0123	8
Butanoic acid	298.15	0.0130	8
9-Octadecenoic acid	298.15	0.0157	$28+$
Acetic anhydride	298.15	0.0199	8
Methyl acetate	298.15	0.0208	8
	298.15	0.0226	9
Ethyl acetate	298.15	0.0230	1 \%
Propyl acetate	298.15	0.0245	9
2-Methylpropyl acetate 0.150 .0250			
	298.15	0.0250	8
Pentyl acetate	298.15	$0.02584 \pm 0.00056$	*
Pentyl formate	298.15	0.0212	8
Ethyl stearate	307.15	0.0190	28 II
Methyl oleate	298.15	0.0269	30
Ethyl oleate	298.15	0.0277	30
Butyl oleate	298.15	0.0279	30
1,2,3-Propanetriol triacetate			
	298.15	0.0284	17
	298.15	0.0222	20
1,1'-Oxybisethane	288.15	0.0233	31
Tetrahydrofuran	298.15	0.027	32
1,4-Dioxane	298.15	0.02272	33
Oxybispropanol	298.15	0.00826	21
Triethylene glycol	298.15	0.00846	35
2-Methoxyethanol	298.15	0.0100	40 †
Phenol	323.15	0.0047	21
3-Methylphenol	300.15	0.0059	44


COMPONENTS:	EVALUATOR:		
1. Carbon dioxide; $\mathrm{CO}_{2} ;$			
$\quad[124-38-9]$		$\quad$	Peter G.T. Fogg,
:---			
School of Applied Chemistry,			
Polytechnic of North London,			
Holloway Road, London, N7 8DB, U.K.			
Solvents, other than Alcohols,   Containing Carbon, Oxygen and   Hydrogen			
July 1991			

CRITICAL EVALUATION:


Fig. 2 Mole fraction solubility of carbon dioxide in various solvents containing carbon, oxygen and hydrogen at a partial pressure of gas of 101.3 kPa .
a - ethyl acetate
b - 2-propanone
c - 4-methyl-1,3-dioxolan-2-one (propylene carbonate)
d - pentyl acetate
e - benzaldehyde
f - acetic acid
The curves showing the variation of solubility with temperature correspond to equations derived by the evaluator.

A reference line corresponding to values from the Raoult's law equation is also shown.

COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) 2-Propanone or acetone; $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$; [67-64-1]	ORIGINAL MEASUREMENTS:   Just, G.   Z. Phys. Chem. 1901, 37, 342-367.
VARIABLES: $\begin{aligned} T / K & =293.15, \end{aligned} \quad 298.15$	PREPARED BY:   M. E. Derrick   H. L. Clever
EXPERIMENTAL VALUES:   The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at $101.325 \mathrm{kPa}(1 \mathrm{~atm})$ partial pressure of the gas.	
aUXILIARY	information
METHOD/APPARATUS/PROCEDURE:   An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket.   The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.	



COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) 2-Propanone or acetone; $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$; [67-64-1]	ORIGINAL MEASUREMENTS: $\begin{aligned} & \text { Felsing, W. A.; Durban, S. A. } \\ & \text { J.Am. Chem. Soc. 1926, } 48, \\ & 2885-2893 \text {. } \end{aligned}$
VARIABLES: $\begin{aligned} T / \mathrm{K} & =200.01-293.15 \\ p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm}) \end{aligned}$	PREPARED BY: $\quad$ H. L. Clever
	icient ${ }^{1}$     $\mathrm{~cm}^{3}(\mathrm{STP}) \mathrm{g}^{-1}$ $x_{1}$ Mol FractionOstwald   Coeffiidient   $L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}$
-73.14 200.01 13.94490 313,	3,597.1 0.4475
$\begin{array}{llll}-60.12 & 213.03 ~ 5.92017 ~ 132, ~\end{array}$	,710.1 0.2559
$\begin{array}{llll}-45.14 & 228.01 & 2.79867\end{array}$	,736.6 0.13982
-29.24 $243.91 \quad 1.47773$	$125.1 \quad 0.07904$
$\begin{array}{lll}-13.55 & 259.60 & 0.90322\end{array}$	0,247.1 0.04984
-2.54 $270.61 \quad 0.62115$	3,924.0 0.0348211 .3
+20.00 $293.15 \quad 0.35537$	$\begin{array}{lll}7,966.2 & 0.02022 & 6.76\end{array}$
${ }^{1}$ The authors labeled the solubility acetone. The compiler has labeled i   The mole fraction and Ostwald coeffic compiler.   The authors fitted the solubility dat $\begin{aligned} \log m_{1}= & -18.085436+2615.017 /(T / K) \\ & -79.07114 \times 10^{-6}(T / K)^{2} \end{aligned}$   dioxide at a partial pressure of 760	as $\mathrm{cm}^{3}\left(0^{\circ} \mathrm{C} / 760 / \mathrm{mmHg}\right)$ per 1000 g of $t 10^{3}$ x Kuenen coefficient.   ient values were calculated by the   a to the equation   $+66.55546 \times 10^{-3}(T / K)$   $r$ the molal solubility of carbon mmHg .
auxiliary	information
METHOD/APPARATUS/PROCEDURE:   The apparatus consists of an absorption flask, a manometer, and a gas buret.   The absorption flask was in a cryostat with ethyl bromide as the fluid.   The gas buret appears to be water jacketed. It appears that the volume of dry carbon dioxide vapor was measured, but the authors do not make a statement to confirm the procedure.   The measurement was carried out at a total pressure equal to $760 \mathrm{mmHg} \mathrm{CO}_{2}$ + the 2 -propanone vapor pressure.   The authors used an ideal gas molar volume of $22,416.55 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ to convert the gas volumes to moles.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Source and purity not stated.   (2) 2-Propanone. The best c.p. material available was distilled three times, converted to the NaI addition compound which was distilled and reformed several times.Density, $\rho^{25} / \mathrm{g} \mathrm{cm}^{-3}=$ 0.78612 .   ESTIMATED ERROR: $\delta T / K= \pm 0.02$   REFERENCES:


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) 2-Propanone or acetone; $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$; [67-64-1]	ORIGINAL MEASUREMENTS: $\begin{aligned} & \text { Gjaldbaek, J. C.; Andersen, E. K. } \\ & \text { Acta Chem. Scand. 1954, 8, } \\ & 1398-1413 . \end{aligned}$
VARIABLES: $\begin{aligned} T / \mathrm{K} & =298.15 \\ p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm}) \end{aligned}$	PREPARED BY:   J. Chr. Gjaldbaek
EXPERIMENTAL VALUES:	
AUXILIARY	Information
METHOD/APPARATUS/PROCEDURE:   The apparatus consists of a calibrated all-glass manometer and bulb enclosed in an air thermostat. The solvent is added and degassed in the apparatus. The gas is added. The apparatus and contents are shaken until equilibrium is attained. Mercury is used for calibration and as the confining liquid.   The absorbed volume of gas is calculated from the initial and final amounts of gas, both saturated with solvent vapor. The amount of solvent is determined by the weight of displaced mercury. Further details are in the references (1, 2).   The mole fraction values are at one atm pressure assuming Henry's law is obeyed.	SOURCE AND PURITY OF MATERIALS:   (1) Carbon dioxide. Prepared from potassium bicarbonate and sulfuric acid. 99.8 - 99.9 ( $\mathrm{CO}_{2}$   (2) Acetone. Merck and Co. Fractionated by distillation. B.p. $(760 \mathrm{mmHg}) /{ }^{\circ} \mathrm{C}=56.12-56.14$, refractive index $\mathrm{n}_{\mathrm{D}}\left(20^{\circ} \mathrm{C}\right)=$ 1.3588-1.3589.   ESTIMATED ERROR: $\begin{aligned} \delta T / K & = \pm 0.05 \\ \delta x_{1} / x_{1} & = \pm 0.015 \end{aligned}$   REFERENCES:   1. Lannung, A.   J. Am. Chem. Soc. 1930, 52, 68.   2. Gjaldbaek, J. C.   Acta Chem. Scand. 1952, 6, 623.


COMPONENTS:   (1) Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   (2) 2-Propanone (acetone); $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$; [67-64-1]	ORIGINAL MEASUREMENTS:   Rosenthal, W.   Thès, fac, sci. U niv. Strasbourg (France) 1954.
VARIABLES: $\begin{aligned} T / K & =293.15 \\ p / \mathrm{kPa} & =101.325 \end{aligned}$	PREPARED BY:   H. L. Clever
EXPERIMENTAL VALUES:	
  a original data.   b Calculated by compiler using real	en Coefficient ${ }^{\mathrm{b}}$   $(\mathrm{STP}) \mathrm{cm}^{-3} \mathrm{~atm}^{-1}$   6.40Mole Fraction ${ }^{\mathrm{b}}$   $x_{1}$   as molar volumes.


COMPONENTS:   1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]   2. 2-Propanone (Acetone); $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$; [67-64-1]	ORIGINAL MEASUREMENTS:   Bodor, E.; Bor, Gy.; Maleczkine, M.; Mesko, G.; Mohai, B.; Siposs, G. Veszpremi. Vegyip. Egyet. Kozlemen. 1957, 1, 63-76.
VARIABLES: $\begin{aligned} & T / K=198-318.2 \\ & P / \mathrm{kPa}=7.7-97.2 \end{aligned}$	PREPARED BY:   C. L. Young
EXPERIMENTAL VALUES: $T / \mathrm{K} \quad p / \mathrm{mmHg} \quad p / \mathrm{kPa}$	Absorption ${ }^{+}$ Mole fraction ${ }^{*}$ of   of gas carbon dioxide   $/ \mathrm{cm}^{3} \mathrm{~g}^{-1}$ in liquid,    ${ }^{x} \mathrm{CO}_{2}$
318.26 58 7.7    142 18.9    148 19.7    214 28.5    246 32.8    176 23.5    216 28.8    254 43.9    310 46.3    348 54.4    405 59.7    448 68.5    514 69.6    522 47.3    355 51.5    386 55.9    419 62.5    469 73.8    471 75.1    552 81.1	0.83 0.00215   1.67 0.00431   1.61 0.00415   2.34 0.00603   2.75 0.00708   2.54 0.00654   2.90 0.00746   3.88 0.00995   4.32 0.0111   4.90 0.0125   5.72 0.0146   6.40 0.0163   7.27 0.0185   7.25 0.0184   8.20 0.0208   8.12 0.0206   9.70    9.87    10.70    11.60    12.60    12.70                (cont.) 0.0245  
AUXILIARY	Information
METHOD/APPARATUS/PROCEDURE:   Volumetric method. Pressure measured when known amounts of gas were added, in increments, to a known amount of liquid in a vessel of known dimensions. Corrections were made for the partial pressure of solvent. Details in ref. (l).	

COMPONENTS:

1. Carbon dioxide; $\mathrm{CO}_{2}$; [124-38-9]
2. 2-Propanone (Acetone);
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$; [67-64-1]

ORIGINAL MEASUREMENTS:
Bodor, E.; Bor, Gy.; Maleczkine, M.; Mesko, G.; Mohai, B.;

Siposs, G.
Veszpremi. Vegyip. Egyet. KozZemen. 1957, 1, 63-76.

\begin{tabular}{|c|c|c|c|c|}
\hline EXPERIM

$T / \mathrm{K}$ \& VALUES :

$p / \mathrm{mmHg}$ \& $p / \mathrm{kPa}$ \& $$
\begin{aligned}
& \text { Absorption } \\
& \text { of gas } \\
& / \mathrm{cm}^{3} \mathrm{~g}^{-1}+
\end{aligned}
$$ \& ```

Mole fraction* of
carbon dioxide
in liquid,
* CO2

``` \\
\hline \multirow[t]{4}{*}{273.2} & 639 & 85.2 & 14.25 & 0.0356 \\
\hline & 677 & 90.3 & 14.20 & 0.0355 \\
\hline & 689 & 91.9 & 15.0 & 0.0374 \\
\hline & (760) & (101.3) & (16.5) & (0.0410) \\
\hline \multirow[t]{7}{*}{248.2} & 88 & 11.7 & 5.8 & 0.0148 \\
\hline & 219 & 29.2 & 8.8 & 0.0223 \\
\hline & 351 & 46.8 & 12.8 & 0.0321 \\
\hline & 470 & 62.7 & 16.6 & 0.0412 \\
\hline & 566 & 75.5 & 21.0 & 0.0516 \\
\hline & 712 & 94.9 & 27.0 & 0.0654 \\
\hline & (760) & (101.3) & (30) & (0.072) \\
\hline \multirow[t]{7}{*}{223.2} & 225 & 30.0 & 26.8 & 0.0649 \\
\hline & 258 & 34.4 & 29.6 & 0.0712 \\
\hline & 395 & 52.7 & 42.1 & 0.0984 \\
\hline & 568 & 75.7 & 59.3 & 0.133 \\
\hline & 612 & 81.6 & 67.6 & 0.149 \\
\hline & 726 & 96.8 & 82.9 & 0.177 \\
\hline & (760) & (101.3) & (90) & (0.189) \\
\hline \multirow[t]{6}{*}{\(198 \pm 2\)} & 151 & 20.1 & 74.3 & 0.161 \\
\hline & 246 & 32.8 & 118.2 & 0.234 \\
\hline & 540 & 72.0 & 310.3 & 0.446 \\
\hline & 632 & 84.3 & 421 & 0.522 \\
\hline & 729 & 97.2 & 509
\((570)\) & 0.569 \\
\hline & (760) & (101.3) & (570) & (0.596) \\
\hline
\end{tabular}
\(\dagger_{\text {the }}\) volume of gas absorbed by one gram of solvent was * corrected to 273.15 K and 101.3 kPa
* calculated by compiler.

Values in parentheses are extrapolated to 1 atmosphere.

AUXILIARY INFORMATION

\section*{METHOD/APPARATUS/PROCEDURE:}

Solubility measurements were made by a static method using apparatus described in earlier papers (2-4). A measured quantity of solvent was saturated with carbon dioxide and the volume of gas absorbed was measured when equilibrium was attained.

SOURCE AND PURITY OF MATERIALS:
No information

ESTIMATED ERROR:

\section*{REFERENCES:}
1. Weast, R.C.; Astle, M.J. CRC Handbook of Data on Organic Compounds 1985, CRC Press Inc., Boca Raton, Florida, U.S.A.
2. Makranczy, J.; Megyery-Balog, K.;

Rusz, L.; Patyi, L.
Hung. J. Ind. Chem. 1976, 4, 269.
3. Makranczy, J.; Rusz, L.i

Balog-Megyery, K.
Hung. J. Ind. Chem. 1979, 7, 41.
4. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G.
Veszpremi Vegyip. Egy. Kozl. 1957, 1, 55.

COMPONENTS:
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]
2. 2-Dropanone; \(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\); [67-64-1]
3. Ethyne; \(\mathrm{C}_{2} \mathrm{H}_{2}\); [74-86-2]
```

VARIABLES:
T/K=217.17
P}\mp@subsup{\textrm{CO}}{2}{}/\textrm{kPa}=13.3-101.
x}\mp@subsup{\textrm{CO}}{2}{}\mp@subsup{\textrm{H}}{2}{}=0.08-0.3

```

EXPERIMENTAL VALUES:
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Conc.of \\
ethyne* \\
\(/ \mathrm{cm}^{3} \mathrm{~g}^{-1}\)
\end{tabular} & Mole fraction of ethyne, \(x_{\mathrm{C}_{2} \mathrm{H}_{2}}{ }^{* *}\) & ```
 Pressure
 increase
due to }\mp@subsup{\textrm{CO}}{2}{}\mathrm{ ,
 P tot }\mp@subsup{}{}{-P
``` & ```
Mole fraction
    of }\mp@subsup{\textrm{CO}}{2}{}\mathrm{ ,
        .x CO2
``` & \[
\begin{gathered}
\text { Solubility } \\
\text { of } \mathrm{CO}_{2} \text { at } \\
P_{\mathrm{tot}^{-P_{0}}} \\
/ \mathrm{cm}^{3} \mathrm{~g}^{-1}
\end{gathered}
\] \\
\hline
\end{tabular}
\begin{tabular}{rrrrr}
\hline \multirow{3}{*}{42.7} & 0.0978 & & & \\
& 0.0924 & 100 & 0.0281 & 12.27 \\
& 0.0865 & 300 & 0.0842 & 37.90 \\
\multirow{3}{*}{128} & 0.0792 & 500 & 0.1402 & 115.32 \\
& 0.2451 & 760 & 0.2131 & 12.70 \\
& 0.2329 & 100 & 0.0243 & 40.13 \\
& 0.2207 & 300 & 0.0730 & 70.59 \\
& 0.2049 & 500 & 0.1216 & 115.62 \\
& 0.3439 & 760 & 0.1848 & 13.35 \\
& 0.3283 & 100 & 0.0222 & 42.09 \\
& 0.3128 & 300 & 0.0666 & 73.43 \\
& 0.2926 & 500 & 0.1109 & 119.27 \\
& 0.4919 & 760 & 0.1685 & 15.14 \\
& 0.4725 & 100 & 0.0194 & 47.29 \\
& 0.4530 & 300 & 0.0582 & 82.40 \\
& 0.4279 & 500 & 0.0970 & 132.37
\end{tabular}
* concentrations are expressed at volume of gas, corrected to 273.15 K and 101.325 kPa , dissolved per gram of acetone
** calculated by the compiler
\begin{tabular}{|c|c|c|c|}
\hline T/K & Mole fraction of ethyne & \[
\begin{gathered}
\text { Henry's } \\
\text { for dis } \\
/ \mathrm{mmHg}
\end{gathered}
\] & \[
\begin{aligned}
& \text { stan } \\
& \text { of } \\
& \text { /kP }
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{217.17} & 0.10 & 3570 & 476 \\
\hline & 0.25 & 4115 & 549 \\
\hline & 0.35 & 4505 & 601 \\
\hline & 0.45 & 5150 & 687 \\
\hline \multicolumn{2}{|l|}{\[
H=, \lim _{x_{\mathrm{CO}_{2}} \rightarrow 0}\left(\frac{\delta P}{\delta x} \mathrm{tot}_{\mathrm{CO}_{2}}\right)
\]} & & \\
\hline
\end{tabular}
calculated from measurements of the total pressure over the solution, \(P_{\text {tot }}\).

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:
The method is described in ref. (1).

SOURCE AND PURITY OF MATERIALS:
No information
ESTIMATED ERROR:
\(\delta x_{\mathrm{CO}_{2}}= \pm 0.5 \% \quad\) (author)
REFERENCES:
1. Shenderei, E.R.;

Zel'venskii, Ya.D.; Ivanovskii, F.N. Gaz. Prom. 1958, 12, 36.

\section*{COMPONENTS :}
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9]
2. Cyclopentanone; \(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}\);
[120-92-3]
VARIABLES:
\(T / K=273.15-303.15\)
\(P_{\mathrm{CO}_{2}} / \mathrm{kPa}=101.33\)

ORIGINAI MEASUREMENTS:
Gallardo, M.A.; Lopez, M.C.;
Urieta, J.S.; Gutierrez Losa, C.
Fluid Phase Equilibria, 1989, 50, 223-233.

PREPARED BY:

\author{
P.G.T. Fogg
}

EXPERIMENTAL VALUES:
\begin{tabular}{lll}
\({ }^{P} \mathrm{CO}_{2}\) & \(T / \mathrm{K}\) & \({ }^{x} \mathrm{CO}_{2}\) \\
\hline 101.33 & 273.15 & 0.02750 \\
& 283.15 & 0.02205 \\
& 293.15 & 0.01810 \\
& 298.15 & 0.01641 \\
& 303.15 & 0.01495
\end{tabular}

AUXILIARY INFORMATION

\section*{METHOD/APPARATUS/PROCEDURE:}

Details of the apparatus and procedure are given in refs. (1) and (2). The total pressure was chosen so that the partial pressure of carbon dioxide was about 101.33 kPa . The number of moles of carbon dioxide introduced into the vessel containing the solution was calculated from the volume and pressure of gas introduced, taking non-ideality into account. The number of moles remaining in the gas phase in the reaction vessel was then calculated and the number of moles dissolved in the known weight of solvent found by difference.

SOURCE AND PURITY OF MATERIALS:
1. Supplied by Sociedad Española del Oxigeno; purity 99.998 mol\%.
2. Supplied by Fluka; GLC indicated a purity better than 99.5 mol. 8 ; \(n_{\mathrm{D}}^{20}=1.43657\)

ESTIMATED ERROR:
\[
\delta T / K= \pm 0.05 \quad \text { (authors) }
\]

\section*{REFERENCES:}
1. Gallardo, M.A.; Urieta, J.S.; Gutierrez Losa C. J. Chim. Phys. 1983, 80 , 621.
2. Carnicer, J.; Gibanel, F.; Urieta, J.S.; Gutierrez Losa C. Rev. Acad. Cienc. (Zaragoza) 1979, 34, 115.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Cyclohexanone; \(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}\); [108-94-1]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Gallardo, M.A.; Melendo, J.M.; \\
Urieta, J.S.; Gutierrez Losa, C. \\
Can. J. Chem. \\
1987, 65, 2198-2202.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& T / K=283.15-303.15 \\
& P / \mathrm{kPa}=101.3
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
C. L. Young
\end{tabular} \\
\hline EXPERIMENTAL VALUES:
\[
T / K
\]
\[
10^{4} \times \mathrm{Mc}
\]
at & le fraction of carbon dioxide 1 atm partial pressure
\[
10^{4} x \mathrm{CO}_{2}
\] \\
\hline \begin{tabular}{l}
\[
\begin{aligned}
& 283.15 \\
& 293.15 \\
& 298.15 \\
& 303.15
\end{aligned}
\] \\
Smoothing equation given
\[
\begin{aligned}
\ln x_{\mathrm{CO}_{2}}= & -5.6368 \ln \\
& \text { (std. dev. }=
\end{aligned}
\] \\
\({ }^{\text {a }}\) Data reported previousl
\end{tabular} & \[
\begin{array}{r}
\begin{array}{r}
216 \\
176 \\
160 \\
147
\end{array} \\
\\
\text { in source } \\
T / K)+27.986 \\
\left.0.882 \times 10^{-4}\right) \\
y \text { in ref. (1). }
\end{array}
\] \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Solubility apparatus was similar to that used by Ben-Naim and Baer (2) consisting essentially of a gas buret, mercury manometer and solution vessel. The solvent was degassed in the solution vessel. Measurements were carried out on the saturated gas. It appears that the mole fraction at a partial pressure of 1 atmosphere was estimated from the raw experimental data by assuming that Henry's law is obeyed and that the partial pressure of solvent in the gas phase is given by Raoult's law. Some details in ref. (3).
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Sociedad Española del Oxigeno sample, purity 99.998 mole per cent. \\
2. Carla Erba sample, purity at least 99 mole per cent. \\
ESTIMATED ERROR:
\[
\delta T / K= \pm 0.1 ; \quad \delta x / x= \pm 0.01
\]
\end{tabular} \\
\hline \begin{tabular}{l}
REFERENCES: \\
1. Melendo, J.M.; Gallardo, M.A.; Uri Acta Cient. Compostelana 1985, XXI \\
2. Ben-Naim, A.; Baer, S. Trans. Fara \\
3. Gibanel, F.; Urieta, J.S.; Gutierr J. Chim. Phys. 1981, 78, 171.
\end{tabular} & ```
eta, J.S.; Gutierrez Losa, C.
I, 269.
day Soc. 1963, 59, 2735.
ez Losa, C.
``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
\[
[124-38-9]
\] \\
2. 2,6-Dimethylcyclohexanone;
\[
\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O} ;[2816-57-1]
\]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Gallardo, M.A.; Lopez, M.C.; Urieta, J.S.; Gutierrez Losa, C. \\
Can. J. Chem. 1990, 68, 435-439.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=273.15-303.15 \\
& P_{\mathrm{CO}_{2}} / \mathrm{kPa}=101.33
\end{aligned}
\] & PREPARED BY: P.G.T. Fogg \\
\hline EXPERIMENTAL VALUES: & \[
\begin{gathered}
{ }^{x} \mathrm{CO}_{2} \\
\hline 0.0267 \\
0.0218 \\
0.0181 \\
0.0168 \\
0.0154
\end{gathered}
\] \\
\hline AUXILIARY & FORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE : \\
Details of the apparatus and procedure are given in refs. (1) and (2). The total pressure was chosen so that the partial pressure of carbon dioxide was about 101.33 kPa . The number of moles of carbon dioxide introduced into the vessel containing the solution was calculated from the volume and pressure of gas introduced, taking non-ideality into account. The number of moles remaining in the gas phase in the reaction vessel was then calculated and the number of moles dissolved in the known weight of solvent found by difference.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Supplied by Sociedad Española del Oxigeno; purity 99.998 mol\%. \\
2. Supplied by Fluka; GLC indicates a purity of \(98.28 ; n_{D}^{20}=1.44686\) \\
ESTIMATED ERROR:
\[
\delta x_{\mathrm{CO}_{2}}= \pm 0.7 \% \text { (authors) }
\] \\
REFERENCES: \\
1. Gallardo, M.A.; Urieta, J.S.; Gutierrez Losa C.
\[
\text { J. Chim. Phys. 1983, 80, } 621 .
\] \\
2. Carnicer, J.; Gibanel, F.; Urieta, J.S.; Gutierrez Losa C. Rev. Acad. Cienc. (Zaragoza) 1979, 34, 115.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) 2-Methyl-5-(l-methylethenyl)-2-cyclohexen-l-one or carvon or carvol; \(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}\); [99-49-0]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, 342-367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / K & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 \(\mathrm{kPa}(\mathrm{l} \mathrm{atm})\) partial pressure of the gas.
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) 2-Methyl-5-(1-methylethenyl)-2-cyclohexen-l-one. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, w.
\[
\text { 2. Phys. Chem. 1890, 6, } 141 .
\] \\
2. Steiner, P. \\
Ann. Phys. (Leipzig) 1894, 52,
275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Acetaldehyde; \(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\); [75-07-0]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Bodor, E.; Mohai, B.; Pfeifer, Gy. \\
Vespremi. Vegyip. Egyet. Kozlemen. 1959, 3, 205-210.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& T / K=198-248.2 \\
& P / \mathrm{kPa}=33.2-97.2
\end{aligned}
\] & PREPARED BY: \(\quad\) C. L. Young \\
\hline EXPERIMENTAL VALUES:
\[
T / \mathrm{K} \quad p / \mathrm{mmHg} \quad \mathrm{p} / \mathrm{kPa}
\] & \begin{tabular}{cc} 
Absorption & \\
of gas \(^{+}\) & Mole fraction \\
carbon dioxide \\
\(/ \mathrm{cm}^{3} \mathrm{~g}^{-1}\) & in liquid, \\
& \(\mathrm{x}_{\mathrm{CO}}\)
\end{tabular} \\
\hline \begin{tabular}{ccc}
248.2 & 267 & 35.6 \\
& 364 & 48.5 \\
& 455 & 60.7 \\
& 531 & 70.8 \\
& 632 & 84.3 \\
& \((760)\) & \((101.3)\)
\end{tabular} & \begin{tabular}{rr}
4.8 & 0.0093 \\
9.4 & 0.0181 \\
11.8 & 0.0227 \\
14.4 & 0.0275 \\
19.9 & 0.0376 \\
\((25)\) & \((0.047)\)
\end{tabular} \\
\hline \begin{tabular}{ccr}
223.2 & 266 & 35.5 \\
& 304 & 40.5 \\
& 408 & 54.4 \\
& 525 & 70.0 \\
& 610 & 81.3 \\
& 716 & 95.5 \\
& \((760)\) & \((101.3)\)
\end{tabular} & \begin{tabular}{cr}
21.5 & 0.0405 \\
27.3 & 0.0509 \\
39.3 & 0.0717 \\
53.3 & 0.0948 \\
62.6 & 0.1096 \\
75.6 & 0.1294 \\
\((80)\) & \((0.136)\)
\end{tabular} \\
\hline \begin{tabular}{rrr}
\(198 \pm 2\) & 249 & 33.2 \\
& 361 & 48.1 \\
& 460 & 61.3 \\
& 540 & 72.0 \\
& 629 & 83.9 \\
& 729 & 97.2 \\
& \((760)\) & \((101.3)\)
\end{tabular} & \begin{tabular}{cr}
83.7 & 0.1413 \\
137.0 & 0.2121 \\
194.5 & 0.2765 \\
256.8 & 0.3354 \\
302 & 0.3725 \\
336 & 0.3977 \\
\((370)\) & \((0.4210)\)
\end{tabular} \\
\hline \(\dagger\) volumes of gas corrected to 273.15 Values in parentheses are extrapola & and \(101.3 \mathrm{kPa} ;{ }^{*}\) calc. by compiler ed to 1 atmosphere. \\
\hline AUXILIARY & Information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Volumetric method. Pressure measured when known amounts of gas were added, in increments, to a known amount of liquid in a vessel of known dimensions. Corrections were made for the partial pressure of solvent. Details in ref. (l).
\end{tabular} & SOURCE AND PURITY OF MATERIALS;
```

ESTIMATED ERROR:
\deltaT/K = \pm0.1;
\delta(absorption) = \pm4% or less

```
REFERENCES:
    1. Bodor, E.; Bor, G. J.;
        Mohai, B.; Siposs, G.
        Veszpremi. Vegyip. Egy. Kozl.
        1957, 1, 55. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Benzaldehyde; \(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}\); [100-52-7]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, 342-367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 kPa (1 atm) partial pressure of the gas.
\end{tabular}} \\
\hline AUXILIARY & Information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) Benzaldehyde. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W.
\[
\text { Z. Phys. Chem. 1890, 6, } 141 .
\] \\
2. Steiner, P. \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); \\
[124-38-9] \\
2. 4-Methyl-1,3-dioxolan-2-one, (propylene carbonate); \(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}\); [108-32-7]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Makranczy, J.; Mohai, B.; Papp, S.; Rusz, I. \\
Veszpremi. Vegyip. Egyet. Kozlemen. 1964, 8, 225-234.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=273.2-303.2 \\
& P / \mathrm{kPa}=101.3
\end{aligned}
\] & PREPARED BY: P.G.T. Fogg \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
* solubilities are defined as the vol 101.325 kPa , absorbed by one gram pressure stated. \\
Solubilities at 506.6, 1013.3, 2533 paper.
\end{tabular} & \begin{tabular}{lll} 
& \begin{tabular}{c} 
Solubility \\
\(\mathrm{cm}^{3} \mathrm{~g}^{*}\)
\end{tabular} & \({ }^{x} \mathrm{CO}_{2}\) \\
\hline 15 & 3.50 & 0.0158 \\
15 & 4.55 & 0.0205 \\
15 & 6.00 & 0.0268 \\
& 8.30 & 0.0367 \\
me of gas, reduced to 273.15 K and \\
solvent at the temperature and \\
and 5066.3 kPa are also given in the
\end{tabular} \\
\hline \multicolumn{2}{|c|}{AUXILIARY INFORMATION:} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Apparatus and method described in ref. (1)
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
No information \\
ESTIMATED ERROR:
\[
\delta(\text { solubility })= \pm 108
\] \\
REFERENCES: \\
1. Macranczy, J.; Mohai, B.; Papp, S.; Rusz, L. Veszpremi. Vegyip. Egyet. Kozlemen. 1964, 8, 213.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
\[
[124-38-9]
\] \\
2. 4-Methyl-1,3-dioxolan-2-one, (propylene carbonate); \(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}\); [108-32-7]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Shakhova, S.F.; Bondareva, T.I.; Zubchenko, Yu.P. \\
Khim. Prom. 1966, (10), 753-4.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& P / \mathrm{kPa}=101-1677 \\
& T / \mathrm{K}=273-328
\end{aligned}
\] & PREPARED BY:
P.G.T. Fogg \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
Solubility measurements at 223-1677 authors. These were used by the auth Henry's constant, \(H\), from the Kriche following form:
\[
R T \ln \frac{f_{2}}{x_{2}}=R T \ln H+\int_{P_{1}^{0}}^{P} \bar{V}_{2} \mathrm{~d} P-A\left(1-x_{1}^{2}\right)
\] \\
where \(f_{2}=\) fugacity of carbon dioxide \\
\(x_{1}\) and \(x_{2}\) mole fractions of car \\
\(\bar{V}_{2}=\) partial molar volume of ca \\
\(A=\) a coefficient \\
* calculated by the compiler. \\
** based on measurements at 101.3 kPa
\end{tabular} & \begin{tabular}{l}
\begin{tabular}{cc}
\begin{tabular}{c} 
constant, \\
\(/ \mathrm{kPa} *\)
\end{tabular} & \({ }^{\mathrm{x}} \mathrm{CO}_{2}(101.3 \mathrm{kPa}) *\) \\
4920 & 0.0208 \\
7120 & 0.0147 \\
8600 & 0.0118 \\
11450 & 0.0092 \\
14465 & 0.0070
\end{tabular} \\
Pa and 273-313 K were given by the ors to calculate the limiting value of sky-Il'inskaya equation in the \\
bon dioxide and solvent \\
rbon dioxide at \(x_{2}=0\) \\
only.
\end{tabular} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Apparatus described in ref. (1).
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
2. Supplied by BNIIneftekhime. \\
ESTIMATED ERROR: \\
\(\delta H= \pm 3-5 \%\) (authors) \\
REFERENCES: \\
1. Shenderei, E.R.; Zel'venskii, Ya.D.; Ivanovskii, F.P. \\
Khim. Prom. 1960, (5), 370.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); \\
2. 4-Methyl-1,3-dioxolan-2-one, (Propylene Carbonate); \(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}\); [108-32-7]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
    Lenoir, J-Y.; Renault, P.; Renon, H.
    J. Chem. Eng. Data, 1971, 16, 340-2.
``` \\
\hline VARIABLES:
\[
T / K=298.2-343.2
\] & \begin{tabular}{l}
PREPARED BY: \\
C. L. Young
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
* Calculated by compiler assuming i.e., \({ }^{x} \mathrm{CO}_{2}(1 \mathrm{~atm})=1 / \mathrm{H}_{\mathrm{CO}_{2}}\).
\end{tabular} & \\
\hline \multicolumn{2}{|r|}{auxiliary information} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
A conventional gas-liquid chromatographic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures Of gas and there may be a substantial difference from that measured at latm. pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(]) L'Air Liquide sample, minimum purity 99.9 mole per cent. \\
(2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent. \\
ESTIMATED ERROR:
\[
\delta T / \mathrm{K}= \pm 0.1 ; \delta H / \mathrm{atm}= \pm 6 \%
\] \\
(estimated by compiler).
\end{tabular} \\
\hline & References: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); \\
[124-38-9] \\
2. 4-Methyl-1,3-aioxolan-2-one;
\[
\text { (propylene carbonate); } \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3} \text {; }
\]
\[
[108-32-7]
\]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Zubchenko, Yu. P.; Shakhova, S. F. \\
Ting Wei; Titel'man, L. I.; \\
Kaplan, L. K. \\
Zh. Prikl. Khim. 1971, 44(9), \\
2044-2047.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& P / \mathrm{kPa}=334-12260 \\
& T / \mathrm{K}=228-423
\end{aligned}
\] & PREPARED BY: P.G.T. Fogg \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
Solubility measurements over a range reported. Solubility data were user Henry's law constant, \(H\), at zero par \\
* calculated by the compiler
\end{tabular} & f pressures to high pressures were calculate the limiting value of al pressure of carbon dioxide. \\
\hline AUXILIARY & nformation \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Apparatus describeत in ref.(1) was used for temperatures from 228 K to 313 K and pressures to 6080 kPa . Measurements at 343 K to 423 K were carried out in a high pressure apparatus described in refs. \((2,3)\).
\end{tabular} & \begin{tabular}{l}
```

SOURCE AND PURITY OF MATERIALS:
No information
ESTIMATED ERROR:
$\delta T / \mathrm{K}= \pm 0.1$
$\delta P / \mathrm{kPa}= \pm 30.3$
REFERENCES:
1. Shenderei, E.R.;
Zel'venskii, Ya.D.;
Ivanovskii, F.P.
Khim. Prom. 1960, (5), 370.
2. Krichevskii, I.R.;
Efremova, G.D.
Zh. Fiz. Khim. 1959, 33, 1328. <br>
3. Tsiklis, D.S. High-pressure Physicochemical Investigation Techniques, 1958 , Goskhimizdat, Moscow,

```
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); \\
[124-38-9] \\
2. 4-Methyl-1,3-dioxolan-2-one, (propylene carbonate); \(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}\); [108-32-7]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Isaacs, E.E.; Otto, F.D.; \\
Mather, A.E. \\
Can. J. Chem. Eng. 1977, 55, 751-2.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& T / K=313.2,373.2 \\
& P / \mathrm{kPa}=42.2-5768.9
\end{aligned}
\] & PREPARED BY:
P.G.T. Fogg \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
\({ }^{\dagger}\) Measurements were made at 313.15 K \(415.8-5768.9 \mathrm{kPa}\) and at 373.15 K ove \(42.2-5739.8 \mathrm{kPa}\). The authors obtain two temperatures from volumetric dat then fitted the data for low parti Il'inskaya equation (2) to evaluat \\
* calculated by the compiler
\end{tabular} & \begin{tabular}{l}
\begin{tabular}{ccc}
\({ }_{\mathrm{X}_{\mathrm{CO}}^{2}}{ }^{*}\) & \(H / \mathrm{Mpa}^{+}\) & \(H / \mathrm{kPa}^{*}\) \\
& & \\
& 11.8 & 11800 \\
0.0017 & 26.9 & 26900
\end{tabular} \\
over the pressure range er the pressure range ned the partial molar volume at the ta given by zubchenko et al.(1) and l pressures to the KrichevskyHenry's law constants given above.
\end{tabular} \\
\hline \multicolumn{2}{|c|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The equilibrium cell consisted of a Jerguson gauge with a \(250 \mathrm{~cm}^{3}\) gas reservoir. Temperatures were measured be thermocouples and controlled to \(\pm 0.5 \mathrm{~K}\) by an air-bath. Pressures were measured by a Heise Bourdon tube gauge. The cell was charged with solvent. \(\mathrm{CO}_{2}\) was added to give an appropriate pressure. Nitrogen was added, when necessary, to ensure that total pressure \(>350 \mathrm{kPa}\). Gases were circulated by a magnetic pump for at least 8h. The gas phase was analysed by gas chromatography. Samples of the liquid phase were withdrawn, heated at barometric pressure and the quantity of gas evolved found from \(P-V-T\) values.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. no information \\
2. from Eastman Kodak Co.; minimum purity 98\% \\
ESTIMATED ERROR: \\
\(\delta T / K= \pm 0.5\) \\
\(\delta\) (mole ratio) \(= \pm 0.02\) or \(\pm 4 \%\) \\
whichever is the larger (authors). \\
REFERENCES: \\
1. Zubchenko, Yu.P.; Shakhova, S.F.; Wei, T.; Titel'man, L.I.; Kaplan, L.K. \\
\(\underset{2044}{\text { Zhur. Priki. Khim. 1971, 44(9), }}\) 2044 \\
2. Prausnitz, J.M. Molecular Themodynamics of Fluid-Phase Equilibria, 1969, Prentice-Hall, Englewood Cliffs, NJ, USA.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS : \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
\[
[124-38-9]
\] \\
2. 4-Methyl-1,3-dioxolan-2-one,
\[
\text { (propylene carbonate); } \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3} \text {; }
\]
\[
[108-32-7]
\]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Mantor, P.D.; Abib, O.; Song, K.Y. Kobayashi, R.
\[
\begin{aligned}
& \text { J. Chem. Eng. Data 1982, } 27 \text {, } \\
& \text { 243-245. }
\end{aligned}
\]
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=299.9-377.6 \\
& P / \mathrm{kPa}=1966-6900
\end{aligned}
\] & \[
\begin{gathered}
\text { PREPARED BY: } \\
\text { P.G.T. Fogg }
\end{gathered}
\] \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
Solubility measurements over a range of high pressures were reported. Variation of solubility with pressure could be correlated with the Krichevsky-Kasarnovsky equation i.e.
\[
\log \left(f_{1} / x_{1}\right)=\log H+\bar{V}\left(P-P_{2}\right) / 2.303 R T
\] \\
where \(f_{1}\) is the fugacity of carbon dioxide in the vapor; \\
\(x_{1}\) is the mole fraction of carbon dioxide in the liquid; \\
\(H\) is the limiting value of Henry's law constant at zero partial pressure of carbon dioxide; \\
\(\bar{V}\) is the partial molar volume of carbon dioxide in the liquid; \\
\(P\) is the total pressure; \\
\(P P_{2}\) is the partial pressure of the solvent.
\[
T / \mathrm{K} \quad \begin{array}{ll}
\text { Partial molar } \\
\text { vol. of } \mathrm{CO}_{2} \\
/ \mathrm{cm}^{3} \mathrm{~mol}^{-1}
\end{array} \quad \begin{aligned}
& \text { Henry's constant, } \mathrm{H} \\
& / \mathrm{atm}
\end{aligned} \quad \begin{aligned}
& \text { Mole fraction solubility } \\
& \text { of } \mathrm{CO}_{2} \text { at } \mathrm{CO}_{2}=101.3 \mathrm{kPa} *
\end{aligned}
\]
\end{tabular}} \\
\hline \begin{tabular}{rrr}
299.9 & -0.06786 & 81.7 \\
311.0 & -0.04762 & 101.7 \\
344.3 & -0.01000 & 159.4 \\
377.6 & 0.02273 & 227.8 \\
* calculated by the compiler from th
\end{tabular} & \begin{tabular}{l}
\begin{tabular}{rl}
8280 & 0.01224 \\
10310 & 0.009833 \\
16150 & 0.006274 \\
23080 & 0.004390
\end{tabular} \\
Krichevsky-Kasarnovsky equation
\end{tabular} \\
\hline \multicolumn{2}{|r|}{AUXILIARY Information} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
ME THOD/APPARATUS/PROCEDURE : \\
Equilibrium between gas and liquid phases was established in a high pressure cell which could be agitated. A mercury displacement pump was used to provide pressures greater than that in the carbon dioxide cylinder. Temperatures were maintained to \(\pm 0.6 \mathrm{~K}\) in an air bath. There was provision for withdrawal of samples of the gas from the top of the cell and of liquid from the bottom of the cell.
\end{tabular}} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Supplied by Spencer Chemical Co.,; purity 99.6 mol\% \\
2. Supplied by Jefferson Chemical Co., minimum purity 99 wt\%
\end{tabular} \\
\hline & REFERENCES: \\
\hline
\end{tabular}

COMPONENTS:
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9]
2. 4-Methyl-1,3-dioxolan-2-one,
(propylene carbonate); \(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}\); [108-32-7]

VARIABLES:
\(T / K=298.15-373.15\)
\(P / \mathrm{kPa}=56.3-2228.7\)

\section*{ORIGINAL MEASUREMENTS:}

Murrieta-Guevara, F.;
Romero-Martinez, A.; Trejo, A.
Fluid Phase Equilibria, 1988, 44, 105-115.

\section*{PREPARED BY:}
P.G.T. Fogg

EXPERIMENTAL VALUES:
\begin{tabular}{crl}
\(T / \mathrm{K}\) & \({ }^{P} \mathrm{CO}_{2} / \mathrm{kPa}\) & \({ }^{x}{ }_{\mathrm{CO}_{2}}\) \\
\hline 298.15 & 56.3 & 0.0064 \\
313.15 & 147.5 & 0.0178 \\
& 54.7 & 0.0056 \\
373.15 & 139.9 & 0.0137 \\
& 177.2 & 0.0168 \\
& 219.4 & 0.0075
\end{tabular}

The authors have also given data for higher pressures
\begin{tabular}{lrcl}
\(T / \mathrm{K}\) & \begin{tabular}{c}
Henry's \\
\(H / \mathrm{MPa}\)
\end{tabular} & \begin{tabular}{c}
law constant \\
\(H / \mathrm{kPa}\)
\end{tabular} & \({ }^{x} \mathrm{CO}_{2}(101.3 \mathrm{kPa})^{*}\) \\
\hline 298.15 & 8.21 & 8210 & 0.01234 \\
313.15 & 10.23 & 10230 & 0.00990 \\
373.15 & 28.88 & 28880 & 0.00351
\end{tabular}
* estimated by the compiler as \(\mathrm{P}_{\mathrm{CO}_{2}} / \mathrm{H}\)

\section*{AUXILIARY INFORMATION:}

METHOD/APPARATUS/PROCEDURE:
The apparatus and method of calculation have been described in previous publications (refs. 1 and 2). The limiting values of Henry's law constant which are given above were found by fitting the
experimental data to the
Krichevsky-Kasarnovsky equation (3).

SOURCE AND PURITY OF MATERIALS:
1. Supplied by Infra S.A.; reported purity 99.7 mol\%.
2. Purity better than 99.5 mol\%.

ESTIMATED ERROR
\(\delta T / K= \pm 0.02\) to \(343 \mathrm{~K} ; \pm 0.5\) at 373 K. (authors)
\(\delta P / \mathrm{kPa}= \pm 3.5\)
REFERENCES:
1. Murrieta-Guevara, F.; Trejo, A., J. Chem. Eng. Data, 1984, 29, 456.
2. Gonzalez, R.; Murrieta-Guevara, F.; Parra, O.; Trejo, A., Fluid Phase Equilibria, 1987, 34, 69.
3. Prausnitz, J.M.; Lichtenthaler, R.N.; Gomes de Azevedo, E. Molecular Thermodynamics of Fluid-Phase Equilibria, 1986, Prentice-Hall, Englewood Cliffs, NJ, USA; Chap. 7
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Acetic acid; \(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\); [64-19-7]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, 342 - 367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED by: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 kPa (1 atm) partial pressure of the gas.
\end{tabular}} \\
\hline auxiliary & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) Acetic acid. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W. \\
2. Phys. Chem. 1890, 6, 141. \\
2. Steiner, P. \\
Ann. Phys. (Leipzig) 1894, 52,
275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Acetic acid, \(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\); [64-19-7] \\
Acetic acid, pentyl ester, (amyl acetate); \(\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}\); [628-63-7]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Kunerth, W. \\
Phys. Rev. 1922, 19, 512-524.
\end{tabular} \\
\hline VAㄹIABLES:
\[
T / K=291.15-307.15 \quad P / \mathrm{kPa} \simeq 101.3
\] & PREPARED BY: P.G.T. Fogg \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline & \begin{tabular}{ll}
5.40 & 0.01283 \\
5.23 & 0.01237 \\
5.07 & 0.01194 \\
4.91 & 0.01152 \\
4.73 & 0.01105 \\
4.57 & 0.01063 \\
4.41 & 0.01022 \\
4.25 & 0.00981 \\
4.12 & 0.00947 \\
4.00 & 0.00916 \\
4.79 & 0.02904 \\
4.65 & 0.02803 \\
4.55 & 0.02726 \\
4.44 & 0.02645 \\
4.35 & 0.02576 \\
4.24 & 0.02496 \\
4.14 & 0.02423 \\
4.10 & 0.02385 \\
4.02 & 0.02324
\end{tabular} \\
\hline \multicolumn{2}{|r|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The method is based upon that described by McDaniel (1). The apparatus consisted of a gas buret attached to a levelling tube containing mercury and to the absorption cell containing the solvent under test. The volume of gas absorbed by a measured volume of liquid was measured at a total pressure equal to barometric pressure. The mercury in the gas buret was covered with a layer of solvent so that the gas in the buret was saturated with solvent vapor. Buret and absorption cell were surrounded by heating wire and water jackets fitted with thermometers.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. produced by heating \(\mathrm{NaHCO}_{3}\); dried with \(\mathrm{CaCl}_{2}\); frozen in liquid air and volatile impurities pumped away; passed over \(\mathrm{P}_{2} \mathrm{O}_{5}\). \\
2. commercial sample; purity attested by boiling point and density. \\
ESTIMATED ERROR:
\[
\delta x_{\mathrm{CO}_{2}}= \pm 5 \% \quad \text { (compiler) }
\] \\
REFERENCES: \\
1. McDaniel, A.S.; \\
J. Phys. Chem. 1911, 15, 587.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Butanoic acid or butyric acid; \(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\); [107-92-6]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
Z. Phys. Chem. 1901, 37, 342 - 367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / K & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 kPa (1 atm) partial pressure of the gas.
\end{tabular}} \\
\hline AUXILIARY & INFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) Butanoic acia. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W.
\[
\text { 2. Phys. Chem. 1890, 6, } 141 .
\] \\
2. Steiner, \(P\). \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Propanoic acid; \(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}\); [79-09-4]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, 342 - 367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at \(101.325 \mathrm{kPa}(1 \mathrm{~atm})\) partial pressure of the gas.
\end{tabular}} \\
\hline Auxiliary & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (I), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) Propanoic acid. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W.
\[
\text { z. Phys. Chem. 1890, 6, } 141 .
\] \\
2. Steiner, P. \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Acetic acid anhydride; \(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}\); [108-24-7]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, 342-367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) Acetic acid anhydride. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, w. \\
2. Phys. Chem. 1890, 6, 141. \\
2. Steiner, P. \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Formic acid, pentyl ester or amyl formate; \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}\); [638-49-3]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREYENTS: \\
Just, G. \\
Z. Phys. Chem. 1901, 37, 342-367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED by: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at \(101.325 \mathrm{kPa}(1 \mathrm{~atm})\) partial pressure of the gas.
\end{tabular}} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) Formic acid, pentyl ester. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W. \\
2. Phys. Chem. 1890, 6, 141. \\
2. Steiner, P. \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Acetic acid, methyl ester or methyl acetate; \(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}\); [79-20-9]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
Z. Phys. Chem. 1901, 37, 342-367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 kPa (1 atm) partial pressure of the gas.
\end{tabular}} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) Acetic acid, methyl ester. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W. \\
Z. Phys. Chem. 1890, 6, 141. \\
2. Steiner, P. \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Acetic acid, methyl ester or methyl acetate; \(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}\); [79-20-9]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
 Gjaldbaek, J. C.; Andersen, E. K.
 Acta Chem. Scand. 1954, 8,
 1398-1413.
``` \\
\hline VARIABLES:
\[
\begin{aligned}
T / K & =298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
J. Chr. Gjaldbaek
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The mole fraction and Ostwald coefficient values were calculated by the compiler.
\end{tabular}} \\
\hline AUXILIARY & INFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The apparatus consists of a calibrated all-glass manometer and bulb enclosed in an air thermostat. The solvent is added and degassed in the apparatus. The gas is added. The apparatus and contents are shaken until equilibrium is attained. Mercury is used for calibration and as the confining liquid. \\
The absorbed volume of gas is calculated from the initial and final amounts of gas, both saturated with solvent vapor. The amount of solvent is determined by the weight of displaced mercury. Further details are in the references (1, 2). \\
The mole fraction values are at one atm pressure assuming Henry's law is obeyed.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Prepared from potassium bicarbonate and \\
sulfuric acid. 99.8-99.9\% \(\mathrm{CO}_{2}\). \\
(2) Acetic acid, methyl ester. Fractionated by distillation. B.p. \((760 \mathrm{mmHg}) /{ }^{\circ} \mathrm{C}=56.72-56.85\) refractive index \(n_{D}\left(20^{\circ} \mathrm{C}\right)=1.3618\) \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & = \pm 0.05 \\
\delta x_{1} / x_{1} & = \pm 0.015
\end{aligned}
\] \\
REFERENCES: \\
1. Lannung, A. \\
J. Am. Chem. Soc. 1930, 52, 68. \\
2. Gjaldbaek, J. C. \\
Acta Chem. Scand. 1952, 6, 623.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Acetic acid, ethyl ester (ethyl acetate); \(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} ;\) [141-78-6]
\end{tabular} & ORIGINAL MEASUREMENTS:
```

Bodor; E.; Bor, Gy.; Maleczkine,
M.; Mesko, G.; Mohai, G.;
Siposs, G.
Veszpremi. Vegyip. Egyet. Kozlemen.
1957, 1, 77-87.

``` \\
\hline VARIABLES:
\[
\begin{aligned}
& T / K=198-318.2 \\
& P / \mathrm{kPa}=9.6-102.4
\end{aligned}
\] & PREPARED BY: \(\quad\) C. L. Young \\
\hline EXPERIMENTAL VALUES:
\[
T / \mathrm{K} \quad p / \mathrm{mmHg} \quad \mathrm{p} / \mathrm{kPa}
\] &  \\
\hline \begin{tabular}{ccr}
318.2 & 72 & 9.6 \\
& 169 & 22.5 \\
& 198 & 26.4 \\
& 309 & 41.2 \\
& 346 & 46.1 \\
& 407 & 64.3 \\
& 515 & 38.7 \\
& 285 & 50.5 \\
& 379 & 59.5 \\
& 446 & 60.1 \\
& 451 & 70.1 \\
& 526 & 82.7 \\
& 538 & 102.4 \\
& 620 & \((101.3)\) \\
& 768 & 24.1 \\
& \((760)\) & 43.6 \\
& 181 & 54.1 \\
& 327 & 81.3 \\
& 406 &
\end{tabular} & \begin{tabular}{cc}
0.50 & 0.00196 \\
0.82 & 0.00321 \\
1.24 & 0.00485 \\
1.39 & 0.00544 \\
2.06 & 0.00803 \\
2.14 & 0.00834 \\
2.83 & 0.01100 \\
2.52 & 0.00981 \\
3.37 & 0.01308 \\
3.23 & 0.0125 \\
4.00 & 0.0155 \\
4.03 & 0.0156 \\
4.77 & 0.0184 \\
4.95 & 0.0191 \\
6.45 & 0.0247 \\
\((6.40)\) & \((0.0245)\) \\
2.46 & 0.00958 \\
4.74 & 0.0183 \\
5.90 & 0.0227 \\
6.95 & 0.0266 \\
7.70 & (cont.)
\end{tabular} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE : \\
Volumetric method. Pressure measured when known amounts of gas were added, in increments, to a known amount of liquid in a vessel of known dimensions. Corrections were made for the partial pressure of solvent. Details in ref. (1).
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
ESTIMATED ERROR:
\[
\begin{aligned}
& \delta T / K= \pm 0.1 ; \\
& \delta(\text { absorption })= \pm 4 \% \text { or less. }
\end{aligned}
\] \\
REFERENCES: \\
1. Bodor, E.; Bor, G. J.; \\
Mohai, B.; Siposs, G. \\
Veszpremi. Vegyip. Egy. Kozl. 1957, 1, 55.
\end{tabular} \\
\hline
\end{tabular}

\section*{COMPONENTS:}

ORIGINAL MEASUREMENTS:
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] Bodor, E.; Bor, Gy.; Maleczkine,
2. Acetic acid, ethyl ester (ethyl acetate); \(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} ;\) [141-78-6] M.; Mesko, G.; Mohai, G.; Siposs, G.
Veszpremi. Vegyip. Egyet. Kozlemen. 1957, 1, 77-87.

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Acetic acid, propyl ester or propyl acetate; \(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}\); [109-60-4]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
    Gjaldbaek, J. C.; Andersen, E. K.
    Acta Chem. Scand. 1954, 8,
    1398-1413.
``` \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =298.15 \\
p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
J. Chr. Gjaldbaek
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline AUXILIARY & Information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The apparatus consists of a calibrated all-glass manometer and bulb enclosed in an air thermostat. The solvent is added and degassed in the apparatus. The gas is added. The apparatus and contents are shaken until equilibrium is attained Mercury is used for calibration and as the confining liquid. \\
The absorbed volume of gas is calculated from the initial and final amounts of gas, both saturated with solvent vapor. The amount of solvent is determined by the weight of displaced mercury. Further details are in the references (1,2). \\
The mole fraction values are at one atm pressure assuming Henry's law is obeyed.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Prepared from potassium bicarbonate and sulfuric acid. 99.8-99.9\% \(\mathrm{CO}_{2}\). \\
(2) Acetic acid, propyl ester. Judex Chemicals. Fractionated by distillation. B.p. \((760 \mathrm{mmHg}) /{ }^{\circ} \mathrm{C}=101.66-101.70\), refractive index \(n_{D}\left(20^{\circ} \mathrm{C}\right)=\) 1.3846 . \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & = \pm 0.05 \\
\delta x_{1} / x_{1} & = \pm 0.015
\end{aligned}
\] \\
REFERENCES: \\
1. Lannung, A. \\
J. Am. Chem. Soc. 1930, 52, 68. \\
2. Gjaldbaek, J. C. \\
Acta Chem. Scand. 1952, 6, 623.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Acetic acid, 2-methylpropyl ester or isobutyl acetate; \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}\); [110-19-0]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, 342 - 367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=293.15, \\
& p_{1} / \mathrm{kPa}=101.325 .15 \\
&(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 kPa (1 atm) partial pressure of the gas.
\end{tabular}} \\
\hline auxiliary & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) Acetic acid, 2-methylpropyl ester. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W.
\[
\text { Z. Phys. Chem. 1890, 6, } 141 .
\] \\
2. Steiner, P. \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2} ;\) [124-38-9] \\
(2) Acetic acid, pentyl ester or amylacetate; \(\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}\); [628-63-7]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
Just, G.
2. Phys. Chem. 1901, 37, 342-367.
``` \\
\hline VARIABLES:
\[
\begin{aligned}
T / K & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\
The author measured the ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at \(101.325 \mathrm{kPa}(\mathrm{l} \mathrm{atm})\) partial pressure of the gas.
\end{tabular}} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) Acetic acid, pentyl ester. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W. \\
2. Phys. Chem. 1890, 6, 141. \\
2. Steiner, P . \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9] \\
2. Octadecenoic acid, methyl ester, (methyl oleate); \(\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{2}\) [27234-05-5] Octadecenoic acid, ethyl ester, (ethyl oleate); \(\mathrm{C}_{2} \mathrm{OH}_{3} \mathrm{O}_{2}\); [28555-06-8] Octadecenoic acid, butyl ester, (butyl oleate); \(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\); [142-77-8]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Arai, C.; Yoshitama, T.; \\
Nishihara, K.; Sano, Y. \\
Kagaku Kogaku Ronbunshu 1989, 15(6), 1193-5.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=273.2-343.2 \\
& P / \mathrm{kPa} \simeq 30-90
\end{aligned}
\] & PREPARED BY: P.G.T. Fogg \\
\hline \begin{tabular}{lll} 
EXPERIMENTAL VALUES: & & \\
Solvent & \(T / \mathrm{K}\) & \begin{tabular}{c} 
Henry's \\
\\
\\
\end{tabular} \\
& & \(H /\) Mpa
\end{tabular} & \[
\underset{H / \mathrm{kPa}}{\underset{\mathrm{CO}_{2}}{\text { constant }} \quad{ }_{\mathrm{CO}}^{2}} \stackrel{\text { at }}{101.3 \mathrm{kPa}}
\] \\
\hline \begin{tabular}{lll} 
Butyl oleate & 273.2 & 2.42 \\
& 283.2 & 2.86 \\
& 293.2 & 3.37 \\
& 298.2 & 3.63 \\
& 303.2 & 3.93 \\
& 323.2 & 5.14 \\
& 343.2 & 6.45
\end{tabular} & \begin{tabular}{ll}
2420 & 0.0419 \\
2860 & 0.0354 \\
3370 & 0.0301 \\
3630 & 0.0279 \\
3930 & 0.0258 \\
5140 & 0.0197 \\
6450 & 0.0157
\end{tabular} \\
\hline \begin{tabular}{lll} 
Ethyl oleate & 273.2 & 2.31 \\
& 298.2 & 3.66 \\
& 323.2 & 5.26
\end{tabular} & \begin{tabular}{ll}
2310 & 0.0439 \\
3660 & 0.0277 \\
5260 & 0.0193
\end{tabular} \\
\hline \begin{tabular}{lll} 
Methyl oleate & 273.2 & 2.37 \\
& 298.2 & 3.77 \\
& 323.2 & 5.36
\end{tabular} & \begin{tabular}{ll}
2370 & 0.0428 \\
3770 & 0.0269 \\
5360 & 0.0189
\end{tabular} \\
\hline \begin{tabular}{l}
The authors fitted the following equa
\[
\ln H=6700 /(T / K)+53.729 \ln (T / K)-
\] \\
standard deviation in values
\end{tabular} & tion to the data for butyl oleate:
\[
.08962(T / K)-300.58
\]
\[
H=0.8 \%
\] \\
\hline AUXILIARY & NFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
A static method was used. The apparatus consisted of an absorption vessel connected to a gas buret and manometers. The system could be evacuated via a vacuum line. Gas was held in a storage bulb. The contents of the absorption vessel could be stirred magnetically and the temperature measured with a thermometer. The apparatus was held at constant temperature by a thermostat.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
No information \\
ESTIMATED ERROR: \\
REFERENCES:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); \\
[124-38-9] \\
2. 1,2,3-Propanetriol, triacetate (glycerol triacetate); \(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{6}\); [102-76-1] \\
2-[2-(2-Methoxyethoxy)ethoxy]ethanol, acetate, (methoxytriethyleneglycol acetate); \(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{5}\); [3610-27-3] \\
2-[2-(2-Butoxyethoxy) ethoxy]ethanol, acetate, (butoxytriethyleneglycol acetate); \(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{5}\); [3610-26-2]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Makranczy, J.; Mohai, B.; Papp, S.; Rusz, L. \\
Veszpremi. Vegyip. Egyet. Kozlemen. 1964, 8, 225-234.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& P / \mathrm{kPa}=101.3 \\
& T / \mathrm{K}=273.2-303.2
\end{aligned}
\] & PREPARED BY: P.G.T. Fogg \\
\hline EXPERIMENTAL VALUES:
Solvent \(\quad P / \mathrm{kPa}\) & \[
T / K \quad \underset{\mathrm{~cm}^{3} \mathrm{~g}^{-1}}{\text { Solubility* }} \quad x_{\mathrm{CO}_{2}}
\] \\
\hline Glycerol triacetate 101.3 & \begin{tabular}{lll}
273.15 & 4.40 & 0.0414 \\
283.15 & 3.45 & 0.0327 \\
293.15 & 2.65 & 0.0253 \\
303.15 & 1.98 & 0.0190
\end{tabular} \\
\hline Methoxytriethyleneglycol 101.3 acetate & \begin{tabular}{lll}
273.15 & 8.10 & 0.0698 \\
283.15 & 6.40 & 0.0560 \\
293.15 & 4.55 & 0.0405 \\
303.15 & 3.50 & 0.0314
\end{tabular} \\
\hline ```
Butoxytriethyleneglycol 101.3
    acetate
``` & \begin{tabular}{lll}
273.15 & 4.60 & 0.0488 \\
283.15 & 3.70 & 0.0397 \\
293.15 & 2.95 & 0.0319 \\
303.15 & 2.38 & 0.0259
\end{tabular} \\
\hline \begin{tabular}{l}
* solubilities are defined as the vo 101.325 kPa , absorbed by one gram pressure stated. \\
Solubilities at 506.6, 1013.3, 2533. paper.
\end{tabular} & \begin{tabular}{l}
me of gas, reduced to 273.15 K and solvent at the temperature and \\
5066.3 kPa are also given in the
\end{tabular} \\
\hline
\end{tabular}

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:
Apparatus and method described in ref. (1)

SOURCE AND PURITY OF MATERIALS:
No information

ESTIMATED ERROR:
\(\delta(\) solubility \()= \pm 10 \%\) (compiler)

REFERENCES:
1. Macranczy, J.; Mohai, B.; Papp, S.i Rusz, L. Veszpremi. Vegyip. Egyet. Kozlemen. 1964, 8, 213.
\begin{tabular}{|c|c|}
\hline COMPONENTS: & ORIGINAL MEASUREMENTS: \\
\hline 1. Carbon dioxide; \(\mathrm{CO}_{2}\);
\[
[124-38-9]
\] & Shakhova, S.F.; Bondareva, T.I.; Zubchenko, Yu.P. \\
\hline 2. 1,2,3-Propanetriol, triacetate, (triacetin); \(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{6}\); [102-76-1] & Khim. Prom. 1966, (10), 753-4. \\
\hline VARIABLES: & PREPARED BY: \\
\hline \[
\begin{aligned}
& \mathrm{P} / \mathrm{kPa}=101-1677 \\
& T / \mathrm{K}=273-328
\end{aligned}
\] & P.G.T. Fogg \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \[
T / \mathrm{K}, \quad A \quad, \quad \text { Henry's }
\] & \[
\underset{/ \mathrm{kPa} *}{\operatorname{constant}}{ }^{H} \quad{ }^{x} \mathrm{CO}_{2}(101.3 \mathrm{kPa})^{*}
\] \\
\hline 273.15 -4200 15700 & 2090 0.0466 \\
\hline \(288.15-450021800\) & 2910 0.0339 \\
\hline 298.15 -2100 27100 & \(3610 \quad 0.0284\) \\
\hline 308.15 32700** & 4360 0.0232 \\
\hline 313.15 -1200 34600 & \(4610 \quad 0.0221\) \\
\hline 323.15 38900** & \(5190 \quad 0.0195\) \\
\hline 328.15 45800** & 61100.0166 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Solubility measurements at \(223-1677 \mathrm{kPa}\) and \(273-313 \mathrm{~K}\) were given by the authors. These were used by the authors to calculate the limiting value of Henry's constant, \(H\), from the Krichevsky-II'inskaya equation in the following form:}} \\
\hline & \\
\hline \[
R T \ln \frac{f_{2}}{x_{2}}=R T \ln H+\int_{P_{1}}^{P} \bar{V}_{2} d P-A\left(1-x_{1}^{2}\right.
\] & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
where \(f_{2}=\) fugacity of carbon dioxide \\
\(x_{1}\) and \(x_{2}\) mole fractions of solvent and carbon dioxide respectively.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{* calculated by the compiler} \\
\hline \multicolumn{2}{|r|}{AUXILIARY INFORMATION} \\
\hline \multirow[t]{2}{*}{METHOD/APPARATUS/PROCEDURE:} & SOURCE AND PURITY OF MATERIALS: \\
\hline & 2. Pure grade; distilled in vacuum. \\
\hline & ESTIMATED ERROR:
\[
\delta H= \pm 3-5 \% \text { (authors) }
\] \\
\hline & \begin{tabular}{l}
REFERENCES: \\
1. Shenderei, E.R.; Zel'venskii, Ya.D.; Ivanovskii, F.P. \\
Khim. Prom. 1960, (5), 370.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) 1,1'-Oxybisethane or diethyl ether; \(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\); [60-29-7]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Christoff, A. \\
Z. Phys. Chem. 1912, 79, 456-60.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =273.15,283.15 \\
p_{1} / \mathrm{kPa} & =\text { atmospheric }
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \begin{tabular}{cc}
Temperature & Mol Fraction \\
\(t /{ }^{\circ} \mathrm{C}\) & \(T / K\)
\end{tabular} & \begin{tabular}{cc}
Bunsen & Ostwald \\
Coefficient & Coefficient \\
\(\alpha / \mathrm{cm}^{3}(\mathrm{STP}) \mathrm{cm}^{-3} \mathrm{~atm}^{-1}\) & \(\mathrm{~L} / \mathrm{cm}^{3} \mathrm{~cm}^{-3}\)
\end{tabular} \\
\hline \(0 \quad 273.15 \quad 3.19\) & \(7.330 \quad 7.330\) \\
\hline \(10 \quad 283.15 \quad 2.59\) & \(5.831 \quad 6.044\) \\
\hline \(15 \quad 288.15 \quad 2.33\) & \(5.181 \quad 5.465\) \\
\hline The mole fraction and Bunsen coeff the compiler assuming ideal gas be & ficient values were calculated by ehavior. \\
\hline \multicolumn{2}{|r|}{AUXILIARY INFORMATION} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The apparatus is an Ostwald type as described by Just (ref 1), and modified by Skirrow (ref 2). The apparatus consists of a thermostated gas buret and an absorption flask. \\
The modification involves the use of vapor free gas in the gas buret. A correction is made for the vapor pressure of the solvent. A steel capillary tube with a stopcock, which prevents the gas and the solvent vapor from mixing in the buret, is used to connect the absorption flask and the buret.
\end{tabular}} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. \\
No information. \\
(2) Diethyl ether. Merck. Stated to be pure and anhydrous. \\
ESTIMATED ERROR:
\[
\delta L / L= \pm 0.03
\]
\end{tabular} \\
\hline & \begin{tabular}{l}
REFERENCES: \\
1. Just, G. \\
Z. Phys. Chem. 1901, 37, 342. \\
2. Skirrow, F. W. \\
z. Phys. Chem. 1902, 41, 139.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Tetrahydrofuran; \(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\); [109-99-9]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Bodor, E.; Bor, Gy.; Maleczkine, \\
M.; Mesko, G.; Mohai, B.; \\
Siposs, G. \\
Veszpremi. Vegyip. Egyet. Kozlemen. 1957, 1, 89-98.
\end{tabular} \\
\hline VARIABLES :
\[
\begin{aligned}
& T / \mathrm{K}=198-318.2 \\
& P / \mathrm{kPa}=10.5-98.0
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
C. L. Young
\end{tabular} \\
\hline EXPERIMENTAL VALUES:
\[
T / \mathrm{K} \quad p / \mathrm{mmHg} \quad p / \mathrm{kPa}
\] & \begin{tabular}{cc}
Absorption \\
of gas & \begin{tabular}{c}
Mole fraction \\
(\(\mathrm{cm}^{3} \mathrm{~g}^{-1}\) \\
\end{tabular} \\
& carbon dioxide \\
in liquid, \\
\(\mathrm{X}_{\mathrm{CO}}^{2}\)
\end{tabular} \\
\hline \begin{tabular}{crr}
318.2 & 79 & 10.5 \\
& 189 & 25.2 \\
& 229 & 30.5 \\
& 283 & 37.7 \\
& 316 & 42.1 \\
& 337 & 44.9 \\
& 270 & 36.0 \\
& 298 & 59.7 \\
& 394 & 52.5 \\
& 394 & 61.9 \\
& 464 & 65.3 \\
& 490 & 72.9 \\
& 547 & 75.9 \\
& 569 & 57.3 \\
& 585 & 58.8 \\
& 430 & 70.3 \\
& 441 & 72.1 \\
& 527 & 81.2 \\
& 541 & 84.9
\end{tabular} & \begin{tabular}{ll}
0.51 & 0.00164 \\
1.57 & 0.00503 \\
1.80 & 0.00576 \\
2.63 & 0.00839 \\
2.50 & 0.00798 \\
3.09 & 0.00984 \\
2.72 & 0.00868 \\
3.26 & 0.0104 \\
4.02 & 0.0128 \\
4.45 & 0.0141 \\
5.53 & 0.0175 \\
5.08 & 0.0161 \\
5.64 & 0.0178 \\
6.75 & 0.0213 \\
6.07 & 0.0224 \\
7.12 & 0.0241 \\
7.67 & 0.0291 \\
9.30 & 0.0271 \\
8.65 & 0.0339 \\
10.9 & \\
10.3 &
\end{tabular} \\
\hline AUXILIARY & Information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Volumetric method. Pressure measured when known amounts of gas were added, in increments, to a known amount of liquid in a vessel of known dimensions. Corrections were made for the partial pressure of solvent. Details in ref. (1).
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
ESTIMATED ERROR: \\
```

$\delta T / K= \pm 0.1 ;$ <br>
$\delta($ absorption $)= \pm 4 \%$ or less.

``` \\
REFERENCES: \\
1. Bodor, E.; Bor, G. J.; \\
Mohai, B.; Siposs, G. \\
Veszpremi. Vegyip. Egy. Kozl. 1957, 1, 55.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The compiler calculated the Bunsen and Ostwald coefficients from the author's mole fraction values assuming ideal gas behavior. \\
The authors fitted their data to the equation: \\
\(-\ln x_{1}=6.781 \ln (T / K)-34.859\) from which they obtained. \\
\(\Delta H_{i} / \mathrm{kJ} \mathrm{mol}{ }^{-1}=-2.09\), and \(\Delta S_{i} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}=-62\) for the transfer \\
of one mole of carbon dioxide from the gas phase at 101 \\
\(k P a\) to the hypothetical unit mole fraction solution. \\
AUXILIARY INFORMATION \\
METHOD/APPARATUS/PROCEDURE: \\
The apparatus is similar to that of Ben-Naim and Baer (ref l). It was described in detail in an earlier paper (ref 2). \\
The apparatus consists of a gas buret, mercury manometer, and solution vessel. The solvent is degassed in the solution vessel. Measurements were carried out on the solvent vapor saturated gas. \\
Iiterature 1,4-dioxane vapor pressure data were fitted to the equation
\[
\begin{aligned}
& \ln \left(p_{2} / / \mathrm{kPa}\right)= \\
& \quad-4591.3 /(T / K)+16.98
\end{aligned}
\] \\
SOURCE AND PURITY OF MATERIALS: \\
(I). Carbon dioxide. Sociedad Espanola del Oxigeno. Stated to be 99.998 \% \\
(2) 1,4-Dioxane. Merck and Co. Purity checked by GLC to be \(\geq 99\) \%. \\
ESTIMATED ERROR: \\
\(\delta T / K= \pm 0.1\) \\
\(\delta p_{1} / \mathrm{kPa}= \pm 1\) \\
\(\delta x_{1} / x_{1}= \pm 0.01\) \\
REFERENGES: \\
1. Ben Naim, A.; Baer, S. Trans.Faraday Soc. 1963, 59, 2735-38. \\
2. Carniecer, J.; Gibanel, F.; Urieta, J.S.; Gutierrez Losa,C. \\
Rev. Acad. Ciencieas Zaragoza 1979, 34, 115-22.
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2} ; ~[124-38-9]\)
2. 1,4-Dioxane; \(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} ; \quad[124-91-1]\)
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Kassim, D.M.; Zainel, H.A.; Al-Asof, S.A.; Talib, E.K. \\
Fluid Phase Equilibria 1988, 41, 287-294.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& T / K=303.15-333.15 \\
& P / \mathrm{kPa}=101.3
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
C. L. Young
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES:
\[
T / K
\] \\
Mole frac
\end{tabular} & tion of carbon dioxide in liquid, \({ }^{x} \mathrm{CO}_{2}\) \\
\hline \[
\begin{aligned}
& 303.15 \\
& 313.15 \\
& 323.15 \\
& 333.15
\end{aligned}
\] & \[
\begin{aligned}
& 0.0192 \\
& 0.0187 \\
& 0.0182 \\
& 0.0175
\end{aligned}
\] \\
\hline auxilitary & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Falling film flow apparatus similar to that of Morrison and Billet (1). Apparatus consisted of (i) degassing section in which solvent could be degassed by freezing and thawing under vacuum and (ii) absorption section. The latter consisted of a gas buret and absorption spiral. Mole fraction solubility corrected to 1 atm partial pressure by assuming Henry's law was valid.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Purity 99.99 mole per cent. \\
2. Fluka AG puriss grade sample, purity better than 99 mole per cent. \\
ESTIMATED ERROR: \\
\(\delta T / K= \pm 0.1 ; \delta x / x= \pm 0.02\) \\
(estimated by compiler). \\
REFERENCES: \\
1. Morrison, T.J.; Billet, F.J. J. Chem. SoC. 1948, 2033.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Oxybispropanol, (Dipropylene glycol); \(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{3}\); [25265-71-8]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
 Lenior, J-Y.; Renault, P.; Renon, H.
 J. Chem. Eng. Data, 1971, 16, 340-2.
``` \\
\hline VARIABLES:
\[
T / K=298.2-343.2
\] & \begin{tabular}{l}
PREPARED BY: \\
C. L. Young
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
* Calculated by compiler assuming a linear function of \(P_{\mathrm{CO}_{2}}\) vs \(x_{\mathrm{CO}_{2}}\), i.e., \({ }^{x} \mathrm{CO}_{2}(1 \mathrm{~atm})=1 / H_{\mathrm{CO}_{2}}\).
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{auxiliary information} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
A conventional gas-liquid chromatographic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at 1 atm. pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) L'Air Liquide sample, minimum purity 99.9 mole per cent. \\
(2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent. \\
ESTIMATED ERROR: \\
\(\delta T / K= \pm 0.1 ; \delta H / a t m= \pm 6 \%\) \\
(estimated by compiler).
\end{tabular} \\
\hline & References: \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
\[
[124-38-9]
\] \\
2. 2,2'[1,2-Ethanediylbis(oxy)]bisethanol, (triethylene glycol); \(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{4}\); [112-27-6]
\end{tabular} & ORIGINAL MEASUREMENTS:
```

 Jou, F-Y.; Deshmukh, R.D.;
 Otto, F.D.; Mather, A.E.
 Fluid Phase Equilibria 1987, 36,
 121-140.

``` \\
\hline VARIABLES:
\[
T / \mathrm{K}=298-398 ; \mathrm{P} / \mathrm{kPa}=105-20250
\] & \begin{tabular}{l}
PREPARED BY: \\
P.G.T. Fogg
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
Experimental data were used to calculate the parameters \(H, \bar{V}_{2}\) and \(A\) in Krichevsky-Il'inskaya equations of the form
\[
R T \ln \left(f_{2} / x_{2}\right)=R T \ln H+\bar{V}_{2}\left(P-P_{s}\right)+A\left(x_{1}^{2}-1\right)
\] \\
where \(f_{2}=\) fugacity of solute \(\quad x_{2}=\) mole fraction of solute \\
\(\underline{H}=\) Henry's constant of the solute at infinite dilution \\
\(\bar{V}_{2}=\) partial molar volume of the solute at infinite diution \\
\(A=\) Margules parameter \\
\(x_{1}=\) mole fraction of the solvent \\
\(P=\) total pressure \(\quad P_{s}=\) partial pressure of the solvent \\

\end{tabular}} \\
\hline \begin{tabular}{llr}
298.15 & 11950 & 36.50 \\
323.15 & 17440 & 38.14 \\
348.15 & 23550 & 40.03 \\
373.15 & 29850 & 42.23 \\
398.15 & 35950 & 44.82 \\
& & \\
& \\
calculated by the compiler from the \\
Il'inskaya equation
\end{tabular} & \[
\begin{array}{cc}
0.229 & 0.008443 \\
0.228 & 0.005792 \\
0.229 & 0.004292 \\
0.232 & 0.003388 \\
0.237 & 0.002814 \\
& \\
\text { parameters for the Krichevsky- }
\end{array}
\] \\
\hline AUXILIARY & Information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The solubility of carbon dioxide in triethylene glycol was measured at five temperatures over a partial pressure range of 105 kPa to 20250 kPa using apparatus and procedure described earlier (1). Where necessary nitrogen was added to maintain a total pressure above 200 kPa . The gas phase was analysed by gas chromatography. The liquid phase was analysed by absorption of dissolved gas in sodium hydroxide solution or barium hydroxide solution, addition of excess barium chloride solution and estimation of the barium carbonate which was precipitated. Relationships described by Bender et al.(2) were used to obtain parameters of the Krichevsky- Il'inskaya equation which are given above.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
2. from Aldrich Chemicals; water content reduced to less than 0.6 mole percent by heating under vacuum to \(120^{\circ} \mathrm{C}\).
\[
\begin{aligned}
& \text { ESTIMATED ERROR: } \\
& \delta T / K= \pm 0.5 \\
& \delta P / P= \pm 0.1 \%
\end{aligned}
\] \\
REFERENCES: \\
1. Jou, F-Y.; Mather, A.E.; Otto, F.D. Ind. Eng. Chem. Process Des. Dev. 1982, 21, 539. \\
2. Bender, E.; Klein, U.; \\
Schmitt, W.P.; Prausnitz, J.M. \\
Fluid Phase Equilibria 1984, 15, 241.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|l|}
\hline COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2} ;\) \\
\\
[124-38-9]
\end{tabular}\(\quad\)\begin{tabular}{l} 
Polyethylene glycol \\
\\
Polyethylene glycol ethers \\
Polyethylene glycol diacetate
\end{tabular}

\section*{ORIGINAL MEASUREMENTS:}

Makarov, K.I.; Malyutin, S.P.; Sushkova, T.V.
Soversh. Tekhn. i Tekhnol. Promys1. i Zavod. Obrab. Gaza. i Kondensata na Mestorozhd. so Slozhn. Sostavov Gaza 1980, 106-115

\section*{AUXILIARY INFORMATION}

METHOD/APPARATUS/PROCEDURE:
Measurements were made over a range of pressures to a maximum of about 4050 kPa . Apparatus for use to about 98 kPa consisted of an absorption vessel fitted with a magnetic stirrer and connected to a surge tank and mercury pressure gage. The absorption vessel was held in a thermostat bath. The vessel was filled with gas under test and the solvent added with a syringe via a diaphragm. The quantity of gas absorbed was calculated from the difference between the final pressure, when the system had reached equilibrium, and the initial pressure. A steel bomb fitted with sampling devices was used for measurements at higher pressures. The bomb containing gas and solvent was rotated in a water bath for 4-5 h before samples of solution were withdrawn. Solubilities were published as Bunsen coefficients. A graph showing the variation of gas solubility with pressure in four of the solvents was also published.

\section*{SOURCE AND PURITY OF MATERIALS:}

Solvents were from various industrial sources.
Densities and refractive indices at 293.15 K were as follows:

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2} ;\) [124-38-9] \\
2. 2-Methoxyethanol (ethylene glycol monomethyl ether); \(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{2}\) [109-86-4]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Bodor, E.; Bor, Gy.; Maleczkine, M.; Masko, G.; Mohai, B.; \\
Siposs, G. \\
Veszpremi. Vegyip. Egyet. Kozlemen. 1957, 1, 99-108.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& T / K=198-318.2 \\
& p / \mathrm{kPa}=30.3-102.9
\end{aligned}
\] & PREPARED BY: \(\quad\) C. L. Young \\
\hline EXPERIMENTAL VALUES:
\[
T / \mathrm{K} \quad p / \mathrm{mmHg} \quad p / \mathrm{kPa}
\] & \begin{tabular}{cc} 
Absorption \(\dagger\) & Mole fraction \\
of \({ }^{*}\) of \\
carbon dioxide \\
in liquid, \\
& \(\mathrm{cm}^{3} \mathrm{~g}^{-1}\)
\end{tabular} \\
\hline \begin{tabular}{ccr}
318.2 & 297 & 39.6 \\
& 443 & 59.1 \\
& 532 & 70.9 \\
& 651 & 86.8 \\
& \((760)\) & \((101.3)\) \\
295.2 & 563 & 75.1 \\
& 674 & 89.9 \\
& 731 & 97.5 \\
& \((760)\) & \((101.3)\) \\
273.2 & 605 & 80.7 \\
& 658 & 87.7 \\
& 703 & 93.7 \\
& 772 & 102.9 \\
& \((760)\) & \((101.3)\) \\
& 227 & 30.3 \\
& 346 & 46.1 \\
& 411 & 54.8 \\
& 610 & 81.3 \\
& 744 & 99.2 \\
& \((760)\) & \((101.3)\) \\
& 266 & 35.5
\end{tabular} & \begin{tabular}{rr}
0.72 & 0.00244 \\
1.06 & 0.00359 \\
1.41 & 0.00476 \\
1.72 & 0.00581 \\
\((2.0)\) & \((0.0067)\) \\
2.29 & 0.00772 \\
2.84 & 0.00955 \\
3.11 & 0.0104 \\
\((3.2)\) & \((0.0107)\) \\
4.15 & 0.0139 \\
4.55 & 0.0152 \\
4.95 & 0.0165 \\
5.45 & 0.0182 \\
\((5.5)\) & \((0.0183)\) \\
3.5 & 0.0117 \\
6.7 & 0.0222 \\
7.9 & 0.0261 \\
10.7 & 0.0351 \\
12.8 & 0.0416 \\
\((13)\) & \((0.042)\) \\
16.3 & \\
& (cont.) \\
&
\end{tabular} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Volumetric method. Pressure measured when known amounts of gas were added, in increments, to a known amount of liquid in a vessel of known dimensions. Corrections were made for the partial pressure of solvent. Details in ref. (1).
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
ESTIMATED ERROR: \\
\(\delta T / \mathrm{K}= \pm 0.1 ;\) \\
\(\delta(\) absorption \()= \pm 4 \%\) or less. \\
REFERENCES: \\
1. Bodor, E.; Bor, G. J.; \\
Mohai, B.; Siposs, G. \\
Veszpremi. Vegyip. E'gy. Kozl. 1957, 1, 55.
\end{tabular} \\
\hline
\end{tabular}

\section*{COMPONENTS:}

ORIGINAL MEASUREMENTS:
I. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] Bodor, E.; Bor, Gy.; Maleczkine,
2. 2-Methoxyethanol (ethylene glycol monomethyl ether); \(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{2}\) [109-86-4]
M.; Masko, G.; Mohai, B.; Siposs, G.
Veszpremi. Vegyip. Egyet. Kozlemen. 1957, 1, 99-108.
\begin{tabular}{|c|c|c|c|c|}
\hline EXPERIME
\[
T / K
\] & VALUES:
\(p / \mathrm{mmHg}\) & \(p / \mathrm{kPa}\) & \[
\begin{aligned}
& \text { Absorption }{ }^{\dagger} \\
& \text { of gas } \\
& / \mathrm{cm}^{3} \mathrm{~g}^{-1}
\end{aligned}
\] & ```
Mole fraction* of
    carbon dioxide
        in liquid,
            * CO2
``` \\
\hline \multirow[t]{6}{*}{223.2} & 350 & 46.7 & 17.4 & 0.0558 \\
\hline & 441 & 58.8 & 21.8 & 0.0689 \\
\hline & 544 & 72.5 & 28.6 & 0.0885 \\
\hline & 637 & 84.9 & 31.6 & 0.0969 \\
\hline & 744 & 99.2 & 37.0 & 0.1116 \\
\hline & (760) & (101.3) & (38) & (0.114) \\
\hline \multirow[t]{6}{*}{\(198 \pm 2\)} & 244 & 32.5 & 47.6 & 0.1391 \\
\hline & 326 & 43.5 & 60.5 & 0.1704 \\
\hline & 410 & 54.7 & 74.5 & 0.2019 \\
\hline & 552 & 73.6 & 104.0 & 0.2610 \\
\hline & 744 & 99.2 & 139.7 & 0.3217 \\
\hline & (760) & (101.3) & (145) & (0.330) \\
\hline
\end{tabular}
the volume of gas absorbed by one gram of solvent was corrected to 273.15 K and 101.3 kPa .
* calculated by compiler.

Values in parentheses are extrapolated to 1 atmosphere.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS : \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
\[
[124-38-9]
\] \\
2. 2,5,8,11,14-Pentaoxapentadecane; (tetraethylene glycol dimethyl ether); \(\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}_{5}\); [143-24-8]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Zubchenko, Yu.P.; Shakhova, S.F. \\
Tr. N.-i. Proekt. In-Ta, Azot. Prom. St. I. Productov. Organ. Sinteza 1975, (33), 13-15.
\end{tabular} \\
\hline VARIABLES:
\[
P / \mathrm{kPa}=101.3 \quad T / \mathrm{K}=298.15
\] & PREPARED BY: P.G.T. Fogg \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
* the compiler has assumed the volume 101.3 kPa . \\
+ calculated by the compiler. The de the same as that of tetramethylene
\end{tabular} & \begin{tabular}{l}
\(\frac{{ }^{x} \mathrm{CO}_{2}{ }^{\dagger}}{3.40} 0\) \\
of gas was corrected to 273.15 K and \\
asity of the solvent was taken to be glycol, \(1.0171 \mathrm{~g} \mathrm{~cm}^{-3}\) at 293.2 K .
\end{tabular} \\
\hline AUXILIARY & Information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The method was described in a previous publication (1).
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
No information \\
ESTIMATED ERROR: \\
REFERENCES: \\
1. Braude, G.E.; Shakhova, S.F. Khim. Prom. 1961, (3), 177.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS : \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Phenol; \(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}\); [108-95-2]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
Lenoir', J-Y,; Renault, P.; Renon, H.
J. Chem. Eng. Data, 1971, 16, 340-3.
``` \\
\hline VARIABLES:
\[
T / K=323.2
\] & \begin{tabular}{l}
PREPARED BY: \\
C. L. Young
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
* Calculated by compiler assuming a linear function of \(P_{\mathrm{CO}_{2}}\) vs \({ }_{\mathrm{x}}^{\mathrm{CO}}{ }_{2}\), i.e., \(x_{\mathrm{CO}_{2}}(1 \mathrm{~atm})=1 / \mathrm{H}_{\mathrm{CO}_{2}}\).
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{auxiliary information} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
A conventional gas-liquid chromatographic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at 1 atm . pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(]) L'Air Liquide sample, minimum purity 99.9 mole per cent. \\
(2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent. \\
ESTIMATED ERROR:
\[
\begin{gathered}
\delta T / \mathrm{K}= \pm 0.1 ; \quad \delta H / \mathrm{atm}= \pm 6 \% \\
\text { (estimated by compiler). }
\end{gathered}
\]
\end{tabular} \\
\hline & REFERENCES: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS : \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. 3-Methylphenol (m-cresol); \\
\(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}\); [108-39-4]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Horvath, M. J.; Sebastian, H. M.; \\
Chao, K.-C. \\
Ind. Eng. Chem. Fundam. \\
1981, 20, 394-396.
\end{tabular} \\
\hline variables:
\[
\begin{aligned}
& T / \mathrm{K}=300.5 \\
& P / \mathrm{kPa}=101.3
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
C. L. Young
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline 300.5168 & 0.00592 \\
\hline \({ }^{\dagger}\) at a partial pressure of calculated by compiler as & arbon dioxide of 101.3 kPa (1 atm) uming \(\phi=0.995\). \\
\hline \multicolumn{2}{|r|}{auxiliary information} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Gas chromatographic analysis of a saturated solution at barometric pressure. Henry's constants determined from formula
\[
H=\left(p-p_{0}\right) \phi(m+1) / \mathrm{m}
\] \\
where \(p\) is the total pressure, \(p_{0}\) the vapor pressure of the solvent and \(\phi\) is the fugacity coefficient of the gas. The mole ratio, \(m\), is defined by
\[
\mathrm{m}=\frac{\begin{array}{c}
\text { Moles of carbon dioxide } \\
\text { in gas phase }
\end{array}}{\begin{array}{c}
\text { Moles of carbon dioxide } \\
\text { in liquid phase }
\end{array}}
\]
\end{tabular}} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. No details given. \\
2. Purity 99.45 mole per cent. \\
ESTIMATED ERROR:
\[
\delta T / \mathrm{K}= \pm 0.25 ; \quad \delta H / \mathrm{atm}= \pm 3 \%
\] \\
(estimated by compiler).
\end{tabular} \\
\hline & References: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) 2-Methoxy-4-(2-propenyl)phenol or eugenol; \(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}\); [97-53-0]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
Just, G.
2. Phys. Chem. 1901, 37, 342-367.
``` \\
\hline variables:
\[
\begin{aligned}
T / \mathrm{K} & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 kPa (l atm) partial pressure of the gas.
\end{tabular}} \\
\hline auxiliary & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) 2-Methyl-4-(2-propenyl)-phenol. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W. \\
2. Phys. Chem. 1890, 6, 141. \\
2. Steiner, P . \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}

COMPONENTS:
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]
2. Compounds Containing Halogens

EVALUATOR:
Peter 'G.T. Fogg,
School of Applied Chemistry, Polytechnic of North Jondon, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:
The Solubility of carbon dioxide in solvents containing halogens
The solubility in tetrachloromethane measured by Gjaldbaek (1) at 298.2 K and about 101.3 kPa is close to a value measured by Horiuti (2) and is consistent with a value measured by Luhring and Schumpe (3) at 293.2 K . Just (4) made measurements from 288.2 K to 298.2 K . The values of the solubility are low compared with values from later work. The mole fraction solubility at 101.3 kPa and 298.2 K from Just's data is 0.00902 compared with 0.01048 (Horiuti) and 0.01070 (Gjaldbaek). A value of 0.00877 obtained by an indirect method by Takahashi et al. (5) can be disregarded. A value of 0.0106 , the mean of Gjaldbaek and Horiuti's values, is provisionally recommended for mole fraction solubility at 298.2 K.

Kunerth (6) measured the solubility in trichloromethane at about 101.3 kPa from 291.2 K to 309.2 K . A plot of mole fraction solubility against temperature from these data is concave towards the solubility axis. This is not in agreement with the behaviour of other systems under similar conditions and may indicate incorrect allowance for the vapor pressure of solvent at the higher temperatures of measurement. Just (4) reported a solubility value at 298.2 K which is close to Kunerth's value at this temperature. Gjaldbaek (1) reported a solubility at 298.2 K which is high in comparison but is compatible with measurements by Woukoloff (7) at 286 K and of Koudelka (8) at 293.2 K . Values of mole fraction solubility at 298.2 K and 101.3 kPa are 0.0128 (Gjaldbaek); 0.01120 (Just); 0.0113 (Kunerth). Values at 293.2 K are 0.01375 (Koudelka); 0.0121 (Just); 0.01230 (Kunerth). The evaluator considers that the higher and more. recent measurements by Gjaldbaek and by Koudelka may be more reliable than the earlier measurements by Just and Kunerth. These data can only be accepted on a provisional basis until the system is re-investigated.

Eldridge and co-workers \((9,10)\) measured solubility in dichloromethane over pressure ranges from 310.9 K to 327.6 K . Dantzler et al. (11) measured solubilities in dichlorodifluoromethane and in trichlorofluoromethane over pressure ranges at 273.2 K to 310.9 K . These three sets of data seem to be reliable but measurements by other groups are not available for comparison.

The data which are available for 298.2 K and a partial pressure of carbon dioxide of 1001.3 kPa show that the mole fraction solubility of gas increases when the hydrogens in dichloromethane or trichloromethane are replaced by fluorine atoms but decreases when they are replaced by chlorine atoms (see Table 1).

Solubility in 1,2-dibromoethane was measured at about 101.3 kPa by Gjaldbaek and Andersen (12), Begley et al.(13), Just (4) and Kunerth (6). There is very good agreement between the sets of data. The greatest discrepancy between values of mole fraction solubility is less than \(4 \%\) i.e 0.00642 at 309.2 K (Kunerth); 0.00618 at 308.8 K (Begley). The following equation based on data from the four papers is recommended.
\[
\ln x_{\mathrm{CO}_{2}}=324.89-13552.2 /(T / K)-49.902 \ln (T / K)
\]
temperature range \(=288.2-319.5 \mathrm{~K}\)
standard deviation in \(\mathrm{x}_{\mathrm{CO}_{2}}=9.3 \times 10^{-5}\)
Just (4) measured solubility in 1,2 -dichloroethane at about 101.3 kPa from 288.2 K to 298.2 K . Luhring and Schumpe (3) measured solubility at
293.2 K and confirmed Just's value at this temperature. Values of mole

\section*{COMPONENTS:}
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9]
2. Compounds Containing Halogens

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:
fraction solubility at 101.3 kPa fit the following equation.
\[
\ln _{\mathrm{CO}_{2}}=-9.120+1384.9 /(T / K)
\]
temperature range \(=288.2-298.2 \mathrm{~K}\)
standard deviation in \(x_{\mathrm{CO}_{2}}=3.6 \times 10^{-5}\)
Just (4) also measured solubilities in 1-bromopentane, 1-chloropentane, 1-chloro-2-methylpropane and 1,2-dibromopropane under the same conditions of temperature and pressure as in 1,2-dichloroethane. Hiraoka and Hildebrand (14) measured solubility in trichlorotrifluoroethane at 101.3 kPa from 276.1 K to 308.5 K . Dantzler et a1.(11) measured solubility in 1,2-dichloro-1,1,2,2-tetrafluoroethane over pressure ranges from 273.2 K to 310.9 K . Begley et al. (13) measured solubility in a mixture of 1 -bromo-2-chloropropane and 2 -bromo-1-chloropropane. There is no reason to doubt the reliability of any of these measurements but no other data for these systems are available for comparison.

Kobatake and Hildebrand (15) measured the solubility in hexadecafluoroheptane at 101.3 kPa and from 292.2 K to 303.2 K . The measurements are consistent with an earlier measurement of the solubility at 298.25 by Gjaldbaek (1) and may therefore be accepted as reliable. Solubility data for a partial pressure of gas of 101.3 kPa from the two papers fit the following equation
\[
\ln x \mathrm{CO}_{2}=-7.413+1056.2 /(T / K)
\]
temperature range \(=\) 292.2-303.2 K
standard deviation in \(x_{\mathrm{CO}_{2}}=8.5 \times 10^{-5}\)
Mole fraction solubilities at a partial pressure of 101.3 kPa for various halogenated alkanes are given in Table 1. and are shown in Fig 1. The available data show that the relative effects of halogen in enhancing the solubility of carbon dioxide are fluorine > chlorine > bromine.

Solubility in \(L-1822\) has been measured by Sargent and Seffl (16) at \(101.3 \mathrm{kPa} ; 298.2 \mathrm{~K}\) and 310.2 K and reported as Ostwald coefficients and also as weight fractions. This solvent is reported to be mostly a mixture of 10-carbon linear, branched and cyclic fluorocarbons. The relative molecular mass of a C-10 linear or branched perfluorinated alkane is 538. If this is taken to be the approximate average relative molecular mass of \(L-1822\) then the solubility data correspond to a mole fraction solubility of about 0.0186 . The mole fraction solubility in hexadecafluoroheptane at this temperature and pressure is 0.0209 . The data reported by Sargent and Seffl are therefore consistent with the nature of the solvent under test.

The solubility in three fluorinated ethers has been studied. FC-80 is mostly a mixture of isomers of heptafluorotetrahydro(nonafluorobutyl) -furan (\(\mathrm{C}_{8} \mathrm{~F}_{16} \mathrm{O}\)). Solubilility in this solvent at 101.3 kPa has been measured by Tham et al.(17) from 298.2 K to 323.2 K . These data are supported by the measurements of Navari et al.(18) from 1.3 kPa to 101.3 kPa at 310.2 K . Solubility values at 298.2 K and 310.2 K ; 101.3 kPa from Sargent and Seffl (16) are very low in comparison with Tham's values.

Values of \(\mathrm{X}_{\mathrm{CO}_{2}}\) for \(\mathrm{FC}-80\) at 101.3 kPa .
\begin{tabular}{lll}
\hline & 298.2 K & 310.2 K \\
Tham et a1. & 0.0223 & 0.0186 \\
Navari et al. & & 0.0186 \\
Sargent and Seffl & 0.0181 & 0.0150
\end{tabular}

COMPONENTS:
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]
2. Compounds Containing Halogens

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:
Solubility in \(1,1,1,2,2,3,3,4,4,5,5,6,6-t r i d e c a f l u o r o-6-\)
[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethoxy]-hexane (\(\mathrm{C}_{9} \mathrm{~F}_{2} \mathrm{O} O\)) was
measured by Tham et al.(17) at 298.2 K to 323.2 K ; 101.3 kPa . Values are higher than those given by Nychka and Eiback (19). Tham's data are probably the more reliable but confirmation is needed.
\begin{tabular}{lll}
& \({ }^{x_{\mathrm{CO}_{2}} \text { at } 101.3 \mathrm{kPa} \text { in } \mathrm{C}_{9} \mathrm{~F}_{20} \mathrm{O}}\) \\
\cline { 2 - 3 } & 298.2 K & 310.2 K \\
Tham et al. & 0.0250 & 0.0232 \\
Nychka and Eiback & 0.0223 & 0.0198
\end{tabular}

Tham et al.(17) also measured solubility in \(1,1,2,2,3,3,4,4\)-octafluoro-1,4-bis[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethoxy]-butane (\(\mathrm{C}_{10} \mathrm{~F}_{2} \mathrm{O}_{2}\)) at 298.2 K to \(323.2 \mathrm{~K} ; 101.3 \mathrm{kPa}\). There is no reason to doubt the reliability of this work but no other data on the system are available for comparison.

Lopez et al.(20) measured solubilities in chlorocyclohexane and bromocyclohexane at 263.2 K to 303.2 K ; 101.3 kPa . The work is self-consistent but no other data on these systems are available for comparison. Mole fraction solubilities increase in the order chlorocyclohexane , bromocyclohexane > cyclohexane under these conditions.

Just (4) measured the solubility in 1,3-dichloro-2-propanol from 288.2 K to 298.2 K at 99.5 kPa . The corresponding values of the mole fraction solubility at 101.3 kPa are greater than values for 2 -propanol (see Table 1). No other work on the system is available for comparison.

López et al.(23) measured solubility in chlorobenzene from 263.2 K to 303.2 K at 101.3 kPa . The measurements are consistent with those of Gjaldbaek and Anderson (12) at 298.2 and about 5\% higher than those of Just (4) in the temperature range of 288.2 K to 298.2 K . The following equation for the mole fraction solubility at a partial pressure of 101.3 kPa , based upon the first two sets of data, is recommended.
\[
\ln x_{\mathrm{CO}_{2}}=4.2360+756.71 /(T / K)-2.0001 \ln (T / K)
\]
temperature range \(=263.2-303.2 \mathrm{~K}\)
standard deviation in \(\mathrm{CO}_{2}=3 \times 10^{-5}\)
López et al.(23) also measured solubility in bromobenzene under the same conditions of temperature and pressure. These measurements are consistent with those of Just (4) in the range 288.2 K to 298.2 K . The following equation for mole fraction solubility at a partial pressure of 101.3 kPa , based upon the two sets of data, is recommended.
\[
{ }^{\ln x} \mathrm{CO}_{2}=-5.2127+1189.1 /(T / K)-0.63508 \ln (T / K)
\]
temperature range \(=263.2-303.2 \mathrm{~K}\)
standard deviation in \({ }^{\mathrm{CO}_{2}}=4 \times 10^{-5}\)
Just also measured solubility in iodobenzene from 288.2 K to 298.2 K at 101.3 kPa . No other measurements on this system are available for comparison. Mole fraction solubilities at 298.2 K and a partial pressure of 101.3 kPa are in the order chlorobenzene \(>\) bromobenzene > iodobenzene. Solubility in chlorobenzene is close to that in benzene.

Evans and Battino (21) published the solubility in hexafluorobenzene at 297.7 K and 298.0 K ; 101.3 kPa . Mole fraction solubility in this solvent is higher than in chlorobenzene. There is no reason to doubt the
reliability of this work which can be accepted on a provisional basis.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9] \\
2. Compounds Containing Halogens
\end{tabular} & \begin{tabular}{l}
EVALUATOR: \\
Peter G.T. Fogg, School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, \(\mathrm{N} 7 \mathrm{8DB}, \mathrm{U} . \mathrm{K}\). July 1991
\end{tabular} \\
\hline \multicolumn{2}{|l|}{CRITICAL EVALUATION:} \\
\hline \multicolumn{2}{|l|}{Just (4) measured solubilities in (chloromethyl)-benzene and in} \\
\hline \multicolumn{2}{|l|}{(trichloromethyl)-benzene. No other data on these systems are available. The data indicate that substitution of chlorine into the methyl group of methylbenzene lowers the mole fraction solubility at 298.2 K ; 101.3 kPa (see Table 1).} \\
\hline \multicolumn{2}{|l|}{REFERENCES} \\
\hline \multicolumn{2}{|l|}{1. Gjaldbaek, J.C. Acta Chem. Scand. 1953, 7, 537-544.} \\
\hline \multicolumn{2}{|l|}{2. Horiuti, J. Sci. Pap. Inst. Phys. Chem. Res. (Jpn) 1931/32, 17, 125-256.} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
3. Luhring, P.; Schumpe, A. J. Chem. Eng. Data 1989, 34, 250-252. \\
4. Just, W. Z. Phys. Chem. 1901, 37, 342-367.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{5. Takahashi, M.; Kobayashi, Y.; Takeuchi, H. J. Chem. Eng. Data 1982, 27, 328-331} \\
\hline \multicolumn{2}{|l|}{6. Kunerth, W. Phys. Rev. 1922, 19, 512-524.} \\
\hline \multicolumn{2}{|l|}{7. Woukoloff, Comptes Rendu 1889, 109, 61-63.} \\
\hline \multicolumn{2}{|l|}{8. Koudelka, L. Chem. Zvesti 1964, 18, 178-185} \\
\hline \multicolumn{2}{|l|}{9. Buell, D.S.; Eldridge, J.W. J. Chem. Eng. Data 1962, 7, 187-189.} \\
\hline \multicolumn{2}{|l|}{10. Vonderheiden, F.H.; Eldridge, J.W. J. Chem. Eng. Data 1963, 8, 20-21.} \\
\hline \multicolumn{2}{|l|}{11. Dantzler, E.M.i Holler, F.C.; Smith, P.T. Soap Chem. Specialties 1965, 41(1), 125-6; 146; 151.} \\
\hline \multicolumn{2}{|l|}{12. Gjaldbaek, J.C.; Andersen, E.K. Acta Chem. Scand. 1954, 8, 1398-1413.} \\
\hline \multicolumn{2}{|l|}{13. Begley, J.W.; Maget, J.R.; Williams, B. J. Chem. Eng. Data 1965, 10, 4-8.} \\
\hline \multicolumn{2}{|l|}{14. Hiraoka, H.; Hildebrand, J.H. J. Phys. Chem. 1964, 68, 213-214.} \\
\hline \multicolumn{2}{|l|}{15. Kobatake, Y.; Hildebrand, J.H. J. Phys. Chem. 1961, 65, 331-335.} \\
\hline \multicolumn{2}{|l|}{16. Sargent, J.w.; Seffl, R.J. Fed. Proc. 1970, 29, 1699-1703.} \\
\hline \multicolumn{2}{|l|}{17. Tham, M.K.; Walker, R.D.; Modell, J.H. J. Chem. Eng. Data 1973, 18, 385-386.} \\
\hline \multicolumn{2}{|l|}{18. Navari, R.M.; Rosenblum, W.I.; Kontos, H.A.; Patterson, J.L. Res. Exp. Med. 1977, 170, 169-180.} \\
\hline \multicolumn{2}{|l|}{19. Nychka, H.R.; Eiback, R.E. Ger. Offen. 2253534 (Cl.C07c,C01b,A61m) 10 May 1973.} \\
\hline \multicolumn{2}{|l|}{20. López, M.C.; Gallardo, M.A.; Urieta, J.S.; Gutiérrez Losa, C.; J. Chem. Eng. Data 1987, 32, 472-474.} \\
\hline \multicolumn{2}{|l|}{21. Evans, D.F.; Battino, R. J. Chem. Thermodyn. 1971, 3, 753-760.} \\
\hline \multicolumn{2}{|l|}{22. Tokunaga, J. J. Chem. Eng. Data 1975, 20, 41-46.} \\
\hline 23. López, M.C.; Gallardo, M.A.; U Rev. Acad. Ciencias Zaragoza & a, J.S.; Gutiérrez Losa, Y.C. , 43, 183-189. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9] \\
2. Compounds Containing Halogens
\end{tabular} & \begin{tabular}{l}
EVALUATOR: \\
Peter G.T. Fogg, \\
School of Applied Chemistry, \\
Polytechnic of North London, \\
Holloway Road, London, N7 8DB, U.K. \\
July 1991
\end{tabular} \\
\hline \multicolumn{2}{|l|}{CRITICAL EVALUATION:} \\
\hline & \\
\hline \[
0.000+1
\] & +1_ \\
\hline 260270280 & 290300310 \\
\hline & T/K \\
\hline
\end{tabular}

Fig. 1 Mole fraction solubility of carbon dioxide in various solvents containing halogens at a partial pressure of gas of 101.3 kPa .
a - perfluoro-1-isopropoxyhexane, \(\mathrm{C}_{9} \mathrm{~F}_{20} \mathrm{O}\) (17)
b - hexafluorobenzene (21)
c - hexadecafluoroheptane (1,15)
d - 1-chloropentane (4)
e - trichloromethane \((1,8)\)
f - 1,2-dichloroethane (3,4)
g - chlorocyclohexane (20)
h - tetrachloromethane (1,2,3)
- chlorobenzene (12,23)
- bromobenzene \((4,23)\)
k - 1,2-dibromoethane (4,6,12,13)
A reference line corresponding to values from the Raoult's law equation is also shown.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Tetrachloromethane or carbon tetrachloride; \(\mathrm{CCl}_{4}\); [56-23-5]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
Just, G.
Z. Phys. Chem. 1901, 37, 342-367.
``` \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{ll} 
PREPARED BY: & \begin{tabular}{l} 
M. E. Derrick \\
H.
\end{tabular} \\
& \begin{tabular}{l} 
L. Clever
\end{tabular}
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at \(101.325 \mathrm{kPa}(1 \mathrm{~atm})\) partial pressure of the gas.
\end{tabular}} \\
\hline aUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Tetrachloromethane or carbon tetrachloride; \(\mathrm{CCl}_{4}\); [56-23-5]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
    Horiuti, J.
    Sci. Pap. Inst. Phys. Chem. Res.
    (Jpn) 1931/32, 17, 125-256.
``` \\
\hline \[
\begin{array}{rl}
\text { VARIABLES: }_{T / K} & 298.15 \\
p_{1} / \mathrm{kPa}: & 101.325 \text { (1 atm) }
\end{array}
\] & \begin{tabular}{ll}
PREPARED BY: & \begin{tabular}{l}
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
&
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\
The mole fraction and Bunsen coefficient values were calculated by the compiler with the assumption the gas is ideal and that Henry's law is obeyed.
\end{tabular}} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The apparatus consists of a gas bure a solvent reservoir, and an absorption pipet. The volume of the pipet is determined at various meniscus heights by weighing a quantity of water. The meniscus height is read with a cathetometer. \\
The dry gas is introduced into the degassed solvent. The gas and solvent are mixed with a magnetic stirrer until saturation. Care is taken to prevent solvent vapor from mixing with the solute gas in the gas buret. The volume of gas is determined from the gas buret readings, the volume of solvent is determined from the meniscus height in the absorption
pipet.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Prepared by the reaction of \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) and \(\mathrm{H}_{2} \mathrm{SO}_{4}\). Contamination by air was less than 0.004 per cent. \\
(2) Tetrachloromethane. Kahlbaum. Dried over \(\mathrm{P}_{2} \mathrm{O}_{5}\) and distilled. Boiling point (760 mmHg) \(76.74^{\circ} \mathrm{C}\). \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & =0.05 \\
\delta x_{1} / x_{1} & =0.01
\end{aligned}
\] \\
REFERENCES:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Tetrachloromethane; \(\mathrm{CCl}_{4}\); [56-23-5]
\end{tabular} & \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =298.15 \\
p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
J. Chr. Gjaldaaek
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \begin{tabular}{ccc}
\(T / K\) & \begin{tabular}{l}
Carbon \\
Dioxide \\
Pressure
\end{tabular} & Mol Fraction \({ }^{1}\) \\
& \(\mathrm{p}_{1} / \mathrm{mmHg} x_{1}\)
\end{tabular} & \begin{tabular}{cc}
\begin{tabular}{c}
Bunsen \\
Coefficient \\
\((\mathrm{STP}) \mathrm{cm}^{-3} \mathrm{~atm}^{-1}\)
\end{tabular} & \begin{tabular}{c}
Ostwald \\
Coefficient \\
\(L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}\)
\end{tabular} \\
\hline 2.47 & \\
\hline 2.46 & 2.70 \\
& 2.68
\end{tabular} \\
\hline \({ }^{3}\) Mole fraction solubility values a of 101.325 kPa (1 atm) by the com obeyed. & djusted to a gas partial pressure piler assuming Henry's law is \\
\hline AUXILIARY & INFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
A calibrated all-glass combined manometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as confining liquid. The solvent was degassed in the apparatus. \\
The absorbed volume of gas is calculated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent is determined by the weight of displaced mercury. \\
The mole fraction solubility values are at 1 atm assuming Henry's law is obeyed. \\
Details of the apparatus and procedure are given in ref. 1 and 2.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Prepared from potassium bicarbonate (analytical reagent) and concentrated sulfuric acid. 99.9 per cent \(\mathrm{CO}_{2}\). \\
(2) Tetrachloromethane. Riedel-E. \\
de Haën. Analytical reagent. \\
B.p. (759 mmHg) \(/{ }^{\circ} \mathrm{C}=76.80\). \\
\(n_{D}\left(25^{\circ} \mathrm{C}\right)=1.4573\). \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & = \pm 0.05 \\
\delta x_{1} / x_{1} & = \pm 0.015
\end{aligned}
\] \\
REFERENCES: \\
1. Lannung, A. \\
J. Am. Chem. Soc. 1930, 52, 68. \\
2. Gjaldbaek, J. C. \\
Acta Chem. Scand. 1952, 6, 623.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS : \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Tetrachloromethane, (carbon tetrachloride); \(\mathrm{CCl}_{4}\); [56-23-5] or 1,2-Dichloroethane; \(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}\); [107-06-2]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Luhring, P.; Schumpe, A. J. Chem. Eng. Data, 1989, 34, 250-252.
\end{tabular} \\
\hline VARIABLES:
\[
T / K=293.2
\] & \begin{tabular}{l}
PREPARED BY: \\
C.L. Young
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \[
T / K \quad \begin{array}{ll}
\text { Henry's Constant }
\end{array}
\] & Mole fraction of \(\mathrm{CO}_{2}\) at 101.3 kPa partial pressure* \\
\hline Tetrachlor & \begin{tabular}{l}
methane
\[
0.01076
\] \\
roethane
\[
0.01231
\]
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
treferred to as Henry's constant in source but appears to be usual Henry's constant multiplied by molar volume. \\
* calculated by compiler using density data taken from ref.(1).
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE \\
Little infomation given in source. Method consisted of equilibrating known amounts of degassed liquid and gas and measuring the change in pressure. Equilibration was reached in 3 to 6 minutes. Some details given in ref. (2).
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
Obtained from Merck at the highest available purity. No other details given. \\
ESTIMATED ERROR: \\
\(\delta T / K= \pm 0.1\) (authors) \\
\(\delta x / x= \pm 0.01\) to 0.15 (compiler) \\
REFERENCES: \\
1. Riddick, J.A.; Bunger, W.B.;1970 Organic Solvents, WileyInterscience, New York. \\
2. Schumpe, A.; Quiker, G.; Decker, W.D. \\
Adv. Biochem. Eng., 1982, 24. 1.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9] \\
(2) Trichloromethane or chloroform; \(\mathrm{CHCl}_{3}\); [67-66-3]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Woukoloff, (No initial given) \\
Comptes rendu 1889, 109, 61-63.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K}= & 286 \\
P_{1} / \mathrm{kPa}= & 4.88-101.59 \\
& (36.57-762 \mathrm{mmHg})
\end{aligned}
\] & Prepared by: \(\begin{aligned} & \\ & \text { H. L. Clever }\end{aligned}\) \\
\hline & \\
\hline \multicolumn{2}{|r|}{auxiliary information} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The solvent was degassed by vacuum. \\
The solvent and the gas were brought into contact and a reading of the amount of gas absorbed was made. The readings were repeated after 24 and 48 hours. \\
In the author's earlier paper, Comptes rendu 1889, 108, 674, he stated the absorbed gas volume was reduced to the standard temperature and pressure of \(0{ }^{\circ} \mathrm{C}\) and 760 mmHg . In the present paper the absorbed gas volume is measured at \(13{ }^{\circ} \mathrm{C}\) and 760 mmHg .
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. No information. \\
(2) Chloroform. Specified as 891gr,075.
\end{tabular} \\
\hline \({ }^{1}\) The absorbed gas volume is at a temperature of 286 K and the partial pressure of the carbon dioxide. The Bunsen coefficient values were calculated by the compiler. & References: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Trichloromethane or chloroform; \(\mathrm{CHCl}_{3}\); [67-66-3]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
Z. Phys. Chem. 1901, 37, 342 - 367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at l0l. 325 kPa (1 atm) partial pressure of the gas.
\end{tabular}} \\
\hline AUXILIARY & INFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) Trichloromethane. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.07 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W. \\
2. Phys. Chem. 1890, 6, 141. \\
2. Steiner, P. \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Trichloromethane or chloroform; \(\mathrm{CHCl}_{3}\); [67-66-3]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Gjaldbaek, J. C.; Andersen, E. K. \\
Acta Chem. Scand. 1954, 8, \\
1398-1413.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / K & =298.15 \\
p_{1} / \mathrm{kPa} & =101.325 \text { (1 atm) }
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
J. Chr. Gjaldbaek
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The mole fraction and Ostwald coefficient values were calculated by the compiler.
\end{tabular}} \\
\hline auxiliary & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The apparatus consists of a calibrated all-glass manometer and bulb enclosed in an air thermostat. The solvent is added and degassed in the apparatus. The gas is added. The apparatus and contents are shaken until equilibrium is attained. Mercury is used for calibration and as the confining liquid. \\
The absorbed volume of gas is calculated from the initial and final amounts of gas; both saturated with solvent vapor. The amount of solvent is determined by the weight of displaced mercury. Further details are in the references (1,2). \\
The mole fraction values are at one atm pressure assuming Henry's law is obeyed.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Prepared from potassium bicarbonate and sulfuric acid. 99.8-99.9\% \(\mathrm{CO}_{2}\). \\
(2) Trichloromethane. Merck. Analytical reagent. Fractionated by distillation. B.p. \((760 \mathrm{mmHg}) /{ }^{\circ} \mathrm{C}=61.15-61.16\), refractive index \(n_{D}\left(20^{\circ} \mathrm{C}\right)=\) 1.4460-1.4461. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & = \pm 0.05 \\
\delta x_{1} / x_{1} & = \pm 0.015
\end{aligned}
\] \\
REFERENCES: \\
1. Lannung, A. \\
J. Am. Chem. Soc. 1930, 52, 68. \\
2. Gjaldbaek, J. C. \\
Acta Chem. Scand. 1952, 6, 623.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); \\
[124-38-9] \\
2. Trichloromethane, (chloroform); \\
\(\mathrm{CHCl}_{3}\); [67-66-3] \\
1,2-Dibromoethane, (ethylene dibromide); \(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}\); [106-93-4]
\end{tabular} & ORIGINAL MEASUREMENTS:
```

Kunerth, W.
Phys. Rev. 1922, 19, 512-524.

``` \\
\hline VARIABLES:
\[
T / K=291-15-309.15 \quad P / \mathrm{kPa} \simeq 101.3
\] & \[
\begin{aligned}
& \text { PREPARED BY: } \\
& \text { P.G.T. Fogg }
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES: \(\begin{array}{ccc}\text { Solvent } & T / \mathrm{K} & \begin{array}{c}\text { Ostwald } \\ \text { coefficient }\end{array}\end{array}{ }_{\mathrm{L}} \quad{ }^{\mathrm{CO}_{2}}\) at} \\
\hline \begin{tabular}{rr}
Trichloromethane & 291.15 \\
293.15 \\
295.15 \\
297.15 \\
299.15 \\
301.15 \\
& 303.15 \\
& 305.15 \\
& 307.15 \\
& 309.15
\end{tabular} & \begin{tabular}{ll}
.83 & 0.01275 \\
.71 & 0.01230 \\
.60 & 0.01189 \\
.50 & 0.01152 \\
.39 & 0.01111 \\
3.26 & 0.01065 \\
.11 & 0.01012 \\
.94 & 0.00954 \\
2.81 & 0.00909 \\
.68 & 0.00864
\end{tabular} \\
\hline 1,2 -Dibromoethane
291.15
293.15
295.15
297.15
299.15
301.15
303.15
305.15
307.15
309.15 & \begin{tabular}{ll}
.32 & 0.00834 \\
.27 & 0.00812 \\
.22 & 0.00791 \\
.16 & 0.00766 \\
.12 & 0.00748 \\
.07 & 0.00727 \\
.03 & 0.00710 \\
.97 & 0.00686 \\
.92 & 0.00666 \\
.86 & 0.00642
\end{tabular} \\
\hline * calculated by the compiler & \\
\hline \multicolumn{2}{|c|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The method is based upon that described by McDaniel (1). The apparatus consisted of a gas buret attached to a levelling tube containing mercury and to the absorption cell containing the solvent under test. The volume of gas absorbed by a measured volume of liquid was measured at a total pressure equal to barometric pressure. The mercury in the gas buret was covered with a layer of solvent so that the gas in the buret was saturated with solvent vapor. Buret and absorption cell were surrounded by heating wire and water jackets fitted with thermometers.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. produced by heating \(\mathrm{NaHCO}_{3}\); dried with \(\mathrm{CaCl}_{2}\); frozen in liquid air and volatile impurities pumped away; passed over \(\mathrm{P}_{2} \mathrm{O}_{5}\). \\
2. commercial sample; purity attested by boiling point and density. \\
ESTIMATED ERROR:
\[
\delta x_{\mathrm{CO}_{2}}= \pm 5 \% \quad \text { (compiler) }
\] \\
REFERENCES: \\
1. McDaniel, A.S.; \\
J. Phys. Chem. 1911, 15, 587.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Dichloromethane; \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\); [75-09-2]
\end{tabular} & ORIGINAL MEASUREMENTS:
\[
\begin{aligned}
& \text { Buell; D.S.; Eldridge, J.W. } \\
& \text { J. Chem. Eng. Data 1962, 7, 187-189. }
\end{aligned}
\] \\
\hline VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=294.3 \\
& P / \mathrm{kPa}=103-2068
\end{aligned}
\] & PREPARED BY:
P.G.T. Fogg \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \begin{tabular}{l}
\(70 \quad 294.3 \quad 1085 \pm 5\) \\
* calculated by the compiler.
\end{tabular} & \[
7481 \pm 34 \quad 0.0135
\] \\
\hline \multicolumn{2}{|c|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Measurements of solubility were made at pressures from 103 to 2068 kPa using a specially designed cell. \\
Dichloromethane was transferred to the cell and carbon dioxide \\
introduced from a storage cylinder. The cell was rocked in a thermostatted bath until constant pressure was attained. A sample of the liquid phase was then isolated under pressure, withdrawn and weighed. The sample was then allowed to expand and the carbon dioxide estimated by absorption in sodium hydroxide solution and subsequent titration with hydrochloric acid. The partial pressure of dichloromethane in the cell was taken to be proportional to the mole fraction in the liquid. The partial pressure of carbon dioxide was the total pressure minus the partial pressure of \\
dichloromethane. It was found that the mole fraction of carbon dioxide in the liquid was proportional to partial pressure of carbon dioxide to a pressure of about 1000 kPa .
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Obtained from a cylinder. \\
2. Technical grade, degassed by distillation. \\
ESTIMATED ERROR: \\
REFERENCES:
\end{tabular} \\
\hline
\end{tabular}

COMPONENTS:
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]
2. Dichloromethane; \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\); [75-09-2]

VARIABLES:
\(\mathrm{P} / \mathrm{kPa}=103-2068\)
\(T / K=310.9,327.6\)

\section*{ORIGINAL MEASUREMENTS:}

Vonderheiden F.H.; Eldridge, J.W.
J. Chem. Eng. Data 1963, 8, 20-21.

\section*{PREPARED BY:}

\author{
P.G.T. Fogg
}

EXPERIMENTAL VALUES:
\begin{tabular}{|c|c|c|c|c|}
\hline \(T /{ }^{\circ} \mathrm{F}\) & \(T / K^{*}\) & \begin{tabular}{l}
Henry's law \\
\(/ 1 b f i n^{-2}\)
\end{tabular} & \[
\begin{gathered}
\text { ant, } H, \\
/ \mathrm{kPa}^{*}
\end{gathered}
\] & Mole fraction solubility,
\[
\text { at }{ }^{x} \mathrm{CO}_{2}^{\prime} \mathrm{CO}_{2}=101.3 \mathrm{kPa} *
\] \\
\hline 100 & 310.9 & 1505 & 10377 & 0.00976 \\
\hline 130 & 327.6 & 2015 & 13893 & 0.00729 \\
\hline \multicolumn{5}{|c|}{\(H=P_{\mathrm{CO}_{2}} /{ }^{\text {CO}}{ }_{2}\)} \\
\hline
\end{tabular}

\section*{AUXILIARY INFORMATION}
\begin{tabular}{|c|c|}
\hline METHOD/APPARATUS/PROCEDURE: & SOURCE AND PURITY OF MATERIALS \\
\hline \multirow[t]{23}{*}{\begin{tabular}{l}
Measurements of solubility were made at pressures from 103 to 2068 kPa using a specially designed cell described previously (1). \\
Dichloromethane was transferred to the cell and carbon dioxide introduced from a storage cylinder. The cell was rocked in a thermostatted bath until constant pressure was attained. A sample of the liquid phase was then isolated under pressure, withdrawn and weighed. The sample was then allowed to expand and the carbon dioxide estimated by absorption in sodium hydroxide solution and subsequent titration with hydrochloric acid. The partial pressure of dichloromethane in the cell was taken to be proportional to the mole fraction in the liquid. The partial pressure of carbon dioxide was the total pressure minus the partial pressure of dichloromethane. It was found that the mole fraction of carbon dioxide in the liquid was proportional to partial pressure of carbon dioxide to a pressure of about 1076 kPa at 373.2 K and to about 1310 kPa at 403.2 K .
\end{tabular}} & 1. Obtained from a cylinder. \\
\hline & \\
\hline & 2. Technical grade, degassed by distillation. \\
\hline & \\
\hline & \\
\hline & ESTIMATED ERROR: \\
\hline & \\
\hline & \\
\hline & REFERENCES \\
\hline & 1. Buell, D.S.; El \\
\hline & J. Chem. Eng. Data 1962, 7, 187. \\
\hline & \\
\hline
\end{tabular}

\section*{COMPONENTS:}
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]
2. Fluorocarbons

VARIABLES:
\({ }^{P} \mathrm{CO}_{2} / \mathrm{kPa}=87-711 \quad \mathrm{~T} / \mathrm{K}=273.2-310.9\)

ORIGINAL MEASUREMENTS:
DantzIer, E.M.; Holler, F.C.;
Smith, P.T.
Soap Chem. Specialties 1965, 41(1), 125-6; 146; 151.

PREPARED BY:

> P.G.T. Fogg

\section*{EXPERIMENTAL VALUES:}

Dichlorodifluoromethane; \(\mathrm{CCl}_{2} \mathrm{~F}_{2}\); [75-71-8]
\begin{tabular}{llllrlc}
32 & 273.15 & 40 & 377 & 2.07 & 0.0207 & 87 \\
32 & 273.15 & 55 & 481 & 5.31 & 0.0531 & 200 \\
32 & 273.15 & 90 & 722 & 12.90 & 0.1290 & 464 \\
32 & 273.15 & & & \(0.0250+\) & 101.3 \\
70 & 294.26 & 90 & 722 & 3.05 & 0.0305 & 154 \\
70 & 294.26 & & & 1.9 & \(0.0200+\) & 101.3 \\
75 & 297.04 & & & 0.019 & 101.3
\end{tabular}
* estimated by the compiler.
\(\dagger\) extrapolated values estimated by the compiler. In the extrapolation it was assumed that data approximated to the Krichevsky-Il'inskaya equation in the form:
\[
\log \left(P_{\mathrm{CO}_{2}} / x_{\mathrm{CO}_{2}}\right)=\log H-\beta\left(1-x_{\mathrm{s}}^{2}\right)
\]
where \(H\) is Henry's constant, \(\beta\) is a constant and \(x_{s}\) is the mole fraction of solvent in solution.

\section*{AUXILIARY INFORMATION:}

\section*{METHOD/APPARATUS/PROCEDURE:}

The apparatus consisted of a 3 ounce aerosol compatibility tube connected via copper and nylon pressure tubing to a vacuum line, gas cylinder liquid phase sampling valve, gas phase sampling, valve and pressure gauge. The aerosol compatibility tube served as the absorption cell. and its temperature could be controlled to \(\pm 0.1 \mathrm{~K}\) by a constant temperature bath. A sample of the fluorocarbon was transferred from the gas cylinder and frozen in the absorbtion cell by liquid nitrogen. It was purified by repeated melting, refreezing and evacuation. Carbon dioxide was then admitted to the liquid fluorocarbon through a metering valve until the desired pressure was attained. The cell was mechanically shaken until
the equilibrium pressure was reached. Samples of the gas phase and of the liquid phase were withdrawn and analysed with a gas chromatograph which had been previously calibrated with synthetic mixture of carbon dioxide and fluorocarbon.

SOURCE AND PURITY OF MATERIALS:
1. Minimum purity 99.15-99.8\%
2. Fluorocarbons refered to as P11 (trichlorfluoromethane) P12 (dichlorodifluoromethane) P114 (1,2-dichlorotetrafluoroethane)
Analysis by gas chromatography indicated a purity of at least 99\%

\section*{ESTIMATED ERROR:}
\[
\begin{aligned}
& \delta T / \mathrm{K}= \pm 0.1 \quad \delta P_{\text {total }} / \text { psig }= \pm 0.5 \\
& \delta x_{\mathrm{CO}_{2}}= \pm 3 \% \quad(40-90 \text { psig }) \\
& \delta x_{\mathrm{CO}_{2}}= \pm 5 \% \quad(101.3 \text { kPa) }) \\
& \quad(\text { compiler })
\end{aligned}
\]

\section*{REFERENCES:}
1. Krichevsky, I.R.; Il'inskaya, A.A. Acta Physicochim. URSS 1945, 20, 327.

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) 1,2-Dibromoethane; \(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}\); [106-93-4]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just. G. \\
2. Phys. Chem. 1901, 37, 342-367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / K & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwal of about 746 mmHg . The compil coefficient to be independent the mole fraction and Bunsen c 101.325 kPa (1 atm) partial pr
\end{tabular} & \begin{tabular}{l}
\begin{tabular}{lc}
\begin{tabular}{l}
Bunsen \\
efficient \\
STP) \(\mathrm{cm}^{-3} \mathrm{~atm}^{-1}\)
\end{tabular} & \begin{tabular}{c}
Ostwald \\
Coefficient \\
\(L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}\)
\end{tabular} \\
& 2.30 \\
2.14 & 2.424 \\
1.98 & 2.294 \\
&
\end{tabular} \\
d coefficient at a pressure er assumed the Ostwald of pressure, and calculated oefficient values at essure of the gas.
\end{tabular} \\
\hline AUXILIARY & INFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using ma ble and hydrochloric acid. \\
(2) 1,2-Dibromoethane. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W. \\
Z. Phys. Chem. 1890, 6, 141. \\
2. Steiner, P. \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) \({ }_{[106-\text { Dibromoethane; }} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}\); [106-93-4]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
 Gjaldbaek, J. C.; Andersen, E. K.
 Acta Chem. Scand. 1954, 8,
 1398-1413.
``` \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =298.15 \\
p_{1} / \mathrm{kPa} & =101.325 \text { (1 atm) }
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
J. Chr. Gjaldbaek
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The mole fraction and Ostwald coefficient values were calculated by the compiler.
\end{tabular}} \\
\hline aUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The apparatus consists of a calibrated all-glass manometer and bulb enclosed in an air thermostat. The solvent is added and degassed in the apparatus. The gas is added. The apparatus and contents are shaken until equilibrium is attained. Mercury is used for calibration and as the confining liquid. \\
The absorbed volume of gas is calculated from the initial and final amounts of gas, both saturated with solvent vapor. The amount of solvent is determined by the weight of displaced mercury. Further details are in the references ( 1,2 ). \\
The mole fraction values are at one atm pressure assuming Henry's law is obeyed.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Prepared from potassium bicarbonate and sulfuric acid. 99.8-99.9\% \(\mathrm{CO}_{2}\). \\
(2) 1,2-Dibromoethane. Merck and Co. Purified by fractional freezing. M.p. \(/{ }^{\circ} \mathrm{C}=9.5-9.8\), refractive index, \(n_{D}\left(20^{\circ} \mathrm{C}\right)=\) 1.5390 , density
\[
\rho\left(20.6^{\circ} \mathrm{C}\right) / \mathrm{g} \mathrm{dm}{ }^{-3}=2.179
\] \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & = \pm 0.05 \\
\delta x_{1} / x_{1} & = \pm 0.015
\end{aligned}
\] \\
REFERENCES: \\
1. Lannung, A. \\
J. Am. Chem. Soc. 1930, 52, 68. \\
2. Gjaldbaek, J. C. \\
Acta Chem. Scand. 1952, 6, 623.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline COMPONENTS: & ORIGINAL MEASUREMENTS: \\
\hline \begin{tabular}{l}
1. Carbon dioxide; \(\mathrm{CO}_{2}\); \\
[124-38-9]
\end{tabular} & Begley, J.W.; Maget, J.R.; Williams, B. \\
\hline 2. 1,2-Dibromoethane; \(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}\); [106-93-4] & J. Chem. Eng. Data 1965, 10, 4-8. \\
\hline \[
\begin{aligned}
& \text { VARIABLES: } \\
& \quad P / \mathrm{kPa}=101.3 \\
& T / \mathrm{K}=293.45-319.45
\end{aligned}
\] & PREPARED BY:
P.G.T. FOgg \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
* calculated by the compiler using th solvent given in The International
\end{tabular} &  \\
\hline auxiliary & information \\
\hline \begin{tabular}{l}
METHOD 'APPARATUS/PROCEDURE: \\
The solvent was boiled to remove any gases in solution and was then introduced into the absorption vessel without coming into contact with the air. The volume of carbon dioxide absorbed by the liquid from gas buret was then measured. The composition of the solution after equilibrium was attained was measured by chemical analysis. This enabled a check to be made of Solubility as calculated from the volume of gas absorbed. The absorption vessel and the gas buret were kept at constant temperature by circulation of water from a thermostat bath.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY of materials: \\
1. Carbon dioxide - 99.99\% pure, from a cylinder supplied by Mathiesen Chemical Company. \\
2. 1,2-Dibromoethane - supplied by Dow Chemical Company \\
ESTIMATED ERROR: \\
\(\delta T / K= \pm 0.1 \quad\) Solubility measurements reproducible to about \(\pm 0.5 \%\) (authors).
\end{tabular} \\
\hline & REFERENCES : \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) 1,2-Dichloroethane or ethylene chloride; \(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}\); [107-06-2]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, 342 - 367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 kPa ( 1 atm ) partial pressure of the gas.
\end{tabular}} \\
\hline auxiliary & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) 1,2-Dichloroethane. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W. \\
z. Phys. Chem. 1890, 6, 141. \\
2. Steiner, P. \\
Ann. Phys. (Leipzig) 1894, 52,
275. 275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) l-Bromopentane or amyl bromide; \(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br}\); [110-53-2]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, 342-367.
\end{tabular} \\
\hline variables:
\[
\begin{aligned}
T / \mathrm{K} & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
prepared by: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{} \\
\hline aUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) l-Bromopentane. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W. \\
z. Phys. Chem. 1890, 6, 141. \\
2. Steiner, P. \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) l-Chloropentane; \(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Cl}\);
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, \(342-367\).
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
prepared by: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) 1-Chloropentane. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W. \\
2. Phys. Chem. 1890, 6, 141. \\
2. Steiner, P. \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) l-Chloro-2-methylpropane; \(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\); [513-36-0]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, 342-367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{} \\
\hline auxiliary & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) l-Chloro-2-methylpropane. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W.
\[
\text { Z. Phys. Chem. 1890, 6, } 141 .
\] \\
2. Steiner, \(P\). \\
Ann. Phys. (Leipzig) 1894, 52,
275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) 1,2-Dibromopropane or propylene bromide; \(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2}\); [78-75-1]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, 342 - 367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 kPa ( 1 atm ) partial pressure of the gas.
\end{tabular}} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) 1,2-Dibromopropane. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W. \\
2. Phys. Chem. 1890, 6, 141. \\
2. Steiner, \(P\). \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) 1,1,2-Trichloro-1,2,2-trifluoroethane; \(\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3} ;\) [76-13-1]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Hiraoka, H.; Hildebrand, J. H. \\
J. Phys. Chem. 1964, 68, 213-214.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / K & =276.05-308.50 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The Bunsen and Ostwald coefficients were calculated by the compiler assuming ideal gas behavior. \\
Smoothed Data: For use between 276.05 and 308.50 K .
\[
\ln x_{1}=-8.3717+13.0336 /(T / 100 \mathrm{~K})
\] \\
The standard error about the regression line is \(1.04 \times 10^{-3}\).
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The apparatus consists of a gas measuring buret, an absorption pipet, and a reservoir for the solvent. buret is thermostated at \(25^{\circ} \mathrm{C}\), the pipet at any temperature from 5 to \(30^{\circ} \mathrm{C}\). The pipet contains an iron bar in glass for magnetic stirring. The pure solvent is degassed by freezing with liquid nitrogen, evacuating, then boiling with a heat lamp. The degassing process is repeated three times. The solvent is flowed into the pipet where it is again boiled for final degassing. Manipulation of the apparatus is such that the solvent never comes in contact with stopcock grease. The liquid in the pipet is sealed off by mercury. Its volume is the difference between the capacity of the pipet and the volume of mercury that confines it. Gas is admitted into the pipet. Its exact amount is determined by \(\mathrm{P}-\mathrm{V}\) measurements in the buret before and after introduction of the gas into the pipe Equilibrium is attained within 24 hou
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Western Gas Inc. Gas passed through a cold trap. \\
(2) 1,1,2-Trichloro-1,2,2-trifluoroethane. Union Carbide Co. Distilled, purity checked by ultraviolet absorbance. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & =0.02 \\
\delta x_{1} / x_{1} & =0.003
\end{aligned}
\] \\
REFERENCES: \\
1. Kobatake, Y.; Hildebrand, J. H. J. Phys. Chem. 1961, 65, 331. \\
The stirrer is set in motion.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS : \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
\[
[124-38-9]
\] \\
2. 1-Bromo-2-chloropropane; \(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{BrCl}\); [3017-96-7] \\
3. 2-Bromo-1-chloropropane; \(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{BrCl}\); [3017-95-6]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Begley, J.W.; Maget, J.R.; \\
Williams, B. \\
J. Chem. Eng. Data 1965, 10, 4-8.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& P / \mathrm{kPa}=101.3 \\
& T / \mathrm{K}=293.35-315.25
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
P.G.T. Fogg
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The solvent was a mixture of 1-chloro-2-bromopropane and 2-chloro-1-bromopropane.
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{aUXILIARY information} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The solvent was boiled to remove any gases in solution and was then introduced into the absorption vessel without coming into contact with the air. The volume of carbon dioxide absorbed by the liquid from gas buret was then measured. The composition of the solution after equilibrium was attained was measured by chemical analysis. This enabled a check to be made of solubility as calculated from the volume of gas absorbed. The absorption vessel and the gas buret were kept at constant temperature by circulation of water from a thermostat bath. Densities of
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Carbon dioxide - \(99.99 \%\) pure, from a cylinder supplied by Mathiesen Chemical Company. \\
2. 1-Bromo-2-chloropropane and 2-Bromo-1-chloropropane Technical mixture of the two sold as propylene chlorobromide \\
ESTIMATED ERROR:
\[
\delta T / K= \pm 0.1 \quad \text { Solubility }
\] \\
measurements reproducible to about \(\pm 0.5 \%\) (authors).
\end{tabular} \\
\hline solvent were also measured by the authors. & REFERENCES : \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9] \\
(2) Hexadecafluoroheptane or perfluoroheptane; \(C_{7} F_{16}\); [335-57-9]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Gjaldbaek, J. C. \\
Acta Chem. Scand. 1953, 7, \\
537-544.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =298.25 \\
p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
J. Chr. Gjaldbaek
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
\({ }^{1}\) The mole fraction solubility val pressure of 101.325 kPa ( 1 atm ) law is obeyed.
\end{tabular} & \begin{tabular}{l}
\begin{tabular}{cc}
\begin{tabular}{c} 
Bunsen \\
Coefficient \\
\(\alpha / \mathrm{cm}^{3}(\mathrm{STP}) \mathrm{cm}^{-3} \mathrm{~atm}^{-1}\)
\end{tabular} & \begin{tabular}{c} 
Ostwald \\
Ooefficient \\
\\
\\
\hline \(\mathrm{cm}^{3} \mathrm{~cm}^{-3}\)
\end{tabular} \\
\hline & \begin{tabular}{l}
2.09 \\
2.09
\end{tabular} \\
\hline
\end{tabular} \\
ues adjusted to a gas partial \\
by the compiler assuming Henry's
\end{tabular} \\
\hline auxiliary & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
A calibrated all-glass combined manometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as confining liquid. The solvent was degassed in the apparatus. \\
The absorbed volume of gas is calculated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent is determined by the weight of displaced mercury. \\
The mole fraction solubility values are at 1 atm assuming Henry's law is obeyed. \\
Details of the apparatus and procedure are given in ref. 1 and 2.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Prepared from potassium bicarbonate (analytical reagent) and concentrated sulfuric acid. 99.9 per cent \(\mathrm{CO}_{2}\). \\
(2) Hexadecafluoroheptane. E. I. dupont Co. B.p. \((753.7 \mathrm{mmHg}) /{ }^{\circ} \mathrm{C}=\) 82.3-82.4. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & = \pm 0.05 \\
\delta x_{1} / x_{1} & = \pm 0.015
\end{aligned}
\] \\
REFERENCES: \\
1. Lannung, A. \\
J. Am. Chem. Soc. 1930, 52, 68. \\
2. Gjaldbaek, J. C. \\
Acta Chem. Scand. 1952, 6, 623.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS : \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Hexadecafluoroheptane or perfluoroheptane; \(\mathrm{C}_{7} \mathrm{~F}_{16}\); [335-57-9]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
Kobatake, Y.; Hildebrand, J. H.
J. Phys. Chem. 1961, 65, 331 - 335.
``` \\
\hline VARIABLES: \(\begin{aligned} T / \mathrm{K}: & 292.15-303.15 \\ \mathrm{P} / \mathrm{KPa}: & 101.325 \text { (1 atm) }\end{aligned}\) & \begin{tabular}{ll}
PREPARED BY: & \\
& \begin{tabular}{l}
M. E. Derrick \\
H. L. Clever
\end{tabular}
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
\({ }^{1}\) Probably a smoothed solubility value of the authors. \\
The Bunsen and Ostwald coefficients were calculated by the compiler. \\
Smoothed Data: For use between 292.15 and 303.15 K .
\[
\ln x_{1}=-7.4216+10.5851 /(T / 100 \mathrm{~K})
\] \\
The standard error about the regression line is \(8.81 \times 10^{-5}\).
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The apparatus consists of a gas measuring buret, an absorption pipet, and a reservoir for the solvent. The buret is thermostated at \(25^{\circ} \mathrm{C}\), the pipet at any temperature from 5 to 30 \({ }^{\circ} \mathrm{C}\). The pipet contains an iron bar in glass for magnetic stirring. The pure solvent is degassed by freezing with liquid nitrogen, evacuating, then boiling with a heat lamp. The degassing process is repeated three times. The solvent is flowed into the pipet where it is again boiled for final degassing. Manipulation of the apparatus is such that the solvent never comes in contact with stopcock grease. The liquid in the pipet is sealed off by mercury. Its volume is the difference between the capacity of the pipet and the volume of mercury that confines it. Gas is admitted into the pipet. Its exact amount is determined by \(P-V\) measurements in the buret before and after. introduction of the gas into the pipe Equilibrium is attained within 24 hou
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. California Dry Ice Co. Standard grade. Dried by passing through a trap at dry ice-acetone temperature, and tubes containing \(\mathrm{CaCl}_{2}\) then \(\mathrm{P}_{2} \mathrm{O}_{5}\). The dried gas was distilled at liquid \(\mathrm{N}_{2}\) temperature several times. \\
(2) Hexadecafluoroheptane. Source not given. Purified by method of Glew and Reeves J. Phys. Chem. 1956, 60, 615. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & =0.02 \\
\delta x_{1} / x_{1} & =0.003
\end{aligned}
\] \\
REFERENCES: \\
t. The stirrer is set in motion. rs.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) L-1822, which is a mixture of mostly 10-carbon fluorocarbons, including cyclic, open chain, and branched molecules.
\end{tabular} & ORIGINAL MEASUREMENTS:
Sargent, J. W.; Seff1, R. J.
Fed. Proc. 1970, 29, 1699-1703. \\
\hline \begin{tabular}{l}
VARIABLES: \\
\(\begin{aligned} & T / \mathrm{K}: 298.15, \\ & \text { Total } \mathrm{P} / \mathrm{kPa}: 101.15 \\ & \text { 101.325 (1 atm) }\end{aligned}\)
\end{tabular} & \begin{tabular}{rlll}
PREPARED BY: & & Cramer \\
& A. L. & L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The authors solubility, \(\mathrm{cm}^{3} \mathrm{CO}_{2} 100 \mathrm{~cm}^{-3}\), appears to be the Ostwald coefficient times 100.
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{auxiliary information} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The equilibrium apparatus is a \(50 \mathrm{~cm}^{3}\) three neck flask equipped with a water condenser, a thermometer, and a gas dispersing tube extending below the fluid surface level. Between 25 and \(35 \mathrm{~cm}^{3}\) of solvent are placed in the flask. Gas is bubbled through the solvent for \(2-3 \mathrm{~h}\). An 80 micro liter sample is slowly taken into a gas tight syringe. The sample is injected into a gas chromatograph. The results of three sampling and analyses are averaged. \\
The chromatograph is an \(F\) and \(M\) Model 720 equipped with a thermal conductivity detector at \(320^{\circ} \mathrm{C}\), and a \(6^{\prime}\) by \(\frac{11}{4} "\) stainless steel column packed with 50/80 mesh Parapak-P at room temperature. The apparatus is calibrated with pure gas samples. \\
Details of the procedure were furnished by R. D. Danielson of the 3 MCo .
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Source not given. Commercial cylinder, or dry ice. \\
(2) L-1822. Minnesota Mining and Manufacturing Co. All H in an organic compound are replaced by F by Simons electrochemical process (1) \\
ESTIMATED ERROR: \\
\(\delta T / K=0.1\) \\
\(\delta c / c=0.01\) (reproducibility) \\
\(=0.05\) (absolute) \\
(\(\mathrm{c}=\) concentration of \(\mathrm{CO}_{2}\)) \\
REFERENCES: \\
1. Simons, J. H., Editor Fluorine Chemistry Academic Press, New York, 1950.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) FC-80, which is mostly a mixture of isomers of perfluorobutyltetrahydrofuran. For example 2,2,3,3,4,4,5-heptafluorotetra-hydro-5 (nonafluorobutyl) furan; \(\mathrm{C}_{8} \mathrm{~F}_{16} \mathrm{O}\); [335-36-4]
\end{tabular} & ORIGINAL MEASUREMENTS:
Sargent, J. W.; Seff1, R. J.
Fed. Proc. 1970, 29, 1699-1703. \\
\hline VARIABLES:
\[
\begin{array}{rll}
T / \mathrm{K}: & 298.15, & 310.15 \\
\text { Total } P / \mathrm{kPa}: & 101.325(1 \mathrm{~atm})
\end{array}
\] & \begin{tabular}{l}
PREPARED BY: \\
A. L. Cramer \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline aUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The equilibrium apparatus is a \(50 \mathrm{~cm}^{3}\) three neck flask equipped with a water condenser, a thermometer, and a gas dispersing tube extending below the fluid surface level. Between 25 and \(35 \mathrm{~cm}^{3}\) of solvent are placed in the flask. Gas is bubbled through the solvent for \(2-3 \mathrm{~h}\). An 80 microliter sample is slowly taken into a gas tight syringe. The sample is injected into a gas chromatograph. The results of three sampling and analyses are averaged. \\
The chromatograph is an \(F\) and \(M\) Model 720 equipped with a thermal conductivity detector at \(320{ }^{\circ} \mathrm{C}\), and a \(6^{\prime}\) by \(\frac{1}{4} "\) stainless steel column packed with 50/80 mesh Parapak-P at room temperature. The apparatus is calibrated with pure gas samples. \\
Details of the procedure were furnished by R. D. Danielson of the 3 M Co.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Source not given. Commercial cylinder, or dry ice. \\
(2) FC-80. Minnesota Mining and Manufacturing Co. All H in an organic compound are replaced by F by Simons electrochemical process (1) \\
ESTMATED ERROR: \\
\(T / K=0.1\) \\
ibility) \\
\(c=\) concentration of \(\mathrm{CO}_{2}\)) \\
REFERENCES : \\
1. Simons, J. H., Editor Fluorine Chemistry Academic Press, New York, 1950
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS： \\
1．Carbon Dioxide； \(\mathrm{CO}_{2}\) ；［124－38－9］ \\
2．Heptafluorotetrahydro（nonafluoro－ butyl）－furan or Perfluorobutyl perfluorotetrahydrofuran or FC－80， \(\mathrm{C}_{8} \mathrm{~F}_{16} \mathrm{O}\) ；［40464－54－8］
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
 Tham, M. K.; Walker, R. D. Jr.;
 Modell, J. H.
 J. Chem. Eng. Data 1973, 18, 385-386.
``` \\
\hline VARIABLES： T／K：298．15－323．15 Total P／kPa： 101.325 （1 atm） & \begin{tabular}{l}
PREPARED BY： \\
T．D．Kittredge \\
H．L．Clever
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES： \\
The Bunsen and Ostwald coefficients we ideal gas behavior．If the real carbo values are decreased by about 0.5 per \\
Smoothed Data：\(\Delta G^{0} / \mathrm{J} \mathrm{mol}^{-1}=-R T \ln x\)
\end{tabular} & \begin{tabular}{l}
\begin{tabular}{ccc}
\begin{tabular}{c} 
Bunsen \\
Coefficient \\
\(\alpha\)
\end{tabular} & \begin{tabular}{c} 
Ostwald \\
Coefficient \\
\(L\)
\end{tabular} \\
& & 2.17 \\
2.02 & & 2.37 \\
1.77 & & 2.01 \\
1.68 & 1.93 \\
1.44 & 1.70 \\
\hline
\end{tabular} \\
ere calculated by the compiler assuming n dioxide molar volume is used the cent．
\[
\begin{aligned}
& x_{1}=-11938+71.604 \mathrm{~T} / \mathrm{K} \\
& \text { Coef. corr. }=0.9996 \\
& \Delta S^{\circ} / \mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=-71.604 \\
& \text { etion } \Delta G^{\circ} / \mathrm{J} \mathrm{~mol} \\
& 10^{3} \\
& \hline .4 \\
& .7 \\
& .2
\end{aligned}
\]
\end{tabular} \\
\hline AUXILIARY & INFORMATION \\
\hline \begin{tabular}{l}
METHOD／APPARATUS／PROCEDURE： \\
The apparatus and procedure described by Shoor，Walker and Gubbins（1）were used．The solvent was placed in a saturator immersed in a constant temperature bath．The gas was disper－ sed through the liquid by a fritted glass disk at a rate of about \(40 \mathrm{~cm}^{3}\) \(\mathrm{m}-1\) ．After an initial equilibration period of 30 minutes，samples were withdrawn with a Hamilton microliter syringe at 15 minute intervals and analyzed chromatographically（Perkin－ Elmer 900 gas chromatograph with thermal conductivity detector）．The solubility at one atmosphere partial pressure of the gas was the mean value of three consecutive samples which agreed within the limits of experimental error．
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS： \\
1．Carbon Dioxide．Source not given． Minimum purity 99.6 per cent． \\
2．FC－80．Minnesota Minning and Manufacturing Co．A mixture of several isomers．The authors also measured the density and viscosity of the solvent at several temper－ atures．At 298.15 K the density is \(1.7657 \mathrm{~g} \mathrm{~cm}^{-3}\) and the viscosity is 1.3957 centipoise． \\
ESTIMATED ERROR：
\[
\begin{aligned}
\delta T / K & =0.05 \\
\delta x_{I} / x_{1} & =0.005 \text { (Compiler) }
\end{aligned}
\] \\
REFERENCES： \\
1．Shoor，S．K．；Walker，R．D．Jr．； Gubbins，K．E． \\
J．Phys．Chem．1969，73， 312.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) FC-80 or heptafluorotetrahydro (nonafluorobutyl)-furan; \(\mathrm{C}_{8} \mathrm{~F}_{16} \mathrm{O}\); [40464-54-8]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Navari, R. M.; Rosenblum, W. I.; \\
Kontos, H. A.; Patterson, J. L. \\
Res. Exp. Med. 1977, 170, 169-180.
\end{tabular} \\
\hline \begin{tabular}{rl} 
VARIABLES: \(T / \mathrm{K}:\) & 310.15 \\
\(P / \mathrm{KPa}:\) & \(1.333-101.325\) \\
& \((10-760 \mathrm{mmHg})\)
\end{tabular} & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline EXPERIMENTAL VALUES: &  \\
\hline AUXILIARY & Information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The solubilities were measured by the gas chromatograph method of Shoor et al. (1). The gas, presaturated with solvent vapor, was passed through the degassed liquid in the saturation cell at a rate of \(50 \mathrm{ml} \mathrm{m}{ }^{-1}\). Twenty microliter samples of the gas-saturated liquid were withdrawn and analyzed chromatographically at 15 m intervals. When readings remained constant for one hour the solution was assumed to be saturated. The time for saturation was less than 2 hours. The apparatus was calibrated with pure dry oxygen.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. No information. \\
(2) FC-80. Minnesota Mining and Manufacturing Co. \\
ESTIMATED ERROR: \\
REFERENCES: \\
1. Shoor, S. K.; Walker, R. D. Jr.; Gubbins, K. E. \\
J. Phys. Chem. 1969, 73, 312.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon Dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. \(1,1,1,2,2,3,3,4,4,5,5,6,6\)-Trideca-fluoro-6-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethoxy]-hexane or Perfluoro-l-isopropoxy hexane or Caroxin-F; \(\mathrm{C}_{9} \mathrm{~F}_{20} \mathrm{O}\); [37340-18-4] or [41719-16-8]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
    Tham, M. K.; Walker, R. D. Jr.;
        Modell, J. H.
    J. Chem. Eng. Data 1973, 18, 385-386.
``` \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K}: & 298.15-323.15 \\
\text { Total } P / \mathrm{kPa}: & 101.325 \text { (1 atm) }
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
T. D. Kittredge \\
H. L. Clever
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The Bunsen and Ostwald coefficients w assuming ideal gas behavior. If the used the values are decreased by abou Smoothed Data: \(\Delta G^{\circ} / \mathrm{J} \mathrm{mol}^{-1}=-R T\) in std. dev. \(\Delta G^{\circ}=5.7\), \(\Delta H^{\circ} / \mathrm{J} \mathrm{mol}^{-1}=-5018.1\)
\end{tabular} & \begin{tabular}{l}
\begin{tabular}{cc}
\begin{tabular}{c}
Bunsen \\
Coefficient \\
\(\alpha\)
\end{tabular} & \begin{tabular}{c}
Ostwald \\
Coefficient \\
\(L\)
\end{tabular} \\
1.99 & \\
1.92 & \\
1.81 & 2.17 \\
1.77 & 2.05 \\
1.63 & 2.03 \\
& 1.93 \\
\hline
\end{tabular} \\
ere calculated by the compiler real carbon dioxide molar volume is 0.5 per cent.
\[
\begin{aligned}
& x_{1}=-5018.1+47.477 \mathrm{~T} \\
& \text { Coef. corr. }=0.9999 \\
& , \Delta S^{\circ} / \mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=-47.477 \\
& \text { ction } \Delta G^{\circ} / \mathrm{J} \mathrm{~mol}^{-1} \\
& 10^{3} \\
& \hline
\end{aligned}
\]
\end{tabular} \\
\hline AUXILIARY & INFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The apparatus and procedure described by Shoor, Walker and Gubbins (1) were used. The solvent was placed in a saturator immersed in a constant temperature bath. The gas was dispersed through the liquid by a fritted glass disk at a rate of about \(40 \mathrm{~cm}^{3} \mathrm{~m}^{-1}\). After an initial equilibration period of 30 minutes, samples were withdrawn with a Hamilton microliter syringe at 15 minute intervals and analyzed chromatographically (Perkin-Elmer 900 gas chromatograph with thermal conductivity detector). The solubility at one atmosphere partial pressure of the gas was the mean value of three consecutive samples which agreed within the limits of experimental error.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Carbon Dioxide. Source not given. Minimum purity 99.6 per cent. \\
2. Caroxin-F. Allied Chemical Corp. Purity > 99.9 per cent as supplied. The authors also measured the density and viscosity of the solvent at several temperatures. At 298.15 K the density is \(1.7449 \mathrm{~g} \mathrm{~cm}^{-3}\) and the viscosity is 1.5405 centipoise. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & =0.05 \\
\delta x_{1} / x_{1} & =0.005 \quad \text { (Compiler) }
\end{aligned}
\] \\
REFERENCES: \\
1. Shoor, S. K.; Walker, R. D. Jr.; Gubbins, K. E. \\
J. Phys. Chem. 1969, 73, 312.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. \(1,1,1,2,2,3,3,4,4,5,5,6,6-\) Tridecafluoro-6-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)-ethoxyl-hexane, (perfluoro-1isopropoxyhexane); \(\mathrm{C}_{9} \mathrm{~F}_{20} \mathrm{O}\); [41719-16-8]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Nychka, H.R.; Eiback, R.E.
\[
\begin{aligned}
& \text { Ger. Offen. } 2253534 \text { (C1.CO7c,CO1b, } \\
& \text { A61m) } 10 \text { May } 1973
\end{aligned}
\]
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& P / \mathrm{kPa} \simeq 101.3 \\
& T / \mathrm{K}=298.2 ; 310.2
\end{aligned}
\] & PREPARED BY: P.G.T. Fogg \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \[
298.15 \quad 173.4^{+}
\] & \[
1.734 \quad 0.02232
\] \\
\hline 310.15 & 1.5110 .01984 \\
\hline \begin{tabular}{l}
+ The author also states elsewhere in volume of gas absorbed at 298.15 K is that this is a typing error. Carbon increase in solubility with increase \\
* Calculated by the compiler using ab patent specification.
\end{tabular} & the patent specification that the \(37.4 \mathrm{~cm}^{3}\). The compiler considers ioxide is unlikely to show an in temperature under these conditions. orption and density data given in the \\
\hline \multicolumn{2}{|c|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The authors used a method described by Reilly and Rae (1). The solvent was saturated with carbon dioxide and the solution subsequently analysed.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. No information \\
2. Prepared by reaction of antimony pentafluoride with Perfluoroisopropylhexyl ether. Vapor pressure 45.6 mmHg at \(37^{\circ} \mathrm{C}\) \\
ESTIMATED ERROR: \\
\(\delta x_{\mathrm{CO}_{2}}= \pm 10 \%\) (compiler) \\
REFERENCES: \\
1. Reilly, J.; Rae, W.N. \\
Physico-Chemical Methods, Vol.III, D. van Nostrand and Co., Princeton, New Jersey 1948, 145-148.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon Dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. 1,1,2,2,3,3,4,4-Octafluoro-1,4-bis(1,2,2,2-tetrafluoro-l-(trifluoromethyl) ethoxy) butane or Perfluoro-1,4-diisopropoxy butane or Caroxin-D; \(\mathrm{C}_{10} \mathrm{~F}_{22} \mathrm{O}_{2}\); [23228-90-2]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
 Tham, M. K.; Walker, R. D. Jr.;
 Modell, J. H.
 J. Chem. Eng. Data 1973, 18, 385-386.
``` \\
\hline \begin{tabular}{l}
VARIABLES: \\
T/K: 298.15-323.15 \\
Total P/kPa: 101.325 ( 1 atm )
\end{tabular} & \begin{tabular}{l}
PREPARED BY: \\
T. D. Kittredge \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \begin{tabular}{cc}
\(T / \mathrm{K}\) & \begin{tabular}{c} 
Mol Fraction \\
\(x_{1} \times 10^{3}\)
\end{tabular} \\
\hline 298.15 & 24.8 \\
303.15 & \\
310.15 & 23.8 \\
313.15 & \\
323.15 & 22.7 \\
3 & 20.6
\end{tabular} & \begin{tabular}{cc}
\begin{tabular}{c} 
Bunsen \\
Coefficient \\
\(\alpha\)
\end{tabular} & \begin{tabular}{c} 
Ostwald \\
Coefficient \\
\(L\)
\end{tabular} \\
\cline { 1 - 1 } 1.75 & \\
1.66 & \\
1.91 \\
1.57 & \\
1.39 & 1.84 \\
1.39 & 1.77 \\
& 1.64
\end{tabular} \\
\hline \begin{tabular}{l}
The Bunsen and Ostwald coefficients we assuming ideal gas behavior. The real in values smaller by 0.5 per cent. \\
Smoothed Data: \(\Delta G^{\circ} / \mathrm{J} \mathrm{mol}^{-1}=-R T \ln\) \\
Std. dev. \(\Delta G^{\circ}=15.0\), \\
\(\Delta H^{\circ} / \mathrm{J} \mathrm{mol}^{-1}=-5828.2\)
\end{tabular} & \[
\begin{aligned}
& \text { ere calculated by the compiler } \\
& 1 \text { carbon dioxide molar volume results } \\
& x_{1}=-5828.2+50.273 \mathrm{~T} \\
& \text { Coef. corr. }=0.9997 \\
& \Delta S^{\circ} / \mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=-50.273 \\
& \text { ction } \Delta G^{\circ} / \mathrm{J} \mathrm{~mol} \\
& 10^{3} \\
& \begin{array}{l}
8 \\
9
\end{array} \\
& 0 \\
& 2
\end{aligned}
\] \\
\hline \multicolumn{2}{|r|}{aUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The apparatus and procedure described by Shoor, Walker and Gubbins (l) were used. The solvent was placed in a saturator immersed in a constant temperature bath. The gas was dispersed through the liquid by a fritted glass disk at a rate of about \(40 \mathrm{~cm}^{3} \mathrm{~m}^{-1}\). After an initial equilibration period of 30 minutes, samples were withdrawn with a Hamilton microliter syringe at 15 minute intervals and analyzed chromatographically (Perkin-Elmer 900 gas chromatograph with thermal conductivity detector). The solubility at one atmosphere partial pressure of the gas was the mean value of three consecutive samples which agreed within the limits of experimental error.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Carbon Dioxide. Source not given. Minimum purity 99.6 per cent. \\
2. Caroxin-D. Allied Chemical Corp. Purity \(>99.9\) per cent as supplied. The authors also measured the density and viscosity of the solvent. At 298.15 K the density is \(1.7465 \mathrm{~g} \mathrm{~cm}^{-3}\) and the viscosity is 2.0579 centipoise. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & =0.05 \\
\delta x_{1} / x_{1} & =0.005 \text { (Compiler) }
\end{aligned}
\] \\
REFERENCES: \\
1. Shoor, S. K.; Walker, R. D.; Gubbins, K. E. \\
J. Phys. Chem. 1969, 73, 312.
\end{tabular} \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS : \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) 1,3-Dichloro-2-propanol or a-dichlorohydrin; \(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}\); [96-23-1]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
Z. Phys. Chem. 1901, 37, 342 - 367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / K & =288.15-298.15 \\
/ \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 kPa ( 1 atm ) partial pressure of the gas. There is a possibility the solvent may be 2,3-dichloro-l-propanol or \(\beta\)-dichlorohydrin; [616-23-9].
\end{tabular}} \\
\hline AUXILIARY & Information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (I), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) 1,3-Dichloro-2-propanol. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W. \\
2. Phys. Chem. 1890, 6, 141. \\
2. Steiner, P. \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Chlorobenzene; \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}\); [108-90-7] \\
Bromobenzene; \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}\); [108-86-1]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, 342 - 367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
Solvent \\
T/K \\
Mole fraction \(10^{3} x_{1}\)
\end{tabular} & \begin{tabular}{cc} 
Bunsen & Ostwald \\
Coefficient & Coefficient \\
\(\alpha / \mathrm{cm}^{3}(\mathrm{STP}) \mathrm{cm}^{-3} \mathrm{~atm}^{-1}\) & \(L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}\)
\end{tabular} \\
\hline \begin{tabular}{l}
\begin{tabular}{lrr} 
Chlorobenzene & & \\
& 288.15 & 10.93 \\
& 293.15 & 10.13 \\
& 298.15 & 9.38 \\
Bromobenzene & & \\
& 288.15 & 9.17 \\
& 293.15 & 8.50 \\
& 298.15 & 7.88
\end{tabular} \\
The author measured the Ostwald of about 746 mmHg . The compile coefficient to be independent the mole fraction and Bunsen co \(101.325 \mathrm{kPa}(1 \mathrm{~atm})\) partial pre
\end{tabular} & \begin{tabular}{lr}
2.45 & 2.581 \\
2.25 & 2.420 \\
2.08 & 2.265 \\
& \\
& \\
1.98 & 2.092 \\
1.83 & 1.964 \\
& 1.842 \\
coefficient at a pressure \\
er assumed the Ostwald \\
of pressure and calculated \\
oefficient values at
\end{tabular} \\
\hline AUXILIARY & InFormation \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) Chlorobenzene. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W.
\[
\text { z. Phys. Chem. 1890, 6, } 141 .
\] \\
2. Steiner, P.
\[
\begin{aligned}
& \text { Ann. Phys. (Leipzig) 1894, 52, } \\
& \text { 275. }
\end{aligned}
\]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) \(\underset{[108-90-7]}{\text { Chlorobenzene }} ; \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}\);
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Gjaldbaek, J. C.; Andersen, E. K.
\[
\begin{aligned}
& \text { Acta Chem. Scand. 1954, 8, } \\
& 1398-1413 .
\end{aligned}
\]
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =298.15 \\
p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
J. Chr. Gjaldbaek
\end{tabular} \\
\hline  & \begin{tabular}{l}
 \\
on, see the paper. \\
coefficient values were
\end{tabular} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The apparatus consists of a calibrated all-glass manometer and bulb enclosed in an air thermostat. The solvent is added and degassed in the apparatus. The gas is added. The apparatus and contents are shaken until equilibrium is attained. Mercury is used for calibration and as the confining liquid. \\
The absorbed volume of gas is calculated from the initial and final amounts of gas, both saturated with solvent vapor. The amount of solvent is determined by the weight of displaced mercury. Further details are in the references \((1,2)\). \\
The mole fraction values are at one atm pressure assuming Henry's law is obeyed.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Prepared from potassium bicarbonate and sulfuric acid. 99.8-99.9\% \(\mathrm{CO}_{2}\). \\
(2) Chlorobenzene. Fractionated by distillation. B.p. \\
\((760 \mathrm{mmHg}) /{ }^{\circ} \mathrm{C}=131.95-131.98\), refractive index \(\mathrm{n}_{\mathrm{D}}\left(20^{\circ} \mathrm{C}\right)=\) 1.3840-1.3841. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & = \pm 0.05 \\
\delta x_{1} / x_{1} & = \pm 0.015
\end{aligned}
\] \\
REFERENCES: \\
1. Lannung, A. \\
J. Am. Chem. Soc. 1930, 52, 68. \\
2. Gjaldbaek, J. C. \\
Acta Chem. Scand. 1952, 6, 623.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Chlorobenzene; \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}\); [108-90-7] Bromobenzene; \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}\); [108-86-1]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Lopez; M.C.; Gallardo, M.A.; Urieta, J.S.; Gutierrez Losa Y.C. Rev. Acad. Ciencias Zaragoza 1988, 43, 183-189.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=263.15-303.15 \\
& P_{\mathrm{CO}_{2}} / \mathrm{kPa}=101.3 \mathrm{kPa}
\end{aligned}
\] & PREPARED BY:
P.G.T. Fogg \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{ccc} 
EXPERIMENTAL VALUES: \\
Solvent & \(T / K\) & \(P_{\mathrm{CO}_{2}} / \mathrm{kPa}\) \\
& \begin{tabular}{c} 
Mole fraction of \(\mathrm{CO}_{2}\) \\
\(x_{\mathrm{CO}}^{2}\)
\end{tabular} \\
\hline
\end{tabular}} \\
\hline  & \begin{tabular}{l}
\begin{tabular}{ll}
.3 & 0.0177 \\
& 0.0148 \\
& 0.01247 \\
& 0.01060 \\
& 0.00910 \\
& \\
& \\
& 0.0145 \\
& 0.01203 \\
& 0.01012 \\
& 0.00856 \\
& 0.00733
\end{tabular} \\
ing equations for the mole fraction
\[
321 /(T / K)-1.3279 \ln (T / K)
\]
\[
8344 /(T / K)-0.9371 \ln (T / K)
\]
\end{tabular} \\
\hline \multicolumn{2}{|c|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The apparatus was similar to that used by Ben Naim and Baer (1) which consisted essentially of a gas buret, mercury manometer and absorption vessel. The apparatus used for these measurements was described in an earlier publication (2).
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Carbon dioxide supplied by Sociedad Española del Oxigeno, S.A.; purity 99.998 \% \\
2. Chlorobenzene - supplied by Merck. \\
Bromobenzene - supplied by Fluka. \\
Purity of each liquid at least \(99.5 \%\) as indicated by refractive indices and analysis by gasliquid chromatography. \\
ESTIMATED ERROR:
\[
\delta x_{\mathrm{CO}_{2}} / x_{\mathrm{CO}_{2}}<0.01 \text { (authors) }
\] \\
REFERENCES: \\
1. Ben-Naim, A.; Baer, S. Trans. Faraday Soc. 1963, 59, 2735. \\
2. Carnicer, J.; Gibanel, F.; Urieta, J.S.; Gutierrez Losa, C. Rev. Acad. Ciencias Zaragoza, 1979, 34, 115.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Iodobenzene; \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}\); [591-50-4]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, 342-367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 kPa (l atm) partial pressure of the gas.
\end{tabular}} \\
\hline auxiliary & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(I) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) Iodobenzene. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W. \\
Z. Phys. Chem. 1890, 6, 141. \\
2. Steiner, \(P\). \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Hexafluorobenzene; \(\mathrm{C}_{6} \mathrm{~F}_{6}\); [392-56-3]
\end{tabular} & ORIGINAL MEASUREMENTS:
Evans, F. D.; Battino, R.
J. Chem. Thermodyn. 1971, 3, 753-760. \\
\hline \begin{tabular}{rrrr} 
VARIABLES: & \(T / \mathrm{K}:\) & 297.66, & 297.98 \\
\(p_{1} / \mathrm{kPa}:\) & 101.325 & \((1 \mathrm{~atm})\)
\end{tabular} & PREPARED BY: \(\quad\) H. L. Clever \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The Bunsen coefficients were calculated by the compiler. \\
The solubility values were adjusted to an oxygen partial pressure of 101.325 kPa ( 1 atm ) by Henry's law.
\end{tabular}} \\
\hline auxiliary & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The solubility apparatus is based on the design of Morrison and Billett (I) and the version used is described by Battino, Évans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). \\
Degassing. Up to \(500 \mathrm{~cm}^{3}\) of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid \(N_{2}\) trap until the permanent gas residual pressure drops to 5 microns. \\
Solubility Determination. The degassed solvent is passed in a thin film down a glass helical tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Either Air Products and Chemicals Inc. or the Matheson Co., Inc. Purest grade available. Minimum purity 99.0 mole per cent (usually 99.9 mole per cent). \\
(2) Hexafluorobenzene. Imperiel Smelting Co., Avnomouth, U.K. GC purity \(99.7 \%\), density, \(\rho_{298.15}=1.60596 \mathrm{~g} \mathrm{~cm}^{-3}\). \\
Purification described Anal. Chem. 1968, 40, 224. \\
ESTIMATED ERROR: \(\delta T / K=0.03\)
\[
\begin{aligned}
\delta p / \mathrm{mmHg} & =0.5 \\
\delta x_{1} / x_{1} & =0.005
\end{aligned}
\] \\
REFERENCES: \\
1. Morrison, T. J.; Billett, F. \\
J. Chem. Soc. 1948, 2033. \\
2. Battino, R.;Evans,F.D.;Danforth,W.F. \\
J.Am.Oil Chem.Soc. 1968, 45, 830. \\
3. Battino, R.; Banzhof, M.; \\
Bogan, M.; Wilhelm, E. \\
Anal. Chem. 1971, 43, 806.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS : \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) (Chloromethyl)-benzene or benzyl chloride; \(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Cl}\); [100-44-7]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
Z. Phys. Chem. 1901, 37, 342-367.
\end{tabular} \\
\hline VARIABLES :
\[
\begin{aligned}
T / K & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwal of about 746 mmHg . The compil coefficient to be independent the mole fraction and Bunsen c 101.325 kPa (l atm) partial pr
\end{tabular} & \begin{tabular}{l}
 \\
d coefficient at a pressure er assumed the Ostwald of pressure, and calculated oefficient values at essure of the gas.
\end{tabular} \\
\hline AUXILIARY & INFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(l) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) (Chloromethyl)-benzene. \\
No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W. \\
Z. Phys. Chem. 1890, 6, 141. \\
2. Steiner, P. \\
Ann. Phys. (Leipzig) 1894, 52, 275 .
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) (Trichloromethyl)benzene or \(\underset{[98-07-7]}{\text { benzotrichloride; } \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{Cl}_{3} \text {; }}\)
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, 342 - 367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =298.15 \\
p_{1} / \mathrm{KPa} & =101.325 \text { (1 atm) }
\end{aligned}
\] & \begin{tabular}{ll} 
PREPARED BY: & \\
& \begin{tabular}{l} 
M. E. Derrick \\
H.
\end{tabular} \\
& L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 kPa ( 1 atm ) partial pressure of the gas.
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{aUXilitary information} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an'absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} &  \\
\hline
\end{tabular}

\section*{COMPONENTS :}
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]
2. Solvents Containing Nitrogen

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:
Solubility of carbon dioxide in solvents containing nitrogen
Solubility in benzenamine was measured at or near to 101.3 kPa by Just (1) from 288.2 K to 298.2 K , by Kunerth (2) from 293.2 K to 309.2 K , by Gjaldbaek and Andersen (3) at 298.2 K and by Luhring and Schumpe (4) at 293.2 K. There is good correlation between these measurements with a maximum discrepancy of about \(3.5 \%\). Values of the mole fraction solubility based on data at 293.2 K are 0.005426 (Luhring) and 0.00524 (Kunerth). Lenoir et al.(5) published a limiting value of Henry's constant from chromatographic measurements at 298.2 K . The mole fraction solubility at a partial pressure of 101.3 kPa estimated from this value is clearly too large ( 0.0079 ). The following smoothing equation is based upon data from Just, Kunerth, and from Gjalbaek and Andersen.
\[
{\ln \mathrm{CO}_{2}}=-193.85+9531.6 /(T / \mathrm{K})+27.478 \ln (T / K)
\]
temperature range \(=288.2-309.2 \mathrm{~K}\)
standard deviation in \(x_{\mathrm{CO}_{2}}=4.2 \times 10^{-5}\)
Just (1) measured solubility in 2 -methylbenzenamine and in
3-methylbenzenamine at 101.3 kPa and 288.2 K to 298.2 K . The measurements
indicate a greater mole fraction solubility in these solvents than in benzenamine under the same conditions. These measurements can be accepted on a provisional basis until they are confirmed by other workers.

Just (1), Kunerth (2) and also Gjaldbaek and Andersen (3) measured solubility in pyridine at about 101.3 kPa . There is good correlation between the different measurements. The following smoothing equation for a partial pressure of 101.3 kPa is based upon these measurements.
\[
\ln x_{\mathrm{CO}_{2}}=23.871+54.519 /(T / K)-5.0006 \ln (T / K)
\]
temperature range \(=291.2-309.2 \mathrm{~K}\)
standard deviation in \(x_{\mathrm{CO}_{2}}=0.00013\)
Henry's constants for solubility in quinoline have been measured by Horvath et al. (6) at 300 K and by Chai and Paulaitis (7) from 298.6 K to 330.2 K . The measurements by Chai and Paulaitis are self consistent and can be provisionally recommended. Values of mole fraction solubility at a partial pressure of 101.3 kPa from these measurements fit the equation below.
\[
{ }^{\ln x_{\mathrm{CO}_{2}}=-76.227+4508.7 /(T / K)+9.9003 \ln (T / K)}
\]
temperature range \(=298.6-330.2 \mathrm{~K}\)
standard deviation in \(X_{\mathrm{CO}_{2}}=6.0 \times 10^{-5}\)
The value of the mole fraction solubility at 300 K from this equation is 0.00884 compared with 0.00939 from Horvath's data.

Solubility in perfluorotributylamine was measured by Kobatake and Hildebrand (8) at 101.3 kPa and 277.2 K to 304.3 K . Sargent and Seffl (9) measured solubility at 298.2 K and 310.2 K but the purity of the solvent in this case is uncertain. The values of the mole fraction solubility at a pressure of 101.3 kPa and 298.2 K are 0.0200 (Kobatake) and 0.0218 (Sargent). Data from Kobatake and Hildebrand are likely to be a better measure of the solubility in the pure solvent.

Jou et al. (10) measured solubility in \(N\)-formyl morpholine at partial pressures of gas of 0.452 kPa to 7090 kPa at 298.2 K to 103.15 K . The data are self-consistent. Kassim et al. (11) measured solubilities at pressures of about 101.3 kPa from 303.2 K to 333.2 K . Mole fraction

COMPONENTS:
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]
2. Solvents Containing Nitrogen

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry,
Polytechnic of North London, Holloway Road, London, \(\mathrm{N} 7 \mathrm{8DB}, \mathrm{U} . \mathrm{K}\).

July 1991

CRITICAL EVALUATION:
solubilities at a partial pressure of 101.3 kPa from the two sources do not agree. values for 313.2 K are 0.0114 (Jou) and 0.0137 (Kassim). Data from Jou et al. extend over a wider temperature and pressure range than those published by Kassim et al. The evaluator considers Jou's data are more likely to be reliable but confirmation is desirable.

Solubilities in 3 -methyl-1H-pyrazole and \(N\)-substituted pyrazoles at 24 kPa to 2533 kPa at 273.2 K to 313.2 K have been reported by Egorova et al. (12) in a deposited document. Substitution on a nitrogen increases mole fraction solubility under these conditions. No other measurements on these systems are available for comparison.

Solubility in p-azoxyphenetole was measured by Homfray (13) at 407.2 K to 442.2 K and 118 kPa . There was an apparent decrease in solubility from 418.7 K to 422.2 K followed by a small increase from 429.7 K to 439.7 K . At this temperature there was a marked increase as the solvent changed from a nematic liquid to an isotropic liquid. The solubility then decreased with rise in temperature. Values of the mole fraction solubility at 439.7 K , estimated from the data are 0.00401 (nematic phase) and 0.00549 (isotropic phase). No other work on this system is available for confirmation of these findings.

Solubility in 1 -methyl-2-pyrrolidinone has been measured by at least fourteen groups (5,11,14-25) over various temperature ranges.
Measurements by Demidova et al.(14) and by Murrieta-Guevara et al.(15) extended to 1026 kPa and 1439 kPa respectively. Values of mole fractions solubility for a partial pressure of 101.3 kPa are scattered. Usyukin et al.(16) reported measurements from 253.2 K to 293.2 K . These measurements do not seem to be compatible with data given in the later paper from the same group (14). The evaluator considers that the most reliable measurements are those published in references (11, 15, 17, 19-23,25) over the temperature range 263.2 K to 393.2 K . Mole fraction solubility at a partial pressure of 101.3 kPa from these sources fit the equation
\[
\ln x_{\mathrm{CO}_{2}}=-14.820+1888.2 /(T / K)+0.7623 \ln (T / K)
\]
temperature range \(=263.15-393.15 \mathrm{~K}\)
standard deviation in \({ }_{\mathrm{CO}_{2}}=0.0011\)
The solubility in \(N\), \(N\)-dimethylformamide at 27 kPa to 120 kPa from 278 K to 313 K has been published by Haidegger et al. (26). Braude et al. (27) also made measurements over a pressure range at 298.15 K to 353.15 K and reported limiting values of Henry's constant. Rosenthal (28) measured the solubility at 293.2 K and a partial pressure of 101.3 kPa and Byeseda et al.(17) at 297.1 K and 101.6 kPa . A value of the Bunsen coefficient at 298.2 K has been published by du Pont (29). Bunsen coefficients for
213.2 K to 293.2 K have been published by Usyukin and Shleynikov (16). The following equations (I) and (II) are based upon the available data for a partial pressure of 101.3 kPa .
\[
\begin{equation*}
\ln x_{\mathrm{CO}_{2}}=47.613-159.64 /(T / K)-9.0213 \ln (T / K) \tag{I}
\end{equation*}
\]
temperature range \(=213.15-353.15 \mathrm{~K}\)
standard deviation in \(\mathrm{X}_{\mathrm{CO}_{2}}=0.0026\)
\[
\begin{equation*}
\ln x_{\mathrm{CO}_{2}}=-123.79+6771.8 /(T / K)+16.994 \ln (T / K) \tag{II}
\end{equation*}
\]
temperature range \(=273.15-353.15 \mathrm{~K}\)
standard deviation in \(\mathrm{CO}_{2}=0.0014\)
Shenderei (30) measured the solubility of carbon dioxide in solutions of ethyne in \(N, N\)-dimethylformamide at 218.15 K and pressures of carbon
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9] \\
2. Solvents Containing Nitroge
\end{tabular} & \begin{tabular}{l}
EVALUATOR: \\
Peter G.T. Fogg, \\
School of Applied Chemistry, \\
Polytechnic of North London, \\
Holloway Road, London, N7 8DB, U.K. \\
July 1991
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Critical evaluation:} \\
\hline \multicolumn{2}{|l|}{dioxide from 13.3 kPa to 101.3 kPa . Extrapolation of the data to zero concentration of ethyne gives a mole fraction solubility of carbon dioxide of 0.169 at a partial pressure of 101.3 kPa . The corresponding value from equation (I) above is \(0.1827 \pm 0.0026\).} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Solubility in nitrobenzene has been measured at pressures close to 101.3 kPa by Gjaldbaek and Andersen (3) at 298.2 K , by Luhring and Schumpe (4) at 293.2 K and by Just (1) from 288.2 K to 298.2 K . Lenoir et a1.(5)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{published a limiting value from chromatographic measurements at 298.2 K .} \\
\hline \multicolumn{2}{|l|}{pressure of 101.3 kPa from Gjalbaek's data is 0.01015 and from Just's} \\
\hline \multicolumn{2}{|l|}{data is 0.0103 . The value from Lenoir's data is 0.0130 and is subject to uncertainty because of the possibility of surface adsorption during the chromatographic process. Values at 293.2 K are 0.0112 (Just) and 0.0114} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{(Luhring). A smoothing equation based upon work by Gjalbaek and Andersen, Just and by Luhring and Schumpe can be recommended for the limited temperature range covered.}} \\
\hline & \\
\hline \multicolumn{2}{|c|}{\(\mathrm{Inx}_{\mathrm{CO}_{2}}=-9.583+1492.6 /(\mathrm{T} / \mathrm{K})\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{temperature range \(=288.2-298.2 \mathrm{~K}\) standard deviation in \(x_{\mathrm{CO}_{2}}=0.00016\)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Solubility in hydrogen cyanide (31) and various nitriles ( \(3,32,33\) ) have been measured. A selection of values of solubilities at a partial pressure of 101.3 kPa are shown in Table 1. No estimation of the} \\
\hline \multicolumn{2}{|l|}{Wehner et al.(34) reported the solubility of carbon dioxide in \(N\)-methyl- \(\varepsilon-\) caprolactam at 293.2 K . Mole fraction solubility at a partial pressure of 101.3 kPa calculated from the data is close to that for dissolution in propanenitrile at 298.2 K reported by Gjaldbaek and Andersen (3) but no estimation of the reliability of the measurement can be made.} \\
\hline \multicolumn{2}{|l|}{The solubility in formamide at 298 K has been given by Takahashi et al.(35). The indirect method which was used is of uncertain reliability.} \\
\hline \multicolumn{2}{|l|}{Selected values of mole fraction solubilities at a partial pressure of 101.3 kPa in compounds containing nitrogen are shown in Table 1 and Fig 1.} \\
\hline \multicolumn{2}{|l|}{REferences} \\
\hline \multicolumn{2}{|l|}{1. Just, G. 2. Phys. Chem. 1901, 37, 342-367} \\
\hline \multicolumn{2}{|l|}{2. Kunerth, W. Phys. Rev. 1922, 19, 512-524.} \\
\hline \multicolumn{2}{|l|}{Luhring, P.; Schumpe, A. J. Chem. Eng. Data 1989, 34, 250-252.} \\
\hline \multicolumn{2}{|l|}{5. Lenoir, J-Y.; Renault, P.; Renon, H. J. Chem. Eng. Data 1971, 16, 340-342.} \\
\hline \multicolumn{2}{|l|}{6. Horvath, M.J.; Sebastian, H.M.; Chao, K.-C. Ind. Eng. Chem. Fundam. 1981, 20, 394-396.} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
7. Chai, C.-P.; Paulaitis, M.E. J. Chem. Eng. Data 1981, 26, 277-279. \\
8. Kobatake, Y.; Hildebrand, J.H. J. Phys. Chem. 1961, 65, 331-335.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS : \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
\[
[124-38-9]
\] \\
2. Solvents Containing Nitrogen
\end{tabular} & \begin{tabular}{l}
EVALUATOR: \\
Peter G.T. Fogg, \\
School of Applied Chemistry, \\
Polytechnic of North London, \\
Holloway Road, London, N7 8DB, U.K. \\
July 1991
\end{tabular} \\
\hline \multicolumn{2}{|l|}{CRITICAL Evaluation:} \\
\hline \begin{tabular}{l}
9. Sargent, J.W.; Seffl, R.J. \\
10. Jou, F-Y.; Deshmukh, R.D.; Ot Faraday Trans. I, 1989, 85, 267
\end{tabular} & 10. Jou, F-Y.; Deshmukh, R.D.; Otto, F.D.; Mather, A.E. J. Chem. Soc. Faraday Trans. I, 1989, 85, 2675-2682. \\
\hline \multicolumn{2}{|l|}{11. Kassim, D.M.; Zainel, H.A.; Al-Asof, S.A.; Talib, E.K. Fluid Phase Equilibria 1988, 41, 287-294.} \\
\hline \multicolumn{2}{|l|}{12. Egorova, V.I.; Grishko, N.I.; Neokladnova, L.N.; Furmanov, A.S.; Podvigailova, I.G. Deposited Document 1976, VINITI 2907-76.} \\
\hline 13. Homfray, I.F. J. Chem. Soc. & , 97, 1669-1676. \\
\hline \multicolumn{2}{|l|}{14. Demidova, Yu.A.; Usyukin, I.P.; Shleynikov, V.M. Neftepererab. Neftekhim. 1966, (12), 36-39.} \\
\hline \multicolumn{2}{|l|}{15. Murrieta-Guevara, F.; Romero-Martinez, A.; Trejo, A. Fluid Phase Equilibria 1988, 44, 105-115.} \\
\hline \multicolumn{2}{|l|}{16. Usyukin, I.P.; Shleynikov, V.M. Neftepererab. Neftekhim. 1963, (1), 39-43.} \\
\hline \multicolumn{2}{|l|}{17. Byeseda, J.J.; Deetz, J.A.; Manning, W.P. Proc. Laurance Reid Gas Cond. Conf. 1985.} \\
\hline \multicolumn{2}{|l|}{18. Bratzler, K.D.; Doerges, A.; Herbert, W. German Patent No. 1769197 to Metallgesellschaft \(A G\). 1971.} \\
\hline \multicolumn{2}{|l|}{19. Rivas, O.R.; Prausnitz, J.M. Am. Inst. Chem. Engnrs. J. 1979, 25 , 975-984.} \\
\hline \multicolumn{2}{|l|}{```
20. Rivas, O.R.; Prausnitz, J.M. Ind. Eng. Chem. Fundam. 1979, 18, 289-292.
```} \\
\hline \multicolumn{2}{|l|}{21. Shakhova, S.F.; Bondareva, T.I.; Sergeeva, L.E. Khim. Prom. 1966, (7), 516-518.} \\
\hline \multicolumn{2}{|l|}{22. Shenderei, E.R.; Ivanovsky, F.P. Khim. Prom. 1963, (2), 91-97.} \\
\hline \multicolumn{2}{|l|}{23. Zubchenko, Yu.P.; Shakhova, C.F.; Ladigina, O.P. Khim. Prom. (Moscow) 1985, (9), 535-536.} \\
\hline \multicolumn{2}{|l|}{24. Sweeney, C.W. Chromatographia, 1984, 18, 663-667.} \\
\hline \multicolumn{2}{|l|}{25. Wu, Z.; Zeck, S.; Knapp, H. Ber. Bunsenges. Phys. Chem. 1985, 89, 1009-1013.} \\
\hline \multicolumn{2}{|l|}{26. Hajdegger, E.; Szebenyi, I.; Szekely, A. Magy. Kem. Poly. 1958, 64, 365-371.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
27. Braude, G.E.; Leites, I.L.; Dedova, I.V. Khim. Prom. 1961, (4), 232-235. \\
28. Rosenthal, W. Thes. Fac. Sci. Univ. Strasbourg (France) 1954. \\
29. Du Pont de Nemours and Co., (Inc.) Chem. Eng. News 1955, 33, 2366. \\
30. Shenderei, E.R. Khim. Prom. 1966, (7), 514-516.
\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}

Table 1.
Mole fraction solubilities of carbon dioxide at a partial pressure of 101.3 kPa in solvents containing nitrogen
\begin{tabular}{|c|c|c|c|}
\hline Solvent & T/K & \({ }^{x} \mathrm{CO}_{2}\) & Referenc \\
\hline Benzenamine & 298.15 & \(0.00488 \pm 0.00004\) & * \\
\hline 2-Methylbenzenamine & 298.15 & 0.00605 & 1 \\
\hline 3-Methylbenzenamine & 298.15 & 0.00634 & 1 \\
\hline Pyridine & 298.15 & \(0.01182 \pm 0.00013\) & * \\
\hline Quinoline & 298.15 & 0.00912 & 7 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline \(N\)-Formyl morpholine & 298.15 & 0.01475 & 10 \\
\hline 3-Methyl-1H-pyrazole & 298.15 & 0.0063 & 12 \\
\hline \multicolumn{4}{|l|}{1,3-Dimethyl-1H-pyrazole} \\
\hline & 298.15 & 0.0092 & 12 \\
\hline \multicolumn{3}{|l|}{1-Ethyl-3-methyl-1H-pyrazole} & 12 \\
\hline & 298.15 & 0.0166 & \\
\hline \multicolumn{3}{|l|}{Methyl(1-methylethyl)-1H-pyrazole} & 12 \\
\hline & 298.15 & 0.0166 & \\
\hline \multicolumn{3}{|l|}{Methyl(3-methylbutyl)-1H-pyrazole} & 12 \\
\hline & 298.15 & 0.0136 & \\
\hline \multicolumn{4}{|l|}{1-Methyl-2-pyrrolidinone} \\
\hline & 298.15 & \(0.0159 \pm 0.0011\) & * \\
\hline \(N, N\)-Dimethylformamide & 298.15 & \(0.0142 \pm 0.0014\) & * \\
\hline Nitrobenzene & 298.15 & \(0.01029 \pm 0.00016\) & * \\
\hline Propanenitrile & 298.15 & 0.0169 & 3 \\
\hline Benzeneacetonitrile & 298.15 & 0.0105 & 3 \\
\hline Hexanedinitrile & 298.15 & 0.01368 & 32 \\
\hline \multicolumn{4}{|l|}{3-(Dimethylamino) propionitrile} \\
\hline & 303.15 & 0.0289 & 33 \\
\hline \multicolumn{4}{|l|}{Hexahydro-1-methyl-2H-azepin-2-one} \\
\hline & 293.15 & 0.0166 & 34 \\
\hline
\end{tabular}

Fig. 1 Mole fraction solubility of carbon dioxide in various solvents containing nitrogen at a partial pressure of gas of 101.3 kPa .
a - 1-methyl-2-pyrrolidinone
b - N,N-dimethylformamide
c - pyridine
d - nitrobenzene
e - quinoline
f - benzenamine
g - perfluorotributylamine (8)
The curves showing the variation of solubility with temperature correspond to equations derived by the evaluator.

A reference line corresponding to values from the Raoult's law equation is also shown.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Benzenamine or aniline; \(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\); [62-53-3]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, 342-367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / K & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at \(101.325 \mathrm{kPa}(1 \mathrm{~atm})\) partial pressure of the gas.
\end{tabular}} \\
\hline AUXILIARY & INFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) Benzenamine. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W.
\[
\text { Z. Phys. Chem. 1890, 6, } 141 .
\] \\
2. Steiner, P.
\[
\begin{aligned}
& \text { Ann. Phys. (Leipzig) 1894, } 52, \\
& \text { 275. }
\end{aligned}
\]
\end{tabular} \\
\hline
\end{tabular}

\section*{AUXILIARY INFORMATION}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The method is based upon that described by McDaniel (1). The apparatus consisted of a gas buret attached to a levelling tube containing mercury and to the absorption cell containing the solvent under test. The volume of gas absorbed by a measured volume of liquid was measured at a total
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. produced by heating \(\mathrm{NaHCO}_{3}\); \\
dried with \(\mathrm{CaCl}_{2}\); frozen in \\
liquid air and volatile \\
impurities pumped away; passed \\
over \(\mathrm{P}_{2} \mathrm{O}_{5}\). \\
2. commercial sample; purity attested by boiling point and density.
\end{tabular} \\
\hline pressure. The mercury in the gas buret was covered with a layer of solvent so that the gas in the buret was saturated with solvent vapor. & ESTIMATED ERROR:
\[
\delta x_{\mathrm{CO}_{2}}= \pm 5 \% \quad \text { (compiler) }
\] \\
\hline Buret and absorption cell were surrounded by heating wire and water jackets fitted with thermometers. & \begin{tabular}{l}
REFERENCES: \\
1. McDaniel, A.S.; \\
J. Phys. Chem. 1911, 15, 587.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Nitrobenzene; \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}\); [98-95-3] or Benzenamine, (aniline); \(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\); [62-53-3]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Luhring, P.; Schumpe, A. J. Chem. Eng. Data, 1989, 34, 250-252.
\end{tabular} \\
\hline VARIABLES:
\[
T / K=293.2
\] & \begin{tabular}{l}
PREPARED BY: \\
C.L. Young
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \(T / \mathrm{K} \quad \begin{aligned} & \text { Henry's Constant }{ }^{\dagger} \\ & /\left(\mathrm{Pa} \mathrm{m}^{3} / \mathrm{mol}^{-1}\right)\end{aligned}\) & Mole fraction of \(\mathrm{CO}_{2}\) at 101.3 kPa (1 atm) partial pressure* \\
\hline \begin{tabular}{cc}
& Nitrobenzene; \(\mathrm{C}_{6} \mathrm{H}_{5}\) \\
293.2 & 905 \\
& Benzenamine, (anil \\
293.2 & 1702
\end{tabular} & \[
\begin{gathered}
\mathrm{NO}_{2} ; \quad[98-95-3] \\
0.01146 \\
\text { ine) ; } \quad \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N} ; \quad[62-53-3] \\
\\
0.005426
\end{gathered}
\] \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
treferred to as Henry's constant in source but appears to be usual Henry's constant multiplied by molar volume. \\
*calculated by compiler using density data taken from ref.(1).
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE \\
Little infomation given in source. Method consisted of equilibrating known amounts of degassed liquid and gas and measuring the change in pressure. Equilibration was reached in 3 to 6 minutes. Some details given in ref
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
Obtained from Merck at the highest available purity. No other details given. \\
ESTIMATED ERROR: \\
\(\delta T / K= \pm 0.1\) (authors) \\
\(\delta x / x= \pm 0.01\) to 0.15 (compiler) \\
REFERENCES: \\
1. Riddick, J.A.; Bunger, W.B.;1970 Organic Solvents, WileyInterscience, New York. \\
2. Schumpe, A.; Quiker, G.; Decker, W.D. \\
Adv. Biochem. Eng., 1982, 24, 1.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) 3-Methyl-benzenamine or m-toluidine; \(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\); [108-44-1]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, 342-367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{ll}
PREPARED BY: & \\
& \begin{tabular}{l}
M. E. Derrick \\
H. L. Clever
\end{tabular}
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at \(101.325 \mathrm{kPa}(\mathrm{l} \mathrm{atm})\) partial pressure of the gas.
\end{tabular}} \\
\hline AUXILIARY & Information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas burct. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) 3-Methyl-benzenamine. \\
No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
l. Timofejew, W.
\[
\text { z. Phys. Chem. 1890, 6, } 141 .
\] \\
2. Steiner, P. \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(I) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) 2-Methyl-benzenamine or o-toluidine; \(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\); [95-53-4]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, 342 - 367 .
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / K & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \\
\hline \multicolumn{2}{|l|}{} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) 2-Methyl-benzenamine. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
l. Timofejew, W.
\[
\text { z. Phys. Chem. 1890, 6, } 141 \text {. }
\] \\
2. Steiner, \(P\). \\
Ann. Phys: (Leipzig) 1894, 52,
275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Pyridine; \(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\); [110-86-1]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, 342-367.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at 101.325 kPa (1 atm) partial pressure of the gas.
\end{tabular}} \\
\hline AUXILIARY & INFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) Pyridine. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W.
\[
\text { Z. Phys. Chem. 1890, 6, } 141 .
\] \\
2. Steiner, P. \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(I) Carbon dioxide; \(\mathrm{CO}_{2} ;\) [124-38-9] \\
(2) Pyridine; \(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\); [110-86-1]
\end{tabular} & ORIGINAL MEASUREMENTS:
```

Gjaldbaek, J. C.; Andersen, E. K.
Acta Chem. Scand. 1954, 8,
1398-1413.

``` \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =298.15 \\
p_{1} / \mathrm{kPa} & =101.325 \quad \text { (1 atm) }
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
J. Chr. Gjaldbaek
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline AUXILIARY & INFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The apparatus consists of a calibrate all-glass manometer and bulb enclosed in an air thermostat. The solvent is added and degassed in the apparatus. The gas is added. The apparatus and contents are shaken until equilibrium is attained. Mercury is used for calibration and as the confining liquid. \\
The absorbed volume of gas is calculated from the initial and final amounts of gas, both saturated with solvent vapor. The amount of solvent is determined by the weight of displaced mercury. Further details are in the references (1,2). \\
The mole fraction values are at one atm pressure assuming Henry's law is obeyed.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(I) Carbon dioxide. Prepared from potassium bicarbonate and sulfuric acid. 99.8-99.9 \% \(\mathrm{CO}_{2}\) \\
(2) Pyridine. Fractionated by distillation. B.p. (760 mmHg)/ \({ }^{\circ} \mathrm{C}=115.51-115.55\), refractive index \(\mathrm{n}_{\mathrm{D}}\left(20^{\circ} \mathrm{C}\right)=1.5100\) 1.5101 . \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & = \pm 0.05 \\
\delta x_{1} / x_{1} & = \pm 0.015
\end{aligned}
\] \\
REFERENCES: \\
1. Lannung, A. \\
J. Am. Chem. Soc. 1930, 52, 68. \\
2. Gjaldbaek, J. C. \\
Acta Chem. Scand. 1952, 6, 623.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Quinoline; \(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\); [91-22-5]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
 Horvath, M. J.; Sebastian, H. M.;
 Chao, к.-C.
 Ind. Eng. Chem. Fundam.
 1981, 20, 394-396.
``` \\
\hline VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=300 \\
& P / \mathrm{kPa}=101.3
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
C. L. Young
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline 300106 & 0.00939 \\
\hline \multicolumn{2}{|l|}{\(\dagger\) at a partial pressure of carbon dioxide of 101.3 kPa calculated by compiler assuming \(\phi=0.995\).} \\
\hline \multicolumn{2}{|r|}{aUxiliary information} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Gas chromatographic analysis of a saturated solution at barometric pressure. Henry's constants determined from formula
\[
H=\left(p-p_{0}\right) \phi(m+1) / m
\] \\
where \(p\) is the total pressure, \(p_{0}\) the vapor pressure of the solvent and \(\phi\) is the fugacity coefficient of the gas. The mole ratio, \(m\), is defined by
\[
\mathrm{m}=\frac{\text { Moles of carbon dioxide }}{\text { in gas phase }}
\]
\end{tabular}} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. No details given. \\
2. Purity 99.75 mole per cent. \\
ESTIMATED ERROR:
\[
\begin{aligned}
& \delta T / \mathrm{K}= \pm 0.25 ; \quad \delta H / \text { atm }= \pm 3 \% \\
& \text { (estimated by compiler). }
\end{aligned}
\]
\end{tabular} \\
\hline & ReFERENCES: \\
\hline
\end{tabular}

\section*{318}
\begin{tabular}{|c|c|}
\hline & \\
\hline \begin{tabular}{l}
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Quinoline; \(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\); [91-22-5]
\end{tabular} & Chai, C-P.; Paulaitis, M. E.; J. Chem. Eng. Data, 1981, 26 , 277-279. \\
\hline VARIABLES:
\[
T / K=298.6-330.2
\] & \begin{tabular}{l}
PREPARED BY: \\
C. L. Young
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \[
T / \mathrm{K} \quad \begin{array}{cc}
\text { Henry's } & \text { Mole fraction }{ }^{\text {a }} \\
\text { constant /atm } & \text { of } \\
& \text { carbon dioxide }
\end{array}
\] & \[
T / \mathrm{K} \begin{array}{cc}
\text { Henry's } & \text { Mole fraction }
\end{array}
\] \\
\hline 298.6 110.51 0.0090490 & \(316.2146 .97 \quad 0.0068041\) \\
\hline 298.6111 .66 0.0089558 & \(316.2144 .79 \quad 0.0069066\) \\
\hline \(302.7 \quad 118.36 \quad 0.0084488\) & 320.2153 .720 .0065053 \\
\hline \(302.7 \quad 117.17 \quad 0.0085346\) & \(320.2 \quad 151.20 \quad 0.0066138\) \\
\hline \(302.7 \quad 118.09 \quad 0.0084681\) & \(320.2 \quad 152.81 \quad 0.0065440\) \\
\hline \(307.1 \quad 127.15 \quad 0.0078647\) & \(323.6 \quad 160.83 \quad 0.0062177\) \\
\hline \(\begin{array}{lll}307.1 & 128.68 & 0.0077712\end{array}\) & 323.6 162.81 0.0061421 \\
\hline \(311.0 \quad 134.52\) 0.0074338 & \(323.6160 .03 \quad 0.0062488\) \\
\hline \(311.0 \quad 133.06\) 0.0075154 & \(330.2172 .07 \quad 0.0058116\) \\
\hline \(311.0 \quad 134.57 \quad 0.0074310\) & \\
\hline \(\begin{array}{lll}316.2 & 144.74 & 0.0069089\end{array}\) & \\
\hline \multicolumn{2}{|l|}{\({ }^{\text {a }}\) Calculated by compiler for a partial pressure of} \\
\hline \multicolumn{2}{|r|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Volumetric apparatus similar to that described in ref.(1). Known amount of carbon dioxide brought into contact with known amount of solvent. Reduction in pressure measured.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Linde "bone dry" grade. \\
2. Fisher certified grade.
\end{tabular} \\
\hline & ESTIMATED ERROR: \\
\hline & \begin{tabular}{l}
REFERENCES: \\
1. Dymond, J. H.;Hildebrand, J. H.; Ind. Eng. Chem. Fundam., 1967, 6, 130.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) \(1,1,2,2,3,3,4,4,4\)-Nonafluoro-N, N -bis (nonafluorobutyl)-1butanamine or perfluorotributylamine;
[311-89-7]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Kobatake, Y.; Hildebrand, J. H. \\
J. Phys. Chem. 1961, 65, 331 - 335.
\end{tabular} \\
\hline VARIABLES: & PREPARED BY: \begin{tabular}{rlll} 
M. & & E. Derrick \\
H. & L. & Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The Bunsen and Ostwald coefficients were calculated by the compiler. \\
Smoothed Data: For use between 277.16 and 304.30 K .
\[
\ln x_{1}=-7.3441+10.2213 /(T / 100 \mathrm{~K})
\] \\
The standard error about the regression line is \(2.54 \times 10^{-4}\).
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The apparatus consists of a gas measuring buret, an absorption pipet, and a reservoir for the solvent. The buret is thermostated at \(25^{\circ} \mathrm{C}\), the pipet at any temperature from 5 to 30 \({ }^{\circ} \mathrm{C}\). The pipet contains an iron bar in glass for magnetic stirring. The pure solvent is degassed by freezing with liquid nitrogen, evacuating, then boiling with a heat lamp. The degassing process is repeated three times. The solvent is flowed into the pipet where it is again boiled for final degassing. Manipulation of the apparatus is such that the solvent never comes in contact with stopcock grease. The liquid in the pipet is sealed off by mercury. Its volume is the difference between the capacity of the pipet and the volume of mercury that confines it. Gas is admitted into the pipet. \\
Its exact amount is determined by \(\mathrm{P}-\mathrm{V}\) measurements in the buret before and after introduction of the gas into the pipe Equilibrium is attained within 24 hou
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. California Dry Ice Co. Standard grade. Dried by passing through a trap at dry ice-acetone temperature, and tubes containing \(\mathrm{CaCl}_{2}\) then \(\mathrm{P}_{2} \mathrm{O}_{5}\). The dried gas was distilled at liquid \(\mathrm{N}_{2}\) temperature several times. \\
(2) Perfluorotributylamine. Minnesota Mining and Manufacturing Co. Dried, fractionated, boiling point \(178.5-179.0^{\circ} \mathrm{C}\). Density, \(\rho / \mathrm{g} \mathrm{cm}^{-3}=1.872\). \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & =0.02 \\
\delta x_{1} / x_{1} & =0.003
\end{aligned}
\] \\
REFERENCES: \\
The stirrer is set in motion.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) FC-47, which is largely perfluorotributylamine or \(1,1,2,2\), 3,3,4,4,4-nonafluoro-N,N-bis (nonafluorobutyl)-l-butanamine; \(\mathrm{C}_{12} \mathrm{~F}_{27} \mathrm{~N}\); [311-89-7]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
    Sargent, J. W.; Seff1, R. J.
    Fed. Proc. 1970, 29, 1699-1703.
``` \\
\hline \begin{tabular}{l}
VARIABLES: \\
\(\begin{array}{rll}T / \mathrm{K}: & 298.15, & 310.15 \\ \text { Total } \mathrm{P} / \mathrm{kPa}: & 101.325(1 \mathrm{~atm})\end{array}\)
\end{tabular} & \begin{tabular}{l}
PREPARED BY: \\
A. L. Cramer \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline auxiliary & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The equilibrium apparatus is a \(50 \mathrm{~cm}^{3}\) three neck flask equipped with a water condenser, a thermometer, and a gas dispersing tube extending below the fluid surface level. Between 25 and \(35 \mathrm{~cm}^{3}\) of solvent are placed in the flask. Gas is bubbled through the solvent for \(2-3 \mathrm{~h}\). An 80 microliter sample is slowly taken into a gas tight syringe. The sample is injected into a gas chromatograph. The results of three sampling and analyses are averaged. \\
The chromatograph is an \(F\) and \(M\) Model 720 equipped with a thermal conductivity detector at \(320^{\circ} \mathrm{C}\), and a \(6^{\prime}\) by \(\frac{3 / 4}{}\) stainless steel column packed with 50/80 mesh Parapak-P at room temperature. The apparatus is calibrated with pure gas samples. \\
Details of the procedure were furnished by R. D. Danielson of the 3 M Co .
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Source not given. Commercial cylinder, or dry ice. \\
(2) FC-47. Minnesota Mining and Manufacturing Co. All H in an organic compound are replaced by F by Simons electrochemical process (1) \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K= & 0.1 \\
\delta \mathrm{c} / \mathrm{c}= & 0.01 \\
& 0.05 \text { (reproducibility) } \\
& \text { (absolute) }
\end{aligned}
\] \\
(\(c=\) concentration of carbon dioxide) REFERENCES: \\
1. Simons, J. H., Editor Fluorine Chemistry Academic Press, New York, 1950.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9] \\
2. 4-Morpholinecarboxaldehyde,
\[
\begin{aligned}
& \left(\mathrm{N}-\mathrm{formyl}^{2} \text { morpholine); } \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2}\right. \text {; } \\
& {[4394-85-8]}
\end{aligned}
\]
\end{tabular}} & \multicolumn{4}{|l|}{\begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Jou, F-Y.; Deshmukh, R.D.; Otto, F.D.; Mather, A.E. \\
J. Chem. Soc. Faraday Trans. 1, 1989, 85, 2675-2682.
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{VARIABLES:
\[
\begin{aligned}
& P / \mathrm{kPa}=0.8-7000 \\
& T / \mathrm{K}=398.15-403.15
\end{aligned}
\]} & \multicolumn{4}{|l|}{PREPARED BY: P.G.T. Fogg} \\
\hline \multicolumn{7}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \multicolumn{2}{|l|}{\(T / \mathrm{K} \quad \underset{\substack{\text { Henry's } \\ \mathrm{H}_{21} / \mathrm{kPa}}}{ } \mathrm{Constant}\)} & \multicolumn{2}{|l|}{\(\bar{V}^{\infty} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}\)} & \(A / R T\) & \({ }^{\text {co }}{ }_{2}\) a & t 101.3 kPa * \\
\hline 298.15 & 6890 & \multicolumn{2}{|l|}{35.55} & 0.099 & 0.01475 & \\
\hline 313.15 & 8920 & \multicolumn{2}{|l|}{36.60} & 0.105 & 0.01139 & \\
\hline 343.15 & 13800 & \multicolumn{2}{|l|}{38.93} & 0.121 & 0.00735 & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 373.15 \\
& 403.15
\end{aligned}
\]} & 19600 & \multicolumn{2}{|l|}{41.60} & 0.142 & 0.00518 & \\
\hline & 25900 & \multicolumn{2}{|l|}{44.69} & 0.168 & 0.00392 & \\
\hline
\end{tabular}

\section*{AUXILIARY INFORMATION}
\begin{tabular}{|c|c|}
\hline METHOD/APPARATUS/PROCEDURE: & SOURCE AND PURITY OF MATERIALS: \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
The solubility of carbon dioxide in \(N\)-formyl morpholine was measured at five temperatures over a partial \\
No information partial
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline 7000 kPa using apparatus and & ESTIMATED ERROR: \\
\hline procedure described earlier (1). & \\
\hline Where necessary nitrogen was added to maintain a total pressure above & \(\delta T / \mathrm{K}= \pm 0.5\) \\
\hline \multicolumn{2}{|l|}{200 kPa . The gas phase was analysed} \\
\hline by gas chromatography. The liquid & REFERENCES: \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{phase was analysed by absorption of \({ }_{\text {dissolved gas in sodium hydroxide }}\) (1, Jou, F-Y. Mather, A.E.}} \\
\hline & 1. Jou, F-Y.; Mather, A.E.; \\
\hline \multicolumn{2}{|l|}{solution and subsequent estimation} \\
\hline of carbonate by precipitation as & Ind. Eng. Process Des. Dev \\
\hline \multicolumn{2}{|l|}{barium carbonate. The data were 1982} \\
\hline \multicolumn{2}{|l|}{correlated by the Peng-Robinson 2 2. Jou, F-Y.; Deshmukh, R.D.} \\
\hline \multicolumn{2}{|l|}{equation of state as described Mather, A.E.; Otto, F.D.} \\
\hline \multicolumn{2}{|l|}{earlier (2). Relationships \(\quad\) Flu1d Phase Equilibria 1987,} \\
\hline \multicolumn{2}{|l|}{used to obtain parameters of the \(\quad\) 3. Bender, E.; Kle} \\
\hline \multicolumn{2}{|l|}{Krichevky-Il'inskaya equation (4) Schmitt, W.P.; Prausnitz,} \\
\hline \multirow[t]{4}{*}{which are given above.} & Fluid Phase Equilibria 1984, 15 \\
\hline & 4. Krichevsky, I.R.; \\
\hline & Il'inskaya, A.A. \\
\hline & Acta Physicochim. URSS 1945, 20, \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9] \\
2. Methyl(1-methylethyl)-1Hpyrazole; \(\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{2}\); [67759-35-7]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Egorova, V.I.; Grishko, N.I.; \\
Neokladnova, L.N.; Furmanov, A.S. \\
Podvigailova, I.G. \\
Deposited Document 1976, \\
VINITI 2907-76
\end{tabular} \\
\hline VARIABLES:
\[
P / \mathrm{kPa}=24-101 ; T / \mathrm{K}=298
\] & \begin{tabular}{l}
PREPARED BY: \\
P.G.T. Fogg
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
* Solubility of carbon dioxide wa to 273.15 K and 101.325 kPa abs \\
** calculated by the compiler. equal to 0.936 , the value for 1 -e 293.15 K (1). \\
\(\dagger\) extrapolated value
\end{tabular} & \begin{tabular}{l}
\begin{tabular}{ll}
\begin{tabular}{c}
Solubility \\
vol/vol
\end{tabular} & \({ }^{*} \mathrm{CO}_{2}{ }^{* *}\) \\
0.65 & 0.00386 \\
0.91 & 0.0054 \\
1.57 & 0.0093 \\
1.87 & 0.0110 \\
\(2.83+\) & 0.0166
\end{tabular} \\
s given as the volume of gas, reduced orbed by unit volume of the solvent. \\
he density was taken to be thyl-3-methyl-1 \(H\)-pyrazole at
\end{tabular} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The volume of gas absorbed by the solvent held in a thermostatted cell was measured at various pressures. The temperature was controlled to \(\pm 0.1 \mathrm{~K}\).
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS : \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
\[
[124-38-9]
\] \\
2. Methyl(3-methylbutyl)-1 H pyrazole; \(\mathrm{C}_{9} \mathrm{H}_{1} \mathrm{~N}_{2}\); [67759-37-9]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Egorova, V.I.; Grishko, N.I.; \\
Neokladnova, L.N.; Furmanov, A.S. \\
Podvigailova, I.G. \\
Deposited Document 1976, \\
VINITI 2907-76
\end{tabular} \\
\hline VARIABLES:
\[
P / \mathrm{kPa}=30-101 ; T / \mathrm{K}=298
\] & \begin{tabular}{l}
PREPARED BY: \\
P.G.T. Fogg
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
* Solubility of carbon dioxide wa to 273.15 K and 101.325 kPa abs \\
** calculated by the compiler. was assumed to be the same as \(0.936 \mathrm{~g} \mathrm{~cm}^{-3}\) at 293 K (1). \\
+ extrapolated value
\end{tabular} & \begin{tabular}{l}
\begin{tabular}{ll}
\begin{tabular}{c}
Solubility \\
vol/vol
\end{tabular} & \(x_{\mathrm{CO}_{2}}{ }^{* *}\) \\
\hline 0.52 & 0.0038 \\
0.84 & 0.0061 \\
1.26 & 0.0091 \\
1.44 & 0.0104 \\
\(1.88 \dagger\) & 0.0136
\end{tabular} \\
s given as the volume of gas, reduced orbed by unit volume of the solvent. \\
The density of the solvent that of 1-ethyl-3-methyl-1H-pyrazole,
\end{tabular} \\
\hline AUXILIARY & Information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The volume of gas absorbed by the solvent held in a thermostatted cell was measured at various pressures. The temperature was controlled to \(\pm 0.1 \mathrm{~K}\).
\end{tabular} & ```
SOURCE AND PURITY OF MATERIALS:
No information
ESTIMATED ERROR:
 \(\delta T / K= \pm 0.1 \quad \delta x_{\mathrm{CO}_{2}}= \pm 3 \%\) due to
 uncertainty in the value of the
 density of solvent.
REFERENCES:
 1. Weast, R.C.; Astle, M.J.
 Handbook of Data on Organic Compounds, 1985, CRC Press, Boca Raton, Florida, USA.
``` \\
\hline
\end{tabular}


The calculated manometer reading is the value expected if there is no gas absorption.

The difference between the calculated and the observed manometer reading is a measure of the gas absorbed. The manometer tube had a volume of \(0.03 \mathrm{~cm}^{3}\) per cm of length.
\begin{tabular}{|c|c|}
\hline AUXILIARY & Information \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
A 2 g sample is enclosed in a bulb and manometer system of known volume. The buib and contents are in a refluxing aniline bath. The temperature is controlled by the pressure over the aniline. \\
At each temperature the gas volume is compared with a gas volume calculated assuming ideal gas behavior and no gas absorption by the solvent. The difference in the volumes is the gas volume absorbed by the sample at a temperature of 293 K and a pressure of \(118 \mathrm{kPa}(88.5 \mathrm{cmHg})\). \\
The solvent volume is stated to be \(1.824 \mathrm{~cm}^{3}\) at \(145.5^{\circ} \mathrm{C}\) and \(1.866 \mathrm{~cm}^{3}\) at \(166.5^{\circ} \mathrm{C}\). The compiler calculated the \(\mathrm{CO}_{2}\) absorption in the sample and in \(100 \mathrm{~cm}^{3}\) of solvent assuming the sample volumes above.
\end{tabular}} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Dry gas. \\
(2) p-Azoxyphenetole. Commercial sample of unknown purity. Prepared from purified \(p\)-nitrophenetole by heating with sodium in absolute alcohol. Product recrystaliised 20 times from alcohol. Solid to nematic liquid transition \(138.5^{\circ} \mathrm{C}\), nematic to isotropic liquid transition \(168^{\circ} \mathrm{C}\).
\end{tabular} \\
\hline & ESTIMATED ERROR: \\
\hline & REFERENCES : \\
\hline
\end{tabular}





COMPONENTS:
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]
2. 1-Methyl-2-pyrrolidinone, ( \(N\)-methylpyrrolidone); \(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}\) [872-50-4]

EXPERIMENTAL VALUES:
\(\mathrm{T} / \mathrm{K} \quad \mathrm{P}_{\mathrm{CO}_{2}} / \mathrm{mmHg} \quad \mathrm{P}_{\mathrm{CO}_{2}} / \mathrm{kPa}{ }^{*} \begin{gathered}\text { Solubility } \\ \text { vol./vol. } \mathrm{CO}_{2} \text { in liquid, } \mathrm{X}_{\mathrm{CO}}\end{gathered}\)
\begin{tabular}{lllll}
\hline & & & \\
308.15 & 131.0 & 17.47 & 0.488 & 0.00212 \\
308.15 & 280.5 & 37.40 & 1.04 & 0.00452 \\
308.15 & 395.0 & 52.66 & 1.51 & 0.00653 \\
308.15 & 454.5 & 60.60 & 1.69 & 0.00731 \\
308.15 & 527.0 & 70.26 & 2.04 & 0.00883 \\
308.15 & 547.0 & 72.93 & 2.05 & 0.00885 \\
308.15 & 628.0 & 83.73 & 2.41 & 0.01040 \\
308.15 & 645.5 & 86.06 & 2.45 & 0.01050 \\
308.15 & 689.5 & 91.93 & 2.60 & 0.01120 \\
308.15 & 709.0 & 94.53 & 2.68 & 0.01150 \\
363.15 & 148.0 & 19.73 & 0.258 & 0.00118 \\
363.15 & 153.0 & 20.40 & 0.264 & 0.00121 \\
363.15 & 300.5 & 40.06 & 0.525 & 0.00240 \\
363.15 & 329.0 & 43.86 & 0.561 & 0.00256 \\
363.15 & 472.5 & 62.99 & 0.811 & 0.00370 \\
363.15 & 473.5 & 63.13 & 0.827 & 0.00377 \\
363.15 & 568.0 & 75.73 & 0.979 & 0.00447 \\
363.15 & 602.0 & 80.26 & 1.05 & 0.00477 \\
363.15 & 669.0 & 89.19 & 1.16 & 0.00528 \\
363.15 & 713.0 & 95.06 & 1.24 & 0.00564 \\
373.15 & 162.0 & 21.60 & 0.248 & 0.00115 \\
373.15 & 168.0 & 22.40 & 0.262 & 0.00121 \\
373.15 & 291.5 & 38.86 & 0.442 & 0.00204 \\
373.15 & 355.0 & 47.33 & 0.548 & 0.00253 \\
373.15 & 455.5 & 60.73 & 0.703 & 0.00324 \\
373.15 & 496.0 & 66.13 & 0.777 & 0.00358 \\
373.15 & 566.0 & 75.46 & 0.87 & 0.00401 \\
373.15 & 607.0 & 80.93 & 0.929 & 0.00428 \\
373.15 & 673.0 & 89.73 & 1.03 & 0.00474 \\
373.15 & 714.0 & 95.19 & 1.09 & 0.00500 \\
393.15 & 143.5 & 19.13 & 0.177 & 0.00083 \\
393.15 & 166.0 & 22.13 & 0.216 & 0.00102 \\
393.15 & 279.0 & 37.20 & 0.348 & 0.00164 \\
393.15 & 331.0 & 44.13 & 0.438 & 0.00206 \\
393.15 & 419.5 & 55.93 & 0.535 & 0.00251 \\
393.15 & 452.0 & 60.26 & 0.598 & 0.00281 \\
393.15 & 528.5 & 70.46 & 0.694 & 0.00326 \\
393.15 & 535.5 & 71.39 & 0.683 & 0.00321 \\
393.15 & 613.5 & 81.79 & 0.763 & 0.00358 \\
393.15 & 657.0 & 87.59 & 0.836 & 0.00392 \\
& & & & \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline T/K & \begin{tabular}{l}
Henry's \\
\(/ \mathrm{mmHg}\)
\end{tabular} & \[
\begin{gathered}
\text { stant, } H, \\
/ \mathrm{kPa}^{*}
\end{gathered}
\] \\
\hline 283.15 & 36700 & 4890 \\
\hline 288.15 & 40000 & 5330 \\
\hline 298.15 & 49700 & 6630 \\
\hline 308.15 & 61500 & 8200 \\
\hline 363.15 & 126000 & 16800 \\
\hline 373.15 & 141000 & 18800 \\
\hline 393.15 & 166000 & 22100 \\
\hline
\end{tabular}
\(\dagger\) volume of gas, reduced to 101.3 kPa and 273.15 K , absorbed by one volume of solvent.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. 1-Methyl-2-pyrrolidinone \(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}\); [872-50-4]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Lenoir, J-Y.; Renault, P.; Renon, H. \\
J. Chem. Eng. Data 1971, 16, 340-2
\end{tabular} \\
\hline VARIABLES:
\[
T / K=298.15
\] & pREPARED by: C.L. Young \\
\hline  & Constant Mole fraction at \begin{tabular}{c}
101.3 kPa \\
\((1 \mathrm{~atm})^{\star}\)
\end{tabular}
0.0169
inear function of \(p_{\mathrm{CO}_{2}}\) vs \(x_{\mathrm{CO}_{2}}{ }^{\prime}\) \\
\hline \multicolumn{2}{|r|}{auxiliary information} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
A conventional gas-liquid chromatographic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at l atm. pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) L'Air Liquide sample, minimum purity 99.9 mole per cent. \\
(2) Touzart and Matignon or Serlabo sample, purity 99 per cent cent. \\
ESTIMATED ERROR:
\[
\delta T / K= \pm 0.1 ; \delta H / a t m= \pm 6 \%
\] \\
(estimated by compiler).
\end{tabular} \\
\hline & REFERENCES : \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
l. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. 1-Methyl-2-pyrrolidinone; \(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO} ; ~[872-50-4]\)
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Rivas, O.R.; Prausnitz, J.M. \\
Ind. Eng. Chem. Fundam. 1979, 18, 289-292.
\end{tabular} \\
\hline VARIABLES:
\[
T / K=293.15,308.15
\] & \begin{tabular}{l}
PREPARED BY: \\
C.L. Young.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \begin{tabular}{l}
\begin{tabular}{ll}
293.15 & 60.1 \\
308.15 & 77.8
\end{tabular} \\
* Calculated by compiler ass solubility linear with pre
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& 0.0166 \\
& 0.0129
\end{aligned}
\] \\
uming mole fraction ssure.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|r|}{aUXILIARY information} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Volumetric apparatus with a fused quartz precision bourdon pressure gauge. Solubility apparatus carefully thermostatted. Solvent degassed in situ. Apparatus described in ref (I) and modifications given in source.
\end{tabular}} & \begin{tabular}{l}
source and purity of materials: \\
No details given.
\end{tabular} \\
\hline & ESTIMATED ERROR:
\[
\delta T / \mathrm{K}= \pm 0.05 ; \quad \delta x_{\mathrm{CO}_{2}}= \pm 18 .
\] \\
\hline & \begin{tabular}{l}
REFERENCES: \\
1. Cukor, P.M.; Prausnitz, J.M. \\
Ind. Eng. Chem. Fundam. 1971, 10, 638.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
\[
[124-38-9]
\] \\
2. 1-Methyl-2-pyrrolidinone, (N-methyl pyrrolidone); \(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO} ;\) [872-50-4]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
    Zubchenko, Yu.P.; Shakhova, C.F.;
    Ladigina, O.P.
    Khim. Prom-st. (Moscow) 1985, (9),
    535-6.
``` \\
\hline VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=258.2-313.2 \\
& P / \mathrm{kPa}=380-55600
\end{aligned}
\] & \[
\begin{aligned}
& \text { PREPARED BY: } \\
& \text { P.G.T. Fogg }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The authors measured solubilities at Solubilities in this pressure range w temperature Henry's constant was foun part of a plot of mole fraction solub carbon dioxide. \\
* calculated by the compiler
\end{tabular} & \[
\begin{aligned}
& \text { at } P_{\mathrm{CO}_{2}}^{\mathrm{CO}_{2}}{ }^{*}=101.3 \mathrm{kPa} \\
& 0.0357 \\
& 0.0250 \\
& 0.0185 \\
& 0.0149 \\
& 0.0120 \\
& \text { pressures from } 380 \mathrm{kPa} \text { to } 55600 \mathrm{kPa} \text {. } \\
& \text { are given in the paper. At each } \\
& \text { d from the slope of the linear } \\
& \text { ility against partial pressure of }
\end{aligned}
\] \\
\hline AUXILIARY & Information \\
\hline \begin{tabular}{l}
METHOD APPARATUS/PROCEDURE: \\
A static method was used as described in ref. (1)
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
\\
\\
\\
\hline ESTIMATED ERROR: \\
\\
1. Shenderei, E.R.; \\
Zel'venskii, Ya.D. ; \\
Ivanovskii, F.P. Khim. Prom. \\
1960, (5), 370.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9] \\
2. 1-Methyl-2-pyrrolidinone, (N-methyl pyrrolidone); \(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO} ; ~[872-50-4]\)
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
 Byeseda, J.J.; Deetz, J.A.;
 Manning, W.P.
 Proc.Laurance Reid Gas Cond.Conf.
 1985.
``` \\
\hline VARIABLES:
\[
T / K=297.1 \quad P / \mathrm{kPa}=101.6
\] & PREPARED BY: P.G.T. Fogg \\
\hline EXPERIMENTAL VALUES:
\[
T / \mathrm{K} \quad P_{\mathrm{CO}_{2}} / \text { psia } \quad P_{\mathrm{CO}_{2}} / \mathrm{kPa}
\] & \[
\begin{gathered}
\text { Ostwald coeff. Mole fraction } \\
\text { in liquid* } \\
x_{\mathrm{CO}_{2}}
\end{gathered}
\] \\
\hline \[
\begin{array}{rrr}
297.1 & 14.73 & 101.6 \\
* & \text { calculated by compiler using }
\end{array}
\] & \begin{tabular}{l}
\[
3.80 \quad 0.0150
\] \\
the density give in ref.(1).
\end{tabular} \\
\hline AUXILIARY & Information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The \(\mathrm{CO}_{2}\) was contained in a thermostatted metal cylinder connected to a pressure gage, vacuum pump and supply of gas. A tight fitting internal piston sealed with an O-ring fitted into the cylinder so that the volume of gas could be changed by controlled movement of the piston. A measured volume of solvent was injected into the cylinder by a syringe. The absorption of gas was found from the movement of the piston which was necessary to maintain constant pressure.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
2. Sample referred to as \({ }^{\circledR} M P Y R O L\). \\
ESTIMATED ERROR: \\
REFERENCES : \\
1. Riddick, J.A.; Bunger, W.B.; Sakano, T.K. \\
Organic Solvents 1986, Wiley, New York.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS:
\[
\begin{aligned}
& \text { Carbon dioxide; } \mathrm{CO}_{2} \text {; } \\
& {[124-38-9]}
\end{aligned}
\] \\
2. 1-Methyl-2-pyrrolidinone (N-methylpyrrolidone);
\[
\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO} ;[872-50-4]
\]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Wu, Z.; Zeck, S.; Knapp, H. \\
Ber. Bunsenges. Phys. Chem. 1985, 89, 1009-1013.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& T / K=298.15 \\
& P / \mathrm{kPa}=101.3
\end{aligned}
\] & PREPARED BY: P.G.T. Fogg \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \[
\begin{aligned}
& 298.15101 .36506500 \\
& { }^{*} \text { calculated by the compiler. }
\end{aligned}
\] & \[
1.885 \quad 0.01559
\] \\
\hline \multicolumn{2}{|r|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The volume of gas which was absorbed by a weighed quantity of solute was measured with a gas buret to \(\pm 0.02 \mathrm{~cm}^{3}\). The solute was weighed to an accuracy of \(\pm 5 \times 10^{-4} \mathrm{~g}\). The cell containing the solvent was magnetically stirred and the temperature of the apparatus was controlled to \(\pm 0.01 \mathrm{~K}\) by a thermostat. The apparatus and procedure have been described in
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Purity better than 99.9 vol. \(\%\) \\
2. A sample provided by Merck of minimum purity of 99\%. was treated with molecular sieve \(4 X\) to reduce the water content to less than 0.01 wt. \(\%\) as indicated by Karl-Fischer titration. Chromatographic analysis indicated a purity of \(99.9 \%\) The material was also degassed before use.
\end{tabular} \\
\hline ref. (1). & ESTIMATED ERROR:
\[
\begin{aligned}
& \delta L / L \leq \pm 0.01 \\
& \delta T / K= \pm 0.01
\end{aligned}
\] \\
\hline & REFERENCES:
\[
\begin{aligned}
& \text { 1. Zeck, S. Dissertation, TU Berlin, } \\
& \text { 1985. }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. 1-Methyl-2-pyrrolidinone; \\
\(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}\); [872-50-4]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Kassim, D.M.; Zainel, H.A.; Al-Asof, S.A.; Talib, E.K. \\
Fluid Phase Equilibria 1988, 41, 287-294.
\end{tabular} \\
\hline \begin{tabular}{l}
VARIABLES: \\
Temperature
\end{tabular} & \begin{tabular}{l}
PREPARED BY: \\
C. L. Young
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES:
\[
T / K
\] \\
Mole frac
\end{tabular} & tion of carbon dioxide in liquid, \({ }^{x} \mathrm{CO}_{2}\) \\
\hline \[
\begin{aligned}
& 303.15 \\
& 313.15 \\
& 323.15 \\
& 333.15
\end{aligned}
\] & \[
\begin{aligned}
& 0.0138 \\
& 0.0126 \\
& 0.0106 \\
& 0.0097
\end{aligned}
\] \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD'APPARATUS/PROCEDURE: \\
Falling film flow apparatus similar to that of Morrison and Billet (1). Apparatus consisted of (i) degassing section in which solvent could be degassed by freezing and thawing under vacuum and (ii) absorption section. The latter consisted of a gas buret and absorption spiral. Mole fraction solubility corrected to 1 atm partial pressure by assuming Henry's law was valid.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Purity 99.99 mole per cent. \\
2. Fluka AG puriss grade sample, purity better than 99 mole per cent.
\end{tabular} \\
\hline
\end{tabular}

\section*{COMPONENTS:}
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9]
2. 1-Methyl-2-pyrrolidinone, (N-methylpyrrolidone); \(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N} 0\); [872-50-4]

\section*{VARIABLES:}
\(T / K=298.15-373.15\)
\(\mathrm{P} / \mathrm{kPa}=184.8-1438.5\)

\section*{ORIGINAL MEASUREMENTS:}

Murrieta-Guevara, F.;
Romero-Martinez, A.; Trejo, A.
F1uid Phase Equilibria, 1988, 44, 105-115.

PREPARED BY:
P.G.T. Fogg

EXPERIMENTAL VALUES:
\begin{tabular}{lrrl}
\(T / \mathrm{K}\) & \begin{tabular}{c} 
Henry's \\
\(H / \mathrm{MPa}\)
\end{tabular} & \begin{tabular}{c} 
law constant \\
\(H / \mathrm{kPa}\)
\end{tabular} & \({ }^{x} \mathrm{CO}_{2}(101.3 \mathrm{kPa})^{*}\) \\
\hline 298.15 & 6.38 & 6380 & 0.01588 \\
323.15 & 10.13 & 10130 & 0.01000 \\
373.15 & 23.91 & 23910 & 0.00424
\end{tabular}
* estimated by the compiler as \(\mathrm{P}_{\mathrm{CO}_{2}} / \mathrm{H}\)

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:
The apparatus and method of calculation have been described in previous publications (refs. 1 and
2). The limiting values of Henry's
law constant which are given above
were found by fitting the
experimental data to the
Krichevsky-Kasarnovsky equation (3).

SOURCE AND PURITY OF MATERIALS:
1. Supplied by Infra S.A.; reported purity 99.7 mol\%.
2. Purity better than 99.5 mol\%.

ESTIMATED ERROR
\(\delta T / K= \pm 0.02\) to \(343 \mathrm{~K} ; \pm 0.5\) at
\(\delta P / \mathrm{kPa}= \pm 3.5\)
REFERENCES:
1. Murrieta-Guevara, F.; Trejo, A., J. Chem. Eng. Data, 1984, 29, 456.
2. Gonzalez, R.;

Murrieta-Guevara, F.; Parra, 0.;
Trejo, A., Fluid Phase
Equilibria, 1987, 34, 69.
3. Prausnitz, J.M.; Lichtenthaler, R.N.; Gomes de Azevedo, E. Molecular Thermodynamics of Fluid-Phase Equilibria,
Prentice-Hall, Englewood Cliffs, 1986, Chap. 7
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) N,N-Dimethylformamide; \(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\); [68-12-2]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
    Rosenthal, W.
    Thès, fac. sci. Univ. Strasbourg
    (France) 1954.
``` \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =293.15 \\
p / \mathrm{kPa} & =101.325
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \multicolumn{2}{|r|}{auxiliary information} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The prepared solvent solution was charged into an evacuated cell after degassing, and the mass of solvent was determined by weight. Gas was introduced into the cell from a measuring burette in which the gas was stored over mercury. The cell was agitated while the gas pressure was maintained by adjusting the gas volume. The Ostwald coefficient was determined from the mass of solvent and volume of gas used. Solubilities were measured at pressures above and below atmospheric.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Source and purity not given. An aqueous "soda" solution absorbed 99.8\% of the gas. \\
(2) Dimethylformamide. S.E.P.P.I.C. of Paris. Purity not given. Exposure to air avoided. Distilled prior to use. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / \mathrm{K} & = \pm 0.2 \\
\delta p / \mathrm{kPa} & = \pm 0.1 \\
\delta L / L & = \pm 0.02 \text { (compiler) }
\end{aligned}
\] \\
REFERENCES: \\
Some data in the thesis have been published. See: \\
1. Maillard, A.; Rosenthal, W. Comp rend. 1952, 234, 2546-8.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
\[
[124-38-9]
\] \\
2. \(N, N\)-Dimethylformamide; \(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\); [68-12-2]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Du Pont de Nemours and Co., (Inc.) Chem. Eng. News 1955, 33, 2366.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=298.2 \\
& P / \mathrm{kPa}=101.3
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
P.G.T. Fogg
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \(\mathrm{T} / \mathrm{K} \quad \mathrm{P}_{\mathrm{CO}_{2}} / \mathrm{kPa} \quad\) Bunsen & \[
\underset{\alpha}{\text { coefficient }} \quad x_{\mathrm{CO}_{2}}^{*}
\] \\
\hline 298.2101 .3 & 4.40 .0142 \\
\hline
\end{tabular}

AUXILIARY INFORMATION
\begin{tabular}{|l|l|}
\hline METHOD APPARATUS/PROCEDURE: & SOURCE AND PURITY OF MATERIALS: \\
Not stated. \\
\\
& \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9] \\
2. \(N, N\)-Dimethylformamide; \(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\); [68-12-2]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Byeseda, J.J.; Deetz, J.A.; \\
Manning, W.P. \\
Proc.Laurance Reid Gas Cond.Conf. \\
1985.
\end{tabular} \\
\hline VARIABLES:
\[
T / \mathrm{K}=297.1 \quad P / \mathrm{kPa}=101.6
\] & \begin{tabular}{l}
PREPARED BY: \\
P.G.T. Fogg
\end{tabular} \\
\hline EXPERIMENTAL VALUES:
\[
T / \mathrm{K} \quad P_{\mathrm{CO}_{2}} / \mathrm{psia} \quad P_{\mathrm{CO}_{2}} / \mathrm{kPa}^{*}
\] & \[
\begin{array}{cc}
\text { Ostwald coeff. } & \text { Mole fraction } \\
\text { in liquid* } \\
& x_{\mathrm{CO}_{2}}
\end{array}
\] \\
\hline \[
\begin{array}{lrr}
297.1 & 14.73 & 101.6 \\
& { }^{*} \text { calculated by compiler }
\end{array}
\] & \[
4.91 \quad 0.0155
\] \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The \(\mathrm{CO}_{2}\) was contained in a thermostatted metal cylinder connected to a pressure gage, vacuum pump and supply of gas. A tight fitting internal piston sealed with an O-ring fitted into the cylinder so that the volume of gas could be changed by controlled movement of the piston. A measured volume of solvent was injected into the cylinder by a syringe. The absorption of gas was found from the movement of the piston which was necessary to maintain constant pressure.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
No information. \\
ESTIMATED ERROR: \\
REFERENCES:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
\[
[124-38-9]
\] \\
2. \(N, N\)-Dimethylformamide; \(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\); [68-12-2] \\
3. Ethyne; \(\mathrm{C}_{2} \mathrm{H}_{2}\); [74-86-2]
\end{tabular} & ORIGINAL MEASUREMENTS:
Shenderei, E.R.
Khim. Prom. 1966, (7), 514-516. \\
\hline VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=218.15 \quad P_{\mathrm{CO}_{2}} / \mathrm{kPa}=13.3-101.3 \\
& x_{\mathrm{C}_{2} \mathrm{H}_{2}}=0.085-0.444
\end{aligned}
\] & \[
\begin{aligned}
& \text { PREPARED BY: } \\
& \text { P.G.T. Fogg }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\

\end{tabular} & \\
\hline & \begin{tabular}{l}
\begin{tabular}{rrr}
13.33 & 0.02023 & 6.94 \\
40.00 & 0.06054 & 21.74 \\
66.66 & 0.10090 & 37.87 \\
101.32 & 0.15340 & 61.14 \\
13.33 & 0.01746 & 7.19 \\
40.00 & 0.05237 & 22.38 \\
66.66 & 0.08729 & 38.72 \\
101.32 & 0.13270 & 61.95 \\
13.33 & 0.01618 & 7.70 \\
40.00 & 0.04853 & 23.86 \\
66.66 & 0.08089 & 41.17 \\
101.32 & 0.12290 & 65.65 \\
13.33 & 0.01524 & 8.55 \\
40.00 & 0.04572 & 26.45 \\
66.66 & 0.07619 & 45.49 \\
101.32 & 0.11580 & 72.32
\end{tabular} \\
olume of gas, corrected to 273.15 K gram of dimethylformamide.
\end{tabular} \\
\hline aUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD 'APPARATUS/PROCEDURE: \\
Method described in ref. (1).
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
No information \\
ESTIMATED ERROR: \\
REFERENCES: \\
1. Shenderei, E.R.; Zel'venskii, F.P.: Ivanovskii, F.P. Gaz. Prom. 1958, (2), 36.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Nitrobenzene; \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}\); [98-95-3]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Just, G. \\
2. Phys. Chem. 1901, 37, 342 - 367 .
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =288.15-298.15 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & PREPARED BY: \begin{tabular}{lll}
M. & E. Derrick \\
H. & L. \begin{tabular}{l}
Clever
\end{tabular}
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at \(101.325 \mathrm{kPa}(1 \mathrm{~atm})\) partial pressure of the gas.
\end{tabular}} \\
\hline auxiliary & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Nitrobenzene; \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}\); [98-95-3]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Gjaldbaek, J. C.; Andersen, E. K. \\
Acta Chem. Scand. 1954, 8, \\
1398 - 1413.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =298.15 \\
p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
J. Chr. Gjaldbaek
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The mole fraction and Ostwald calculated by the compiler.
\end{tabular} & \begin{tabular}{lc}
\begin{tabular}{c}
Bunsen \\
Coefficient \\
\((\mathrm{STP}) \mathrm{cm}^{-3} \mathrm{~atm}^{-1}\)
\end{tabular} & \begin{tabular}{c}
Ostwald \\
Coefficient \\
\(L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}\)
\end{tabular} \\
2.23 & 2.43 \\
2.17
\end{tabular} \\
\hline \multicolumn{2}{|r|}{AUXILIARY INFORMATION} \\
\hline \multirow[t]{3}{*}{METHOD/APPARATUS/PROCEDURE: Carbon dioxide from a cylinder (99.61\% \(\mathrm{CO}_{2}\)) was bubbled through the solvent until saturation. A portion of the saturated solution was titrated as described in the paper.} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Commercial cylinder, source not given. 99.61 per cent carbon dioxide. \\
(2) Nitrobenzene. Purified by fractional freezing and by fractional distillation in vacuum. \\
M.p. \(/{ }^{\circ} \mathrm{C}=5.75\), b.p. \\
\((760 \mathrm{mmHg}) /{ }^{\circ} \mathrm{C}=211.94-211.95\), refractive index, \(n_{D}\left(20^{\circ} \mathrm{C}\right)=\)
\(1.5524-1.5527\).
\end{tabular} \\
\hline & ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & = \pm 0.05 \\
\delta x_{1} / x_{1} & = \pm 0.015
\end{aligned}
\] \\
\hline & REFERENCES: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Nitrobenzene; \(\quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}\); [98-95-3]
\end{tabular} & ORIGINAL MEASUREMENTS:
\[
\begin{aligned}
& \text { Lenoir, J-Y.; Renault, P.; Renon, H. } \\
& \text { J. Chem. Eng. Data, 1971, 16, 340-2. }
\end{aligned}
\] \\
\hline VARIABLES:
\[
T / K=298.2
\] & \begin{tabular}{l}
pREPARED by: \\
C. L. Young
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
* Calculated by compiler assuming a linear function of
\[
p_{\mathrm{CO}_{2}} \text { vs } x_{\mathrm{CO}_{2}} \text {, ie, } x_{\mathrm{CO}_{2}}^{(1 \mathrm{~atm})=1 / \mathrm{H}_{\mathrm{CO}_{2}}}
\]
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{auxiliary information} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
A conventional gas-liquid chromatographic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at 1 atm . pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) L'Air Liquide sample, minimum purity 99.9 mole per cent. \\
(2). Touzart and Matignon or Serlabo sample, purity 99 mole per cent. \\
ESTIMATED ERROR: \\
\(\delta T / \mathrm{K}= \pm 0.1 ; \delta H / \mathrm{atm}= \pm 6 \%\) \\
(estimated by compiler).
\end{tabular} \\
\hline & REFERENCES: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline COMPONENTS : & ORIGINAL MEASUREMENTS: \\
\hline \[
\begin{aligned}
& \text { 1. Carbon dioxide; } \mathrm{CO}_{2} \text {; } \\
& {[124-38-9]}
\end{aligned}
\] & Quinchon, J.; Gerber, A.; Molinet, G \\
\hline 2. Hydrocyanic acid; HCN; [74-90-8] & Mem. Poudres, 1961, 43, 331-342. \\
\hline VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=268.15-283.15 \\
& P / \mathrm{kPa}=101.3
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
P.G.T. Fogg
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \begin{tabular}{l}
\[
\begin{aligned}
& 268.15 \\
& 273.15 \\
& 278.15 \\
& 283.15
\end{aligned}
\] \\
* volumes of gas were reduced to 273 \\
The compiler assumes that the absorpt equal to barometric pressure rather tha barometric pressure. The vapor press 28 kPa at 268.15 K and about 54.5 kPa
\end{tabular} & \begin{tabular}{l}
Absorption \\
.of gas/vol. of solvent*
\[
\begin{aligned}
& 6.8 \\
& 5.9 \\
& 2.5 \\
& 0.9
\end{aligned}
\] \\
15 K and 101.3 kPa \\
on corresponds to a total pressure an a partial pressure equal to re of pure hydrocyanic acid is about t 283.15 K .
\end{tabular} \\
\hline auxilitary & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Solubilities were measured by a static method. Liquid hydrocyanic acid was introduced into a calibrated buret. A second calibrated buret contained carbon dioxide over mercury. Burets were maintained at the required temperature by circulation of a coolant through outer jackets. The reduction in volume of carbon dioxide at a total pressure equal to barometric pressure was measured when taps connecting the burets were opened. The volumes of gas were corrected to 273.15 K .
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Commercial sample dried with Actigel before use. \\
2. Refluxed for 2.5 h to remove dissolved gases and then sealed in ampoules. \\
ESTIMATED ERROR: \\
REFERENCES:
\end{tabular} \\
\hline
\end{tabular}

```

COMPONENTS:

1. Carbon dioxide; }\mp@subsup{\textrm{CO}}{2}{}
[124-38-9]
2. Hexanedinitrile, (adiponitile);
C6}\mp@subsup{\textrm{H}}{8}{}\mp@subsup{\textrm{N}}{2}{}; [111-69-3
VARIABLES:
T/K = 288.2-373.2
P/kPa = 12-103 kPa
```

ORIGINAL MEASUREMENTS:
Sadilenko, A.S.; Bondareva, T.I.; Furmer, I.E.

Tr. Mosk. Khim. Technol. Inst. 1973, 72, 167-170.

PREPARED BY:

> P.G.T. Fogg
```

EXPERIMENTAL VALUES:
A small scale graph showed that the mole ratio solubility of carbon dioxide varied linearly with pressure, within experimental error, at 15, $25,40,55,70$ and $100^{\circ} \mathrm{C}$ over the pressure range of $12-103 \mathrm{kPa}$. The mole fraction solubility may be considered to vary linearly with pressure over this pressure range, within the experimental error of the measurements.
The authors also gave the following equation for Henry's law constant over the pressure and temperature range

$$
\log _{10}(H / \mathrm{mmHg})=7.83-920 /(T / K)
$$

Henry's law constant, $H$, was defineत by the equation

$$
H=\frac{P_{\mathrm{CO}_{2}}}{{ }^{x} \mathrm{CO}_{2}}
$$

$T / \mathrm{K}$	$H^{*}$		
	$/ \mathrm{mmHg}$	$/ \mathrm{kPa}$	$\mathrm{CO}_{2}{ }^{*}$
288.2	43400	5790	0.01750
298.2	55600	7410	0.01368
313.2	78100	10400	0.00973
328.2	106400	14200	0.00714
343.2	141000	18800	0.00539
373.2	232000	30900	0.00328

* calculated by the compiler from the equation above.

```

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:
The authors used a static method. Details have been published in earlier papers (1-3).

SOURCE AND PURITY OF MATERIALS:
No information

ESTIMATED ERROR:

REFERENCES:
1. Braude, G.E.; Shakhova. S.F. Khim. Prom. 1961, (3), 177.
2. Braude, G.E.; Leites, I.L.; Dedova, I.V. Khim. Prom. 1961, (4), 232.
3. Tsiklis, G.M.; Svetlova, G.M. Zh. Fiz. Khim. 1958, 32, 1476.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Benzeneacetonitrile or benzyl cyanide; \(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}\); [140-29-4]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
 Gjaldbaek, J. C.; Andersen, E. K.
 Acta Chem. Scand. 1954, 8,
 1398 - 1413.
``` \\
\hline VARIABLES :
\[
\begin{aligned}
T / \mathrm{K} & =298.15 \\
p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
J. Chr. Gjaldbaek
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The mole fraction and Ostwald coefficient values were claculated by the compiler.
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Carbon dioxide from a cylinder ( \(99.61 \% \mathrm{CO}_{2}\) ) was bubbled through the solvent until'saturation. A portion of the saturated solution was titrated as described in the paper.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Commercial cylinder, source not given. 99.61 per cent carbon dioxide. \\
(2) Benzeneacetonitrile. Fractional distillation in vacuum. B.p. \((760 \mathrm{mmHg}) /{ }^{\circ} \mathrm{C}=233.49-233.55\), refractive index \(n_{D}\left(20^{\circ} \mathrm{C}\right)=\) 1.5233.
\end{tabular} \\
\hline & ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & = \pm 0.05 \\
\delta x_{1} / x_{1} & = \pm 0.015
\end{aligned}
\] \\
\hline & REFERENCES: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9] \\
2. 3-(Dimethylamino) propanenitrile; \(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2}\); [1738-25-6]
\end{tabular} & ORIGINAL MEASUREMENTS:
Bryukhanova, L.A.; Nikitina A.K.
Zh. Prik1. Khim. (Leningrad) 1986,
\(59(2), 432-4\). \\
\hline VARIABLES:
\[
T / K=303.15-333.15
\] & \begin{tabular}{l}
prepared by: \\
P.G.T. Fogg
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
Solubilities were measured at various \(60 \mathrm{~atm}(6080 \mathrm{kPa})\) and interpreted by the form
\[
\log _{10}\left(P_{2} / x_{2}\right)=\log _{10} 1
\] \\
\(P_{2}\) is the partial pressure of carbon carbon dioxide in the liquid phase, constant, \(\beta\) a constant and \(x_{1}\) the mol propionitrile in the liquid phase. the ratio of the pressure of the part mole fraction of carbon dioxide in the \\
T/K Henry's law constant, H/atm
\end{tabular} & \begin{tabular}{l}
pressures to a maximum of about the Krichevskii-Il'inskaya equation in
\[
-\beta\left(1-x_{1}^{2}\right)
\] \\
dioxide, \(x_{2}\) the mole fraction of the limiting value of the Henry's law e fraction of 3-(dimethylamino)enry's law constant is taken to be ial pressure of carbon dioxide to the liquid phase.
\[
\beta^{* *} \quad H / \mathrm{kPa}^{*} \quad \stackrel{x_{2} \text { at }}{P_{2}=101.3 \mathrm{kPa}^{*}}
\]
\end{tabular} \\
\hline \begin{tabular}{l}
\begin{tabular}{rr}
303.15 & 32.43 \\
313.15 & 51.52 \\
323.15 & 79.43 \\
333.15 & 122.2
\end{tabular} \\
* calculated by the compiler \\
given as a positive quantity in be a mistake.
\end{tabular} & \begin{tabular}{l}
\begin{tabular}{lrr}
-0.49801 & 3286 & 0.02889 \\
-0.3333 & 5220 & 0.01886 \\
-0.1739 & 8048 & 0.01247 \\
-0.01555 & 12382 & 0.00818
\end{tabular} \\
the original paper. This appears to
\end{tabular} \\
\hline \multicolumn{2}{|r|}{auxiliary information} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
A static method was used as described in ref. (1).
\end{tabular}} & \begin{tabular}{l}
source and purity of materials: \\
2. Pure sample, distilled in vacuum.
\end{tabular} \\
\hline & estimated error: \\
\hline & REFERENCES:
```

1. Freudlin, G.N.; Vyshinskiy, V.I.
Zh. Prik1. Khim. 1970, 43(2),
385.
``` \\
\hline
\end{tabular}


COMPONENTS :
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]
2. Compounds of Phosphorus, Silicon or Sulfur

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K.

July 1991

\section*{CRITICAL EVALUATION:}

Solubility of carbon dioxide in solvents containing phosphorus, silicon or sulfur.

Solubility in solvents containing phosphorus
Mole fraction solubility in hexamethylphosphoric triamide at a partial pressure of 101.3 kPa may be estimated from data published by Bryukhanova and Nikitina (1), Schay et al.(2), Lenoir et al.(3) and Bratzler et al.(4). There is poor agreement between the sets of data. A selection of values of mole fraction solubility at 101.3 kPa are given below.
\begin{tabular}{llll} 
& 293.2 K & 298.2 K & 333.2 K \\
& & & \\
Bryukhanova and Nikitina & \(0.0338 *\) & \(0.0313^{*}\) & 0.01942 \\
Schay et al. & 0.0303 & 0.0282 & 0.0144 \\
Lenoiretal. & 0.037 & 0.0329 & \\
Bratzler et a1. & & & \\
* extrapolated & & &
\end{tabular}

The following equation based upon data from the four sources can be used as an approximate guide to solubility at 101.3 kPa in this solvent. Further measurements are needed to resolve discrepancies between the solubility data.
\[
\ln _{\mathrm{CO}_{2}} \equiv-9.074+1667.6 /(T / K)
\]
temperature range \(=273.2-363.2 \mathrm{~K}\)
standard deviation in values of \(x_{\mathrm{CO}_{2}}=0.0030\)
Solubility in tributyl phosphate at 223.2 K to 313.2 K from 13.6 kPa to 101.0 kPa has been published by Kosyakov et a1.(5). Henry's constant at various temperatures from 243.2 K to 383.2 K have been published by Lenoir et al.(3), Gudasheva and Furmer (6), Sweeney (7), and Vei et al.(8) There is satisfactory agreement between mole fraction solubilities at a partial pressure of 101.3 kPa calculated from data from the five sources. The recommended smoothing equation is given below.
\[
\ln x_{\mathrm{CO}_{2}}=17.505+591.57 /(T / K)-4.0173 \ln (T / K)
\]
temperature range \(=223.2-383.2 \mathrm{~K}\)
standard deviation in values of \(x_{\mathrm{CO}_{2}}=0.0055\)
Solubility in triethyl phosphate was measured at \(298.15 \mathrm{~K} ; 101.3 \mathrm{kPa}\) by Schay et al. (2). Lenoir et al.(3) reported a limiting value of Henry's constant at 325.7 K measured by gas-liquid chromatography. The corresponding values of mole fraction solubility at a partial pressure of 101.3 kPa are compatible with each other.

Lenoir et al.(3) also reported values of Henry's constant for the trimethyl, tripropyl and tris(2-methylpropyl) esters of phosphoric acid. No other measurements on these systems are available for comparison.

Solubility in solvents containing silicon
Wilcock et al.(9) measured solubility in octamethylcyclotetrasiloxane at 292.2 K to 313.1 K ; 101.3 kPa . The data are likely to be reliable but no other measurements on this system are available for comparison. Mole fraction solubility is high compared with a reference line based upon Raoult's law.
```

COMPONENTS:

1. Carbon dioxide; }\mp@subsup{\textrm{CO}}{2}{}
[124-38-9]
2. Compounds of Phosphorus,
Silicon or Sulfur
```

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K.

July 1991
```

CRITICAL EVALUATION:
Solubility in tetramethyl silane at 291.5 K has been reported by Horsman-van den Dool and Warman (10). The solubility measurement needs to be confirmed by other workers before it can be recommended.
Solubility in solvents containing sulfur
Kassim et al.(11) measured solubility in tetrahydrothiophene,
1,1-dioxide at 303.2 K to 333.2 K ; 101.3 kPa . Xu et al.(12) reported solubility measured at about 100 kPa from 303.2 K to 359.9 K . Roberts and Mather (13) measured solubility to high pressures at 313.2 K and 373.2 K . Rivas and Prausnitz (14) published Henry's constants for 303.2 K to 373.2 K . Murrieta-Guevara et al.(15) reported limiting values of Henry's constants from 303.2 K to 373.2 K .
The evaluator recommends the following equation based upon data from references (11-14) for the mole fraction solubility at a partial pressure of 101.3 kPa .

$$
\ln x_{\mathrm{CO}_{2}}=-67.177+4443.1 /(T / K)+8.4001 \ln (T / K)
$$

temperature range $=303.2-373.2 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=1.9 \times 10^{-4}$
Values estimated from Henry's constants published by Murrieta-Guevara et al. (15) differ from values from this equation by 8%, 2% and 12%, at $303.2 \mathrm{~K}, 323.2 \mathrm{~K}$ and 373.2 K respectively.
Solubility in carbon disulfide at or close to 101.3 kPa has been reported by Just (16) from 288.2 K to 298.2 K and Kobatake and Hildebrand (17) from 281.7 K to 306.4 K . Solubility at lower pressures has been reported by Woukoloff (18) from 280.2 K to 293.7 K and Gjaldbaek (19) from 298.1 to 298.5 K . There is good agreement between values of mole fraction solubility corrected to a partial pressure of 101.3 kPa from data given by Kobatake and Hildebrand, Woukoloff, and by Gjaldbaek. A smoothing equation for these values are given below. Data published by Just are very low when compared with that from the other sources.

$$
{\ln X_{\mathrm{CO}_{2}}=65.328-2496.8 /(T / K)-11.0008 \ln (T / K), ~}_{\mathrm{K})}
$$

temperature range $=280.2-306.4 \mathrm{~K}$
standard deviation in $x_{\mathrm{CO}_{2}}=3.8 \times 10^{-5}$
The value mole fraction solubility in sulfinylbismethane at 101.3 kPa and 298.2 K published by Dymond (20) is 0.00908 . Lenoir et al.(3) reported a limiting value of Henry's law constant measured by gas-liquid chromatography at this temperature. This corresponds to a mole fraction solubility at 101.3 kPa of about 0.00943 . Solubilities measured by gas chromatography are always subject to uncertainty because of the possibility of surface effects affecting the result. Dymond's value may therefore be the more reliable one but confirmation by other measurements is needed.
Selected values of solubilities in solvents containing phosphorus or silicon are given in Table 1 and shown in Fig 1.

```

COMPONENTS:
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]
2. Compounds of Phosphorus, Silicon or Sulfur

EVALUATOR:
Peter G.T. Fogg, School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:

\section*{REFERENCES}
1. Bryukhanova, P.A.; Nikitina, A.K. Zh. Prikl. Khim. (Leningrad) 1985, 58(3), 667-669.
2. Schay, G.; Szekely, Gy.; Racz, Gy.; Traply, G. Periodica Polytech. 1958, 2, 1-24.
3. Lenoir, J-Y.; Renault, P.; Renon, H. J. Chem. Eng. Data 1971, 16, 340-342.
4. Bratzler, K.D.; Doerges, A.; Herbert, W. German Patent No. 1769197 to Metallgesellschaft \(A G\). 1971.
5. Kosyakov, N.Ya.; Yushko, V.L.; Sergienko, I.D.; Khokhlov, S.F.; Taraba, R.F. Khim. Prom. (Moscow) 1972, 48(6), 432-433.
6. Gudasheva, V.M.; Furmer, I.E. Tr. Mosk. Khim. i Tekh. Inst. 1970, 2, 15-17.
7. Sweeney, C.W. Chromatographia, 1984, 18, 663-667.
8. Vei, D.; Furmer, I.E.; Sadilenko, A.S.; Efimova, N.M.; Stepanova, Z.G.; Gracheva, N.V. Gaz. Prom. 1975, 7, 47-49.
9. Wilcock, R.J.; McHale, J.L.; Battino, R.; Wilhelm, E. Fluid Phase Equilibria 1978, 2, 225-230.
10. Horsman-van den Dool, L.E.W.; Warman, J.W. Interuniversity Reactor Institute (IRI)-Report 134-81-01.
11. Kassim, D.M.; Zainel, H.A.; Al-Asof, S.A.; Talib, E.K. Fluid Phase Equilibria 1988, 41, 287-294.
12. Xu, S.; Wang, Y-w.; Otto, F.D.; Mather, A.E. J. Chem. Tech. Biotechno1. 1991, 51, 197-208.
13. Roberts, B.E.; Mather, A.E. Can. J. Chem. Eng. 1988, 67, 519-520.
14. Rivas, O.R.; Prausnitz, J.M. Am. Inst. Chem. Engnrs. 1979, 25, 975-984.
15. Murrieta-Guevara, F.; Romero-Martinez, A.; Trejo, A. Fluid Phase Equilibria 1988, 44, 105-115.
16. Just, G. Z. Phys. Chem. 1901, 37, 342-367.
17. Kobatake, Y.; Hildebrand, J.H. J. Phys. Chem. 1961, 65, 331-335.
18. Woukoloff, Comptes Rendus 1889, 108, 674-675.
19. Gjaldbaek, J.C. Acta Chem. Scand. 1953, 7, 537-544.
20. Dymond, J. J. Phys. Chem. 1967, 71, 1829-1831.


Fig. 1 Mole fraction solubility of carbon dioxide in various solvents containing phosphorus, silicon or sulfur at a partial pressure of gas of 101.3 kPa .
a - tributyl phosphate
b - hexamethylphosphoric triamide
c - octamethylcyclotetrasiloxane
d - tetrahydrothiophene, 1,1-dioxide (sulfolane)
e - sulfinylbismethane (dimethylsulfoxide) (20)
f - carbon disulfide
The curves showing the variation of solubility with temperature correspond to equations derived by the evaluator.

A reference line corresponding to values from the Raoult's law equation is also shown.
\begin{tabular}{|l|l|}
\hline COMPONENTS: & EVALUATOR: \\
1. Carbon dioxide; \(\mathrm{CO}_{2} ;\) \\
\begin{tabular}{ll}
{\([124-38-9]\)}
\end{tabular} & \begin{tabular}{l} 
Peter G.T. Fogg, \\
School of Applied Chemistry, \\
Polytechnic of North London, \\
Holloway Road, London, N7 8DB, U.K. \\
Silicon or Sulfur
\end{tabular} \\
July 1991
\end{tabular}

Table 1.
Solubility of carbon dioxide at a partial pressure of 101.3 kPa in solvents containing sulfur, phosphorus or silicon .
\begin{tabular}{|c|c|c|c|}
\hline Solvent & T/K & \({ }^{\text {c }} \mathrm{CO}_{2}\) & Reference \\
\hline Hexamethylphosphoric & triamide & \(0.0308 \pm 0.0030\) & * \\
\hline Tributyl phosphate & 298.15 & \(0.0334 \pm 0.0055\) & * \\
\hline Triethyl phosphate & 298.15 & 0.0275 & 2 \\
\hline Octamethylcyclotetras & \[
\begin{array}{r}
\text { iloxane } \\
298.04
\end{array}
\] & 0.02633 & 9 \\
\hline Tetrahyהrothiophene, & \[
\begin{gathered}
1,1 \text {-dioxi } \\
298.15
\end{gathered}
\] & \(0.01223 \pm 0.00008\) & * \\
\hline Carbon disulfide & 298.15 & \(0.00327 \pm 0.00004\) & * \\
\hline Sulfinylbismethane & 298.15 & 0.00908 & 20 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Phosphoric triamide,hexamethyl-; \(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{OP}\); [680-31-9]
\end{tabular} & ORIGINAL MEASUREMENTS:
\[
\begin{aligned}
& \text { Lenoir, J-Y.; Renault, P.; Renon, H. } \\
& \text { J. Chem. Eng. Data, 1971, 16, 340-2. }
\end{aligned}
\] \\
\hline VARIABLES:
\[
T / K=298.2
\] & \begin{tabular}{l}
PREPARED BY: \\
C. L. Young
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
* Calculated by compiler assuming a linear function of \(P_{\mathrm{CO}_{2}}\) vs \(x_{\mathrm{CO}_{2}}\),
\[
\text { i.e., } x_{\mathrm{CO}_{2}}(1 \mathrm{~atm})=1 / H_{\mathrm{CO}_{2}} \text {. }
\]
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{aUXILIARY information} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
A conventional gas-liquid chromatographic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retnetion time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at 1 atm . pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(]) L'Air Liquide sample, minimum purity 99.9 mole per cent. \\
(2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent. \\
ESTIMATED ERROR:
\[
\delta T / \mathrm{K}= \pm 0.1 ; \delta H / \mathrm{atm}= \pm 6 \%
\] \\
(estimated by compiler).
\end{tabular} \\
\hline & References: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS : \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
\[
[124-38-9]
\] \\
2. Hexamethylphosphoric triamide, (hexametapol); \(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{OP}\); [680-31-9]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Bryukhanova, P.A.; Nikitina A.K. \\
Zh. Prikl. Khim. (Leningrad) 1985, 58(3), 667-9.
\end{tabular} \\
\hline VARIABLES:
\[
T / K=313.15-348.15
\] & \begin{tabular}{l}
PREPARED BY: \\
P.G.T. Fogg
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
Solubilities were measured at vari ( 4053 kPa ) and interpreted by the the form
\[
\log \left(P_{2} / x_{2}\right)=\log H
\] \\
\(P_{2}\) is the partial pressure of carb carbon dioxide in the liquid phase law constant, \(\beta\) a constant and \(x_{1}\) liquid phase. Henry's law constan partial pressure of carbon dioxide in the liquid phase. \\
T/K Henry's law constant, H/atm
\end{tabular} & \begin{tabular}{l}
s pressures to a maximum of 40 atm ichevskii-Il'inskaya equation in
\[
\beta\left(1-x_{1}^{2}\right)
\] \\
dioxide, \(x_{2}\) the mole fraction of \(H\) the limiting value of the Henry's e mole fraction of hexametapol in the is taken to be the ratio of the o the mole fraction of carbon dioxide \\
\(\beta^{* *}\) \\
H/kPa*
\end{tabular} \\
\hline \[
\begin{aligned}
& \begin{array}{l}
313.15 \\
333.15 \\
348.15
\end{array} \quad 57.93 \\
& * \text { calculated by the compiler } \\
& \text { ** } \begin{array}{l}
\text { given as a positive quantity } \\
\text { be a mistake. }
\end{array}
\end{aligned}
\] & \begin{tabular}{l}
\begin{tabular}{lll}
-0.33085 & 3843 & 0.02538 \\
-0.30709 & 5078 & 0.01942 \\
-0.28876 & 5980 & 0.01658
\end{tabular} \\
the original paper. This appears to
\end{tabular} \\
\hline \multicolumn{2}{|r|}{auxiliary information} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
METHOD APPARATUS/PROCEDURE: \\
A static method was used as described in ref.(1).
\end{tabular}} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
2. Pure sample, distilled in vacuum.
\end{tabular} \\
\hline & EStimated error: \\
\hline & \begin{tabular}{l}
REFERENCES: \\
1.Freıdlin, G.N.; Bushinskii, V.I. \\
Zh. Prikl. Khim. 1970, 43(2), 385
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
\[
[124-38-9]
\] \\
2. Phosphoric acid, tributyl ester, (tributyl phosphate); \(\mathrm{C}_{12} \mathrm{H}_{2}{ }_{7} \mathrm{PO}_{4}\); [126-73-8]
\end{tabular} & ORIGINAL MEASUREMENTS:
```

Kosyakov, N. Ya.; Yushko, V.L.
Sergienko, I.D.; Khokhlov, S.F.;
Taraba, R.F.
Khim. Prom. (Moscow) 1972, 48, (6),
432-3.

``` \\
\hline VARIABLES:
\[
\begin{array}{ll}
T / K & 223.15-313.15 \\
P / \mathrm{kPa} & 13.6-101.0
\end{array}
\] & PREPARED BY: P.G.T. FOgg \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \(T / \mathrm{K}\) \\
P/Torr
\end{tabular} & a \(\quad{ }^{x} \mathrm{CO}_{2} \quad\)\begin{tabular}{c} 
Henry's law \\
constant, \\
\(/ \mathrm{kPa} *\)
\end{tabular} \\
\hline \begin{tabular}{l}
\begin{tabular}{ll}
223.15 & 102 \\
223.15 & 344 \\
223.15 & 449 \\
223.15 & 569 \\
223.15 & 682 \\
223.15 & 760 \\
223.15 & \\
233.15 & 124 \\
233.15 & 316 \\
233.15 & 491 \\
233.15 & 502 \\
233.15 & 544 \\
233.15 & 602 \\
233.15 & 631 \\
233.15 & 760 \\
233.15 &
\end{tabular} \\
* estimated by the compiler by fitt Krichevsky-Il'inskaya equation in
\[
\log _{10} \frac{P / \mathrm{kPa}}{x_{\mathrm{CO}_{2}}}=
\] \\
where \(H\) is the Henry's law constan mole fraction of tributyl phospha
\end{tabular} & \begin{tabular}{l}
\begin{tabular}{llll}
3.6 & 0.0316 & & \\
5.9 & 0.1068 & & \\
9.8 & 0.1358 & & \\
5.8 & 0.1684 & & \\
1.0 & 0.1960 & & \\
1.3 & \(0.2201 *\) & 418 \\
& & & \\
& & & \\
6.6 & 0.0264 & & \\
2.1 & 0.0681 & & \\
5.5 & 0.1055 & & \\
7.0 & 0.1099 & & \\
2.6 & 0.1165 & & \\
0.3 & 0.1279 & & \\
4.1 & 0.1323 & \(*\) & \\
& \(0.1623 *\) & & 622
\end{tabular} \\
ng the experimental data to the the form \\
\(\operatorname{og}_{20}(H / \mathrm{kPa})-\beta\left(1-x_{\mathrm{tbp}}^{2}\right)\) \\
t, \(\beta\) is a constant and \(x_{t b p}\) is the
\end{tabular} \\
\hline AUXILIARY & NFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Solubility measured by a static method described in the literature (1).
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Purified by freezing. Chromatographic analysis indicated that impurities did not exceed 0.1 vol. \(\%\) \\
2. Pure grade material used. \\
ESTIMATED ERROR: \\
REFERENCES: \\
1. Braude, G. E.; Shakhova, S.F. \\
Khim. Prom. 1961, (3), 177.
\end{tabular} \\
\hline
\end{tabular}

COMPONENTS:
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]
2. Phosphoric acid, tributyl ester, (tributyl phosphate); \(\mathrm{C}_{12} \mathrm{H}_{2} 7 \mathrm{PO}_{4}\); [126-73-8]

ORIGINAL MEASUREMENTS:
Kosyakov, N. Ya.; Yushko, V.L. Sergienko, I.D.; Khokhlov, S.F.; Taraba, R.F.

Khim. Prom. (Moscow) 1972, 48, (6), 432-3.

EXPERIMENTAL VALUES:
\begin{tabular}{|c|c|c|c|c|}
\hline T/K & P/Torr & \(\mathrm{P} / \mathrm{kPa}\) & \({ }^{\mathrm{CO}_{2}}\) & Henry's law constant \({ }^{\text {a }}\), \(H\) \(/ \mathrm{kPa}\) \\
\hline 253.15 & 124 & 16.6 & 0.0145 & \\
\hline 253.15 & 369 & 49.2 & 0.0422 & \\
\hline 253.15 & 433 & 57.8 & 0.0527 & \\
\hline 253.15 & 500 & 66.7 & 0.0593 & \\
\hline 253.15 & 660 & 88.0 & 0.0791 & \\
\hline 253.15 & 698 & 93.0 & 0.0774 & \\
\hline \multirow[t]{2}{*}{253.15} & 760 & 101.3 & 0.0887 * & \\
\hline & & & & 1137 \\
\hline 273.15 & 156 & 20.7 & 0.0110 & \\
\hline 273.15 & 440 & 58.7 & 0.0308 & \\
\hline 273.15 & 462 & 61.6 & 0.0352 & \\
\hline 273.15 & 600 & 80.0 & 0.0440 & \\
\hline 273.15 & 644 & 85.9 & 0.0444 & \\
\hline 273.15 & 718 & 95.7 & 0.0510 & \\
\hline \multirow[t]{2}{*}{273.15} & 760 & 101.3 & 0.0546 * & \\
\hline & & & & 1866 \\
\hline 293.15 & 398 & 53.0 & 0.0207 & \\
\hline 293.15 & 562 & 75.0 & 0.0295 & \\
\hline 293.15 & 620 & 82.7 & 0.0303 & \\
\hline 293.15 & 676 & 90.1 & 0.0360 & . \\
\hline 293.15 & 758 & 101.0 & 0.0396 & \\
\hline \multirow[t]{2}{*}{293.15} & 760 & 101.3 & 0.0396 * & \\
\hline & & & & 2650 \\
\hline 313.15 & 191 & 25.5 & 0.0066 & \\
\hline 313.15 & 176 & 23.4 & 0.0084 & \\
\hline 313.15 & 378 & 50.4 & 0.0132 & \\
\hline 313.15 & 520 & 69.3 & 0.0185 & \\
\hline 313.15 & 653 & 87.1 & 0.0220 & \\
\hline 313.15 & 658 & 87.7 & 0.0264 & \\
\hline 313.15 & 756 & 100.7 & 0.0273 & \\
\hline 313.15 & 760 & 101.3 & 0.0275 * & \\
\hline & & & & 3384 \\
\hline
\end{tabular}
* estimated by the compiler by fitting the experimental data to the Krichevsky-Il'inskaya equation in the form
\[
\log _{10} \frac{P / \mathrm{kPa}}{x_{\mathrm{CO}_{2}}}=\log _{10}(H / \mathrm{kPa})-\beta\left(1-x_{\mathrm{tbp}}^{2}\right)
\]
where \(H\) is the Henry's law constant, \(\beta\) is a constant and \(x_{t b p}\) is the
mole fraction of tributyl phosphate.


\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Esters of phosphoric acid.
\end{tabular} & ORIGINAL MEASUREMENTS:
Lenoir, J-Y.; Renault, P.; Renon, H.
J. Chem. Eng. Data, 1971, 16, 340-2. \\
\hline VARIABLES:
\[
T / K=298.2-343.2
\] & \begin{tabular}{l}
PREPARED BY: \\
C. L. Young
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
* Calculated by compiler assuming a linear function of \(P_{\mathrm{CO}_{2}}\) vs \(x_{\mathrm{CO}_{2}}\), i.e., \({ }^{x} \mathrm{CO}_{2}(1 \mathrm{~atm})=1 / \mathrm{H}_{\mathrm{CO}_{2}}\).
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{auxiliary information} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
A conventional gas-liquid chromatographic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at 1 atm . pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) L'Air Liquide sample, minimum purity 99.9 mole per cent. \\
(2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent. \\
ESTIMATED ERROR:
\[
\delta T / \mathrm{K}= \pm 0.1 ; \delta H / \mathrm{atm}= \pm 6 \%
\] \\
(estimated by compiler).
\end{tabular} \\
\hline & REFERENCES: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Octamethylcyclotetrasiloxane;
\[
\mathrm{C}_{8} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Si}_{4} ; \quad[556-67-2]
\]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Wilcock, R. J.; McHale, J. L.; Battino, R.; Wilhelm, E. \\
Fluid Phase Equilib. 1978, 2, 225-230.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{array}{rlr}
T / K: & 292.15-313.05 \\
p / \mathrm{kPa}: & 101.325 \text { (1 } \mathrm{atm})
\end{array}
\] & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|r|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The apparatus is based on the design of Morrison and Billett (1), and the version used îs described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). \\
Degassing. Up to \(500 \mathrm{~cm}^{3}\) of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid \(\mathrm{N}_{2}\) trap until the permanent gas residual pressure drops to 5 microns. \\
Solubility Determination. The degassed solvent is passed in a thin film down a glass spiral tube containing the solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Air Products and Chemicals, Inc. Stated to be 99.8 mole percent minimum purity. \\
(2) Octamethylcyclotetrasiloxane. General Electric Co. Distilled, density at 298.15 K was \(0.9500 \mathrm{~g} \mathrm{~cm}^{-3}\). \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & =0.03 \\
\delta p / m m H g & =0.5 \\
\delta x_{1} / x_{1} & =0.1
\end{aligned}
\] \\
REFERENCES: \\
1. Morrison, T. J.i Billett, F. \\
J. Chem. Soc. 1948, 2033. \\
2. Battino,R.;Evans,F.D.;Danforth,W.F. J.Am.Oil Chem.Soc. 1968, 45, 830. \\
3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Tetrahydrothiophene, 1,1dioxide (Sulfolane); \(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}\); [126-33-0]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
Rivas,O.R.; Prausnitz, J.M.
Am. Inst. Chem. Engnrs. J.
1979, 25, 975-984.
``` \\
\hline VARIABLES:
\[
T / K=303.15-373.15
\] & PREPARED BY: C.L. Young \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \[
\begin{array}{lr}
303.15 & 9.26 \\
323.15 & 13.30 \\
348.15 & 18.89 \\
373.15 & 25.07 \\
& \\
& \\
\text { at a partial pressure of } 101 \\
\text { compiler assuming Henry's lav } \\
\text { pressure. }
\end{array}
\] & \begin{tabular}{l}
\[
\begin{aligned}
& 0.01094 \\
& 0.007618 \\
& 0.005364 \\
& 0.004042
\end{aligned}
\] \\
. 3 kPa calculated by w applies at that
\end{tabular} \\
\hline \multicolumn{2}{|r|}{auxilitary information} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Volumetric apparatus with a fused quartz precision bourdon pressure gauge. Solubility apparatus carefully thermostatted. Solvent degassed in situ. Apparatus described in ref. (I) and modifications given in source.
\end{tabular}} & \begin{tabular}{l}
source and purity of materials: \\
1. and 2. Purity at least 99 mole per cent.
\end{tabular} \\
\hline & ESTIMATED ERROR:
\[
\delta T / K= \pm 0.05 ; \quad \delta x_{\mathrm{CO}_{2}}= \pm 1 \% .
\] \\
\hline & \begin{tabular}{l}
REFERENCES: \\
1. Cukor, P.M.; Prausnitz, J.M. \\
Ind. Eng. Chem. Fundam. 1971, \\
10, 638 .
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline COMPONENTS: & ORIGINAL MEASUREMENTS: \\
\hline 1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] & \begin{tabular}{l}
Murrieta-Guevara, F.; \\
Romero-Martinez, A.; Trejo, A.
\end{tabular} \\
\hline 2. Tetrahyảrothiophene, 1,1dioxide, (Sulfolane); \(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}\); [126-33-0] & \[
\begin{aligned}
& \text { Fluid Phase Equilibria, 1988, 44, } \\
& 105-115 .
\end{aligned}
\] \\
\hline VARIABLES: & PREPARED BY: \\
\hline \[
\begin{aligned}
& T / \mathrm{K}=303.15-373.15 \\
& P / \mathrm{kPa}=81.2-2263.4
\end{aligned}
\] & P.G.T. Fogg \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \[
\begin{array}{rr}
\text { T/K } & \text { Henry's } \\
H / \mathrm{MPa}
\end{array}
\] & law \(\underset{H / \mathrm{kPa}}{\text { constant }} \quad{ }^{\mathrm{CO}} \mathrm{CO}_{2}(101.3 \mathrm{kPa})^{*}\) \\
\hline \(303.15 \quad 8.61\) & \(8610 \quad 0.01177\) \\
\hline \(323.15 \quad 13.17\) & 13170 0.00769 \\
\hline 373.15 22.39 & 22390 0.00453 \\
\hline * estimated by the compiler & \(\mathrm{P}_{\mathrm{CO}_{2}} / \mathrm{H}\) \\
\hline \multicolumn{2}{|c|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The apparatus and method of calculation have been described in previous publications (refs. 1 and 2). The limiting values of Henry's law constant which are given above were found by fitting the experimental data to the Krichevsky-Kasarnovsky equation (3).
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Supplied by Infra S.A.; reported purity 99.7 mol\%. \\
2. Purity better than 99.5 mol\%. \\
ESTIMATED ERROR
\[
\begin{aligned}
& \delta T / \mathrm{K}= \pm 0.02 \text { to } 343 \mathrm{~K} ; \pm 0.5 \mathrm{at} \\
& \delta P / \mathrm{kPa}= \pm 3.5
\end{aligned}
\] \\
REFERENCES: \\
1. Murrieta-Guevara, F.; Trejo, A., J. Chem. Eng. Data, 1984, 29, 456. \\
2. Gonzalez, R.; \\
Murrieta-Guevara, F.; Parra, O.; \\
Trejo, A., Fluid Phase \\
Equilibria, 1987, 34, 69. \\
3. Prausnitz, J.M.; Lichtenthaler, R.N.; Gomes de Azevedo, E. Molecular Thermodynamics of Fluid-Phase Equilibria, 1986 Prentice-Hall, Englewood Cliffs, NJ, USA; Chap. 7.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS : \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Tetrahydrothiophene, 1,1-dioxide (Sulfolane): \(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{SO}_{2}\); [126-33-0]
\end{tabular} & ORIGINAL MEASUREMENTS:
\[
\begin{aligned}
& \text { Kassim, D.M.; Zainel, H.A.; } \\
& \text { Al-Asof, S.A.; Talib, E.K. } \\
& \text { Fluid Phase Equilibria } \\
& \text { 1988, 41, 287-294. }
\end{aligned}
\] \\
\hline VARIABLES:
\[
T / K=303.15-333.15
\] & \begin{tabular}{l}
PREPARED BY: \\
C. L. Young
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
Mole frac \\
T/K \\
in liquid
\end{tabular} & \begin{tabular}{l}
tion of carbon dioxide \\
at a partial pressure of 101.3 kPa \({ }^{2} \mathrm{CO}_{2}\) \\
(1 atm)
\end{tabular} \\
\hline & \[
\begin{aligned}
& 0.0111 \\
& 0.0089 \\
& 0.0075 \\
& 0.0064
\end{aligned}
\] \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Falling film flow apparatus similar to that of Morrison and Billet (1). Apparatus consisted of (i) degassing section in which solvent could be degassed by freezing and thawing under vacuum and (ii) absorption section. The latter consisted of a gas buret and absorption spiral. Mole fraction solubility corrected to 1 atm partial pressure by assuming Henry's law was valid.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Purity 99.99 mole per cent. \\
2. Fluka AG puriss grade sample, \\
\begin{tabular}{l}
purity better than 99 mole \\
per cent.
\end{tabular} \\
\hline \begin{tabular}{l}
ESTIMATED ERROR: \\
\begin{tabular}{l}
\(\delta T / K=\) \\
(estimated by compiler).
\end{tabular} \\
\hline REFERENCES: \\
1. Morrison, T.J.; Billet, F.J. \\
J. Chem. Soc. \(1948, ~ 2033 . ~\)
\end{tabular}
\end{tabular} \\
\hline
\end{tabular}
```

COMPONENTS:
1. Carbon dioxide; CO
[124-38-9]
2. Tetrahydrothiophene, 1,1-
dioxide, (Sulfolane); C4}\mp@subsup{\textrm{H}}{8}{}\mp@subsup{\textrm{O}}{2}{}\textrm{S}
[126-33-0]
VARIABLES:
T/K = 313.15, 373.15
P/kPa = 105-5900
EXPERIMENTAL VALUES:

T/K	P/kPa*	Mole fraction of $\mathrm{CO}_{2}$ in solution $x_{1}$	```Henry's constant, H,' /MPa```
313.15	105	0.00971	10.4
	$101.3{ }^{\text {T }}$	0.0094	
	103	0.00985	
	185	0.01770	
	278	0.02610	
373.15	249	0.01040	25.8
373.15	$101.3^{\text {T }}$	0.0040	

*The partial pressure of carbon dioxide was approximately equal to the total pressure under the conditions of the measurements.
Measurements were also carried out at higher pressures to a maximum of 5900 kPa .
$\|_{\text {Estimated }}$ by the compiler on the assumption that the variation of mole fraction solubility with partial pressure of carbon dioxide was approximately linear to a mole fraction solubility of 0.01 .
thimiting values of Henry's constant estimated by the authors as

$$
H=\lim _{x_{1} \rightarrow 0}\left[f_{1} / x_{1}\right]
$$

where $f_{1}=$ fugacity of $\mathrm{CO}_{2}$
$x_{1}=$ mole fraction of $\mathrm{CO}_{2}$ in solution.

```

\section*{AUXILIARY INFORMATION}

\section*{METHOD/APPARATUS/PROCEDURE:}

The apparatus was similar to that described by Jou et al.(1). The sulfolane was introduced into a windowed equilibrium cell in a constant temperature bath. Gas was added until sufficient pressure was reached. The gas was circulated by a magnetic pump and bubbled through the liquid until the pressure remained constant for several hours. The vapor phase was then analysed by gas
chromatography. Samples of the liquid phase were withdrawn, added to a solution of sodium hydroxide and the amount of carbon dioxide in the samples found by titration.

SOURCE AND PURITY OF MATERIALS:
2. Sulfolane supplied by Aldrich Chemical Company; purity 99\%

ESTIMATED ERROR:
\(\delta x_{1} / x_{1}= \pm 2-3 \% \quad\) (authors)

\section*{REFERENCES:}
1. Jou, F.-Y.; Mather, A.E.; Otto, F.D. Ind. Eng. Chem. Process Des. Dev. 1982, 21, 539.

COMPONENTS:
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]
2. Tetrahydrothiophene, 1,1dioxide (Sulfolane); \(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}\); [126-33-0]

VARIABLES:
\(T / K=303.2-359.9\)
\(P / \mathrm{kPa} \simeq 100\)
EXPERIMENTAL VALUES:
\begin{tabular}{cccc}
\(t /{ }^{\circ} \mathrm{C}\) & \(T / \mathrm{K}\) & \begin{tabular}{c}
Solubility \\
\(/ \mathrm{kPa} \mathrm{m}^{3} \mathrm{kmol}^{-1}\)
\end{tabular} & \({ }^{x} \mathrm{CO}_{2}\) at \(P_{\mathrm{CO}_{2}}=101.3 \mathrm{kPa}{ }^{*}\) \\
\hline 30.0 & 303.2 & 911.9 & 0.01050 \\
40.2 & 313.4 & 1116.1 & 0.00866 \\
55.4 & 328.6 & 1429.3 & 0.00684 \\
70.5 & 343.7 & 1806.9 & 0.00548 \\
86.7 & 359.9 & 2276.7 & 0.00442
\end{tabular}
* estimated by the compiler.

\section*{AUXILIARY INFORMATION}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Carbon disulfide; \(\mathrm{Cs}_{2} ;\) [75-15-0]
\end{tabular}} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Woukoloff, (No initial given) \\
Comptes rendus 1889, 108, \\
674-675.
\end{tabular} \\
\hline \multicolumn{4}{|l|}{VARIABLES:
\[
\begin{aligned}
T / \mathrm{K}= & 280.23-293.74 \\
p_{1} / \mathrm{kPa}= & 13.48-63.73 \\
& (101.11-478.25 \mathrm{mmHg})
\end{aligned}
\]} & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{5}{|l|}{EXperimental values:} \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{\(\begin{array}{lllll}13.04 & 286.19 & 478.05 & 0.84427 & 1.342 \\ 13.04 & 286.19 & 195.8 & 0.33244 & 1.290\end{array}\)} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{lllll}
20.53 & 293.68 & 410.25 & 0.67281 & 1.246 \\
20.59 & 293.74 & 101.11 & 0.16723 & 1.257
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{\({ }^{1}\) The pressure in the paper is given as 918.5 mmHg , however, other values in the paper indicate it should be 195.8 mmHg . The Bunsen coefficient values were calculated by the compiler.} \\
\hline \multicolumn{5}{|r|}{auxiliary information} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l|c}
\hline METHOD/APPARATUS/PROCEDURE: & SOURCE AND PURITY OF MATERIALS: \\
No information. & (1) Carbon dioxide. No information. \\
Although the author does not describe \\
the method, he does clearly state \\
that the volume of gas absorbed is \\
reduced to the standard conditions of \\
\(0{ }^{\circ} \mathrm{C}\) and 760 mmHg.
\end{tabular}} \\
\hline & & & & ESTIMATED ERROR: \\
\hline & & & & References: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) \(\underset{[75-15-0]}{\text { Carbon disulfide; } \mathrm{CS}_{2} \text {; }}\)
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
Just,'G.
2. Phys. Chem. 1901, 37, 342-367.
``` \\
\hline VARIABLES:
\[
\begin{aligned}
T / K & =288.15-298.15 \\
P_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author measured the Ostwald coefficient at a pressure of about 746 mmHg . The compiler assumed the Ostwald coefficient to be independent of pressure, and calculated the mole fraction and Bunsen coefficient values at \(101.325 \mathrm{kPa}(1 \mathrm{~atm})\) partial pressure of the gas.
\end{tabular}} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. \\
The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experiment by pouring the solvent into a graduated flask.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(l) Carbon dioxide. Generated in a Kipp apparatus using marble and hydrochloric acid. \\
(2) Carbon disulfide. No information. \\
ESTIMATED ERROR:
\[
\delta L / L=0.03 \text { (compiler) }
\] \\
REFERENCES: \\
1. Timofejew, W. \\
2. Phys. Chem. 1890, 6, 141. \\
2. Steiner, P . \\
Ann. Phys. (Leipzig) 1894, 52, 275.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Carbon disulfide; \(\mathrm{CS}_{2}\); [75-15-0]
\end{tabular} &  \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =298.05-298.45 \\
p_{1} / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
J. Chr. Gjaldbaek
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline  & \begin{tabular}{cc}
\begin{tabular}{c} 
Bunsen \\
\begin{tabular}{c} 
Coefficient \\
\((\mathrm{STP}) \mathrm{cm}^{-3} \mathrm{~atm}^{-1}\)
\end{tabular} \\
\hline 1.21
\end{tabular} \begin{tabular}{c}
\begin{tabular}{c} 
Ostwald- \\
Coefficient \\
\(L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}\)
\end{tabular} \\
1.21
\end{tabular} & \begin{tabular}{l}
1.32 \\
1.22
\end{tabular} \\
& 1.32
\end{tabular} \\
\hline 1 The mole fraction solubility val pressure of 101.325 kPa by the is obeyed. & ues were adjusted to a gas partial compiler assuming that Henry's law \\
\hline AUXILIARY & INFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
A calibrated all-glass combined manometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as confining liquid. The solvent was degassed in the apparatus. \\
The absorbed volume of gas is calculated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent is determined by the weight of displaced mercury. \\
The mole fraction solubility values are at 1 atm assuming Henry's law is obeyed. \\
Details of the apparatus and procedure are given in ref. 1 and 2.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Prepared from potassium bicarbonate (analytical reagent) and concentrated sulfuric acid. 99.9 per cent \(\mathrm{CO}_{2}\). \\
(2) Carbon disulfide. Merck and Co. Analytical reagent. B.p. \((760 \mathrm{mmHg}) /{ }^{\circ} \mathrm{C}=46.21-46.26\). \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & = \pm 0.05 \\
\delta x_{1} / x_{1} & = \pm 0.015
\end{aligned}
\] \\
REFERENCES: \\
l. Lannung, A. \\
J. Am. Chem. Soc. 1930, 52, 68. \\
2. Gjaldbaek, J. C. \\
Acta Chem. Scand. 1952, 6, 623.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Carbon disulfide; \(\mathrm{CS}_{2} ;\) [75-15-0]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
Kobatake, Y.; Hildebrand, J. H.
J. Phys. Chem. 1961, 65, 331-335.
``` \\
\hline \(\begin{aligned} \text { VARIABLES: } T / K: & 281.65-306.36 \\ P / \mathrm{kPa}: & 101.325(1 \mathrm{~atm})\end{aligned}\) & \begin{tabular}{l}
PREPARED BY: \\
M. E. Derrick \\
H. L. Clever
\end{tabular} \\
\hline EXPERIMENTAL VALUES: & \begin{tabular}{ll}
Bunsen \\
fficient \\
STP) \(\mathrm{cm}^{-3} \mathrm{~atm}^{-1}\) & \begin{tabular}{c}
Ostwald \\
Coefficient
\end{tabular} \\
& \(\frac{L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}}{1.431}\) \\
1.325 & 1.476 \\
1.22 & \\
1.11 & \\
\hline
\end{tabular} \\
\hline \begin{tabular}{l}
The Bunsen and Ostwald coefficients Smoothed Data: For use between 281.6
\[
\ln x_{1}=-8.3618+7.8
\] \\
The standard error about the regressi
\end{tabular} & ```
ere calculated by the compiler.
5 and 306.36 K.
588/(T/100K)
on line is 2.64 x 10-5.
ol Fraction
103}\mp@subsup{x}{1}{
``` \\
\hline \multicolumn{2}{|r|}{AUXILIARY INFORMATION} \\
\hline METHOD/APPARATUS/PROCEDURE: The apparatus consists of a gas measuring buret, an absorption pipet, and a reservoir for the solvent. The buret is thermostated at \(25^{\circ} \mathrm{C}\), the pipet at any temperature from 5 to \(30^{\circ} \mathrm{C}\). The pipet contains an iron bar in glass for magnetic stirring. The pure solvent is degassed by freezing with liquid nitrogen, evacuating, then boiling with a heat lamp. The degassing process is repeated three times. The solvent is flowed into the pipet where it is again boiled for final degassing. Manipulation of the apparatus is such that the solvent never comes in contact with stopcock grease. The liquid in the pipet is sealed off by mercury. Its volume is the difference between the capacity of the pipet and the volume of mercury that confines it. Gas is admitted into the pipet. Its exact amount is determined by \(P-V\) measurements in the buret before and after introduction of the gas into the pipe Equilibrium is attained within 24 hou & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. California Dry Ice Co. Standard grade. Dried by passing through a trap at dry ice-acetone temperature, and tubes containing \(\mathrm{CaCl}_{2}\) then \(\mathrm{P}_{2} \mathrm{O}_{5}\). The dried gas was distilled at liquid \(N_{2}\) temperature several times. \\
(2) Carbon disulfide. Mallinckrodt Chemical Works. Analytical Reagent grade. Shaken successively with Hg and \(\mathrm{HgCl}_{2}\), filtered, distilled, and stored over Hg more than 5 days before use. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & =0.02 \\
\delta x_{1} / x_{1} & =0.003
\end{aligned}
\] \\
t. The stirrer is set in motion.
\end{tabular} \\
\hline
\end{tabular}


ORIGINAL MEASUREMENTS:
Lenoir, J-Y.; Renault, P.; Renon, H. J. Chem. Eng. Data, 1971, 16, 340-2.
2. Sulfinylbismethane;
(Dimethylsulfoxide); \(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}\); [67-68-5]
\begin{tabular}{|l|ll|}
\hline VARIABLES: & PREPARED BY: & \\
& & \\
& & \\
\hline
\end{tabular}

EXPERIMENTAL VALUES:


COMPONENTS :
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9]
2. Mixed Solvents

\section*{EVALUATOR:}

Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, Jondon, N7 8DB, U.K

July 1991

\section*{CRITICAL EVALUATION:}

\section*{Solubility of carbon dioxide in mixed solvents}

Sichkova and co-workers \((1,2)\) have measured the solubility of carbon dioxide in solutions of 2 -aminoethanol in various organic solvents. Measurements on solutions in methanol were made at partial pressures of carbon dioxide from 6.7 kPa to 101.3 kPa , temperatures from 223.2 K to 293.2 K and concentrations of 2 -aminoethanol of 5,15 and \(18 \mathrm{wt} \mathrm{\%}\). At a fixed temperature and a fixed concentration of 2 -aminoethanol there is relatively little change in the mole fraction solubility of carbon dioxide with change in pressure over the pressure range studied. At 293.2 K and \(15 \mathrm{wt} \mathrm{\%}\) of 2 -aminoethanol the mole fraction solubility at 6.7 kPa is 0.0391 and at 101.3 kPa is 0.0629 . This behaviour is similar to that of aqueous solution of aminoalkanols. At a fixed partial pressure of carbon dioxide and a fixed temperature, extrapolation of mole fraction solubility of carbon dioxide to zero concentration of 2 -amimoethanol gives a solubility close to that predicted from the smoothing equation recommended for solubility in methanol (see page 128). Solutions of 2 -aminoethanol in other solvents were studied at one concentration of 2 -aminoethanol \((2.5\) mol \(\mathrm{dm}^{-3}\) ) and, in most cases, at one temperature, 293.2 K , only. The nature of the solvent affects the absorption of carbon dioxide to some extent. At \(293 \mathrm{~K}, 99.1 \mathrm{kPa}\) the solubility in benzenemethanol solution is \(30.7 \mathrm{~cm}^{3}\) gas (corrected to 101.3 kPa and 273.2 K )/ \(\mathrm{cm}^{3}\) of solvent. The corresponding solubility in \(N, N\)-dimethylformamide solution at 98 kPa is \(40.6 \mathrm{~cm}^{3} / \mathrm{cm}^{3}\). There is no reason to doubt the reliability of the measurements on 2 -aminoethanol solutions reported by Sichkova and co-workers. The data may be accepted on a provisional basis.

Rivas and Prausnitz (3) measured solubility in solutions of 2-aminoethanol in 1 -methyl-2-pyrrolidinone. This system was also studied by Sichkova et al. Data are presented in the form of small scale graphs. The graph for solutions containing 3 and 5 wto of 2 -aminoethanol shows the variation of mole fraction of carbon dioxide with partial pressure of carbon dioxide for each solution. A second graph for a solution of \(15 \mathrm{wt} \%\) of aminoethanol shows the variation of moles of \(\mathrm{CO}_{2} / \mathrm{dm}^{3}\) with partial pressure of carbon dioxide. The first graph indicates that absorption of carbon dioxide per unit volume of solvent increases with concentration of 2-aminoethanol whereas the second graph indicates that the absorption in the 15 wto solution is less than in the \(5 \%\) solution for the same partial pressure of carbon dioxide. In the opinion of the evaluator the second graph should also be labelled to show the variation of mole fraction solubility of carbon dioxide with partial pressure of gas. The variation is then in accord with the variation in solubility in a solution of approximately 13 wt\% reported by Sichkova et al.

Rivas and Prausnitz (4) also measured the solubility of carbon dioxide in a solution of 2-(2-aminoethoxy)-ethanol at 263.1 K and 298.3 K and pressures from 7.9 kPa to 35.0 kPa . These data are consistent with data for solutions of 2 -aminoethanol.

Takahashi et al.(5) measured solubility of carbon dioxide in benzene, tetrachloromethane, 1-propanol, 1-octanol, 2-methyl-1-propanol and formamide and mixtures of pairs of these solvents. They used an indirect method in which the rate of absorption of gas was measured. The solubility data for the pure solvents are low compared with values found by other workers using conventional methods. The mole fraction solubility in ethanol at 298.2 K ; 101.3 kPa from this work is 0.00624 compared with a smoothed value from other sources of 0.00727 . The value for benzene is 0.00824 compared with a smoothed value of 0.00927 . Viscosity of mixtures was also measured. The authors found a correlation between the variation of their solubility values and variation of viscosity as composition of a mixture was varied.
\begin{tabular}{|l|l|}
\hline COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2} ;\) \\
[124-38-9]
\end{tabular}\(\quad\)\begin{tabular}{l} 
EVALUATOR: \\
Peter G.T. Fogg, \\
School of Applied Chemistry; \\
Polytechnic of North London; \\
Holloway Road, London, N7 8DB, U.K. \\
July 1991
\end{tabular}

\section*{CRITICAL EVALUATION:}

Koudelka (6) measured solubilities in pure samples of methanol, 2-propanone, trichloromethane, and benzene and in mixtures of pairs of these solvents. Measurements were carried out at 293.15 K and data given for a partial pressure of gas of 101.3 kPa . Solubility data on the pure solvents are in good accord with data obtained by other workers. It is therefore likely that data for the mixtures are reliable. In all cases the variation of mole fraction solubility of carbon dioxide with molar composition of the mixed solvent lay on smooth curves. In one case, that of mixtures of methanol and trichloromethane, the mole fraction solubility of carbon dioxide passes through a minimum.

Byrne et al.(7) measured Ostwald coefficients for dissolution of carbon dioxide in solutions of cephalin, lecithin or cholesterol in benzene. In each case the Ostwald coefficient was lower than the value for pure benzene. Similar measurements were made of the solubility of cholesterol in 2-methyl-1-propanol but, in this case, the added solid did not affect the value of the Bunsen coefficient. There is no reason to doubt the reliability of this work but no other measurements on these systems are available for comparison.

Rosenthal (8) measured the effects on the solubility of carbon dioxide of adding polymeric material to various solvents. Cellulose acetate lowered the Ostwald coefficient for dissolution in \(N, N\)-dimethylformamide and for dissolution in 2 -propanone. Polystyrene and polyisobutylene both lowered the coefficient for dissolution in benzene. Polyacrylonitrile raised the coefficient for dissolution in \(N, N\)-dimethylformamide. In all cases the effects were small. The addition of 0.0987 g of polystyrene of relative molecular mass 180000 lowered the Ostwald coefficient for dissolution in benzene from 2.66 to 2.44 at 293.15 K . No similar measurements are available to confirm these results. However the measurements of solubility in the pure liquids, in the absence of polymeric material, which was carried out as part of the same research, are in good agreement with measurements by other workers.

Rosenthal (8) measured the solubility of carbon dioxide in solutions of sodium iodide in 2-propanone. The molal concentration of sodium iodide varied from 0.55 to 2.07 . Ostwald coefficients decreased with addition of sodium iodide with the Sechenov constant ranging from 0.119 to 0.129 . Addition of sodium iodide to \(N, N\)-dimethylformamide also reduced the Ostwald coefficient of carbon dioxide. The Sechenov constant for a solution saturated with sodium iodide, calculated from the solubility measurements, is 0.199 . These measurements appear to be reliable but need confirmation.

Rosenthal (8) also investigated the effect of adding octadecanoic acid to 2-propanone and to \(N, N\)-dimethylformamide. The Ostwald coefficient for solutions in \(N, N\)-dimethylformamide passed through a maximum with increasing concentration of octadecanoic acid. Perhaps this behaviour was due to an increasing formation of micelles as the concentration of octadecanoic acid was increased. Addition of octadecanoic acid caused a decrease in the ostwald coefficient for dissolution in 2-propanone at the two soncentrations of acid which were studied. Addition of a mole fraction of 0.00506 of acid to 2 -propanone caused the Ostwald coefficient to fall from 6.88 to 5.01. Further addition to give a mole fraction of acid of 0.00805 caused a much smaller fall in the Ostwald coefficient to 4.93. These systems would bear re-investigation.

Kosakewitsch (9) measured solubility at 288.15 K and a partial pressure of 101.3 kPa in methanol containing various proportions of lithium chloride, bromide or iodide or sodium iodide. Maximum mole ratios of salt to

COMPONENTS:
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9]
2. Mixed Solvents

\section*{EVALUATOR:}

Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7'8DB, U.K.

July 1991

\section*{CRITICAL EVALUATION:}
methanol were LiCl:0.0917, \(\mathrm{JiBr}: 0.1031\), LiI:0.0241, NaI:0.0835. The solubility in solutions of these salts in ethanol at 293.15 K and 101.3 kPa was also measured. Maximum mole ratios in this case were LiCl:0.1511, LiBr:0.0642, LiI:0.1040, NaI:0.0844. The evaluator has found that plots of \(\ln\) (mole ratio solubility) against the mole ratio concentration of salt in methanol are close to straight lines. Under these conditions solubility in methanol approximates to a Sechenov type relationship i.e. \(\ln \left(\right.\) mole ratio \(\left.\mathrm{CO}_{2} / \mathrm{CH}_{3} \mathrm{OH}\right)=A-\mathrm{B}\left(\right.\) mole ratio \(\left.\mathrm{MX} / \mathrm{CH}_{3} \mathrm{OH}\right)\)
( \(M X=\) salt; \(A \& B\) are constants)
Addition of salt decreases the solubility of the gas in each case and there is negligible differences between the effects of the different salts. The value of \(A\) is -4.798. The average value of \(B\) is 7.368.

Solubility in ethanol follows similar relationships to a maximum mole ratio of salt to ethanol of about 0.06. The value of \(A\) is -4.869 .
The value of \(B\) is about 6.173 for Licl, LiBr and NaI but is about 8.193
for LiI. The values of \(B\) decrease at higher concentrations of salt.
No other measurements of the solubility of carbon dioxide in solutions of salts in methanol or ethanol are available to the evaluator for a direct comparison. However there is good agreement between the author's values of solubility in pure methanol and in pure ethanol and values reported by other workers. The mole fraction solubility in methanol at 288.15 K from Kosakewitsch's work is 0.00818 . The value from the smoothing equation given by the evaluator on page 128 is \(0.0080 \pm 0.0014\). The mole fraction solubility in ethanol at 293.15 K from the work is 0.00762 compared with a value of \(0.00789 \pm 0.00002\) from the equation for solubility in ethanol on page 128 .

\section*{REFERENCES}
1. Sichkova, O.P.; Shinelis, A.F.; Leites, I.L. Tr. Nauch.-Issled. Proekt. Inst. Azotn. Prom. Prod. Org. Sin. 1972, No.17, 125-135.
2. Sichkova, O.R.; Shinelis, A.F.; Voskresenskaya, N.S.; Leites, I.L. Khim. Prom. (Moscow) 1984, (4), 207-209.
3. Rivas, O.R.; Prausnitz, J.M. Am. Inst. Chem. Engnrs. J. 1979, 25, 975-984.
4. Rivas, O.R.; Prausnitz, J.M. Ind. Eng. Chem. Fundam. 1979, 18, 289-292.
5. Takahashi, M.; Kobayashi, Y.; Takeuchi, H. J. Chem. Eng. Data 1982, 27, 328-331.
6. Koudelka, L. Chem. Zvesti 1964, 18, 178-185.
7. Byrne, J.E.; Battino, R.; Danforth, W.F. J. Chem. Thermodyn. 1974, 6, 245-250.
8. Rosenthal, W. Thes. Fac. Sci. Univ. Strasbourg (France) 1954.
9. Kosakewitsch, P.P. Zeit. Phys. Chem. (A) 1929, 143, 216-224.

\section*{COMPONENTS:}
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]
2. 2-Aminoethanol, (monoethanolamine); \(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NO}\); [141-43-5]
3. Methanol; \(\mathrm{CH}_{4} \mathrm{O}\); [67-56-1]

VARIABLES:
\(T / K=223.2-293.2\)
\(P / \mathrm{kPa}=0-103 \mathrm{kPa}\)
wt\% MEA \(=5-18\)

\section*{ORIGINAL MEASUREMENTS:}

Sichkova, O.P.; Shinelis, A.F.; Voskresenskaya, N.S.; Leites, I.L.

Khim. Prom. (Moscow) 1984, (4), 207-209.

PREPARED BY:
P.G.T. Fogg

EXPERIMENTAL VALUES:

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{20}{*}{5} & \multirow[t]{5}{*}{223.2} & 0.8650 & 50 & 6.7 & 16.9 & 0.0280 \\
\hline & & 0.8650 & 100 & 13.3 & 19.2 & 0.0316 \\
\hline & & 0.8650 & 300 & 40.0 & 27.7 & 0.0451 \\
\hline & & 0.8650 & 600 & 80.0 & 40.4 & 0.0644 \\
\hline & & 0.8650 & 760 & 101.3 & 47.2 & 0.0746 \\
\hline & \multirow[t]{5}{*}{243.2} & 0.8465 & 50 & 6.7 & 15.0 & 0.0255 \\
\hline & & 0.8465 & 100 & 13.3 & 16.1 & 0.0272 \\
\hline & & 0.8465 & 300 & 40.0 & 19.8 & 0.0334 \\
\hline & & 0.8465 & 600 & 80.0 & 25.8 & 0.0431 \\
\hline & & 0.8465 & 760 & 101.3 & 28.7 & 0.0477 \\
\hline & \multirow[t]{5}{*}{263.2} & 0.8264 & 50 & 6.7 & 11.8 & 0.0207 \\
\hline & & 0.8264 & 100 & 13.3 & 13.6 & 0.0237 \\
\hline & & 0.8264 & 300 & 40.0 & 16.4 & 0.0285 \\
\hline & & 0.8264 & 600 & 80.0 & 20.1 & 0.0346 \\
\hline & & 0.8264 & 760 & 101.3 & 22.0 & 0.0377 \\
\hline & \multirow[t]{5}{*}{273.2} & 0.8181 & 50 & 6.7 & 10.7 & 0.0189 \\
\hline & & 0.8181 & 100 & 13.3 & 12.0 & 0.0212 \\
\hline & & 0.8181 & 300 & 40.0 & 14.6 & 0.0256 \\
\hline & & 0.8181 & 600 & 80.0 & 17.8 & 0.0312 \\
\hline & & 0.8181 & 760 & 101.3 & 19.6 & 0.0342 \\
\hline
\end{tabular}
§ wt\% of monoethanolamine (MEA) in the solvent before addition of \(\mathrm{CO}_{2}\)
\(\dagger\) volume of gas (reduced to 273.2 K and 101.3 kPa ) absorbed by one volume of solvent; taken from graphs given in the paper.
* calculated by the compiler

\section*{AUXILIARY INFORMATION}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The authors used a static method described in ref. (1). Two small scale graphs \((7.5 \mathrm{~cm} \times 7 \mathrm{~cm}\); \(8 \mathrm{~cm} \times 5 \mathrm{~cm}\) ) showing experimental values of \(S\) at closely spaced pressures for the temperatures and solvent mixtures under investigation. Smooth curves were drawn through the
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Purity at least 99.93\% \\
2. Vacuum distilled; no impurities detected by chromatography. \\
3. Fractionally distilled; b. pt. \((101.3 \mathrm{kPa})=64.4-64.5^{\circ} \mathrm{C}\) \(\rho\left(20^{\circ} \mathrm{C}\right)=0.7925 \mathrm{~g} \mathrm{~cm}^{-3}\) refractive index within \(0.1 \%\) of the value in the literature.
\end{tabular} \\
\hline has measured the positions of these lines at five arbitrary pressures to obtained the values of \(S\) given above. & \begin{tabular}{l}
ESTIMATED ERROR: \\
\(\delta S \simeq \pm 1.5 \%\) (authors) \\
\(\delta S= \pm 0.3\) (compiler - error in measurements from the graphs)
\end{tabular} \\
\hline & REFERENCES:
```

1. Sichkova, O.P.; Shinelis; A.F.
Leites, I.L.
Trudy GIAP, 1972, 17, 125.
``` \\
\hline
\end{tabular}

COMPONENTS:
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]
2. 2-Aminoethanol, (monoethanolamine); \(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NO}\); [141-43-5]
3. Methanol; \(\mathrm{CH}_{4} \mathrm{O}\); [67-56-1]

\section*{EXPERIMENTAL VALUES:}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{10}{*}{5} & 283.2 & 0.8109 & 50 & 6.7 & 9.0 & 0.0161 \\
\hline & & 0.8109 & 100 & 13.3 & 10.4 & 0.0186 \\
\hline & & 0.8109 & 300 & 40.0 & 13.6 & 0.0242 \\
\hline & & 0.8109 & 600 & 80.0 & 16.4 & 0.0290 \\
\hline & & 0.8109 & 760 & 101.3 & 17.8 & 0.0314 \\
\hline & 293.2 & 0.7990 & 50 & 6.7 & 7.5 & 0.0137 \\
\hline & & 0.7990 & 100 & 13.3 & 9.1 & 0.0165 \\
\hline & & 0.7990 & 300 & 40.0 & 12.1 & 0.0219 \\
\hline & & 0.7990 & 600 & 80.0 & 14.7 & 0.0265 \\
\hline & & 0.7990 & 760 & 101.3 & 16.0 & 0.0286 \\
\hline \multirow[t]{30}{*}{15} & 223.2 & 0.8872 & 50 & 6.7 & 46.3 & 0.0749 \\
\hline & & 0.8872 & 100 & 13.3 & 49.9 & 0.0803 \\
\hline & & 0.8872 & 300 & 40.0 & 58.1 & 0.0921 \\
\hline & & 0.8872 & 600 & 80.0 & 68.0 & 0.1063 \\
\hline & & 0.8872 & 760 & 101.3 & 71.2 & 0.1107 \\
\hline & 243.2 & 0.8700 & 50 & 6.7 & 40.2 & 0.0668 \\
\hline & & 0.8700 & 100 & 13.3 & 43.4 & 0.0718 \\
\hline & & 0.8700 & 300 & 40.0 & 49.5 & 0.0811 \\
\hline & & 0.8700 & 600 & 80.0 & 55.2 & 0.0897 \\
\hline & & 0.8700 & 760 & 101.3 & 58.1 & 0.0938 \\
\hline & 263.2 & 0.8528 & 50 & 6.7 & 29.6 & 0.0511 \\
\hline & & 0.8528 & 100 & 13.3 & 34.0 & 0.0582 \\
\hline & & 0.8528 & 300 & 40.0 & 39.5 & 0.0670 \\
\hline & & 0.8528 & 600 & 80.0 & 45.3 & 0.0760 \\
\hline & & 0.8528 & 760 & 101.3 & 48.2 & 0.0806 \\
\hline & 273.2 & 0.8443 & 50 & 6.7 & 13.0 & 0.0234 \\
\hline & & 0.8443 & 100 & 13.3 & 28.5 & 0.0498 \\
\hline & & 0.8443 & 300 & 40.0 & 36.7 & 0.0631 \\
\hline & & 0.8443 & 600 & 80.0 & 35.8 & 0.0617 \\
\hline & & 0.8443 & 760 & 101.3 & 43.7 & 0.0744 \\
\hline & 283.2 & 0.8357 & 50 & 6.7 & 22.5 & 0.0400 \\
\hline & & 0.8357 & 100 & 13.3 & 27.7 & 0.0489 \\
\hline & & 0.8357 & 300 & 40.0 & 33.6 & 0.0588 \\
\hline & & 0.8357 & 600 & 80.0 & 37.9 & 0.0657 \\
\hline & & 0.8357 & 760 & 101.3 & 39.7 & 0.0687 \\
\hline & 293.2 & 0.8273 & 50 & 6.7 & 21.7 & 0.0391 \\
\hline & & 0.8273 & 100 & 13.3 & 25.7 & 0.0460 \\
\hline & & 0.8273 & 300 & 40.0 & 30.5 & 0.0541 \\
\hline & & 0.8273 & 600 & 80.0 & 34.2 & 0.0602 \\
\hline & & 0.8273 & 760 & 101.3 & 35.8 & 0.0629 \\
\hline \multirow[t]{5}{*}{18} & 293.2 & 0.8337 & 50 & 6.7 & 27.6 & 0.0495 \\
\hline & & 0.8337 & 100 & 13.3 & 31.4 & 0.0559 \\
\hline & & 0.8337 & 300 & 40.0 & 36.0 & 0.0637 \\
\hline & & 0.8337 & 600 & 80.0 & 39.7 & 0.0698 \\
\hline & & 0.8337 & 760 & 101.3 & 41.8 & 0.0732 \\
\hline
\end{tabular}
\({ }^{5}\) wt\% of monoethanolamine (MEA) in the solvent before addition of \(\mathrm{CO}_{2}\)
\(\dagger\) volume of gas (reduced to 273.2 k and 101.3 kPa ) absorbed by one volume of solvent; taken from graphs given in the paper.
* calculated by the compiler

\section*{COMPONENTS:}
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9]
2. 2-Aminoethanol, (monoethanolamine); \(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NO}\); [141-43-5]
3. Various organic compounds

\section*{VARIABLES:}
\(T / K=293.2-323.2\)
\(P / \mathrm{kPa}=1.2-102.7\)
EXPERIMENTAL VALUES:
The solvent, in each case, consisted of ethanolamine (concentration \(2.5 \mathrm{~mol} \mathrm{dm}{ }^{-\frac{5}{5}}\) ) plus component 3.

Measurements were given as points on small scale graphs (approx. \(6 \mathrm{~cm} \times 8 \mathrm{~cm})\)
\begin{tabular}{lll}
\(6 \mathrm{Cm} \times 8 \mathrm{~cm}\) \\
Component 3
\end{tabular}\(\quad T / \mathrm{K} \quad P / \mathrm{mmHg} \quad P / \mathrm{kPa} \quad\) Solubility \({ }^{*}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{1,2-Ethanediol, (ethylene g1ycol); \(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\); [107-21-1]} & \multirow[t]{6}{*}{293.15} & 56 & 7.5 & 30.6 \\
\hline & & 130 & 17.3 & 32.7 \\
\hline & & 380 & 50.7 & 36.2 \\
\hline & & 390 & 52.0 & 35.8 \\
\hline & & 500 & 66.7 & 36.8 \\
\hline & & 672 & 89.6 & 37.9 \\
\hline 2,2'[1,2-Ethanediylbis- & \multirow[t]{5}{*}{293.15} & 80 & 10.7 & 29.1 \\
\hline (oxy) \({ }^{\text {disisethanol, }}\) & & 355 & 47.3 & 32.0 \\
\hline (triethylene glycol); & & 379 & 50.5 & 32.2 \\
\hline \multirow[t]{2}{*}{\(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{4}\); [112-27-6]} & & 541 & 72.1 & 33.5 \\
\hline & & 735 & 98.0 & 34.7 \\
\hline * solubilities were reporte 101.325 kPa ) absorbed by one conditions. & as vol volume & \begin{tabular}{l}
of \\
me
\end{tabular} & ected ent un & K \\
\hline
\end{tabular}

AUXILIARY INFORMATION
\begin{tabular}{|c|c|}
\hline METHOD/APPARATUS/PROCEDURE: & SOURCE AND PURITY OF MATERIALS: \\
\hline A sample of the mixture under test was placed in an absorbtion bulb & 2. distilled; purity checked by measurement of the refrective index \\
\hline fitted with a, magnetic stirrer. The & which differed by less than \(0.1 \%\) \\
\hline mixture was frozen and degassed & from the value quoted in the \\
\hline under vacuum. The bulb was then maintained at the required & literature. \\
\hline temperature by thermostatic control. & 3. fractionally distilled under \\
\hline The vapor pressure of the solvent & vacuum; refractive indices differed \\
\hline mixture was measured. Appropriate taps were then opened to allow carbon & by less than 0.18 from literature values. \\
\hline known volume to come into contact with the sample. The pressure of & ESTIMATED ERROR: \\
\hline gas before and after coming into & \(\delta(\) solubility \()= \pm 0.3\) \\
\hline with mercury manometers. Allowance & (compiler's estimated error in \\
\hline was made for the volumes of various connecting tubes in the calculation & reading values from the graphs supplied) \\
\hline absorbed by the liquid. & REFERENCES: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{COMPONENTS:} & \multicolumn{3}{|l|}{ORIGINAL MEASUREMENTS:} \\
\hline \multicolumn{2}{|l|}{1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9]} & \multicolumn{3}{|l|}{Sichkova, O.P.; Shinelis, A.F.; Leites, I.L.} \\
\hline \multicolumn{2}{|l|}{2. 2-Aminoethanol, (monoethanolamine); \(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NO}\); [141-43-5]} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Tr. Nauch.-Issled. Proekt. Inst. Azotn. Prom. Prod. Org. Sin. 1972, No 17, 125-135.}} \\
\hline \multicolumn{2}{|l|}{3. Various organic compounds} & & & \\
\hline \multicolumn{5}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \multicolumn{5}{|l|}{The solvent, in each case, consisted of ethanolamine (concentration \(2.5 \mathrm{~mol} \mathrm{dm}^{-3}\) ) plus component 3 .} \\
\hline \multicolumn{5}{|l|}{Measurements were given as points on small scale graphs (approx. \(6 \mathrm{~cm} \times 8 \mathrm{~cm}\) )} \\
\hline Component 3 & & \(P / \mathrm{mmHg}\) & \(P / \mathrm{kPa}\) & Solubility* \\
\hline \multirow[t]{3}{*}{2,2'-[Oxylbis(2,1-ethanediyloxy) lbisethanol, (tetraethylene glycol):} & 293.15 & 131 & 17.5 & 29.9 \\
\hline & & 215 & 28.7 & 31.0 \\
\hline & & 335 & 4.4 .7 & 31.9 \\
\hline \multirow[t]{2}{*}{\(\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{5} ; ~[112-60-7]\)} & & 485 & 64.7 & 32.8 \\
\hline & & 755 & 100.7 & 34.2 \\
\hline \multirow[t]{2}{*}{2,2'-Oxybisethanol',
(diethylene glycol);} & 293.15 & 81 & 10.8 & 28.1 \\
\hline & & 175 & 23.3 & 29.9 \\
\hline \multirow[t]{3}{*}{\(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{3}\); [111-46-6]} & & 366 & 48.8 & 31.2 \\
\hline & & 543 & 72.4 & 32.7 \\
\hline & & 708 & 94.4 & 33.5 \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Oxybispropanol, \\
(dipropylene glycol); \\
\(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{3}\); [25265-71-8]
\end{tabular}} & 293.15 & 30 & 4.0 & 26.1 \\
\hline & & 186 & 24.8 & 29.1 \\
\hline & & 335 & 44.7 & 30.2 \\
\hline & & 525 & 70.0 & 30.9 \\
\hline & & 669 & 89.2 & 31.6 \\
\hline \multirow[t]{7}{*}{\[
\begin{aligned}
& \text { 1, 3-Propanediol, (propylene } \\
& \text { g1ycol), } \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{2} \text {; } \\
& {[26264-14-2]}
\end{aligned}
\]} & 293.15 & 32 & 4.3 & 28.4 \\
\hline & & 51 & 6.8 & 28.5 \\
\hline & & 165 & 22.0 & 30.7 \\
\hline & & 223 & 29.7 & 30.7 \\
\hline & & 365
475 & 48.7
63.3 & 32.1
32.6 \\
\hline & & 566 & 63.3
75.5 & 32.6
32.9 \\
\hline & & 670 & 89.3 & 33.3 \\
\hline \multirow[t]{7}{*}{```
2,3-Butanediol; C4 }\mp@subsup{\textrm{H}}{1}{}\mp@subsup{O}{2}{\prime
[513-85-9]
```} & 293.15 & 9 & 1.2 & 25.8 \\
\hline & & 131 & 17.5 & 28.7 \\
\hline & & 255 & 34.0 & 29.8 \\
\hline & & 415 & 55.3 & 30.6 \\
\hline & & 509 & 67.9 & 31.0 \\
\hline & & 615 & 82.0 & 31.4 \\
\hline & & 770 & 102.7 & 32.2 \\
\hline \multirow[t]{12}{*}{\[
\begin{aligned}
& 1,3-\text { Butanediol; } \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2} \text {; } \\
& {[107-88-0]}
\end{aligned}
\]} & 293.15 & 16 & 2.1 & 25.3 \\
\hline & & 45 & 6.0 & 26.7 \\
\hline & & 70 & 9.3 & 26.9 \\
\hline & & 81 & 10.8 & 27.3 \\
\hline & & 155 & 20.7 & 28.5 \\
\hline & & 161 & 21.5 & 28.1 \\
\hline & & 300 & 40.0 & 29.5 \\
\hline & & 349 & 46.5 & 29.8 \\
\hline & & 500 & 66.7 & 30.5 \\
\hline & & 530 & 70.7 & 30.8 \\
\hline & & 650 & 86.7 & 31.3 \\
\hline & & 720 & 96.0 & 31.6 \\
\hline \multicolumn{5}{|l|}{solubilities were reported as volumes of gas (corrected to 273.15 K and 101.325 kPa) absorbed by one volume of the mixed solvent under the stated conditions.} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]
\end{tabular}}} & \multicolumn{3}{|l|}{ORIGINAL MEASUREMENTS:} \\
\hline & & \multicolumn{3}{|l|}{```
Sichkova, O.P.; Shinelis, A.F.;
Leites, I.L.
```} \\
\hline \multicolumn{2}{|l|}{2. 2-Aminoethanol, (monoethanolamine); \(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NO} ; ~[141-43-5]\)} & \multicolumn{3}{|l|}{Tr. Nauch.-Issled. Proekt. Inst. Azotn. Prom. Prod. Org. Sin. 1972, No 17, 125-135.} \\
\hline \multicolumn{5}{|l|}{3. Various organic compounds} \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{The solvent, in each case, consisted of ethanolamine (concentration \(2.5 \mathrm{~mol} \mathrm{dm}^{-3}\) ) plus component 3.} \\
\hline \multicolumn{5}{|l|}{Measurements were given as points on small scale graphs (approx. \(6 \mathrm{~cm} \times 8 \mathrm{~cm})\)} \\
\hline Component 3 & T/K & P/mmHg & \(\mathrm{P} / \mathrm{kPa}\) & Solubility* \\
\hline 1-Methyl-2-pyrrolidinone, & 303.15 & 22 & 2.9 & 27.3 \\
\hline ( \(N\)-Methylpyrrolidone); & & 55 & 7.3 & 29.3 \\
\hline \(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO} ; ~[872-50-4]\) & & 115 & 15.3 & 30.8 \\
\hline & & 235 & 31.3 & 33.1 \\
\hline & & 344 & 45.9 & 34.1 \\
\hline & & 400 & 53.3 & 34.7 \\
\hline & & 556 & 74.1 & 35.9 \\
\hline & & 700 & 93.3 & 37.1 \\
\hline & 323.15 & 29 & 3.9 & 23.4 \\
\hline & & 63 & 8.4 & 27.5 \\
\hline & & 110 & 14.7 & 26.6 \\
\hline & & 200 & 26.7 & 28.7 \\
\hline & & 451 & 60.1 & 31.5 \\
\hline & & 612 & 81.6 & 32.8 \\
\hline \(N, N\)-Dimethylacetamide; & 293.15 & 15 & 2.0 & 27.2 \\
\hline \(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO} ; ~[127-19-5]\) & & 32 & 4.2 & 30.4 \\
\hline & & 119 & 15.9 & 33.5 \\
\hline & & 180 & 24.0 & 34.9 \\
\hline & & 287 & 38.2 & 36.4 \\
\hline & & 350 & 46.7 & 37.1 \\
\hline & & 383 & 51.1 & 37.9 \\
\hline & & 414 & 55.2 & 38.4 \\
\hline & & 509 & 67.9 & 38.7 \\
\hline & & 528 & 70.4 & 38.9 \\
\hline & & 663 & 88.4 & 40.7 \\
\hline \(N, N\)-Dimethylformamide; & 293.15 & 7 & 0.9 & 26.6 \\
\hline \(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO} ; ~[68-12-2]\) & & 119 & 15.9 & 32.4 \\
\hline & & 170 & 22.7 & 33.5 \\
\hline & & 214 & 28.5 & 34.7 \\
\hline & & 233 & 31.0 & 34.8 \\
\hline & & 254 & 33.8 & 34.7 \\
\hline & & 272 & 36.2 & 35.4 \\
\hline & & 394 & 52.5 & 36.9 \\
\hline & & 413 & 55.1 & 37.0 \\
\hline & & 552 & 73.6 & 39.3 \\
\hline & & 565 & 75.4 & 38.8 \\
\hline & & 669 & 89.1 & 39.2 \\
\hline & & 735 & 98.0 & 40.6 \\
\hline \multicolumn{5}{|l|}{solubilities were reported as volumes of gas (corrected to 273.15 K and 101.325 kPa ) absorbed by one volume of the mixed solvent under the stated conditions.} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{COMPONENTS:} & \multirow[t]{4}{*}{```
ORIGINAL MEASUREMENTS:
Rivas, O.R.; Prausnitz, J.M.
Am. Inst. Chem. Engnrs. J. 1979,
25, 975-984.
```} \\
\hline \multicolumn{3}{|l|}{1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]} & \\
\hline \multicolumn{3}{|l|}{2. 1-Methyl-2-pyrrolidinone; \(\mathrm{C}_{5} \mathrm{Hg}_{9} \mathrm{NO} ; ~[872-50-4]\)} & \\
\hline \multicolumn{3}{|l|}{3. 2-Aminoethanol, (monoethanolamine); \(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NO}\); [141-43-5]} & \\
\hline \multicolumn{3}{|l|}{VARIABLES:} & PREPARED BY: \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
\[
T / K=298.15-373.15
\] \\
\(P / k P a<101.3\)
\end{tabular}} & P.G.T. Fogg \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{llll}
\hline EXPERIMENTAL VALUES: & & \\
\(T / \mathrm{K} \quad\) Wtz MEA
\end{tabular}} & \[
\begin{gathered}
\text { Solubility } \\
/ \mathrm{mol} \mathrm{dm}^{-3} \\
\mathrm{CO}_{2} *
\end{gathered}
\] \\
\hline \multirow[t]{8}{*}{298.15} & 3 & 0 & 0.0200 \\
\hline & & 25 & 0.0328 \\
\hline & & 50
75 & 0.0420
0.0480 \\
\hline & & 100 & 0.0530 \\
\hline & & 125 & 0.0580 \\
\hline & & 150 & 0.0610 \\
\hline & & 175 & 0.0640 \\
\hline & & 200 & 0.0680 \\
\hline \multirow[t]{8}{*}{298.15} & 5 & 0 & 0.0400 \\
\hline & & 25 & 0.0532 \\
\hline & & 50 & 0.0608 \\
\hline & & 75 & 0.0666 \\
\hline & & 100
125 & 0.0726
0.0770 \\
\hline & & 150 & 0.0810 \\
\hline & & 175 & 0.0850 \\
\hline & & 200 & 0.0886 \\
\hline \multicolumn{4}{|l|}{* data were presented in the form of smooth curves on a small scale graph \((5.5 \mathrm{~cm} \times 8.0 \mathrm{~cm})\). The compiler has measured the co-ordinates at arbitrary points on the curves.} \\
\hline \multicolumn{4}{|l|}{\(\dagger\) MEA \(=2\)-aminoethanol (monoethanolamine)} \\
\hline \multicolumn{4}{|c|}{AUXILIARY INFORMATION:} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The apparatus is described in ref. (1). The volume of gas absorbed was measured. Pressures were measured with a high precision bourdon pressure gauge. Temperatures were controlled to 0.05 K by a thermostat bath.
\end{tabular}}} & \multirow[t]{2}{*}{```
SOURCE AND PURITY OF MATERIALS:
Supplied by standard laboratory
reagent suppliers; purities at
least 99%
```} \\
\hline & & & \\
\hline & & & ESTIMATED ERROR:
\[
\delta T / K= \pm 0.05
\] \\
\hline & & & REFERENCES:
```

1. Rivas, O.R.; Prausnitz, J.M.
Ind. Eng. Chem. Fundam. 1979, 18,
289-292.
``` \\
\hline
\end{tabular}

\section*{COMPONENTS:}
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]
2. 1-Methyl-2-pyrrolidinone; \(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}\); [872-50-4]
3. 2-Aminoethanol, (monoethanolamine); \(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NO}\); [141-43-5]

EXPERIMENTAL VALUES:
\begin{tabular}{|c|c|c|c|}
\hline T/K & Wt\% MEA \({ }^{+}\) & \(\mathrm{P}_{\mathrm{CO}_{2}} / \mathrm{kPa}\) & Solubility of \(\mathrm{CO}_{2}{ }^{*}\) \(/ \mathrm{mol} \mathrm{dm}{ }^{-3}\) \\
\hline 298.15 & 15 & 0 & 0.0637 \\
\hline & & 25 & 0.1168 \\
\hline & & 50 & 0.1430 \\
\hline & & 75 & 0.1600 \\
\hline & & 100 & 0.1735 \\
\hline & & 125 & 0.1848 \\
\hline & & \[
150
\] & 0.1958 \\
\hline & & \[
175
\] & \[
0.2053
\] \\
\hline 373.15 & 15 & 0 & 0.0000 \\
\hline 373.15 & & 25 & 0.0127 \\
\hline & & 50 & 0.0230 \\
\hline & & 75 & 0.0304 \\
\hline & & 100 & 0.0368 \\
\hline & & 125 & 0.0425 \\
\hline & & 150 & 0.0467 \\
\hline & & 175 & 0.0520 \\
\hline
\end{tabular}
* data were presented in the form of smooth curves on a small scale graph \((5.5 \mathrm{~cm} \times 8.0 \mathrm{~cm})\). The compiler has measured the co-ordinates at arbitrary points on the curves.
\(\dagger_{\text {MEA }}=2\)-aminoethanol (monoethanolamine)

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Benzene; \(\mathrm{C}_{6} \mathrm{H}_{6}\); [71-43-2] \\
(3) Tetrachloromethane or carbon tetrachloride; \(\mathrm{CCl}_{4}\); [56-23-5]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
    Takahashi, M.; Kobayashi, Y.;
        Takeuchi, H.
    J. Chem. Eng. Data 1982, 27, 328-31.
``` \\
\hline VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=298 \\
& p_{1} / \mathrm{kPa}=101.3 \\
& \text { Composition. }
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
a Literature values taken from no Riron" (Theories of Viscos Maruzen, Tokyo, 1968.
\end{tabular} & \begin{tabular}{l}
\begin{tabular}{lc}
\begin{tabular}{l}
Diffusion \\
Coefficient \\
\(10^{9} D_{\mathrm{A}} / \mathrm{m}^{2} \mathrm{~s}^{-1}\)
\end{tabular} & Solubility \\
\cline { 1 - 2 } & \(c_{1} / \mathrm{mol} \mathrm{m}^{-3}\) \\
3.17 & 91.2 \\
3.35 & 72.0 \\
3.60 & 82.2 \\
3.65 & 84.1 \\
3.85 & 86.7 \\
& 92.9 \\
\hline
\end{tabular} \\
Ishikawa, T. "Kongoeki Nendo ity for Mixed Solvents);
\end{tabular} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An indirect method (1) was used in which the absorption rate of carbon dioxide into the mixed solvent was measured as a function of time. \\
It was assumed that the film-theory model of the gas absorption process applied. A plot of \(\ln\) (absorption rate) vs. time is linear. The slope is a function of the diffusion coefficient and the intercept is a function of both the diffusion coefficient and the solubility. \\
A diaphram cell with interfacial area \(5.81 \mathrm{~cm}^{2}\) and lower compartment volume for the liquid was \(53.5 \mathrm{~cm}^{3}\). The diaphram was Millipore Teflon of mean pore size \(10.0 \mu \mathrm{~m}\), thickness \\
\(125 \pm 15 \mu \mathrm{~m}\), and porosity 0.68 . The liquid was stirred at a constant rate of 1.33 rotations \(s^{-1}\). \\
The solutions were prepared and then degassed by refluxing for five hours. Their compositions were determined by density or refractive index. The \(\mathrm{CO}_{2}\)
was presat. with solvent vap.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Source not identified. From cylinder. \\
(2, 3) Benzene and tetrachloromethane. \\
It was stated that the chemicals were of special grade. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & = \pm 0.1 \\
\delta c_{1} / c_{1} & = \pm 0.05-0.10 \text { (compiler). }
\end{aligned}
\] \\
REFERENCES: \\
I. Takeuchi, H.; Fujine, M.; Sato, T.; Onda, K. J. Chem. Eng. Jpn. 1975, 8, 25 and 252.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) 1-Octanol; \(\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}\); [111-87-5] \\
(3) Tetrachloromethane or carbon tetrachloride; \(\mathrm{CCl}_{4}\); [56-23-5]
\end{tabular} & ORIGINAL MEASUREMENTS:
```

Takahashi, M.; Kobayashi, Y.;
Takeuchi, H.
J. Chem. Eng. Data 1982, 27, 328-31.

``` \\
\hline VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=298 \\
& p_{1} / \mathrm{kPa}=101.3 \\
& \text { Composition. }
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
a \\
Literature values taken from no Riron" (Theories of Viscos Maruzen, Tohyo, 1968.
\end{tabular} & \begin{tabular}{l}
 \\
Ishikawa, T. "Kongoeki Nendo ity for Mixed Solvents);
\end{tabular} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An indirect method (1) was used in which the absorption rate of carbon dioxide into the mixed solvent was measured as a function of time. \\
It was assumed that the film-theory model of the gas absorption process applied. A plot of ln (absorption rate) vs. time is linear. The slope is a function of the diffusion coefficient and the intercept is a function of both the diffusion coefficient and the solubility. \\
A diaphram cell with interfacial area \(5.81 \mathrm{~cm}^{2}\) and lower compartment volume for the liquid was \(53.5 \mathrm{~cm}^{3}\). The diaphram was Millipore Teflon of mean pore size \(10.0 \mu \mathrm{~m}\), thickness \\
\(125 \pm 15 \mu \mathrm{~m}\), and porosity 0.68 . The liquid was stirred at a constant rate of 1.33 rotations \(s^{-1}\). \\
The solutions were prepared and then degassed by refluxing for five hours. Their compositions were determined by density or refractive index. The \(\mathrm{CO}_{2}\)
was presat. with solvent vap.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Source not identified. From cylinder. \\
\((2,3)\) l-Octanol and tetrachloromethane. \\
It was stated that the chemicals were of special grade. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & = \pm 0.1 \\
\delta c_{1} / c_{1} & = \pm 0.5-0.10 \text { (compiler) } .
\end{aligned}
\] \\
REFERENCES: \\
1. Takeuchi, H.; Fujine, M.; Sato, T.: Onda, K. \({ }_{2}\). Chem. Eng. Jpn. 1975, 8, 25 and 252.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Benzene; \(\mathrm{C}_{6} \mathrm{H}_{6}\); [71-43-2] \\
(3) 1-Propanol; \(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\); [71-23-8]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
 Takahashi, M.; Kobayashi, Y.;
 Takeuchi, H.
 J. Chem. Eng. Data 1982, 27, 328-31.
``` \\
\hline VARIABLES:
\[
\begin{gathered}
T / K=298 \\
p_{1} / \mathrm{kPa}=101.3 \\
\text { Composition. }
\end{gathered}
\] & PREPARED BY: \(\quad\) H. L. Clever \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
a Literature values taken from Ishikawa, T. "Kongoeki Nendo no Riron" (Theories of Viscosity for Mixed Solvents); Maruzen, Tohyo, 1968.
\end{tabular}} \\
\hline AUXILIARY & INFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An indirect method (1) was used in which the absorption rate of carbon dioxide into the mixed solvent was measured as a function of time. \\
It was assumed that the film-theory model of the gas absorption process applied. A plot of \(\ln\) (absorption rate) vs. time is linear. The slope is a function of the diffusion coefficient and the intercept is a function of both the diffusion coefficient and the solubility. \\
A diaphram cell with interfacial area \(5.81 \mathrm{~cm}^{2}\) and lower compartment volume for the liquid was \(53.5 \mathrm{~cm}^{3}\). The diaphram was Millipore Teflon of mean pore size \(10.0 \mu \mathrm{~m}\), thickness \(125 \pm 15 \mu \mathrm{~m}\), and porosity 0.68. The liquid was stirred at a constant rate of 1.33 rotations \(s^{-1}\). \\
The solutions were prepared and then degassed by refluxing for five hours. Their compositions were determined by density or refractive index. The \(\mathrm{CO}_{2}\)
was presat. with solvent vap.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Source not identified. From cylinder. \\
\((2,3)\) Benzene and l-propanol. \\
It was stated that the chemicals were of special grade. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & = \pm 0.1 \\
\delta c_{1} / c_{1} & = \pm 0.05-0.10 \text { (compiler). }
\end{aligned}
\] \\
REFERENCES: \\
1. Takeuchi, H.; Fujine, M.; Sato, T.; Onda, K. J. Chem. Eng. Jpn. 1975, 8, 25 and 252.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Mixed solvents
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Koudelka, L. \\
Chem. Zvesti 1964, 18, 178-185.
\end{tabular} \\
\hline \begin{tabular}{l}
VARIABLES: \\
\(T / K=293.15\) \\
\(P / \mathrm{kPa}=101.3\)
\end{tabular} & PREPARED BY:
P.G.T. Fogg \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
Solvent mixture
\end{tabular} & \begin{tabular}{l}
fraction of \(A\) olvent mixture re addition of \(\mathrm{CO}_{2}\) \\
Mole fraction of \(\mathrm{CO}_{2}\) in solution
\end{tabular} \\
\hline \begin{tabular}{l}
(A) Methanol; \(\mathrm{CH}_{4} \mathrm{O}\); [67-56-1] \\
(B) 2-Propanone; \(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\); [67-64-1]
\end{tabular} & \begin{tabular}{ll}
1.000 & 0.00751 \\
0.908 & 0.00802 \\
0.670 & 0.01097 \\
0.436 & 0.01433 \\
0.282 & 0.01634 \\
0.000 & 0.02317
\end{tabular} \\
\hline \begin{tabular}{l}
(A) 2-Propanone; \(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\); [67-64-1] \\
(B) Trichloromethane; \(\mathrm{CHCl}_{3} ;\) [67-66-3]
\end{tabular} & \begin{tabular}{ll}
1.000 & 0.02317 \\
0.878 & 0.02039 \\
0.701 & 0.01686 \\
0.578 & 0.01513 \\
0.000 & 0.01375
\end{tabular} \\
\hline \begin{tabular}{l}
(A) Methanol; \(\mathrm{CH}_{4} \mathrm{O}\); [67-56-1] \\
(B) Trichloromethane; \(\mathrm{CHCl}_{3} ;\) [67-66-3]
\end{tabular} & \begin{tabular}{ll}
1.000 & 0.00751 \\
0.975 & 0.00732 \\
0.876 & 0.00687 \\
0.812 & 0.00698 \\
0.494 & 0.00848 \\
0.000 & 0.01375
\end{tabular} \\
\hline \begin{tabular}{l}
(A) Methanol; \(\mathrm{CH}_{4} \mathrm{O}\); [67-56-1] \\
(B) Benzene; \(\mathrm{C}_{6} \mathrm{H}_{5}\); [71-43-2]
\end{tabular} & \begin{tabular}{ll}
1.000 & 0.00751 \\
0.905 & 0.00735 \\
0.606 & 0.00755 \\
0.519 & 0.00788 \\
0.195 & 0.00866 \\
0.000 & 0.00989
\end{tabular} \\
\hline \begin{tabular}{l}
(A) 2-Propanone; \(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\); [67-64-1] \\
(B) Benzene; \(\mathrm{C}_{6} \mathrm{H}_{6}\); [71-43-2]
\end{tabular} & \begin{tabular}{ll}
1.000 & 0.02317 \\
0.939 & 0.02214 \\
0.809 & 0.02014 \\
0.539 & 0.01612 \\
0.420 & 0.01480 \\
0.134 & 0.01170 \\
0.000 & 0.00989
\end{tabular} \\
\hline \begin{tabular}{l}
(A) Trichloromethane; \(\mathrm{CHCl}_{3}\); [67-66-3] \\
(B) Benzene; \(\mathrm{C}_{6} \mathrm{H}_{6}\); [71-43-2]
\end{tabular} & \begin{tabular}{ll}
1.000 & 0.01375 \\
0.831 & 0.01282 \\
0.627 & 0.01196 \\
0.324 & 0.01080 \\
0.123 & 0.01027 \\
0.000 & 0.00989
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\(P_{\mathrm{CO}_{2}}=760\) Torr \(=101.325 \mathrm{kPa} \quad T / \mathrm{K}=293.15 \mathrm{~K}\)} \\
\hline \multicolumn{2}{|l|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
An Ostwald type apparatus was used. The absorption vessel could be agitated by an electric motor. This vessel and the gas buret system were maintained at constant temperature by circulation of water from a constant temperature bath.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
2 Liquids were fractionally distilled before use. \\
ESTIMATED ERROR:
\[
\delta T / K= \pm 0.1 \text { (authors) }
\] \\
REFERENCES:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
*Extrapolated carbon dioxide solubility in hypothetical liquid cephalin. \\
\(L_{o}\) and \(L_{w}\) are the carbon dioxide Ostwald coefficients in benzene and in the benzene + cephalin solution, respectively. \\
AUXILIARY INFORMATION \\
METHOD/APPARATUS/PROCEDURE: \\
The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). \\
Degassing. Up to \(500 \mathrm{~cm}^{3}\) of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid nitrogen trap until the permanent gas residual pressure drops to 5 microns. \\
Solubility Determination. The degassed solvent is passed in a thin film down a glass helical tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed. \\
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Air Products and Chemicals, Inc. Minimum purity 99.8 mole per cent. \\
(2) Cephalin. Nutritional Biochemicals Corp. Homostatic phosphatide obtained from bovine brain tissue, used as received. \\
(3) Benzene. J. T. Baker Analyzed Reagent Grade. 99.9 mole per cent, thiophene free. \\
ESTIMATED ERROR: \(\delta T / \mathrm{K}=0.01\) \\
\(\delta P / \mathrm{mmHg}=0.5\)
\[
\delta L_{\mathrm{w}}^{0} / L_{\mathrm{w}}^{0}=0.02
\] \\
REFERENCES: \\
1. Morrison, T. J.; Billett, F. \\
J. Chem. Soc. 1948, 2033. \\
2. Battino,R.;Evans,F.D.; Danforth,W.F. \\
J.Am.Oil Chem.Soc. 1968, 45, 830. \\
3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Lecithin \\
(3) Benzene; \(\mathrm{C}_{6} \mathrm{H}_{6}\); [71-43-2]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
    Byrne, J. E.; Battino, R.;
    Danforth, W. F.
    J. Chem. Thermodyn. 1974, 6,
    245-250.
``` \\
\hline \begin{tabular}{rll}
\hline VARIABLES: & \\
Total \(\mathrm{p} / \mathrm{kPa}:\) & 310.65 \\
& 101.325 (1 atm)
\end{tabular} & PREPARED BY: H. L. Cl \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \multicolumn{2}{|r|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). \\
Degassing. Up to \(500 \mathrm{~cm}^{3}\) of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid nitrogen trap until the permanent gas residual pressure drops to 5 microns. \\
Solubility Determination. The degassed solvent is passed in a thin film down a glass helical tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Air Products and Chemicals, Inc. Minimum purity is 99.8 mole per cent. \\
(2) Lecithin. Nutritional Biochemicals Corp. Vegetable source, about 95 per cent, used as received. \\
(3) Benzene. J. T. Baker Analyzed Reagent Grade. 99.9 mole per cent, thiophene free. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & =0.01 \\
\delta P / \mathrm{mmHg} & =0.5 \\
\delta L_{\mathrm{o}} / L_{\mathrm{o}} & =0.01 \\
\delta L_{\mathrm{W}} / L_{\mathrm{W}} & =0.02
\end{aligned}
\] \\
REFERENCES: \\
1. Morrison, T. J.; Billett, F. \\
J. Chem. Soc. 1948, 2033. \\
2. Battino,R.;Evans,F.D.;Danforth,W.F J. Am. Oil Chem.Soc. 1968,45,830. \\
3. Battino, R.: Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Cholest-5-en-3 \(\beta\)-ol or Cholesterol; \(\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}\); [57-88-5] \\
(3) Benzene; \(\mathrm{C}_{6} \mathrm{H}_{6}\); [71-43-2]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Byrne, J. E.; Battino, R.; Danforth, W. F.
J. Chem. Thermodyn. 1974, 6,
\[
245-250
\]
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K}: & 310.65 \\
P / \mathrm{kPa}: & 101.325 \text { (1 atm) }
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline EXPERIMENTAL VALUES: & ald
\begin{tabular}{c}
"Salting Out" Parameter \\
\(k=\left(1 / W_{3}\right) \log \left(L_{o} / L_{w}\right)\)
\end{tabular}
\(0.33 \pm 0.17\)
\(0.30 \pm 0.08\)
ubility in hypothetical liquid
Ostwald coefficients in benzene
solution, respectively. \\
\hline AUXILIARY & Information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). \\
Degassing. Up to \(500 \mathrm{~cm}^{3}\) of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid nitrogen trap until the permanent gas residual pressure drops to 5 microns. \\
Solubility Determination. The degassed solvent is passed in a thin film down a glass helical tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Air Products and Chemicals, Inc. Minimum purity 99.8 mole per cent. \\
(2) Cholesterol. Source not given. Recrystalized from benzene. \\
(3) Benzene. J. T. Baker Analyzed Reagent Grade. 99.9 mole per cent, thiophene free. \\
ESTIMATED ERROR: \(\delta T / \mathrm{K}=0.01\)
\[
\begin{aligned}
\delta P / \mathrm{mmHg} & =0.5 \\
\delta L_{\mathrm{o}} / L_{\mathrm{o}} & =0.01 \\
\delta L_{\mathrm{w}} / L_{\mathrm{w}} & =0.02
\end{aligned}
\] \\
REFERENCES: \\
l. Morrison, T. J.; Billett, F. \\
J. Chem. Soc. 1948, 2033. \\
2. Battino,R.;Evans,F.D.;Danforth,W.F. \\
J.Am. Oil Chem.Soc. 1968, 45, 830. \\
3. Battino, R.; Banzhof, M.; \\
Bogan, M.; Wilhelm, E. \\
Anal. Chem. 1971, 43, 806.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Cholest-5-en-3 \(\beta\)-ol or cholesterol: \(\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}\); [57-88-5] \\
(3) 2-Methyl-1-propanol or isobutanol; \(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}^{\circ}\) [78-83-1]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Byrne; J. E.; Battino, R.; \\
Danforth, W. F. \\
J. Chem. Thermodyn. 1974, 6, 245-50.
\end{tabular} \\
\hline \begin{tabular}{l}
VARIABLES: \\
T/K: 310.65 \\
Total p/kPa: 101.325 (1 atm)
\end{tabular} & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline AUXILIARY & INFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The solubility apparatus is based on the design of Morrison and Billett \\
(1) and the version used is described by Battino, Evans and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). \\
Degassing. Up to \(500 \mathrm{~cm}^{3}\) of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid nitrogen trap until the permanent gas residual pressure drops to 5 microns. \\
Solubility Determination. The degassed solvent is passed in a thin film down a glass helical tube containing solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Air Products and Chemicals, Inc. Minimum purity 99+ mole per cent. \\
(2) Cholesterol. Source not given. Recrystalized from benzene. \\
(3) 2-methyl-1-propanol or isobutanol. Fisher Scientific Certified. 99 mol per cent. \\
ESTIMATED ERROR: \(\delta T / K=0.01\)
\[
\begin{aligned}
\delta P / \mathrm{mmHg} & =0.5 \\
\delta L_{\mathrm{o}} / L_{\mathrm{o}} & =0.01 \\
\delta L_{\mathrm{w}} / L_{\mathrm{w}} & =0.02
\end{aligned}
\] \\
REFERENCES: \\
1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033. \\
2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. 1968, 45, 830. \\
3. Battino, R. Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Cellulose, acetate; [9004-35-7] \\
(3) N,N-Dimethylformamide; \(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\); [68-12-2]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Rosenthal, W. \\
Thès. fac. sci. Univ. Strasbourg (France) 1954.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / K & =293.15 \\
w_{2} / g g^{-1} & =0,0.0710
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
H, L. Clever
\end{tabular} \\
\hline EXPERIMENTAL VALUES: & \begin{tabular}{c}
Ostwald \\
Coefficient \\
\(L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}\)
\end{tabular}
\begin{tabular}{l}
5.10 \\
4.81
\end{tabular}
acermined that 1 g
acetate absorbs
K and \\
\hline AUXILIARY & InFormation \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The prepared solvent and solution were charged into an evacuated cell after degassing, and the mass of solvent was determined by weight. Gas was introduced into the cell from a measuring buret in which the gas was stored over mercury. The cell was agitated while the gas pressure was maintained by adjusting the gas volume. The Ostwald coefficient was determined from the mass of solvent and the volume of gas absorbed. Solubilities were measured at pressures above and below atmospheric.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Source and purity not given. An aqueous "soda" solution absorbed 99.8\% of the gas. \\
(2) Cellulose acetate. RhônePoulenc. Purity not given. \\
(3) Dimethylformamide. S.E.P.P.I.C. of Paris. Purity not given. Exposure to air avoided, distilled prior to use. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / \mathrm{K} & = \pm 0.2 \\
\delta p / \mathrm{kPa} & = \pm 0.1 \\
\delta L / L & = \pm 0.02 \text { (compiler) }
\end{aligned}
\] \\
REFERENCES: \\
Some data in the thesis have been published. See: \\
1. Maillard, A.; Rosenthal, W. Compt. rend. 1952, 234, 2546-8.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Cellulose, acetate; [9004-35-7] \\
(3) 2-Propanone (Acetone); \(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\); [67-64-1]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
 Rosenthal, W.
 Thès, fac. sci. % niv. Strasbourg
 (France) 1954.
``` \\
\hline VARIABLES:
\[
\begin{aligned}
& \text { ADLEO: } T / K=293.15 \\
& w_{2} / \mathrm{g}^{-1}=0,0.0641
\end{aligned}
\] & PREPARED BY: \(\quad\) H. L. Clever \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The author also determined cellulose acetate absorbs 4 and 101.325 kPa .
\end{tabular} & \(\frac{\)\begin{tabular}{l}
\text { Ostwald } \\
\text { Coefficient } \\
\(L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}\)
\end{tabular}}{\(\frac{6.88}{6.58}\)}\(⿻\)
that 1 g of solid
\(65 \mathrm{~cm}^{3} \mathrm{CO}_{2}\) at 293.15 K \\
\hline auxiliary & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The prepared solvent and solution were charged into an evacuated cell after degassing, and the mass of solvent was determined by weight. Gas was introduced into the cell from a measuring buret in which the gas was stored over mercury. The cell was agitated while the gas pressure was maintained by adjusting the gas volume. The Ostwald coefficient was determined from the mass of solvent and the volume of gas absorbed. Solubilities were measured at pressures above and below atmospheric.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Source and purity not given. An aqueous "soda" solution absorbed 99.8\% of the gas. \\
(2) Cellulose acetate. RhônePoulenc. Purity not given. \\
(3) Acetone. Research grade. Source not given. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / \mathrm{K} & = \pm 0.2 \\
\delta p / \mathrm{kPa} & = \pm 0.1 \\
\delta L / L & = \pm 0.02 \text { (compiler) }
\end{aligned}
\] \\
REFERENCES: \\
Some data in the thesis have been published. See: \\
1. Maillard, A.; Rosenthal, W. Compt. rend. 1952, 234, 2546-8.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) 2-methyl-1-propene, homopolymer (polyisobutylene): \(\left(\mathrm{C}_{4} \mathrm{H}_{8}\right){ }_{x}\); [9003-27-4] \\
(3) Benzene; \(\mathrm{C}_{6} \mathrm{H}_{6}\); [71-43-2]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
    Rosenthal, W.
    Thes. fac. sci. Univ. Strasbourg
    (France) 1954.
``` \\
\hline VARIABLES:
\[
\begin{aligned}
T / K & =293.15 \\
w_{2} / g g^{-1} & =0-0.00798
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
a Designated low mo \\
b Designated high mo
\end{tabular} & \begin{tabular}{c}
Ostwald \\
Coefficient \\
\(L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}\)
\end{tabular}
2.66
2.60
2.63
2.60 \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The prepared solvent and solution were charged into an evacuated cell after degassing, and the mass of solvent was determined by weight. Gas was introduced into the cell from a measuring buret in which the gas was stored over mercury. The cell was agitated while the gas pressure was maintained by adjusting the gas volume. The ostwald coefficient was determined from the mass of solvent and the volume of gas absorbed. Solubilities were measured at pressures above and below atmospheric.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Source and purity not given. An aqueous "soda" solution absorbed 99.8\% of the gas. \\
(2) Polyisobutylene. BASF Ludwigshafen. Purity not given. \\
(3) Benzene. Source and purity not given. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & = \pm 0.2 \\
\delta p / \mathrm{kPa} & = \pm 0.1 \\
\delta L / L & = \pm 0.02 \text { (compiler) }
\end{aligned}
\] \\
REFERENCES: \\
Some data in the thesis have been published. See: \\
1. Maillard, A.; Rosenthal, W. Compt. rend. 1952, 234, 2546-8.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) 2-Propenenitrile, homopolymer (Polyacrylonitrile): \(\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}\right)\)
[25014-41-9] \\
(3) N,N-Dimethylformamide; \(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\); [68-12-2]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Rosenthal, W. \\
Thès. fac. sci. Iniv. Strasbourg (France) 1954.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / K & =293.15 \\
w_{2} / \mathrm{g} \mathrm{~g}^{-1} & =0-0.0666
\end{aligned}
\] & \begin{tabular}{l}
PREPARED bY: \\
H. L. Clever
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
\({ }^{a}\) viscosity of \(0.049 \mathrm{~g} \mathrm{~g}^{-1}\) \\
\(20.00^{\circ} \mathrm{C}\), respectively. \\
b Polymer characterized by of 80,86 and 90 , respect of intrinsic viscosity.
\end{tabular} & \begin{tabular}{l}
 \\
solution at 19.76, 19.84 and \\
solution viscosity and k value vely. The K value is a function
\end{tabular} \\
\hline auxiliary & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The prepared solvent and solution were charged into an evacuated cell after degassing, and the mass of solvent was determined by weight. Gas was introduced into the cell from a measuring buret in which the gas was stored over mercury. The cell was agitated while the gas pres sure was maintained by adjusting the gas volume. The Ostwald coefficient was determined from the mass of solvent and the volume of gas absorbed. Solubilities were measured at pressures above and below atmospheric.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY of materials: \\
(1) Carbon dioxide. Source and purity not given. An aqueous "soda" solution absorbed 99.8\% of the gas. \\
(2) Polyacrylonitrile. BASF of Ludwigshafen, Purity not given. \\
(3) Dimethylformamide. S.E.P.P.I.C. of Paris. Purity not given. Exposure to air avoided. Distilled prior to use. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / \mathrm{K} & = \pm 0.2 \\
\delta p / \mathrm{kPa} & = \pm 0.1 \\
\delta L / L & = \pm 0.02 \text { (compiler) }
\end{aligned}
\] \\
References: \\
Some data in the thesis have been published. See: \\
1. Maillard, A.; Rosenthal, w. Compt. rend. 1952, 234, 2546-8.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Sodium iodide; NaI; [7681-82-5] \\
(3) \(\underset{[67-64-1]}{\text { 2-Propanone }}\) (acetone); \(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\);
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Rosenthal, W. \\
Thès, fac, sci. In niv. Strasbourg (France) 1954.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / K & =293.15 \\
p / \mathrm{kPa} & =101.325 \\
m_{2} / \mathrm{mol} \mathrm{~kg}^{-1} & =0-1.582
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline EXPERIMENTAL VALUES: & b \begin{tabular}{c}
Ostwald \\
Coefficient \\
L/ \(\mathrm{cm}^{3} \mathrm{~cm}^{-3}\)
\end{tabular}\(\quad\)\begin{tabular}{l}
Sechenov \\
Constant \(^{\mathrm{b}}\) \\
\(\mathrm{k}_{\mathrm{smc} \mathrm{c} / \mathrm{kg} \mathrm{mol}^{-1}}\) \\
\\
\\
\\
\\
\\
\\
\\
5.88 \\
5.84 \\
3.83
\end{tabular} \\
\hline \begin{tabular}{l}
\({ }^{\text {a }}\) Original data. The salt concentrat per unit mass of salt solution. \\
b Molal concentration and Sechenov as follows:
\[
k_{s m c}=\left(1 /\left(m_{2} / \operatorname{mol~kg}-1\right)\right)
\]
\end{tabular} & \begin{tabular}{l}
tion was expressed as mass of salt \\
constant calculated by compiler
\[
\log \left(L^{0} / L\right)
\]
\end{tabular} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The prepared solvent solution was charged into an evacuated cell after degassing, and the mass of solvent was determined by weight. Gas was introduced into the cell from a measuring burette in which the gas was stored over mercury. The cell was agitated while the gas pressure was maintained by adjusting the gas volume. The Ostwald coefficient was determined from the mass of solvent and volume of gas used. Solubilities were measured at pressures above and below atmospheric.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Source and purity not given. An aqueous "soda" solution absorbed 99.8\% of the gas. \\
(2) Sodium iodide. Source and purity not given. Recrystallized from water and dried. \\
(3) Acetone. Research grade. Purity not given. Dried and distilled. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & = \pm 0.2 \\
\delta p / \mathrm{kPa} & = \pm 0.1 \\
\delta L / L & = \pm 0.02 \text { (compiler) }
\end{aligned}
\] \\
REFERENCES: \\
Some data in the thesis have been published. See: \\
1. Maillard, A.; Rosenthal, W. Compt. rend. 1952, 234,2546 -8.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS : \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Octadecanoic (stearic) acid; \(\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}\); [57-11-4] \\
(3) 2-propanone (acetone);
\[
\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} ; \quad[67-64-1]
\]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Rosenthal, W. \\
Thès. fac. sci. Univ. Strasbourg (France) 1954.
\end{tabular} \\
\hline \[
\begin{gathered}
\text { VARIABLES: } T / K=293.15 \\
p / \mathrm{kPa}=101.325 \\
w_{2} / \text { mass fraction }=0-0.0419
\end{gathered}
\] & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL Values:} \\
\hline \[
\begin{gathered}
\text { T/K Stearic acid conc.in solvent: } \\
\left.\begin{array}{l}
\text { Mass fraction }{ }^{\text {a }} \text { Mole fraction } \\
\\
\hline
\end{array}\right] \quad \omega_{2} \\
\hline
\end{gathered}
\] & \begin{tabular}{lll}
Ostwald & Bunsen & Mole \\
Coefficient \(^{\text {a }}\) & Coefficient \(^{\mathrm{a}}\) & Fraction \\
\(L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}\) & \(\alpha / \mathrm{cm}^{3}(\) STP \() \mathrm{cm}^{-3}\) & \(x_{1}\) \\
\hline
\end{tabular} \\
\hline \begin{tabular}{ccc}
293.15 & 0 & 0 \\
& 0.0243 & 0.00506 \\
& 0.0419 & 0.00885
\end{tabular} & \begin{tabular}{lll}
6.88 & 6.40 & 0.0211 \\
5.01 & 4.66 & 0.0154 \\
4.93 & 4.58 & 0.0151
\end{tabular} \\
\hline \multicolumn{2}{|l|}{a Original data based on mass fraction stearic acid in gas-free solution. b Calculated by compiler.} \\
\hline AUXILIARY & InFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The prepared solvent solution was charged into an evacuated cell after degassing, and the mass of solvent was determined by weight. Gas was introduced into the cell from a measuring burette in which the gas was stored over mercury. The cell was agitated while the gas pressure was maintained by adjusting the gas volume. The Ostwald coefficient was determined from the mass of solvent and volume of gas used. Solubilities were measured at pressures above and below atmospheric.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Source and purity not given. An aqueous "soda" solution absorbed 99.8\% of the gas. \\
(2) Stearic acid. Merck. Melting point \(69.3^{\circ} \mathrm{C}\). Used without further purification. \\
(3) Acetone. Research grade. Purity not given. Dried and distilled. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / \mathrm{K} & = \pm 0.2 \\
\delta p / \mathrm{kPa} & = \pm 0.1 \\
\delta L / L & = \pm 0.02 \text { (compiler) }
\end{aligned}
\] \\
REFERENCES: \\
Some data in the thesis have been published. See: \\
1. Maillard, A.; Rosenthal, W. Compt. rend. 1952, 234, 2546-8.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Sodium iodide; NaI; [7681-82-5] \\
(3) N,N-Dimethylformamide; \(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\); [68-12-2]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
 Rosenthal, W.
 Thès. fac. sci. %niv. Strasbourg
 (France) 1954.
``` \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K} & =293 \cdot 15 \\
p / \mathrm{kPa}^{-1} & =101.325 \\
m_{2} / \mathrm{mol} & \mathrm{~kg}^{-1}
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline EXPERIMENTAL VALUES: & \begin{tabular}{l}
 \\
tion was expressed as mass of salt \\
constant calculated by compiler as
\[
g\left(L^{0} / L\right)
\]
\end{tabular} \\
\hline AUXILIARY & INFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The prepared solvent solution was charged into an evacuated cell after degassing, and the mass of solvent was determined by weight. Gas was introduced into the cell from a measuring burette in which the gas was stored over mercury. The cell was agitated while the gas pressure was maintained by adjusting the gas volume. The ostwald coefficient was determined from the mass of solvent and volume of gas used. Solubilities were measured at pressures above and below atmospheric.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Source and purity not given. An aqueous "soda" solution absorbed 99.8\% of the gas. \\
(2) Sodium iodide. Source and purity not given. \\
(3) Dimethylformamide. S.E.P.P.I.C. of Paris. Purity not given. Exposure to air avoided. Distilled prior to use. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & = \pm 0.2 \\
\delta p / \mathrm{kPa} & = \pm 0.1 \\
\delta L / L & = \pm 0.02 \text { (compiler) }
\end{aligned}
\] \\
REFERENCES: \\
Some data in the thesis have been published. See: \\
1. Maillard, A.; Rosenthal, W. Compt. rend. 1952, 234,2546 -8.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Octadecanoic (stearic) acid;
\[
\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2} ;[57-11-4]
\] \\
(3) N,N-Dimethylformamide; \(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\); [68-12-2]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Rosenthal, W. \\
Thès. fac. sci. U niv. Strasbourg \\
(France) 1954.
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline \text { VARIABLES: } T / K=293.15 \\
& p / \mathrm{kPa}=101.325 \\
& \omega_{2} / \text { mass fraction }=0-0.0347
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \begin{tabular}{ccc}
\(T / K\) & \multicolumn{2}{l}{ Stearic acid conc.in solvent: } \\
& \begin{tabular}{c} 
Mass fraction \({ }^{\text {a }}\) Mole fraction \\
\\
293.15
\end{tabular} & \(\omega_{2}\)
\end{tabular} &  \\
\hline a Original data based on mass fraction b Calculated by compiler. & n stearic acid in gas-free solution. \\
\hline \multicolumn{2}{|r|}{aUXILIARY information} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The prepared solvent solution was charged into an evacuated cell after degassing, and the mass of solvent was determined by weight. Gas was introduced into the cell from a measuring burette in which the gas was stored over mercury. The cell was agitated while the gas pressure was maintained by adjusting, the gas volume. The Ostwald coefficient was determined from the mass of solvent and volume of gas used. Solubilities were measured at pressures above and below atmospheric.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Source and purity not given. An aqueous "soda" solution absorbed 99.8\% of the gas. \\
(2) Stearic acid. Merck. Melting point 69.3 C. Used without further purification. \\
(3) Dimethylformamide. S.E.P.P.I.C. of Paris. Purity not given. Exposure to air avoided. Distilled prior to use. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / \mathrm{K} & = \pm 0.2 \\
\delta p / \mathrm{kPa} & = \pm 0.1 \\
\delta L / L & = \pm 0.02 \text { (compiler) }
\end{aligned}
\] \\
REFERENCES: \\
Some data in the thesis have been published. See: \\
1. Maillard, A.; Rosenthal, W. Compt. rend. 1952, 234, 2546-8.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Ethanol; \(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\); [64-17-5] \\
3. Lithium chloride; Licl;
[7447-41-8] \\
Lithium bromide; LiBr; [7550-35-8] \\
Lithium iodide; LiI; [10377-51-2] \\
Sodium iodide; NaI; [7681-82-5]
\end{tabular} & ORIGINAL MEASUREMENTS:
```

Kozakewitsch, P.P
Zeit. Phys. Chem. (A) 1929, 143,
216-224.

``` \\
\hline VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=288.15 \quad P / \mathrm{kPa}=101.3 \\
& \quad \text { Conc. of salt }=0-0.151 \text { mole ratio }
\end{aligned}
\] & PREPARED BY:
P.G.T. Fogg \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{cc}
\hline EXPERIMENTAL VALUES: & \\
Salt & Concentration \\
& of salt salt \\
& \(100 n(\mathrm{MX})\) \\
& \(\ln \left(\mathrm{C}_{2} \mathrm{H} 5 \mathrm{OH}\right)\)
\end{tabular}} \\
\hline \begin{tabular}{lr} 
Lithium chloride & 0.00 \\
& 2.69 \\
& 5.44 \\
& 8.47 \\
& 15.11 \\
Lithium bromide & 0.00 \\
& 1.56 \\
& 2.48 \\
& 3.75 \\
& 6.42 \\
Lithium iodide & 0.00 \\
& 2.18 \\
& 5.32 \\
& 10.40 \\
Sodium iodide & 0.00 \\
& 1.27 \\
& 2.97 \\
& 3.87 \\
& 4.38 \\
& 8.44
\end{tabular} & 0.768
0.648
0.585
0.498
0.388
0.768
0.680
0.662
0.612
0.543
0.768
0.640
0.498
0.383
0.768
0.705
0.629
0.612
0.579
0.512 \\
\hline \multicolumn{2}{|l|}{\(+n(M X)=\) no. of moles of salt: \(n\left(C_{2} \mathrm{H}_{5} \mathrm{OH}\right)=\) no. of moles of ethanol \(n\left(\mathrm{CO}_{2}\right)=\) no. of moles of \(\mathrm{CO}_{2}\).} \\
\hline \multicolumn{2}{|l|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Carbon dioxide was bubbled through the alcohol or alcohol and halide for two to four days. A portion of the saturated solution of gas was then added to \(\mathrm{CO}_{2}\)-free water containing a measured quantity of sodium hydroxide. The mixture of sodium hydroxide and carbonate was then titrated against hydrochloric acid using phenolphthalein as indicator.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Carbon dioxide was prepared by the action of hydrochloric acid on calcium carbonate. The gas was purified and dried by the usual methods. \\
2. The alcohol was said to be free from water. \\
3. No information.
\end{tabular} \\
\hline Separate portions of the original solution of gas were analysed for halide content by the volhard method. & ESTIMATED ERROR: \\
\hline Solubilities were corrected to a partial pressure of carbon dioxide of 101.3 kPa . & REFERENCES: \\
\hline
\end{tabular}
COMPONENTS:
1. Carbon dioxide; \(\mathrm{CO}_{2} ;\)
[124-38-9]
2. Mineral Oils

\section*{REFERENCES}
1. Luther, H.; Hiemenz, W. Chem. Ing. Tech. 1957, 29, 530-535.
2. Treshchina, N.I. Trudy Vses. Neft. Nauch.-Issled. Geol.-Razvedoch 1955, No. 83, 566-571.
3. Kubie, L.S. J. Biol. Chem. 1927, 72, 545-548.
4. Baldwin, R.R.; Daniel, S.G. J. Inst. Petroleum 1953, 39, 105-124.
5. Logvinyuk, V.P.; Makarenkov, V.V.; Malyshev, V.V.; Panchenkov, G.M. Khim. Tekhnol. Topl. Masel 1970, 15(5), 27-29.
6. Begley, J.W.; Maget, J.R.; Williams, B. J. Chem. Eng. Data 1965, 10, 4-8.
7. Rodman, C.J.; Maude, A.H. Trans. Am. Electrochem. Soc. 1925, 47, 71-92.
8. Messow, U.; Pape, D. Pol. J. Chem. 1980, 54, 2001-2009.
9. Gniewosz, S.; Walfisz, A. Z. Phys. Chem. 1887, 1, 70-72.
10. Ridenour, W.P.; Weatherford, W.D. Ind. Eng. Chem. 1954, 46, 2376-2381.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Paraffin oil
\end{tabular}}} & \\
\hline & & & \begin{tabular}{l}
Luther, H.; Hiemenz, W. \\
Chem. Ing. Tech. 1957, 29, 530-535.
\end{tabular} \\
\hline \multicolumn{3}{|l|}{VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=293.15-355.15 \\
& P / \mathrm{kPa}=0-80 \mathrm{kPa}
\end{aligned}
\]} & \begin{tabular}{l}
PREPARED BY: \\
P.G.T. Fogg
\end{tabular} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{EXPERIMENTAL VALUES:}} & \\
\hline & & & \begin{tabular}{cc}
\begin{tabular}{c} 
Henry's law \\
constant
\end{tabular} & \begin{tabular}{c} 
Mole fraction \\
solubility at \\
101.3 bar
\end{tabular} \\
/atm \(/ \mathrm{kPa}^{* *}\) &
\end{tabular} \\
\hline 293.15 & \(4.67 \quad 5.72\) & 0.816 & \(57.2 \pm 4.2 \quad 5800 \pm 430 \quad 0.0175\) \\
\hline 314.15 & \(3.89 \quad 5.30\) & 0.734 & \\
\hline 334.65 & \(3.39 \quad 5.02\) & 0.675 & \\
\hline 355.15 & 3.054 .72 & 0.646 & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
At 293.15 K the mole fraction solubility was shown to be proportional to the partial pressure of carbon dioxide to a pressure of at least 600 Torr ( 80 kPa ). \\
* concentrations correspond to a partial pressure of carbon dioxide of about 13 kPa . \\
** calculated by the compiler.
\end{tabular}} \\
\hline \multicolumn{4}{|r|}{aUXIlIARY INFORMATION} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
A spectroscopic method was used. The gas and solution under test was circulated through cuvettes. The concentration of carbon dioxide in the gas and liguid phases were calculated from the integrated extinction coefficient due to the infra-red band at \(2350 \mathrm{~cm}^{-1}\).
\end{tabular}}} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. from a cylinder; purified by the usual methods. \\
2. contained about \(30 \%\) cyclic napthenes and \(70 \%\) slightly branched alkanes; \(d_{4}^{20}=0.8795\); relative molecular mass \(=405\).
\end{tabular} \\
\hline & & & \begin{tabular}{l}
ESTIMATED ERROR: \\
\(\delta L \leq \pm 7.5 \% \quad\) (authors)
\end{tabular} \\
\hline & & & REFERENCES: \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Petroleum
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Treshchina, N. I. \\
Trudy Vses. Neft. Nauch.-Issled. Geo1.-Razvedoch 1955, No. 83, 566-571. \\
Chem. Abstr. 1958, 52, 6771c
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& p_{1} / \mathrm{kPa}=101.3 \\
& T / K=293,313
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
H.L. Clever
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
Petroleum Sample
\end{tabular} & Temperature Solubility Coefficient \({ }^{\text {a }}\) \\
\hline Location \begin{tabular}{c} 
Specific Gravity \\
\(\mathrm{d}_{4}^{20}\) \\
\hline
\end{tabular} & \(t /{ }^{\circ} \mathrm{C} \quad \mathrm{T} / \mathrm{K}\) \\
\hline Koschagyl,
Emba oilfield 0.917 & \begin{tabular}{lll}
20 & 293 & 0.810 \\
40 & 313 & 0.690
\end{tabular} \\
\hline \begin{tabular}{ll}
\begin{tabular}{l} 
Buguruslan, \\
Volga-Ural \\
oilfield
\end{tabular} & 0.913
\end{tabular} & \begin{tabular}{lll}
20 & 293 & 0.834 \\
40 & 313 & 0.769
\end{tabular} \\
\hline Kulsary,
Emba oilfield & \begin{tabular}{lll}
20 & 293 & 1.01 \\
40 & 313 & 0.805
\end{tabular} \\
\hline  & \begin{tabular}{lll}
20 & 293 & 1.03 \\
40 & 313 & 0.810
\end{tabular} \\
\hline Grozny
Grozny oilfield \(\quad 0.835\) & \begin{tabular}{lll}
20 & 293 & 1.108 \\
40 & 313 & 0.92
\end{tabular} \\
\hline \begin{tabular}{cc} 
Kulsary, \\
Emba oilfield & 0.813
\end{tabular} & \(\begin{array}{lll}20 & 293 & 1.135 \\ 40 & 313 & 0.98\end{array}\) \\
\hline Kerosene 0.819 & \begin{tabular}{lll}
20 & 293 & 1.29 \\
40 & 313 & 1.07
\end{tabular} \\
\hline Gasoline 0.746 & \[
\begin{array}{lll}
20 & 293 & 1.87 \\
40 & 313 & 1.46
\end{array}
\] \\
\hline
\end{tabular}
\({ }^{a}\) Solubility coefficient appears to be the Bunsen coefficient, \(\alpha / \mathrm{cm}^{3}\) (STP) \(\mathrm{cm}^{-3} \mathrm{~atm}^{-1}\).

The petroleum viscosities are \(47.8,38.0,11.4,6.5\), - centistoke at 323 K as one comes down the table above.

Some information on the petroleum compositions are given in the paper.
The solubility of methane (natural gas) in water and mineralized water was given.

\section*{AUXILIARY INFORMATION}
\begin{tabular}{l} 
METHOD/APPARATUS/PROCEDURE: \\
A detailed diagram of the apparatus is given in the paper. \\
\hline \begin{tabular}{l} 
SOURCE AND PURITY OF MATERIALS: \\
1. Carbon dioxide. Prepared by the action of hydrochloric acid on marble. \\
2. Petroleum, kerosene, and gasoline. Petroleum from wells in three oil \\
fields. specific gravity, viscosity, and some information on \\
composition and various fractions was given.
\end{tabular} \\
\begin{tabular}{l} 
ESTIMATED ERROR: \\
\(\delta \alpha / \alpha= \pm 0.05\) (compiler)
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { 1. Carbon dioxide; } \mathrm{CO}_{2} \text {; } \\
& {[124-38-9]}
\end{aligned}
\]} & & \multicolumn{3}{|l|}{```
Baldwin, R.R.; Daniel, S.G.
J. Inst. Petroleum 1953, 39,
105-124.
```} \\
\hline \multicolumn{4}{|l|}{VARIABLES:
\[
T / K=273.15-373.15 ; \mathrm{P} / \mathrm{kPa}=101.3
\]} & \multicolumn{3}{|l|}{PREPARED BY: P.G.T. Fogg} \\
\hline \begin{tabular}{l}
EXPERIMEN \\
Solvent
\end{tabular} & \begin{tabular}{l}
AL VALUES: \\
Viscosity at 310.93 K /centipoises
\end{tabular} & Number average R.M.M. & T/K & Bunsen coeff. \(\alpha\) & Ostwald coeff. L & Mole fraçtion
\[
{ }^{x} \mathrm{CO}_{2}
\] \\
\hline Oil A.l & 615 & 670 & 293.15 & 0.853 & 0.915 & 0.0279 \\
\hline \multirow[t]{4}{*}{Oil A. 2} & 268 & 610 & 273.15 & 1.115 & 1.115 & \\
\hline & & & 293.15 & 0.861 & 0.924 & 0.0260 \\
\hline & & & 333.15 & 0.572 & 0.697 & \\
\hline & & & 373.15 & 0.420 & 0.574 & \\
\hline Oil A. 3 & 181 & 570 & 293.15 & 0.887 & 0.952 & 0.0251 \\
\hline Oil A. 4 & 80.3 & 530 & 293.15 & 0.911 & 0.978 & 0.0243 \\
\hline \multirow[t]{4}{*}{Oil A. 5} & 34.9 & 400 & 273.15 & 1.245 & 1.245 & \\
\hline & & & 293.15 & 0.966 & 1.037 & 0.0193 \\
\hline & & & 333.15 & 0.640 & 0.781 & \\
\hline & & & 373.15 & 0.467 & 0.638 & \\
\hline Oil B & 260 & 630 & 293.15 & 0.850 & 0.912 & 0.0269 \\
\hline \multirow[t]{2}{*}{Kerosene} & & 165 & 273.15 & 2.00 & 2.00 & \\
\hline & & & 293.15 & 1.51 & 1.62 & \\
\hline
\end{tabular}

\section*{AUXILIARY INFORMATION}

\section*{METHOD/APPARATUS/PROCEDURE:}

Most of the dissolved air was removed from a sample of oil by letting it stream into a continuously evacuated vessel. Any traces of air which remained were removed by saturating the oil with carbon dioxide or other gas under test and then subjecting the sample to vacuum treatment again. The oil was then transferred to an evacuated gas buret. The buret was then held in a thermostat bath and gas under test bubbled for 2-5 h until saturation was complete. Sufficient time was allowed for bubbles of gas to disappear and the gas above the oil was then displaced by running mercury into the gas buret. Dissolved gas was then pumped out of solution by a Topler pump, collected and measured.

\section*{SOURCE AND PURITY OF MATERIALS:}
1. No information.
2. Samples \(A\) were fractions of the same sample of crude oil. Sample \(B\) was from another source. The following properties were given in the paper:
\(\begin{array}{ll}\text { Oil } & \text { Density } \\ & 15^{\circ} / 4^{\circ} \mathrm{C}\end{array}\)
Flash
point
(closed)
\begin{tabular}{cccc}
\begin{tabular}{c}
Kinematic \\
viscosity \\
/centipoises \\
\(100^{\circ} \mathrm{F}\)
\end{tabular} & \(210^{\circ} \mathrm{F}\)
\end{tabular}\(\quad\) V.I. \begin{tabular}{l}
Pour \\
point
\end{tabular}

\footnotetext{
+ conformed to DTD 472B, specification
}
\begin{tabular}{|c|c|}
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The compiler calculated the Ostwald coefficients. \\
AUXILIARY INFORMATION \\
METHOD/APPARATUS/PROCEDURE: \\
The apparatus and procedure are described in reference (1) which was not available to the compiler. \\
*Mashinostroenie, see Izv. Vyssh. Uchebn. Zaved., Mashinostr. \\
SOURCE AND PURITY OF MATERIALS: \\
No information given. \\
ESTIMATED ERROR:
\[
\delta \alpha / \alpha \leq 0.06 \text { (authors) }
\] \\
REFERENCES: \\
1. Gogitidize, L.D.; Logvinyuk, V.P.; Makarenkov, V.V.;Panchenkov, G.M.; Malyshev, V.V.; Yakovlevskii, V.V. Method of Evaluating the Operating Properties of Jet Fuels and Lubricating Materials (Russ.), Mashinostroenie"1966.
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9] \\
2. Kerosene
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Messow, U.; Pape, D. \\
Po1. J. Chem. 1980, 54, 2001-2009.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=303.15-363.15 \\
& P / \mathrm{kPa}=101.3 \mathrm{kPa}
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
P.G.T. Fogg
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The authors stated that the kerosine \\
Average molecular weight \\
Average b.p./K \\
Molar volume at \(298.2 \mathrm{~K} /\)
\end{tabular} & \begin{tabular}{l}
otal pressure of 101.3 kPa
\[
\begin{aligned}
& 0.01560 \\
& 0.01182 \\
& 0.00901
\end{aligned}
\] \\
had the following properties:
\[
\begin{aligned}
\mathrm{t} / \mathrm{g} \mathrm{~mol}^{-1} & =209 \\
& =462 \\
/ \mathrm{cm}^{3} \mathrm{~mol}^{-1} & =257.75
\end{aligned}
\]
\end{tabular} \\
\hline \multicolumn{2}{|r|}{AUXILIARY Information} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The authors stated that measurements were made in the pressure range 1 atm to 10 atm but no further experimental details or results were given.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
No details given
\end{tabular} \\
\hline & REFERENCES : \\
\hline
\end{tabular}

COMPONENTS:
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]
2. Animal and Vegetable Oils and Fats

\section*{EVALUATOR:}

Peter G.T. Fogg, School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8DB, U.K. July 1991

CRITICAL EVALUATION:
Solubility of carbon dioxide in animal and vegetable oils and fats.
There have been several measurements (1-6) of the solubility of carbon dioxide in olive oil at a partial pressure of 101.3 kPa . The most reliable are probably those carried out by Yeh and Petersen (1) from 298.2 K to 318.2 K and by Battino et a1.(2) from 298.0 K to 327.9 K . In both cases the oil was carefully degassed before absorption of carbon dioxide. Values of mole fraction solubility from the two sources agree to within \(2 \%\) The recommended smoothing equation, based on these two sets of data, is given below.
\[
\ln x_{\mathrm{CO}_{2}}=-88.009+4996.8 /(T / K)+11.9998 \ln (T / K)
\]
temperature range \(=298.0-327.9 \mathrm{~K}\)
standard deviation in \({ }^{x} \mathrm{CO}_{2}=0.00023\)
The average thermodynamic values for the transfer of one mole of carbon dioxide at a partial pressure of 101.3 kPa to a hypothetical solution of unit mole fraction concentration are
\[
\begin{aligned}
\Delta H^{\circ} / \mathrm{J} \mathrm{~mol}^{-1} & =-10479 \\
\Delta S^{\circ} / \mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} & =-59.1
\end{aligned}
\]

The equation for the Bunsen coefficient, \(\alpha\), based on data from the two sources is
\[
\ln \alpha=-3.0329+1328.0 /(T / K)-0.20002 \ln (T / K)
\]
temperature range \(=298.0-327.9 \mathrm{~K}\)
standard deviation in \(\alpha=0.029\)
Yeh and Petersen (1) measured the solubilities of carbon dioxide in dog fat, rat-pooled fat, and two samples of human fat over the temperature range 298.2-318.2 K. In all cases Bunsen coefficients were within \(1.6 \%\) of the values which they found for olive oil at the same temperatures. Nichols (7) also measured solubility in dog fat, rat-pooled fat and human fat. Values of Bunsen coefficients from these measurements were close to each other but about \(10 \%\) lower than Yeh and Peterson's values.

Tomoto and Kusano (5) measured solubility in olive oil, linseed oil and soybean oil. The data which they published are close to those in an earlier paper by Tomoto (4). They found that Bunsen coefficients at 293.2 K and 323.2 K for solution in linseed oil were greater than the coefficients for olive oil. Bunsen coefficients for soybean oil were less than for olive oil. Schmidt-Nielsen's data (3) also indicate that the Bunsen coefficient for carbon dioxide in linseed oil at 293.2 K is greater than that for olive oil at this temperature. However Tomoto's and Schmidt-Nielsen's values of Bunsen coefficients for both linseed oil and olive oil are lower than Bunsen coefficients for olive oil from data published by Yeh and Petersen and by Battino et al. which are recommended above.

Schmidt-Nielsen (3) also found that the solubility of carbon dioxide (\(/ \mathrm{cm}^{3} \mathrm{~g}^{-1}\)) in cod-liver oil and in herring oil was greater than in olive oil. Further work is needed to establish the relative solubilities in these solvents.

Vibrans (8) measured solubility in cottonseed oil at about 298 and 318 K . Temperature control was poor but averaged values of Bunsen coefficients are close to those for olive oil. The average value for \(296-299 \mathrm{~K}\) was found to be \(1.34 \pm 0.04\) compared with a value for olive oil at 298.2 K of 1.3565 (Yeh and Petersen). The average value for 318 K was \(1.012 \pm 0.029\) compared with 1.0150 for olive oil (Yeh and Petesen). Vibrans also found
COMPONENTS: EVALUATOR: \(^{2}\)
1. Carbon dioxide; \(\mathbf{C O}_{2}\); [124-38-9]
2. Animal and Vegetable Oils and Fats

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry, Polytechnic of North London, Holloway Road, London, N7 8́DB, U.K. July 1991

CRITICAL EVALUATION:
that the Bunsen coefficient for dissolution in steam rendered lard at 318 K was \(1.014 \pm 0.012\), close to the value of 1.012 for cottonseed oil.

Schaffer and Haller (9) measured solubility in cottonseed oil at 313.2 K . Their value for the Bunsen coefficient was 0.876 which is not in accord with values reported by Vibrans. Schaffler and Haller also reported Bunsen coefficients for solubility in lard at 313.2 K and in butter oil at 313.2 K and 333.15 K . The value for lard is, in this case, slightly lower than the value given by Vibrans (Schaffer at 313.2 K: 1.003; Vibrans at about \(318 \mathrm{~K}: 1.014\)). The Bunsen coefficients for dissolution in butter oil were greater than values for olive oil reported by Yeh and Petersen (1) and by Battino et al.(2).

\section*{REFERENCES}
1. Yeh, S.Y.; Peterson, R.E. J. Pharm. Soc. 1963, 52, 453-458.
2. Battino, R.; Evans, F.D.; Danforth, W.F. J. Am. Oil Chem. Soc. 1968, 45, 830-833.
3. Schmidt-Nielsen, S. Ann. Acad. Sci. Fenn., Ser. A. 1927, 29(No.12), 7pp.
4. Tomoto, N. Miyazaki Daigaku Kogakubu Kenkyu Hokoku 1958, No. 4, 39-46. (Bul1. Fac. Eng., Miyazaki Univ.)
5. Tomoto, N.; Kusano, K. Yukagaku 1967, 16(3), 108-113. (Oi1 Chemistry)
6. Power, G.G.; Stegall, H. J. App1. Physiology, 1970, 29, 145-149.
7. Nichols, G. Science, 1957, 126, 1244-1245.
8. Vibrans, F.C. Oil and Soap 1935, 12, 14-15.
9. Schaffer, P.S.; Haller, H.S. Oil and Soap 1943, 20, 161-162.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS : \\
(1) Carbon dioxide; \(\mathrm{CO}_{2} ;\) [124-38-9] \\
(2) Fats
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Schmidt-Nielsen, S. \\
Ann. Acad. Sci. Fenn., Ser. A. 1927, 29 (No. 12), 7 pp.
\end{tabular} \\
\hline VARIABLES :
\[
\begin{aligned}
T / \mathrm{K} & =293 \\
p_{1} / \mathrm{kPa} & =101 \quad(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline auxiliary & INFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The oil is degassed for two hours in a vacuum. \\
The oil stands for 24 hours with the dry gas. \\
The dissolved gas is removed from the oil by a Barcroft gas pump, and the gas volume is measured.
\end{tabular} & SOURCE AND PURITY OF MATERIALS: No information. \\
\hline & \begin{tabular}{|l}
\hline ESTIMATED ERROR: \\
\\
\hline REFERENCES:
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Olive Oil
\end{tabular} & ORIGINAL MEASUREMENTS:
Yeh, S. Y.; Peterson, R. E.
J. Pharm. Sci. 1963, \(52,453-458\). \\
\hline VARIABLES:
\[
\begin{aligned}
T / K & =298.15-318.15 \\
P / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The Bunsen coefficients are the averag coefficients were fitted by the method \(\log L=A / T+B\) by the authors. The fats. From the slope and intercept th
\[
\Delta H^{\circ} / \mathrm{cal} \text { mol }{ }^{-1}=-1217 \pm 30 \text { and } \Delta S^{\circ} /
\] \\
The thermodynamic values are for the of carbon dioxide from the gas phase the solution at a concentration of one carbon dioxide + olive oil system for standard state transfer on one mole of at a partial pressure of one atm to the solution. \\
Smoothed Data: For use between 298.15
\[
\ln x_{1}=-7.1013+12.5
\] \\
The standard error about the regr For more information see the eval
\end{tabular} & \begin{tabular}{l}
 \\
ge of three measurements. The Ostwald of least squares to the equation same line fitted olive oil and the hey obtained \\
cal \(\mathrm{K}^{-1} \mathrm{~mol}^{-1}=-8.5 \pm 0.1\). \\
standard state transfer of one mole at a concentration of one mole \(\mathrm{dm}^{-3}\) to mole \(\mathrm{dm}^{-3}\). See the evaluation of the the thermodynamic values of the f carbon dioxide from the gas phase he hypothetical unit mole fraction \\
5 and 318.15 K . \\
5711/(T/100 K) \\
ression line is \(1.15 \times 10^{-4}\). \\
luation.
\end{tabular} \\
\hline \multicolumn{2}{|r|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Oil was dried and degassed by stirring under vacuum at \(80^{\circ} \mathrm{C}\) for about 12 hr . A 50 ml . sample was placed in an absorption flask attached to a Geffken gas buret (1). The oil was constantly stirred and equilibrated with increments of gas until no change was observed in a differential oil manometer for \(\frac{1}{2} \mathrm{hr}\). Difference between initial and final buret readings indicated amount of gas absorbed. Absorption at successively lower temperatures was determined. The authors also measured the viscosity and surface tension of the liquid.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Matheson Co., Inc. Research grade, maximum impurity 0.3 mol per cent \(\mathrm{N}_{2}\) or CO. \\
(2) Olive Oil. Magnus, Mabee and Raynard Co., U.S.P. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & =0.05 \\
\delta P / \mathrm{nmHg} & =0.5
\end{aligned}
\]
\end{tabular} \\
\hline & \begin{tabular}{l}
REFERENCES: \\
1. Geffken, G. \\
Z. Physik Chem. 1904, 49, 257.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Olive oil
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Battino, R.; Evans, F. D.; \\
Danforth, W. F. \\
J. Am. Oiz Chem. Soc. 1968, 45, 830-833.
\end{tabular} \\
\hline \[
\begin{aligned}
\hline \text { VARIABLES: } & \\
T / \mathrm{K}: & 298.00-327.94 \\
P / \mathrm{kPa}: & 101.325(1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
H. L. Cleve
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The solubility values were adjusted to a partial pressure of carbon dioxide of 101.325 kPa (1 atm) by Henry's law. \\
The Bunsen coefficients were calculated by the compiler. \\
Smoothed Data: For 298.15-328.15 K.
\[
\ln x_{1}=-7.1169+12.6193 /(T / 100 \mathrm{~K})
\] \\
The standard error about the regression line is \(2.34 \times 10^{-4}\). \\
See the evaluation of the carbon dioxide + olive oil system for the recommended Gibbs energy equation and smoothed solubility values.
\end{tabular}} \\
\hline AUXILIARY & INFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The apparatus is based on the design by Morrison and Billett (1) and the version used is a modification of the apparatus of Clever, Battino, Saylor and Gross (2). \\
The solvent is sprayed into an evacuated chamber of an all glass apparatus; it is stirred and heated until the pressure drops to the vapor pressure of the liquid. Solubility Determination. The degassed liquid passes in a thin film down a glass spiral tube at a total pressure of one atm of solute gas plus solvent vapor. The gas absorbed is measured in the attached buret system, and the solvent is collected in a tared flask and weighed.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. The Matheson Co., Inc. Research grade. \\
Minimum volume of purity is 99.995 \\
(2) Olive oil. A. U.S.P. Fisher Scientific Co., 0.58\% free fatty acid. \\
B. Nutritional Biochemicals Corp. \(0.30 \%\) free fatty acid. The density was measured and fitted to the equation \(\rho / \mathrm{g} \mathrm{cm}^{-3}=0.9152-0.000468 \mathrm{t} / \mathrm{C}\). \\
The average mol wt is \(884 \pm 45\). \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / \mathrm{K} & = \pm 0.03 \\
\delta P / \mathrm{mmHg} & = \pm 0.5 \\
\delta x_{1} / x_{1} & = \pm 0.03
\end{aligned}
\] \\
REFERENCES: \\
l. Morrison, T. J.; Billett, F. \\
J. Chem. Soc. 1948, 2033. \\
2. Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M. J. Phys. Chem. 1957, 61, 1078.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Olive oil.
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
 Power, G.G.; Stegall, H.
 J. Appl. Physiology, 1970, 29,
 145-9.
``` \\
\hline VARIABLES:
\[
T / K=310.15
\] & \begin{tabular}{l}
PREPARED BY: \\
C.L. Young
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \[
\begin{array}{rc}
310.15 & 1.23 \\
* & \text { Standard deviation. }
\end{array}
\] & \[
0.02
\]
\[
4
\] \\
\hline & . \\
\hline AUXILIARY & INFORMATION \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Liquid saturated with gas in a stirred cell: \(5.0 \mathrm{~cm}^{3}\) samples of liquid removed in a calibrated syringe and amount of gas extracted by two extraction in a van Slyke apparatus determined. Details in source and ref. (I).
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS; \\
1. Matheson Co. sample, purity better than 99.7 mole per cent. \\
2. No details given. \\
ESTIMATED ERROR:
\[
\delta T / K= \pm 0.1
\] \\
REFERENCES: \\
1. Power, g.g. \\
J.Appl. Physiology. 1968, 24, 468.
\end{tabular} \\
\hline
\end{tabular}


\section*{AUXILIARY INFORMATION}

\section*{METHOD/APPARATUS/PROCEDURE:}

Fatty tissue homogenized with sand at \(30-35{ }^{\circ} \mathrm{C}\) in a buffer solution at pH 4.0 or, in the case of one rat sample, at pH 7.40. Fat removed by centrifuging. Dry air mixed with 23.5-24.9\% \(\mathrm{CO}_{2}\) passed for 2.5 to 5 h through samples of volume \(3-5 \mathrm{~cm}^{3}\). Solutions then analysed by use of a van Slyke apparatus. Concentrations of \(\mathrm{CO}_{2}\) corrected to a partial pressure of 101.3 kPa .

SOURCE AND PURITY OF MATERIALS:
1. No information
2. Depot fat from the following sources:
Dog - perirenal and subcutaneous fat from an adult mongrel dog 2 h after death by exsanguination under anesthesia.
Rat - perirenal, subcutaneous and retroperitoneal fat from six 200-day old Wistar rats killed by a blow on the head followed by exsanguination. Samples pooled and divided in two parts, A and B.
Human - omental fat from an 86-year old woman 5 h after death.

Negligable water content - no loss of weight from any sample during 48 h in a dessicator

ESTIMATED ERROR:
See above
REFERENCES:
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Dog Fat
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Yeh, S. Y.; Peterson, R. E. \\
J. Pharm. Sci. 1963, 52, 453-458.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{array}{r}
T / \mathrm{K}=298.15-318.15 \\
P / \mathrm{kPa}=101.325(1 \mathrm{~atm})
\end{array}
\] & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The Bunsen coefficients are the aver coefficients were fitted by the meth \(\log L=A / T+B\) by the authors. The fats. From the slope and intercept
\[
\Delta H^{\circ} / \mathrm{cal} \mathrm{~mol}^{-1}=-1273 \pm 30 \text { and } \Delta S
\] \\
The thermodynamic values are for the dioxide from the gas phase at a conc solution phase at a concentration of
\end{tabular} & \begin{tabular}{l}
\begin{tabular}{lc}
\begin{tabular}{c} 
fficient \\
\(\mathrm{cm}^{-3} \mathrm{~atm}^{-1}\) \\
Dev.
\end{tabular} & \begin{tabular}{c} 
Ostwald \\
Coefficient \\
\(L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}\)
\end{tabular} \\
.0022 & 1.4638 \\
.0015 & 1.3862 \\
.0014 & 1.2822 \\
.0011 & 1.1790 \\
\hline
\end{tabular} \\
age of three measurements. The Ostwald od of least squares to the equation same line fitted olive oil and the they obtained \\
\(\% / \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}=-8.5 \pm 0.1\). \\
transfer of one mole of carbon entration of one mole \(\mathrm{dm}^{-3}\) to the one mole \(\mathrm{dm}^{-3}\).
\end{tabular} \\
\hline \multicolumn{2}{|r|}{auxiliary information} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Fat was dried and degassed by stirring under vacuum at \(80^{\circ} \mathrm{C}\) for about 12 hr . A 50 ml . sample was placed in an absorption flask attached to a Geffken gas buret (1). The fat was constantly stirred and equilibrated with increments of gas until no change was observed in a differential oil manometer for \(\frac{1 / 2}{} \mathrm{hr}\). Difference between initial and final buret readings indicated amount of gas absorbed. Absorption at successively lower temperatures was determined. The authors also measured the viscosity and surface tension of the liquid.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Matheson Co. Research grade, maximum impurity 0.3 mole per cent \(\mathrm{N}_{2}\) or CO . \\
(2) Dog perineal, mesenteric, omental, and other adipose fats were extracted with petroleum ether (b.p. 309-338 K). The ether was evaporated at 353 K under vacuum for several hours. Stored under refrigeration until use. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & =0.05 \\
\delta P / \mathrm{mmHg} & =0.5 \\
\delta \alpha / \alpha & =0.005
\end{aligned}
\]
\end{tabular} \\
\hline & \begin{tabular}{l}
References: \\
1. Geffken, G. \\
2. Physik Chem. 1904, 49, 257.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Rat-pooled Fat
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
    Yeh, S. Y.; Peterson, R. E.
    J. Pharm. Sci. 1963, 52, 453-458.
``` \\
\hline VARIABLES: \begin{tabular}{rl}
\(T / K\) & \(=298.15-318.15\) \\
& \(P / \mathrm{kPa}=101.325(1 \mathrm{~atm})\)
\end{tabular} & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
The Bunsen coefficients are the average of three measurements. The Ostwald coefficients were fitted by the method of least squares to the equation \(\log L=A / T+B\) by the authors. The same line fitted olive oil and the fats. From the slope and intercept they obtained
\[
\Delta H^{\circ} / \mathrm{cal} \mathrm{~mol}^{-1}=-2713 \pm 30 \text { and } \Delta S^{\circ} / \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=-8.5 \pm 0.1
\] \\
The thermodynamic values are for the transfer of one mole of carbon dioxide from the gas phase at a concentration of one mole \(\mathrm{dm}^{-3}\) to the solution at a concentration of one mole \(\mathrm{dm}^{-3}\).
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{auxiliary information} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Fat was dried and degassed by stirring under vacuum at \(80^{\circ} \mathrm{C}\) for about 12 hr . A 50 ml . sample was placed in an absorption flask attached to a Geffken gas buret (1). The fat was constantly stirred and equilibrated with increments of gas until no change was observed in a differential oil manometer for \(\frac{1}{2} \mathrm{hr}\). Difference between initial and final buret readings indicated amount of gas absorbed. Absorption at successively lower temperatures was determined. The authors also measured the viscosity and surface tension of the liquid.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Matheson Co. Research grade, maximum impurity 0.3 mole per cent \(\mathrm{N}_{2}\) or CO . \\
(2) Rat retroperitoneal, mesenteric, omental, and hair clipped skin was cut into about 2.5 cm squares, dried at 353 K under vacuum, coarsely crushed and then extracted with petroleum ether (b.p. 308-338 K) in a Soxhlet extractor. The ether was evaporated at 353 K for several hours under vacuum. Stored under refrigeration until use. \\
ESTIMATED ERROR: \(\delta \mathrm{T} / \mathrm{K}=0.05\) \\
REFERENCES:
\[
\begin{aligned}
\delta P / \mathrm{mmHg} & =0.5 \\
\delta \alpha / \alpha & =0.005
\end{aligned}
\] \\
1. Geffken, G. \\
2. Physik Chem. 1904, 49, 257.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Human Fat
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Yeh, S. Y.; Peterson, R. E. \\
J. Pharm. Sci. 1963, 52, 453-458.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / K & =298.15-318.15 \\
P / \mathrm{kPa} & =101.325(1 \mathrm{~atm})
\end{aligned}
\] & Prepared by: \(\quad\) H. L. Clever \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL
\(\begin{gathered}\text { VALUES: } \\ \text { Human fat } 1\end{gathered} \quad\) Human fat 2} \\
\hline & \\
\hline \(303.15 \quad 1.2471 \pm 0.0015 \quad 1.3840\) & \(\begin{array}{llll}298.15 & 1.3376 \pm 0.0044 & 1.4600 \\ 303.15 & 1.2448 \pm & 0.0044 & 1.3815\end{array}\) \\
\hline \(310.15 \quad 1.1359 \pm 0.0018 \quad 1.2897\) & \(310.151 .1254 \pm 0.0014\) 1.2789 \\
\hline \(318.151 .0153 \pm 0.0020 \quad 1.1826\) & \(318.151 .0122 \pm 0.00091 .1790\) \\
\hline \({ }^{1} \alpha / \mathrm{cm}^{3}\) (STP & \(\mathrm{m}^{-3} \mathrm{~atm}^{-3}\) \\
\hline \multicolumn{2}{|l|}{The Bunsen coefficients are the average of three measurements. The Ostwald coefficients were fitted by the method of least squares to the equation \(\log L=A / T+B\) by the authors. The same line fitted olive oil and the} \\
\hline \(\Delta H^{\circ} / \mathrm{cal} \mathrm{mol}{ }^{-1}=-2713 \pm 30\) and \(\Delta S^{\circ}\) & \(/ \mathrm{cal} \mathrm{k}{ }^{-1} \mathrm{~mol}^{-1}=-8.5 \pm 0.1\) \\
\hline The thermodynamic values are for the dioxide from the gas phase at a conc solution at a concentration of one mo & transfer of one mole of carbon ntration of one mole \(\mathrm{dm}^{-3}\) to the le \(\mathrm{dm}^{-3}\). \\
\hline \multicolumn{2}{|r|}{auxiliary information} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Fat was dried and degassed by stirring under vacuum at \(80^{\circ} \mathrm{C}\) for about 12 hr . A 50 ml . sample was placed in an absorption flask attached to a Geffken gas buret (1). The fat was constantly stirred and equilibrated with increments of gas until no change was observed in a differential oil manometer for \(\frac{1}{2} \mathrm{hr}\). Difference between initial and final buret readings indicated amount of gas absorbed. Absorption at successively lower temperatures was determined. The authors also measured the viscosity and surface tension of the liquid.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Matheson Co. Research grade, maximum impurity 0.3 mole per cent \(\mathrm{N}_{2}\) or CO . \\
(2) Human omental fats obtained from two deceased patients (1 and 2). Extracted with petroleum ether (b.p. 309-338 K). The ether was evaporated at 353 K under vacuum for several hours. Stored under refrigeration until use. Fat 2 appeared to have more stearine precipitate than fat 1 at 296 K . \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / \mathrm{K} & =0.05 \\
\delta P / \mathrm{mmHg} & =0.5 \\
\delta \alpha / \alpha & =0.005
\end{aligned}
\]
\end{tabular} \\
\hline & \begin{tabular}{l}
REFERENCES: \\
1. Geffken, G. \\
Z. Physik. Chem.1904, 49, 257.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Linseed oil
\end{tabular} & ORIGINAL MEASUREMENTS:
Tomoto, N.; Kusano, K.
Yukagaku 1967, 16 (3), 108-113.
[Oil Chemistry] \\
\hline VARIABLES:
\[
\begin{aligned}
T / K= & 303,323 \\
p_{1} / \mathrm{kPa}= & 20.3-\text { N101 } \\
& (0.2-\text { about } 1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
Five to seven measurements were made at each temperature over the pressure interval of 0.2 to about 1.0 atm . A diagram of solubility (\(\mathrm{cm}^{3}\) per g) vs. pressure was linear. Only the values of the Bunsen coefficient above were tabulated in the paper.
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{AUXILIARY INFORMATION} \\
\hline METHOD/APPARATUS/PROCEDURE: & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. \\
(2) Linseed oil. The oil had a saponification value of 191.2, an acid value of 0.23 , an iodine value of 175.7. Density \(\rho^{30} / \mathrm{g} \mathrm{cm}^{-3}=0.9232\), mean mol \(\mathrm{wt}=880\), mean molar volume \(\mathrm{V}^{\circ} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}=953.2\).
\end{tabular} \\
\hline & ESTIMATED ERROR: \\
\hline & REFERENCES: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Soybean oil
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Tomoto, N.; Kusano, K.
\[
\begin{aligned}
& \text { Yukagaku 1967, } 16 \text { (3), } 108 \text { - } 113 . \\
& \text { [Oit Chemistry] }
\end{aligned}
\]
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
T / \mathrm{K}= & 303.15-343.15 \\
p_{1} / \mathrm{kPa}= & 20.3-\mathfrak{} \mathrm{n} 01 \\
& (0.2-\text { about } 1 \mathrm{~atm})
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
H. L. Clever
\end{tabular} \\
\hline EXPERIMENTAL VALUES: & \begin{tabular}{l}
\begin{tabular}{c}
\begin{tabular}{c}
Bunsen \\
Coefficient \\
(\(\mathrm{cm}^{3} \quad(\mathrm{STP}) \mathrm{cm}^{-3} \mathrm{~atm}^{-1}\) \\
1.018 \\
0.901 \\
\(0.800_{2}\) \\
\(0.634_{8}\) \\
\hline
\end{tabular}\({ }^{2}\) \\
\hline
\end{tabular} \\
urements were made at ver the pressure interval 0 atm . A diagram of r g) vs. pressure was values of the Bunsen were tabulated in the paper.
\end{tabular} \\
\hline \multicolumn{2}{|r|}{auxiliary information} \\
\hline \multirow[t]{3}{*}{METHOD/APPARATUS/PROCEDURE:} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. \\
(2) Soybean oil. The oil had a saponification value of 192.0, an acid value of 0.17 , an iodine value of 128.5. Density \(\rho^{3} \% \mathrm{~g} \mathrm{~cm}^{-3}=0.9132\), Mean mol wt \(=877\), mean molar volume \(\mathrm{p} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}=960.4\).
\end{tabular} \\
\hline & ESTIMATED ERROR: \\
\hline & REFERENCES: \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS : \\
(1) Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
(2) Cottonseed oil Steam rendered lard
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Vibrans, F. C. Oit and Soap 1935, 12, 14-15.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=296-299, \\
& p / \mathrm{kPa}=1018 \\
&\text { (1 } \mathrm{atm})
\end{aligned}
\] & \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \multicolumn{2}{|r|}{auxiliary information} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Van Slyke manometric method (1).
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
(1) Carbon dioxide. Commercial cylinder. Source and purity not stated. \\
(2) Cottonseed oil. Commercial sample bought on market. Representative of its class. \\
Lard. From a mixture of killing and cutting fats. Steam rendered. \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta T / K & = \pm 3 \text { at room temperature } \\
& \pm 2 \text { at } 318 \mathrm{~K} . \\
\delta \alpha / \alpha & = \pm 0.04 \text { (author) }
\end{aligned}
\] \\
REFERENCES: \\
1. Van Slyke, D. D.; et al. J. Biol. Chem. 1924, 61, 523 and 575.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline COMPONENTS: & EVALUATOR: \\
1. Carbon dioxide; \(\mathrm{CO}_{2} ;\) \\
[124-38-9] \\
2. Poter G.T. Fogg, \\
School of Applied Chemistry, \\
Polytechnic of North London, \\
Holloway Road, London, N7 8DB, U.K. \\
July 1991
\end{tabular}

CRITICAL EVALUATION:

Solubility of carbon dioxide in polymeric materials
The solubility constant for dissolution of gas in a polymer has been defined (1) as volume of gas absorbed (reduced to \(1 \mathrm{~atm}, 273.15 \mathrm{~K}\))
volume of polymer \(\times\) pressure of gas/atm

Solubility in different samples of polyethylene has been measured by Michaels and Bixler (1) at 273.2 K; 101.3 kPa . Values of the solubility constant were unaffected by the magnitude of the number average relative molecular mass. Ash et al. (2) measured solubility in a single sample of polyethylene at \(313.2-333.2 \mathrm{~K}\). Values of the solubility constant are consistent with a value given by Michaels and Bizler for polyethylene tested at 273.2 K , if error limits are taken into account.

Solubility in orientated polyethylene terephthalate having an amorphous volume fraction of 0.49 has been measured by Vieth et al. (3) from 5.5 kPa to 130.5 kPa at 298.2 K and 313.2 K . The authors showed that the measurements were consistent with earlier measurements of solubility in samples of unorientated material having amorphous volume fractions of 0.58 and 1 , reported by Michaels et al.(4).

Michaels and Bixler (1) measured the dissolution of carbon dioxide in unvulcanised smoked sheet rubber. The solubility constant for this material at 273.2 K was found to be \(0.95 \mathrm{~atm}^{-1}\). This value may be compared with a solubility constant for unvulcanised smoked sheet rubber of \(1.02 \mathrm{~atm}^{-1}\) at 293 K which was reported by Venable and Fuwa (5). Venable and Fuwa also reported the solubility in other samples of rubber.

Solubility in polyvinyl acetate has been measured by Liu and Prausnitz (6) and in Nylon 11 by Ash et al.(2). Solubility in hydrogenated
polybutadiene was measured by Michaels and Bixler. There is no reason to doubt the reliability of these sets of measurements but no other work on these systems is available to the evaluator for comparison.

\section*{REFERENCES}
1. Michaels, A.S.; Bixler, H.J. J. Polymer Sci. 1961, 50, 393-412.
2. Ash, R.; Barrer, R.M.; Palmer, D.G. Polymer, 1970, 11, 421-435.
3. Vieth, W.R.; Alcalay, H. H.; Frabetti, A.J. J. App1. Poly. Sci. 1964, 8, 2125-2138.
4. Michaels, A.S.; Vieth, W.R.; Barrie, J.A. J. App1. Phys. 1963, 34, 1-12.
5. Venable, C.S.; Fuwa, T. J. Ind. Eng. Chem. 1922, 14, 139-142.
6. Liu, D.D.; Prausnitz, J.M. J. Polymer Sci. (Polymer Phys. Edn.) 1977, 15, 145-153.

COMPONENTS:
1. Carbon dioxide; \(\mathbf{C O}_{2}\);
[124-38-9]
2. Ethene, homopolymer, (poly-
ethylene): (\(\mathrm{C}_{2} \mathrm{H}_{4}\))x; [9002-88-4]
Hydrogenated polybutadiene Natural rubber

VARIABLES:
\(P / \mathrm{kPa}=101.3 \quad T / \mathrm{K}=273.15\)

ORIGINAL MEASUREMENTS:
Michaels, A.S.; Bixler, H.J.
J. Polymer Sci. 1961, 50, 393-412.

PREPARED BY:
P.G.T. Fogg

EXPERIMENTAL VALUES:
\begin{tabular}{lcl}
Polymer & \begin{tabular}{c}
Solubility constant, \(k \prime\) \\
\(/ a_{-1}\)
\end{tabular} & \begin{tabular}{l}
Volume fraction \\
of amorphous \\
polymer, \(\alpha\)
\end{tabular} \\
\hline \begin{tabular}{l}
Polyethylene \\
Hydrogenated polybutadiene \\
Natural rubber
\end{tabular} & \(0.451 \pm 0.023\) & \(0.22-0.65\) \\
& 0.577 & 0.71
\end{tabular}

The solubility constant, \(k\), is defined as the ratio of volume of gas absorbed at a partial pressure of gas of 1 atm to volume of polymer, corrected to 273.15 K and 1 atm . The authors state that the value of \(k\) depends upon the volume fraction of amorphous polymer in the sample. Constants \(k^{\prime}\) given above refer to hypothetical amorphous polymers and are related to \(k\) by the equation
\[
k^{\prime}=\alpha k
\]
where \(\alpha\) is the volume fraction of amorphous polymer.
The authors measured the solubility of thirteen different gases in three different polyethylenes having different number average relative molecular mass. These polyethylenes were Grex, Alathon 14 and Epolene C. These three polymers gave no significant differences between values of \(k\) '. for a particular gas. The hydrogenated polybutadiene was a sample of Hydropol.

\section*{AUXILIARY INFORMATION}

MET'HOD/APPARATUS/PROCEDURE:
Two methods of measuring solubility are mentioned. One method, used for samples of polyethylene, involved equilibrating the gas under test at a pressure of about 1 atm with pellets of the polymer. Gas in the voids was then quickly pumped off during a period of about 10 secs. Gas which subsequently diffused from the polymer was taken to be dissolved gas. It was estimated that about \(5 \%\) of the dissolved gas was lost during the rapid evacuation period.

A second method was the time lag method based upon work by Barrer (1).
Gas at pressures from 5 mmHg to 800 mmHg was brought into contact with a film of polymer in an evacuated section of the apparatus. The build up of gas at the other side of the film was monitored. this method was used for all the polymers under test with the exception of Epolene \(C\).

SOURCE AND PURITY OF MATERIALS:
1. From a cylinder, dried over calcium sulfate before use.
2. Grex. Manufactured by W.R. Grace \& Co. \(\bar{M}_{n}=40\) 000. \(\alpha=0.22-0.31\). Alathon 14. Manufactured by E.I. du Pont de Nemours \& Co. \(\bar{M}_{n}=26000\). \(\alpha=0.57-0.59\).
Epolene \(C\) Manufactured by Tennessee Eastman Co. \(\bar{M}_{n}=6600\). \(\alpha=0.65\) Hydropol Manufactured by Phillips Petroleum Co. by hydrogenation of (\(41^{\circ} \mathrm{F}\)) emulsion polybutadiene. \(\bar{M}_{n}=100000 . \quad \alpha=0.71\)
Natural rubber Unvulcanised smoked sheet (Hevea) \(\overline{\bar{M}}_{n}=400000\) \(\alpha_{=}=1\).
(\(\bar{M}_{n}=\) number average relative molecular mass)

\section*{REFERENCES:}
1. Barrer, R.M. Diffusion In and Through Solids, 1951 Cambridge University Press, Cambridge, UK.
\begin{tabular}{|c|c|}
\hline COMPONENTS : & ORIGINAL MEASUREMENTS: \\
\hline \begin{tabular}{l}
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
\[
[124-38-9]
\] \\
2. Ethene, homopolymer,
\[
\begin{aligned}
& (\text { polyethylene }) ;\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{\mathrm{x}} ; \\
& {[9002-88-4]}
\end{aligned}
\]
\end{tabular} & ```
Ash, R.; Barrer, R.M.; Palmer, D.G.
Polymer, 1970, 11, 421-35.
``` \\
\hline VARIABLES :
\[
\begin{aligned}
& T / K=293.2-333.2 \\
& P / \mathrm{kPa}=0-33
\end{aligned}
\] & PREPARED BY: P.G.T. Fogg \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline aUXILIARY & INFORMATION \\
\hline \begin{tabular}{l}
METHOD APPARATUS/PROCEDURE: \\
The gas at a known temperature and pressure was allowed to reach equilibrium with a sample of the polymer. The gas phase was then flushed out by mercury and the dissolved gas allowed to desorb into a previously evacuated vessel of known volume. The pressure of the desorbed gas was measured with a McLeod gauge. The temperature of the desorbed gas was also measured and the quantity of gas calculated from its volume, pressure and temperature. Correction was made for the absorbed gas lost during the flushing process. Measurements were made at various initial pressures of gas to a maximum pressure of about
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Spectrally pure sample supplied by British Oxygen Company. \\
2. From laminated tubing made by Messrs. Griflex Ltd. \\
ESTIMATED ERROR:
\[
\begin{aligned}
& \delta T / K< \pm 0.1 \\
& \delta(\text { solubility constant })= \pm 2 \% \\
& \quad \text { (authors) }
\end{aligned}
\] \\
REFERENCES:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
\[
[124-38-9]
\] \\
2. Poly(oxy-1,2-ethanediyloxy-carbonyl-1,4-phenylenecarbonyl), (poly(ethylene terephthalate)); \(\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{4}\right)_{\mathrm{x}}\); [25038-59-9]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
    Vieth, W.R.; Alcalay, H.H.;
    Frabetti, A.J.
    J. Appl. Poly. Sci. 1964, 8,
    2125-2138.
``` \\
\hline VARIABLES:
\[
\begin{aligned}
& T / K=298.2, \quad 313.2 \\
& P / \mathrm{kPa}=5.5-130.5
\end{aligned}
\] & PREPARED BY: P.G.T. Fogg \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EXPERIMENTAL VALUES: \\
* Solubility is defined as the volume of gas, reduced to 101.3 kPa and 273.15 K , dissolved by one volume of polymer \\
Data were presented as points on two graphs. The compiler took measurements from these graphs to compile the co-ordinates of the experimental points
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{aUXILIARY information} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
A static method was used. The apparatus is described in ref. (1). The polymer was in the form of film of thickness \(1 \mathrm{mil}(0.00254 \mathrm{~cm})\).
\end{tabular}} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Minimum purity 99.5\%. \\
2. Crystalline biaxially oriented Mylar supplied by the Mylar Laboratory of E.I. du Pont de Nemours \& Co.; \(\rho=1.394 \mathrm{~g} \mathrm{~cm}^{-3}\); amorphous volume fraction \(=0.49\); number average relative molecular mass \(=15000-20000\).
\end{tabular} \\
\hline & \begin{tabular}{l}
ESTIMATED ERROR: \\
\(\delta(\) Solubility \()= \pm 8 \%\) (authors) \\
Errors on transfering data from graphs: \(\delta(\) Solubility \()= \pm 0.002\); \(\delta P / \mathrm{mmHg}= \pm 2\) (compiler)
\end{tabular} \\
\hline & REFERENCES:
```

1. Michaels, A.S.; Vieth, W.R.;
Barrie, J.A.
J. App1. Phys. 1963, 34, 1.
``` \\
\hline
\end{tabular}

\section*{COMPONENTS:}
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9]
2. Poly(oxy-1,2-ethenediyloxy-carbonyl-1,4-phenylenecarbonyl), (poly(ethylene terephthalate)); \(\left(\mathrm{C}_{1} \mathrm{OH}_{8} \mathrm{O}_{4}\right)_{\mathrm{x}}\); [25038-59-9]

VARIABLES:
\(\mathrm{P} / \mathrm{kPa} \simeq 5-1240\)
\(T / K=298-379\)
EXPERIMENTAL VALUES:
Absorption of carbon dioxide in various samples of polyethylene terephthalate of different degrees of crystallinity and thicknesses were measured by time-lag solubility measurements and by static measurements. Absorption isotherms for glassy amorphous polymer were explained by postulating that absorption took place by two concurrent mechanisms. One mechanism involved the filling of voids and the other an ordinary dissolution process. The shape of the isotherms was explained by assuming that the filling of the voids was consistent with a Langmuir mechanism and the dissolution was consistent with Henry's law.
\(C^{*}=\) volume of gas, reduced to 273.15 K and 101.3 kPa , taken up by one \(\mathrm{cm}^{3}\) of amorphous polymer.
\(C_{D}^{*}=\) reduced volume of gas absorbed by a dissolution process
\(C_{H}^{*}=\) reduced volume of gas absorbed by a void-filling process
\(C_{H}^{* '}=\) reduced volume of gas absorbed by saturation of voids
\(b=a\) constant
\(k_{\mathrm{D}}^{*}=\) solubility constant for dissolution defined as reduced volume of gas dissolved
pressure \(\times\) (volume of amorphous polymer)
\(k^{*}=\) solubility constant for adsorption of gas defined as the value at low pressures of reduced volume of gas adsorbed in voids and by dissolution pressure \(\times\) (volume of amorphous polymer)

At a pressure of \(P\) it follows that
\[
\begin{align*}
C^{*} & =C_{\mathrm{H}}^{*}+C_{\mathrm{D}}^{*} \tag{1}\\
& =C_{\mathrm{H}}^{*} b P /(1+b P)+k_{\mathrm{D}}^{*} P \tag{2}
\end{align*}
\]

At low pressures this equation may be written
\(C^{*}=\left(C_{\mathrm{H}}^{*} b+k_{\mathrm{D}}^{*}\right) P\)
\(=k * P\)
At high pressures when the microvoids are all filled equation (2) may be written
\[
\begin{equation*}
C^{*}=C_{\mathrm{H}}^{* \prime}+k_{\mathrm{D}}^{*} P \tag{4}
\end{equation*}
\]

The variation in absorption of gas at high pressure from by time-lag solubility measurements gave a value for the constant \(k_{\mathrm{D}}^{*}\) of \(0.38 \mathrm{~atm}^{-1}\) at 298.15 K . Absorption of gas at low pressures at 298.15 K measured by a static method fitted the equation
\[
\begin{aligned}
& C^{*}=\frac{2.33 P / \mathrm{atm}}{1+0.44 P / \mathrm{atm}}+0.38 P / \mathrm{atm} \\
& k^{*}=2.33+0.38=2.71 \mathrm{~atm}^{-1}
\end{aligned}
\]

Samples of partially crystalline polymer with an amorphous volume fraction less than 1 absorbed less gas. The authors interpreted this by assuming that the crystalline fraction could only take up gas in the microvoids and not by a dissolution process.

Values of the solubility constant for the amorphous polymer, \(k^{*}\), at other temperatures were displayed on a small scale graph. Approximate values for the amorphous polymer from the graph are as follows
\begin{tabular}{|c|c|c|c|}
\hline T/K & \multicolumn{3}{|l|}{solubility constant for amorphous polymer, \(k^{*} / \mathrm{atm}^{-1}\)} \\
\hline 298 & 2.71 & \(\dagger\) & \\
\hline 320 & 1.42 & & \\
\hline 337 & 0.89 & & \\
\hline 342 & 0.63 & & \\
\hline 341 & 0.57 & + & \\
\hline
\end{tabular}

The solubility constant for samples of crystalline polymer, \(k\), were defined as the value at low pressure of
reduced volume of gas absorbed in voids and by dissolution
pressure \(\times\) (total volume of polymer)
Solubility constants, \(k\), for samples of partially crystalline polymer with an amorphous volume fraction of 0.58 , taken from a small scale graph, are as follows
\(T / K \quad\)\begin{tabular}{c}
solubility constant for \\
crystalline polymer \\
\(k / \operatorname{atm}^{-1}\)
\end{tabular}\(\quad T / K \quad\)\begin{tabular}{c}
solubility constant for \\
crystalline polymer \\
\(k / \mathrm{ktm}^{-1}\)
\end{tabular}
\begin{tabular}{llllll}
\hline & & & & \\
297 & 2.02 & \(s\) & 349 & 0.34 & \(s\) \\
312 & 1.81 & \(t\) & 357 & 0.34 & \(t\) \\
312 & 1.70 & \(t\) & 373 & 0.37 & \(t\) \\
312 & 1.25 & \(s\) & 373 & 0.30 & \(t\) \\
327 & 0.65 & \(s\) & 387 & 0.30 & \(t\) \\
338 & 0.48 & \(s\) & 403 & 0.21 & \(t\) \\
343 & 0.45 & \(t\) & 402 & 0.20 & \(t\)
\end{tabular}

Glass transition zone approximately 355-368 K s - static measurements; t - time-lag measurements

\section*{AUXILIARY INFORMATION}

\section*{COMPONENTS:}
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9]
2. Rubber

VARIABLES:
\(T / K=289-373\)
EXPERIMENTAL VALUES:
Grade of rubber \(\quad T / \mathrm{K} \quad / \mathrm{cm}^{3}\) of gas per \(100 \mathrm{~cm}^{3}\) of rubber
\begin{tabular}{lll}
\hline & & \\
I & 294 & 90 \\
II & 293 & \(92 a\) \\
& 289 & 108 \\
III & 293 & \(102 a\) \\
& 297 & 92 \\
IV & 293 & \(99 a\) \\
& 292 & 103.5 \\
& 293 & \(101 a\) \\
& 331 & \(58 b\) \\
& 373 & \(28 b\) \\
& 373 & \(34.0 c\)
\end{tabular}
a estimated by the authors; \(\quad b\) values from a graph given by the authors
\(c\) value given in a table by the authors
I - pale crepe (raw); II - smoked sheet (raw);
III - smoked sheet (vulc. coeff. = 2.56);
IV - smoked sheet (vulc. coeff. 3.2)
Solubility in IV was shown to be proportional to pressure to at least 128 kPa at 373 K , within experimental error.

The solubility was measured as the volume of gas reduced to 273.15 K and 101.3 bar which was dissolved by \(100 \mathrm{~cm}^{3}\) of rubber. In the case of compounded samples (III \& IV) the solubility was calculated on the basis of the actual rubber present in the sheet.

\section*{AUXILIARY INFORMATION}

Weighed samples of rubber were kept under high vacuum for 48 hrs to remove dissolved gases. They were then put into contact with carbon dioxide or other gas under test for 2 to 24 hrs until equilibrium was reached. The dissolved gas was then pumped off and measured.
1. From a cylinder; 97.55 pure.
2. I - 3 to 4 years old;

II - from Akron;
III - composition by weight:
smoked sheet 100
zinc oxide 10
thiocarbanilide 3
combined sulfur \(3.2 \%\) of
smoked sheet present.
IV - composition by weight:
smoked sheet 100
zinc oxide 10
free sulfur 10
thiocarbanilide 0
combined sulfur \(2.56 \%\) of
smoked sheet present.
ESTIMATED ERROR:
\(\delta(\) solubility \()= \pm 5\) \% (authors)
(note the discrepancies in the data reported for 373 K)

REFERENCES:

\section*{COMPONENTS:}
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9]
2. Acetic acid ethenyl ester homopolymer, (polyvinyl acetate); \(\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}\right)_{x}\); [9003-20-7]

VARIABLES:
\(T / K=398-473\)

\section*{ORIGINAL MEASUREMENTS:}

Liu, D.D.; Prausnitz, J.M.
J. Polymer Sci. (Polymer Phys. Edn.) 1977, 15, 145-153.

PREPARED BY:
P.G.T. Fogg

EXPERIMENTAL VALUES:
\begin{tabular}{llrl}
\(T /{ }^{\circ} \mathrm{C}\) & \(T / \mathrm{K}\) & \begin{tabular}{c}
Henry's \\
\(H / \mathrm{atm}\)
\end{tabular} & \begin{tabular}{c}
law constant \\
\(H / \mathrm{kPa}^{*}\)
\end{tabular} \\
\hline 125 & 398.15 & 990 & 100300 \\
150 & 423.15 & 1200 & 121600 \\
175 & 448.15 & 1500 & 152000 \\
200 & 473.15 & 1700 & 172300
\end{tabular}
* calculated by the compiler.

Henry's law constant, \(H\), is defined as:
\[
H=\lim _{w \rightarrow 0}\left[\frac{f}{w}\right]
\]
where \(f\) is the fugacity of the carbon dioxide and \(w\) the weight fraction of carbon dioxide in the polymer.

The polymer had a number average relative molecular mass of \(8.34 \times 10^{4}\).

\section*{AUXILIARY INFORMATION}

METHOD/APPARATUS/PROCEDURE:
Solubilities were measured by gas-liquid chromatography using helium as carrier gas and Chromosorb as support material. A weighed quantity of poly(vinyl acetate) was dissolved in a mixture of methanol and 1,2-dichloroethane at \(80^{\circ} \mathrm{C}\). This was then mixed with a weighed and preheated quantity of the support. The mixture was then heated in an oven until methanol and 1,2-dichloroethane had evaporated. and subsequently used in a steel chromatography column. The dead time of a chromatogram was found by injecting nitrogen. Retention volumes for carbon dioxide were found for various ratios of polymer to support material. This enabled correction to be made for surface adsorption of carbon dioxide. Henry's constants were calculated from the corrected retention
volumes. Additional correction was made for the solubility of nitrogen.

SOURCE AND PURITY OF MATERIALS:
1. Supplied by Matheson Gas Products; purity > 99\%
2. Supplied by Cellomer Associates.

ESTIMATED ERROR:
\[
\begin{gathered}
\delta H= \pm 9 \% \text { at } 125^{\circ} \mathrm{C} ; \pm 16 \% \text { at } \\
200^{\circ} \mathrm{C} . \\
\delta T / \mathrm{K}= \pm 0.1 .
\end{gathered}
\]

REFERENCES:
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9] \\
2. Polylimino(1-oxo-1,11undecanediyl)], (Nylon 11); \(\left(\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{NO}_{\mathrm{x}}\right.\); [25035-04-5]
\end{tabular} & ORIGINAL MEASUREMENTS:
\[
\begin{aligned}
& \text { Ash, R.; Barrer, R.M.; Palmer, D.G. } \\
& \text { Polymer, 1970, 11, 421-35. }
\end{aligned}
\] \\
\hline VARIABLES:
\[
T / K=313.2-333.2
\] & PREPARED BY: P.G.T. Fogg \\
\hline EXPERIMENTAL VALUES: & \begin{tabular}{l}
solubility \\
nt/atm \\
368 \\
314 \\
280 \\
was defined as : \\
to 273.2 K and 1 atm \\
sure of gas/atm \\
nt were found from the slopes of essure.
\end{tabular} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
The gas at a known temperature and pressure was allowed to reach equilibrium with a sample of the polymer. The gas phase was then flushed out by mercury and the dissolved gas allowed to desorb into a previously evacuated vessel of known volume. The pressure of the desorbed gas was measured with a McLeod gauge. The temperature of the desorbed gas was also measured and the quantity of gas calculated from its volume, pressure and temperature. Correction was made for the absorbed gas lost during the flushing process. Measurements were made at various initial pressures of gas. The maximum pressure was not stated but measurements on the solubility of gases in polyethylene which are reported in the same paper were made to a maximum pressure of about \(25 \mathrm{cmHg}(33 \mathrm{kPa})\).
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Spectrally pure sample supplied by British Oxygen Company. \\
2. From laminated tubing made by Messrs. Griflex Ltd. \\
ESTIMATED ERROR:
```

\deltaT/K < \pm0.1
\delta(solubility constant) = 土2%
(authors)

``` \\
REFERENCES:
\end{tabular} \\
\hline
\end{tabular}

\section*{COMPONENTS:}
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
[124-38-9]
2. Liquid Gases

EVALUATOR:
Peter G.T. Fogg,
School of Applied Chemistry,
Polytechnic of North London, Holloway Road, London, N7 8DB, U.K.

July 1991

CRITICAL EVALUATION:
Solubility of solid carbon dioxide in liquid gases.
The solubility of solid carbon dioxide in liquid oxygen was measured by Amamchyan et al.(1) from 77 K to 95 K and by Rest et al.(2) from 89.5 K to 118.5 K . Equations for mole fraction solubility over the temperature ranges of measurement were given by each group of authors. Error limits in \(x_{\mathrm{CO}_{2}}\) were quoted as \(\pm 15-20 \%\) by Amamchyan and as \(\pm 21 \%\) by Rest. The two equations give the same value of \(x_{\mathrm{CO}_{2}}\) at 87.7 K . Values for \(x_{\mathrm{CO}_{2}}\) at 95 K from the two equations are as follows

```

Rest et al.

```

The limits of error for the two values overlap. The two equations are therefore consistent with each other, within the limits of error given by the authors.

Rest et al.(2) measured the solubility of solid carbon dioxide in liquid argon from 87.9 K to 120.5 K and published an equation for the variation of mole fraction solubility with temperature. Preston et al.(3) also measured the solubility in argon at 109.0 K and 115.9 K . Mole fraction solubility at these two temperatures from the two sources are as follows
```

                    109.0 K
                                    115.9 K
    Rest et al. 2.25 土0.47\times10-5 4.27 \pm0.90 < 10-5
Preston et al. 7.97 \pm3.67\times10-5
4.27 士0.90\times10-5

```

The two sets of measurements are not compatible.
Rest et al.(2) also measured the solubility of solid carbon dioxide in liquid nitrogen from 77.7 K to 117 K . No other measurements on this system are available for comparison.

Chang et al.(4) measured the solubility in liquid nitrogen oxide at partial pressures of carbon dioxide from 17.2 kPa to 67.8 kPa at 262.2 K to 293.2 K . Values of mole fraction solubility are close to 'ideal' or reference values from Raoult's law. Solubility of carbon dioxide gas in liquid chlorine was measured by Krieve and Mason (5) at partial pressures of carbon dioxide to 66.3 kPa at 273.2 K and 298.2 K . In this case experimental values of mole fraction solubility fall much lower than the reference values from Raoult's law. A selection of mole fraction solubilities in the two gases is given below.
\begin{tabular}{lllll}
Solvent & \(T / \mathrm{K}\) & \(P_{\mathrm{CO}_{2}} / \mathrm{kPa}\) & \({ }^{x} \mathrm{CO}_{2}\) & R.L. \\
\hline liquid nitrogen oxide & 262.15 & 58.49 & 0.02103 & 0.0228 \\
& 273.15 & 34.11 & 0.01018 & 0.0098 \\
& 293.15 & 63.07 & 0.01265 & 0.0110 \\
liquid chlorine & 273.15 & 78.2 & 0.0106 & 0.0225 \\
& & 111 & 0.01593 & 0.0319 \\
& 298.15 & 111 & 0.00976 & 0.0173
\end{tabular}
(R.L. = reference value from Raoult's law)

The measurements on both systems are self-consistent but no other data on either system are available to the evaluator for comparison.

The solubilities of solid carbon dioxide in liquid methane, ethane, propane, butane, 2 -methylpropane, ethene and propene have been measured. The data which are available have been discussed earlier (pages \(1,8,10\)).
\begin{tabular}{|l|l|}
\hline COMPONENTS: & EVALUATOR: \\
1. Carbon dioxide; \(\mathrm{CO}_{2} ;\) \\
[124-38-9] \\
2. Liquid Gases \\
School of Applied Chemistry, \\
Polytechnic of North London, \\
Holloway Road, London, N7 8DB, U.K. \\
July 1991
\end{tabular}

CRITICAL EVALUATION:

\section*{REFERENCES}
1. Amamchyan, R.G.; Bertsev, V.V.; Bulanin, M.O. Zh. Fiz. Khim. 1973, 47(10), 2665-2666.; Russian J. Phys. Chem. 1973, 47(10), 1496-1497.'
2. Rest, A.J.; Scurlock, R.G.; Fai Wu, M. Chem. Eng. J. 1990, 43, 25-31.
3. Preston, G.T.; Funk, E.W.; Prausnitz, J.M. J. Phys. Chem. 1971, 75, 2345-2352.
4. Chang, E.T.; Gocken, N.A.; Poston, T.M. J. Chem. Eng. Data 1971, 16, 404-408.
5. Krieve, W.F.; Mason, D.M. J. Phys. Chem. 1956, 60, 374.
\begin{tabular}{|c|c|}
\hline COMPONENTS : & ORIGINAL MEASUREMENTS: \\
\hline 1. Carbon dioxide; \(\mathrm{CO}_{2}\);
\[
[124-38-9]
\] & Amamchyan, R.G.; Bertsev, V.V.; Bulanin, M.O. \\
\hline 2. Oxygen; \(\mathrm{O}_{2}\); [7782-44-7] & Zh. Fiz. Khim. 1973, 47(10), 2665-6. Russian J. Phys. Chem. 1973, 47(10), 1496-7. \\
\hline & PREPARED BY: \\
\hline \(T / \mathrm{K}=77-95\) & P.G.T. Fogg \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \begin{tabular}{l}
The solubility of solid carbon dioxid temperatures in the range 77 K to abo given for the mole fraction solubilit
\[
\log _{10} x_{\mathrm{CO}_{2}}=2.40-70
\] \\
The mole fraction solubility at 90 K
\end{tabular} & \begin{tabular}{l}
de in liquid oxygen was measured at six out 95 K . The following equation was y in this temperature range: \\
\(0 /(T / K)\) \\
vas given as \(4.3 \pm 0.5 \times 10^{-6}\)
\end{tabular} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Liquid oxygen and solid carbon dioxide were contained in an optical cryostat described previously (1,2). The solubility was calculated from optical density as measured by IKS-16 and IKS-21 spectrometers. The liquid was stirred vigorously before each measurement and then allowed to stand until the absorption band due to suspended solid carbon dioxide had disappeared. Measurements with step-wise increase in the temperature differed by less than 10\% from measurements when the temperature was decreasing.
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\);
\[
[124-38-9]
\] \\
2. Oxygen; \(\mathrm{O}_{2}\); [7782-44-7] \\
Nitrogen; \(\mathrm{N}_{2}\); [7727-37-9] \\
Argon; Ar; [7440-37-1]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Rest, A.J.; Scurlock, R.G.; \\
Fai Wu, M. \\
Chem. Eng. J. 1990, 43, 25-31.
\end{tabular} \\
\hline VARIABLES:
\[
T / K=77.7-120.5
\] & \begin{tabular}{l}
PREPARED BY: \\
P.G.T. Fogg
\end{tabular} \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
Mole fraction solubilities of solid c measured and, over the specified temp the form \\
At a particular temperature the pres of liquid oxygen, nitrogen or argon.
\end{tabular} & \begin{tabular}{l}
arbon dioxide in liquid gases were rature ranges, fitted equations of
\[
(T / K)
\]
\begin{tabular}{ll}
0.724 & 553 \\
0.552 & 512 \\
0.022 & 509
\end{tabular} \\
ure was equal to the vapor pressure
\end{tabular} \\
\hline AUXILIARY & information \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Solid carbon dioxide was added to liquid oxygen, nitrogen or argon. Large particles of carbon dioxide were filtered off. The liquid containing carbon dioxide in solution and in suspension was introduced into a variable pressure infra-red absorption cell surrounded by a thermal shield chamber also containing liquid oxygen, nitrogen or argon. Temperature was varied by applying pressure to the solution from a gas cylinder or by supplying heat from a heating element at the bottom of the cell. Infra-red spectra were recorded at intervals until equilibrium was reached at a particular temperature. \\
Concentrations of carbon dioxide were calculated from the intensities of bands due to carbon dioxide in solution but not due to carbon dioxide in suspension.
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. commercial sample of specified purity 99.9998 \\
2. \(\mathrm{O}_{2}\); specified purity \(99.9997 \%\) \\
\(\mathrm{N}_{2}\); specified purity \(99.999 \%\) \\
Ar; specified purity 99.999\% \\
ESTIMATED ERROR:
\[
\begin{aligned}
\delta x_{\mathrm{CO}_{2}}= & \pm 218\left(\mathrm{O}_{2} \& \mathrm{Ar}\right) ; \pm 23 \%\left(\mathrm{~N}_{2}\right) \\
& (\text { authors })
\end{aligned}
\] \\
REFERENCES :
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Methane; \(\mathrm{CH}_{4}\); [74-82-8] Argon; Ar; [7440-37-1]
\end{tabular} & \begin{tabular}{l}
ORIGINAL MEASUREMENTS: \\
Preston, G.T.; Funk, E.W.; \\
Prausnitz, J.M. \\
J. Phys. Chem. 1971, 75, 2345-2352.
\end{tabular} \\
\hline VARIABLES:
\[
\begin{aligned}
& T / \mathrm{K}=109.0-137.5 \\
& P_{\mathrm{CO}_{2}} / \mathrm{kPa}=0.00027-0.126
\end{aligned}
\] & PREPARED BY:
P.G.T. Fogg \\
\hline \begin{tabular}{l}
EXPERIMENTAL VALUES: \\
Solvent \(\quad T / K\)
\end{tabular} & \({ }^{x} \mathrm{CO}_{2}\) \\
\hline \begin{tabular}{l}
\begin{tabular}{lll}
Methane & 126.4 & 0 \\
& 137.5 & 0.1 \\
Argon & 109.0 & 0 \\
& 115.9 & 0.0
\end{tabular} \\
The above solubilities correspond dioxide and solutions of carbon dio \\
* vapor pressure of solid \(\mathrm{CO}_{2}\) from
\end{tabular} & \begin{tabular}{l}
\begin{tabular}{ll}
16 & 0.000732 \\
26 & 0.002366 \\
0027 & 0.0000797 \\
016 & 0.0002059
\end{tabular} \\
equilibria between solid carbon ide in liquid methane or argon. \\
quation given in ref.(1).
\end{tabular} \\
\hline \multicolumn{2}{|c|}{AUXILIARY INFORMATION} \\
\hline \begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Solubilities were measured in a vacuum cryostat held in a bath of liquid nitrogen. The temperature of the cryostat could be controlled by electric heating. Temperatures were measured by a calibrated copper-constantin theromocouple. Vapor from the cell was pumped from the top of the cell, cooled, passed into the base of the cell and bubbled through the liquid. This speeded up the attainment of equilibrium. Samples of liquid from the cell were vaporized and analyzed by gas chromatography. Full details of the apparatus have been given by Preston (2) and Funk (3).
\end{tabular} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Supplied by Matheson Co.; purity \(99.8 \%\) \\
2. Supplied by Matheson Co.; purity 99.978 (methane), \\
99.995 (argon). \\
ESTIMATED ERROR:
\[
\delta T / K= \pm 0.5 \quad \text { (authors) }
\] \\
REFERENCES: \\
1. Meyers, C.H.; van Dusen, M.S. Bur. Stand. J. Res. 1933, 10, 381. \\
2. Preston, G.T. Ph.D. Dissertation, 1970, University of California, Berkeley, USA. \\
3. Funk, E.W. Ph.D. Dissertation, 1970, University of California, Berkeley, USA.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
COMPONENTS: \\
1. Carbon dioxide; \(\mathrm{CO}_{2}\); [124-38-9] \\
2. Chlorine; \(\mathrm{Cl}_{2}\); [7782-50-5]
\end{tabular} & ```
ORIGINAL MEASUREMENTS:
 Krieve, W. F.; Mason, D. M.
 J. Phys. Chem.
 1956, 60, 374.
``` \\
\hline VARIABLES:
\[
\begin{aligned}
& T / K=273.15,298.15 \\
& P_{\mathrm{CO}_{2}}=78.2-663
\end{aligned}
\] & \begin{tabular}{l}
PREPARED BY: \\
C. L. Young
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXPERIMENTAL VALUES:} \\
\hline \begin{tabular}{ll}
273.15 & 0.782 \\
& 1.11 \\
& 1.69 \\
& 2.32 \\
& 2.94 \\
& 3.64 \\
& 4.15 \\
& 4.84 \\
& 1.11 \\
& 1.52 \\
& 2.24 \\
& 3.07 \\
& 3.90 \\
& 4.86 \\
& 5.62 \\
& 6.63
\end{tabular} & \[
\begin{aligned}
& 0.0106 \\
& 0.01593 \\
& 0.02135 \\
& 0.02983 \\
& 0.03945 \\
& 0.04950 \\
& 0.05640 \\
& 0.06582 \\
& 0.00976 \\
& 0.0142 \\
& 0.0204 \\
& 0.0298 \\
& 0.0380 \\
& 0.0474 \\
& 0.0546 \\
& 0.0643
\end{aligned}
\] \\
\hline \multicolumn{2}{|r|}{\(\dagger\) partial pressure of carbon dioxide.} \\
\hline \multicolumn{2}{|r|}{AUXILIARY INFORMATION} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
METHOD/APPARATUS/PROCEDURE: \\
Measured amount of gas added to cell of known volume. Composition of liquid determined from knowledge of total amounts of chlorine and carbon dioxide and assuming Paoult's law followed by chlorine in vapor.
\end{tabular}} & \begin{tabular}{l}
SOURCE AND PURITY OF MATERIALS: \\
1. Matheson Co. sample, pure grade. \\
2. Commercial sample, fractionally distilled. \\
ESTIMATED ERROR:
\[
\begin{array}{r}
\delta T / \mathrm{K}= \pm 0.1 ; \quad \delta P / 10^{5} \mathrm{~Pa}= \pm 0.5 \% ; \\
\delta x_{\mathrm{CO}_{2}}= \pm 0.001 \quad \text { (estimated by } \\
\text { compiler). }
\end{array}
\]
\end{tabular} \\
\hline & REFERENCES : \\
\hline
\end{tabular}

\section*{SYSTEM INDEX}

Page numbers preceded by E refer to evaluation texts whereas page numbers not preceded by E refer to compiled tables. Compounds are named as in Chemical Abstracts indexes (toluene appears under Benzene, methyl-).


Benzene, nitro-
Benzene, trichloromethyl-
Benzene, 1,2,4-trimethyl-
Benzotrichloride see benzene, trichloromethyl-
Benzyl alcohol see benzenemethanol
Benzyl cyanide see benzeneacetonitrile
Benzyl chloride see benzene, (chloromethyl)-
1,1-Bicyclohexyl
1,1'-Biphenyl, (1-methylethyl)E92, 125
1 -Butanamine, \(1,1,2,2,3,3,4,4,4\)-nonafluoro- \(N, N\)-bis-
(nonafluorobutyl)- E302, E306, E307, 319, 320
Butane E1, E13, 14-16
Butane, 1,1,2,2,3,3,4,4-octafluoro-1,4-bis(1,2,2,2-tetra
fluoro-1-(trifluoromethyl)ethoxy)
E259, 291
1,4-Butanediol E133, 176
1,3-Butanediol (ternary) E384, 390
2,3-Butanediol (ternary) E384, 390
Butanoic acid E179, E180, E187, 220
1-Butanol E130, E135, 146, 149,
2-Butanol E131, 149
1-Butanol, 3-methyl- E131, E135, 137
2-Butanone E178, 109, 196
1-Butene E10, 83
Butoxytriethyleneglycol acetate
see Acetic acid,
2-[2-(2-butoxyethoxy)ethoxy]ethanol ester
E431, 447
Butter oil
Butyl oleate
see 9-octadecenoic acid, butyl ester
\(\gamma\)-Butyrolactone
see furenone, dihydro-2(3H)-
Carbon disulfide E359, E361, E362, 378-381
Caroxin-D
see butane, \(1,1,2,2,3,3,4,4\),-octafluoro-1,4-
bis(1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethoxy)-
Caroxin-F
see hexane, \(1,1,1,2,2,3,3,4,4,5,5,6,6\)-tri-
decafluoro-6-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethoxy]-
Carvene
see cyclohexene, 1-methyl-4-(1-methylethenyl)-
Carvol
see 2-cyclohexen-1-one, 2-methyl-5-(1-methylethenyl)-
Cephalin (ternary)
E385, 402
Cellulose'acetate (ternary) E385, 406, 407
Chlorine
Chloroform
see methane, trichloro-
Cholest-5-en-3ß-ol (ternary) E385, 404, 405
Cholesterol
see cholest-5-en-3 \(\beta\)-ol
Cod liver oil E430, E431, 432
Cottonseed oil E430, E431, 446, 447
m-Cresol
see phenol, 3-methyl-
Cumene
Cyclohexane
see benzene, (1-methylethyl)E7, E9, E13, 64-72, E132, E257
Cyclohexane, bromo- E257, E259, 293
Cyclohexane, chloro- E257, E259, E260, 292
Cyclohexane, 1,2-dimethyl-, cis-
Cyclohexane, 1,2-dimethyl-, trans-
Cyclohexane, 1,3-dimethyl-, cis-
E8, E13, 76
E8, E13, 75
E8, 78
Cyclohexane, 1,3-dimethyl-, trans- E8, 78
Cyclohexane, 1,4-dimethyl-, cis-
E8, 77

Cyclohexane, 1,4-dimethyl-, trans-
Cyclohexane, methyl-
E7. 9
Cyclohexanol
Cyclohexanone
Cyclohexanone, 2,6-dimethyl-
E132, E135, 170, 171 E178, E187, 201

2-Cyclohexen-1-one, 2-methyl-5-(1-methylethenyl)-
E178, 203
Cyclooctane E8, E13, 74
Cyclopentane
Cyclopentanone
E7, 63
E178, E187, 200
E7, 62
Cyclotetrasiloxane, octamethyl- E358, E361, E362, 371
Decalin
see naphthalene, decahydro-
Decane
E5, E9, E13, 27, 40-43
1-Decanol E132, E135, 166, 167, 169
2-Decanone 197
3-Decanone 197
Diazene, bis(4-ethoxyphenyl)-1-oxide E303, 328
\(\alpha\)-Dichlorohydrin
see 2-propanol, 1,3-dichloro-
Diesel fuel
E418, 420
Diethylene glycol monomethyl ether
see ethanol, 2-(2-methoxyethoxy)-
Diethylene glycol dimethyl ether
see ethane, 1,1'-oxybis(2-methoxy-
Diglycolamine see ethanol, 2-(2-aminoethoxy)-
\(N, N\)-Dimethylformamide see formamide, \(N, N\)-dimethyl-
1,3-Dimethyl-1H-pyrazole see 1H-pyrazole, 1,3-dimethyl-
Dimethylsulfoxide see methane, sulfinylbis-
1,4-Dioxane E181, E187, 198, 239, 240
1,3-Dioxolan-2-one E179, 206
1,3-Dioxolan-2-one, 4-methyl- E179, E187, E188, 86, 207-217, 330, 331
Diphenylmethane
see benzene, 1,1'-methylenebis-
Dipropylene glycol
see propanol, oxybis-
Ditolyl methane
see benzene, 1,1-methylenebis(methyl-


Ethanol, 2,2'-[1,2-ethanediylbis(oxy)]bis- (ternary) E384, 389
Ethanol, 2-methoxy- E182, E183, E187, 246, 247
Ethanol, 2-methoxy- (ternary) E384, 391
Ethanol, 2-(2-methoxyethoxy)- E182, E183, 249
Ethanol, 2-(2-methoxyethoxy)- (ternary) E384, 393
Ethanol, 1,1-oxybis- (ternary) E384, 390
Ethanol, 2,2'-[oxylbis(2,1-ethanediyloxy)]bis- (ternary)
E384, 390
Ethanol, 2-phenoxy- (ternary)
E384, 393
Ethene
Ethene (ternary)
E8, E10, 83

Ethylene chloride
see ethane, 1,2-dichloro-
Ethylene glycol
see 1,2-ethanediol
Ethylene glycol monomethyl ether
see ethanol, 2-methoxy-
Ethylene glycol monophenyl ether
see ethanol, 2 -phenoxy-
1-Ethyl-3-methyl-1H-pyrazole
see \(1 H\)-pyrazole, 1 -ethyl-3-methyl-
Ethyl oleate
see 9-octadecenoic acid, ethyl ester
Ethyl stearate see 9-octadecanoic acid, ethyl ester
Ethyne (ternary)
E178, 199, E303, E304, 348
Eugenol
see phenol, 2-methoxy-4-(2-propenyl)-
Fat, dog E430, 438, 439
Fat, human E430, 438, 441
Fat, rat E430, 438, 440
FC-47 320
(see also 1 -butanamine, \(1,1,2,2,3,3,4,4,4\)-nonafluoro- \(N, N\)-bis-
(nonafluorobutyl)-
FC-80
see furan, heptafluorotetrahydro(nonaflu
Formamide (ternary) E384, 399
Formamide, \(N, N\)-dimethyl- E303, E304, E306, E307, 342-347
Formamide, \(N, N\)-dimethyl- (ternary) 348 , E384, E385, 392, \(406,410,413,414\) E180, E187, 224
Formic acid, pentyl ester
\(N\)-Formyl morpholine see 4-morpholinecarboxaldehyde
Furan, heptafluorotetrahydro(nonafluorobutyl)-
E256, E259, 286-288

E384, 391
2-Furanmethanol, tetrahydro-
E181, E187, 237, 238
Furan, tetrahydro-
Furenone, dihydro-2(3H)-
E184, 254
Glycerol
see 1,2,3-propanetriol
Heptadecane
E6, 51
Heptane E2, E13, 20, 27-32
Heptane, hexadecafluoro- E256, E259, E260, 283, 284
1-Heptanol E132, 163, 164
3-Heptanone E178, 197
4-Heptanone
E178, 196
E430, 432
Herring oil
Hexadecane
E1, E6, E13, 30, 51-56
Hexametapol
see phosphoric triamide, hexamethyl-
Hexamethyl phosphoric triamide
see phosphoric triamide, hexamethyl-
Hexane

Hexanedinitrile
E306, 354
Hexane, \(1,1,1,2,2,3,3,4,4,5,5,6,6-t r i d e c a f l u o r o-6-\)
[1,2,2,2-tetrafiuoro-1-(trifluoromethyl)ethoxy]- E257, E259, E260, 289, 290 E132, 161 E178, 196 E178, 197
1-Hexanol
2-Hexanone
3-Hexanone E418, 424 E304, 352
Hydrocarbon fuel
Hydrocyanic acid
Isobutyl acetate
see acetic acid, 2 -methylpropyl ester
Isopropylbenzene see benzene, (1-methylethyl)-

Kerosene E407, E408, 419, 421, 423, 427
\(L-1822 \quad\) E256, 285
Lard E431, 447
Lard, steam rendered E431, 446
Lecithin (ternary) E385, 403
\(d\)-Limonene
see cyclohexene, 1-methyl-4-(1-methylethenyl)-
Lithium bromide (ternary) E385, 415, 416
Lithium chloride (ternary) E385, 415, 416
Lithium iodide (ternary) E385, 415, 416
Linseed oil E430, 432, 442, 443
Medicinal Oil E418, 422
Methane
Methane (ternary)
Methane, dichloro-
Methane, dichlorodifluoro-
Methane, sulfinylbis- E359, E361, E362, 382, 383
Methane, tetrachloro- E255, E259, E260, 261-264, 397
Methane, tetrachloro- (ternary) E384, 397, 398
Methane, trichloro- E255, E259, E260, 265-268, 401
Methane, trichloro- (ternary) E385, 401
Methane, trichlorofluoro- E255, E259, 271, 272
Methanol 86,109, E128, E131, E135, 136-146, 401
Methanol (ternary) E384-E386, 387, 388, 391, 401, 415
Methoxytriethylene glycol acetate
                    see acetic acid,
                    2-[2-(2-methoxyethoxy) ethoxy]ethanol ester
\(N\)-Methyl- \(\varepsilon\)-caprolactam
                                    see \(2 H\)-azepin-2-one, hexahydro-1-methyl-
1,1'-Methylbis(methylbenzene)
                                    see benzene, 1,1-methylenebis(methyl-

Methyl oleate
                                    see 9-octadecenoic acid, methyl ester
3-Methyl-1H-pyrazole
                                    see \(1 H\)-pyrazole, 3 -methyl-
Mineral oil
4-Morpholinecarboxaldehyde
        E418, 422, 426
        E302, E306, 321, 322
Naphthalene, decahydro-
Naphthalene, decahydro-, cis-
Naphthalene, decahydro-, trans-
Naphthalene, 1-methyl-
Naphthalene, \(1,2,3,4\)-tetrahydro-
Naphthalene, 1-methyl-
Naphthalene, \(1,2,3,4\)-tetrahydro-
E92, E94, E95, 126, 127
Nitrogen
    E10, E13, 71, 86-88
    E457, 460
Nitrogen oxide
    E457, 462
    E5, 27,39
E132, 166
Nonane
1-Nonanol
\(\begin{array}{ll}\text { 2-Nonanone } & \text { E178, } 197 \\ \text { 3-Nonanone } & \text { E178, } 197\end{array}\)
\(\begin{array}{lr}3-\text { Nonanone } & \text { E178, } 197 \\ \text { 5-Nonanone } & 196\end{array}\)
Nylon 11

Octacosane
Octadecanoic acid (ternary)
Octadecanoic acid, ethyl ester
9-Octadecenoic acid (Z)
9-Octadecenoic acid, butyl ester
9-Octadecenoic acid, ethyl ester
9-Octadecenoic acid, methyl ester
Octamethylcyclotetrasiloxane

E6, E9, E13, 56, 59, 60 E385, 412, 414 E181, E187, 232 E180, E187, 222 E181, E187, 233 E181, E187, 233 E181, E187, 233 see cyclotetrasiloxane, octamethyl-
Octane E2, E5, E8, E13, 20, 27, 33-35

\section*{Octane (ternary)} E4, 36, 37
1-Octanol E132, E135, 163-165, 398
1-Octanol (ternary) E384, 398
2-Octanone
E178, 197
3-Octanone
E178, 197
Oil
E417, E418, 423-425
see also kerosene, mineral oil, olive oil, cod liver oil, herring oil, linseed oil, soybean oil and cotton seed oil Oleic acid see 9-octadecenoic acid ( \(Z\) )
Olive oil Oxygen

Paraffin wax
E430, 432-437
E457, 459, 460
E418, 429
Paraffinic oil
Pentadecane
Pentane
Pentane, 1-bromo-
- E256, E259, 277

Pentane, 2,2,4-trimethyl-
1-Pentanol
2-Pentanone
3-Pentanone
E178, 196
,5,8,11,14-Pentaoxapentadecane E182, E183, 216, 248, 249
Perfluorobutylperfluorotetrahydrofuran
see furan, heptafluorotetrahydro(nonafluorobuty1)-
Perfluoro-1,4-diisopropoxylbutane
see butane, \(1,1,2,2,3,3,4,4\), -octafluoro-1,4-
bis(1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethoxy)-
Perfluoro-1-isopropoxyhexane
see hexane, \(1,1,1,2,2,3,3,4,4,5,5,6,6-t r i\)
decafluoro-6-[1,2,2,2-tetrafiuoro-1-(trifluoromethyl) ethoxy]-
Perfluoroheptane
see heptane, hexadecafluoro-
Perfluorotributylamine
see 1 -butanamine, \(1,1,2,2,3,3,4,4,4\)-nonafluoro\(N, N\)-bis(nonafluorobutyl)-
Petroleum
E417, E418, 421, 423, 424, 428
Phenol E182, E184, E187, 251
Phenol, 3-methyl-
Phenol, 3-methoxy-4-(2-propenyl)E182, E184, E187, 252
Phosphoric acid, tributyl ester 216, E358, E361, E362, 366-370
Phosphoric acid, triethyl ester E358, E362, 363, 370
Phosphoric acid, trimethyl ester E358, 370
phosphoric acid, tripropyl ester E358, 370
Phosphoric acid, tris(2-methylpropyl) ester E358, 370
Phosphoric triamide, hexamethyl- 86, E358, E361, E362,
363-365
Polyacrylonitrile
see 2-propenenitrile homopolymer
Polybutadiene, hydrogenated
E448, 452
Polyethene
see ethene homopolymer
Poly(ethylene glycol)
see poly(oxy-1,2-ethanediyl), \(\alpha\)-hydro- \(\omega\)-hydroxy-
Poly(ethylene glycol) diacetate
see poly(oxy-1,2-ethanediyl),
\(\alpha-\) acetyl-w-(acetyloxy)-

Poly(ethylene glycol) diethyl ether
see poly(oxy-1,2-ethanediyl), \(\alpha\)-ethyl-w-ethoxy-
Poly(ethylene glycol) dipropyl ether see poly(oxy-1,2-ethanediyl), \(\alpha\)-propyl-w-propoxy-
Poly(ethylene glycol) methyl isopropyl ether see poly(oxy-1,2-ethanediyl), \(\alpha\)-methyl-w-(1-methylethoxy-
Poly(ethylene glycol) methyl propyl ether see poly(oxy-1,2-ethanediyl), \(\alpha\)-methyl-w-propoxy-
Poly(ethylene terephthalate)
see poly(oxy-1,2-ethanediyloxycarboxyl-1,4phenylenecarbonyl)
Poly[imino(1-oxo-1,11-undecanediyl)] E448, 456
Polyisobutylene
see 1-propene, 2-methyl- homopolymer
Poly(oxy-1,2-ethanediyl), \(\alpha\)-acetyl-w-(acetyloxy)-
E182, E183, 244, 245
Poly(oxy-1,2-ethanediyl), \(\alpha\)-ethyl-w-ethoxy- E182, E183, 244, 245
Poly(oxy-1,2-ethanediyl), \(\alpha\)-hydro-w-hydroxy- E182, E183, 244, 245
Poly(oxy-1,2-ethanediyl), \(\alpha\)-methyl- \(\omega\)-(1-methylethoxy-
E182, E183, 250
Poly(oxy-1,2-ethanediyl), \(\alpha\)-methyl-w-propoxy- E182, E183, 244, 245
Poly(oxy-1,2-ethanediyl), \(\alpha\)-propyl- \(\omega\)-propoxy- E182, E183, 244, 245
Poly(oxy-1,2-ethanediyloxycarboxyl-1,4-phenylenecarbonyl)
E448, 450-453
Polystyrene
see benzene, ethenyl- homopolymer
Polyvinyl acetate
see acetic acid, ethenyl ester homopolymer



\section*{Squalane}

Stearic acid
see tetracosane, \(2,6,10,15,19,23\)-hexamethyl-
see octadecanoic acid
Sulfinylbismethane
see methane, sulfinylbis-
Sulfolane
see thiophene, tetrahydro-, 1,1-dioxide
Tetracosane, \(2,6,10,15,19,23\)-hexamethyl- E7, E9, E13, 57
Tetradecane E6, E10, E13, 48, 49
1-Tetradecene
E10, E13, 71
Tetraethylene glycol
see ethanol, 2,2'-[oxylbis(2,1-ethanedyloxy)]bis-
Tetraethylene glycol dimethyl ether
see \(2,5,8,11,14\)-pentaoxapentadecane
Tetrahydrofurfuryl alcohol
see 2-furanmethanol, tetrahydro-
Tetrahydrothiophene, 1,1-dioxide
see thiophene, tetrahydro-, 1,1-dioxide
Tetralin
see naphthalene, 1,2,3,4-tetrahydro-
Tetramethylsilane see silane, tetramethyl-
2,5,8,11-Tetraoxadodecane E182, E183, 249
3,6,9,12-Tetraoxatetradecane E182, E183, 244, 245
Tetratetracontane
E7, E13, 60
Thiophene, tetrahydro-, 1,1-dioxide E359, E361, E362,
m-Toluidine
see benzenamine, 3-methyl-
o-Toluidine
Triacetin
see benzenamine, 2-methyl-
see 1,2,3-propanetriol, triacetate
Tributyl phosphate
see phosphoric acid, tributyl ester
Tridecane
Triethylene glycol
see ethanol, 2,2'-[1,2-ethanediylbis(oxy)]bis-
Triethylene glycol butyl ether
see 3,6,9-trioxatridecan-1-ol
Triethylene glycol diethyl ether
see 3,6,9,12-tetraoxatetradecane
Triethyl phosphate
see phosphoric acid, triethyl ester
Triisobutyl phosphate
see phosphoric acid, tris(2-methylpropyl) ester
```

Trimethyl phosphate
see phosphoric acid, trimethyl ester
3,6,9-Trioxatridecan-1-ol
E182, E183, 249
Tripropyl phosphate
see phosphoric acid, tripropyl ester

```

Undecane
1-Undecanol
2-Indecanone
Water
Water (ternary)
Wax

E5, 27, 44 E132, 168 E178, 197

86, 174
- 174

E418, 429

\section*{REGISTRY NUMBER INDEX}

Page numbers preceded by E refer to evaluation texts whereas page numbers not preceded by E refer to compiled tables.
```

56-23-5 E255, E259, E260, 261-264, E384, 397, 398
56-81-5 E133, 177
57-11-4 E385, 412, 414
57-88-5 E385, 404, 405
60-29-7 E181-E183, E187, 236
62-53-3 E302, E306, E307, 308-312
64-19-7 E179, E180, E187, E188, 218, 219
67-63-0 E130, E135, 146, 149, 155, E257, E259
67-68-5 E359, E361, E362, 382, 383
71-23-8 E130, E135, 148, 153-156, E384, 400
71-36-3 E130, E135, 146, 149, 157
71-41-0 E131, E135, 160-162
74-82-8
74-84-0
74-85-1
74-86-2
74-90-8
74-98-6
75-07-0
75-09-2
75-12-7
75-15-0
75-19-4
75-28-5
75-69-4
75-71-8
75-76-3
76-13-1
76-14-2
78-40-0
78-75-1
78-83-1
78-92-2
78-93-3
79-09-4
79-20-9
90-12-0
91-17-8
91-22-5
92-51-3
95-47-6
95-53-4
95-63-6
96-22-0
96-23-1
96-48-0
96-49-1
97-53-0
97-99-4 E384, 391

```
```

64-17-5 E128, E131, E135, 137, 138, 146-148, 150-153,

```
64-17-5 E128, E131, E135, 137, 138, 146-148, 150-153,
E128, E131,' E135, 137,
E128, E131,' E135, 137,
67-56-1 86, 109, E128, E131, E135, 136-146, E384-E386,
67-56-1 86, 109, E128, E131, E135, 136-146, E384-E386,
387, 388, 391, 402, 415
387, 388, 391, 402, 415
67-64-1 E178, E179, E187, E188, 198, 189-196, E385,
67-64-1 E178, E179, E187, E188, 198, 189-196, E385,
    402, 407, 411, 412
    402, 407, 411, 412
67-66-3 E255, E259, E260, 265-268, E385, 402
67-66-3 E255, E259, E260, 265-268, E385, 402
68-12-2 E303, E304, E306, E307, 342-348, E384, E385,
68-12-2 E303, E304, E306, E307, 342-348, E384, E385,
    392, 406, 410, 413, 414
    392, 406, 410, 413, 414
71-43-2 E90, E94, E95, 96-98, 100-105, 114, E257, E384,
71-43-2 E90, E94, E95, 96-98, 100-105, 114, E257, E384,
E385, 397, 400-404, 408, 409
E385, 397, 400-404, 408, 409
E1, E4, E5, 14, 15, 36, 37, 461
E1, E4, E5, 14, 15, 36, 37, 461
```

E1, E8, 14-16, 85

```
E1, E8, 14-16, 85
E8, E10, 83, 85
E8, E10, 83, 85
E178, 199, E303, E304, 348
E178, 199, E303, E304, 348
E304, 352
E304, 352
E1, E13, 14-16
E1, E13, 14-16
E178, E179, 204
E178, E179, 204
E255, E259, 269, 270
E255, E259, 269, 270
E304, E384, 399
E304, E384, 399
E359, E361, E362, 378-381
E359, E361, E362, 378-381
E7, 62
E7, 62
E1, E13, 16
E1, E13, 16
E255, E259, 271, 272
E255, E259, 271, 272
E255, E259, 271
E255, E259, 271
E359, 372
E359, 372
E255, E256, E259, 281
E255, E256, E259, 281
E256, E259, 271, 272
E256, E259, 271, 272
E358, E362, 363, 370
E358, E362, 363, 370
E256, E259, 280
E256, E259, 280
E131, E135, 149, 158, 159, E384, E385, 399, 405
E131, E135, 149, 158, 159, E384, E385, 399, 405
E131, 149
E131, 149
109, E178, 196
109, E178, 196
E179, E180, E187, 221
E179, E180, E187, 221
E180, E187, 225, 226
E180, E187, 225, 226
126, 127
126, 127
E8, E10, 71, 81
E8, E10, 71, 81
E302, E306, E307, 317, 318
E302, E306, E307, 317, 318
E8, E13, 79, 80
E8, E13, 79, 80
E90, E91, E94, E95, 98, 114, 115
E90, E91, E94, E95, 98, 114, 115
E302, E306, 314
E302, E306, 314
E91, E95, 105
E91, E95, 105
E178, 196
E178, 196
E257, E259, 294
E257, E259, 294
E184, 254
E184, 254
E179, 206
E179, 206
E184, 253
```

E184, 253

```

98-07-7 E258, E259, 301
98-82-8
98-95-3
99-49-0
100-41-4
100-44-7
100-51-6
100-52-7
101-81-5
102-76-1
106-35-4
106-42-3
106-68-3
106-93-4
106-97-8
106-98-9
107-06-2
107-12-0
107-21-1
107-87-9
107-88-0
107-92-6
108-24-7
108-32-7
108-38-3
108-39-4
108-44-1
108-85-0
108-86-1
108-87-2
108-88-3
108-90-7
108-93-0
108-94-1
108-95-2
109-60-4
109-66-0
109-86-4
109-99-9
110-19-0
110-53-2
110-54-3
110-82-7
110-86-1
111-01-3
111-13-7
111-27-3
111-46-6
111-61-5
111-65-9
111-69-3
111-70-6
111-77-3
111-84-2
111-87-5
111-96-6
112-12-9
112-27-6
112-30-1
112-40-3
112-42-5
112-49-2
112-53-8
112-60-7
112-80-1
112-95-8
115-07-1
119-64-2
120-92-3
122-99-6
E91, E95, 121
E304, E306, E307, 312, 349-351
E178, 203
E91, E95, 99, 105
E258, E259, 300
E132, 172, 173, E384, 391
E179, E187, E188, 190, 205
E91, E94, E95, 122, 123
E181, E187, 234, 235
E178, 197
E90, E91, E94, E95, 99, 114, 119
E178, 197
E255, E259, E260, 268, 273-275
E1, E13, 14-16
E10, 83
E255, E256, E259, E260, 264, 276
E306, 353
E132, E135, 172, 174, 175, E182, E183, E384, 389
E178, 196
E384, 390
E179, E180, E187, 220
E180, E187, 223
86, E179, E187, E188, 207-217, 330, 331
E90, E91, E95, 99, 105, 114, 116-118
E182, E184, E187, 252
E302, E306, 313
E257, E259, 293
E257, E259, E260, 295
E7, E9, E13, 72, 73
E90, E91, E94, E95, 98, 105-113, E258
E257, E259, E260, 295-297
E132, E135, 170, 171
E178, E187, 201
E182, E184, E187, 251
E180, E187, 229
E1, E5, E7, E13, 17, 18
E182, E183, E187, 246, 247, E384, 391
E181, E187, 237, 238
E180, E187, 230
E256, E259, 277
E2, E4, E7, E9, E13, 20-27
E7, E9, E13, 64-72, E132, E257
E302, E306, E307, 309, 315, 316
E7, E9, E13, 57
E178, 197
E132, 161
E384, 390
E181, E187, 232
E2, E4, E5, E8, E13, 20, 27, 33-37
E306, 354
E132, 163, 164
E182, E183, 249, E384, 393
E5, 27, 39
E132, E135, 163-165, E384, 398
E182, E183, 249
E178, 197
175, E181, E183, E187, 242, 243, E384, 389
E132, E135, 166, 167, 169
E5, E13, 30, 45, 46
E132, 168
E182, E183, 249
E128, E132, 168, 169
E384, 390
E180, E187, 222
E6, E13, 58, 60, 61
E8, E10, 14, 15, 83, 84
E10, E13, 71, 86-88
E178, E187, 200
393
```

 123-19-3
 123-51-3
 123-91-1
 124-18-5
 126-33-0
 126-71-6
 126-73-8
 127-19-5
 138-86-3
 140-29-4
 141-43-5
 141-78-6
 142-77-8
 142-82-5
 143-08-8
 143-22-6
 143-24-8
 287-92-3
 292-64-8
 311-89-7
 335-36-4
 335-57-9
 392-56-3
 463-82-1
 493-01-6
 493-02-7
 502-56-7
 512-56-1
 513-08-6
 513-36-0
 513-85-9
 540-84-1
 542-18-7
 543-59-9
 544-76-3
 556-67-2
 589-38-8
 591-50-4
 591-78-6
 616-45-5
 624-29-3
 628-63-7
 629-50-5
 629-59-4
 629-62-9
 629-78-7
 630-02-4
 630-06-8
 638-04-0
 638-49-3
 680-31-9
 693-54-9
 694-48-4
 821-55-6
 872-50-4
 925-78-0
 928-80-3
 929-06-6
 1120-21-4
1120-36-1
1330-20-7
1335-47-3
1453-58-3
1738-25-6
2207-01-4
2207-03-6
2207-04-7
2556-73-2
2816-57-1
3017-95-6
E178, 196
E131, E135, 137
E181, E187, 198, 239, 240
E5, E9, E13, 27, 40-43
E359, E361, E362, 373-377
E358, 370
216, E358, E361, E362, 366-370
E384, 392
E10, E13, 89
E306, 355
E384, 387-395
109, E180, E187, E188, 198, 227, 228
E181, E187, 233
E2, E13, 20, 27-32
E132, 166
E182, E183, 249
E182, E183, 216, 248, 249
E7, 63
E8, E13, 74
E302, E306, E307, 319, 320
286
E256, E259, E260, 283, 284
E257, E259, E260, 299
E2, E5, E13, 19
E8, 82
E8, 82
E178, 196
E358, 370
E358, 370
E256, E259, 279
E384, 390
E5, E13, 38
E257, E259, E260, 292
E256, E259, E260, 278
E1, E6, E13, 30, 51-56
E358, E361, E362, 371
E178, 197
E257, E259, 298
E178, 196
393
E8, 77
E180, E187, E188, 219, 231
E5, 47
E6, E10, E13, 48, 49
E5, 50
E6, 51
E6, E9, E13, 56, 59, 60
E6, E7, E9, E13, 56, 60
E8, 78
E180, E187, 224
86, E358, E361, E362, 363-365
E178, 197
E303, E306, 324
E178, 197
86, 216, E303, E306, E307, E384, 329-341, 392-396
E178, 197
E178, 197
E384, 396
E5, 27, 44
E10, E13, 71
E91, 86, 120
E91, E95, 124
E303, E306, 323
E306, 356
E8, E13, 76
E8, 78
E8, 77
E304, E306, 357
E178, E187, 202
E256, 282

```
```

3017-96-7 E256, 282
3610-26-2
3610-27-3
4394-85-8
4499-99-4
4792-83-0
6876-23-9
7098-22-8
7440-37-1
7447-41-8
7550-35-8
7681-82-5
7727-37-9
7732-18-5
7782-44-7
7782-50-5
9002-88-4
9003-20-7
9003-27-4
9003-53-6
9004-35-7
10377-51-2
10544-72-6
23228-90-2
25014-41-9
25035-04-5
25038-59-9
25265-71-8
25265-75-2
25322-68-3
25640-78-2
26264-14-2
27234-05-5
27252-83-1
28555-06-8
30433-57-9
37340-18-4
40464-54-8
41719-16-8
53609-62-4
60314-50-3
67759-35-7
67759-37-9
E182, E183, 234
E182, E183, 234
E302, E306, 321, 322
E182, E183, 244, 245
E303, 328
E8, E13, }7
E7, E13,60
E457, 460, 461
E385, 415,416
E385, 415, 416
E385, 411, 413, 415, 416
E457,460
86,174
E457, 459, 460
E457,463
4 5 0
E448,455
E385,409
E385,408
E385, 406, 407
E385, 415,416
E457,462
E259, }29
E385, 410
E448,456
E448, 451-453
E181, E187, 241, E384, 390
E1 33, 176
E182, E183, 244, 245
E92, 125
E384, 390
E181, E187, 233
E182, E183, 244, 245
E181, E187, 233
E303, E306, 325
289
E256, E259, 286-288
E257, E259, E260, 289, 290
E182, E183, 244, 245
E182, E183, 244, 245
E303, E306, 326
E303, E306, 327

```

\section*{AUTHOR INDEX}

Page numbers preceded by E refer to evaluation texts whereas page numbers not preceded by \(E\) refer to compiled tables.

Abib, 0 .
E179, E184, 215
Al-Asof, S.A. E181, E184, E185, 240, 254, E302, E303, E305, 321, 340, E359, E360, 375
Alcalay, \(\mathrm{H} . \mathrm{H}\). Al-Najjar, H.
Amamchyan, R.G.
Anderson, E.K.
E2, E3, E5, E6, E11, 23, 32, 41, 46, 49, 54
E457, E458, 459
E90, E92, 108, E178, E180, E184, E187, 192, 226, 229, E255, E257, E258, E260, 267, 274, 296, E302, E304, E306, 310, 316, 350, 353, 355 E181, E185, E187, 233
Arai, C.
Asano, K.
E5, E11, 36, 37
Ash, R.
E448, 450, 456
Balog-Megyery, K. see Megyery-Balog, K.
Baldwin, R.R.
Barrer, P.M.
Barrie, J.A.
Battino, R.

Begley, J.W.
Berengarten, M.G.
Bertsev, V.V.
Bixler, H.J.
Bodor, E .
Bogdanov, F.F.
Bondareva, T.I.
Bor, Gy.
Bratzler, K.D.
Braude, G.E.
Bryukhanova, L.A.
Buell, D.S.
Bulanin, 'M.O.
Burk, W.
Byeseda, J.J.
Byrne, J.E.
E417, E418, 423
E448, 450, 456
E448, 452, 453
E2, E5, E7, E8, E11-E13, 35, 42, 47, 73-78, E90, E92, E93, 100, 110, 115, 117, 119, E129, E131, E132, E134, E135, 159, 165, 167, E257-E260, 299, E358, E360, E362, 371, E385, E386, 402-405, E430, E431, 436,
E132, E134, E135, 171, E255, E256, E258, E260, 275, 282, E417, E418, 425
E2, E3, E7, E11, 24, 69, E90, E92, 102
E457, E458, 459
E448, 449
E178, E180, E182-E184, E185-E187, 194, 195, 204,
227, 228, 237, 238, 246, 247
E92, E93, 125
E179, E181, E185, E187, 208, 235, E303-E306, 332, 333, 354
E178, E180-E187, 194, 195, 227, 228, 237, 238, 246, 247
E10, E12, 86, E91, E93, E128, E133, E179, E185, E303, E305, E358, E360
E303, E305, 345
E304, E306, 356, E358, E360, 365
E255, E258, E259, 269
E457, E458, 459
E304, E306, 357
E132, E134, E135, 175, E181, E183, E186, E303, E305, 338, 347
E90, E92, E93, 100, 115, 117, 119, E385,
E386, 402-405
Capell, R.G.
Cargill, R.W.
Cauquil, G.
Chai, C.-P.
Chao, K.-C.

Chang, E.T.
Chen, H.
Cheng, H .
Cheung, H .
Christoff, A.
Chung, D.K.

429
E128, E133, 151
E132, E134, 170
E6, E7, E11, E13, 55, 57, 61, E92, E93, 126 ,
E302, E304, E306, 318
E5, E6, E10, E11, 43, 58, 59, 88, E90-E92,
103, 112, 118, 123, 127, E182, E186, 252,
E302, E304, 317
E457, E458, 462
E90, E92, 118
E1, E11, 18
E1, E10, 14, 15
E181, E183, E185, E187, 236
E128, E133, 145, 152

Clark, A.M.
Cucuist, M.
Danforth, W.F.

Daniel, S.G.
Dantzler, E.M.
Dedova, I.V.
Deetz, J.A.
Demidova, Yu.A.
Deshmukh, R.D.
Dim, A.
Din, \(F\).
Doerges, A.
Dubois, J.-T.
Du Pont de Nemours a
Durban, S.A.
Durkina, A.G.
Dymond, J.H.
Eckert, C.S.
Efimova, N.M.
Egorova, V.I.
Eiback, R.E.
Eldridge, J.W.
Emel'yanova, E.A.
Eto, Y.
Evans, F.D.
Fai Wu, M.
Felsing, W.A.
Fernandez, M.E.P.
Field, L.R.
Fogg, P.G.T.
Frabetti, A.J.
Funk, E.W.
Furmanov, A.S.
Furmer, I.E.
Fuwa, T.
Gallardo, M.A.
Gao Guanghua
Gardner, G.R.
Gasem, K.A.M.
Geller, E.B.
Gerber, A.
Gestrich, W.
Gjaldbaek, J.C.

Glazunova, T.V.
Gniewosz, S . Gocken, N.A.
Gracheva, N.V.
Grishko, N.I.
Gudasheva, V.M.
Gutierrez Losa, C.

Haidegger, E.
Haller, H.S.
Haselden, G.G.
Hayduk, W.
```

E1, E8, E11, 85
E179, E185, 206
E2, E5, E11, 35, 42, E90, E92, 100, E129,
E131, E132, E134, E135, 159, 165, 167,
E385, E386, 402-405, E430, E431, 436
E417, E418, 423
E255, E256, E258, E259, 271, 272
E303, E305, 345
E132, E134, E1 35, 175, E181, E183, E186,
E303, E305, 338, 347
E303, E305, 331
E181-E183, E185, E187, 243, E302, E305, E306, 322
E129, E132, E134, 164
E1, E8, E11, 85
E10, E12, 86, E91, E93, E128, E133, E179,
E185, E303, E305, E358, E360
E180, E181, E185, E187, 222, 232
and Co. E303, E305, 343
E178, E184, 191
E179, E185, 211
E7, E12, 65, 66, E359-E362, 382
E7, E12, 63
E358, E360, 369
E303, E305, E306, 323-327
E257, E258, 290
E255, E258, E259, 269, 270
E132-E134, 173, 176
E128, E133, 143
E131, E134, 159, E257-E260, 299, E430, E431, 436
E457, E458, 460
E178, E184, 191
E1, E11, 18
E7', E12', E13, 73, E90, E92, 110
E182, E186
E448,451
E1, E10, E457, E458, 461
E303, E305, E306, 323-327
E2, E3, E7, E11, 24, 69, E90, E92, 102,
E304, E306, 354, E358, E360, 368, 369
E448,454
E178, E181, E184, E185, E187, 200, 201,
202, 239, E257-E260, 292, 293, 297
E2, E5, E11, 27
E129, E132, E134, 164
E6, E7, E11, E13, 60
E8, E12, E13, 75-78
E304, E306, 352
E7, E10, E12, 68, 87, E90, E92, 101, 111
E2, E7, E11, 28, 64, E90, E92, 97, 108, E178,
E180, E184, E187, 192, 226, 229, E255,
E257-E260, 263, 267, 274, 283, 296, E302,
E304, E306, 310, 316, 350, 353, 355, E359,
E360, 380
E91, E93, 124
E417, E418, 428
E457, E458, 462
E358, E360, 369
E303, E305, E306, 313-327
E358, E360, 368
E178, E181, E184, E185, E187, 200-202, 239,
E257-E260, 292, 293, 297
E303, E305, 344
E431,447
E7, E8, E12, 62, 84
E2, E5, E6, E11, 30, E132, E134, E135, 174

```

Herbert, W.
Hiemenz, W. Hildebrand, J.H.

Hiraoka, H. Hirata, M.
Holler, F.C.
Homfray, I.F.
Horiuti, J.

Hoshino, D.
Huang, S.H.
Im, U.K.
Isaacs, E.E.
Ivanovsky, F.P.

Jou, F.-Y.
Just, G.
Jou, F.-Y
Just, G.

Kassim, D.M.
Kaplan, L.K.
Kaminishi, G.-I.
Katz, M.
Khokhlov, S.F.
King, M.B.
Kisan, W.
Knapp, H .
Kobatake, Y.
Kobayashi, Y.

Konishi, H .
Kontos, H.A.
Kosyakov, N. Ya.
Kosakewitsch, P.P.
Koudelka, L.
Krauss, W.
Krichevskii, I.R.
Krieve, W.F.
Kubie, L.S.
Kunerth, W.
Kurata, F .
Kusano, K.
Ladigina, O.P.
Lakomy, J.
Lebedeva, E.S.
Leites, I.I.
Lenoir, J-Y.

Lin, H.M.
Lin, P.J.

Horsman-van den Dool, L.E.W. E2, E3, E7, E8, E11, 25, 72, 80, 82, E359, E360, 372
Horvath, M.J. E5, E10, E11, 43, 88, E90-E92, 103, 112, 118, 123, 127, E182, E186, 252, E302, E304, 317
E10, E12, 86, E91, E93, E128, E133, E179, E185, E303, E305, E358, E360 E132, E134, 169, E417, E418, 419
E5, E7, E11-E13, 38, 65, E256, E258-E260, 281,
284, E302, E304, E306, E307, 319, E359, E360, 381
E5, E11, E13, 38, E256, E258, E259, 281
E1, E8, E10, E11, E13, 16,83
E255, E256, E258, E259, 271, 272
E303, E305, 328
E255, E258, E260, 262 E1, E8, E10, E11, E13, 16, 83
E6, E11, 58, 59
E2, E3, E11, 21, 29
E179, E185, 212
E2, E3, E11, 20, E90, E93, 109, E128, E130, E131, E133, 140, 148, 149, E178, E180, E184, E303, E305

E181-E183, E185, E187, 243, E302, E305, E306, 322 E10, E12, E13, 89, E90-E92, E95, 96, 106, 116, 121, E128, E130, E131, E133, 136, 147, 154, 158, 160, 177, E178-E180, E184, E187, 189, 203, 205, 218, 220, 221, 223-225, 230, 231, 253, E255-E260, 261, \(266,273,276,280,294,295,298,300,301\), E302, E304, E306, 308, 313, 314, 315, 349, E359, E360, 379

E181, E184, E185, 240, 254, E302, E303, E305, 321, 340, E359, E360, 375

\section*{210}

E2, E3, E7, E11, 26, 70, E90, E92, 104 E131, E134, 162 E358, E360, 366, 367 E2, E3, E5, E6, E11, 23, 32, 34, 41, 46, 49, 54 E304, E306, 357 E303, E305, 339 E256, E258, E260, 284, E302, E304, E306, E307, 319, E359, E360, 381 E5, E11, 36, 37, E128, E130-E132, E134, 153, E179, E184, 215, E255, E258, E304, E306, E384, E386, 397-400
E1, E8, E10, E11, E13, 16, 83
E256, E258, E259, 288
E358, E360, 366, 367
E128, E133, 138, E385, E386, 415, 416
E90, E92, E128, E133, E178, E184, E258, E260, E385, E386, 401
E7, E10, E12, 68, 87, E90, E92, 101, 111 E128, E133, 139
E457, E458, 463
E417, E418, 422
E128, E131, E133, E135, 137, E178-E180, E184, 190, 219, E255, E258, E260, 268, E302, E304, 309 E2, E3, E11, 21, 29, 34
E430, E431, 435, 443, 444
E303, E305, 337
E90-E92, 98, 99
E128, E133, 139
E303, E305, 345, E384, E386, 387-393
E6, E8, E11, 51, 81, E132-E135, 172, E179,
E181, E182, E185, E187, 209, 241, 251, E302-E304, 311, 334,351, E358-E360, 364, 370, 383
E6, E11, 58, 59
E6, E11, 56

Lipshtein, R.A.
Liu, D.D.
Liu, M.
Logvinyuk, V.P.
Lopez, M.C.
Luhring, \(P\).

Luther, H.
Lynn, \(S\).
McHale, J.L.
Macphee, D.E.
Maget, J.R.
Makarenkov, V.V.
Makarov, K.
Makranczy, J.

Maleczkine, M.
Malik, V.K.
Malyshev, V.V.
Malyutin, S.P.
Manning, W.P.
Mantor, P.D.
Mason, D.M.
Masuoka, H.
Mate, E.
Mather, A.E.
Maude, A.H.
Meder, A.P.
Megyery-Balog, K.

Melendo, J.M.
Mesko, G.
Messow, U.
Michaels, A.S.
Mills, A.F.
Modell, J.H.
Mohai, B.
Molinet, G.

Nagahama, K.
Nakahara, T.
Navari, R.M.
Neokladnova, L.N.
Nichols, G.
Nikitina, A.K.
Nishihara, K.
Nychka, H.R.
Otto, F.D.
Ouellet, C.
Palmer, D.G.
Panchenkov, G.M.
Pape, D.

Murrieta-Guevara, F. E179, E185, 217, E303, E305, 341, E359,
E360, 374
E91, E93, 124
E448, 455
E90, E92, 113
E417, E418, 424
E178, E184, E187, 200, 202, E257-E260, 292, 293, 297
E7, E8, E10, E12, E13, 71, E90-E92, E95,
105, E128, E130, E133, 146, E178, E184, 196, E255, E258, E260, 264, E302, E304, 312
E132, E134, 169, E417, E418, 419
E182, E183, E186, 249
E358, E360, E362, 371
E128, E133, 151
E132, E134, E135, 171, E255, E256, E258,
E260, 275, 282, E417, E418, 425
E417, E418, 424
E182, E183, E186, 244, 245
E1-E3, E5-E7, E11, 17, 22, 24, 31, 33, 39, 40,
\(44,45,47,48,50,52,69\), E90, E92, 102,
E128-E133, 144, 150, 156, 157, 161, 163, 166,
168, E178, E179, E181-E185, E187, 196, 197, 207,
234, 242
E178, E180-E187, 194, 195, 227, 228, 237, 238,
246, 247
E132, E134, E135, 174
E417, E418, 424
E182, E183, E186, 244, 245
E132, E134, E135', 143, E181, E183, E186, E303,
E305, 338, 347
E179, E184, 215
E457, E458, 463
E128, E133, 143
E178, E184, 196, 197
E179, E181-E183, E185, E187, 212, 243, E302,
E305, E306, 322, E359, E360, 376, 377
E417, E418, 426
E179, E185, 211
E1-E3, E5, E6, E11, 17, 22, 31, 33, 39, 40, 44,
45, 47, 48, 50, 52, E128-E133, 157, 161, 163,
166, 168, E178, E184, 196, 197
E178, E184, E187, 201
E178, E180-E187, 194, 195, 227, 228, 237, 238,
246, 247
E417, E418, 420, 427
E448, 449, 452, 453
E128, E133, 145, 152
E256-E260, 287, 289, 291
E178-E187, 194, 195, 204, 207, 227, 228, 234,
237, 238, 242, 246, 247
E304, E306, 351

E1, E8, E10, E11, E13, 16, 83
E5, E11, 36, 37
E256, E258, E259, 288
E303, E305, E306, 323-327
E430, E431, 438
E304, E306, 356, E358, E360, 365
E181, E185, E187, 233
E257, E258, 290
E179, E181-E183, E185, E187, 212, 243, E302,
E305, E306, 322, E359, E360, 377
E180, E181, E185, E187, 222, 232
E448, 450, 456
E417, E418, 424
E417, E418, 420, 427

Papp, S.
Parcher, J.F.
Patterson, J.L.
Patyi, L.
Paulaitis, M.E.
Pedrosa, G.C.
Perisanu, St.
Peterson, R.E.
Pfeifer, Gy.
Piskovsky, L.
Podvigailova, I.G.
Ponter, A.B.
Poston, T.M.
Power, G.G.
Prausnitz, J.M.

Preston, G.T.
Quinchon, J.
Racz, Gy.
Renault, P.

Renon, H.

Rest, A.J.
Ridenour, W.P.
Rivas, O.R.
Roberts, B.E.
Robinson, R.L.
Rodman, C.J.
Romero-Martinez, A.
Rosenblum, W.I.
Rosenthal, W.
Rusz, L.

Ryabov, M.I.
Sadamoto, S.
Sadilenko', A.S.
Salas, J.A.
Sandler, S.I.
Sano, Y.
Sargent, J.W.
Schaffer, P.S.
Schay, G.
Schmidt-Nielsen, S.
Schumpe, A.

Schwarz, E.
Sciamanna, S.F.
Scurlock, R.G.
Sebastian, H.M.
Seffl, R.J.
Semenova, A.I.
Sergeeva, L.E.
Sergienko, I.D.

E179, E181-E183, E185, E187, 207, 234, 242
E6, E11, 56
E256, E258, E259, 288
E1-E3, E5-E7, E11, 17, 22, 24, 31, 33, 39, 40,
\(44,45,47,48,50,52,69\), E90, E92, 102
E6, E7, E11, E13, 55, 57, 61, E92, E93, 126,
E302, E304, E306, 318
E131, E134, 162
E179, E185, 206
E430, E431, 434, 439-441
204
E90-E92, 98, 99
E303, E305, E306, 323-327
E129, E132, E134, 164
E457, E458, 462
E430, E431, 437
E1, E6, E8, E10, E11, E13, 53, 79, E91, E93,
E95, 122, E179, E185, 213, 214, E303, E305,
335, 336, E359, E360, 373, E384, E386, 394-396, E448, 455, E457, E458, E457, E458, 461
E1, E10, E457, E458, 461
E304, E306, 352
E358, E360, E362, 363
E6, E8, E11, 51, 81, E132-E135, 172, E179, E181, E182, E185, E187, 209, 241, 251, E302-E304, 311, 334, 351, E358-E360, 364, 370, 383
E6, E8, E11, 51, 81, E132-E135, 172, E179, E181, E182, E185, E187, 209, 241, 251, E302-E304, 311, 334, 351, E358-E360, 364, 370, 383
E457, E458, 460
E417, E418, 429
E179, E185, 213, 214, E303, E305, 335, 336,
E359, E360, 373, E384, E386, 394-396
E359, E360, 376
E6, E7, E11, E13, 60
E417, E418, 426
E179, E185, 217, E303, E305, 341, E359, E360, 374
E256, E258, E259, 288
E90, E92, 114, E178, E184, 193, E303, E305, 342, E385, E386, 406-414
E1-E3, E5, E6, E11, 17, 22, 31, 33, 39, 40, 44, \(45,47,48,50,52\), E128-E133, 144, 150, 156, 157, 163, 166, 168, E178, E179, E181-E185, E187, 196, 197, 207, 234, 242
E91, E93, 124
E128, E133, 143
E2, E3, E7, E11, 24, 69, E90, E92, 102, E304, E306, 354, E358, E360, 369
E131, E134, 162
E7, E12, 63
E181, E185, E187, 233
E256, E258, 285, 286, E302, E305, 320
E431, 447
E358, E360, E362, 363
E430, E431, 432
E7, E8, E10, E12, E13, 71, E90-E92, E95, 105,
E128, E130, E133, 146, E178, E184, 198, E255,
E258, E260, 264, E302, E304, 312
E182, E183, E186, E187, 250
E182, E183, E186, 249
E457, E458, 460
E5, E10, E11, 43, 88, E90-E92, 103, 112, 118, 123,
127, 148, 149, E182, E186, 252, E302, E304, 317
E256, E258, 285, 286, E302, E305, 320
E132-E134, 173, 176
E303, E305, 332, 333
E358, E360, 366, 367

Shakhova, S.F. E179, E181-E183, E185-E187, 208, 210, 235, 248, E303, E305, 332, 333, 337
Shenderei, E.R. E2, E3, E11, 20, E90, E93, 109, E128, E130, E131, E133, 140, E178, E180, E184, 199, E303, E305, 329, 348
Shinelis, A.F.
Shleynikov, V.M.
E384, E386, 387-393
Sichkova, O.P.
Simpson, \(P\).
Siposs, G.
Song, K.Y.
Smith, P.T.
Snowden, P. Stead, K.
Stegall, H.
Stepanova, Z.G.
Streett, W.B.
Sushkova, T.V.
Sweeney, C.W.
Szebenyi, I.
Szekely, A.
Szekely, Gy.
Takahashi, M.
Takahashi, S.
Takeuchi, H.
Talib, E.K.
Taraba, R.F.
Tarat, E. Ya.
Tham, M.K.
Ting Wei
Titel'man, L.I.
Tokunga, J.
Tong Jingshan
Tomoto, N.
Traply, G.
Trejo, A.
Tremper, K.K.
Treshchina, N.I.
Tsiklis, D.S.
Tsimmerman, S.S.
Tubolkin, A.F.
Urieta, J.S.
Usyukin, I.P.
Vei, D.
Venable, C.S.
Vibrans, F.C.
Vieth, W.R.
Vilcu, R.
Vitovec, J.
Vodrazka, W .
Volkamer, K.
E182, E183, E186, E187, 250
Voskresenskaya, N.S. E384, E386, 387, 388
Walfisz, A.
E417, E418, 428
Walker, R.D. Jr.
Walter, E.B.
Wang Xiagong
Wang, \(\mathrm{Y}-\mathrm{w}\).
Warman, J.W.
E256-E260, 287, 289, 291
E2, E5, E6, E11, 30
E2, E5, E11, 27
E359, E360, 377
E2, E3, E7, E8, E11, 25, 72, 80, 82, E359, E360, 372

Weatherford, W.D.
Wehner, K.
Wilcock, R.J.
Wilhelm, E.

Williams, B.
Williams, D.L. Williams, J.M. Wolfer, \(W\).
Won, Y.S.
Wood, T.
Woukoloff
Wu, Z.
Xu, S.
Yeh, S.Y.
Yokoyama, C.
Yorizane, M.
Yoshitama, T.
Yushko, V.L.
Zainel, H.A.
Zander, E.H.
Zeck, S.
zel'venskii,
Zheng, L.
Zhu, Z.
Zollweg, J.A.
Zubchenko, Yu.P.

E417, E418, 429
E304, E306, 357
E2, E5, E8, E11-E13, 35, 42, 74, E129, E132, E134, E135, 165, 167, E358, E360, E362, 371 E2, E5, E7, E8, E11-E13, 35, 42, 67, 73-78, E90, E92, E93, 110, 115, 117, 119, E129, E131, E132, E134, E135, 159, 165, 167, E358, E360, E362, 371 E132, E134, E135, 171, E255, E256, E258, E260, 275, 282, E417, E418, 425
E90, E92, 107
E2, E11, 19
E182, E183, E186, E187, 250
E128, E133, 145, 152
E129, E132, E134, 164
E255, E258, 265, E359, E360, 378
E303, E305, 339
E359, E360, 377
E430, E431, 434, 439-441
E2, E3, E7, E11, 26, 70, E90, E92, 104
E128, E133, 143
E181, E185, E187, 233
E358, E360, 366, 367
E181, E184, E185, 240, 254, E302, E303, E305, 321, 340, E359, E360, 375
E1, E10, 14, 15
E303, E305, 339
E90, E93, 109, E128, E130, E131, E133, 140,
148, 149, E178,.E180, E184
E90, E92, 113
113
E1, E11, 18
E178-E187, 208, 210, 235, 248, E303, E305, 337

\section*{SOLUBILITY DATA SERIES}

Volume 1
H. L. Clever, Helium and Neon

Volume 2
H. L. Clever, Krypton, Xenon and Radon

Volume 3 M. Salomon, Silver Azide, Cyanide, Cyanamides, Cyanate, Selenocyanate and Thiocyanate
Volume 4
H. L. Clever, Argon

Volume 5/6
C. L. Young, Hydrogen and Deuterium

Volume 7
R. Battino, Oxygen and Ozone

Volume 8 C. L. Young, Oxides of Nitrogen
Volume 9 W. Hayduk, Ethane
Volume 10 R. Battino, Nitrogen and Air
Volume 11 B. Scrosati and C. A. Vincent, Alkali Metal, Alkaline Earth Metal and Ammonium Halides, Amide Solvents
Volume 12 C. L. Young, Sulfur Dioxide, Chlorine, Fluorine and Chlorine Oxides
Volume 13 S. Siekierski, T. Mioduski and M. Salomon, Scandium, Yttrium, Lanthanum and Lanthanide Nitrates
Volume 14 H. Miyamoto, M. Salomon and H. L. Clever, Alkaline Earth Metal Halates
Volume 15 A. F. M. Barton, Alcohols with Water
Volume 16/17
E. Tomlinson and A. Regosz, Antibiotics: 1, \(\beta\)-Lactam Antibiotics

Volume 18 O. Popovych, Tetraphenylborates
Volume 19 C. L. Young, Cumulative Index: Volumes 1-18
Volume 20 A. L. Horvath and F. W. Getzen, Halogenated Benzenes, Toluenes and Phenols with Water
Volume 21 C. L. Young and P. G. T. Fogg, Ammonia, Amines, Phosphine, Arsine, Stibine, Silane, Germane and Stannane in Organic Solvents
Volume 22 T. Mioduski and M. Salomon, Scandium, Yttrium, Lanthanum and Lanthanide Halides in Nonaqueous Solvents
Volume 23 T. P. Dirkse, Copper, Silver, Gold and Zinc, Cadmium, Mercury Oxides and Hydroxides
Volume 24 W. Hayduk, Propane, Butane and 2-Methylpropane
Volume 25 C. Hirayama, Z. Galus and C. Guminski, Metals in Mercury
Volume 26 M. R. Masson, H. D. Lutz and B. Engelen, Sulfites, Selenites and Tellurites
Volume 27/28 H. L. Clever and C. L. Young, Methane
Volume 29 H. L. Clever, Mercury in Liquids, Compressed Gases, Molten Salts and Other Elements
Volume 30 H. Miyamoto and M. Salomon, Alkali Metal Halates, Ammonium Iodate and Iodic Acid
Volume 31 J. Eysseltová and T. P. Dirkse, Alkali Metal Orthophosphates

Volume 32 P. G. T. Fogg and C. L. Young, Hydrogen Sulfide, Deuterium Sulfide and Hydrogen Selenide
Volume 33 P. Franzosini, Molten Alkali Metal Alkanoates
Volume 34 A. N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part l: Non-cyclic Substituents
Volume 35 A. N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part II: 5-Membered Heterocyclic Substituents
Volume 36 A. N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part III: 6-Membered Heterocyclic Substitutents and Miscellaneous Systems
Volume 37 D. G. Shaw, Hydrocarbons with Water and Seawater. Part I: Hydrocarbons \(C_{5}\) to \(C_{7}\)
Volume 38 D. G. Shaw, Hydrocarbons with Water and Seawater. Part II: Hydrocarbons \(C_{8}\) to \(C_{36}\)
Volume 39 C. L. Young, Cumulative Index: Volumes 20-38
Volume 40 J. Hala, Halides, Oxyhalides and Salts of Halogen Complexes of Titanium, Zirconium, Hafnium, Vanadium, Niobium and Tantalum
Volume 41 C.-Y. Chan, I. N. Lepeshkov and K. H. Khoo, Alkaline Earth Metal Perchlorates
Volume 42 P. G. T. Fogg and W. Gerrard, Hydrogen Halides in Non-aqueous Solvents
Volume 43 R. W. Cargill, Carbon Monoxide
Volume 44 H. Miyamoto, E. M. Woolley and M. Salomon, Copper and Silver Halates
Volume 45/46 R. P. T. Tomkins and N. P. Bansal, Gases in Molten Salts
Volume 47 R. Cohen-Adad and J. W. Lorimer, Alkali Metal and Ammonium Chlorides in Water and Heavy Water (Binary Systems)
Volume 48 F. Getzen, G. Hefter and A. Maczynski, Esters with Water. Part 1: Esters 2-C to 6-C
Volume \(49 \quad\) F. Getzen, G. Hefter and A. Maczynski, Esters with Water. Part II: Esters 7-C to 32-C
Volume 50 P. G. T. Fogg, Carbon Dioxide in Non-aqueous Solvents at Pressures less than 200 kPa
Volume 51 J. G. Osteryoung, M. M. Schreiner, C. Guminski and Z. Galus, Intermetallic Compounds in Mercury
Volume 52 I. Lambert and H. L. Clever, Alkaline Earth Hydroxides in Water and Aqueous Solutions```

