INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

ANALYTICAL CHEMISTRY DIVISION COMMISSION ON SOLUBILITY DATA

SOLUBILITY DATA SERIES

Volume 52

ALKALINE EARTH HYDROXIDES IN WATER AND AQUEOUS SOLUTIONS

SOLUBILITY DATA SERIES

Editor-in-Chief J. W. LORIMER The University of Western Ontario London, Ontario, Canada

M. Salomon (USA) Sub-editor Solid/Liquid Systems C. L. Young (Australia) Sub-editor Indexes

EDITORIAL BOARD

H. Akaiwa (Japan)

Ch. Balarew (Bulgaria)

C.-Y. Chan (Malaysia)

M.-T. Saugier Cohen-Adad (France)

R. Cohen-Adad (France)

T. P. Dirkse (USA)

J. Eysseltová (Czechoslovakia)

F. W. Getzen (USA)

L. H. Gevantman (USA)

G. T. Hefter (Australia)

J. B. Jensen (Denmark)

Fu Jufu (China)

C. Kalidas (India)

A. F. Danil de Namor (UK)

S. M. Phillips (USA)

V. M. Valyashko (Russia)

J. Vanderdeelen (Belgium)

W. E. Waghorne (Ireland)

Managing Editor P. D. GUJRAL IUPAC Secretariat, Oxford, UK

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY IUPAC Secretariat: Bank Court Chambers, 2-3 Pound Way, Templars Square, Cowley, Oxford OX4 3YF, UK

NOTICE TO READERS

If your library is not already a standing-order customer or subscriber to the Solubility Data Series, may we recommend that you place a standing order or subscription order to receive immediately upon publication all new volumes published in this valuable series. Should you find that these volumes no longer serve your needs, your order can be cancelled at any time without notice.

A complete list of volumes published in the Solubility Data Series will be found on p. 364.

SOLUBILITY DATA SERIES

Volume 52

ALKALINE EARTH HYDROXIDES IN WATER AND AQUEOUS SOLUTIONS

Volume Editors

IRMA LAMBERT Commissariat à l'Energie Atomique D'Etudes Fontenay-aux-Roses, France H. LAWRENCE CLEVER Emory University Atlanta, GA, USA

Contributors

HISAHIKO EINAGA Nagoya Institute of Technology Nagoya, Japan

> JIRI HALA J. E. Purkyne University Brno, Czechoslovakia

YU KOMATSU National Institute for Research in Inorganic Materials Tsukuba, Ibaraki, Japan

JOHN W. LORIMER University of Western Ontario London, Ontario, Canada

A. F. VOROB'EV and D. I. MUSTAFIN Mendeleev Institute of Chemical Technology Moscow, Russia

PERGAMON PRESS OXFORD · NEW YORK · SEOUL · TOKYO

UK.	Pergamon Press Ltd., Headıngton Hill Hall, Oxford OX3 0BW, England
U S.A	Pergamon Press Inc., 660 White Plains Road, Tarrytown, New York 10591-5153, USA
KOREA	Pergamon Press Korea, KPO Box 315, Seoul 110-603, Korea
JAPAN	Pergamon Press Japan, Tsunashima Buildıng Annex, 3-2-12 Yushıma, Bunkyo-ku, Tokyo 113, Japan

Copyright © 1992 International Union of Pure and Applied Chemistry

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means · electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the copyright holders.

First edition 1992

Library of Congress Cataloging in Publication Data

The Library of Congress has catalogued this serial title as follows:

Solubility data series —Vol. 1—Oxford; New York: Pergamon, c 1979– v., 28 cm Separately catalogued and classified in LC before no. 18. ISSN 0191-5622 = Solubility data series. 1. Solubility—Tables—Collected works. QD543.S6629 541.3'42'05-dc19 85-641351 AACR 2 MARC-S

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0 08 023920 X

CONTENTS

Foreword	vi	
Preface vi		
Introduction to the Solubility of Solids in Liquids		
Acknowledgements	xxi	
The clubility of hemality budwards in order and		
 The solubility of beryllium hydroxide in water and in various aqueous systems 	1	
1.1 Evaluation of beryllium hydroxide systems	2	
Beryllium hydroxide in water Beryllium hydroxide in aqueous electrolyte systems	2 2	
1.2 Data compilations	12	
Beryllium hydroxide in water Beryllium hydroxide in aqueous electrolyte systems	12 15	
	10	
The solubility of magnesium hydroxide in water and in various aqueous systems.	49	
2.1 Evaluation of magnesium hydroxide systems	50	
Magnesium hydroxide in water	50	
Magnesium hydroxide in aqueous electrolyte systems Magnesium hydroxide in super-critical water	51 58	
Magnesium hydroxide in aqueous organic systems	60	
2.2 Data compilations Magnesium hydroxide in water	65 65	
Magnesium hydroxide in super-critical water	72	
Magnesium hydroxide in aqueous electrolyte systems	76	
Magnesium hydroxide in aqueous organic systems	110	
3. The solubility of calcium hydroxide in water and		
in various aqueous systems. 3.1 Evaluation of calcium hydroxide systems	112 113	
Calcium hydroxide in water	113	
Calcium hydroxide in super-critical water Calcium hydroxide in aqueous salt systems	116 116	
Calcium hydroxide in aqueous organic systems	120	
3.2 Data compilations Calcium hydroxide in water	131 131	
Calcium hydroxide in super-critical water	154	
Calcium hydroxide in heavy water	156	
Calcium hydroxide in aqueous electrolyte systems Calcium hydroxide in aqueous organic systems	157 226	
 The solubility of strontium hydroxide in water and in various aqueous systems 	248	
4.1 Evaluation of strontium hydroxide systems	249	
Strontium hydroxide in water Strontium hydroxide in aqueous salt systems	249 253	
Strontium hydroxide in aqueous organic systems	253	
4.2 Data compilations	256	
Strontium hydroxide in water Strontium hydroxide in aqueous electrolyte systems	256 261	
Strontium hydroxide in aqueous organic systems	270	
5. The solubility of barium hydroxide in water and		
in various aqueous systems.	284	
5.1 Evaluation of barium hydroxide systems Barium hydroxide in water	285 285	
Barium hydroxide in aqueous electrolyte systems	287	
Barium hydroxide in aqueous organic systems	290	
5.2 Data compilations Barium hydroxide in water	295 295	
Barium hydroxide in aqueous elctrolyte systems	300	
Barium hydroxide in aqueous organic systems	334	
System index	343	
Registry number index	353	
Author index	357	
Solubility Data Series: Published and Forthcoming volumes	364	

FOREWORD

If the knowledge is undigested or simply wrong, more is not hetter

The Solubility Data Series is a project of Commission V.8 (Solubility Data) of the International Union of Pure and Applied Chemistry (IUPAC). The project had its origins in 1973, when the Analytical Chemistry Division of IUPAC set up a Subcommission on Solubility Data under the chairmanship of the late Prof. A. S. Kertes. When publication of the *Solubility Data Series* began in 1979, the Committee became a full commission of IUPAC, again under the chairmanship of Prof. Kertes, who also became Editor-in-Chief of the Series. The Series has as its goal the preparation of a comprehensive and critical compilation of data on solubilities in all physical systems, including gases, liquids and solids.

The motivation for the Series arose from the realization that, while solubility data are of importance in a wide range of fields in science and technology, the existing data had not been summarized in a form that was at the same time comprehensive and complete. Existing compilations of solubility data indeed existed, but they contained many errors, were in general uncritical, and were seriously out-of-date.

It was also realized that a new series of compilations of data gave educational opportunities, in that careful compilations of existing data could be used to demonstrate what constitutes data of high and lasting quality. As well, if the data were summarized in a sufficiently complete form, any individual could prepare his or her own evaluation, independently of the published evaluation. Thus, a special format was established for each volume, consisting of individual data sheets for each separate publication, and critical evaluations for each separate system, provided sufficient data from different sources were available for comparison. The compilations and, especially, the evaluation were to be prepared by active scientists who were either involved in producing new data, or were interested in using data of high quality. With minor modifications in format, this strategy has continued throughout the Series.

In the standard arrangement of each volume, the Critical Evaluation gives the following information

(i) A text which discusses the numerical solubility information which has been abstracted from the primary sources in the form of compilation sheets. The text concerns primarily the quality of the data, after consideration of the purity of the materials and their characterization, the experimental method used, the uncertainties in the experimental values, the reproducibility, the agreement with accepted test values, and finally, the fitting of the data to suitable functions, along with statistical tests of the fitted data. (ii) A set of recommended data, whenever possible, including weighted averages and estimated standard deviations. If applicable, one or more smoothing equations which have been computed or verified by the evaluator are also given.

(iii) A graphical plot of the recommended data, in the form of phase diagrams where appropriate

The Compilation part consists of data sheets which summarize the experimental data from the primary literature. Here much effort is put into obtaining complete coverage, many good data have appeared in publications from the late nineteenth and early twentieth centuries, or in obscure journals. Data of demonstrably low precision are not compiled, but are mentioned in the Critical Evaluation. Similarly, graphical data, given the uncertainty of accurate conversion to numerical values, are compiled only where no better data are available The documentation of data of low precision can serve to alert researchers to areas where more work is needed.

A typical data sheet contains the following information:

- (i) list of components: names, formulas, Chemical Abstracts Registry Numbers;
- (ii) primary source of the data;
- (iii) experimental variables;
- (iv) compiler's name;
- (v) experimental values as they appear in the primary source, in modern units with explanations if appropriate;
- (vi) experimental methods used;
- (vii) apparatus and procedure used;
- (viii) source and purity of materials used;
 - (ix) estimated error, either from the primary source or estimated by the compiler;
 - (x) references relevant to the generation of the data cited in the primary source.

Each volume also contains a general introduction to the particular type of system, such as solubility of gases, of solids in liquids, etc., which contains a discussion of the nomenclature used, the principle of accurate determination of solubilities, and related thermodynamic principles. This general introduction is followed by a specific introduction to the subject matter of the volume itself.

The Series embodies a new approach to the presentation of numerical data, and the details continue to be influenced strongly by the perceived needs of prospective users. The approach used will, it is hoped, encourage attention to the quality of new published work, as authors become more aware that their work will attain permanence only if it meets the standards set out in these volumes. If the Series succeeds in this respect, even partially, the Solubility Data Commission will have justified the labour expended by many scientists throughout the world in its production.

January, 1989

J. W. Lorimer, London, Canada

PREFACE

This volume presents solubility data for the hydroxides of the alkaline earth metals Be, Mg, Ca, Sr and Ba in water and aqueous solutions. No data were found for radium hydroxide. The literature has been covered up to 1990. The primary literature sources were *Chemical Abstracts*, and the reference books by Seidell and Linke (1), Gmelin (2), Pascal (3) and Mellor (4).

The calcium, strontium and barium hydroxides were used in sugar refining in the last century. Thus, it is not surprising that the first publications of solubility data for these hydroxides are to be found in the older literature connected with this industrial process. However, few quantitative data are available from these older publications and only published reports of quantitative data have been compiled. Many of these older papers are cited at the end of the evaluation reference lists. A partial listing of papers that report solubility studies of alkaline earth hydroxide containing systems, but contain no data on the alkaline earth hydroxide component, have also been appended to the evaluation reference lists.

The alkaline earth metal hydroxides can be divided into two groups depending on the hydration of the solid. One group consists of the sparingly soluble anhydrous hydroxides of beryllium, magnesium and calcium. The solubility of the magnesium and calcium hydroxides decreases with increasing temperature. Beryllium hydroxide probably has the same temperature coefficient of solubility, but the experimental solubility data are ambiguous. The more soluble strontium and barium hydroxides are octahydrates at room temperature and above. Their solubility increases with increasing temperature.

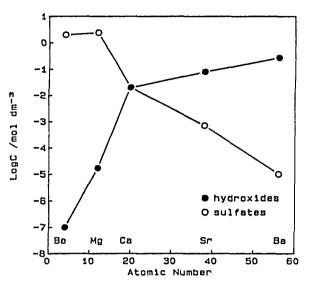
The alkaline earth hydroxides are strong bases which ionize in aqueous solution according to the solubility equilibrium

$$M(OH)_2 \cdot rH_2O(s) = M^{2+}(aq) + 2OH^{-}(aq) + rH_2O(l)$$

The solubility depends strongly on pH. The thermodynamic solubility product is

$$K_{c0}^{0} = a(M^{2+})a(OH^{-})^{2}a(H_{2}O)^{r}$$
[1]

Because formation of ion pairs (and of higher complexes in the case of beryllium hydroxide) is important in solutions of these hydroxides, expressing the solubility product in pure water in terms of the molality, m, of the saturated solution, the mean activity coefficient, γ_{\pm} , and the osmotic coefficient, ϕ , requires as well the degree of association, α , thus


$$K_{s0}^{0} = 4\gamma \frac{3}{2}(1 - \alpha)^{3} m^{3} \exp\{-3r(1 - \alpha)\phi\}$$
 [2]

It should be noted that the averaged evaluated solubility data alone are not of sufficient accuracy to derive values of the association constants from the fit of a model to the solubility data. The association constants must be determined by other methods such as spectrophotometry.

The solubility also depends on the crystalline state of the hydroxide. The freshly precipitated hydroxide is generally a poorly crystallized product. On aging the crystallinity improves and the substance is less soluble. This is especially true of the beryllium, magnesium and calcium hydroxides which form non-hydrated solids. The solid strontium and barium hydroxides which are hydrated do not show differences in solubility with aging.

The alkaline earth metal cations form salts with a wide range of solubilities with two common anions, the hydroxide and the sulfate. The accompanying figure shows solubilities at 298 K of the stable solid phase of these two series of substances as a function of cation atomic number. It is clear that the solubilities of the solid increase with increasing cation atomic number, while those of the sulfates decrease. Quantitative discussion of these differences must take account of the complications arising from the occurrence of hydrates BeSO₄·4H₂O, MgSO₄·6H₂O, CaSO₄·2H₂O, Sr(OH)₂·8H₂O and Ba(OH)₂·8H₂O, as well as the variety of crystal structures for the various solid phases. However, the general trends are clear when the Gibbs energy and enthalpy for the solubility

equilibria are considered as the resultant of decomposition of the crystal lattice plus hydration and complexation of the separated ions.

The solubility of the alkaline earth hydroxides and sulfates as a function of cation atomic number, 298 K.

First of all, the decrease of solubility with temperature of $Mg(OH)_2$ and Ca(OH)₂ indicates that the magnitude of the enthalpy of solvation is greater than the magnitude of the lattice enthalpy. For the octahydrates, the ions are already largely solvated in the crystal lattice, so the lattice enthalpy predominates. For the sulfates, the solubility generally increases with increasing temperature (except for a reversal of sign for SrSO₄ above room temperature), indicating the predominance of the lattice enthalpy in determining solubility.

Secondly, the magnitude of the thermodynamic solubility product is determined by the Gibbs energy, which can be split into contributions from entropy and enthalpy of lattice decomposition and solvation. We can postulate that the entropy of solvation is much larger for the hydroxide ion than for the sulfate ion: the hydroxide tends to lose its identity when solvated. Thus the entropy and enthalpy terms are determined mainly by the hydroxide ions, and have roughly the same magnitude for the Be, Mg and Ca hydroxides, so that the solubilities are low. For the Sr and Ba hydroxide octahydrates the hydroxide ions are already hydrated in the crystal, so the solubilities are greater, and not too different. For the sulfates, solvation is restricted to the cations, and decreases with decreasing charge density, *i.e.* as the atomic number increases. Thus, with increasing atomic number, the enthalpy and entropy contributions to the Gibbs energy become smaller and more equal, and the solubility decreases.

These general conclusions are supported by those thermodynamic values for standard state solvation enthalpies which can be calculated from tabulated data (6). More precise conclusions depend on knowledge of the detailed structure of the crystalline phases and of the saturated solutions.

General procedures for Evaluation

(a) Beryllium hydroxide. No reliable data for the temperature coefficient of solubility are available. The critical evaluation makes use of ancillary data relating to the structure and composition of dilute solutions of beryllium hydroxide.

(b) Other hydroxides. General equations for the activity coefficients under all conditions of temperature and composition were examined, but the number of unknown, but necessary parameters, was sufficiently large that a simpler approach was adopted for fitting the solubility data as a function of temperature. Under the assumptions that the factors containing activity and osmotic coefficients and the degree of association in eqn [1] follow the same temperature dependence along the solubility curve as does the solubility itself, and that the enthalpy of solution can be expressed by a general equation which is discussed in the Introduction to the Series on Solubility of Solids in Liquids in this volume, two fitting equations were used. For anhydrous solid phases in contact with pure water,

$$Y_{m} = \ln(m/m^{0}) = B_{1} + B_{2}K/T + B_{3}\ln(T/K)$$
 [3]

where m is the molality, m° the standard molality of 1 mol kg⁻¹, T the thermodynamic temperature, and B₁ i = 1,2,3 are constants found by least square fits to the experimental data.

For the hydrated solid phases,

-1-

$$Y_{m} = \ln(m/m^{*}) - (m/m^{*} - 1) = A_{1} + A_{2}K/T + A_{3}\ln(T/K)$$
[4]

where $m^* = 1/rM_{\mu}$ is the molality at the metastable congruent melting point of the salt hydrate, with M_{μ} the molar mass of water, and A_{i} , i = 1,2,3 constants, again found by a least square fit to the experimental data. Once the coefficients of this equation are found, an estimation of the congruent melting point can be made by setting $Y_{\mu} = 0$. When this equation has been applied to data with a known saturating solid phase over a particular range of temperature, then data at higher temperatures can be tested for consistency with the given solid phase.

For ternary and higher systems, and for non-aqueous systems, sufficient data for reliable evaluation are rarely available. Those data that do exist are summarized in the critical evaluations.

The editors gratefully acknowledge the advice and comments from members of the IUPAC Commission V.8 on Solubility Data, in particular Dr. Mark Salomon, Chairman, IUPAC Commission V.8, and Professor J. W. Lorimer, Editor-in-Chief, for their constructive criticisms and suggestions. Professor Lorimer suggested and contributed to the comparison of the hydroxide and sulfate solubilities above. We also thank Ms. Marian Iwamoto for her help in typing parts of the manuscript.

REFERENCES

1. Linke, W. F.; Seidell, A. Solubilities of Inorganic and Metal Organic Compounds, D. Van Nostrand, 4th Ed., Vol I, 1958; American Chemical Society, 4th Ed., Vol II, 1965.

2. Gmelin, Handbuch der Anorganischen Chemie

Beryllium, system number 26, 1930, 1986; Magnesium, system number 27, 1937-39, 1952; Calcium, system number 28, 1949,1957, 1961; Strontium, system number 29, 1931, 1960; Barium, system number 30, 1932, 1960. Verlag Chemie, GMBH, Weinheim/Bergstrasse.

3. Pascal, P., Nouveau traite de Chimie Minerale, Masson, Paris, 1956-78.

4. Mellor, J. W., A Comprehensive treatise on Inorganic and Theoretical Chemistry, Longmans, Green and Co., 1923-67.

5. Baes, C. F.; Mesmer, R. E. The Hydrolysis of Cations. John Wiley and Sons, New York, London, Sydney, Toronto. 1976. Chap. 5.

6. Wagman, D. D., et al. J. Phys. Chem. Ref. Data <u>1982</u>, 11, Supplement No. 2, The NBS Tables of Chemical Thermodynamic Properties. ACS, AIP, NBS, Washington.

Irma Lambert Fontenay-aux-Roses FRANCE

H. Lawrence Clever Atlanta, Georgia, USA

December, 1991

INTRODUCTION TO THE SOLUBILITY OF SOLIDS IN LIQUIDS

Nature of the Project

The Solubility Data Project (SDP) has as its aim a comprehensive search of the literature for solubilities of gases, liquids, and solids in liquids or solids. Data of suitable precision are compiled on data sheets in a uniform format. The data for each system are evaluated, and where data from different sources agree sufficiently, recommended values are proposed. The evaluation sheets, recommended values, and compiled data sheets are published on consecutive pages.

Definitions

A mixture (1, 2) describes a gaseous, liquid, or solid phase containing more than one substance, when the substances are all treated in the same way.

A solution (1, 2) describes a liquid or solid phase containing more than one substance, when for convenience one of the substances, which is called the solvent, and may itself be a mixture, is treated differently than the other substances, which are called solutes. If the sum of the mole fractions of the solutes is small compared to unity, the solution is called a dilute solution.

The solubility of a substance B is the relative proportion of B (or a substance related chemically to B) in a mixture which is saturated with respect to solid B at a specified temperature and pressure. Saturated implies the existence of equilibrium with respect to the processes of dissolution and precipitation; the equilibrium may be stable or metastable. The solubility of a substance in metastable equilibrium is usually greater than that of the corresponding substance in stable equilibrium. (Strictly speaking, it is the activity of the substance in metastable equilibrium that is greater.) Care must be taken to distinguish true metastability from supersaturation, where equilibrium does not exist.

Either point of view, mixture or solution, may be taken in describing solubility. The two points of view find their expression in the quantities used as measures of solubility and in the reference states used for definition of activities, activity coefficients and osmotic coefficients.

The qualifying phrase "substance related chemically to B" requires comment. The composition of the saturated mixture (or solution) can be described in terms of any suitable set of thermodynamic components. Thus, the solubility of a salt hydrate in water is usually given as the relative proportion of anhydrous salt in solution, rather than the relative proportions of hydrated salt and water.

Quantities Used as Measures of Solubility

1. Mole fraction of substance B, x_B :

$$x_{B} \neq n_{B} / \sum_{\substack{s=1\\s\neq 1}}^{C} n_{s}$$
 [1]

where $n_{\rm S}$ is the amount of substance of s, and c is the number of distinct substances present (often the number of thermodynamic components in the system). Mole per cent of B is 100 x_B .

2. Mass fraction of substance B, w_B:

$$w_{\beta} = m_{\beta}' / \sum_{s=1}^{c} m_{s}'$$
 [2]

where m_g is the mass of substance s. Mass per cent is 100 w_B. The equivalent terms weight fraction and weight per cent are not used.

3. Solute mole (mass) fraction of solute B (3, 4):

$$x_{s,B} = m_{B} / \sum_{s=1}^{C} m_{s} = x_{B} / \sum_{s=1}^{C} x_{s}$$
 [3]

$$w_{\mathbf{S},\mathbf{B}} = m_{\mathbf{B}}' / \sum_{\substack{g=1\\g=1}}^{C} m_{\mathbf{S}}' = w_{\mathbf{B}} / \sum_{\substack{g=1\\g=1}}^{C} w_{\mathbf{S}}$$

$$(3a)$$

where the summation is over the solutes only. For the solvent A, $x_{S,A} = x_A/(1 - x_A)$, $w_{S,A} = w_A/(1 - w_A)$. These quantities are called Jänecke mole (mass) fractions in many papers.

4. Molality of solute B (1, 2) in a solvent A:

 $m_B = n_B/n_A M_A$ SI base units: mol kg⁻¹

where M_A is the molar mass of the solvent.

5. Concentration of solute B (1, 2) in a solution of volume V:

 $c_{\rm B} = [8] = n_{\rm B}/V$ SI base units: mol m⁻³

The symbol c_B is preferred to [B], but both are used. The terms molarity and molar are not used.

Mole and mass fractions are appropriate to either the mixture or the solution point of view. The other quantities are appropriate to the solution point of view only. Conversions among these quantities can be carried out using the equations given in Table 1-1 following this introduction. Other useful quantities will be defined in the prefaces to individual volumes or on specific data sheets.

In addition to the quantities defined above, the following are useful in conversions between concentrations and other quantities.

6. Density: $\rho = m/V$ SI base units: kg m⁻³ [6]

7. Relative density: d; the ratio of the density of a mixture to the density of a reference substance under conditions which must be specified for both (1). The symbol d_t will be used for the density of a mixture at t°C, 1 bar divided by the density of water at t°C, 1 bar. (In some cases 1 atm = 101.325 kPa is used instead of 1 bar = 100 kPa.)

8. A note on nomenclature. The above definitions use the nomenclature of the IUPAC Green Book (1), in which a solute is called β and a solvent A In compilations and evaluations, the first-named component (component 1) is the solute, and the second (component 2 for a two-component system) is the solvent. The reader should bear these distinctions in nomenclature in mind when comparing nomenclature and theoretical equations given in this Introduction with equations and nomenclature used on the evaluation and compilation sheets.

Thermodynamics of Solubility

The principal aims of the Solubility Data Project are the tabulation and evaluation of: (a) solubilities as defined above; (b) the nature of the saturating phase. Thermodynamic analysis of solubility phenomena has two aims: (a) to provide a rational basis for the construction of functions to represent solubility data; (b) to enable thermodynamic quantities to be extracted from solubility data. Both these are difficult to achieve in many cases because of a lack of experimental or theoretical information concerning activity coefficients. Where thermodynamic quantities can be found, they are not evaluated critically, since this task would involve critical evaluation of a large body of data that is not directly relevant to solubility. The following is an outline of the principal thermodynamic relations encountered in discussions of solubility. For more extensive discussions and references, see books on thermodynamics, e.g., (5-12).

Activity Coefficients (1)

(a) Mixtures. The activity coefficient f_B of a substance B is given

$$RT \ln (f_B x_B) = \mu_B - \mu_B^*$$
[7]

where μ_B^* is the chemical potential of pure B at the same temperature and pressure. For any substance B in the mixture,

$$\lim_{X_B \to 1} f_B \sim 1$$
 [8]

(b) Solutions.

(1) Solute B. The molal activity coefficient $\gamma_{\rm B}$ is given by

RT $ln(\gamma_Bm_B) = \mu_B - (\mu_B - RT ln m_B)^{\infty}$

where the superscript ∞ indicates an infinitely dilute solution. For any solute B,

 $\gamma_B^{\infty} = 1$

[9]

[4]

[5]

Activity coefficients y_B connected with concentrations c_B , and $f_{X,B}$ (called the rational activity coefficient) connected with mole fractions x_B are defined in analogous ways. The relations among them are (1, 9), where ρ^* is the density of the pure solvent:

$$f_{B} = (1 + M_{A} \sum_{g} m_{g}) \gamma_{B} = [\rho + \sum_{g} (M_{A} - M_{g}) c_{g}] y_{B} / \rho^{*}$$
[11]

$$\gamma_{B} = (1 - \sum_{s} x_{s}) f_{x,B} = (\rho - \sum_{s} M_{s} c_{s}) y_{B} / \rho^{*}$$
 [12]

$$y_{B} = \rho^{*} f_{X,B} [1 + \sum_{n=1}^{\infty} (M_{S}/M_{A} - 1) x_{B}] / \rho = \rho^{*} (1 + \sum_{n=1}^{\infty} M_{S} m_{S}) y_{B/\rho}$$
[13]

For an electrolyte solute $B = C_{\nu+}A_{\nu-}$, the activity on the molality scale is replaced by (9)

$$B^{\rm mB} = \gamma_{\pm}^{\nu} m_{\rm B}^{\nu} Q^{\nu} \qquad [14]$$

where $\nu = \nu_{+} + \nu_{-}$, $Q = (\nu_{+}^{\nu_{+}}\nu_{-}^{\nu_{-}})^{1/\nu}$, and ν_{\pm} is the mean ionic activity coefficient on the molality scale. A similar relation holds for the concentration activity, y_{BCB} . For the mole fractional activity,

$$f_{X,B}x_{B} = Q f_{\pm}^{\nu} f_{\pm}^{\nu} x_{\pm}^{\nu}$$
[15]

where $x_{\pm} = (x_{\pm}x_{\pm})^{1/\nu}$. The quantities x_{\pm} and x_{\pm} are the ionic mole fractions (9), which are

$$x_{+} = \nu_{+}x_{\beta}/[1 + \sum_{g}(\nu_{g} - 1)x_{g}]; \quad x_{-} = \nu_{-}x_{\beta}[1 + \sum_{g}(\nu_{g} - 1)x_{g}] \quad [16]$$

where $\nu_{\rm S}$ is the sum of the stoichiometric coefficients for the ions in a salt with mole fraction $x_{\rm S}$. Note that the mole fraction of solvent is now

$$x_{A}' = (1 - \sum_{s} \nu_{s} x_{s}) / \{1 + \sum_{s} (\nu_{s} - 1) x_{s}\}$$
 [17]

so that

$$A' + \sum_{s} v_{s} x_{s} - 1$$
 [18]

The relations among the various mean ionic activity coefficients are:

$$f_{\pm} = (1 + M_{A} \sum \nu_{s} m_{s}) \gamma_{\pm} = [\rho + \sum_{s} (\nu_{s} M_{A} - M_{s}) c_{s}] y_{\pm} / \rho^{*}$$
(19)

$$\gamma_{\pm} = \frac{(1 - \sum_{s} x_{s})t_{\pm}}{1 + \sum_{s} (\nu_{s} - 1)x_{s}} = (\rho - \sum_{s} M_{s}c_{s})y_{\pm}/\rho^{*}$$
[20]

$$y_{\pm} \sim \frac{\rho^{*}[1 + \sum_{g}(M_{g}/M_{A} - 1)x_{g}]f_{\pm}}{\rho[1 + \sum_{g}(\nu_{g} - 1)x_{g}]} = \rho^{*}(1 + \sum_{g}M_{g}m_{g})^{\gamma}_{\pm}/\rho \qquad [21]$$

(11) Solvent, A:

The osmotic coefficient, ϕ , of a solvent A is defined as (1):

 $\phi = (\mu_A^* - \mu_A) / RT M_A \sum_{n=1}^{\infty} m_s$ [22]

where μ_A^* is the chemical potential of the pure solvent.

The rational osmotic coefficient, ϕ_X , is defined as (1):

$$\phi_{X} = (\mu_{A} - \mu_{A}^{*})/RTlnx_{A} = \phi_{A} \sum_{g} m_{g}/ln(l + M_{A} \sum_{g} m_{g})$$
[23]

The activity, a_A , or the activity coefficient, f_A , is sometimes used for the solvent rather than the osmotic coefficient. The activity coefficient is defined relative to pure A, just as for a mixture.

For a mixed solvent, the molar mass in the above equations is replaced by the average molar mass; i.e., for a two-component solvent with components J, K, M_A becomes

$$M_{A} = M_{J} + (M_{K} - M_{J}) x_{V,K}$$
 [24]

where $x_{V,K}$ is the solvent mole fraction of component K.

The osmotic coefficient is related directly to the vapor pressure, p, of a solution in equilibrium with vapor containing A only by (12, p.306):

$$\phi M_{A_{B}} v_{g} m_{g} = -\ln(p/p_{A}^{*}) + (V_{m,A}^{*} - B_{AA})(p - p_{A}^{*})/RT$$
 [25]

where p_A^* , $V_{m,A}^*$ are the vapor pressure and molar volume of pure solvent A, and B_{AA} is the second virial coefficient of the vapor.

The Liquid Phase

A general thermodynamic differential equation which gives solubility as a function of temperature, pressure and composition can be derived. The approach is similar to that of Kirkwood and Oppenheim (7); see also (11, 12). Consider a solid mixture containing c thermodynamic components 1. The Gibbs-Duhem equation for this mixture is:

$$\sum_{1=1}^{C} x_{1}'(S_{1}'dT - V_{1}'dp + d\mu_{1}') = 0$$
 [26]

A liquid mixture in equilibrium with this solid phase contains c' thermodynamic components 1, where $c' \ge c$. The Gibbs-Duhem equation for the liquid mixture is:

$$\sum_{i=1}^{C} x_1 (S_1 dT - V_1 dp + d\mu_1') + \sum_{i=C+1}^{C'} x_1 (S_1 dT - V_1 dp + d\mu_1) = 0 \quad [27]$$

Subtract [26] from [27] and use the equation

$$d\mu_1 = (d\mu_1)_{T,p} - S_1 dT + V_1 dp$$
 [28]

and the Gibbs-Duhem equation at constant temperature and pressure:

$$\sum_{i=1}^{C} x_{1}(d\mu_{1}')_{T,p} + \sum_{i=C+1}^{C} x_{1}(d\mu_{1})_{T,p} = 0$$
[29]

The resulting equation is:

$$RT\sum_{i=1}^{C} x_{i}'(dlna_{i})_{T,p} = \sum_{i=1}^{C} x_{i}'(H_{1} - H_{1}')dT/T - \sum_{i=1}^{C} x_{i}'(V_{1} - V_{1}')dp \quad [30]$$

where

$$H_1 - H_1' = T(S_1 - S_1')$$
 [31]

is the enthalpy of transfer of component 1 from the solid to the liquid phase at a given temperature, pressure and composition, with H_1 and S_1 the partial molar enthalpy and entropy of component 1.

Use of the equations

$$H_1 - H_1^0 = -RT^2(\partial \ln a_1/\partial T)_{X,p}$$
 [32]

and

$$V_1 - V_1^0 = RT(\partial \ln a_1 / \partial p)_{X,T}$$
[33]

where superscript o indicates an arbitrary reference state gives:

$$RT\sum_{j=1}^{C} x_{j}' dlna_{j} = \sum_{j=1}^{C} x_{j}' (H_{1}^{0} - H_{1}') dT/T - \sum_{j=1}^{C} x_{j}' (V_{1}^{0} - V_{1}') dp \quad [34]$$

where

$$dlna_1 = (dlna_1)_{T,p} + (\partial lna_1/\partial T)_{X,p} + (\partial lna_1/\partial p)_{X,T}$$
[35]

The terms involving enthalpies and volumes in the solid phase can be written as:

$$\sum_{i=1}^{C} x_{1}' H_{1}' = H_{g}^{*} \qquad \sum_{i=1}^{C} x_{1}' V_{1}' = V_{g}^{*} \qquad [36]$$

With eqn [36], the final general solubility equation may then be written:

$$R_{1=1}^{C} x_{1}' d \ln a_{1} = (H_{S}^{*} - \sum_{j=1}^{C} x_{1}' H_{1}^{0}) d(1/T) - (V_{S}^{*} - \sum_{j=1}^{C} x_{j}' V_{1}^{0}) dp/T$$
[37]

Note that those components which are not present in both phases do not appear in the solubility equation. However, they do affect the solubility through their effect on the activities of the solutes.

Several applications of eqn [37] (all with pressure held constant) will be discussed below. Other cases will be discussed in individual evaluations.

(a) Solubility as a function of temperature.

Consider a binary solid compound $A_n B$ in a single solvent A. There is

XV

. . . .

no fundamental thermodynamic distinction between a binary compound of A and B which dissociates completely or partially on melting and a solid mixture of A and B; the binary compound can be regarded as a solid mixture of constant composition. Thus, with c = 2, $x_A' = n/(n + 1)$, $x_B' = 1/(n + 1)$, eqn [37] becomes:

$$d\ln(a_A n_{a_B}) = -\Delta H_{AB} d(1/RT)$$
[38]

where

$$\Delta H_{AB}^{0} = nH_{A} + H_{B} - (n+1)H_{B}^{*}$$
^[39]

is the molar enthalpy of melting and dissociation of pure solid $A_{n}B$ to form A and B in their reference states. Integration between T and T_{0} , the melting point of the pure binary compound $A_{n}B$, gives:

$$\ln(a_A^n a_B) = \ln(a_A^n a_B)_{T=T_0} - \int_{T_0}^T \Delta H_{AB}^0 d(1/RT)$$
[40]

(1) Non-electrolytes

In eqn [32], introduce the pure liquids as reference states. Then, using a simple first-order dependence of ΔH_{AB}^* on temperature, and assuming that the activitity coefficients conform to those for a simple mixture (6):

$$RT \ln f_A = wx_B^2 \qquad RT \ln f_B = wx_A^2 \qquad [41]$$

then, if w is independent of temperature, eqn [32] and [33] give:

$$\ln\{x_B(1-x_B)^n\} + \ln\{\frac{n^n}{(1+n)^{n+1}}\} = G(T)$$
 [42]

where

$$G(T) = -\left\{\frac{\Delta H_{AB}^{*} - T^{*} \Delta C_{D}^{*}}{R}\right\} \left\{\frac{1}{T} - \frac{1}{T^{*}}\right\} + \frac{\Delta C_{D}^{*}}{R} \ln(T/T^{*}) - \frac{w}{R} \left\{\frac{x_{A}^{2} + nx_{B}^{2}}{T} - \frac{n}{(n+1)T^{*}}\right\}$$
[43]

where ΔC_p^* is the change in molar heat capacity accompanying fusion plus decomposition of the pure compound to pure liquid A and B at temperature T^* , (assumed here to be independent of temperature and composition), and ΔH_{AB}^* is the corresponding change in enthalpy at $T = T^*$. Equation [42] has the general form:

$$\ln\{x_{\rm B}(1-x_{\rm B})^{\rm B}\} = A_1 + A_2/(T/K) + A_3\ln(T/K) + A_4(x_{\rm A}^2 + nx_{\rm B}^2)/(T/K)$$
 [44]

If the solid contains only component B, then n = 0 in eqn [42] to [44].

If the infinite dilution reference state is used, then:

RT
$$\ln f_{X,B} = w(x_A^2 - 1)$$
 [45]

and [39] becomes

$$\Delta H_{AB}^{\infty} = nH_{A}^{*} + H_{B}^{\infty} - (n+1)H_{S}^{*}$$
^[46]

where ΔH_{AB}^{∞} is the enthalpy of melting and dissociation of solid compound $A_{\Pi}B$ to the infinitely dilute reference state of solute B in solvent A; H_A^* and H_B^{∞} are the partial molar enthalpies of the solute and solvent at infinite dilution. Clearly, the integral of eqn [32] will have the same form as eqn [35], with ΔH_{AB}^{∞} replacing ΔH_{AB}^* , ΔC_p^{∞} replacing ΔCp^* , and x_A^2 - 1 replacing x_A^2 in the last term.

See (5) and (11) for applications of these equations to experimental data.

(11) Electrolytes

(a) Mole fraction scale

If the liquid phase is an aqueous electrolyte solution, and the solid is a salt hydrate, the above treatment needs slight modification. Using rational mean activity coefficients, eqn [34] becomes:

$$\ln\left\{\frac{\mathbf{x}_{\mathsf{B}}^{\nu}(1-\mathbf{x}_{\mathsf{B}})^{n}}{\left(1+(\nu-1)\mathbf{x}_{\mathsf{B}}\right)^{n+\nu}}\right\} - \ln\left\{\frac{n^{n}}{(n+\nu)^{n+\nu}}\right\} + \ln\left\{\left[\frac{f}{f}_{\mathsf{B}}^{*}\right]^{\nu}\left[\frac{f}{f}_{\mathsf{A}}^{*}\right]^{n}\right\}$$

$$= -\left\{\frac{\Delta H_{\mathsf{A}\mathsf{B}}^{*}-T^{*}\Delta C_{\mathsf{D}}^{*}}{R}\right\}\left\{\frac{1}{T}-\frac{1}{T^{*}}\right\} + \frac{\Delta Cp^{*}}{R}\ln(T/T^{*})$$

$$(47)$$

where superscript * indicates the pure salt hydrate. If it is assumed that the activity coefficients follow the same temperature dependence as the right-hand side of eqn [47] (13-16), the thermochemical quantities on the right-hand side of eqn [47] are not rigorous thermodynamic enthalpies and heat capacities, but are apparent quantities only. Data on activity coefficients (9) in concentrated solutions indicate that the terms involving these quantities are not negligible, and their dependence on temperature and composition along the solubility-temperature curve is a subject of current research.

A similar equation (with $\nu = 2$ and without the heat capacity terms or activity coefficients) has been used to fit solubility data for some MOH-H₂O systems, where M is an alkali metal (13); enthalpy values obtained agreed well with known values. The full equation has been deduced by another method in (14) and applied to MCl₂-H₂O systems in (14) and (15). For a summary of the use of equation [47] and similar equations, see (14).

(2) Molality scale

Substitution of the mean activities on the molality scale in eqn [40] gives:

$$\nu \ln \left[\frac{\gamma_{\pm} m_{\rm B}}{\gamma_{\pm}^{*} m_{\rm B}^{*}} \right] - \nu (m_{\rm B}/m_{\rm B}^{*} - 1) - \nu \{m_{\rm B}(\phi - 1)/m_{\rm B}^{*} - \phi^{*} + 1\} = G(T)$$

$$= G(T)$$

$$[48]$$

where G(T) is the same as in eqn [47], $m_B^* = 1/nM_A$ is the molality of the anhydrous salt in the pure salt hydrate and γ_{\pm} and ϕ are the mean activity coefficient and the osmotic coefficient, respectively. Use of the osmotic coefficient for the activity of the solvent leads, therefore, to an equation that has a different appearance to [47]; the content is identical. However, while eqn [47] can be used over the whole range of composition ($0 \le x_B \le 1$), the molality in eqn [48] becomes infinite at x_B = 1; use of eqn [48] is therefore confined to solutions sufficiently dilute that the molality is a useful measure of composition. The essentials of eqn [48] were deduced by Williamson (17); however, the form used here appears first in the Solubility Data Series. For typical applications (where activity and osmotic coefficients are not considered explicitly, so that the enthalpies and heat capacities are apparent values, as explained above), see (18).

The above analysis shows clearly that a rational thermodynamic basis exists for functional representation of solubility-temperature curves in two-component systems, but may be difficult to apply because of lack of experimental or theoretical knowledge of activity coefficients and partial molar enthalpies. Other phenomena which are related ultimately to the stoichiometric activity coefficients and which complicate interpretation include ion pairing, formation of complex ions, and hydrolysis. Similar considerations hold for the variation of solubility'with pressure, except that the effects are relatively smaller at the pressures used in many investigations of solubility (5).

(b) Solubility as a function of composition.

At constant temperature and pressure, the chemical potential of a saturating solid phase is constant:

$$\mu_{A_{\Pi}B}^{\mu} = \mu_{A_{\Pi}B}(\pm \ln) = n\mu_{A} + \mu_{B}$$

$$= (n\mu_{A}^{*} + \nu_{+}\mu_{+}^{\infty} + \nu_{-}\mu_{-}^{\infty}) + nRT \ln f_{A}x_{A}$$

$$+ \nu RT \ln(\gamma_{\pm}m_{\pm}Q)$$
(49)

for a salt hydrate $A_{D}B$ which dissociates to water (A), and a salt (B), one mole of which ionizes to give ν_{+} cations and ν_{-} anions in a solution in which other substances (ionized or not) may be present. If the saturated solution is sufficiently dilute, $f_{A} = x_{A} = 1$, and the quantity K_{S} in

$$\Delta G^{20} = (\nu_{+}\mu_{+}^{20} + \nu_{-}\mu_{-}^{20} + n\mu_{A}^{*} - \mu_{AB}^{*})$$

= -RT ln K₀

xvi

$= -\nu RT \ln(Q\gamma_{\pm}m_B)$

is called the solubility product of the salt. (It should be noted that it is not customary to extend this definition to hydrated salts, but there is no reason why they should be excluded.) Values of the solubility product are often given on mole fraction or concentration scales. In dilute solutions, the theoretical behaviour of the activity coefficients as a function of ionic strength is often sufficiently well known that reliable extrapolations to infinite dilution can be made, and values of $K_{\rm S}$ can be determined. In more concentrated solutions, the same problems with activity coefficients that were outlined in the section on variation of solubility with temperature still occur. If these complications do not arise, the solubility of a hydrate salt $C_{\nu}A_{\nu} \cdot nH_2O$ in the presence of other solutes is given by eqn [50] as

 $\nu \ln\{m_{\rm B}/m_{\rm B}(0)\} - -\nu \ln\{\gamma_{\pm}/\gamma_{\pm}(0)\} - n \ln\{a_{\rm A}/a_{\rm A}(0)\}$ [51]

where a_A is the activity of water in the saturated solution, m_B is the molality of the salt in the saturated solution, and (0) indicates absence of other solutes. Similar considerations hold for non-electrolytes.

Consideration of complex mixed ligand equilibria in the solution phase are also frequently of importance in the interpretation of solubility equilibria. For nomenclature connected with these equilibria (and solubility equilibria as well), see (19, 20).

The Solid Phase

The definition of solubility permits the occurrence of a single solid phase which may be a pure anhydrous compound, a salt hydrate, a nonstoichiometric compound, or a solid mixture (or solid solution, or "mixed crystals"), and may be stable or metastable. As well, any number of solid phases consistent with the requirements of the phase rule may be present. Metastable solid phases are of widespread occurrence, and may appear as polymorphic (or allotropic) forms or crystal solvates whose rate of transition to more stable forms is very slow. Surface heterogeneity may also give rise to metastability, either when one solid precipitates on the surface of another, or if the size of the solid particles is sufficiently small that surface effects become important. In either case, the solid is not in stable equilibrium with the solution. See (21) for the modern formulation of the effect of particle size on solubility. The stability of a solid may also be affected by the atmosphere in which the system is equilibrated.

Many of these phenomena require very careful, and often prolonged, equilibration for their investigation and elimination. A very general analytical method, the "wet residues" method of Schreinemakers (22), is often used to investigate the composition of solid phases in equilibrium with salt solutions. This method has been reviewed in (23), where [see also (24)] least-squares methods for evaluating the composition of the solid phase from wet residue data (or initial composition data) and solubilities are described. In principle, the same method can be used with systems of other types. Many other techniques for examination of solids, in particular X-ray, optical, and thermal analysis methods, are used in conjunction with chemical analyses (including the wet residues method).

COMPILATIONS AND EVALUATIONS

The formats for the compilations and critical evaluations have been standardized for all volumes. A brief description of the data sheets has been given in the FOREWORD; additional explanation is given below.

Guide to the Compilations

The format used for the compilations is, for the most part, selfexplanatory. The details presented below are those which are not found in the FOREWORD or which are not self-evident.

Components. Each component is listed according to 1UPAC name, formula, and Chemical Abstracts (CA) Registry Number. The formula is given either in terms of the 1UPAC or Hill (25) system and the choice of formula is governed by what is usual for most current users: i.e., 1UPAC for inorganic compounds, and Hill system for organic compounds. Components are ordered according to:

(a) saturating components;

(b) non-saturating components in alphanumerical order;

(c) solvents in alphanumerical order.

[50]

xviii

The saturating components are arranged in order according to a 18-column periodic table with two additional rows:

Columns 1 and 2: H, alkalı elements, ammonium, alkaline earth elements 3 to 12: transition elements

- 13 to 17: boron, carbon, nitrogen groups; chalcogenides, halogens 18: noble gases
 - Row 1: Ce to Lu
 - Row 2: Th to the end of the known elements, in order of atomic number.

Salt hydrates are generally not considered to be saturating components since most solubilities are expressed in terms of the anhydrous salt. The existence of hydrates or solvates is carefully noted in the text, and CA Registry Numbers are given where available, usually in the critical evaluation. Mineralogical names are also quoted, along with their CA Registry Numbers, again usually in the critical evaluation.

Original Measurements. References are abbreviated in the forms given by Chemical Abstracts Service Source Index (CASSI). Names originally in other than Roman alphabets are given as transliterated by Chemical Abstracts.

Experimental Values. Data are reported in the units used in the original publication, with the exception that modern names for units and quantities are used; e.g., mass per cent for weight per cent; mol dm⁻³ for molar; etc. Both mass and molar values are given. Usually, only one type of value (e.g., mass per cent) is found in the original paper, and the compiler has added the other type of value (e.g., mole per cent) from computer calculations based on 1983 atomic weights (26).

Errors in calculations and fitting equations in original papers have been noted and corrected, by computer calculations where necessary.

Method. Source and Purity of Materials. Abbreviations used in Chemical Abstracts are often used here to save space.

Estimated Error. If these data were omitted by the original authors, and if relevant information is available, the compilers have attempted to estimate errors from the internal consistency of data and type of apparatus used. Methods used by the compilers for estimating and and reporting errors are based on the papers by Ku and Eisenhart (27).

Comments and/or Additional Data. Many compilations include this section which provides short comments relevant to the general nature of the work or additional experimental and thermodynamic data which are judged by the compiler to be of value to the reader.

References. See the above description for Original Measurements.

Guide to the Evaluations

The evaluator's task is to check whether the compiled data are correct, to assess the reliability and quality of the data, to estimate errors where necessary, and to recommend "best" values. The evaluation takes the form of a summary in which all the data supplied by the compiler have been critically reviewed. A brief description of the evaluation sheets is given below.

Components. See the description for the Compilations.

Evaluator. Name and date up to which the literature was checked.

Critical Evaluation

(a) Critical text. The evaluator produces text evaluating all the published data for each given system. Thus, in this section the evaluator reviews the merits or shortcomings of the various data. Only published data are considered; even published data can be considered only if the experimental data permit an assessment of reliability.

(b) Fitting equations. If the use of a smoothing equation is justifiable the evaluator may provide an equation representing the solubility as a function of the variables reported on all the compilation sheets.

(c) Graphical summary. In addition to (b) above, graphical summaries are often given.

(d) Recommended values. Data are recommended if the results of at least two independent groups are available and they are in good agreement, and if the evaluator has no doubt as to the adequacy and reliability of the applied experimental and computational procedures. Data are considered as tentative if only one set of measurements is

available, or if the evaluator considers some aspect of the computational or experimental method as mildly undesirable but estimates that it should cause only minor errors. Data are considered as doubtful if the evaluator considers some aspect of the computational or experimental method as undesirable but still considers the data to have some value in those instances where the order of magnitude of the solubility is needed. Data determined by an inadequate method or under ill-defined conditions are rejected. However references to these data are included in the evaluation together with a comment by the evaluator as to the reason for their rejection.

(e) References. All pertinent references are given here. References to those data which, by virtue of their poor precision, have been rejected and not compiled are also listed in this section. (f) Units. While the original data may be reported in the units

used by the investigators, the final recommended values are reported in S.I. units (1, 28) when the data can be accurately converted.

References

- 1. Whiffen, D.H., ed., Manual of Symbols and Terminology for Physicochemical Quantities and Units. Pure Applied Chem. 1979, 51, No. 1.
- 2. McGlashan, M.L. Physicochemical Quantities and Units. 2nd ed.
- Royal Institute of Chemistry. London. <u>1971</u>. 3. Janecke, E. Z. Anorg. Chem. <u>1906</u>, 51, 132. 4. Friedman, H.L. J. Chem. Phys. <u>1960</u>, 32, 1351.
- Prigogine, I.; Defay, R. Chemical Thermodynamics. D.H. Everett, transl. Longmans, Green. London, New York, Toronto. 1954. 6. Guggenheim, E.A. Thermodynamics. North-Holland. Amsterdam.
- 1959. 4th ed. 7. Kirkwood, J.G.; Oppenheim, I. Chemical Thermodynamics. McGraw-Hill.
- New York, Toronto, London. 1961.
- Lewis, G.N.; Randall, M. (rev. Pitzer, K.S.; Brewer, L.). Thermodynamics. McGraw Hill. New York, Toronto, London. <u>1961</u>. 2nd. ed. 9. Robinson, R.A.; Stokes, R.H. Electrolyte Solutions. Butterworths.
- London. <u>1959</u>. 2nd ed. 10. Harned, H.S.; Owen, B.B. The Physical Chemistry of Electrolytic Solutions. Reinhold. New York. 1958. 3rd ed.
- 11. Haase, R.; Schonert, H. Solid-Liquid Equilibrium. E.S. Halberstadt, trans. Pergamon Press, London, 1969.
- 12. McGlashan, M.L. Chemical Thermodynamics. Academic Press. London. 1979.
- 13. Cohen-Adad, R.; Saugier, M.T.; Said, J. Rev. Chim. Miner. 1973, 10, 631.

- Counioux, J.-J.; Tenu, R. J. Chim. Phys. <u>1981</u>, 78, 815.
 Tenu, R.; Counioux, J.-J. J. Chim. Phys. <u>1981</u>, 78, 823.
 Cohen-Adad, R. Pure Appl. Chem. <u>1985</u>, 57, 255.
 Williamson, A.T. Faraday Soc. Trans. <u>1944</u>, 40, 421.
 Siekierski, S.; Mioduski, T.; Salomon, M. Solubility Data Service Processing Procesing Processing Processing Procesing Processing Processing Proc Solubility Data Series. Pergamon Press. 1983.
- Marcus, Y., ed. Pure Appl. Chem. 1969, 18, 459.
 IUPAC Analytical Division. Proposed Symbols for Metal Complex Mixed Ligand Equilibria (Provisional). IUPAC Inf. Bull. 1978, No. 3, 229.
- 21. Enustun, B.V.; Turkevich, J. J. Am. Chem. Soc. 1960, 82, 4502.
- 22. Schreinemakers. F.A.H. Z. Phys. Chem., Stoechiom. Verwandschaftsl. 1893, 11, 75.
- 23. Lorimer, J.W. Can. J. Chem. 1981, 59, 3076. 24. Lorimer, J.W. Can. J. Chem. <u>1982</u>, 60, 1978. 25. Hill, E.A. J. Am. Chem. Soc. <u>1900</u>, 22, 478.
- 26. IUPAC Commission on Atomic Weights. Pure Appl. Chem. <u>1984</u>, 56, 653. 27. Ku, H.H., p. 73; Eisenhart, C., p. 69; in Ku, H.H., ed. Precision
- Measurement and Calibration. NBS Special Publication 300. Vol. 1. Washington. 1969.
- 28. The International System of Units. Engl. transl. approved by the BIPM of Le Système International d'Unités. H.M.S.O. London. 1970.

September, 1986

- R. Cohen-Adad, Villeurbanne, France
- J. W. Lorimer, London, Ontario, Canada
- M. Salomon. Fair Haven, New Jersey, U.S.A.

	Table I-1				
	Quantities Used as Measures of Solubility of Solute B Conversion Table for Multicomponent Systems Containing Solvent A and Solutes s				
	mole fraction x _{B =}	mass fraction $w_B =$	molality mg =	concentration c _B =	
хB	× _B M _A	$\frac{M_{\rm B} x_{\rm B}}{+ \sum\limits_{\rm g} (M_{\rm g} - M_{\rm A}) x_{\rm g}}$	$\frac{x_{B}}{M_{A}(1 - \sum_{g} x_{g})}$	$\frac{\rho x_B}{M_A + \sum\limits_{B} (M_B - M_A) x_B}$	
wB	$\frac{w_{B}/M_{B}}{1/M_{A} + \sum_{g}(1/M_{g} - $	1/M _A)w _B w _B	$\frac{w_{B}}{M_{B}(1-\sum_{s}w_{s})}$	pw _B /M _B	
mB	$\frac{M_{A}m_{B}}{1 + M_{A}\sum_{g}m_{g}}$	$\frac{M_B m_B}{1 + \sum_g m_g M_g}$	mB	$\frac{\rho_{m_B}}{1 + \sum_{g} M_g m_g}$	
сB	$\frac{M_{A}c_{B}}{\rho + \sum_{g}(M_{A} - M_{g})c_{g}}$	- M _B c _B /p	$\frac{c_{B}}{\rho - \sum_{g}^{M_{g}} c_{g}}$	с _В	

 ρ = density of solution M_A, M_B, M_S = molar masses of solvent, solute B, other solutes s Formulas are given in forms suitable for rapid computation; all calculations should be made using SI base units.

ACKNOWLEDGEMENTS

The following figures are reprinted from journals published by the American Chemical Society, Washington, DC. Page Cameron, F. K.; Robinson, W. O. J. Phys. Chem. <u>1907</u>, 11, 273-78. Figure 1. untitled. 190 Lukens, H. S. J. Am. Chem. Soc. <u>1932</u>, 54, 2372-80. Figure 2. Solubility of MgO in MgCl₂ solution. 84 Foote, H. W.; Hickey, F. C. J. Am. Chem. Soc. <u>1937</u>, 59, 648-50. Figure 1. System $Ba(OH)_2 + BaCl_2 + H_2O$ Figure 2. System $Ba(OH)_2 + Ba(CNS)_2 + H_2O$ Figure 3. System $Ba(OH)_2 + Ba(ClO_3)_2 + H_2O$ Figure 4. System $Ba(OH)_2 + Ba(C_2H_3O_2)_2 + H_2O$ 302 324 317 323 The following figure is reprinted with the permission of the copyright owner, the American Chemical Society, Washington, DC .. Hansen, W. C.; Pressler, E. E. Ind. Eng. Chem. <u>1947</u>, 39, 1280-82. Figure 1. Concentration of CaO and SO₃ vs. concentrations of K_2O and Na_2O 187 The following figures are reprinted with the permission of the copyright owner, VAAP, The Copyright Agency of the USSR, Moscow. Kovalenko, P. N.; Geiderovich, O. I. Zh. Neorg. Khim. 1959, 4, 1974-78. Beryllium hydroxide solubility product as a function of $BeSO_4$ concentration at 19° C and various initial Figure 1. Be(II) concentrations. 29 Akhmetov, T. G.; Polyakova, G. I. Zh. Neorg. Khim. <u>1972</u>, 17, 1770-71. Figure 1. Solubility isotherms for $BaCl_2 + Ba()H)_2 + H_2O$ at 25, 40 and 50°C. 304 Mozharova, T. V.; Kuznetsova, O. M. Khim. 1974, 19, 1940-47. Solubility isotherm of the $BaCl_2 + Ba(OH)_2 + H_2O$ Zh. Neorg. Khim. Figure 1. 308 system at 10°C. Solubility isotherms of the $Ba(OH)_2$ + NaOH + H_2O Figure 3. system at 20°C. Figure 4. The 2Na⁺, Ba²⁺ \parallel 2Cl⁻, 2OH⁻ - H₂O system 308 312 at 10 and 20°C. Mozharova, T. V.; Pavlyuchenko, E. N. Khim. 1980, 25, 1638-44. Solubility isotherm of the $BaCl_2 + Ba(OH)_2 + H_2O$ Zh. Neorg. Khim. Figure 1. 308 system at 80°C. Solubility isotherm of the $Ba(OH)_2$ + NaOH + H_2O Figure 2. system at 80°C. 308 Polythermal solubility diagram Ba2+, 2Na+ || 2Cl-, 2OH-Figure 5. - H₂O system at 10, 20, 60 and 80°C. 316 Makarov, S. Z.; Vol'nov, I. I. Izv. Akad. Nauk SSSR, Otdel. Khim. Nauk <u>1954</u>, 765-69. Figure . Solubility curve: mass & MgO vs. mass & H₂O₂ at 0°C 75 Kolenkova, M. A.; Blistanova, T. D.; Zakirova, A. V.; Bakashova, R. P.; Popov, A. I. Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall. <u>1974</u>, 17(4), 118-22. Figure 1. Solubility curve: mass % BeO vs. mass % Na₂O at 39 30 and 100°C. Figure 2. Solubility curve: mol % BeO vs. mol % Na₂O at 100°C. 39 39 Figure 3. Phase Diagram: BeO + Na₂O + H₂O at 100°C.

xxii

ACKNOWLEDGEMENTS (continued) Page Sapronov, A. R.; Ozerov, D. V.; Karaulov, N. E.; Fishchenko, V. N.; Yan'shin, V. P. Sakh. Prom-st. 1983, (5), 37-39. Figure . Total solids and sucrose content vs. added CaO. 242 The following figures are reprinted from a journal published by The Royal Society of Chemistry, Cambridge. Bassett, H. Jr.; Taylor, H. S. J Chem Soc. <u>1914</u>, 105, 1926-41. Figure 2. The CaO + N_2O_5 + H_2O system at 25°C. Figure 3. The CaO + N_2O_5 + H_2O system at 100°C. 193 193 O'Connor, E. R. *J* Chem. Soc. <u>1927</u>, 130, 2700-10. Figure 1. The CaO + CaCl₂ + H₂O system at 0°C. Figure 2. The CaO + Ca(ClO)₂ + H₂O system at 0°C. 180 180 The following figures are reprinted with the permission of the copyright owner, The British Library Board. Akhmetov, T. G.; Polyakova, G. I. Russ. J. Inorg. Chem. (Engl. Transl.) <u>1972</u>, 17, 918-19. Figure 1. Solubility isotherms for $BaCl_2 + Ba(OH)_2 + H_2O$ 304 at 25, 40 and 50°C. Mozharova, T. V.; Kuznetsova, O. M. Russ. J. Inorg. Chem. (Engl. Transl.). <u>1974</u>, 19, 1060-65. Figure 1. Solubility isotherm of the BaCl₂ + Ba(OH)₂ + H₂O system at 10°C. 308 Figure 3. Solubility isotherms of the Ba(OH)₂ + NaOH + H₂O system at 20°C. The 2Na⁺, Ba²⁺ \parallel 2Cl⁻, 2OH⁻ - H₂O system at 10 and 20°C. 308 Figure 4. 312 Mozharova, T. V.; Pavlyuchenko, E. N. Russ. J. Inorg. Chem. (Engl. Transl.). 1980, 25, 909-14. Figure 1. Solubility isotherm of the $BaCl_2 + Ba(OH)_2 + H_2O$ system at 80°C. 308 Figure 2. Solubility isotherm of the $Ba(OH)_2$ NaOH + H₂O system at 80°C. 308 Figure 5. Polythermal solubility diagram Ba²⁺, 2Na⁺ || 2Cl⁻, 2OH⁻ - H₂O system at 10, 20, 60 and 80°C. 316 The following figures are reprinted from a jouranl published by VCH Verlagsgesellschaft, Weinheim. Grube, G.; Nussbaum, M. Z. Elektrochem. Angew. Phys. Chem. <u>1928</u>, 34, 91-98. Figure 1. SrO + $C_{12}H_{22}O_{11}$ + H_2O at 0 to 100°C. 279 Nishizawa, K.; Hachihawa, Y. Z. Elektrochem. Angew. Phys. Chem. <u>1929</u>, Figure 2. BaO + $C_{12}H_{22}O_{11}$ + $H_{2}O$ at 45°C. Figure 3. BaO + $C_{12}H_{22}O_{11}$ + $H_{2}O$ at 75°C. Figure 4. SrO + $C_{12}H_{22}O_{11}$ + $H_{2}O$ at 75°C. <u>1929</u>, 35, 385-92. 342 342 283 The following figures are reprinted from a journal published by Akademische Verlagsgesellschaft Greest & Portig K. G., Leipzig. van Meurs, G. J. Z. Phys. Chem., Stoechiom. Verwandtschaftsl. 1916, 91, 313-46. Figure 7. $Ca(OH)_2 + C_6H_5OH + H_2O$ at 25°C. Figure 8. $Ba(OH)_2 + C_6H_5OH + H_2O$ at 25°C. Figure 9. $Sr(OH)_2 + C_6H_5OH + H_2O$ at 25°C. Figure 12. $Ba(OH)_2 + C_6H_4(OH)_2 + H_2O$ at 25°C 235 339 274 339

ACKNOWLEDGEMENTS (continued) Page Milikan, J. Milikan, J. Z. Phys. Chem., Stoechiom. Verwandtschaftsl. <u>1916</u>, 92, 59-80. Figure 1. CaO + CaCl₂ + H₂O at 10°C. Figure 2. CaO + CaCl₂ + H₂O at 25°C. Figure 3. CaO + CaCl₂ + H₂O at 25°C. Figure 5. CaO + CaBr₂ + H₂O at 25°C. Figure 6. CaO + CaI₂ + H₂O at 25°C. Figure 7. SrO + SrCl₂ + H₂O at 0°C. Figure 8. SrO + SrCl₂ + H₂O at 0°C. Figure 10. SrO + SrBr₂ + H₂O at 25°C. Figure 11. SrO + SrI₂ + H₂O at 25°C. Figure 12. BaO + BaBr₂ + H₂O at 25°C. Figure 13. BaO + BaI₂ + H₂O at 25°C. 168 168 168 182 184 262 262 264 265 318 319 Milikan, J. Z. Phys. Chem., Stoechiom. Verwandtschafts1.1917, 92, 496-510.Figure 2.CaO + HCl + H_2O at 25°C.1Figure 5.SrO + HCl + H_2O at 25°C.2Figure 7.BaO + HCl + H_2O at 25°C.3 176 263 310 The following figures are reprinted with the permission of the copyright owner, Pergmon Press plc., Oxford. Einaga, H. J. Inorg. Nucl. Chem. <u>1981</u>, 43, 229-33. Figure 1. Relation between the saturated concentration of Mg(II), $c_{Mg,sol}$, and the free hydrogen ion concentration, -log h. 96 Walther, J. V. Geochim. Cosmochim. Acta 1986, 50, 733-39. Figure 4. Experimental determination of brucite solubility in pure water as a function of temperature at 1, 1.5 and 2 kbars. 73 The following figure is reprinted with permission of the copyright owner, Cement-och Betonginstitutet, Stockholm. Hedin, R. Handl. Sven. Forskninginst. Cem. Betong K. Tek. Hoegsk., Stockholm <u>1955</u>, No. 29, 14 pp (English). Figure . Equilibrium concentration of Ca(OH)₂ in aqueous solution as a function of temperature and particle size in the solid phase. 147

1. The solubility of beryllium hydroxide in aqueou	s systems.
Systems	Pages
$Be(OH)_2 + H_2O$	2-11(E) 12-15
$BeO + HF + H_2O$	6(E), 16-17
+ + + + + + + + + + + + + + + + + +	6(E), 18
$Be(OH)_2 + HCl + H_2O$	2(E), 19
$BeO + HClO_4 + H_2O$	6(E), 20
$Be(OH)_2 + HClo_4 + H_2O$	2(E), 21
+ HNO ₃ + H ₂ O	- , 22
+ BeCl ₂ + NaOH + H ₂ O	6(E), 23-24
+ $BeBr_2$ + (HBr) + NaOH + H_2O	6(E), 25-26
+ BeI ₂ + (HI) + NaOH + H ₂ O	6(E), 27-28
+ BeSO ₄ + H_2O	6(E), 29
+ + NaOH + H ₂ O	6(E), 30-31
+ + KOH + H ₂ O	6(E), 32
$+ Be(NO_3)_2 + H_2O$	6(E), 33
——— + NaOH + H ₂ O	2-6(E), 34-41
BeO + NaF + NaOH + H_2O	6(E), 42
$Be(OH)_2 + NaF + NaHCO_3 + NaClO_4 + H_2O$	5-6(E), 43
+ $NaClo_4$ + H_2O	5-6(E), 44
$+ ++ + NaHCO_3 + H_2O$	5-6(E), 45
$+ ++ Na_2CO_3 + H_2O$	5-6(E), 46
+ + сн ₂ соонс (он) (соон) сн ₂ соон + н ₂ о	6(E), 47
$ + NaNO_3 + H_2O$	6(E), 48

(E) for evaluation pages.

COMPONENTS :		EVALUATOR:	
	<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>	Irma Lambert CEA/SCECF/SECA B.P. 6	H. L. Clever Department of Chemistry
	(2) Water; H ₂ O; [7732-18-5], and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA

CRITICAL EVALUATION:

An evaluation of the solubility of beryllium hydroxide in water and in various aqueous solutions.

The solubility of beryllium hydroxide depends on the crystaline form of the hydroxide. Solubility data are reported for three forms of the solid: an amorphous hydroxide, a metastable α -Be(OH)₂ and the stable β -Be(OH)₂. At temperatures above 673 K the anhydrous oxide, BeO, is the stable form (1). The amorphous hydroxide forms on precipitation from a salt solution. In water it transforms to the less soluble metastable α -Be(OH)₂ (2, 6). In concentrated basic solution α -Be(OH)₂ spontaneously transforms to the thermodynamically stable β -Be(OH)₂ (6).

The solubility of beryllium hydroxide has been determined either by direct analysis of the saturated solution or by a potentiometric method. The direct analysis of the saturated solution is used for the stable forms and the potentiometric method is used during precipitation of the amorphous form. Results from references (5, 11, 12, 14) were rejected because the temperature or the nature of the solid phase were illdefined, or when the experimental details were insufficient to allow evaluation of the precision of the measurements.

1. Solubility of Be(OH), in water and in dilute solutions of acids and bases near room temperature.

Direct solubility measurements in dilute acid and base solutions have been reported around room temperature (1-3, 5, 9-13, 15). Because of the very low solubility in pure water, few direct solubility measurements were performed in this medium, and solubility values in pure water must be evaluated by extrapolation.

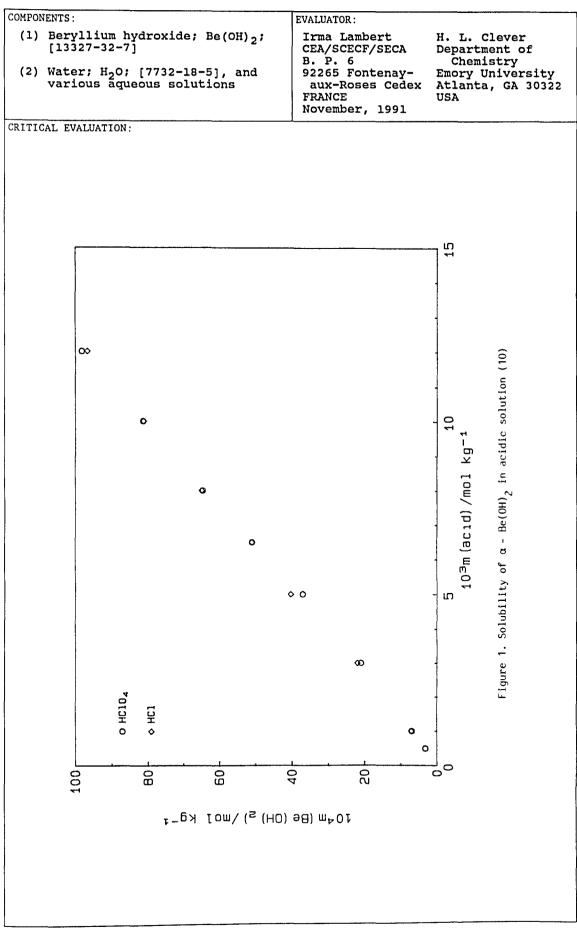
A. α -Be(OH)₂

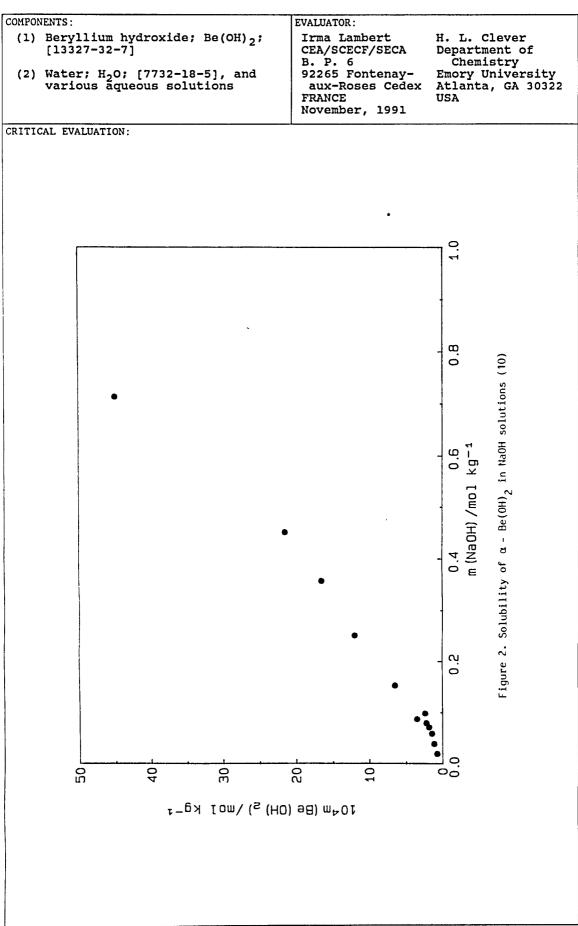
Gilbert and Garrett (10) performed an extensive study at 298.15 K of the solubility of α -Be(OH) in dilute solutions of acids (HCl, HClO) and base (NaOH). The nature of the solid phase was confirmed by X-ray analysis. The solubility increases with increase in either acid or base concentration as shown on Figs. 1 and 2. Schindler and Garrett (13) interpreted the data by the equilibria:

 $\alpha - Be(OH)_{2}(s) + 2H^{\dagger}(aq) = Be^{2+}(aq) + 2H_{2}O(\ell)$ [1]

 $3\alpha - Be(OH)_2(s) + 3H^+(aq) = (BeOH)_3^{3+}(aq) + 3H_2O(\ell)$ [2]

 $\alpha - \operatorname{Be}(OH)_{2}(s) + OH^{-}(aq) = \operatorname{HBeO}_{2}^{-}(aq) + \operatorname{H}_{2}O(\ell)$ [3]


 α -Be(OH)₂(s) + 2OH⁻(aq) = BeO₂²⁻(aq) + 2H₂O(ℓ) [4]


No significant differences in solubility were found for the two acidic media (HCl and HClO₄) which showed the absence of any complexation by the Cl⁻ ion.

The constants of the different equilibria were calculated by least squares anaysis at 298.15 K and I = 0. The values obtained (13) were:

 $\log K_{1} = 6.86 \pm 0.05$ $\log K_{2} = 11.67 \pm 0.05$ $\log K_{3} = -2.49 \pm 0.1$ $\log K_{4} = -2.70 \pm 0.3$

Equilibria 3 and 4 account for about 20% of the calculated solubility.

COMPONENTS:	EVALUATOR:		
 (1) Beryllium hydroxide; Be(OH)₂; [13327-32-7] (2) Water; H₂O; [7732-18-5], and various aqueous solutions 	Irma Lambert CEA/SCECF/SECA B.P. 6 92265 Fontenay- aux-Roses Cedex	H. L. Clever Department of Chemistry Emory University Atlanta, GA 30322	
	FRANCE November, 1991	USA	

CRITICAL EVALUATION:

The K_1 and K_2 values allow calculation of the equilibrium constant of the overall equilibrium:

 $3Be^{2+}(aq) + 3H_2O(l) = (BeOH)_3^{3+}(aq) + 3H^+(aq)$ $K_{33} = 1.26 \times 10^{-9}$

which is in good agreement with the value deduced by Lanza and Carpeni (21) of $K_{33} = 1.2 \times 10^{-9}$ from potentiometric measurements.

Baes and Mesmer (22) have reviewed the hydrolysis reactions of Be^{2+} in acidic solutions. In addition to the species considered by Garrett and Schindler (13) there is evidence of the species $Be_3OH^{3+}(aq)$, $BeOH^{+}(aq)$ and $Be(OH)_2(aq)$. When the equilibria:

$$\begin{array}{ll} \operatorname{Be}^{2+}(\mathrm{aq}) + \operatorname{H}_2O(\ell) = \operatorname{BeOH}^+(\mathrm{aq}) + \operatorname{H}^+(\mathrm{aq}) & \log \kappa_{11} = -5.4 \\ \operatorname{and} & \operatorname{Be}^{2+}(\mathrm{aq}) + 2\operatorname{H}_2O(\ell) = \operatorname{Be(OH)}_2(\mathrm{aq}) + 2\operatorname{H}^+(\mathrm{aq}) & \log \kappa_{12} = -13.65, \end{array}$$

are taken into account, the results of Gilbert and Garrett (10) lead to the solubility product:

$$K_{c0} = m(Be^{2^+})(m(OH^-))^2/m^{0^3}$$
 log $K_{c0} = -21.3$.

The difference between activity and molality is ignored because of the low molalities involved. The solubility of α -Be(OH), in pure water, assuming the presence of the aqueous species Be²⁺, BeOH⁺ and Be(OH)₂ should be about

$$m(Be) = 5 \times 10^{-7} \text{ mol kg}^{-1}$$
.

The value is doubtful because the hydrolysis constants are not precise. Bertin and Thomas (14) calculate $\log \kappa_{12} = -11$ from their hydrolysis measurements. The value of $\log \kappa_{11} = -5.4$ is only a rough extimate, because the data treatment ignored polynuclear species.

Solubility in the presence of sodium salts

The solubility measurements in the presence of chlorides, fluorides, nitrates, perchlorates and carbonates show a strong complexation by fluoride and carbonate (14, 17-20).

B. <u>β-Be(OH)</u>,

Fricke and Hume (6) measured the solubility of β -Be(OH), in aqueous NaOH solutions at 303 K. The β -Be(OH), was formed in situ by aging α -Be(OH). From the variation of the solubility with time, it is possible to estimate the difference of Gibbs energy of formation of the two forms at 303 K:

 $\Delta_r G (\beta - \text{Be}(OH)_2) = \Delta_r G (\alpha - \text{Be}(OH)_2) \simeq -2 \text{ kJ mol}^{-1}$

This difference would lead to an approximate log $K_{s0}^{0} = -21.6_{5}$ for the β -Be(OH),.

Fricke and Hume (6) pointed out the existence of the solid phase BeO NaOH H.O above 36.3 mass % NaOH. The data of Kolenkova *et al.* (15) are in qualitative agreement with Fricke and Hume's results.

C. Freshly precipitated Beryllium Hydroxide.

Solubility in water.

Oka (9) found a solubility of 1.4 x 10^{-7} mol kg⁻¹ for the freshly precipitated hydroxide, but no details of the method are given. The value should be larger than the value for the more stable α -Be(OH)₂. This is evidence that the calculated value of 5 x 10^{-7} is probably too large. The value of $c_{Be} = 8 \times 10^{-6}$ mol dm⁻³ found by the conductivity

COMPONENTS :	EVALUATOR:	
<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>	Irma Lambert CEA/SCECF/SECA B.P. 6	H. L. Clever Department of Chemistry
(2) Water; H ₂ O; [7732-18-5], and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA

CRITICAL EVALUATION:

measurements of Remy and Kuhlman (5) is an order of magnitude higher than Oka's value and was rejected.

Solubility of amorphous beryllium hydroxide in acidic solutions.

Prytz (7, 8) studied the precipitation of $Be(OH)_2$ by NaOH solutions at different beryllium salt concentrations. He interpreted his results assuming a solution species, $Be_2O^{2+}(aq)$, and the equilibrium solid, $Be_2O(OH)_2$, the hypotheses which best fitted his data. The mean value of the solubility product calculated from his results is:

 $K_{c0} = c (Be^{2+}) (c (OH^{-}))^2 / c^{0^3}$ log $K_{c0} = -20 \pm 1$.

This is a tentative value because the results for the different beryllium salts differ, and the values depends on the hydrolysis equilibria used.

Solubility of amorphous beryllium hydroxide in basic solutions.

The solubility of freshly precipitated beryllium hydroxide in NaOH solution has been reported (1 - 3). The results are shown in Fig. 4 where they are compared with the solubility of α -Be(OH)₂ (10). Haber and Van Oordt (2) pointed out the importance of the decrease of solubility as the precipitate aged in NaOH solutions. Similar experiments were reported on KOH solutions by Bleyer and Kaufman (4) and are shown on Fig. 3. These two figures illustrate the difficulty of assessing the solubility values when starting with ill-defined materials.

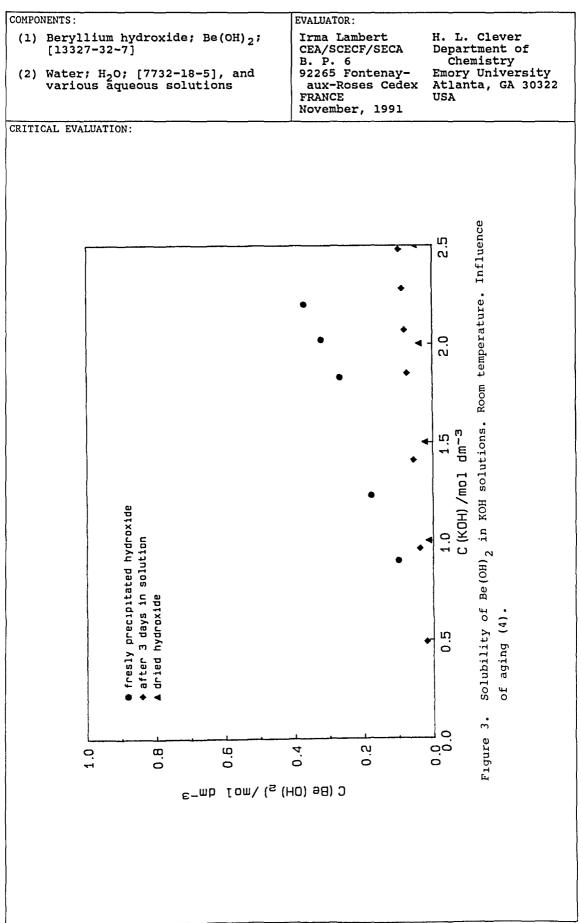
Solubility of beryllium hydroxide in four- and five-component systems.

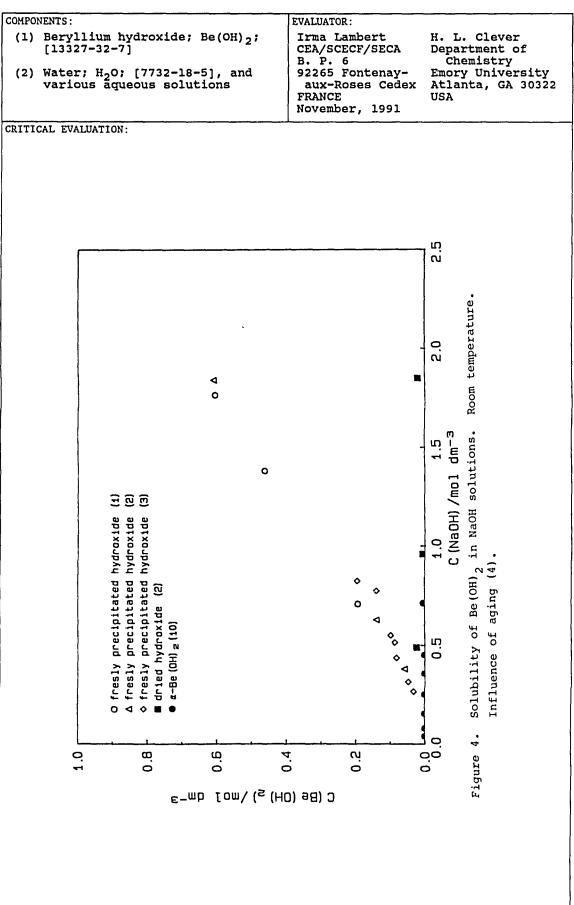
The solubility of amorphous $Be(OH)_2$ was studied in aqueous NaClO₄ solutions with the addition of sodium bicarbonate (17), sodium carbonate (18), sodium bicarbonate and sodium fluoride (20) and citric acid (19). Quantitative comparison among the results is difficult as the crystalline form of the Be(OH), is not always the same. Nevertheless a strong complexation by both F and HCO_3^- is observed.

SOLUBILITY AT HIGH TEMPERATURE.

Solubilities of freshly precipitated and of "inactive" (probably α) forms were measured in dilute NaOH solutions up to 373 K (2). Solubilities of α -Be(OH), in dilute NaOH and in dilute HNO, have been reported up to 573 K (16). The precision is poor and even the sign of the temperature coefficient is not clear. The solubility values at the high temperatures are judged doubtful.

Soboleva *et al.* (26) Studied the solubility of α -beryllium oxide (bromellite [13598-21-5]) in NaOH + NaF + H₂O at 423, 473 and 523 K. The authors treated the data to obtain equilibrium constants for the reaction


$$BeO(s) + H_O(l) + F'(aq) = Be(OH)_F'(aq)$$


of 0.018 \pm 0.011, 0.022 \pm 0.003 and 0.012 \pm 0.003, respectively, at the three temperatures.

The solubility of BeO (bromellite) has also been studied at 573 K in aqueous HClO and aqueous HF by Koz'menko et al. (27). The authors proposed a model, and derived equilibrium constant values from a weighted least squares method. See the data sheets for details.

Comparison of these results with other evaluations.

Both the NBS Thermodynamic Tables (23) and the Critical Stability Constant collection (24) contain evaluated data on the $Be(OH)_2(5) + H_2O$ system. Some of these data are presented here for comparison. Without

COMPONENTS :		EVALUATOR:			
(1) Beryllium hydroxide; H [13327-32-7]	Be(OH) ₂ ;	Irma Lambe CEA/SCECF/ B.P. 6		H. L. C. Departm	ent of
(2) Water; H ₂ O; [7732-18-5	5], and	92265 Font			niversity
various aqueous soluti	lons	aux-Roses FRANCE		Atlanta USA	, GA 30322
		November,		USA	
CRITICAL EVALUATION:					
references and informatio	n about	methods of ev	valuation	no fur	ther com-
parison is warrented.					
Smith and Martell (24) re	port log	K, values at	298.15	K and a	zero ionic
strength of -21.0, -21. Be(OH) ₂ (s) and β -Be(OH) ₂ forms agree well with the	(s), res values p	pectively. T resented here.	he value	amorph as for	α - and β -
Smith and Martell (24) report	the following	, associa	tion com	nstants:
Equilibrium		t 298 K and Io			
	0	0.1 0	.5	2.0	3.0
$Be^{2+} + OH^- = BeOH^+$	8.6	8.3 ª			
$Be^{2+} + 2OH^{-} = Be(OH)_{2}$	(14.4)	(16.5)			(17.5)
-		(16.7) *			
$Be^{2^{+}} + 3OH^{-} = Be(OH)_{3}^{-}$	18.8				
$Be^{2^+} + 4OH^- = Be(OH)_4^{2^-}$	18.6				
$2Be^{2+} + OH^{-} = Be_2(OH)^{3+}$	(10)	10.54	:	L0.68	10.95
$3Be^{2^+} + 3OH^- = (BeOH)_3^{3^+}$	33.1	32	.41 3	32.98	33.88
$6Be^{2+} + 8OH^{-} = Be_{6}(OH)_{8}^{4+}$	(85)				
* values at 293 K. Values			ty are gi	lven in	().
All species are in aqueous	s solutio	n.			
The NBS Thermodynamic Tables (23) contain a number of Gibbs energy					
of formation values from	which w	e have calcula	ated the	follow	ing log K
values at 298.15 K. Equilibrium				log	K
α -Be(OH) (s) = Be ²⁺ (aq) +	20H (aq)			-21 -21	
$\alpha - \text{Be}(OH)_2(s) + 2H^+(aq) =$	Be ²⁺ (aq)	$+ H_2O$		6 11.	.66 91
α -Be(OH) ₂ (s) + 2H ⁺ (aq) = 3 α -Be(OH) ₂ (s) + 3H ⁺ (aq) = 3Be ²⁺ (aq) + 3H ₂ O = (BeOH)	$^{3+}_{3}(aq) +$	3H ⁺ (aq)		-8.	
α -Be(OH) ₂ (s) + 2OH ⁻ (aq) =				-2.	65
The Gibbs energy difference	e for:			. .	
$\alpha - Be(OH)_2(s) =$	β-Be(Of	ł) ₂ (s)		-2.5	5 kJ mol ⁻¹
Crystal structures of beryllium oxide and hydroxide solids.					
Characterization of	t the so	olid state i	n equil:	ibrium	with the
antimated colution is an	important	t nart of anv	modern s	solubili	tv studv.
The following information Tables, is neither com	plete no	or evaluated,	but is	preser	nted as a
reminder of this important	point.				
Crystal For	mula	Туре	Densit	y, p/Mg	m ⁻³
[13598-21-5]; α-BeO (brom		Hexagonal	3	.008	
[1304-56-9]; β -BeO (bery			2	.69	
$[13327-32-7]; \alpha -Be(OH)_2$		Tetragonal		-	
$[13327-32-7]; \beta-Be(OH)_2$		Orthorhombic	1	.94	

COMPONENTS :	EVALUATOR:				
<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>	Irma Lambert H. L. Clever CEA/SCECF/SECA Department of B.P. 6 Chemistry				
(2) Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- Emory University aux-Roses Cedex Atlanta, GA 30322 FRANCE USA November, 1991				
CRITICAL EVALUATION:					
REFER	ENCES				
<pre>1. Rubenbauer, J. Z. Anorg. Chem. <u>1902</u>, 30, 331-3</pre>	37.				
 Haber, F.; van Oordt, G. Z. Anorg. Chem. <u>1904</u>, 38, 377-9 	98.				
3. Wood, J.K. J. Chem. Soc. <u>1910</u> , 97, 878-90.	3. Wood, J.K. J. Chem. Soc. <u>1910</u> , 97, 878-90.				
4. Bleyer, B.; Kaufmann, S.W. Z. Anorg. Chem. <u>1913</u> , 82, 71-91					
5. Remy, H.; Kuhlmann, A. Z. Anal. Chem. <u>1924</u> , 65, 161-81					
6. Fricke, R.; Humme, H. Z. Anorg. Allg. Chem. <u>1929</u> , 178	, 400-10.				
7. Prytz, M. Z. Anorg. Allg. Chem. <u>1929</u> , 180	, 355-69.				
8. Prytz, M. Z. Anorg. Allg. Chem. <u>1931</u> , 197	, 103-12.				
9. Oka, Y. Nippon Kagaku Kaishi <u>1940</u> , 61,	311-20.				
10. Gilbert, R.A.; Garrett, A.B. J. Am. Chem. Soc. <u>1956</u> , 78, 5501-05.					
11. Korenman, I.M.; Frum, F.S.; Tsyg Zh. Obshch. Khim. <u>1956</u> , 26, 155 J. Gen Chem. USSR (Engl. Transl	8-60.				
12. Kovalenko, P.N.; Geiderovich, O. Zh. Neorg. Khim. <u>1959</u> , 4, 1974- Russ. J. Inorg. Chem. (Engl. Trans.)	78.				
<pre>13. Schindler, P.; Garrett, A.B. Helv Chim. Acta <u>1960</u>, 43, 2176</pre>	-78.				
<pre>14. Bertin, F.; Thomas, G.; Merlin, C. R. Hebd. Seances Acad. Sci.</pre>	J.C. <u>1965</u> , 260, 1670-73.				
15. Kolenkova, M.A.; Blistanova, T.D Popov, A.I. Izv. Vyssh. Ucheb. Zaved., Tsvet: Sov. Non-Ferrous Met. Res. (Engl					
16. Soboleva, G.I.; Tugarinov, I.A.; Geokhimiya <u>1977</u> , 1013-24; Not located in Geochem. Int (Eng.)	Kalinina, V.F.; Khodakovsky, I.L.				
17. Mitskevich, B.F.; Samchuk, A.I. Geokhimiya <u>1978</u> , 1419-24; Not located in Geochem. Int. (Eng	gl. Transl.).				
18. Samchuk, A.I.; Mitskevich, B.F. Geokhimiya <u>1980</u> , 1371-76; Geochem. Int. (Engl. Transl.) <u>19</u>	<u>980</u> , 17(5), 62-66.				

COMPON					
COMPON		EVALUATOR:			
(1)	Beryllium hydroxide; Be(OH) ₂ ; [13327-32-7]	Irma Lambert CEA/SCECF/SECA B.P. 6	H. L. Clever Department of Chemistry		
(2)	Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA		
CRITIC	AL EVALUATION:				
	REFERENCES	(Continued)			
19.	9. Samchuk, A.I.; Kokot, T.K. Ukr. Khim. Zh. (Russ. Ed.) <u>1980</u> , 46, 432-33; Sov. Prog. Chem. (Engl. Transl.) <u>1980</u> , 46(4), 92-93.				
20.	Samchuk, A.I.; Kokot, T.K. Ukr. Khim. Zh. (Russ. Ed.) <u>1981</u> , 47, 1107-09; Sov. Prog. Chem. (Engl. Transl.) <u>1981</u> , 47(10), 103-05.				
21.	Lanza, E.; Carpeni, B. Electrochim. Acta <u>1968</u> , 13, 519	-33.			
22.	Baes, C.F.; Mesmer, R.E. The Hydrolysis of Cations <u>1976</u> ,	J. Wiley and Sons	, New York.		
23.	Wagman, D. D.; Evans, W. H.; Par Bailey, S. M.; Churney, K. L.; N Data <u>1982</u> , 11, Supplement No. 2 PROPERTIES.	uttall, R. L. J. J	Phys. Chem. Ref.		
24.	Smith, R. M.; Martell, A. E. CR INORGANIC COMPLEXES, Plenum Pres				
25.	. Donnay, J. D. H.; Ondik, H. M., Editors, CRYSTAL DATA DETERMINATIVE TABLES, Published jointly by the National Bureau of Standards and the Joint Committee on Powder Diffration Standards, 1973, Vol. 2.				
26.	Soboleva, G.I.; Tugarinov, I.A.; Geokhimiya <u>1984</u> , (NO. 6), 812-2 Geochem. Int. (Engl. Transl.) <u>1</u>	2;	Khodakovskii, I.L.		
27.	Koz'menko, O.A.; Peshchevitskii, Geokhimiya <u>1985</u> (No. 11), 1614-		, V. I.		
	Geochem. Int. (Engl. Transl.) <u>1</u>		•		
peri	references below were not used b mental data, no reliable data, da H) ₂ solubility values were not am	ata from other publ	lished sources, or		
28.	Sestini, F. <i>Gazz. Chim. Ital.</i> [BeO + CO ₂ (aq) + H ₂ O]	<u>1890</u> , <i>20</i> , 313-19.			
29.	Renz, C. Ber. <u>1903</u> , 36, 2751- [Be(OH) ₂ + NH ₃ or amines + H_2O]	55.			
30.	Britton, H. T. S. J. Chem. Soc.	<u>1925, 127, 2120-</u>	41.		
31.	Sidgwick, N. V.; Lewis, N. B. J [BeO + BeSO ₄ or $BeC_2O_4 + H_2O$ at	. Chem. Soc. <u>1926</u> 25°C]	, 1287-1302.		
32.	Vol'nov, I. I. $Izv. Sektora Fiz$ Khim., Akad. Nauk SSSR <u>1955</u> , 26 [Be(OH) ₂ + H ₂ O ₂ + H ₂ O at 0°C]	Khim. Anal., Ins. , 211-14.	t. Obshch. Neorg.		
33.	Novoselova, A. V.; Reshetnikova, Pham van Thuong Vestn. Mosk. Un [Be(OH) ₂ + Be(NO ₃) ₂ + H ₂ O at 25°	iv., Ser. II <u>1967</u>	K. N.; , 22 (1), 32-35.		

 COMPONENTS:
 ORIGINAL MEASUREMENTS:

 (1) Beryllium hydroxide; Be(OH)2;
 Remy, H.; Kuhlmann, A.

 [13327-32-7]
 Z. Anal. Chem., 1924, 65, 161-81.

 (2) Water; H2O; [7732-18-5]
 PREPARED BY:

 VARIABLES:
 H. Einaga

 T/K = 291
 Y. Komatsu

EXPERIMENTAL VALUES:

Specific conductivity measured on conductivity water saturated with α -BeO at 20.0 - 20.2°C was 1.795 x 10⁻⁶ (Ω cm)⁻¹, which was converted to the value at 18°C of 1.729 x 10⁻⁶ (Ω cm)⁻¹ by applying a temperature coefficient of 0.0190. After the correction for dissolved CO₂ (ref 1), solubility of Be(OH)₂ was calculated from the specific conductivity by using the intrinsic specific conductivity of saturated Be(OH)₂ solution of 3.29 x 10⁻⁶ (Ω cm)⁻¹ to give 0.00020 g BeO per liter of solution. Solubility and solubility product of Be(OH)₂ were calculated by the authors to be 8.1 x 10⁻⁶ mol L⁻¹ and 2 x 10⁻²⁰ (mol L⁻¹)³ respectively, under the assumption that Be(OH)₂ dissociates completely in water.

AUXILIARY METHOD/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND FURITY OF MATERIALS:
Conductivity water was saturated with BeO (specific conductivity, 1.258 x 10^{-6} (Ω cm) ⁻¹) in a conduc- tivity cell by shaking at 20.0 - 20.2°C for 1.5 to 2.5 hours. Specific conductivity of the resulting saturated solution was measured. <i>NOTE:</i> The specific conductivity unit, (Ω cm) ⁻¹ , has been replaced by electrolytic conductivity, S cm ⁻¹ .	 (1) Beryllium hydroxide. Be(NO₃)₂ of high purity was dissolved in conductivity water followed by addition of freshly distilled NH₃ to precipitate Be(OH)₂. After being washed with water, the precipitate was dissolved in acetic acid, the resultant beryllium(II) acetate was dissolved in water to get a dilute aqueous solution from which Be(OH)₂ was again precipitated by the addition of NH₃. The precipitate was heated at about 440°C to obtain BeO. (2) Water. Conductivity water of specific conductance 1.258 x 10⁻⁶ (Ω cm)⁻¹ was used.
ESTIMATED ERROR:	REFERENCES: 1. Remy, H.
No estimates possible.	Z. Elektrochem. Angew. Phys. Chem. <u>1925</u> , 31, 88.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Beryllium hydroxide; Be(OH) ₂ ;	Oka, Y.
[13327-32-7]	Ninnen Kaselu Kaiahi (1001
(2) Water; H ₂ O; [7732-18-5]	Nippon Kagaku Kaishi (1921-47) <u>1940</u> , 61, 311-20.
	<u>1210</u> , 01, 011 200
VARIABLES:	PREPARED BY:
	H. Einaga
T/K = Room temperature	Y. Komatsu
EXPERIMENTAL VALUES:	
Solubility of Be(OH) ₂ in water was d	etermined by potentiometry to be
1.4 x 10	D^{-7} mol L ⁻¹
1.4 × 10	
at room temperature (not specified)	•
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
	(1) Beryllium hydroxide.
Aqueous $Be(NO_3)_2$ solution was titrated at room temperature with a	
standard aqueous NaOH solution	(2) Water.
potentiometrically by using glass	Nothing specified.
and hydrogen electrodes to record pH vs alkali content relation from	Nothing specified.
which solubility was calculated.	
There was no description of titra-	
tion or calculation procedures.	
	ESTIMATED ERROR:
	No estimates possible.
	REFERENCES :

	COMPONENTS :					ORIGINAL MEASUREMENTS:			
<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>					Schindler, P.; Garrett, A. B.				
(2) Water; H ₂ O; [7732-18-5]					7. Chim. 5-8.	Acta	<u>1960</u> , 43	,	
(2) water, 120, [//32*10-5]									
IPERIMENT	TAL VALUES	3:	Be(OH)	+ н⁺ + н ₂ 0	at 25°C	:			
			_	<u></u>		g s	-log K _{snn}		
10 ³ Z	10 ³ B	-log h	-log b	log K <mark>'</mark> SO	n = 2	n = 3	n = 2	n = 3	
0.495	0.322	5.321	3.759	6.883	4.128	4.304	6.514	11.659	
0.944	0.702	5.21 ₀	3.53 ₅	6.88 ₅	3.688	3.86 ₄	6.73 ₂	11.76 ₆	
2.99	2.15	5.008	3.076	6.94 ₀	3.184	3.36 ₀	6.83 ₂	11.664	
4.99	3.88	4.880	2.955	6.80 ₅	2.85 ₉	3.03 ₅	6.90 ₁	11.60 ₅	
6.48	5.10	4.851	2.860	6.842	2.730	2.906	6.97 ₂	11.64 ₇	
7.98	6.48	4.81 ₀	2.824	6.79 ₆	2.604	2.780	7.01 ₆	11.650	
9.98	8.13	4.79 ₀	2.733	6.847	2.503	2.67 ₉	7.07 ₇	11.691	
11.98	9.74	4.770	2.650	6.890	2.426	2.602	7.114	11.708	
		Me	an value	6.86 ± 0.05		Mean	value	11.67 ± 0.05	
	h	= [H ⁺]		s	= [(BeO	H) ⁿ⁺]			
	Ь	= [Be ²⁺]		K _{snn}	= [(BeO	H) ⁿ⁺]/[H	+]"		
	K¦s0	= [Be ²⁺]/	'[H ⁺] ²						
		!-	and Garı	est inst		cidic m	edium w	ere rein-	
				the react					
	ted by t	aking int		the react		K	30		
	ed by t	aking int Be(OH) ₂ +	:o account · 2H ⁺ = Be ⁱ	the react	ions:				
terpret	red by t	aking int Be(OH) ₂ + Be(OH) ₂ +	:o account · 2H ⁺ = Be ⁱ	the react $^{2^+} + 2H_2O$ $eOH)_n^{n^+} + nH_2O$	ions:	ĸ			
terpret with th	red by t	aking int Be(OH) ₂ + Be(OH) ₂ + s n = 2 a	$2H^{+} = Be^{\frac{1}{2}}$ $nH^{+} = (B^{-})$ $nd n = 3.$	the react $^{2^+} + 2H_2O$ $eOH)_n^{n^+} + nH_2O$:ions: 1 ₂ 0	K _s	าท		
terpret with th Quantit	n n ne value	aking int Be(OH) ₂ + Be(OH) ₂ + s n = 2 a d in the	o account 2H ⁺ = Be ² nH ⁺ = (B and n = 3. calculati	the react ²⁺ + 2H ₂ O eOH) ⁿ⁺ + nH	zions: 1 ₂ 0 nown in	K _s K _{si} the tab	nn le above	with:	
terpret with th Quantit H	n ne value ties use	aking int Be $(OH)_2$ + Be $(OH)_2$ + s n = 2 a d in the l concent	o account 2H ⁺ = Be ² nH ⁺ = (B and n = 3. calculati cration of	the react $^{2+} + 2H_2O$ $eOH)_{n}^{n+} + nH$ ons are sl	lions: 1 ₂ 0 10wn in (HCl, H	K_{g} K_{g1} the tab Clo_{4}),	nn le above	with:	
terpret with th Quantit H h	n ne value ties use = tota = conce	aking int Be $(OH)_2$ + Be $(OH)_2$ + s n = 2 a d in the l concent ntration	o account 2H ⁺ = Be ⁺ nH ⁺ = (B and n = 3. calculati cration of of H ⁺ in	the react $^{2^{+}} + 2H_2O$ $eOH)_{n}^{n^{+}} + nH$ ons are sl the acid	zions: 1 ₂ 0 nown in (HCl, H ted solu	K _s K _{si} the tab ClO ₄), s	nn le above	with:	
terpret with th Quantit H h B	n ne value ties use = tota = conce = total	aking int Be $(OH)_2$ + Be $(OH)_2$ + s n = 2 a d in the l concent ntration Be conce	o account 2H ⁺ = Be ⁺ nH ⁺ = (B and n = 3. calculati cration of of H ⁺ in	the react $^{2+} + 2H_2O$ $eOH)_n^{n+} + nH$ the acid the satura $= [Be^{2+}] + C$	zions: 1 ₂ 0 nown in (HCl, H ted solu	K _s K _{si} the tab ClO ₄), s	nn le above	with:	
terpret with th Quantit H h B Z	n ne value ties use = tota = conce = total = H - h	aking int Be $(OH)_2$ + Be $(OH)_2$ + s n = 2 a d in the l concent ntration Be conce	o account 2H ⁺ = Be ² nH ⁺ = (B and n = 3. calculati cration of of H ⁺ in entration	the react $^{2+} + 2H_2O$ $eOH)_n^{n+} + nH$ the acid the satura $= [Be^{2+}] + C$	zions: 1 ₂ 0 nown in (HCl, H ted solu	K _s K _{si} the tab ClO ₄), s	nn le above	with:	
with th Quantit H h B Z b	n ne value ties use = tota = conce = total = H - h = Z - B	aking int Be $(OH)_2$ + Be $(OH)_2$ + s n = 2 a d in the l concent ntration Be conce = 2[Be ²⁺]	o account 2H ⁺ = Be ² nH ⁺ = (B and n = 3. calculati cration of of H ⁺ in entration + n[(BeC	the react $^{2+} + 2H_2O$ $eOH)_n^{n+} + nH$ the acid the satura $= [Be^{2+}] + C$	zions: 1 ₂ 0 nown in (HCl, H ted solu	K _s K _{si} the tab ClO ₄), s	nn le above	with:	
with th Quantit H b S	n ne value ties use = tota = tota = tota1 = H - h = $Z - B$ = [(BeO	aking int Be(OH) ₂ + Be(OH) ₂ + s n = 2 a d in the 1 concent ntration Be conce = 2[Be ²⁺] = [Be ²⁺] H) $\frac{n}{n}$] = (2)	to account $2H^* = Be^2$ $nH^* = (B)$ and $n = 3$. calculating calculating calculating of H^* in the entration of $P^* = P^2 - P^2$	the react $^{2+} + 2H_2O$ $eOH)_n^{n+} + nH$ the acid the satura $= [Be^{2+}] + C$	lown in (HCl, H ted solu	K_{g} K_{g} the tab Clo_4), for ution.	nn le above see ref	with: 1.	
with th Quantit H b S	n ne value ties use = tota = tota = tota1 = H - h = $Z - B$ = [(BeO	aking int Be(OH) ₂ + Be(OH) ₂ + s n = 2 a d in the l concent ntration Be conce = 2[Be ²⁺] = [Be ²⁺] H) ⁿ / _n] = (2) ons show species	to account $2H^* = Be^2$ $nH^* = (B)$ and $n = 3$. calculating calculating of H^* in the second se	the react the react $^{2^+} + 2H_2O$ $eOH)_n^{n^+} + nH$ ons are sl the acid the satura $= [Be^{2^+}] + OH)_n^{n^+}$	rions: 1 ₂ 0 nown in (HCl, H ted solu n[(BeOH	K_{sn} the tab Clo_4), so ation. D_n^{m+1}	nn le above see ref t (BeOH)	with: 1.	
with the Quantit H b S The caimain po	n ne value ties use = tota = tota = total = H - h = $Z - B$ = [(BeO lculatic	aking int Be(OH) ₂ + Be(OH) ₂ + s n = 2 a d in the l concent ntration Be conce = 2[Be ²⁺] = [Be ²⁺] H) ⁿ⁺ _n] = (2 ons show species $K_{SO} = [H]$	to account $2H^{+} = Be^{2}$ $nH^{+} = (B)$ and $n = 3$. calculating calculating of H^{+} in h^{+} in	the react the react $^{2^+} + 2H_2O$ $eOH)_n^{n^+} + nH$ to a column the satura $= [Be^{2^+}] + OH)_n^{n^+}]$ is a column is a column	tions: 1 ₂ 0 nown in (HCl, H ted solution n[(BeOH nstant a K ¹ ₅₀ = [1	K_{sr} the tab (10_4) , so $(1)_{n}^{n+1}$ and that Be^{2^+} / [H ⁴	nn le above see ref t (BeOH)	with: 1. 3 [*] is the	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Beryllium hydroxide; Be(OH) ₂ ; [13327-32-7]	Schindler, P.; Garrett, A. B.
	Helv. Chim. Acta <u>1960</u> , 43,
(2) Water; H ₂ O; [7732-18-5]	2176-8.
VARIABLES:	PREPARED BY:
T/K = 298	H. Einaga Y. Komatsu
171 250	I. Lambert
EXPERIMENTAL VALUES:	
(sign of log K'_{s0} by the authors appe	ars to be in error). The value of
К., = [(В	eOH) ³⁺]/[H ⁺] ³
for the solution reaction	
3Be(OH) ₂ (s) + 3H	$^{+} = (BeOH)_{3}^{3+} + 3H_{2}O$
is given by the authors to be -log K	$= 11.67 \pm 0.05$
	s33 - 11.07 1 0.000
AUXILIARY '	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Experimental data on solution equi-	(1) Beryllium hydroxide.
libria of α -Be(OH) ₂ , a metastable crystalline modification of Be(OH) ₂	(2) Water.
in dilute acid (HCl, $HClO_A$) solu=	
tion, were taken from ref 1. The data were reanalyzed by taking	See data sheets of (ref 1). No new data measured for this work.
presence of polynuclear hydrolyzed	data measured for this work.
species of $(BeOH)_{3}^{3+}$ (ref 2) into consideration.	
consideración.	
	ESTIMATED ERROR:
	No estimates possible.
	•
	REFERENCES:
	1. Gilbert, R. A.; Garrett, A. B.
	J. Am. Chem. Soc. <u>1956</u> , 78, 5501.
	2. Kakihana, H.; Sillen, L. G. Acta Chem. Scand. <u>1956</u> , 10,
	985.

10	
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Berylium oxide (bromellite);</pre>	Koz'menko, O.A.; Peshchevitskii,B.I. Belevantsev, V.I.
<pre>(2) Hydrogen fluoride; HF; [7604-39-3]</pre>	Geokhimiya <u>1985</u> , (no. 11), 1614-20.
(3) Water; H ₂ O; [7732-18-5]	*Geochem. Int. (Engl. Transl.) <u>1986</u> 23(4), 162-69.
EXPERIMENTAL VALUES:	
Solubility of α-BeO and Saturation	in HF(aq) at 300°C Vapor Pressure.
Hydrogen Number	of Bromellite
Fluoride Indeper	ndent Solubility
10 ³ c ₂ /mol L ⁻¹ Measure	ements $10^4 c_1 / \text{mol } L^{-1}$
0.0 1	0.051±0.008
0.27±0.01 3	
0.80±0.05 3	0.25 ±0.01
1.6 ±0.1 . 3	0.66 ±0.02
3.2 ±0.1 3	
4.2 ±0.2 3	1.9 ± 0.1
8.0 ±0.2 3 13. ±1. 3	6.9 ±0.2 12. ±1.
$13. \pm 1.$ 3 16. $\pm 1.$ 3	$20. \pm 1.$
The authors analyzed the data on the α -BeO(s) + H ₂ O = Be(OH) ₂ (aq) α -BeO(s) + H ⁺ (aq) = Be(OH) ⁺ (aq) α -BeO(s) + 2H ⁺ (aq) = Be ²⁺ (aq) + H ₂ O H ₂ O = H ⁺ (aq) + OH ⁻ (a α -BeO(s) + HF(aq) = Be(OH)F	$K_{0} = (5.2\pm0.6)\times10^{-6}$ $K_{1} = 0.029\pm0.009$ $K_{2} = 10.4\pm1.8$ $K_{W} = 3.2\times10^{-12}$ $K_{1} = 0.02\pm0.01$
α -BeO(s) + 2HF(aq) = BeF ₂ (aq) + H ₂	$k_2 = 10.9 \pm 3.4$
$HF(aq) = H^{+}(aq) + OH^{-}(aq)$	aq) $K_{\rm D} = 6.3 \times 10^{-7}$
$HF(aq) + F'(aq) = HF_2(aq)$	K = room temp. value
The data were treated by a weighted details in the original paper. Calc and Be ²⁺ (aq) were smaller than the m	d least squares method. Additional culated concentrations of Be(OH) ⁺ (aq) measured beryllium concentration, and

details in the original paper. Calculated concentrations of $Be(OH)^{+}(aq)$ and $Be^{2^{+}}(aq)$ were smaller than the measured beryllium concentration, and thus, they were neglected. The $HF_2(aq)$ concentration was also negligably small.

The dilute concentrations could be used as molalities with negligable error.

	· · · · · · · · · · · · · · · · · · ·
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Berylium oxide (bromellite); α-BeO; [13598-21-5]	Koz'menko, O.A.; Peshchevitskii,B.I. Belevantsev, V.I.
<pre>(2) Hydrogen fluoride; HF; [7604-39-3]</pre>	Geokhimiya <u>1985</u> , (no. 11), 1614-20.
(3) Water; H ₂ O; [7732-18-5]	[*] Geochem. Int. (Engl. Transl.) <u>1986</u> 23(4), 162-69.
VARIABLES:	PREPARED BY:
T/K = 573 $p_1/kPa = solution vapor pressure$	H. L. Clever
EXPERIMENTAL VALUES:	
The equilibrium constants for the pressure, and ionic strength, $I = 0$	ceactions at 300°C, saturation vapor on the molality scale were given as:
Reaction	log K
α -BeO(s) + H ₂ O = Be(OH) ₂ (a	q) -5.28±0.05
α -BeO(s) + 2H ⁺ (aq) = Be ²⁺ (aq) + 1	H ₂ 0 1.02±0.7
α -BeO(s) + H ⁺ (aq) = Be(OH) ⁺ (aq)	-1.7 ±0.2
α -BeO(s) + HF(aq) = BeOHF(aq)	-1.7 ±0.2
α -BeO(s) + 2HF(aq) = BeF ₂ (aq) +	H ₂ O 1.0 ±0.2
HF(aq) = H ⁺ (aq) + H	₹ (aq) -6.2 ±0.2
H ₂ O = H⁺(aq) + (DH ⁻ (aq) -11.5 ±0.2
$Be^{2^{+}}(aq) + OH^{-}(aq) = Be(OH)^{+}(aq)$ $Be^{2^{+}}(aq) + 2OH^{-}(aq) = Be(OH)_{2}(aq)$ $Be^{2^{+}}(aq) + 2F^{-}(aq) = BeF_{2}(aq)$ $Be^{2^{+}}(aq) + OH^{-}(aq) + F^{-}(aq) = Be$ $BeF_{2}(aq) + OH^{-}(aq) = Be(OH)F(aq)$ $BeF_{2}(aq) + 2OH^{-}(aq) = Be(OH)_{2}(aq)$	l2.4±0.3 le(OH)F(aq) 15.0±0.4 lq) + F ⁻ (aq) 2.6±0.4
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The autoclave method was used under isothermal conditions. The α -BeO crytals and the acid solutions were sealed by welding in gold capsules of 5 or 10 mm diameter of 1 to 3.5 mL volume. The contents were ad- justed so there was no more than 2 % vapor volume at 300°C. From 5 to 10 of these capsules were placed in a stainless steel autoclave, sealed and placed in a preheated oven for seven days. Preliminary studies showed equilibrium was established within 5 days. The autoclave was removed and cooled rapidly in cool water. The capsule contents were analyzed immediately for Be by an atomic absorption spectrometer. Either a flame or flame free method was used depending in part on the sample size. Results were checked in some cases by the weight loss of α -BeO.	 (1) Bromellite (α-BeO). Crystals of 10-40 mg were washed with boiling aqua regia to eliminate inclusions contaning V or Pb. After each experiment the crys- tals were washed with 5 % HF and inspected for cracks and inclu- sions. (2) Hydrogen fluoride.Prepared from special reagent. Conc. checked by pot. titrn. with F⁻ electrode. (3) Water. Nothing specified. ESTIMATED ERROR: Temp.: Precision ±0.5 K. Soly.: See std. error of mean in table above. REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Beryllium oxide, BeO; [13598-21-5]</pre>	Soboleva, G. I.; Tugarinov, I. A.; Golitsina, N.S.; Khodakovskii, I.L.
(2) Hydrogen fluoride; HF; [7604-39-3]	Geokhimiya <u>1984</u> , (No. 6), 812-22.
<pre>(3) Nitric acid; HNO₃; [7697-37-2] (3) Water; H₂O; [7732-18-5]</pre>	*Geochem. Int. (Engl. Transl.) 1984, 21(7), 20-30.
VARIABLES:	PREPARED BY:
T/K = 423, 473 and 523	H. L. Clever

EXPERIMENTAL VALUES:

/°C	<i>T</i> /K	m2/mol kg ⁻¹	m ₃ /mol kg ⁻¹	m _{Be} /mol kg ⁻¹
150	423	0.00010	-	3.9x10 ⁻⁵
		0.0010	-	4.8x10 ⁻⁴
		0.0025	-	2.9x10 ⁻⁴
		0.010	-	1.2x10 ⁻³
200	473	0.00010	-	(6.5±1.0)x10 ⁻⁵
		0.00025	-	1.2x10 ⁻⁴
		0.0010	-	$(3.5\pm0.3)\times10^{-4}$
		0.0025	-	$(9.7\pm2.0)\times10^{-4}$
		0.010	-	$(2.2\pm0.5)\times10^{-3}$
		0.10	-	(6.5±0.3)x10 ⁻³
		0.0025	0.0011	4.4x10 ⁻⁴
		0.025	0.011	5.9x10 ⁻³
		0.25	0.11	8.4x10 ⁻²
250	523	0.00010	_	4.2x10 ⁻⁵
		0.0010	-	4.9x10 ⁻⁴
		0.0025	-	5.9x10 ⁻⁴
		0.010		2.8×10^{-3}

the reaction BeO(s) + HF(aq) = Be(OH)F(aq) of 0.50 ± 0.30 , 0.50 ± 0.30 and 0.56 ± 0.20 at 150, 200 and 250°C, respectively.

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Same method as used by the authors in a study of the solubility of BeO in aqueous NaOH and aqueous HNO_3 (ref 1). Aqueous solutions were saturated with α -BeO in an autoclave at a specified temperature within \pm 5 degrees for 7 - 25 days. After equilibration, the aqueous phase	 SOURCE AND PURITY OF MATERIALS: (1) α-Beryllium oxide (bromellite). Artificial crytals. Hexagonal crystals prepared by a hydrothermal method. (2) Hydrogen fluoride. Chemically pure. (3) Nitric acid. Chemically pure. (3) Water. Twice distilled CO₂
was sampled, and the dissolved Be ²⁺ was determined fluorometrically by use of Morin [480-16-0] as a com- plexing reagent.	<pre>(3) water. Twice distilled CO2 free water. ESTIMATED ERROR: Temp.: Precision ± 5 K. Soly.: See average deviations in table above.</pre>
	<pre>REFERENCES: 1. Soboleva, G.I.; Tugarinov, I.A. Kalinina,V.F.; Khodakovskii, I.L. Geokhimiya 1977, (No. 7), 1013.</pre>

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>	Gilbert, R. A.; Garrett, A. B.
(2) Hydrochloric acid; HCl; [7647-01-0]	J. Am. Chem. Soc. <u>1956</u> , 78, 5501-5.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298.15 $m_2/mol kg^{-1} = 0.0010 - 0.0120$	H. Einaga Y. Komatsu
EXPERIMENTAL VALUES: Solubility of a-Be(OH) ₂ in	HCl solution at 25°C
Molality HCl $m_2/mol kg^{-1}$	Molality α -Be(OH) ₂ 10 ⁴ m_1 /mol kg ⁻¹
0.0010 0.0030 0.0050 0.0065 0.0080 0.0100 0.0120	7.08 22.0 40.4 51.0 65.0 81.3 96.7
The results were interpreted by the Be(OH) ₂ (s) = Be ²⁺ + 20 Be(OH) ₂ (s) + 2H ⁺ = Be ²	H ⁻ (1)
$Be^{2^{+}} + Be(OH)_2 = Be_2O^{2^{+}}$	
which give $K_2 = (a_{P_2} 2^{t}) / (a_{P_2} 2^{t})$	$(H^+)^2 = 7.3 \times 10^6$
and	= $K_2 \times K_w^2 = 7.3 \times 10^{-22}$
$(K_{w} = a_{H^{+}} a_{OH^{-}})$	
	INFORMATION
······································	
METHOD/APPARATUS/PROCEDURE: α -Be(OH) ₂ was equilibrated with acid solution in glass flask either from supersaturation (preliminary equilibration at 35°C followed by cooling to 25°C) or from under- saturation (dissolution at 25°C) at 25.00 ± 0.02°C for seven days. After the sedimentation of solid Be(OH) ₂ for further standing of seven days, pH was measured on the solution using a glass electrode pH meter and dissolved Be ²⁺ was deter- mined spectrophotometrically.	 SOURCE AND PURITY OF MATERIALS: (1) α-Beryllium hydroxide. The metastable form was prepared by dissolving fused Be (99.5 %) in aqueous HCl followed by precipitation with chemically pure NaOH. (2) Hydrochloric acid. C.p. reagent grade. (3) Water. Triply distilled.
	ESTIMATED ERROR: Temp.: precision ± 0.02 K. Soly.: reproducibility ± 1.5 %, (Av. 3 determinations). REFERENCES: 1. Mattock, G.
	J. Am. Chem. Soc. <u>1954</u> , 76, 4835.

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Berylium oxide (bromellite); a-BeO; [13598-21-5]	Koz'menko, O.A.; Peshchevitskii,B.I. Belevantsev, V.I.	
(2) Perchloric acid; HClO ₄ ; [7601-90-3]	Geokhimiya <u>1985</u> , (no. 11), 1614-20. *Geochem. Int. (Engl. Trans1.) <u>1986</u>	
(3) Water; H ₂ O; [7732-18-5]	Geochem. Int. (Engl. Irans1.) <u>1986</u> 23(4), 162-69.	
VARIABLES:	PREPARED BY	
T/K = 573 $p_1/kPa =$ solution vapor pressure	H. L. Clever	
EXPERIMENTAL VALUES:		
Solubility of α -BeO i and Saturation	in HClO ₄ (aq) at 300°C Vapor Pressure.	
Perchloric Number	of Bromellite	
Acid Indeper $10^{3}c_{2}/mol L^{-1}$ Measure	ndent Solubility	
$10^{3}c_{2}/mol L^{-1}$ Measure	ements $10^4 c_1 / \text{mol} L^{-1}$	
0.0 1	0.051±0.008	
0.507 3		
1.02 3 5.07 3		
10.2 3	$13. \pm 2.$	
25.8 2	55. ±5.	
The authors analyzed the data on the α -BeO(s) + H ₂ O = Be(OH) ₂ (aq) α -BeO(s) + H ⁺ (aq) = Be(OH) ⁺ (aq)	$K_{0} = (5.2 \pm 0.6) \times 10^{-6}$ $K_{1} = 0.029 \pm 0.009$	
	1	
α -BeO(s) + 2H ⁺ (aq) = Be ²⁺ (aq) + H ₂ O	-	
$H_2O = H^+(aq) + OH^-(aq)$ The data were treated by a weighted details in the original paper.	"value.	
AUXILIARY I	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The autoclave method was used under isothermal conditions. The α -BeO crytals and the acid solutions were sealed by welding in gold capsules of 5 or 10 mm diameter of 1 to 3.5 mL volume. The contents were ad- justed so there was no more than 2 % vapor volume at 300°C. From 5 to 10 of these capsules were placed in a stainless steel autoclave, sealed and placed in a preheated oven for seven days. Preliminary studies showed equilibrium was established within 5 days. The autoclave was removed and cooled rapidly in cool water. The capsule contents were analyzed immediately for Be by an atomic absorption spectrometer. Either a flame or flame free method was used depending in part on the sample size. Results were checked in some cases by the weight loss of α -BeO.	 (1) Bromellite (α-BeO). Crystals of 10-40 mg were washed with boiling aqua regia to eliminate inclusions contaning V or Pb. After each experiment the crys- tals were washed with 5 % HF and inspected for cracks and inclu- sions. (2) Perchloric acid. Prepared from chemically pure concentrated acid. Conc. checked by titration. (3) Water. Nothing specified. ESTIMATED ERROR: Temp.: Precision ±0.5 K. Soly.: See std. error of mean in table above. REFERENCES: 	

	2	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>	Gilbert, R. A.; Garrett, A. B.	
<pre>(2) Perchloric acid; HClO₄; [7601-90-3]</pre>	J. Am. Chem. Soc. <u>1956</u> , 78, 5501-5.	
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = 298.15 $m_2/mol kg^{-1} = 0.0005 - 0.0120$	H. Einaga Y. Komatsu	
EXPERIMENTAL VALUES:		
Solubility of α -Be(OH) ₂ in	HClO ₄ solution at 25°C	
Molality HClO ₄ m ₂ /mol kg ⁻¹	Molality α -Be(OH) ₂ $10^{4}m_{1}$ /mol kg ⁻¹	
0.0005 0.0010 0.0030 0.0050 0.0065 0.0080 0.0100 0.0120	3.22 6.95 21.0 37.1 51.0 64.7 81.4 98.2	
and	H^{-} (1) $H^{+} + 2H_{2}O$ (2)	
$(K_w = a_{H^+} a_{OH^-})$	$= 1 \times 10^{-14}$)	
AUXILIARY	INFORMATION	
IETHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
a-Be(OH) ₂ was equilibrated with acid solution in glass flask either from supersaturation (preliminary equilibration at 35°C followed by cooling to 25°C) or from under- saturation (dissolution at 25°C) at 25.00 \pm 0.02°C for seven days. After the sedimentation of solid Be(OH) ₂ for further standing of seven days, pH was measured on the solution using a glass electrode pH meter and dissolved Be ²⁺ was deter- mined spectrophotometrically.	 (1) a-Beryllium hydroxide. The metastable form was prepared by dissolving fused Be (99.5 %) in aqueous HCl followed by precipitation with chemically pure NaOH. (2) Perchloric acid. C. p. reagent grade. (3) Water. Triply distilled. ESTIMATED ERROR: Temp.: precision ± 0.02 K. Soly.: reproducibility ± 1.5 %, (av. 3 determinations). REFERENCES: 1. Mattock, G. J. Am. Chem. Soc 1954, 76, 4835. 	

22		
COMPONENTS :		ORIGINAL MEASUREMENTS:
<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>		Soboleva, G. I.; Tugarinov, I. A.; Kalinina, V. F.; Khodakovsky, I. L.
(2) Nitric acid; HNO ₃ ; [7697-37-2]		*Geokhimiya <u>1977</u> , (7), 1013-24.
(3) Water; H ₂ O; [7732-18-	-5]	[No translation in Geochem. Int.]
VARIABLES:		PREPARED BY:
T/K = 423 - 523 $m_2/mol kg^{-1} = 0 - 0.11$		H. Einaga I. Lambert
EXPERIMENTAL VALUES:		
Solubility	of Be(OH) ₂	in aqueous nitric acid
t/°C Concentra m ₂ /mol kg	ation of HNO_3	Concentration of Be(OH) ₂ 10 ⁴ m ₁ /mol kg ⁻¹
)011)11	0.942 ± 0.20 13.4 ± 1
0.0 0.0 0.0	275	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
250 0 0.0 0.0	0011	0.052 ± 0.040 0.81 ± 0.06 28 ± 2
	AUXILIARY I	
METHOD/APPARATUS/PROCEDURE: α -BeO was saturated with aqueous HNO ₃ solution in an autoclave at a specified temperature within $\pm 5^{\circ}$ C for 7 - 25 days. After equilibra- tion, the aqueous phase was taken out, and dissolved Be ²⁺ was deter- mined fluorometrically by using Morin [480-16-0] as a complexing reagent.		 SOURCE AND PURITY OF MATERIALS: (1) α-Beryllium hydroxide. α-BeO (hexagonal crystal) was pre- pared by a hydrothermal method. (2) Nitric acid. Chemically pure. (3) Water. Twice distilled CO₂ free water.
		ESTIMATED ERROR. Temp.: precision ± 5 K. Soly.: see error reported by authors with molality values above. REFERENCES:

COMPONENTS :		ORIGINAL MEASUREMENTS:	
(1)	Beryllium hydroxide; Be(OH) ₂ ; [13327-32-7]	Prytz, M.	
(2)	Beryllium chloride; BeCl ₂ ; [7787-47-5]	Z. Anorg. Allg. Chem. <u>1929</u> , 180, 355-69.	
(3)	Sodium hydroxide; NaOH; [1310-73-2]		
(4)	Water; H ₂ O; [7732-18-5]		

EXPERIMENTAL VALUES:

Composition of the saturated solution at 25°C

BeCl ₂ c ₂ /mol L ⁻¹	pH at N=0.5	$a_{\rm H^+}/f_{\rm H^+} = [{\rm H^+}]$	10'K0	pH at N=1.5	$a_{\rm H^+}/f_{\rm H^+} = [{\rm H^+}]$	10 ⁻⁹ S ₀
0.1	3.79	0.000224	(2.7)	5.76	0.0000250	(3.5)
0.05	3.98	0.000139	2.2	5.83	0.00000196	3.0
0.02	4.24	0.0000713	1.7	5.93	0.00000145	2.4
0.01	4.42	0.0000452	1.5	6.03	0.00000111	2.0
0.008	4.49	0.0000382	1.7	6.06	0.00000103	2.0
0.005	4.61	0.0000283	1.3	6.07	0.0000098	1.3
		R_0	= 1.7		<u>s</u> _	= 2.1
					$K_{s0} = 2.9$	x 10 ⁻¹⁹

Results were interpreted through the hydrolysis equation

$$2Be^{2^{+}} + 2H_{2}O = (BeOH)_{2}^{2^{+}} + 2H^{+}$$
(1)
or
$$2Be^{2^{+}} + H_{2}O = Be_{2}O^{2^{+}} + 2H^{+}$$

followed by the precipitation reaction

$$(BeOH)_{2}^{2+} + H_{2}O = Be_{2}O(OH)_{2} (s) + 2H^{+}$$
 (2)
or
 $Be_{2}O^{2+} + 2H_{2}O = Be_{2}O(OH)_{2} (s) + 2H^{+}.$

The hydrolysis constant was defined by

$$K_0 = a_{H^+}^2 [(BeOH)_2^{2^+}] / [Be^{2^+}]^2 = a_{H^+}^2 [Be_2O^{2^+}] / [Be^{2^+}]^2$$

and the solubility product by

$$K_{s0} = L = [Be^{2^+}][OH^-]^2 = [Be_2O^{2^+}]K_w^2/[H^+]^2 = S_0K_w^2.$$

Calculations were performed through the relations

(Be) = Total Be concentration N = NaOH added, expressed in equivalents $K_W = 1.4 \times 10^{-14}$ [(BeOH)²⁺] = (1/2)[N(Be) + [H⁺]].

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Beryllium hydroxide; Be(OH) ₂ ; [13327-32-7]	Prytz, M.
(2) Beryllium chloride; BeCl ₂ ; [7787-47-5]	Z. Anorg. Allg. Chem. <u>1929</u> , 180, 355-69.
<pre>(3) Sodium hydroxide; NaOH; [1310-73-2]</pre>	
(4) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 $c_2/mol L^{-1} = 0.005 - 0.1$	I. Lambert
EXPERIMENTAL VALUES:	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Beryllium salt solutions were titrated potentiometrically by 1 mol L ⁻¹ NaOH in a thermostated ap- paratus. The potential was measured by a platinum electrode which was freshly platinized before every experiment. A calomel electrode (KCl 3.5 M) was used as the reference electrode. The first inflection point in the titration curve corresponded to the hydrolysis reaction and the second one to the hydroxide precipitation.	SOURCE AND PURITY OF MATERIALS: (1) Beryllium hydroxide. (2) Beryllium chloride. Prepared by the reaction $BeSO_4 + BaCl_2 \rightarrow$ $BeCl_2 + BaSO_4$ (s). (3) Sodium hydroxide. (4) Water. ESTIMATED ERROR: $K_0 = (1.7 \pm 0.35) \times 10^{-7}$ $S_0 = (2.1 \pm 0.6) \times 10^9$ $K_{SO} = (2.9 \pm 0.8) \times 10^{-19}$ REFERENCES: 1. Randall, M.; Breckenridge, G. F. J. Am. Chem. Soc. <u>1927</u> , 49, 1435.
L	

COMPON	VENTS ·	ORIGINAL MEASUREMENTS:
(1)	Beryllium hydroxide; Be(OH) ₂ ; [13327-32-7]	Prytz, M. 2. Anorg. Allg. Chem. <u>1931</u> , 197,
(2)	Beryllium bromide; BeBr ₂ ; [7787-86-4]	103-12.
(3)	Hydrobromic acid; HBr; [10035-10-6]	
(4)	Sodium hydroxide; NaOH; [1310-73-2]	
(5)	Water; H ₂ O; [7732-18-5]	
EXPERI	MENTAL VALUES:	
	Composition of the satu	urated solution at 25°C
		$at a_{H^{+}}/f_{H^{+}} = [H^{+}] 10^{7}K_{0}$

3.51

3.72

3.97

4.14

4.20

4.32

0.000394

0.000240

0.000128

0.0000833

0.0000716

0.0000532

0.0562

0.0281

0.0112

0.00562

0.00449

0.00281

$\begin{array}{c} \text{BeBr}_2\\ c_2/\text{mol } L^{-1} \end{array}$	HBr c3/mol L ⁻¹	pH at N=1.5	$a_{\rm H^+}/f_{\rm H^+} = [{\rm H^+}]$	10 ⁻⁹ S0
0.1	0.0562	5.63	0.0000298	(2.3)
0.05	0.0281	5.71	0.00000245	1.9
0.02	0.0112	5.82	0.00000180	1.5
0.01	0.00562	5.93	0.00000135	1.4
0.008	0.00449	5.90	0.00000141	1.1
0.005	0.00281	,5.99	0.00000113	1.0
			s ₀	= 1.4
			$K_{s0} = 2.7$	x 10 ⁻¹⁹

Results were interpreted through the hydrolysis equation

$$2Be^{2+} + 2H_2O = (BeOH)_2^{2+} + 2H^+$$
(1)
or
$$2Be^{2+} + H_2O = Be_2O^{2+} + 2H^+$$

followed by the precipitation reaction

$$(BeOH)_{2}^{2+} + H_{2}O = Be_{2}O(OH)_{2} (s) + 2H^{+} (2)$$

or
$$Be_{2}O^{2+} + 2H_{2}O = Be_{2}O(OH)_{2} (s) + 2H^{+}.$$

The hydrolysis constant was defined by

$$K_0 = a_{H^+}^2 [(BeOH)_2^{2^+}] / [Be^{2^+}]^2 = a_{H^+}^2 [Be_2 O^{2^+}] / [Be^{2^+}]^2$$

and the solubility product by

0.1

0.05

0.02

0.01

0.008

0.005

$$K_{s0} = L = [Be^{2^+}][OH^-]^2 = [Be_2O^{2^+}]K_w^2/[H^+]^2 = S_0K_w^2.$$

(continued on next page)

(9.8)

7.5

6.1

5.5

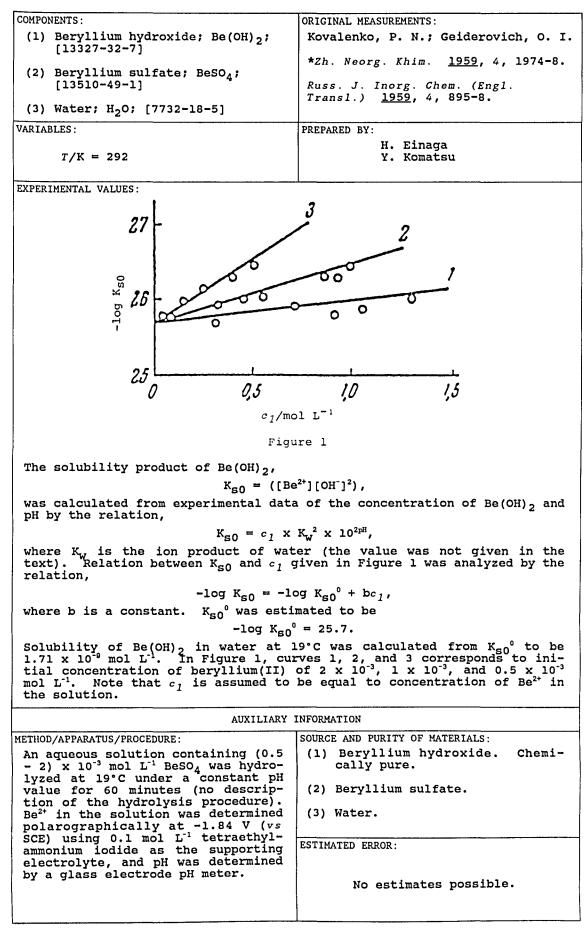
5.3

5.0

 $\bar{K}_{0} = 5.9$

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>	Prytz, M.
(2) Beryllium bromide; BeBr ₂ ; [7787-86-4]	Z. Anorg. Allg. Chem. <u>1931</u> , 197, 103-12.
<pre>(3) Hydrobromic acid; HBr; [10035-10-6]</pre>	
<pre>(4) Sodium hydroxide; NaOH; [1310-73-2]</pre>	
(5) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 $c_2/\text{mol } L^{-1} = 0.005 - 0.1$ $c_3/\text{mol } L^{-1} = 0.00281 - 0.0562$	I. Lambert
EXPERIMENTAL VALUES:	
Calculations were performed through	the relations
(Be) = Total Be	concentration
N = NaOH adde	d, expressed in equivalents
$K_{w} = 1.4 \times 10^{-1}$	14
$[(BeOH)_{2}^{2+}] = (1/2)[N(BeOH)_{2}^{2+}]$	e) + [H⁺]].

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Beryllium salt solutions were titrated potentiometrically by 1 mol L ⁻¹ NaOH in a thermostated ap- paratus. The potential was measured by a platinum electrode which was freshly platinized before every experiment. A calomel electrode (KCl 3.5 M) was used as the reference electrode. The first inflection point in the titration curve corresponded to the hydrolysis reaction and the second one to the hydroxide precipitation.	 (1) Beryllium hydroxide. (2) Beryllium bromide. Prepared by adding BeSO₄ in a solution of Ba(OH)₂ and excess HBr then precipitating BaSO₄ and filter- ing the BeBr₂ solution. The absence of barium in the solu- tion was tested. Be and acidity were titrated in the resulting solution. (3) Hydrobromic acid. (4) Sodium hydroxide. (5) Water. ESTIMATED ERROR: K₀ = (5.9 ± 1) × 10⁻⁷ S₀ = (1.4 ± 0.4) × 10⁹ K₅₀ = (2.7 ± 0.8) × 10⁻¹⁹ REFERENCES: 1. Livingston, R. S. J Am Chem. Soc. <u>1926</u>, 48, 53.


						2
COMPONENTS	•		ORIGI	NAL MEASUREMENTS:		
(1) Ber [13	yllium hydrox 327-32-7]	ide; Be(OH) ₂ ;	Pry	tz, M.		
(2) Ber	yllium iodide 87-53-3]	; BeI ₂ ;		Anorg. Allg. Che -12.	m. <u>1931</u> , 1	97,
	riodic acid; 034-85-2]	HI;				
	ium hydroxide 10-73-2]	; NaOH;				
(5) Wat	er; H ₂ O; [773	2-18-5]				
EXPERIMENT	AL VALUES:		I	ennesite re		
	Compos	ition of the sa	turate	d solution at 25	<u> </u>	
	$\frac{\text{Bel}_2}{c_2/\text{mol } L^{-1}}$		pH at N=0.5	$a_{\rm H^+}/f_{\rm H^+} = [{\rm H^+}]$	10'K ₀	
	0.1	0.00453	3.53	0.000358	(8.9)	
	0.05 0.02		3.79 4.04	0.000193	5.4 4.7	
	0.01		4.22	0.000106 0.0000689	3.8	
	0.008		4.25	0.0000638	4.2	
	0.005	0.000227	4.35	0.0000502	4.1	
				K ₀	= 4.4	
	Bel ₂ c ₂ /mol L ⁻¹		pH at N=1.5	$a_{\rm H^+}/f_{\rm H^+} = [{\rm H^+}]$	10 ⁻⁹ S ₀	
	0.1	0.00453	5.67	0.0000260	(3.2)	
	0.05		5.78 5.86	0.00000200 0.00000160	2.9 1.9	
	0.02 0.01		5.93	0.00000134	1.4	
	0.008	0.000343	5.96	0.00000125	1.3	
	0.005	0.000227	6.02	0.0000107	1.1	
				s ₀	= 1.7	
				$K_{s0} = 3.3$	x 10 ⁻¹⁹	
D] +		-t	buda	lugia equation		
Results	were interpr	eted through the 2Be ²⁺ + 2H ₂ O =			(1)	
		$2Be^{2+} + H_2O = 3$			(-)	
followed	l by the prec	ipitation react	-			
		$eOH)_{2}^{2+} + H_{2}O = B_{1}$		$)_{2}$ (s) + 2H ⁺	(2)	
		$e_2 O^{2^+} + 2H_2 O = B_1$	or			
The hydr	colysis const	ant was defined	ру			
	K ₀ =	$a_{\rm H^+}^2$ (BeOH) $\frac{2^+}{2}$]/[Be	2 ²⁺] ² =	^a ² H ⁺ [Be ₂ O ²⁺]/[Be ²⁺]	2	
and the	solubility p	roduct by				
		cm - 2+1 cour 12 -	(7.0.0)	2^{+} 2 (11^{+}) 2 – C V	· 2	

 $K_{s0} = L = [Be^{2^{+}}][OH^{-}]^{2} = [Be_{2}O^{2^{+}}]K_{w}^{2}/[H^{+}]^{2} = S_{0}K_{w}^{2}.$

(continued on next page)

28			
COMPONENTS.	ORIGINAL MEASUREMENTS:		
<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>	Prytz, M.		
<pre>(2) Beryllium iodide; BeI₂; [7787-53-3]</pre>	Z. Anorg. Allg. Chem. <u>1931</u> , 197, 103-12.		
(3) Hydriodic acid; HI; [10034-85-2]			
<pre>(4) Sodium hydroxide; NaOH; [1310-73-2]</pre>			
(5) Water; H ₂ O; [7732-18-5]			
VARIABLES:	PREPARED BY:		
T/K = 298 $c_2/mol L^{-1} = 0.005 - 0.1$ $c_3/mol L^{-1} = 0.000227 - 0.00453$	I. Lambert		
EXPERIMENTAL VALUES:			
Calculations were performed through	the relations		
(Be) = Total Be	concentration		
N = NaOH, adde	d, expressed in equivalents		
$K_{W} = 1.4 \times 10^{-1}$	14		
$[(BeOH)_{2}^{2+}] = (1/2)[N(BeOH)_{2}^{2+}]$	3e) + [H ⁺]].		

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Beryllium salt solutions were titrated potentiometrically by 1 mol L ⁻¹ NaOH in a thermostated ap- paratus. The potential was measured by a platinum electrode which was freshly platinized before every experiment. A calomel electrode (KCl 3.5 M) was used as the reference electrode. The first inflection point in the titration curve corresponded to the hydrolysis reaction and the second one to the hydroxide precipitation.	SOURCE AND PURITY OF MATERIALS: (1) Beryllium hydroxide. (2) Beryllium iodide. Prepared by adding BeSO ₄ in a solution of Ba(OH) ₂ and excess HI then precipitating BaSO ₄ and filter- ing the BeI ₂ solution. The ab- sence of barium in the solution was tested. Be and acidity were titrated in the resulting solution. (3) Hydriodic acid. (4) Sodium hydroxide. (5) Water. ESTIMATED ERROR: $K_0 = (4.4 \pm 0.6) \times 10^{-7}$ $S_0 = (1.7 \pm 0.7) \times 10^{9}$ REFERENCES: 1. Pearce, J. N.; Fortsch, A. R. J. Am. Chem. Soc. <u>1923</u> , 45, 2852.

30						
COMPONENTS :	······································	<u></u>	ORIGI	NAL MEASUF	REMENTS :	
(1) Berylliu [13327-3		de; Be(OH) ₂ ;	Pryt	z, M.		
<pre>(2) Beryllium sulfate; BeSO₄; [13510-49-1]</pre>			Z. Anorg. Allg. Chem. <u>1929</u> , 180, 355-69.			
(3) Sodium h [1310-73		; NaOH;				
(4) Water; H	20; [773	2-18-5]				
EXPERIMENTAL VAL	LUES :	<u></u>	•			
	Compos	ition of the s	aturated	solutio	on at 25°C	
$\frac{\text{BeSO}_4}{c_2/\text{mol } L^{-1}}$	pH at N=0.5	$a_{\rm H^+}/f_{\rm H^+} = [{\rm H^+}]$	10'K0	pH at N=1.5	$a_{\rm H^+}/f_{\rm H^+} = [{\rm H^+}]$	10 ⁻⁹ S ₀
0.1	3.92	0.00036	1.5	5.87	0.0000406	1.1
0.07 0.06	4.00 4.02	0.00026	1.5	5.73	0.00000532	0.5
0.05	4.02	0.000239 0.000210	1.6 1.6	5.86 5.84	0.00000345 0.00000340	1.0 0.9
0.04	4.02	0.000207	2.4	5.83	0.00000321	0.8
0.02	4.28	0.0000945	1.4	5.94	0.00000207	0.7
0.0175 0.0117	4.34 4.42	0.0000799 0.0000600	1.3 1.3	5.98 5.98	0.00000184 0.00000166	1.0 0.8
0.01	4.44	0.0000558	1.3	6.02	0.00000147	0.8
0.00875	4.51	0.0000457	1.1	6.04	0.00000135	1.0
0.007	4.54	0.0000403	1.2	6.01	0.0000137	0.7
0.00583 0.005	4.58 4.63	0.0000355 0.0000304	1.2 1.1	6.06 6.06	0.00000118 0.00000113	0.8 0.7
		<u>R</u> _	= 1.4		5-	= 0.84
		Ū			$K_{s0} = 1.1$	
					rs0 - 1.1	X 10
Results were	interpr	eted through th	ne hydro:	lysis eq	uation	
		$2Be^{2+} + 2H_2O =$			(1)	
		2Be ²⁺ + H ₂ O ⊭,	Be ₂ O ²⁺ +	2H ⁺		
followed by t	the prec	ipitation react	ion			
	(B	$eOH)_{2}^{2+} + H_{2}O = 1$	Be ₂ O(OH)	2 (5) +	2H ⁺ (2)	
	В	$e_2 O^{2+} + 2H_2 O = 1$	Be20(OH)	2 (s) +	2H ⁺ .	
The hydrolys	is consta	ant was defined	l by			
	к ₀ =	^a ² _H +[(BeOH) ²⁺]/[E	$[e^{2^+}]^2 = a$	² H ⁺ [Be ₂ O ²⁴]/[Be ²⁺] ²	
and the solub						

 $K_{s0} = L = [Be^{2^{+}}][OH^{-}]^{2} = [Be_{2}O^{2^{+}}]K_{w}^{2}/[H^{+}]^{2} = S_{0}K_{w}^{2}.$

Calculations were performed through the relations

(Be) = Total Be concentration N = NaOH added, expressed in equivalents $K_w = 1.4 \times 10^{-14}$ [(BeOH)²⁺] = (1/2)[N(Be) + [H⁺]].

(continued on next page)

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Beryllium hydroxide; Be(OH) ₂ ; [13327-32-7]	Prytz, M.
<pre>(2) Beryllium sulfate; BeSO₄; [13327-32-7]</pre>	Z. Anorg. Allg. Chem. <u>1929</u> , 180, 355-69.
<pre>(3) Sodium hydroxide; NaOH; [1310-73-2]</pre>	
(4) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 $c_2/\text{mol } L^{-1} = 0.005 - 0.1$	I. Lambert
EXPERIMENTAL VALUES:	
	INFORMATION
METHOD/APPARATUS/PROCEDURE: Beryllium salt solutions were titrated potentiometrically by 1 mol L^{-1} NaOH in a thermostated ap-	SOURCE AND PURITY OF MATERIALS: (1) Beryllium hydroxide. (2) Beryllium sulfate. Pure
 paratus. The potential was measured by a platinum electrode which was freshly platinized before every experiment. A calomel electrode (KCl 3.5 M) was used as the reference electrode. The first inflection point in the titration curve corresponded to the 	 BeSO₄, 4H₂O was analyzed for Be and SO₄ before use. (3) Sodium hydroxide. (4) Water.
hydrolysis reaction and the second one to the hydroxide precipitation.	ESTIMATED ERROR: $K_0 = (1.4 \pm 0.35) \times 10^{-7}$ $S_0 = (0.84 \pm 0.6) \times 10^9$ (S ₀ is supposed to be too low because of sulfate occlusion in precipitated Be ₂ O(OH) ₂); $K_{S0} = (1.1 \pm 0.8) \times 10^{-19}$. REFERENCES: 1. Randall, M.; Breckenridge, G. F. J Am. Chem. Soc. <u>1927</u> , 49, 1435. 2. Akerlof, G.

	Procedure	кон	Be
	TAL VALUES . The solubility o	f Be(OH) ₂ in	aqueous KOH at room temperature.
	t specified room $L^{-1} = 0.49 - 3$		I. Lambert
VARIABLES	3:		PREPARED BY:
(4) Wa	ter; H ₂ 0; [7732-	18-5]	
	tassium hydroxid 310-58-3]	e; KOH;	
	eryllium sulfate; .3510-49-1]	BeSO ₄ ;	Z. Anorg. Chem. <u>1913</u> , 82, 71-91.
	eryllium hydroxid 3327-32-7]	e; Be(OH) ₂ ;	Bleyer, B.; Kaufman, S. W.
COMPONENT	rs :		ORIGINAL MEASUREMENTS:

Procedure	КОН		Be
	$c_{3}/mol L^{-1}$	$c/mol L^{-1}$	$c/mol L^{-1}$
Hydroxide A	2.9	0.5140	
	2.58	0.4256	
	2.20	0.3713	
	2.02	0.3212	
	1.83	0.2688	
	1.54	0.2280	
	1.23	0.1780	
	0.9	0.100	
Hydroxide B	2.69	0.1071	
-	2.48	0.0975	
	2.28	0.0876	
	2.07	0.0809	
	1.85	0.0741	
	1.41	0.0566	
	0.96	0.0385	
	0.49	0.0196	
Hydroxide C ₁	3.5	0.0948	0.0904
(left column)	3.0	0.0689	0.0705
Hydroxide C ₂	2.5	0.0518	0.0498
(right column)	2.0	0.0386	0.0330
	1.5	0.0227	0.0191
	1.0	0.0139	0.0139

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A.: A one mol L^{-1} solution of BeSO ₄ is poured, drop by drop, into different KOH solutions until precipitation of Be(OH) ₂ . The OH ⁻ and Be concentrations are measured at the beginning of precipitation.	Nothing specified.
B.: After precipitation of A, the precipitate stays 3 days in contact with the solution, and transforms itself into the form B.	
C.: C ₁ . Hydroxide B is filtered	
and dried. The solubility is measured after three days in con-	ESTIMATED ERROR:
tact with the KOH solution. C_2 . A commercial product (Merck) treated the same way as C_1 .	No estimates possible.
(Merck) created the same way as of.	REFERENCES
Be is analyzed gravimetrically as BeO after precipitation by NH_4OH . No other details given.	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>	Korenman, I. M.; Frum, F. S.; Tsygankova, S. A.
<pre>(2) Beryllium nitrate; Be(NO₃)₂; [13597-99-4]</pre>	*Zh. Obshch. Khim. USSR <u>1956</u> , 26, 1558-60.
(3) Water; H ₂ O; [7732-18-5]	J. Gen. Chem. USSR (Engl. Transl.) <u>1956</u> , 26, 1745-7.
ARIABLES:	PREPARED BY:
T/K = Room temperature	I. Lambert
	<u> </u>
EXPERIMENTAL VALUES:	
Composition of the saturated	solution at room temperature
Series ^a Be ²⁺	pH
10 ² c/	mol L ⁻¹
I 2	1.7 5.74
2	
2	
	8.8 5.52
	8.2 5.61 7.8 5.56
	7.0 5.64
	6.8 5.80
	4.9 5.62
	4.5 5.66
1	
	9.9 5.70
,	9.8 5.73
	9.2 5.74
	8.1 5.79
	7.2 5.76
	3 6.00
	2.2 6.20
	0.100 C.4E
	0.199 6.45 0.18 6.48
	0.15 6.50
	0.13 6.52
	0.10 6.68
Bandar T. Dalt determined annumber	
^a Series I, Be ²⁺ determined gravimet Series II, Be ²⁺ determined colorim	etrically, $c_{Be^{2+}} = 0.022 = 0.217$, etrically, $c_{Be^{2+}} = 0.001 - 0.002$.
AUXILIARY	INFORMATION
ETHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The method of Akselrud and Fialkov	(1) Beryllium hydroxide.
(ref 1) was used. The Be(OH), was	
dissolved in an aqueous Be(NO ₃) ₂	(2) Beryllium nitrate.
dissolved in an aqueous $Be(NO_3)_2$ solution. The Be^{2^+} concentration (series I, gravimetric method,	(3) Water.
series II colorimetric method) and	
H ⁺ concentration (electrometric	Nothing specified on components.

Series I resulted in a $Be(OH)_2$ solubility product of $(3.5 \pm 1.4) \times 10^{-18}$ and series II a value of $(1.7 \pm 0.3) \times 10^{-18}$. The difference was attributed to the effect of ionic strength. A water ion product of 1 $\times 10^{-14}$ was used to convert the measured data into the solubility product value:

method) were measured.

 $\log K_{s0} = \log[Be^{2^+}] - 28 + 2pH.$

ESTIMATED ERROR:

No estimates possible.

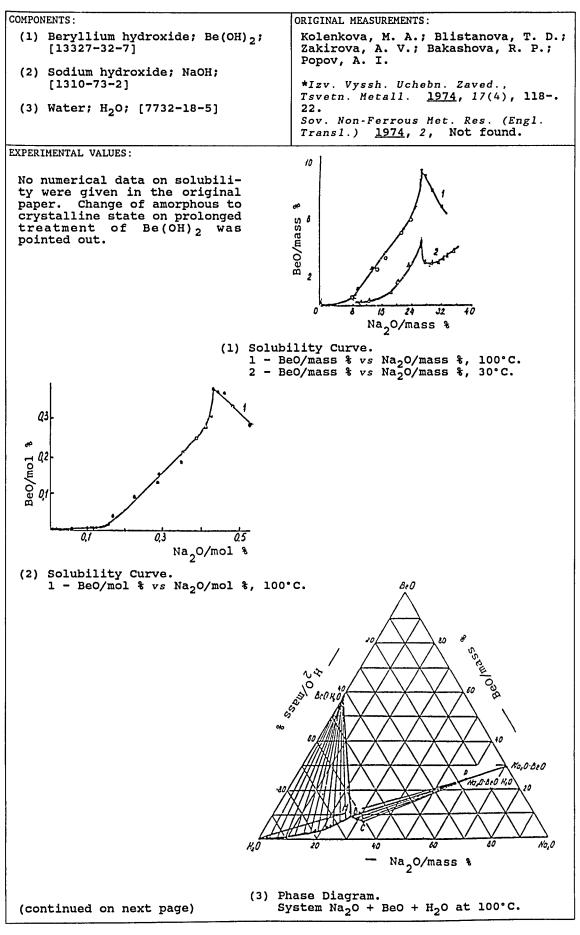
REFERENCES:

1. Akselrud, N. V.; Fialkov, Ya. A. Ukr. Khim. Zh. (Russ. Ed.) <u>1950</u>, 16, 294, 299.

COMPONENTS :	1	
	ORIGINAL MEASUREMENT	S :
<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>	Rubenbauer, J.	<u>1902</u> , 30, 331-7.
<pre>(2) Sodium hydroxide; NaOH; [1310-73-2]</pre>		<u></u> ,,
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = Room temperature $c_2/\text{mol } L^{-1} = 0.7303 - 3.7725$	H. Einaga Y. Komatsu	
EXPERIMENTAL VALUES: Solubility of Be(OH) ₂ in aqu	eous NaOH at room	temperature
Na Concentration of	Ве	Concentration of
$\frac{\text{NaOH}^{a}}{\text{g/0.020 } \text{L}^{-1} \text{ sln } c_2/\text{mol } \text{L}^{-1}}$	g/0.020 L ⁻¹ sln	Be (OH) 2^{a} $c_1/mol L^{-1}$
0.3358 0.7303	0.0358	0.199
0.6716 1.461	0.0882	0.489
0.8725 1.898	0.1175	0.6519
1.7346 3.7725	0.2847	1.580
AUXILIARY	INFORMATION	
IETHOD/APPARATUS/PROCEDURE:		
	SOURCE AND PURITY OF	
Freshly prepared $Be(OH)_2$ was shaken with aqueous NaOH solution at room temperature (no specification in the original paper) for 5 hours. An aliquot of the resulting satu- rated solution was taken out, and Be^{2+} in the solution was determined gravimetrically.	 (1) Beryllium hydroxec tated from a tion contain washed with remove exceed be(OH)₂ gel. (2) Sodium hydroxec tate table tab	ydroxide. Precipi- cidic aqueous solu- ning $Be^{2^{2}}$ with NH_{3} , $H_{2}O$, and pressed to ess $H_{2}O$ to obtain
with aqueous NaOH solution at room temperature (no specification in the original paper) for 5 hours. An aliquot of the resulting satu- rated solution was taken out, and Be^{2^+} in the solution was determined	 (1) Beryllium hydrodynamia (1) Beryllium hydrodynamia (2) Sodium hydrodynamia 	wide. CO ₂ free so-
with aqueous NaOH solution at room temperature (no specification in the original paper) for 5 hours. An aliquot of the resulting satu- rated solution was taken out, and Be^{2^+} in the solution was determined	 (1) Beryllium hy tated from a tion contain washed with remove exco Be(OH)₂ gel. (2) Sodium hydro lution, prey Na. 	wide. CO ₂ free so-
with aqueous NaOH solution at room temperature (no specification in the original paper) for 5 hours. An aliquot of the resulting satu- rated solution was taken out, and Be^{2^+} in the solution was determined	 (1) Beryllium hy tated from a tion contain washed with remove exco Be(OH)₂ gel. (2) Sodium hydro lution, prey Na. 	ydroxide. Precipi- cidic aqueous solu- ning Be^{2^+} with NH_3 , H_2O , and pressed to ess H_2O to obtain oxide. CO_2 free so- pared from metallic

COMPONENTS :	ORIGINAL MEASUREMENTS:	
 (1) Beryllium hydroxide; Be(OH)₂; [13327-32-7] (2) Sodium hydroxide; NaOH; [1310-73-2] (3) Water; H₂O; [7732-18-5] 	Haber, F.; van Oordt, G. Z. Anorg. Chem. <u>1904</u> , 38, 377-98.	
VARIABLES:	PREPARED BY:	
T/K = 293 - 373 $c_2/mol L^{-1} = 0.39 - 2.0$	H. Einaga Y. Komatsu	
EXPERIMENTAL VALUES:		
Solubility of Be(OH) ₂ in aqueous NaOH		

t/°C	Concentration NaOH $c_2/mol L^{-1}$	Concentration Be(OH) ₂ c ₁ /mol ⁻¹	Remarks
20 - 23	0.39	0.06	(a)
	0.65 1.99	0.144 0.66	10
20 - 23	0.50	0.0024	(b)
	1.0 2.0	0.0068 0.0227	11 17
50 - 53	0.50	0.0032	(d)
	1.0 2.0	0.0091 0.0360	11
100	0.50	0.0032	(b)
	1.0 2.0	0.0108 0.0408	


AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Be(OH) ₂ in the form of active or inactive modification was equi- librated with aqueous NaOH solution at room temperature (20 - 23°C) or at 50 - 53°C for 24 hours or at 100°C for 2 hours, the remaining solid Be(OH) ₂ was filtered off, and Be ^{2*} in the filtrate was determined gravimetrically.	(1) Beryllium hydroxide. BeCO ₃ as a starting material was puri- fied from Fe, S, etc. Be(OH) ₂ was prepared from the purified BeCO ₃ by dissolving it in aque- ous HCl followed by precipitat- ing it with NH ₃ . The precipi- tate was thoroughly washed with H ₂ O and, when necessary, dried over H ₂ SO ₄ .
	(2) Sodium hydroxide. Highest pu- rity and CO ₂ free.
	(3) Water.
	ESTIMATED ERROR:
	No estimates possible.
	REFERENCES :

COMPONENTS :		ORIGINAL MEASUREMENTS:
(1) Berylli [13327-	1) Beryllium hydroxide; Be(OH) ₂ ; Wood, J. K. [13327-32-7]	
(2) Sodium [1310-7	hydroxide; NaOH; 3-2]	J. Chem. Soc. <u>1910</u> , 97, 878.
(3) Water;	H ₂ O; [7732-18-5]	
VARIABLES:		PREPARED BY:
T/K =	298 • 0.268 - 0.854	I. Lambert
EXPERIMENTAL VA	ALUES: Solubility of Be(OH) ₂ in a	A MILEONE NACH at 25°C
	Concentration NaOH $c_2/mol L^{-1}$	Concentration Be(OH) ₂ c_1 /mol L ⁻¹
	0.268 0.318 0.446 0.526 0.563 0.801 0.854	0.0330 0.0492 0.0841 0.089 0.101 0.143 0.202
	interprets the results by $e(ONa)_2 + 2H_2O = Be(OH)_2 + K = 1.2$	2NaOH (1) (ref 1)
	$e(ONa)_2 + 2H_2O = Be(OH)_2 +$	2NaOH (1) (ref 1)
	$E(ONa)_2 + 2H_2O = Be(OH)_2 + K = 1.2$	2NaOH (1) (ref 1) 1 x 10 ⁻³
Be	e(ONa) ₂ + 2H ₂ O = Be(OH) ₂ + K = 1.2 AUXILIARY	2NaOH (l) (refl) l x l0 ⁻³ INFORMATION
Be METHOD/APPARATU The hydrox were mixed left in a t the soluti	e(ONa) ₂ + 2H ₂ O = Be(OH) ₂ + K = 1.2 AUXILIARY	<pre>2NaOH (1) (ref 1) 1 x 10⁻³ INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Beryllium hydroxide. A solu- tion of the chloride was pre- pared by dissolving beryllium carbonate in hydrochloric acid; from this, the hydroxide was obtained by precipitation with ammonia, the product being re- peatedly washed with warm dis- tilled water.</pre>
HETHOD/APPARATU The hydrox were mixed left in a t the soluti composition	AUXILIARY AUXILIARY AUXILIARY IS/PROCEDURE: ide and NaOH solutions in a glass bottle and thermostat at 25°C until on reached a constant	2NaOH (1) (ref 1) 1 x 10 ⁻³ INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Beryllium hydroxide. A solu- tion of the chloride was pre- pared by dissolving beryllium carbonate in hydrochloric acid; from this, the hydroxide was obtained by precipitation with ammonia, the product being re- peatedly washed with warm dis-
METHOD/APPARATU The hydrox were mixed left in a t the soluti composition	AUXILIARY AUXILIARY AUXILIARY IS/PROCEDURE: ide and NaOH solutions in a glass bottle and thermostat at 25°C until on reached a constant	2NaOH (1) (ref 1) 1 x 10 ⁻³ INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Beryllium hydroxide. A solu- tion of the chloride was pre- pared by dissolving beryllium carbonate in hydrochloric acid; from this, the hydroxide was obtained by precipitation with ammonia, the product being re- peatedly washed with warm dis- tilled water.

	1		
		MEASUREMENTS:	
<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>	Fricke,	R.; Humme, H.	
<pre>(2) Sodium hydroxide; NaOH; [1310-73-2]</pre>	Z. Anor 400-10.	Z. Anorg. Allg. Chem. <u>1929</u> , 178, 400-10.	
(3) Water; H ₂ O; [7732-18-5]			
ARIABLES:	PREPARED I	37:	
T/K = 303		H. Einaga	
Composition		Y. Komatsu	
XPERIMENTAL VALUES:	l		
Composition of the	saturated so	lution at 30°C	
NaOH/mass % Be	eO/mass %	Solid phase	
14.10	0.159	Be(OH) ₂	
16.20	0.197	–	
19.52	0.352	17	
	0.780 1.66		
	2.95	11	
34.10	4.66	u	
36.32	3.22	BeO'NaOH'H2O	
	3.04		
	3.06	U	
	3.35	11	
	3.40 3.78	11	
Temperature coefficies stable β -Be(OH) ₂ in reported by the authors	aqueous NaC	OH solution was	
stable β -Be(OH), in	aqueous NaC	OH solution was	
stable β -Be(OH) ₂ in reported by the authors	aqueous NaC	OH solution was ive.	
stable β -Be(OH) ₂ in reported by the authors	aqueous Nad to be posit: ARY INFORMATION	OH solution was ive.	
stable β-Be(OH) ₂ in reported by the authors AUXILI ETHOD/APPARATUS/PROCEDURE: Inactive modification of Be(OH was equilibrated with aqueous Na solution at 30 ± 1°C by shaking f 3 - 7 days, the equilibrat. suspension was subjected to filtr tion, and dissolved Be ²⁺ in t filtrate was determined gravimetr	aqueous National Source And Sour	DH solution was ive.	
stable β-Be(OH) ₂ in reported by the authors AUXILI ETHOD/APPARATUS/PROCEDURE: Inactive modification of Be(OH was equilibrated with aqueous Na solution at 30 ± 1°C by shaking f 3 - 7 days, the equilibrat. suspension was subjected to filtr tion, and dissolved Be ²⁺ in t filtrate was determined gravimetr	aqueous National Source ANE (1) β -FE OH or he ii- (2) Sod (2) Sod its	DH solution was ive.	
stable β-Be(OH) ₂ in reported by the authors AUXILI ETHOD/APPARATUS/PROCEDURE: Inactive modification of Be(OH was equilibrated with aqueous Na solution at 30 ± 1°C by shaking f 3 - 7 days, the equilibrat. suspension was subjected to filtr tion, and dissolved Be ²⁺ in t filtrate was determined gravimetr	aqueous Na0 a to be posit: ARY INFORMATION SOURCE AND)2 (1) β-F OH par or hyd a- thom he it: ii- for (2) Sod its pred (3) Wate ESTIMATED Temp.:	DH solution was ive. PURITY OF MATERIALS: Beryllium hydroxide. Pre- ed by precipitating the roxide from aqueous BeSO ₄ ution with NH ₃ , washing it roughly with H ₂ O, refluxing in aqueous 10 % NH ₃ solution 24 h on a sand bath, again hing it with H ₂ O, and final- drying it over CaCl ₂ . ium hydroxide. Prepared to highest concentration to cipitate dissolved CO ₂ . er.	
stable β-Be(OH) ₂ in reported by the authors AUXILI ETHOD/APPARATUS/PROCEDURE:	aqueous Na0 a to be posit: ARY INFORMATION SOURCE AND)2 (1) β-F OH par or hyd a- thom he it: ii- for (2) Sod its pred (3) Wate ESTIMATED Temp.:	DH solution was ive. PURITY OF MATERIALS: Deryllium hydroxide. Pre- ed by precipitating the roxide from aqueous BeSO ₄ ution with NH ₃ , washing it roughly with H ₂ O, refluxing in aqueous 10 % NH ₃ solution 24 h on a sand bath, again hing it with H ₂ O, and final- drying it over CaCl ₂ . ium hydroxide. Prepared to highest concentration to cipitate dissolved CO ₂ . er. ERROR: precision ± 1 K. No estimates possible.	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>	Gilbert, R. A.; Garrett, A. B.
<pre>(2) Sodium hydroxide; NaOH; [1310-73-2]</pre>	J. Am. Chem. Soc. <u>1956</u> , 78, 5501-5.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES	PREPARED BY:
T/K = 298.15	H. Einaga
$m_2/mol kg^{-1} = 0.0197 - 0.7130$	Y. Komatsu
EXPERIMENTAL VALUES:	
Solubility of α -Be(OH) ₂ in	aqueous NaOH at 25°C
Molality NaOH	Molality α -Be(OH) ₂
m ₂ /mol kg ⁻¹	$10^{4}m_{1}/mol kg^{-1}$
0.0197	0.75
0.0391	1.16
0.0589	1.46
0.0709	1.86
0.0790	2.22 3.51
0.0871 0.0981	2.40
0.1531	6.48
0.2506	12.0
0.3565	16.5
0.4512 0.7130	21.5 45.0
0.7130	45.0
The results were interpreted by the	two reactions:
$Be(OH)_2(s) + OH^- = HBeO$	
Be(OH) ₂ (s) + 2OH ⁻ ≠ BeC	
	the data, with activity coefficients
taken from ref 1, K_1 and K_2 were fou $K_1 = 3.2 \times 10^{-3}$	$K_2 = 2.0 \times 10^{-3}$.
	2 INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
α -Be(OH) ₂ was equilibrated with aqueous NaOH solution in a glass flask coated inside with paraffin, either from supersaturation (pre- liminary equilibration at 35°C fol- lowed by cooling to 25°C) or from undersaturation (dissolution at 25°C) at 25.00 \pm 0.02°C for seven days. After the sedimentation of solid Be(OH) ₂ for further standing of seven days, pH was measured on	 (1) α-Beryllium hydroxide. The metastable form was prepared by dissolving fused Be (99.5 %) in aqueous HCl followed by precipitation with NaOH. (2) Sodium hydroxide. Baker and Adamson reagent grade. Carbonate free solution prepared. (3) Water. Triply distilled.
the solution using a glass elec- trode pH meter and dissolved Be ²⁺	
was determined spectrophotometri-	ESTIMATED ERROR:
cally.	Temp.: precision ± 0.02 K. Soly.: reproducibility ± 1.5 %, (av. 3 determinations).
	REFERENCES :
	1. Harned, H. S.; Owen, B. B <u>The Physical Chemistry of</u> <u>Electrolyte Solutions</u> . New York: Rheinhold Publishing, 1950.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Beryllium hydroxide; Be(OH) ₂ ; [13327-32-7]	Kolenkova, M. A.; Blistanova, T.D.; Zakirova, A. V.; Bakashova, R. P.; Popov, A. I.
<pre>(2) Sodium hydroxide; NaOH; [1310-73-2]</pre>	*Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall. <u>1974</u> , 17(4), 118-
(3) Water; H ₂ O; [7732-18-5]	22. Sov. Non-Ferrous Met. Res. (Engl. Transl.) <u>1974</u> , 2, Not found.
VARIABLES:	PREPARED BY
T/K = 303, 373 Composition	E. Einaga I. Lambert
EXPERIMENTAL VALUES.	
•	
	INFORMATION
METHOD/APPARATUS/PROCEDURE: Be(OH) ₂ and aqueous NaOH solution (Na ₂ O: 1.3 - 36 wt %) were equi- librated in a vessel made of Mo glass at the specified temperature by shaking for 6 - 12 h. The tem-	<pre>SOURCE AND PURITY OF MATERIALS: (1) Beryllium hydroxide. Prepared as a precipitate by neutraliza- tion of aqueous BeCl₂ solution with NH₃ to pH 7.5.</pre>
perature was regulated within $\pm 0.1^{\circ}$ C during the equilibration. The saturated solution was taken out , and after filtration it was analyzed for Na ₂ O by titration with a standard HCl solution, and for BeO by the photoneutron method (no methodology description).	(2) Sodium hydroxide. Concentrated NaOH solution (50 wt % NaOh) containing 0.04 wt % Na ₂ CO ₃ was used as prepared.
The authors (ref 1) described other physicochemical properties of	ESTIMATED ERROR: No estimates possible.
Be(OH) ₂ in an earlier paper.	
	REFERENCES: 1. Kolenkova, M.A.; Blistanova, T.D. Bakashova, R.P.; Zakirova, A.V. <i>Izv. Vyssh. Uchebn. Zaved.</i> , <i>Tsvetn. Metall.</i> <u>1973</u> , 16(4), 825.

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>	Soboleva, G. I.; Tugarinov, I. A.; Kalinina, V. F.; Khodakovsky, I. L.
<pre>(2) Sodium hydroxide; NaOH; [1310-73-2]</pre>	*Geokhimiya <u>1977</u> , (7), 1013-24.
(3) Water; H ₂ O; [7732-18-5]	[No translation in Geochem. Int.]
VARIABLES:	PREPARED BY:
T/K = 423 - 523 $m_2/mol kg^{-1} = 0 - 1.0$	H. Einaga I. Lambert
EXPERIMENTAL VALUES: Solubility of Be(OH) ₂ i	n aqueous sodium hydroxide
t/°C Concentration of Na	OH Concentration of Be(OH) ₂

Concentration of NaOH m ₂ /mol kg ⁻¹	Concentration of Be(OH 10 ⁴ m ₁ /mol kg ⁻¹)2
0.0001	0.0213 ± 0.002	
0.01	0.134 ± 0.01	
0	0.035 ± 0.025	
0.00001	0.014	
0.0001	0.022 ± 0.008	
0.0005	0.016 ± 0.009	
0.001	0.029 ± 0.005	
0.005	0.083 ± 0.028	
0.01	0.30 ± 0.09	
0.1	2.0 ± 0.6	
0.25	8.6	
0.5	9.8 \pm 0.4	
1.0	21 ± 1	
0	0.052 ± 0.040	
0.1	7.0 ± 1.0	
	$\frac{m_2/\text{mol kg}^{-1}}{0.0001}$ 0.000 0.000 0.0001 0.0005 0.001 0.005 0.001 0.1 0.25 0.5 1.0 0 0.0001 0.001 0.01	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

The total pressure, p =saturating vapor pressure.

AUXILIARY INFORMATION

 α -BeO was saturated with aqueous NaOH solution in an autoclave at a specified temperature within $\pm 5^{\circ}$ C for 7 - 25 days. After equilibration, the aqueous phase was taken out and acidified with HCl; and dissolved Be²⁺ was determined fluorometrically by using Morin [480-16-0] as a complexing reagent. SOURCE AND PURITY OF MATERIALS: (1) α -Beryllium hydroxide. α -BeO

- (hexagonal crystal) was prepared by a hydrothermal method.
- (2) Sodium hydroxide. Chemically pure.
- (3) Water. Twice distilled CO₂ free water.

ESTIMATED ERROR: Temp.: precision \pm 5 K. Soly.: see error reported by authors with molality values above.

REFERENCES:

OMPONENTS :		••••••••••••••••••••••••••••••••••••••	ORIGINAL MEASUREMEN	ITS:
 (1) Beryllium oxide, BeO; [13598-27-5] (2) Sodium fluoride; NaF; [7681-49-4] (3) Sodium hydroxide; NaOH; [1310-73-2] (3) Water; H₂O; [7732-18-5] 		Soboleva, G. I.; Tugarinov, I. A.; Golitsina, N.S.; Khodakovskii, I.L.		
				Geokhimiya <u>1984</u> , (No. 6), 812-22.
		*Geochem. Int. (Engl. Transl.) 1984, 21(7), 20-30.		
		ARIABLES		
<i>T/</i> K =	423, 4	73 and 523	н. L.	Clever
KPERIMENTAL VA	LUES :			an a
Temper	ature	Sodium Fluoride	Sodium Hydroxide	Total Beryllium
t/°C	<i>T/</i> K	m ₂ /mol kg ⁻¹	m ₃ /mol kg ⁻¹	m _{Be} /mol kg ⁻¹
150	423	0.0025	-	8.7x10 ⁻⁵
		0.010	-	2.7x10 ⁻⁴
		0.025	-	2.0x10 ⁻⁴
		0.10 0.25	-	9.6x10 ⁻⁴ 2.4x10 ⁻³
200	473	0.0010	-	$(2.6\pm0.1)\times10^{-5}$
		0.0025 0.010	-	(6.7±0.6)x10 ⁻⁵ 3.1x10 ⁻⁴
		0.025	-	$(4.0\pm1.5)\times10^{-4}$
		0.10	_	$(1.7\pm0.4)\times10^{-3}$
		0.50	-	$(7.7\pm1.0)\times10^{-3}$
		0.10	0.010	2.4x10 ⁻⁵
		0.25	0.010	3.6x10 ⁻⁴
		0.25	0.010	2.6×10^{-3}
		0.25	0.10	4.2×10^{-5}
		0.50	0.10	1.9x10 ⁻⁴
250	523	0.0025	_	3.9x10 ⁻⁵ (?)
250	525	0.010	-	1.4×10 ⁻⁴
		0.025	_	3.0x10 ⁻⁴
		0.10	-	1.1x10 ⁻³
		0.25	-	3.8×10 ⁻³
- <u></u>		· · · · · · · · · · · · · · · · · · ·	······································	
			INFORMATION	
THOD/APPARATU	•		SOURCE AND PURITY O	
in a study (of the	ed by the authors solubility of BeO and aqueous HNO ₃	Artificial	oxide (bromellite). crytals. Hexagonal epared by a 1 method.
		s were saturated	(2) Sodium fluo	
		n autoclave at a	(3) Sodium hydr	
		ature within \pm 5		ecified chemically
legrees for	e / =	25 days. After	pure.	
		he aqueous phase the dissolved Be ²⁺	(3) Water mut	ce distilled CO ₂
			free water.	ce arberrieu co2
was determined fluorometrically by use of Morin [480-16-0] as a com-		wavel .		
plexing read			ESTIMATED ERROR:	
			Temp.: Precisio	n ± 5 K.
	ilibri	ted these data to um constants for	Soly.: See aver table ab	age deviations in
			REFERENCES :	
BeO(s) + H ₂ (D(1) +	F ⁻ (aq) = Be(OH) ₂ F ⁻ (aq)	Kalinina,V.F.	I.; Tugarinov, I.A. ; Khodakovskii, I.L.
			Geokhimiya	<u>1977,</u> (No. 7), 1013.

of 0.018±0.011, 0.022±0.003 and 0.012±0.003 at 150, 200 and 250°C, repectively.

	4
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>	Samchuk, A. I.; Kokot, T. K.
<pre>(2) Sodium fluoride; NaF; [7681-49-4]</pre>	*Ukr. Khim. Zh. (Russ. Ed.) <u>1981</u> , 47, 1107-9.
<pre>(3) Sodium bicarbonate; NaHCO₃; [144-55-8]</pre>	Sov. Prog. Chem. (Engl. Transl.) 1981, 47(10), 103-5.
<pre>(4) Sodium perchlorate; NaClO₄; [7601-89-0]</pre>	
(5) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 $c_2/mol L^{-1} = 0.0002 - 0.10$	H. Einaga I. Lambert
EXPERIMENTAL VALUES:	
Solubility of Be(OH) ₂ in Na ionic strength I(NaClO ₄	$F + NaHCO_3$ aqueous solution at) = 0.1 mol L ⁻¹ and 25°C
Concentration of NaF Concentration $c_2/mol L^{-1}$ $10^4c_3/mol L^{-1}$	h of NaHCO ₃ Concentration of Be(OH) ₂ $10^{4}c_{1}/\text{mol L}^{-1}$
0.0002 1	0.9
0.0004 1	1.2
0.0007 1	2.0
0.0025 1	5.2
0.0050 1	7.0
0.0070 1	10
0.010 1	16
0.10 1	110
Additional experiments on the deperturbed fraction, $\alpha = [F^{-}]/([F^{-}] + [HCO_{3}^{-}])$,	endence of Be(OH) ₂ solubility on the gave a maximum at $\alpha = 0.5$.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
β -Be(OH) ₂ was equilibrated with aqueous NaF solution of different concentrations containing NaHCO ₃ in a closed teflon vessel by shaking for 70 hours. The ionic strength	(1) β -Beryllium hydroxide. Pre- pared from analytical grade BeSO ₄ and NaOH in aqueous solu- tion.
of the aqueous solution was ad- justed to 0.1 with NaClO $_{4}$ before	(2) Sodium fluoride. Chemically pure.
the equilibration. After 24 hours of standing, a supernatant portion of the saturated solution was taken out, and dissolved Be ²⁺ was deter-	(3) Sodium bicarbonate. Chemically pure.
mined fluorometrically by using Morin [480-16-0] or spectrophoto-	(4) Sodium perchlorate.
metrically by using beryllon as complexometric reagents.	(5) Water. Distilled CO ₂ free wa- ter.
	ESTIMATED ERROR:
	No estimates possible.

1	······································
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>	Bertin, F.; Thomas, G.; Merlin, JC.
<pre>(2) Sodium perchlorate; NaClO₄; [7601-89-0]</pre>	C. R. Hebd. Seances Acad. Sci. <u>1965</u> , 260, 1670-3.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES ·	PREPARED BY:
T/K room temperature (not specified)	H. Einaga Y. Komatsu
EXPERIMENTAL VALUES:	
The solubility product of Be(OH)	2 in aqueous 0.5 mol L ⁻¹ NaClO ₄ at aperature
The solubility product in the for 1.0×10^{-11} .	$K'_{S} = [Be(OH)_{2}][H^{+}]^{2}/[Be^{2+}] =$
The compiler calculated a tentat	ive value of $K_{s0} = [Be^{2^+}][OH^-]^2$
from K'_s and $K_w = 1.0 \times 10^{-14}$. The	e value is $K_{s0}/[Be(OH)_2] =$
$K_w^2/K_s' = 1.0 \times 10^{-17}.$	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:	
An aqueous 0.5 mol L^{-1} NaClO ₄ solution containing (1 - 80) x 10 ⁻³ mol L^{-1} Be ²⁺ was titrated potentiometrically with a standard NaOH solution using a glass electrode. The potentiometric data were analyzed in terms of surface potentiometry (ref 1).	Nothing specified.
	ESTIMATED ERROR:
	No estimates possible.
	REFERENCES: 1. Lefebvre, J. J. Chim. Phys. <u>1957</u> , 54, 553; <u>1958</u> , 55, 227.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>	Mitskevich, B. F.; Samchuk, A. I. Geokhimiya <u>1978</u> , (9), 1419-24.
<pre>(2) Sodium bicarbonate; NaHCO₃; [144-55-8]</pre>	[No translation in Geochem. Int.]
(3) Sodium perchlorate; NaClO ₄ ; [7601-89-0]	
(4) Water; H ₂ O; [7732-18-5]	1
VARIABLES:	PREPARED BY:
T/K = 298 $c_2/mol L^{-1} = 0.00005 - 1.0$	H. Einaga I. Lambert
EXPERIMENTAL VALUES:	a l
Solubility of Be(OH) ionic strength I(NaClO ₄	in aqueous NaHCO ₃ at) = 0.01 mol L^{-1} and 25°C
Concentration of NaHCO ₃ c_2 /mol L ⁻¹	Concentration of Be(OH) ₂ $10^{4}c_{1}$ /mol L ⁻¹
0.00005	0.8
0.0001	1.0
0.0005	1.5
0.001	2.4
0.005	8.1
0.01	19
0.06	50
0.1	100
0.5	1400
1.0	3300
AUXILIARÝ	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Be(OH) ₂ was equilibrated with aqueous $NaHCO_3$ solution in a closed teflon vessel by shaking for 40	 (1) Beryllium hydroxide. Chemical- ly pure or analytical grade re- agent.
hours. The ionic strength of the aqueous solution was adjusted to	(2) Sodium bicarbonate.
0.01 with NaClO ₄ before the equi- libration. After 20 hours of standing, the supernatant portion of the saturated solution was taken out, and dissolved Be ²⁺ was deter- mined fluorometrically by using Morin [480-16-0] or spectrophoto-	(3) Sodium perchlorate. Apparently formed in solution from analy- tical grade HClO ₄ and NaOH.
	(4) Water. Twice distilled CO ₂ free water.
metrically by using beryllon as complexometric reagents.	ESTIMATED ERROR:
	No estimates possible.
	REFERENCES :

1(IENTS :	
	Beryllium	hydroxid

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>	Samchuk, A. I.; Mitskevich, B. F.	
(2) Sodium carbonate; Na ₂ CO ₃ ; [497-19-8]	Geokhimiya <u>1980</u> , (9), 1371–6. Geochem. Int. (Engl. Transl.) <u>1980</u> , 17(5), 62–6.	
<pre>(3) Sodium perchlorate; NaClO₄; [7601-89-0]</pre>		
(4) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = 298 $c_2/mol L^{-1} = 0.0005 - 0.5$	H. Einaga I. Lambert	
EXPERIMENTAL VALUES: Solubility of Be(OH) ionic strength I(NaClO ₄	, in aqueous Na_2CO_3 at) = 1.0 mol L ⁻¹ and 25°C	
Concentration of Na_2CO_3 $c_2/mol L^{-1}$	Concentration of Be(OH) ₂ $10^{4}c_{1}$ /mol L ⁻¹	
0.0005	0.6	
0.0010	0.8	
0.0050	1.1	
0.010	3.3	
0.025	7.7	
0.050	11	
0.10	44	
0.5	500	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: α -Be(OH) ₂ was equilibrated at 25 ± 1°C with aqueous Na ₂ CO ₃ solution in a closed teflon vessel by shaking for 80 hours. The ionic strength of the aqueous solution was ad- justed to 1.0 with NaClO ₄ before	 SOURCE AND PURITY OF MATERIALS: (1) α-Beryllium hydroxide. Prepared from analytical grade BeSO₄ and NaOH in aqueous solution. (2) Sodium carbonate. Chemically 	
the equilibration. After 40 hours of standing, the supernatant por-	pure.	
tion of the saturated solution was taken out, and dissolved Be^{2^+} was	(3) Sodium perchlorate.	
determined fluorometrically by using Morin [480-16-0] as a com- plexing reagent.	(4) Water. Twice distilled CO ₂ free water.	
proming readence	ESTIMATED ERROR: Temp.: precision ± 1 K. Soly.:analytical error ± 5 %.	
	REFERENCES :	

· · · · · · · · · · · · · · · · · · ·		
COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Beryllium hydroxide; Be(OH)₂; [13327-32-7]</pre>	Samchuk, A. I.; Kokot, T. K.	
<pre>(2) Sodium perchlorate; NaClO₄; [7601-89-0]</pre>	*Ukr. Khim. Zh. (Russ. Ed.) <u>1980</u> , 46, 432-3.	
(3) Citric acid; C ₆ H ₈ O ₇ ; [77-92-9]	Sov. Prog. Chem. (Engl. Transl.) <u>1980</u> , 46(4), 92-3.	
(4) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = Room temperature $c_3/mol L^{-1} = 0.0005 - 0.1$ $c_2/mol L^{-1} = 0.1$ (constant I)	H. Einaga I. Lambert Y. Komatsu	
EXPERIMENTAL VALUES:		
Solubility of $Be(OH)_2$ ir ionic strength, $I(NaClO_4) = 0$.	citric acid solution at 1 mol L^{-1} and room temperature.	
Concentration of $C_6H_8O_7$ c ₃ /mol L ⁻¹	Concentration of Be(OH) ₂ 10 ⁴ c ₁ /mol L ⁻¹	
0.0005	2	
0.001	2	
0.005	3	
0.01	4	
0.025	6	
0.05	9	
0.1	17	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: β -Be(OH) ₂ was equilibrated with aqueous citric acid solution of different concentrations in a closed teflon vessel by shaking for 60 hours. After 24 hours of stand- ing, a supernatant portion of the	SOURCE AND PURITY OF MATERIALS: (1) β -Beryllium hydroxide. Pre- pared from analytical grade BeSO ₄ and NaOH in aqueous solu- tion. (2) Sodium perchlorate. Origin pot	
saturated solution was taken out, and dissolved Be ²⁺ was determined	(2) Sodium perchlorate. Origin not specified.	
fluorometrically by using Morin [480-16-0] or spectrophotometrical-	(3) Citric acid. Chemically pure.	
ly by using beryllon as complexo- metric reagents.	(4) Water. Distilled CO ₂ -free wa- ter was used.	
	ESTIMATED ERROR:	
	No estimates possible.	
	REFERENCES :	

48 COMPONENTS : ORIGINAL MEASUREMENTS: Soboleva, G. I.; Tugarinov, I. A.; Kalinina, V. F.; Khodakovsky, I. L. (1) Beryllium hydroxide; Be(OH)₂; [13327-32-7] (2) Sodium nitrate; NaNO₃; *Geokhimiya <u>1977</u>, (7), 1013-24. [7631-99-4] [No translation in Geochem. Int.] (3) Water; H₂O; [7732-18-5] VARIABLES: PREPARED BY: T/K = 473 m_2 /mol kg⁻¹ = 0 - 0.1 H. Einaga I. Lambert EXPERIMENTAL VALUES: Solubility of Be(OH)₂ in aqueous sodium nitrate Concentration of $NaNO_3$ $m_2/mol kg^{-1}$ Concentration of Be(OH)₂ t/°C $10^{4}m_{1}/mol ~kg^{-1}$ 200 0.035 ± 0.025 0 0.0001 0.045 0.001 0.050 . 0.01 0.017 ± 0.005 0.1 0.022 ± 0.010 The total pressure, p =saturating vapor pressure.

AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: α-Beryllium hydroxide. α-BeO (hexagonal crystal) was pre- α -BeO was saturated with aqueous NaNO₃ solution in an autoclave at a specified temperature within ±5°C pared by a hydrothermal method. for 7 - 25 days. After equilibration, the aqueous phase was taken out and acidified with HCl; and dissolved Be²⁺ was determined fluo-rometrically by using Morin [480-(2) Sodium nitrate. Chemically pure. Twice distilled CO2 (3) Water. 16-0] as a complexing reagent. free water. ESTIMATED ERROR: Temp.: precision \pm 5 K. Soly.: see error reported by authors with molality values above. **REFERENCES**:

2. The solubility of magnesium hydroxide in aqueous systems. Systems Pages 50-64(E) $Mg(OH)_2 + H_2O$ 65-73 58(E), 74-75 --+ H₂O₂ + H₂O $----+ NH_4Cl + H_2O$ 52(E), 76 52(E), 77 $----+ + ----+ NH_3 + H_2O$ $-----+ \text{NH}_4 \text{NO}_3 + \text{H}_2 \text{O}$ 52(E), 76 $- + H_3 BO_3 + H_2 O$ 60(E), 78 - + MgO + CrO₃ + H₂O 60(E), 79-80 - + MgCl₂ + H₂O 52-53(E), 81-85 ---++ + NH₃ + NH₄Cl + H₂O 52(E), 86-87 ---+ + Ca(OH)₂ + CaCl₂ + H₂O 52-53(E), 88-89 52-53(E), 90-91 $- + - + Ba(OH)_2 + H_2O$ $- + MgSO_4 + H_2O$ 59(E), 92 $- + - + NH_3 + (NH_4)_2SO_4 + H_2O_4$ 52(E), 93 ----+ Mg(SCN)₂ + NH₃ + NH₄SCH + H₂O 52(E), 94 $----+ Mg(NO_3)_2 + NH_3 + NH_4NO_3 + H_2O$ 52(E), 95 $- + - + \text{NaNO}_3 + \text{H}_2\text{O}_3$ 53-54(E), 96-97 --- + MgCO₃ + CO₂ + H₂O 52(E), 98-99 ---+ Mg(C₂H₃O₂)₂ + NH₃ + NH₄C₂H₃O₂ + H₂O 52(E), 100 $----+ CaCO_3 + H_2O$ 51(E)T, 101 56-58(E), 102-103 ----+ (HCl, NaCl or NaNO₃) + H₂O - + (LiCl, NaCl, KCl, KBr or KI) + H_2O 51(E)T, 53-54(E) $- + (Na_2SO_4 \text{ or } k_2SO_4) + H_2O$ - + KOH + H_2O 104-105 ----- + NaOH + NaCl + H₂O 54(E), 106-107 $----+ NaClO_4 + H_2O$ 56(E)T, 108 50-51(E), 56-58(E) $----- + Na_2 SO_4 + H_2 O$ 109 60(E), 110 $----- + CH_3OH + H_2O$ 60(E), 111 $----- + C_2 H_5 OH + H_2 O$ 60(E) $----- + C_6 H_{12} O_6 + H_2 O_6$ (E) is for evaluation pages. refers to a table value.

COMPONENTS :	EVALUATOR :	
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Irma Lambert CEA/SCECF/SECA B.P. 6	H. L. Clever Department of Chemistry
(2) Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA

CRITICAL EVALUATION:

An evaluation of the solubility of magnesium hydroxide in water and in various aqueous solutions.

The solubility of magnesium hydroxide in water and in aqueous solutions is reported in 35 publications. Some of them are very old and do not contain quantitative data, precise data, or enough experimental detail to evaluate. Such papers are only referenced and their data were not compiled.

In aqueous solution the main equilibria which take place are:

and

 $Mg(OH)_{2}(s) = Mg^{2^{+}}(aq) + 2OH^{-}(aq) \qquad K_{s0}^{0} = [Mg^{2^{+}}][OH^{-}]\gamma_{\pm}^{3} \qquad [1]$ $Mg^{2^{+}}(aq) + OH^{-}(aq) = MgOH^{+}(aq) \qquad [2]$

The solubility is therefore a pronounced function of pH.

The solubility of magnesium hydroxide is also dependent on its physical state. Both the precipitation of the hydroxide from salt solution and the hydration of MgO lead to the formation of an amorphous magnesium hydroxide designated in the literature as "labile" or "active". Aging the amorphous form changes it to the thermodynamically stable, well crystallized form, which is less soluble, called the "stable" or "inactive" form. The evolution toward the stable form may be slow, depending on temperature and chemical conditions. Thus, the solubility data may refer, in some cases, to some intermediate ill-defined state. The difference in solubility of these different forms may be perceptible in precise measurements.

The crystalline magnesium hydroxide [1309-42-8] and the mineral brucite [1317-43-7] have the same structure (39). They are hexagonal with an a/c ratio of 1.5206 and a calculated density of 2.40 x 10^3 kg m⁻³.

1. The solubility of magnesium hydroxide in water.

Direct measurements of the solubility, obtained by saturating pure water with MgO or $Mg(OH)_2$ and analyzing the supernatant liquid at equilibrium, are reported in a number of papers (1-3, 5, 7, 9-12, 14, 17, 23, 32). The $Mg(OH)_2$ is determined by titration with an acid or by conductivity measurements. These measurements require total exclusion of CO, because of the strong influence of pH on the solubility. The papers of Fyfe (1) and Fresenius (2) are mostly of historical interest. Fyfe (1) did recognize that magnesium hydroxide solubility decreases with increasing temperature. See (45) for a summary of early solubility work.

The starting material may be either the "active" hydroxide (2, 7, 10, 12, 14, 32) or the "inactive" hydroxide (17, 29). Several papers (5, 11, 23) give no indication of the form used. The "active" hydroxide results when MgO is used or when in situ precipitation from a salt solution is used. The "inactive" hydroxide results when the crystalline material is used. Bush (14) observed a decrease in solubility with time from 2.14 x 10^{-4} to 2.06 x 10^{-4} mol dm⁻³ at 302 K which he attributed to aging. The change is small compared to the scatter observed in other results which range from 1 to 4.5 x 10^{-4} mol dm⁻³ between 291 and 297 K (table 1). Nikolaev and Chelishcheva's result (23) is much larger and was rejected. No systematic trend with temperature or with starting material ("active" or "inactive") was observed in the values in table 1. The average of these results, excluding the two highest, gives an approximate value of the solubility around room temperature of:

 $c_1 = (1.97 \pm 0.7) \times 10^{-4} \text{ mol dm}^{-3}$

Travers and Nouvel (9) measured the magnesium hydroxide solubility over the 291 to 473 K temperature interval. They observed a linear decrease in solubility with increasing temperature up to 373 K.

COMPONENTS :	EVALUATOR:	
 (1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8] (2) Water; H₂O; [7732-18-5] and various aqueous solutions 	Irma Lambert H. L. Clever CEA/SCECF/SECA Department of B.P. 6 Chemistry 92265 Fontenay- Emory University aux-Roses Cedex Atlanta, GA 3032	
	FRANCE USA November, 1991	6

CRITICAL EVALUATION:

Their results will be discussed later.

Table 1. Solubility of Mg(OH), in water; direct measurements.

T/K	Physical State	Solubility 10 ⁴ c ₁ /mol dm ⁻³	Reference
room	active	4.5*	2
291	undefined	1	5
291	active	1.44	7
291	undefined	2	11
291-297	active	3.6	12
302	active	2.14	14
302	inactive	2.06	14
291	inactive	1.9	17
293	active	1.8	10
291	active	4.6 *	32
295	undefined	1.8	29
	Av.	1.97, s(m) = 0.	7

* Values not included in the average.

2. The magnesium hydroxide solubility product; measurements in ternary systems.

Since the solubility of Mg(OH) is very small and difficult to measure with precision, many studies are devoted to solubility measurements in solutions of different pH and ionic strengths. The experimental data can be analyzed to obtain the solubility product, K_{10}^{0} , which in turn leads to an indirect value of the solubility in water. This kind of measurement is reported in a number of publications (6, 8, 9, 13, 16, 21, 22, 24, 29-31). All of the papers except the last one report data in the region of room temperature.

The available experimental data are total magnesium concentration, hydroxide ion concentration by titration or hydroxide ion activity by pH measurement. When the experimental precision permits, the $Mg^{2+}(aq)$ concentration is obtained from the total magnesium concentration by taking into account the $MgOH^{+}(aq)$ formation.

The thermodynamic solubility product, K_{sq}^{0} , is calculated by evaluation of the activity coefficients or by fitting the data and extrapolation to zero ionic strength. Different authors have used different methods to estimate the activity coefficients. Hostetler's evaluation (30) was based on a Debye-Hückel treatment fitted to the experimental data of $\gamma_{\pm}(R_{sq})$ and $\gamma_{\pm}(RCI)$ (36) for the activity coefficients. They were used to calculate K_{sq}^{0} from different sources and compare the results.

An improved treatment would require the estimation of the activity coefficients by full Pitzer equations fitted to each set of binary and ternary results. This is beyond the scope of this work, and it is not justified by the precision of most of the data.

52	
COMPONENTS :	EVALUATOR:
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Irma LambertH. L. CleverCEA/SCECF/SECADepartment ofB.P. 6Chemistry
(2) Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- Emory University aux-Roses Cedex Atlanta, GA 30322 FRANCE USA November, 1991
CRITICAL EVALUATION:	· · · · · · · · · · · · · · · · · · ·
A. Mg(OH) ₂ + NH ₃ + NH ₄ X + H ₂ O	$X = C1^{-}$, SCN ⁻ , NO ₃ ⁻ , CH ₃ CO ₂ ⁻ , SO ₄ ²⁻
Mg(OH), is equilibrated with the as saturated solutions are analyzed for centration is calculated from the k Activity coefficients are neglected	b) report data on these systems. The mmonia-ammonium salt solution. The or Mg^{2^+} , NH_3 and NH_4^+ and the OH^- conase ionization constant for NH_3 (aq). in these works, and the solubility I^*][OH^-] ² and the solubility from c_1 -
of ionic strength for five anions a find a systematic variation in the refined treatment, with estimation necessary. Loven calculated the s	using more recent (38) values of the
With $K_{\rm b} = 1.6 \times 10^{-5}$; $c_1 = 2.7 \times 10^{-5}$; $c_1 = 2.8 \times 10^{-5}$; $c_2 = 2.8 \times 10^{-5}$; $c_1 = 2.8 \times 10^{-5}$; $c_2 = 2.8 \times 10^{-5}$; $c_1 = 2.8 \times 10^{-5}$; $c_2 = 2.8 \times 10^{-5}$; $c_1 = 2.8 \times 10^{-5}$; $c_2 = 2.8 \times 10^{-5}$; $c_2 = 2.8 \times 10^{-5}$; $c_3 = 2.8 \times 10^{-5}$; $c_4 = 2.8 \times 10^{-5}$; $c_5 = 1.8 \times$	10^{-4} mol dm ⁻³ at 283 K, and 10^{-4} mol dm ⁻³ at 289 K.
The data in (8, 22, and 29) we using recent (38) $K_{\rm b}$ values. The res	e also recalculated by the evaluator sults are summarized in table 2.
B. Mg(OH) ₂ + $H_2CO_3 + H_2O$	
pressure (10.8 to 98.123 Pa). The solution. The saturated solution w OH calculated from the dissociat modynamic solubility product was ca	lculated by two methods: values of ict were calculated for each ionic

The evaluator prefers the first more direct method. By this method Kline reports $\log K_{10}^{\circ} = -11.57$. The evaluator repeated the calculation with a modern first ionization constant of H_2CO_3 (pK₄₁ = 6.35 at 298 K (38)) and obtained a value of $\log K_{10}^{\circ} = -11.77$ which leads to a solubility value of $c_1 \approx 8 \times 10^{-5}$ mol dm⁻³. Neither calculation corrected for the activity coefficient of the ions in pure water.

ficients were estimated and combined with the solubility product of MgCO,

C. Mg(OH), + MgCl, + $H_{2}O$

and the ionization constants of H_CO_.

Six papers (13, 15, 18, 19, 27, 30) report studies of this system, however, three of them (15, 18, 27) only report qualitative observations of the increase in $Mg(OH)_2$ solubility with increasing $MgCl_2$ concentration.

The complete phase diagram at 298 K is reported by Bury and Davies (19). They showed the existence of the three solid phases $Mg(OH)_2$, $3MgO\cdot MgCl_2 \cdot 6H_2O$ and $MgCl_2 \cdot 6H_2O$. They also studied (20) the five-component system $MgO + CaO + MgCl_2 + CaCl_2 + H_2O$. In the region of the five-component system in which Mg^{2+} can be detected in solution only $Mg(OH)_2$ and/or $MgCl_2 \cdot 3MgO \cdot 11H_2O$ are solid species. No solid Ca containing species is present.

Hostetler (30) made the most careful studies of this system. He studied the solubility of magnesium hydroxide at 298 K as a function of ionic strength, aging and grain size.

COMPONENTS :	EVALUATOR:	
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Irma Lambert CEA/SCECF/SECA B.P. 6	H. L. Clever Department of Chemistry
(2) Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA

CRITICAL EVALUATION:

Hostetler followed the solubility during aging and correlated it to the grain size of the solid (see Figure 1). At a grain radius of about 50 nm the solid is in its stable state.

Hostetler (30) also measured pH and total magnesium concentration. He assumed two forms for the magnesium in solution

 $[Mg]_{total} = [Mg^{2^+}] + [MgOH^+]$

He evaluated the ${\rm MgOH}^{\star}$ contribution by a fitting his data to the equilibrium equations, and obtained the formation constant:

 $K_{1} = [MgOH^{+}]/[Mg^{2+}][OH^{-}] = 10^{2.6} = 4 \times 10^{2} \text{ dm}^{3} \text{ mol}^{-1}$

He treated his data to obtain values of the thermodynamic solubility product and the solubility, both corrected for the MgOH⁺ contribution, for both the stable and the active hydroxide. The results are:

Stable magnesium hydroxide: $\log K_{s0}^{0} = -11.15$, $c_{1} = 1.34 \times 10^{-4} \mod \text{dm}^{-3}$;

Active magnesium hydroxide: $\log K_{a0}^{\circ} = -10.38$, $c_1 = 2.55 \times 10^{-4} \mod \text{dm}^{-3}$.

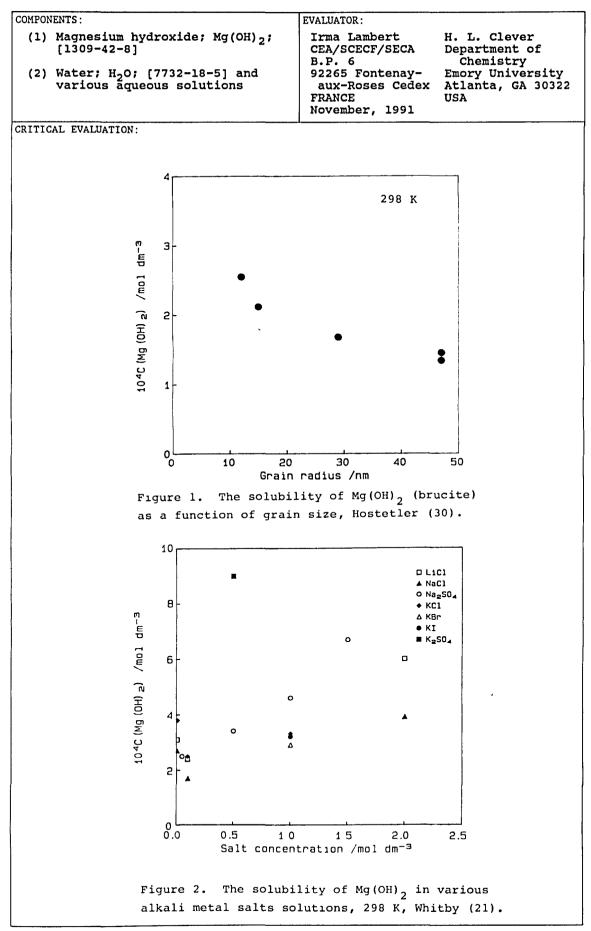
Gjaldbaek (13) carried out a similar set of experiments, but with a shorter time allowed for aging. The evaluator has recalculated the results using the same activity coefficients as Hostetler (30). The results are:

Stable magnesium hydroxide: $\log K_{s0}^{0} = -10.8$, $c_{1} = 1.7 \times 10^{-4} \mod \text{dm}^{-3}$;

Active magnesium hydroxide: $\log K_{0}^{\circ} = -9.2$, $c_{1} = 6 \times 10^{-4} \mod \text{dm}^{-3}$.

The Hostetler results are preferred because of the longer time used to establish equilibrium.

D. Mg(OH), + Alkali Metal Salts + H,O


Whitby (21) measured the solubility of magnesium hydroxide in seven aqueous alkali metal salt solutions at 298 K up to concentrations of 2 mol dm⁻³. The results do not show a systematic correlation (figure 2).

Näsänen (24) measured the solubility of magnesium hydroxide as a function of ionic strength in aqueous NaCl and KCl solutions at 298 K. He measured the pH on precipitation of magnesium hydroxide from MgCl solution, and took great care to avoid CO₂, but did not take into account MgOH^{*}. He extrapolated his results to zero ionic strength and obtained log K_{20}^{0} - -10.734. The evaluator recalculated the constant using Hostetler's activity coefficients and MgOH^{*} formation constant. The result was little changed, being:

log $K_{\pm 0}^{0} = -10.84$ and solubility $c_{1} = 1.6 \times 10^{-4} \text{ mol dm}^{-3}$.

Horn (32) determined the solubility product at $I = 3 \mod dm^{-3}$ NaClo at 298 K by an emf method. The physical state of the solid was not defined, although he did wait 3 to 7 days for his cells to come to equilibrium. He calculated log $K_{g0} = -11.14$ from his data. The compiler and evaluator recalculated and obtained log $K_{g0} = -11.86$. A thermodynamic constant cannot be calculated because the activity coefficients in this medium are not known.

Einaga (33) studied freshly precipitated $Mg(OH)_2$ at $I = 1 \mod dm^{-3}$ NaNO, at 298 K. He found evidence of polynuclear species $Mg_2(OH)_2^{2+}(aq)$ and $Mg_1(OH)_2^{2+}(aq)$. Re-analysis of Hostetler's data taking into account the polynuclear species and their constants evaluated by Einaga did not change his thermodynamic solubility product at zero ionic strength.

COMPONENTS :	EVALUATOR:	<u> </u>
 (1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8] (2) Water; H₂O; [7732-18-5] and various aqueous solutions 	Irma Lambert CEA/SCECF/SECA B.P. 6 92265 Fontenay- aux-Roses Cedex FRANCE	H. L. Clever Department of Chemistry Emory University Atlanta, GA 30322 USA
	November, 1991	USA

CRITICAL EVALUATION:

Einaga's value in the $I = 1 \mod dm^{-3}$ medium is:

 $\log K_{-0} = -9.38$

It is not possible to calculate a value of K_{0}^{0} from Einaga's experiment because of lack of knowledge of activity coefficients in the medium. However, using the same activity coefficients as Hostetler leads to:

 $\log K_{*0}^{0} \simeq -9.8$

and the solubility in pure water of $c_1 \simeq 3.4 \times 10^{-4} \text{ mol dm}^{-3}$.

Maigret (9) and Boryachek *et al.* (31) both studied the system $Mg(OH)_2 + NaCl + NaOH + H_2O$. The results in (9) are suprisingly high for a basic solution and are rejected. Boryachek *et al.* (31) observed the expected decrease in solubility with increasing NaOH concentration. The solubility of magnesium hydroxide in 310 g dm⁻³ NaCl is 3.7 x 10⁻⁴ mol dm⁻³ (31), not very different from the solubility in pure water shown in Tables 1 and 2.

The solubilities in pure water near room temperature estimated in this section from thermodynamic solubility product values are summarized in Table 2. Although the calculation from K_{s0}° values is questionable, the results show less scatter and there is an identifiable difference in the solubility of active and inactive magnesium hydroxide when compared with the values from direct solubility measurements in Table 1.

Hostetler's lower value, $c_1 = 1.34 \times 10^{-4} \text{ mol } dm^{-3}$ at 298 K, obtained under rigorous conditions is considered the best value of the solubility of inactive magnesium hydroxide in pure water. However, it is classed as a tentative value as it is an indirect result.

Because of the rapid change of the active state from freshly precipitated magnesium hydroxide toward the inactive state the active state is not well defined. It is only possible to say that the active magnesium hydroxide has a solubility 2 to 3 times larger than the inactive.

Table 2. Magnesium hydroxide solubility in water estimated from solubility products measured in ternary systems.

<i>T/</i> K	Added Salt	Physical State Mg(OH) ₂	Solubility 10 ⁴ c ₁ /mol dm ⁻³	Reference
283)	undefined	2.7	6
289	1t	undefined	2.8	6
302	NH ⁺	undefined	1.8	8
291 291	salts	active inactive	1.84 1.73	22 22
291		undefined	2.1	22
	J	unuozznou		2.5
298	H ₂ CO ₃	active (?)	0.8	16
298	MgCl ₂	inactive	1.34 *	30
298	MgCl ₂	active	2.55	30
298	KCl, NaCl	inactive	1.6	24
298	NaNO3	active	~3.4	33
entative	value of mag	nesium hydroxid	e solubility in	water at 298

COMPONENTS :	EVALUATOR:	
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Irma Lambert CEA/SCECF/SECA B.P. 6	H. L. Clever Department of Chemistry
(2) Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA

CRITICAL EVALUATION:

Table 3 summarizes values of the solubility product and formation constant of MgOH⁺ to use at 298 K under several conditions. The K_{10}^0 and K_{11} values are classed as tentative.

T/K	Ionic Strength (1/mol dm ⁻³)/Sal	log K _{s0} t	log K ⁰ s0	Reference
298	0		-11.15	30
	1.0/NaNO3	-9.38		33
	3.0/NaClO ₄	-11.86		32 *
	0	$\log K_{11} = 2.6$	(MgOH ⁺)	30
	1.0/NaNO ₃ 1.0/NaNO ₃	$\log \beta_{22} = -21. \\ \log \beta_{34} = -39.$	07 (Mg ₂ (OH) 16 (Mg ₃ (OH)	⁺) 33 ^b ⁺) 33 ^b

Table 3. Magnesium hydroxide solubility product values.

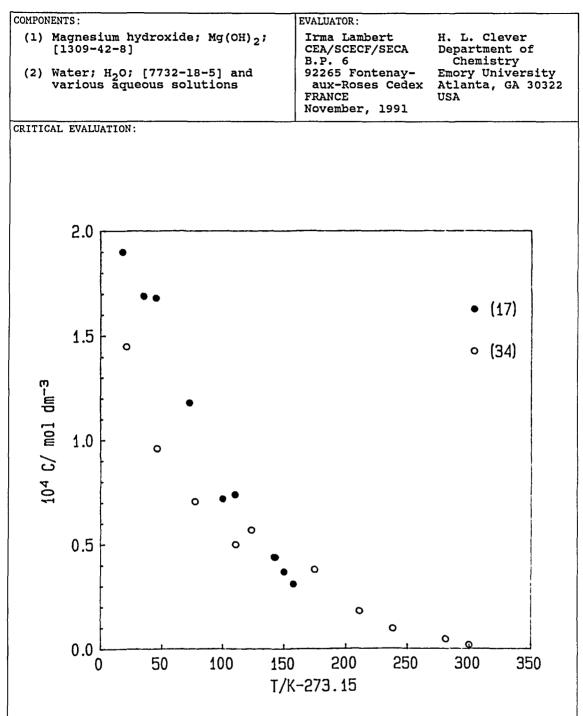
* As recalculated by the evaluator.

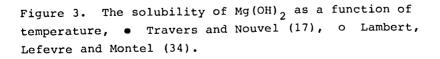
^b Cumulative formation constant, β_{nm} .

3. Solubility measurements above room temperature.

Lambert, Lefevre and Montel (34) studied the solubility of $Mg(OH)_2$ at two ionic strengths from 293 to 573 K. The ionic strengths were I/mol $kg^{-1} = 0.01$ (HCl) and 0.50 (NaCl or NaNo₁). The measurements were carried out in a titanium autoclave on a well-defined inactive $Mg(OH)_2$ sample prepared by conditioning eight days at 573 K before the start of the measurements. The Mg^{2+} concentration was measured as a function of temperature. The pH was measured at room temperature and estimated at the other temperatures from the know variation of K_{\pm} with temperature. Side reactions of the solution with the walls of the autoclave induce some uncertainty in the pH calculations so no effort was made to evaluate the $MgOH^+$ formation constant. Comparison of the results in NaCl and NaNo₃ solutions showed evidence of $MgCl^+$ complex ion formation.

The authors (34) applied the Debye-Hückel treatment to obtain values of K_0° . Although this type of calculation is uncertain at the highest temperatures of the experiment, these were the only data available to use to estimate the solubility of Mg(OH) in water for comparison with the direct measurements of Travers and Nouvel (17) over the 281 to 473 K interval. Only the results at low ionic strength were used after correction for MgCl⁺ formation. K_{10}° was recalculated using activity coefficients evaluated from the electrostatic term of Pitzer's equation as the virial terms were unknown:


$$\ln \gamma_{\pm} = -|Z_{\rm H}Z_{\rm X}| \quad A^{\Phi} \left(I^{1/2}/(1+bI^{1/2}) + (2/b) \ln (1+bI^{1/2})\right)$$
[3]


with A^{Φ} values at the different temperatures from (37).

The solubility in water was evaluated from

 $m_1/\text{mol kg}^{-1} = (K_{*0}^0/4)^{1/3}$ [4]

as the precision of the results was too poor to justify calculation of activity coefficients in pure water containing only the dissolved magnesium hydroxide.

COMPONENT

58

COMPONENTS ·	EVALUATOR :	
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Irma Lambert CEA/SCECF/SECA B.P. 6	H. L. Clever Department of Chemistry
(2) Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA

CRITICAL EVALUATION ·

The solubility results obtained from the data (34) at room temperature by the above procedure and by using Hostetler's activity coefficients differ by about 10 % which is less than the experimental precision.

The solubility values calculated as described above (34) and those of Travers and Nouvel (17) are compared in figure 3 and table 4. The results of (17) are up to 50 % larger at the lower temperatures than the values of (34). The difference may be due to insufficient aging of the solid Mg(OH)₂ by Travers and Nouvel. The results were fitted to a three constant equation. At 291.15 K the average of five data points with a weight of 1 from (17) were used to avoid undue influence of the low temperature results from that work. The result is:

```
\ln (m_1/mol kg^{-1}) = 81.965 - 3432.07/(T/K) - 13.893 \ln (T/K) [5]
```

 $s(m_1) = 1.83 \times 10^{-5} \mod \text{kg}^{-1}$

No attempt was made to improve the fitting of the data by excluding values that were more than two standard deviations from the regression line as this would have excluded all of the high temperature data. The 298 K value is in reasonable agreement with the *tentative* value given earlier (about 24 % higher), assuming equality of concentration and molality in the dilute aqueous solution. Smoothed values from equation [5] are classed as *tentative* and are given in Table 5.

Table 4. Solubility of magnesium hydroxide in water as a function of temperature (17, 34) used in fitting equation [5].

T/K	Solubility of Mg(OH) ₂ 10 ⁵ m ₁ /mol kg ⁻¹	Reference	
291.15	18.9(mean value)	17	
308.15	16.9	17	
318.15	15.0	17	
343-348	11.8	17	
373.15	7.2	17	
383.15	7.4	17	
415.15	4.4	17	
423.15	3.7	17	
431.15	3.1	17	
294.15	14.5	34	
319.15	9.6	34	
350.15	7.1	34	
383.65	5.0	34	
396.15	5.7	34	
416.15	4.4	34	
448.15	1.8	34	
511.15	0.96	34	
554.15	0.46	34	
573.15	0.18	34	

4. Solubility measurements in supercritical water.

Walther (42) measured the solubility of brucite in supercritical water between 573 and 873 K and from 1 to 3 kbar total pressure. The concentration of Mg^{2+} decreases monotonically from 623 to 823 K at 1 kbar, but shows a sigmoidal behavior at 2 kbar. The solubility reaction

COMPONENTS :	*****	Ĩ	EVALUATOR :	
[1309-42- (2) Water; H ₂	hydroxide; Ma 8] O; [7732-18-5 queous solutio] and	Irma Lambert CEA/SCECF/SECA B.P. 6 92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	H. L. Clever Department of Chemistry Emory University Atlanta, GA 30322 USA
RITICAL EVALUATIO	NC:			
			lues of the solubi water from Eqn [!	
	t/°C	<i>T/</i> K	Solubility 10 ⁵ m ₁ /mol kg	J ⁻¹
	0 25 50 75 100	273.15 298.15 323.15 348.15 373.15	19.5 16.6 13.2 10.0 7.44	
	125 150 175 200	398.15 423.15 448.15 473.15	5.39 3.85 2.72 1.92	
	225 250 275 300	498.15 523.15 548.15 573.15	1.35 0.95 0.67 0.47	
is proposed t H ⁺ (aq, a where s.c. =	s.c.) + Mg(OH)	-	(OH) ⁺ (aq, s.c.) +	H ₂ O(s.c.).
			Mg ²⁺ support Mg(OH guilibrium constan	
H ₂ O(s.c	$+ Mg^{2+}(aq, a)$	s.c.) ≈ Mo	g(OH) ⁺ (aq, s.c.) +	H ⁺ (aq, s.c.)
5.38 at 623 K same tempera dominant magn	to 0.77 at 8 tures. The esium species	23 K, and a calculation at neutral	Values of pK at at 2 kbar from 5.6 ons indicate Mg(pH at temperature c's data are class	9 to 3.43 at the OH) ⁺ becomes the s above 633 K at 1
The earl questioned by sheet was pre	Walther beca	use of the	t al.(44) at 773 quenching procedu	K and l kbar were re used. No data
5. Othe	r ternary inc	rganic syste	ems	
A. Mg(0)	$H_{2} + MgSO_{4} + 1$	H ₂ O		
Kiessewe solubility de	etter (25) for pends on the p	- ound that t ohysical sta	the influence of ate of the hydroxi no evaluation of i	de. The author 📑
Danilov	and co-worker	s (43) stu	died the system a	at 298 and 323 K.

Danilov and co-workers (43) studied the system at 298 and 323 K. They show Mg(OH), to be the equilibrium solid phase up to 21.3 mass % MgSO, at 298 K and up to about 24.5 mass % MgSO, at 323 K. They show partial phase diagrams with regions of stability for the solids 3MgO·MgSO, 11H₂O at 298 K and 5MgO·MgSO, 8H₂O at 323 K. The solubility of MgSO, 7H₂O was 27.60 mass % MgSO, at 298 K and the solubility of MgSO, 6H₂O was 33.30 mass % at 323 K. The authors did not determine the Mg(OH)₂ composition of the liquid phase and, thus, no data sheets were prepared.

COMPONENTS :	EVALUATOR:
<pre>(1) Magnesium hydroxide; Mg(OH [1309-42-8]</pre>	2; Irma Lambert H. L. Clever CEA/SCECF/SECA Department of B.P. 6 Chemistry
(2) Water; H ₂ O; [7732-18-5] and various aqueous solutions	1 92265 Fontenay- Emory University aux-Roses Cedex Atlanta, GA 30322

CRITICAL EVALUATION:

B. $MgO + CrO_1 + H_2O$

Revzin et al. (35) studied the system and showed the existence of MgCrO₄·5H₂O.

FRANCE

November, 1991

USA

C. $MgO + B_{0} + H_{0}$

Nikolaev and Chelishcheva (23) studied the system and found that the successive equilibrium solids as mass B_2O_3 increased were Mg(OH)₂, 2MgO·3B₂O₃·15H₂O, MgO·2B₂O₃·9H₂O and MgO·3B₂O₃·7.5H₂O.

D. $MgO + H_{,O} + H_{,O}$

Makarov and Volnov (26) studied the system at 273 and 283 K. They found MgO to be the equilibrium solid only at 273 K and <0.43 mass \$Н.О.. The other solids appearing in the system are MgO, H,O, MgO, 0.5H,O and MgO,.

6. Ternary systems with an organic component

A. Mg(OH) $_{2}$ + CH₄O + H₂O Mg(OH) $_{2}$ + C₂H₆O + H₂O

Janković (28) studied the solubility of Mg(OH), in methanol + water mixed solvent up to 35.3 mass % methanol and in ethanol + water mixed solvent up to 21.6 mass % ethanol. The solubility of Mg(OH), decreased with increasing alcohol concentration with the ethanol showing a greater effect than the methanol. The solid phase was claimed to be $Mq(OH)_{a}$.

B. Mg(OH), + $C_{e}H_{1,2}O_{e}$ (glucose) + H₂O

Fleury (4) observed that glucose increases the solubility of Mg(OH), in water.

7. Comparison of the present results with other evaluations.

These values are presented for comparison; no effort has been made to judge one set of data against another.

Smith and Martell (40) give log $K_{1}^{\circ} = -11.15\pm0.2$ at 298.15 K. They also give formation constants at 298.15 K and ionic strength of 0 and 3 for:

Reaction	log K	at 298.15 K and	ionic	stren	gth:
	-		3.0	mol di	m ⁻³
$Mg^{2+}(aq) + OH^{-}(aq) = Mg(OH)^{+}(aq)$		2.58±0.0	1.85	**	
$\frac{Mg^{2^{+}}(aq) + OH^{-}(aq)}{4Mg^{2^{+}}(aq) + 4OH^{-}(aq)} = \frac{Mg(OH)^{+}(aq)}{(Mg_{4}(OH)_{4})^{4^{-}}}$	†(aq)	16.3	16.93	11	H

The NBS Thermodynamic Tables (39) give Gibbs energy of formation data from which we calculate $\log K_{10}^{\circ} = -11.25$ for Mg(OH)₂(s) and $\log K = 2.58$ for the formation of Mg(OH)⁺(aq)

8. Crystal structure of magnesium hydroxide.

Characterization of the solid state in equilibrium with the saturated solution is an important part of any modern solubility study. The following information, mostly from the *Crystal Data Determinative Tables* (41), is neither complete or evaluated, but it serves as a reminder of this important point.

Crystal Formula	Туре	Density, $\rho/Mg m^{-3}$
MgO; (periclase [1317-74-4]) Mg(OH) ₂ ; (formed in boiling H ₂ O) Mg(OH) ₂ ; (normal form [1309-42-8]))	cubic orthorhombic	3.61 c -
$Mg(OH)_{2}$; (hormal form [1309-42-8]) $Mg(OH)_{2}$; (brucite [1317-43-7])	hexagonal	2.40

COMPONT	2NTTC .	ENALITATOD -	<u> </u>
COMPONE	-	EVALUATOR:	V I Claver
	Magnesium hydroxide; Mg(OH) ₂ [1309-42-8]	Irma Lambert CEA/SCECF/SECA B.P. 6	H. L. Clever Department of Chemistry
	Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University
CRITIC	L EVALUATION:		
	REFER	ENCES	
1.	Fyfe, A. Phil. J. <u>1821</u> , 5, 305.		
2.	Fresenius, R. J. Liebigs Ann. Chem. Pharm. <u>18</u>	<u>347</u> , <i>59</i> , 117-28.	
3.	Bineau, M.A. C. R. Hebd. Seances Acad. Sci.	<u>1855</u> , 14, 509.	
4.	Fleury, M.G. J. Pharm. Chim. [4] <u>1878</u> , 28, 4	.00.	
5.	Kohlraush, F.; Rose, F. Z. Phys. Chem., Stoechiom. Verwa	ndschafsl. <u>1893</u> ,	12, 234-43.
6.	Loven, J.M. Z. Anorg. Chem. <u>1896</u> , 11, 404-1	.5.	
7.	Dupre, F.T.B.; Bialas, J. Angew. Chem. <u>1903</u> , 16, 54-55.		
8.	Herz, W.; Muhs, G. Z. Anorg. Chem. <u>1904</u> , 38, 138-4	.2.	
9.	Maigret, E. Bull. Soc. Chim. Fr. <u>1905</u> , 631-	-34.	
10.	Whipple, G.C.; Mayer, A. Jr. J. Infect. Dis., Suppl. 2 <u>1906</u> ,	151.	
11.	Tamm, O. Z. Phys. Chem., Stoechiom. Verwa	andschafsl. <u>1910</u> ,	74, 496-502.
12.	Remy, H.; Kuhlmann, A. Z. Anal. Chem. <u>1924</u> , 65, 1-24. Z. Elektrochem. Angew. Phys. Che	em. <u>1925</u> , 31, 93	
13.	Gjaldbaek, J.K. Z. Anorg. Allg. Chem. <u>1925</u> , 144	, 269 - 88.	
14.	Busch, W. Z. Anorg. Allg. Chem. <u>1927</u> , 161	, 161-79.	
15.	Maeda, T.; Yamane, S. Bull. Inst. Phys. Chem. Res., To	okyo <u>1928</u> , 7, 339-	56.
16.	Kline, W.D. J. Am. Chem. Soc. <u>1929</u> , 51, 209	93-97.	
17.	Travers, A.; Nouvel, C. R. Hebd. Seances Acad. Sci.	<u>1929, 188, 499-501</u>	•
18.	Lukens, H.S. J. Am. Chem. Soc. <u>1932</u> , 54, 237	72-80.	
19.	Bury, C.R.; Davies, E.H.R. J. Chem. Soc. <u>1932</u> , 2008-15.		
20.	Bury, C.R.; Davies, E.H.R. J. Chem. Soc. <u>1933</u> , 701-05.		

	· · · · · · · · · · · · · · · · · · ·			
COMPONE		EVALUATOR:		
1	<pre>{agnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Irma Lambert CEA/SCECF/SECA B.P. 6	H. L. Clever Department of Chemistry	
(2) 1	Nater; H ₂ O; [7732-18-5] and Narious aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991		
		November, 1991		
CRITICA	L EVALUATION: REFERENCES	(Continued)		
21.	Whitby, L. Trans. Faraday Soc. <u>1933</u> , 29, 1 Trans. Faraday Soc. <u>1935</u> , 31, 6	1318-31; 538-48.		
22.	Fredholm, H. Z. Anorg. Allg. Chem. <u>1934</u> , 218	3, 235-40.		
23.	Nikolaev, A.V.; Chelishcheva, A. C. R. Acad. Sci. URSS <u>1940</u> , 28,			
24.	Näsänen, R. Z. Phys. Chem., Stoechiom. Verwa	andschafsl. <u>1942</u> ,	<i>190A</i> , 183-94.	
25.	Kiessewetter, F. Radex-Rundsch. <u>1953</u> , 117-25.			
26.	Makarov, S.Z.; Vol'nov, I.I. Izv. Akad. Nauk SSSR, Otdel. Khi	lm. Nauk <u>1954</u> , 765	-69.	
27.	D'Ans, J.; Busse, W.; Freund, H. Kali und Steinsalz <u>1955</u> , 8, 3-7			
28.	28. Janković, S. Rastvorljivost Nekih Soli i Hidroksida Zemnoalkalnih Metala u Sistemima Voda-Etil Alkohol i Voda-Metil Alkohol, i Struktura Takvih Zasicenih Rastvora. <u>Doctoral Dissertation</u> , Faculty of Pharmacy, Zagreb <u>1958</u> .			
29.	Shirasaki, T. Denki Kagaku <u>1962</u> , 30, 43 - 45.			
30.	Hostetler, P.B. Am. J. Sci. <u>1963</u> , 261, 238-58.			
31.	Boryachek, A.E.; Gromova, E.T.; Zh. Prikl. Khim. (Leningrad) 19	Kulagina, O.N. 968, 41, 1606-08.		
32.	Horn, G. <i>Radex-Rundsch</i> . <u>1969</u> , 439-59.			
33.	Einaga, H. J. Inorg. Nucl. Chem. <u>1981</u> , 43,	, 229-33.	:	
34.	Lambert, I.; Lefevre, A.; Monte Presented at the Eighth Internat Science and Technology, Jachran	tional CODATA Confe	rence: Data for	
35.	Revzin, G.E.; Volkova, L.V.; Dm: Zh. Neorg. Khim. <u>1983</u> , 28, 495 Transl.) <u>1983</u> , 23, 275-78.	itrienko, T.I.; Sen -98; Russ. J. Inorg	nikov, S.G. . Chem. (Engl.	
36.	Harned, H.S.; Owen, B.B. The Physical Chemistry of Electr Reinhold Publishing Co., New Yor	rolytic Solutions, rk <u>1958</u> .	3rd. Ed.,	
37.	37. Silvester, L.F.; Pitzer, K. S. J. Am. Chem. Soc. <u>1977</u> , 81, 19, 1822.			
38.	Perrin, D. D. Ionization consta aqueous solution, IUPAC Chemical Press, <u>1982</u> , 2nd Ed.	ants of inorganic a l Data Series, NO.	cids and bases in 29, Pergamon	

			0
COMPONENTS :		EVALUATOR :	
[1309-42-8] (2) Water; H ₂ O;	ydroxide; Mg(OH) ₂ ; [7732-18-5] and eous solutions	Irma Lambert CEA/SCECF/SECA B.P. 6 92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	H. L. Clever Department of Chemistry Emory University Atlanta, GA 30322 USA
CRITICAL EVALUATION			
		(continued)	
Harlow, I. J. Phys. C	D.; Evans, W. H.; Pa ; Bailey, S. M.; Chur Them. Ref. Data <u>1982</u> , YNAMIC PROPERTIES.	ney, K. L.; Nuttall	, R. L.
40. Smith, R. Inorganic	M.; Martell, A. E. C Complexes, Plenum Pre	RITICAL STABILITY C ss, New York, <u>1976</u> ,	ONSTANTS, Vol. 4, pp. 1-2.
TABLES, PU	D. H.; Ondik, H. M., blished jointly by th Committee on Powder D	e National Bureau o	f Standards snd
42. Walther, J Geochim. C	.V. Cosmochim.Acta <u>1986</u> ,	50, 733-39.	
Zh. Neorg. Transl.) Lepeshkov,	7. P.; Lepeshkov, I. N Khim. <u>1980</u> , 25, 143 <u>1980</u> , 25, 796-97. Li I. N. Zh. Neorg. Kh em. (Engl. Transl.) <u>1</u>	2; Russ. J. Inorg. tvinov, S. D.; Dani im. <u>1983</u> , 28, 3201	Chem. (Engl. lov, V. P.
44. Poty, B.; Geochim. C	Holland, H. D.; Borcs Sosmochim. Acta <u>1972</u> ,	ik, M. 36, 1101-13.	
45. Mellor, J. Chemistry,	W. A Comprehensive Longmans, Green & Co	Treatise on Inorgan D., London, <u>1923</u> , Vo	ic and Theoretical l. IV, pp. 289-90.
The refere hydroxide	ence cites other early in addition to refere	solubility studies ences 1 - 4 given ab	of magnesium ove. They are:
126.5 Dalton, J. 62.5 Henry, O.	Elements of Mineral omg per liter of cold New System of Chemi mg per liter of cold J. Pharm. [1] <u>1827</u> ,	l water. <i>cal Philosophy</i> , Mar water. 13, 1.	
Fyfe, A., 194.!	a mg per liter of wate see reference 1 above 5 mg per liter of wate	e. Ar at ordinary tempe	eratures,
Fresenius 27.8 Bineau, M	3 mg per liter of wate , R. see reference 2 a mg per liter of eithe . A., see reference 3	bove and data sheet or cold or boiling w above.	•
Warington Magne	mg per liter of cold , R. J. Chem. Soc. 1 esium hydroxide solubi . Z. Anal. Chem. 187	<u>1865</u> , <i>18</i> , 27-29. Llity in water enhar	nced by ammonia.
16.1	3 mg per liter of 2 mg	ol per liter KOH.	
dioxide or the	ly studies were flawa presence of bases fr e magnesium hydroxide librium was not alwaya	om the glassware us samples, and becau	ed, because or im- se sufficient time
containing aqu	s listed below contai eous solutions, but t experimental data, no s, or they were prel	ney were not used b reliable data, dat	ta from other pub-
_		•	

46. Robinson, W. O.; Waggaman, W. H. J. Phys. Chem. <u>1909</u>, 13, 673-78. [MgO + MgCl₂ + H₂O at 25°C.]

<pre>MPROMENTS: [1] Magnesium hydroxide; Mg(OR); [1] Magnesium hydroxide; Mg(OR); [2] Water: H₂O; [7732-18-5] and various āqueous solutions [2] Water: H₂O; [7] Water: Mg(OR); [2] Water: Mg(OR); [2] Water: M</pre>			
<pre>[1309-42-8] (2) Water; H₂O; [7732-18-5] and various âqueous solutions // (2) Water; H₂O; [7732-18-5] and // (2) Water; H₂O; [7732-18-5] // (2) Water; H₂O; (2) Water</pre>			EVALUATOR:
 various âqueous solutions aux-Roses Cedex Atlanta, GA 30322 FRANCE USA November, 1991 ITTICAL EVALUATION: REFERENCES (continued) 47. Gjaldbaek, J. K. Z. Anorg. Allg. Chem. 1925, 144, 145-68. [Preliminary data on Mg(OH)₂ + H₂O used in (13)] 48. Britton, H. T. S. J. Chem. Soc. 1925, 127, 2110-20. [Electrometric titration] 49. Maeda, T.; Yamane, S. Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 1926, 4, 85-101. [Mg0 + MgCl₂ + H₂O at 50°C (graph)] 50. Näsänen, R. Z. Phys. Chem., Stoechiom. Verwandschafsl. 1941, 188A, 2172-83. [Mg(OH)₂ + alkali salts + H₂O, error in accounting for CO₂, corrected in a later paper (24)] 51. Quataroli, A.; Belfiori, O. Ann. Chim. Appl. 1941, 31, 56-61. [Compare solubility of precipitated Mg(OH)₂ and brucite] 52. Stock, D. I.; Davies, C. W. Trans. Faraday Soc. 1948, 44, 856-59. [Titration of MgCl₂ + Ba(OH)₂, formation of MgOH⁺] 53. Roy, D. M.; Roy, R. Am. J. Sci. 1957, 265, 574-83. [Coexistence curve of brucite (Mg(OH)₂) and periclease (MgO) in water] 54. Feitknecht, W.; Schindler, P. Pure Appl. Chem. 1963, 6, 130-99. [Review and evaluation of Solubility of metal hydroxides, see pp. 		[1309-42-8]	CEA/SCECF/SECA Department of B.P. 6 Chemistry
 REFERENCES (continued) 47. Gjaldbaek, J. K. Z. Anorg. Allg. Chem. 1925, 144, 145-68. [Preliminary data on Mg(OH)₂ + H₂O used in (13)] 48. Britton, H. T. S. J. Chem. Soc. 1925, 127, 2110-20. [Electrometric titration] 49. Maeda, T.; Yamane, S. Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 1926, 4, 85-101. [Mg0 + MgCl₂ + H₂O at 50°C (graph)] 50. Näsänen, R. Z. Phys. Chem., Stoechiom. Verwandschafs1. 1941, 188A, 2172-83. [Mg(OH)₂ + alkali salts + H₂O, error in accounting for CO₂, corrected in a later paper (24)] 51. Quataroli, A.; Belfiori, O. Ann. Chim. Appl. 1941, 31, 56-61. [Compare solubility of precipitated Mg(OH)₂ and brucite] 52. Stock, D. I.; Davies, C. W. Trans. Faraday Soc. 1948, 44, 856-59. [Titration of MgCl₂ + Ba(OH)₂, formation of MgOH⁺] 53. Roy, D. M.; Roy, R. Am. J. Sci. 1957, 265, 574-83. [Coexistence curve of brucite (Mg(OH)₂) and periclease (MgO) in water] 54. Feitknecht, W.; Schindler, P. Pure Appl. Chem. 1963, 6, 130-99. [Review and evaluation of solubility of metal hydroxides, see pp. 			aux-Roses Cedex Atlanta, GA 30322 FRANCE USA
 REFERENCES (continued) 47. Gjaldbaek, J. K. Z. Anorg. Allg. Chem. <u>1925</u>, 144, 145-68. [Preliminary data on Mg(OH)₂ + H₂O used in (13)] 48. Britton, H. T. S. J. Chem. Soc. <u>1925</u>, 127, 2110-20. [Electrometric titration] 49. Maeda, T.; Yamane, S. Sci. Papers Inst. Phys. Chem. Res. (Tokyo) <u>1926</u>, 4, 85-101. [Mg0 + MgCl₂ + H₂O at 50°C (graph)] 50. Näsänen, R. Z. Phys. Chem., Stoechiom. Verwandschafsl. <u>1941</u>, 188A, 2172-83. [Mg(OH)₂ + alkali salts + H₂O, error in accounting for CO₂, corrected in a later paper (24)] 51. Quataroli, A.; Belfiori, O. Ann. Chim. Appl. <u>1941</u>, 31, 56-61. [Compare solubility of precipitated Mg(OH)₂ and brucite] 52. Stock, D. I.; Davies, C. W. Trans. Faraday Soc. <u>1948</u>, 44, 856-59. [Titration of MgCl₂ + Ba(OH)₂, formation of MgOH⁺] 53. Roy, D. M.; Roy, R. Am. J. Sci. <u>1957</u>, 265, 574-83. [Coexistence curve of brucite (Mg(OH)₂) and periclease (MgO) in water] 54. Feitknecht, W.; Schindler, P. Pure Appl. Chem. <u>1953</u>, 6, 130-99. [Review and evaluation of solubility of metal hydroxides, see pp. 	DITTO	х Т. ПТТА Х ТХА ФТТАХХ.	November, 1991
 Z. Anorg. Allg. Chem. <u>1925</u>, 144, 145-68. [Preliminary data on Mg(OH)₂ + H₂O used in (13)] 48. Britton, H. T. S. J. Chem. Soc. <u>1925</u>, 127, 2110-20. [Electrometric titration] 49. Maeda, T.; Yamane, S. Sci. Papers Inst. Phys. Chem. Res. (Tokyo) <u>1926</u>, 4, 85-101. [MgO + MgCl₂ + H₂O at 50°C (graph)] 50. Näsänen, R. Z. Phys. Chem., Stoechiom. Verwandschafsl. <u>1941</u>, 188A, 2172-83. [Mg(OH)₂ + alkali salts + H₂O, error in accounting for CO₂, corrected in a later paper (24)] 51. Quataroli, A.; Belfiori, O. Ann. Chim. Appl. <u>1941</u>, 31, 56-61. [Compare solubility of precipitated Mg(OH)₂ and brucite] 52. Stock, D. I.; Davies, C. W. Trans. Faraday Soc. <u>1948</u>, 44, 856-59. [Titration of MgCl₂ + Ba(OH)₂, formation of MgOH⁺] 53. Roy, D. M.; Roy, R. Am. J. Sci. <u>1957</u>, 265, 574-83. [Coexistence curve of brucite (Mg(OH)₂) and periclease (MgO) in water] 54. Feitknecht, W.; Schindler, P. Pure Appl. Chem. <u>1963</u>, 6, 130-99. [Review and evaluation of solubility of metal hydroxides, see pp. 	K11104		(continued)
 J. Chem. Soc. <u>1925</u>, 127, 2110-20. [Electrometric titration] 49. Maeda, T.; Yamane, S. Sci. Papers Inst. Phys. Chem. Res. (Tokyo) <u>1926</u>, 4, 85-101. [Mg0 + MgCl₂ + H₂O at 50°C (graph)] 50. Näsänen, R. Z. Phys. Chem., Stoechiom. Verwandschafsl. <u>1941</u>, 188A, 2172-83. [Mg(OH)₂ + alkali salts + H₂O, error in accounting for CO₂, corrected in a later paper (24)] 51. Quataroli, A.; Belfiori, O. Ann. Chim. Appl. <u>1941</u>, 31, 56-61. [Compare solubility of precipitated Mg(OH)₂ and brucite] 52. Stock, D. I.; Davies, C. W. Trans. Faraday Soc. <u>1948</u>, 44, 856-59. [Titration of MgCl₂ + Ba(OH)₂, formation of MgOH⁺] 53. Roy, D. M.; Roy, R. Am. J. Sci. <u>1957</u>, 265, 574-83. [Coexistence curve of brucite (Mg(OH)₂) and periclease (MgO) in water] 54. Feitknecht, W.; Schindler, P. Pure Appl. Chem. <u>1963</u>, 6, 130-99. [Review and evaluation of solubility of metal hydroxides, see pp. 	47.	2. Anorg. Allg. Chem. 1925, 144	, 145-68. 2 ⁰ used in (13)]
 Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 1926, 4, 85-101. [Mg0 + MgCl₂ + H₂O at 50°C (graph)] 50. Näsänen, R. Z. Phys. Chem., Stoechiom. Verwandschafsl. 1941, 188A, 2172-83. [Mg(OH)₂ + alkali salts + H₂O, error in accounting for CO₂, corrected in a later paper (24)] 51. Quataroli, A.; Belfiori, O. Ann. Chim. Appl. 1941, 31, 56-61. [Compare solubility of precipitated Mg(OH)₂ and brucite] 52. Stock, D. I.; Davies, C. W. Trans. Faraday Soc. 1948, 44, 856-59. [Titration of MgCl₂ + Ba(OH)₂, formation of MgOH⁺] 53. Roy, D. M.; Roy, R. Am. J. Sci. 1957, 265, 574-83. [Coexistence curve of brucite (Mg(OH)₂) and periclease (MgO) in water] 54. Feitknecht, W.; Schindler, P. Pure Appl. Chem. 1963, 6, 130-99. [Review and evaluation of solubility of metal hydroxides, see pp. 	48.	J. Chem. Soc. <u>1925</u> , 127, 2110-2	0.
 2. Phys. Chem., Stoechiom. Verwandschafsl. <u>1941</u>, 188A, 2172-83. [Mg(OH)₂ + alkali salts + H₂O, error in accounting for CO₂, corrected in a later paper (24)] 51. Quataroli, A.; Belfiori, O. Ann. Chim. Appl. <u>1941</u>, 31, 56-61. [Compare solubility of precipitated Mg(OH)₂ and brucite] 52. Stock, D. I.; Davies, C. W. Trans. Faraday Soc. <u>1948</u>, 44, 856-59. [Titration of MgCl₂ + Ba(OH)₂, formation of MgOH⁺] 53. Roy, D. M.; Roy, R. Am. J. Sci. <u>1957</u>, 265, 574-83. [Coexistence curve of brucite (Mg(OH)₂) and periclease (MgO) in water] 54. Feitknecht, W.; Schindler, P. Pure Appl. Chem. <u>1963</u>, 6, 130-99. [Review and evaluation of solubility of metal hydroxides, see pp. 	49.	Sci. Papers Inst. Phys. Chem. Re	<i>s. (Tokyo) <mark>1926</mark>, 4, 85-101.</i> h)]
 Ann. Chim. Appl. <u>1941</u>, 31, 56-61. [Compare solubility of precipitated Mg(OH)₂ and brucite] 52. Stock, D. I.; Davies, C. W. Trans. Faraday Soc. <u>1948</u>, 44, 856-59. [Titration of MgCl₂ + Ba(OH)₂, formation of MgOH⁺] 53. Roy, D. M.; Roy, R. Am. J. Sci. <u>1957</u>, 265, 574-83. [Coexistence curve of brucite (Mg(OH)₂) and periclease (MgO) in water] 54. Feitknecht, W.; Schindler, P. Pure Appl. Chem. <u>1963</u>, 6, 130-99. [Review and evaluation of solubility of metal hydroxides, see pp. 	50.	Z. Phys. Chem., Stoechiom. Verwa $[Mg(OH)_2 + alkali salts + H_2O, e$	rror in accounting for CO ₂ ,
<pre>Trans. Faraday Soc. 1948, 44, 856-59. [Titration of MgCl₂ + Ba(OH)₂, formation of MgOH⁺] 53. Roy, D. M.; Roy, R. Am. J. Sci. 1957, 265, 574-83. [Coexistence curve of brucite (Mg(OH)₂) and periclease (MgO) in water] 54. Feitknecht, W.; Schindler, P. Pure Appl. Chem. 1963, 6, 130-99. [Review and evaluation of solubility of metal hydroxides, see pp.</pre>	51.	Ann. Chim. Appl. 1941, 31, 56-6	
 Am. J. Sci. <u>1957</u>, 265, 574-83. [Coexistence curve of brucite (Mg(OH)₂) and periclease (MgO) in water] 54. Feitknecht, W.; Schindler, P. Pure Appl. Chem. <u>1963</u>, 6, 130-99. [Review and evaluation of solubility of metal hydroxides, see pp. 	52.	Trans. Faraday Soc. 1948, 44, 8	56-59. ormation of MgOH ⁺]
Pure Appl. Chem. <u>1963</u> , 6, 130-99. [Review and evaluation of solubility of metal hydroxides, see pp.	53.	Am. J. Sci. <u>1957</u> , 265, 574-83. [Coexistence curve of brucite (M	g(OH) ₂) and periclease (MgO) in
	54.	Pure Appl. Chem. <u>1963</u> , 6, 130-9 [Review and evaluation of solubi	lity of metal hydroxides, see pp.

COMPONENT	IS: agnesium hydroxi	ide: Mg(OH);	ORIGINAL MEASUREN Fresenius, R.		
	L309-42-8]	,		n. Chem. Pharm.	1846
(2) Wa	(2) Water; H ₂ O; [7732-18-5]		59, 117-28.	п. опещ. гнагш.	1040,
VARIABLES	S:		PREPARED BY:		
	$K = c_{B}$. 293 and	373	I.	Lambert	
	·····				
EXPERIMEN	TAL VALUES: The solubility at the boil	y of Mg(OH) ₂ in ing point of th	water at room t e aqueous satura	cemperature and ated solution.	
	Temperature	Sample Mass	Magnes	ium Oxide	
		mass/g	mass/g	m1/mol kg ⁻¹	
	Room	84.82	0.0015 ± 0.00005	4.5 x 10 ⁻⁴	
	Boiling	84.82	0.0016	4.7 x 10 ⁻⁴	
	The compiler c	alculated the m	otat values.		
		AUXILIARY	INFORMATION	······································	
•	PARATUS/PROCEDURE:		SOURCE AND PURITY		
Equili lowed	bration for 24 by filtration.	hours, fol- No other ex-		m hydroxide. m hydroxide	Basic was
	ntal details give		precipitated	l from magnesium	u sul-
				rbonic acid an precipitate was	
			solved in	nitric acid	and
			order to ob	ted the same w tain a pure pro	ay in duct.
			It was then	decomposed to M	lqO by
			platinum cru	constant weight cible.	ina
			, 		
			ESTIMATED ERROR:		
			No estin	nates possible.	
			REFERENCES :		[
		1			
					1

```
66
```

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Kohlrausch, F.; Rose, F.
(2) Water; H ₂ O; [7732-18-5]	Z. Phys. Chem. Stoechiom. Verwandtschaftsl. <u>1893</u> , 12, 235–43.
VARIABLES:	PREPARED BY:
T/K = 283, 291	I. Lambert
EXPERIMENTAL VALUES:	J
The authors measured the c	conductivity of saturated
Mg(OH) ₂ solutions at 10 an	d 18°C. From their results
they estimated the solubil	ity of Mg(OH) ₂ in water to
be 9 mg L^{-1} or 1 x 10 ⁻⁴ mol	L ⁻¹ at 18°C. The solubility
ratio, $c_{10}/c_{18} = 0.85$ (the s	ame as the conductivity
ratio).	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The conductivity of water was sub- tracted from the total conductivity of the saturated solution. The calculation of the solubility seems to have been performed through em- pirical coefficients. No details are given.	Nothing specified.
	ESTIMATED ERROR:
	No estimates possible.
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Dupre, F. T. B.; Bialas, J.
(2) Water; H ₂ O; [7732-18-5]	Angew. Chem. <u>1903</u> , 16, 54-5.
VARIABLES:	PREPARED BY:
T/K = 291	I. Lambert
EXPERIMENTAL VALUES:	
Based on conductivity at 18°C:	
Conductance of saturated solution Conductance of distilled water Conductance due to $Mg(OH)_2$	$\kappa_{\rm sln} = 77.82 \times 10^{-6} {\rm S cm^{-1}}$ $\kappa_{\rm W} = 15.23 \times 10^{-6} {\rm S cm^{-1}}$ $\kappa = 62.59 \times 10^{-6} {\rm S cm^{-1}}$
The solubility was calculated from	
$c_1 = 1000\kappa/$	′Λο(Mg(OH) ₂)
based on the data of Kohlrausch, which	ch gives
$\Lambda_0(1/2 \text{ Mg(OH)}_2) =$	217.4 S cm^2 mol ⁻¹ .
Using	
$\Lambda_0(Mg(OH)_2) = 4$	34.8 S cm ² mol ⁻¹
from the above equation,	
soly = 1.44 >	10 ⁻⁴ mol L ⁻¹ .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The conductivity of the solution was measured between two platinum electrodes by means of a Kohlrausch bridge. The conductivity cell was maintained in a thermostated bath.	 Magnesium hydroxide. MgO was purified from carbonate by heating in a platinum crucible. Water. Distilled several times, free of air.
	ESTIMATED ERROR:
	No estimates possible.
	REFERENCES: 1. Kohlrausch, L.; Holborn <u>Leitvermogen von Electrolyten</u> . Leipzig: <u>1898</u> .

```
68
```

58	
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Tamm, O.
(2) Water; H ₂ O; [7732-18-5]	Z. Phys. Chem. Stoechiom. Verwandtschaftsl. <u>1910</u> , 74, 496-502.
VARIABLES:	PREPARED BY:
T/K = 291	H. L. Clever
EXPERIMENTAL VALUES:	
The paper reports an inves between $Mn(OH)_2$ and the or	stigation of equilibrium xy acids citric, glycolic, lactic
malic and tartaric. Measu	
	2 and Mg(OH)2 in water at 18°C
•	urated Mg(OH) ₂ solution was
reported to have a conduct	-
	ne solubility of Mg(OH) ₂ is
$0.012 \text{ g } \text{L}^{-1} \text{ or } 2 \times 10^{-4} \text{ mol}$	-
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Nothing specified.	Nothing specified.
	ESTIMATED ERROR:
	No estimates possible
	REFERENCES :

				
COMPO	NENTS:		ORIGINAL MEA	ASUREMENTS:
 (1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8] (2) Water; H₂O; [7732-18-5] 		1	; Kuhlmann, A.	
		Z. Anal. Chem. <u>1924</u> , 65, 1-24.		
			cochem. Angew. Phys. 925, 31, 93.	
VARIA	VARIABLES: PREPARED BY:		:	
	T/K ≈ 291 - 297			H. Einaga
EXPER	IMENTAL VALUES: Solubi	lity of Mg(OH)2	in water a	at 18 - 24°C
4	·····	Method		Remarks
	$\frac{\text{Mg(OH)}_2}{10^4 c_1/\text{mol } \text{L}^{-1}}$	Mechoa		
	3.97	Gravimetry		Inactive form of Mg(OH) ₂
	3.48	Conductivity me	easurement	**
	3.92	Conductimetric	titration	H
			INFORMATION	
	D/APPARATUS/PROCEDURE:			PURITY OF MATERIALS:
	was equilibrated ty water for 3.7			esium hydroxide. MgO was ned before use.
Solution a give tion tive time time tamb tamb	ubility of Mg(OH) ad for the saturate ravimetric method n of the solvent ity measurements, etric neutralizat n HCl and KOH solv ination by CO ₂ was ately by the gravi- the method of co	was deter- ed filtrate by with evapora- , by conduc- or by conduc- tion titration utions. Con- s avoided ul- imetric method onductimetric	appro was us	Conductivity water of eximately 1 x 10^{-6} S cm ⁻¹ sed for the preparation of aturated solution.
cori solu duci cond	ration. Influence rected for in the output bility of Mg(OH) ₂ tivity data in t ductivity measureme librium	from the con- he method of		RROR: recision ± 3 K (compiler). recision ± 2 % (compiler).
	CO ₂ + 20H ⁻ ≠ CO ₃ ²	^{2~} + H ₂ O,	AGTERENCES:	
into	consideration.			

```
70
```

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Magnesium hydroxide; Mg(OH) ₂ ;	Busch, W.
[1309-42-8]	Z. Anorg. Allg. Chem. <u>1927</u> , 161,
(2) Water; H ₂ O; [7732-18-5]	161-79.
-	
VARIABLES:	PREPARED BY:
VARIABLES.	IRBIARED DI.
T/K = 298	H. Einaga
EXPERIMENTAL VALUES:	
Solubility of Mg(O	H)2 in water at 25°C
Mg (OH) 2	Equilibration time
	t/hours
2.14	8
2 12	0
2.13	8
2.08	14
2.06	20
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Purified MgO was mixed with freshly	(1) Magnesium hydroxide. MgO of
distilled conductivity water at	
29.0 \pm 0.1°C for 8 to 20 hours. The resulting saturated solution	Merck was dissolved in HNO ₃ ;
was filtered, H ₂ SO ₄ was added to	the resulting Mg(NO ₃) ₂ was
the filtrate, and the solution was	
TITTETON NOTONTIOMOTTINEILU With	the resulting Mg(NO ₃) ₂ was recrystallized and ignited to MgO at 850°C.
titrated potentiometrically with KOH solution to determine dissolved	the resulting Mg(NO ₃) ₂ was recrystallized and ignited to
KOH solution to determine dissolved Mg(OH) ₂ . Contamination of atmos-	the resulting Mg(NO ₃) ₂ was recrystallized and ignited to MgO at 850°C.
KOH solution to determine dissolved Mg(OH) ₂ . Contamination of atmos- pheric CO ₂ was avoided by using	the resulting Mg(NO ₃) ₂ was recrystallized and ignited to MgO at 850°C.
KOH solution to determine dissolved Mg(OH) ₂ . Contamination of atmos- pheric CO ₂ was avoided by using stoppered flasks and liquid paraf- fin. Care was taken during filtra-	the resulting Mg(NO ₃) ₂ was recrystallized and ignited to MgO at 850°C.
KOH solution to determine dissolved Mg(OH) ₂ . Contamination of atmos- pheric CO ₂ was avoided by using stoppered flasks and liquid paraf- fin. Care was taken during filtra- tion not to carry away any residual	the resulting Mg(NO ₃) ₂ was recrystallized and ignited to MgO at 850°C.
KOH solution to determine dissolved Mg(OH) ₂ . Contamination of atmos- pheric CO ₂ was avoided by using stoppered flasks and liquid paraf- fin. Care was taken during filtra-	<pre>the resulting Mg(NO₃)₂ was recrystallized and ignited to MgO at 850°C. (2) Water. ESTIMATED ERROR: Temp.: precision ± 0.1 K.</pre>
KOH solution to determine dissolved $Mg(OH)_2$. Contamination of atmospheric CO ₂ was avoided by using stoppered flasks and liquid paraffin. Care was taken during filtration not to carry away any residual $Mg(OH)_2$ from the saturated solu-	<pre>the resulting Mg(NO₃)₂ was recrystallized and ignited to MgO at 850°C. (2) Water. ESTIMATED ERROR: Temp.: precision ± 0.1 K. Precision in the titration proce-</pre>
KOH solution to determine dissolved $Mg(OH)_2$. Contamination of atmospheric CO ₂ was avoided by using stoppered flasks and liquid paraffin. Care was taken during filtration not to carry away any residual $Mg(OH)_2$ from the saturated solu-	<pre>the resulting Mg(NO₃)₂ was recrystallized and ignited to MgO at 850°C. (2) Water. ESTIMATED ERROR: Temp.: precision ± 0.1 K.</pre>
KOH solution to determine dissolved $Mg(OH)_2$. Contamination of atmospheric CO ₂ was avoided by using stoppered flasks and liquid paraffin. Care was taken during filtration not to carry away any residual $Mg(OH)_2$ from the saturated solu-	<pre>the resulting Mg(NO₃)₂ was recrystallized and ignited to MgO at 850°C. (2) Water. ESTIMATED ERROR: Temp.: precision ± 0.1 K. Precision in the titration proce- dure was about 1.2 %. REFERENCES:</pre>
KOH solution to determine dissolved $Mg(OH)_2$. Contamination of atmospheric CO ₂ was avoided by using stoppered flasks and liquid paraffin. Care was taken during filtration not to carry away any residual $Mg(OH)_2$ from the saturated solu-	<pre>the resulting Mg(NO₃)₂ was recrystallized and ignited to MgO at 850°C. (2) Water. ESTIMATED ERROR: Temp.: precision ± 0.1 K. Precision in the titration proce- dure was about 1.2 %. REFERENCES: 1. Gjaldbaek, J. K.</pre>
KOH solution to determine dissolved $Mg(OH)_2$. Contamination of atmospheric CO ₂ was avoided by using stoppered flasks and liquid paraffin. Care was taken during filtration not to carry away any residual $Mg(OH)_2$ from the saturated solu-	<pre>the resulting Mg(NO₃)₂ was recrystallized and ignited to MgO at 850°C. (2) Water. ESTIMATED ERROR: Temp.: precision ± 0.1 K. Precision in the titration proce- dure was about 1.2 %. REFERENCES:</pre>
KOH solution to determine dissolved $Mg(OH)_2$. Contamination of atmospheric CO ₂ was avoided by using stoppered flasks and liquid paraffin. Care was taken during filtration not to carry away any residual $Mg(OH)_2$ from the saturated solu-	<pre>the resulting Mg(NO₃)₂ was recrystallized and ignited to MgO at 850°C. (2) Water. ESTIMATED ERROR: Temp.: precision ± 0.1 K. Precision in the titration proce- dure was about 1.2 %. REFERENCES: 1. Gjaldbaek, J. K. Z. Anorg. Allg. Chem. 1925,</pre>
KOH solution to determine dissolved $Mg(OH)_2$. Contamination of atmospheric CO ₂ was avoided by using stoppered flasks and liquid paraffin. Care was taken during filtration not to carry away any residual $Mg(OH)_2$ from the saturated solu-	<pre>the resulting Mg(NO₃)₂ was recrystallized and ignited to MgO at 850°C. (2) Water. ESTIMATED ERROR: Temp.: precision ± 0.1 K. Precision in the titration proce- dure was about 1.2 %. REFERENCES: 1. Gjaldbaek, J. K. Z. Anorg. Allg. Chem. <u>1925</u>,</pre>

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Travers, A.; Nouvel C. R. Hebd. Seances Acad. Sci.	
(2) Water; H ₂ O; [7732-18-5]	<u>1929</u> , <i>188</i> , 499-501.	
VARIABLES:	PREPARED BY:	
T/K = 291 - 473	H. Einaga	
EXPERIMENTAL VALUES:	Mg(OH) ₂ in water	
t/°C	$\begin{array}{c} \text{Mg(OH)}_{2} \\ \text{lo}^{*}c_{1}/\text{mol } L^{-1} \end{array}$	
18	2.45	
18	1.72	

35

45

100

110

142

150

158

178 200

70 - 75

1.68 1.85 1.75

1.69

1.5

1.18

0.72

0.74

0.44

0.37

0.31 0

0

Solubility of Mg(OH)₂ in water decreased linearly with increasing temperature in the range 35 - 100°C. AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Mg(OH) ₂ and water were equilibrated in a Cu flask or autoclave for 1 to 2 days. The dissolved Mg(OH) ₂ was	(1) Magnesium hydroxide. Crystal- line form used.
determined by titration with stand- ard acid solution either potentio- metrically using a hydrogen elec- trode or with phenol red as an in- dicator. A CO ₂ free atmosphere was maintained during the titration.	(2) Water. Freshly distilled water (pH 6.8) was used for the preparation of the saturated solution of Mg(OH) ₂ to avoid contamination by atmospheric CO_2 .
	ESTIMATED ERROR:
	Soly.: precision \pm 9 % (18°C).
	REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium hydroxide (brucite); Mg(OH)₂; [1317-43-7]</pre>	Walther, J. V.
(2) Water; H ₂ O; [7732-18-5]	Geochim. Cosmochim. Acta <u>1986</u> , 50, 733-39.

EXPERIMENTAL VALUES:

The solubility of brucite in super-critical water as a function of temperature and pressure.

Tempe	rature	Pressure	Duration	Approach	log (m _{Mg} /mol kg ⁻¹)
t/ºC	<i>T/</i> K	p _{tot} /bar	t/days		
351	624	1010	3	S	-4.315
	••••	1015	3	_	-4.319
400	673	1000	2		-4.508
	•••	1040	7	υ	-4.492
401	374	1015	2	-	-4.487
451	724	985	2	U	-4.694
		1005	2	-	-4.727
452	725	1015	<u>2</u>	U	-4.789
499	772	995	2	s	-5.127
500	773	1000	3	Ū	-5.087
503	776	1060	2	Ŭ	-5.012
547	820	1000	2	S	-5.433
••••		1010	2	Ū	-5.281
549	822	1010	2	S	-5.354
545	818	1495	2	S	-4.529
595	868	1605	2	S	-4.871
598	871	1540	1	S	-5.005
601	874	1520	2	S	-5.102
350	623	1995	3	-	-3.986
351	624	1995	4	U	-4.006
		2000	4	-	-4.013
399	672	1995	4	U Í	-4.144
400	673	1885	4	S	-4.225
		1950	3	U	-4.212
		1995	4	U	-4.123
451	724	1990	4	S	-4.261
		2005	4	-	-4.309
		2200	4	S	-4.108
460	733	2010	5	U	-4.258
500	773	2005	3	U	-4.193
501	774	2000	10	U	-4.026
548	821	1930	2	U	-4.157
549	822	1995	2	-	-4.145
550	823	1810	2	-	-4.275
		1990	2	-	-4.130
608	881	2010	ī	S	-4.834
609	882	1995	3	Ū	-4.698
610	883	1950	2	Ū	-4.579
629	902	3000	2	-	lost
630	903	2890	2	U	-4.192

Approach: S from supersaturation, U from undersaturation, and - from near same concentration (within 10%).

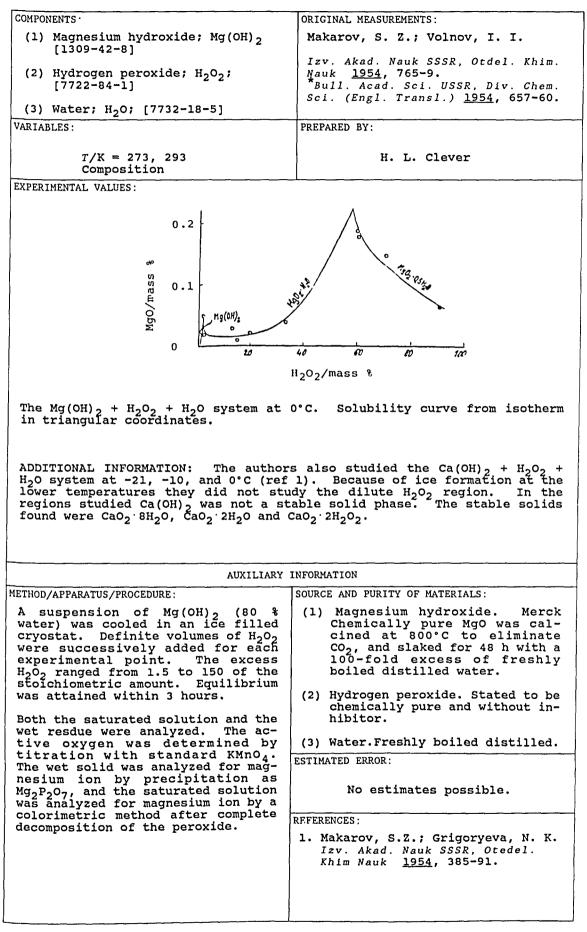
The author's data in the paper were arranged in the order the experiments were done on the 1.7 g sample of $Mg(OH)_2$. The compiler arranged the data above in the order of increasing temperature at the pressures of 1, 1.5, 2 and 3 kbar.

continued on the next page . . .

	7:
COMPONENTS: (1) Magnesium hydroxide (brucite); Mg(OH) ₂ ; [1317-43-7] (2) Water; H ₂ O; [7732-18-5]	ORIGINAL MEASUREMENTS: Walther, J. V. Geochim. Cosmochim. Acta <u>1986</u> , 50, 733-39.
VARIABLES:	PREPARED BY:
T/K = 623 - 903 p/MPa = 98.5 - 300.0	H. L. Clever
EXPERIMENTAL VALUES: The author proposes the solubility reaction $H^{+}(aq)+Mg(OH)_{2}(s) = Mg(OH)^{+}(aq)+H_{2}O$ with the reaction $H_{2}O + Mg^{2+}(aq) = Mg(OH)^{+}(aq) + H^{+}(aq)$ being important. Calculations based on this model show $Mg(OH)^{+}(aq)$ becomes the dominant species at temperatures above 450°C (723 K) at 2 kbar and above 360°C (633 K) at 1 kbar and neutral pH. The smaller increase of brucite solubility with increasing pressure at 450°C than at 550°C causes a cross-over near 1.6 kbar below which the 450°C isotherm gives the greater solubility and above which the 550°C isotherm shows the greater solubility.	figure 1
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The solubility measurements were performed with an extraction quench hydrothermal apparatus (ref 1, 2). A 1.7 g sample of Mg(OH) ₂ was defloculated and the fines removed by settling. X-ray and optical microscope examination indicated a completely crystalline material. The sample was brought to its first sampling temperature and pressure and allowed to equilibrate for seven days. Successive measure- ments followed at 1 to 10 (usually 2 to 4) day intervals. After sam- pling the sampling apparatus was flushed with 0.01 mol L ⁻¹ HCl. The magnesium concentration was deter- mined using a DCP plasma spectrometer.	<pre>Source AND PURITY OF MATERIALS: (1) Brucite. Sargent Welch reagent grade. Treated as described in the method. (2) Water. Distilled, deionized, and decarbonated. ESTIMATED ERROR: Author estimated analytical method for Mg as ±2 %, Over all with un- certanties in p and T as ±5 %. REFERENCES: 1. Walther, J. V.; Orville, P. M. Amer. Mineral. <u>1983</u>, 68, 731-41 2. Ragnarcdottir,K.V.; Walther,J.V. Geochim. Cosmochim. Acta <u>1985</u>, 49, 2109-16.</pre>

74					
COMPO	NENTS :	*****	ORIGINAL MEASU	REMENTS :	
(1)	<pre>(1) Magnesium hydroxide; Mg(OH)₂ [1309-42-8]</pre>		Makarov, S. Z.; Volnov, I. I.		
(2) Hydrogen peroxide; H ₂ O ₂ ; [7722-84-1]		Izv. Akad. Nauk SSSR, Otdel. Khim Nauk <u>1954</u> , 765-9. Bull. Acad. Sci. USSR, Div. Chem	iv. Chem.		
(3)	(3) Water; H ₂ O; [7732-18-5]		Sci. (Engl. Transl.) <u>1954</u> , 657-60		, 057 001
EXPER	IMENTAL VALUES:				
	The Mg(OH)	$_{2} + H_{2}O_{2} + H_{2}O_{2}$	H ₂ O system at	0 and 20°C	
		(1/2)02	MgO	Solid	
	t/°C	mass %	mass %	Phase	
	0	0	0.002	A	
		0.43	0.05	A + B	
		0.62	0.02	В	
		6.02	-	В	
1		6.37	0.01	В	
	U	0.43	0.05	A + B B B	

	0.43	0.05	A + B
	0.62	0.02	В
	6.02	-	В
	6.37	0.01	в
	9.04	0.02	В
	15.47	0.03	в
	16.02	0.10	в
	27.83	0.14	в
	28.45	0.13	В
	33.61	0.10	с
	38.99	0.04	С
	43.35	-	C C
	44.45	-	С
	45.06	-	С
	45.25	-	C
20	0.55	-	A
	0.80	-	С
	1.20	-	С
	2.41	-	с с с с
	3.27	-	С
	4.65	-	С
	8.37	-	С
	8.37	-	С
	10.30		С
	13.84	-	D
	22.30	-	D
	29.14	-	D
	40.43	-	D


Solid Phases: A Mg(OH)₂ B MgO₂·H₂O

 $C MgO_2 \cdot 0.5H_2O D MgO_2$

The authors state that Mg(OH)₂ is the stable solid phase between 0 and 1.5 mass % H₂O₂ at 0°C, and between 0 and 2 mass % H₂O₂ at 20°C.

The system was analyzed as MgO, $(1/2)O_2$ and H_2O . The $(1/2)O_2$ is 0.47 of H_2O_2 . $H_2O_2/mass$ % can be calculated from $(1/2)O_2/mass$ % by multiplying by 2.127.

(Continued on next page)

	······································	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Magnesium hydroxide; Mg(OH)₂ [1309-42-8]</pre>	Herz, W.; Muhs, G.	
(2) Ammonium chloride; NH ₄ Cl;	Z. anorg. Chem. <u>1904</u> , 38, 138-42.	
[12125-02-9] or Ammonium nitrate; NH ₄ NO ₃ ; [6684-52-2]		
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES	PREPARED BY.	
T/K = 302 Concentration	H. L. Clever	
EXPERIMENTAL VALUES: The solubility Product of Mg(OH)	in aqueous NH_4Cl or NH_4NO_3 at 29°C	
NH ⁺ ₄ Mg ²⁺	4 4 5	
	$Mg^{2^+}]^{1^5}/[NH_4^+] = K K_{s0}$	
Ammonium chloride solution		
0.388 0.156	0.159	
0.250 0.108	0.142	
0.172 0.089 0.106 0.0638	0.154 0.152	
0.0771 0.0490	0.141	
Av.	$0.149 \pm 0.008 \qquad 2.6 \times 10^{-11}$	
Ammonium nitrate solution		
0.1834 0.0833 0.076 0.0495	0.131 0.145	
0.076 0.0495	Av. 0.138 2.2×10^{-11}	
The compiler calculated the K_{s0} values using the ammonia K_b value of 1.7 x 10 ⁻⁵ , and the author's relationship $K_{s0} - 4K_b^2 [Mg^{2+}]^3 / [NH_4^4]^2$. The relationship took no account of MgOH ⁺ formation. Only the solubility of Mg(OH) ₂ as simple ions and the dissociation of NH ₃ were considered.		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE.	SOURCE AND PURITY OF MATERIALS:	
Fure Mg(OH) ₂ was prepared and an excess shaken with aqueous solu- tions of NH_4Cl and of NH_4NO_3 of known initial concentrations. The saturated solutions were titrated with acid to a nitrophenol end	 (1) Magnesium hydroxide. Prepared by addition of ammonia to a solution of MgSO₄. Nothing further specified. 	
point. The ammonia concentration was ob-		
tained from the titration. The am- monium ion concentration was ob- tained by difference from the ini-		
tial ammonium salt concentration,	ESTIMATED EPROP.	
and the magnesium ion concentration was taken as 1/2 the ammonia con- centration.	ESTIMATED ERROR: No estimates possible.	
	Continueros bossibie.	
$Mg(OH)_2 + 2NH_4Cl = MgCl_2 + 2NH_4OH$	REFERENCES ·	

COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8] (2) Ammonia; NH₃; [7664-41-7] (3) Ammonium chloride; NH₄Cl; [12125-02-9] (4) Water; H₂O; [7732-18-5] 	Shirasaki, T. Denki Kagaku oyobi Kogyo Butsuri Kagaku <u>1962</u> , 30, 43-5.
(4) Water; n ₂ 0; [//32-18-5]	
VARIABLES:	PREPARED BY: H. Einaga
T/K = 291, 295	Y. Komatsu
EXPERIMENTAL VALUES:	
The solubility of Mg(OH), in ac	queous $NH_3 + NH_4Cl$ at 18 and 22°C
Mg(OH) ₂ Remarks	5

t/°C	$10^{\circ}c_{1}/mol L^{1}$	
22	1.8	A. Mg(OH) ₂ precipitated in the absence of organic acids.
	5.6	B. Mg(OH) precipitated in the presence of citric acid.
	5.3	C. Mg(OH) ₂ precipitated in the presence of sodium tartrate.
18	2.1	A. As A. above.
	6.5	B. As B. above.
	6.1	C. As C. above.

The solutions at 18°C contained NH₃, $c_2/mol L^{-1} = 0.0136$ and NH₄Cl, $c_3/mol L^{-1} = 0.0125$.

The solubility product of $Mg(OH)_2$ at 18°C was calculated from the relations:

 $\kappa = [NH_4^{\dagger}]^2 / ([Mg^{2^+}][NH_4OH]^2), \kappa_b = [NH_4^{\dagger}][OH^-] / [NH_4OH] = 1.75 \times 10^{-5}$ (18°C),

and $K_{s0} = [Mg^{2+}][OH^-]^2 = K_b^2/K$. The analytical results for [NH₃]

(=[NH₄OH]), [NH₄] and [Mg²⁺] were used to obtain values for K_{s0} of 3.71 x 10⁻¹¹ (cf. A.), 1.11 x 10⁻⁹ (cf. B.), and 9.00 x 10⁻¹⁰ (cf. C.).

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Procedure I. Mg(OH) ₂ was equi- librated at 22°C with CO ₂ -free water for 8 h. The Mg ²⁺ in the su- pernatant portion was determined by titration with standard HCl solu- tion. Procedure II. Mg(OH) ₂ was equi- librated with an aqueous solution containing 0.0125 mol L ⁻¹ NH ₄ Cl and 0.0136 mol L ⁻¹ NH ₃ by shaking 8 h at 18°C. The supernatant saturated solution was analyzed for NH ₃ by	(1) Magnesium hydroxide. The Mg(OH) ₂ was precipitated from an aqueous solution containing 0.5 mol L^{-1} MgCl ₂ , 0.25 mol L^{-1} NH ₄ Cl, 1.24 mol L^{-1} NH ₃ , and (0-3) $\times 10^{-3}$ mol L^{-1} of either citric acid or sodium tartrate. The solution and precipitate were protected against CO ₂ and allowed to stand 2-3 days at room temperature. The precipitate was washed with water and used without any drying procedure.
titration with standard HCl solu- tion and for Cl by Mohr's method.	ESTIMATED ERROR:
The $[Mg^{2+}]$ and $[NH_{A}^{+}]$ were calcu-	No estimates possible.
lated by difference by the materials balance requirement.	
	REFERENCES:

COMPONENTS: (1) Magnesium hydroxide; Mg(OH) ₂ ;		ORIGINAL MEASUREMENTS:	
(1) Magnesium hydr [1309-42-8]	oxide; Mg(On)2;	Nikolaev, A. V.; Chelishcheva, A.G. C. R. Acad. Sci. URSS <u>1940</u> , 28,	
<pre>(2) Boric acid; H₃BO₃; [10043-35-3] (3) Water; H₂O; [7732-18-5]</pre>		127-30.	
VARIABLES:		PREPARED BY:	
T/K = 298 Composition		I. Lambert	
EXPERIMENTAL VALUES:	The MgO + B_2O_2 +	H ₂ O system at 25°C	
	B ₂ O ₃ Mg		
	2 5	Phase ss %	
	0 0	.004 A	
	0.215 0	.100 A + B	
	0.573 0	.060 B	
	1.47 0	.119 B + C	
	2.72 0	.206 C	
	2.87 0	.210 C + D	
	2.98 0	.211 D	
	4.76 0	.271 D + E	
	3.17 0	E	
Colid Dherer			
Solid Phases: A. Mg(OH) ₂ C. MgO·2B ₂ O ₃ ·9H ₂ O D. MgO·3B ₂ O ₂			
C. $MgO \cdot 2B_2O_3 \cdot 9H_2C$	5 D. $Mg0.3B_20$	3 ^{.7.5H} 20 E. H ₃ BO ₃	
		INFORMATION	
METHOD/APPARATUS/PROCEDURE: The MgO, H ₃ BO ₃ and H ₂ O are mixed and allowed to stand in a stirred thermostated vessel at 25°C for 40 to 125 days.		SOURCE AND FURITY OF MATERIALS: (1) Magnesium oxide. Freshly ig- nited MgO used.	
		(2) Boric acid. Recrystallized boric acid used.	
Samples are taken	by pipet through ter. The Mg(OH)	(3) Water. Distilled. Boiled	
a cotton wool filter. The $Mg(OH)_2$ is titrated in the presence of the boric acid by a strong acid with methyl orange as the indicator. The boric acid is titrated in the presence of mannitol, glycerin, or invert sugar with a strong base with phenolphthalein as the in- dicator (ref 1).		before use to eliminate CO ₂ .	
		ESTIMATED ERROR:	
		No estimates possible.	
		REFERENCES :	
		<pre>1. Nikolaev, A. V. Izv. Akad. Nauk. SSSR 1938, 415-32.</pre>	

COMPONENTS :	ORIGINAL MEASUREMENTS:			
<pre>(1) Magnesium oxide; MgO; [1309-48-4]</pre>	Revzin, G. E.; Volkova, L. V. Dmitrienko, T. I.; Sennikov, S. G.			
<pre>(2) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Zh. Neorg. Khim. <u>1983</u> , 28, 495-8.			
(3) Chromium (VI) oxide; CrO ₃ ; [1333-82-0]	[*] Russ. J. Inorg. Chem. (Engl. Transl.) <u>1983</u> , 28, 275-7.			
(4) Water; H ₂ O; [7732-18-5]				
EXPERIMENTAL VALUES:				
The CrO_3 + MgO + H ₂ O system at 25°C				
Series I. Pure solid MgO was used.				
MgO Cro	O ₃ Solid Phase			
mass % mas				
2.86	6.34 A			
	2.22 A			
	6.73 A 8.77 A			
	2.56 A			
10.82 25	5.71 A + B			
9.45 28	8.45 B			
	0.53 B			
	4.01 B			
	6.46 B			
	2.81 B 9.02 B			
	0.02 B			
	1.09 B + C			
9.43 52	2.21 C			
	6.12 C			
	7.68 C			
8.51 63	1.66 C + D			
	0.39 D			
	0.01 D 2.01 D			
The Mg(OH) ₂ + CrO_3 +	+ H ₂ 0 system at 25°C			
Series II. Pure Mg(OH) ₂ wa	s used to prepare samples.			
MgO Cro	Phase			
mass % mas	ss %			
	7.21 Mg(OH) ₂			
	2.68 $Mg(OH)_{2}$			
	6.77 Mg (OH) 2 9.97 Mg (OH) 2			
The original paper also gives the con	mpositions of the "wet residues".			
The authors claim that the MgO, used in Series I above, in not trans- formed to Mg(OH) ₂ by water under their conditions. The Schreinemaker "wet residue" method shows MgO the equilibrium solid for the first five				
points. Solid Phases: A. MgO	B. MgCrO ₄ ·5H ₂ O			
C. MgCr ₂ O ₇	6H ₂ O D. CrO ₃			

C. $MgCr_2O_7 \cdot 6H_2O$ D. CrO_3

continued on the next page.

ORIGINAL MEASUREMENTS:		
Revzin, G. E.; Volkova, L. V. Dmitrienko, T. I.; Sennikov, S. G.		
Zh. Neorg. Khim. <u>1983</u> , 28, 495-8.		
[*] Russ. J. Inorg. Chem. (Engl. Transl.) <u>1983</u> , 28, 275-7.		
PREPARED BY:		
I. Lambert H. L. Clever		
The authors used two samples of MgO. They were (1) "analytical reagent" grade, sulfur-free MgO (to specification GOST 4526-67), and (2) "pure" grade superlight MgO (to specification TU 6-09-2213-72). The authors state "since neither of the varieties of MgO used reacts with water, mag- nesium hydroxide cannot be formed under our experimental conditions." The Schreinemakers' method of residues confirms this by showing MgO to be the phase in equilibrium with the saturated solution in Series I.		
agent grade and freshly precipitated Mg(OH) ₂ . The solubility curves from f magnesium oxide chromates or basic at were identified by X-ray diffrac-		
INFORMATION		
SOURCE AND PURITY OF MATERIALS:		
 Magnesium oxide. See addi- tional comments above. Magnesium hydroxide. Either analytical reagent grade (to specification MRTU 6-09-5084- 68) MgO'0.97H₂O by analysis of freshly precipitated material. 		
ESTIMATED ERROR: Sold. No estimates possible. Temp. % 0.1 K (precision).		

REFERENCES:

The solid phases were determined graphically by Schreinemaker's method of residues. The solid phases were identified by X-ray diffraction.

The paper also reports the solubility of pure $MgCrO_4 \cdot 5H_2O$ and $MgCr_2O_7 \cdot 6H_2O$ and 25°C.

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Gjaldbaek, J. K.
<pre>(2) Magnesium chloride; MgCl₂; [7786-30-3]</pre>	Z. Anorg. Allgem. Chem. <u>1925</u> , 144, 145-68, 269-88.
(3) Water; H ₂ O; [7732-18-5]	

The solubility product of inactive Mg(OH)₂ in aqueous MgCl₂ at 25°C^a

MgCl ₂	Mg (OH) 2	рН	-log _{YMg} 2+	-log s _o
c ₂ /mol L ⁻¹	10 ⁴ c ₁ /mol L ⁻¹			
0.5	3.5	9.219	1.005	11.33
0.1	1.6	9.551	0.592	10.95
0.02	1.3	9.822	0.370	10.88
0.004	1.7	10.115	0.296	10.91
0.0008	2.45	10.336	0.206	10.98
0	3.25	10.653	0.268	10.92

^a
$$S_o = c_{Mg}^{2+\gamma} \gamma_{Mg}^{2+\gamma} a_{OH}^{2+\gamma}$$

-log $\gamma_{Mg}^{2+\gamma} = k n (c)^{1/3}$

where c = total ion concentration,

- $n = ionic charge of Mg^{2+}$, and
- k = a fitted constant.

The total magnesium ion concentration is calculated

 c Mg²⁺ $\stackrel{=}{=}$ c MgCl2 + c Mg(OH)2 - c MgOH⁺

The hydroxide ion activity is calculated from $a_{\rm H}^{+\cdot a}_{\rm OH}^{-} = 10^{-14.23}$ at 18°C.

d log $(K_{s0}^{\circ})/d$ T was determined to be 0.006 in the 0-35°C range for the inactive form of Mg(OH)₂.

The solubility product of labile Mg(OH)₂ in aqueous MgCl₂ at 18°C

 $MgCl_2$ $c_2/mol L^{-1}$	рН	-log S _{SO}	
0.1 0.02 0.0049	10.34 10.59 10.90	9.37 9.32 9.18	

 $c_{Mg}^{2+} = c_{MgCl2}$; pH is taken as the beginning of precipitation, and the remaining calculation is as in the former case.

NOTE: The compilers were unable to recalculate the values of -log γ in the tables from the data given.

IPOI	NENTS :	
1)	Magnesium	h

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Gjaldbaek, J. K.
<pre>(2) Magnesium chloride; MgCl₂; [7786-30-3]</pre>	Z. Anorg. Allgem. Chem. <u>1925</u> , 144, 145-68, 269-88.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 273 - 308 c ₂ /mol L ⁻¹ = 0 - 0.5	H. Einaga I. Lambert
EXPERIMENTAL VALUES:	
•	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
I. Inactive modification of Mg(OH) ₂ . 300 mg of Mg(OH) ₂ are mixed with 100 mL of MgCl ₂ solution and the pH of the solution is measured continously with a hydrogen electrode until a constant emf is reached (2 m to 2 h). The Mg ²⁺ in the filtered saturated solution is determined by titration with 0.01 mol L ⁻¹ HCl, and 0.01 mol L ⁻¹ NaOH using the hydrogen electrode as indicator. In order to evaluate c_{MGOH^+} , the hydrolysis constant, $a_{MGOH^+}/(a_{MG}^{2++}a_{OH^-})$, was estimated so as to obtain agreement between the pH and the calculated hydroxide ion activity, $a_{OH^-} =$ $\gamma_{OH^-COH^-}$. The hydroxide ion con- centration was deduced from the titration, and the activity coeffi- cient calculated from $-\log \gamma_{OH^-} =$ $0.2(c_{1ON})^{1/3}$. II. Active (labile) modification of Mg(OH) ₂ . Either metallic Mg was introduced into the MgCl ₂ solu- tions, or NaOH was added to the MgCl ₂ solution until precipitation. The pH is measured continuously and the highest value used in the solubility product calculation which is carried out in the same manner as for the inactive modification.	 (1) Magnesium hydroxide. Inactive form. Prepared by precipita- tion from MgCl₂ solution using an under-stoichiometric amount of NaOH in a CO₂ free environ- ment. After three days the Mg(OH)₂ was washed with dis- tilled water until free of chloride ion. The final product contained only traces of carbonate. (2) Magnesium chloride. Solutions were prepared in distilled water taking care to avoid CO₂ contamination. (3) Water. Distilled, CO₂ free.

ORIGINAL MEASUREMENTS:	
Maeda, T.; Yamane, S.	
Rikagaku Kenkyusho Iho (Bull. Inst. Phys. Chem. Res., Tokyo) <u>1928</u> , 7, 339-56.	
PREPARED BY:	
H. Einaga	

EXPERIMENTAL VALUES:

The solubility of Mg(OH)₂ in aqueous solution increases with increasing concentration of MgCl₂ in the aqueous phase at both 25 and 50°C. At 50°C 0.0372 mass% (as MgO) of Mg(OH)₂ was dissolved in the aqueous solution of 36.73 mass% MgCl₂ solution. No other numerical data on the solubility of Mg(OH)₂ in relation to concentration of MgCl₂ at 25 and 50°C were given in the original paper.

AUXILIARY	INFORMATION
METHOD /A PDADATILS / PDOCEDUDE -	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: Known amounts of MgO were equi- librated with aqueous MgCl ₂ solu- tions of different concentrations at 25 and 50°C in a specially designed solubility measurement ap- paratus (ref 1) having stirring and temperature regulating devices. The solid phase was separated and dissolved in aqueous HCl solution followed by back titration with standard NaOH solution. The dis- solved Mg(OH) ₂ was obtained as a difference from the initial amount.	 (1) Magnesium hydroxide. MgO was obtained from Merck. It was washed with H₂O and then calcined at 800 - 900°C to expel the small amount of accompanying CO₂. (2) Magnesium chloride. Merck & Co. Used after filtration of its aqueous solution to separate insoluble residues. (3) Water. Nothing specified.
	No estimates possible.
	REFERENCES :
	<pre>1. Maeda, T.; Yamane, S. Rikagaku Kenkyusho Iho <u>1924</u>, 3, 679.</pre>

ORIGINAL MEASUREMENTS: Lukens, H. S. J. Am. Chem. Soc. <u>1932</u> , 54,		
J. Am. Chem. Soc. <u>1932</u> , 54,		
2372-80.		
PREPARED BY:		
H. Einaga		
<u> </u>		
were saturated with MgO at 25°C. al form.		
$ \begin{array}{c} 12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 9 \\ 8 \\ 7 \\ 6 \\ 6 \\ 9 \\ 8 \\ 7 \\ 6 \\ 6 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9$		
Time t/hours		
INFORMATION		
 SOURCE AND PURITY OF MATERIALS: (1) Magnesium hydroxide. The MgO used had the following impurities: sulfates, 0.7500%; chlorides, 0.250%; carbonates, 0.100%; nitrates, 0.0064%; Ba, 0.0200%; Ca, 0.0200%; Fe, 0.025%; other heavy metals, 0.000%. (2) Magnesium chlorido 		
(2) Magnesium chloride.		
(3) Water.		
Nothing specified about MgCl ₂ and H ₂ O.		

<u> </u>	
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Bury, C. R.; Davies, E. R. H.
(2) Magnesium chloride; MgCl ₂ ; [7786-30-3]	J. Chem. Soc. <u>1932</u> , 2008-15.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
	I. Lambert
T/K = 298	H. Einaga
Composition	
EXPERIMENTAL VALUES:	nalaanaan oo taalaa ahaan oo taalaan oo taalaa
The MgO + MgCl ₂ +	H ₂ O system at 25°C
	MaCl ₂ Solid
MgCl ₂ Solid Phase	MgCl ₂ Solid Phase
mass %	mass %
2.12 A	10.98 B
2.65 A 6.44 A	14.41 B 16.43 B
8.61 A	17.36 B
9.45 A	21.12 B
10.36 A	21.38 B
10.52 A	24.21 B
	26.59 B 26.86 B
10.62 B*	31.14 B
	33.69 B
10.88 A + B	34.77 B
10.90 A + B	
12.08 A*	35.70 B + C 35.72 B + C
15.32 A*	35.72 C
*	· · · · · · · · · · · · · · · · · · ·
* Metastable equilibriu Solid Phases: A. Mg(OH	
Solid mases: A. My(on) ₂ B. $MgCl_2$ · $3MgO$ · $11H_2O$
C. MgCl	₂ .ен ² о
The concentration of Mg	(OH) ₂ in the saturated solu- it of detection of their method.
tions was below the lim	it of detection of their method.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A mixture of $MgCl_2$, MgO, and H_2O	(1) Magnesium oxide. Prepared by
was shaken in a thermostat at 25°C	heating MgCO ₃ to 850°C. It
for 2 months until equilibrium had been established. After the equi-	contained about 0.3 mass % CaO.
libration the solid phase was fil-	
tered off through a fine sintered	
glass plate and the filtrate	
analyzed for Cl ⁻ by the Volhard	
method. The wet solid was analyzed (results are in the paper but not	
given here) for Mg^{2+} by the	
gravimetric method as Mg ₂ P ₂ O ₇ and	
for Cl ⁻ by the Volhard method.	ESTIMATED ERROR:
The values above are the mean of	
two concordant measurements.	No estimates possible.
The authors cite earlier papers	
(ref 1, 2) that were not successful	REFERENCES :
in establishing the phase rule line of this system.	1. Robinson, W. O.; Waggaman, W. H. J. Phys. Chem. <u>1908</u> , 13, 673.
	2. Maeda, T.; Yamane, S.
	Bull. Inst. Phys. Chem. Res.
	(Tokyo) <u>1926</u> , 4 (No. 50), 85;
	<u>1928</u> , 7, 340.

OMPONENTS :			ORIGINAL MEASUREM	ENTS:
(1) Magnes: [1309-4	ium hydroxide; 42-81	Mg(OH) ₂ ;	Loven, J. M.	
- (2) Magnes: [7786-3	ium chloride; M 30-3]	gCl ₂ ;	Z. Anorg. Chei	m. <u>1896</u> , <i>11</i> , 404-15.
(3) Ammonia	a; NH ₃ ; [7664-4	1-7]		
(4) Ammonia [12125-	um chloride; NH -02-9]	4 Cl ;		
(5) Water;	H ₂ O; [7732-18-	5]		
RIABLES:			PREPARED BY:	
$T/K = 2$ $c_2, c_3/mol$			I. I. I	Lambert
PERIMENTAL V	ALUES:			
An est: c	imation of the composition of a	solubility o aqueous solu	of Mg(OH) ₂ in putions of MgCl ₂	ire water from the + NH ₃ at 10°C
	Mg ²⁺	NH3	NH ⁺ 4	Mg (OH) 2
	c/mol L ⁻¹	$c_{3}/mol L^{-1}$	$c/mol L^{-1}$	10 ⁴ c ₁ /mol L ⁻¹
	0.03762	0.0189	0.00655	3.46
	0.03746	0.0193	0.00615	3.65
	0.02336 0.0219	0.0414 0.0394	0.0095 0.0115	3.89 3.26
	0.01865	0.2209	0.0479	3.74
	0.00849	0.0662	0.0101	3.64
	0.008415	0.0658	0.0105	3.52
$K_b = [1]$ last te	$M_4^+][OH^-]/[NH_3],$ erm applies to	and (Mg ²⁺][Mg(OH) ₂ in	$OH^{-}]^{2} = K_{s0}^{*} = 4c$ pure water as a	oduct of Mg(OH) ₂ . ³ , where the an ideal, completely
K _b = [] last to ionized elimina ammonia	NH ₄][OH ⁻]/[NH ₃], erm applies to d substance wit ated [OH ⁻] from	and (Mg ²⁺)[Mg(OH) ₂ in hout associa the two exp	e solubility pro OH ⁻] ² = K_{s0}^{*} = 4c pure water as a	oduct of Mg(OH) ₂ . ³ , where the an ideal, completely ysis. The author olved for <i>c</i> . An
K _b = [] last to ionized elimina ammonia	NH ₄][OH ⁻]/[NH ₃], erm applies to d substance wit ated [OH ⁻] from a ionization co	and {Mg ²⁺][Mg(OH) ₂ in hout association the two exp nstant of 2.	• solubility property of the solubility of $OH^{-}]^{2} = K_{s0}^{*} = 4c$ pure water as a stion or hydroly ressions, and s	oduct of Mg(OH) ₂ . ³ , where the an ideal, completely ysis. The author olved for <i>c</i> . An
$K_b = [1]$ last te ionized elimina ammonia the ca	NH ₄][OH ⁻]/[NH ₃], erm applies to i substance wit ated [OH ⁻] from a ionization co lculation.	and {Mg ²⁺][Mg(OH) ₂ in hout association the two exp nstant of 2.	B solubility property of the solubility property of the second s	oduct of Mg(OH) ₂ . ³ , where the an ideal, completely ysis. The author olved for <i>c</i> . An) was used in
<pre>K_b = [] last to ionized elimina ammonia the ca: ETHOD/APPARAT Solutions of ammonia v several da at ambient tering, t were evapo decomposed platinum vo The NH₃ is phenol as</pre>	NH ₄][OH ⁻]/[NH ₃], erm applies to d substance wit ated [OH ⁻] from a ionization co lculation. US/PROCEDURE: of magnesium ch vere equilibr ys in stoppere temperature. he saturated rated, and the to MgO by hea essel which was a titrated with the indicator.	and {Mg ²⁺][Mg(OH) ₂ in hout associations the two exp instant of 2. AUXILIARY AUXIL	B solubility property of the solubility property of the second s	oduct of Mg(OH) ₂ . ³ , where the an ideal, completely ysis. The author olved for <i>c</i> . An) was used in
<pre>K_b = [] last to ionized elimina ammonia the ca: THOD/APPARAT Solutions of ammonia v several da at ambient tering, t were evapo decomposed platinum vo The NH₃ is phenol as ion concen the differ</pre>	NH ₄][OH ⁻]/[NH ₃], erm applies to d substance wit ated [OH ⁻] from a ionization co lculation. US/PROCEDURE: of magnesium ch vere equilibr ys in stopper temperature. he saturated rated, and the to MgO by hea essel which was a titrated witt the indicator. tration is cal ence between t	and {Mg ²⁺][Mg(OH) ₂ in hout association the two exp instant of 2. AUXILIARY AUXILIARY AUXILIARY coloride and rated for ad bottles After fil- solutions dry solid ating in a weighed. h o-nitro- The NH ₄ ⁺ culated as he initial	<pre>a solubility pro OH⁻]² = K_{S0}^a = 4c pure water as a ation or hydroly ressions, and s .3 x 10⁻⁵ (ref 1 INFORMATION SOURCE AND FURITY Nothi</pre>	oduct of Mg(OH) ₂ . ³ , where the an ideal, completely ysis. The author olved for c. An) was used in OF MATERIALS:
<pre>K_b = [] last te ionized elimina ammonia the ca: THOD/APPARAT Solutions of ammonia v several da at ambient tering, t were evapo decomposed platinum vo The NH₃ is phenol as ion concen the differ NH₃ concen</pre>	NH ₄][OH ⁻]/[NH ₃], erm applies to d substance wit ated [OH ⁻] from a ionization co lculation. US/PROCEDURE: of magnesium ch vere equilibr ys in stopper temperature. he saturated rated, and the to MgO by hea essel which was a titrated wit the indicator. tration is cal ence between t tration and the	and (Mg ²⁺][Mg(OH) ₂ in hout associations the two exponsions AUXILIARY	B solubility property of the solubility property of the second s	oduct of Mg(OH) ₂ . ³ , where the an ideal, completely ysis. The author olved for c. An) was used in OF MATERIALS:
<pre>K_b = [] last te ionized elimina ammonia the ca: THOD/APPARAT Solutions c ammonia v several da at ambient tering, t were evapo decomposed platinum vo The NH₃ is phenol as ion concen the differ NH₃ concen</pre>	NH ₄][OH ⁻]/[NH ₃], erm applies to d substance wit ated [OH ⁻] from a ionization co lculation. US/PROCEDURE: of magnesium ch vere equilibr ys in stopper temperature. he saturated rated, and the to MgO by hea essel which was a titrated witt the indicator. tration is cal ence between t	and (Mg ²⁺][Mg(OH) ₂ in hout associations the two exponsions AUXILIARY	e solubility pro- OH ⁻] ² = K _{SO} [*] = 4c pure water as a ation or hydroly ressions, and s .3 x 10 ⁻⁵ (ref 1 INFORMATION SOURCE AND PURITY Nothi	oduct of Mg(OH) ₂ . ³ , where the an ideal, completely ysis. The author olved for c. An) was used in OF MATERIALS:

COMPONENTS	:			ORIGINAL	MEASUREMENTS :	:	
(1) Mag	nesium hydro	vide: Ma(OH))	Fredho	lm. н.		
	09-42-8]	Arue, ng(on,	/2/	1100110	<i></i>		
[10	05-42 0]			7 400	ma 111a C	ham 102/	210
	nogium chlow	ide. Vacl.		235-40	rg. Allg. C	11em. <u>1954</u>	, 210,
	nesium chlor	ide; Mgc12;		235-40	•		
[///	86-30-3]						
(3) Ammo	onia; NH ₃ ; [7664-41-7]					
				Į			
	onium chlori	.de; NH ₄ Cl;					
[12]	125-02-9]						
(5) Wat	er; H ₂ O; [77	32-18-5]					
ARIABLES:		···		PREPARED	RV.		
ARTADLED.							
					H. Eina	ga	
	= 291						
c ₂ , c ₃ ,	$c_4/mol L^{-1}$						
VDEDIMENT	AL VALUES:						
APERIMENT		• • • • • •					
	The solubil	ity of Mg(OH	$H)_2 in$	aqueous	solutions (containing	
		MgCl ₂ , N	H ₃ and	NH ₄ Cl a	t 18°C		
-			- 2+	_			-
	NH ₃	NH_4^+	Mg ²⁺		Mg (OH) 2	Method	
	•	•					
	$c/mol L^{-1}$	$c/mol L^{-1}$	c/mc	$pl L^{-1}$	10 ⁴ c ₁ /mol	L-1	
					<u> </u>		
	0.0637	0.0409	0.0	0317	1.8	I	
	0.0369	0.0228		0338	1.9	ī	
	0.0308	0.0220		0410	1.8	ī	
	0.0760	0.0285		0120	1.9	Ī	
	0.0357	0.0167		0175	1.8	ī	
	010307	0.010/	0.0		1.0	-	
	0.1024	0.0952	0.0	0512	1.7	II	
		0.0552	0.0	JJ12			
		0 0411	<u> </u>	1200	17	T T	
	0.0577	0.0411		0289	1.7	II	
	0.0577 0.0391 The author c	0.0201 alculated th	0.0 he solu	ol96 ability :	1.8 from the re	II lations:	-
c	0.0577 0.0391 The author c $^{2}M_{g(OH)2} - ($	0.0201 alculated th c _{Mg} 2+[(1/2)K	0.0 he solu $c_2(c_{NH3})$)196 1bility : 1)(c _{NH4} +)	1.8 from the res $(j^2)^{1/3}$, and	II lations:	-
c	0.0577 0.0391 The author c	0.0201 alculated th c _{Mg} 2+[(1/2)K	0.0 he solu $c_2(c_{NH3})$)196 1bility : 1)(c _{NH4} +)	1.8 from the res $(j^2)^{1/3}$, and	II lations:	-
c	0.0577 0.0391 The author c $^{2}M_{g(OH)2} - ($	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ oh-/cNH3 = 1 g(OH) ₂ conce nd 2 x 10 ⁻⁴	$C_{2}(c_{NH3})$ C_{2)196 1bility : 1)(c _{NH4} +)	1.8 from the read $(j^2)^{1/3}$, and f 1). The es from ref , respective	II lations:	3
k used to 2.9 x 10	0.0577 0.0391 The author c $C_{Mg(OH)2} = (C_{Q})^{2}$ $C_{Q} = C_{NH4} + C_{Q}$ Calculate M D ⁻⁴ at 10°C a	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ oh-/c _{NH3} = J g(OH) ₂ conce nd 2 x 10 ⁻⁴ a AUX	0.0 he solu $C_2(c_{NH3})$ 1.77 x entrati at 29°(ILIARY)	$\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{10^{-2} (res)}{(res)}$ $\frac{10^{-2} (res)}{(res)}$ $\frac{10^{-2} (res)}{(res)}$	1.8 from the replacement of $(j^2)^{1/3}$, and f l). The period of the form refine the form refine the form refine the form refine the form the fo	II lations: K ₂ value is 2 and 3 as rely.	3
R used to 2.9 x 10 ETHOD/APPA	0.0577 0.0391 The author c $^{2}Mg(OH)2 = (T)$ $^{2}Calculate M$ O^{-4} at 10°C a	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ oh-/c _{NH3} = 1 g(OH) ₂ conce nd 2 x 10 ⁻⁴ a AUX RE:	0.0 he solu $C_2(c_{NH3})$ 1.77 x entrati at 29°(ILIARY)	$\frac{10196}{c_{NH4}+2}$ $\frac{10^{-2} (res)}{c_{NH4}+2}$ $\frac{10^{-2} (res)}{c_{NH4}+2}$ $\frac{10^{-2} (res)}{c_{NH4}+2}$ $\frac{10^{-2} (res)}{c_{NH4}+2}$	1.8 from the ready for the ready $(j^2)^{1/3}$, and for the ready for t	II lations: K ₂ value is 2 and 3 as rely.	
used to 2.9 x 10 ETHOD/APPA The so	0.0577 0.0391 The author c $^{2}Mg(OH)2 = (1)$ $^{(2)}Calculate M$ $^{(2)}Calculate M$ $^{(2)}Calculate M$ $^{(3)}Calculate M$	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ of $(OH)_2$ conce nd 2 x 10 ⁻⁴ AUX RE: of Mg(OH)_2	0.0 he solu $C_2(c_{NH3})$ 1.77 x entratiat 29°C ILIARY 1 , in	$\frac{1}{2} \frac{1}{2} \frac{1}$	1.8 from the re () ²) ^{1/3} , and f 1). The es from ref , respectiv N D PURITY OF M Magnesi	II lations: K ₂ value is 2 and 3 as rely. MATERIALS: um hydro	oxide.
used to 2.9 x 10 THOD/APPA The so aqueous	0.0577 0.0391 The author c $a_{Mg(OH)2} = (a_{Mg(OH)2})^{a_{Mg(OH)2}} = (a_{Mg(OH)2})^{a_{Mg(OH)2}}$ Calculate M Calculate M Of at 10°C a ARATUS/PROCEDUR lubility c NH ₃ -NH ₄ Cl-M	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ oh-/cNH3 = 1 g(OH) ₂ conce nd 2 x 10 ⁻⁴ a AUX RE: of Mg(OH) ₂ solut	0.0 he solu $C_2(c_{NH3})$ 1.77 x entratiat 29°C ILIARY 1 , in ions	$\frac{1}{2} \frac{1}{2} \frac{1}$	1.8 from the ref () ²) ^{1/3} , and f 1). The es from ref , respectiv N D PURITY OF M Magnesi ecipitated :	II lations: % 2 and 3 as rely. MATERIALS: um hydro from aqueou	oxide. s MgCl ₂
used to 2.9 x 10 THOD/APPA The so aqueous was det	0.0577 0.0391 The author c $^{2}M_{g}(OH)2 = (1)$ $C_{2} = c_{NH4} + c_{c}$ Calculate M 0^{-4} at 10°C a ARATUS/PROCEDUR lubility c NH ₃ -NH ₄ Cl-N termined by	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ oh-/cNH3 = 1 g(OH) ₂ conce nd 2 x 10 ⁻⁴ AUX RE: of Mg(OH) ₂ solut y two meth	0.0 he solu (2(c _{NH3}) 1.77 x entrati at 29°(ILIARY) in ions ions	$\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{(c_{NH4}+)}{(c_{NH4}+)}$	1.8 from the read $(j^2)^{1/3}$, and f 1). The s from ref , respectiv N D PURITY OF M Magnesi ecipitated : Lution with	II lations: % % % % % % % % % % % % % % % % % % %	oxide. s MgCl ₂ ered in
used to 2.9 x 10 THOD/APPA The so aqueous was det Method 1	0.0577 0.0391 The author c $^{2}M_{g}(OH)2 = (1)$ $C_{2} = c_{NH4} + c_{c}$ Calculate M 0^{-4} at 10°C a ARATUS/PROCEDUR lubility c NH ₃ -NH ₄ Cl-N termined by I. NH ₃ and 1	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ oh-/cNH3 = 1 g(OH) ₂ conce nd 2 x 10 ⁻⁴ AUX RE: of Mg(OH) ₂ solut Y two meth NH ₄ Cl were a	0.0 he solu (2(c _{NH3}) 1.77 x entrati at 29°(ILIARY) ions lods. added	$\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{(c_{NH4}+)}{(c_{NH4}+)}$	1.8 from the read $(j)^2)^{1/3}$, and f 1). The ses from ref , respective N D PURITY OF M Magnesi ecipitated tution with free atm	II lations: % % % % % % % % % % % % % % % % % % %	oxide. s MgCl ₂ ered in
used to 2.9 x 10 THOD/APPA The so aqueous was def Method 1 to aqueo	0.0577 0.0391 The author c $^{2}M_{g}(OH)2 = (m^{2})^{2}$ $^{2} = c_{NH4} + c_{c}$ calculate M 2 at 10°C a 2 at 10°C a 2 ARATUS/PROCEDUF lubility c NH ₃ -NH ₄ Cl-M termined by I. NH ₃ and 1 ous MgCl ₂ sc	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ oh-/ $c_{NH3} = 1$ g(OH) ₂ conce nd 2 x 10 ⁻⁴ a AUX RE: of Mg(OH) ₂ solut y two meth NH ₄ Cl were a plution. Me	0.0 he solu (2(c _{NH3} 1.77 x entrati at 29°(ILLIARY 1 ions ions added ethod	$\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{(c_{NH4}+)}{(c_{NH4}+)}$	1.8 from the read $(j^2)^{1/3}$, and f 1). The s from ref , respectiv N D PURITY OF M Magnesi ecipitated : Lution with	II lations: % % % % % % % % % % % % % % % % % % %	oxide. s MgCl ₂ ered in
k used to 2.9 x 10 THOD/APPA The so aqueous was defi Method 1 to aque II. So	0.0577 0.0391 The author c $^{2}Mg(OH)2 = (Mg(OH)2) = (Mg(OH)2) = (Mg(OH)2) = (Mg(OH)2)$ $^{(2)} = c_{NH4} + c_{1}$ $c_{2} = c_{NH4} + c_{2}$ $c_{3} = c_{2} + c_{3} + c_{4}$ $c_{3} = c_{2} + c_{3} + c_{4}$ $c_{3} = c_{3} + c_{4} + c_{4} + c_{4}$ $c_{3} = c_{3} + c_{4} + c_{4$	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ oh-/ $c_{NH3} = 1$ g(OH) ₂ conce nd 2 x 10 ⁻⁴ a AUX RE: of Mg(OH) ₂ AUX RE: of Mg(OH) ₂ dgCl ₂ solut y two meth NH ₄ Cl were a olution. Me was shaken	0.0 he solu (2(c _{NH3} 1.77 x entrati at 29° ILIARY 1 	$\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{(c_{NH4}+)}{(c_{NH4}+)}$ $\frac{(c_{NH4}+)}{(c_{NH4}+)}$	1.8 from the real $(j)^2)^{1/3}$, and f 1). The s from ref , respective N D PURITY OF M Magnesi acipitated s lution with p free atm inperature.	II lations: K ₂ value is 2 and 3 as rely. ATERIALS: um hydro from aqueou NaOH, filt and dried	oxide. s MgCl ₂ ered in
thop/APPA The so aqueous Was defi Method J to aque II. So aqueous	0.0577 0.0391 The author c $^{2}Mg(OH)2 = (Mg(OH)2) = (Mg(OH)2) = (Mg(OH)2) = (Mg(OH)2)$ $^{2}Calculate Mathinson (Calculate Mathi$	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ of $(1/2)K$ of $(1/2)K$ of $(1/2)K$ of $(1/2)K$ of $(1/2)K$ and 2×10^{-4} and AUX RE: of Mg (OH) 2 MgCl ₂ solut (1/2)K wo meth MH ₄ Cl were a blution. Me was shaken tion. The	0.0 he solu (2(c _{NH3} 1.77 x entrati at 29° ILIARY 1 inn ions iods. added with mix-	$\frac{(2)}{(2)} = \frac{1}{(2)} = $	1.8 from the ref () ²) ^{1/3} , and f 1). The fees from ref , respective N D PURITY OF M Magnesi acipitated for the second but on with free atm persture.	II lations: K ₂ value is 2 and 3 as rely. MATERIALS: um hydro from aqueou NaOH, filt and dried oride	oxide. s MgCl ₂ ered in
thop/APPA The so aqueous Was defi Method J to aque II. So aqueous	0.0577 0.0391 The author c $^{2}M_{g}(OH)2 = (m^{2})^{2}$ $^{2} = c_{NH4} + c_{c}$ calculate M 2 at 10°C a 2 at 10°C a 2 ARATUS/PROCEDUF lubility c NH ₃ -NH ₄ Cl-M termined by I. NH ₃ and 1 ous MgCl ₂ sc	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ of $(1/2)K$ of $(1/2)K$ of $(1/2)K$ of $(1/2)K$ of $(1/2)K$ and 2×10^{-4} and AUX RE: of Mg (OH) 2 MgCl ₂ solut (1/2)K wo meth MH ₄ Cl were a blution. Me was shaken tion. The	0.0 he solu (2(c _{NH3} 1.77 x entrati at 29° ILIARY 1 inn ions iods. added with mix-	$\frac{(2)}{(2)} = \frac{1}{(2)} = $	1.8 from the ref () ²) ^{1/3} , and f 1). The s from ref , respectiv N D PURITY OF M Magnesi acipitated : cution with free atm aperature. gnesium chlommonium c	II lations: K ₂ value is 2 and 3 as rely. MATERIALS: um hydro from aqueou NaOH, filt and dried oride hloride.	oxide. Is MgCl ₂ ered in at room Both
K used to 2.9 x 10 THOD/APPA The so aqueous Wathod 1 to aqueous II. So aqueous tures w	0.0577 0.0391 The author c $^{2}Mg(OH)2 = (Mg(OH)2) = (Mg(OH)2) = (Mg(OH)2) = (Mg(OH)2)$ $^{2}Calculate Mathinson (Calculate Mathi$	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ oh-/ $c_{NH3} = 1$ g(OH) ₂ conce nd 2 x 10 ⁻⁴ a AUX RE: of Mg(OH) ₂ MgCl ₂ solut y two meth NH ₄ Cl were a blution. Me was shaken tion. The 2 - 7 days	0.0 he solu (2(c _{NH3} 1.77 x entrati at 29° ILIARY 1 	$\frac{(2)}{(2)} = \frac{1}{(2)} = $	1.8 from the ref () ²) ^{1/3} , and f 1). The fees from ref , respective N D PURITY OF M Magnesi acipitated for the second but on with free atm persture.	II lations: K ₂ value is 2 and 3 as rely. MATERIALS: um hydro from aqueou NaOH, filt and dried oride hloride.	oxide. Is MgCl ₂ ered in at room Both
THOD/APPA The so aqueous was def Method 1 to aqueous to aqueous tures w 18.00 ±	0.0577 0.0391 The author c $c_{Mg(OH)2} = (m_{g(OH)2})^{-1}$ (2 = c_{NH4} + c calculate M 0 ⁻⁴ at 10°C a ARATUS/PROCEDUF lubility c NH ₃ -NH ₄ Cl-M termined by 1. NH ₃ and 10 ous MgCl ₂ solution vere shaken	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ of $(OH)_2$ conce nd 2 x 10 ⁻⁴ a AUX RE: of Mg(OH)_2 MgCl_2 solut y two meth NH ₄ Cl were a olution. Me was shaken tion. The 2 - 7 days	0.0 he solu (2(c _{NH3} 1.77 x entrati at 29°(ILIARY 1 ions ions iods. added ethod with mix- s at the	$\frac{1}{2} \int \frac{c_{NH4}}{c_{NH4}}$ $\frac{10^{-2} (restruction values C mol L^{-1}$ $\frac{10^{-2} (restruction values C mol L^{-1})}$ $\frac{10^{-2} (restruction values $	1.8 from the ref () ²) ^{1/3} , and f 1). The s from ref , respectiv N D PURITY OF M Magnesi acipitated : cution with free atm aperature. gnesium chlommonium c	II lations: % % % % % % % % % % % % % % % % % % %	oxide. Is MgCl ₂ ered in at room Both Both
THOD/APPA The so aqueous was def Method 1 to aqueous to aqueous tures w 18.00 ± saturate	0.0577 0.0391 The author c $a_{Mg(OH)2} = (a_{Mg(OH)2})^{a_{Mg(OH)2}}$ $a_{Calculate} M$ $a_{Calculate} M$ $a_{Calculate$	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ of $(OH)_2$ conce nd 2 x 10 ⁻⁴ aux Aux RE: of Mg(OH)_2 solut y two meth NH ₄ Cl were a plution. Me was shaken tion. The 2 - 7 days Aliquots of nt aqueous p	0.0 he solu (2(c _{NH3} 1.77 x entrati at 29°(ILIARY 1 ions iods. added with mix- s at the bhase	$\frac{(2)}{(2)} = \frac{1}{(2)} = $	1.8 from the ref () ²) ^{1/3} , and f 1). The s from ref , respectiv N D PURITY OF M Magnesi acipitated : cution with free atm aperature. gnesium chlo mmonium c alytical gr	II lations: % % % % % % % % % % % % % % % % % % %	oxide. Is MgCl ₂ ered in at room Both Both
THOD/APPA The so aqueous was def Method 1 to aqueous to aqueous tures w 18.00 ± saturate were wi	0.0577 0.0391 The author c $a_{Mg(OH)2} = (a_{Mg(OH)2})^{a_{Mg(OH)2}}$ $a_{Calculate} M$ $a_{Calculate} M$ $a_{Calculate$	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ of $(OH)_2$ concerned nd 2 x 10 ⁻⁴ and AUX RE: of Mg(OH)_2 solution. Aux application of the second of Mg(OH)_2 solution and the second aux an	0.0 he solu (2(c _{NH3} 1.77 x entrati at 29°(ILIARY 1 ions ions iods. added with mix- s at the phase hich	$\frac{(2)}{(2)} = \frac{1}{(2)} = $	1.8 from the ref () ²) ^{1/3} , and f 1). The s from ref , respectiv N D PURITY OF M Magnesi acipitated : cution with free atm aperature. gnesium chlo mmonium c cuytical gr ce purified	II lations: % % % % % % % % % % % % % % % % % % %	oxide. Is MgCl ₂ ered in at room Both Both
used to 2.9 x 10 THOD/APPA The so aqueous Was det Method I to aqueo II. So aqueous tures w 18.00 ± saturate were wi filter The sa	0.0577 0.0391 The author c $C_{Mg(OH)2} = (M_{g(OH)2}) = (M_{g(OH)2}) = (M_{g(OH)2}) = (M_{g(OH)2})$ (calculate M (calculate M (calcula	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ oh-/ $c_{NH3} = 1$ g(OH) ₂ conce nd 2 x 10 ⁻⁴ a AUX: AUX: RE: of Mg(OH) ₂ solut y two meth NH ₄ Cl were a blution. Me was shaken tion. The 2 - 7 days Aliquots of nt aqueous p pipet to w been attac	0.0 he solu (2(c _{NH3}) 1.77 x entrati at 29°(ILIARY 1 ions iods. added with mix- s at bhase hich hed. were	$\frac{(2)}{(2)} = \frac{(2)}{(2)} = $	1.8 from the ref ()] ²) ^{1/3} , and f 1). The es from ref , respectiv N D PURITY OF M Magnesi acipitated : lution with free atm aperature. gnesium chlo mmonium c alytical gr re purified yen.	II lations: % % % % % % % % % % % % % % % % % % %	oxide. Is MgCl ₂ ered in at room Both Both
used to 2.9 x 10 THOD/APPA The so aqueous Was det Method I to aqueo II. So aqueous tures w 18.00 ± saturate were wi filter The sa	0.0577 0.0391 The author c $C_{Mg(OH)2} = (M_{g(OH)2}) = (M_{g(OH)2}) = (M_{g(OH)2}) = (M_{g(OH)2})$ (calculate M (calculate M (calcula	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ oh-/ $c_{NH3} = 1$ g(OH) ₂ conce nd 2 x 10 ⁻⁴ a AUX: AUX: RE: of Mg(OH) ₂ solut y two meth NH ₄ Cl were a blution. Me was shaken tion. The 2 - 7 days Aliquots of nt aqueous p pipet to w been attac	0.0 he solu (2(c _{NH3}) 1.77 x entrati at 29°(ILIARY 1 ions iods. added with mix- s at bhase hich hed. were	$\frac{(2)}{(2)} = \frac{1}{(2)} = $	1.8 from the ref ()] ²) ^{1/3} , and f 1). The es from ref , respectiv N D PURITY OF M Magnesi acipitated : lution with free atm aperature. gnesium chlo mmonium c alytical gr re purified yen.	II lations: % % % % % % % % % % % % % % % % % % %	oxide. Is MgCl ₂ ered in at room Both Both
tures w saturate ware det Method I to aqueous tures w 18.00 ± saturate were wi filter The saturate	0.0577 0.0391 The author c $C_{Mg(OH)2} = (M_{g(OH)2}) = (M_{g(OH)2}) = (M_{g(OH)2}) = (M_{g(OH)2})$ (Calculate M (Calculate M (Calcula	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ oh-/ $c_{NH3} = 1$ g(OH) ₂ conce nd 2 x 10 ⁻⁴ a AUX RE: of Mg(OH) ₂ MgCl ₂ solut χ two meth NH ₄ Cl were a blution. Me was shaken tion. The 2 - 7 days Aliquots of nt aqueous p pipet to w been attac olutions w	0.0 he solu (2(c _{NH3}) 1.77 x entrati at 29°(ILIARY 1 ions ions iods. added with mix- s at bhase hed. were try.	$\frac{(2)}{(2)} = \frac{(2)}{(2)} = $	1.8 from the ref ()] ²) ^{1/3} , and f 1). The es from ref , respectiv N D PURITY OF M Magnesi acipitated : lution with free atm aperature. gnesium chlo mmonium c alytical gr re purified yen.	II lations: % % % % % % % % % % % % % % % % % % %	oxide. s MgCl ₂ ered in at room Both ed they
used to 2.9 x 10 THOD/APPA The so aqueous Was det Method I to aqueous tures w 18.00 ± saturate were wi filter The sa analyze Contami	0.0577 0.0391 The author c $C_{Mg(OH)2} = (M_{g(OH)2}) = (M_{g$	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ of $C_{NH3} = 1$ g(OH) ₂ concerned nd 2 x 10 ⁻⁴ and AUX RE: of Mg(OH) ₂ MgCl ₂ solut y two meth NH ₄ Cl were a plution. Me was shaken tion. The 2 - 7 days Aliquots of nt aqueous p pipet to w been attac olutions w by titrime CO ₂ was c	0.0 he solu (2(c _{NH3}) 1.77 x entrati at 29°(ILIARY 1 ions ions ions added ethod with mix- s at the hase hich hed. were try. are-	D196 ability : a) (c _{NH4} +) 10 ⁻² (re: Lon value C mol L ⁻¹ INFORMATIO SOURCE AN (1) Pressol Co. (2) Mac (4) An ana wer giv	1.8 from the ref () ²) ^{1/3} , and f 1). The es from ref , respectiv N D PURITY OF M Magnesi acipitated : tution with free atm persium chlo mmonium c alytical gr re purified ven.	II lations: K ₂ value is 2 and 3 as rely. MATERIALS: um hydro from aqueou NaOH, filt and dried oride hloride. ade, stato , but no	bxide. Is MgCl ₂ ered in at room Both ed they details
used to 2.9 x 10 2.9 x 10 The so aqueous Was det Method I to aqueous tures w 18.00 ± saturate were wi filter The sa analyzed Contamii fully av	0.0577 0.0391 The author c $c_{Mg(OH)2} = (r)$ (2 = c_{NH4} + c calculate M (2 = c_{NH4} + c calculate M (2 = c_{NH4} + c (3 = c_{NH4} + c (4 = $r)$ (2 = r) (4 = $r)$ (2 = r) (5 = $r)$ (5 = $r)$ (6 = $r)$ (7	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ of $(OH)_2$ concerned 2 x 10 ⁻⁴ and 2	0.0 he solu (2(c _{NH3}) 1.77 x entratiat 29°(111ARY 1 ions ions iods. added ethod with mix- s at the bhase hich hed. were try. are- asks	D196 ability : a) (c _{NH4} +) 10 ⁻² (re: Lon value C mol L ⁻¹ INFORMATIO SOURCE AN (1) Pressol Co. (2) Mac (4) An ana wer giv	1.8 from the ref ()] ²) ^{1/3} , and f 1). The es from ref , respectiv N D PURITY OF M Magnesi acipitated : lution with free atm aperature. gnesium chlo mmonium c alytical gr re purified yen.	II lations: K ₂ value is 2 and 3 as rely. MATERIALS: um hydro from aqueou NaOH, filt and dried oride hloride. ade, stato , but no	bxide. Is MgCl ₂ ered in at room Both ed they details
used to 2.9 x 10 2.9 x 10 The so aqueous Was det Method J to aqueous tures w 18.00 ± saturate were wi filter The sa analyze Contamis fully av were us	0.0577 0.0391 The author c $c_{Mg(OH)2} = (r)$ (2 = c_{NH4} + c calculate M (2 = c_{NH4} + c calculate M (2 = c_{NH4} + c (3 = c_{NH4} + c (4 = 10° C a (4 = 10° C a (5 = c_{NH4} + c (5 = c_{NH4} + c (6 = c_{NH4}	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ of $(OH)_2$ concerned 2 x 10 ⁻⁴ and 2	0.0 he solu (2(c _{NH3}) 1.77 x entratiat 29°(111ARY 1 ions ions iods. added ethod with mix- s at the bhase hich hed. were try. are- asks	D196 ability : a) (c _{NH4} +) 10 ⁻² (re: Lon value C mol L ⁻¹ INFORMATIO SOURCE AN (1) Pressol Co. (2) Mac (4) An ana wer giv	1.8 from the ref () ²) ^{1/3} , and f 1). The es from ref , respectiv N D PURITY OF M Magnesi acipitated : tution with free atm persium chlo mmonium c alytical gr re purified ven.	II lations: K ₂ value is 2 and 3 as rely. MATERIALS: um hydro from aqueou NaOH, filt and dried oride hloride. ade, stato , but no	bxide. Is MgCl ₂ ered in at room Both ed they details
ETHOD/APPA The so aqueous Was det Method J to aqueous tures w 18.00 ± saturate were wi filter The sa analyzed Contamin fully av	0.0577 0.0391 The author c $c_{Mg(OH)2} = (r)$ (2 = c_{NH4} + c calculate M (2 = c_{NH4} + c calculate M (2 = c_{NH4} + c (3 = c_{NH4} + c (4 = 10° C a (4 = 10° C a (5 = c_{NH4} + c (5 = c_{NH4} + c (6 = c_{NH4}	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ of $(OH)_2$ concerned 2 x 10 ⁻⁴ and 2	0.0 he solu (2(c _{NH3}) 1.77 x entratiat 29°(111ARY 1 ions ions iods. added ethod with mix- s at the bhase hich hed. were try. are- asks	D196 ability : a) (c _{NH4} +) 10 ⁻² (re: Lon value C mol L ⁻¹ INFORMATIO SOURCE AN (1) Pressol Co. (2) Mac (4) An ana wer giv	1.8 from the ref () ²) ^{1/3} , and f 1). The es from ref , respectiv N D PURITY OF M Magnesi ecipitated : Lution with free atm aperature. gnesium chlo mmonium co alytical gr re purified ven. ERROR: No estimate	II lations: K ₂ value is 2 and 3 as rely. MATERIALS: um hydro from aqueou NaOH, filt and dried oride hloride. ade, stato , but no	bxide. Is MgCl ₂ ered in at room Both ed they details
ETHOD/APPA The so aqueous Was det Method J to aqueous tures w 18.00 ± saturate were wi filter The sa analyze Contamin fully av were us	0.0577 0.0391 The author c $c_{Mg(OH)2} = (r)$ (2 = c_{NH4} + c calculate M (2 = c_{NH4} + c calculate M (2 = c_{NH4} + c (3 = c_{NH4} + c (4 = 10° C a (4 = 10° C a (5 = c_{NH4} + c (5 = c_{NH4} + c (6 = c_{NH4}	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ of $(OH)_2$ concerned 2 x 10 ⁻⁴ and 2	0.0 he solu (2(c _{NH3}) 1.77 x entratiat 29°(111ARY 1 ions ions iods. added ethod with mix- s at the bhase hich hed. were try. are- asks	D196 ability : a) (c _{NH4} +) 10 ⁻² (re: Lon value C mol L ⁻¹ INFORMATIO SOURCE AN (1) Pre sol CO ₂ tem (2) Mac (4) An ana wer giv ESTIMATED	1.8 from the ref () ²) ^{1/3} , and f 1). The es from ref , respectiv N D PURITY OF M Magnesi ecipitated : Lution with free atm aperature. gnesium chlo mmonium c hytical gr re purified yen. ERROR: No estimate	II lations: K ₂ value is 2 and 3 as rely. ATERIALS: um hydro from aqueou NaOH, filt and dried oride hloride. ade, stato , but no s possible.	bxide. Is MgCl ₂ Tered in at room Both Both details
ETHOD/APPA The so aqueous Was det Method J to aqueous tures w 18.00 ± saturate were wi filter The sa analyze Contamin fully av were us	0.0577 0.0391 The author c $c_{Mg(OH)2} = (r)$ (2 = c_{NH4} + c calculate M (2 = c_{NH4} + c calculate M (2 = c_{NH4} + c (3 = c_{NH4} + c (4 = 10° C a (4 = 10° C a (5 = c_{NH4} + c (5 = c_{NH4} + c (6 = c_{NH4}	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ of $(OH)_2$ concerned 2 x 10 ⁻⁴ and 2	0.0 he solu (2(c _{NH3}) 1.77 x entratiat 29°(111ARY 1 ions ions iods. added ethod with mix- s at the bhase hich hed. were try. are- asks	D196 bility :) (c _{NH4} +) 10 ⁻² (re: Lon value C mol L ⁻¹ INFORMATIO SOURCE AN (1) Pressol CO2 ten (2) Mac (4) An ana wer giv ESTIMATED REFERENCE 1. Lunc	1.8 from the ref $(j^2)^{1/3}$, and f 1). The s from ref , respectiv N D PURITY OF M Magnesi ecipitated : Lution with free atm aperature. gnesium chlo mmonium cc. alytical gr repurified ven. ERROR: No estimate S: den, H. Al	II lations: K ₂ value is 2 and 3 as rely. ATERIALS: um hydro from aqueou NaOH, filt and dried oride hloride. ade, stato , but no s possible. hrens chem	bxide. Is MgCl ₂ Fered in at room Both Both details
ETHOD/APPA The so aqueous Was det Method J to aqueous tures w 18.00 ± saturate were wi filter The sa analyze Contamin fully av were us	0.0577 0.0391 The author c $c_{Mg(OH)2} = (r)$ (2 = c_{NH4} + c calculate M (2 = c_{NH4} + c calculate M (2 = c_{NH4} + c (3 = c_{NH4} + c (4 = 10° C a (4 = 10° C a (5 = c_{NH4} + c (5 = c_{NH4} + c (6 = c_{NH4}	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ of $(0H)_2$ concerned 2 x 10 ⁻⁴ and 2	0.0 he solu (2(c _{NH3}) 1.77 x entratiat 29°(111ARY 1 ions ions iods. added ethod with mix- s at the bhase hich hed. were try. are- asks	D196 bility :) (c _{NH4} +) 10 ⁻² (re: Lon value C mol L ⁻¹ INFORMATIO SOURCE AN (1) Pressol CO2 ten (2) Mac (4) An ana wer giv ESTIMATED REFERENCE 1. Lund tec	1.8 from the ref ()] ²) ^{1/3} , and f 1). The s from ref , respectiv N D PURITY OF M Magnesi ecipitated : Lution with free atm aperature. gnesium chlo mmonium ca lytical gr ce purified ren. ERROR: No estimate S: den, H. Ai h. Vortrage	II lations: K ₂ value is 2 and 3 as rely. ATERIALS: um hydro from aqueou NaOH, filt and dried bhloride. ade, state , but no s possible hrens chem	b x i d e . Is MgCl ₂ tered in at room Both ed they details
ETHOD/APPA The so aqueous Was det Method J to aqueous tures w 18.00 ± saturate were wi filter The sa analyze Contamin fully av were us	0.0577 0.0391 The author c $c_{Mg(OH)2} = (r)$ (2 = c_{NH4} + c calculate M (2 = c_{NH4} + c calculate M (2 = c_{NH4} + c (3 = c_{NH4} + c (4 = 10° C a (4 = 10° C a (5 = c_{NH4} + c (5 = c_{NH4} + c (6 = c_{NH4}	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ of $(0H)_2$ concerned 2 x 10 ⁻⁴ and 2	0.0 he solu (2(c _{NH3}) 1.77 x entratiat 29°(111ARY 1 ions ions iods. added ethod with mix- s at the bhase hich hed. were try. are- asks	D196 ability : a) (c _{NH4} +) 10 ⁻² (re: Lon value C mol L ⁻¹ INFORMATIO SOURCE AN (1) Pressol Co. (2) Mac (4) An ana wer giv ESTIMATED REFERENCE 1. Lunc tec 2. Lov	1.8 from the ref () ²) ^{1/3} , and f 1). The fees from ref , respective N D PURITY OF M Magnesi acipitated for the atm operature of the monium construction free atm operature. International for the purified ven. ERROR: No estimate S: len, H. Aff h. Vortrage en, J. M.	II lations: K ₂ value is 2 and 3 as rely. MATERIALS: um hydro from aqueou NaOH, filt and dried oride hloride. ade, stato , but no s possible. hrens chem 2 J909. Z. Anorg.	b x i d e . Is MgCl ₂ tered in at room Both ed they details
ETHOD/APPA The so aqueous Was det Method J to aqueous tures w 18.00 ± saturate were wi filter The sa analyze Contamin fully av were us	0.0577 0.0391 The author c $c_{Mg(OH)2} = (r)$ (2 = c_{NH4} + c calculate M (2 = c_{NH4} + c calculate M (2 = c_{NH4} + c (3 = c_{NH4} + c (4 = 10° C a (4 = 10° C a (5 = c_{NH4} + c (5 = c_{NH4} + c (6 = c_{NH4}	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ of $(0H)_2$ concerned 2 x 10 ⁻⁴ and 2	0.0 he solu (2(c _{NH3}) 1.77 x entratiat 29°(111ARY 1 ions ions iods. added ethod with mix- s at the bhase hich hed. were try. are- asks	D196 ability : a) (c _{NH4} +) 10 ⁻² (re: Lon value C mol L ⁻¹ INFORMATIO SOURCE AN (1) Pressol CO2 tem (2) Mac (4) An ana wer giv ESTIMATED REFERENCE 1. Lunc tec 2. Lov. Che	1.8 from the ref () ²) ^{1/3} , and f 1). The fease from ref , respective N D PURITY OF M Magnesi acipitated for acipitated for the free atm operature. Internation with free atm operature. gnesium chlor mmonium c alytical gr free purified yen. ERROR: No estimate S: den, H. Aff h. Vortrage en, J. M. m. 1896, for	II lations: K ₂ value is 2 and 3 as rely. ATERIALS: um hydro from aqueou NaOH, filt and dried oride hloride. ade, state , but no s possible hrens chem 2 1909. Z. Anorg. 11, 404.	bxide. s MgCl ₂ ered in at room Both ed they details
used to 2.9 x 10 2.9 x 10 The so aqueous Was det Method J to aqueous tures w 18.00 ± saturate were wi filter The sa analyze Contamis fully av were us	0.0577 0.0391 The author c $c_{Mg(OH)2} = (r)$ (2 = c_{NH4} + c calculate M (2 = c_{NH4} + c calculate M (2 = c_{NH4} + c (3 = c_{NH4} + c (4 = 10° C a (4 = 10° C a (5 = c_{NH4} + c (5 = c_{NH4} + c (6 = c_{NH4} + c (7 = c_{NH4}	0.0201 alculated th $c_{Mg}^{2+[(1/2)K}$ of $(0H)_2$ concerned 2 x 10 ⁻⁴ and 2	0.0 he solu (2(c _{NH3}) 1.77 x entratiat 29°(111ARY 1 ions ions iods. added ethod with mix- s at the bhase hich hed. were try. are- asks	D196 ability : $(c_{NH4}+)$ 10^{-2} (re: 10^{-2} (re:	1.8 from the ref () ²) ^{1/3} , and f 1). The fees from ref , respective N D PURITY OF M Magnesi acipitated for the atm operature of the monium construction free atm operature. International for the purified ven. ERROR: No estimate S: len, H. Aff h. Vortrage en, J. M.	II lations: K ₂ value is 2 and 3 as rely. ATERIALS: um hydro from aqueou NaOH, filt and dried oride hloride. ade, state , but no s possible. hrens chem : <u>1909</u> . Z. Anorg. 1, 404. s, G. Z.	bxide. as MgCl ₂ ered in at room Both ed they details

(1) Magnesium hydroxide; Mg(OH) ₂ ; [1309-42-8] (2) Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0] (3) Magnesium chloride; MgCl ₂ ; [7786-30-3] (4) Calcium chloride; CaCl ₂ ; [1003-52-4] (5) Water; H ₂ O; [7732-18-5] EXPERIMENTAL VALUES: The CaO + MgCl ₂ + H ₂ O system at 25°C MgCl ₂ CaCl ₂ CaO Solid mass i mass i mass i Series I. Solutions in which MgCl ₂ was detected. All of these solutions also contain about 0.002 mass i MgO. 8.46 1.864 A 5.02 12.99 A 2.562 15.91 A 4.313 10.96 A 3.186 20.02 A 7.29 7.95 A 0.532 22.87 A 1.481 22.88 A 0.546 26.21 A 10.36 2.483 A + B 5.33 6.105 A + B 5.39 A + B 7.99 8.60 A + B 7.90 A + B		REMENTS	ORIGINAL MEASUREM			COMPONENTS
$ \begin{bmatrix} 1309-42-8] \\ (2) Calcium hydroxide; Ca(OH)_2; \\ [1305-62-0] \\ (3) Magnesium chloride; MgCl_2; \\ [7786-30-3] \\ (4) Calcium chloride; CaCl_2; \\ [10043-52-4] \\ (5) Water; H_20; [7732-18-5] \\ \hline \\ $	_			Mg (OH) - :		
(2) Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0] (3) Magnesium chloride; MgCl ₂ ; [7786-30-3] (4) Calcium chloride; CaCl ₂ ; [10043-52-4] (5) Water; H ₂ 0; [7732-18-5] EXPERIMENTAL VALUES: The CaO + MgCl ₂ + H ₂ O system at 25°C MgCl ₂ CaCl ₂ CaO solid Phase mass $\frac{1}{2}$ mass $\frac{1}{2}$ mass $\frac{1}{2}$ Series I. Solutions in which MgCl ₂ was detected. All of these solutions also contain about 0.002 mass $\frac{1}{2}$ MgO. 8.46 1.864 A 5.02 12.99 A 2.562 15.91 A 4.313 10.96 A 3.186 20.02 A 7.29 7.95 A 0.532 22.87 A 1.481 22.88 A 0.546 26.21 A 1.036 2.483 A + B 9.33 6.105 A + B 9.33 6.105 A + B 5.111 8.55 A + B 9.33 6.105 A + B 1.640 11.10 A + B 4.62 14.64 A + B 3.82 18.17 A + B 3.82 18.17 A + B 3.62 12.98 A + B 0.754 26.20 A + B 0.754 26.20 A + B 0.330 3.60 A + B 0.330 3.60 A + B 0.330 4.68 A + B 0.346 31.58 A + B 0.354 26.20 A + B 0.354 26.20 A + B 0.320 41.68 A + B 0.330 3.60 A + B 1.680 22.99 A + B 0.330 3.60 A + B 1.680 22.99 A + B 0.330 3.60 A + B 0.330 3.60 A + B 1.680 22.91 A + B 1.680 22.93 A + B 0.330 3.60 B 1.600 5.753 B 1.800 5.753 B	•	, buvies, at at a	bury, et kt,			
$ \begin{bmatrix} 1305-62-0 \end{bmatrix} $ $ \begin{bmatrix} (3) \text{ Magnesium chloride; MgCl_2;} \\ [7786-30-3] \\ (4) Calcium chloride; CaCl_2; \\ [10043-52-4] \\ \hline \end{bmatrix} \\ \hline \end{bmatrix} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$		c. <u>1933</u> , 701-5.	J. Chem. Soc.		aine broduced as a	(0) 0-1
$ \begin{bmatrix} 7786-30-3 \end{bmatrix} \\ \hline \\$				a(OH) ₂ ;		
$ \begin{bmatrix} (7786-30-3) \\ (4) Calcium chloride; CaCl2; [10043-52-4] \\ (5) Water; H2O; [7732-18-5] \\ \hline The CaO + MgCl2 + H2O system at 25°C \\ \hline MgCl2 CaCl2 CaO Solid Phase mass & mass & mass & mass & \\ \hline MgCl2 CaCl2 CaO Solid Phase \\ \hline mass & mass & mass & mass & \\ \hline Series I. Solutions in which MgCl2 was detected. All of these solutions also contain about 0.002 mass & MgO. \\ & 8.46 1.864 A \\ 5.02 12.99 A \\ 2.562 15.91 A \\ 4.313 10.96 A \\ 3.186 20.02 A \\ 7.29 7.95 A \\ 0.532 22.87 A \\ 1.481 22.88 A \\ 0.546 26.21 A \\ \hline 10.36 2.483 A + B \\ 9.69 2.537 A + B \\ 1.600 22.69 A + B \\ 1.600 22.69 A + B \\ 1.600 22.69 A + B \\ 0.754 26.20 A + B \\ 1.600 A + B \\ 1.600 B \\ 21.07 3.53 B \\ 1.600 B \\ 22.09 A + B \\ 0.230 41.68 A + B \\ 1.600 B \\ 12.07 3.53 B \\ 1.600 22.69 A + B \\ 1.600 B \\ 12.07 3.53 B \\ 1.600 22.61 B \\ 1.63 12.00 B \\ 1.608 23.27 B \\ \end{bmatrix} $				MqCl _a ;	nesium chloride; N	(3) Mag
$ \begin{bmatrix} 10043-52-4 \end{bmatrix} $ (5) Water; H ₂ O; [7732-18-5] EXPERIMENTAL VALUES: The CaO + MgCl ₂ + H ₂ O system at 25°C MgCl ₂ CaCl ₂ CaO Solid Phase mass \$ mass \$ mass \$ mass \$ mass \$ mass \$ Series I. Solutions in which MgCl ₂ was detected. All of these solutions also contain about 0.002 mass \$ MgO. 8.46 1.864 A 5.02 12.99 A 2.562 15.91 A 4.313 10.96 A 3.186 20.02 A 7.29 7.95 A 0.532 22.87 A 1.481 22.88 A 0.546 26.21 A 10.36 2.483 A + B 9.33 6.105 A + B 9.33 6.105 A + B 7.99 8.60 A + B 7.90 8.60 B				-327	86-30-3]	[77
(5) Water; H_2O ; $[7732-18-5]$ EXPERIMENTAL VALUES: The CaO + MgCl ₂ + H ₂ O system at 25°C MgCl ₂ CaCl ₂ CaO Solid Phase mass \$ mass \$ mass \$ mass \$ Series I. Solutions in which MgCl ₂ was detected. All of these solutions also contain about 0.002 mass \$ MgO. 8.46 1.864 A 5.02 12.99 A 2.562 15.91 A 4.313 10.966 A 3.186 20.02 A 7.29 7.95 A 0.532 22.87 A 1.481 22.88 A 0.546 26.21 A 10.36 2.483 A + B 9.89 2.537 A + B 9.33 6.105 A + B 8.11 8.59 A + B 7.99 8.60 A + B 4.62 14.64 A + B 3.82 18.17 A + B 2.415 20.78 A + B 1.680 22.99 A + B 0.754 26.20 A + B 1.680 22.99 A + B 0.330 6.005 A + B 1.680 22.99 A + B 0.330 6.005 A + B 1.680 22.99 A + B 0.330 36.09 A + B 1.680 22.99 A + B 0.330 36.09 A + B 1.680 22.99 A + B 0.330 36.09 A + B 1.69 4.160 B 12.07 3.353 B 18.00 5.753 B 18.00 5				cl ₂ ;	cium chloride; Cad	(4) Cal
EXPERIMENTAL VALUES: The CaO + MgCl ₂ + H ₂ O system at 25°C MgCl ₂ CaCl ₂ CaO Solid Phase mass % mass % mass % Series I. Solutions in which MgCl ₂ was detected. All of these solutions also contain about 0.002 mass % MgO. 8.46 1.864 A 5.02 12.99 A 2.562 15.91 A 4.313 10.96 A 3.186 20.02 A 7.29 7.95 A 0.532 22.87 A 1.481 22.88 A 0.546 26.21 A 10.36 2.483 A + B 9.89 2.537 A + B 9.33 6.105 A + B 8.11 8.59 A + B 7.99 8.60 A + B 3.82 18.17 A + B 3.82 18.17 A + B 3.62 14.64 A + B 3.62 14.64 A + B 3.62 14.52 A + B 3.62 18.17 A + B 3.62 2.62 A + B 3.62 2.62 A + B 3.62 2.62 A + B 3.63 2.63 A + B 3.63 2.69 A + B 3.63 4 + B 3.63 2.69 A + B 3.63 5 A + B 3.64 5.981 B 3.64				_	043-52-4]	[10
The $CaO + MgCl_2 + H_2O$ system at 25°C MgCl_2 CaCl_2 CaO solid Phase mass % mass % mass % mass % Series I. Solutions in which MgCl_2 was detected. All of these solutions also contain about 0.002 mass % MGO. A 5.02 12.99 A 5.02 12.99 A 2.562 15.91 A 3.186 20.02 A 7.29 7.95 A 0.532 2.87 A 10.36 2.483 A + B 9.89 2.537 A + B 9.33 6.105 A + B 8.11 8.59 A + B 3.62 18.17 A + B 3.62 18.17 A + B 3.63 A + B 3.62 3.03 6.09 A + B 3.63 4.4 B 3.18 2.415 2.78 4.62 14.64 A + B 3.63 1.60 A + B 3.62 <t< td=""><td></td><td></td><td></td><td>-5]</td><td>er; H₂0; [7732-18-</td><td>(5) Wat</td></t<>				-5]	er; H ₂ 0; [7732-18-	(5) Wat
MgCl ₂ CaCl ₂ CaO Solid Phase mass % mass % mass % mass % Series I. Solutions in which MgCl ₂ was detected. All of these solutions also contain about 0.002 mass % MgO. A 8.46 1.864 A 5.02 12.99 A 2.562 15.91 A 4.313 10.96 A 3.186 20.02 A 7.29 7.95 A 0.532 22.87 A 1.481 22.88 A 0.546 26.21 A 9.33 6.1055 A + B 9.105 A + B 9.33 6.105 A + B 6.40 11.10 A + B 3.82 18.17 A + B 3.82 18.17 A + B 0.366 31.58 A + B 0.498					AL VALUES:	EXPERIMENT
mass % mass % mass % mass % mass % Series I. Solutions in which MgCl, was detected. All of these solutions also contain about 0.002 mass % MgO. A 8.46 1.864 A 5.02 12.99 A 2.562 15.91 A 4.313 10.96 A 3.186 20.02 A 7.29 7.95 A 0.532 22.87 A 1.481 22.88 A 0.546 26.21 A 9.89 2.537 A + B 9.93 6.105 A + B 9.10 1.10 A + B 3.82 18.17 A + B 3.82 18.17 A + B 3.62 18.17 A + B 0.466 31.58 A + B 0.498 27.30 A + B 0.498 27.30 A + B 0.200 41.68 A + B 0.230 41.68 A + B 0.230 </td <td></td> <td>at 25°C</td> <td>- H₂O system at</td> <td>aO + MgCl₂ -</td> <td>The Ca</td> <td></td>		at 25°C	- H ₂ O system at	aO + MgCl ₂ -	The Ca	
mass %mass %mass %Series I. Solutions in which MgCl2 was detected. All of these solutions also contain about 0.002 mass % MgO.A 8.46 1.864A 5.02 12.99A 2.562 15.91A 4.313 10.96A 3.186 20.02A 7.29 7.95 A 0.532 22.87A 1.481 22.88A 0.546 26.21A 10.36 2.483A + B 9.33 6.105 A + B 7.99 8.60 A + B 7.99 8.60 A + B 3.82 18.17 A + B 3.62 16.99 A + B 0.498 27.30 A + B 0.303 36.09 A + B 0.303 36.09 A + B 0.303 41.68 A + B 0.303 41.68 A + B 12.07 3.53 B 18.00 5.753 B 14.69 4.160 B 2.850 22.51 B 9.38 9.44 B 1.608 23.27 B		-	CaO	CaCl ₂	MgCl ₂	
detected. All of these solutions \tilde{a} lso contain about 0.002 mass $%$ MgO. 8.46 1.864 A 5.02 12.99 A 2.562 15.91 A 4.313 10.96 A 3.186 20.02 A 7.29 7.95 A 0.532 22.87 A 1.481 22.88 A 0.546 26.21 A 10.36 2.483 A + B 9.89 2.537 A + B 9.33 6.105 A + B 8.11 8.59 A + B 7.99 8.60 A + B 7.99 8.60 A + B 3.82 18.17 A + B 3.82 18.17 A + B 1.60 22.89 A + B 1.680 22.89 A + B 0.754 26.20 A + B 0.754 26.20 A + B 0.336 31.58 A + B 0.330 36.09 A + B 14.69 4.160 B 21.84 5.981 B 12.07 3.353 B 18.00 5.753 B 18.00 5.753 B 18.00 5.753 B 18.00 5.753 B 18.00 5.753 B 19.44 15.62 B 2.850 22.51 B 19.44 15.62 B 2.850 22.51 B 19.44 15.62 B 19.44 21.41 B 11.63 12.30 B 19.44 21.41 B 11.63 12.30 B 19.44 B 10.66 B 10.6		Phase	mass %	mass %	mass %	
detected. All of these solutions \bar{a} lso contain about 0.002 mass $\frac{1}{2}$ MgO. 8.46 1.864 A 5.02 12.99 A 2.562 15.91 A 4.313 10.96 A 3.186 20.02 A 7.29 7.95 A 0.532 22.87 A 1.481 22.88 A 0.546 26.21 A 10.36 2.483 A + B 9.69 2.537 A + B 9.33 6.105 A + B 8.11 8.59 A + B 7.99 8.60 A + B 7.99 8.60 A + B 4.62 14.64 A + B 3.82 18.17 A + B 2.415 20.78 A + B 1.680 22.89 A + B 0.754 26.20 A + B 0.754 26.20 A + B 0.330 36.09 A + B 0.341.68 A + B 14.69 4.160 B 21.84 5.981 B 12.07 3.353 B 18.00 5.753 B 18.00 5.753 B 18.00 5.753 B 18.00 5.753 B 18.00 5.753 B 18.00 5.753 B 19.44 21.41 B 11.63 12.30 B 9.38 9.44 B 1.606 23.27 B		·····	<u> </u>	<u></u>		
8.46 1.864 A 5.02 12.99 A 2.562 15.91 A 4.313 10.96 A 3.186 20.02 A 7.29 7.95 A 0.532 22.87 A 1.481 22.88 A 0.546 26.21 A 10.36 2.483 $A + B$ 9.89 2.537 $A + B$ 9.89 2.537 $A + B$ 9.33 6.105 $A + B$ 7.99 8.60 $A + B$ 7.99 8.60 $A + B$ 3.82 18.17 $A + B$ 3.82 18.17 $A + B$ 2.415 20.78 $A + B$ 0.754 26.20 $A + B$ 0.306 31.58 $A + B$ 0.330 36.09 $A + B$ 0.330 36.09 $A + B$ 0.230 41.68 $A + B$ 12.07 3.353 B 2.850 22.51 B 2.850 22.51 B 19.44 15.62 B 9.38 9.44 B 10.608 23.27 B		2 Was also	se solutions āl	. All of the	detected.	
5.02 12.99 A 2.562 15.91 A 4.313 10.96 A 3.186 20.02 A 7.29 7.95 A 0.532 22.87 A 1.481 22.88 A 0.546 26.21 A 10.36 2.483 A + B 9.89 2.537 A + B 9.33 6.105 A + B 8.11 8.59 A + B 7.99 8.60 A + B 4.62 14.64 A + B 3.82 18.17 A + B 2.415 20.78 A + B 1.680 22.89 A + B 0.366 31.58 A + B 0.366 31.58 A + B 0.330 36.09 A + B 0.330 36.09 A + B 14.69 4.160 B 21.84 5.981 B 12.07 3.353 B 18.00 5.753 B 2.850 22.51 B 2.850 22.51 B 19.44 21.41 B 11.63 12.30 B 9.38 9.44 B 18.08 23.27 B				about 0.002 1	contain a	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
0.546 26.21 A 10.36 2.483 $A + B$ 9.89 2.5377 $A + B$ 9.33 6.105 $A + B$ 9.33 6.105 $A + B$ 8.11 8.59 $A + B$ 7.99 8.60 $A + B$ 4.62 14.64 $A + B$ 3.82 18.17 $A + B$ 2.415 20.78 $A + B$ 1.680 22.89 $A + B$ 0.754 26.20 $A + B$ 0.366 31.58 $A + B$ 0.366 31.58 $A + B$ 0.330 36.09 $A + B$ 0.230 41.68 $A + B$ 14.69 4.160 B 21.84 5.981 B 12.07 3.353 B 18.00 5.753 B 6.96 22.43 B 5.144 15.62 B 2.850 22.51 B 19.44 21.41 B 11.63 12.30 B 9.38 9.44 B 1.808 23.27 B						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
9.892.537 $A + B$ 9.336.105 $A + B$ 8.118.59 $A + B$ 7.998.60 $A + B$ 6.4011.10 $A + B$ 4.6214.64 $A + B$ 3.8218.17 $A + B$ 2.41520.78 $A + B$ 1.68022.89 $A + B$ 0.75426.20 $A + B$ 0.36631.58 $A + B$ 0.33036.09 $A + B$ 0.23041.68 $A + B$ 14.694.160 B 21.845.981 B 12.073.353 B 18.005.753 B 6.9622.43 B 5.14415.62 B 2.85022.51 B 19.4421.41 B 11.6312.30 B 9.389.44 B 1.80823.27 B		N + D		2 4 9 2		
9.33 6.105 $A + B$ 8.11 8.59 $A + B$ 7.99 8.60 $A + B$ 6.40 11.10 $A + B$ 4.62 14.64 $A + B$ 3.82 18.17 $A + B$ 2.415 20.78 $A + B$ 2.415 20.78 $A + B$ 0.754 26.20 $A + B$ 0.498 27.30 $A + B$ 0.366 31.58 $A + B$ 0.330 36.09 $A + B$ 0.230 41.68 $A + B$ 14.69 4.160 B 21.84 5.981 B 12.07 3.353 B 18.00 5.753 B 6.96 22.43 B 5.144 15.62 B 2.850 22.51 B 19.44 21.41 B 11.63 12.30 B 9.38 9.44 B 1.808 23.27 B						
6.40 11.10 $A + B$ 4.62 14.64 $A + B$ 3.82 18.17 $A + B$ 2.415 20.78 $A + B$ 2.415 20.78 $A + B$ 1.680 22.89 $A + B$ 0.754 26.20 $A + B$ 0.498 27.30 $A + B$ 0.366 31.58 $A + B$ 0.330 36.09 $A + B$ 0.330 36.09 $A + B$ 0.230 41.68 B 14.69 4.160 B 21.84 5.981 B 12.07 3.353 B 18.00 5.753 B 6.96 22.43 B 5.144 15.62 B 2.850 22.51 B 19.44 21.41 B 11.63 12.30 B 9.38 9.44 B 1.808 23.27 B				_	8.11	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				8.60		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		A + B				
0.230 41.68 A + B 14.69 4.160 B 21.84 5.981 B 12.07 3.353 B 18.00 5.753 B 6.96 22.43 B 5.144 15.62 B 2.850 22.51 B 19.44 21.41 B 11.63 12.30 B 9.38 9.44 B 1.808 23.27 B						
14.694.160B21.845.981B12.073.353B18.005.753B6.9622.43B5.14415.62B2.85022.51B19.4421.41B11.6312.30B9.389.44B1.80823.27B					0.330	
21.84 5.981 B 12.07 3.353 B 18.00 5.753 B 6.96 22.43 B 5.144 15.62 B 2.850 22.51 B 19.44 21.41 B 11.63 12.30 B 9.38 9.44 B 1.808 23.27 B		A + B		41.68	0.230	
12.07 3.353 B 18.00 5.753 B 6.96 22.43 B 5.144 15.62 B 2.850 22.51 B 19.44 21.41 B 11.63 12.30 B 9.38 9.44 B 1.808 23.27 B						
18.00 5.753 B 6.96 22.43 B 5.144 15.62 B 2.850 22.51 B 19.44 21.41 B 11.63 12.30 B 9.38 9.44 B 1.808 23.27 B						
6.9622.43B5.14415.62B2.85022.51B19.4421.41B11.6312.30B9.389.44B1.80823.27B						
5.144 15.62 B 2.850 22.51 B 19.44 21.41 B 11.63 12.30 B 9.38 9.44 B 1.808 23.27 B						
19.44 21.41 B 11.63 12.30 B 9.38 9.44 B 1.808 23.27 B		В		15.62		
11.63 12.30 B 9.38 9.44 B 1.808 23.27 B						
9.38 9.44 B 1.808 23.27 B						
1.808 23.27 B						
0.597 34.97 B						
0.368 40.52 B		В		40.52	0.368	
0.477 32.08 B						
Series II. Solutions in which no magnesium		magnesium	in which no m	I. Solutions	Series II	
was detected in the saturated solutions. 14.85 0.141 A + C					was detec	
18.06 0.150 A + C + D	:					
Continued on next page.			•	on next page	Continued	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Bury, C. R.; Davies, E. R. H.
<pre>(2) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	J. Chem. Soc. <u>1933</u> , 701-5.
<pre>(3) Magnesium chloride; MgCl₂; [7786-30-3]</pre>	
(4) Calcium chloride; CaCl ₂ ; [10043-52-4]	
(5) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 Composition	I. Lambert H. Einaga
EXPERIMENTAL VALUES:	
	+ H ₂ O system at 25°C
MgCl ₂ CaCl ₂	CaO Solid
mass % mass %	Phase mass %
Series II. (continue	
20.08 23.56	0.145 A + E 0.145 A + E
29.05	0.145 A + E 0.168 A + E
29.22	0.170 A + E
32.98	0.235 A + D + F
36.44	0.098 A + F
36.82 37.10	0.083 A + F 0.091 A + F
40.85	A + F
44.92	0.034 A + F + G
Solid Phases: A. Mg(OH) ₂	B. MgCl ₂ ·3MgO·11H ₂ O
C. Ca(OH) ₂	D. CaCl ₂ ·3CaO·16H ₂ O
E. CaCl ₂ ·3CaO·1	1H ₂ O F. CaCl ₂ ·CaO·2H ₂ O
G. CaCl ₂ ·6H ₂ O	
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Solutions of CaCl ₂ and of MgCl ₂ of accurately known, but very dif-	
ferent composition were mixed in	
various proportions. Then 0.2 g of	Nothing specified.
either MgO or sometimes CaO was added to each mixture. The solu-	
tions were equilibrated for 2	
months at 25°C. The saturated	
solutions were analyzed for Cl ⁻ by	
the Volhard method, for Ca^{2+} by the gravimetric method as $CaCO_3$, and	
for Mg ²⁺ by the gravimetric method	
as $Mg_2P_2O_7$. The wet solid analysis	ESTIMATED ERROR:
is also given in the original paper.	
	No estimates possible.

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Hostetler, P. B.
<pre>(2) Magnesium chloride; MgCl₂; [7786-30-3]</pre>	Am. J. Sci. <u>1963</u> , 261, 238-58.
<pre>(3) Barium hydroxide; Ba(OH)₂; [17194-00-2]</pre>	
(4) Water; H ₂ O; [7732-18-5]	

EXPERIMENTAL VALUES:

The solubility product of Mg(OH)₂ in aqueous solution at 25°C

Series	pH	Ionic	Magnesium	Ion	-log K _{s0}
		Strength I/mol kg ⁻¹	m/mol kg ⁻¹	γ/-	
A	9.82	0.0096	0.00275	0.685	11.09
	9.68	0.0256	0.00815	0.575	10.97
	9.37	0.102	0.0332	0.412	11.12
	9.14	0.384	0.1250	0.303	11.14
	8.90	1.62	0.520	0.337	10.95
	9.40	0.102	0.0331	0.412	11.06
в	10.28	0.00187	0.000509	0.828	10.81
	10.09	0.00553	0.001765	0.742	10.70
		0.0138	0.00450	0.647	10.80
	9.90	0.0139	0.00454	0.646	10.73
		0.0393	0.0126	0.521	10.72
	9.55	0.128	0.0423	0.389	10.68
				Av.	10.74 ± 0.07
с	10.14	0.0326	0.000639	0.545	11.18
	9.90	0.0154	0.00178	0.635	11.15
	9.71	0.0139	0.00458	0.647	11.11
	9.50	0.0397	0.0130	0.519	11.17
	9.31	0.129	0.0427	0.388	11.16
	9.11	0.400	0.133	0.301	11.18
				Av.	11.16 ± 0.02
D	9.355	0.116	0.0348	0.398	11.15
	9.335	0.127	0.0394	0.389	11.15
	9.62	0.0388*.	0.00773	0.523	11.15
	9.85	0.0503**	0.00302	0.490	11.13
				Av.	11.15 ± 0.01**

NaOH used instead of Ba(OH)2.

** KCl added to increase the ionic strength.

*** Value recommended by the author, but as 11.15 ± 0.03 . Series A. Brucite. Author stated insufficient aging time was used, and possibly CO_2 contamination took place.

Series B. Brucite. Solutions possibly supersaturated because of insufficient stirring after proper aging.

Series C. Brucite. Carried out with continous stirring in a CO_2 free atmosphere. pH vs. time confirmed aging time.

Series D. Used Mg(OH) $_2$ precipitated in solution from Ba(OH) $_2$ and MgCl $_2$ rather than Brucite. Conditions as in Series C.

 $K_{s0}^{*} = a_{Mq}^{2+a_{OH}^{2}}$ where a = activity.

The magnesium ion activity coefficient, γ_{MG}^{2+} , was calculated from the mean activity coefficients of MgCl₂ and KCl (ref 1).

Correction for MgOH⁺ formation was carried out.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Hostetler, P. B.
<pre>(2) Magnesium chloride; MgCl₂; [7786-30-3]</pre>	Am. J. Sci. <u>1963</u> , 261, 238-58.
<pre>(3) Barium hydroxide; Ba(OH)₂; [17194-00-2]</pre>	
(4) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 m_2 , m_3 /mol kg ⁻¹	H. Einaga
EXPERIMENTAL VALUES:	
Influence of grain size of and solubility	solid Mg(OH) ₂ on solubility product at 25°C
Grain Size Mg($OH)_2 - \log K_{s0}^*$
radius/A 10 ⁴ c ₁ ,	/mol L ⁻¹
	2.55 10.38
	2.12 10.60 1.68 10.88
	1.45 11.06
-	1.34 11.15
series A.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Emf measurements were used to determine the pH of the cell: Ag,AgCl/KCl//sample sln/glass elec. The symbol // represents the pal- ladium junction of the commercial electrode which suppresses leakage of KCl during the long period of the experiment. The dissolved Mg ²⁺ was determined gravimetrically with	 Magnesium hydroxide. Reagent grade Mg(OH)₂ in the form of well crystallized brucite was used as received. Magnesium chloride. Reagent grade purified by recrystal- lization.
8-quinolinol as the precipitating agent. The activity of the mag- nesium ion was calculated from its molality using activity coeffi-	
cients either from published data (ref 1) or by calculation from Debye-Huckel equation. Nitrogen	ESTIMATED ERROR:
gas was bubbled through the suspen-	Accuracy of emf measurements: ± 0.02 pH units.

COMPONENTS					
			ORIGINAL MEASURI		
	nesium hydroxide; 1 09-42-8]	1g (OH) 2;	Kiessewetter		
(2) Magi [74	nesium sulfate; Mg: 87-88-9]	50 ₄ ;	Radex. Runds	ch. <u>1953</u> , 117-25.	
(3) Wat	er; H ₂ O; [7732-18-	5]			
VARIABLES:			PREPARED BY:		<u></u>
T, c ₂ /mol	/K = 293 $L^{-1} = 0.5 - 2$		H.	Einaga	
EXPERIMENT			L	······································	
	The solubility	of Mg(OH) ₂	in aqueous Mg	SO4 at 20°C	
	MgSO4	Mg (OH) 2	Mole Ratio	Remarks	
	$c_2/mol L^{-1}$	c1/mol L	n_{1}/n_{2}		
	1	0.0416	0.0416	A	
	1.5	0.0649	0.0433	A	
	2	0.0908	0.0454	A	
	l	0.400	0.400	В	
	0.5	0.0375	0.075	с	
	0.5	0.0375	0.076	c	
	1	0.133	0.133	С	
	1	0.163	0.163	C	
	1.5 1.5	0.519 0.370	0.346 0.247	C C	
	The mole ratio wa	s independe			
		AUXILIARY	INFORMATION		
Aqueous with MgC minutes. tered as solution gravimet by acid-	RATUS/PROCEDURE: MgSO ₄ solutions we at 20 ± 0.1°C for The solid phase nd the resulting n analyzed for Mg crically as the su- base titration wi solution with meth r.	5 to 330 was fil- saturated ²⁺ either ulfate or th stand-	<pre>mass %: 0.77; Al MgO, 45. tion, 50 temperat 950°C for P₂O₅. (2) Magnesium reagent c (3) Water. I ESTIMATED ERROR: Temp.: precis</pre>	um oxide. Powe agnesite (composi SiO ₂ , 2.19; Fe 2O ₃ , 0.53; CaO, 79; and loss on .12) was ignited ure between 500 c 14 h, and cooled m sulfate. Analy grade. Distilled.	203, 0.60; igni- at a and over

UMPU.	NENTS :		ORIGINAL MEA	SUREMENT	rs ·		
(1)	Magnesium hydroxide;	Ma(OH) -;	Loven, J.				
	[1309-42-8]		Z. Anorg.		1896. 1	1. 404-15.	
(2)	Magnesium sulfate; M [7487-88-9]	gSO ₄ ;			<u></u> ,	_,	
(3)	Ammonia; NH ₃ ; [7664-	41-7]					
(4)	Ammonium sulfate; (N [7783-20-2]	H ₄) ₂ SO ₄ ;					
(5)	Water; H ₂ O; [7732-18	-5]					
ARIA	BLES:		PREPARED BY:				
c ₂ ,	T/K = 289-290 $c_3/mol L^{-1}$			I. Lam	bert		
XPER	IMENTAL VALUES:	······	_ _				
	An estimation of the composition of a	solubility o queous solut:	of Mg(OH) ₂ i ions of MgSC	in pure D ₄ + NH	water f 1 ₃ at 16-	rom the 17°C	
	Mg ²⁺	NH3	NH_4^+	Mq	g(OH)2		
	c/mol L ⁻¹	c ₃ /mol L ⁻¹	c/mol L	1 1	0 ⁴ c1/mol	L ⁻¹	
	0.2352	0.0325	0.0198		[4.38]		
	0.1084	0.0499	0.0284		3.52		
	0.0802 0.0699	0.0546 0.0612	0.02915		3.34 3.71		
	0.0203	0.0421	0.01023		3.57		
	0.0054	0.0747	0.00905		3.86		
	The solubility of Mg the ionization of an $K_b = [NH_4^+][OH^-]/[NH_3]$ last term applies t	moniã and the , and (Mg ²⁺][.o Mg(OH) ₂ in	e solubility OH ⁻] ² = K _{\$0} pure water	y produ = 4c ³ as an	nct of Mg , where ideal, c	(OH) ₂ . the ompletely	
	the ionization of an $K_b = [NH_4^+][OH^-]/[NH_3]$	moniā and the , and (Mg ²⁺][o Mg(OH) ₂ in thout associa m the two exp	e solubility OH ⁻] ² = K_{s0}° pure water ation or hyco pressions, a	y produ = 4c ³ as an drolysi and sol ³	ict of Mg , where ideal, c .s. The ved for a	(OH) ₂ . the ompletely author c. An	
	the ionization of an $K_b = [NH_4^+][OH^-]/[NH_3]$ last term applies to ionized substance with eliminated [OH ⁻] from ammonia ionization of the statement of	moniã and the , and $(Mg^{2^+}][$ o Mg(OH) ₂ in thout associa m the two exp constant of 2	e solubility OH ⁻] ² = K_{s0}° pure water ation or hyco pressions, a	y produ = 4c ³ as an drolysi and sol ³	ict of Mg , where ideal, c .s. The ved for a	(OH) ₂ . the ompletely author c. An	
ЕТНО	the ionization of an $K_b = [NH_4^+][OH^-]/[NH_3]$ last term applies to ionized substance wireliminated [OH ⁻] from ammonia ionization of the calculation.	moniã and the , and $(Mg^{2^+}][$ o Mg(OH) ₂ in thout associa m the two exp constant of 2	e solubility $OH^{-}]^{2} = K_{s0}^{*}$ pure water ation or hycoressions, a .3 x 10^{-5} (reference)	y produ = 4c ³ as an drolysi und sol ef 1) v	ict of Mg , where ideal, c .s. The ved for a vas used	(OH) ₂ . the ompletely author c. An in	
Sol amn sev at ter wer dec	the ionization of an $K_b = [NH_4^*][OH^-]/[NH_3]$ last term applies to ionized substance will eliminated [OH ⁻] from ammonia ionization of the calculation. D/APPARATUS/PROCEDURE: utions of magnesium nonia were equilibre eral days in stopper ambient temperature. ing, the saturated e evaporated, and th omposed to MgO by here	moniā and the , and (Mg ²⁺)[to Mg(OH) ₂ in thout associa m the two exp constant of 2 AUXILIARY sulfate and rated for red bottles After fil- solutions e dry solid eating in a	e solubility $OH^{-}]^{2} = K_{S0}^{*}$ pure water ation or hydoressions, a .3 x 10 ⁻⁵ (re- INFORMATION SOURCE AND P	y produ = 4c ³ as an drolysi und sol ef 1) v URITY OF	ict of Mg , where ideal, c .s. The ved for a vas used	(OH) ₂ . the ompletely author c. An in S:	
Sol amm sev at ter dec pla The phe	the ionization of an $K_b = [NH_4^+][OH^-]/[NH_3]$ last term applies to ionized substance will eliminated [OH ⁻] from ammonia ionization of the calculation. D/APPARATUS/PROCEDURE: utions of magnesium nonia were equilible eral days in stopped ambient temperature. Fing, the saturated e evaporated, and the omposed to MgO by he tinum vessel which wa NH_3 is titrated wi nol as the indicator	moniā and the , and (Mg ²⁺)[o Mg(OH) ₂ in thout associa m the two exp constant of 2 AUXILIARY sulfate and trated for red bottles After fil- solutions e dry solid eating in a s weighed. th o-nitro- . The NH ₄ ⁺	e solubility $OH^{-}]^{2} = K_{S0}^{*}$ pure water ation or hydoressions, a .3 x 10 ⁻⁵ (re- INFORMATION SOURCE AND P	y produ = 4c ³ as an drolysi und sol ef 1) v URITY OF	tot of Mg , where ideal, c .s. The ved for a vas used	(OH) ₂ . the ompletely author c. An in S:	
Sol amm sev at ter dec pla The phe ion the	the ionization of an $K_b = [NH_4^*][OH^-]/[NH_3]$ last term applies to ionized substance will eliminated [OH ⁻] from ammonia ionization of the calculation. D/APPARATUS/PROCEDURE: utions of magnesium nonia were equilible eral days in stopped ambient temperature. Fing, the saturated e evaporated, and the omposed to MgO by he tinum vessel which wa NH ₂ is titrated wi	moniā and the , and (Mg ²⁺)[o Mg(OH) ₂ in thout associa m the two exp constant of 2 AUXILIARY sulfate and orated for red bottles After fil- solutions e dry solid eating in a s weighed. th o-nitro- . The NH ₄ ⁺ lculated as the initial e final NH ₃	e solubility $OH^{-}]^{2} = K_{S0}^{*}$ pure water ation or hydoressions, a .3 x 10 ⁻⁵ (re- INFORMATION SOURCE AND P	y produ = 4c ³ as an drolysi and sol ef 1) v URITY OF	tot of Mg , where ideal, c .s. The ved for a vas used	(OH) ₂ . the ompletely author c. An in S:	
Sol amm sev at ter dec pla The phe ion the	the ionization of an $K_b = [NH_4^+][OH^-]/[NH_3]$ last term applies to ionized substance wi eliminated [OH ⁻] from ammonia ionization of the calculation. D/APPARATUS/PROCEDURE: utions of magnesium nonia were equilible eral days in stopped and the molecular de evaporated, and the omposed to MgO by he tinum vessel which wa NH_3 is titrated wi nol as the indicator concentration is ca difference between concentration and the molecular details and the molecular details and the molecular details are indicator concentration and the molecular details and the molecular details are indicator with the molecular details are indicator with the molecular details are indicator and the molecular details are between and the molecular are between and the molecular are between and the molecular are and the molecular are and the molecular and the molecula	moniā and the , and (Mg ²⁺)[o Mg(OH) ₂ in thout associa m the two exp constant of 2 AUXILIARY sulfate and orated for red bottles After fil- solutions e dry solid eating in a s weighed. th o-nitro- . The NH ₄ ⁺ lculated as the initial e final NH ₃	e solubility $OH^{-}]^{2} = K_{SO}^{*}$ pure water ation or hycoressions, a .3 x 10 ⁻⁵ (respectively) INFORMATION SOURCE AND P N SOURCE AND P	y produ = 4c ³ as an drolysi ind sol ef 1) v URITY OF Nothing	tot of Mg , where ideal, c .s. The ved for a vas used	(OH) 2. the ompletely author e. An in S: ed.	
Sol amm sev at ter wer deca pla The phe ion the NHa	the ionization of an $K_b = [NH_4^+][OH^-]/[NH_3]$ last term applies to ionized substance wi eliminated [OH ⁻] from ammonia ionization of the calculation. D/APPARATUS/PROCEDURE: utions of magnesium nonia were equilible eral days in stopped and the molecular de evaporated, and the omposed to MgO by he tinum vessel which wa NH_3 is titrated wi nol as the indicator concentration is ca difference between concentration and the molecular details and the molecular details and the molecular details are indicator concentration and the molecular details and the molecular details are indicator with the molecular details are indicator with the molecular details are indicator and the molecular details are between and the molecular are between and the molecular are between and the molecular are and the molecular are and the molecular and the molecula	moniā and the , and (Mg ²⁺)[o Mg(OH) ₂ in thout associa m the two exp constant of 2 AUXILIARY sulfate and orated for red bottles After fil- solutions e dry solid eating in a s weighed. th o-nitro- . The NH ₄ ⁺ lculated as the initial e final NH ₃	e solubility $OH^{-}]^{2} = K_{SO}^{*}$ pure water ation or hycoressions, a .3 x 10 ⁻⁵ (respectively) INFORMATION SOURCE AND P N SOURCE AND P	y produ = 4c ³ as an drolysi ind sol ef 1) v URITY OF Nothing	act of Mg , where ideal, c .s. The ved for a vas used F MATERIALS specifie	(OH) 2. the ompletely author e. An in S: ed.	

OMPONENTS	:		ORIGINAL MEASUR	REMENTS :	
(1) Mag [13	nesium hydroxide; 09-42-8]	Mg(OH) ₂ ;	Loven, J. M		
	nesium thiocyanat SCN) ₂ ; [306-61-6]	e;	Z. Anorg. C	hem. <u>1896</u> , 11, 404-:	15
(3) Amm	onia; NH ₃ ; [7664-	41-7]			
(4) Amm NH ₄	onium thiocyanate SCN; [1762-95-4]	;			
(5) Wat	er; H ₂ O; [7732-18	-5]			
ARIABLES:			PREPARED BY:		
T/K c ₂ , c ₃ /	= 289-290 mol L ⁻¹		I	. Lambert	
XPERIMENT	AL VALUES:	······································	L		
An	estimation of the composition of aqu	solubility d eous solutio	of Mg(OH) _ in ns of Mg(SCN)	pure water from the 2 + NH ₃ at 16-17°C	
	Mg ²⁺	NH3	NH ⁺ 4	Mg (OH) 2	
	c/mol L ⁻¹	$c_{j}/mol L^{-1}$	c/mol L ⁻¹	$10^4 c_1 / \text{mol } L^{-1}$	
	0.0281	0.02027	0.0059	3.53	
	0.0162 0.00594	0.04123 0.06713	0.01111 0.01188	3.09 3.01	
	0.00594	0.06713		3.01	
	0.00305	0.07850	0.00873	3.19	
the K _b las	ionization of am = [NH ₄][OH ⁻]/[NH ₃] t term applies to	moniā and the , and (Mg ²⁺][0 p Mg(OH) , in	e solubility p $OH^{-}]^{2} = K_{S0}^{*} =$ pure water as	s an ideal, complete	.y
the K _b las ion eli: amm	ionization of am = [NH ₄][OH ⁻]/[NH ₃] t term applies to	moniā and the , and (Mg ²⁺][o Mg(OH) ₂ in thout associa , the two exp	$ = \text{ solubility } $ $ OH^{-}]^{2} = K_{s0}^{*} = $ $ pure water a:$ $ ation or hydra ressions, and $	product of Mg(OH) ₂ . 4c ³ , where the s an ideal, completel olysis. The author l solved for c. An	-y
the K _b las ion eli: amm	ionization of am = [NH ₄][OH ⁻]/[NH ₃] t term applies to ized substance wind minated [OH ⁻] from onia ionization co	moniā and the , and (Mg ²⁺][o Mg(OH) ₂ in thout associa , the two exp	$ = \text{ solubility } \\ \text{OH}^{-}]^{2} = K_{S0}^{*} = \\ \text{pure water as ation or hydra ressions, and } \\ \text{ation or hydra ressions, and } \\ \text{a x } 10^{-5} \text{ (ref } $	product of Mg(OH) ₂ . 4c ³ , where the s an ideal, completel olysis. The author l solved for c. An	-y
the K _b las ion eli: amm the	<pre>ionization of am: = [NH₄][OH⁻]/[NH₃] t term applies t ized substance wi minated [OH⁻] from onia ionization c calculation. ARATUS/PROCEDURE:</pre>	moniā and the , and (Mg ²⁺)[(o Mg(OH) ₂ in thout associa the two exp onstant of 2. AUXILIARY 1	a solubility p $OH^{-}]^{2} = K_{S0}^{*} =$ pure water as ation or hydro- ressions, and .3 x 10 ⁻⁵ (ref	product of Mg(OH) ₂ . 4c ³ , where the s an ideal, completel olysis. The author l solved for c. An	-y
the K _b las ion eli: amm the ETHOD/APP/ Solutio and amm several at ambi tering, were ev decompo platinu The NH ₃ phenol	<pre>ionization of am = [NH₄][OH⁻]/[NH₃] t term applies t ized substance wi minated [OH⁻] from onia ionization c calculation.</pre>	moniā and the , and (Mg ²⁺)[0 o Mg(OH) ₂ in thout associa the two exp onstant of 2. AUXILIARY I thiocyanate brated for red bottles After fil- solutions a dry solid ating in a s weighed. th o-nitro- The NH ₄ *	a solubility p $OH^{-}]^{2} = K_{S0}^{*} =$ pure water as ation or hydro- ressions, and .3 x 10 ⁻⁵ (ref INFORMATION SOURCE AND PURI	product of Mg(OH) ₂ . 4c ³ , where the s an ideal, completel olysis. The author l solved for c. An l) was used in	-y
the K _b las ion eli: amm the THOD/APP. Solutio and amm several at ambi tering, were ev decompo platinu: The NH3 phenol ion con the dif	<pre>ionization of am = [NH₄][OH⁻]/[NH₃] t term applies t. ized substance wiminated [OH⁻] from onia ionization calculation. ARATUS/PROCEDURE: ns of magnesium - anonia were equili days in stopper ent temperature. , the saturated aporated, and the sed to MgO by he m vessel which was , is titrated wit as the indicator. centration is cal ference between t </pre>	moniā and the , and (Mg ²⁺)[0 o Mg(OH) ₂ in thout associa the two exp onstant of 2. AUXILIARY I thiocyanate brated for red bottles After fil- solutions a dry solid ating in a s weighed. The NH ₄ ⁺ culated as the initial	a solubility p $OH^{-}]^{2} = K_{S0}^{*} =$ pure water as ation or hydro ressions, and .3 x 10 ⁻⁵ (ref INFORMATION SOURCE AND FURI Not	product of Mg(OH) ₂ . 4c ³ , where the s an ideal, completed olysis. The author t solved for c. An 1) was used in TY OF MATERIALS: Thing specified.	-y
the K _b las ion eli: amm the THOD/APP. Solutio and amm several at ambi tering, were ev decompo platinu: The NH ₃ phenol ion com the dif NH ₃ con	<pre>ionization of am = [NH₄][OH⁻]/[NH₃] t term applies to ized substance wid minated [OH⁻] from onia ionization co calculation. ARATUS/PROCEDURE: ns of magnesium of monia were equili days in stopper ent temperature. the saturated aporated, and the sed to MgO by he m vessel which was the indicator. </pre>	moniā and the , and (Mg ²⁺)[0 o Mg(OH) ₂ in thout associa the two exp onstant of 2. AUXILIARY I thiocyanate brated for red bottles After fil- solutions a dry solid ating in a s weighed. th o-nitro- The NH ₄ ⁺ culated as the initial e final NH ₃	a solubility p $OH^{-}]^{2} = K_{S0}^{*} =$ pure water as ation or hydro- ressions, and .3 x 10 ⁻⁵ (ref INFORMATION SOURCE AND PURI	product of Mg(OH) ₂ . 4c ³ , where the s an ideal, completed olysis. The author t solved for c. An 1) was used in TY OF MATERIALS: Thing specified.	-Y
the K _b las ion eli: amm the ETHOD/APP, Solutio and amm several at ambi tering, were ev decompo platinu: The NH ₃ phenol	<pre>ionization of am = [NH₄][OH⁻]/[NH₃] t term applies t. ized substance wiminated [OH⁻] from onia ionization calculation. ARATUS/PROCEDURE: ns of magnesium from a were equilide days in stopper ent temperature. the saturated aporated, and the sed to MgO by he m vessel which was is titrated with as the indicator. ference between t centration and the centration and</pre>	moniā and the , and (Mg ²⁺)[0 o Mg(OH) ₂ in thout associa the two exp onstant of 2. AUXILIARY I thiocyanate brated for red bottles After fil- solutions a dry solid ating in a s weighed. th o-nitro- The NH ₄ ⁺ culated as the initial e final NH ₃	e solubility p OH ⁻] ² = K _{SO} [*] = pure water as ation or hydro ressions, and 3 x 10 ⁻⁵ (ref INFORMATION SOURCE AND PURI Not	product of Mg(OH) ₂ . 4c ³ , where the s an ideal, completed olysis. The author t solved for c. An 1) was used in TY OF MATERIALS: Thing specified.	-y
the K _b las ion eli: amm the ETHOD/APP, Solutio and amm several at ambi tering, were ev decompo platinu: The NH ₃ phenol	<pre>ionization of am = [NH₄][OH⁻]/[NH₃] t term applies t. ized substance wiminated [OH⁻] from onia ionization calculation. ARATUS/PROCEDURE: ns of magnesium from a were equilide days in stopper ent temperature. the saturated aporated, and the sed to MgO by he m vessel which was is titrated with as the indicator. ference between t centration and the centration and</pre>	moniā and the , and (Mg ²⁺)[0 o Mg(OH) ₂ in thout associa the two exp onstant of 2. AUXILIARY I thiocyanate brated for red bottles After fil- solutions a dry solid ating in a s weighed. th o-nitro- The NH ₄ ⁺ culated as the initial e final NH ₃	e solubility p OH ⁻] ² = K _{SO} [*] = pure water as ation or hydro ressions, and 3 x 10 ⁻⁵ (ref INFORMATION SOURCE AND PURI Not	product of Mg(OH) ₂ . 4c ³ , where the s an ideal, completel olysis. The author i solved for c. An 1) was used in TY OF MATERIALS: thing specified.	-Y
the K _b las ion eli: amm the ETHOD/APP, Solutio and amm several at ambi tering, were ev decompo platinu: The NH ₃ phenol	<pre>ionization of am = [NH₄][OH⁻]/[NH₃] t term applies t. ized substance wiminated [OH⁻] from onia ionization calculation. ARATUS/PROCEDURE: ns of magnesium from a were equilide days in stopper ent temperature. the saturated aporated, and the sed to MgO by he m vessel which was is titrated with as the indicator. ference between t centration and the centration and</pre>	moniā and the , and (Mg ²⁺)[0 o Mg(OH) ₂ in thout associa the two exp onstant of 2. AUXILIARY I thiocyanate brated for red bottles After fil- solutions a dry solid ating in a s weighed. th o-nitro- The NH ₄ ⁺ culated as the initial e final NH ₃	a solubility p $OH^{-}]^{2} = K_{S0}^{*} =$ pure water as ation or hydro ressions, and .3 x 10 ⁻⁵ (ref INFORMATION SOURCE AND FURI Not ESTIMATED ERROR No es REFERENCES: 1. Bredig, (Z. Phys.	product of Mg(OH) ₂ . 4c ³ , where the s an ideal, completed olysis. The author 1 solved for c. An 1) was used in TY OF MATERIALS: thing specified.	.у
the K _b las ion eli: amm the ETHOD/APP. Solutio and amm several at ambi tering, were ev decompo platinu: The NH ₃ phenol ion com the dif NH ₃ con	<pre>ionization of am = [NH₄][OH⁻]/[NH₃] t term applies t. ized substance wiminated [OH⁻] from onia ionization calculation. ARATUS/PROCEDURE: ns of magnesium from a were equilide days in stopper ent temperature. the saturated aporated, and the sed to MgO by he m vessel which was is titrated with as the indicator. ference between t centration and the centration and</pre>	moniā and the , and (Mg ²⁺)[0 o Mg(OH) ₂ in thout associa the two exp onstant of 2. AUXILIARY I thiocyanate brated for red bottles After fil- solutions a dry solid ating in a s weighed. th o-nitro- The NH ₄ ⁺ culated as the initial e final NH ₃	a solubility p OH ⁻] ² = K [*] _{SO} = pure water as ation or hydro ressions, and .3 x 10 ⁻⁵ (ref INFORMATION SOURCE AND FURI Not ESTIMATED ERROR No es REFERENCES: 1. Bredig, C Z. Phys. Verwandts	product of Mg(OH) ₂ . 4c ³ , where the s an ideal, completed olysis. The author 1 solved for c. An 1) was used in TY OF MATERIALS: thing specified.	-У

	NENTCI		ODICINAL MEASUDEN	ENTC .
111	NENTS:	Ma (OU)	ORIGINAL MEASUREM	160110.
(+)	Magnesium hydroxide; [1309-42-8]	mg(OH)2;	Loven, J. M.	- 1006 11 404-15
(2)	Magnesium nitrate; Mo [10377-60-3]	у(NO ₃) ₂ ;	Z. Anorg. Chel	m. <u>1896</u> , <i>11</i> , 404 -1 5.
(3)	Ammonia; NH ₃ ; [7664-	41-7]		
(4)	Ammonium nitrate; NH [6484-52-2]	4 ^{NO} 3;		
(5)	Water; H ₂ O; [7732-18-	-5]		
ARIA	BLES:		PREPARED BY:	
c,,	T/K = 283 $c_3/mol L^{-1}$		I. 1	Lambert
	IMENTAL VALUES:	····	<u> </u>	
	An estimation of the composition of a	solubility o queous solut:	of Mg(OH) ₂ in pu ions of Mg(NO ₃);	ire water from the 2 + NH ₃ at 10°C
	Mg ²⁺	NH3	NH ⁺ 4	Mg(OH) ₂
	$c/mol L^{-1}$	$c_3/mol L^{-1}$	$c/mol L^{-1}$	$10^{4}c_{1}/mol L^{-1}$
	0.0811	0.0181	0.00736	[4.02]
	0.0698	0.0167	0.0088	3.21
	0.0427	0.03736	0.01354	3.50
	0.0421	0.0357	0.0152	3.16
	0.0383 0.0224	0.0194 0.04125	0.00604 0.00965	3.85 3.78
	0.0167	0.0626	0.001876	3.58
	0.0159	0.0610	0.0154	3.21
	last term applies to ionized substance wit eliminated [OH ⁻] from ammonia ionization co the calculation.	hout associates the two exp	ation or hydroly ressions, and s	vsis. The author olved for c. An
2710	D/APPARATUS/PROCEDURE:	AUXILIARY	INFORMATION SOURCE AND PURITY	OF MATERIALS.
	· .	itrate and	SOURCE AND FURITI	OF FATERIALS.
amm seve	utions of magnesium n Ionia were equilibr eral days in stopper	rated for		
ter were deco plat The phen ion	ambient temperature. ing, the saturated e evaporated, and the omposed to MgO by hea tinum vessel which was NH ₃ is titrated wit nol as the indicator. concentration is cal	After fil- solutions dry solid ating in a weighed. h o-nitro- The NH4 ⁺ culated as	Nothi	ng specified.
ter were deco plat The phen ion the	ing, the saturated e evaporated, and the omposed to MgO by hea tinum vessel which was NH ₃ is titrated wit nol as the indicator. concentration is cal difference between i	After fil- solutions dry solid ating in a weighed. h o-nitro- The NH ₄ ⁺ culated as nitial NH ₃		ng specified.
ter were deco plai The phen ion the con	ing, the saturated e evaporated, and the omposed to MgO by hea tinum vessel which was NH ₃ is titrated wit nol as the indicator. concentration is cal	After fil- solutions dry solid ating in a weighed. h o-nitro- The NH ₄ ⁺ culated as nitial NH ₃ final NH ₃	ESTIMATED ERROR:	
ter were deco plai The phen ion the con	ing, the saturated e evaporated, and the omposed to MgO by hea- tinum vessel which was NH ₃ is titrated wit nol as the indicator. concentration is cal difference between i centration and the	After fil- solutions dry solid ating in a weighed. h o-nitro- The NH ₄ ⁺ culated as nitial NH ₃ final NH ₃	ESTIMATED ERROR:	ng specified. mates possible.

96	
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Einaga, H.
<pre>(2) Magnesium nitrate; Mg(NO₃)₂; [10377-60-3]</pre>	J. Inorg. Nucl. Chem. <u>1981</u> , 43, 229-33.
(3) Sodium nitrate; NaNO ₃ ; [7631-99-4]	
(4) Water; H ₂ O; [7732-18-5]	
EXPERIMENTAL VALUES:	
Solubility product of Mg(OH) ₂ , K _{s0} ,	where
K _{s0} = [Mg ²⁺][OH ⁻]	${}^{2} = [Mg^{2+}] \cdot h^{-2} \cdot K_{W}^{2},$
precipitated amorphous $Mg(OH)_2$ in 1 emf measurement for h, where $h = \{$ saturated concentration of $Mg(II)$	of the coexistence of the freshly .0 mol L^{-1} aqueous NaNO ₃ solution from H ⁺], with K _W of 1 x 10 ^{-13 80} and from from the data depicted in Figure 1. according to the relations are as
$\log G = \log 2(1 + \beta_{22}K_{s0}K_{w})$	² + $\beta_{34}K_{50}^2K_W^{-4}$) $K_{50}K_W^{-2}$ + 2log h
$G = 2C_{Mg,sol} - (C_{OH} - [$	OH-])
$\beta_{22} = [Mg_2(OH)_2^{2^+}] \cdot h^2 / [Mg^{2^+}]$	
$\beta_{34} = [Mg_3(OH)_4^{2^*}] \cdot h^4 / [Mg^{2^*}]$	
The result is	
	-9.38 ± 0.10
20	
at 25°C in 1.0 mol L^{-1} NaNO ₃ solution	*•
1	
6	
a d	
10 ² Chg, sol/mol L ⁻¹	
20 J	
/	۶¢
	and as
0 95 100	105 110
	-log h
	-
Figure 1. Relation be	tween C _{Mg,sol} and -log h
righte re neración de	Mg, sol and log n

COMPON	IENTS :	ORIGINAL MEASUREMENTS:
(1)	Magnesium hydroxide; Mg(OH) ₂ ; [1309-42-8]	Einaga, H.
(2)	Magnesium nitrate; Mg(NO ₃) ₂ ; [10377-60-3]	J. Inorg. Nucl. Chem. <u>1981</u> , 43, 229-33.
(3)	Sodium nitrate; NaNO ₃ ; [7631-99-4]	
(4)	Water; H ₂ O; [7732-18-5]	
VARIAB	DLES:	PREPARED BY:
	T/K = 298	H. Einaga
EXPERI	MENTAL VALUES:	1
	AUXILIARY	INFORMATION
IETHOD	AUXILIARY /APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS:
[H ⁺]	/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
$[H^+]$ meas Hg, L ⁻¹	/APPARATUS/PROCEDURE: was determined from emf surements on the cell Hg ₂ Cl ₂ 3.33 mol L ⁻¹ KCl 1.0 mol KCI 1.0 mol L ⁻¹ NaNO ₃ S glass	 SOURCE AND PURITY OF MATERIALS: (1) Magnesium hydroxide. Analytical grade. (2) Magnesium nitrate. Recrystall- ized from aqueous solution of
[H ⁺] meas Hg, L ⁻¹ elec	/APPARATUS/PROCEDURE: was determined from emf surements on the cell Hg2Cl2 3.33 mol L ⁻¹ KCl 1.0 mol	 SOURCE AND PURITY OF MATERIALS: (1) Magnesium hydroxide. Analytical grade. (2) Magnesium nitrate. Recrystallized from aqueous solution of Ba(OH)₂ and then added to NaOH solution in order to precipitate any dissolved CO₂ as in-
[H ⁺] meas Hg, L ⁻¹ elec For	/APPARATUS/PROCEDURE: was determined from emf surements on the cell Hg ₂ Cl ₂ 3.33 mol L ⁻¹ KCl 1.0 mol KCI 1.0 mol L ⁻¹ NaNO ₃ S glass trode.	 SOURCE AND PURITY OF MATERIALS: (1) Magnesium hydroxide. Analytical grade. (2) Magnesium nitrate. Recrystallized from aqueous solution of Ba(OH)₂ and then added to NaOH solution in order to precipitate any dissolved CO₂ as insoluble BaCO₃.
[H ⁺] meas Hg, L ⁻¹ elec For [Mg([H ⁺]	/APPARATUS/PROCEDURE: was determined from emf surements on the cell $Hg_2Cl_2 3.33 \text{ mol } L^{-1} \text{ KCl} 1.0 \text{ mol}$ $KCI 1.0 \text{ mol } L^{-1} \text{ NaNO}_3 S glass$ strode. the experimental solution S, II)]tot = B mol L^{-1} , init = H mol L^{-1} ,	 SOURCE AND PURITY OF MATERIALS: (1) Magnesium hydroxide. Analytical grade. (2) Magnesium nitrate. Recrystallized from aqueous solution of Ba(OH)₂ and then added to NaOH solution in order to precipitate any dissolved CO₂ as insoluble BaCO₃.
[H ⁺] meas Hg, L ⁻¹ elec For [Mg([H ⁺]]	/APPARATUS/PROCEDURE: was determined from emf surements on the cell $Hg_2Cl_2 3.33 \text{ mol } L^{-1} \text{ KCl} 1.0 \text{ mol}$ $KCI 1.0 \text{ mol } L^{-1} \text{ NaNO}_3 S glass$ strode. the experimental solution S, II)]tot = B mol L^{-1} , init = H mol L^{-1} , $= (1.0 - 2B - H) \text{ mol } L^{-1}$, and	 SOURCE AND PURITY OF MATERIALS: (1) Magnesium hydroxide. Analytical grade. (2) Magnesium nitrate. Recrystallized from aqueous solution of Ba(OH)₂ and then added to NaOH solution in order to precipitate any dissolved CO₂ as insoluble BaCO₃. (3) Sodium nitrate. Analytical
[H ⁺] meas Hg, L ¹ elec For [Mg([H ⁺] [Na ⁺] [N0 ₃	/APPARATUS/PROCEDURE: was determined from emf surements on the cell $Hg_2Cl_2 3.33 \text{ mol } L^{-1} \text{ KCl} 1.0 \text{ mol}$ $KCI 1.0 \text{ mol } L^{-1} \text{ NaNO}_3 S \text{ glass}$ strode. the experimental solution S, II)] _{tot} = B mol L^{-1} , init = H mol L^{-1} , $= (1.0 - 2B - H) \text{ mol } L^{-1}$, and $T = 1.0 \text{ mol } L^{-1}$.	 SOURCE AND PURITY OF MATERIALS: (1) Magnesium hydroxide. Analytical grade. (2) Magnesium nitrate. Recrystallized from aqueous solution of Ba(OH)₂ and then added to NaOH solution in order to precipitate any dissolved CO₂ as insoluble BaCO₃. (3) Sodium nitrate. Analytical grade. (4) Water.
[H ⁺] mease Hg, L ¹ elec For [Mg([H ⁺] [Na ⁺] [No ₃ Afte the	/APPARATUS/PROCEDURE: was determined from emf surements on the cell $Hg_2Cl_2 3.33 \text{ mol } L^{-1} \text{ KCl} 1.0 \text{ mol}$ $KCI 1.0 \text{ mol } L^{-1} \text{ NaNO}_3 S glass$ strode. the experimental solution S, II)]tot = B mol L^{-1} , init = H mol L^{-1} , $= (1.0 - 2B - H) \text{ mol } L^{-1}$, and	 SOURCE AND PURITY OF MATERIALS: (1) Magnesium hydroxide. Analytical grade. (2) Magnesium nitrate. Recrystallized from aqueous solution of Ba(OH)₂ and then added to NaOH solution in order to precipitate any dissolved CO₂ as insoluble BaCO₃. (3) Sodium nitrate. Analytical grade. (4) Water.
[H ⁺] meas Hg, L ⁻¹ elec For [Mg([H ⁺] [Na ⁺] [Na ⁺] [No ₃ Afte the	/APPARATUS/PROCEDURE: was determined from emf surements on the cell $Hg_2Cl_2 3.33 \text{ mol } L^{-1} \text{ KCl} 1.0 \text{ mol}$ $KCI 1.0 \text{ mol } L^{-1} \text{ NaNO}_3 S \text{ glass}$ strode. the experimental solution S, II)]tot = B mol L^{-1} , init = H mol L^{-1} , $ = (1.0 - 2B - H) \text{ mol } L^{-1}$, and $-] = 1.0 \text{ mol } L^{-1}$. er equilibration for 6 hours, following relation was used in	 SOURCE AND PURITY OF MATERIALS: (1) Magnesium hydroxide. Analytical grade. (2) Magnesium nitrate. Recrystallized from aqueous solution of Ba(OH)₂ and then added to NaOH solution in order to precipitate any dissolved CO₂ as insoluble BaCO₃. (3) Sodium nitrate. Analytical grade. (4) Water. ESTIMATED ERROR: Accuracy of the emf measurements

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Kline, W. D.
(2) Magnesium carbonate; MgCO ₃ ; [546-93-0]	J. Am. Chem. Soc. <u>1929</u> , 51, 2093-7.
(3) Carbon dioxide; CO ₂ ; [124-38-9]	
(4) Water; H ₂ O; [7732-18-5]	

EXPERIMENTAL VALUES:

The Mg(OH)₂ + MgCO₃ + CO₂ + H₂O system at 25°C as a function of CO_2 partial pressure.

co ₂	Ionic Strength	Mg ²⁺	нсоз	C0 ²⁻ 3	OH	Solid Phase
10 ³ p ₃ /atm	Screngen	10 ³ m/ mol kg ⁻¹	10 ³ m/ mol kg ⁻¹	10 ³ m/ mol kg ⁻¹	10 ⁵ m/ mol kg ⁻¹	riidse
0.107	0.0149	4.33	4.88	1.89	3.84	A
0.113	0.0153	4.45	5.01	1.95	3.73	А
0.170	0.0194	5.77	7.45	2.05	3.69	Α
0.179	0.0199	5.93	7.63	2.12	3.59	А
0.197	0.0224	6.58	7.95	2.61	3.40	A A
0.210	0.0243	7.08 .	8.06	3.05	3.23	Α
0.233	0.0270	7.80	8.37	3.61	3.03	A A
0.251	0.0280	8.07	8.55	3.80	2.87	А
0.310	0.0346	10.13	11.84	4.21	3.22	А
0.376	0.0448	12.96	14.04	5.94	3.14	А
0.380	0.0470	13.55	14.32	6.39	-	A
0.510	0.0489	14.37	17.10	5.82	-	в
0.680	0.0511	15.12	18.72	5.76	-	в
0.845	0.0527	15.66	19.90	5.71		B B
0.887	0.0535	15.93	20.46	5.70	-	в
0.930	0.0544	16.24	21.19	5.65	-	в
1.600	0.0609	18.59	26.98	5.10	-	в
3.34	0.0707	22.10	35.48	4.36	-	В
6.90	0.0779	25.07	44.68	2.73	-	в
15.0	0.0950	31.27	60.22	1.16	-	В
43.2	0.1390	46.01	89.98	1.02	-	B B
111.6	0.1889	62.66	123.6	0.85	-	в
968.4	0.6405	213.5	426.9	-	-	в

Solid Phases: A Mg(OH)₂

B MgCO₃·3H₂O

The Mg²⁺ and the HCO₃ were determined directly. The CO_3^{2-} NOTE: The total ionic was calculated by $m_{CO3^{2-}} = m_{Mq^{2+}} - (1/2)m_{HCO3^{-}}$. strength is from the molalities of Mg^{2+} , HCO_3^{-} and CO_3^{2-} . The hydroxyl ion molality was found from the bicarbonate molality, the carbon dioxide partial pressure, the value of Henry's constant for CO_2 , and the ionization constants of H_2CO_3 . The transition pressure between Mg(OH)2 and MgCO3 · 3H2O at 25°C is 0.0004 atm. carbon dioxide. The solubility product of Mg(OH), was obtained from the data by by two approaches. Approach I. Values of $m_{Mq^{2+}} m_{OH^-}^2$ calculated from the table above were extrapolated to zero ionic strength to give a value of $K_{s0}^* = 2.7 \times 10^{-12}$. (continued on the next page)

COMPONENTS: (1) Magnesium hydroxide; Mg(OH) ₂ ;	ORIGINAL MEASUREMENTS: Kline, W. D.
[1309-42-8]	J. Am. Chem. Soc. <u>1929</u> , 51,
<pre>(2) Magnesium carbonate; MgCO₃; [546-93-0]</pre>	2093-7.
(3) Carbon dioxide; CO ₂ ; [124-38-9]	
(4) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298	H. Einaga
$p_3/Pa = 10.8 - 98,123.$ Composition	I. Lambert
EXPERIMENTAL VALUES: ADDITIONAL COMMENTS AND/OR DATA:	
Solubility product of Mg(OH)2.	Approach II. Calculated to be
5.5 x 10^{-12} from the relation	
$K_{s0}^{*} = K_{w} / (\gamma \lambda m CO2^{K} a 1^{K} a 2) (K_{MgCO3} / K_{d})$	tr), where:
K_w = the ion product of way γ = the activity coeffic: λ = the activity coeffic: m_{CO2} = the molality of CO ₂ a K_{a1} and K_{a2} = the ionization K_{MgCO3} = the solubility prod K_{tr} = the transition pressure	ient of CO ₂ ,
The author recommended the value	
	INFORMATION
METHOD/APPARATUS/PROCEDURE: MgCO ₃ ·3H ₂ O was suspended for 3 to 5 days in water saturated with CO ₂ at the partial pressure of the experi- ment. The saturated solutions were analyzed for Mg ²⁺ and HCO ₃ .	 SOURCE AND PURITY OF MATERIALS: (2) Magnesium carbonate. A commercial sample was used as received. No other information given.
	ESTIMATED ERROR:
	No estimates possible.
	REFERENCES: 1. Johnston, J. <i>J. Am. Chem. Soc.</i> <u>1915</u> , 37, 2001.

OMPO	NENTS:	ORIGINAL MEASUREMENTS:
(1)	Magnesium hydroxide; Mg(OH) ₂ ; [1309-42-8]	Loven, J. M.
(2)	Magnesium acetate; Mg(CH ₃ COO) ₂ [142-72-3]	Z. Anorg. Chem. <u>1896</u> , 11, 404-15
(3)	Ammonia; NH ₃ ; [7664-41-7]	
	Ammonium acetate; NH ₄ CH ₃ COO; [631-61-8]	
(5)	Water; H ₂ O; [7732-18-5]	
	BLES:	PREPARED BY:
c ₂ ,	T/K = 289-290 $c_3/mol L^{-1}$	I. Lambert
KPER:	IMENTAL VALUES:	
	An estimation of the solubility composition of aqueous solution	of Mg(OH) ₂ in pure water from the s of Mg(CH ₃ COO) ₂ + NH ₃ at 16-17°C
	Mg ²⁺ NH ₃	NH ₄ ⁺ Mg (OH) ₂
	$c/mol L^{-1}$ $c_3/mol L^{-1}$	$c/mol L^{-1}$ $10^4 c_1/mol L^{-1}$
	0.04498 0.02087	
	0.0246 0.04158 0.00901 0.06655	0.01076 3.65 0.01196 3.33
	0.00495 0.07716	0.01009 3.37
	the ionization of ammonia and the $K_b = [NH_4^+][OH^-]/[NH_3]$, and $(Mg^{2^+}][$ last term applies to $Mg(OH)_2$ in ionized substance without associateliminated [OH ⁻] from the two expansion constant of 2	$OH^{-}]^{2} = K_{S0}^{*} = 4c^{3}$, where the pure water as an ideal, completely ation or hydrolysis. The author ressions, and solved for c. An
	the ionization of ammonia and the $K_b = [NH_4^+][OH^-]/[NH_3]$, and $(Mg^{2^+}][$ last term applies to $Mg(OH)_2$ in ionized substance without associate liminated [OH ⁻] from the two exp	a solubility product of Mg(OH) ₂ . $OH^{-}]^{2} = K_{S0}^{*} = 4c^{3}$, where the pure water as an ideal, completely ation or hydrolysis. The author ressions, and solved for c. An
	the ionization of ammonia and the $K_b = [NH_4^+][OH^-]/[NH_3]$, and $(Mg^{2^+})[$ last term applies to $Mg(OH)_2$ in ionized substance without associateliminated [OH ⁻] from the two expansion constant of 2 the calculation.	a solubility product of Mg(OH) ₂ . $OH^{-}]^{2} = K_{S0}^{*} = 4c^{3}$, where the pure water as an ideal, completely ation or hydrolysis. The author ressions, and solved for c. An .3 x 10 ⁻⁵ (ref 1) was used in INFORMATION
THO	the ionization of ammonia and the $K_b = [NH_4^+][OH^-]/[NH_3]$, and $(Mg^{2^+})[$ last term applies to $Mg(OH)_2$ in ionized substance without associated eliminated [OH^-] from the two exp ammonia ionization constant of 2 the calculation. AUXILIARY D/APPARATUS/PROCEDURE:	a solubility product of Mg(OH) ₂ . $OH^{-}]^{2} = K_{S0}^{*} = 4c^{3}$, where the pure water as an ideal, completely ation or hydrolysis. The author ressions, and solved for c. An .3 x 10 ⁻⁵ (ref 1) was used in
Solu amm seve at a ter: were decc plat	the ionization of ammonia and the $K_b = [NH_4^+][OH^-]/[NH_3]$, and $\{Mg^{2^+}][$ last term applies to $Mg(OH)_2$ in ionized substance without associated eliminated [OH^-] from the two expression and the two expression and the two expressions in the two expression and the calculation. AUXILIARY D/APPARATUS/PROCEDURE: AUXILIARY AUXILIARY D/APPARATUS/PROCEDURE: AUXILIARY	a solubility product of Mg(OH) ₂ . $OH^{-}]^{2} = K_{S0}^{*} = 4c^{3}$, where the pure water as an ideal, completely ation or hydrolysis. The author ressions, and solved for c. An .3 x 10 ⁻⁵ (ref 1) was used in INFORMATION
solu amm seve at a vere lecc blat The bher lon	the ionization of ammonia and the $K_b = [NH_4^+][OH^-]/[NH_3]$, and $\{Mg^{2^+}\}[$ last term applies to $Mg(OH)_2$ in ionized substance without associated eliminated $[OH^-]$ from the two expression constant of 2 the calculation. AUXILIARY D/APPARATUS/PROCEDURE: Intions of magnesium acetate and onia were equilibrated for eral days in stoppered bottles ambient temperature. After fil- ing, the saturated solutions the evaporated, and the dry solidor proposed to MgO by heating in a cinum vessel which was weighed. NH ₃ is titrated with o-nitro- nol as the indicator. The NH ₄ ⁺ concentration is calculated as	a solubility product of Mg(OH) ₂ . $OH^{-}]^{2} = K_{S0}^{*} = 4c^{3}$, where the pure water as an ideal, completely ation or hydrolysis. The author ressions, and solved for c. An .3 x 10 ⁻⁵ (ref 1) was used in INFORMATION SOURCE AND PURITY OF MATERIALS:
Solu amm seve at a ter: were decc plat The pher ion the NHa	the ionization of ammonia and the $K_b = [NH_4^+][OH^-]/[NH_3]$, and $(Mg^{2^+})[$ last term applies to $Mg(OH)_2$ in ionized substance without associated eliminated [OH^-] from the two exp ammonia ionization constant of 2 the calculation. AUXILIARY D/APPARATUS/PROCEDURE: antions of magnesium acetate and onia were equilibrated for eral days in stoppered bottles ambient temperature. After fil- ing, the saturated solutions e evaporated, and the dry solid omposed to MgO by heating in a tinum vessel which was weighed. NH ₃ is titrated with o-nitro- nol as the indicator. The NH ₄ ⁺	a solubility product of Mg(OH) ₂ . $OH^{-}]^{2} = K_{S0}^{*} = 4c^{3}$, where the pure water as an ideal, completely ation or hydrolysis. The author ressions, and solved for c. An .3 x 10 ⁻⁵ (ref 1) was used in INFORMATION SOURCE AND PURITY OF MATERIALS:
Solu amm seve at a ter: were decc olat The oher ion the NHa	the ionization of ammonia and the $K_b = [NH_4^+][OH^-]/[NH_3]$, and $(Mg^{2^+})[$ last term applies to $Mg(OH)_2$ in ionized substance without associated eliminated [OH^-] from the two exp ammonia ionization constant of 2 the calculation. AUXILIARY D/APPARATUS/PROCEDURE: ations of magnesium acetate and onia were equilibrated for eral days in stoppered bottles ambient temperature. After fil- ing, the saturated solutions a evaporated, and the dry solid omposed to MgO by heating in a tinum vessel which was weighed. NH ₃ is titrated with o-nitro- nol as the indicator. The NH ₄ ⁺ concentration is calculated as difference between the initial concentration and the final NH ₂	a solubility product of Mg(OH) ₂ . $OH^{-}]^{2} = K_{S0}^{*} = 4c^{3}$, where the pure water as an ideal, completely ation or hydrolysis. The author pressions, and solved for c. An .3 x 10 ⁻⁵ (ref 1) was used in INFORMATION SOURCE AND PURITY OF MATERIALS: Nothing specified.
Solu amm seve at a ter: were decc plat The pher ion the NHa	the ionization of ammonia and the $K_b = [NH_4^+][OH^-]/[NH_3]$, and $(Mg^{2^+})[$ last term applies to $Mg(OH)_2$ in ionized substance without associated eliminated [OH^-] from the two exp ammonia ionization constant of 2 the calculation. AUXILIARY D/APPARATUS/PROCEDURE: ations of magnesium acetate and onia were equilibrated for eral days in stoppered bottles ambient temperature. After fil- ing, the saturated solutions a evaporated, and the dry solid omposed to MgO by heating in a tinum vessel which was weighed. NH ₃ is titrated with o-nitro- nol as the indicator. The NH ₄ ⁺ concentration is calculated as difference between the initial concentration and the final NH ₂	a solubility product of Mg(OH) ₂ . $OH^{-}]^{2} = K_{S0}^{*} = 4c^{3}$, where the pure water as an ideal, completely ation or hydrolysis. The author ressions, and solved for c. An .3 x 10 ⁻⁵ (ref 1) was used in INFORMATION SOURCE AND PURITY OF MATERIALS: Nothing specified. ESTIMATED ERROR:

COMPONIENTE	······································		
COMPONENTS:	adum budmendes V= (orr)	ORIGINAL MEASUREMENTS:	
(1) Magne [1309	esium hydroxide; Mg(OH) ₂ ; 9-42-8]	Whipple, G. C; Mayer, A. Jr. J. Infec. Dis. [Suppl. 2] <u>1906</u> ,	
(2) Calc: [471-	ium carbonate; CaCO ₃ ; -34-1]	2, 151.	
(3) Water	r; H ₂ O; [7732-18-5]		
VARIABLES:		PREPARED BY:	
T/K =	= 293, 308, and 310	I. Lambert	
EXPERIMENTA		in aqueous saturated CaCO ₃	
		$H)_2^a$ Mg(OH)_2	
		$\frac{10^4 m_1/\text{mol kg}^{-1}}{10^4 m_1/\text{mol kg}^{-1}}$	
	20 1	1.8	
	35 2	2.1	
	37 1	5 1.6	
	^a expressed as mg kg ⁻¹ CaC	2	
		ne molal Mg(OH) ₂ solubility.	
	-	3	
	AUXILIARY	INFORMATION	
	RATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS:	
Solution and mag precipita Concentra After pro CaCO ₃ in titrated Samples times unt The Mg(O by subtr. tion obta	CATUS/PROCEDURE: as of calcium bicarbonate nesium bicarbonate are ated by Ca(OH) ₂ solutions. ations are not specified. ecipitation the Mg(OH) ₂ and the supernatant liquid are with H_2SO_4 (0.02 mol L^{-1}). are taken at different cil equilibrium is reached. H) ₂ concentration is found acting the base concentra- ained in a similar experi-		
Solution and mag precipita Concentra After pro CaCO ₃ in titrated Samples times unt The Mg(O by subtr. tion obta	CATUS/PROCEDURE: is of calcium bicarbonate nesium bicarbonate are ated by Ca(OH) ₂ solutions. ations are not specified. ecipitation the Mg(OH) ₂ and the supernatant liquid are with H_2SO_4 (0.02 mol L ⁻¹). are taken at different cil equilibrium is reached. H) ₂ concentration is found acting the base concentra-	SOURCE AND PURITY OF MATERIALS:	
Solution and mag precipita Concentra After pro CaCO ₃ in titrated Samples times unt The Mg(O by subtr. tion obta	CATUS/PROCEDURE: as of calcium bicarbonate nesium bicarbonate are ated by Ca(OH) ₂ solutions. ations are not specified. ecipitation the Mg(OH) ₂ and the supernatant liquid are with H_2SO_4 (0.02 mol L^{-1}). are taken at different cil equilibrium is reached. H) ₂ concentration is found acting the base concentra- ained in a similar experi-	SOURCE AND PURITY OF MATERIALS: Nothing specified.	

1	0	2

COMPONENTS :	ı -	• • • · · · · ·	ļ	ORIGINAL MEASUR	
	Magnesium hydroxide; Mg(OH) ₂ ; [1309-42-8]			Lambert, I.; Lefevre, A.; Montel,J.	
(2) Hydro	chloric	acid; HCl;			the Eighth Inter- ATA Conference:
	'-01-0]	, actu, nci,			ence and Technology
or				Jachranka, P	
	um chior [-14-5]	ide; NaCl;		Water chemis	try and corrosion
or	-				nuclear power plants.
Sodiu	ım nitra	te; NaNO ₃ ;			Vienne, <u>1983</u> .
[7631	99-4]				
(3) Water	; H ₂ 0;	[7732-18-5]			
EXPERIMENTAL	VALUES:		······		
Th	e solub	oility of Mg(OH) betw	2 in a een 20	queous HCl, o and 300°C	r NaNO ₃ , or NaCl
			Mg (OH)	2	рн
		t/°C	10 ³ m ₁ /m	nol kg ⁻¹	
	Table	I. Ionic streng			$\frac{1}{1}$ mol ka^{-1}
	TADIE	pH measured			.or mor kg),
		300	0	.08	5.3
		281		.66	5.48
		238		.66	6.33
		211	-	.52 .78	8.43
		175 143		.86	9.10 9.18
		123		.76	9.25
		110.5		.16	9.23
		77		.25	9.36
		46	6		9.56
		21	5	.18	9.85
	Table	II. Ionic stren pH measured			0.5 mol kg^{-1}),
		300	0	.884	5.33
		270		.15	6.35
		241.5		.18	7.07
		180		.69	9.20
		146		.72	9.41
		114		.72	9.33
		86		.74	9.83
		46 22		.69 .93	10.07 10.18
	Table	III. Ionic stre	ength,	I = 0.5 (NaCl	
		300		.062	9.74 (23)
		280		.079	9.73 (23)
		254		.0847	9.96 (23)
		221		.127	10.24 (22)
		183	0	.165	10.25 (23)
		146		.222	10.47 (22)
		107.5		.234	10.61 (21)
		88		.253	10.78 (20)
		39 21.5		.296 .265	10.63 (19)
		21.5		.284	10.65 (20) 10.60 (20)
The data	in tabl	es 2 and 3 allo	ws cal	culation of t	he complexation
constant,	K _{c1} =	[MgCl ⁺]/([Mg ²⁺][c1 ⁻]).	The data fro	m tables 1 and 2
(table 1	correct	ed for complexa	tion by	y Cl⁻) are use	ed to calculate the
				•	

Mg(OH)₂ solubility product, $K_{s0}^* = a_{Mg^{2+}}a_{OH^-}^2$ at each temperature. (continued on next page)

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Lambert, I.; Lefevre, A.; Montel,J.
<pre>(2) Hydrochloric acid; HCl; [7647-01-0]</pre>	Presented at the Eighth Inter- national CODATA Conference: Data for Science and Technology,
or	Jachranka, Poland <u>1982</u> .
Sodium chloride; NaCl; [7647-14-5]	Water chemistry and corrosion
or Sodium nitrate; NaNO ₃ ; [7631-99-4]	problems in nuclear power plants. IAEA -SM-264 Vienne, <u>1983</u> .
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 293 - 573 Concentration	I. Lambert
EXPERIMENTAL VALUES:	L
ADDITIONAL COMMENTS AND/OR DATA (cont	cinued):
Activity coefficients evaluated from results were fitted to the equation:	C C
$\log K_{s0}^{\circ} = 73.9 - 29.8 \log (T/K)$	14 ····· 14
- $605.7/(T/K)$ + 4.428 x 10^{-2} (T/K)	• • • • • • •
The discrepancy at low temperatures with reported results (2) is	
assumed to be related to a different	
crystalline form.	•/•
The precision of the results does not allow consideration of MgOH ⁺ formation in the calculation. The imprecision is mainly due to high temperature reactions of solutions with the walls of the autoclave.	
	Fig. 4 SQLUBIL[TY PODUCT $K_{SO}^{*} = A_{PG}^{*} = A_{2OII}^{*}$
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Mg(OH) ₂ and the desired solution are placed in a titanium autoclave and stirred for 16 hours to attain	 (1) Magnesium hydroxide. Prepared in situ by hydration of MgO. All reagents are analytical grade.
equilibrium. Prior to the equilibration procedure, the $Mg(OH)_2$ is	
heated for 8 days at 300°C to con- vert the labile form into the	ESTIMATED ERROR:
stable inactive form. After equi- libration the liquid phase is	log K_{s0}^{*} precision = ± 0.3 log units.
sampled through a titanium filter and condenser. The magnesium is	REFERENCES:
analyzed by colorimetry of the com- plex formed with xylidyl blue. The	1. Hostetler, P. B. Am. J. Sci. <u>1963</u> , 261, 238.
pH is measured at room temperature with a glass electrode. The pH at the temperature of the experiment was calculated from $K_{\rm V}$ values at each temperature assuming complete dissociation of Mg(OH) ₂ and any products from wall reactions.	 Linke, W. F. Solubilities of inorganic and metal organic com- pounds, Van Nostrand Co., New York, <u>1958</u>.

COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Näsänen, R.		
<pre>(2) Sodium chloride; NaCl; [7647-14-5]</pre>	Z. Phys. Chem., Ab 183-94.	t. A <u>1942</u> , 190,	
or			
Potassium chloride; KCl; [7447-40-7]	1		
(3) Water; H ₂ O; [7731-18-5]			
VARIABLES:	PREPARED BY:		
T/K = 298	H. Einaga I. Lambert		
$c_2/\text{mol } L^{-1} = 0.0119-2.62$	l		
EXPERIMENTAL VALUES:			
The solubility product of P in aqueous	fg(OH) ₂ in aqueous N KCl at 25°C	aCl and	
Sodium Chloride Solutions	Potassium Chlor	ide Solutions	
$\frac{1^{1/2}}{1} = -\log \kappa_{s0}$	I ^{1/2}	-log K _{s0}	
0.109 10.450	0.108	10.497	
0.268 10.215	0.266	10.220	
0.473 10.005	0.484	10.079	
0.970 9.906 1.47 10.064	0.961 1.34	10.056 10.250	
1.47 10.064 1.62 10.190	1.63	10.250	
	1100	101405	
NOTE: Earlier data (1) were regarded because he did not consider the Additional experiments at known	effects of dissolve	ed CO ₂ .	
reported.			
	INFORMATION		
METHOD/APPARATUS/PROCEDURE: Aqueous solutions of MgCl ₂ contain- ing either NaCl or KCl were titrated with either aqueous NaOH or KOH, and the pH change was fol- lowed during the titration by emf measurements (1). The poten- tiometric titration curves were analyzed to obtain the Mg(OH) ₂ solubility product, K_{s0} . Results were obtained in the absence of CO ₂ . Controlled additions of CO ₂ were made, and the influence of CO ₂	SOURCE AND PURITY OF MA Alkali hydroxide stored over bariun handled at low temy to avoid CO ₂ .	solutions were hydroxide, and	
interpreted by taking MgHCO ₃ for-	ESTIMATED ERROR:		
mation into account.	No description, h	ut precision in	
	log K_{s0} may be estimated than ± 0.02 log unit	imated to be less	
	REFERENCES: 1. Näsänen, R. 2. Phys. Chem. A 188, 272.	Abt. A <u>1941</u> ,	

COMPONENTS :	ORIGINAL ME	ASUREMENTS :	······································
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Whitby, 1		
) Alkali metal halides, 1318- hydroxides and sulfates,		Trans. Faraday Soc. <u>1933</u> , 29, 1318-31.	
see table below. (3) Water; H ₂ O; [7732-18-5]	Trans. Fa 638-48.	raday Soc	c. <u>1935</u> , 31,
VARIABLES:	PREPARED BY		······································
		H. Einag	ga
T/K = 298 $c_2/mol L^{-1} = 0 - 4$			
XPERIMENTAL VALUES:			
Solubility of Mg(OH) ₂ in aqueous a	alkali meta	l salt so	lutions at 25°C
Alkali Metal Salt	-	alt	Magnesium Hydroxide
	^c 2	/mol L ⁻¹	$\frac{10^{t}c_{1}/\text{mol }L^{-1}}{2}$
Lithium chloride; LiCl; [7447-41-	8]	0	4.6
		0.01 0.1	3.1 2.4
		2	6.0
Sodium chloride; NaCl; [7647-14-5	J	0	4.6
-	-	0.01	2.7
		0.1 2	1.7 3.9
		3	2.5
		4	3.0
Sodium sulfate; Na ₂ SO ₄ ; [7681-38-3	1]	0	4.6
		0.05 0.5	2.5
		1	3.4 4.6
		1.5	6.7
Potassium hydroxide; KOH; [1310-5	8-3]	0	4.6
		0.001	2.2
Potassium chloride; KCl; [7447-40-	-7]	0	4.6
		0.01	3.8
		0.1 1	2.5 3.3
		2	5.0
Potassium bromide; KBr; [7758-02-3	3]	0 1	4.6 2.9
		-	
Potassium iodide; KI; [7681-11-0]		0 1	4.6 3.2
Potassium sulfate; K ₂ SO ₄ ; [7778-80	0-5]	0 0.5	4.6 9.0
	<u></u>		
AUXILIARY	INFORMATION		· · · · · · · · · · · · · · · · · · ·
ETHOD/APPARATUS/PROCEDURE:	SOURCE AND P	URITY OF MA	ATERIALS:
The freshly prepared labile form (ref 1) of Mg(OH) ₂ was mixed with	(1) Magne by me	sium hydr thod of (
each of the alkali metal salt solu- tions in the above table. The mix- tures were equilibrated for three weeks. The saturated solutions		i metal s chemical	alts. Analytical s.
were filtered, and the Mg(OH),	FOTTMATED		
determined gravimetrically with 8-	ESTIMATED ER		noscible
quinolinol.		estimates	s possible.
	REFERENCES :		

- (1) Magnesium hydroxide. Prepared by method of (ref 1).
 - (2) Alkali metal salts. Analytical grade chemicals.

REFERENCES:

Gjaldbaek, J. K. Z. Anorg. Allg. Chem. <u>1925</u>, 144, 269.

COMPONENTS :			ORIGINAL MEASUREMENTS:			
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>				Maigret, E.		
<pre>(2) Sodium chloride; NaCl; [7647-14-5]</pre>			Bull. Soc.	Chim. Fr.	<u>1905</u> , 631-4.	
	m hydroxide; N -73-2]	aOH;				
(4) Water	; H ₂ O; [7732-1	8-5]				
ARIABLES:			PREPARED BY:			
c ₂ /g c ₃ /g T	$L^{-1} = 125 - 160$ $L^{-1} = 0.8 - 4.0$ /K = Room temp	erature	Н	. Einaga		
XPERIMENTAI C	VALUES: omposition of	the saturated	solution at	room temp	erature	
N	aCl	NaO	H	MgO	Mg(OH) ₂	
c ₂ /g L ⁻¹	$c_2/mol L^{-1a}$	c ₃ /g L ⁻¹	c3/mol L ^{-1a}	c/g L ⁻¹	$10^4c_1/\text{mol L}^{-1a}$	
125	2.14	0.8	0.02	0.07	17	
140	2.40	0.8	0.02	0.045	11	
160	2.74	0.8	0.02	0	0	
125	2.14	4.0	0.10	0.03	7	
140	2.40	4.0	0.10	0	0	
160	2.74	4.0	0.10	0	ο	
^a Calculat	ed by compiler	•				
^a Calculat	ed by compiler		INFORMATION			
	ed by compiler		INFORMATION	URITY OF MAT	ERIALS :	
ETHOD/APPAR Mixtures	ATUS/PROCEDURE: of MgO, NaCl a	AUXILIARY				
ETHOD/APPAR Mixtures agitated attained.	ATUS/PROCEDURE: of MgO, NaCl a: until equili The resultin	AUXILIARY nd NaOH were bration was g salt solu-	SOURCE AND P	ium hydrox	ide.	
ETHOD/APPAH Mixtures agitated attained. tion was determine	ATUS/PROCEDURE: of MgO, NaCl a until equili	AUXILIARY nd NaOH were bration was g salt solu- Mg(OH) ₂ was on with HCl	SOURCE AND P (1) Magnes (2) Sodium (3) Sodiu soluti	ium hydrox chloride. m hydroxi	ide. de. The NaOH ecarbonated by	
ETHOD/APPAH Mixtures agitated attained. tion was determine	ATUS/PROCEDURE: of MgO, NaCl a until equili The resultin filtered, and ed by titratio	AUXILIARY nd NaOH were bration was g salt solu- Mg(OH) ₂ was on with HCl	SOURCE AND P (1) Magnes (2) Sodium (3) Sodiu soluti additi	ium hydrox chloride. m hydroxi on was do on of BaCl	ide. de. The NaOH ecarbonated by	
ETHOD/APPAH Mixtures agitated attained. tion was determine	ATUS/PROCEDURE: of MgO, NaCl a until equili The resultin filtered, and ed by titratio	AUXILIARY nd NaOH were bration was g salt solu- Mg(OH) ₂ was on with HCl	SOURCE AND P (1) Magnes (2) Sodium (3) Sodiu soluti additi	ium hydrox chloride. m hydroxi on was do on of BaCl er informa	ide. de. The NaOH ecarbonated by 2°	
ETHOD/APPAR Mixtures agitated attained. tion was determine	ATUS/PROCEDURE: of MgO, NaCl a until equili The resultin filtered, and ed by titratio	AUXILIARY nd NaOH were bration was g salt solu- Mg(OH) ₂ was on with HCl	SOURCE AND P (1) Magnes (2) Sodium (3) Sodiu soluti additi No oth ESTIMATED ER	ium hydrox chloride. m hydroxi on was do on of BaCl er informa	ide. The NaOH ecarbonated by 2° tion given.	

	·····		
COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Boryachek, A. F.; Gromova, E. T.; Kulagina, O. N.		
<pre>(2) Sodium hydroxide; NaOH; [1310-73-2]</pre>	*Zh. Prikl. Khim. (Leningrad) <u>1968</u> , 41, 1606-8.		
<pre>(3) Sodium chloride; NaCl; [7647-14-5]</pre>	J. Appl. Chem. USSR (Engl. Transl.) <u>1968</u> , 41, 1524-6.		
(4) Water; H ₂ O; [7732-18-5]			
VARIABLES:	PREPARED BY:		
T/K = 298 - 348 $10^{3}c_{2}/mol L^{-1} = 0 - 2.5$	H. Einaga I. Lambert		
EXPERIMENTAL VALUES: Solubility of Mg(OH) $310 \text{ g } \text{L}^{-1} \text{ NaCL}, 0.005-0$	in brine containing .010 g L^{-1} Ca, and NaOH		
	$ \begin{array}{cccc} g^{2^{*}} & & Mg(OH)_{2} \\ g^{3}c_{1}/g \ L^{-1} & 10^{4}c_{1}/mol \ L^{-1a} \\ & & & \\ \end{array} $		
25 0	9.0 3.7		
1.25 2.5	1.5 0.62 1.4 0.58		
50 0	10.7 4.40		
1.25 2.5	2.5 1.0 0 0		
75 0	11.0 4.53		
1.25	3.5 1.4		
2.5	0 0		
Solubility of Mg(OH) ₂ in brine incre decreases with increasing NaOH concer	ases with increasing temperature and atration.		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Freshly precipitated Mg(OH) ₂ was equilibrated with brine containing different concentrations of NaOH in round-bottomed glass flasks at 25°C for 7 days, at 50°C for 6 days, and	 (1) Magnesium hydroxide. Freshly precipitated, prepared from aqueous MgCl₂ solution by the addition of NaOH. 		
at 75°C for 5 days within ±0.2°C under continuous shaking. At the	(2) Sodium hydroxide.		
end of the shaking, the solutions stood for an additional 24 hours.	(3) Sodium chloride.(4) Water. Doubly distilled.		
Aliquots of the clear portions were analyzed for Mg^{2+} by spectrophoto- metry and for OH^- by titration with	(4) water. Doubly distilled.		
standard HCl solution using cresol			
red and thymol blue as indicators.	ESTIMATED ERROR:		
	Temp.: precision ± 0.02 K.		
	REFERENCES :		

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Horn, G.
<pre>(2) Sodium perchlorate; NaClO₄; [7601-89-0]</pre>	Radex Rundsch. <u>1969</u> , 439-59.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES.	PREPARED BY:
T/K = 298	H. Einaga

EXP	ERI	IMENTAI	VALUES:

Н	В	b	log K _{s0}	log K'_{s0}
$10^{3}c/mol L^{-1}$	$10^{3}c/mol L^{-1}$	$10^{3}c/mol L^{-1}$	(from b)	(from B)
200.00	97.90	102.10	16.52	16.50
200.00	99.20	100.80	16.57	16.57
200.00	100.01	99.99	16.56	16.56
80.00	42.90	37.11	16.57	16.63
80.00	43.07	36.93	16.58	16.64
80.00	43.06	36.94	16.56	16.66
22.86	13.00	9.86	16.60	16.72
22.86	13.29	9.57	16.61	16.75
28.86	13.20	9.66	16.61	16.84
10.01	6.23	3.78	16.57	16.79
10.01	6.23	3.78	16.58	16.80
10.01	6.23	3.78	16.58	16.80
4.00	2.80	1.20	16.58	16.94
4.00	2.62	1.38	16.59	16.86
4.00	2.63	1.37	16.56	16.86
		Av.	16.58 ± 0.06	
K _{s0} = [Mg ²⁺][$H^+]^{-2}, K_{11} = [N]$	B = [Mgtot]eq, Mg ²⁺][OH ⁻], K _{s0}	= $[Mg^{2^+}][OH^-]^2$,	and
K _{\$0} = [Mg ²⁺][K _w = [H ⁺][OH ⁻ ack of const ormation con alues of the	$[H^*]^{-2}$, $K_{11} = [N]$ $] = 10^{-14} \cdot 22$. [Mg ancy of K'_{s0} from istant is evalue a solubility pro- were calcula	-	<pre>= [Mg²⁺][OH⁻]², d by b = H - d to MgOH⁺ form = log (B-b) dation constant</pre>	and B. mation. The + log (b·OH [*] ht in 3 mol
K _{\$0} = [Mg ²⁺][K _w = [H ⁺][OH ⁻ ack of const ormation con alues of the queous NaClO	$H^*]^{-2}$, $K_{11} = [N]$ $] = 10^{-14} \cdot 22$. [Mg ancy of K'_{s0} from istant is evalue a solubility pr 4 were calcula 0.07.	$Mg^{2^+}][OH^-], K_{s0}$ $g^{2^+}]$ was evaluate m B is attribute ated by log K ₁₁ oduct and assoc	= $[Mg^{2+}][OH^-]^2$, d by b = H - ed to MgOH ⁺ form = log (B-b) diation constar g K _{s0} = -11.14	and B. mation. The + log (b·OH [*] ht in 3 mol
$K_{s0} = [Mg^{2+}][$ $K_w = [H^+][OH^-]$ ack of const ormation com alues of the queous NaClO $11 = 4.88 \pm$ HOD/APPARATUS/	$[H^{*}]^{-2}, K_{11} = [N]$ $] = 10^{-14} ^{22}. [Mg]$ ancy of K'_{s0} from stant is evaluated as solubility pro- 4 were calculated as a solubility pro-	$Mg^{2^+}][OH^-], K_{s0}$ $g^{2^+}]$ was evaluate m B is attribute ated by log K ₁₁ oduct and associted to be log AUXILIARY INFORMATI	= $[Mg^{2+}][OH^-]^2$, d by b = H - d to MgOH ⁺ form = log (B-b) diation constant g K_{s0} = -11.14 ON ND PURITY OF MATE	and B. mation. The + log (b·OH t in 3 mol ± 0.07 and 1 RIALS:
$K_{S0} = [Mg^{2+}][$ $K_w = [H^+][OH^-]$ ack of const ormation com alues of the queous NaClO $11 = 4.88 \pm$ HOD/APPARATUS/ mf measureme ell, Ag, aClO ₄ , 0.01 ol L ⁴ NaClO ₄ //A he cell is E 6.7h (ref 1)	$H^{*}]^{-2}, K_{11} = [N]$ $] = 10^{-14} ^{22}. [Mg]$ ancy of K_{s0}^{\prime} from stant is evaluated as solubility pro- 4 were calculated as solubility pro- 4 were calculated as a solubility pro- 5 and the solubility pro- 5 and the solubility pro- 5 and the solution of the solution	$\begin{array}{c} \text{Mg}^{2^+}][\text{OH}^-], K_{SO}\\ \text{g}^{2^+}] \text{ was evaluate}\\ \text{m B is attribute}\\ \text{ated by log } K_{11}\\ oduct and associated to be logentiated $	= $[Mg^{2+}][OH^-]^2$, d by b = H - d to MgOH ⁺ form = log (B-b) diation constant g K_{s0} = -11.14	and B. mation. The + log (b'OH' at in 3 mol ± 0.07 and 1 RIALS: kide. Prepar n from aqueo bing Mg ²⁺ and a. Analytic
$K_{S0} = [Mg^{2+}][$ $K_w = [H^+][OH^-]$ ack of const ormation con alues of the queous NaClO $II = 4.88 \pm$ HOD/APPARATUS/ mf measureme ell, Ag, aClO ₄ , 0.01 ol L ⁴ NaClO $^{-1}$ NaClO ₄ //A he cell is E 6.7h (ref 1) ere requir ibrium. Th etermined co olubility pa	H^*] ⁻² , $K_{11} = [N]$] = 10 ⁻¹⁴ ²² . [Mg ancy of K ₅₀ from stant is evalue a solubility pr 4 were calcula 0.07. PROCEDURE: ents were made AgCl//2.99 mc 0 mol L ⁻¹ NaCl 4//sample at 3. gCl, Ag. The - E [*] + 59.16 1 .Standing 3 to ed to attain the dissolved Momplexometrically product was calc	$\begin{array}{c} \text{Mg}^{2^{+}}][\text{OH}^{-}], K_{SO}\\ p^{2^{+}}] \text{ was evaluate}\\ \text{m B is attribute}\\ \text{ated by log } K_{11}\\ oduct and associated to be logentiated to be logentiat$	= $[Mg^{2^+}][OH^-]^2$, d by b = H - d to MgOH ⁺ form = log (B-b) diation constar g K_{s0} = -11.14 ND PURITY OF MATE agnesium hydrox precipitation contain kali hydroxide rade reagents ceived.	and B. mation. The + log (b·OH) it in 3 mol ± 0.07 and 1 RIALS: kide. Prepar n from aqueo king Mg ²⁺ and a. Analytic were used
$K_{S0} = [Mg^{2+}][$ $K_w = [H^+][OH^-]$ ack of const ormation con alues of the queous NaClO $II = 4.88 \pm$ HOD/APPARATUS/ mf measureme ell, Ag, aClO ₄ , 0.01 ol L ¹ NaClO ₄ //A he cell is E 6.7h (ref 1) ere requir ibrium. The etermined coi olubility prom the value	H^*] ⁻² , $K_{11} = [N]$] = 10 ⁻¹⁴ ²² . [Mg ancy of K' ₅₀ from stant is evaluated solubility pri- 4 were calculated 0.07. PROCEDURE: ents were made AgCl//2.99 mag 0 mol L ⁻¹ NaCl 4//sample at 3. gCl, Ag. The - E° + 59.16 1 .Standing 3 to ed to attain the dissolved Mag mplexometrically	$Mg^{2^+}][OH^-], K_{SO}$ $g^{2^+}]$ was evaluate m B is attribute ated by log K ₁₁ oduct and associated to be log AUXILIARY INFORMATI On the log AUXILIARY INFORMATI SOURCE A (1) Ma SOURCE A (1) Ma by //3.00 so 00 mol al emf of grz OO mol al emf of grz g^{2^+} was g^{2^+} was g^{2^+} was g^{2^+} was g^{2^+} in REFERENCE	= $[Mg^{2+}][OH^-]^2$, d by b = H - d to MgOH ⁺ form = log (B-b) dation constar g K_{s0} = -11.14 ON ND PURITY OF MATE agnesium hydros precipitation lution contain kali hydroxidd ade reagents deceived. D ERROR: Emf: Accuracy	and B. mation. The + log (b·OH) it in 3 mol ± 0.07 and 1 RIALS: kide. Prepar n from aqueo ling Mg ²⁺ and e. Analytic were used ± 0.2 mV.

COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Magnesium hydroxide; Mg(OH)₂; [1309-42-8]</pre>	Travers, A.; Nouvel		
(2) Sodium sulfate; Na ₂ SO ₄ ; [7757-82-6]	C. R. Hebd. Seances Acad. Sci. <u>1929</u> , 188, 499-501.		
(3) Water; H ₂ O; [7732-18-5]			
VARIABLES:	PREPARED BY:		
T/K = 383, 433	H. Einaga		
EXPERIMENTAL VALUES: Solubility of Mg(OH) ₂ in aqueous Na ₂ SO ₄		
t/°C Na ₂ SO ₄ mass \$	$\begin{array}{c} \text{Mg(OH)}_{2} \\ 10^{4}c_{1}/\text{mol } L^{-1} \end{array}$		
110 1	2.38		
160 1	1.42		
	· · · · · · · · · · · · · · · · · · ·		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Mg(OH) ₂ and aqueous Na ₂ SO ₄ were equilibrated in a Cu flask or autoclave for 1 to 2 days. The	(l) Magnesium hydroxide. Crystal- line form used.		
dissolved Mg(OH) ₂ was determined by titration with standard acid solu-	(2) Sodium sulfate.		
tion either potentiometrically using a hydrogen electrode or with	(3) Water. Freshly distilled water		
phenol red as an indicator. A CO free atmosphere was maintained	(pH 6.8) was used for the preparation of the saturated		
during the titration.	solution of Mg(OH) ₂ to avoid contamination by atmospheric CO ₂ .		
	ESTIMATED ERROR:		
	No estimates possible.		
	REFERENCES :		
	4		

```
110
COMPONENTS :
                                              ORIGINAL MEASUREMENTS:
  (1) Magnesium hydroxide; Mg(OH);
                                               Janković, S. Rastvorljivost Nekih Soli
                                               i Hidroksida Zemnoalkalnih Metala u
      [1309-42-8]
                                               Sistemima Voda-Etil Alkohol i Voda-Metil
  (2) Methanol; CH<sub>4</sub>O; [67-56-1]
                                               Alkohol, i Struktura Takvih Zasicenih
                                               Rastvora. Doctoral Dissertation,
  (3) Water; H<sub>2</sub>O; [7732-18-5]
                                              Faculty of Pharmacy, Zagreb, 1958.
VARIABLES:
                                              PREPARED BY:
           T/K = 298
 CH_4O mass % = 8.23 - 35.3
                                                          J. W. Lorimer
EXPERIMENTAL VALUES:
                  Composition of the saturated solution at 25°C
             Water
                         Methanol
                                                  Magnesium hydroxide
                                    mass <sup>%a</sup>
                         mol %a
                                                             m<sub>1</sub>/mmol kq<sup>-1a</sup>
                                                  mass %
             mol %
             95.2
                           4.8
                                      8.23
                                                  0.0021
                                                                 0.36
                          10.0
                                                  0.0014
             90.0
                                     16.5
                                                                 0.24
             83.3
                          16.7
                                                  0.0007
                                                                 0.12
                                     26.3
             76.5
                          23.5
                                     35.3
                                                  0.0003
                                                                 0.05
             <sup>a</sup>Calculated by compiler.
                  Properties of the saturated solution at 25°C
               Water
                           Relative
                                           Conductivity
                                                               Viscosity
                           Density
                           d<sup>25</sup>
d<sup>25</sup>
                                           10^6 \kappa / S \ cm^{-1}
               mol %
                                                               \eta/mPa s
                                               5.5
               95.2
                            0.9877
                                                                 1.10
               90.0
                            0.9751
                                               3.5
                                                                 1.31
                            0.9596
                                               1.35
               83.3
                                                                 1.50
               76.5
                            0.9415
                                               1.1
                                                                 1.61
                                  AUXILIARY INFORMATION
METHOD/APPARATUS/PROCEDURE:
                                             SOURCE AND PURITY OF MATERIALS:
 Salt and solution were stirred for
                                              (1) Magnesium hydroxide. Merck,
 8 days in a thermostat.
                                  After
                                                   pro analysi.
 equilibration, samples were removed
                                                   Methanol. Chemapol (Prague), pro analysi, absolute.
 for analysis through a pipet fitted with a glass wool filter. Density
                                              (2) Methanol.
 was measured using a pycnometer;
 the pycnometer contents were
                                              (3) Water. Redistilled.
 evaporated to dryness in a platinum
 dish. Viscosity was measured using
a Vogel-Ossag viscometer and con-
 ductivity with a Philips bridge (CM
 4249; average reading error 2 %)
 and dip cell.
                                             ESTIMATED ERROR:
                                               Temp.: precision within ± 0.05 K.
                                               Soly .: No estimates possible.
                                             REFERENCES:
```

OMPONENTS :			ORIGINAL MEAS	UREMENTS :	
(1) Magnesium hy [1309-42-8]	droxide; Mg((OH) ₂ ;	Janković, S. Rastvorljivost Nekih Soli i Hidroksida Zemnoalkalnih Metala u		
<pre>(2) Ethanol; C₂H₆O; [64-17-5] (3) Water; H₂O; [7732-18-5]</pre>			Sistemima Voda-Etil Alkohol i Voda-Metil Alkohol, i Struktura Takvih Zasicenih Rastvora. <u>Doctoral Dissertation</u> , Faculty of Pharmacy, Zagreb, <u>1958</u> .		
$T/K = 2$ $C_2 H_6 0 \text{ mass } = 0$				J. W. Lorimer	
PERIMENTAL VALUES: Co	mposition of	the satu	rated solut	ion at 25°C	
Water	Ethanol		Magnesi	um hydroxide	
mol %	mol % ^a	mass % ^a	mass %	m ₁ /mmol kg ^{-1a}	
96.8 91.6 86.6	3.2 8.4 13.4	0.585 14.0 21.6	0.0015 0.0006 0.0002	0.26 0.10 0.03	
aCalcu	lated by com	piler.			
P1	coperties of	the satu	rated soluti	on at 25°C	
	Density		ductivity	Viscosity	
mol %	d ²⁵		$\kappa/S \ Cm^{-1}$	$10^3 \eta$ /mPa s	
96.8 91.6 86.6	0.9905 0.9709 0.9573		4.5 1.95 1.3	1.23 1.77 2.14	
ETHOD/APPARATUS/PROC Salt and solutic 8 days in a th equilibration, s for analysis thr with a glass woo was measured us Solubility wa analysis for Mg titration. Visc using a Vogel-Os conductivity wit (CM 4249; average *) and dip cell.	EDURE: n were stirn nermostat. amples were no ough a pipet ol filter. I ing a pycno s measured by complexe cosity was measured sag viscomet h a Philips	red for After removed fitted Density ometer. I from ometric easured cer and bridge	 Magnes pro and Ethano 99.9 0.795. Water. Water. 	RITY OF MATERIALS: sium hydroxide. alysis. ol. C. Erba, an - 100 % pure, Redistilled. OR: ecision within ± estimates possil	hydrous, density 0.05 K.

	~
Systems	Pages
$Ca(OH)_{2} + H_{2}O$	113-130(E)
	131-155
$ + Ca(OD)_2 + D_2O + H_2O$	120(E), 156
$ + NH_3 + H_2O$	- , 157
$+ NH_4C1 + H_2O$	119(E), 158
$ + H_3 BO_3 + H_2 O$	120(E), 159-161
$+ Mg(OH)_2 + H_2O$	120(E), 162
$ + CaCl_2 + H_2O$	119(E), 163-174
+ + HCl + H ₂ O	119(E), 175-176
+ + NaCl + H ₂ O	119(E), 177-178
$+ Ca(ClO)_2 + H_2O$	120(E), 179-180
2 L	119-120(E), 166, 181-183
$ + CaI_2 + H_2O$	119-120(E), 184
$ + CaSO_4 + H_2O$	120(E), 185
$+ ++ (NaOH or KOH) + H_2O$	120(E), 186-187
$+ Ca(NO_2)_2 + H_2O$	- , 188
$ + Ca(NO_3)_2 + H_2O$	120-121(E), 189-194
$+ srcl_2 + H_2O$	117(E), 195
$+ BaCl_2 + H_2O$	117(E), 196
+ LiOH + H ₂ O	116(E), 197-198
$ + LiCl + H_2O$	116-117(E), 199
$ + NaOH + H_2O$	116(E), 200-201
$+ ++ + NaCl + H_2O$	116(E), 202
$+ NaCl + H_2O$	116-118(E), 203-208
$ + \text{NaClO}_3 + \text{H}_2\text{O}$	116-117(E), 209
$+ \text{NaClO}_4 + \text{H}_2\text{O}$	116-117(E), 210
+ NaBr + H ₂ O	116-117(E), 211
+ NaI + H_2O	116-117(E), 212
$ + NaNO_2 + H_2O$	116-117(E), 213
+ NaNO ₃ + H ₂ O	116-118(E), 214-218
$ + \text{NaC}_2\text{H}_3\text{O}_2 + \text{H}_2\text{O}_3$	116-117(E), 219
$+ KOH + H_2O$	116(E), 220
$ + KC1 + H_2O$	116-118(E), 208,
	221-223
$+ KBr + H_2O$	118(E), 224
$ + CsCl + H_2O$	116-117(E), 225
$ + CH_3OH + H_2O$	122(E), 226-228
$ + c_2 H_5 OH + H_2 O$	122(E), 229-230
$+ 1,2,3-C_3H_5(OH)_2 + H_2O$	122-123(E), 231-232
$ + CH_2O + Ca(HCOO)_2 + NaOH + H_2O$	
$ + c_6 H_5 OH + H_2 O$	122(E), 234-235
$ + c_{12}H_{22}O_{11} + H_2O$	120(E), 122(E), 236-24
$ + + CaO + H_2O$	120(E), 122(E), 243-24
$++++++ H_2$	O 120(E), 122(E), 245-24
+ C ₄ H ₃ OCHO	122(E), 124(E), 247

COMPONENTS :	EVALUATOR:	
(1) Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]	Irma Lambert CEA/SCECF/SECA B.P. 6	H. L. Clever Department of Chemistry
(2) Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA

CRITICAL EVALUATION:

An evaluation of the solubility of calcium hydroxide in water and in various aqueous solutions.

Calcium hydroxide solubility measurements in water and aqueous solutions have been reported in 61 publications. Calcium hydroxide is a sparingly soluble strong base. The solubility equation, relative to complete ionization, is

 $Ca(OH)_{2}(s) = Ca^{2+}(aq) + 2OH^{-}(aq).$ [1]

The solubility equilibrium refers to the completely ionized state and clearly depends on pH.

The solubility also depends strongly on the physical state of the solid: aging of the amorphous hydroxide obtained either by precipitation or by CaO hydration leads to a thermodynamically well defined compound, which is crystalline and less soluble than the amorphous form. The crystalline form is hexagonal with an a/c ratio of 1.3660 and a calculated density of 2.244 Mg m⁻³ (64). It is therefore necessary to take into account the physical state of Ca(OH)₂(s) in the comparison of experimental results.

1. The solubility of calcium hydroxide in water.

Twenty publications (1-4, 7, 11, 12, 17, 23, 28, 29, 31, 36-38, 44, 45, 48, 49, 51, 53, 54) are devoted to the the study of the solubility of calcium hydroxide in water. Another 17 papers (5, 6, 8, 9, 14, 15, 18, 20, 24, 32, 33, 35, 42, 52, 58, 60) are concerned with a study of ternary systems, but also report solubility values in water. A critical review of the literature solubility data up to 1960 was carried out by Greenberg and Copeland (51). A review of work prior to 1920 is to be found in Mellor (71).

Results from three papers (4, 28, 54) were rejected. Shipley and McHaffie (28) found solubilities lower by a factor of 2 than the mean value from other publications. Koudelka's values (54) were for systems that did not reach equilibrium, and Shenstone and Cundall (4) were the only workers to report an increase in calcium hydroxide solubility with temperature.

The method generally used is equilibration of $Ca(OH)_{2}(s)$ with water, and analysis of the supernatant solution for calcium by gravimetry or complexometry, or acidimetry of the $Ca(OH)_{2}(aq)$. The results were classified, as much as possible, according to the state of the solid hydroxide: aged (33, 36, 44, 48, 49, 52); fresh, obtained by in situ hydration of CaO (2, 7, 12, 17, 31, 38); and undefined. When it was not possible to define the initial state of the hydroxide, the results were rejected.

At 298.15 K, the mean solubility values are:

"aged" calcium hydroxide	m	$[Ca(OH)_{2}] = 2.02 \times 10^{-2} \text{ mol kg}^{-1}$ $s(m) = 2.5 \times 10^{-4} \text{ mol kg}^{-1}$, and
"fresh" calcium hydroxide	m	$[Ca(OH)_{2}] = 2.09 \times 10^{-2} \text{ mol } \text{kg}^{-1}$ $s(m) = 1 \times 10^{-3} \text{ mol } \text{kg}^{-1}.$

The greater standard deviation for the "fresh" state is probably related to a poor definition of that state, which is unstable by nature. The difference in solubility is not significant.

The difference between the solubility of the "fresh" and "aged" calcium hydroxide decreases as the temperature increases. This is probably due to a faster rate of aging of the amorphous form at the higher temperatures.

114

OMPON	IENTS ·		EVALUATOR :	
	[1305-62-0]		Irma Lambert CEA/SCECF/SECA B.P. 6	H. L. Clever Department of Chemistry
(2)	Water; H ₂ O; various aqu	[7732-18-5] and eous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA
RITIC	AL EVALUATION:			
	Table 1.	Experimental solubility hydroxide used for the	y values of "aged" fitting equation.	calcium
		Calcium Hydroxide	Reference	
	<i>T/</i> K	$10^{2}m_{1}/mol kg^{-1}$		
	273.03	2.32	36	
	273.15		36	
	273.65		52	
	278.15		36	
	283.15		36	
	288.15		36	
	293.15		44	
	293.15		49	
	297.15		48	
	298.15	•	56	
	298.15		49	
	298.15		16	
	298.15 298.15		52 33	
	298.65		48	
	303.15		36	
	303.15		49	
	303.65		48	
	310.15		48	
	313.05	1.81	48	
	313.15		44	
	313.15		36	
	315.15		48	
	317.15		48	
	318.15 321.35		36 48	
	323.15		48 52	
	323.15		36	
	324.75	1.62	48	
	328.15	1.54 *	36	
	328.55	1.56	48	
	330.45	1.53	48	
	333.95	1.46 *	36	
	354.85	1.17	36	
	363.15 368.15	1.05 * 1.	36 36	
	372.15	0.93	36	
	373.15	0.999	52	
	398.15	0.737	52	
	423.15		52	
	448.15	0.401	52	
	473.15	0.292	52	
	498.15	0.209	52	
	523.15	0.144	52	
	548.15	0.0909	52	
	573.15	0.062	52	
	598.15	0.0317	52	
	623.15	0.0195	52	

* values not used in the final fitting.

COMPONENTS :	EVALUATOR:	
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Irma Lambert CEA/SCECF/SECA B.P. 6	H. L. Clever Department of Chemistry
(2) Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA

CRITICAL EVALUATION:

The solubility data at 303 K and higher temperatures were fitted to an equation of the type:

 $\ln (m_1/\text{mol } kg^{-1}) = A_1 + A_2/(T/K) + A_3 \ln (T/K) + A_4 (T/K)$

The fourth term was not required for this system. During the fitting procedure, if the residual error between the observed and calculated molality, Δm , was larger than twice the standard deviation (s(m)) about the regression line for all m, the value was rejected, and the fitting procedure was started again.

As the difference between the solubility of "fresh" and "aged" calcium hydroxide was small and decreased as the temperature increased, the first fitting trial used all of the data at temperatures of 303 K and higher. Applying the procedure described above it was found that all of the rejected data were for "fresh" calcium hydroxide. Therefore it was decided to apply the fitting to only the "aged" calcium hydroxide data given in Table 1. The best fitting was obtained with the three-parameter equation:

$$\ln (m_1/\text{mol } \text{kg}^{-1}) = 86.1534 - 3492.14/T/\text{K}) - 13.7494 \ln (T/\text{K})$$
[2]

which has a standard error of estimate over the range 273.15 to 623.15 K of

$$s(m) = 1.7 \times 10^{-4} \text{ mol kg}^{-1}$$
.

Solubilities calculated by means of the equation are given in Table 2. Solubility values between 273 and 573 K are *recommended*. Values above 573 K, where the solubility values become the order of magnitude of the standard error, are *tentative*.

Table 2.	Smoothed (reco	ommended) values	of the
	solubility of a function of	"aged" calcium temperature.	hydroxide as

T/K	Calcium Hydroxide Solubility 10 ³ m ₁ /mol kg ⁻¹
273.15	23.1
293.15	21.0
298.15	20.3
313.15	18.1
333.15	15.1
353.15	12.3
373.15	9.8
393.15	7.7
413.15	6.0
433.15	4.6
453.15	3.5
473.15	2.7
493.15	2.1
513.15	1.6
533.15	1.2
553.15	0.9
573.15	0.7
593.15	0.5 *
613.15	0.4 *

* tentative values.

COMPONENTS :		EVALUATOR:		
	 (1) Calcium hydroxide; Ca(OH)₂; [1305-62-0] (2) Water; H₂O; [7732-18-5] and various aqueous solutions 	Irma Lambert CEA/SCECF/SECA B.P. 6 92265 Fontenay- aux-Roses Cedex	H. L. Clever Department of Chemistry Emory University Atlanta, GA 30322	
		FRANCE November, 1991	USA	

CRITICAL EVALUATION:

2. The solubility of calcium hydroxide in supercritical water.

Walther (67) measured the solubility of portlandite, $Ca(OH)_2$, [12177-68-3] in supercritical water between 573 and 873 K at pressures between 1 and 3 kbar. He found that at constant pressure the solubility decreases as temperature increases. Thus at 2 kbar he states the log molality of calcium is -2.34, -2.71, -3.18 and -4.18 at temperatures of 573, 673, 773 and 873 K, respectively. The solubility at constant temperature increases with increasing pressure. Thus, at 773 K the log molality of calcium is -4.40, -3.18 and -2.65 at pressures of 1, 2 and 3 kbar, respectively. (Note that the trends are mis-stated in the abstract of the paper).

The author assumed $Ca^{2+}(aq)$ to be the dominant calcium species and used literature thermodynamic data to calculate the distribution of species. The solutions apparently contain no significant concentrations of either $Ca(OH)^{+}(aq)$ or $Ca(OH)_{2}(aq)$. The calculated pH is 2 units greater than neutral and the solubility reaction is thought to be

 $2H^{+}(aq) + Ca(OH)_{2}(s) = Ca^{2+}(aq) + 2H_{2}O(s.c.)$

where S.C. stands for supercritical. There are no other data on the system and the results are classed as tentative.

3. Ternary Inorganic Systems.

A. $Ca(OH)_{2} + MOH + H_{2}O$ M = NH₄, Li, Na, K

Five publications report solubility measurements in basic medium: NH₄ (37), LiOH (53, 55), NaOH (11, 44), KOH (44).

Results obtained at 293 K in NaOH solutions by d'Anselme (11) and by Fratini (44) are in fair agreement up to 0.1 mol dm⁻³ NaOH. The NaOH results do not differ from the results in KOH solutions (44) in the same concentration range. The solubility decreases with increasing hydroxide ion concentration as expected from the equilibrium equation [1]. The calcium hydroxide solubility at 293 K in the 0 to 0.1 mol dm⁻³ NaOH or KOH range is fitted to the quadratic equation:

 $c_1/\text{mol dm}^{-3} = 0.02056 - 0.2993 c_2/\text{mol dm}^{-3} + 1.4457 c_2^2/\text{mol dm}^{-3}$ [3]

with a standard deviation in concentration of $s(c_1) = 1.4 \times 10^{-3} \mod \text{m}^3$.

The decrease of solubility with increasing base concentration is much less for LiOH and NH OH than for the NaOH and KOH. A quantitative comparison is not possible because of the differences in experimental conditions.

Measurements up to 373 K in aqueous NaOH and up to 423 K in aqueous LiOH show a negative temperature coefficient of solubility. Again no quantitative comparison or evaluation can be made because of the differences in experimental conditions.

B. $Ca(OH)_2 + MX + H_2O$ (where M = alkali metal cation, and X = singly-charged anion).

Several studies (8-9, 14, 18, 33, 42, 52, 56, 58) are concerned with ionic strength effects on the solubility of "aged" calcium hydroxide in which an alkali metal salt is used to adjust the ionic strength. Cabot (8) observed a solubility increase in the presence of alkali metal salts which was of greater magnitude with Na⁺ than with K⁺ salts. Johnston and Grove (33) compared the effect of a number of salts on the solubility at 298.15 K relative to the solubility in pure water. They observed the solubility increase for cations is in the order Cs⁺ < K⁺ < Na⁺ < Li⁺ and for anions the order of increase is $Clo_4^- < I^- < Clo_3^- < Cl^- < No_3^- = No_2^- < CH_3CO_2^-$. These comparisons are shown in figures 1 and 2.

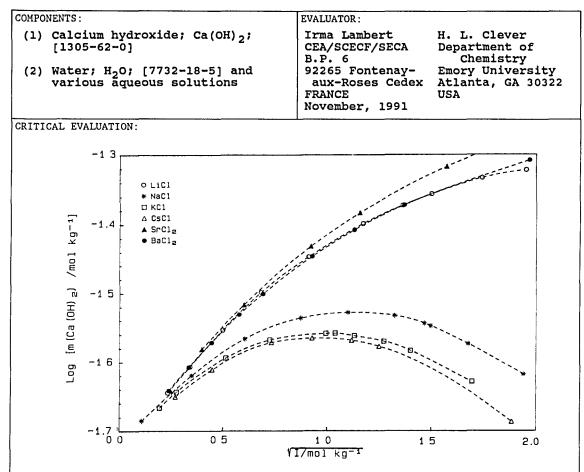
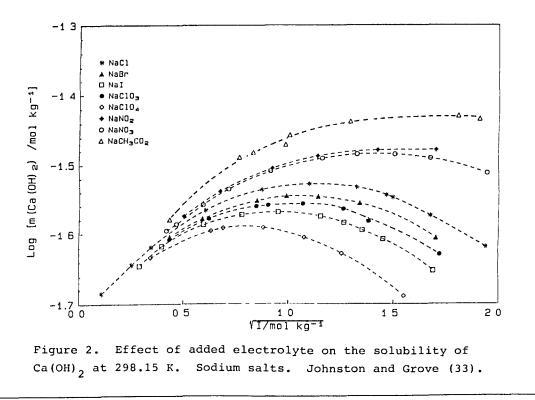



Figure 1. Effect of added electrolyte on the solubility of $Ca(OH)_2$ at 298.15 K. Alkali and alkaline earth chlorides. Johnston and Grove (33).

COMPONENTS ·	EVALUATOR:	
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Irma Lambert CEA/SCECF/SECA B.P. 6	H. L. Clever Department of Chemistry
(2) Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA

CRITICAL EVALUATION ·

Table 3. Tentative values of the solubility of calcium hydroxide at 293 K in either NaOH or KOH solutions (Eqn 3).

Base (NaOH or KOH)	Calcium Hydroxide	
d_mol dm ⁻³	$10^{3}c_{1}$ /mol dm ⁻³	
0.00	20.6	
0.01	17.7	
0.02	15.2	
0.03	12.9	
0.04	10.9	
0.05	9.2	
0.06	7.8	
0.07	6.7	
0.08	5.9	
0.09	5.3	
0.10	5.1	

Yeatts and Marshall (52) carried out a detailed study of the influence of NaNO₃ on the solubility of calcium hydroxide over the 273 -623 K temperature range. They evaluated the thermodynamic solubility product constant $(K_{s0}^{0} = (4m_{1}\gamma_{\pm}/m_{0})^{3})$ at each temperature from their results. The mean ionic activity coefficients were evaluated from an extended Debye-Hückel equation fitted to their data at each temperature. The solubility product was fitted to the equation:

 $\log (K_{s0}^{\circ}) = -25.7085 - 530.49/(T/K)$

+ 12.9722 log (T/K) - 0.032331 (T/K) [4]

Standard thermodynamic relations were used to derive the thermodynamic functions reported in table 4 below.

 $\Delta G^{\circ} = -RT \ln K_{SO}^{\circ}$ $\Delta H^{\circ} = RT^{2} (\partial \ln K_{SO}^{\circ} / \partial T)_{p}$ $\Delta S^{\circ} = (\Delta H^{\circ} - \Delta G^{\circ}) / T$ $\Delta C_{p}^{\circ} = (\partial \Delta H^{\circ} / \partial T)_{p}$

The results depend on the choice of equation for the activity coefficients. As Yeatts and Marshall evaluated their activity coefficients by a Debye Hückel extended equation fitted to their own data at each temperature their results are considered reliable.

Only Yeatts and Marshall report solubility measurements above 373 K. Between 273 and 373 K there are a number of reliable solubility values of "aged" calcium hydroxide. While these could be analyzed to obtain more reliable values of the thermodynamic solubility product and thermodynamic function at the lower temperatures, this would require a careful evaluation of the activity coefficients by, for example, the Pitzer equations fitted to each set of results for the binary and ternary systems, a treatment that is beyond the scope of this work.

The measurements of Komar and Vovk (56, 58) in aqueous KCl and NaCl are in good agreement with the results of Johnston and Grove (33) up to a chloride concentration of 1 mol dm^{-3} and are slightly lower at the higher ionic strengths. Dschorbenadse *et al.'s* results (42) in aqueous NaCl are much higher. No explanation for the higher results could be found by study of their method and the results are rejected.

COMPONENTS:	EVALUATOR:	
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Irma Lambert CEA/SCECF/SECA B.P. 6	H. L. Clever Department of Chemistry
(2) Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University

CRITICAL EVALUATION:

Table 4. Thermodynamic functions of calcium hydroxide solution in water calculated from equation [4] (52).

Tempe	erature	∆G°/	-∆H°/	- \$ S ° /	-40°p/
t/ºC	<i>T/K</i>	kJ mol ⁻¹	kJ mol ⁻¹	J K ⁻¹ mol ⁻¹	J K ⁻¹ mol ⁻¹
0	273.15	25.00	6.55	118.	230.
25	298.15	28.70	12.75	139.	261.
50	323.15	32.50	19.65	161.	292.
75	348.15	36.80	27.35	184.	323.
100	373.15	41.70	35.80	208.	354.
150	423.15	53.15	55.25	256.	416.
200	473.15	67.40	77.45	306.	477.
250	523.15	83.75	103.0	357.	540.
300	573.15	103.0	131.5	409.	603.
350	623.15	124.8	163.3	461.	666.

Additions of ammonium chloride, as measured by Noyes and Chapin (9), causes a larger increase in calcium hydroxide solubility than the other 1-1 electrolytes. (The solubility at 0.04 mol dm^{-3} NH Cl is about twice the value in pure water). It is not possible to evaluate this single observation. The effect is probably related to the acid nature of the aqueous ammonium ion.

C. Ca(OH)₂ + CaCl₂ + H_2O

Calcium hydroxide solubility data in this system have been reported in nine papers (5, 6, 19, 25, 26, 30, 46, 60, 70) in the 273-373 K temperature range. The whole temperature and concentration range was not covered in all papers so that only partial comparisons can be performed. All authors started with $Ca(OH)_2$, $CaCl_2$ and H_2O as the initial components except Milikan (26) who started with $Ca(OH)_2$, HCl and H₂O. The results of Lunge (5) and of Zahorsky (6) were rejected because their solubility values in pure water were not reliable, and because composition of the solid phase was not given. The other results are in qualitative agreement.

The solid phases present in the system as the CaCl₂ concentration increases are Ca(OH)₂, 3CaO·CaCl₂·16H₂O [or 15 H₂O (43)], CaO·CaCl₂·H₂O, and CaCl₂·2H₂O up to a temperature of 313 K. At temperatures above 308-313 K the phase of highest hydration disappears.

The solubility of Ca(OH), in aqueous CaCl, solutions decreases with increasing temperature at CaCl, molalities <0.5 mol kg⁻¹ (as it does in pure water), and increases with increasing temperatures at CaCl, >1 mol kg⁻¹. Between CaCl, molalities of 0.5 and 1 mol kg⁻¹ there is no agreement on the temperature coefficient of solubility among the various workers. The results of 0'Connor (30) are much higher than the others and are rejected.

Data for the four-component system $Ca(OH)_2 + CaCl_2 + NaCl + H_2O$ have been given (60). The equilibrium solid phases are similar to those for the three-component system. They are $Ca(OH)_2$, $3Ca(OH)_2$. $CaCl_2$. $12H_2O$ (or $3CaO.CaCl_2.15H_2O$), $Ca(OH)_2.CaCl_2$, and NaCl.

D. $Ca(OH)_2 + CaX_2 + H_2O$ X = Br or I

These systems were studied at 298 K by Milikan (25), and are analogous to the $Ca(OH)_2 + CaCl_2 + H_2O$ system. The bromide-containing

COMPONENTS :	EVALUATOR:	
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Irma Lambert CEA/SCECF/SECA B.P. 6	H. L. Clever Department of Chemistry
(2) Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA

CRITICAL EVALUATION:

systems were also reported on earlier by Schreinemakers and Milikan (70). Besides $Ca(OH)_2$, Milikan identified $3CaO \cdot CaBr_2 \cdot 16H_2O$, $4CaO \cdot 3CaBr_2 \cdot 16H_2O$ and $CaBr_2 \cdot 6H_2O$ as equilibrium solids in the bromide-containing system. The iodide-containing system showed regions for the three solids $Ca(OH)_2$, $3CaO \cdot CaI_2 \cdot 16H_2O$ and $CaI_2 \cdot 6H_2O$.

E. $Ca(OH)_{2} + Ca(ClO)_{2} + H_{2}O$

O'Connor (30) studied this system at 273 K. He used the wet residue method to identify the solids $Ca(OH)_2$, $3CaO \cdot Ca(ClO)_2 \cdot 3H_2O$, $2CaO \cdot Ca(ClO)_2 \cdot 2H_2O$ and $Ca(ClO)_2 \cdot 3H_2O$.

F. $Ca(OH)_{2} + CaSO_{4} + H_{2}O$

The system was investigated by Cameron and Bell (15) at 298 K. They claimed the only solid phases are Ca(OH), and $CaSO_4 \cdot 2H_2O_4$.

G. $Ca(OH)_{2} + Ca(NO_{3})_{2} + H_{2}O$

The system was first investigated at 298 K by Cameron and Robinson (16) who claimed the existence of solid solutions $Ca0 \cdot xN_20_{\bullet} \cdot yH_20$, a basic nitrate $2Ca0 \cdot N_20_{\bullet} \cdot 1.5H_20$ and $Ca(NO_3)_2 \cdot 4H_20$. A careful study of the same system was made by Bassett and Taylor (24) at 298 and 373 K. They found the same basic nitrate, but found no undefined solid solutions, a result which seems in better agreement with the strongly basic behavior of $Ca(OH)_2$. The part of the isotherms corresponding to the equilibrium solid $Ca(OH)_2$ is shown in figure 3.

H. $Ca(OH)_{2} + Mg(OH)_{2} + H_{2}O$

Bury and Davies (35) found that the presence of $Mg(OH)_2$ does not influence the solubility of Ca(OH)₂ in water, which is expected because of the low solubility of $Mg(OH)_2$.

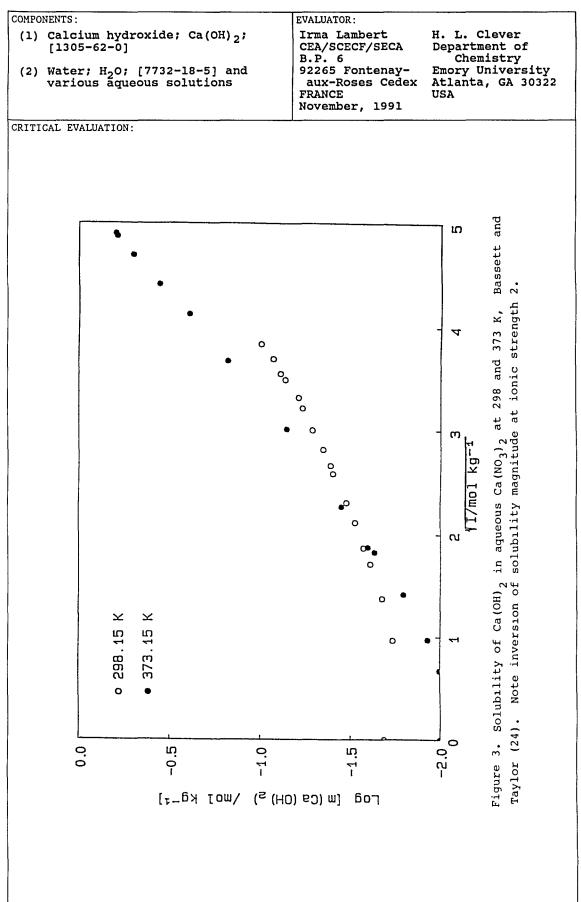
I. $Ca(OH)_2 + B_2O_3 + H_2O_3$

Both Sborgi (22) and Nikolaev and Chelisheva (39) report data on this system. The equilibrium solids reported in the two papers differ in the hydrate number. The results of Nikolaev and Chelisheva were obtained after a much longer equilibration time, and they are considered to be the more reliable results. They reported equilibrium solids $Ca(OH)_2$, $CaO \cdot B_2O_3 \cdot GH_2O_3 \cdot 2(3x-1)H_3BO_3 \cdot 3(1-3x+y)H_2O]$.

J. $Ca(OH)_2 + D_2O + H_2O$

Kingerley and LaMer (40) measured the solubility of calcium hydroxide in mixtures of D_2O and H_2O and found by extrapolation the solubility of Ca(OD)₂ in heavy water at 298.15 K:

 $m_1 = 0.0112 \text{ mol } \text{kg}^{-1}$


Five-Component Systems

Hansen and Pressler (43) measured the solubility of a mixture of $Ca(OH)_{2}$ and $CaSO_{4}$ in solutions of mixed NaOH and KOH. They do not give enough details to permit an evaluation.

4. Ternary aqueous system containing an organic component

A. $Ca(OH)_2 + C_{12}H_{22}O_{11}$ (sucrose) + H₂O

Data for the system $Ca(OH)_2$ + sucrose + H₂O are reported in nine publications (10, 20, 21, 32, 34, 47, 59, 61, 62) at temperatures between 288 and 353 K.

COMPONENTS :	EVALUATOR:	· · · · · · · · · · · · · · · · · · ·
(1) Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]	Irma Lambert CEA/SCECF/SECA B.P. 6	H. L. Clever Department of Chemistry
(2) Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA

CRITICAL EVALUATION:

Data from a number of these papers are rejected. Weisberg's results (10) depend on the excess of solid which indicates that equilibrium was not reached. The data are rejected. Cameron and Patten (21) and Fuchs (32) report values for the solubility of $Ca(OH)_2$ in water which are too high, thus their results in the presence of sucrose were not considered. Bugaenko *et al.*'s results (59) were rejected because the sucrose concentrations were not indicated. Sapronov *et al.*'s paper (61) was rejected because it does not contain quantitative data.

Data from the papers of Reinders and Van Gelder (34) and Koneczny etal. (62) show qualitative agreement. The Ca(OH) solubility increases with increasing sucrose concentration up to the formation of a sucrate compound of an undefined composition. The temperature coefficient of solubility is not apparent because of a large scatter in the experimental results. However, comparison with the data of Van Ginnekin (20) at 353 K indicates a negative temperature coefficient of solubility. Koneczny's assumption of CaO in the solid phase appears to be implausible for the aqueous solutions.

Yokoyama (47) studied the five-component system $Ca(OH)_{2}$ + NaCl + CaCl₂ + sucrose + H₂O. He found an increase of calcium hydroxide solubility with increasing concentration of any other solute and a decrease with increasing temperature.

B. $Ca(OH)_2 + C_3H_8O_3(glycerol) + H_2O_3$

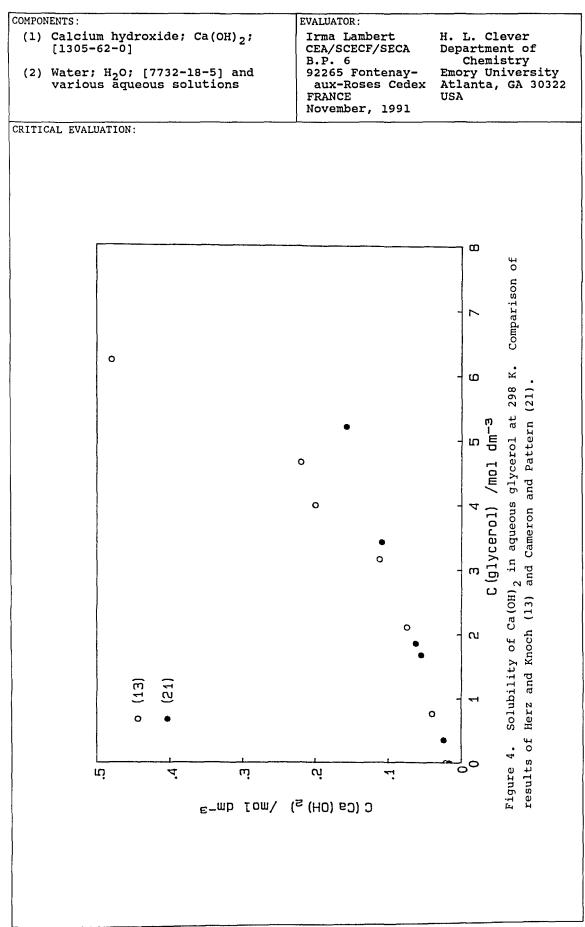
The data for this and the other ternary systems containing organic components listed below are reported in only one or two publications for each system. Thus, there is too little information to allow evaluations.

Cameron and Patten (21) and Herz and Knoch (13) studied the glycerol-containing system at 298 K. Both observed an increase in calcium hydroxide solubility with increasing glycerol concentration up to 7 mol dm⁻³ glycerol with Ca(OH)₂ assumed to be the equilibrium solid. The two studies are in fair agreement up to 3 mol dm⁻³ glycerol as shown in figure 4.

C. $Ca(OH)_2 + C_6H_6O(phenol) + H_2O$

Van Meurs (27) studied this system at 298 K. He interpreted his wet residue analysis to indicate the equilibrium solids $Ca(OH)_2$, $Ca(C_8H_5O)_2 \cdot 3H_2O$ and C_8H_5O .

D. Ca(OH)₂ + CH₄O(methanol) + H₂O Ca(OH)₂ + C₂H₆O(ethanol) + H₂O


These two systems were studied by Janković (50). The methanolcontaining system was studied from 6.9 to 69.1 mass % methanol at 298 K and from 4.7 to 81.8 mass % methanol at 308 K. The ethanol-containing system was studied from 10.1 to 89.1 mass % ethanol at 298 K. In both systems the calcium hydroxide solubility decreased as the alcohol concentration increased. The solid was assumed to be Ca(OH)₂

E. Ca(OH), + NaOH + Ca(HCOO), + HCHO(formaldehyde) + H_2O

Belkin and Belkina (57) studied the solubility of Ca(OH), in solutions containing sodium hydroxide, calcium formate and formaldehyde. They showed that the presence of formaldehyde increases the solubility of Ca(OH), in NaOH solutions, which they attributed to the slightly acidic properties of the aldehyde in this medium.

5. Nonaqueous binary system

A. $Ca(OH)_2 + C_2H_4O_2(furfural)$

124

124	
COMPONENTS :	EVALUATOR :
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Irma Lambert H. L. Clever CEA/SCECF/SECA Department of B.P. 6 Chemistry
(2) Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- Emory University aux-Roses Cedex Atlanta, GA 30322 FRANCE USA November, 1991
CRITICAL EVALUATION:	
Trimble (41) measured the solubility 298 K and found a solubility of a water:	of Ca(OH) ₂ in anhydrous furfural at bout the same magnitude as that in
$m_1 = 1.8 \text{ x}$	$10^{-2} \text{ mol } \text{kg}^{-1}$.
6. Comparison of the present r	esults with other evaluations.
made to judge one set of data again three sources: Smith and Martell (64	or comparison, and no effort has been ast the other. Data were taken from 4), the NBS Thermodynamic Tables (65) (69) of recommended values for some
$Ca^{2^{+}}(aq) + OH^{-}(aq) = Ca(OH)^{+}(aq)$	0
Smith and Martell (64) give formatio ionic strengths. At $I = 0$ mol dm ⁻³ , I = 3.0 mol dm ⁻³	n constant values at 298.15 K and two log $K = 1.3\pm0.1$ ($K = 20$), and at , log $K = 0.64$ ($K = 4.4$).
CODATA (69) gives Gibbs energy of fo lates the zero ionic strength value 298.15 K.	formation values from which one calcu- a of log $K = 1.217$ ($K = 16.5$) at
Ca(OH) ₂ (s) = Ca ²⁺ (aq) + 2OH ⁻ (aq)	
tained from all three publications.	
$\begin{array}{cccc} \log K^{\circ} & K^{\circ} \\ -5.19 \pm 0.2 & 6.5 \times 10^{-6} \\ -5.330 & 4.68 \times 10^{-6} \end{array}$	Reference
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(64) (65)
-5.291 5.11x10 ⁻⁶	(69)
The CODATA table (69) does not give the aqueous hydroxide ion so the val	a Gibbs energy of formation value for ue from the NBS tables (65) was used.
7. Crystal structures of calcium	oxide and hydroxide.
solution is an important part of an lowing information, mostly from the	ate in equilibrium with the saturated y modern solubility study. The fol- Crystal Data Determinative Tables, is it serves as a reminder of this im-
However, Mellor (71) describes the w identified a hemi-hydrate (Ca(OH) ₂ .0 phous form on heating The amorph	um hydroxide does not form a hydrate. ork of Selivanoff who claimed to have 5.5H ₂ O) which transformed to an amor- nous form did not transform to the ing in water. We are not aware that
Crystal Formula	Type Density, $\rho/Mg m^{-3}$
CaO; [1305-78-8]	cubic 3.342
$Ca(OH)_{2}$ (normal form); [1305-62- Ca(OH)_{2} (portlandite); [12177-68	-5] hexagonal 2.244 3-3] hexagonal 2.23
The normal chemically pure calcium h portlandite [12177-68-3], differ by	ydroxide [1305-62-8] and the mineral, natural impurities.

COMPON	ENTC .	FUAL HATOD .	
	Calcium hydroxide; Ca(OH) ₂ ;	EVALUATOR: Irma Lambert	H. L. Clever
	[1308-62-8] Water; H_20 ; [7732-18-5] and various aqueous solutions	CEA/SCECF/SECA B.P. 6 92265 Fontenay- aux-Roses Cedex	Department of Chemistry Emory University Atlanta, GA 30322
		FRANCE November, 1991	USA
CRITIC	AL EVALUATION:	l	
	REFER	ENCES	
1.	Guthrie, F. Philos. Mag. [5] <u>1878</u> , 6, 35-44	1.	
2.	Lamy, A. Ann. Chim Phys <u>1878</u> , 14, 145-	-90.	
3.	Maben, T. Pharm. J. Trans. [3] <u>1883</u> , 14,	505-06.	
4.	Shenstone, W.A.; Cundall, J.T. J. Chem. Soc. <u>1888</u> , 53, 544-50).	
5.	Lunge, G. J. Soc. Chem. Ind., London <u>1892</u>	2, 11, 882-84.	
6.	Zahorsky, B. Z. Anorg. Chem. <u>1893</u> , 3, 34-43.		
7.	Herzfeld, A. Z. Ver. RubenzuckInd. <u>1897</u> , 8 Chem. Zentralbl. <u>1897</u> <u>II</u> , 932.	318-20.	
8.	Cabot, G. L. J. Soc. Chem. Ind., London <u>1897</u>	, <i>16</i> , 417-19.	
9.	Noyes, A.A.; Chapin, E.S. J. Am. Chem. Soc. <u>1899</u> , 21, 511 Z. Phys. Chem., Stoechiom. Verwa		<i>28</i> , 518-22.
10.	Weisberg, J. Bull. Soc. Chim Fr. <u>1899</u> , 21,	773-76.	
11.	d'Anselme, A. Bull. Soc. Chim. Fr. <u>1903</u> , 29,	936-39.	
12.	Herold, I. 2. Elektrochem. Angew. Phys. Che.	m. <u>1905</u> , 11. 417-3	0.
13.	Herz, W.; Knoch, M. Z. Anorg. Chem. <u>1905</u> , 46, 193-9	6.	
14.	Maigret, E. Bull. Soc. Chim. Fr., <u>1905</u> , 631	-34.	
15.	Cameron, F.K.; Bell, J.M. J. Am. Chem. Soc. <u>1906</u> , 28, 122	0-22.	
16.	Cameron, F.K.; Robinson, W.O. J. Phys. Chem. <u>1907</u> , 11, 273-78		
17.	Moody, G.T.; Leyson, L.T. J. Chem. Soc. <u>1908</u> , 93, 1767-72		
18.	Kernot, G.; d'Agostino, E.; Pell Gazz. Chim. Ital. <u>1908</u> , 39, I, 1	egrino, M. 532-44.	
19.	Schreinemakers, F.A.H.; Figee, T Chem. Weekblad. <u>1911</u> , 36, 683-8	h. 8.	i
20.	von Ginnekin, P.J.M. Versl. Gewone Vergad. WisNatuu 1911, 20, 337, 442-61.	rk., Afd. K. Akad.	Wet. Amsterdam

COMPONENTS :	EVALUATOR:
(1) Calcium hydroxide; Ca(OH) ₂ ; [1308-62-8]	Irma Lambert H. L. Clever CEA/SCECF/SECA Department of B.P. 6 Chemistry
(2) Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- Emory University aux-Roses Cedex Atlanta, GA 30322 FRANCE USA November, 1991
CRITICAL EVALUATION:	
REFERENCES	(continued)
21. Cameron, F.K.; Patten, H.E. J. Phys. Chem. <u>1911</u> , 15, 67-73	2.
22. Sborgi, U. Atti Acad. Naz. Lincei. Rend.	<u>1913</u> , 636-42, 715-19, 798-801.
23. Tschugaeff, L.; Chlopin, W. Z. Anorg. Chem. <u>1914</u> , 86, 154 Zh. Russ. FizKhim. O-va., Ch	
24. Bassett Jr., H.; Taylor, H.S. J. Chem. Soc. <u>1914</u> , 105, 1926	-41.
25. Milikan, J. Z. Phys. Chem., Stoechiom. Very	vandtschaftsl. <u>1916</u> , 92, 59 - 80.
26. Milikan, J. Z. Phys. Chem., Stoechiom. Very	vandtschafts1. <u>1916</u> , 92, 496-510.
27. Van Meurs, G.J. Z. Phys. Chem., Stoechiom. Vers	vandtschaftsl. <u>1916</u> , 91, 313-46.
28. Shipley, J.W.; McHaffie, I.R. J. Soc. Chem. Ind., London, Tr. 319-20T, 321-26T.	ans. Commun. <u>1923</u> , 42, 311-19T,
29. Haslam, R.T.; Calingaert, G.; 5 J. Am. Chem. Soc. <u>1924</u> , 46, 30	
30. O'Connor, E.R. J. Chem. Soc. <u>1927</u> , 130, 2700	-10.
31. Miller, L.B.; Witt, J.C. J. Phys. Chem. <u>1929</u> , 33, 285-4	89.
32. Fuchs, P. Ber. Dtsch. Chem. Gesell. B <u>1</u>	929, 62, 1535-38.
33. Johnston, J.; Grove, C. J. Am. Chem. Soc. <u>1931</u> , 53, 39	976-91.
34. Reinders, W.; Van Gelder, D.W. Recl. Trav. Chim. Pays-Bas <u>19</u>	<u>32</u> , <i>51</i> , 253-59 .
35. Bury, C.R.; Davies, E.R.H. J. Chem. Soc. <u>1933</u> , 701-705.	
36. Bassett, H. J. Chem. Soc. <u>1934</u> , 1270-75.	
37. Kolthoff, I.M.; Stenger, V.A. J. Phys. Chem. <u>1934</u> , 38, 639-	43.
38. Larocque, G.L.; Maass, O. <i>Can. J. Res.</i> <u>1935</u> , 13, 276-79	
39. Nikolaev, A.V.; Chelisheva, A. C. R. Acad. Sci. URSS <u>1940</u> , 24	
40. Kingerley, R.W.; La Mer, V.K. J. Am. Chem. Soc. <u>1941</u> , 63, 33	256-62.

COMPON		EVALUATOR :	
	Calcium hydroxide; Ca(OH) ₂ ; [1308-62-8] Water; H ₂ O; [7732-18-5] and	Irma Lambert CEA/SCECF/SECA B.P. 6 92265 Fontenay-	H. L. Clever Department of Chemistry Emory University
	various aqueous solutions	aux-Roses Cedex FRANCE November, 1991	
CRITIC	AL EVALUATION:	f	<u> </u>
	REFERENCES	(continued)	
41.	Trimble, F. Ind. Eng. Chem. <u>1941</u> , 33, 660-6	52.	
42.	Dschorbenadse, D.; Mosebach, R.; Zement <u>1942</u> , 31, 513-18.	Nacken, R.	
43.	Hansen, W.C.; Pressler, E.E. Ind. Eng. Chem. <u>1947</u> , 39, 1280-	-82.	
44.	Fratini, N. Ann. Chim. Appl. <u>1949</u> , 39, 616-	-20.	
45.	Peppler, R.B.; Wells, L.S. J. Res. Natl. Bur. Stand. (U. S.) <u>1954</u> , <i>52</i> , 75-92	
46.	Makarov, S.Z.; Vol'nov, I.I. Izv. Sekt. FizKhim. Anal., Ins Acad. Nauk SSSR <u>1954</u> , 320-33.	t. Obshch. Neorg. i	Khim.,
47.	Yokoyama, T. Kogyo Kagaku Zasshi (J. Ind. Che	em.) <u>1954</u> , 57, 417	-19.
48.	Hedin, R. Handl. Sven. Forskningsinst Cem. 1955, No. 27, 14 pp (Eng).	Betong K. Tek. Ho	egsk. Stockholm
49.	Bates, R.G.; Bower, V.E.; Smith, J. Res. Natl. Bur. Stand. (U. S.	E.R.) <u>1956</u> , 56, 305-12	2.
50.	Janković, S. Rastvorljvost Nekih Soli i Hidro Sistemima Voda-Etil Alkohol i Vo Takvih Zasicenih Rastvora. <u>Doct</u> Pharmacy, Zagreb, <u>1958</u> .	da-Metil Alkohol, .	i Struktura
51.	Greenberg, S.A.; Copeland, L.E. J. Phys. Chem. <u>1960</u> , 64, 1057-5	9.	
52.	Yeatts, L.B.; Marshall, W.L. J. Phys. Chem. <u>1967</u> , 71, 2641-5	0.	
53.	Itkina, L.S.; Chaplygina, N.M.; Zh. Neorg. Khim. <u>1975</u> , 20, 3396 Russ. J. Inorg. Chem. (Engl. Tra	-97;	380-81.
54.	Koudelka, L. <i>Chem. Prum.</i> <u>1976</u> , 26, 580-83.		
55.	Kotsupalo, N.P.; Pushnyakova, V. Zh. Neorg. Khim. <u>1976</u> , 21, 1365 Russ. J. Inorg. Chem. (Engl. Tra	-68;	46-48.
56.	Komar, N.P.; Vovk, S.I.; Sinyuta Zh. Fiz. Khim. <u>1976</u> , 50, 2403-0 Russ. J. Phys. Chem. (Engl. Tran	4;	39.
57.	Belkin, D.J.; Belkina, N.V. Zh. Prikl. Khim. (Leningrad) <u>19</u> J. Appl. Chem. USSR (Engl. Trans	<u>76,</u> 49, , 1875-77; 1.) <u>1976</u> , 49, 1882	2-84.

1	28

COMPONE	NTS ·	EVALUATOR :	
	Calcium hydroxide; Ca(OH);;	Irma Lambert	H. L. Clever
(2) 1	[1308-62-8] Water; H ₂ 0; [7732-18-5] and	CEA/SCECF/SECA B.P. 6 92265 Fontenay-	Department of Chemistry Emory University
,	various āqueous solutions	aux-Roses Cedex FRANCE November, 1991	Atlanta, GA 30322 USA
CRITICA	L EVALUATION:		
	REFERENCES	(continued)	
58.	Komar, N.P.; Vovk, S.I. Zh. Fiz. Khim. <u>1977</u> , 51, 2037-4 Russ. J. Phys. Chem. (Engl. Tran	40; 151.) <u>1977</u> , 51, 11	89-91.
59.	Bugaenko, I.F.; Samoilova, T.H. Sakh. Prom-st. <u>1981</u> , (No. 1), 2	27-28.	
60.	Mozharova, T.V.; Zozulya, A.F.; Zh. Neorg. Khim. <u>1983</u> , 28, 2389 Russ. J. Inorg. Chem. (Engl. Tra	9-93;	
61.	Sapronov, A.R.; Ozerov, D.V.; Ka Yan'shin, V.P. Sakh. Prom-st. <u>1983</u> , (No. 5), 3		chenko, V.N.;
62.	Koneczny, H.; Mielczarek, M. Chem. Stosow. <u>1983</u> , 27, 129-136	5.	
63.	Silvester, L.F.; Pitzer, K.S. J. Phys. Chem. <u>1977</u> , 81, 1822-2	28.	
64.	Smith, R.M.; Martell, A.E. CRII Inorganic Complexes, Plenum Pres		
65.	Wagman, D.D.; Evans, W.H.; Parke Bailey, S.M.; Churney, K.L.; Nut ICAL THERMODYNAMIC PROPERTIES pu 1982, 11, Supplement No. 2.	ttall, R.L. THE NB	S TABLES OF CHEM-
66.	J. D. H. Donnay and H. M. Ondik, <i>TABLES</i> , Published jointly by Nat Joint Committee on Powder Diffra	tional Bureau of St	andards and the
67.	Walther, J. V. Geochim. Cosmochim. Acta <u>1986</u> ,	50, 733-39.	
68.	Edmiston, M. D.; Suter, R. W. J. Chem. Ed. <u>1988</u> , 65, 279-80.		
69.	Garvin, D.; Parker, V.B.; White, <i>Tables</i> , Hemisphere Publishing Co 6.2.1, p. 180-84.	, H.J. Jr. <i>CODATA</i> orp., Washington, D	Thermodynamic C, 1987, Table
70.	Schreinemaker, F.A.H.; Milikan, Proc. K. Akad. Weten. <u>1912</u> , 15,	J. , 52-54.	
71.	Mellor, J. W. A Comprehensive 1 Chemistry, Longmans, Green and C	Freatise on Inorgan Co., London, 1923,	ic and Theoretical Vol III, pp 673-87
	Mellor lists a number of early $Ga(OH)_2$ in aqueous systems not is unable to check all of these reactions. The evaluator feels these components, failure to exclude a of insufficient time to attain each system.	included in this vo ferences, or even l e can be rejected b atmospheric carbon	lume. We were ocate some of ecause of impure
	Some of the papers below contain solubility, others contain data addition to the $Ca(OH)_2 + H_2O$ sy	on ternary inorgan	ut trends in ic systems in

COMPONENTS: **EVALUATOR:** (1) Calcium hydroxide; Ca(OH)₂; Irma Lambert H. L. Clever [1308-62-8] Department of CEA/SCECF/SECA B.P. 6 Chemistry (2) Water; H₂O; [7732-18-5] and 92265 Fontenay-Emory University various âqueous solutions Atlanta, GA 30322 aux-Roses Cedex FRANCE USA November, 1991 CRITICAL EVALUATION: REFERENCES (continued) 71. Mellor, J.W. (continued) Calcium hydroxide + Water Dalton, J. A New System of Chemical Philosophy, 1810, 2, 331. Wittstein, L. Repert. Pharm. <u>1815</u>, 1, 182. Phillips, R. Ann. Phil. [2] <u>1821</u>, 17, 107. Graham, T. Phil. Mag. [2] <u>1827</u>, 2, 20. Bineau, A. Ann. Chim. Phys. [3] <u>1857</u>, 51, 290. Tichborne, R.C. Bull. Soc. Chim. Fr. <u>1871</u>, 17, 24. Pavesi, A.; Rotondi, E. Ber. Dtsch. Chem. Ges. <u>1874</u>, 7, 817. de la Croix, F. Arch. Pharm. [3] <u>1879</u>, 14, 145. Goldammer, A. Pharm. Centrh. <u>1886</u>, 26, 442, 455. Selivanoff, F.F. Bull. Soc. Chim., Fr. [3] <u>1902</u>, 28, 824; J. Russ. Phys. Chem. Soc. 1902, 34, 14. The papers below were cited by Mellor as containing studies on ternary systems. Ca(OH)₂ + alkali + H₂O Pelouze, T.J. Compt. Rend. <u>1851</u>, 33, 353. $Ca(OH)_2 + NH_4Cl + H_2O$ Berthelot, M. Bull. Soc. Chim. Fr. [2] 1875, 24, 102. Ca(OH)₂ + NaCl, CaCl₂ + H₂O Karsten, C.J.B. Philosophie der Chemie, Berlin <u>1843</u>, p. 175. Ca(OH)₂ + Na₂CO₃ + H₂O Bodlander, G.; Lucas, R. Z. Angew. Chem. <u>1905</u>, 18, 1137. Ca(OH)₂ + Sucrose + H₂O Peligot, E.M. Ann. Chim. Phys. [3] <u>1858</u>, 54, 383. Pelouze, T.J. Ann. Chim. Phys. [4] <u>1865</u>, 6, 203 Boivin, E.; Loiseau, D. Ann. Chim. Phys. [4] <u>1865</u>, 6, 216. Deon, P.H. Bull. Soc. Chim. Fr. [2] 1872, 17, 155. Claasen, H. Z. Ver. Zuckerind. 1911, 489. The papers below contain information on calcium hydroxide or calcium hydroxide containing systems. The papers were rejected for various reasons including no new experimental data, not enough experimental detail to judge reliability of the data, or no solubility data when the calcium hydroxide was the stable solid phase (a number of the papers contain valid solubility data on compounds formed in the systems, but no solubility data on Ca(OH)2). 72. Dubourg, J. 1931, 48, 297-306. Bull. Assoc. Chim. Suc. Dist. [compounds of sugar with lime (CaO)] 73. Saalman, E. Z. Ver. deut. Zucherind 1933, 83, 963-1041. [Soly studies of $Ca(OH)_2$ in 0 to 60 % aqueous sucrose, (p. 1003)] 74. Balezin, S. A. Bull. Acad. Sci. URSS, Classe Sci. Chim. 1946, 355-61. [CaO + glucose + water, etc.] 75. Davies, C. W.; Hoyle, B. E. J. Chem. Soc. <u>1951</u>, 233-34. [Dissociation constant, $CaOH^+(aq) = Ca^{2+}(aq) + OH^-(aq)$]

130	
COMPONENTS :	
(1) Calcium hydroxide; [1308-62-8]	Ca(OH) ₂ ;

EVALUATOR:

CRITICAL EVALUATION:

REFERENCES (continued)

- 76. Greenberg, S. A.; Chang, T. N.; Anderson, E. J. Phys. Chem. <u>1960</u>, 64, 1151-57. [Soly Ca(OH)₂ from solid solutions of Ca(OH)₂ + silica]
- 77. Karibyan, A. N.; Burnazyan, A. S.; Sinanyan, I. M.; Babayan, G. G. Arm. Khim. Zh. <u>1969</u>, 22, 303-07. [Ca(OH)₂ + H_3BO_3 + H_2O at 30°C (Formation of Ca borates)]
- 78. Gregory, T. M.; Moreno, E. C.; Brown, W. E. J. Res. Natl. Bur. Stds. <u>1970</u>, 74A, 461-75. [Ca(OH)₂ + H_3PO_4 + H_2O at 5, 15, 25 and 37.5°C. (Soly CaHPO₄·2H₂O)]
- 79. Mtschedlow-Petrossian, O. P.; Sawenkow, W. W.; Tschernjawski, W. L. Silikattechnik 1973, 24, 348-50. $[Ca(OH)_2 + K_2SiO_3 + H_2O (Soly potassium hydrosilicates)]$
- 80. Zharov, E. F.; Grineva, I. R.; Osenkova, N. N. Izv. Uchebn. Zaved., Khim. Khim. Tekhnol. <u>1979</u>, 22, 597-600. $[Ca(OH)_{2} + Al_{2}(SO_{4})_{3} + CaCl_{2} + H_{2}O (Soly Ca_{3}[(Al(OH)_{6}]_{2}])]$
- 81. Verbeeck, R. M. H.; Steyaer, H.; Thun, H. P.; Verbeeck, F. J. Chem. Soc., Faraday Trans. I. 1980, 76 209-19. $[Ca(OH)_2 + H_3PO_4 + H_2O at 25^{\circ}C (Soly Ca hydroxy apatite)]$
- 82. Verbeeck, R. M. H.; Driessens, F. C. M.; Thun, H. P.; Verbeeck, F. Bull. Soc. Chim. Belg. <u>1981</u>, 90, 409-17. [Ca(OH)₂ + Sr(OH)₂ + H₃PO₄ + H₂O at 25°C (Soly Ca and Sr hydroxy apatite)]
- 83. Ivanov-Emin, B. N.; Kaziev, G. Z.; Gerasimova, T. Yu. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 1982, 25, 915-17. $[Ca(OH)_{2} + GaO(OH) + H_{2}O \text{ at } 25^{\circ}C \text{ (Soly } Ca_{3}[Ga(OH)_{6}]_{2}]$
- 84. Alekseev, A. I. Zh. Prikl. Khim. (Leningrad) 1982, 55, 2502-06. $[CaO + Al_2O_3 + Na_2O + H_2O at 25 - 95°C (Soly Ca_3[Al(OH)_6]_2]$
- 85. Alpysbaeva, E. T.; Petropavlovskii, I. A.; Yakhontova, E. L.; Portnova, N. L. Zh. Vses. Khim. O-va im D. I. Mendeleeva 1986, 31, 232-3. $[CaO + P_2O_5 + HCl + H_2O \text{ at } 25^{\circ}C \text{ (Soly } Ca(H_2PO_4)_2 \cdot H_2O \text{ and } Ca(H_2PO_4 \cdot CaCl_2 \cdot H_2O]$
- 86. Eraizer, L. N.; Kaganski, I. M.; Zaventyaeva, T. I. Izv. Akad. Nauk SSSR Neorg. Mater. <u>1986</u>, 22, 1359-63. $[CaO + P_2O_5 + H_2O at \le 250^{\circ}C Soly CaHPO_4, Ca(H_2PO_4)_2, Ca(H_2PO_4)_2 \cdot H_2O$ and $CaH_2P_2O_7$]

CONFORMENTS: (1) Calcium hydroxide; Ca(OH) ₂ ; (2) Water; H ₂ O; [7732-18-5] (2) Water; H ₂ O; [7732-18-5] (3) PREPARED BY: The Ca(OH) ₂ + H ₂ O system at -0.15°C CaO Solid Phase CaO CaO CaO CaO CaO CaO CaO CaO	(1) Calcium hydroxide; Ca(OH)2; [1305-62-0] Guthrie, F. (2) Water; H_20; [7732-18-5] Fhilos. Hag. [5] 1828, 6, 35-44. VARIABLES: FREPARED BY: T/K = 273 I. Lambert EXPERIMENTAL VALUES: The Ca(OH)2 + H20 system at -0.15°C CaO Solid Phase 0.26 0.23 Av. 0.275 ± 0.02 CaO + 1116 H20 In modern terms the experiment reported here was a determination of the system. A solution of this composition will freeze to a solid of the same composition. Assolution adturate with Ca(OH) at solid of the same composition. WETHOP/APPAARUS/PROCEDURE: A solution asturated with Ca(OH) at solid of the same composition. SOURCE AND PURITY OF MATERIALS: A solid field. Nothing specified. Nothing specified. Frinop/APPAARUS/PROCEDURE: A solidified. Analysis not specified, but it is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCo_ (method used by author for Ba determination). ESTIMATED ERFOR* Std. Dev. about 8 \$.		
[1305-62-0] Philos. Hag. [5] 1828. 6, 35-44. (2) Water; H ₂ 0; [7732-18-5] Philos. Hag. [5] 1828. 6, 35-44. VARIABLES: PREPARED BY: T/K = 273 I. Lambert EXPERIMENTAL VALUES: The Ca(OH) ₂ + H ₂ O system at -0.15°C Cao Solid Phase 0.26 O.29 Av. 0.275 ± 0.02 CaO + 1116 H ₂ O In modern terms the experiment reported here was a determination of the sustem. A solution of this composition will freeze to a solid of the same composition. Auxillary INFORMATION METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH) ₂ at roon temperature is cooled until the temperature of formation of tryohydrate is solidified. Analysis not specified, but it is probably carbonate procipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERFOR- Std. Dev. about 8 %.	[1305-62-0] Philos. Hag. [5] 1818. 6, 35-44. (2) Water: H ₂ O; [7732-18-5] Philos. Hag. [5] 1818. 6, 35-44. VARIABLES: FREPARED BY: T/K = 273 I. Lambert EXPERIMENTAL VALUES: The Ca(OH) ₂ + H ₂ O system at -0.15°C CaO Solid Phase 0.26 0.29 Av. 0.275 ± 0.02 CaO + 1116 H ₂ O In modern terms the experiment reported here was a determination of the sustem. A solution of this composition will freeze to a solid of the same composition. METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH) ₂ at room temperature of formation of for saturated with Ca(OH) ₂ at room temperature of formation of for spoified. Nothing specified. Nothing specified. Analysis not specified, but it is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCo ₃ (method used by author for Ba determination). ESTIMATED ERROR: Std. Dev. about 5 \$.	COMPONENTS:	ORIGINAL MEASUREMENTS:
(2) Water; H ₂ 0; (7732-18-5) VARIABLES: T/K = 273 I. Lambert EXPERIMENTAL VALUES: The Ca(OH) ₂ + H ₂ O system at -0.15°C CaO Solid Phase 0.26 0.29 Av. 0.275 ± 0.02 CaO + 1116 H ₂ O In modern terms the experiment reported here was a determination of the sustention composition and temperature of the system. A solution of this composition will freeze to a solid of the same composition. Auxillary INFORMATION METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH) ₂ at roon temperature is cooled until the temperature of formation of cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR- Std. Dev. about 8 %.	(2) Water; H ₂ O; (7732-18-5) VARIABLES: T/K = 273 The Ca(OH) ₂ + H ₂ O system at -0.15°C CaO Mass % 0.26 0.29 Av. 0.27 ₅ ± 0.02 CaO + 1116 H ₂ O In modern terms the experiment reported here was a determination of the eutectic composition and temperature of the system. A solution of this composition will freeze to a solid of the same composition. METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH) ₂ at room temperature is cooled until the temperature is cooled until solution saturated with Ca(OH) ₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] Is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR: Std. Dev. about 8 %.		
I. Lambert EXPERIMENTAL VALUES: The Ca(OH) ₂ + H ₂ O system at -0.15°C Composition Mass % Composition Mass % Composition Av. 0.275 ± 0.02 CaO + 1116 H ₂ O In modern terms the experiment reported here was a determination of the eutectic composition and temperature of the system. A solution of this composition will freeze to a solid of the same composition. AUXILIARY INFORMATION METHOD/APPARATUS/FROCEDURE: AUXILIARY INFORMATION Source AND FURITY OF MATERIALS: Nothing specified. METHOD/APPARATUS/FROCEDURE: <	I. Lambert EXPERIMENTAL VALUES: The Ca(OH) ₂ + H ₂ O system at -0.15°C Composition Solid Phase Composition Mass % O.26 Av. 0.275 ± 0.02 Ca0 + 1116 H ₂ O In modern terms the experiment reported here was a determination of the sustectio composition and temperature of the system. A solution of this composition will freeze to a solid of the same composition. AUXILIARY INFORMATION MULLIARY INFORMATION	(2) Water; H ₂ O; [7732-18-5]	Philos. Mag. [5] <u>1878</u> , 6, 35-44.
I. Lambert EXPERIMENTAL VALUES: The Ca(OH) ₂ + H ₂ O system at -0.15°C Composition Mass % Composition Mass % Composition Av. 0.275 ± 0.02 CaO + 1116 H ₂ O In modern terms the experiment reported here was a determination of the eutectic composition and temperature of the system. A solution of this composition will freeze to a solid of the same composition. AUXILIARY INFORMATION METHOD/APPARATUS/FROCEDURE: AUXILIARY INFORMATION Source AND FURITY OF MATERIALS: Nothing specified. METHOD/APPARATUS/FROCEDURE: <	I. Lambert EXPERIMENTAL VALUES: The Ca(OH) ₂ + H ₂ O system at -0.15°C Composition Solid Phase Composition Mass % O.26 Av. 0.275 ± 0.02 Ca0 + 1116 H ₂ O In modern terms the experiment reported here was a determination of the sustectio composition and temperature of the system. A solution of this composition will freeze to a solid of the same composition. AUXILIARY INFORMATION MULLIARY INFORMATION	VARTABLES	PREPARED BY:
The Ca(OH) ₂ + H ₂ O system at -0.15°C CaO Solid Phase Composition mass % 0.26 Av. 0.275 ± 0.02 CaO + 1115 H ₂ O In modern terms the experiment reported here was a determination of the eutectic composition and temperature of the system. A solution of this composition will freeze to a solid of the same composition. AUXILIARY INFORMATION METHOD/APPARATUS/FROCEDURE: AUXILIARY INFORMATION METHOD/APPARATUS/FROCEDURE: AUXILIARY INFORMATION METHOD/APPARATUS/FROCEDURE: A solution saturated with Ca(OH); a trom temperature of formation of cryohdrate [surgescific or composition] at reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCo ₃ (method used by author for Ba determination). ESTIMATED ERROR: Std. Dev. about 8 \$.	EXPERIMENTAL VALUES: The Ca(OH) ₂ + H ₂ O system at -0.15°C Image: Composition Image: Composition Image: Composition Image: Composition		
The Ca(OH) ₂ + H ₂ O system at -0.15°C CaO Solid Phase 0.26 0.29 Av. 0.27 ₅ ± 0.02 CaO + 1116 H ₂ O In modern terms the experiment reported here was a determination of the eutectic composition and temperature of the system. A solution of this composition will freeze to a solid of the same composition. METHOD/APPRARATUS/PROCEDURE: A solution saturated with Ca(OH) ₂ at room temperature of formation of cryohdrate [succedit composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₂ (method used by author for Ba determination). ESTIMATED ERROR: Std. Dev. about 8 ‡.	The Ca(OH) ₂ + H ₂ O system at -0.15°C Ca0 Solid Phase mass \$ 0.26	T/K = 273	I. Lambert
mass % Composition 0.26 0.29 Av. 0.275 ± 0.02 Ca0 + 1116 H ₂ 0 In modern terms the experiment reported here was a determination of the eutectic composition and temperature of the system. A solution of this composition will freeze to a solid of the same composition. AUXILIARY INFORMATION METHOD/APPARATUS/FROCEDURE: A solution saturated with Ca(OH); at room temperature of formation of cryohdrate [succed composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCo ₃ (method used by author for Ba determination). ESTIMATED ERROR* Std. Dev. about 8 \$.	mass % Composition 0.26 0.29 Av. 0.275 ± 0.02 Ca0 + 1116 H ₂ 0 In modern terms the experiment reported here was a determination of the eutectic composition and temperature of the system. A solution of this composition will freeze to a solid of the same composition. AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH); at room temperature of formation of cryohdrate [succeduation] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR* Std. Dev. about 8 \$.		system at -0.15°C
mass % 0.26 0.275 ± 0.02 Ca0 + 1116 H ₂ 0 Av. 0.275 ± 0.02 Ca0 + 1116 H ₂ 0 In modern terms the experiment reported here was a determination of the eutectic composition and temperature of the system. A solution of this composition will freeze to a solid of the same composition. Auxiliary INFORMATION METHOD/APPARATUS/FROCEDURE: A solution saturated with Ca(OH); at room temperature of formation of cryohdrate [succetic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO3 (method used by author for Ba determination). ESTIMATED ERROR* Std. Dev. about 8 \$.	mass % 0.26 0.275 ± 0.02 CaO + 1116 H ₂ O Av. 0.275 ± 0.02 CaO + 1116 H ₂ O In modern terms the experiment reported here was a determination of the eutectic composition and temperature of the system. A solution of this composition will freeze to a solid of the same composition. Auxiliary INFORMATION AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH); at room temperature of formation of cryohdrate [surated composition] is reached and cryohydrate is solidified. Analysis not specified, but it is sprobably carbonate precipitation and weighing of CaCo ₃ (method used by author for Ba determination). Std. Dev. about 8 \$.	CaO	
NY. 0.275 ± 0.02 Ca0 + 1116 H20 In modern terms the experiment reported here was a determination of the sustein. A solution of this composition will freeze to a solid of the same composition. Auxiliary INFORMATION METHOD/APPRARTUS/FROCEDURE: A solution saturated with Ca(OH)2 at room temperature of formation of cryohdrate [succeic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaC03 (method used by author for Ba determination). ESTIMATED ERROR: Std. Dev. about 8 \$.	0.29 Av. 0.275 ± 0.02 Ca0 + 1116 H20 In modern terms the experiment reported here was a determination of the sustem. A solution of this composition will freeze to a solid of the same composition. Auxiliary INFORMATION Auxiliary INFORMATION METHOD/APPARATUS/FROCEDURE: A solution saturated with Ca(OH)2 at room temperature is cooled until the temperature of formation of cryoharte [eucectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO2 (method used by author for Ba determination). Estimated ERROR: Std. Dev. about 8 \$.	mass %	Composition
In modern terms the experiment reported here was a determination of the eutectic composition and temperature of the system. A solution of this composition will freeze to a solid of the same composition. Auxiliary INFORMATION METHOD/AFPARATUS/PROCEDURE: A solution saturated with Ca(OH) at room temperature of formation of cryohdrate [surface composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO3 (method used by author for Ba determination). ESTIMATED ERROR: Std. Dev. about 8 %.	A solution of this composition will freeze to a solid of the same composition will freeze to a solid of the same composition. A solution of this composition will freeze to a solid of the same composition. AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH) ₂ at room temperature is cooled until the temperature of formation of Cryohdrate [sursectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination).		
Auxiliary INFORMATION Auxiliary INFORMATION Auxiliary INFORMATION Auxiliary INFORMATION METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH) 2 at room temperature is cooled until the temperature of formation of cryphdrate [surectic composition] is reached and cryphydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO3 (method used by author for Ba determination). EstIMATED ERROR* Std. Dev. about 8 \$.	AUXILIARY INFORMATION Auxiliary INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION METHOD/APPARATUS/FROCEDURE: A solution saturated with Ca(OH) 2 at room temperature of formation of cryohdrate [surectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR* Std. Dev. about 8 \$.	Av. 0.27 ₅ ± 0.0	2 CaO + 1116 H ₂ O
AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH)2 at room temperature is cooled until the temperature of formation of cryohdrate [succtic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO3 (method used by author for Ba determination). ESTIMATED ERROR- Std. Dev. about 8 %.	AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH) ₂ at room temperature is cooled until the temperature of formation of Cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR- Std. Dev. about 8 %.	here was a determin	nation of the eutectic
AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH), at room temperature is cooled until the temperature of formation of crychdrate [eutectic composition] is reached and crychydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR: Std. Dev. about 8 %.	AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH), at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR: Std. Dev. about 8 %.		
<pre>METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH)₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO₃ (method used by author for Ba determination).</pre> SOURCE AND PURITY OF MATERIALS: Nothing specified. Nothing specified. ESTIMATED ERROR. Std. Dev. about 8 %.	METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH) ₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR. Std. Dev. about 8 %.		
<pre>METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH)₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO₃ (method used by author for Ba determination).</pre> ESTIMATED ERROR·	METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH) ₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR. Std. Dev. about 8 %.		
<pre>METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH)₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO₃ (method used by author for Ba determination).</pre> ESTIMATED ERROR·	METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH) ₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR. Std. Dev. about 8 %.		
<pre>METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH)₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO₃ (method used by author for Ba determination).</pre> ESTIMATED ERROR·	METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH) ₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR. Std. Dev. about 8 %.		
<pre>METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH)₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO₃ (method used by author for Ba determination). ESTIMATED ERROR· Std. Dev. about 8 %.</pre>	METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH) ₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR. Std. Dev. about 8 %.		
<pre>METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH)₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO₃ (method used by author for Ba determination). ESTIMATED ERROR· Std. Dev. about 8 %.</pre>	METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH) ₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR. Std. Dev. about 8 %.		
<pre>METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH)₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO₃ (method used by author for Ba determination).</pre> ESTIMATED ERROR·	METHOD/APPARATUS/PROCEDURE: A solution saturated with Ca(OH) ₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR. Std. Dev. about 8 %.		
A solution saturated with Ca(OH) ₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR. Std. Dev. about 8 %.	A solution saturated with Ca(OH) ₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR. Std. Dev. about 8 %.	AUXILIARY	INFORMATION
A solution saturated with Ca(OH) ₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR. Std. Dev. about 8 %.	A solution saturated with Ca(OH) ₂ at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR. Std. Dev. about 8 %.	METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR. Std. Dev. about 8 %.	at room temperature is cooled until the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is solidified. Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR. Std. Dev. about 8 %.	A solution saturated with Ca(OH) ₂	
Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR. Std. Dev. about 8 %.	Analysis not specified, but it is probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR. Std. Dev. about 8 %.	the temperature of formation of cryohdrate [eutectic composition] is reached and cryohydrate is	Nothing specified.
probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR. Std. Dev. about 8 %.	probably carbonate precipitation and weighing of CaCO ₃ (method used by author for Ba determination). ESTIMATED ERROR. Std. Dev. about 8 %.		
Std. Dev. about 8 %.	Std. Dev. about 8 %.	probably carbonate precipitation and weighing of CaCO ₂ (method used	
			ESTIMATED ERROR
REFERENCES	REFERENCES		Std. Dev. about 8 %.
			REFERENCES

```
132
```

OMPONENTS :				1011101111	L MEASUREME			
(1) Calci [1305	um hydrox -62-0]	ide; Ca(он) ₂ ;	Lamy,	Α.			
(2) Water	; H ₂ 0; [7	732-18-5	1	Ann. (Chim. Phy:	s. <u>1878</u>	, 14, 14	5-90.
ARIABLES:			····	PREPAREI	D BY:			<u></u>
T/K =	273 - 37	3				inaga ambert		
XPERIMENTAL				·····				
	The so			OH) ₂ in wa		<u> </u>		
			um Oxide			Hydroxi	de	
	t/°C	Ca0/g	(kg soln	•) ⁻¹	10 ² m ₁ /m	ol kg ⁻¹		
		(a)	(b)	(c)	(a)	(b)	(c)	
	0	1.362	1.381	1.430	2.432			
	10 15	1.311 1.277			2.280	2.396 2.319	2.407	
	30	1.142	1.162	1.195	2.039	2.074	2.133	
	45	0.986 0.996(1		1.033	1.760	1.794	1.844	
	60	0.844	0.868	0.885	1.506	1.549	1.579	
	100	0.562	0.576	0.584	1.003	1.028	1.042	
	Results for the o NOTE: The	for the t dissoluti e unit g	two highe lon of co (kg soli	d Purity c est temper ontainer c n.) ⁻¹ , use les were c	ratures we glass. ed by the	author.		r.
	Results for the o NOTE: The	for the t dissoluti e unit g	two highe lon of co (kg soli	est temper ontainer g n.) ⁻¹ , use	ratures we glass. ed by the	author.		r.
THOD/APPARA	Results for the o <i>NOTE</i> : The The Ca(O)	for the t lissoluti a unit g d) ₂ molal	two high lon of co (kg soln Lity valu	est temper ontainer o n.) ⁻¹ , use les were o Y INFORMATI	ratures we glass. ed by the calculated	ere corre author. I by the	compile	r.

COMPONENTS :		ORIGINAL MEASUREMENTS:	
(1) Calcium hydroxi [1305-62-0]	.de; Ca(OH) ₂ ;	Maben, T.	
(2) Water; H ₂ O; [77	32-18-5]	Pharm. J. Trans. [3] <u>1883</u> , 14, 505.	
VARIABLES:		PREPARED BY	
T/K = 273 - 372 I. Lambert		I. Lambert	
EXPERIMENTAL VALUES:			
The sol	ubility of Ca(OH)	2 in water from 0 to 99°C	
	Calcium Oxide	Calcium Hydroxide	
t/°C	CaO/g (100 g H ₂ O	1^{-1} $10^{2}m_{1}/mol kg^{-1}$	
0	0.131	2.34	
5	0.130	2.32 2.30	
10 15	0.129 0.128	2.30	
20	0.126	2.25	
25	0.120	2.14	
30	0.116	2.07	
35	0.109	1.95	
40	0.107	1.91	
45	0.101	1.80	
50	0.098	1.75	
55	0.090	1.61 1.57	
60 65	0.088 0.082	1.46	
70	0.080	1.43	
75	0.076	1.36	
80	0.073	1.30	
85	0.072	1.29	
90	0.063	1.13	
95	0.060	1.07	
99	0.060	1.07	
The molal	solubilities were	calculated by the compiler.	
	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDU		SOURCE AND PURITY OF MATERIALS:	
heated or cooled desired temperature a thermometer in beaker contents w soon as the desired	was placed in ā water bath was to bring to the as indicated by the bath. The ere filtered as temperature was DH)_2 in solution	 (1) Calcium hydroxide. The material was considered as "perfectly free from impurities" by the author. (2) Water. Distilled. 	
		ESTIMATED ERROR:	
		No estimates possible.	
		REFERENCES :	

COMPONENTS :			ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>) ₂ ;	Shenstone, W. A.; Cundall, J. T.
(2) Water; H ₂ O; [7732-18-5]			J. Chem. Soc. <u>1888</u> , 53, 544-50.
-			
ARIABLES:			PREPARED BY:
T/K = 292, 42	423 I. Lambert		I. Lambert
EXPERIMENTAL VALUES:			J
	The solub	ility of	f Ca(OH) ₂ in water
		arts Sol	n. CaO
		er Part A(OH) ₂	/g kg ⁻¹
	19	640	1.18
	150	3081	0.246
	The compil	ler calc	ulated the CaO
	solubility	y values	•
	A	UXILIARY	INFORMATION
METHOD/APPARATUS/PROCE		······································	SOURCE AND PURITY OF MATERIALS:
The vessel used was a platinum	The vessel used in the measurement was a platinum tube. Care was		Nothing specified.
taken to avoid details given.	co ₂ . No	other	Nothing specified.
			ESTIMATED ERROR:
			No estimates possible.
			REFERENCES :
			NEL ENGINEED .

COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]	Herzfeld, A.	
(2) Water; H ₂ O; [7732-18-5]	Z. Ver. RubenzuckInd. <u>1897</u> , 818-20.	
	*Chem. Zentralbl. <u>1897</u> <u>II</u> , 932.	
	Chem. Zenciaibi. <u>1057</u> 11, 952.	
VARIABLES:	PREPARED BY:	
T/K = 288 - 353	I. Lambert	
EXPERIMENTAL VALUES:		
The solubility of Ca(DH) ₂ in water, 15-80 °C	
Parts H ₂ O t/°C for 1 part Ca	Calcium Hydroxide O $10^{2}m_{1}$ /mol kg ⁻¹	
15 776	2.30	
20 813	2.20	
25 848	2.10	
30 885 35 924	2.02 1.93	
40 962	1.86	
45 1004	1.78	
50 1044	1.71	
55 1108 60 1158	1.61 1.54	
65 1244	1.44	
70 1330	1.34	
75 1410	1.27	
80 1482	1.20	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Equilibrium was reached both from undersaturation (by cooling of a saturated boiling solution) and from supersaturation (by heating a solution saturated at room temperature). Calcium hydroxide was analyzed by acidimetry of the filtered solution. No other ex- perimental details are given.	 Calcium oxide. Prepared from calcium oxalate by thermal decomposition. Hydrated and heated to obtain CaO free of CO₂. Water. Not specified. 	
	ESTIMATED ERROR:	
	No estimates possible.	
	REFERENCES :	

```
136
```

COMPONENTS :		ORIGINAL MEASUREMENTS:	
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>		Herold, I.	
(2) Water; H ₂ O; [7732-18-5]		Z. Elektrochem. Angew. Phys. Chem. <u>1905</u> , 11, 417-30 .	
VARIABLES:		PREPARED BY:	
T/K = 393 - 463		H. Einaga Y. Komatsu	
EXPERIMENTAL VALUES:			
Th	e solubility of Ca(O	H) ₂ in water, 120-190 °C	
	Calcium Oxide	Calcium Hydroxide	
t/'	°C /g L ⁻¹	$c_1/\text{mol } L^{-1}$	
120	0.314	0.00560	
	0.309	0.00551	
	0.301	0.00537	
150	0.167	0.00298	
	0.171	0.00305	
	0.169	0.00301	
190	0.088	0.0016	
150	0.083	0.0015	
	0.080	0.0014	
······	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PRO		SOURCE AND PURITY OF MATERIALS:	
• •	ons saturated with	(1) Calcium oxide. Merck, Inc.	
Ca(OH) ₂ at room equilibrated in at the specified 8 h. The equilibric filtered under platinum filter. reduced to atm filtrate removed the filtrate vith titration with	m temperature were a steel autoclave d temperature for 6- lbrated solution was pressure through a . The pressure was sospheric, and the	 (1) Calcium Oxide. Merck, Inc. From marble containing traces of Fe. Used as received. (2) Water. Doubly distilled. 	
indicator.		ESTIMATED ERROR:	
		Relative error: about \pm 2 % or bet- ter (compiler).	
		REFERENCES :	

<u></u>			······································	
COMPONENTS :			ORIGINAL MEASUREMENTS:	
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>		e; Ca(OH) ₂ ;	Moody, G. T.; Leyson, L. T.	
(2) Water; H ₂ O; [7732-18-5]			J. Chem. Soc., Trans. <u>1908</u> , 93,	
		2-18-5]	1767-72.	
VARIABLES:			PREPARED BY:	
Mandelo.				
T/K = 27	T/K = 275 - 353		H. Einaga Y. Komatsu	
EXPERIMENTAL VAL	UES			
		bility of Ca(OH	i) ₂ in water at 2 to 80°C	
		Calcium Oxide	Calcium Hydroxide	
		g H ₂ O requir	red	
	t/°C	to díssolve l of CaO	g $c_1/\text{mol } L^{-1}$	
		768.5	0.02320	
	10	786.8	0.02266	
	15	804.3	0.02216	
	20	826.4	0.02158	
	25	868.7	0.02052	
	30 40	908.2 988.1	0.01963 0.01805	
	50	1083.0	0.01647	
	60	1179.0	0.01512	
	70	1274.8	0.01399	
	80	1368.1	0.01303	
			INFORMATION	
METHOD A DDADATHC	(DDOCEDUDE)		·····	
stirring for temperature.	aturated 10 days The sa alyzed	with CaO by at a specified aturated solu- for Ca ²⁺ by a	 SOURCE AND PURITY OF MATERIALS: (1) Calcium oxide. The purest calcite obtainable was calcined to CaO. (2) Water. Recently boiled distilled water. 	
			ESTIMATED ERROR: No estimates possible. REFERENCES:	

```
138
```

	······································	
COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Tschugaeff, L.; Chlopin, W. Z. anorg. Chem. <u>1914</u> , 86, 154-62	
(2) Water; H ₂ O; [7732-18-5]	Zh. Russ. FizKhim. O-va., Chast	
	Khim. <u>1914</u> , 46, 1659-68.	
ARIABLES.	PREPARED BY:	
T/K = 348, 368	I. Lambert	
XPERIMENTAL VALUES.		
Calcium Oxid) ₂ in H ₂ O at 75 and 95°C e Calcium Hydroxide	
$t/^{\circ}C /g (100 g)^{-1}$	· · · · · · · · · · · · · · · · · · ·	
75 0.0705	0.0126	
95 0.0580	0.0103	
The molalities were calc	ulated by the compiler.	
AUXILIARY	INFORMATION	
IETHOD/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS:	
	SOURCE AND PURITY OF MATERIALS: Nothing specified.	
ETHOD/APPARATUS/PROCEDURE: The temperature is controlled by the pressure over the boiling solu- tion. Water and excess Ca(OH) ₂ are placed in a glass container main- tained at a fixed pressure by the combined use of a water pump and a constant air ingress. The solution is boiled at this pressure by plac- ing the apparatus in a water bath at a temperature 5 to 10 degrees higher than the boiling point of the solution at the controlled pressure. After 1/2 hour of boil- ing, the solution is filtered by	SOURCE AND PURITY OF MATERIALS: Nothing specified. ESTIMATED ERROR:	
ETHOD/APPARATUS/PROCEDURE: The temperature is controlled by the pressure over the boiling solu- tion. Water and excess Ca(OH) ₂ are placed in a glass container main- tained at a fixed pressure by the combined use of a water pump and a constant air ingress. The solution is boiled at this pressure by plac- ing the apparatus in a water bath at a temperature 5 to 10 degrees higher than the boiling point of the solution at the controlled pressure. After 1/2 hour of boil- ing, the solution is filtered by aspiration into a calibrated con- tainer located in the main vessel. Analysis is performed by drying and	SOURCE AND PURITY OF MATERIALS: Nothing specified.	
ETHOD/APPARATUS/PROCEDURE: The temperature is controlled by the pressure over the boiling solu- tion. Water and excess Ca(OH) ₂ are placed in a glass container main- tained at a fixed pressure by the combined use of a water pump and a constant air ingress. The solution is boiled at this pressure by plac- ing the apparatus in a water bath at a temperature 5 to 10 degrees higher than the boiling point of the solution at the controlled pressure. After 1/2 hour of boil- ing, the solution is filtered by aspiration into a calibrated con- tainer located in the main vessel.	SOURCE AND PURITY OF MATERIALS: Nothing specified. ESTIMATED ERROR:	
ETHOD/APPARATUS/PROCEDURE: The temperature is controlled by the pressure over the boiling solu- tion. Water and excess Ca(OH) ₂ are placed in a glass container main- tained at a fixed pressure by the combined use of a water pump and a constant air ingress. The solution is boiled at this pressure by plac- ing the apparatus in a water bath at a temperature 5 to 10 degrees higher than the boiling point of the solution at the controlled pressure. After 1/2 hour of boil- ing, the solution is filtered by aspiration into a calibrated con- tainer located in the main vessel. Analysis is performed by drying and	SOURCE AND PURITY OF MATERIALS: Nothing specified. ESTIMATED ERROR: No estimates possible.	

	1	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Calcium hydroxide; Ca(OH) ₂ ;	Shipley, J. W.; McHaffie, I. R.	
[1305-62-0] (2) Water; H ₂ O; [7732-18-5]	J. Soc. Chem. Ind., London, Trans. Commun. <u>1923</u> , 42, 319 T- 26T.	
VARIABLES:	PREPARED BY:	
T/K = 293	I. Lambert	
EXPERIMENTAL VALUES:	1	
The solubility product of	f Ca(OH) ₂ in water at 20°C	
The solubility product w pH of a saturated soluti ion product of water ass with no hydrolysis or co Ca(OH) ₂ saturated soluti	on and the value of the uming an ideal solution mplex formation.	
$[H^+][OH^-] = 1 \times 10^{-14}$, [OH		
$[Ca^{2^+}] = (1/2)[OH^-] = 0.03$		
Solubility product, K_{s0}		
	INFORMATION	
METHOD/APPARATUS/PROCEDURE: Solubility and solubility product determined from pH measurements in saturated solutions. No other details given.	SOURCE AND FURITY OF MATERIALS: Nothing specified.	
	ESTIMATED ERROR: No estimates possible. REFERENCES:	

COMPONENTS :	ORIGINAL MEASUREMENTS :
(1) Calcium hydroxide; Ca(OH) ₂ ;	Haslam, R. T.; Calingaert, G.;
[1305-62-0]	Taylor, C. M.
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1924</u> , 46,
č	308-11.
VARIABLES:	PREPARED BY:
- /	H. Einaga
T/K = 283 - 353	Y. Komatsu I. Lambert
EXPERIMENTAL VALUES:	
Solubility of Ca(OH) ₂ in water, 10-80 °C
Calcium Oxide	Calcium Hydroxide
t/°C /g kg ⁻¹ soln	$m_1/\text{mol kg}^{-1}$
10 1.310	0.0234
42 1.018	0.0182
48 0.957	0.0171
56 0.884 60 0.855	0.0158 0.0153
61 0.842	0.0150
66 0.802	0.0143
70 0.762	0.0136
80 0.673	0.0120
with increasing solut NOTE: The unit, g (kg the authors. The Ca(OH) ₂ mol by the compiler AUXILIARY	soln.) ⁻¹ , was used by alities were calculated s. INFORMATION
METHOD/APPARATUS/PROCEDURE: Equilibration of Ca(OH) ₂ in water	SOURCE AND PURITY OF MATERIALS:
was approached from both super- saturation and undersaturation sides. No definite procedures are given in the original paper. The dissolved $Ca(OH)_2$ was determined by titration with standard HCl solu- tion using phenolphthalein as an indicator.	Nothing specified
	ESTIMATED ERROR:
	No estimates possible
	No continues boobinie
	REFERENCES :
	REFERENCES.

		·	· ··· · · · · · · · · · · · · · · · ·	
OMPONENTS:		ORIGINAL MEASUREMENTS:		
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>		Miller, L. B.; Witt, J. C.		
(2) Water; H ₂ O; [7732-18-5]		J. Phys. Chem.	<u>1929</u> , 33, 285 - 9.	
VARIABLES:		PREPARED BY:		
		H. Ein	aga	
T/K = 303		I. Lambert		
		H. L.	Clever	
EXPERIMENTAL VALUE	S :			
	The solubility of Ca	(OH) ₂ in water at 3	0°C	
Calcium Ox	cide Calcium Hydrox	tide Equilibratio Method	n Preparation Method	
/g L ⁻¹	$c_1/mol L^{-1}$			
1.195	0.02131 0.02140	A B	a a	
1.198	0.02136	Å	a	
1.202	0.02143	B	a	
1.196	0.02133	Ā	a	
1.194	0.02129	А	a	
1.201	0.02142	В	b	
1.196	0.02133	В	b	
	mean 0.02136 ±	0.00005		
	values.	-		
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PI	ROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
A. CaO was slaked with a small amount of conductivity water and allowed to stand 24 h. It was then added to conductivity water at 30°C in 1 L Pyrex bottles and shaken un- til equilibrium reached as indi- cated by conductivity measurements. B. The CaO was placed directly into 1 L Pyrex bottles nearly filled with conductivity water, al- lowed to slake and likewise was shaken until equilibrium was reached.		 (1) Calcium hydroxide. (a) Iceland spar was calcined to CaO, and hydrated to Ca(OH)₂. (b) A chemically pure sample of CaCO₃ was dissolved in HNO₃ followed by precipitation with (NH₄)₂CO₃. The precipitated CaCO₃ was ignited to CaO, and hydrated to Ca(OH)₂. (2) Water. Conductivity water. 		
The Ca ²⁺ in the saturated solution was determined gravimetrically after precipitation as the oxalate and ignition to CaO.		Soly.: repro	ision ± 0.005 K. ducibility better ± 0.34 %.	
and ignition to CaO. The crystals in B. are more finely divided when conductivity measure- ments begin. They may initially show a higher solubility. However, time-conductivity studies show both methods come to the same solubility value in 32-36 h.				

COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0] (2) Water; H₂O; [7732-18-5]</pre>	Bassett, H. J. Chem. Soc. <u>1934</u> , 1270-5.		
(2) "2021, "20," [,,02, 20, 5]			

EXPERIMENTAL VALUES:

Solubility of coarse grain $Ca(OH)_2$ in water

t/*C	CaO g/100 g solution	$Ca(OH)_{m_1/mol^2kg^{-1a}}$
-0.116	0.130	0.0232
0	0.130	0.0232
5	0.128	0.0228
10	0.125	0.0223
15	0.122	0.0218
25	0.113	0.0202
30	0.109	0.0195
40	0.100	0.0178
45	0.0962	0.0172
50	0.0917	0.0164
55	0.0861	0.0154
60.8	0.0818	0.0146
81.7	0.0657	0.0117
90	0.0591	0.0105
95.3	0.0561	0.0100
99	0.0523	0.0093

Solubility of fine grain $Ca(OH)_2$ in water

t/°C	CaO g/100 g solution	Ca(OH) ₂ m ₁ /mol ² kg ⁻¹⁸
-0.123	0.144	0.0257
-0.123	0.140	0.0250
0	0.151	0.0270
0	0.143	0.0255
5	0.142	0.0254
10	0.138	0.0246
15	0.133	0.0237
25	0.129	0.0230
30	0.121	0.0216
40	0.107	0.0191
50	0.0968	0.0173
60	0.0917	0.0164
70	0.0800	0.0143

(continued on next page)

Г <u></u>	1
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]	Bassett, H.
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Soc. <u>1934</u> , 1270-5.
VARIABLES:	PREPARED BY:
	H. Einaga
T/K = 273 - 372	Y. Komatsu I. Lambert
EXPERIMENTAL VALUES:	
Solid phase in equilibrium with the fluence of grain size of the start stressed.	saturated solution was Ca(OH) ₂ . In- ing material on the solubility was
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Water was saturated with $Ca(OH)_2$ by mechanically shaking the mixtures at the specified temperatures. The mixtures were agitated in Ag or Pt bottles for six hours a month. The supernatant portion of the satu- rated solutions were analyzed for Ca^{2+} by precipitation as oxalate followed by titration with standard KMnO ₄ solution.	 (1) Calcium hydroxide. Obtained by slaking CaO which was obtained by ignition of pure precipi- tated CaCO₃. Both coarse and fine grains were used. (2) Water.
	ESTIMATED ERROR:
	No estimates possible.
	REFERENCES:

```
144
```

OMPONENTS :	··· •·································	ORIGINAL MEASUREMENTS:	
(1) Calcium hydrox [1305-62-0]	ide; Ca(OH) ₂ ;	Larocque, G. L.; Maass, O.	
(2) Water; H ₂ O; [7732-18-5]		Can. J. Res., Sec. B <u>1935</u> , 13, 276-9.	
ARIABLES:	······································	PREPARED BY:	
ARTABLES:		FREFARED DI:	
T/K = 273 - 30	3	I. Lambert	
APERIMENTAL VALUES:			
	Calcium Oxide	Calcium Hydroxide	
t/°C	$CaO/g L^{-1}$	$10^2 c_1/\text{mol } L^{-1}$	
<u> </u>		1,	
0 5	1.456	2.60	
5 10	1.430 1.404	2.55 2.50	
15	1.370	2.45	
20 25	1.333 1.284	2.38 2.29	
30	1.234	2.29	
	er		
		INFORMATION	
THOD / APPARATUS / PROCEDI	AUXILIARY	INFORMATION SOURCE AND PURITY OF MATERIALS:	
ETHOD/APPARATUS/PROCEDI Electrical conduct solutions of know and in saturated measured with a st tem under CO ₂ fre stant temperature I was kept one hour ture with period readings. Equili lished from both decreasing temper average result was	AUXILIARY URE: in concentration solutions were irring glass sys- ise air in a con- bath. The system at each tempera- ic conductivity brium was estab- increasing and rature, and the s reported. The		
Electrical conduct solutions of know and in saturated measured with a st tem under CO ₂ fre stant temperature 1 was kept one hour ture with period treadings. Equil1 lished from both decreasing temper	AUXILIARY JRE: ivities in lime on concentration solutions were irring glass sys- ee air in a con- both. The system at each tempera- ic conductivity brium was estab- increasing and rature, and the s reported. The culated by plot- tal conductivity on and taking the the level cor-	 SOURCE AND PURITY OF MATERIALS: (1) Calcium oxide. Prepared by heating Iceland spar crystals at 100°C for several days. The absence of CO₂ was tested. (2) Water. Distilled. Freed from gases by repeated cycles of freezing, evacuating, and melt- 	

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Peppler, R. B.; Wells, L. S.
(2) Water; H ₂ O; [7732-18-5]	J. Res. Natl. Bur. Stand. (U.S.) <u>1954</u> , 52, 75-92.
VARIABLES:	PREPARED BY:
VARIABLES.	H. Einaga
T/K = 303-523	I. Lambert
EXPERIMENTAL VALUES:	
The solubility of Ca(OH)	2 in water at 30 to 250°C
Calcium Oxid	le Calcium Hydroxide
t/°C /g L ⁻¹	c_1 /mol L ⁻¹
30 1.03	0.0184
125 0.380	0.00678
1500.2701500.247	0.00481 ^a 0.00440
200 0.05	0.0009
250 0.037	0.00066
AUXILIARY	INFORMATION
ETHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
An aqueous solution saturated with $Ca(OH)_2$ at room temperature was heated in a pressure bomb at specified temperatures (125-250°C) for 5 to 10 days. After the equilibration the saturated solution was removed, and analyzed for Ca^{2+} by a gravimetric method by precipitation as the oxalate and calcination to CaO.	 (1) Calcium hydroxide. The Ca(OH)₂ solutions were prepared by dissolving CaO in distilled water. The CaO was prepared by heating reagent grade CaCO₃ at 950°C. (2) Water. Distilled.
	ESTIMATED ERROR:
	No estimates possible.
	REFERENCES :

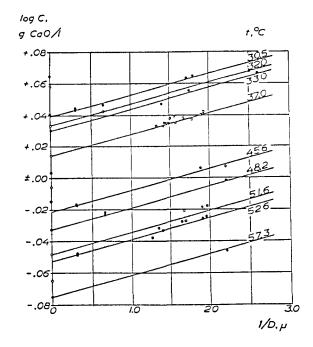
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Hedin, R.
(2) Water; H ₂ O; [7732-18-5]	Handl. Sven. Forskningsinst. Cem. Betong. K. Tek. Hoegsk. Stockholm <u>1955</u> , No. 27, 14 pp (in English).
	Chem. Abstr. <u>1956</u> , 50, 6147c.

EXPERIMENTAL VALUES:

The solubility of Ca(OH)₂ in water as a function of particle size at several temperatures

Temperature	Log c _{CaO}	1/Diameter	Ca(OH) ₂ Method of	Quadratic mean deviation on I
t/°C	c in g L ⁻¹	1/(D/μm)	Synthesis [*]	μm
24	0.064	0.00	ĸ	-
25.5	0.058	0.00	к	-
30.5	0.040	0.00	ĸ	-
	0.043	0.31	K	0.19
	0.044	0.31	K	0.22
	0.046	0.65	S	0.20
	0.063	1.72	K	0.23
	0.064	1.80	K	0.18
32.0	0.033	0.00	К	-
	0.042	0.65	S	0.21
33.0	0.030	0.00	K	-
	0.047	1.40	S	0.22
	0.055	1.76	S	0.25
	0.067	2.51	S	0.19
	0.066	2.61	S	0.23
37.0	0.014	0.00	K	-
	0.033	1.33	S	0.24
	0.033	1.42	S	0.21
	0.035	1.44	S	0.21
	0.035	1.48	S	0.20
	0.038	1.52	S	0.24
	0.039	1.56	S	0.19
	0.035	1.58	S	0.23
	0.038	1.68	S	0.18
	0.037	1.79	S	0.24
	0.040	1.90	S	0.18
	0.040	1.93	S	0.21
	0.042	1.94	S	0.16
39.9	0.003	0.00	К	-
42.0	-0.006	0.00	к	-
44.0	-0.015	0.00	K	-
45.6	-0.017	0.31	K	0.21
	-0.018	0.31	ĸ	0.26
	0.006	1.90	S	0.24
	0.007	2.21	S	0.21
48.2	-0.033	0.00	К	-
	-0.022	0.66	S	0.21
	-0.024	0.66	S	0.22
	-0.002	2.21	S	0.20
51.6	-0.048	0.00	К	-
	-0.032	1.35	S	0.20
	-0.028	1.65	S	0.17
	-0.021	1.68	S	0.24
	-0.028	1.69	S	0.22

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Hedin, R.
(2) Water; H ₂ O; [7732-18-5]	Handl. Sven. Forskningsinst. Cem. Betong. K. Tek. Hoegsk. Stockholm 1955, No. 27, 14 pp (in English).
	Chem. Abstr. <u>1956</u> , 50, 6147c.


EXPERIMENTAL VALUES:

The solubility of Ca(OH)₂ in water as a function of particle size at several temperatures (continued)

Temperature	Log c _{CaO}	1/Diameter	Ca(OH) ₂ Method of	Quadratic mean deviation on D
t/°C	c in g L^{-1}	1/(D/µm)	Synthesis*	μm
51.6	-0.019	1.91	S	0.24
	-0.018	1.97	S	0.24
52.6	-0.049	0.31	ĸ	0.21
	-0.048	0.31	ĸ	0.19
	-0.038	1.26	K	0.23
	-0.034	1.40	S	0.21
	-0.026	1.92	S	0.17
	-0.025	1.96	S	0.20
55.4	-0.065	0.00	к	-
57.3	-0.075	0.00	K	-
	-0.046	2.21	S	0.20

* K = Prepared by grinding crystalline product; S = prepared by slaking CaO.

ADDITIONAL DATA AND/OR COMMENTS;

Equilibrium concentrations of $Ca(OH)_2$ solutions as a function of the temperature and the particle size in the solid phase.

48	
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Hedin, R.
(2) Water; H ₂ O; [7732-18-5]	Handl. Sven. Forskningsinst. Cem. Betong. K. Tek. Hoegsk. Stockholm 1955, No. 27, 14 pp (in English).
	Chem. Abstr. <u>1956</u> , 50, 6147c.
ARIABLES:	PREPARED BY:
T/K = 297 - 330	I. Lambert
XPERIMENTAL VALUES:	
AUXILIAR	Y INFORMATION
ETHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
About 100 mg of $Ca(OH)_2$ suspended in a few mL of water was poured into 100-150 mL of nearly saturated $Ca(OH)_2$ solution. The flask, equipped with a conductivity cell, was thermostated with shaking for	Ca(OH) ₂ crystals were formed by slow diffusion of NaOH and CaCl ₂ solutions into a common vessel con- taining water. After washing and
10 - 20 hours. The $Ca(OH)_2$ con- centration was calculated from the equilibrium conductivity value. The relation between conductivity and concentration was taken from (ref 1). The particle size dis-	a atmosphere they were ground to pow- der in a mortar. 2) Meth. S. CaO, prepared by calcining commercial grade Ca(OH) ₂ , was slaked with CO ₂

suspension. ESTIMATED ERROR:

Temp.: \pm 0.3 K (precision) Soly.: \pm 0.004 g L⁻¹ Ca(OH)₂

REFERENCES:

(ref 1). The particle size distribution of $Ca(OH)_2$ was determined by microscopic examination of suspended samples. The arithmetic mean value was used to characteris-

tic of particle size in each

sample.

1. Ringqvist, G. Handl. Sven. Forskningsinst. Cem. Betong K. Tek. Hoegsk. Stockholm <u>1952</u>, No. 19, 55 pp.

		14
COMPONENTS :		ORIGINAL MEASUREMENTS:
(1) Calcium hydroxid [1305-62-0]	le; Ca(OH) ₂ ;	Bates, R. G.; Bower, V. E.; Smith, E. R.
(2) Water; H ₂ O; [773	2-18-5]	J. Res. Natl. Bur. Stand. (U.S.) <u>1956</u> , 56, 305-12.
VARIABLES:		PREPARED BY:
T/K = 293 - 303		H. Einaga I. Lambert H. L. Clever
EXPERIMENTAL VALUES:		
	Solubility of	Ca(OH) ₂ in water
	t/°C	$Ca(OH)_{m_1/mol}^2 kg^{-1}$
	20	0.0211
).02037 ± 0.00011(5)(initial detn)
	(0.02032 ± 0.00006(4)(1 month) 0.02022 (2)(6 months) 0.0203 Av.
	20	
	30	0.0196
IETHOD/APPARATUS/PROCEDURE		INFORMATION SOURCE AND PURITY OF MATERIALS:
Ca(OH) ₂ was equilibratian a specified to agitation. The resuses solutions were analy titration with stan- tion using phenol dicator. Equilibration was re- ferent times after to of Ca(OH) ₂ in order aging effect. The authors state to not preclude a solute perhaps 1 to 3 performed well-defined crystals Concentrations (molality (mol kg ⁻¹) of	ated with water amperature by lting saturated yzed for Ca^{2^+} by dard HCl solu- red as an in- epeated at dif- the preparation r to test its the results do pility lower by cent for large s of Ca(OH) ₂ .	<pre>(1) Calcium hydroxide. Chemically pure CaCO₃ containing low alkali was calcined at 1000°C for 45 minutes to CaO. The product was then hydrated to give Ca(OH)₂. The precipitated Ca(OH)₂ was dried at 110°C. Classed by authors as finely granular. (2) Water. ESTIMATED ERROR: Soly.: reproducibility is ± 0.5 % or better (authors). REFERENCES:</pre>
0.3 %.		

OMPONENTS :		······	0	RIGINAL MEASUR	EMENTS :	·
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>			2;	Greenberg, S	. A.; Copela	nd, L. E.
			J. Phys. Che	m. <u>1960</u> , 64	, 1057-9.	
(2) Water;	H ₂ O; [77	32-18-5]				
						<u></u>
KPERIMENTAL VA	LUES :					
An e	valuatior	n of the s	olubility	product of (Ca(OH) ₂ in wa	ter.
	Solubi		uct values y several	between 20 methods	and 40 °C	
				log K _{s0}	<u> </u>	
	t/°C	Meth a	Meth b	Meth c	Av.	
	20	4.83	5.12	4.99	4.98	
	25 40	5.10	- 5.30	5.04 5.18	5.07 5.24	
nalyzed by	2) as the rela	a function log	on of soc m ~ 2Aµ ⁰	$\begin{array}{llllllllllllllllllllllllllllllllllll$	a at 20 °C (de concentra og (K _{s0} /4) -	ref 1) and
analyzed by had been de where (ref 8). f or molality coefficient zero ionic f fethod b.	2) as the relation rived from $(1)_2 - m_C$ dere, the since since , and μ strength Solubilit	a function log $K_{s0} = m_C$ $a^{2+} = (1/2)^{2}$ authors the solut: is the io: are obtai cy data as	on of soc $m - 2A\mu^{0}$. $a^{2+m}OH^{-2}$ $2)m_{OH^{-}}$, a allowed m ions were nic streng ned. a functio	ium chlorid $f_{\pm}^{3} = (1/3)10$ $f_{\pm}^{3} = Eqn$ nd log $f_{\pm} =$ to represent dilute, f_{\pm} gth. Solubition on of hydroxy	a at 20 °C (le concentra og ($\kappa_{s0}^{\circ}/4$) - . I $2\lambda\mu^{0.5} - B\mu$ t either con is the mean lity product vl ion concen	ref 1) and tion were $B\mu$, which Eqn. If centration activity values at tration.
analyzed by had been de where (ref 8). F br molality coefficient zero ionic fethod b. Solubility o centration y	2) as the relatived from $H) 2 = m_C$ lere, the since μ strength Solubility data at 2 were anal	a function log $K_{s0} = m_C$ $K_{s0} = m_C$ authors the solut: is the ion are obtained are obtained are obtained by data as 20 and 40 byzed graph	on of soc $m - 2A\mu^0$. $a^{2+\cdot m}OH^{-2}$ $a)m_{OH}^{-}$, a allowed m ions were nic streng ned. a functio °C (ref 3) hically by	ium chlorid $f_{\pm}^{3} = (1/3)10$ $f_{\pm}^{3} = Eqn$ nd $\log f_{\pm} =$ to represendilute, f_{\pm} on of hydroxy as a function the relation	a at 20 °C (le concentra og ($K_{s0}^{\circ}/4$) - . I $2\lambda\mu^{0.5} - B\mu$ t either con is the mean lity product v1 ion concen on of KOH or on	ref 1) and tion were $B\mu$, which Eqn. If centration activity values at tration.
analyzed by had been de $m_{Ca}(0)$ (ref 8). F pr molality coefficient zero ionic Method b. Solubility centration log K _{s0} - 62	2) as the relation of the rel	a function log $K_{s0} = m_C$ $a^{2+} - (1/2)$ authors the solut: is the ion are obtain ty data as 20 and 40 lyzed graph log $K_{s0}^{*} - 3$	on of soc $m - 2A\mu^0$. $a^{2+\cdot m}OH^{-2}$ $2)m_{OH}^{-}$, a allowed m ions were nic streng ned. a functio C (ref 3) hically by $3B\mu$, which	ium chlorid $f_{\pm}^{3} = (1/3)10$ $f_{\pm}^{3} = Eqn$ nd log $f_{\pm} =$ to represendilute, f_{\pm} of hydroxy as a funct:	a at 20 °C (le concentra og ($K_{s0}^{\circ}/4$) - . I $2\lambda\mu^{0.5} - B\mu$ t either con is the mean lity product v1 ion concen on of KOH or on	tion were $B\mu$, which Eqn. II centration activity values at tration.
analyzed by had been de where (ref 8). for molality coefficient zero ionic : Method b. : Solubility of centration to log $K_{s0} = 6i$ $K_{s0} = m_{Ca}^{2+}$	2) as the relation of the rel	a function log $K_{s0} = m_C$ $a^{2+} - (1/a^{2+})$ a authors the solut: is the ion are obtain ty data as 20 and 40 Lyzed graph log $K_{s0}^{*} - m_C$ and Eqn. II	on of soc $m - 2A\mu^0$. $a^{2+\cdot m}OH^{-2}$ $2)m_{OH}^{-}$, a allowed m ions were nic streng ned. a function C (ref 3) hically by $3B\mu$, which	ium chlorid $f_{\pm}^{3} = (1/3)16$ $f_{\pm}^{3} = Eqn$ nd $\log f_{\pm} =$ to represenditute, f_{\pm} on of hydroxy as a function the relation had been de	a at 20 °C (le concentra og ($\kappa_{s0}^{\circ}/4$) - . I $2\lambda\mu^{0.5} - B\mu$ t either con is the mean lity product v1 ion concen on of KOH or on	ref 1) and tion were $B\mu$, which Eqn. II centration activity values at tration. NaOH con~
analyzed by had been de where $m_{Ca}(0)$ (ref 8). F or molality coefficient zero ionic Solubility centration log $K_{s0} = m_{Ca}^{2+}$ Method c. solubility against tem the equilib values of B line was put following ta activity co	2) as the relation rived from $H_{12} - m_{C}$ if the set of the	a function log $K_{s0} = m_C$ $k_{s0} = m_C$ $k_{s0} = m_C$ $k_{s0} = m_C$ $k_{s0} = m_C$ the solut: is the ioi are obtain ty data as 20 and 40 Lyzed graph log $K_{s0} = m_C$ and Eqn. II ity as a f 1 = 7) The good id was alwower, and in the data the Debye-Hunna to eaco obtain value	on of soc $m - 2A\mu^{0}$. $a^{2+\cdot m}OH^{-2}$ $2)m_{OH}^{-}$, a allowed m ions were nic streng ned. a function C (ref 3) hically by $3B\mu$, which function in the ra- od agreeme ways one Smith (ref . Values uckel equa- th tempera lues of th	ium chlorid $f_{\pm}^{3} = (1/3)16$ $f_{\pm}^{3} = Eqn$ nd log $f_{\pm} = 16$ to represent dilute, f_{\pm} on of hydroxy as a funct: the relation the relation of temperature of temperature f the relation f temperature f the relation f temperature f t	a at 20 °C (le concentra og ($K_{s0}^{\circ}/4$) - . I $2\lambda\mu^{0.5} - B\mu$ t either con is the mean lity product v1 ion concen on of KOH or on	ref 1) and tion were B_{μ} , which Eqn. II centration activity values at tration. NaOH con- kereported cated that H) ₂ . The cated that H) ₂ . The cate in the e the mean with the
analyzed by had been de where $m_{Ca}(0)$ (ref 8). F for molality coefficient zero ionic f Solubility 6 centration f log $K_{s0} = 66$ $K_{s0} = m_{Ca}^{2+}$ Method c. Solubility f against tem the equilib values of E line was pur following ta activity co solubility f at five degr	2) as the relation rived from $H) 2 = m_{C}$ isre, the since f and μ strength Solubilite data at 2 were anal $A\mu^{0.5} = 1$ m_{OH}^{2} ar Solubilite data (reperature, rium solution ates, Bot t through able. The perficie value to ree inter	a function log $K_{s0} = m_C$ a ²⁺ - (1/ a authors the solut: is the ion are obtain by data as are obtain y data as and 40 lyzed graph log K _{s0} - in the good id Eqn. II ity as a f 1 - 7) The good id was alw ower, and h the data be Debye-Hunt at eac obtain val vals between	on of soc $m - 2A\mu^{0}$. $a^{2+\cdot m}OH^{-2}$ $2)m_{OH}^{-}$, a allowed m ions were nic streng ned. a function C (ref 3) hically by $3B\mu$, which function in the ra- od agreeme ways one Smith (re- Loss of the een 20 and	ium chlorid 5 = (1/3)16 $f_{\pm}^3 = Eqn$ nd $\log f_{\pm} =$ to represending dilute, f_{\pm} on of hydroxy as a funct: the relation the relation of temperatures the among the form of cryst f 4) were has from this set tion was use the remodyna- 100 °C.	a at 20 °C (le concentration og $(K_{s0}^{\circ}/4)$ - I $2\lambda\mu^{0.5}$ - $B\mu$ t either com- is the mean- lity product v1 ion concen- con of KOH or on erived from re. All the o 100 °C weight values indi- talline Ca(O eavily weight 'best" line to od to evaluat vas combined	ref 1) and tion were $B\mu$, which Eqn. II centration activity values at tration. NaOH con- k reported re plotted cated that H_{2} . The ted, and a are in the e the mean with the
analyzed by had been de where $m_{Ca}(0)$ (ref 8). F or molality coefficient zero ionic Solubility of centration log $K_{s0} = m_{Ca}^{2+}$ Method c. solubility against tem the equilib values of E line was put following ta activity co solubility of activity co	2) as the relation of the rel	a function log $K_{s0} = m_C$ $k_{s0} = m_$	on of soc $m - 2A\mu^{0}$. $a^{2+\cdot m}OH^{-2}$ $2)m_{OH}^{-}$, a allowed m ions were nic streng ned. a function C (ref 3) hically by $3B\mu$, which function in the ra- od agreeme ways one Smith (ref . Values uckel equa- the en 20 and were trea	ium chlorid 5 = (1/3)16 $f_{\pm}^{3} = Eqn$ nd log $f_{\pm} =$ to represend dilute, f_{\pm} on of hydroxy as a funct: the relation had been de of temperature nge of 20 the form of cryst f 4) were has from this tion was used ature. It we hermodyna 100 °C. ted by a not	a at 20 °C (le concentration og $(K_{s0}^{\circ}/4)$ - I $2A\mu^{0.5} - B\mu$ t either com- is the mean- lity product values concen- on of KOH or on erived from re. All the o 100 °C weight talline Ca(Content is to evaluet values indi- talline Ca(Content values indi- talline Ca(Content) talline Ca(Content) values indi- talline Ca(Content) values indi- talline Ca(Content) values indi- talline Ca(Content) values indi- talline Ca(Content) values indi- talline Ca(Content) values indi- talline Ca(Content) values indi- values indi- talline Ca(Content) values content) values content values content of the	ref 1) and tion were $B\mu$, which Eqn. II centration activity values at tration. NaOH con- k reported re plotted cated that H_{2} . The ted, and a are in the e the mean with the

COMPONENTS :	ORIGINAL MEASUREMENTS:
 Calcium hydroxide; Ca(OH)₂; 	Greenburg, S.; Copeland, L. E.
[1305-62-0]	
	J. Phys. Chem. <u>1960</u> , 64, 1507-9.
(2) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
	H. Einaga
T/K = 293 - 373	I. Lambert
EXPERIMENTAL VALUES:	
	solubility product of between 20 and 100 °C
ca(on/2 in water	between zo and ioo c
Ca	lcium Hydroxide
t/°C	-
$c_1/\text{mol } L^{-1}$	10 ⁶ د [*] ه 0
$\frac{1}{20}$ 0.0211	
20 0.0211 25 0.0203	10.2 9.04
30 0.0195	8.00
35 0.0189	7.28
40 0.0183	6.64
45 0.0176	6.00
50 0.0169	5.52
55 0.0163	4.84
60 0.0155	4.24
65 0.0150	3.84
70 0.0142 75 0.0136	3.24
75 0.0136 80 0.0128	2.88 2.44
85 0.0121	2.08
90 0.0114	1.76
95 0.0107	1.48
100 0.0100	
100 0.0100	1.24
	1.24
	1.24
	1.24
	1.24
	1.24
	1.24
	1.24 Y INFORMATION
AUXILIAR	Y INFORMATION
AUXILIAR	Y INFORMATION REFERENCES (Continued):
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data	Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.;
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically	Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; 5 mith, E. R.
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literature	Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS 1956, 56, 305.
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically	Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS 1956, 56, 305.
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literature solubility data at various tempera-	Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS <u>1956</u> , 56, 305.
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literature solubility data at various tempera-	Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS <u>1956</u> , 56, 305. 5. Bassett, H. J. Chem. Soc. <u>1934</u> , 1270.
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literature solubility data at various tempera-	Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS <u>1956</u> , 56, 305. 5. Bassett, H. J. Chem. Soc. <u>1934</u> , 1270. 6. Haslam, R. T.; Calingaert, G.;
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literature solubility data at various tempera-	Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS <u>1956</u> , 56, 305. 5. Bassett, H. J. Chem. Soc. <u>1934</u> , 1270. 6. Haslam, R. T.; Calingaert, G.; Taylor, C. M.
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literature solubility data at various tempera-	<pre>Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS <u>1956</u>, 56, 305. 5. Bassett, H. J. Chem. Soc. <u>1934</u>, 1270. 6. Haslam, R. T.; Calingaert, G.; Taylor, C. M. J. Am. Chem. Soc. <u>1924</u>, 46,</pre>
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literature solubility data at various tempera- tures.	Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS <u>1956</u> , 56, 305. 5. Bassett, H. J. Chem. Soc. <u>1934</u> , 1270. 6. Haslam, R. T.; Calingaert, G.; Taylor, C. M.
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literature solubility data at various tempera- tures.	<pre>Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS <u>1956</u>, 56, 305. 5. Bassett, H. J. Chem. Soc. <u>1934</u>, 1270. 6. Haslam, R. T.; Calingaert, G.; Taylor, C. M. J. Am. Chem. Soc. <u>1924</u>, 46, 308. </pre>
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literature solubility data at various tempera- tures.	<pre>Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS <u>1956</u>, 56, 305. 5. Bassett, H. J. Chem. Soc. <u>1934</u>, 1270. 6. Haslam, R. T.; Calingaert, G.; Taylor, C. M. J. Am. Chem. Soc. <u>1924</u>, 46,</pre>
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literature solubility data at various tempera- tures.	<pre>Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS <u>1956</u>, 56, 305. 5. Bassett, H. J. Chem. Soc. <u>1934</u>, 1270. 6. Haslam, R. T.; Calingaert, G.; Taylor, C. M. J. Am. Chem. Soc. <u>1924</u>, 46, 308. 7. Mellor, J. "A Comprehensive Treatise on Inorganic and</pre>
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literature solubility data at various tempera- tures. EFERENCES: 1. Dschorbenadse, D.; Mosebach, R.; Nacken, R.	<pre>Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS 1956, 56, 305. 5. Bassett, H. J. Chem. Soc. 1934, 1270. 6. Haslam, R. T.; Calingaert, G.; Taylor, C. M. J. Am. Chem. Soc. 1924, 46, 308. 7. Mellor, J. "A Comprehensive Treatise on Inorganic and</pre>
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literature solubility data at various tempera- tures. EFERENCES: 1. Dschorbenadse, D.; Mosebach, R.;	<pre>Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS 1956, 56, 305. 5. Bassett, H. J. Chem. Soc. 1934, 1270. 6. Haslam, R. T.; Calingaert, G.; Taylor, C. M. J. Am. Chem. Soc. 1924, 46, 308. 7. Mellor, J. "A Comprehensive Treatise on Inorganic and Theoretical Chemistry", Vol. III, Longmans, 1923, 623. </pre>
AUXILIAR METHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literature solubility data at various tempera- tures. EFERENCES: 1. Dschorbenadse, D.; Mosebach, R.; Nacken, R. Zement 1942, 31, 513.	<pre>Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS 1956, 56, 305. 5. Bassett, H. J. Chem. Soc. 1934, 1270. 6. Haslam, R. T.; Calingaert, G.; Taylor, C. M. J. Am. Chem. Soc. 1924, 46, 308. 7. Mellor, J. "A Comprehensive Treatise on Inorganic and Theoretical Chemistry", Vol. III, Longmans, 1923, 623. 8. Hitchcock, D. I.</pre>
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literatura solubility data at various tempera- tures. EFERENCES: 1. Dschorbenadse, D.; Mosebach, R.; Nacken, R. Zement 1942, 31, 513. 2. Johnstone, J.; Grove, C.	 Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS <u>1956</u>, 56, 305. 5. Bassett, H. J. Chem. Soc. <u>1934</u>, 1270. 6. Haslam, R. T.; Calingaert, G.; Taylor, C. M. J. Am. Chem. Soc. <u>1924</u>, 46, 308. 7. Mellor, J. "A Comprehensive Treatise on Inorganic and Theoretical Chemistry", Vol. III, Longmans, <u>1923</u>, 623. 8. Hitchcock, D. I. J. Am. Chem. Soc. <u>1928</u>, 50,
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literatura solubility data at various tempera- tures. EFERENCES: 1. Dschorbenadse, D.; Mosebach, R.; Nacken, R. Zement 1942, 31, 513. 2. Johnstone, J.; Grove, C. J. Am. Chem. Soc. 1931, 53,	<pre>Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS 1956, 56, 305. 5. Bassett, H. J. Chem. Soc. 1934, 1270. 6. Haslam, R. T.; Calingaert, G.; Taylor, C. M. J. Am. Chem. Soc. 1924, 46, 308. 7. Mellor, J. "A Comprehensive Treatise on Inorganic and Theoretical Chemistry", Vol. III, Longmans, 1923, 623. 8. Hitchcock, D. I.</pre>
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literatura solubility data at various tempera- tures. EFERENCES: 1. Dschorbenadse, D.; Mosebach, R.; Nacken, R. Zement 1942, 31, 513. 2. Johnstone, J.; Grove, C.	 Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS <u>1956</u>, 56, 305. 5. Bassett, H. J. Chem. Soc. <u>1934</u>, 1270. 6. Haslam, R. T.; Calingaert, G.; Taylor, C. M. J. Am. Chem. Soc. <u>1924</u>, 46, 308. 7. Mellor, J. "A Comprehensive Treatise on Inorganic and Theoretical Chemistry", Vol. III, Longmans, <u>1923</u>, 623. 8. Hitchcock, D. I. J. Am. Chem. Soc. <u>1928</u>, 50,
AUXILIAR TETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literature solubility data at various tempera- tures. EFERENCES: 1. Dschorbenadse, D.; Mosebach, R.; Nacken, R. Zement 1942, 31, 513. 2. Johnstone, J.; Grove, C. J. Am. Chem. Soc. 1931, 53, 3976.	 Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS <u>1956</u>, 56, 305. 5. Bassett, H. J. Chem. Soc. <u>1934</u>, 1270. 6. Haslam, R. T.; Calingaert, G.; Taylor, C. M. J. Am. Chem. Soc. <u>1924</u>, 46, 308. 7. Mellor, J. "A Comprehensive Treatise on Inorganic and Theoretical Chemistry", Vol. III, Longmans, <u>1923</u>, 623. 8. Hitchcock, D. I. J. Am. Chem. Soc. <u>1928</u>, 50,
AUXILIAR METHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literature solubility data at various tempera- tures. EFERENCES: 1. Dschorbenadse, D.; Mosebach, R.; Nacken, R. Zement 1942, 31, 513. 2. Johnstone, J.; Grove, C. J. Am. Chem. Soc. 1931, 53, 3976. 3. Fratini, S.	 Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS <u>1956</u>, 56, 305. 5. Bassett, H. J. Chem. Soc. <u>1934</u>, 1270. 6. Haslam, R. T.; Calingaert, G.; Taylor, C. M. J. Am. Chem. Soc. <u>1924</u>, 46, 308. 7. Mellor, J. "A Comprehensive Treatise on Inorganic and Theoretical Chemistry", Vol. III, Longmans, <u>1923</u>, 623. 8. Hitchcock, D. I. J. Am. Chem. Soc. <u>1928</u>, 50,
AUXILIAR TETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literature solubility data at various tempera- tures. EFERENCES: 1. Dschorbenadse, D.; Mosebach, R.; Nacken, R. Zement 1942, 31, 513. 2. Johnstone, J.; Grove, C. J. Am. Chem. Soc. 1931, 53, 3976.	 Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS <u>1956</u>, 56, 305. 5. Bassett, H. J. Chem. Soc. <u>1934</u>, 1270. 6. Haslam, R. T.; Calingaert, G.; Taylor, C. M. J. Am. Chem. Soc. <u>1924</u>, 46, 308. 7. Mellor, J. "A Comprehensive Treatise on Inorganic and Theoretical Chemistry", Vol. III, Longmans, <u>1923</u>, 623. 8. Hitchcock, D. I. J. Am. Chem. Soc. <u>1928</u>, 50,
AUXILIAR ETHOD/APPARATUS/PROCEDURE: No original experimental data reported. The authors critically evaluated selected literature solubility data at various tempera- tures. EFERENCES: 1. Dschorbenadse, D.; Mosebach, R.; Nacken, R. Zement 1942, 31, 513. 2. Johnstone, J.; Grove, C. J. Am. Chem. Soc. 1931, 53, 3976. 3. Fratini, S.	 Y INFORMATION REFERENCES (Continued): 4. Bates, R. G.; Bower, V. E.; Smith, E. R. J. Res. NBS <u>1956</u>, 56, 305. 5. Bassett, H. J. Chem. Soc. <u>1934</u>, 1270. 6. Haslam, R. T.; Calingaert, G.; Taylor, C. M. J. Am. Chem. Soc. <u>1924</u>, 46, 308. 7. Mellor, J. "A Comprehensive Treatise on Inorganic and Theoretical Chemistry", Vol. III, Longmans, <u>1923</u>, 623. 8. Hitchcock, D. I. J. Am. Chem. Soc. <u>1928</u>, 50,

[1305-62-0]	cide; Ca(OH) ₂		GINAL MEASUREMENTS udelka, L.	:
(2) Water; H ₂ O; [7	732-18-5]	Ch	em. Prum. <u>1976</u>	<i>, 26</i> , 580-3.
VARIABLES:		PRE	PARED BY:	
T/K = 273			J. Hala	
EXPERIMENTAL VALUES:	<u> </u>			
	- <u> </u>	· · · · · · · · · · · · · · · · · · ·	2 in water at 0	
Equilibration time after preparation	Initial Mixture	Ca ^{2+a}	Ca(OH) ₂ b	Ca(OH) ₂ C
t/min	/mass %	c/mg cm ⁻³	$c_1/\text{mg cm}^{-3}$	$c_1/mg \ cm^{-3}$
0	1.5 3.0	0.89 0.90	1.65 1.66	1.67 1.76
7	1.5 3.0	0.90 0.92	1.66 1.70	1.67 1.67
15	1.5 3.0	0.92 0.92	1.70 1.70	1.70 1.67
30	1.5 3.0	0.95 0.93	1.76 1.72	1.76 1.67
	34 ± 0.0006)	he average mol L ⁻¹ (c	solubility is (ompiler).	(1.73 ± 0.04)
	34 ± 0.0006)	he average mol L ⁻¹ (c	solubility is (ompiler).	(1.73 ± 0.04)
		he average mol L ⁻¹ (c KILIARY INFOR		(1.73 ± 0.04)
iethod/apparatus/proced	AUX URE :	CILIARY INFOF	MATION CE AND PURITY OF M	ATERIALS:
METHOD/APPARATUS/PROCED Isothermal Method containing about 2 was prepared from water. Mixtures tially either 1.9 Ca(OH) ₂ were equil at 0°C for 30 minu the suspension analysis immediate ing the mixture, a and 30 minute i samples were fi	AUX URE: 1. Slaked 0 mass % Ca CaO and dist: containing 5 or 3.0 ma ibrated by mi ites. Sample were taken ly after pre- nd then at 7 ntervals.	CILIARY INFOR SOUR lime (1) (OH) 2 illed ini- ss % ixing es of for epar- 7, 15 The 0°C	MATION CE AND PURITY OF M Calcium oxide Czechoslova	ATERIALS: . Lachema, Brnc kia. Analyze ly and containe
ETHOD/APPARATUS/PROCED Isothermal Method containing about 2 was prepared from water. Mixtures tially either 1.5 Ca(OH) ₂ were equil at 0°C for 30 minu the suspension analysis immediate ing the mixture, a and 30 minute i samples were fi through a sintered (S2). The filts	AUX URE: 1. Slaked 0 mass % Ca CaO and dist: containing 5 or 3.0 ma ibrated by mi ites. Sample were taken ly after pre nd then at 7 ntervals. ltered at glass cruc cation took	CILIARY INFOR SOUR (OH) 2 illed ini- ss % ixing es of for epar- 7, 15 The 0°C cible ap- ESTI	MATION CE AND PURITY OF M Calcium oxide Czechoslova titrimetrical	ATERIALS: . Lachema, Brnc kia. Analyze ly and containe
TETHOD/APPARATUS/PROCED Isothermal Method containing about 2 was prepared from water. Mixtures tially either 1.9 Ca(OH) ₂ were equil at 0°C for 30 minu the suspension analysis immediate ing the mixture, a and 30 minute i samples were fi through a sintered (S2). The filtr proximately 1 minut of the filtrate we for Ca ²⁺ by comple	AUX URE: 1. Slaked 0 mass % Ca CaO and dist: containing 5 or 3.0 ma ibrated by mi ibrated by mi ibra	CILIARY INFOR SOUR lime (1) (OH) 2 illed ini- ss % ixing es of for epar- 7, 15 The 0°C cible ap- guots one tra- , by	MATION CE AND PURITY OF M Calcium oxide Czechoslova titrimetrical 96.3 mass % Ca MATED ERROR: No estimates	ATERIALS: . Lachema, Brnd kia. Analyze ly and containe NO.
(ETHOD/APPARATUS/PROCED) Isothermal Method containing about 2 was prepared from water. Mixtures tially either 1.9 Ca(OH) ₂ were equil at 0°C for 30 minu the suspension analysis immediate ing the mixture, a and 30 minute i samples were fi through a sintered (S2). The filty proximately 1 minuto of the filtrate we	AUX URE: 1. Slaked 0 mass % Ca CaO and dist: containing 5 or 3.0 ma ibrated by mi ites. Sample were taken ly after pre- nd then at 7 ntervals. ltered at d glass cruc ration took te. Two alic re analyzed, exometric ti r for Ca(OH)	CILIARY INFOR SOUR lime (1) (OH) 2 illed ini- ss % ixing es of for epar- 7, 15 The 0°C cible ap- ESTI puots one tra- 2 by	MATION CE AND PURITY OF M Calcium oxide Czechoslova titrimetrical 96.3 mass % Ca	ATERIALS: . Lachema, Brnc kia. Analyze ly and containe NO.

COMPONENTS: (1) Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]	ORIGINAL MEASUREMENTS: Edmiston, M. D.; Suter, R. W.
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Ed. <u>1988</u> , 65, 279-80.
VARIABLES:	PREPARED BY:
T/K = 293	I. Lambert
EXPERIMENTAL VALUES:	
The solubility of Ca(OH) ₂ i	n water was measured
using a labelling technique	at 20°C to be:
0.17 g (100	cm ³) ⁻¹ .
The compiler calculated val	ues of
1.7 g dm ⁻³ a	
	1^{-3} from the reported value.
	•
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A 1.00 cm ⁻³ solution of 0.100 mol	(1) Ca(OH) ₂ . Precipitated from CaCl ₂ solution by NaQH. See
dm ⁻³ CaCl ₂ containing about 3 ppb of 45 Ca (0.2 μ Ci, low β energy) is	method.
reacted with NaOH solution to precipitate Ca(OH) ₂ . The	(2) Water. Not specified.
precipitate is washed three times with pure water, and, each time	
separated from the water by	
centrifugation. The Ca(OH) ₂ is stirred twice with water, allowed	
to stand one minute after each stirring, and then centrifugated.	
The supernatant solution (1) is separated. The solid Ca(OH) ₂ is	ESTIMATED ERROR:
dissolved in HCl and combined with rinsing solutions from the prepara-	Temp.: Not specified. Soly.: Not specified, compilers
tion so all non-dissolved base is in solution (2). The two solutions	estimate 5 - 10 %.
are evaporated and the residue	REFERENCES :
counted for ⁴⁵ Ca. The quantity dissolved is calculated from	
N(1)/[N(1) + N(2)], N(1) and N(2) being the number of counts for	
solutions (1) and (2), respec- tively.	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Calcium hydroxide (portlandite); Ca(OH) ₂ ; [12177-68-3]	Walther, J. V.
(2) Water; H ₂ O; [7732-18-5]	Geochim. Cosmochim. Acta <u>1986</u> , 50, 733-39.

EXPERIMENTAL VALUES:

The solubility of portlandite in super-critical water as a function of temperature and pressure.

Temper	ature	Pressure	Duration	Approach	$\log (m_{Ca}/mol kg^{-1})$
t/°C	<i>T/</i> K	p _{tot} /bar	t/days		
300	573	990	3	S	-2.648
350	623	1000	24		lost
		1000	10	U	-2.952
		1000	5	S	-3.074
352	625	1000	3	-	-3.083
		1010	5	S	-3.006
399	672	1000	3		lost
400	673	1125	2	S	-3.149
401	374	1000	10	S	-3.381
426	699	990	4	S	-3.597
		1000	3	-	-3.635
		1080	4	S	-3.581
427	700	1000	4	-	-3.602
428	701	1000	6		lost
449	722	1000	3	-	-3.834
450	723	1000	2	S	-3.907
		1070	4	S	-3.798
476	749	1000	4	S	-4.200
477	750	1000	5	S	-4.130
500	773	1000	6 2	S S	-4.375 -4.441
502	775	1000	2	5	-4.441
302	575	1300	3	S S	-2.497 -2.414
351	624	1600 1700	3 3	S	-2.678
351	624	1305	1	S	-2.831
202	029	1440	6	S	-2.709
551	824	1520	4	S	-4.236
351	024	1655	2	S	-3.881
552	825	1420	2	S	-4.583
302	575	2000	2	υ	-2.340
350	. 623	2000	3	Ū	-2.529
400	673	2000	3	S	-2.696
		2000	4	-	-2.693
		2000	3	-	-2.696
401	674	2200	3	S	-2.597
424	697	1995	4	S	-2.822
449	722	2010	3	U	-3.002
474	747	2000	3	S	-3.070
499	772	1995	2	S	-3.146
		2020	2 2	-	-3.178
500	773	2000	2	-	-3.190
525	798	2020	2	S	-3.341
550	823	1810	2	S	-3.604
553	826	2040	2	S	-3.456
598	871	2010	1		-4.207
599	872	2000	2	U	-4.021
601	874	2000	2	S	-4.172
610	883	1950	2	U	-4.579
402	675	2475	5	U	-2.542
399	672	3000	2	-	-2.353
400	673	3010	2	U	-2.392
		n the next pa			

COMPONENTS :				
			ORIGINAL MEASUR	
(1) Calcium Ca(OH) ₂ ;	hydroxide (p [12177-68-3		Walther, J.	v.
(2) Water; H			Geochim. Cos 733-39.	mochim. Acta <u>1986</u> , 50,
	2-7 [-1		
VARIABLES:			PREPARED BY:	
	73 - 877		н.	L. Clever
p/MPa = 9	9.0 - 302.0			
	ty of portla		per-critical	water as a function of
Temperatu	ure Press	ure Duratio	on Approach	$\log (m_{Ca}/mol kg^{-1})$
t/°C 7	r/K P _{tot} /I	bar t/days	3	
503	776 300	0 3	U	-2,657
	300			-2.627
	B73 300			-3.998
	B76 3020		s u	-3.099
604 8	B77 3020	0 2	U	-3.090
experime arranged at the p The author p reaction	ents were don 1 the data al pressures of	ne on the 2 g pove in the c l, l.5, 2, 2	g sample of Ca order of incre 2.5 and 3 kbar although the	in the order the (OH) ₂ . The compiler asing temperature solution pH is about 2
Neither Ca(O appear to be	H) ⁺ (aq) or (important sp	$aq) + 2H_2O$ Ca(OH) ₂ (aq) pecies, AUXILIARY 1	solubility i ing pressur ture, decre temperature	ve neutral. The ncreases with increas- e at constant tempera- ases with increasing at constant pressure.
Neither Ca(O appear to be ETHOD/APPARATUS/ The solubili	Ca ²⁺ (a H) ⁺ (aq) or (important sp /PROCEDURE: ty measurem	aq) + 2H ₂ O Ca(OH) ₂ (aq) pecies, AUXILIARY 1 AUXILIARY 1	solubility i ing pressur ture, decre temperature INFORMATION SOURCE AND PURIT	ve neutral. The ncreases with increas- e at constant tempera- ases with increasing at constant pressure.
Neither Ca(O appear to be HETHOD/APPARATUS/ The solubili performed wit	Ca ²⁺ (a H) ⁺ (aq) or (important sp /PROCEDURE: ty measuren ch an extract	aq) + 2H ₂ O Ca(OH) ₂ (aq) pecies, AUXILIARY 1 AUXILIARY 1 nents were tion quench	solubility i ing pressur ture, decre temperature INFORMATION SOURCE AND PURIT (1) Portland reagent	ve neutral. The ncreases with increas- e at constant tempera- eases with increasing at constant pressure. Y OF MATERIALS: ite. Sargent Welch grade. Treated as
Neither Ca(O appear to be HETHOD/APPARATUS/ The solubili	Ca ²⁺ (aq) or (important sp /PROCEDURE: ty measurem th an extract apparatus (f Ca(OH) ₂ wa f fines remov a fines remov a fine indica	aq) + 2H ₂ O Ca(OH) ₂ (aq) becies, AUXILIARY 1 AUXILIARY 1 AUXILIA	solubility i ing pressur ture, decre temperature INFORMATION SOURCE AND PURIT (1) Portland reagent described (2) Water.	ve neutral. The ncreases with increas- e at constant tempera- ases with increasing at constant pressure.
Neither Ca(O appear to be METHOD/APPARATUS/ The solubili performed wit hydrothermal 2 g sample of lated and the tling. X-ra scope examina pletely cryst The sample wa sampling tem and allowed	Ca ²⁺ (aq) or (important sp /PROCEDURE: ty measurem ch an extract apparatus (f Ca(OH) ₂ wa a fines remov at on indica calline mater as brought to perature and to equili	aq) + 2H ₂ O Ca(OH) ₂ (aq) becies, AUXILIARY I AUXILIARY I AUXILIARY I Automatic Automatic Calman and Automatic Auto	solubility i ing pressur ture, decre temperature INFORMATION SOURCE AND PURIT (1) Portland reagent described (2) Water.	ve neutral. The ncreases with increas- e at constant tempera- eases with increasing at constant pressure. Y OF MATERIALS: ite. Sargent Welch grade. Treated as d in the method. Distilled, deionized,
Neither Ca(O appear to be (ETHOD/APPARATUS/ The solubili performed with hydrothermal 2 g sample o lated and the tling. X-ra scope examina pletely cryst The sample wa sampling tem and allowed seven days. ments followe 2 to 4) day pling the sa flushed with calcium conc	Ca ²⁺ (a H) ⁺ (aq) or (important sp (PROCEDURE: ty measurem th an extract apparatus () f Ca(OH) ₂ wa a fines remove ation indicat calline mater as brought to perature and to equili Successive ed at 1 to 10 intervals. ampling appa an NaOH s centration w	aq) + 2H ₂ O Ca (OH) ₂ (aq) becies, AUXILIARY 1 AUXILIARY 1 AUXIL	solubility i ing pressur ture, decre temperature INFORMATION SOURCE AND PURIT (1) Portland reagent described (2) Water. 1 and decar ESTIMATED ERROR: Author estim for Ca as ±2	ve neutral. The ncreases with increas- e at constant tempera- eases with increasing at constant pressure. Y OF MATERIALS: ite. Sargent Welch grade. Treated as d in the method. Distilled, deionized, rbonated.
Neither Ca(O appear to be (ETHOD/APPARATUS/ The solubili performed with hydrothermal 2 g sample of lated and the tling. X-ra scope examina pletely cryst The sample wa sampling tem and allowed seven days. ments followe 2 to 4) day 2 pling the sa flushed with	Ca ²⁺ (a H) ⁺ (aq) or (important sp (PROCEDURE: ty measurem th an extract apparatus (1) f Ca(OH) ₂ wa a fines remove ation indication ation indication to equili Successive ed at 1 to 10 intervals. ampling apparation with ng a DCP	aq) + 2H ₂ O Ca (OH) ₂ (aq) becies, AUXILIARY 1 AUXILIARY 1 AUXIL	solubility i ing pressur ture, decre temperature INFORMATION SOURCE AND PURIT (1) Portland reagent described (2) Water. 1 and decar ESTIMATED ERROR: Author estim for Ca as ±2 certanties in REFERENCES: 1. Walther, 5	ve neutral. The ncreases with increas- e at constant tempera- ases with increasing at constant pressure. Y OF MATERIALS: ite. Sargent Welch grade. Treated as d in the method. Distilled, deionized, rbonated. ated analytical method 2 %, over-all with un-
Neither Ca(O appear to be ETHOD/APPARATUS/ The solubili performed with hydrothermal 2 g sample of lated and the tling. X-ra pletely cryst The sample wa scope examina pletely cryst The sample wa sampling tem and allowed seven days. ments followe 2 to 4) day pling the sa flushed with calcium conc mined us i	Ca ²⁺ (a H) ⁺ (aq) or (important sp (PROCEDURE: ty measurem th an extract apparatus (1) f Ca(OH) ₂ wa a fines remove ation indication ation indication to equili Successive ed at 1 to 10 intervals. ampling apparation with ng a DCP	aq) + 2H ₂ O Ca (OH) ₂ (aq) becies, AUXILIARY 1 AUXILIARY 1 AUXIL	solubility i ing pressur ture, decre temperature INFORMATION SOURCE AND PURIT (1) Portland reagent described (2) Water. 1 and decar ESTIMATED ERROR: Author estim for Ca as ±2 certanties in REFERENCES: 1. Walther, 5	ve neutral. The ncreases with increas- e at constant tempera- eases with increasing at constant pressure. TY OF MATERIALS: ite. Sargent Welch grade. Treated as d in the method. Distilled, deionized, rbonated. ated analytical method 2 %, over-all with un- h p and T as ±5 %.

```
156
```

COMPONENTS :		ORIGINAL MEAS	
(1) Calcium hydroxid [1305-62-0]	e; Ca(OH) ₂ ;		R. W.; La Mer, V. K. m. Soc. <u>1941</u> , 63,
(2) Water-d ₂ ; D ₂ O; [7789-20-0]	3256-62.	m. soc. <u>1941</u> , 65,
(3) Water; H ₂ O; [773	2-18-5]		
VARIABLES:		PREPARED BY:	1100 W 121 · · · · · · · · · · · · · · · · · ·
T/K = 298 Mol fraction, $x_2 = 0$	- 1		I. Lambert
EXPERIMENTAL VALUES:			
Solubility of	Ca(OH) ₂ in w	ater + heavy wa	ter mixtures, 25°C
t/°C	Mol Fraction D ₂ O	Solubility 10 ² c ₁ /mol L ⁻¹	Solid Phase
	<u> </u>		
25	0	2.15	Ca(OH) ₂
	0.868	1.26	
	0.925	1.20	
	1.00	1.12 ^a	Ca(OD) ₂
		ARY INFORMATION	
METHOD/APPARATUS/PROCEDURE	2:	SOURCE AND PU	RITY OF MATERIALS:
Nothing spec	offied.	NC	othing specified.
		ESTIMATED ERR	
		NO e	estimates possible.
		REFERENCES :	

coated with paraffin or a pyrex bottle at 25.00 ± 0.02°C by shaking for 14-20 h. The clear portion of the saturated solution was analyzed for calcium ion either by		
[1305-62-0] J. Phys. Chem. 1934, 38, 639-43. (2) Ammonia; NH ₃ ; [7664-41-7] J. Phys. Chem. 1934, 38, 639-43. (3) Water; H ₂ 0; (7732-18-5) PREPARED BY: v.KinadLES: H. Einaga Y. Komatsu r/K = 298 c_2/mol L ¹ = 0 - 1.955 PREPARED BY: Mamonia Calcium Hydroxide c_2/mol L ¹ c_1/mol L ¹ 0 0.02128 0.496 0.01933 0.5981 0.01850 1.475 0.01700 1.955 0.01571 The solubility of Ca(OH) ₂ decreased linearly with increasing NH ₃ concentration. AUXILLARY INFORMATION Calcum vich a standard NHO4 Source AND FURITY OF MATERIALS: Calcum vich a standard NHO4 Source AND FURITY OF MATERIALS: Calcum vich a st	COMPONENTS :	ORIGINAL MEASUREMENTS:
(2) Ammonia; NH ₃ ; [7664-41-7] J. Phys. Chem. 1934, 38, 639-43. (3) Water; H ₂ O; [7732-18-5] J. Phys. Chem. 1934, 38, 639-43. (3) Water; H ₂ O; [7732-18-5] PREPARED BY: H. Einaga Y. Komatsu T/K = 298 c_2/mol L ⁻¹ = 0 - 1.955 PREPARED BY: H. Einaga Y. Komatsu ZYPERIMENTAL VALUES: The solubility of Ca(OH) ₂ in aqueous NH ₃ at 25°C Ammonia Calcium Hydroxide c_2/mol L ⁻¹ 0 0.496 0.01933 0.981 0.01850 1.475 0.010700 1.955 0.01571 The solubility of Ca(OH) ₂ decreased linearly with increasing NH ₃ concentration. AUXILARY INFORMATION Calcium sine ither a container coated with parafin or a pyrex bottle at 25.00 i 0.02°C by shaking of cr calcium ion either by precipitation with atandard NH ₀₄ solution, or by evaporation of the saturated solution was analyzed by itration with standard NH ₀₄ solution, or by evaporation of the saturated solution with standard Not solution using methyl orange indicator. Source AND FURITY OF MATERIALS: (1) Calcium oxide. Chemically pure CaCl ₂ was reacted with am- monium coalate in hot water to precipitate calcium ion either by precipitation with standard NH ₀₄ in the presence of Ba(OH) ₂ . (3) Water. (3) Water. Kottration with standard Not solution using methyl orange indicator. (3) Water. Source Autor the titration pro- cedure was botto	<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Kolthoff, I. M.; Stenger, V. A.
ARIABLES: T/K = 298 $c_2/mol L^{-1} = 0 - 1.955$ The solubility of Ca(OH) ₂ in aqueous NH ₃ at 25°C Ammonia Calcium Hydroxide $c_2/mol L^{-1}$ $c_1/mol L^{-1}$ 0 $0.021280.496$ $0.019330.981$ $0.018501.475$ $0.017001.955$ $0.01571The solubility of Ca(OH)2 decreased linearly with increasing NH3 concentration.The solubility of Ca(OH) decreased linearly with increasing NH3 concentration.SURCE AND FURITY OF MATERIALS:CaO was equilibrated with aqueousThou a standard Kunogfor 14-20 h. The clear portion of the solution was analyzedfor calcium ion either by precipitation as oxalate followedby the stutration with a standard KunogSolution, or by evaporation to dry-mess and addition of HCl followedNaOH solution using methyl orangeindicator.PREPARED BY:H. Einaga Y. KomatsuCalcium HydroxideAuxilLary INFORMATIONSURCE AND FURITY OF MATERIALS:(1) Calcium oxide. Chemically pureCaO. Vare active with ammonium oxide. Chemically pureCaO. Vare active of the sture of the solution of the stundard Kunogin the presence of Ba(OH)2.(3) Water.ESTIMATED ERROR:Accuracy in the titration pro-cedure was better than 0.53.Temp.: See Method.$		J. Phys. Chem. <u>1934</u> , 38, 639-43.
H. Einaga K. Komatsu K. Komatsu Y. Komatsu Xerement Values: The solubility of Ca(OH) ₂ in aqueous NH ₃ at 25°C Ammonia Calcium Hydroxide $c_2/mol L-1 c_1/mol L-1 o.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.01700 1.475 0.01700 1.955 0.01700 1.955 0.01700 1.955 0.01700 1.955 0.01700 0.0270 by athig 0.02$	(3) Water; H ₂ O; [7732-18-5]	
T/K = 298 Y. Komatsu	ARIABLES:	PREPARED BY:
American Schemen Sc	T/K = 298	
The solubility of Ca(OH)2 in aqueous NH3 at 25°CAmmoniaCalcium Hydroxide $c_2/mol L^{-1}$ $c_1/mol L^{-1}$ 00.021280.4960.019330.9810.018501.4750.017001.9550.01571The solubility of Ca(OH)2 decreased linearly with increasing NH3 concentration.SOURCE AND FURITY OF MATERIALS:Calcium oxide. Chemically pure CaCl2 was reacted with amonium oxalate in hot water to precipitation with a standard KM04 solution, or by evaporation to dry press and addition of HCI followed by back titration with a standard KM04 solution using methyl orange indicator.SOURCE AND FURITY OF MATERIALS:(1) Calcium oxide. Chemically pure CaCl2 was reacted with amonium oxalate in hot water to precipitation as oxalate followed by titration with a standard KM04 solution using methyl orange(2) Ammonia. Prepared C02 free by distillation of 20 aqueous NH3 in the presence of Ba(OH)2.(3) Water.ESTIMATED ERROR: Accuracy in the titration proceduc was better than 0.5%. Temp.: See Method.		
$\frac{c_2/\text{mol } L^{-1}}{0} \frac{c_1/\text{mol } L^{-1}}{0.02128}$ $0.496 0.01933$ $0.981 0.01850$ $1.475 0.01700$ $1.955 0.01571$ The solubility of Ca(OH) ₂ decreased linearly with increasing NH ₃ concentration. THOD/APPARATUS/PROCEDURE: CaO was equilibrated with aqueous NH ₃ concentration. SOURCE AND FURITY OF MATERIALS: CaO was equilibrated with aqueous SUM2 solutions in either a container coated with paraffin or a pyrex bottle at 25.00 ± 0.02°C by shaking for 14-20 h. The clear portion of the saturated solution was analyzed for calcium ion either by precipitation as oxalate followed by tibration with a standard MMO4 solution using methyl orange indicator. Source AND FURITY OF MATERIALS: (1) Calcium oxide. Chemically pure CaCl ₂ was reacted with ammonium oxalate in hot water to precipitate calcium oxalate, which was ignited to give pure CaO. (2) Ammonia. Prepared CO ₂ free by distillation of 20% aqueous NH ₃ in the presence of Ba(OH) ₂ . (3) Water. ESTIMATED ERROR: Accuracy in the titration procedure was better than 0.5%. Temp.: See Method.		$_2$ in aqueous NH $_3$ at 25°C
0 0.02128 0.496 0.01933 0.981 0.01850 1.475 0.01700 1.955 0.01571 The solubility of Ca(OH), decreased linearly with increasing NH3 concentration. SUMMENTION AUXILIARY INFORMATION THOD/APPARATUS/FROCEDURE: CaO was equilibrated with aqueous NH3 solutions in either a container coated with paraffin or a pyrex coated with a standard KM04 solution, or by evaporation to dry precipitate calcium oxalate, which was ignited to give pure CaO. (2) Ammonia. Prepared CO2 free by distillation of 20% aqueous NH3 in the presence of Ba(OH)2. (3) Water. ESTIMATED ERROR: Accuracy in the titration procedure was better than 0.5%. Temp.: See Method.	Ammonia C	Calcium Hydroxide
0.496 0.01933 0.981 0.01850 1.475 0.01700 1.955 0.01571 The solubility of Ca(OH), decreased linearly with increasing NH3 concentration. AUXILIARY INFORMATION THOD/APPARATUS/PROCEDURE: CaO was equilibrated with aqueous H13 solutions in either a container soated with paraffin or a pyrex sottle at 25.00 ± 0.02° C by shaking for 14-20 h. The clear portion of the saturated solution was analyzed for calcium ion either by precipitation as oxalate followed by titration with a standard KM04 solution, or by evaporation to dry tests and addition of H2 followed by back titration with standard K04 solution using methyl orange indicator. SOURCE AND PURITY OF MATERIALS: (1) Calcium oxide. Chemically pure Calcium oxalate, which was ignited to give pure CaCl. (2) Ammonia. Prepared CO2 free by distillation of 20% aqueous NH3 in the presence of Ba(OH)2. (2) Ammonia. Prepared CO2 free by distillation of 20% aqueous NH3 in the presence of Ba(OH)2. (3) Water. ESTIMATED ERROR: Accuracy in the titration procedure was better than 0.5%. Temp.: See Method.	$c_2/mol L^{-1}$	$c_1/mol L^{-1}$
0.981 0.01850 1.475 0.01700 1.955 0.01571 The solubility of Ca(OH) decreased linearly with increasing NH3 concentration. AUXILIARY INFORMATION Calcium colspan="2">SOURCE AND FURITY OF MATERIALS: Calcium colspan="2">Calcium colspan="2" Source AND FURITY OF MATERIALS: Calcium colspan="2" Colspan="2" Source AND FURITY OF MATERIALS: Calcium colspan="2" <	0	0.02128
1.475 0.01700 1.955 0.01571 The solubility of Ca(OH) ₂ decreased linearly with increasing NH ₃ concentration. AUXILIARY INFORMATION Calcium sing ether a container container a container a container a container container container container container a container container a container container container a container container a container container container a container container a container container a container container a container a container a container container a container a container container a containe	0.496	0.01933
1.955 0.01571 AUXILIARY INFORMATION Concentration. AUXILIARY INFORMATION Concentration. THOD/APPARATUS/PROCEDURE: Cao was equilibrated with aqueous WH ₃ solutions in either a container pocted with paraffin or a pyrex portle at 25.00 ± 0.02°C by shaking for 14-20 h. The clear portion of the saturated solution was analyzed for calcium ion either by precipitate calcium oxalate, which was ignited to give pure Cao. (1) Anmonia. Prepared Co ₂ free by distillation of 20% aqueous NH ₃ in the presence of Ba(OH) ₂ . Cao Water to precipitate calcium oxalate, which was ignited to give pure Cao. Source AND FURITY OF MATERIALS: (1) A The clear portion of the saturated solution was analyzed for calcium ion either by precipitate calcium oxalate, which was ignited to give pure Cao. (2) A The clear portion of the stination of 100 either by precipitate calcium oxalate, which was ignited to give pure Cao. (2) Anternation with standard KMno4 solution, or by evaporation to dry-solution to dry-solution of HCl followed by back titration with standard KMno4 solution using methyl orange Indicator. STIMATED ERROR: Accuracy in the titration procedure was better than 0.5%. Temp.: See Method.	0.981	0.01850
AUXILIARY INFORMATION THOD/APPARATUS/PROCEDURE: TAO was equilibrated with aqueous NH ₃ solutions in either a container coated with paraffin or a pyrex Soute all is a container coated with paraffin or a pyrex for 14-20 h. The clear portion of the saturated solution was analyzed for calcium ion either by precipitation as oxalate followed by tirration with a standard KMNO ₄ solution, or by evaporation to dry- mess and addition of HCl followed by back tirration with standard TAUXILIARY INFORMATION SOURCE AND FURITY OF MATERIALS: (1) Calcium oxide. Chemically pure CaCl ₂ was reacted with am- monium oxalate in hot water to precipitate calcium oxalate, which was ignited to give pure CaO. (2) Ammonia. Prepared CO ₂ free by distillation of 20% aqueous NH ₃ in the presence of Ba(OH) ₂ . (3) Water. ESTIMATED ERROR: Accuracy in the titration pro- cedure was better than 0.5%. Temp.: See Method.	1.475	0.01700
AUXILIARY INFORMATION AUXILIARY INFORMATION THOD/APPARATUS/PROCEDURE: CaO was equilibrated with aqueous NH ₃ solutions in either a container coated with paraffin or a pyrex bottle at 25.00 ± 0.02°C by shaking for 14-20 h. The clear portion of the saturated solution was analyzed for calcium ion either by precipitation as oxalate followed for calcium ion either by precipitation as oxalate followed solution, or by evaporation to dry- ness and addition of HCl followed NaOH solution using methyl orange Indicator. Accuracy in the titration pro- cedure was better than 0.5%. Temp.: See Method.	1.955	0.01571
 ETHOD/APPARATUS/PROCEDURE: CaO was equilibrated with aqueous NH₃ solutions in either a container coated with paraffin or a pyrex bottle at 25.00 ± 0.02°C by shaking for 14-20 h. The clear portion of the saturated solution was analyzed for calcium ion either by precipitation as oxalate followed by titration with a standard KMnO₄ solution, or by evaporation to dry- ness and addition of HCl followed by back titration with standard NaOH solution using methyl orange indicator. SOURCE AND FURITY OF MATERIALS: (1) Calcium oxide. Chemically pure CaCl₂ was reacted with am- monium oxalate in hot water to precipitate calcium oxalate, which was ignited to give pure CaO. (2) Ammonia. Prepared CO₂ free by distillation of 20% aqueous NH₃ in the presence of Ba(OH)₂. (3) Water. ESTIMATED ERROR: Accuracy in the titration pro- cedure was better than 0.5%. Temp.: See Method. 		
 CaO was equilibrated with aqueous NH₃ solutions in either a container coated with paraffin or a pyrex bottle at 25.00 ± 0.02°C by shaking for 14-20 h. The clear portion of the saturated solution was analyzed for calcium ion either by precipitation as oxalate followed by titration with a standard KMnO₄ solution, or by evaporation to dryness and addition of HCl followed by back titration with standard NaOH solution using methyl orange indicator. (1) Calcium oxide. Chemically pure CaCl₂ was reacted with ammonium oxalate in hot water to precipitate calcium oxalate, which was ignited to give pure CaO. (2) Ammonia. Prepared CO₂ free by distillation of 20% aqueous NH₃ in the presence of Ba(OH)₂. (3) Water. ESTIMATED ERROR: Accuracy in the titration procedure was better than 0.5%. Temp.: See Method. 		
NH ₃ solutions in either a container coated with paraffin or a pyrex bottle at 25.00 ± 0.02°C by shaking for 14-20 h. The clear portion of the saturated solution was analyzed for calcium ion either by precipitation as oxalate followed by titration with a standard KMnO ₄ solution, or by evaporation to dry- ness and addition of HCl followed by back titration with standard NaOH solution using methyl orange indicator. CaCl ₂ was reacted with am- monium oxalate in hot water to precipitate calcium oxalate, which was ignited to give pure CaO. (2) Ammonia. Prepared CO ₂ free by distillation of 20% aqueous NH ₃ in the presence of Ba(OH) ₂ . (3) Water. ESTIMATED ERROR: Accuracy in the titration pro- cedure was better than 0.5%. Temp.: See Method.	AUXILIARY	INFORMATION
Temp.: See Method.	ETHOD/APPARATUS/PROCEDURE:	SOURCE AND FURITY OF MATERIALS:
•	ETHOD/APPARATUS/PROCEDURE: CaO was equilibrated with aqueous NH ₃ solutions in either a container coated with paraffin or a pyrex bottle at 25.00 \pm 0.02°C by shaking for 14-20 h. The clear portion of the saturated solution was analyzed for calcium ion either by precipitation as oxalate followed by titration with a standard KMnO ₄ solution, or by evaporation to dry- ness and addition of HCl followed by back titration with standard NaOH solution using methyl orange	 SOURCE AND PURITY OF MATERIALS: (1) Calcium oxide. Chemically pure CaCl₂ was reacted with am- monium oxalate in hot water to precipitate calcium oxalate, which was ignited to give pure CaO. (2) Ammonia. Prepared CO₂ free by distillation of 20% aqueous NH₃ in the presence of Ba(OH)₂. (3) Water. ESTIMATED ERROR: Accuracy in the titration pro-

COMPONENTS :	<u> </u>	ORIGINAL MEASUREMENTS:
	lroxide; Ca(OH);	Noyes, A. A.; Chapin, E. S.
[1305-62-0]		J. Am. Chem. Soc. <u>1899</u> , 21, 511-6.
 (2) Ammonium chloride; NH₄Cl; [12125-02-9] (3) Water; H₂O; [7732-18-5] 		Z. Phys. Chem., Stoechiom.
		Verwandtschaftsl. <u>1899</u> , 28, 518-22.
VARIABLES:		PREPARED BY:
T/K = 298 $c_2/mol L^{-1} - 0 - 0.08703$		H. Einaga Y. Komatsu
EXPERIMENTAL VALUES		
The	solubility of Ca(OH)	2 in aqueous NH ₄ Cl at 25°C
	Ammonium Chloride	Calcium Hydroxide
	c ₂ /mol L ⁻¹	$c_1/\text{mol } L^{-1}$
	0	0.02022
	0.02176	0.02908
	0.04352	0.03923
	0.08703	0.05968
Each s		
Each s		
Each s	AUXILIARY	INFORMATION
1ETHOD/APPARATUS/PRO	OCEDURE :	SOURCE AND PURITY OF MATERIALS:
TETHOD/APPARATUS/PRO Aqueous NH_4C saturated with free atmosphe resulting satu filtered, and titrated with s	OCEDURE: 1 solutions were 1 Ca(OH) ₂ in a CO ₂	 SOURCE AND PURITY OF MATERIALS: (1) Calcium oxide. Prepared by dissolving reputed pure Ca(OH)₂ in aqueous HCl solution, treating with NH₃ to remove other metallic impurities, Precipitating Ca²⁺ with ammonium carbonate, and igniting the precipitate to CaO just before use.
TETHOD/APPARATUS/PRO Aqueous NH_4C saturated with free atmosphe resulting satu filtered, and titrated with s	OCEDURE: 1 solutions were 1 Ca(OH) ₂ in a CO ₂ re (ref 1). The 1 rated solution was 1 the filtrate was standard HCl solution	 SOURCE AND PURITY OF MATERIALS: (1) Calcium oxide. Prepared by dissolving reputed pure Ca(OH)₂ in aqueous HCl solution, treat- ing with NH₃ to remove other metallic impurities, Precipitating Ca²⁺ with am- monium carbonate, and igniting the precipitate to CaO just before use. (2) Ammonium chloride. Commercial material recrytallized three times.
TETHOD/APPARATUS/PRO Aqueous NH_4C saturated with free atmosphe resulting satu filtered, and titrated with s	OCEDURE: 1 solutions were 1 Ca(OH) ₂ in a CO ₂ re (ref 1). The 1 rated solution was 1 the filtrate was standard HCl solution	 SOURCE AND PURITY OF MATERIALS: (1) Calcium oxide. Prepared by dissolving reputed pure Ca(OH) 2 in aqueous HCl solution, treating with NH3 to remove other metallic impurities, Precipitating Ca²⁺ with ammonium carbonate, and igniting the precipitate to CaO just before use. (2) Ammonium chloride. Commercial material recrytallized three
TETHOD/APPARATUS/PRO Aqueous NH_4C saturated with free atmosphe resulting satu filtered, and titrated with s	OCEDURE: 1 solutions were 1 Ca(OH) ₂ in a CO ₂ re (ref 1). The 1 rated solution was 1 the filtrate was standard HCl solution	 SOURCE AND PURITY OF MATERIALS: (1) Calcium oxide. Prepared by dissolving reputed pure Ca(OH)₂ in aqueous HCl solution, treating with NH₃ to remove other metallic impurities, Precipitating Ca²⁺ with ammonium carbonate, and igniting the precipitate to CaO just before use. (2) Ammonium chloride. Commercial material recrytallized three times. ESTIMATED ERROR: Soly.: ± 0.24 - ± 0.43 % as a relation

COMPONENTS :		ORIGINAL	MEASUREMENTS :		
	rovide: Ca(OH).:	Sborgi			
(1) Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]				Sai	
(2) Boric acid; H ₃ BO ₃ ; [10043-35-3]		Fis.,	Atti. Accad. Naz. Lincei., Cl. Sci. Fis., Mat. Nat., Rend. <u>1913</u> , 84, 636-42, 715-19, 798-801.		
(3) Water; H ₂ O;	[7732-18-5]				
EXPERIMENTAL VALUES:					
	The CaO + B_2 C	$P_3 + H_20$ syst	em at 30°C		
	B203	CaO	Solid Phase		
	mass %	mass %	THUGG		
	0.0140	0.1263	A		
	0.0321	0.1398	A		
	0.127	0.2174	A + B		
	0.1293	0.2079	A + B		
	0 1225	0.22	P		
	0.1335 0.1379	0.22 0.1177	B B		
	0.1395	0.1085	B		
	0.140	0.110	В		
	0.1663	0.1073	B + C		
	0.1687	0.1086	B + C		
	0.1690	0.1150	B + C		
	0.171	0.1091	B + C		
	0.2897	0.0516	С		
	0.6117	0.0471	С		
	0.8691	0.0666	C		
	1.025 1.116	0.0772 0.0759	C C		
	1.339	0.0928	C + D		
	1.3784 1.64	0.09435 0.1436	C + D C + D		
	2.0588	0.0928	D		
	2.434 2.509	0.2232 0.0991	D D		
	2.55	0.1095	D		
	2.798	0.1085	D		
	3.128	0.1384	D		
	3.3133	0.1433	D		
	3.841	0.152	D		
	4.250	0.155	D + E	•	
	4.1795	0.1368	E		
	Solid Phases:	A. Ca(OH) ₂			
		B. CaO [.] B ₂ C	9 ^{3 · 6Н} 2О		
		C. 2CaO'3E	9203 · 9H20		
			0 ₃ ·12H ₂ 0		
		Е. Н ₃ ВО ₃			
Contin	ued on next page	•			

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Calcium hydroxide; Ca(OH) ₂ ;	Sborgi, U.
[1305-62-0]	
(2) Boric acid; H ₃ BO ₃ ;	Atti. Accad. Naz. Lincei., Cl. Sci. Fis., Mat. Nat., Rend. <u>1913</u> , 84,
[10043-35-3]	636-42, 715-19, 798-801.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 303	I. Lambert
Composition	
EXPERIMENTAL VALUES:	
LAT DRIMENTAL VALUED.	
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The CaO, H ₃ BO ₃ and H ₂ O are mixed	(1) Calcium oxide. CaO is cal-
and allowed to reach equilibrium in	cinated to eliminate last
a stirred thermostat. Equilibrium	traces of CO ₂ .
is reached faster if some	(2) Poria said Decretalling
CaO B_2O_3 $6H_2O$ is added to the mix- ture. The Ca(OH) ₂ and H_3BO_3 are	(2) Boric acid. Recrystallized before use.
analyzed in both the solution and	NGTOLE (DE.
the residue. $Ca(OH)_2$ is titrated	(3) Water. Boiled before use to
by HCl with methylorange as in-	eliminate CO ₂ .
dicator. H ₃ BO ₃ is titrated with	
NaOH in the presence of mannitol	$CaO \cdot B_2O_3 \cdot 6H_2O$ is prepared by double
with phenolphthalein as indicator.	decomposition between calcium salt
Equilibrium time is 3 to 14 days.	and alkaline borate (ref 1).
	ESTIMATED ERROR:
	No estimates possible.
	no escruares hossinie.
	REFERENCES :
	1.Meyerhoffer, W.; Van't Hoff, J.H.
	Ann. Chem. <u>1907</u> , 351, 100.

COMPONENTS:		ORIGINAL MEASUREMENTS:		
(1) Calcium hydrox: [1305-62-0]	Ide; Ca(OH) ₂ ;	Nikolaev, A. V.; Chelishcheva, A.G. C. R. Acad. Sci. URSS <u>1940</u> , 28,		
(2) Boric acid; H ₃ BO ₃ ; [10043-35-3]		127-30.		
(3) Water; H ₂ O; [7]	732-18-5]			
VARIABLES:		PREPARED BY:		
T/K = 298 Composition		I. Lambert		
EXPERIMENTAL VALUES:				
	The CaO + B_2O_3 +	H ₂ O system at 25°C		
	B ₂ O ₃ Ca	O Solid Phase		
	mass % ma	ss %		
	0 0	.119 A		
	0.102 0	.190 A + B		
	0.104 0	.175 B		
	0.126 0	.090 B + C		
		.034 C		
		.053 C + D		
	1.34 0	.044 D		
	3.30 0	.058 D + E		
	3.17 0	E		
Solid Phases:	A. Ca(OH) ₂	B. CaO·B ₂ O ₃ ·6H ₂ O		
C. 2CaO·3B ₂ O ₃ ·13H ₂ (Invoite)	20 D. CaO'3	$B_2O_3 \cdot 4H_2O$ E. H_3BO_3		
The difference in a attributed to Sborg		is work and that of Sborgi (ref 1) is equilibrium.		
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDU	RE:	SOURCE AND PURITY OF MATERIALS:		
The Ca0, H_3BO_3 and H_2O are mixed and allowed to stand in a stirred thermostated vessel at 25°C for 21		(1) Calcium oxide. Freshly ignited CaO used.		
to 153 days.		(2) Boric acid. Recrystallized boric acid used.		
Samples are taken by pipet through a cotton wool filter. The $Ca(OH)_2$ is titrated in the presence of the boric acid by a strong acid with methyl orange as the indicator. The boric acid is titrated in the presence of mannitol, glycerin, or invert sugar with a strong base with phenolphthalein as the in- dicator (ref 2).		(3) Water. Distilled. Boiled before use to eliminate CO ₂ .		
		ESTIMATED ERROR:		
		No estimates possible.		
arcacor (rer 2).		REFERENCES :		
		1. Sborgi, U. Atti. Accad. Naz. Lincei. Rend. <u>1913</u> , 84, 715- 19.		
		2. Nikolaev, A. V. Izv. Akad. Nauk. SSSR <u>1938</u> , 415-32.		

162

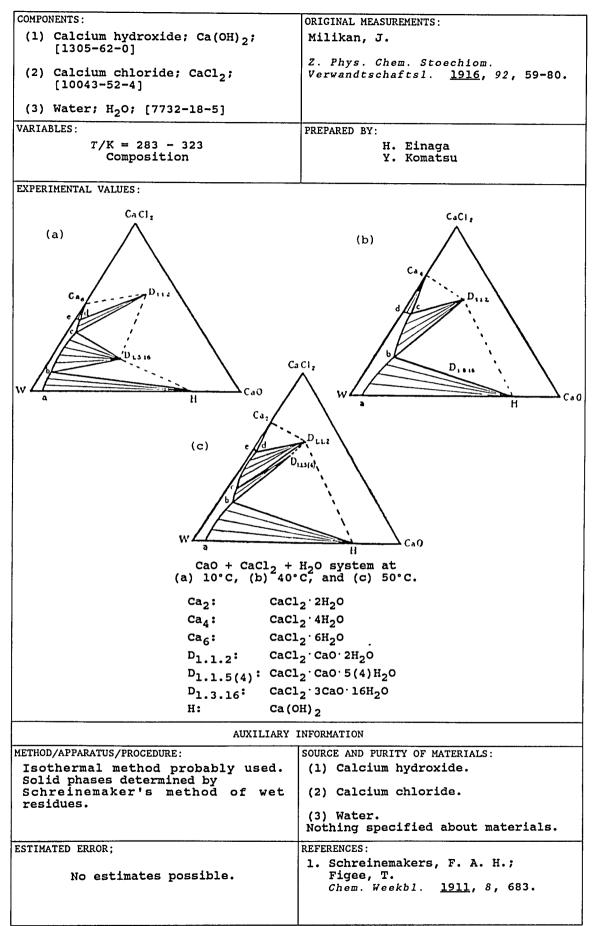
COMPONENTS :		ORIGINA	L MEASUREMENTS:	
(1) Calcium hydro [1305-62-0]	xide; Ca(OH) ₂ ;	Bury,	C. R.; Davies, E. R. H.	
(2) Magnesium hyd [1309-42-8]	roxide; Mg(OH) ₂ ;	J. Ch	em. Soc. <u>1933</u> , 701 - 5.	
(3) Water; H ₂ O; [7732-18-51			
	···	DEDADET	D. D.Y.	
VARIABLES:		PREPAREI	I. Lambert	
T/K = 298 Composition			H. Einaga	
EXPERIMENTAL VALUES:				
	The MgO + CaO +	H ₂ 0 syst	em at 25°C	
	Ratio, R ^a C	a0	Ca (OH) 2	
	ma	155 %	m ₁ /mol L ⁻¹	
		0.117	0.0209 0.0207	
	0.53 0	.115	0.0205	
		.115	0.0205	
		0.116	0.0207 0.0205	
	AUXILIARY	INFORMATI	ON	
METHOD/APPARATUS/PROCED	URE:	SOURCE A	ND PURITY OF MATERIALS:	
Known weights of were shaken in a t for 3 months. filtered, and filtrate was dete tion with standar From the initial w MgO and the measu CaO, the ratio, R,	thermostat at 25°C The solution was the CaO in the frmined by titra- d acid solution. reights of CaO and red solubility of		Nothing specified.	
		ESTIMATE	D ERROR:	
			No estimates possible.	
		000000000	20.	
		REFERENCI	ED .	

COMPONENTS :	ORIGINAL MEASUREMENTS:
 (1) Calcium hydroxide; Ca(OH)₂; [1305-62-0] (2) Calcium chloride; CaCl₂; [10043-52-4] 	Lunge, G. J. Soc. Chem. Ind., London <u>1892</u> , 11, 882.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 293 - 373 CaCl ₂ /g (100 mL) ⁻¹ = 0 - 30	I. Lambert

	Calcium Chloride	Calcium Oxide	Calcium Hydroxide
t/°C	$/g (100 \text{ mL})^{-1}$	/g (100 mL) ⁻¹	$10^{2}c_{1}/mol L^{-1}$
20	0	0.1374	2.45
	5	0.1370	2.45
	10	0.1661	2.97
	15	0.1993	3.56
	20	0.1875*	3.35
	25	0.1661*	2.97
	30	0.1630*	2.91
40	0	0.1162	2.08
	5	0.1160	2.07
	10	0.1419	2.53
	15	0.1781	3.18
	20	0.2249	4.02
	25	0.3020*	5.39
	30	0.3084*	5.51
60	0	0.1026	1.83
00	5	0.1020	1.82
		0.1313	2.34
	10		
	15	0.1706	3.05
	20	0.2204	3.94
	25	0.2989	5.34
	30	0.3644	6.51
80	0	0.0845	1.51
	5	0.0936	1.67
	10	0.1328	2.37
	15	0.1736	3.10
	20	0.2295	4.10
	25	0.3261	5.82
	30	0.4112	7.34
100	0	0.0664	1.19
	5	0.0906	1.62
	10	0.1389	2.48
	15	0.1842	3.29
	20	0.2325	4.15
	25	0.3714	6.63
	30	0.4922	8.79
* Cal	cium oxychloride is	present in the	solid phase.
	AUXII	IARY INFORMATION	
D/APPARATUS/	PROCEDURE:	SOURCE AND PU	RITY OF MATERIALS:
	description.		othing specified.
e Ca(OH) ₂ lculated by	concentrations w the compiler.		
-	_	ESTIMATED ERR	OR:
e identical	data are given Z. <i>anorg. Chem</i> . <u>189</u>		estimates possible.

OMPONENTS :		ORIGINAL ME	ASUREMENTS ·
<pre>(1) Calcium hydroxide; [1305-62-0]</pre>	Ca(OH) ₂ ;	Zahorsky	, В.
2) Calcium chloride; [10043-52-4]	CaCl ₂ ;	Z. anorg	. Chem. <u>1893</u> , 3, 34-43.
3) Water; H ₂ O; [7732-	18-5]		
IABLES:		PREPARED BY	:
T/K = 293 - 373 Concentration			H. L. Clever
PERIMENTAL VALUES:			· · · · · · · · · · · · · · · · · · ·
The solubility	of Ca(OH) ₂	in aqueous C	aCl ₂ at 20 - 100°C
t/°C	CaCl ₂	CaO	Ca (OH) 2
	mass %	g/100 mL	c ₁ /mol L ⁻¹
20	0	0.1374	0.0245
	5	0.1370	0.0244
	10	0.1661	0.0296
	15	0.1993	0.0355
	20	0.1857*	0.0331
	25	0.1661*	0.0287
	30	0.1630"	0.0291
40	ο	0.1162	0.0207
	5	0.1160	0.0207
	10	0.1419	0.0253
	15	0.1781	0.0318
	20	0.2249	0.0401
	25	0.3020	0.0539
	30	0.3684*	0.0657
60	0	0.1026	0.0183
	5	0.1020	0.0182
	10	0.1313	0.0234
	15	0.1706	0.0304
	20	0.2204	0.0393
	25	0.2989	0.0533
	30	0.3664	0.0653
80	0	0.0845	0.0151
	5	0.0936	0.0167
	10	0.1328	0.0237
	15	0.1736	0.0310
	20	0.2295	0.0409
	25	0.3261 0.4122	0.0581
	30	U•4122	0.0735
100	0	0.0664	0.0118
	5	0.0906	0.0162
	10	0.1389	0.0248
	15	0.1842	0.0328
	20 25	0.2325 0.3710	0.0415 0.0662
	25 30	0.4922	0.0878
* Solid contained The compiler calc the CaCl ₂ concent and 3.46 mol L ⁻¹ .	some calcinulated the	um oxychlorid Ca(OH) ₂ conce	
	AUXILIA	RY INFORMATION	
HOD/APPARATUS/PROCEDURE:			URITY OF MATERIALS:
he paper is concerned	mostly with		UNIT OF INIDATED,
he properties and con	nposition o	f I	Nothing specified.
alcium oxychloride.		d FSTIMATED FR	
etails about the s easurement. The Ca	solubility a(OH), soly	Y	estimates possible.

COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Schreinemakers, F.A.H.; Figee, Th.		
<pre>(2) Calcium chloride; CaCl₂; [10043-52-4]</pre>	Chem. Weekbl. <u>1911</u> , 36, 683-88.		
(3) Water; H ₂ O; [7732-18-5]			
VARIABLES:	PREPARED BY:		
T/K = 298 Composition	I. Lambert		


EXPERIMENTAL VALUES: The CaO + C	CaCl ₂ + H ₂ O sys	tem at 25°C	
CaCl2	CaO	Solid Phase	
mass %	mass %	Phase	
5.02	0.101	A	
10.00	0.113	A	
12.94	0.128	A	
15.14	0.140	A	
17.20	0.143	A	
18.15	0.148	A + B	
18.01	0.152	В	
21.02	0.147	B	
23.80	0.146	B	
24.33	0.147	В	
28.37	0.170	В	
29.54	0.180	В	
32.67	0.225	В	
33.21	0.245	B	
33.72	0.254	B + C	
34.36	0.173	с	
38.61	0.060	С	
41.32	0.048	с	
44.30	0.030	С	
44.51	0.022	C + D	
44.69	0.036	C + D	
44.77	-	D	
Solid Phases: A.	$Ca(OH)_2$ B.	CaCl ₂ ·4CaO·14H ₂ O	
C. CaCl ₂ ·CaO	2H ₂ O D.	CaCl ₂ ·6H ₂ O	
In the author's notation D_{14}^4 , D	D_2^1 , and Ca_6^1 are	B, C and D, respective	ely.
AUX	XILIARY INFORMATIC	DN	
METHOD/APPARATUS/PROCEDURE:	SOURCE AN	D PURITY OF MATERIALS:	
The saturated solutions analyzed for CaCl, by titra	are ation	Nothing specified.	
with 0.1 mol L^{-1} AgNO ₃ , and for by titration with 0.1 mol L^{-1} The wet residue is dissolved	HCI.		
sucrose solution and analyze above. The solid phase composi-	ed as ition		
is calculated by the "metho residues".	aor		

ESTIMATED ERROR:

No estimates possible.

	·
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]	Schreinemakers, F.A.H; Milikan, J. Proc. K. Ned. Acad. Wet. <u>1912</u> , 15,
(2) Calcium chloride; CaCl ₂ ; [10043-52-4]	52-54.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T//K = 283 - 323	H. L. Clever
EXPERIMENTAL VALUES:	
The following solids were identific systems MO + MX_2 + H_2O where M = Ca	ed by the residue method in ternary or Ba and $X = Cl$, Br or I.
CaCl ₂ ·2H ₂ O CaCl ₂ ·3CaO· CaCl ₂ ·CaO·2 CaCl ₂ ·CaO·3	at 10 and 25°C, at 50°C, 16H ₂ O at 10 and 25°C, 2H ₂ O at 10, 25 and 50°C, 3H ₂ O at 50°C, and 10, 25 and 50°C.
$\begin{array}{rcl} Ca0 + CaBr_2 + H_20 & CaBr_2 \cdot 6H_20, \\ & CaBr_2 \cdot 3Ca0 \cdot \\ & 3CaBr_2 \cdot 4Ca0 \cdot \\ & Ca(OH)_2 & all \end{array}$	16H ₂ O, 16H ₂ O, and
$BaO + BaCl_{2} + H_{2}O \qquad BaCl_{2} \cdot 2H_{2}O, \\BaCl_{2} \cdot BaO \cdot 5 \\Ba(OH)_{2} \cdot 8H_{2}O, \\BaCl_{2} \cdot 8H_{2}O, \\Ba(OH)_{2} \cdot 8H_{2}O, \\BaCL_{2} \cdot 8H_{2}O, $	
$BaO + BaBr_{2} + H_{2}O \qquad BaBr_{2} \cdot 2H_{2}O, \\BaBr_{2} \cdot BaO \cdot 5\\Ba(OH)_{2} \cdot 8H_{2}$	
$\begin{array}{rcl} BaO + BaI_{2} + H_{2}O & BaI_{2} \cdot 7H_{2}O, \\ & BaI_{2} \cdot 2H_{2}O, \\ & BaI_{2} \cdot BaO \cdot 9H \\ & Ba(OH)_{2} \cdot 8H_{2} \end{array}$	1 ₂ 0, and 0 all at 25°C.
	INFORMATION
METHOD/APPARATUS/PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Analyzed by the residue method.	Not specified.
See data sheets in this volume from the papers of J. Milikan for more details on these systems.	
	ESTIMATED ERROR:
	Not specified.
	REFERENCES:

COMPONENTS :			ORIGINAL MEASUREMENTS:
	hydroxide.	; Ca(OH);;	Milikan, J.
[1305-6			
(2) Calcium [10043-	chloride; •52-4]	CaCl ₂ ;	Z. Phys. Chem. Stoechiom. Verwandtschaftsl. <u>1916</u> , 92, 59-80.
(3) Water;	H ₂ O; [7732-	-18-5]	
EXPERIMENTAL V			
		position of	the saturated solution
t/°C	CaCl ₂ mass %	CaO mass %	Solid phase
10	15.46 15.21	0.102 0.102	$Ca(OH)_2 + CaCl_2 \cdot 3CaO \cdot 16H_2O$
	26.30 32.38 34.60	0.110 0.115 0.140	CaCl ₂ ·3CaO·16H ₂ O
	35.94 35.93	0.151 0.151	$CaCl_2 \cdot 3CaO \cdot 16H_2O + CaCl_2 \cdot CaO \cdot 2H_2O$
	38.23 38.45	0.106 0.126	$CaCl_2 \cdot CaO \cdot 2H_2O$
40	29.38	0.455	Ca (OH) 2
	31.93	0.609	$Ca(OH)_2 + CaCl_2 \cdot CaO \cdot 2H_2O$
	31.90	0.571	
	31.86	0.580	11
	49.97	0.055	$CaCl_2 \cdot CaO \cdot 2H_2O + CaCl_2 \cdot 4H_2O$
45	31.72 31.95	0.621 0.634	$Ca(OH)_2 + CaCl_2 \cdot CaO \cdot 2H_2O$
	35.87	0.442	CaCl ₂ ·CaO·2H ₂ O
	38.12 43.31	0.069 0.074	10
	52.10	0.047	U III
	56.96	0.121	$CaCl_2 \cdot CaO \cdot 2H_2O + CaCl_2 \cdot 2H_2O$
	57.19	0	CaCl ₂ ·2H ₂ O
48	31.80 31.73	0.434	Ca(OH) ₂ + CaCl ₂ ·CaO·5(4)H ₂ O "
	32.86	0.320	$CaCl_2 \cdot CaO \cdot 5(4)H_2O + CaCl_2 \cdot CaO \cdot 2H_2O$
50	4.08	0.112	Ca (OH) 2
	9.03	0.114	1)
	15.02 19.97	0.142 0.182	
	29.41	0.538	
	29.57	0.436	U
	29.66	0.362	$Ca(OH)_2 + CaCl_2 \cdot CaO \cdot 5(4)H_2O$
	29.60	0.517	$CaCl_{2} \cdot CaO \cdot 5(4) H_{2}O$ (?)
	31.70 35.20	0.470 0.106	10
	36.95	0.113	$CaCl_2 \cdot CaO \cdot 5(4)H_2O + CaCl_2 \cdot CaO \cdot 2H_2O$
	36.82	0.146	
	36.93 39.43	0.124 0.069	$CaCl_2 CaO 2H_2O$
	45.57	0.051	u .
	46.42	0.046	11
	47.19 48.75	0.034 0.046	10 10
	48.75 54.03 54.07	0.048 0.048 0.068	$CaCl_2 \cdot CaO \cdot 2H_2O + CaCl_2 \cdot 2H_2O$
	54.07	0.088	CaCl ₂ ·2H ₂ O
- <u></u>			
(contin	ued on next	page)	

			·····			
COMPONENTS:			MEASUREMENT	S:		
<pre>(1) Calcium hydroxide [1305-62-0]</pre>	; Ca(OH) ₂ ;	0'Conn	O'Connor, E. R.			
(2) Calcium chloride;		J. Che	m. Soc. <u>l</u>	<u>927</u> , 130, 270	0-10.	
[10043-52-4]	Caci ₂ ;					
(3) Water; H ₂ O; [7732	-18-5]					
ARIABLES:		PREPARED		<u> </u>		
T/K = 273			H. Eina Y. Koma	•		
Composition			I. Roma	CBU		
EXPERIMENTAL VALUES:						
The	$Ca(OH)_2 + Ca$	$H_2 + H_2 O s$	ystem at 0	°C		
Calcium Chloride	Calcium Oxide	Calcium Hydroxide	Density	Solid Phase		
mass %	mass %	mass %	d40			
2.7	0.214	0.283	1.025	A		
5.5	0.226	0.299	1.048	A		
6.8	0.216	0.285	1.056	A + B		
7.6	0.212	0.280	1.067	в		
10.2	0.186	0.246	1.089	В		
12.5	0.172	0.227	1.111	B		
15.2 17.4	0.164 0.152	0.217 0.201	1.133 1.155	B B		
20.0	0.148	0.196	1.186	B		
22.8	0.145	0.192	1.213	B		
25.6	0.142	0.188	1.240	B		
28.0	0.138	0.182	1.265	B		
29.7	0.152	0.201	1.280	B		
34.9	0.190	0.251	1.338	В		
37.6	0	0	1.370	с		
Solid Phases: A The Ca(OH) ₂ ma	-	-	-			
	AUXILI	ARY INFORMATIC	ON			
ETHOD/APPARATUS/PROCEDURE:		· · · · · · · · · · · · · · · · · · ·	D PURITY OF	MATERIALS		
				xide. Freshly	/ cal-	
Ca(OH) ₂ and CaCl ₂ were with water at 0°C	for 24	h. cir	ned CaO was			
Samples of the satur						
were analyzed for neutralization titrat	Ca(OH)2	by Not	ching furth	er specified.	•	
CaCl ₂ by titration of	the chlori	de l				
ion by the Volhard met	hod.	uu				
		1				
		ESTIMATED	ERROR:			
			No estimat	es possible.		
				····		
		REFERENCE	:S :			

470

COMPO	NENTS :			ORIGINAL MEA	SUREMENTS :	
(1)	Calcium hydr [1305-62-0]	coxide; C	a (OH) ₂ ;	1	S. Z.; Vol'nov, I. I.	
(2)	Calcium chlc [10043-52-4]	oride; Ca	Cl ₂ ;	Obshch. N	. FizKhim. Anal., Ins: eorg. Khim., Akad. Nauk 4, 320-33.	t.
(3)	Water; H ₂ O;		-51	000x <u>200</u>	<u>.</u> ,	
	IMENTAL VALUES:	[2 40	
AF EK I		Ca(OH) ₂	+ $CaCl_2$ + 1	H ₂ O systems f	rom 5 to 75°C	
			CaCl ₂		Solid	
		t/°C	mass %	mass %	Phase	
		5		0.18	A	
		5	6.53	0.15	A	
			7.57	0.15	A + B	
			11.06	0.13	В	
			13.62	0.11	B	
			19.25	0.10	B	
			29.03	0.11	B	
			34.75	0.16	В	
			36.58	0.19	B + C	
			37.04	0.10	С	
			37.90	0.09	C + D	
			38.29	-	D	
		10	_	0.18	А	
		TO	7.33	0.14		
			8.87	0.14	A A	
			10.26	0.15	A + B	
			12.12	0.14	B	
			18.27	0.12	B B	
			25.04	0.12	B	
			30.90	0.15	B	
			36.09	0.23	B + C	
			36.58	0.16	C	
			37.90	0.10	С	
			39.00	0.08	C + D	
			39.4	-	D	
		30	-	0.15	А	
			12.80	0.16	A	
			19.61	0.21	A	
			20.63	0.23	A + B	
			23.50	0.24	в	
			26.58	0.24	B	
			32.05	0.37	B	
			32.76	0.39	B	
			32.90	0.43	B + C	
			33.86	0.22	B + C	
			35.96	0.15	B + C	
			38.74	0.08	B + C	
			41.88	0.07	B + C	
			46.60	0.06	C + E	
			49.25		E Continued	

COMPONENTS :	·	<u></u>	ORIGINAL MEA	SUREMENTS:		
(1) Calcium hydr	coxide; C	Ca (OH) 2;		5. Z.; Vol'nov, I. I.		
[1305-62-0]			1			
(2) Calcium chlc [10043-52-4]		cl ₂ ;	Obshch. Ne	Izv. Sekt. FizKhim. Anal., Inst. Obshch. Neorg. Khim., Akad. Nauk SSSR <u>1954</u> , 25, 320-33.		
(3) Water; H ₂ O;	[7732-18	1-51				
EXPERIMENTAL VALUES:						
		$+ CaCl_{-} + H_{-}$	O systems f	rom 5 to 75°C		
	t/°C	CaCl ₂	Ca (OH) 2	Solid Phase		
i.	<i>c</i> / c	mass %	mass %	1 Maby		
	40		0.14	A		
	40	13.02	0.18	A		
1		19.44	0.23	А		
]		26.08	0.37	Α		
		30.00	0.58	A		
		31.00	0.67	A		
		32.00	0.74	A + C		
		32.38	0.56	с		
		34.47	0.21	C		
		38.72	0.10	C		
		44.29 48.25	0.05 0.06	C C		
		40125	0.00	0		
		49.44	0.06	C + E		
		49.32	0.06	C + E		
		52.95	-	Е		
	45	-	0.12	А		
		5.45	0.13	A		
		21.55	0.27	A		
		28.15 31.18	0.41 0.71	А А		
		31.28	0.76	A + C		
•		32.24	0.32	C		
		36.05 39.59	0.13 0.09	C C		
l l		43.69	0.06	c		
		50.63	0.07	c		
l I		53.48	0.08	C + F		
		56.5	-	F		
	50	-	0.12	A		
		16.89	0.20	Α		
		19.64	0.23	Α		
		24.31	0.32	A		
		30.75	0.62	Α		
		31.64	0.74	A + C		
		31.78	0,72	A + C		
		32.40	0.60	С		
		33.20	0.44	С		
		36.32	0.16	С		
		39.13	0.10	C		
		40.42	0.09	C C		
		49.61	0.08			
		53.81	0.09	C + F		
		56.90	-	F		
Cont	tinued or	n the next pa	ge.			
				······································		

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Makarov, S. Z.; Vol'nov, I. I.
<pre>(2) Calcium chloride; CaCl₂; [10043-52-4]</pre>	Izv. Sekt. FizKhim. Anal., Inst. Obshch. Neorg. Khim., Akad. Nauk SSSR <u>1954</u> , 320-33.
(3) Water; H ₂ O; [7732-18-5]	

t/*	CaCl ₂	Ca (OH) 2	Solid Phase		
	mass %	mass %	••••		
55		0.12	A		
	6.75	0.13	А		
	13.35	0.18	A		
	19.25	0.25	А		
	28.10	0.55	A		
	30.09	0.67	λ		
	31.76	0.76	A + C		
	32.23	0.53	С		
	33.27	0.37	С		
	35.13	0.20	с с с с		
	36.77	0.12	C		
	43.34	0.07	C		
	45.48	0.07			
	49.75	0.07	С		
	52.65	0.06	С		
	54.92	0.08	C + F		
	57.27	-	F		
75		0.10	A		
	6.30	0.12	A		
	19.33	0.30	A		
	26.03	0.55	A		
	30.58	0.72	A + C		
	32.99	0.30	A + C		
	46.45	0.10	A + C		
	56.98	0.12	C + F		
	58.85	-	F		
lid Phases:	A. Ca(OH) ₂		D. CaCl ₂ ·6H ₂		
	-	(OH) ₂ · 12H ₂ O	E. $CaCl_2 \cdot 4H_2$		
	2. 00012 000				

The $Ca(OH)_{2}$ + $CaCl_{2}$ + H₂O systems from 5 to 75°C

COMPONENTS: (1) Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]	ORIGINAL MEASUREMENTS: Makarov, S. Z.; Vol'nov, I. I.
<pre>(2) Calcium chloride; CaCl₂; [10043-52-4]</pre>	Izv. Sekt. FizKhim. Anal., Inst. Obshch. Neorg. Khim., Akad. Nauk SSSR <u>1954</u> , 25, 320-33.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 278 - 348	I. Lambert
EXPERIMENTAL VALUES:	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Ca(OH) ₂ and water are equilibrated in a glass vessel in a thermostat regulated at ± 0.1°C to obtain the Ca(OH) ₂ solubility in water. Then CaCl ₂ is added in increasing amounts, either as solution or an- hydrous salt for the subsequent solubility measurements. Equi- librium is reached in 2 to 5 days. Samples for analysis are pipetted through a filter at the temperature of the experiment. <u>Analysis</u> : Total alkalinity by titration with 0.1 M HCl, chloride ion by Volhard's method, and calcium ion by precipitation of the oxalate and subsequent titration by 0.1 M KMnO ₄ .	 (1) Calcium hydroxide. Carbonate free Ca(OH)₂. CaCl₂·3Ca(OH)₂ ·12H₂O prepared by heating 1 L 24 % CaCl₂ with 10 g CaO (temperature not given), filter- ing at same temperature, quench- ing at 5°C, and filtering in a CO₂ atm. The product is decom- posed by boiling distilled water and washed until free of Cl⁻. (2) Calcium chloride. Analytical grade CaCl₂·6H₂O. ESTIMATED ERROR: No estimates possible.

CONDONENTES			LOD TOTAL		
COMPONENTS:	video actorio -			AL MEASUREMENTS:	
(1) Calcium hydro: [1305-62-0]	xide; Ca(OH) ₂ ;	•		rova, T. V.; :kel, S. A.; ?	Zozulya, A. F. Isurko, N. G.
<pre>(2) Calcium chloride; CaCl₂; [10043-52-4]]</pre>			*Zh. Neorg. Khim. <u>1983</u> , 28, 2389-93.		
(3) Water; H ₂ O; [7732-18-51			Russ. J. Inorg. Chem. (Engl. Transl.) <u>1983</u> , 28, 1355-8.		
VARIABLES:			PREPARE	ED BY:	
T/K = 303, 323				H. Einag I. Lambe	
EXPERIMENTAL VALUES:					
	Ca(OH) ₂ + CaCl	- + म.	O Svet	em at 30 to 1	100°C
		2			
	Calcium Chloride	Wate	er	Calcium Hydroxide	Solid Phase
t/°C	mass %	mass	5 %	mass %	
30	0	99.8		0.148	A
	2.56	97.3		0.137	A 2
	5.02 7.62	94.8 92.2		0.133 0.141	А А
	10.04	89.8		0.148	A
	14.93	84.8		0.189	A
	20.82	78.9	94	0.244	В
50	0	00 0	. 7	0 127	2
50	2.44	99.8 97.4		0.127 0.119	A A
	4.88	94.9		0.126	A
	9.36	90.4		0.159	A
	14.42	85.3		0.207	A
	20.28	79.4	5	0.268	A
100	0	99.9	3	0.072	А
	5.44	94.4		0.111	A
	9.93	89.8		0.176	A
	14.10 19.74	85.6 79.8		0.256 0.391	A A
					A
Solid Pha	ises: A Ca	(OH) 2			
	B Ca	Cl ₂ ·3Ca	a (OH) 2	12H ₂ 0	
METUOD /ABBADATUS /BBOGET		LIARY I	INFORMAT	ION	ATEDIALC.
METHOD/APPARATUS/PROCED			SOUKCE	AND PURITY OF MA	ALERIALD :
Ca(OH) ₂ , and Ca librated with wat temperature by s ² Aliquots of the phases were anal titration with st tion using sodium	er at a special tirring for 3 saturated aque yzed for Cl ⁻ andard Hg ²⁺ so	fied 3 h. eous by olu-		Nothing sp	pecified.
dicator, for Ca ²⁺ 1 standard EDTA so mixed indicator (the text), and for	by titration work of the second secon	with g a l in tion			
with standard HC					
methyl red indicat perimental details		ex-	ESTIMAT	ED ERROR:	
				No estimates	possible
		ļ			- Longthiet
			REFEREN	CES :	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Milikan, J.
(2) Calcium chloride; CaCl ₂ ; [10043-52-4]	Z. Phys. Chem. Stoechiom. Verwandtschaftsl. <u>1917</u> , 92, 496-510.
<pre>(3) Hydrogen chloride; HCl; [7647-01-0]</pre>	
(4) Water; H ₂ O; [7732-18-5]	

EXPERIMENTAL VALUES:

H	101	CaO	Sol Pha	
n	ass &	mass %	1 114	56
-	3.30	2.64	A	
	6.57	5.17	A	
	8.50	6.66	А	
	9.95	7.79	A	
	1.30	8.83	A	
1	1.93	9.32	A +	в
	1.84	9.25	A +	
1	3.81	10.77	в	
	5.64	12.17	B	
	5.99	12.44	B	
	8.64	14.50	B	
	9.41	15.10	В	
2	1.47	16.73	В	
	1.82	17.02	B +	
2	2.16	17.29	в+	С
	2.58	17.53	С	
2	5.37	19.56	С	
2	7.15	20.92	С	
2	9.11	22.41	С	
2	9.25	22.51	с+	D
2	9.37	22.61	C +	
2	9.42	22.62	D	
3	0.57	22.02	D	
3	1.68	22.08	D	
3:	2.57	22.48	D +	E
3:	3.35	21.77	Е	
	4.46	19.44	E	
	4.87	18.52	Ē	
	5.38	17.39	Ē	
	5.52	17.36	Ē	
	8.84	14.11	Ē	
41	0.07	14.43	E +	F
	0.06	14.30	Ē +	
	0.12	14.43	E +	
40	0.10	14.05	F	
Solid Phases:	A. Ca	(OH) ₂ ;	в.	CaCl ₂ ·3CaO·16H ₂ O;
		$Cl_2 \cdot CaO \cdot 2H_2O$		
		Cl ₂ ·4H ₂ O;		$CaCl_2 \cdot 2H_2O.$
The author did oure water.	l not me	asure the sol	Lubilit	y of Ca(OH) ₂ in

176	
-----	--

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Calcium hydroxide; Ca(OH) ₂ ;	Milikan, J.
[1305-62-0]	Z. Phys. Chem. Stoechiom.
(2) Calcium chloride; CaCl ₂ ; [10043-52-4]	Verwandtschaftsl. <u>1917</u> , 92, 496-510.
<pre>(3) Hydrogen chloride; HCl; [7647-01-0]</pre>	
(4) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 HCl/mass % = 3.30 - 40.12	I. Lambert H. Einaga
EXPERIMENTAL VALUES:	
ADDITIONAL COMMENTS AND/OR DATA:	The CaO + HCl + H ₂ O phase diagram at 25°C
c.o N	D _{13 16} = B (previous page)
	$D_{112} = C (" ")$
	Ca ₆ = D (" ")
C.(OH),	Ca ₄ = E (" ")
	Ca ₂ = F (" ")
Dess CoCa	Figure. CaO + HCl + H ₂ O System at 25°C.
Π _t δ ^w	
AUXILIARY 1	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Nothing specified.	Nothing specified.
	ESTIMATED ERROR:
	No estimates possible.
	REFERENCES :

1PONENTS :	· · · · · · · · · · · · · · · · · · ·	ORIGIN	AL MEASUREMENT	S:	
<pre>1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>			Mozharova, T. V.; Zozulya, A. F. Markel, S. A.; Tsurko, N. G.		
<pre>(2) Sodium chloride; NaCl; [7647-14-5]</pre>			[*] Zh. Neorg. Khim. <u>1983</u> , 28, 2389-93.		
3) Calcium chlori [10043-52-4]	.de; CaCl ₂ ;		. J. Inorg. sl.) <u>1983</u> ,		
4) Water; H ₂ O; [7	732-18-51				
PERIMENTAL VALUES:					
	$H)_2 + NaCl +$	$CaCl_2 + H_2O$	System at 30) to 100°C	
	Calcium Chloride	Sodium Chloride	Calcium Hydroxide	Solid Phase	
t/°C	mass %	mass %	mass %		
30	0	6.27	0.215	A	
	2.72	6.01	0.104	A	
	4.84	6.18	0.092	A	
	7.39	6.12	0.085	A	
	9.98	6.08	0.085	A	
	12.74	5.78	0.115	A	
	13.55	6.15	0.122	A	
	14.57	6.25	0.126	A	
	15.67	5.81	0.141	А	
	17.53	5,91	0.168	A + B	
	17.48	5.75	0.168	A + B	
	18.33	5.87	0.181	в	
	21.34	5.92	0.185	В	
	23.62	5.73	0.207	В	
	24.77	5.89	0.230	В	
	26.13	5.16	0.256	B + C	
30	0	12.03	0.179	A	
	2.45	12.08	0.081	A	
	4.73	12.02	0.070	Α	
	7.26	12.25	0.067	A	
	10.64	12.01	0.090	A	
	11.99	11.84	0.100	A	
	13.49	11.73	0.115	A + B	
	13.83	11.87	0.119	B	
	14.87	12.88	0.133	В	
	17.82	10.42	0.163	B + C	
50	0	6.0	0.172	A	
	4.87	6.37	0.115	A	
	10.16	5.78	0.119	A	
	14.65	6.23	0.178	A	
	19.15	6.41	0.282	A	
	21.07	6.11	0.330	A	
	24.24	5.87	0.444	A + D	
50	0	11.93	0.167	A	
	2.93	12.02	0.081	A	
	4.82	12.03	0.081	A	
	7.56	12.00	0.085	A	
	9.67	12.12	0.115	A	
	12.41	11.69	0.118	A	
	14.14	11.66	0.156	A	
			0 121	A	
	15.06	12.41	0.171		
	15.06 16.75	12.41 12.04	0.248	A	

178		
	NENTS: Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]	ORIGINAL MEASUREMENTS: Mozharova, T. V.; Zozulya, A. F. Markel, S. A.; Tsurko, N. G.
(2)	Sodium chloride; NaCl; [7647-14-5]	[*] Zh. Neorg. Khim. <u>1983</u> , 28, 2389-93.
(3)	Calcium chloride; CaCl ₂ ; [10043-52-4]	Russ. J. Inorg. Chem. (Engl. Transl.) <u>1983</u> , 28, 1355-8.
(4)	Water; H ₂ O; [7732-18-5]	

VARIABLES: T/K = 303, 323, and 373 Composition

tion using sodium hitroprusside in-dicator, for Ca^{2^*} by titration with standard EDTA solution using a mixed indicator (not specified in the text), for OH by titration with standard HCl solution using

methyl red indicator, and for Na⁺ by flame photometry. No other ex-

perimental details are given.

PREPARED BY: H. Einaga I. Lambert

EXPERIMENTAL VALUES:

		Calcium Chloride		Calcium le Hydroxide	Solid Phase
	t/°C	mass %	mass f	mass %	
	100	0	7.23	0.131	
		5.54	7.12	0.096	A
		7.54	7.35	0.120	А
		10.00	7.30	0.144	A
		14.51	7.18		A
		14.71	7.30		A
		19.88	7.17	0.363	A
	100	0	10.21	0.126	A
		2.62	9.99	0.076	A
		5.53	9.81	0.093	A
		9.92	10.05	0.139	А
		14.55	9.95	0.241	A
		20.11	10.11	0.507	A
	Solid Pha	ases: A	Ca (OH) 2		
		В	CaCl ₂ ·3Ca(он) ₂ ·12н ₂ 0	
		c	NaCl		
		D	CaCl ₂ ·Ca(C	^{H)} 2	
		A	JXILIARY INF	ORMATION	
ETHOD/APPA	ARATUS/PROCE	DURE:	so	URCE AND PURITY OF	MATERIALS ·
libratēd	1 with wat	nd NaCl were er at a spe	cified	Nothing	specified
Aliquots	s of the	tirring for saturated a lyzed for (queous		
titratio	on with st	andard Hg ²⁺	solu-		
tion usi	ing sodium	nitroprussi	de in-		
		by titration			

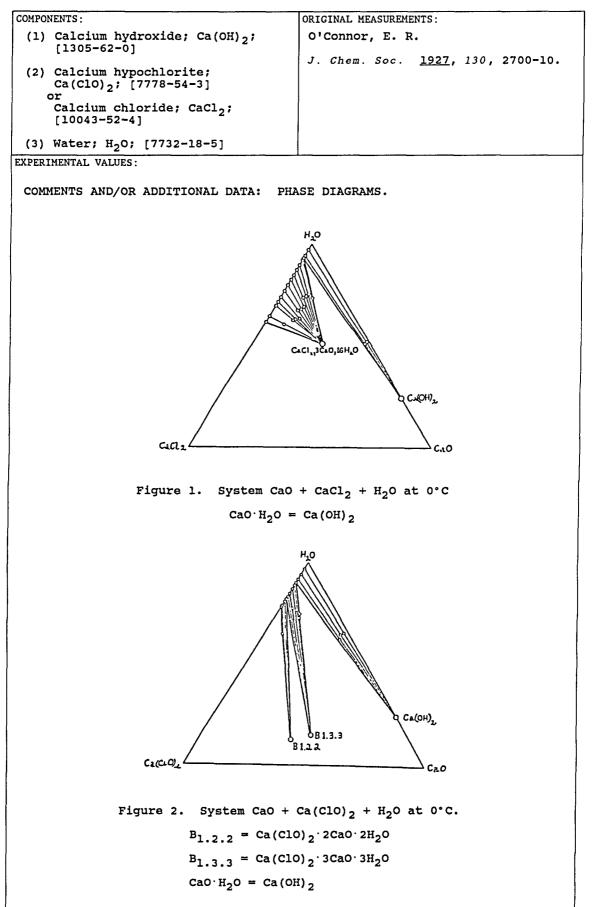
ESTIMATED ERROR:

No estimates possible.

REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	O'Connor, E. R.
(2) Calcium hypochlorite; Ca(ClO) ₂ ; [7778-54-3]	J. Chem. Soc. <u>1927</u> , 130, 2700-10.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 273 Composition	H. Einaga Y. Komatsu

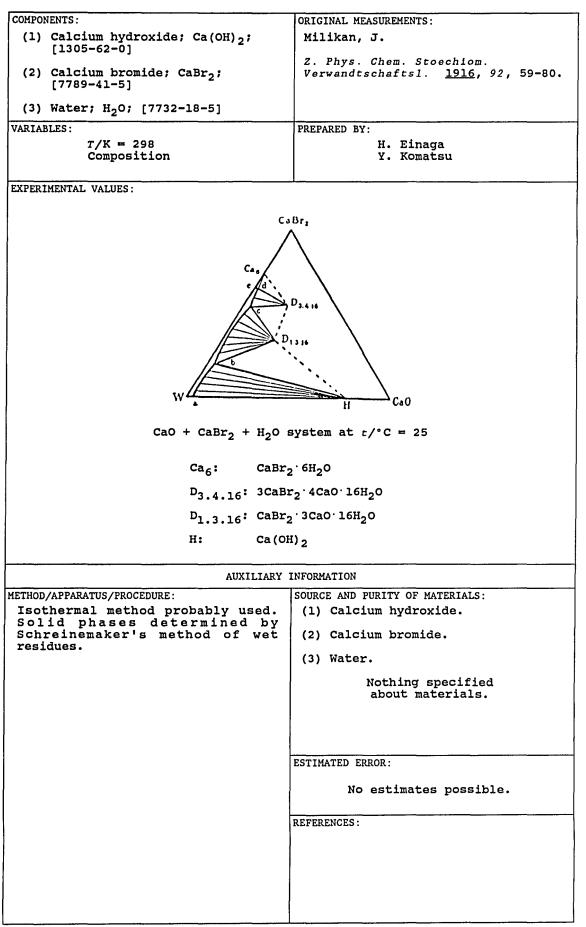
The Ca(OH)₂ + Ca(ClO)₂ + H_2O system at 0°C


Calcium Hypochlorite	Calcium Oxide	Calcium Hydroxide	Density	Solid Phase
mass %	mass %	mass %	a,	
3.0	0.106	0.140	1.030	A
5.7	0.105	0.139	1.053	A
8.2	0.110	0.145	1.077	A
9.9	0.091	0.120	1.093	в
11.1	0.093	0.123	1.104	в
13.0	0.0093	0.123	1.123	В
15.1	0.077	0.102	1.142	в
16.9	-	-	1.161	в
17.8	-	-	1.168	В
18.0	-	-	1.171	B + C
18.2	-	-	1.172	с
19.2	0.113	0.149	1.189	С
19.8	0.106	0.140	1.188	с с
21.2	0.106	0.140	1.203	С
21.8	-	-	1.213	D

Solid Phases: A Ca(OH)₂; B Ca(ClO)₂·3CaO·3H₂O; C Ca(ClO)₂·2CaO·2H₂O; D Ca(ClO)₂·3H₂O The Ca(OH)₂ mass percents were calculated by the compiler.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: $Ca(OH)_2$ and $Ca(ClO)_2$ were equilibrated with water at 0°C for 1-5 days. Samples of the saturated (1) Calcium hydroxide. Freshly calcined CaO was slaked. (2) Calcium hypochlorite. Prepared by the reaction of aqueous solution were analyzed for Ca(OH)2 by neutralization titration after decomposition of the ClO by hydrogen peroxide, and for $Ca(ClO)_2$ Ca(OH)₂ with Cl₂ gas, and recrystallization from water. by an iodometric titration. The purified salt contained no Cl₂ or Ca(ClO₃)₂, but contained 0.5 wt $Ca(OH)_2$. Nothing further specified. ESTIMATED ERROR: No estimates possible. **REFERENCES:**



MPONENTS :		ORIGINAL MEASUREMENTS:
	m hydroxide; Ca	(OH) ₂ ; Milikan, J.
[1305-	62 - 0]	Z. Phys. Chem. Stoechiom.
(2) Calcin	m bromide; CaBr	
[7789-		$\frac{2}{2}$
[
(3) Water;	H ₂ O; [7732-18-	5]
PERIMENTAL V	ALUES:	
	Composition	of the saturated solution at 25°C
CaB	r ₂ CaO	Solid phase
mas		-
	28 0.119	$Ca(OH)_2$
13.		IT
19.	18 0.115	17
20.	72 0.092	$Ca(OH)_2 + CaBr_2 \cdot 3CaO \cdot 16H_2O$
20.		······································
21.	80 0.103	CaBr ₂ ·3CaO·16H ₂ O
22.	39 0.092	W ² 2
25.	15 0.089	W
28.	21 0.089	11
32.	50 0.080	N
32.		N
41.	36 0.077	N
44.		11
50.		H
53.		и
54.	30 0.383	$CaBr_{2} \cdot 3CaO \cdot 16H_{2}O + 3CaBr_{2} \cdot 4CaO \cdot 16H_{2}O$
54.		" ²
55.	29 0.271	3CaBr ₂ ·4CaO·16H ₂ O
56.	94 0.235	II ² ²
58.		H
59.		11
60.	09 0.209	$3CaBr_2 \cdot 4CaO \cdot 16H_2O + CaBr_2 \cdot 6H_2O$
00.		6 6 6 6

(continued on next page)

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Orazkulieva, G.L.; Nuryev, A.; Kuliev,Ch.A.;Khodzhamamedov,A.M.; Ksenzenko, V.I.; Umarova, N.S.
<pre>(2) Calcium bromide; CaBr₂; [7789-41-5]</pre>	Izv. Akad. Nauk Turkm. SSR, Ser. FizTekh., Khim. Geol. Nauk
(3) Water; H ₂ O; [7732-18-5]	<u>1989</u> , (No. 4), 79-82.
VARIABLES:	PREPARED BY:
$CaBr_2$ Concentration T/K = 288.15	I. Lambert H. L. Clever

	CaBr ₂ mass %	CaO mass %	Solid Phase
	0.000	0.14	Ca (OH) 2
	5.05	0.13	H =
	13.99	0.15	"
	14.32	0.16	$Ca(OH)_2 + CaBr_2 \cdot 3CaO \cdot 16H_2O$
	14.34	0.15	CaBr ₂ •3CaO•16H ₂ O
	24.98	0.11	2 11 2
	30.50	0.09	11
	34.55	0.06	11
	41.76	0.09	11
	45.80	0.15	11
	49.24	0.22	11
	51.82	0.28	**
	52.93	0.36	" + 3CaBr ₂ .4Ca0.16H ₂ O
	53.69	0.29	3CaBr ₂ •4CaO•16H ₂ O
	55.26	0.13	
	56.10	0.15	••
	56.26	0.30	" + CaBr ₂ •6H ₂ O
	57.10	-	CaBr ₂ •6H ₂ O
		AUXILI	ARY INFORMATION
IETHOD/APPARATU	S/PROCEDURE :		SOURCE AND PURITY OF MATERIALS:
	-,		
The compon- glass vesse and stirred	l, thermosta 48 to 72	ated at 15°	C, base was obtained by heating com
tablish equ The liquid	and solid r	esidues we by iodometr	

and for calcium by complexometric (3) Water. Distilled. titration with Trilon B.

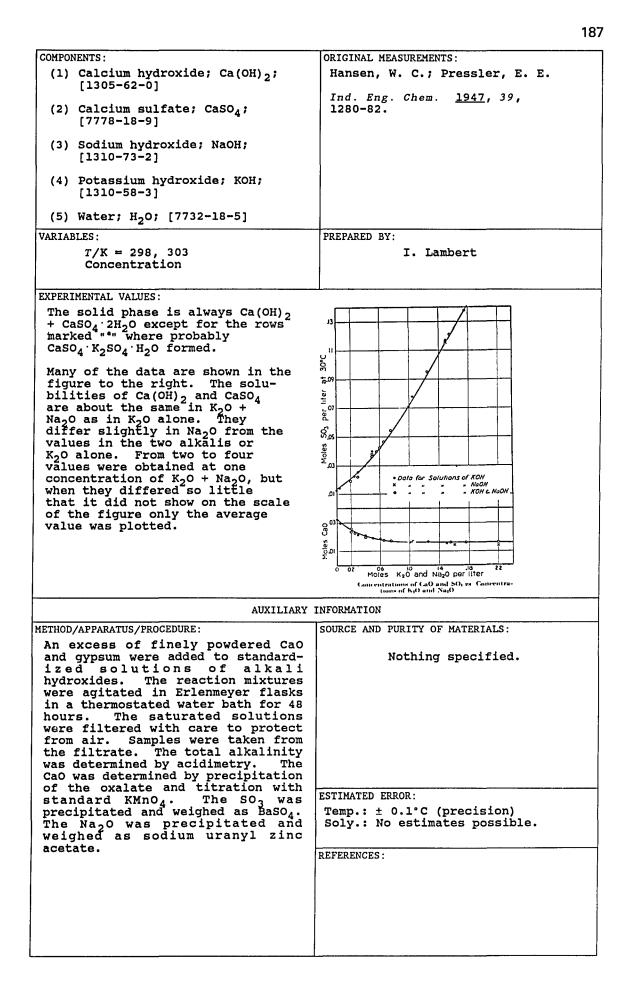
The solid phase composition was determined by Schreinemakers' method of residues. The crystals were examined by microscopy.

ESTIMATED ERROR: No estimates possible.

REFERENCES:

	5:	<u> </u>	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>			Milikan, J.
(2) Calcium iodide; Cal ₂ ; [10102-68-8]			Z. Phys. Chem. Stoechiom. Verwandtschaftsl. <u>1916</u> , 92, 59-80.
(3) Wat	er; H ₂ O; [7732	-18-5]	
ARIABLES:			PREPARED BY:
	T/K = 298		H. Einaga
	Composition		Y. Komatsu
EXPERIMENT	CAL VALUES:		
	Composi	tion of the sa	turated solution at 25°C
	Cal ₂ mass %	CaO S mass %	olid phase
	9.14 17.42 25.80	0.076 C 0.089 0.087	a (OH) 2
	28.44		a(OH) ₂ + CaI ₂ ·3CaO·16H ₂ O
	31.33	0.089 C	al2.3Ca0.16H20
	33.00 40.30	0.075 0.064	
	46.37 47.09	0.054 0.055	81 91
	49.70	0.047	88
	59.34	0.139	
	66.72 66.65	0.553	$aI_2^{\cdot 3}Ca0^{\cdot 16H_20} + CaI_2^{\cdot 6H_20}$
	66.80	0 C	aI ₂ ·6H ₂ O
		Ca, d	
	CaC	Ca ₆ : Ca D _{1.3.16} : Ca	2.3CaO.16H ₂ O
	CaC	Ca ₆ : Ca D _{1.3.16} : Ca	$H = C_{a0}$ system at $t/°C = 25$ $I_2 \cdot 6H_2O$
	Cac	Ca ₆ : Cai D _{1.3.16} : Cai H: Ca	H_{ca0} system at $t/°C = 25$ $I_2 · 6H_2 O$ $I_2 · 3Ca0 · 16H_2 O$ $(OH)_2$
ΕΤΗΩΣ /ΔΡΡ		Ca ₆ : Ca D _{1.3.16} : Ca H: Ca AUXILIARY	$H = C_{a0}$ system at $t/^{\circ}C = 25$ $I_2 \cdot 6H_2O$ $I_2 \cdot 3CaO \cdot 16H_2O$ (OH) 2 (OH) 2 (INFORMATION
Isother Solid	ARATUS/PROCEDURE: mal method pj phases det	Ca ₆ : Ca D _{1.3.16} : Ca H: Ca AUXILIARY cobably used. ermined by	H_{ca0} system at $t/°C = 25$ $I_2 · 6H_2 O$ $I_2 · 3Ca0 · 16H_2 O$ $(OH)_2$
Isother Solid	ARATUS/PROCEDURE: mal method pu phases det nemaker's me	Ca ₆ : Ca D _{1.3.16} : Ca H: Ca AUXILIARY cobably used. ermined by	$H = C_{a0}$ system at $t/^{\circ}C = 25$ $I_2 \cdot 6H_2O$ $I_2 \cdot 3CaO \cdot 16H_2O$ (OH) 2 (OH) 2 (INFORMATION SOURCE AND FURITY OF MATERIALS:

COMPONENTS :		ORIGINAL MEASUREMENTS:		
<pre>(1) Calcium hydroxide; Ca([1305-62-0]</pre>	<pre>1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>		Cameron, F. K.; Bell, J. M.	
(2) Calcium sulfate; CaSO ₄ ; [7778-18-9]		J. Am. Chem. Soc. <u>1906</u> , 28, 1220-2.		
(3) Water; H ₂ O; [7732-18-5]			
VARIABLES:		PREPARED BY:		
T/K = 298		H. Einaga		
Composition		Y. Komatsu	L	
EXPERIMENTAL VALUES:				
· · · · · · · · · · · · · · · ·		H ₂ O system at 25°C		
	lcium Oxide	Calcium Hydroxide	Solid Phases	
/g L ⁻¹ /	g L ⁻¹	c ₁ /mol L ⁻¹		
0	1.166	0.02079	A	
0.391	1.141	0.02035	A	
0.666	1.150	0.02051	A	
0.955 1.214	1.215 1.242	0.02167 0.02215	A A	
1.588	1.222	0.02180	в	
1.634	0.939	0.01674	C	
1.722 1.853	0.611 0.349	0.01090 0.00622	C C	
1.918	0.176	0.00314	c	
2.030	0.062	0.0011	Ċ	
2.126	0	0	С	
Solid Phases:				
A Ca(OH) ₂				
B Ca(OH) ₂ + $($	CaSO ₄ ·2H ₂ O			
C CaSO ₄ ·2H ₂ O				
The compilers calcula	atèd the cal	lcium hydroxide concent	trations.	
нана на токо н Тако на токо на	AUXILIARY I	NFORMATION	- <u> </u>	
IETHOD/APPARATUS/PROCEDURE:	1.	SOURCE AND PURITY OF MATER	IALS:	
Solid CaO was added to CaSO ₄ solutions and equilib a thermostated bath at 25°C weeks. An aliquot of the s solution was analyzed for and sulfate ions (procedu not stated in the original	calcium res were	Nothing specified.		
		ESTIMATED ERROR. No estimate possib REFERENCES.	ple.	


1	8	6
	v	v

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Hansen, W. C.; Pressler, E. E.
(2) Calcium sulfate; CaSO ₄ ; [7778-18-9]	Ind. Eng. Chem. <u>1947</u> , 39, 1280-82.
<pre>(3) Sodium hydroxide; NaOH; [1310-73-2]</pre>	
(4) Potassium hydroxide; KOH; [1310-58-3]	
(5) Water; H ₂ O; [7732-18-5]	
EVBEDIMENTAL MAINEC.	

The solubility of Ca(OH) $_2$ and CaSO $_4\cdot$ 2H_2O in aqueous mixtures of NaOH and KOH at 25 and 30°C

	Original S	olution	Saturated Solution		
	к ₂ 0	Na ₂ 0	CaO	so3	OH
t/°C	$c/mol L^{-1}$	$c/mol L^{-1}$	$c/mol L^{-1}$	$c/mol L^{-1}$	$c/mol L^{-1}$
25	-	_	0.0331	0.0123	0.0414
	0.0100	-	0.0292	0.0151	0.0488
	0.0200	-	0.0240	0.0190	0.0502
	0.0401	-	0.0211	0.0289	0.0649
	0.0601	-	0.0183	0.0426	0.0726
	0.1002		0.0161	0.0722	0.0888
	0.2005	-	0.0165	0.1562	0.1164ª
30	-	-	0.0319	0.0125	0.0387
	0.0050	-	0.0298	0.0141	0.0419
	0.0025	0.0025	0.0294	0.0141	0.0393
	0.0150	0.0050	0.0256	0.0191	0.0529
	0.0100	0.0101	0.0236	0.0196	0.0477
	0.0251	-	0.0228	0.0223	0.0523
	0.0125	0.0125	0.0226	0.0219	0.0514
	0.0150	0.0151	0.0226	0.0236	0.0585
	0.0251	0.0050	0.0231	0.0241	0.0587
	0.0150	0.0151	0.0216	0.0252	0.0536
	0.0301	-	0.0214	0.0253	0.0524
	0.0401	-	0.0211	0.0299	0.0626
	0.0200	0.0202	0.0198	0.0303	0.0602
	0.0150	0.0252	0.0195	0.0303	0.0589
	0.0501	-	0.0185	0.0373	0.0618
	0.0251	0.0252	0.0188	0.0376	0.0633
	0.0251	0.0252	0.0194	0.0363	0.0672
	0.0050	0.0500	0.0184	0.0395	0.0698
	0.0500	0.0050	0.0190	0.0398	0.0689
	0.0601	-	0.0187	0.0430	0.0710
	0.0301	0.0302	0.0180	0.0425	0.0711
	0.0150	0.0504	0.0175	0.0468	0.0734
	0.0501	0.0252	0.0174	0.0544	0.0771
	0.1002	-	0.0162	0.0710	0.0806
	0.1002	0.0050	0.0167	0.0783	0.0884
	0.1002	0.0252	0.0164	0.0951	0.0940
	0.1504	-	0.0162	0.1167	0.0972
	-	0.1448	0.0150	0.1151	0.1024
	0.1504	0.0050	0.0162	0.1211	0.1011
	0.1504	0.0252	0.0162	0.1382	0.1048
	0.2005	-	0.0164	0.1626	0.1062
	-	0.1930	0.0149	0.1586	0.1146
	0.2506	-	0.0161	0.2055	0.1136*
	0.1253	0.1250	0.0169	0.2040	0.1188*
	0.3750	-	0.0094	0.2121	0.1455*
	-	0.3750	0.0051	0.2629	0.2279
	0.5012	-	0.0093	0.2083	0.1386ª
	1.0023	-	0.0034	0.3662	0.2752*

Continued on the next page.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Calcium hydroxide; Ca(OH) ₂ ;	Popova, T. B.; Berdyukova, V. A.
[1305-62-0]	Lepota, I. D., Deluyukova, V. A.
(2) Calcium nitrite; Ca(NO ₂) ₂ ; [13780-06-8]	Term. Anal. Fazouye Ravnovesiya 1985, 92-96.Edited by Verzhbitskii, F. R., Permsk.Gos. Univ., Perm,
(3) Water; H ₂ O; [7732-18-5]	USSR
VARIABLES:	PREPARED BY:
T/K = 298	H. L. Clever
EXPERIMENTAL VALUES:	
Isotherms at 25°C were determined f conductivity, viscosity and refract ternary systems with M = Ca, Sr and F	ive index of $M(OH)_2 + M(NO_2)_2 + H_2O$
Results are given in small scale gra reliably.	aphs which are too small to be read
The following solids were identified	in the solubility study.
$Ca(OH)_2 + Ca(NO_2)_2 + H_2O$	
Ca (OH) $_{2} \cdot H_{2}O$ Ca (OH) $_{2} \cdot Ca (NO_{2}) _{2} \cdot 2H_{2}O$; [Inc Ca (NO ₂) $_{2} \cdot 4H_{2}O$; [15136-63-7]	congruently melting compound (1)]
$Sr(OH)_{2} + Sr(NO_{2})_{2} + H_{2}O$	
$Sr(OH)_{2} \cdot 8H_{2}O;$ [1311-10-0] $Sr(OH)_{2} \cdot 4Sr(NO_{2})_{2} \cdot 8H_{2}O$ $Sr(NO_{2})_{2} \cdot H_{2}O;$ [13450-96-9]	I
$Ba(OH)_2 + Ba(NO_2)_2 + H_2O$	
Ba(OH) -•8H-O; [12230-71-6]	
Ba (OH) $_{2} \cdot 8H_{2}O;$ [12230-71-6] Ba (NO ₂) $_{2} \cdot H_{2}O;$ [7787-38-4]	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Not specified.	Not specified.
Not Specificat	
	ESTIMATED ERROR:
	Not specified
	REFERENCES :
	1. Popova, T. B.; Berdyukova, V. A.
	Zh. Prikl. Khim. (Leningrad) 1986, 59(1), 8-12.

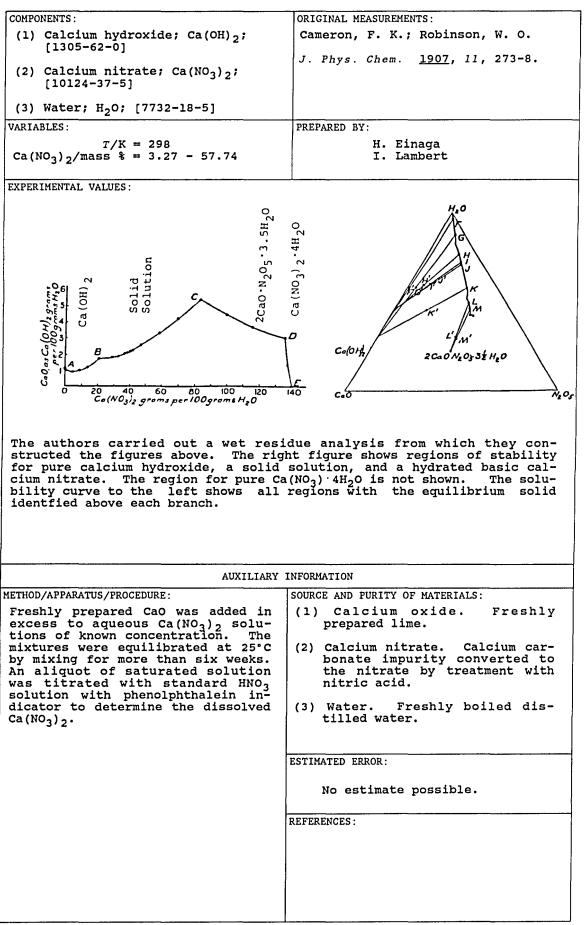
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Cameron, F. K.; Robinson, W. O.
<pre>(2) Calcium nitrate; Ca(NO₃)₂; [10124-37-5]</pre>	J. Phys. Chem. <u>1907</u> , 11, 273-8.
(3) Water; H ₂ O; [7732-18-5]	

The Ca(OH)₂ + Ca(NO₃)₂ + H₂O system at 25°C

Soli Phas	Density	Calcium Oxide	Calcium Hydroxide	rate	Calcium Nit
	d ²⁵	mass %	g/100 cm ³ sln	mass %	g/100 cm ³ sln
A					ο
A	1.0249	0.092	0.095	3.27	3.35
A	1.0484	0.100	0.105	7.78	8.18
A	1.0940	0.110	0.120	11.80	12.91
A +	1.1383	0.149	0.170	17.07	19.43
в	1.1840	0.144	0.171	22.37	26.49
В	1.2101	0.149	0.180	24.64	29.82
В	1.2287	0.155	0.190	26.83	32.97
B B B	1.2290	0.156	0.191	27.07	33.27
В	1.2541	0.160	0.200	28.60	35.87
В	1.2581	0.161	0.203	29.44	37.04
B B B	1.2826	0.176	0.226	31.87	40.88
В	1.2905	0.177	0.229	31.83	41.08
в	1.3337	0.207	0.277	36.73	48.99
в	1.3735	0.252	0.346	37.04	50.88
B +	1.4195	0.310	0.440	45.04	63.93
с	1.4840	0.223	0.331	49.58	73.58
С	1.5330	0.172	0.263	53.43	81.91
C +	1.5809	0.128	0.203	57.17	90.38
D	1.5842	0	0	57.74	91.84

Solid Phases:

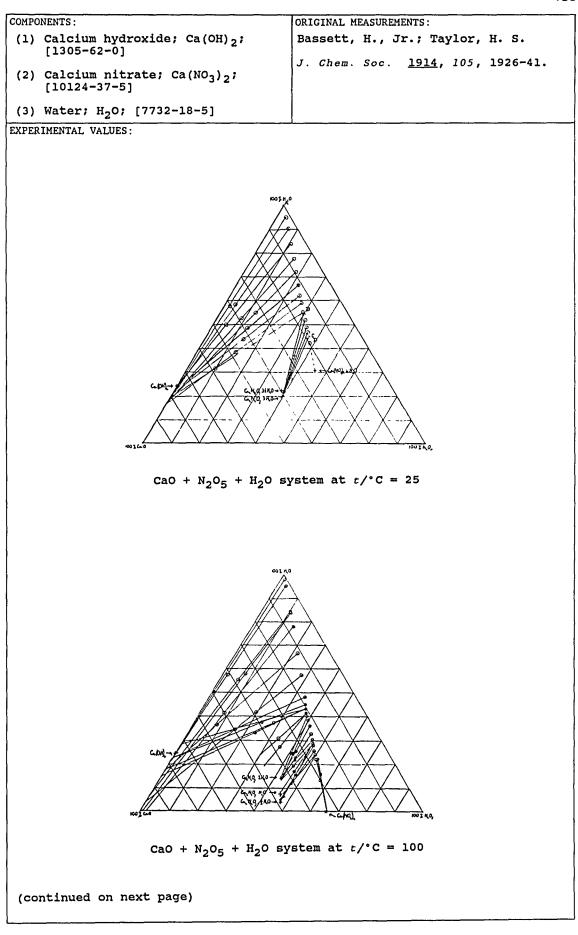
A Ca(OH)₂


B $CaO \cdot xN_2O_5 \cdot yH_2O$ (solid solution)

C CaO·Ca(NO₃)₂·3.5H₂O (hydrated basic calcium nitrate)

D Ca(NO₃)₂·4H₂O

The authors also tabulate g/100 g water of both calcium nitrate and calcium oxide as calcium hydroxide.


The numbers in columns two and four above were calculated by the compilers.

Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0] Calcium nitrate; Ca(NO ₃) ₂ ; [10124-37-5]		a(OH)2;	Bassett, H., Jr.; Taylor, H. S.
		NO ₃) ₂ ;	J. Chem. Soc. <u>1914</u> , 105, 1926-4:
Water; 1	H ₂ 0; [7732-18-	-5]	
MENTAL VAI			
5	The Ca(OH) ₂ +	$Ca(NO_3)_2 +$	H ₂ O system at 25 and 100°C
t/°C	Ca(NO ₃) ₂ mass *	CaO mass%	Solid phase
25	0	0.115	Ca (OH) 2
	4.836	0.0978	11
	9.36	0.1074	и
	13.77	0.1193	u
	15.98	0.1265	
	19.65	0.1342	11
	22.46	0.1444	
	26.63	0.1624	11
	27.83	0.1650	н
	30.16	0.1755	11
	32.94	0.1931	11
	35.95	0.2093	U
	37.46	0.2150	11
	39.86	0.2460	H
	40.66	0.2579	u
	42.59	0.2722	
	44.44	0.3060	11
	45.28	0.2802	$Ca_2N_2O_7$ ·3H ₂ O
	46.80	0.2536	11
	47.79	0.2314	11
	49.03	0.2158	н
	51.07	0.1894	11
	51.62	0.1798	U.
	53.20	0.1659	11
	53.58	0.1647	11
	53.79	0.1635	н
	54.93	0.1526	"
	55.25	0.1486	U II
	57.72	0.0836	$Ca(NO_3)_2 \cdot 4H_2O$
	57.98	0	"

(continued on next page)

	Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]		ORIGINAL MEASUREMENTS: Bassett, H., Jr.; Taylor, H. S.		
[1305-6			J. Chem. Soc. <u>1914</u> , 105, 1926-41.		
Calcium nitrate; Ca(NO ₃) ₂ ; [10124-37-5]		NO3)2;	J. Chem. Soc. <u>1914</u> , 105, 1920-41		
) Water; H ₂ O; [7732-18-5]					
RIMENTAL VA	LUES :				
t/°C	$Ca(NO_3)_2$	CaO	Solid phase		
	mass & 2	mass*	-		
100	0	0.0561	Ca (OH) 2		
	2.42	0.055	ıı –		
	4.91	0.0624			
	9.90	0.081	89 81		
	15.39 16.10	0.111 0.120	u		
	21.86	0.155	11		
	33.03	0.269	•1		
	42.26	0.480	10		
	47.76	0.713	11		
	50.94	0.973	W		
	53.75	1.261	11		
	55.40	1.477	11 01		
	55.43 55.65	1.476 1.491	u U		
	56.89	1.635	$Ca(OH)_2 + Ca_2N_2O_7 \cdot 2H_2O$		
	57.03	1.686			
	57.91	1.596	$Ca_{2_{1}}^{N_{2}O_{7}} Ca_{2_{1}}^{N_{2}O_{7}}$		
	58.16	1.534			
	58.67	1.576	ee 10		
	59.32 59.56	1.419	11		
	59.58	1.420 1.423	11		
	60.34	1.362	11		
	60.44	1.348	11		
	61.06	1.323	u .		
	61.29	1.320	H		
	62.82	1.167	11 17		
	64.35 66.44	1.088 1.077			
	67.10	1.084	11		
	68.05	1.120	U		
	68.57	1.135	**		
	69.08	1.174	11		
	69.12	1.141	1		
	70.60	1.252	$Ca_2N_2O_7 \cdot 2H_2O + Ca_2N_2O_7 \cdot 1/2H_2O$		
	70.40	1.203	$Ca_{2}N_{2}O_{7}^{1/2H_{2}O}$		
	71.35	1.140			
	71.44	1.103 1.071	ŧ# 10		
	71.70 72.70	1.071			
	72.70	0.995	H H		
	73.85	0.937			
	74.57	0.920	II		
	74.94	0.886	"		
	75.74	0.849	H		
	76.64 76.94	0.814 0.815	0 11		
	77.62	0.804	$Ca(NO_3)_2$		
	77.74	0.412	W		
	78.43	0	u		
			· · · · · · · · · · · · · · · · · · ·		

CONTONIENTE	OD TOTNAL WEAGUD BURNING .
COMPONENTS: (1) Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]	ORIGINAL MEASUREMENTS: Bassett, H., Jr.; Taylor, H. S.
(2) Calcium nitrate; Ca(NO ₃) ₂ ; [10124-37-5]	J. Chem. Soc. <u>1914</u> , 105, 1926-41.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES;	PREPARED BY:
T/K = 298, 373 Composition	H. Einaga Y. Komatsu
EXPERIMENTAL VALUES:	
	INFORMATION
METHOD/APPARATUS/PROCEDURE: Ca(OH) ₂ was rotated in a thermostat with aqueous Ca(NO ₃) ₂ solutions in ceresin wax bottles at 25 \pm 0.2 or 100 \pm 0.2°C for 4 days to 6 months. The supernatant was analyzed for Ca(OH) ₂ by titration with standard HNO ₃ solution using methyl orange indicator. Total Ca in the titrated solution was determined gravimetri- cally as the oxalate. Ca(NO ₃) ₂ present was calculated from the difference.	 SOURCE AND PURITY OF MATERIALS: (1) Calcium hydroxide. CaO was prepared by the ignition of precipitated CaCO₃. (2) Calcium nitrate. Obtained from Merck; contained 0.017 % MgO.
	ESTIMATED ERROR:
	Temp.: precision ± 0.2 K. Soly.: No estimates possible.
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]	Johnston, J.; Grove, C.
(2) Strontium chloride; SrCl ₂ ; [10476-85-4]	J. Am. Chem. Soc. <u>1931</u> , 53, 3976-91.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 $m_2/mol kg^{-1} = 0.053 - 3.18$	H. Einaga Y. Komatsu

EXPERIMENTAL VALUES:		
Solubility of Ca(OH) ₂ in aqueous SrCl ₂ at 25°C		
$\frac{\text{SrCl}_2}{m_2/\text{mol kg}^{-1}}$	$\frac{Ca(OH)_2}{m_1/mol^2 kg^{-1}}$	
0	0.01976	
0.053	0.02624	
0.120	0.03043	
0.283	0.03702	
0.445	0.04135	
0.823	0.04819	
1.33	0.05336	
2.19	0.05622	
2.23	0.05623	
3.18	0.05537	
	Y INFORMATION	
AUXILIAR METHOD/APPARATUS/PROCEDURE: Well-defined crystals of Ca(OH) ₂ were equilibrated at 25 ± 0.02°C for 24 hours with aqueous strontium chloride solutions and protected from atmospheric CO ₂ . Ca(OH) ₂ in the saturated solutions was deter- mined by titration with standard HCl solution using phenolphthalein and/or methyl red as indicators, and SrCl ₂ was determined titrime- trically by the Mohr method.	SOURCE AND FURITY OF MATERIALS: (1) Calcium hydroxide. Crystalline form (hexagonal pyramids) of highest purity was prepared by the mutual diffusion process of CaCl ₂ and NaOH in aqueous solu- tion free of CO ₂ . Its purity was 99.92% but contained 0.075% (as NaCl) or 0.071% (as CaCl ₂) impurity.	
	REFERENCES :	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Johnston, J.; Grove, C.
(2) Barium chloride; BaCl ₂ ; [10361-37-2]	J. Am. Chem. Soc. <u>1931</u> , 53, 3976-91.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 m_2 /mol kg ⁻¹ = 0.019 - 1.59	H. Einaga Y. Komatsu
EVDEDIMENTAL MALHEC.	

$\frac{BaCl_2}{m_2/mol kg^{-1}}$	Ca (OH) 2 m1/mol 2kg ⁻¹
0	0.01976
0.019	0.02283
0.037	0.02470
0.066	0.02683
0.111	0.02945
0.159	0.03157
0.287	0.03578
0.425	0.03910
0.624	0.04246
1.29	0.04916
1.44	0.04991
1.59	0.05022

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: Well-defined crystals of Ca(OH) ₂ were equilibrated at 25 ± 0.02°C for 24 hours with aqueous barium chloride solutions and protected from atmospheric CO ₂ . Ca(OH) ₂ in the saturated solutions was deter- mined by titration with standard HCl solution using phenolphthalein and/or methyl red as indicators, and BaCl ₂ was determined titrime- trically by the Mohr method.	 Calcium hydroxide. Crystalline form (hexagonal pyramids) of highest purity was prepared by the mutual diffusion process of CaCl₂ and NaOH in aqueous solu- tion free of CO₂. Its purity was 99.92% but contained 0.075% (as NaCl) or 0.071% (as CaCl₂) impurity. Barium chloride. Chemically pure grade used after several recrystallizations from dis- tilled water. Water. Distilled.
	ESTIMATED ERROR:
	Temp.: precision ± 0.02 K. Soly.: precision ± 0.4 % (compiler)
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]	Itkina, L. S.; Chaplygina, N. M.; Portnova, S. M.
<pre>(2) Lithium hydroxide; LiOH; [1310-65-2]</pre>	[*] Zh. Neorg. Khim. <u>1975</u> , 20, 3396-7.
(3) Water; H ₂ O; [7732-18-5]	Russ. J. Inorg. Chem. (Engl. Transl.) <u>1975</u> , 20, 1880-1.
VARIABLES:	PREPARED BY:
T/K = 423 LiOH/mass % = 0 - 0.99	H. Einaga I. Lambert
EXPERIMENTAL VALUES:	
The solubility of Ca(OH)	2 in aqueous LiOH at 150°C
Lithium Hydroxide	Calcium Hydroxide
mass *	mass %
0	0.031
0.14 0.31	0.0034 0.0015
0.32 0.32	0.0020 0.0015
0.36	0.0017
0.45 0.52	0.0023 0.00185
0.70	0.00098
0.96	0.00063 0.00098
	1
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:	
Finely powdered CaO was equi- librated with aqueous LiOH solution at 150°C according to a literature procedure (ref 1). The resulting saturated solutions were analyzed for hydroxide ion by titration with standard HCl solution using methyl orange indicator, and for calcium ion by flame photometry.	 (1) Calcium oxide. Special high purity powder (particle diameter < 0.003 mm) containing < 1% CaCO₃. (2) Lithium hydroxide. High purity LiOH H₂O. The aqueous LiOH stood 4 days before use to precipitate contaminated Ca(OH)₂. After separation and dilution to ca 1% LiOH solution it contained less than 2 mg Ca²⁺ per liter of solution.
	ESTIMATED ERROR:
	No estimates possible.
	REFERENCES :
	<pre>1. Kotsupalo, N.P.; Pushnyakova, V.A.; Berger, A. S. Zh. Neorg. Khim. <u>1976</u>, 21, 1365.</pre>

1	98
---	----

COMPONENTS:		ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca([1305-62-0]</pre>	OH) ₂ ;	Kotsupalo, N. P.; Pushnyakova, V.A. Berger, A. s.
(2) Lithium hydroxide; LiO [1310-65-2]	ЭН;	Zh. Neorg. Khim. <u>1976</u> , 21, 1365-8.
(3) Water; H ₂ O; [7732-18-5	1	[*] Russ. J. Inorg. Chem. (Engl. Transl.) <u>1976</u> , 21, 746-8.
VARIABLES:		PREPARED BY:
		H. Einaga
T/K = 298, 323, and 37 Li ₂ O/mass % = 0.011 - 7.18		I. Lambert
EXPERIMENTAL VALUES:		
The solubility of Ca	(OH) ₂ in aqu	leous LiOH at 25, 50, and 100°C
Temperature	Lithium	Oxide Calcium Oxide
romportuburo	Dittilum	
t/°C	Li ₂ 0/mas	s % CaO/mass %
25	0.01	1 0.080
	0.02	
	0.09	
	0.52	-
	1.07 2.50	
	4.75	
	7.18	
		_
50	0.02	
	0.09	
	1.05	
	2.50	
	4.75	
	7.18	trace
100	0.03	0 0.038
100	0.09	
	0.51	
	1.05	0.0010
	2.42	
	4.92 7.18	
		61400
	uilibrium w	ith the saturated solution was
		eous LiOH solution had a between 25 and 100°C.
	AUXILIARY II	
IETHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
CaO was equilibrated with aqueous LiOH in a Fluoroplast vessel with a hydraulic seal at specified tem-		(1) Calcium oxide. Prepared by heating high purity CaCO ₃ .
perature within \pm 0.1 ° samples were stirred 10 h and 48 h at 25°C. After	at 100°C	(2) Lithium hydroxide. Chemically pure LiOH [·] H ₂ O was used.
tion, Li^+ in the solut determined by flame photom Ca^{2+} by complexometry w using fluorexone as an i and by flame photometry.	tion was etry, and ith EDTA	(3) Water.
The complexometric titration		DETIMATED FORD
not be used for samples hid Li ₂ 0.	gh in ¹	ESTIMATED ERROR: Relative error for the determina- tion of Ca ²⁺ was 5.5 % at 0.005 mass %, 10 % at 0.002 mass %, 30 % at 0.001 mass % and +24 to -42 % at < 0.001 mass %.
		Temp.: accuracy ± 0.1 K (authors).

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Johnston, J.; Grove, C.
(2) Lithium chloride; LiCl; [7447-41-8]	J. Am. Chem. Soc. <u>1931</u> , 53, 3976-91.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 $m_2/mol kg^{-1} = 0.054 - 10.37$	H. Einaga Y. Komatsu

Solubility of $Ca(OH)_2$	in aqueous LiCl at 25°C
LiCl $m_2/mol kg^{-1}$	$\frac{Ca(OH)_2}{m_1/mol^2 kg^{-1}}$
0	0.01976
0.054	0.02266
0.115	0.02473
0.249	0.02799
0.465	0.03172
0.830	0.03573
1.37	0.03990
1.85	0.04239
2.25	0.04405
3.03	0.04643
3.81	0.04762
5.36	0.04845
10.37	0.04472
AUXILIARY	INFORMATION
ETHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Well-defined crystals of $Ca(OH)_2$ were equilibrated at 25 ± 0.02°C for 24 hours with aqueous lithium chloride solutions and protected from atmospheric CO ₂ . Ca(OH) ₂ in the saturated solutions was deter- mined by titration with standard HCl solution using phenolphthalein and/or methyl red as indicators, and LiCl was determined titrimetri- cally by the Mohr method.	 (1) Calcium hydroxide. Crystalline form (hexagonal pyramids) of highest purity was prepared by the mutual diffusion process of CaCl₂ and NaOH in aqueous solu- tion free of CO₂. Its purity was 99.92% but contained 0.075% (as NaCl) or 0.071% (as CaCl₂) impurity. (2) Lithium chloride. Chemically pure grade used after several recrystallizations from dis- tilled water.
	(3) Water. Distilled.
	ESTIMATED ERROR: Temp.: precision ± 0.02 K. Soly.: precision ± 0.4 % (compiler)
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	d'Anselme, A.
<pre>(2) Sodium hydroxide; NaOH; [1310-73-2]</pre>	Bull. Soc. Chim. Fr. <u>1903</u> , 29, 936-9.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 293 - 373	H. Einaga
T/K = 293 - 373 $c_2/mol L^{-1} = 0 - 0.5$	I. Lambert
EXPERIMENTAL VALUES:	

Solubil	1+12 6	٦f	calcium	hydroxide	in	amieous	sodium	hydroxide
SOTUDIT.	ננץ נ	J T	carcrum	Infortovide	T 7 7 7	aqueous	Soutam	IIJULOVIUG

t/°C	Sodium hydroxide c ₂ /mol L ⁻¹	Calcium oxide g L ⁻¹	Calcium hydroxide c ₁ /mol L ^{-1 a}
20	0	1.170	0.02086
	0.01	0.940	0.0168
	0.04	0.570	0.0102
	0.0667	0.390	0.00695
	0.125	0.180	0.00321
	0.2	0.110	0.00196
	0.5	0.020	0.00036
50	0	0.880	0.0157
	0.01	0.650	0.0116
	0.04	0.350	0.00624
	0.0667	0.200	0.00357
	0.125	0.060	0.0011
	0.2	0.020	0.00036
	0.5	trace	trace
70	0	0.750	0.0134
	0.01	0.530	0.00945
	0.04	0.225	0.00401
	0.0667	0.110	0.00196
	0.125	0.040	0.00071
	0.2	0.010	0.00018
	0.5	0.000	0.00000
100	0	0.540	0.00963
	0.01	0.350	0.00624
	0.04	0.140	0.00250
	0.0667	0.050	0.00089
	0.125	0.010	0.00018
	0.2	trace	trace
	0.5	0.000	0.00000
a Cal	culated by the comp	piler.	
	AUXII	LIARY INFORMATION	

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Calcium hydroxide was equilibrated with aqueous NaOH solution at a specified temperature by mechanical stirring for four hours. The cal- cium ion in the saturated solution was precipitated as calcium car- bonate by the addition of ammonium carbonate. The calcium carbonate was converted to calcium sulfate with sulfuric acid. NOTE: Bodlander, G.; Lucas, R. Z. Angew. Chem. 1905, 18, 1137 quote	Nothing specified.
the 50°C data above. They also	ESTIMATED ERROR:
present data on the reversibility of $CO_3^{2-}(aq) + Ca(OH)_2(s) =$ $CaCO_3(s)+2OH^{-}(aq)$.	No estimates possible.

	20
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Calcium hydroxide; Ca(OH) ₂ ;	Fratini, N.
[1305-62-0]	
	Ann. Chim. Appl. <u>1949</u> , 39, 616-20.
(2) Sodium hydroxide; NaOH;	
[1310-73-2]	
(2) Watare H O. (7722-10-5)	
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 293, 313	H. Einaga
$c_2/\text{mol } L^{-1} = 0 - 0.209$	I. Lambert
-	
EXPERIMENTAL VALUES	
	mucoug NoOH at 20 and 4010
	queous NaOH at 20 and 40°C
Sodium Hydroxide	Calcium Hydroxide
$t/^{\circ}C$ $c_2/\text{mol }L^{-1}$	$c_1/mol L^{-1}$
20 0	0.0210
0.0252 0.0525	0.0139 0.0092
0.0525	0.0050
0.1535	0.0035
0.2090	0.0026
40 0	0.0180
0.050	0.0071
0.1495	0.0025
AUXILIARY	INFORMATION
IETHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Calcium oxide was equilibrated with	(1) Calcium oxide. Analytical
aqueous NaOH solution at a	grade CaO was digested four
specified temperature by agitation.	days in boiling distilled water
The resulting saturated solutions	in order to obtain large crys-
were filtered, and the filtrate was	tals [ref 1].
analyzed for hydroxide ion by	
titration with standard HCl solu-	(2) Sodium hydroxide. Nothing
tion, and for calcium ion by titra- tion with a standard permanganate	specified.
solution after its separation as	(3) Water. Distilled.
the oxalate. The filtration and	
analytical procedures were carried	
out in the absence of atmospheric	ESTIMATED ERROR
carbon dioxide.	
	No estimate possible.
	REFERENCES.
	(1) Bassett, H.
	J. Chem. Soc. <u>1934</u> , 1270.

COMPONENTS :	·····	LODIOTIVAL MEACUDEWEN		
		ORIGINAL MEASUREMENTS:		
(1) Calcium Hydroxide; Ca(OH) ₂ ; [1305-62-0]		Maigret, E.		
(2) Sodium hydroxid [1310-73-2]	de; NaOH;	Bull. Soc. Chim	. Fr. <u>1905</u> , 631 - 4.	
(3) Sodium Chlorido [7647-14-5]	e; NaCl;			
(4) Water; H ₂ O; [7	732-18-5]			
VARIABLES:		PREPARED BY:		
Room Temperatur Concentrations of I		H. Einaga Y. Komatsu		
EXPERIMENTAL VALUES:		. I		
	f Ca(OH) ₂ in aqueo	ous NaOH + NaCl at	room temperature	
Sodium Hydroxide	Sodium Chloride	Calcium Oxide	Calcium Hydroxide	
/g L ⁻¹	/g L ⁻¹	/g L ⁻¹	$c_1/mol L^{-1}$	
0.8	0	0.8	0.014	
0.8	5	0.9	0.014	
0.8	10	1.0	0.018	
0.8	25	1.1	0.020	
0.8	50	1.25	0.0223	
0.8	75	1.4	0.025	
0.8	100	1.4	0.025	
0.8	125	1.3	0.023	
0.8	150 175	1.25 1.2	0.0223 0.021	
0.8	182	1.2	0.021	
0.8	200	1.1	0.020	
0.8	225	1.0	0.018	
0.8	250	0.9	0.016	
0.8	275	0.7	0.013	
0.8	300	0.7	0.013	
0.8	314	0.7	0.013	
4.0	0	0.22	0.0039	
4.0	75	0.55	0.0098	
4.0	150	0.44	0.0079	
4.0	300	0.22	0.0039	
The concentrat	tions of Ca(OH) ₂ W	ere calculated by	the compiler.	
	AUXILIARY 1			
METHOD/APPARATUS/PROCEDU		SOURCE AND PURITY OF		
Ca(OH) ₂ was equi aqueous solutions and NaCl. The res	librated with containing NaOH ulting saturated	(2) Sodium hydroxide. Decarbonated by addition of Ba(OH) ₂ .		
solutions were filtered, and the dissolved $Ca(OH)_2$ in the filtrate determined by titration with standard HCl solution using phenolphthalein as indicator.		Nothing else s	pecified.	
		COTINATED EDDOD		
		ESTIMATED ERROR:		
		Measurements are given by the author as approximate.		
		REFERENCES :		

	20
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium Hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Maigret, E.
<pre>(2) Sodium Chloride; NaCl; [7647-14-5]</pre>	Bull. Soc. Chim. Fr. <u>1905</u> , 631-4.
(3) Water; H ₂ O; [7732-18-5]	
JARIABLES:	PREPARED BY:
	H. Einaga
Room Temperature Concentrations of NaOH and NaCl	Y. Komatsu
EXPERIMENTAL VALUES:	
The solubility of $Ca(OH)_2$ in	aqueous NaCl at room temperature
Sodium Chloride Calci	um Oxide Calcium Hydroxide
/g L ⁻¹ /g I	$c_1 / \text{mol } L^{-1}$
	.4 0.025
	.7 0.030 .8 0.032
	.9 0.034
	.85 0.0330
	.7 0.030
	.65 0.0294
	.6 0.029
	.6 0.029 .55 0.0276
	.4 0.025
	.3 0.023
275 1	.2 0.021
	.1 0.020 .0 0.018
	Y INFORMATION
ETHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
$Ca(OH)_2$ was equilibrated with aqueous solutions containing NaCl. The resulting saturated solutions were filtered, and the dissolved $Ca(OH)_2$ in the filtrate determined by titration with standard HCl solution using phenolphthalein as indicator.	
	ESTIMATED ERROR:
	Measurements are given by the author as approximate.
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:		
 (1) Calcium hydroxide; Ca(OH)₂;	Johnston, J.; Grove, C.		
[1305-62-0] (2) Sodium chloride; NaCl;	J. Am. Chem. Soc. <u>1931</u> , 53,		
[7647-14-5] (3) Water; H₂O; [7732-18-5]	3976-91.		
VARIABLES:	PREPARED BY:		
T/K = 298	H. Einaga		
$m_2/mol kg^{-1} = 0 - 3.76$	Y. Komatsu		

EXPERIMENTAL VALUES:

NaCl m ₂ /mol kg ⁻¹	$\frac{\frac{Ca(OH)_{2}}{m_{1}/mol^{2}kg^{-1}}}{0.01976}$	
0		
0.012	0.02065	
0.064	0.02268	
0.121	0.02402	
0.366	0.02718	
0.763	0.02911	
1.21	0.02966	
1.75	0.02933	
2.15	0.02857	
2.24	0.02833	
2.81	0.02669	
3.76	0.02410	

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Well-defined crystals of Ca(OH) ₂ were equilibrated at 25 ± 0.02°C for 24 hours with aqueous sodium chloride solutions and protected from atmospheric CO ₂ . Ca(OH) ₂ in the saturated solutions was deter- mined by titration with standard HCl solution using phenolphthalein and/or methyl red as indicators, and NaCl was determined titrimetri- cally by the Mohr method.	 (1) Calcium hydroxide. Crystalline form (hexagonal pyramids) of highest purity was prepared by the mutual diffusion process of CaCl₂ and NaOH in aqueous solu- tion free of CO₂ (ref 1). Its purity was 99.92% but contained 0.075% (as NaCl) or 0.071% (as CaCl₂) impurity. (2) Sodium chloride. Chemically pure grade used after several recrystallizations from dis- tilled water. (3) Water. Distilled.
	Temp.: precision ± 0.02 K. Soly.: precision ± 0.4 % (compiler)
	REFERENCES :
	1. Johnston, J. J. Am. Chem. Soc. <u>1914</u> , 36, 6.

COMPONENTS :	ORIGINAL MEASUREMENTS:		
 (1) Calcium hydroxide; Ca(OH)₂;	Kilde, G.		
[1305-62-0] (2) Sodium chloride; NaCl;	Z. Anorg. Allg. Chem. <u>1934</u> , 218,		
[7647-14-5] (3) Water; H₂O; [7732-18-5]	113-28.		
VARIABLES:	PREPARED BY:		
T/K = 298	H. Einaga		
$c_2/mol L^{-1} = 0 - 0.121$	Y. Komatsu		

The solubility product of Ca(OH)₂ in aqueous NaCl at 25°C

NaCl	Ca (OH) 2	Ca ²⁺	CaOH ⁺	OH	Solubility Product
c ₂ /mol L ⁻¹	c ₁ /mol L ⁻¹	c/mol L ⁻¹	$c/mol L^{-1}$	c/mol L ⁻¹	10 ⁵ K ₅ 0/ (mol L ⁻¹) ³
0	0.01976	0.0146	0.0052	0.0343	18.1
0.012	0.02065	0.0154	0.0052	0.0360	19.9
0.064	0.02268	0.0176	0.0051	0.0402	28.5
0.121	0.02402	0.0188	0.0052	0.0428	34.4

The experimental data in columns 1 and 2 are from (ref 1).

The author calculated the concentrations of Ca^{2+} , $CaOH^+$, and OH^- ions from his study of the dissociation of $Ca(OH)_2$. He measured the solubility of $Ca(IO_3)_2$ in solutions of NaOH and $Ca(OH)_2$. By assuming that the small amount of IO_3^- dissolved is entirely ionized the dissociation of $Ca(OH)_2$ can be computed. See *Solubility Series* <u>1983</u>, 14, 99 and 102.

The thermodynamic solubility product, $K_{S0}^{\circ} = 5.47 \times 10^{-6}$, was calculated from K_{S0} values using activity coefficients of Ca(OH)₂, Ca²⁺, CaOH⁺, and OH⁻ (ref 2). The activity coefficient relations used were: log $f_{Ca2+} = 3 \log f_{Ca(OH)_2} = 2 \log f_{OH-}$,

 $\log f_{CaOH+} = -0.50 I^{0.5} + 0.1 I$, and

log $f_{C_{a(OH)2}} = -1.008 I^{0.5} + 0.90 I$, where I is ionic strength.

AUXILIARY INFORMATION .				
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
The author's experiment was the determination of the solubility of $Ca(IO_3)_2$ in the presence of NaCl and NaOH or NaCl and Ca(OH)_2. From his experiment he calculated the dissociation of Ca(OH)_2 which he then applied to the solubility data of Johnston and Grove (ref 1) to obtain the Ca(OH)_2 solubility product as described above.	See paper (ref 1) and data sheet in this volume of Johnston and Grove.			
	ESTIMATED ERROR:			
	<pre>REFERENCES: 1. Johnston, J.; Grove, C. J. Am. Chem. Soc. 1931, 53, 3976. 2. Bejurrum, N.; Unmack, A. Mat Fys. MeddK. Dan. Vidensk. Selesk. 1929, 9, 1.</pre>			

COMPONENTS.		ORIGINAL MEASUREMENTS:	
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>		Dschorbenadse, D.; Mosebach, R.; Nacken, R.	
<pre>(2) Sodium chloride; NaCl; [7647-14-5]</pre>		Zement <u>1942</u> , 31, 513-8.	
(3) Water; H ₂ O; [7732-18-5]			
ARIABLES:		PREPARED BY:	
T/K = 293		H. Einaga	
$m_2/mol kg^{-1} = 0 - 0.200$		I. Lambert	
XPERIMENTAL VALUES:			
The solubility of calcium	hvdroxide	in aqueous sodium chloride at 25 °C	
Sodium chloride	Calcium	oxide Calcium hydroxide	
$m_2/mol kg^{-1}$	∕g kg ⁻¹	m ₁ /mol kg ⁻¹	
0	1.240		
0.005 0.010	1.289		
0.020	1.343		
0.030	1.370		
0.040	1.378		
0.050	1.421	16 0.025350	
0.100	1.466	64 0.026148	
0.200	1.555	52 0.027732	
	AUXILIARY		
ETHOD/APPARATUS/PROCEDURE:		INFORMATION	
Nothing specified.		INFORMATION SOURCE AND PURITY OF MATERIALS:	
		SOURCE AND PURITY OF MATERIALS:	
		SOURCE AND PURITY OF MATERIALS:	
		SOURCE AND PURITY OF MATERIALS:	
		SOURCE AND FURITY OF MATERIALS: Nothing specified.	
		SOURCE AND FURITY OF MATERIALS: Nothing specified. ESTIMATED ERROR: No estimates possible.	
		SOURCE AND FURITY OF MATERIALS: Nothing specified. ESTIMATED ERROR:	
		SOURCE AND FURITY OF MATERIALS: Nothing specified. ESTIMATED ERROR: No estimates possible.	
		SOURCE AND FURITY OF MATERIALS: Nothing specified. ESTIMATED ERROR: No estimates possible.	

COMPONENTS :	ORIGINAL MEASUREME	NTS:	
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Komar, N. P.; Sinyuta, T.		
<pre>(2) Sodium chloride; NaCl; [7647-14-5]</pre>	*Zh. Fiz. Khim	. <u>1976</u> , 50, 2403-4.	
(3) Water; H ₂ O; [7732-18-5]	Russ. J. Phys. Transl.) <u>1976</u>		
VARIABLES:	PREPARED BY:		
T/K = 298 $c_2/mol L^{-1} = 0 - 3.0$		inaga omatsu	
۲			
EXPERIMENTAL VALUES: Solubility of Ca(OH) ₂	in aqueous NaCl	at 25°C	
Sodium Calcium	Sodium	Calcium	
Chloride Hydroxide		· · · · · ·	
$c_2/\text{mol } L^{-1}$ $c_1/\text{mol } L^{-1}$	<i>c₂/mol</i> L ⁻¹	c1/mol L ⁻¹	
0 0.0203	1.20	0.0291	
0.05 0.0222	1.50	0.0287	
0.10 0.0235	1.70	0.0284	
0.15 0.0245	2.00	0.0275	
0.25 0.0260	2.20	0.0272	
0.40 0.0272	2.50	0.0263	
0.50 0.0278 0.70 0.0286	2.70	0.0256	
0.70 0.0286 1.00 0.0290	3.00	0.0245	
$2H_2O = H_3O^+ + OH^-$; $Ca^{2+} + H_2O = CaOH^+ + H_3O^+$; $Ca(OH)_2(s) = Ca^{2+} + 2OH^-$. From the relations, $[Ca(OH)_2] = [Ca^{2+}] + [CaOH^+]$ and $2[Ca^{2+}] + [CaOH^+] = [OH^-]$, and using the activity coefficients of Ca^{2+} and OH^- calculated			
from the Debye-Huckel equation, log	$K_{s0} = -5.22 \pm 0.0$		
····	INFORMATION		
METHOD/APPARATUS/PROCEDURE: Ca(OH) ₂ was equilibrated with aqueous NaCl solution at 25.0 \pm 0.1°C by shaking for 2 h. The saturated aqueous phase was fil- tered, and the dissolved Ca(OH) ₂	was calcin	ydroxide. Prepared	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂ [1305-62-0]</pre>	Cabot, G. L.
<pre>(2) Sodium chloride; NaCl; [7647-14-5] or Potassium chloride; KCl; [7447-40-7]</pre>	J. Soc. Chem. Ind. London <u>1897</u> , 16, 417-9.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
<i>T/K</i> = 273, 288, 372 Concentration	H. L. Clever

EXPERIMENTAL VALUES:

+ /° C	Alkali Chlor	ide	CaO	$Ca(OH)_2$
t/°C	/g L ⁻¹	c ₂ /mol L ⁻¹	/g L ⁻¹	c ₁ /mol L
	Sodium chlo	ride		- <u></u>
0	0	0	1.36	0.0243
	30	0.51	1.813	0.0323
	60	1.03	1.909	0.0340
	120	2.05	1.86	0.0332
	240	4.11	1.37	0.0244
	320	5.48	1.054	0.0188
5	60	1.03	1.872	0.0334
7	60	1.03	1.861	0.0332
10	120	2.05	1.756	0.0313
15	0	0	1.31	0.0234
	30	0.51	1.703	0.0304
	60	1.03	1.824	0.0325
	120	2.05	1.722	0.0307
	240	4.11	1.274	0.0227
	320	5.48	0.929	0.0166
17	120	2.05	1.712	0.0305
99	0	0	0.635	0.0113
	30	0.51	0.969	0.0173
	60	1.03	1.004	0.0179
	120	2.05	1.015	0.0181
	240	4.11	0.771	0.0137
	320	5.48	0.583	0.0104
	Potassium	chloride		
0	0	0	1.36	0.0243
	30	0.40	1.701	0.0303
	60	0.80	1.725	0.0308
	120	1.61	1.718	0.0306
	240	3.22	1.248	0.0223
	sat	-	1.21	0.0216
15	0	0	1.31	0.0234
	30	0.40	1.658	0.0296
	60	0.80	1.674	0.0299
	120	1.61	1.606	0.0286
	240	3.22	1,199	0.0214
99	0	0	0.635	0.0113
	30	0.40	0.7883	0.0141
	60	0.80	0.8764	0.0156
	120	1.61	0.8938	0.0159
	240	3.22	0.6172	0.0110
	sat	-	0.5614	0.0100
le c/mol	L ⁻¹ values were nothing speci	e calculated by	the compiler.	us or procedur
icre wde	a and purity of	materials. No	error estima	tes were possib

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Johnston, J.; Grove, C.
(2) Sodium chlorate; NaClO ₃ ; [7775-09-9]	J. Am. Chem. Soc. <u>1931</u> , 53, 3976-91.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 m_2 /mol kg ⁻¹ = 0.189 - 4.56	H. Einaga Y. Komatsu
······································	

EXPERIMENTAL VALUES:		
Solubility of Ca(OH) ₂ i	n aqueous NaClO ₃ at 25°C	
$\frac{NaClO_3}{m_2/mol \ kg^{-1}}$	$\frac{\operatorname{Ca(OH)}_{2}}{m_{1}/\operatorname{mol}^{2}\operatorname{kg}^{-1}}$	
0	0.01976	
0.189	0.02466	
0.386	0.02643	
0.716	0.02755	
0.814	0.02765	
1.14	0.02776	
1.59	0.02731	
1.97	0.02618	
2.96	0.02352	
4.56	0.01899	
AUXILIARY INFORMATION		
AUXILIARY METHOD/APPARATUS/PROCEDURE: Well-defined crystals of Ca(OH), were equilibrated at 25 ± 0.02°C for 24 hours with aqueous sodium chlorate solutions and protected from atmospheric CO ₂ . Ca(OH) ₂ in the saturated solutions was deter- mined by titration with standard HCl solution using phenolphthalein and/or methyl red as indicators, and NaClO ₃ was determined gravime- trically for the dried residue as sulfate.	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Calcium hydroxide. Crystalline form (hexagonal pyramids) of highest purity was prepared by the mutual diffusion process of CaCl₂ and NaOH in aqueous solu- tion free of CO₂. Its purity was 99.92% but contained 0.075% (as NaCl) or 0.071% (as CaCl₂) impurity. (2) Sodium chlorate. Chemically pure grade used after several recrystallizations from dis- tilled water. (3) Water. Distilled. ESTIMATED ERROR: Temp.: precision ± 0.02 K. Soly.: precision ± 0.4 % (compiler)</pre>	
	REFERENCES :	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Johnston, J.; Grove, C. J. Am. Chem. Soc. 1931, 53,
(2) Sodium perchlorate; NaClO ₄ ; [7601-89-0]	3976-91.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 m_2 /mol kg ⁻¹ = 0.118 - 3.57	H. Einaga Y. Komatsu
EXPERIMENTAL VALUES:	

Solubility of Ca(OH) ₂ in	aqueous NaClO ₄ at 25°C
NaClO ₄ m ₂ /mol kg ⁻¹	$Ca(OH)_{m_1/mol^2kg^{-1}}$
0	0.01976
0.118	0.02325
0.399	0.02538
0.476	0.02562
0.776	0.02566
1.16	0.02479
1.58	0.02353
2.40	0.02046
3.57	0.01624

AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:			
Well-defined crystals of Ca(OH) ₂ were equilibrated at 25 ± 0.02°C for 24 hours with aqueous sodium perchlorate solutions and protected from atmospheric CO ₂ . Ca(OH) ₂ in the saturated solutions was deter- mined by titration with standard HCl solution using phenolphthalein and/or methyl red as indicators, and NaClO ₄ was determined gravime- trically for the dried residue.	 (1) Calcium hydroxide. Crystalline form (hexagonal pyramids) of highest purity was prepared by the mutual diffusion process of CaCl₂ and NaOH in aqueous solu- tion free of CO₂. Its purity was 99.92% but contained 0.075% (as NaCl) or 0.071% (as CaCl₂) impurity. (2) Sodium perchlorate. Chemically pure grade used after several recrystallizations from dis- tilled water. (3) Water. Distilled. ESTIMATED ERROR: Temp.: precision ± 0.02 K. Soly.: precision ± 0.4 % (compiler) REFERENCES: 		

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]	Johnston, J.; Grove, C.
<pre>(2) Sodium bromide; NaBr; [7647-15-6]</pre>	J. Am. Chem. Soc. <u>1931</u> , 53, 3976-91.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 $m_2/mol kg^{-1} = 0.189 - 2.90$	H. Einaga Y. Komatsu

	NaBr m ₂ /mol kg ⁻¹	Ca(OH) ₂ m ₁ /mol ² kg ⁻¹
	0	0.01976
	0.189	0.02485
	0.348	0.02641
	0.721	0.02805
	0.979	0.02847
	1.30	0.02841
	1.77	0.02780
	2.90	0.02478
	AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
Well-defined crystal were equilibrated at for 24 hours with ac bromide solutions a from atmospheric CO ₂ .	25 ± 0.02 °Č queous sodium and protected	(1) Calcium hydroxide. Cry form (hexagonal pyran highest purity was pre the mutual diffusion pr CaCl ₂ and NaOH in aqueo

IETHOD/APPARATUS/PROGEDURE:	SOURCE AND PURITY OF MATERIALS:
Well-defined crystals of $Ca(OH)_2$ were equilibrated at 25 ± 0.02°C for 24 hours with aqueous sodium bromide solutions and protected from atmospheric CO ₂ . Ca(OH) ₂ in the saturated solutions was deter- mined by titration with standard HCl solution using phenolphthalein and/or methyl red as indicators, and NaBr was determined titrimetri- cally by the Mohr method.	 Calcium hydroxide. Crystalline form (hexagonal pyramids) of highest purity was prepared by the mutual diffusion process of CaCl₂ and NaOH in aqueous solu- tion free of CO₂. Its purity was 99.92% but contained 0.075% (as NaCl) or 0.071% (as CaCl₂) impurity. Sodium bromide. Chemically pure grade used after several recrystallizations from dis- tilled water. Water. Distilled.
	ESTIMATED ERROR:
	Temp.: precision ± 0.02 K. Soly.: precision ± 0.4 % (compiler)
	REFERENCES:

ົ	4	<u> </u>
_		~

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Johnston, J.; Grove, C.	
(2) Sodium iodide; NaI; [7681-82-5]	J. Am. Chem. Soc. <u>1931</u> , 53, 3976-91 .	
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = 298 $m_2/mol kg^{-1} = 0.085 - 4.21$	H. Einaga Y. Komatsu	
EXPERIMENTAL VALUES:		
Solubility of Ca(OH) ₂	in aqueous NaI at 25°C	

NaI m ₂ /mol kg ⁻¹	$\frac{Ca(OH)_2}{m_1/mol kg^{-1}}$
0	0.01976
0.085	0.02261
0.159	0.02410
0.356	0.02590
0.605	0.02678
0.904	0.02702
1.33	0.02662
1.60	0.02605
1.83	0.02541
2.11	0.02466
2.86	0.02228
4.21	0.01871

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Well-defined crystals of $Ca(OH)_2$ were equilibrated at 25 ± 0.02°C for 24 hours with aqueous sodium iodide solutions and protected from atmospheric CO ₂ . Ca(OH) ₂ in the saturated solutions was determined by titration with standard HCI solution using phenolphthalein and/or methyl red as indicators, and NaI was determined titrimetri-	(1) Calcium hydroxide. Crystalline form (hexagonal pyramids) of highest purity was prepared by the mutual diffusion process of CaCl ₂ and NaOH in aqueous solu- tion free of CO ₂ . Its purity was 99.92% but contained 0.075% (as NaCl) or 0.071% (as CaCl ₂) impurity.
cally by the Volhard method.	(2) Sodium iodide. Chemically pure grade used after several recrystallizations from dis- tilled water.
	(3) Water. Distilled.
	ESTIMATED ERROR:
	Temp.: precision ± 0.02 K. Soly.: precision ± 0.4 % (compiler)
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]	Johnston, J.; Grove, C.
<pre>(2) Sodium nitrite; NaNO₂; [7632-00-0] (3) Water; H₂O; [7732-18-5]</pre>	J. Am. Chem. Soc. <u>1931</u> , 53, 3976-91.
VARIABLES: T/K = 298 $m_2/mol kg^{-1} = 0.252 - 5.82$	PREPARED BY: H. Einaga Y. Komatsu

EXPERIMENTAL VALUES:	
Solubility of Ca(OH) ₂ i	n aqueous NaNO ₂ at 25°C
NaNO ₂ m ₂ /mol kg ⁻¹	$\frac{Ca(OH)}{m_1/mol^2 kg^{-1}}$
0	0.01976
0.252	0.02665
0.455	0.02894
0.854	0.03127
1.30	0.03255
2.03	0.03321
2.90	0.03322
4.12	0.03204
5.82	0.02964
	INFORMATION .
AUXILIARY METHOD/APPARATUS/PROCEDURE: Well-defined crystals of Ca(OH) ₂ were equilibrated at 25 ± 0.02°C for 24 hours with aqueous sodium nitrite solutions and protected from atmospheric CO ₂ . Ca(OH) ₂ in the saturated solutions was deter- mined by titration with standard HCl solution using phenolphthalein and/or methyl red as indicators, and NaNO ₂ was determined gravime- trically for the dried residue as	 SOURCE AND PURITY OF MATERIALS: (1) Calcium hydroxide. Crystalline form (hexagonal pyramids) of highest purity was prepared by the mutual diffusion process of CaCl₂ and NaOH in aqueous solution free of CO₂. Its purity was 99.92% but contained 0.075% (as NaCl) or 0.071% (as CaCl₂) impurity. (2) Sodium nitrite. Chemically
sulfate.	pure grade used after several recrystallizations from dis- tilled water.
	(3) Water. Distilled.
	ESTIMATED ERROR:
	Temp.: precision \pm 0.02 K. Soly.: precision \pm 0.4 % (compiler)
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Johnston, J.; Grove, C.	
(2) Sodium nitrate; NaNO ₃ ; [7631-99-4]	J. Am. Chem. Soc. <u>1931</u> , 53, 3976-91.	
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = 298 $m_2/mol kg^{-1} = 0.176 - 4.72$	H. Einaga Y. Komatsu	
EXPERIMENTAL VALUES:		
Solubility of $C_2(OK)$ in amoong NaNO at 25°C		

$\frac{\text{NaNO}_3}{m_2/\text{mol kg}^{-1}}$	$\frac{Ca(OH)_{2}}{m_{1}/mol^{2}kg^{-1}}$
0	0.01976
0.176	0.02538
0.217	0.02592
0.351	0.02767
0.510	0.02915
0.838	0.03098
1.35	0.03230
1.76	0.03275
2.27	0.03274
2.81	0.03231
3.78	0.03079
4.72	0.02931

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Well-defined crystals of $Ca(OH)_2$ were equilibrated at 25 ± 0.02°C for 24 hours with aqueous sodium nitrate solutions and protected from atmospheric CO ₂ . Ca(OH) ₂ in the saturated solutions was deter- mined by titration with standard HCl solution using phenolphthalein and/or methyl red as indicators, and NaNO ₃ was determined gravime- trically for the dried residue as sulfate.	 Calcium hydroxide. Crystalline form (hexagonal pyramids) of highest purity was prepared by the mutual diffusion process of CaCl₂ and NaOH in aqueous solu- tion free of CO₂. Its purity was 99.92% but contained 0.075% (as NaCl) or 0.071% (as CaCl₂) impurity. Sodium nitrate. Chemically pure grade used after several recrystallizations from dis- tilled water. Water. Distilled.
	ESTIMATED ERROR:
	Temp.: precision \pm 0.02 K. Soly.: precision \pm 0.4 % (compiler)
	REFERENCES :

(1) Calcium hydroxide; Ca (OH) 2; (1305-62-0] (2) Sodium nitrate; NaNO ₃ ; (3) Water; H ₂ O; (7732-18-5) EXPERIMENTAL VALUES: Solubility of Ca (OH) 2 in aqueous NaNO ₃ r/*C NaNO ₃ Ca (OH) 2 r/*C NaNO ₃ Ca (OH) 2 r/*C NaNO ₃ Ca (OH) 2 0.5 0 0.0228 0 0.0228 0 0.0247 0.0252 0.0467 0.0252 0.0467 0.0252 0.0467 0.0252 0.0467 0.0359 4.87 0.0379 4.87 0.0379 4.87 0.0379 4.87 0.0379 4.87 0.0379 25 0 0.0527 0.0224 0.437 0.0320 4.87 0.0379 4.87 0.0379 25 0 0.0524 0.437 0.0286 0.447 0.0286 0.437 0.0289 50 0 0.0195 0.0181 0.0202 0.021 0.0201 0.0221 0.0201 0.0220 0.021 0.0201 0.0220 0.021 0.0201 0.0220 0.021 0.0195 0.0266 0.0147 0.164 0.0129 0.164 0.0129 0.164 0.0129 0.164 0.0129 0.164 0.0129 0.164 0.0129 0.164 0.0129 0.164 0.0129 0.227 0.00841 0.164 0.0129 0.164 0.0129 0.227 0.00841 0.164 0.0129 0.164 0.0129 0.165 0.00641 0.165 0.00737 150 0 0.00541 0.0257 0.00613 0.0257 0.00613 0.0257 0.00613 0.0257 0.00613 0.0257 0.00613 0.0257 0.00613 0.0052 0.00541 0.00552 0.00552 0.00552 0.00552 0.00552 0.00552 0.00552 0.00552 0.00552 0.00552 0.00552 0.00555 0.00552 0.00555	COMPONENTS :		ORIGINAL MEASUREMENTS:
(2) Sodium nitrate; NANO ₃ ; [731-99-4] (3) Water; H ₂ O; [7732-18-5] EXPERIMENTAL VALUES:		H) ₂ ;	Yeatts, L. B.; Marshall, W. L.
EXPERIMENTAL VALUES: Solubility of $Ca(OH)_2$ in aqueous NaNO ₃ $\frac{c/*C}{2/*C}$ NaNO ₃ Ca(OH) ₂ $\frac{v_2/aOl kg^{-1}}{v_2/aOl kg^{-1}}$ $\frac{v_1/mol kg^{-1}}{v_1/mol kg^{-1}}$ 0.5 0 0 0.0228 0.0027 0.0227 0.0227 0.0227 0.029 1.24 0.0379 1.24 0.0379 25 0 0.0527 0.0202 0.0527 0.0224 0.487 0.0380 4.87 0.0380 4.87 0.0320 4.87 0.0222 0.0527 0.0224 0.437 0.0266 0.437 0.0229 50 0 0 0 0.0195 0.0167 0.0195 0.0167 0.0195 0.0167 0.0221 0.442 0.0220 0.0524 0.432 0.0221 0.442 0.0220 0.0524 0.0221 0.0221 0.0221 0.0221 0.102 0.0221 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.103 0.0221 0.103 0.0221 0.104 0.013 0.022 0.116 0.013 0.023 0.125 0.013 2.33 0.0187 2.79 0.0187 2.79 0.0181 1.35 0.0187 2.79 0.0187 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(2) Sodium nitrate; NaNO3;		J. Phys. Chem. <u>1967</u> , 71, 2641-50.
EXPERIMENTAL VALUES: Solubility of $Ca(OH)_2$ in aqueous NaNO ₃ $\frac{c/*C}{2/*C}$ NaNO ₃ Ca(OH) ₂ $\frac{v_2/aOl kg^{-1}}{v_2/aOl kg^{-1}}$ $\frac{v_1/mol kg^{-1}}{v_1/mol kg^{-1}}$ 0.5 0 0 0.0228 0.0027 0.0227 0.0227 0.0227 0.029 1.24 0.0379 1.24 0.0379 25 0 0.0527 0.0202 0.0527 0.0224 0.487 0.0380 4.87 0.0380 4.87 0.0320 4.87 0.0222 0.0527 0.0224 0.437 0.0266 0.437 0.0229 50 0 0 0 0.0195 0.0167 0.0195 0.0167 0.0195 0.0167 0.0221 0.442 0.0220 0.0524 0.432 0.0221 0.442 0.0220 0.0524 0.0221 0.0221 0.0221 0.0221 0.102 0.0221 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.102 0.0221 0.103 0.0221 0.103 0.0221 0.104 0.013 0.022 0.116 0.013 0.023 0.125 0.013 2.33 0.0187 2.79 0.0187 2.79 0.0181 1.35 0.0187 2.79 0.0187 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(3) Water; H ₂ O; [7732-18-5]		
$ \frac{r/^{\circ}C}{0.5} \qquad \frac{NaNO_3}{m_2/m01 kg^{-1}} \qquad \frac{Ca(0B)_2}{m_1/m01 kg^{-1}} \\ \hline 0.5 \qquad 0 \qquad 0.0229 \\ 0 & 0.0228 \\ 0.0487 & 0.0226 \\ 0.0487 & 0.0226 \\ 0.0487 & 0.0226 \\ 0.0487 & 0.0300 \\ 0.412 & 0.0300 \\ 0.412 & 0.0300 \\ 4.87 & 0.0360 \\ 4.87 & 0.0379 \\ 4.87 & 0.0379 \\ 4.87 & 0.0379 \\ 4.87 & 0.0329 \\ 0.0527 & 0.0224 \\ 0.229 & 0.0224 \\ 0.229 & 0.0224 \\ 0.437 & 0.0228 \\ 0.437 & 0.0228 \\ 0.437 & 0.0228 \\ 0.6888 & 0.0320 \\ 4.72 & 0.0229 \\ 0.102 & 0.0229 \\ 0.102 & 0.0220 \\ 0.437 & 0.0228 \\ 0.632 & 0.0220 \\ 0.437 & 0.0228 \\ 0.632 & 0.0220 \\ 0.437 & 0.0228 \\ 0.6842 & 0.0229 \\ 0.0221 & 0.0229 \\ 0.102 & 0.0221 \\ 0.207 & 0.0220 \\ 0.201 & 0.0220 \\ 0.230 & 0.0241 \\ 0.642 & 0.0220 \\ 0.231 & 0.0109 \\ 0.0231 & 0.0109 \\ 0.0231 & 0.0109 \\ 0.0231 & 0.0109 \\ 0.0231 & 0.0109 \\ 0.0231 & 0.0109 \\ 0.0231 & 0.0109 \\ 0.0231 & 0.0109 \\ 0.0231 & 0.0109 \\ 0.0231 & 0.0109 \\ 0.0231 & 0.0109 \\ 0.0231 & 0.0109 \\ 0.0231 & 0.0109 \\ 0.0231 & 0.0109 \\ 0.0231 & 0.0109 \\ 0.0256 & 0.0147 \\ 0.16 & 0.0129 \\ 0.116 & 0.0129 \\ 0.116 & 0.0129 \\ 0.122 & 0.0131 \\ 1.35 & 0.0181 \\ 2.79 & 0.0131 \\ 2.79 & 0.0131 \\ 1.55 & 0 & 0.00737 \\ 150 & 0 & 0.00737 \\ 150 & 0 & 0.00737 \\ 150 & 0 & 0.00543 \\ 0.00756 \\ $			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Solubility	of Ca(OH)	2 in aqueous NaNO3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	t/°C	NaNO3 m2/mol kg	$Ca(OH)_{2}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.0226
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.87	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.87	0:0379
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.0320
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.72	0.0289
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50		0.0167
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.79	0.0233
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.104	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
2.33 0.0187 2.79 0.0181 4.71 0.0177 5.97 0.0170 125 0 0.00737 150 0 0.00543 0 0.00552 0.0257 0.00619 0.106 0.00756		0.834	0.0174
2.79 0.0181 4.71 0.0177 5.97 0.0170 125 0 0.00737 150 0 0.00543 0 0.00552 0.0257 0.00619 0.106 0.00756			
4.71 0.0177 5.97 0.0170 125 0 0.00737 150 0 0.00543 0 0.00552 0.0257 0.00619 0.106 0.00756			
5.97 0.0170 125 0 0.00737 150 0 0.00543 0 0.00552 0.0257 0.00619 0.106 0.00756			
150 0 0.00543 0 0.00552 0.0257 0.00619 0.106 0.00756			
0 0.00552 0.0257 0.00619 0.106 0.00756	125	0	0.00737
0 0.00552 0.0257 0.00619 0.106 0.00756	150	0	0.00543
0.106 0.00756			
		0.100	0.00750
I manufacture and the second second second second	· · · · · · · ·		
(continued on next page)	(continued on	next page	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Yeatts, L. B.; Marshall, W. L.
<pre>(2) Sodium nitrate; NaNO₃; [7631-99-4]</pre>	J. Phys. Chem. <u>1967</u> , 71, 2641-50.

(3) Water; H₂O; [7732-18-5]

EXI

t/°C	$MaNO_3$ m_2 /mol kg ⁻¹	Ca(OH) ₂ m ₁ /mol ² kg ⁻¹
150	0.205	0.00856
	0.415	0.00979
	0.840	0.0114
	2.243	0.0133
	4.71	0.0139
175	0	0.00401
200	0	0.00287
	0	0.00297
	0.0232	0.00348
	0.105	0.00456
	0.210	0.00518
	0.417	0.00633
	0.837	0.00779
	2.38	0.0104
	4.68	0.0124
225	0	0.00209
250	0	0.00146
200	ō	0.00142
	0.0225	0.00181
	0.103	0.00257
	0.106	0.00265
	0.216	
		0.00327
	0.256	0.00345
	0.416	0.00412
	0.513	0.00440
	0.846	0.00556
	1.30	0.00660
	2.25	0.00852
	2.70	0.00929
	4.62	0.0118
	6.29	0.0139
275	0	0.000909
300	0	0.000604
	0	0.000641
	0.0218	0.000946
	0.0545	0.00129
	0.107	0.00155
	0.122	0.00172
	0.207	0.00220
	0.308	0.00271
	0.425	0.00288
	0.542	0.00333
	0.838	0.00449
	1.41	0.00565
	2.17	0.00765
	2.77	0.00900
	4.65	0.0144
325	0	0.000317

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Yeatts, L. B.; Marshall, W. L.
(2) Sodium nitrate; NaNO ₃ ; [7631-99-4]	J. Phys. Chem. <u>1967</u> , 71, 2641-50.
(3) Water; H ₂ O; [7732-18-5]	

t/°C	NaNO ₃ m ₂ /mol kg ⁻¹	Ca(OH) ₂ m ₁ /mol ² kg ⁻¹
350	0	0.000197
	0	0.000192
	0.0250	0.000445
	0.116	0.000923
	0.232	0.00128
	0.235	0.00142
	0.461	0.00178
	0.549	0.00235
	0.875	0.00331
	0.878	0.00314
	2.27	0.00661
	2.34	0.00733
	4.81	0.0129
	4,91	0.0125

Solubility	product	as	a	function	of	temperature
------------	---------	----	---	----------	----	-------------

t/°C	K _{s0}
0	1.32 x 10 ⁻⁵
25	9.37 x 10 ⁻⁶
50	5.68 x 10^{-6}
75	3.05×10^{-6}
100	1.47×10^{-6}
150	2.68 x 10^{-7}
200	3.74 x 10 ⁻⁸
250	4.27 x 10 ⁻⁹
300	4.13 x 10^{-10}
350	1.08×10^{-11a}
350	3.51×10^{-11b}

aCalculated by equation I. ^bCalculated by equation II.

(continued on next page)

218	
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Yeatts, L. B.; Marshall, W. L.
(2) Sodium nitrate; NaNO ₃ ; [7631-99-4]	J. Phys. Chem. <u>1967</u> , 71, 2641-50.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 273 - 623 $m_2/mol kg^{-1} = 0 - 6.29$	H. Einaga Y. Komatsu I. Lambert
EXPERIMENTAL VALUES:	
The solubility product, K_{SO}^{*} , was ca cording to the following relation (eq	lculated from experimental data ac- uation I):
$K_{s0} = \log K_{s}$	$_0$ + 3log γ_{\pm} .
$\log \gamma_{\pm} = -2S\mu^{1/2}/(1$	$+ A\mu^{1/2}$) $- B\mu - C\mu^2$
is the extended Debye-Huckel equa solubility product at the ionic stren a mean activity coefficient of Ca ²⁺ Huckel slope for a 1:1 electrolyte derived constants.	gth μ (in molal units), γ_{\pm} signifies and OH ⁻ , S is the limiting Debye-
The following relation (equation II)	was deduced experimentally,
$\log K_{S0}^{\circ} = -25.7085 + 12.9722 \log(T/2)$	K) - 530.49/(T/K) - 0.0323310(T/K).
	INFORMATION
	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: For the two lower temperatures solid Ca(OH) ₂ was equilibrated with aqueous NaNO ₃ solution in Kel F 800 coated pyrex bottles at the desired temperature for 2 to 5 hours. At the higher temperatures special high pressure vessels were used (ref 1) and equilibration time was 22-64 hours. The resulting solutions were analyzed for Ca ²⁺ by com- plexometry and for NaNO ₃ + Ca(OH) ₂ by gravimetry after neutralization with HNO ₃ and evaporation to dry- ness.	 Calcium hydroxide. Reagent grade; in the 0.5 and 25°C ex- periments, the Ca(OH)₂ used was predigested at 250° for four hours. Sodium nitrate. Reagent grade. Water.
	ESTIMATED ERROR: The estimated error in the solu- bility data was calculated by the compilers to be less that 2% below 150°C; above this, it increased with temperature to 6% at 350°. REFERENCES:
	L. Marshall, W. L.; Jones, E. V. J. Phys. Chem. <u>1966</u> , 70, 4028.

COMPONENTS :		ORIGINAL MEASUREMENTS:
(1) Calcium hydroxide; Ca	(OH) ₂ ;	Johnston, J.; Grove, C.
[1305-62-0] (2) Sodium acetate; CH ₃ CC [127-09-3]	ONa;	J. Am. Chem. Soc. <u>1931</u> , 53, 3976-91.
(3) Water; H ₂ O; [7732-18-	•5]	
VARIABLES:		PREPARED BY:
T/K = 298 m_2 /mol kg ⁻¹ = 0.188 - 4.88	3	H. Einaga Y. Komatsu
EXPERIMENTAL VALUES: Solubility of	Ca(OH), in	aqueous CH ₃ COONa at 25°C
	OONa lol kg ⁻¹	$\frac{Ca(OH)_2}{m_1/mol_kg^{-1}}$
c)	0.01976
c	.188	0.02633
c	.588	0.03243
c	.692	0.03295
c	.972	0.03383
1	.01	0.03492
1	.67	0.03648
3	.26	0.03718
, 3	.64	0.03679
4	.88	0.03497
	······································	
	AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
Well-defined crystals of Ca(OH) ₂ were equilibrated at 25 ± 0.02 °C for 24 hours with aqueous sodium acetate solutions and protected from atmospheric CO ₂ . Ca(OH) ₂ in the saturated solutions was deter- mined by titration with standard HCl solution using phenolphthalein as indicator, and CH ₃ COONa was determined gravimetrically for the dried residue.		(1) Calcium hydroxide. Crystalline form (hexagonal pyramids) of highest purity was prepared by the mutual diffusion process of CaCl ₂ and NaOH in aqueous solu- tion free of CO ₂ . Its purity was 99.92% but contained 0.075% (as NaCl) or 0.071% (as CaCl ₂) impurity.
		 (2) Sodium acetate. Chemically pure grade used after several recrystallizations from dis- tilled water. (3) Water. Distilled.
		ESTIMATED ERROR: Temp.: precision ± 0.02 K. Soly.: precision ± 0.4 % (compiler)
		REFERENCES :

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Fratini, N.
<pre>(2) Potassium hydroxide; KOH; [1310-58-3]</pre>	Ann. Chim. Appl. <u>1949</u> , 39, 616-20.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 293, 313 $c_2/mol L^{-1} = 0 - 0.212$	H. Einaga
$c_2/\text{mol } L^{-1} = 0 - 0.212$	I. Lambert
EXPERIMENTAL VALUES: Solubility of Ca(OH) ₂ in a	aqueous KOH at 20 and 40°C
Potassium Hydrox:	ide Calcium Hydroxide
$t/^{\circ}C$ $c_2/mol L^{-1}$	c_1 /mol L ⁻¹
20 0	0.0210
0.0206	0.0152
0.0412 0.0746	0.0109 0.0068
0.1048	0.0049
0.1537 0.2120	0.0033 0.0027
0.2120	0.0027
40 0	0.0180
0.0200 0.0737	0.0123 0.0050
0.1012	0.0036
0.1977	0.0019
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Calcium oxide was equilibrated with aqueous KOH solution at a specified temperature by agitation. The resulting saturated solutions were filtered, and the filtrate was analyzed for hydroxide ion by	 (1) Calcium oxide. Analytical grade CaO was digested four days in boiling distilled water in order to obtain large crys- tals (ref 1).
titration with standard HCl solu- tion, and for calcium ion by titra-	(2) Potassium hydroxide. Nothing specified.
tion with standard permanganate solution after its separation as the oxalate. The filtration and	(3) Water. Distilled.
analytical procedures were carried out in the absence of atmospheric	
carbon dioxide.	ESTIMATED ERROR:
	No estimate possible.
	REFERENCES :
	1. Bassett, H. J. Chem. Soc. <u>1934</u> , 1270.

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Kernot, G.; d'Agostino, E.; Pellegrino, M.
<pre>(2) Potassium chloride; KCl; [7447-40-7]</pre>	Gazz. Chim. Ital. <u>1908</u> , 39 [I], 532-4.
(3) Water; H ₂ O; [7732-18-5]	
JARIABLES:	PREPARED BY:
T/K = 323 KCl/(mol/100 g) = 0 - 0.575	I. Lambert
EXPERIMENTAL VALUES: The solubility of Ca(OH) ₂ in aqueous KCl at 50°C
Potassium Chloride	Calcium Hydroxide
mol/100 g	mol/100 g
0 0.0236 0.0947 0.1894 0.2368 0.2841 0.3315 0.3552 0.5750	0.0029 0.0042 0.0045 0.0042 0.0038 0.0036 0.0033 0.0017
	INFORMATION
TETHOD/APPARATUS/PROCEDURE: Excess Ca(OH) ₂ was equilibrated with the KCl solution in a thermo- stat at 50°C for 72 hours with pe- riodic aggitation. The solution was filtered and the Ca(OH) ₂ analyzed by neutralizing a weighed sample with excess 0.1 mol L^{-1} HCl and back-titrating with 0.1 mol L^{-1} NaOH.	 SOURCE AND PURITY OF MATERIALS: (1) Calcium hydoxide. Prepared by calcination of CaCO₃. (2) Potassium chloride. Prepared by neutralization of KOH by HCl. Purified by repeated recrystallizations. (3) Water. Distilled. The fraction

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]	Johnston, J.; Grove, C.
(2) Potassium chloride; KCl; [7447-40-7]	J. Am. Chem. Soc. <u>1931</u> , 53, 3976-91.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 $m_2/mol kg^{-1} = 0.038 - 2.87$	H. Einaga Y. Komatsu

EXPERIMENTAL VALUES:

$\frac{\text{KCl}}{m_2/\text{mol kg}^{-1}}$	$\frac{\operatorname{Ca}(OH)}{m_1/\operatorname{mol}^2 \mathrm{kg}^{-1}}$
0	0.01976
0.038	0.02157
0.076	0.02273
0.264	0.02550
0.527	0.02708
0.989	0.02766
1.08	0.02768
1.28	0.02744
1.62	0.02696
1.96	0.02610
2.87	0.02351

-1			
-	METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
	Well-defined crystals of $Ca(OH)_2$ were equilibrated at 25 ± 0.02°C for 24 hours with aqueous potassium chloride solutions and protected from atmospheric CO ₂ . Ca(OH) ₂ in the saturated solutions was deter- mined by titration with standard HCl solution using phenolphthalein and/or methyl red as indicators, and KCl was determined titrimetri- cally by the Mohr method.	CaCl ₂ and NaOH in aqueous solu- tion free of CO ₂ (ref 1). Its purity was 99.92% but contained	
		Soly.: precision ± 0.02 K.	
		REFERENCES :	
		1. Johnston, J. J. Am. Chem. Soc. <u>1914</u> , 36, 6.	

COMPONENTS :				
	ORIGINAL MEASUREME	NTS:		
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Komar, N. P.;	Komar, N. P.; Vovk, S. I. *Zh. Fiz. Khim. <u>1977</u> , 51, 2037-40. Russ. J. Phys. Chem. (Engl. Transl.) <u>1977</u> , 51, 1189-91.		
(2) Potassium chloride; KCl;	*Zh. Fiz. Khim			
[7447-40-7]				
(3) Water; H ₂ O; [7732-18-5]				
ABLES: PREPARED BY:				
T/K = 298 $c_2/mol L^{-1} = 0 - 3.50$	= 298 $L^{-1} = 0 - 3.50$ H. Einaga Y. Komatsu			
EXPERIMENTAL VALUES:				
	(OH) ₂ in aqueous KCl a	at 25°C		
Potassium Calcium	Potassium	Calcium		
Chloride Hydroxi		Hydroxide		
$c_2/\text{mol L}^{-1}$ $c_1/\text{mol L}$	$c_2/\text{mol } L^{-1}$	$c_1/\text{mol } L^{-1}$		
0 0.0202		0.0268		
0.05 0.0223		0.0256		
0.10 0.0235		0.0256		
0.15 0.0242		0.0243		
0.25 0.0225 0.40 0.0263		0.0234 0.0225		
0.40 0.0263 0.50 0.0269		0.0208		
0.70 0.0271		0.0198		
1.00 0.0269		0.0180		
From the relations, $[Ca(OH)_2] = [OH^-]$, and using the activity c	oefficients of Ca ²⁺ a	nd OH ⁻ calculated		
from the Debye-Huckel equation,	$\log K_{s0} = -5.35 \pm 0.$	01.		
AUXI	LIARY INFORMATION	······		
TRUCE (LEPTER TRUE (DECORDINE)	COURCE AND DUDITES			
METHOD/APPARATUS/PROCEDURE: Ca(OH) ₂ was equilibrated w aqueous KCl solution at 25. 0.1°C by shaking for 2 h. saturated aqueous phase was tered, and the dissolved Ca(G was determined by titration w standard HCl solution us phenolphthalein indicator. procedures were carried out und nitrogen atmosphere. The pH of saturated solution was determ potentiometrically using a hydr electrode.	0 ± from reage The was calci fil- 1100°C, ar OH)2 in a Soxh with Ca(OH)2 for N2 atmosph All er a (2) Potassium grade. (3) Water. CO water (<2 ESTIMATED ERROR:	ydroxide. Prepared nt grade CaO. The CaO nated 1 h at 1000- id the product slaked ilet apparatus. The ormed was dried in a ere. a chloride. Reagent		

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Johnston, J.; Grove, C.
(2) Potassium bromide; KBr; [7758-02-3]	J. Am. Chem. Soc. <u>1931</u> , 53, 3976-91.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 $m_2/mol kg^{-1} = 0.162 - 3.24$	H. Einaga Y. Komatsu

EXPERIMENTAL VALUES:

Solubility of Ca(OH) ₂ in aqueous KBr at 25°C				
KBr m ₂ /mol kg ⁻¹	Ca (OH) 2 m ₁ /mol ² kg ⁻¹			
0	0.01976			
0.162	0.02404			
0.270	0.02509			
0.453	0.02608			
0.759	0.02669			
0.930	0.02670			
1.27	0.02636			
1.55	0.02596			
2.09	0.02441			
3.24	0.02058			

SOURCE AND PURITY OF MATERIALS:
CaCl ₂ and NaOH in aqueous solu- tion free of CO ₂ . Its purity was 99.92% but contained 0.075%
tilled water.
(3) Water. Distilled.
ESTIMATED ERROR:
Temp.: precision ± 0.02 K. Soly.: precision ± 0.4 % (compiler)
REFERENCES :

COMPONENTE	ODTOTNAL NEAGID DUDING
COMPONENTS: (1) Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]	ORIGINAL MEASUREMENTS: Johnston, J.; Grove, C.
(2) Cesium chloride; CsCl; [7647-17-8]	J. Am. Chem. Soc. <u>1931</u> , 53, 3976-91.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 $m_2/mol kg^{-1} = 0.073 - 3.55$	H. Einaga Y. Komatsu
EXPERIMENTAL VALUES: Solubility of Ca(C	DH) ₂ in aqueous CsCl at 25°C
CsCl m ₂ /mol kg ⁻¹	Ca (OH) 2 m1/mol kg ⁻¹
0	0.01976
0.073	0.02236
0.199	0.02451
0.537	0.02684
0.862	0.02724
1.25	0.02703
1.56	0.02647
3.55	0.02056
AUXII	JARY INFORMATION
METHOD/APPARATUS/PROCEDURE: Well-defined crystals of Ca(O were equilibrated at 25 ± 0.0 for 24 hours with aqueous ces chloride solutions and protec from atmospheric CO ₂ . Ca(OH) ₂ the saturated solutions was det mined by titration with stand HCl solution using phenolphthal and/or methyl red as indicato and CsCl was determined titrimet cally by the Mohr method.	SOURCE AND FURITY OF MATERIALS: H) ₂ (1) Calcium hydroxide. Crystalline 2°C form (hexagonal pyramids) of ium highest purity was prepared by ted the mutual diffusion process of in CaCl ₂ and NaOH in aqueous solu- er- tion free of CO ₂ . Its purity ard was 99.92% but contained 0.075% ein (as NaCl) or 0.071% (as CaCl ₂) rs, impurity.

COMPONENTS:

- (1) Calcium hydroxide; Ca(OH)₂;
 [1305-62-0]
- (2) Methanol; CH₄O; [67-56-1]
- (3) Water; H₂O; [7732-18-5]

ORIGINAL MEASUREMENTS: Janković, S. Rastvorljivost Nekih Soli Hidrokisida Zemnoalkalnih Metala u Sistemima Voda-Etil Alkohol i Voda-Metil Alkohol, i Struktura Takvih Zasicenih Rastvora. <u>Doctoral Dissertation</u>, Faculty of Pharmacy, Zagreb, <u>1958</u>.

- / • 0	Water	Methano	Methanol		Calcium hydroxide		
t/°C	mol %	mol % ^a	mass %	10 ⁵ w ₁	m ₁ /mmol kg ⁻¹		
25	96.0	4.0	6.9	129.0	17.4		
	90.9	9.1	15.1	109.8	14.8		
	86.1	13.9	22.3	95.0	12.8		
	82.3	17.7	27.7	81.8	11.0		
	78.0	22.0	33.4	70.8	9.56		
	73.5	26.5	39.1	59.8	8.08		
	68.0	32.0	45.6	47.8	6.45		
	62.4	37.6	51.7	39.5	5.33		
	59.3	40.7	55.0	34.7	4.69		
	56.7 50.0	43.3 50.0	57.6 64.0	31.0 24.7	4.19 3.33		
	44.3	55.7	69.1	19.8	2.67		
35	97.3	2.7	4.7	122.0	16.5		
	93.8	6.2	10.5	107.0	14.5		
	87.9	12.1	19.7	87.5	11.8		
	81.7	18.3	28.5	68.5	9.25		
	79.0	21.0	32.1	58.9	7.95		
	77.6 71.9	22.4 28.1	33.9 41.0	56.1 46.6	7.58 6.29		
	66.0 62.6	34.0 37.4	47.8 51.5	38.0 34.5	5.13 4.66		
	57.4	42.6	56.9	30.2	4.08		
	47.8	52.2	66.0	21.6	2.92		
	33.8	66.2	77.7	13.5	1.82		
	28.3	71.7	81.8	10.5	1.42		

^aCalculated by compiler.

(continued on next page)

EXPERIMENTAL VALUES: Composition of the saturated solution

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Janković, S. Doctoral Dissertation, Faculty of
(2) Methanol; CH ₄ O; [67-56-1] (3) Water; H ₂ O; [7732-18-5]	Pharmacy, Zagreb, <u>1958</u> .

	Water	Relative	Conductivity	Viscosity
t/°C mol %	mol %	Density d ²⁵ 	10 ⁵ κ/S cm ⁻¹	η/mPa s
25	96.0	0.9910	570	1.14
	90.9	0.9752	345	1.35
	86.1	0.9629	220	1.49
	82.3	0.9537	150	1.60
	78.0	0.9436	100	1.67
	73.5	0.9342	60	1.72
	68.0	0.9219	37	1.66
	62.4	0.9101	17.5	1.58
	59.3	0.9017	14	1.54
	56.7	0.8971	11.8	1.50
	50.0	0.8820	6.7	1.41
	44.3	0.8795	4.6	1.30
35	97.3	0.9915	630	0.91
	93.8	0.9805	478	0.99
	87.9	0,9628	300	1.16
	81.7	0.9502	205	1.25
	79.0	0.9437	170	1.30
	77.6 71.9	0.9410 0.9290	161 125	1.32 1.35
	66.0 62.6	0.9162 0.9093	96 83.9	1.33 1.30
	57.4	0.8990	71	1.24
	47.8	0.8732	40	1.13
	33.8	0.8429	22	0.99
	28.3	0.8300	19	0.93

(continued on next page)

```
228
COMPONENTS :
                                           ORIGINAL MEASUREMENTS:
  (1) Calcium hydroxide; Ca(OH);;
                                            Janković, S.
      [1305-62-0]
                                            Doctoral Dissertation, Faculty of
  (2) Methanol; CH<sub>4</sub>O; [67-56-1]
                                            Pharmacy, Zagreb, 1958.
  (3) Water; H<sub>2</sub>O; [7732-18-5]
VARIABLES:
                                           PREPARED BY:
          T/K = 298 - 308
 CH_AO mass \$ = 4.7 - 81.8
                                                       J. W. Lorimer
EXPERIMENTAL VALUES:
                                 AUXILIARY INFORMATION
                                           SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE:
 Salt and solution were stirred for
                                            (1) Calcium hydroxide. C. Erba,
 8 days in a thermostat. After
                                                pro analysi.
 equilibration, samples were removed
 for analysis through a pipet fitted
                                                              Chemapol (Prague),
                                            (2) Methanol.
 with a glass wool filter. Density
was measured using a pycnometer;
                                                pro analysi.
 the contents of which were then
                                            (3) Water. Redistilled.
 used for analysis of sulfate by
 volumetric or colorimetric methods.
 Viscosity was measured using a Vogel-Ossag viscometer and conduc-
 tivity with a Philips bridge (CM
 4249; average reading error 2 %)
                                           ESTIMATED ERROR:
 and dip cell.
                                             Temp.: precision within ± 0.05 K.
                                             Soly .: no estimates possible.
                                           REFERENCES:
```

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Janković, S. Rastvorljivost Nekih Soli i Hidrokisida Zemnoalkalnih Metala u
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	Sistemima Voda-Etil Alkohol i Voda-Metil Alkohol, i Struktura Takvih Zasicenih Rastvora. <u>Doctoral</u> <u>Dissertation</u> ,
(3) Water; H ₂ O; [7732-18-5]	Faculty of Pharmacy, Zagreb, <u>1958</u> .

EXPERIMENTAL VALUE Composition of the saturated solution at 25°C

Water Ethanol			Calcium hydroxide	
mol %	mol % ^a	mass &	10 ⁵ w ₁	m ₁ /mmol kg ⁻¹⁸
95.8	4.2	10.1	73.5	9.93
91.9	8.1	18.4	47.0	6.35
86.7	13.3	28.2	26.7	3.60
82.4	17.6	35.3	17.9	2.42
76.2	23.8	44.4	11.0	1.48
70.1	29.9	52.2	6.1	0.82
64.9	35.1	58.0	4.1	0.55
57.2	42.8	65.7	2.0	0.27
47.9	52.1	73.6	1.1	0.15
23.8	76.2	89.1	0.1	0.01

^aCalculated by compiler.

Properties of the saturated solution at 25°C

Water	Relative	Conductivity	Viscosity
mol %	Density d ²⁵ 	$10^5 \kappa/S \text{ cm}^{-1}$	η/mPa s
95.8	0.9891	335	1.52
91.9	0.9721	172	1.82
86.7	0.9564	68.9	2.26
82.4	0.9460	36.9	2.43
76.2	0.9249	15.5	2.44
70.1	0.9101	6.6	2.42
64.9	0.898	3.0	2.38
57.2	0.8801	1.2	2.27
47.9	0.8585	0.43	2.03
23.8	0.8212	0.13	1.54

(continued on next page)

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Janković, S.
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	<u>Doctoral Dissertation</u> , Faculty of Pharmacy, Zagreb, <u>1958</u> .
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298	
C_2H_60 mass $% = 10.1 - 89.1$	J. W. Lorimer
EXPERIMENTAL VALUES:	
ΑΪΙΥΤΙ ΤΑΡΥ	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Salt and solution were stirred for 8 days in a thermostat. After equilibration, samples were removed for analysis through a pipet fitted with a glass wool filter. Density was measured using a pycnometer; the contents of which were then used for analysis of sulfate by volumetric or colorimetric methods. Viscosity was measured using a Vogel-Ossag viscometer and conduc- tivity with a Philips bridge (CM 4249; average reading error 2 %) and dip cell.	 (1) Calcium hydroxide. C. Erba, pro analysi. (2) Ethanol. C. Erba, anhydrous, 99.9 - 100 % pure, density 0.795. (3) Water. Redistilled.
and utp cett.	Temp.: precision within \pm 0.05 K.
	Soly.: no estimates possible.
	REFERENCES :

COMPONENTS:		
	ORIGINAL MEASUREMEN	TS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Herz, W.; Knoch	-
<pre>(2) 1,2,3-Propanetriol (glycerol); C₃H₈O₃; [56-81-5]</pre>	Z. Anorg. Chem.	<u>1905</u> , 46, 193-6.
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = 298 Glycerol/mass % = 0 - 69.2	H. L.	Clever
EXPERIMENTAL VALUES:		****
The solubility of Ca(OH) ₂	in aqueous glycer	ol at 25°C
1,2,3-Propanetriol (1/2)	Ca (OH) 2	Ca(OH) ₂
mass % c1/mm	ol (100 mL sln) ⁻¹	$c_1/\text{mol } L^{-1}$
0	4.3	0.0215
7.15	8.13	0.0402
20.44	14.9	0.0745
31.55	22.5	0.1125
40.95	40.1	0.200 ₅
48.7	44.0	0.220
69.2	95.8	0.479
·····	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY O	F MATERIALS:
·····	SOURCE AND PURITY O	F MATERIALS:
METHOD/APPARATUS/PROCEDURE: The water + glycerol mixed solvent was saturated with Ca(OH) ₂ at 25°C. The dissolved Ca(OH) ₂ was deter- mined by titration with a strong	SOURCE AND PURITY O	
METHOD/APPARATUS/PROCEDURE: The water + glycerol mixed solvent was saturated with Ca(OH) ₂ at 25°C. The dissolved Ca(OH) ₂ was deter- mined by titration with a strong acid. Solution specific gravities, Sp Gr ²⁵ , were given. They are 1.003, 1.0244, 1.0537, 1.0842, 1.1137, 1.1356 and 1.2072 as the glycerol	SOURCE AND PURITY O	
METHOD/APPARATUS/PROCEDURE: The water + glycerol mixed solvent was saturated with Ca(OH) ₂ at 25°C. The dissolved Ca(OH) ₂ was deter- mined by titration with a strong acid. Solution specific gravities, Sp Gr ²⁵ , were given. They are 1.003, 1.0244, 1.0537, 1.0842, 1.1137, 1.1356 and 1.2072 as the glycerol	SOURCE AND PURITY ON Nothing	
METHOD/APPARATUS/PROCEDURE: The water + glycerol mixed solvent was saturated with Ca(OH) ₂ at 25°C. The dissolved Ca(OH) ₂ was deter- mined by titration with a strong acid. Solution specific gravities, Sp Gr ²⁵ , were given. They are 1.003, 1.0244, 1.0537, 1.0842, 1.1137, 1.1356 and 1.2072 as the glycerol	SOURCE AND PURITY ON Nothing	; specified.
METHOD/APPARATUS/PROCEDURE: The water + glycerol mixed solvent was saturated with Ca(OH) ₂ at 25°C. The dissolved Ca(OH) ₂ was deter- mined by titration with a strong acid. Solution specific gravities, Sp Gr ²⁵ , were given. They are 1.003, 1.0244, 1.0537, 1.0842, 1.1137, 1.1356 and 1.2072 as the glycerol	SOURCE AND PURITY O Nothing ESTIMATED ERROR: No estima	; specified.
METHOD/APPARATUS/PROCEDURE: The water + glycerol mixed solvent was saturated with Ca(OH) ₂ at 25°C. The dissolved Ca(OH) ₂ was deter- mined by titration with a strong acid. Solution specific gravities, Sp Gr ²⁵ , were given. They are 1.003, 1.0244, 1.0537, 1.0842, 1.1137, 1.1356 and 1.2072 as the glycerol	SOURCE AND PURITY O Nothing ESTIMATED ERROR: No estima	; specified.
METHOD/APPARATUS/PROCEDURE: The water + glycerol mixed solvent was saturated with Ca(OH) ₂ at 25°C. The dissolved Ca(OH) ₂ was deter- mined by titration with a strong acid. Solution specific gravities, Sp Gr ²⁵ , were given. They are 1.003, 1.0244, 1.0537, 1.0842, 1.1137, 1.1356 and 1.2072 as the glycerol	SOURCE AND PURITY O Nothing ESTIMATED ERROR: No estima	; specified.

COMPONENTS :		ORIGINAL MEASUREMENTS:
(1) Calcium hydroxide; Ca(OH) [1305-62-0]	2'	Cameron, F. K.; Pattern, H. E.
(2) 1,2,3-Propanetriol or gly C ₃ H ₈ O ₃ ; [56~81-5]	cerol;	J. Phys. Chem. <u>1911</u> , 15, 67-72.
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:		PREPARED BY:
T/K = 298 $C_3H_8O_3/mass \ \ = 0 - 55.04$		I. Lambert
EXPERIMENTAL VALUES:		
	9 (OH) . 1	n aqueous glycerol at 25°C
C ₃ H ₈ O ₃	Ca (OH) ₂ Solution
mass %	mass	Density % ρ/g cm ⁻³
0	0.11	
3.30	0.17	
15.59 17.84	0.41	
34.32	0.48 0.88	_
55.04	1.34	
Solid phage accured	to be C	a (OV)
Solid phase assumed		$(0n)_2$
	$a(OH)_2$ in	n water is from Cameron
and Bell (ref 1).	-	
JA	UXILIARY I	NFORMATION
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
No details are given. Method	i must	
be the same as in the case of	of the	Nothing specified.
Ca(OH) ₂ + sucrose + H ₂ O sy See that data sheet from	this	
paper.		
		ESTIMATED ERROR:
		No estimates possible.
	[1	REFERENCES :
		1. Cameron, F. K.; Bell, J. M.
		Bull. No. 49, <u>1907</u> , Bureau of
		Soils, US Department of Agriculture.
	ļ	

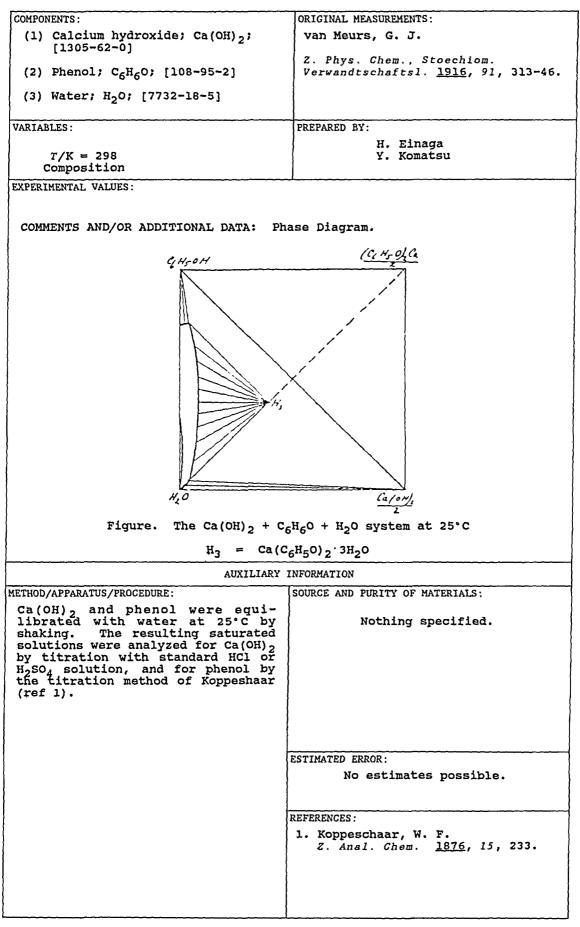
		23	
OMPONENTS :	ORIGINAL MEASUREMEN	NTS:	
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Belkin, D. J.;	Belkina, N. V.	
<pre>(2) Sodium hydroxide; NaOH; [1310-73-2]</pre>	Zh. Prikl. Khin 49, 1875-7.	Zh. Prikl. Khim. (Leningrad) <u>1977</u> , 49, 1875-7.	
(3) Calcium formate; Ca(HCOO) ₂ ; [544-17-2]	J. Appl Chem. <u>1977</u> , 49, 1882-	USSR (Engl. Transl.) -4.	
(4) Formaldehyde; CH ₂ O; [50-00-0]	1		
(5) Water; H ₂ O; [7732-18-5]			
ARIABLES:	PREPARED BY:	A	
T/K = 298 $c_2, c_3, \text{ and } c_4$	H. Ej I. La	lnaga ambert	
XPERIMENTAL VALUES: Solubility of calcium hydro: hydroxide, calcium for	xide in an aqueous mi mate, and formaldehy	ixture of sodium de at 25°C	
Formaldehyde Calcium formate	Sodium hydroxide		
$c_4/\text{mol } L^{-1}$ $c_3/\text{mol } L^{-1}$	c ₂ /mol L ⁻¹	c ₁ /mol L ⁻¹	
1.0 0.1 1.0 0.2 6.1 0.3	0 0 0	0.06 0.05 0.08	
1.4 0 2.4 0 4.8 0 3.6 0 3.6 0	0.54 0.08 0.92 0.5 0	0.01 0.17 0.05 0.08 0.23	
2.4 0.1 2.4 0.1	0.5	trace 0.11	
1.8 0.35 1.8 0.35	0.5 0	trace 0.08	
AUXIL ETHOD/APPARATUS/PROCEDURE: An aqueous solution of calcium for mate, formaldehyde, and sodi hydroxide was equilibrated wi excess calcium hydroxide for 10- minutes at 25 ± 0.5°C. Samples the resulting saturated soluti were analyzed for calcium ion by gravimetric method, for calci hydroxide by a neutralizati titration method, and for the for maldehyde by using hydroxylamin The pH of the solution was measur with a glass electrode.	ium grade. ith -15 (2) Sodium hyd of pure. ion y a (3) Calcium fo ium pure. ion or- (4) Formaldeh ne. tilled, fre	droxide. Analytical droxide. Chemically ormate. Chemically yde. Freshly dis- ee of methanol.	

```
234
```

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	van Meurs, G. J.
(2) Phenol; C ₆ H ₆ O; [108-95-2]	Z. Phys. Chem., Stoechiom. Verwandtschaftsl. <u>1916</u> , 91, 313-46.
(3) Water; H ₂ O; [7732-18-5]	

EXPERIMENTAL VALUES:

The system $Ca(OH)_2 + C_6H_6O + H_2O$ at 25°C


Phenol	Calcium Hydroxide	Solid
	$(1/2) Ca (OH)_{2}$	Phase
mol %	mol %	
0.40	0.46	A
1.25	1.35	А
2.11	2.19	A
2.63	2.63	A + B
4.82	4.20	В
7.65	5.16	в
11.03	6.12	в
12.41	6.47	В
16.72	6.95	B
25.19	7.79	В
30.26	8.67	в
35.56	8.30	В
38.38	8.21	В
53.19	7.56	в
68.25	4.08	В
75.25	3.60	B + C
74.06	1.38	с
74.27	0	С

Solid Phases:

A Ca(OH)₂

B Ca(C₆H₅O)₂·3H₂O

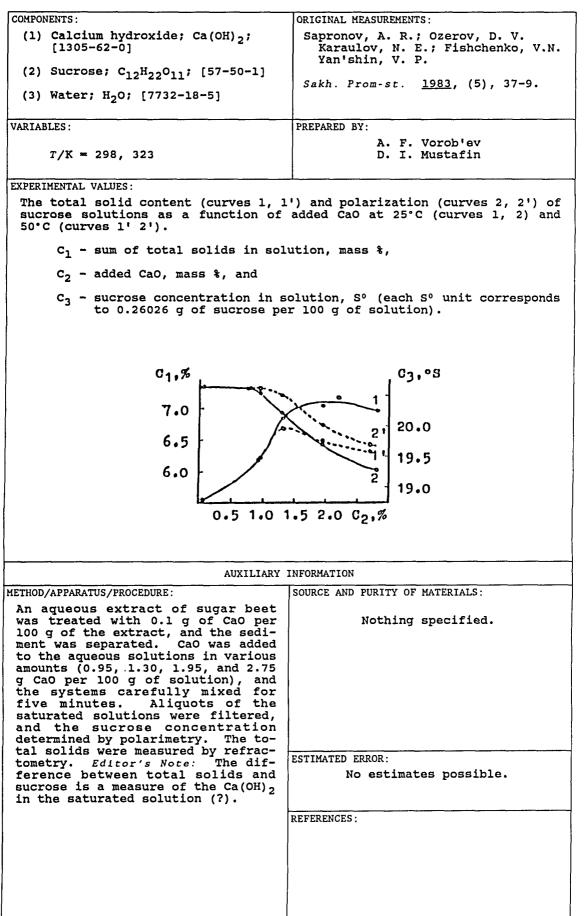
с с₆н₆о

2	3	6

COMPONENTS :		ORIGINAL MEASUREMENTS:		
(1) Calcium hy [1305-62-0	droxide; Ca(OH) ₂ ;]	Weisberg, J.		
(2) Sucrose; C ₁₂ H ₂₂ O ₁₁ ; [57-50-1]		Bull. Soc. Chim. Fr. <u>1899</u> , 21, 773-6.		
(3) Water; H ₂ O	; [7732-18-5			
ADTARTES.				
VARIABLES:	200	PREPARED BY:		
T/K = 288- Sucrose/g (100 0.625-16.41		I. Lambert		
EXPERIMENTAL VALUES				
The sol	ubility of Ca(OH) ₂ in	aqueous sucrose at 15	to 17°C	
	Sucrose	Calcium Oxide	Calcium Hydroxide	
t/°C	/g (100 mL sln) ⁻¹	/g (100 g sucrose) ⁻¹	c1/mol L ⁻¹	
16 -	0.7814	37.9	0.0529	
17	0.912	32.3	0.0529	
	1.400	30.5	0.0763	
	1.693	28.9	0.0874	
	4.754 5.73	27.7 27.1	0.235	
	10.159	27.5	0.278 0.499	
	11.2	27.2	0.544	
	12.5	27.3	0.609	
	13.93	27.9	0.694	
	14.487	27.5	0.711	
	16.41	28	0.820	
15	0.625	71.6	0.0799	
	0.964	53.4	0.0919	
	2.084	36	0.134	
	3.028	32.3	0.175	
	3.451	31.7	0.195	
	4.168	30.2	0.225	
	4.880	28.7	0.250	
	5.73	28.3	0.290	
	6.12	27.4	0.299	
	6.25 6.51	27.7 27.5	0.309	
	7.55	27.9	0.320 0.376	
	8.20	27.3	0.400	
			······································	
In the s was grea	second series of measur ater than in the first	cements (15°C) the exc series (16-17°C).	cess of CaO	
The Ca(C	OH) ₂ concentrations wer	e calculated by the c	compiler.	
······································	AUXILIARY	INFORMATION	<u>,</u>	
ETHOD/APPARATUS/PR	OCEDURE :	SOURCE AND PURITY OF MAT	ERIALS:	
	sks containing the	No details		
mixture staved	d for a "long" (not at ambient tempera-		9270111	
	shaken from time to	1		
	cal methods were not			
described.		1		
		}		
		ESTIMATED ERROR:		
		No estimate p	possible.	

	2
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Cameron, F. K.; Pattern, H. E.
(2) Sucrose; $C_{12}H_{22}O_{11};$ [57-50-1]	J. Phys. Chem. <u>1911</u> , 15, 67-72.
(3) Water; H ₂ O; [7732-18-5]	
/ARIABLES:	PREPARED BY:
T/K = 298 Sucrose/mass $% = 0 - 19.86$	I. Lambert
EXPERIMENTAL VALUES:	
The solubility of Ca(OH)	2 in aqueous sucrose at 25°C
C ₁₂ H ₂₂ O ₁₁ Ca	(OH) ₂ Solution Density
mass % mas	$s \ \rho/g \ cm^{-3}$
0 0.	117 0.983
0.62 0.	188 1.008
	73 1.021
	355 1.037
	31 1.051 21 1.067
	57 1.092
	38 1.109
	07 1.123
mother liquid and solid. is either Ca(OH) ₂ or a se containing Ca(OH) ₂ .	
mother liquid and solid. is either $Ca(OH)_2$ or a se	satisfactory separation of The authors state the solid ries of solid solutions
mother liquid and solid. is either Ca(OH) ₂ or a secontaining Ca(OH) ₂ . The solubility of Ca(OH) ₂ and Bell (ref 1).	satisfactory separation of The authors state the solid ries of solid solutions
mother liquid and solid. is either Ca(OH) ₂ or a secontaining Ca(OH) ₂ . The solubility of Ca(OH) ₂ and Bell (ref 1).	satisfactory separation of The authors state the solid ries of solid solutions in water is from Cameron Y INFORMATION
mother liquid and solid. is either Ca(OH) ₂ or a secontaining Ca(OH) ₂ . The solubility of Ca(OH) ₂ and Bell (ref 1).	satisfactory separation of The authors state the solid ries of solid solutions in water is from Cameron Y INFORMATION SOURCE AND PURITY OF MATERIALS: Nothing specified.

```
238
```


COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Von Ginnekin, P. J. M.
	Versl. Gewone Vergad. Wis
(2) Sucrose; C ₁₂ H ₂₂ O ₁₁ ; [57-50-1]	Natuurk., Afd. K. Akad. Wet.
(3) Water; H ₂ O; [7732-18-5]	Amsterdam <u>1911</u> , 20, 442-61.
VARIABLES:	PREPARED BY:
T/K = 353 Sucrose/mass % = 4.9 - 29.70	I. Lambert
-	
EXPERIMENTAL VALUES: The solubility of Ca(OH) ₂	in aqueous sucrose at 80°C
с ₁₂ н ₂₂ о ₁₁ с	aO Solid
mass % m	Phase ass %
4.9	0.117 (0.404)
9.9	0.117 Ca (OH) ₂ 0.189 Ca (OH) ₂
14.75	0.230 $Ca(OH)_{2}^{-}$
19.50	0.358 Ca(OH) 2
24.60 29.70	0.548 Ca (OH) 2 1.017 Ca (OH) 2
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A solution of 5 g of $Ca(OH)_2$ in 10	
g of water, and a solution of sucrose of the desired concentra- tion are heated separately at 80°C in a thermostat. When temperature equilibrium is established the solutions are mixed with care to see that no cooling occurs. The resulting solution was shaken several hours in the thermostat. The time necessary for equilibrium was checked by performing experi-	Nothing specified.
ments of 4, 8, and 24 hours shaking time. After 8 hours no change in composition occured.	ESTIMATED ERROR: Temp.: ± 0.2°C (precision)
Samples were filtered through a cotton wool plug, and analyzed for Ca(OH) ₂ by acidimetry with phenolphthalein as indicator, and for sucrose by polarimetry.	Soly.: ± 0.01 (compiler estimate) REFERENCES:

COMPONENTS :			ORIGINAL MEASUREMENTS:
(1) Calcium hy [1305-62-0		⁾ ;	Fuchs, P.
(2) α-D-Glucop	yranoside, β- nosyl (sucros		Ber. Dtsch. Chem. Ges. B <u>1929</u> , 62, 1535-8.
(3) Water; H ₂ C	; [7732-18-5]		
VARIABLES:	<u> </u>		PREPARED BY:
T/K = 290 Sucrose concen			H. Einaga I. Lambert
EXPERIMENTAL VALUES	5:	<u> </u>	
	Solubility d		<pre>precipitated Ca(OH)₂ se at 17.0-17.5 °C</pre>
	Sucrose	Calo	cium Hydroxide
	g/100 cm ³ sln.	g/100 cm sln.	$c_1/\text{mol } L^{-1}$
	0	0.304	0.0410
	0.10	0.452 0.545	0.0610 0.0736
	0.30	0.671	0.0906
	0.40 0.50	0.785 0.871	0.106 0.118
	0.60	0.915	
	0.70	0.943	0.127
	0.90	0.926	0.125
	1.20 1.40	0.911 0.893	0.123 0.121
	1.50	0.882	0.119
	1.60	0.900	0.122
	1.70	0.904	0.122
	2.10 2.50	1.193 1.559	0.1610 0.2104
	The calcium I calculated by		concentrations were piler.
		AUXILIARY I	INFORMATION
1ETHOD/APPARATUS/PF	OCEDURE		SOURCE AND PURITY OF MATERIALS
		of known	
Aqueous sucros concentration stoichiometric CaCl ₂ soluti precipitated librated with 17.5 °C with periods of sh solid Ca(OH) ₂ the filtrate t HCl solution indicator to solved Ca(OH) ₂	n were mixe amounts of M ons. The S Ca(OH) 2 was the solution a frequent five was filtered was filtered itrated with using methyl determine th	ed with NaOH and freshly s equi- at 17.0- e minute excess off, and standard orange he dis-	No description, but analytical reagent grade CaCl ₂ and NaOH were probably used.
of NaCl in	the soluti	ons is	ESTIMATED ERROR:
unknown.			Temp: range given as 17.0 to 17.5 °C.
			Soly.: No estimates possible.

```
240
```

COMPONENTS -	······	<u></u>	ORIGINAL MEASUE	DEMENTS .
COMPONENTS:	ım hydroxide;	Ca (OH)		.; Van Gelder, D. W.
(1) Calent [1305-		ca (on) 2	Letiners, M	·, van Getuer, D. W.
(2) Sucrose; C ₁₁ H ₂₂ O ₁₁ ; [57-50-1]		Recl; . Trav	. Chim. Pays-Bas <u>1932</u> ,	
		51, 253-9.		
(3) water;	H ₂ 0; [7732-)	18-2]		
ARIABLES:	· · · · · · · · · · · · · · · · · · ·		PREPARED BY:	
T/K =	285, 298, and	1 318	I	. Lambert
Con	position			
EXPERIMENTAL				
	The CaO + C_1	$2^{H_{22}O_{11}} + H_{2}O_{12}$	system betwee	en 12 and 45°C
-		Sucrose	Calcium Oxide	Solid
				Phase
	t/°C	mass %	mass %	
	12	0	0.137	A
	±6	9.8	1.99	A
		18.7	4.75	A
		29.2	8.50	A
				_
		32.4	8.08	B
		38.6	8.01	B
		40.6	7.50	B
		45.1	7.1	В
	25	0	0.122	А
	20	2.1	0.242	A
		4.2	0.461	A
		6.6	0.750	A
		8.6	1.11	А
		11.8	1.86	A
		15.4	2.76	A
		21.1	4.53	A
		27.2	6.72	A
		31.4	8.39	A
		35	10.10	В
		36.2	9.80	B
		4.3.7	8.84	В
		53.2	7.87	B
		68.3	4.08	с
	45	0	0 100	2
	40	0 9.93	0.102 1.02	A A
		20.0	3.19	A
		30.6	6.10	A
		40.8	9.50	A
			· ··	_
		45.3 58.3	9.54 8.0	B B
S	olid Phases:	A Ca(OH) -;	B Calcium sacc	harate of un-
	•		ition; C Sucr	
		· · · · · · · · · · · · · · · · · · ·		······
		AUXILIARY	INFORMATION	
ETHOD/APPARAT		L .	SOURCE AND PURIT	
	s shaken with			hydroxide. Prepared by
	for several ce given abo		water.	on of CaO by excess
perature c		er decanta-	water.	
LOTACATE C	nples were	removed by	Nothing	further specified.
tion, sam				
tion, sam aspiratio	on, and Ca	(Un) ₂ was		
aspiration titrated	with stand	lard acid.	ESTIMATED ERROR:	
aspiration titrated	with stand was ana	lard acid.		imates possible.

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Bugaenko, I. F.; Samoilova, T. H.
(2) α-D-Glucopyranoside, β-D- fructofuranosyl (sucrose); C ₁₂ H ₂₂ O ₁₁ ; [57-50-1]	Sakh. Prom-st. <u>1981</u> , (1), 27-8.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 293, 343	A. F. Vorob'ev D. I. Mustafin
EXPERIMENTAL VALUES:	J
Solubility of calcium	oxide in aqueous sucrose
Content of dry remainder in t/°C solution	Calcium oxide solubility
•	CaO CaO
mass %	g/100 ml c/mol L ⁻¹
20 41	1.794 0.3199
45	1.718 0.3064
49 56	1.446 0.2578 1.128 0.2011
70 35 41	2.630 0.4690 2.513 0.4481
45	2.445 0.4360
49 56	1.854 0.3306 1.469 0.2620
AUXILIARY	INFORMATION
IETHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
An excess of $Ca(OH)_2$ was added to an aqueous sucrose solution (30 - 60 mass % sucrose). The mixture was stirred for six hours at the desired temperature. The solid phase was separated by centrifuga- tion. The calcium concentration in the solution was determined com- plexometrically. The dry remainder (sucrose ?) content was determined by refractometry.	 Calcium hydroxide. "Chemical pure" grade, USSR standard. The quantity of impurities was not indicated. Sucrose. Refined sugar. Water. Distilled.
Editor's Note: The abstract states the solubility increases with in- creasing sucrose concentration up to 32-6 mass % and then decreases.	ESTIMATED ERROR: Not specified.
	REFERENCES :

COMPONENT	TS	·····		ORTO	TNAT MEAS	UREMENTS :		
		le; CaO; [1305	-78-81				lczarek, 1	vr
		16, Cao, [150;			neczny,	n., mie.	iczarek, i	.1 •
(2) Ca	alcium hydi	roxide; Ca(OH)	21	Ch	em. Sto:	sow. <u>19</u>	<u>83, 27, 1</u> 2	29-36.
	1305-62-0]	•	4	ĺ				
(2) 7								
(3) 50	ucrose; Cla	2 ^H 22 ^O 11; [57-5	50-1]					
(4) Wa	ater; H ₂ O;	[7732-18-5]						
	NTAL VALUES:	•		L				
		(CaO) + Su	aroso +	ਸੂਰ	evetom	at 20	40 and 60	°C
					Бузсеш	at 20, 4	40 and 00	<u> </u>
	Density	Solution Con	aposition	n	Solid Co	ompositi	on, 10 ² x	
t/°C		Co (OH)	Sugrad		Assumi		leanning	
	$\rho/g \ cm^{-1}$	Ca (OH) 2	Sucros	8		solid	Assuming in the so	
	<i>p</i> /9 Cm	m_2 /mol kg ⁻¹	m ₃ /mol	kg⁻¹			Ca (OH) 2	Sucrose
		2.						
20	1.006	0.02	0.0					
}	1.0121	0.08	0.1					
	1.0339	0.18	0.20					_
	1.0653	0.35	0.3		100	0	100	0
1	1.1278	1.20	0.6		100	0	99.02	0.98
	1.1753	1.58	1.1					
	1.2240	2.30	1.4		94.06			9.23
	1.2349	2.55	1.5		91.60	8.40	85.99	14.01
	1.2533	3.09	1.80					
	1.3157	3.26	2.8	1	79.43	20.57	74.42	25.57
40	0.9933	0.02	0.0	n				
40	1.0037	0.09	0.1					
	1.0303	0.17	0.2	-				
	1.0446	0.28	0.2		100	0	99.56	0.44
	1.0817	0.56	0.5		100	Ū	33.30	0.44
	1.1329	1.14	0.8					
	1.1878	1.85	1.2		100	0	98.02	1.98
Į			2.2		100	U	50.02	1.90
	1.2843	3.36			02 71	6.29	87.48	12.52
	1.2955	3.24	2.5		93.71			23.17
	1.3549	3.49	4.2	Ŧ	83.74	16.26	76.83	23.17
60	0.9871	0.02	0.0	0				
	1.0037	0.08	0.1	1				
	1.0168	0.10	0.2		99.97	0.03	99.59	0.41
	1.0590	0.37	0.4		97.80		99.01	0.99
1	1.1004	0.74	0.7			·		
	1.1371	0.99	1.0		97.62	2.38	88.00	12.00
	1.2683	2.48	1.9			-		
1	1.2760	2.91	2.2					
1	1.3454	3.15	4.6					
	1.3542	2.98	5.0		97.41	2.50	84.47	15.53
<u> </u>						_		
1								

Calcium is assumed to be present in both CaO and Ca(OH)2.

The isotherms are represented successively by the two fitting equations (corresponding to the two parts of the curve):

y = Ax + 0.02B and y = ax + b.

The parameter values are:

t∕°C	A	в	a	b
	1.45	1.3	0.006	3.13
20 40	1.38	1.3	0.000	3.0
60	1.12	1.3	0.18	2.29

(continued on next page).

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Calcium oxide; CaO; [1305-78-8]	Koneczny, H.; Mielczarek, M.
<pre>(2) Calcium hydroxide; Ca(OH)₂; [1305-62-0]</pre>	Chem. Stosow. <u>1983</u> , 27, 129-36.
(3) Sucrose; C ₁₂ H ₂₂ O ₁₁ ; [57-50-1]	
(4) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 293, 313, and 333	I. Lambert
EXPERIMENTAL VALUES:	1
	INFORMATION
METHOD/APPARATUS/PROCEDURE: CaO is slowly introduced into the	SOURCE AND FURITY OF MATERIALS: (1) Calcium oxide. Prepared by ig-
stirred sucrose solution. After	nition of Ca(OH) ₂ at 950 - 1000
equilibration (12 hours) a sample of clear solution is taken off in	°C.
an Ostwald pycnometer for density	(2) Calcium hydroxide. Commercial
measurement and then for chemical analysis. The Ca(OH), was analyzed	product.
analysis. The Ca(OH) ₂ was analyzed by acidimetry with HCI using methyl orange as the indicator, and the	
sucrose was determined by	
polarimetry.	
The composition of the solid was	ESTIMATED ERROR:
determined by the method of residues.	
	No estimates possible.
	REFERENCES :

COMPO	NENTS:	ORIGINAL MEASUREMENTS:
(1)	Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]	Yokoyama, T.
(2)	Sodium chloride; NaCl; [7647-14-5]	Kogyo Kagaku Zasshi <u>1954</u> , 57, 417-9.
(3)	Calcium chloride; CaCl ₂ ; [10043-52-4]	
(4)	Sucrose; C ₁₂ H ₂₂ O ₁₁ ; [57-50-1]	
(5)	Water; H ₂ O; [7732-18-5]	

EXPERIMENTAL VALUES:

<i>t/</i> °C	NaCl $c_2/mol L^{-1}$	CaCl ₂ g ₃ /100 g ₅	Sucrose g ₄ /100 g ₅	Ca(OH) ₂ g ₁ /100 g ₅
20	0.05	5	2	0.48
		10	2	0.46
		15	2 2	0.54
		20	2	0.59
		5	4	0.95
		10	4	0.82
		15	4	0.94
		20	4	1.02
		5	6	1.57
		10	6	1.44
		15	6	1.37
	0.1	20	6	1.40
	0.1	5	8	2.60
		10	8	2.08
		15 20	8 8	1.92 2.09
30	0.05	5	2	0.41
		10	2	0.39
		15	2	0.43
		20 5	2 4	0.51
		10	4	0.66 0.62
		15	4	0.73
		20	4	0.88
		5	6	1.49
		10	6	1.22
		15	6	1.17
		20	6	1.30
	0.1	5	8	2.33
		10	8	1.84
		15 20	8 8	1.73 1.85
40	0.05	5	2	0.33
		10	2	0.32
		15	2	0.46
		20	2	0.62
		5	4	0.57
		10	4 4	0.56
		15 20	4	0.68 0.79
		5	6	1.33
		10	6	0.94
		15	6	1.00
		20	6	1.11
	0.1	5	8	1.89
		10	8	1.33
		15	8	1.44
		20	8	1.62

COMPONENTS :	
	ORIGINAL MEASUREMENTS:
(1) Calcium hydroxide; Ca(OH) ₂ ; [1305-62-0]	Yokoyama, T.
<pre>(2) Sodium chloride; NaCl; [7647-14-5]</pre>	Kogyo Kagaku Zasshi <u>1954</u> , 57, 417-9.
(3) Calcium chloride; CaCl ₂ ; [10043-52-4]	
(4) Sucrose; C ₁₂ H ₂₂ O ₁₁ ; [57-50-1]	
(5) Water; H ₂ O; [7732-18-5]	
VARIABLES: T/K = 293 - 313 $c_2/mol L^{-1} = 0.05 - 0.1$ $g_3/100 g_5 = 5 - 20$ $g_4/100 g_5 = 2 - 8$	PREPARED BY: H. Einaga Y. Komatsu
EXPERIMENTAL VALUES:	
AUXILIARY	INFORMATION
AUXILIARY METHOD/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: Aqueous NaOH and CaCl ₂ were mixed	
METHOD/APPARATUS/PROCEDURE: Aqueous NaOH and CaCl ₂ were mixed stoichiometrically with dissolved sucrose to form NaCl and Ca(OH) ₂ in	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: Aqueous NaOH and CaCl ₂ were mixed stoichiometrically with dissolved sucrose to form NaCl and Ca(OH) ₂ in saturation. The resulting solu- tions were equilibrated for 2 days at a definite temperature within	SOURCE AND PURITY OF MATERIALS: (1) Calcium hydroxide.
METHOD/APPARATUS/PROCEDURE: Aqueous NaOH and CaCl ₂ were mixed stoichiometrically with dissolved sucrose to form NaCl and Ca(OH) ₂ in saturation. The resulting solu- tions were equilibrated for 2 days	SOURCE AND PURITY OF MATERIALS: (1) Calcium hydroxide. (2) Sodium chloride. (3) Calcium chloride. Analytical
METHOD/APPARATUS/PROCEDURE: Aqueous NaOH and CaCl ₂ were mixed stoichiometrically with dissolved sucrose to form NaCl and Ca(OH) ₂ in saturation. The resulting solu- tions were equilibrated for 2 days at a definite temperature within $\pm 0.1^{\circ}$ C. Aliquots of saturated solution were analyzed for Ca(OH) ₂ by titration with standard HCI solution using methyl orange as an	 SOURCE AND PURITY OF MATERIALS: (1) Calcium hydroxide. (2) Sodium chloride. (3) Calcium chloride. Analytical reagent grade. (4) Sucrose. Purified by treating the aqueous solution with activated charcoal followed by recrystallization from the aqueous solution by addition of
METHOD/APPARATUS/PROCEDURE: Aqueous NaOH and CaCl ₂ were mixed stoichiometrically with dissolved sucrose to form NaCl and Ca(OH) ₂ in saturation. The resulting solu- tions were equilibrated for 2 days at a definite temperature within $\pm 0.1^{\circ}$ C. Aliquots of saturated solution were analyzed for Ca(OH) ₂ by titration with standard HCI solution using methyl orange as an	 SOURCE AND PURITY OF MATERIALS: (1) Calcium hydroxide. (2) Sodium chloride. (3) Calcium chloride. Analytical reagent grade. (4) Sucrose. Purified by treating the aqueous solution with activated charcoal followed by recrystallization from the aqueous solution by addition of ethanol.
METHOD/APPARATUS/PROCEDURE: Aqueous NaOH and CaCl ₂ were mixed stoichiometrically with dissolved sucrose to form NaCl and Ca(OH) ₂ in saturation. The resulting solu- tions were equilibrated for 2 days at a definite temperature within $\pm 0.1^{\circ}$ C. Aliquots of saturated solution were analyzed for Ca(OH) ₂ by titration with standard HCI solution using methyl orange as an	 SOURCE AND PURITY OF MATERIALS: (1) Calcium hydroxide. (2) Sodium chloride. (3) Calcium chloride. Analytical reagent grade. (4) Sucrose. Purified by treating the aqueous solution with activated charcoal followed by recrystallization from the aqueous solution by addition of ethanol. (5) Water.
METHOD/APPARATUS/PROCEDURE: Aqueous NaOH and CaCl ₂ were mixed stoichiometrically with dissolved sucrose to form NaCl and Ca(OH) ₂ in saturation. The resulting solu- tions were equilibrated for 2 days at a definite temperature within $\pm 0.1^{\circ}$ C. Aliquots of saturated solution were analyzed for Ca(OH) ₂ by titration with standard HCI solution using methyl orange as an	 SOURCE AND PURITY OF MATERIALS: (1) Calcium hydroxide. (2) Sodium chloride. (3) Calcium chloride. Analytical reagent grade. (4) Sucrose. Purified by treating the aqueous solution with activated charcoal followed by recrystallization from the aqueous solution by addition of ethanol. (5) Water. ESTIMATED ERROR: Temp.: precision ± 0.1 K.
METHOD/APPARATUS/PROCEDURE: Aqueous NaOH and CaCl ₂ were mixed stoichiometrically with dissolved sucrose to form NaCl and Ca(OH) ₂ in saturation. The resulting solu- tions were equilibrated for 2 days at a definite temperature within $\pm 0.1^{\circ}$ C. Aliquots of saturated solution were analyzed for Ca(OH) ₂ by titration with standard HCI solution using methyl orange as an	 SOURCE AND PURITY OF MATERIALS: (1) Calcium hydroxide. (2) Sodium chloride. (3) Calcium chloride. Analytical reagent grade. (4) Sucrose. Purified by treating the aqueous solution with activated charcoal followed by recrystallization from the aqueous solution by addition of ethanol. (5) Water. ESTIMATED ERROR: Temp.: precision ± 0.1 K. Soly.: No estimates possible.

COMPONENTS: (1) Calcium hydroxide; Ca(OH) ₂ ;	ORIGINAL MEASUREMENTS: Trimble, F.
[1305-62-0] or Barium hydroxide; Ba(OH) ₂ ; [17194-00-2]	Ind. Eng. Chem. <u>1941</u> , 33, 660-2.
(2) 2-Furancarboxaldehyde or furfural; C ₅ H ₄ O ₂ ; [98-01-1]	
VARIABLES:	PREPARED BY:
T/K = 298	H. L. Clever
EXPERIMENTAL VALUES: The solubilit Ba(OH) ₂ .8H	y of $Ca(OH)_2$, $Ba(OH)_2$ and $_2O$ in furfural at 25°C
/mass %	m1/mol kg ⁻¹
Calcium hydr	oxide; Ca(OH) ₂
0.13	1.8 x 10 ⁻²
Barium hydro	xide; Ba(OH) ₂
<0.01	<6 x 10 ⁻⁴
Barium hydro Ba(OH) ₂ ·8H ₂ C	xide octahydrate;
9.0	0.313
AIIX	ILIARY INFORMATION
METHOD/APPARATUS/PROCEDURE: Furfural and an excess of solution were agitated for 24 hours (a shown to be sufficient for es lishment of equilibrium) in a stant temperature bath. The s tion was filtered at the same perature as the saturation. About 40 g of saturated solution was accurately weighed, 100 mL water added and the solution evaporated to about 10 mL. solution was transferred t weighed crucible and evaporated dryness, treated with conc. a furic acid, ignited at 700°C weighed as the sulfate.	<pre>time chemically pure grade. tab- con- con- (2) Furfural. Commercial grade olu- distilled three times at a reduced pressure of 12 mmHg. About 15 % discarded at the end of each fractionation. B.p. tion range at 12 mmHg 54-55°C; Sp. Gr. d25 1.1585; moisture 0.0 %; tion Acidity (as acetic acid) 0.002- The 0.003 %. o a to ESTIMATED ERROR: sul- Temp.: Nothing specified.</pre>

, _____

> 4. The solubility of Strontium hydroxide in aqueous systems. Systems Pages $Sr(OH)_2 + H_2O$ 248-255(E), 256-260 $-----+ srcl_2 + H_20$ 253(E), 261-262 253(E), 263 253(E), 264 --- + SrBr₂ + H₂O $-----+ SrI_2 + H_2O$ 253(E), 265 253(E), 266-267 $-----+ Sr(SH)_2 + H_2O$ - , 188, 268 $-----+ sr(NO_2)_2 + H_2O$ 253(E), 269 $-----+ sr(NO_3)_2 + H_2O$ $-----+ c_2 H_5 OH + H_2 O$ 254(E), 270-271 ----- + (alcohols, ketones, ethers or amines) + H_2O 254(E), 272 254(E), 273-274 $----- + c_6 H_5 OH + H_2 O$ $----- + c_{12}H_{22}O_{11} + H_2O$ 253(E), 275-283

(E) refers to evaluation page(s).

COMPONENTS :	EVALUATOR:	
<pre>(1) Strontium hydroxide; Sr(OH)₂; [18480-07-4]</pre>	Irma Lambert CEA/SCECF/SECA B. P. 6	H. L. Clever Department of Chemistry
(2) Water; H ₂ O; [7732-18-5], and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA

CRITICAL EVALUATION:

An evaluation of the solubility of strontium hydroxide in water and various aqueous solutions.

Quantitative measurements of the solubility of strontium hydroxide, Sr(OH)₂, in aqueous solutions have been reported in 13 rather old papers. Many of these papers are related to the use of strontium hydroxide in refining sugar from sugar beets. The solubility of strontium hydroxide in pure water is reported in six papers (1, 2, 9-12). The SrO + sucrose + water system is described (9-12). Phase diagrams of the systems SrO + strontium salts (SrCl₂, SrBr₂, SrI₂, Sr(NO₃)₂ and Sr(SH)₂) + H₂O were also determined (3, 5, 6, 8). A review of early solubility work in Mellor (18) contains some references not covered here.

1. The solubility of strontium hydroxide in water.

Different investigators all measured the solubility of strontium hydroxide in water by a similar method, involving isothermal equilibration of $Sr(OH)_2$ or SrO with water, filtration and acidimetric titration. The source and purity of the $Sr(OH)_2$ or SrO were not given. In spite of the probable different origin of the strontium compounds, the reported results (1, 2, 9-12) are in good agreement up to a temperature of 343 K, but diverge at higher temperatures. All the solubility values are shown in Figure 1. The solubility increases with temperature. Above 358 K only Reinders and Klinkenberg (11) found a decrease of solubility with increasing temperature.

All of the authors identify the solid phase in equilibrium with the saturated solution as $Sr(OH)_2 \cdot 8H_2O$ at the lower temperatures. Reinders and Klinkenberg (11) claim that the stable phase above 358 K is $Sr(OH)_2 \cdot H_2O$, which should have a different solubility and temperature coefficient of solubility, as they observed. The observed increase in solubility above 358 K (2, 9, 10; Fig. 1) may be related to the existence of a metastable octahydrate.

The data were fitted by the method of least squares to a type of equation recommended in the "Introduction to the Solubility of Solids in Liquids", eqn [48], with activity and osmotic coefficient terms included in the Y function. This equation is based on a thermodynamic treatment of saturated solutions and their equilibrated solid phases and has the form

 $Y_{m} = A_{1} + A_{2}/(T/K) + A_{3} \ln (T/K)$.

where $Y = \ln (m/m) = (m/m - 1)$ with 1/m = 0.144 kg mol⁻¹ at the congruent fusion temperature, T. When the usual procedure of discarding points which deviate by more than two standard deviations and repeating the fit was applied, the points noted in Table 1 were discarded.

The resulting fitting equation is:

 $Y_{-} = -231.074 + 7392.013/(T/K) + 35.5946 \ln (T/K)$ [1]

with $\sigma(Y_m) = 0.033$. The standard deviation in molality and the congruent octahydrate melting point are $\sigma(m) = 0.027$ and $T_m = 384.3$ K with $\sigma(T_m) = 0.4$ K.

The equation was used to calculate the recommended solubility values at 5 degree intervals from 273.15 to 373.15 K in Table 2 and the fitted curve in Figure 1.

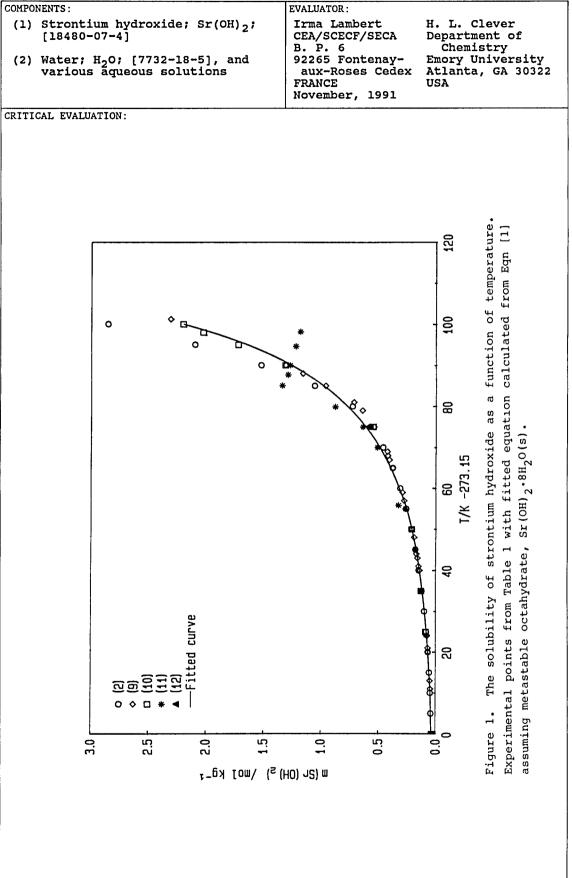
<pre>[18480-07-4] 2) Water; H₂O; [7732-18-5], and various aqueous solutions</pre>		CEA/SCECF/SECA Department of B. P. 6 Chemistry 92265 Fontenay- Emory Universi aux-Roses Cedex Atlanta, GA 30 FRANCE USA November, 1991	
ICAL EVALUA			
ble 1. Ex (f	sperimental values of the solid phase Sr(OH) ₂ .8H ₂ O)	in water between 27	3.05 and 373.35
T/K	Strontium Hydroxide m ₁ /mol kg ⁻¹	Reference	
273.05	0.0388 *	1	
273.05	0.0370	1	
273.15 273.15	0.034 0.034	2 9	
273.15	0.034	10	
278.15	0.04	2	
283.15	0.04 *	2	
284.15	0.046	9	
286.15	0.05	9	
288.15	0.055	2	
293.15	0.067	9	
293.15 294.15	0.066 0.068	2 9	
297.15	0.075	9	
297.34	0.079	11	
298.15	0.086 *	10	
298.15	0.081	2	
298.15	0.083	2	
303.15	0.098	2	
308.15	0.126 *	10	
308.15 308.15	0.121 0.12	2 11	
313.15	0.14	9	
313.15	0.148	2	
314.15	0.15	9	
316.15	0.16	9	
317.15	0.17	9	
318.15	0.178	11	
318.15	0.178	2	
321.15	0.19	9	
323.15	0.215	2	
323.15 323.15	0.210 0.212	9. 10	
220 15			
328.15 328.15	0.259 0.266	2 11	
329.04	0.326 *	11	
330.15	0.278	9	
332.15	0.292 *	9	
333.15 338.15	0.311 0.375	2 9	
338.15	0.375	2	
340.15 341.15	0.405 0.419	9 9	
342.15	0.419	9	
343.15	0.46	2	
343.18	0.509	11	

COMPONENTS :	EVALUATOR:	
(1) Strontium hydroxide; Sr(OH) ₂ ; [18480-07-4]	Irma Lambert CEA/SCECF/SECA B. P. 6	H. L. Clever Department of Chemistry
(2) Water; H ₂ O; [7732-18-5], and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA

CRITICAL EVALUATION:

٠

Table 1. (Cont.) Experimental values of the solubility of strontium hydroxide (solid phase $Sr(OH)_2 \cdot 8H_2O$) in water between 273.05 and 373.35 K


	T/K	Strontium Hydroxid	le Reference
		m_1 /mol kg ⁻¹	
_	348.15	0.572	2
	348.15	0.539 *	9
	348.15	0.547	10
	348.15	0.590	
	352.15	0.642 *	9
	353.15	0.729	2 9
	354.15	0.716 *	9
	358.15	1.059 *	2
	358.15	0.964	9
	361.15	1.16	9 2
	363.15	1.524 *	2
	363.15	1.31	9
	363.15	1.314	10
	368.15	2.098 *	2
	368.15	1.721	10
	371.15	2.027	10
	373.15	2.855 *	2
	373.15	2.201	10
	374.35	3.059 *	2
	374.35	2.31	9

* Values not used in the final fitting.

Table 2. Recommended values of the solubility of strontium hydroxide (solid phase Sr(OH)₂·8H₂O) in water between 273.15 and 373.15 K.

Temperature		Solubility of Strontium Hydroxide
t/°C	T/K	m ₁ /mol kg ⁻¹
0	273.15	0.034
5	278.15	0.040
10	283.15	0.047
15	288.15	0.056
20	293.15	0.067
25	298.15	0.079
30	303.15	0.096
35	308.15	0.116
40	313.15	0.141
45	318.15	0.172
50	323.15	0.210
55	328.15	0.258
60	333.15	0.317
65	338.15	0.393
70	343.15	0.488
75	348.15	0.610
80	353.15	0.768
85	358.15	0.974
90	363.15	1.25
95	368.15	1.63
100	373.15	2.18

COMPONENTS :	EVALUATOR :	
(1) Strontium hydroxide; Sr(OH) ₂ ; [18480-07-4]	Irma Lambert CEA/SCECF/SECA B. P. 6	H. L. Clever Department of Chemistry
(2) Water; H ₂ O; [7732-18-5], and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA

CRITICAL EVALUATION:

The recommended values come from the treatment of data up to 374 K corresponding to a metastable octahydrate.

2. Ternary systems Sr0 + SrX, + H,O.

Milikan (5, 6) studied the ternary systems SrO + SrX₂ + H₂O with X = Cl⁻, Br⁻ and I⁻ at temperatures near 298 K. He showed the formation of hydrated compounds in all three cases. They were SrCl₂·Sr(OH)₂·SH₂O (or SrCl₂·Sr(OH)₂

The SrO + Sr(NO₃)₂ + H₂O system was studied by Parson and Perkins (3), and the SrO + Sr(SH)₂ + H₂O system was studied by Terres and Brückner (8). Mixed compound formation was not observed in either of these systems. It was observed in the Sr(OH)₂ + Sr(NO₂)₂ + H₂O system (14).

3. Strontium oxide + sucrose + water systems.

Data for the sucrose-containing ternary systems are reported in four publications (9-12). Qualitative agreement exists concerning the solid phases possibly in equilibrium with the solution. They are $Sr0.9H_2O$ (or $Sr(OH)_2.8H_2O$), $C_{12}H_{22}O_{11}.2SrO$ and $C_{12}H_{22}O_{11}.SrO$. The later two substances result from reaction of $Sr(OH)_2$ with the two $-CH_2OH$ groups in sucrose:

 $C_{10}H_{16}O_{9}(CH_{2}OH)_{2} + xSr(OH)_{2} = C_{10}H_{16}O_{9}(CH_{2}OH)_{2-x}(CH_{2}OSrOH)_{x} + xH_{2}O$

with x = 1, 2.

Solubility isotherms obtained by different authors were compared when a common range of temperature and sucrose concentration was available. We compared results from (10) and (11) at 298.15 and 363.15 K, and from (10) and (12) at 348.15 K. No agreement, even as to the shape of the isotherms, exists between the pairs of data sets compared. The results reported by Reinders and Klinkenberg (11) at 343.15 K were compared to the data of Nischizawa and Hachihama (12) at 348.15 K and they were found to be compatible.

Reinders and Kinkenberg observed that equilibrium was very difficult to reach, especially at high sucrose concentration, when the viscosity of the solution increases. A gel may be obtained when the sucrose concentration reaches 20 mass %. Metastable equilibria were also observed. The time necessary to reach equilibrium was not recorded for each set of data, but the authors mention times of 3 to 9 days at 298.15 K. Grube and Nussbaum (10) do not mention a time of equilibration for their experiments. Siderski (9) took samples after some hours. The data of these two publications (9, 10) were rejected because of insufficient time of equilibration.

As indicated above, data from (11) and (12) are in qualitative agreement at the relatively close temperatures of 343.15 and 348.15 K in the common sucrose concentration range (mass fraction < 0.3) as to both solubility values and solid phases, which are $Sr(OH)_2 \cdot 8H_2O$ and $C_1H_2O_1 \cdot 2SrO$. Their data may be considered as "tentative". Reinders and Klinkenberg (11) determined the range of stability of the different solids at other temperatures. They found the solid $C_{12}H_2O_1 \cdot SrO$ (monosucchrate) was stable at temperatures lower than 343 K. At higher temperatures the stable solid is the disucchrate.

4. The solubility of strontium hydroxide in mixed solvents. Rothmund (4) compared the effect of the addition of different organic substances at a concentration of 0.5 mol dm⁻³ on the solubility of

254				
COMPONENTS :	EVALUATOR:			
<pre>(1) Strontium hydroxide; Sr(OH)₂; [18480-07-4]</pre>	Irma Lambert H. L. Clever CEA/SCECF/SECA Department of B. P. 6 Chemistry			
(2) Water; H ₂ O; [7732-18-5], and various aqueous solutions	92265 Fontenay- Emory University aux-Roses Cedex Atlanta, GA 30322 FRANCE USA November, 1991			
CRITICAL EVALUATION:	I			
$Sr(OH)_2$ in water. Some alcohols (main enhance the solubility. Van Meurs solubility in the SrO + phenol + wat ence of the solid compound $Sr(C_6H_5O)_2$.	(7) observed an enhancement of the cer system, and he showed the exist-			
The SrO + ethanol + water syst (13). He claimed that the only solid	em was studied at 298 K by Janković l phase is Sr(OH) ₂ .8H ₂ O.			
As there are no confirmatory da classed as tentative.	ta for these systems, these data are			
5. Results from other evaluation	ons.			
Smith and Martell (15) give the ionic strengths of 0 and 3.0 mo $(SrOH)^{+}(aq)$ as:	association constant at 298.15 K and 1 dm ⁻³ for $Sr^{2+}(aq) + OH^{-}(aq) =$			
Ionic Strength log K K mol dm ⁻³				
0 0.8 ± 0.1 6.3 3.0 0.23 1.7				
The NBS Thermodynamic Tables (energy of formation for any solid f calculations can be made regarding t late the association constant above. the value is $K = 1.0$.	the solid. There are data to calcu-			
6. Crystal structure of stronti	um hydroxide.			
Characterization of the soli saturated solution is an important p The following information, mostly fr (17), is neither complete nor evalua this important point.	com the Crystal Determinative Tables			
Crystal Formula Typ	Density, $\rho/Mg m^{-3}$			
Sr0; [1314-11-0] Cub	bic 5.235			
Sr(OH); [18480-07-4] Ort	horhombic 3.407			
Sr(OH) ₂ ·H ₂ O; [21800-33-9] Ort	chorhombic 3.07			
Sr(OH) ₂ •8H ₂ O; [1311-10-0] Tet	ragonal 1.88			
REFER	ENCES			
1. Guthrie, F. Philos. Mag. [5] <u>1878</u> , 6, 35-44.				
2. Scheibler, C. J. Pharm. Chim. [5] <u>1883</u> , 8, 54	0.			
3. Parsons, C.L.; Perkins, C.L. J. Am. Chem. Soc. <u>1910</u> , 32, 138	37-89.			
4. Rothmund, V. Z. Phys. Chem., Stoechiom. Verwa	andtschafts1. <u>1910</u> , 69, 523-46.			

 COMPORTS: Strontium hydroxide; Sr(OH)2; Water; H_O; (7732-18-5] and various Equeus solutions Water; H_O; (7732-18-5] and various Equeus solutions Experiment of CEA/SCECF/SECA Department of CEA/SCECF/SECA/	(·····			
 [13450-07-4] (2) Water, H₂O; [7732-18-5] and various Equicous solutions (2) Water, H₂O; [7732-18-5] and various Equicous solutions (2) Water, H₂O; [7732-18-5] and various Equicous solutions (2) Water, H₂O; [7732-18-5] and various Equipations (2) Water, H₂O; [774] and various Equipations (2) Phys. Chem., Stocchiom. Verwandtschaftsl. 1916, 92, 496-510. (3) Van Meurs, G.J. Z. Floctrochem, Angev. Phys. Chem. 1920, 26, 25-32. (3) Sidersky, M.D. Buil, Assoc. Chim. Sucer. Distill. Ind. Agri. Fr. Colon. 1921, 39, 167-77. (4) Grube, G.J. Nussbaun, M. Z. Electrochem, Angev. Phys. Chem. 1928, 34, 91-98. (4) Reinders, W.; Klinkenberg, A. Reel, Trav. Chim. Pays. Base 1926, 48, 1227-64. (2) Mishizawa, K.; Hachihama, Y. Z. Electrochem, Angev. Phys. Chem. 1929, 35, 385-92. (3) Janković, S. Restvorilyost Nekth Soli 1 Midroksida Zemoalkalnih Metala u Sistemina Voda-Still Alkohol 1 Voda-Metil Alkohol, 1 Struktura Takvih Zsisteri 1 Alkohol 1 Voda-Metil Alkohol, 1 Struktura Takvih Zsisteri 1 Alkohol 1 Voda-Metil Alkohol, 1 Struktura Takvih Zsisteri 1 Alkohol 1 Voda-Metil Alkohol, 1 Struktura Takvih Zsist						
 various āqueous solutions aux-Roses Cedex Atlanta, GA 30322 PRACE November, 1991 CRITICAL EVALUATION: REFERENCES (Continued) Milikan, J. Phys. Chem., Stoechiom. Verwandtschaftsl. 1916, 92, 59-80. Milikan, J. Phys. Chem., Stoechiom. Verwandtschaftsl. 1916, 92, 496-510. Van Meurs, G.J. Phys. Chem., Stoechiom. Verwandtschaftsl. 1916, 91, 313-46. Terres, E.; Brückner, K. Electrochem. Angew. Phys. Chem. 1920, 26, 25-32. Sidersky, M.D. Built. Assoc. Chim. Sucr. Distill. Ind. Agri. Fr. Colon. 1921, 35, 167-77. Grube, G.; Nussbaum, M. Electrochem. Angew. Phys. Chem. 1928, 34, 91-98. Reinders, W.; Klinkenberg, A. Resci. Trav. Chim. Fays-Bas 1929, 48, 1227-64. Nishizawa, K.; Hachihama, Y. Electrochem. Angew. Phys. Chem. 1929, 35, 385-92. Janković, S. Restvorljvost Nekih Soli i Hidroksida Zemosikainih Metala u Sistemiam Voda-Feil Alkohol i Voda-Metil Alkohol. i Struktura Takvih Zasjcenkh Rastvora. Doctoral Dissertation, Faculty of Pharmacy, Zagreb, 1958. Popova, T. B.; Bendyukova, V.A.; Khutsistova, F. M. Zh. Neorg. Khim. 1920, 35, 505-111 Russ. J. Inorg. Chem. (Engl. Transl.) 1990, 35, 288-90. Smith, R.M.; Martell, A.E. CRITICAL STABILITY CONSTANTS, Vol. 4, Inorganic Complexes, Plenum Press, New York, 1976, pp. 1-2. Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Harlow, I.; Balley, S.M.; Churney K.L.; Nuttall, R.L. J. Phys. Chem. Ref. Data 1982, 11, Supplement Ro. 2, THE NES TABLES OF THERMOTYAMIC PROFERTIES. Donnay, J.D.H.; Ondik, H.M., Editors, CRYSTAL DATA DETERMINATIVE Trabled, Phys. R		[18480-07-4]	CEA/SCECF/SECA Department of B. P. 6 Chemistry			
 REFERENCES (Continued) 5. Milikan, J. Z. Phys. Chem., Stoechiom. Verwandtschaftsl. 1916, 92, 59-80. 6. Milikan, J. Z. Phys. Chem., Stoechiom. Verwandtschaftsl. 1916, 92, 496-510. 7. Van Meurs, G.J. Z. Phys. Chem., Stoechiom. Verwandtschaftsl. 1916, 91, 313-46. 8. Terres, E.; Brückner, K. Z. Electrochem. Angew. Phys. Chem. 1920, 26, 25-32. 9. Sidarsky, M.D. Bull. Assoc. Chim. Sucr. Distill. Ind. Agri. Fr. Colon. 1921, 39, 167-77. 10. Grube, G.; Nussbaum, M. Z. Electrochem. Angew. Phys. Chem. 1928, 34, 91-98. 11. Reinders, W.; Klinkenberg, A. Reci. Trav. Chim. Pays-Bas 1929, 48, 1227-64. 12. Nishizawa, K.; Hachihama, Y. Z. Electrochem. Angew. Phys. Chem. 1929, 35, 385-92. 13. Jankević, S. Restorollyrott Nekih Soli i Nidroksida Zamoelkalnih Metals u Sistemima Voda-Stil Alkohol i Voda-Matil Alkohol, i Struktura Takwih Zasicenih Rastvora. Doctoral Dissertation, Faculty of Pharmacy, Zagreb, 1958. 14. Popova, T.B.; Berdyukova, V.A.; Khutsistova, F. M. M. Noorg. Ahm. 1990, 35, 507-11; Russ. J. Inorg. Chem. (Engl. Transl.) 1990, 35, 288-90. 15. Smith, R.M.; Martell, A.E. CRITICAL STABILITY CONSTANTS, Vol. 4, Inorganic Complexee, Plenum Press, New York, 1976, pp. 1-2. 16. Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Harlow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L. J. Phys. Chem. Ref. Data 1992, 11, Supplement No. 2, THE NBS TABLES OF THERMONYMAHIC PROFERTIES. 17. Donnay, J.D.H.; Ondik, H.M., Editors, CRYSTAL DATA DETERINATIVE TABLES, Published jointly by the National Bureau of Standards and the Joint Committee on Powder Diffraction Standards, 1973, Volume 2. 18. Mallor, J. W. A Comprehensive Trestise on Inorganic and Theoretical Chemistry, Longmans, Green and Co., London, 1923, pp. 673-67. Mellor, J. W. A Comprehensive Trestise on the solubility of strondards and the Joint Committee on Powder Diffraction Standards, 1973, Volume 2. 18. Mallor, J. W. A Comp			aux-Roses Cedex Atlanta, GA 30322 FRANCE USA			
 REFERENCES (Continued) 5. Milikan, J. Z. Phys. Chem., Stoechiom. Verwandtschaftsl. 1916, 92, 59-80. 6. Milikan, J. Z. Phys. Chem., Stoechiom. Verwandtschaftsl. 1916, 92, 496-510. 7. Van Meurs, G.J. Z. Phys. Chem., Stoechiom. Verwandtschaftsl. 1916, 91, 313-46. 8. Terres, E.; Brückner, K. Z. Electrochem. Angew. Phys. Chem. 1920, 26, 25-32. 9. Sidarsky, M.D. Bull. Assoc. Chim. Sucr. Distill. Ind. Agri. Fr. Colon. 1921, 39, 167-77. 10. Grube, G.; Nussbaum, M. Z. Electrochem. Angew. Phys. Chem. 1928, 34, 91-98. 11. Reinders, W.; Klinkenberg, A. Reci. Trav. Chim. Pays-Bas 1929, 48, 1227-64. 12. Nishizawa, K.; Hachihama, Y. Z. Electrochem. Angew. Phys. Chem. 1929, 35, 385-92. 13. Jankević, S. Restorollyrott Nekih Soli i Nidroksida Zamoelkalnih Metals u Sistemima Voda-Stil Alkohol i Voda-Matil Alkohol, i Struktura Takwih Zasicenih Rastvora. Doctoral Dissertation, Faculty of Pharmacy, Zagreb, 1958. 14. Popova, T.B.; Berdyukova, V.A.; Khutsistova, F. M. M. Noorg. Ahm. 1990, 35, 507-11; Russ. J. Inorg. Chem. (Engl. Transl.) 1990, 35, 288-90. 15. Smith, R.M.; Martell, A.E. CRITICAL STABILITY CONSTANTS, Vol. 4, Inorganic Complexee, Plenum Press, New York, 1976, pp. 1-2. 16. Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Harlow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L. J. Phys. Chem. Ref. Data 1992, 11, Supplement No. 2, THE NBS TABLES OF THERMONYMAHIC PROFERTIES. 17. Donnay, J.D.H.; Ondik, H.M., Editors, CRYSTAL DATA DETERINATIVE TABLES, Published jointly by the National Bureau of Standards and the Joint Committee on Powder Diffraction Standards, 1973, Volume 2. 18. Mallor, J. W. A Comprehensive Trestise on Inorganic and Theoretical Chemistry, Longmans, Green and Co., London, 1923, pp. 673-67. Mellor, J. W. A Comprehensive Trestise on the solubility of strondards and the Joint Committee on Powder Diffraction Standards, 1973, Volume 2. 18. Mallor, J. W. A Comp	CRITIC	AL EVALUATION:				
 Z. Phys. Chem., Stoechiem. Verwandtschaftsl. <u>1916</u>, 92, 59-80. Milikan, J. Z. Phys. Chem., Stoechiem. Verwandtschaftsl. <u>1916</u>, 92, 496-510. Van Meurs, G.J. Z. Phys. Chem., Stoechiem. Verwandtschaftsl. <u>1916</u>, 91, 313-46. Terres, E.; Brückner, K. Z. Electrochem. Angew. Phys. Chem. <u>1920</u>, 26, 25-32. Sidersky, M.D. Bull. Assoc. Chim. Sucr. Distill. Ind. Agri. Fr. Colon. <u>1921</u>, 39, 167-77. Grube, G.; Nussbaum, M. Z. Electrochem. Angew. Phys. Chem. <u>1928</u>, 34, 91-98. Reinders, W.; Klinkenberg, A. Recl. Trav. Chim. Pays. Bas <u>1929</u>, 48, 1227-64. Nishizawa, K.; Hachihama, Y. Z. Electrochem. Angew. Phys. Chem. <u>1929</u>, 35, 385-92. Janković, S. Rastovijost Nekh Soli i Hidroksida Zemoaikalnih Metala u Sistemime Voda-Stil Alkohol i Voda-Metil Alkohol. i Struktura Takwih Zasicenih Rastvora. <u>Doctoral Dissectation</u>, Faculty of Pharmacy, Zagreb, <u>1958</u>. Popova, T.B.; Berdyukova, V.A.; Khutsistova, F. M. Zh. Neorg. Khim. <u>1950</u>, 35, 507-11; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1950</u>, 35, 288-90. Smith, R.M.; Martell, A.E. CRITICAL STABLITY CONSTANTS, Vol. 4, Inorganic Complexes, Plenum Press, New York, 1976, pp. 1-2. Magman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Harlow, I.; Bäi£2, 11, Supplement No. 2, THE NBS TABLES OF THERMORIMATIC FROFERTIES. Donnay, J.D.H.; Ondik, H.M., Editors, CRYSTAL DATA DETERNIVATIVE TABLES, Published jointly by the National Bureau of Standards and the Joint Committee on Powder Diffraction Standards, 1973, Volume 2. Mellor, J.W. A Comprehensive Treastise on Inorganic ant Theoretical Chemistry, Longmans, Green and Co., London, 1923, pp. 673-87. Mellor, J.W. A Comprehensive Treastise on Inorganic ant Theoretical Chemistry, Longmans, Green and Co., London, 1923, pp. 673-87. Mellor, J.W. A Comprehensive Treastise on Inorganic ant Theoretical Chemistry, Longmans, Green and Co., London, 1			(Continued)			
 Phys. Chem., Stoechiom. Verwandtschaftsl. <u>1916</u>, 92, 496-510. Van Meurs, G.J. Phys. Chem., Stoechiom. Verwandtschaftsl. <u>1916</u>, 91, 313-46. Terres, E., Brückner, K. Electrochem. Angew. Phys. Chem. <u>1920</u>, 26, 25-32. Sidersky, M.D. Bull. Assoc. Chim. Sucr. Distill. Ind. Agrl. Fr. Colon. <u>1921</u>, 39, 167-77. Grube, G.; Nussbaum, M. Electrochem. Angew. Phys. Chem. <u>1928</u>, 34, 91-98. Reinders, W.; Klinkenberg, A. Recl. Trav. Chim. Pays.Bas <u>1929</u>, 48, 1227-64. Nishizawa, K.; Hachihama, Y. Electrochem. Angew. Phys. Chem. <u>1928</u>, 35, 385-92. Janković, S. Rastvorijvost Nekhi Soli i Hidroksida Zemoalkalnih Metala u Sistemima Voda-Etil Akhohi i Voda-Metil Aikhohi. I Struktura Takvih Zesicenih Rastvora. <u>Doctoral Dissertation</u>, Faculty of Pharmacy, Zagreb, <u>1958</u>. Popova, T.B.; Berdyukova, V.A.; Khutsistova, F. M. Zh. Neorg. Khim. <u>1990</u>, 35, 507-11; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1990</u>, 35, 288-90. Smith, R.M.; Martell, A.E. CRITICAL STABILITY CONSTANTS, Vol. 4, Inorganic Complexes, Plenum Press, New York, 1976, pp. 1-2. Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Harlow, T.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L. J. Phys. Chem. Ref. Dara <u>1982</u>, 11, Supplement No. 2, THE NBS TABLES OF THERMODYNAMIC FROPERTIES. Donnay, J.D.H.; Ondik, H.M., Editors, CRYSTAL DATA DETERMINATIVE TABLES, Published jointly by the National Bureau of Standards and the Joint Committee on Powder Diffraction Standards, 1973, Volume 2. Mellor, J. W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Green and Co., London, 1923, pp. 673-87. Mellor, J. W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Green and Co., London, 1923, pp. 673-87. Mellor, J. W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Lo	5.		ndtschafts1. <u>1916</u> , 92, 59-80.			
 Phys. Chem., Stoechiom. Verwandtschaftsl. <u>1916</u>, 91, 313-46. Terres, E.; Brückner, K. Electrochem. Angew. Phys. Chem. <u>1920</u>, 26, 25-32. Sidersky, M.D. Buil. Assoc. Chim. Sucr. Distill. Ind. Agri. Fr. Colon. <u>1921</u>, 39, 167-77. Grube, G.; Nussbaum, M. Electrochem. Angew. Phys. Chem. <u>1928</u>, 34, 91-98. Reinders, W.; Klinkenberg, A. Recl. Trav. Chim. Pays-Bas <u>1929</u>, 48, 1227-64. Nishirawa, K.; Hachihama, Y. Electrochem. Angew. Phys. Chem. <u>1929</u>, 35, 385-92. Janković, S. Restvorijvost Nekih Soli i Hidroksida Zemoalkalnih Metala u Sistemina Voda-Etil Alkohol i Voda-Matil Alkohol, i Struktura Takvih Zasicenih Rastvora. <u>Doctoral Dissertation</u>, Faculty of Pharmacy, Zagreb, <u>1956</u>. Popova, T.B.; Berdyukova, V.A.; Khutsistova, F. M. Zh. Neorg. Khim. <u>1950</u>, 35, 507-11; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1950</u>, 35, 508-90. Smith, R.M.; Martell, A.E. CRITICAL STABILITY CONSTANTS, Vol. 4, Inorganic Complexes, Plenum Press, New York, 1976, pp. 1-2. Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Harlow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L. J. Phys. Chem. Ref. Dara <u>1952</u>, 11, Supplement No. 2, THE NBS TABLES OF THERMODINAMIC FROFERTIES. Donnay, J.D.H.; Ondik, H.M., Editors, CRYSTAL DATA DETERMINATIVE TABLES, Published jointly by the National Bureau of Standards and the Joint Committee on Powder Diffraction Standards, 1973, Volume 2. Mellor, J. W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Creen and Co., London, 1923, pp. 673-87. Mellor, J. W. A Comprehensive Treatise of atmospheric carbon dioxide, and insufficient time allowed to reach equilibrium. Bucholz, C. F. Gehlen's J. <u>1807</u>, 4, 128. Bineau, A. C. R. Nøbd. Seances Acad. Sci. <u>1855</u>, 41, 509. The following reasons, impure materials, presence of atmospheric	6.		ndtschafts1. <u>1916</u> , 92, 496-510.			
 Z. Electrochem. Angew. Phys. Chem. <u>1920</u>, 26, 25-32. Sidersky, M.D. Bull. Assoc. Chim. Sucr. Distill. Ind. Agri. Fr. Colon. <u>1921</u>, 39, 167-77. Grube, G.; Nussbaum, M. Z. Electrochem. Angew. Phys. Chem. <u>1928</u>, 34, 91-98. Reinders, W.; Klinkenberg, A. Recl. Trav. Chim. Pays.Bas <u>1929</u>, 48, 1227-64. Nishizawa, K.; Hachihama, Y. Z. Electrochem. Angew. Phys. Chem. <u>1929</u>, 35, 385-92. Janković, S. Rastvorljvost Nekih Soli 1 Hidroksida Zemosikalnih Hetala u Sistemima Voda-Ecil Alkohol 1 Voda-Metil Alkohol. i Struktura Takvih Zasicenih Rastvora. <u>Doctoral Dissertation</u>, Faculty of Pharmacy, Zagreb, <u>1958</u>. Popova, T.B.; Berdyukova, V.A.; Khutsistova, F. M. Zh. Noorg. Khim. <u>1920</u>, 35, 507-11; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1990</u>, 35, 288-90. Smith, R.M.; Martell, A.E. CRITICAL STABILITY CONSTANTS, Vol. 4, Inorganic Complexes, Plenum Press, New York, 1976, pp. 1-2. Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Harlow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L. J. Phys. Chem. Ref. Dara <u>1982</u>, 11, Supplement No. 2, THE NBS TABLES OF THERMONYMANIC PROFERTIES. Donnay, J.D.H.; Ondik, H.M., Editors, CRISTAL DATA DETERMINATIVE TARLES, Published jointly by the National Bureau of Standards and the Joint Committee on Powder Diffraction Standards, 1973, Volume 2. Mellor, J. W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Green and Co., London, 1923, pp. 673-67. Mellor, J. W. A Comprehensive Treatise of atmospheric carbon dioxide, and insufficient time allowed to reach equilibrium. Bucholz, C. F. Gehlen's J. <u>1807</u>, 4, 128. Bineau, A. C. R. Habd. Seances Acad. Sci. <u>1855</u>, 41, 509. The following paper listed by Mellor contains a discusion of the relative order of solubility among the alkaline earth hydroxides. 	7.		ndtschaftsl. <u>1916</u> , 91, 313-46.			
 Bull. A'ssoc. Chim. Sucr. Distill. Ind. Agri. Fr. Colon. 1921, 39, 167-77. Grube, G.; Nussbaum, M. 2. Electrochem. Angew. Phys. Chem. 1928, 34, 91-98. Reinders, W.; Klinkenberg, A. Reel. Trav. Chim. Pays-Bas 1929, 48, 1227-64. Nishizawa, K.; Hachihama, Y. Z. Electrochem. Angew. Phys. Chem. 1929, 35, 385-92. Janković, S. Restvorljvost Nekih Soli i Hidroksida Zemoalkalnih Metala u Sistemima Voda-Etil Alkohol i Voda-Metil Alkohol, i Struktura Takvih Zasicenih Rastvora. Doctoral Dissertation, Faculty of Pharmacy, Zagreb, 1958. Popova, T.B.; Berdyukova, V.A.; Khutsistova, F. M. Zh. Noorg. Khim. 1920, 35, 507-11; Russ. J. Inorg. Chem. (Engl. Transl.) 1990, 35, 288-90. Smith, R.M.; Martell, A.E. CRITICAL STABILITY CONSTANTS, Vol. 4, Inorganic Complexes, Plenum Press, New York, 1976, pp. 1-2. Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Harlow, I.; Balley, S.M.; Churney, K.L.; Nuttall, R.L. J. Phys. Chem. Ref. Data 1982, 11, Supplement No. 2, THE NBS TABLES OF THERHODYNAHIC PROFERTIES. Donnay, J.D.H.; Ondik, H.M., Editors, CRYSTAL DATA DETERHINATIVE TABLES, Published jointly by the National Bureau of Standards and the Joint Committee on Powder Diffraction Standards, 1973, Volume 2. Mellor, J. W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Green and Co., London, 1923, pp. 673-87. Mellor lists and discusses several papers on the solubility of strontium hydroxide not included in this volume. We believe the papers listed below can be rejected because of one or more of the following reasons, impure materials, presence of atmospheric carbon dioxide, and insufficient time allowed to reach equilibrium. Bucholz, C. F. Gehlen's J. 1807, 4, 128. Bineau, A. C. R. Hebd. Seances Acad. Sci. 1855, 41, 509. The following paper listed by Mellor contains a discusion of the relative order of solubility among the alkaline earth hydroxides. 	8.		m. <u>1920</u> , 26, 25-32.			
 Z. Electrochem. Angew. Phys. Chem. <u>1928</u>, 34, 91-98. Reinders, W.; Klinkenberg, A. Recl. Trav. Chim. Pays-Bas <u>1929</u>, 48, 1227-64. Nishizawa, K.; Hachihama, Y. Z. Electrochem. Angew. Phys. Chem. <u>1929</u>, 35, 385-92. Janković, S. Rastvorljvost Nekih Soli i Hidroksida Zemcalkalnih Metala u Sistemima Voda-Etil Alkohol i Voda-Metil Alkohol, i Struktura Takvih Zasicenih Rastvora. <u>Doctoral Dissertation</u>, Faculty of Pharmacy, Zagreb, <u>1958</u>. Popova, T.B.; Berdyukova, V.A.; Khutsistova, F. M. Zh. Neorg. Khim. <u>1990</u>, 35, 507-11; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1990</u>, 35, 507-11; Russ. J. Inorg. Chem. (Engl. Transl.), <u>1990</u>, 35, 288-90. Smith, R.M.; Martell, A.E. CRITICAL STABILITY CONSTANTS, Vol. 4, Inorganic Complexes, Plenum Press, New York, 1976, pp. 1-2. Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Harlow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L. J. Phys. Chem. Ref. Data 1992, 11, Supplement No. 2, THE NBS TABLES OF THERMONNAMIC PROPERTIES. Donnay, J.D.H.; Ondik, H.M., Editors, CRYSTAL DATA DETERHINATIVE TABLES, Published jointly by the National Bureau of Standards and the Joint Committee on Powder Diffraction Standards, 1973, Volume 2. Mellor, J. W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Green and Co., London, 1923, pp. 673-87. Mellor, J. W. A Comprehensive Treatise of one or more of the following reasons, impure materials, presence of atmospheric carbon dioxide, and insufficient time allowed to reach equilibrium. Bucholz, C. F. Gehlen's J. <u>1807</u>, 4, 128. Bineau, A. C. R. Hebd. Seances Acad. Sci. <u>1855</u>, 41, 509. The following paper listed by Mellor contains a discusion of the relative order of solubility among the alkaline earth hydroxides. 	9.	Bull. Assoc. Chim. Sucr. Distill	. Ind. Agri. Fr. Colon.			
 Recl. Trav. Chim. Pays-Bas <u>1929</u>, 48, 1227-64. 12. Nishizawa, K.; Hachihama, Y. Z. Electrochem. Angew. Phys. Chem. <u>1929</u>, 35, 385-92. 13. Janković, S. Rastvorljvost Nekhh Soli i Hidroksida Zemoalkalnih Metala u Sistemima Voda-Etil Alkohol i Voda-Metil Alkohol, i Struktura Takvih Zasicenih Rastvora. <u>Doctoral Dissertation</u>, Faculty of Pharmacy, Zagreb, <u>1958</u>. 14. Popova, T.B.; Berdyukova, V.A.; Khutsistova, F. M. Zh. Neorg. Khim. <u>1990</u>, 35, 507-11; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1990</u>, 35, 288-90. 15. Smith, R.M.; Martell, A.E. CRITICAL STABILITY CONSTANTS, Vol. 4, Inorganic Complexes, Plenum Press, New York, 1976, pp. 1-2. 16. Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Harlow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L. J. Phys. Chem. Ref. Data <u>1982</u>, 11, Supplement No. 2, THE NBS TABLES OF THERMODYNAMIC PROPERTIES. 17. Donnay, J.D.H.; Ondik, H.M., Editors, CRYSTAL DATA DETERMINATIVE TABLES, Published jointly by the National Bureau of Standards and the Joint Committee on Powder Diffraction Standards, 1973, Volume 2. 18. Mellor, J. W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Green and Co., London, 1923, pp. 673-87. Mellor lists and discusses several papers on the solubility of strontium hydroxide not included in this volume. We believe the papers listed below can be rejected because of one or more of the following reasons, impure materials, presence of atmospheric carbon dioxide, and insufficient time allowed to reach equilibrium. Bucholz, C. F. Gehlen's J. <u>1807</u>, 4, 128. Bineau, A. C. R. Hebd. Seances Acad. Sci. <u>1855</u>, 41, 509. The following paper listed by Mellor contains a discusion of the relative order of solubility among the alkaline earth hydroxides. 	10.		m. <u>1928</u> , 34, 91 - 98.			
 Z. Electrochem. Angew. Phys. Chem. <u>1929</u>, 35, 385-92. Janković, S. Rastvorljvost Nekih Soli i Hidroksida Zemoalkalnih Metala u Sistemima Voda-Etil Alkohol i Voda-Metil Alkohol, i Struktura Takvih Zasicenih Rastvora. <u>Doctoral Dissertation</u>, Faculty of Pharmacy, Zagreb, <u>1958</u>. Popova, T.B.; Berdyukova, V.A.; Khutsistova, F. M. Zh. Neorg. Khim. <u>1990</u>, 35, 507-11; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1990</u>, 35, 268-90. Smith, R.M.; Martell, A.E. CRITICAL STABILITY CONSTANTS, Vol. 4, Inorganic Complexes, Plenum Press, New York, 1976, pp. 1-2. Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Harlow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L. J. Phys. Chem. Ref. Data <u>1982</u>, 11, Supplement No. 2, THE NBS TABLES OF THERMODYNAMIC PROPERTIES. Donnay, J.D.H.; Ondik, H.M., Editors, CRYSTAL DATA DETERMINATIVE TABLES, Published jointly by the National Bureau of Standards and the Joint Committee on Powder Diffraction Standards, 1973, Volume 2. Mellor, J. W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Green and Co., London, 1923, pp. 673-87. Mellor Jists and discusses several papers on the solubility of strontium hydroxide not included in this volume. We believe the papers listed below can be rejected because of one or more of the following reasons, impure materials, presence of atmospheric carbon dioxide, and insufficient time allowed to reach equilibrium. Bucholz, C. F. Gehlen's J. <u>1807</u>, 4, 128. Bineau, A. G. R. Hebd. Seances Acad. Sci. <u>1855</u>, 41, 509. The following paper listed by Mellor contains a discusion of the relative order of solubility among the alkaline earth hydroxides. 	11.		, 48, 1227-64.			
 Rastvorljvost Nekih Soli i Hidroksida Zemcalkalnih Metala u Sistemima Voda-Etil Alkohol i Voda-Metil Alkohol, i Struktura Takvih Zasicenih Rastvora. Doctoral Dissertation, Faculty of Pharmacy, Zagreb, <u>1958</u>. Popova, T.B.; Berdyukova, V.A.; Khutsistova, F. M. Zh. Neorg. Khim. <u>1990</u>, 35, 507-11; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1990</u>, 35, 288-90. Smith, R.M.; Martell, A.E. CRITICAL STABILITY CONSTANTS, Vol. 4, Inorganic Complexes, Plenum Press, New York, 1976, pp. 1-2. Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Harlow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L. J. Phys. Chem. Ref. Data <u>1982</u>, 11, Supplement No. 2, THE NBS TABLES OF THERMODYNAMIC PROPERTIES. Donnay, J.D.H.; Ondik, H.M., Editors, CRYSTAL DATA DETERMINATIVE TABLES, Published jointly by the National Bureau of Standards and the Joint Committee on Powder Diffraction Standards, 1973, Volume 2. Mellor, J. W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Green and Co., London, 1923, pp. 673-87. Mellor lists and discusses several papers on the solubility of strontium hydroxide not included in this volume. We believe the papers listed below can be rejected because of one or more of the following reasons, impure materials, presence of atmospheric carbon dioxide, and insufficient time allowed to reach equilibrium. Bucholz, C. F. Gehlen's J. <u>1807</u>, 4, 128. Blneau, A. C. R. Hebd. Seances Acad. Sci. <u>1855</u>, 41, 509. The following paper listed by Mellor contains a discusion of the relative order of solubility among the alkaline earth hydroxides. 	12.					
 Zh. Neorg. Khim. <u>1990</u>, 35, 507-11; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1990</u>, 35, 288-90. 15. Smith, R.M.; Martell, A.E. CRITICAL STABILITY CONSTANTS, Vol. 4, Inorganic Complexes, Plenum Press, New York, 1976, pp. 1-2. 16. Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Harlow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L. J. Phys. Chem. Ref. Data <u>1982</u>, 11, Supplement No. 2, THE NBS TABLES OF THERMODYNAMIC PROPERTIES. 17. Donnay, J.D.H.; Ondik, H.M., Editors, CRYSTAL DATA DETERMINATIVE TABLES, Published jointly by the National Bureau of Standards and the Joint Committee on Powder Diffraction Standards, 1973, Volume 2. 18. Mellor, J. W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Green and Co., London, 1923, pp. 673-87. Mellor lists and discusses several papers on the solubility of strontium hydroxide not included in this volume. We believe the papers listed below can be rejected because of one or more of the following reasons, impure materials, presence of atmospheric carbon dioxide, and insufficient time allowed to reach equilibrium. Bucholz, C. F. Gehlen's J. <u>1807</u>, 4, 128. Bineau, A. C. R. Hebd. Seances Acad. Sci. <u>1855</u>, 41, 509. The following paper listed by Mellor contains a discusion of the relative order of solubility among the alkaline earth hydroxides. 	13.	Rastvorljvost Nekih Soli i Hidroksida Zemoalkalnih Metala u Sistemima Voda-Etil Alkohol i Voda-Metil Alkohol, i Struktura Takvih Zasicenih Rastvora. <u>Doctoral Dissertation</u> , Faculty of				
 Inorganic Complexes, Plenum Press, New York, 1976, pp. 1-2. 16. Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Harlow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L. J. Phys. Chem. Ref. Data 1982, 11, Supplement No. 2, THE NBS TABLES OF THERMODYNAMIC PROPERTIES. 17. Donnay, J.D.H.; Ondik, H.M., Editors, CRYSTAL DATA DETERMINATIVE TABLES, Published jointly by the National Bureau of Standards and the Joint Committee on Powder Diffraction Standards, 1973, Volume 2. 18. Mellor, J. W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Green and Co., London, 1923, pp. 673-87. Mellor lists and discusses several papers on the solubility of strontium hydroxide not included in this volume. We believe the papers listed below can be rejected because of one or more of the following reasons, impure materials, presence of atmospheric carbon dioxide, and insufficient time allowed to reach equilibrium. Bucholz, C. F. Gehlen's J. <u>1807</u>, 4, 128. Bineau, A. C. R. Hebd. Seances Acad. Sci. <u>1855</u>, 41, 509. The following paper listed by Mellor contains a discusion of the relative order of solubility among the alkaline earth hydroxides. 	14.	Zh. Neorg. Khim. <u>1990</u> , 35, 507-11; Russ. J. Inorg. Chem. (Engl.				
 Bailey, S.M.; Churney, K.L.; Nuttall, R.L. J. Phys. Chem. Ref. Data 1982, 11, Supplement No. 2, THE NBS TABLES OF THERMODYNAMIC PROPERTIES. 17. Donnay, J.D.H.; Ondik, H.M., Editors, CRYSTAL DATA DETERMINATIVE TABLES, Published jointly by the National Bureau of Standards and the Joint Committee on Powder Diffraction Standards, 1973, Volume 2. 18. Mellor, J. W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Green and Co., London, 1923, pp. 673-87. Mellor lists and discusses several papers on the solubility of strontium hydroxide not included in this volume. We believe the papers listed below can be rejected because of one or more of the following reasons, impure materials, presence of atmospheric carbon dioxide, and insufficient time allowed to reach equilibrium. Bucholz, C. F. Gehlen's J. <u>1807</u>, 4, 128. Bineau, A. C. R. Hebd. Seances Acad. Sci. <u>1855</u>, 41, 509. The following paper listed by Mellor contains a discusion of the relative order of solubility among the alkaline earth hydroxides. 	15.	Smith, R.M.; Martell, A.E. CRITICAL STABILITY CONSTANTS, Vol. 4, Inorganic Complexes, Plenum Press, New York, 1976, pp. 1-2.				
 TABLES, Published jointly by the National Bureau of Standards and the Joint Committee on Powder Diffraction Standards, 1973, Volume 2. 18. Mellor, J. W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Green and Co., London, 1923, pp. 673-87. Mellor lists and discusses several papers on the solubility of strontium hydroxide not included in this volume. We believe the papers listed below can be rejected because of one or more of the following reasons, impure materials, presence of atmospheric carbon dioxide, and insufficient time allowed to reach equilibrium. Bucholz, C. F. Gehlen's J. 1807, 4, 128. Bineau, A. C. R. Hebd. Seances Acad. Sci. 1855, 41, 509. The following paper listed by Mellor contains a discusion of the relative order of solubility among the alkaline earth hydroxides. 	16.	Bailey, S.M.; Churney, K.L.; Nut 1982, 11, Supplement No. 2, THE 1	tall, R.L. J. Phys. Chem. Ref. Data			
Chemistry, Longmans, Green and Co., London, 1923, pp. 673-87. Mellor lists and discusses several papers on the solubility of strontium hydroxide not included in this volume. We believe the papers listed below can be rejected because of one or more of the following reasons, impure materials, presence of atmospheric carbon dioxide, and insufficient time allowed to reach equilibrium. Bucholz, C. F. Gehlen's J. <u>1807</u> , 4, 128. Bineau, A. C. R. Hebd. Seances Acad. Sci. <u>1855</u> , 41, 509. The following paper listed by Mellor contains a discusion of the relative order of solubility among the alkaline earth hydroxides.	17.	TABLES, Published jointly by the	National Bureau of Standards and			
 strontium hydroxide not included in this volume. We believe the papers listed below can be rejected because of one or more of the following reasons, impure materials, presence of atmospheric carbon dioxide, and insufficient time allowed to reach equilibrium. Bucholz, C. F. Gehlen's J. 1807, 4, 128. Bineau, A. C. R. Hebd. Seances Acad. Sci. 1855, 41, 509. The following paper listed by Mellor contains a discusion of the relative order of solubility among the alkaline earth hydroxides. 	18.	Mellor, J. W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Green and Co., London, 1923, pp. 673-87.				
Bineau, A. C. R. Hebd. Seances Acad. Sci. <u>1855</u> , 41, 509. The following paper listed by Mellor contains a discusion of the relative order of solubility among the alkaline earth hydroxides.		strontium hydroxide not included in this volume. We believe the papers listed below can be rejected because of one or more of the following reasons, impure materials, presence of atmospheric carbon				
relative order of solubility among the alkaline earth hydroxides.		Bucholz, C. F. Gehlen's J. <u>1807</u> Bineau, A. C. R. Hebd. Seances A	7, 4, 128. Acad. Sci. <u>1855</u> , 41, 509.			
Tilden, W. A. Proc. Roy. Soc. <u>1886</u> , 38, 401.						
		Tilden, W. A. Proc. Roy. Soc.	1886, 38, 401.			

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Strontium hydroxide; Sr(OH) ₂ ; [18480-07-4]	Guthrie, F.
(2) Water; H ₂ O; [7732-18-5]	Philos. Mag. [5] <u>1878</u> , 6, 35-44.
(2) water, n20, [//32-10-5]	
VARIABLES:	PREPARED BY:
VARIABLES.	TREFARED DI.
T/K = 273	I. Lambert
EXPERIMENTAL VALUES: The $Sr(OH)_2 + H_2O$	system at -0.1°C
SrO	Solid Phase
mass %	Composition
0.3838 0.4020	
	12 500 + 1462 # 0
Av. 0.3929 ± 0.0	$12 \text{ Sr0} + 1463 \text{ H}_20$
here was a determin	e experiment reported nation of the eutectic mperature of the system.
	composition will freeze
to a solid of the s	same composition.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A solution saturated with Sr(OH) ₂	
at room temperature is cooled until the temperature of formation of	Nothing specified.
cryohdrate [eutectic composition]	
is reached and cryohydrate is solidified.	
Analysis not specified, but it is probably carbonate precipitation	
and weighing of SrCO ₂ (method used	
by author for Ba determination).	
	ESTIMATED EDDOD
	ESTIMATED ERROR:
	Std. Dev. about 3 %.
	REFERENCES :

	25	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Strontium hydroxide; Sr(OH) ₂ ;	Scheibler, C.	
[18480-07-4]		
(2) Water, N.O. (7722-10-5)	J. Pharm. Chim. <u>1883</u> , [5], 8, 540.	
(2) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = 273 - 374	I. Lambert	
EXPERIMENTAL VALUES:		
Composition of the	saturated solution	
· · · · · · · · · · · · · · · · · · ·		
	SrO	
t/°C		
g/1000 g so	lution 10 ¹ m/mol kg ^{-1a}	
_		
0 3.5		
5 4.1		
10 4.8		
15 5.7		
20 6.8 25 8.3		
25 8.3 30 10.1		
35 12.4		
40 15.1		
45 18.1		
50 21.8		
55 26.1		
60 31.2	3.11	
65 37.5		
70 45.5		
75 56.0		
80 70.2		
85 98.9		
90 136.4		
95 178.6 100 228.5		
101.2 240.7		
101.1 240.7	50.55	
^a Calculated by compil	er.	
AUXILTARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Nothing specified. See (ref 1).	(1) Strontium hydroxide. Nothing specified.	
	(2) Water. Nothing specified.	
	(-,	
	ESTIMATED ERROR:	
	No estimates possible.	
	We contracto heapinte.	
	REFERENCES:	
	1. Scheibler C.	
	Neue Z. Ruebenzucker-Ind. 1881,	
	7, 258.	

258		
COMPONENTS: (1) Strontium hydroxid [18480-07-4] (2) Water; H ₂ O; [7732-	e; Sr(OH) ₂ ; 18-5]	ORIGINAL MEASUREMENTS: Sidersky, M. D. Bull. Assoc. Chim. Sucr. Distill. Ind. Agri. Fr. Colon. <u>1921</u> , 39, 167.
VARIABLES:	P	PREPARED BY:
T/K = 273 - 374		I. Lambert
EXPERIMENTAL VALUES: Comp	osition of the s	saturated solution
	· · · · · · · · · · · · · · · · · · ·	SrO
	g/100 g solut	$\frac{10^{1}m/mol kg^{-1a}}{m/mol kg^{-1a}}$
0	0.35	0.34
11 13 20	0.47 0.52 0.69	0.46 0.50 0.67
21 24	0.70	0.68 0.75
40 41	1.48 1.54	1.4 1.5
43 44 48	1.66 1.69 1.91	1.6 1.7 1.9
40 50 57	2.13	2.1 2.78
59 65	2.94 3.74	2.92 3.75
67 68 69	4.03 4.10 4.20	4.05 4.19 4.22
69 75 79	4.20 5.29 6.24	4.23 5.39 6.42
81 85	6.91 9.08	7.16 9.64
88	10.74	11.6

^aCalculated by compiler.

AUXILIARY INFORMATION

11.95

19.34

METHOD/APPARATUS/PROCEDURE: Sr(OH)₂ and water are placed in a stoppered flask fitted with two tubes passing through the cork, one of them with a felt plug at the end. After some hours at the desired temperature, samples are withdrawn by forcing the solution through the felt plug and then the Sr(OH)₂ concentration is analyzed by acidimetry. Temperatures are controlled by an ice bath $(0^{\circ}C)$, by flowing water $(11 - 13^{\circ}C)$, by a thermostated bath $(40 - 90^{\circ}C)$, and by boiling $(101^{\circ}C)$. $20 - 24^{\circ}C$ are the ambient temperatures. Each experiment is repeated two or three times.

90

101.2

SOURCE AND PURITY OF MATERIALS:

13.1

23.1

- (1) Strontium hydroxide. Prepared from "Strontionite" (SrCO₃ ore) ignited, dissolved in hot water, filtered, and recrystallized three times.
- (2) Water. Nothing specified.

ESTIMATED ERROR: Temp.: Nothing specified. Soly.: precison < 6 \pm Sr(OH)₂ (author).

REFERENCES:

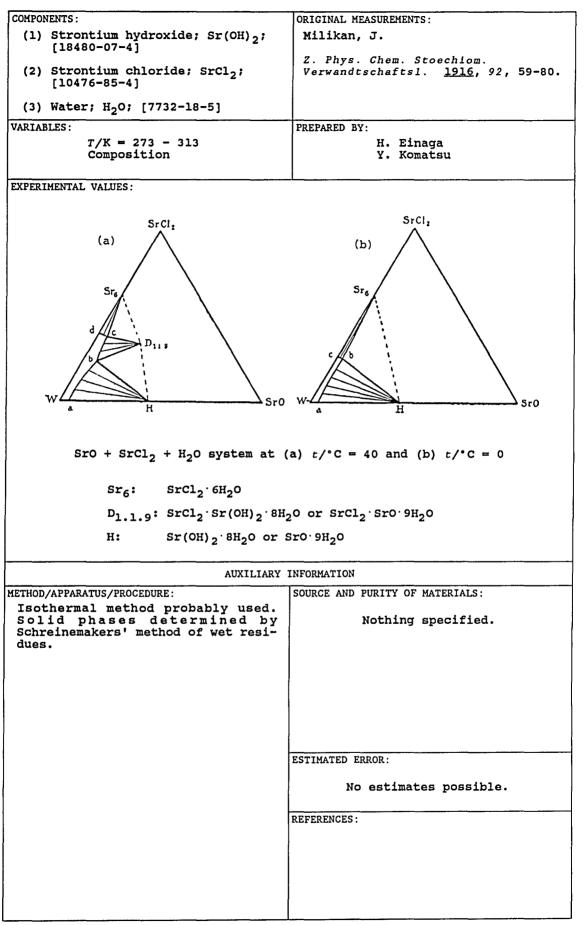
COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Strontium hydroxide; Sr(OH)₂; [18480-07-4]</pre>		
(2) Water; H ₂ O; [7732-18-5]	Z. Elektrochem. Angew. Phys. Chem. <u>1928</u> , 34, 91-8.	
VARIABLES:	PREPARED BY:	
T/K = 273 - 373	H. Einaga Y. Komatsu	

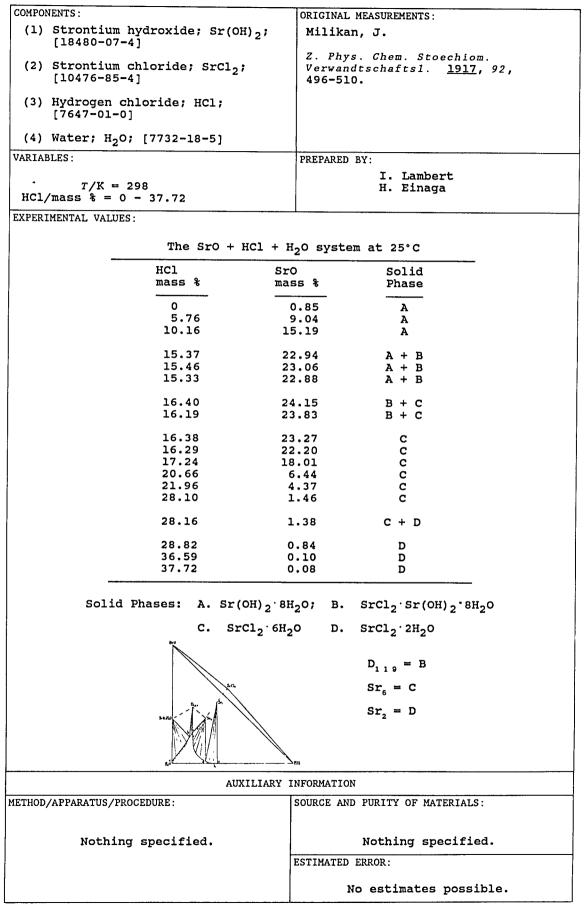
EXPERIMENTAL VALUES:

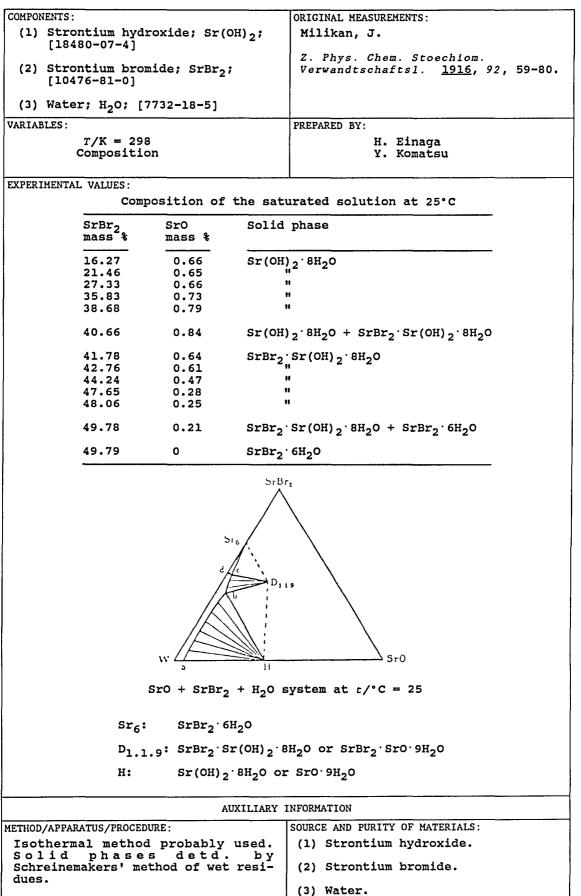
Composition of the saturated solution				
t/°C	SrO g/100g ₂	Molality of Sr(OH)2 ^a m ₁ /mol kg ⁻¹		
0	0.35	0.034		
25	0.89	0.086		
35	1.31	0.126		
50	2.20	0.212		
75	5.67	0.547		
90	13.62	1.314		
95	17.83	1.721		
98	21.00	2.027		
100	22.81	2.201		

^aCalculated by compilers.

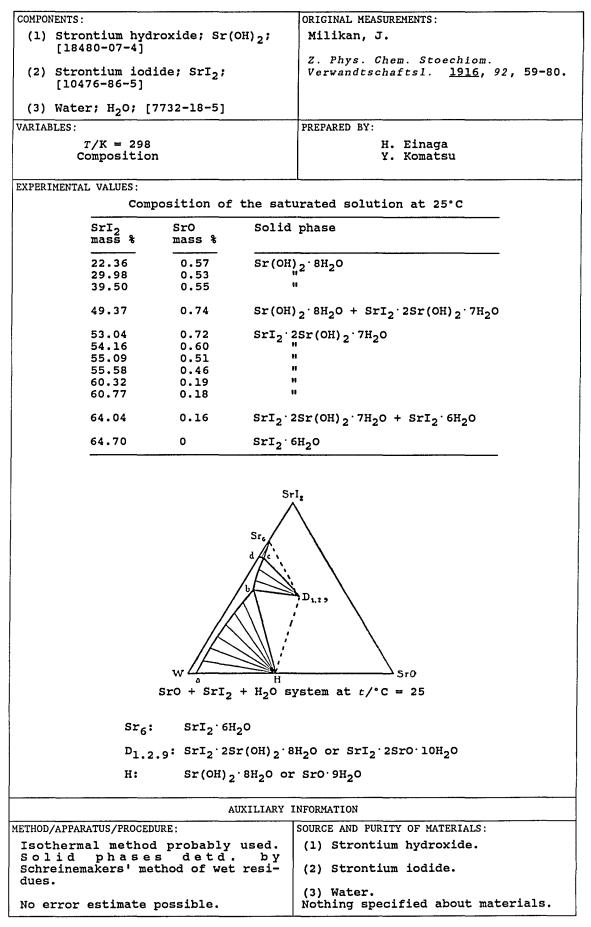
Solid phase in equilibrium with the saturated solution was strontium hydroxide octahydrate, $Sr(OH)_2$ $^{8}H_2O$ [1311-10-0].


AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: SrO was equilibrated with pure CO ₂ free water at a definite tempera- ture with continuous stirring. Aliquots of saturated solution were titrated with standard HCl solution for determination of dissolved Sr(OH) ₂ .	SOURCE AND PURITY OF MATERIALS: (1) Strontium hydroxide. SrO of high purity was used. (2) Water.
	ESTIMATED ERROR: No estimates possible. REFERENCES:


60					
OMPONE	NTS:		ORIGINAL MEASURE	MENTS:	
(1) Strontium hydroxide; Sr(OH) ₂ ;		Reinders, W.; Klinkenberg, A.			
[18480-07-4]		Recl. Trav. C	Chim. Pays-Bas 1929,		
(2) W	ater; H ₂ O	; [7732-18-5]	48, 1227-45.		
ARIABLI	ES:		PREPARED BY:		
Т	/K = 297 ·	- 371	I. Lambert		
PERIM	ENTAL VALUES	<u> </u>			
		Composition of the	e saturated solu	tion	
		SrO			
	t/°C	g/100 g solution	$10^{1}m/mol kg^{-1a}$	Solid phase	
	24.2	0.822	0.799	Sr (OH) 2 · 8H2O	
	35 45	1.227 1.81	1.20 1.78	11	
	55	2.68	2.66	11	
	55.89	3.27	3.26		
	70.03 74.98	5.01	5.09	11 17	
	79.93	6.37 8.34	6.56 8.78	11	
	85.10	12.19	13.4	11	
	87.70	11.83	12.9	Sr(OH) ₂ ·H ₂ O	
	90.00	11.66	12.7	"	
	90.24	11.59	12.6	17 17	
	94.65 98.2	11.20 10.92	12.2 11.8	11	
	^a Calcula	ated by compiler.			
		AUXILIARY	INFORMATION		
•	PPARATUS/PR		SOURCE AND PURITY	OF MATERIALS:	
Stopp	ered flask	s containing weighed	(1) Strontium		
agita	ted in a t	OH) ₂ and water were thermostat for an un-		uct from Merck, "free ite." Used without	
define	ed amount	of time. The satu-		urification.	
		was filtered through	(D) Watawa Wathdawa anasifisi		
		or centrifugated when a grain size was too	(2) Water. No	othing specified.	
		filtration. Sr(OH)			
		with standard acid.			
		on of the hydrate			
scapi s stur	a above 85 lv of the	$S^{\circ}C$ was determined by $Sr(OH)_{\circ} + NaBr + H_{\circ}O$			
syster	at 100°C	$Sr(OH)_2 + NaBr + H_2O$ C. Analysis of both	L	·····	
Sr(OH)	o saturat	ed solution and wet	ESTIMATED ERROR:		
precipitate confirmed the monohy- lrate, Sr(OH) ₂ H ₂ O.		No esti	mates possible.		
			REFERENCES :		


COMPONENTS :	······		ORIGINAL MEASUREMENTS:
(1) Stront: [18480-	ium hydroxid -07-4]	e; Sr(OH) ₂ ;	Milikan, J.
(2) Stront: [10476-	ium chloride -85-4]	; SrCl ₂ ;	Z. Phys. Chem. Stoechiom. Verwandtschaftsl. <u>1916</u> , 92, 59-80.
(3) Water;	H ₂ O; [7732-	18-5]	
EXPERIMENTAL V		osition of t	the saturated solution
t/°C	SrCl ₂ mass %	SrO mass %	Solid phase
0	23.74 29.03	0.29 0.30	Sr(OH) ₂ .8H ₂ O
	30.58 30.52	0.31 0.31	$sr(OH)_{2} \cdot 8H_{2}O + srCl_{2} \cdot 6H_{2}O$
	30.68	0	SrCl ₂ ·6H ₂ O
25	12.52 22.09	0.86 0.75	srCl ₂ .8H ₂ O
	33.41 33.61 33.33	1.09 1.09 1.09	Sr(OH) ₂ ·8H ₂ O + SrCl ₂ ·Sr(OH) ₂ ·8H ₂ O "
	35.65 35.39	0.85 0.83	$\operatorname{srCl}_{2} \operatorname{sr}(OH)_{2} \operatorname{sH}_{2}O + \operatorname{srCl}_{2} \operatorname{cH}_{2}O$
	35.60	0	SrCl ₂ ·6H ₂ O
40	18.48 28.84 29.01	1.42 1.90 1.91	Sr(OH) ₂ ·8H ₂ O
	32.07 32.09	2.49 2.50	Sr(OH) ₂ ·8H ₂ O + SrCl ₂ ·Sr(OH) ₂ ·8H ₂ O
	32.97 34.13 36.08 36.62	2.10 2.03 1.76 1.73	SrCl ₂ ·Sr(OH) ₂ ·8H ₂ O " "
	39.25 39.28	1.36 1.36	$\operatorname{srcl}_{2} \operatorname{sr}(OH)_{2} \operatorname{sh}_{2}O + \operatorname{srcl}_{2} \operatorname{o}_{2}O$
	39.62	0	srCl ₂ ·6H ₂ O
		. <u>,</u> ,,	

(continued on next page)



No error estimates possible.

Nothing specified about materials.

200	
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Strontium hydroxide; Sr(OH) ₂ ; [18480-07-4]	Terres, E.; Brückne
	Z Elektrochem Ang

; Brückner, K. Z. Elektrochem. Angew. Phys. Chem. 1920, 26, 25-32.

(3) Water; H₂O; [7732-18-5]

EXPERIMENTAL VALUES:

The $Sr(OH)_2 + Sr(SH)_2 + H_2O$ system at 0 to 1	100°C
---	-------

	Sr(SH) ₂	Sr(OH) ₂	Soli Phas
t/°C	/g (100 g sln) ⁻¹	/g (100 g sln) ⁻¹	FIIAS
0	1.56	0.30	A
-	6.68	0.25	A
	12.65	0.22	А
	14.80	0.20	А
	18.20	0.16	А
	19.05	0.15	А
	23.4	0.10	В
	24.8	0.10	В
	27.5	0.20	В
20	5.9	0.72	А
	11.4	0.70	A
	15.8	0.62	A
	18.3	0.60	A
	20.3	0.55	A
	24.	1.	B
	26.	0.25	B
	26.8	0.20	B
	27.5 29.7	0.15 0.1	B B
40	1.40	1.65	А
	4.87	1.60	А
	10.83	1.60	А
	15.93	1.55	А
	20.00	1.50	А
	24.10	1.10	В
	26.20	0.80	В
	28.30	0.42	В
	29.25	0.30	B
	31.60	0.10	В
60	1.6	3.15	A
	6.08	3.04	A
	11.85	3.16	A
	16.72	3.15	A
	25.0	1.75	E
	26.6	1.75	B
	30.8	0.6	B
	33.6	0.1	В
80	5.6	5.60	A
	9.5 15.50	5.00 4.88	A A
	19.60 27.50	4.10 2.70	A B
	28.00	2.10	E
	30.40	1.40	B
	35.60	0.05	B
100	7.40	14.00	А
	37.80	0.15	B
Solid I	Phases: A. Sr(OF	I) 2 · 8H2O	
	B. Sr(SF	H) 2 · 4H20	

COMPONENTS .	ODTOTNAL NEACHDENENTS.			
COMPONENTS:	ORIGINAL MEASUREMENTS: Terres, E.; Brückner, K.			
(1) Strontium hydroxide; Sr(OH) ₂ ; [18480-07-4]	Z. Elektrochem. Angew. Phys. Chem.			
<pre>(2) Strontium hydrosulfide; Sr(SH)₂; [12135-37-4]</pre>	<u>1920</u> , 26, 25-32.			
(3) Water; H ₂ O; [7732-18-5]				
VARIABLES:	PREPARED BY:			
T/K = 273 - 373 Composition	I. Lambert			
EXPERIMENTAL VALUES:	d			
The solid phase was identified by inspection of Fig 8 in the original paper.				
The paper also gives the solubi water.	lity of Sr(SH) ₂ ·4H ₂ O in pure			
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
Solutions of Sr(OH) ₂ and Sr(SH) ₂ are mixed and allowed to stand	(2) Strontium hydrosulfide. Prepared by reaction of sul-			
overnight after the precipitation	furic acid on a solution of			
takes place. Freshly prepared Sr(SH), is used in each experiment,	strontium hydroxide at 65-70°C.			
and solubilities are obtained both				
by increasing and decreasing tem- perature.				
•				
<u>Analysis of solution</u> : Sulfide is oxidized into sulfate by H ₂ O ₂ which				
precipitates as SrSO ₄ . SrSO ₄ is precipitated from the remaining				
solution by addition of either	ESTIMATED ERROR:			
$SrCl_2$ or H_2SO_4 depending on which species in excess. The $SrSO_4$ is	No estimates possible			
determined gravimetrically.				
<u>Analysis</u> of solid: The solid is	REFERENCES :			
dissolved in water an titrated with standard HCl solution using	1. Terres, E.; Brückner, K. Z. Elektrochem. 1920, 26, 1.			
phenolphthalein (titration of OH)	2. Electrochem. <u>1920</u> , 20, 1.			
and methyl orange (titration of SH ⁻) as indicators.				
Methods essentially the same as in				
(ref 1).				

```
COMPONENTS:ORIGINAL MEASUREMENTS:(1) Strontium hydroxide; Sr(OH)_2;<br/>[18480-07-4]Popova, T. B.; Berdyukova, V. A.;<br/>Khutsistova, F. M.(2) Strontium nitrite; Sr(NO_2)_2;<br/>[13470-06-9]*Zh. Neorg. Khim. 1990, 35, 507-11.<br/>Russ. J. Inorg. Chem. (Engl.<br/>Transl.) 1990, 35, 288-90.(3) Water; H_2O; [7732-18-5]PREPARED BY:VARIABLES:FREPARED BY:T/K = 298<br/>CompositionI. Lambert
```

EXPERIMENTAL VALUES:

The $Sr(OH)_2 + Sr(NO_2)_2 + H_2O$ system at 25°C.

Solid Phase	omposition	Solid phase c	composition	iquid phase
	Sr(OH) ₂ mass %	Sr(NO ₂) ₂ mass %	Sr(OH) ₂ mass %	Sr(NO ₂) ₂ mass %
A				41.58
A + B	5.76	68.94	0.26	41.50
A + B	2.15	81.26	0.26	41.50
A + B	11.32	69.95	0.26	41.50
В	10.52	65.12	0.51	36,78
В	7.00	56.80	0.50	35.90
B + C	7.32	53.24	0.59	30.81
B + C	12.08	43.85	0.59	30.81
с	25.22	24.05	0.85	29.04
С	31.20	6.78	0.90	23.99
С	52.63	3.73	0.90	12.96
С	38.38	1.70	0.97	7.27
С	-	-	0.97	-

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility in the $Sr(OH)_2$ + $Sr(NO_2)_2$ + H_2O system was studied isothermally at $(25.0\pm0.1)^{\circ}C$ in a water thermostat. It was confirmed that samples reached equilibrium	(1) Sr(OH) ₂ . Chemically pure grade used without recrytallization. The CO ₃ ²⁻ ion content did not exceed 0.05 mass %.
that Samples reached equilibrium after 34-36 h of continual stirring by analysis of liquid phase specimems. The equilibrium phases were analyzed for nitrite ion per- manganatometrically, for hydroxide ion acidimetrically and for stron- tium ion complexometrically. References to the methods are in the paper. The composition of the solid phases was found by Schreinemakers' graphical method of residues and confirmed by chemical analysis.	<pre>(2) Sr(NO₂)₂. Prepared by double decomposition between Ba(NO₂)₂ and SrSO₄. Recrytallized material analyzed 99.60 mass % anhydrous salt.</pre>
	(3) water. Nothing specified.
	ESTIMATED ERROR:
	Temp.: Precision ± 0.1 K. Soly.: Nothing specified.
	REFERENCES:
The solubility in water was Sr(OH) ₂ 0.97 mass % and Ca(NO ₂) ₂ 41.58 mass %. The values agreed satisfac- torily with published data (1, 2).	 Protsenko, P.I.; Razumovskaya, O.N.; Brykov, N.A. Spravochnik po Rastvorimosti Solevykh Sistem, Izd. Khimiya, Leningrad, <u>1971</u>, 272 pp. Milikan, J. Z. Phys. Chem. <u>1918</u>, 92, 72.

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Strontium hydroxide; Sr(OH)₂; [18480-07-4]</pre>	Parsons, C. L.; Perkins, C. L. J. Am. Chem. Soc. 1910, 32,
<pre>(2) Strontium nitrate; Sr(NO3); [10042-76-9]</pre>	1387-9.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 Composition	H. Einaga Y. Komatsu I. Lambert
EVDEDTMENTAT VALUES.	

Strontium Nitrate	Strontium H	Iydroxide	Specific Gravity	Solid Phase
/g (100 g H ₂ O) ⁻¹	/g (100 g H ₂ O) ⁻¹	m_1 /mol kg ⁻¹	-	
4.45	0.78	0.0641	1.033	A
6.29	0.79	0.0650	1.059	А
8.96	0.81	0.0663	1.079	А
12.78	0.84	0.0691	1.108	A
16.21	0.87	0.0715	1.126	A
17.96	0.91	0.0748	1.148	A
23.83	0.95	0.0780	1.178	A
26.58	0.96	0.0789	1.206	А
28.80	1.01	0.0830	1.217	A
32.41	1.03	0.0847	1.239	A
37.81	1.11	0.0913	1.267	A
40.83	1.14	0.0938	1.291	А
44.03	1.20	0.0986	1.317	A
46.97	1.27	0.104	1.327	A
52.90	1.34	0.110	1.359	A
56.30	1.41	0.116	1.381	А
60.37	1.47	0.121	1.403	А
63.71	1.51	0.124	1.419	A
66.88	1.55	0.127	1.450	А
74.27	1.71	0.141	1.490	A
81.06	1.76	0.145	1.506	A + 1
80.83	0.78	0.0645	1.494	в
79.47	0.38	0.0312	1.492	В
79.27	0	0	1.481	в

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Solid $Sr(OH)_2$ was added to aqueous $Sr(NO_3)_2$ solution in tightly stoppered bottles and rotated for four months at 25°C to attain equilibrium. Aliquots of saturated solution were removed and the $Sr(OH)_2$ determined by titration with standard HNO₃ solution using phenolphthalein as indicator. The $Sr(NO_3)_2$ was determined by acidification of an aliquot with HNO₃, evaporation to dryness, weighing the residue, and subtraction of the amount corresponding to $Sr(OH)_2$.

SOURCE AND PURITY OF MATERIALS:

- (1) Strontium hydroxide. Prepared from pure SrO.
- (2) Strontium nitrate. Commercial sample specially purified by separation of barium salt impurity.

ESTIMATED ERROR:

No estimates possible.

REFERENCES:

```
270
```

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Strontium hydroxide; Sr(OH)₂; [18480-07-4]</pre>	Janković, S. Rastvorljivost Nekih Soli i Hidrokisida Zemnoalkalnih Metala u Sistemima Voda-Etil Alkohol i Voda-Metil	
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	Alkohol, i Struktura Takvih Zasicenih Rastvora. <u>Doctoral</u> <u>Dissertation</u> ,	
(3) Water; H ₂ O; [7732-18-5]	Faculty of Pharmacy, Zagreb, <u>1958</u> .	

EXPERIMENTAL VALUES:

Composition of the saturated solution at 25°C

Water	Ethanol		Stront	ium hydroxide
mol %	mol % ^a	mass %	10 ⁵ w ₁	m1/mmol kg ^{-1a}
98.2	1.8	4.5	735.5	60.9
95.7	4.3	10.3	554.4	45.8
92.0	8.0	18.2	383.6	31.7
88.78	11.2	24.4	280.7	23.1
80.4	19.6	38.4	141.0	11.6
74.6	25.4	46.5	81.5	6.71
70.2	29.8	52.1	60.1	4.94
64.5	35.5	58.5	40.5	3.33
59.0	41.0	64.0	27.8	2.29
47.3	52.7	74.0	9.7	0.80
34.3	65.7	83.0	6.1	0.50
25.5	74.5	88.2	4.4	0.36
12.1	87.9	94.9	0.2	0.02

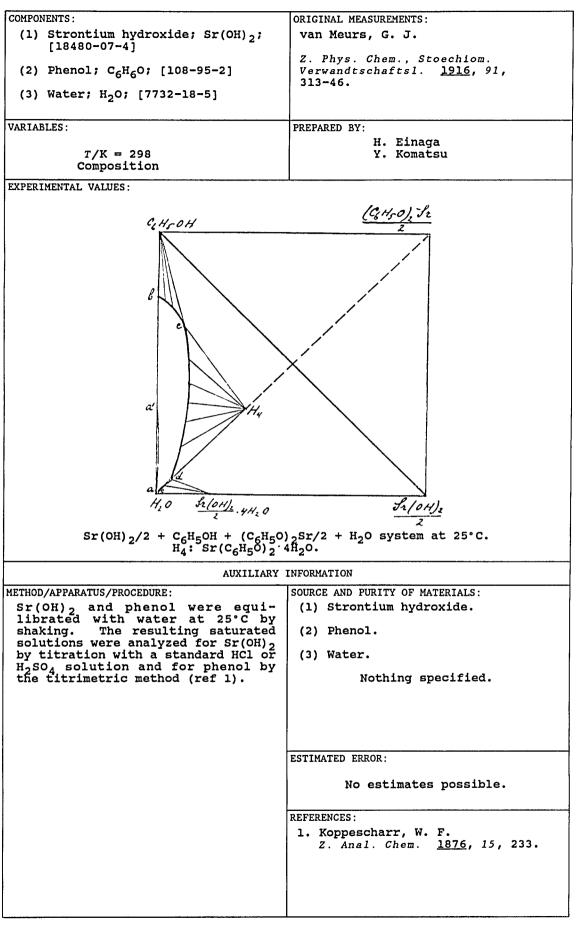
^aCalculated by compiler.

Water	Relative	Conductivity	Viscosity
mol %	Density d ²⁵ 	$10^5 \kappa/S \text{ cm}^{-1}$	η/mPa s
98.2	1.0006	2070	1.16
95.7	0.9892	1200	1.43
92.0	0.9760	720	1.81
88.78	0.9604	483	2.18
80.4	0.9394	176	2.48
74.6	0.9214	95	2.48
70.2	0.9087	57.8	2.48
64.5	0.8936	35.5	2.35
59.0	0.8790	21.6	2.26
47.3	0.8566	5.2	1.96
34.3	0.8359	1.3	1.72
25.5	0.8230	0.57	1.53
12.1	0.8043	0.247	1.33

Properties of the saturated solution at 25°C

(continued on next page)

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Strontium hydroxide; Sr(OH) ₂ ;	Janković, S.
[18480-07-4]	Doctorel Discontation Desults of
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	<u>Doctoral Dissertation</u> , Faculty of Pharmacy, Zagreb, <u>1958</u> .
(-,	
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298	
C_2H_6O mass $% = 4.5 - 94.9$	J. W. Lorimer
EXPERIMENTAL VALUES:	L
•	
AUXILIARY	INFORMATION
	COUDCE AND DUDITY OF MATERIALS.
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Salt and solution were stirred for 8 days in a thermostat. After	(1) Strontium hydroxide. Hopkins- Williams.
equilibration, samples were removed	milliams.
for analysis through a pipet fitted	(2) Ethanol. C. Erba, anhydrous,
with a glass wool filter. Density	99.9 - 100 % pure, density
was measured using a pycnometer;	0.795.
the contents of which were then used for analysis of sulfate by	(3) Water. Redistilled.
used for analysis of sulfate by volumetric or colorimetric methods.	(5) water. Redistified.
Viscosity was measured using a	
Vogel-Ossag viscometer and conduc-	
tivity with a Philips bridge (CM	
4249; average reading error 2 %) and dip cell. The author claims	ESTIMATED ERROR:
that there is no phase change in	Temp.: precision within ± 0.05 K.
the equilibrium solid, which is	Soly.: no estimates possible.
Sr(OH) ₂ ·8H ₂ O.	- •
	DEFEDENCES .
	REFERENCES :


2	7	2
~		~

272		
COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Strontium hydroxide; Sr(OH)₂; [18480-07-4]</pre>	Rothmund, V.	
(2) Organic solvents; See table of experimental values.	Z. Phys. Chem., Stoechiom. Verwandtschaftsl. <u>1910</u> , 69, 523-46.	
(3) Water; H ₂ O; [7732-18-5]		
ARIABLES:	PREPARED BY:	
T/K = 298 Nature of second component.	H. Einaga Y. Komatsu	
XPERIMENTAL VALUES: The solubility of Sr(OH) ₂ various ac	queous-organic mixed solvents at 25°C	
Component (2)	Strontium Hydroxide	
c ₂ /mol L ⁻¹ - 0.5	c1/mol L ⁻¹	
Reference: Solubility in water	0.0835	
Pyridine; C ₅ H ₅ N; [110-86-1]	0.0694	
N-Ethylethanamine; C ₄ H ₁₁ N; [109-89-	-7] 0.0586	
Ammonia; NH ₃ ; [7664-41-7]	0.0785	
Urea; CH ₄ N ₂ O; [57-13-6]	0.0820	
D-Mannitol; C ₆ H ₁₄ O ₆ ; [69-65-8]	0.1996	
1,2,3-Propanetriol; C ₃ H ₈ O ₃ ; [56-81-	.5] 0.1094	
1,2-Ethanediol; C ₂ H ₆ O ₂ ; [107-21-1]	0.0922	
1,1'-Oxybisethane; C ₄ H ₁₀ O; [60-29-7	0.0645	
2-Propanone; C ₃ H ₆ O; [67-64-1]	0.0692	
2-Methyl-2-butanol; C ₅ H ₁₂ O; [75-85-	4] 0.0630	
1-Propanol; C ₃ H ₈ O; [71-23-8]	0.0708	
Ethanol; C ₂ H ₆ O; [64-17-5]	0.0744	
Methanol; CH40; [67-56-1]	0.0820	
In all cases the solid phase is Sr(0	H) ₂ ·8H ₂ O.	
AUXILIARY	INFORMATION	
ETHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
$Sr(OH)_2$ ·8H ₂ O and aqueous solution containing 0.5 mol L ⁻¹ of the or- ganic component were equilibrated with mechanical stirring at 25°C. Aliquots of the saturated solution were titrated with standard HCl solution using methyl orange and Na indigosulfonate as indicators with protection against atmospheric CO ₂ . Coexisting volatile bases were removed by evaporation before the titration procedure.	<pre>(1) Strontium hydroxide. Sr(OH)₂·8H₂O free of Ba(OH)₂ and Ca(OH)₂ was recrystallized from water with protection against atmospheric CO₂. Nothing further specified.</pre>	
-	ESTIMATED ERROR:	

COMPONEN	NTS:		ORIGINAL MEASUREMENTS:
(1) S [trontium h 18480-07-4	ydroxide; Sr(OH) ₂ ;]	
(2) Phenol; C ₆ H ₆ O; [108-95-2]		₅ 0; [108-95-2]	Z. Phys. Chem., Stoechiom. Verwandtschaftsl. <u>1916</u> , 91, 313-46.
(3) W	ater; H ₂ O;	[7732-18-5]	
EXPERIM	ENTAL VALUES: Composi		$)_2 + C_6H_5OH + H_2O$ system at 25°C
	Phenol mol %	(1/2)Sr(OH) ₂ mol %	Solid phase
	0.49	0.72	Sr(OH) ₂ .8H ₂ O
	1.28	1.48	n
	3.74	3.83	n
	4.80	4.86	n
	5.52	5.58	H
	6.04	6.12	$sr(OH)_{2} \cdot 8H_{2}O + sr(C_{6}H_{5}O)_{2} \cdot 4H_{2}O$
	9.67	6.82	"
	20.24	8.87	11
	24.84	9.38	u .
	47.30	11.16	
	63.77	9.62	$sr(c_6H_50)_2 \cdot 4H_20 + c_6H_60$
	65.46	6.17	с ₆ н ₆ о
	69.91	3.54	11
	74.27	0	11
1			

(Continued on the next page)

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Strontium hydroxide; Sr(OH)₂; [18480-07-4]</pre>	Sidersky, M. D.	
(2) Sucrose; C ₁₂ H ₂₂ O ₁₁ ; [57-50-1] (3) Water; H ₂ O; [7732-18-5]	Bull. Assoc. Chim. Sucr. Distill. Ind. Agri. Fr. Colon. <u>1921</u> , 39, 167-77.	
VARIABLES:	PREPARED BY:	
T/K = 276 - 313 Composition	I. Lambert	

EXPERIMENTAL VALUES:

	Sucrose	SrO	<u></u>
t/°C	g ₂ /100 g solution	g/100 g solution	m/mol kg ^{-1a}
3	1.59	0.52	0.051
_	4.49	0.75	0.076
	9.01	1.14	0.122
	12.29	1.42	0.159
	17.71	1.87	0.224
	21.57	2.21	0.280
15	1.82	0.72	0.071
	4.66	0.98	0.100
	9.35 13.49	1.43 1.83	0.155
	17.97	2.19	0.209 0.265
	22.09	2.68	0.343
24	1.87	0.98	0.097
	4.76	1.37	0.141
	9.35	1.94	0.211
	13.76	2.52	0.290
	18.44	3.10	0.381
	22.69	3.63	0.475
40	1.50	1.77	0.176
	4.55	2.37	0.246
	8.21 13.26	3.19 4.21	0.347 0.492
<u>.</u>			
-Calcul	ated by compiler. Soli		ed
		INFORMATION	MARED TALC.
D/APPARATUS/ OH) and y	water are placed in a	SOURCE AND PURITY OF (1) Strontium hy	
ppered fl	ask fitted with two	from "Stronti	onite" (SrCO
es passing	through the cork, one	ignited, d	issolved in
	a felt plug at the	water, filte	ered, and re
	some hours at the		e times.
hdrawn by	erature, samples are forcing the solution	(2) Sucrose. Not	hing specifie
ough the f lvzed bv	elt plug. Sr(OH) ₂ is acidimetry and the	(3) Water. Nothi	ng specified.
rose conce	entration measured by		
lled by a	Temperatures are con- n ice bath (0°C), by	ESTIMATED ERROR:	
	$r (11 - 13^{\circ}C)$, by a		
	bath $(40 - 90^{\circ}C)$, and		
	.01°C). 20 - 24°C are	Sr(OH) ₂ (author).
	emperatures. Each ex- repeated two or three	REFERENCES :	<u></u>
es.	reheared two or cutes		
		1	

276	6
-----	---

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Strontium hydroxide; Sr(OH) ₂ ; [18480-07-4]	Grube, G.; Nussbaum, M.
(2) Sucrose; C ₁₂ H ₂₂ O ₁₁ ; [57-50-1]	Z. Elektrochem. Angew. Phys. Chem. 1928, 34, 91-8.
(3) Water; H ₂ O; [7732-18-5]	

EXPERIMENTAL.	VALUES:

t/°C	Sucrose g ₂ /100g ₃	SrO g/100g ₃	Solid phase
0	0 10.0	0.35 0.30	Sr(OH) ₂ ^{.8H} 2O ^a
	15.1 29.2 75.4 120.0	0.26 0.20 0.05 0.04	C ₁₂ H ₂₂ O ₁₁ ·SrO " "
	150.0 179.4	0.02 0	C ₁₂ H ₂₂ O ₁₁
25	0 9.0 11.5	0.89 0.80 0.79	sr(OH) 2 ^{.8H} 2O ^a "
	12.5 17.2 30.0 58.9 78.6 120.4	0.75 0.67 0.50 0.34 0.21 0.14	C ₁₂ H ₂₂₀₁₁ ·SrO " " " "
	152.6 182.2 212.3	0.10 0.07 0	C ₁₂ H ₂₂ O ₁₁ "
35	0 7.4	1.31 1.15	sr(OH) 2.8H20a
	12.7 16.5 22.4 33.3 74.0 101.2 136.6	1.10 1.02 0.92 0.81 0.50 0.43 0.31	C ₁₂ H ₂₂ O ₁₁ · SrO " " " " " "
	151.4 188.9 227.9	0.25 0.09 0	^C 12 ^H 22 ^O 11 "
50	0 6.8 11.5	2.20 2.06 1.95	Sr(OH) 2 ^{.8H} 2O ^a "
	16.2 23.1 30.0 43.6 60.1 90.7 107.6 134.1	1.82 1.64 1.59 1.28 1.00 0.69 0.56 0.50	C ₁₂ H ₂₂₀₁₁ ·SrO " " " " " " "
	150.0 168.3 178.9 198.1 260.2	0.42 0.29 0.22 0.15 0	C ₁₂ H ₂₂ O ₁₁ " " "

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Strontium hydroxide; Sr(OH) ₂ ; [18480-07-4]	Grube, G.; Nussbaum, M.
(2) Sucrose; C ₁₂ H ₂₂ O ₁₁ ; [57-50-1]	Z. Elektrochem. Angew. Phys. Chem. 1928, 34, 91-8.
(3) Water; H ₂ O; [7732-18-5]	

EXPERIMENTAL VALUES:

,

¢∕°C	Sucrose g ₂ /100g ₃	Sr0 g/100g ₃	Solid phase
75	0 7.0 12.5 13.7	5.67 5.25 5.08 5.02	Sr(OH) ₂ ·8H ₂ O ^a " "
	18.0 22.8 37.0 62.4 100.0	4.75 4.50 3.94 3.15 2.40	C ₁₂ H ₂₂ 0 ₁₁ ·SrO " " "
	140.0 180.0 240.0 339.2	1.60 0.77 0.22 0	^C 12 ^H 22 ^O 11 "
90	0 5.2 15.4	13.60 13.20 12.70	sr(OH) 2 ^{.8H} 2O ^a "
	23.7 27.0 30.5 33.9 50.0 70.1	12.50 11.95 11.65 11.50 10.35 9.29	C ₁₂ H ₂₂ 0 ₁₁ ·sro " " " "
	110.1 150.0 200.0 300.0 415.7	5.78 3.58 2.08 0.61 0	C ₁₂ H ₂₂ O ₁₁ " "
95	0 20.0 27.5	17.83 16.38 15.93	sr(OH) _{ ^{.8H} 2O ^a "
	34.9 36.5 41.5 45.7 47.8 70.1	15.50 15.21 14.82 14.30 14.27 12.50	C ₁₂ H ₂₂ O ₁₁ ·SrO " " " "
	100.1 140.1 195.2 294.6 448.2	7.91 5.03 2.98 1.01 0	C ₁₂ H ₂₂ O ₁₁ " "
96	0 21.3 28.4	18.72 17.00 16.62	sr(OH) 2 ^{.8H} 2O ^a "
	39.0 43.1 45.0 54.2	16.00 15.52 15.28 14.51	C ₁₂ H ₂₂ O ₁₁ ·SrO "
97	0	19.20	sr(OH) ₂ ·8H ₂ O ^a

```
278
```

```
COMPONENTS:

(1) Strontium hydroxide; Sr(OH)<sub>2</sub>;

[18480-07-4]

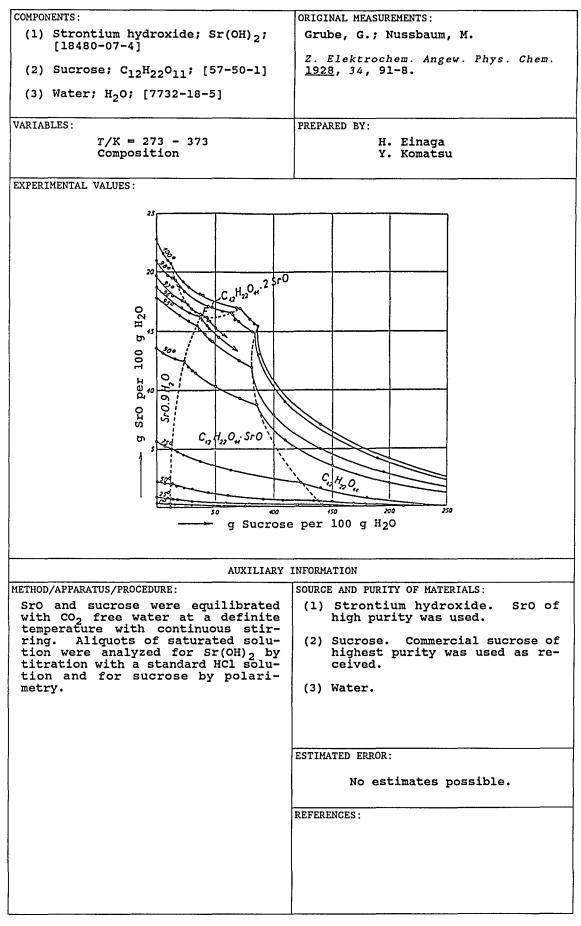
(2) Sucrose; C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>; [57-50-1]

(3) Water; H<sub>2</sub>O; [7732-18-5]

(3) COMPONENTS:

(1) ORIGINAL MEASUREMENTS:

Grube, G.; Nussbaum, M.


Z. Elektrochem. Angew. Phys. Chem.

<u>1928</u>, 34, 91-8.
```

```
EXPERIMENTAL VALUES:
```

t/°C	Sucrose g ₂ /100g ₃	Sr0 g/100g ₃	Solid phase
97	21.5	17.61	$sr(OH)_2 \cdot 8H_2O^a$
	30.0 37.5	16.89 16.50	C ₁₂ H ₂₂ O ₁₁ ·2SrC
	44.0 45.8 50.2	15.97 15.91 15.30	C ₁₂ H ₂₂ O ₁₁ ·sro "
98	0 9.8 13.1	21.00 19.70 19.55	sr(OH) ₂ .8H2O ^a "
	16.0 20.2 24.0 44.1 47.6 56.0 63.5 65.0	19.34 18.75 18.38 17.15 17.08 16.71 16.62 16.40	C ₁₂ H ₂₂ O ₁₁ ·2Sr(" " " " " "
	66.9 70.2 82.1	15.92 15.85 14.98	C ₁₂ H ₂₂ O ₁₁ ·sro "
	87.0 110.0 190.0 300.0 470.5	13.01 9.04 4.14 1.16 0	C ₁₂ H ₂₂ O ₁₁ " "
100	0 5.9 9.5	22.81 21.62 21.00	Sr(OH) ₂ ^{.8H} 2O ^a "
	22.9 28.0 37.2 40.0 68.0 70.5	19.23 18.75 18.15 18.04 17.01 16.80	C ₁₂ H ₂₂₀₁₁ ·2Sr(" " " "
	80.0 83.2	16.03 15.65	C ₁₂ H ₂₂ O ₁₁ . Sro
	140.0 200.0 300.0 487.0	7.06 4.11 1.32 0	C ₁₂ H ₂₂ O ₁₁ "

^aSr(OH)₂·8H₂O Strontium hydroxide octahydrate [1311-10-0] (continued on next page)


```
280
```

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Strontium hydroxide; Sr(OH) ₂ ; [18480-07-4]	Reinders, W.; Klinkenberg, A.
(2) Sucrose; C ₁₂ H ₂₂ O ₁₁ ; [57-50-1]	Recl. Trav. Chim. Pays-Bas <u>1929</u> , 48, 1227-45.
(3) Water; H ₂ O; [7732-18-5]	Recl. Trav. Chim. Pays-Bas <u>1929</u> , 48, 1246-64.
EXPERIMENTAL VALUES:	

	Sucrose	SrC		
t/°C	g ₂ /100 g solution	g/100 g solution	10 ¹ m/mol kg ^{-1a}	Solid phase
25	0	0.86	0.84	A
	4.1	1.58	1.62	В
	3.63	1.45	1.47	ċ
35	0	1.23	1.20	A
	1.9	1.6	1.60	B (I)
	4.2	2.11	2.17	С
45	0	1.81	1.78	A
	0.6	1.95	1.93	B (I)
	14	2.35	2.71	D (I)
	2.5	1.51	1.52	E (I)
55	0	2.68	2.66	A
	0.32	2.75	2.74	В
	27.5 2.5	3.5 1.51	4.89 1.52	D E
70	0	5	5.08	A
	0.06	5.03	5.11	
	0.27	3.03	3.02	F E E E E E
	0.93	1.73	1.71	Ē
	1.77	1.52	1.52	Ē
	6.24	1.59	1.66	E
	8	1.69	1.81	Е
	11.53	1.91	2.13	Е
	17.95	2.37	2.87	E
	23.8	2.83	3.72	Е
	30.9	3.42	5.02	Е
90	0	11.66	12.73	G
	0.01	11.66	12.74	Н
	0.19	2.83	2.82	E
	0.57	1.94	1.92	E
	2.07	1.5	1.5	E
	2.49	1.42	1.43	E
	8.18	1.58	1.52	E
	12.6	1.86	1.69	E
	15.7	2.06	2.42	E
	19.3 26.6	2.27 2.73	2.79 3.73	E E

^aCalculated by compiler.

(continued on next page)

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Strontium hydroxide; Sr(OH)₂; [18480-07-4]</pre>	Reinders, W.; Klinkenberg, A.
(2) Sucrose; C ₁₂ H ₂₂ O ₁₁ ; [57-50-1]	Recl. Trav. Chim. Pays-Bas <u>1929</u> , 48, 1227-45.
(3) Water; H ₂ O; [7732-18-5]	Recl. Trav. Chim. Pays-Bas <u>1929</u> , 48, 1246-64.
VARIABLES:	PREPARED BY:
T/K = 298 - 363 Composition	I. Lambert
EXPERIMENTAL VALUES:	
Note: $A = Sr(OH)_2 \cdot 8H_2O$	
$B = Sr(OH)_{2} \cdot 8H_{2}O + st$	rontium disucrate
$C = Sr(OH)_{2} \cdot 8H_{2}O + st$	rontium monosucrate·6H ₂ O
	te + strontium monosucrate [.] 6H ₂ O
E = Strontium disucra	-
$F = Sr(OH)_2 + stronti$	um disucrate
$G = Sr(OH)_{2} H_{2}O$	
$H = Sr(OH)_2 \cdot H_2O + str$	ontium disucrate
	constructed phase diagram ing to equilibrium (as tested by the equilibria were excluded.
Only experimental points correspond:	ing to equilibrium (as tested by the
Only experimental points correspond: authors) were reported. Metastable	ing to equilibrium (as tested by the
Only experimental points correspond: authors) were reported. Metastable AUXILIARY	Ing to equilibrium (as tested by the equilibria were excluded.
Only experimental points correspond: authors) were reported. Metastable AUXILIARY	ing to equilibrium (as tested by the equilibria were excluded.
Only experimental points correspond: authors) were reported. Metastable AUXILIARY METHOD/APPARATUS/PROCEDURE: Stoppered flasks containing weighed amounts of Sr(OH) ₂ and water were agitated in a thermostat for an un- defined amount of time. The satu- rated solution was filtered through a cotton plug or centrifugated when the precipitate grain size was too small to allow filtration. Sr(OH) ₂ was titrated with standard acid.	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Strontium hydroxide. Commer- cial product from Merck, "free from barite." Used without further purification. (2) Sucrose. Pure commercial su- gar.
Only experimental points correspond: authors) were reported. Metastable AUXILIARY METHOD/APPARATUS/PROCEDURE: Stoppered flasks containing weighed amounts of Sr(OH) ₂ and water were agitated in a thermostat for an un- defined amount of time. The satu- rated solution was filtered through a cotton plug or centrifugated when the precipitate grain size was too small to allow filtration. Sr(OH) ₂ was titrated with standard acid. Sucrose was analyzed by polarime-	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Strontium hydroxide. Commer- cial product from Merck, "free from barite." Used without further purification. (2) Sucrose. Pure commercial su- gar.
Only experimental points correspond: authors) were reported. Metastable AUXILIARY (ETHOD/APPARATUS/PROCEDURE: Stoppered flasks containing weighed amounts of Sr(OH) ₂ and water were agitated in a thermostat for an un- defined amount of time. The satu- rated solution was filtered through a cotton plug or centrifugated when the precipitate grain size was too small to allow filtration. Sr(OH) ₂ was titrated with standard acid. Sucrose was analyzed by polarime-	<pre>Ing to equilibrium (as tested by the equilibria were excluded. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Strontium hydroxide. Commer- cial product from Merck, "free from barite." Used without further purification. (2) Sucrose. Pure commercial su- gar. (3) Water. Nothing specified.</pre>
Only experimental points correspond: authors) were reported. Metastable AUXILIARY (ETHOD/APPARATUS/PROCEDURE: Stoppered flasks containing weighed amounts of Sr(OH) ₂ and water were agitated in a thermostat for an un- defined amount of time. The satu- rated solution was filtered through a cotton plug or centrifugated when the precipitate grain size was too small to allow filtration. Sr(OH) ₂ was titrated with standard acid. Sucrose was analyzed by polarime-	<pre>Ing to equilibrium (as tested by the equilibria were excluded. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Strontium hydroxide. Commer- cial product from Merck, "free from barite." Used without further purification. (2) Sucrose. Pure commercial su- gar. (3) Water. Nothing specified. ESTIMATED ERROR:</pre>
Only experimental points correspond: authors) were reported. Metastable AUXILIARY (ETHOD/APPARATUS/PROCEDURE: Stoppered flasks containing weighed amounts of Sr(OH) ₂ and water were agitated in a thermostat for an un- defined amount of time. The satu- rated solution was filtered through a cotton plug or centrifugated when the precipitate grain size was too small to allow filtration. Sr(OH) ₂ was titrated with standard acid. Sucrose was analyzed by polarime-	<pre>Ing to equilibrium (as tested by the equilibria were excluded. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Strontium hydroxide. Commer- cial product from Merck, "free from barite." Used without further purification. (2) Sucrose. Pure commercial su- gar. (3) Water. Nothing specified. ESTIMATED ERROR: No estimates possible.</pre>
Only experimental points correspond: authors) were reported. Metastable AUXILIARY (ETHOD/APPARATUS/PROCEDURE: Stoppered flasks containing weighed amounts of Sr(OH) ₂ and water were agitated in a thermostat for an un- defined amount of time. The satu- rated solution was filtered through a cotton plug or centrifugated when the precipitate grain size was too small to allow filtration. Sr(OH) ₂ was titrated with standard acid. Sucrose was analyzed by polarime-	<pre>Ing to equilibrium (as tested by the equilibria were excluded. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Strontium hydroxide. Commer- cial product from Merck, "free from barite." Used without further purification. (2) Sucrose. Pure commercial su- gar. (3) Water. Nothing specified. ESTIMATED ERROR: No estimates possible.</pre>
Only experimental points correspond: authors) were reported. Metastable AUXILIARY (ETHOD/APPARATUS/PROCEDURE: Stoppered flasks containing weighed amounts of Sr(OH) ₂ and water were agitated in a thermostat for an un- defined amount of time. The satu- rated solution was filtered through a cotton plug or centrifugated when the precipitate grain size was too small to allow filtration. Sr(OH) ₂ was titrated with standard acid. Sucrose was analyzed by polarime-	<pre>Ing to equilibrium (as tested by the equilibria were excluded. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Strontium hydroxide. Commer- cial product from Merck, "free from barite." Used without further purification. (2) Sucrose. Pure commercial su- gar. (3) Water. Nothing specified. ESTIMATED ERROR: No estimates possible.</pre>

20	2
20	Z

COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Strontium hydroxide; Sr(OH) ₂ ; [18480-07-4]	Nishizawa, K.; Hachihama, Y.	
(2) Sucrose; C ₁₂ H ₂₂ O ₁₁ ; [57-50-1]	Z. Elektrochem. Angew. Phys. Chem. <u>1929</u> , 35, 385-92.	
(3) Water; H ₂ O; [7732-18-5]		

EXPERIMENTAL VALUES:

Sucrose mass %	SrO mass %	H ₂ O mass %	Solid phase
0	5.78	94.22	Sr (OH) 2 · 8H2O
0.20	5.99	93.81	$sr(OH)_{2} \cdot 8H_{2}O + C_{12}H_{22}O_{11} \cdot 2srO$
0.14	5.09	94.77	C ₁₂ H ₂₂ O ₁₁ ·2SrO
0.13	4.16	95.71	
0.55	2.27	97.18	11
1.98	1.68	96.34	
3.74	1.63	94.63	19
5.45	1.64	92.91	u
7.72	1.88	90.49	И
14.92	2.38	82.70	
18.62	2.77	78.61	11
23.65	3.25	73.10	11
26.90	3.18	69.92	11
29.98	3.63	66.29	11
33.35	4.25	62.40	11
38.84	4.62	56.54	11
45.32	5.51	49.17	11
46.80	5.60	47.60	II.
31.31	4.15	64.54	$C_{12}H_{22}O_{11} \cdot 2SrO + C_{12}H_{22}O_{11} \cdot SrC$
31.78	3.92	64.30	"
32.38	3.92	63.70	11
32.75	4.20	63.05	t1 85
33.69	3.76	62.55	"
32.22	3.68	64.10	C ₁₂ H ₂₂ O ₁₁ .sro
37.30	4.22	58.48	
40.02	4.17	55.81	
43.75	3.64	52.61	11
44.56	3.95	51.49	11 11
45.65	3.76	50.59	**
49.40	3.58	47.02	**
53.69	3.41	42.90	11
59.79	3.26	36.95	
63.81	3.14	33.05	
65.43	2.94	31.63	
72.64 75.50	2.50 2.33	24.86	
		22.17	18
77.95 78.63	2.29 2.26	19.76 19.11	11
	4,20		
79.25	1.06	19.69	C ₁₂ H ₂₂ O ₁₁

(continued on next page)

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Strontium hydroxide; Sr(OH)₂; [18480-07-4]</pre>	Nishizawa, K.; Hachihama, Y.
(2) Sucrose; C ₁₂ H ₂₂ O ₁₁ ; [57-50-1]	Z. Elektrochem. Angew. Phys. Chem. <u>1929</u> , 35, 385-92.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 348	H. Einaga
Composition	Y. Komatsu
EXPERIMENTAL VALUES:	
S.H.Q., S.H.Q.Sr0 S.H.Q.2	Ho $G_2H_2Q_1-SrO-H_2O$ $75^{\circ}c$ $Sr^{0}qH_2^{0}$ Sr^{0} Sr^{0} Sr^{0} Sr^{0} Sr^{0} Sr^{0}
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Sucrose, $Sr(OH)_2$, and water mix- tures were equilibrated with agita- tion at 75 ± 0.05°C for 24 - 48 hours. Aliquots of saturated solu-	 (1) Strontium hydroxide. Analyti- cal grade, purified by recrys- tallization from water.
tion were analyzed for $Sr(OH)_2$ by titration with standard HCl solu- tion using methyl orange indicator. Aliquots of saturated solution were	(2) Sucrose. Purified by recrys- tallization from aqueous metha- nol.
additionally analyzed for sucrose by the method of Quinsumbing and Thomas (ref 1) after neutralization with HCl followed by inversion with	(3) Water. Distilled CO ₂ free wa- ter.
the Soxhlet method (ref 2).	ESTIMATED ERROR:
	Temp.: precision ± 0.05 K. Soly.: Nothing specified.
	REFERENCES: 1. Quinsumbing, F. A.; Thomas, A. W. J. Am. Chem. Soc. <u>1921</u> , 43, 1503.
	2. Tollens, B. <u>Handbuch der Kohlenhydrate</u> , p. 333.

5. The	solubility of barium hydroxide	in aqueous syste	ms.
Systems		Pa	ges
Ba (OH) 2	+ H ₂ 0	284-294(E),	295-299
<u></u>	+ BaCl ₂ + H ₂ O	288(E),	166, 300-308
	+ + HCl + H ₂ O	288(E),	309-310
	+ + NaOH + NaCl + H ₂ O	287-289(E),	311-316
	+ $Ba(ClO_3)_2 + H_2O$	290(E),	317
	+ BaBr ₂ + H ₂ O	288(E),	166, 318
	+ BaI ₂ + H ₂ O	288(E),	166, 319
	+ $Ba(SH)_{2}$ + $H_{2}O$	288(E), 290(E),	320-321
·	+ Ba(NO ₂) ₂	- ,	188
·	+ $Ba(NO_3)_2$ + H_2O	290(E),	322
	+ $Ba(C_2H_3O_2)_2 + H_2O$	290(E),	323
	+ $Ba(SCN)_2$ + H_2O	290(E),	324
<u> </u>	+ $Ba(Alo_2)_2$ + Al_2o_3 + H_2o_1	290(E),	325
	+ (LiCl, NaCl, KCl or RbCl) + H ₂ O	290(E),	326
<u> </u>	+ NaOH + H ₂ O	287-289(E),	308, 327-332
<u> </u>	+ кон + н ₂ о	287-288(E),	333
·	+ с ₂ н ₅ он + н ₂ о	290(E),	334-335
<u></u> •	+ сн ₃ сосн ₃ + н ₂ о	290(E),	336
<u> </u>	+ с ₆ н ₅ он + н ₂ о	290(E),	337, 339
	+ 1,3-C ₆ H ₄ (OH) ₂ + H ₂ O	290(E),	338-339
. <u></u> .	+ $c_{12}H_{22}O_{11}$ + $H_{2}O$	290(E),	340-341
·	+ с ₄ н ₃ осно	290-291(E),	242

(E) refers to evaluation page(s).

COMPONENTS:	EVALUATOR :	
<pre>(1) Barium hydroxide; Ba(OH)₂; [17194-00-2]</pre>	Irma Lambert CEA/SCECF/SECA B. P. 6	H. L. Clever Department of Chemistry
(2) Water; H ₂ O; [7732-18-5], and various aqueous solutions.	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA

CRITICAL EVALUATION:

An evaluation of the solubility of barium hydroxide in water and in various aqueous solutions.

The solubility of barium hydroxide in water and aqueous solutions is reported in 22 publications. The starting material, when its nature is described, is the well-crystallized hydrate, $Ba(OH)_2 \cdot 8H_2O$.

1. The solubility of barium hydroxide in water.

Data for the solubility of $Ba(OH)_2$ in water have been reported in 19 publications (1-5, 7, 8, 11, 13-17, 20-25). The solid phase in equilibrium with the saturated solution up to 353 K is $Ba(OH)_2 \cdot 8H_2O$; at higher temperatures (25) it is $Ba(OH)_2 \cdot H_2O$. Reynolds' (23) measurements, which are the result of student experiments, are of poor reproducibility, and may be rejected. Rosenthiel and Ruhlman's (1) results at the lower temperatures agree well with the presently recommended values, their values are low at intermediate temperatures and high at high temperatures. Other rejected early data are given in Mellor (32).

The solubility data at temperatures below 353 K, for which $Ba(OH)_2 \cdot 8H_2O$ is the equilibrium solid, have been converted to molalities and are given in Table 1. Some of the data near room temperature (4, 7, 15 and 16) were given in concentration units which required knowledge of the density of the solution for conversion to molalities. There are few reliable data for the density of $Ba(OH)_2$ solutions. We used the relative density value estimated by linear interpolation of the two d_{20}^{20} values reported in the International Critical Tables (26), ignoring the variation which would lead to an error in molality of:

$$\Delta m \simeq 3.3 \times 10^{-3} \text{ mol kg}^{-1}.$$

The data were fitted by the method of least squares to a type of equation recommended in the "Introduction to the Solubility of Solids in Liquids", eqn [48], (see also (27)), with activity and osmotic coefficient terms included in the Y function. This equation is based on a thermodynamic treatment of saturated solutions and their equilibrated solid phases and has the form

$$Y_m = A_1 + A_2/(T/K) + A_3 \ln (T/K)$$
.

where $Y = \ln (m/m_0) - (m/m_0 - 1)$ with $1/m_0 = 0.144$ kg mol⁻¹ at the congruent fusion temperature. When the usual procedure of discarding points which deviate by more than two standard deviations and repeating the fit was applied, the four points marked in table 1 were discarded.


The resulting fitting equation is:

$$Y_{m} = -225.404 + 6019.08/(T/K) + 35.0861 \ln (T/K)$$
[1]

with $s(Y_m) = 0.026$. The equation was used to calculate *recommended* solubility values at 5 degree intervals [s(m) = 0.015] from 273.15 to 348.15 K; see Table 2 and Fig. 1. The temperature calculated for the congruent melting point is 352.4 K with $s(T_m) = 0.6$ K.

The solubility at 298 K is known with better precision than the 298 K value from the fitting equation. The experimental solubility is:

 $m[Ba(OH)_2] = 0.265 \text{ mol } \text{kg}^{-1}$ at 298.15 K $s(m) = 0.009 \text{ mol } \text{kg}^{-1}$

	ENTS:			EVALUATOR:	
1)) Barium hydroxide; Ba(OH) ₂ ; [17194-00-2]			Irma Lambert CEA/SCECF/SECA B. P. 6	H. L. Clever Department of Chemistry
2)	Water; H ₂ O various aq	; [7732-18 ueous solu	-5], and tions.	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 3032 USA
TIC	AL EVALUATIO	N:			
	Table 1.	Experimen in wate	tal values of er between 272	the solubility of 2.65 and 348.15 K.	f Ba(OH) ₂ •8H ₂ O
	T/K	Relative Density	Solubility	Average Solubility	Reference
		d ²⁰ ₂₀	m_1 /mol kg ⁻¹	$m_1/mol kg^{-1}$	
	272.65		0.09945		2
	272.65		0.09938		2
	272.65		0.1019		2
	272.65			0.1002 ± 0.0014	
	281.65		0.133		3
	283.65		0.148		22
	293.15		0.225		13
	293.15		0.236 b		22
	293.15	5 0003	0.238 b		3
	293.15	1.039 ^a	0.218	0.229	16
	293.15			± 0.009	
	298.15	1.047 ^a	0.263		15
	298.15	1.047 ^a	0.262		15
	298.15	1.046 ^a	0.258		15
	298.15		0.272 0.25 b		14
	298.15 298.15		0.25 D 0.2743		6 17
	298.15		0.2756		8
	298.15		0.2756		8
	298.15	1.047 ^a	0.262		4
	298.15	1.047 ^a	0.265		7
	298.15			0.265	
	202 15		0 245	± 0.009	F
	303.15 303.15		0.345 0.345		5 11
	303.15		0,010	0.345	
	313.15		0.62 b		21
	318.15		0.626		14
	323.15		0.785		21
	333.15		1.364		24
	348.15		3.58		14

^a Relative density from *ICT* (26) as described on previous page was used to convert concentration to molality.

- b Values not used in the final fitting.
- 2. Barium hydroxide + electrolyte + water: ternary systems.
 - A. Ba(OH), + NaOH + H_2O and Ba(OH), + KOH + H_2O

Studies of these systems were reported in seven papers (5, 15, 16, 20, 22, 24, 25). Insufficient data were obtained under the same conditions of temperature and concentration to recommend any set of values. Only qualitative observations can be made. Results given only as concentrations (15) were rejected because they could not be compared with the work of others. The 293 K isotherm was studied by both Scholder and Pätsch (16) and by Mozharova and Kuznetsova (22). Their results are

COMPONENTS :	EVALUATOR :	······································
(1) Barium hydroxide; Ba(OH) ₂ ; [17194-00-2]	Irma Lambert CEA/SCECF/SECA B. P. 6	H. L. Clever Department of Chemistry
(2) Water; H ₂ O; [7732-18-5], and various aqueous solutions.	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA

CRITICAL EVALUATION:

Table 2. Recommended values of the solubility of Ba(OH)₂.8H₂O in water between 273.15 and 348.15 K.

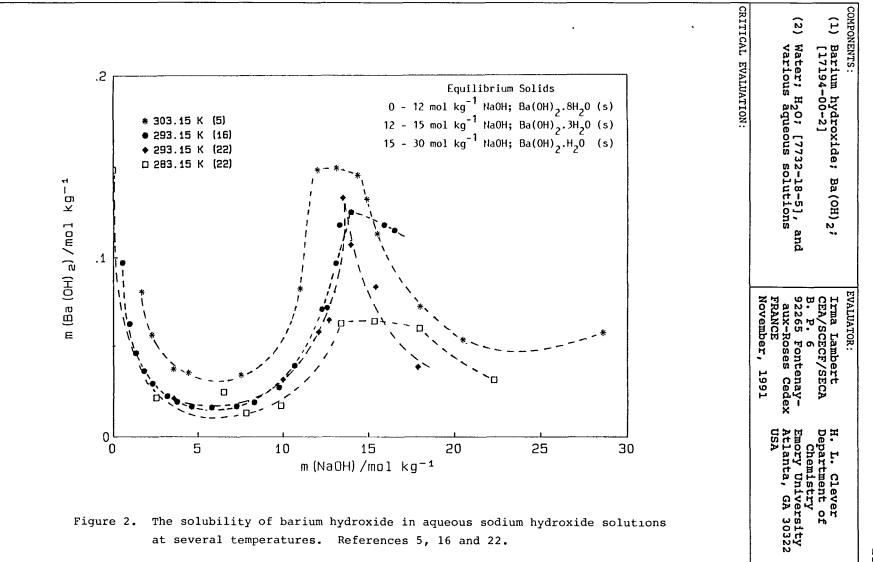
Temperature		Barium Hydroxide Solubility	
t/°C	T/K	m ₁ /mol kg ⁻¹	
0	273.15	0.10	
5	278.15	0.12	
10	283.15	0.15	
15	288.15	0.18	
20	293.15	0.22	
25	298.15	0.27	
30	303.15	0.33	
35	308.15	0.41	
40	313.15	0.51	
45	318.15	0.64	
50	323.15	0.81	
55	328.15	1.04	
60	333.15	1.35	
65	338.15	1.78	
70	343.15	2.42	
75	348.15	3.53	

compared in Fig. 2 and agree well up to 13 mol kg⁻¹ NaOH.

All workers, except Scholder and Pätsch (16), identified successively the three hydrates: $Ba(OH)_2 \cdot 8H_2O$, $Ba(OH)_2 \cdot 3H_2O$ and $Ba(OH)_2 \cdot H_2O$ as the NaOH concentration increases. At high temperatures only the monohydrate is stable. The same behavior is observed in KOH solution (24). Comparison of the results at different temperatures shows that the solubility of $Ba(OH)_2 \cdot 8H_2O(s)$ increases with temperature in the 283 to 333 K range. The behavior of the lower two hydrates is not as clearly defined as shown in Fig. 1.

B. $Ba(OH)_{2} + BaCl_{2} + H_{2}O$

Studies of this system were reported in six publications (5, 10, 17, 22, 24, 25, 31) of which three are from the same laboratory. Each paper reports data at a different temperature, thus no direct comparison of the results can be made. The phase diagrams at the different temperatures are consistent. The equilibrium solid phases observed as the BaCl₂ concentration increases are successively $Ba(OH)_2 \cdot 8H_2O$ (or $Ba(OH)_2 \cdot H_2O$ at 353 K), $BaClOH \cdot H_2O$ and $BaCl_2 \cdot 2H_2O$.


The same equilibrium solids are obtained when HCl is a starting component in place of BaCl₂ (11). The system $Ba(OH)_2 + BaCl_2 + NaOH + NaCl + H_2O$ exhibits the same compounds plus NaCl(s).

C. Ba(OH), + Barium salt + H,O

The systems $Ba(OH)_2 + BaBr_2 + H_2O$ and $Ba(OH)_2 + BaI_2 + H_2O$ were studied by Schreinemakers and Milikan (31) and by Milikan (10). They behave qualitatively in the same manner as the $Ba(OH)_2 + BaCl_2 + H_2O$ system. The absence of experimental details does not allow an evaluation of the data.

Only one source of data is available for each of the following four systems, and thus no evaluations are possible.

The system $Ba(OH)_2 + Ba(SH)_2 + H_O$ was studied by Terres and Brückner (12) over the temperature interval 273 - 373 K. Its behavior is

COMPONENTS :	EVALUATOR:	
(1) Barium hydroxide; Ba(OH) ₂ ; [17194-00-2]	Irma Lambert CEA/SCECF/SECA B. P. 6	H. L. Clever Department of Chemistry
(2) Water; H ₂ O; [7732-18-5], and various aqueous solutions.	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA

CRITICAL EVALUATION:

analogous to the previous systems in that there are three equilibrium solids: $Ba(OH)_2 \cdot 8H_2O$ (the authors do not mention lower hydrates at the higher temperatures), $Ba(OH)_2 \cdot Ba(SH)_2 \cdot 6H_2O$ and $Ba(SH)_2 \cdot 6H_2O$. Unlike the systems containing barium halide, $Ba(OH)_2 \cdot 8H_2O$ is claimed to remain the stable solid phase over a larger range of $Ba(SH)_2$ concentration when the temperature increases.

Foote and Hickey (17) studied the systems $Ba(OH)_2 + Ba(SCN)_2 + H_2O$, $Ba(OH)_2 + Ba(CH_3COO)_2 + H_2O$ and $Ba(OH)_2 + Ba(ClO_3)_2 + H_2O$ at 298 K. Parsons and Corson (6) studied the $Ba(OH)_2 + Ba(NO_3)_2 + H_2O$ system at 298 K. In the systems containing thiocyanate and acetate ion a double salt exists as in the hydrosulfide case. In the systems containing chlorate and nitrate ion only barium hydroxide octahydrate and the anhydrous chlorate or nitrate salt exist as equilibrium solids.

D. $Ba(OH)_{2} + MCl + H_{2}O$ (M = Li, Na, K, Rb)

Herz (7) showed that the solubility of $Ba(OH)_2$ increased on addition of alkali halides, with the effect decreasing from Li to Rb.

E. Ba(OH)₂ + Al₂O₃ + H₂O

Malquori (13) studied the system at 293 K. The following solid phases were identified: $BaO \cdot 2H_2O$ (or $Ba(OH)_2 \cdot H_2O$), $Al_2O_3 \cdot 2BaO \cdot 5H_2O$ (or $2Al(OH)_3 \cdot 2Ba(OH)_2$), $Al_2O_3 \cdot BaO \cdot 6H_2O$ (or $2Al(OH)_3 \cdot Ba(OH)_2 \cdot 2H_2O$) and $Al_2O_3 \cdot xH_2O$ (or $Al(OH)_3 \cdot xH_2O$).

3. Barium hydroxide + organic component + water ternary systems.

A. Ba(OH)₂ + $C_{12}H_{22}O_{11}$ (Sucrose) + $H_{2}O_{12}$

Nishizawa and Hachihama (14) studied the system over the 298 to 348 K temperature range. Three solid phases were reported at 298 and 318 K, depending on the sucrose concentration: $Ba(OH)_{2} \cdot 8H_{2}O$, $C_{12}H_{22}O_{11} \cdot BaO$ (or $C_{12}H_{21}O_{11} \cdot BaOH$) and $C_{12}H_{22}O_{11} \cdot At$ 348 K $C_{12}H_{22}O_{11} \cdot 3BaO$ was also reported. Rendelman (33) reviewed all metal oxide carbohydrate interactions and says they are either alcoholates or carbohydrate metal oxide (or hydroxide) adducts with reports of up to four BaO per saccharide unit.

B. Ba(OH)₂ + C₆H₆O (Phenol) + H₂O and Ba(OH)₂ + C₆H₆O₂ (1,3-Benzenediol) + H₂O

Van Meurs (9) studied these systems and showed the formation of $Ba(C_6H_6O_2) \cdot 4H_2O$ in the first case and $Ba(C_6H_6O_2) \cdot 2H_2O$ in the second.

C. Ba(OH), + C, $H_{0}O$ (Ethanol) + $H_{0}O$

Jankovic (19) studied the system up to 87.7 mol percent ethanol at 298 K. He claimed that barium hydroxide was the solid phase.

D. $Ba(OH)_2 + C_3H_8O$ (2-Propanone) + H₂O

Herz and Knock (4) studied the system up to 70 volume % 2-propanone (acetone) at 298 K. The solubility decreased with increasing 2-propanone concentration. No mention is made of the composition of the solid. The authors' solubility value in water was rejected and the solubility values in the mixed solvent are considered doubtful.

4. Non-aqueous systems

A. Ba(OH), + C,H,O (furfural)

Trimble (18) measured the solubility of both the anhydrous and the octahydrate barium hydroxide in dry furfural. The octahydrate was more soluble. It is thought this is because the water of hydration makes the

COMPONENTS :	EVALUATOR:	
(1) Barium hydroxide; Ba(OH) ₂ ; [17194-00-2]	Irma Lambert CEA/SCECF/SECA B. P. 6	H. L. Clever Department of Chemistry
(2) Water; H ₂ O; [7732-18-5], and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA

CRITICAL EVALUATION:

system a mixed furfural + water solvent. The data are tentative.

5. Comparison of these results with other evaluations.

The present work evaluated the stoichiometric solubility of barium hydroxide. Two standard evaluations present information on the barium hydroxide solubility product and the barium ion and hydroxide ion association constant.

The authors of *Critical Stability Constants* (30) evaluated data from six sources. They give values of log K_{agan} of Ba(OH)⁺(aq) at three ionic strengths at 298.15 K which we summarize below:

I/mol dm ⁻³	0.0	0.1	3.0
$K_{\rm assn}/{\rm mol}~{\rm dm}^{-3}$	4.0	2.5	1.0

The authors also gave a value of log $K_{s0} = -3.6$ or $K_{s0} = 2.5 \times 10^{-4}$ at zero ionic strength and 298.15 K for the Ba(OH)₂.8H₂O hydrate. Their enthalpy of solution is 57.3 kJ mol⁻¹.

Gibbs energy data given in the *Thermodynamic Tables* (29) also allows calculation of the $Ba(OH)^+(aq)$ formation constant at zero ionic strength and 298.15 K. The value is 155, substantially larger than the value in *Critical Stability Constants*.

We have a slight preferance for the larger value which is based on thermodynamic information available to the authors of both works cited above.

The Thermodynamic Tables (29) do not have Gibbs energies of formation for $Ba(OH)_2(s)$ or its mono-, tri- or octahydrates. Thus no calculation of the solubility product is possible from that source.

6. Crystal structures of the barium hydroxide solids.

Characterization of the solid state in equilibrium with the saturated solution is an important part of any modern solubility study. The following information, mostly from the *Crystal Data Determinative Tables*, and Buchmeier and Lutz (34), is neither complete nor evaluated, but it serves as a reminder of this important point.

Crystal Formula	Туре	Density/Mg m ⁻³
BaO; [1304-28-5]	Cubic	5.982
Ba(OH) ₂ ; [17194-00-2]	Amorphous	4.495
Ba(OH) ₂ •H ₂ O; [22326-55-2]	Orthorhombic Monoclinic	3.648 3.618
Ba(OH) ₂ ·3H ₂ O; [66905-77-9]	Orthorhombic	2.881
Ba(OH) ₂ •8H ₂ O; [12230-71-6]	Monoclinic	2.061- 2.188

The Kirk-Othmer Encyclopedia of Chemical Technology, J. Wiley, New York, 1978, Vol. 3, states $Ba(OH)_2 \cdot 8H_2O$ melts in its own water of crytallization, *i. e.* peritechtic temperature = 351.1 K (77.9°C) (vapor pressure 30.3 kPa). When further boiled under exclusion of atmospheric carbon dioxide the solution boils dry at a composition of $Ba(OH)_2 \cdot H_2O$. Upon continous heating a solid-phase transition to anhydrous $Ba(OH)_2 \cdot m_2$, p. 678 K, occurs. On heating to red heat at about 1073 K water is split off and BaO is formed. It is further stated that the trihydrate may be a mixture of the mono- and octahydrates.

COMPONENTS: EVALUATOR:						
	Barium hydroxide; Ba(OH) ₂ ; [17194-00-2]	Irma Lambert CEA/SCECF/SECA B. P. 6	H. L. Clever Department of Chemistry			
(2)	Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- aux-Roses Cedex FRANCE November, 1991	Emory University Atlanta, GA 30322 USA			
		November, 1991				
CRITIC	CAL EVALUATION: REFER	ENCES				
1.	Rosenthiel, A.; Ruhlmann, R. Bull. Soc. Ind. Mulhouse <u>1870</u> , Jahresber. Fortschr. Chem., Gies		pp. 152-3).			
2.	Guthrie, F. Philos. Mag. [5] <u>1878</u> , 6, 35-44	ł.				
3.	Bauer, O. Z. Angew. Chem. <u>1903</u> , 15, 341-5 Z. Anorg. Chem. <u>1906</u> , 47, 401-2	50. 20 .				
4.	Herz, W.; Knoch, M. Z. Anorg. Chem. <u>1904</u> , 41, 315-2	24.				
5.	Schreinemakers, F.A.H. Z. Phys. Chem., Stoechiom. Verwa	andtschaftsl. <u>1909</u>	2, 68, 83-103.			
6.	Parsons, C.L.; Corson, H.P. J. Am. Chem. Soc. <u>1910</u> , 32, 138	33-87.				
7.	Herz, W. Z. Angew. Chem. <u>1910</u> , 67, 365-6	58.				
8.	Sill, H.F. J. Am. Chem. Soc. <u>1916</u> , 38, 263	32-43.				
9.	Van Meurs, G.J. Z. Phys. Chem., Stoechiom. Verwa	ndtschaftsl. <u>1916</u>	, 91, 313-46.			
10	. Milikan, J. Z. Phys. Chem., Stoechiom. Verwa	ndtschaftsl. <u>1916</u>	<i>92</i> , 59-80.			
11.	. Milikan, J. Z. Phys. Chem., Stoechiom. Verwa	ndtschaftsl. <u>1916</u> ,	, <i>92</i> , 496-510.			
12.	. Terres, E.; Brückner, K. Z. Electrochem. Angew. Phys. Che	m. <u>1920,</u> 26, 1-24.				
13.	Malquori, C. Gazz. Chim. Ital. <u>1926</u> , 56, 51-	55.				
14.	Nishizawa, K.; Hachihama, Y. Z. Electrochem. Angew. Phys. Che	m. <u>1929</u> , 35, 385-9	92.			
15.	Neale, S.M.; Stringfellow, W.A. Trans. Faraday Soc. <u>1932</u> , 28, 7	65-66.				
16.	Scholder, R.; Pätsch, R. Z. Anorg. Allg. Chem. <u>1935</u> , 222	, 135-44.				
17.	Foote, H.W.; Hickey, F.C. J. Am. Chem. Soc. <u>1937</u> , 59, 648	-50.				
18.	Trimble, F. Ind. Eng. Chem. <u>1941</u> , 33, 660-6	2.				
19.	Janković, S. Rastvorljvost Nekih Soli i Hidro Sistemima Voda-Etil Alkohol i Vo Takvih Zasicenih Rastvora. <u>Doct</u> Pharmacy, Zagreb, <u>1958</u> .	da-Metil Alkohol, i	Struktura			

COMPONE	ENTS:	EVALUATOR:
	Barium hydroxide; Ba(OH) ₂ ; [17194-00-2]	Irma Lambert H. L. Clever CEA/SCECF/SECA Department of B. P. 6 Chemistry
	Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- Emory University aux-Roses Cedex Atlanta, GA 30322 FRANCE USA November, 1991
CRITICA	AL EVALUATION:	
	REFERENCES	(continued)
20.	Movsesyan, M.S.; Grigoryan, G.O. Arm. Khim. Zh. <u>1969</u> , 22, 211-14	
21.	Akhmetov, T.G.; Polyakova, G.I. Zh. Neorg Khim. <u>1972</u> , 17, 1770- Russ. J. Inorg. Chem. (Engl. Tra	
22.	Mozharova, T.V.; Kuznetsova, O.M Zh. Neorg. Khim. <u>1974</u> , 19, 194 Russ. J. Inorg. Chem. (Engl. Tra	0-47;
23.	Reynolds, J.P. J. Chem. Ed. <u>1975</u> , 52, 521-22.	
24.	Mozharova, T.V.; Pavlyuchenko, E Zh. Neorg. Khim. <u>1979</u> , 24, 252 Russ. J. Inorg. Chem. (Engl. Tra	2-28;
25.	Mozharova, T.V.; Pavlyuchenko, E Zh. Neorg. Khim. <u>1980</u> , 25, 1638 Russ. J. Inorg. Chem. (Engl. Tra	-44;
26.	International Critical Tables, N Vol III, p. 75.	CGraw Hill Co., New York, 1928,
27.	Miyamoto, H.; Salomon, M. Solub preface, pp xi-xiv. A brief dis a BASIC computer program for cor	csuion of the proceedure and
28.	Bailey, S. M.; Churney, K. L.; N	<pre>ker, V. B.; Schumm, H.; Halow, I.; Nuttall, R. L. J. Phys. Chem. Ref. P., THE NBS TABLES OF THERMODYNAMIC</pre>
29.	Smith, R. M.; Martell, A. E. CR Inorganic Complexes, Plenum Pres	ITICAL STABILITY CONSTANTS, Vol. 4, s, New York, 1976, pp. 1-2.
30.	TABLES. Published jointly by the	Editors, CRYTAL DATA DETERMINATIVE National Bureau of Standards and ffraction Standards, <u>1973</u> , Volume 2.
31.	Schreinemakers, F.A.H.; Milikan, 15, 52-54.	J. Proc. K. Ned. Acad. Wet. <u>1912</u> ,
32.	Mellor, J. W. A Comprehensive T Chemistry, Longmans, Green & Cop	Treatise on Inorganic and Theoretical D., London <u>1923</u> , Vol. III, pp 673-87
	Mellor lists a number of early of Ba(OH), in aqueous systems not i unable to locate and check all of believes these references can be components, failure to exclude of sufficient time to attain eqilib	ncluded in this volume. We were of these references. The evaluator e rejected because of impure carbon dioxide, and not using
ļ	The references are:	
	Davy, H. Phil. Trans. [1] 1908 Osann, R. Kastner's Archiv. 18 Bineau, A. C. R. Hebd. Seances Scheibler, C.; Sidersky, D. Z. Tilden, W. A. Proc. Roy. Soc.	<u>124</u> , 3, 369. Acad. Sci. <u>1855</u> , 41, 509. Ver. Rubenzückerind. <u>1982</u> , 7, 257.

COMPONENTS :	EVALUATOR:
<pre>(1) Barium hydroxide; Ba(OH)₂; [17194-00-2]</pre>	Irma Lambert H. L. Clever CEA/SCECF/SECA Department of B. P. 6 Chemistry
(2) Water; H ₂ O; [7732-18-5] and various aqueous solutions	92265 Fontenay- Emory University aux-Roses Cedex Atlanta, GA 30322 FRANCE USA
	November, 1991
CRITICAL EVALUATION:	
REFERENCES	(Continued)
Mellor also lists books which co solubility of barium hydroxide i	
Eidmann, E. Ein Beitrag zur Erk Verbindungen in Nichtswasserigen Beckmann, E. Untersuchungen ube Haloidsalze des Bariums sowei No Haloidsalze des Bariums, Leipzig	r die Aluminate und Basischen tizen uber Barythydrat und die
	in Carbohydrate Chemistry, tors, <u>1966</u> , 21, 209-71. carbohydrate-alkali and alkaline scussion and table of the Ca, Sr and
34. Buchmeier, W.; Lutz, H. D. Z. Anorg. Allg. Chem. <u>1986</u> , 538	, 131-42.
There are a number of studies of water and a third component which Ba(OH) ₂ and its hydrates as the equiponent.	report no solubility data of the

COMPONENT	S :			ORIGINAL MEASUR	EMENTS	
(1) Barium hydroxide; Ba(OH) ₂ ;				A.; Ruhlmann, (?)		
[17194-00-2]				nd. Mulhouse <u>1870</u>		
(2) Water; H ₂ O; [7732-18-5]		a Figure].	ly study pp. 152-3	and		
VARIABLES	:			PREPARED BY:		
T/	K = 273	.2 - 351.	7		ma Lambert L. Clever	
EXPERIMENT	TAL VALUES	:	5 1 11 dd ar			
	The so	lubility	of BaO (Ba(OH)) ₂) in water fi	rom 0 to 78.5°C	
	Temper	rature	g BaO per	Ba (OH) 2	Ba (OH) 2	
	t∕°C	T/K	100 g H ₂ 0	mass %	m_1 /mol kg ⁻¹	
	0	273.2	1.5	1.65	0.098	
	6	279.2	5.8 [sid	c] 6.13	0.38	
	6.5	279.7	1.9	2.1	0.12	
	12	285.2	2.4	2.6	0.16	
	15.5	288.7	2.9	3.15	0.19	
		289.2	3.	3.25	0.195	
	21	294.2	3.6	3.9	0.235	
	22	295.2	3.7	4.0	0.24	
	30	303.2	5.	5.3	0.33	
	36	309.2	6.4	6.7	0.42	
	41	314.2	7.6	7.9	0.50	
	46	319.2	9.5	9.7	0.625	
	54	327.2	14.	13.7	0.93	
	58.5	331.7	17.2	16.4	1.165	
	59	332.2		16.6	1.165	
	64	337.2		21.5	1.60	
	68.5			24.2	1.865	
	69	342.2	31.6	26.8	2.14	
	70	343.2		27.0	2.16	
	73 77.2	346.2 350.4	44.9 70.	34.6 46.0	3.09 4.97	
	78.5	351.7	85.	51.3	6.16	
	Equili	brium so	lid BaO•9H ₂ O	[Ba(OH) ₂ •8H ₂ O]	•	
			AUXILIARY	INFORMATION	· · · · · · · · · · · · · · · · · · ·	
METHOD/APP	ARATUS/PR	OCEDURE:		SOURCE AND PURIT	Y OF MATERIALS:	
	· -	-	ulated the		ydroxide. Prepare	ad by
			lity values.	the reaction	of ZnO on BaS in 1	
24(01)2	ind b 0		iioj varacov			in-
Water	and e	excess o	rystals of		5 precipitates,	
			placed in a	separated by	decantation, and	the
vessel	which w	vas main	tained in a		oxide is crytall	
			own tempera-		tion by cooling.	
ture (n	ot therm	ostated)	for 2 to 10			
			as decanted,	(2) Water. N	Nothing specified.	
			ighed and			
titrate	d with c	xalic ac	id.			
				ESTIMATED ERROR:		
			i	No est	imates possible.	
				REFERENCES :		
				·		

······································			
COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Barium hydroxide; Ba(OH)₂; [17194-00-2]</pre>	Guthrie, F.		
[1/154-00-2]	Philos. Mag. [5] <u>1878</u> , 6, 35-44.		
(2) Water; H ₂ O; [7732-18-5]			
VARIABLES:	PREPARED BY:		
T/K = 273	I. Lambert		
EXPERIMENTAL VALUES:			
The Ba(OH) ₂ + H_2O	system at -0.5°C		
BaO	Solid Phase		
	Composition		
mass *			
1.4995			
1.4984			
1.5352			
Av. 1.511 \pm 0.02	BaO + 565 H ₂ O		
	2		
In modern terms the	e experiment reported		
	nation of the eutectic		
composition and ter	nperature of the system.		
A solution of this	composition will freeze		
to a solid of the s			
	-		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
A solution saturated with $Ba(OH)_2$	Nothing specified.		
at room temperature is cooled until			
the temperature of formation of			
cryohydrate [eutectic composition] is reached and cryohydrate is			
solidified.			
Device de surlimed has addition of			
Barium is analyzed by addition of ammonium carbonate to precipitate			
BaCO ₃ , igniting and weighing.			
	ESTIMATED ERROR:		
	Std. Dev. about 1.5 %.		
	REFERENCES :		
•			

	:		ORIGINAL MEASUREMENTS:
(1) Bar:	ium hydroxide; H 194-00-2]	Ba(OH) ₂ ;	Bauer, O.
	er; H ₂ O; [7732-]	18-5]	Z. Angew. Chem. <u>1903</u> , 15, 341-50. Z. Anorg. Chem <u>1906</u> , 47, 401-20.
VARIABLES:			PREPARED BY:
T/K	= 282, 293		I. Lambert
EXPERIMENT			
	The solubility		H ₂ O in water at 8.5 and 20°C
		BaO	Solid Phase
	t/°C	mass &	
	8.5	2	Ba (OH) 2 · 3H2O
	20	3.5	$Ba(OH)_2 \cdot 3H_2O$
	<u></u>		
	The author com	pared his res	ults with those of Rosenstiehl
	and Ruhlman (r	ef l) for Ba(OH) ₂ [.] 8H ₂ O at 10 and 20°C. They
	reported value	es of 2.2 and	3.48 mass % BaO, respectively
	for the two te	mperatures.	The comparison led the author to
	lude beth	-	the same solubility.
		AUXILIARY	INFORMATION
	RATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
	OH) ₂ ·3H ₂ O is a cer. No other		r
The Ba() free wat	OH) ₂ ·3H ₂ O is a cer. No other	dded to CO2	SOURCE AND PURITY OF MATERIALS: (1) Barium hydroxide. The Ba(OH) ₂ 3H ₂ O is prepared by slow cooling from boiling Ba(OH) ₂ 8H ₂ O. The starting material was the hydroxide, con- trolled by chemical analysis by the author and found to be 99.5 % purity. The octahydrate melts at 78°C, boils at 103 with an in- crease in temperature to 109 at which the trihydrate separate
The Ba() free wat	OH) ₂ ·3H ₂ O is a cer. No other	dded to CO2	SOURCE AND PURITY OF MATERIALS: (1) Barium hydroxide. The Ba(OH) ₂ '3H ₂ O is prepared by slow c o o l ing from b o i l ing Ba(OH) ₂ '8H ₂ O. The starting material was the hydroxide, con- trolled by chemical analysis by the author and found to be 99.5 % purity. The octahydrate melts at 78°C, boils at 103 with an in- crease in temperature to 109 at which the trihydrate separate out.

· · · · · · · · · · · · · · · · · · ·					
COMPONENTS :		ORIGINAL	MEASUREMENTS :		
<pre>(1) Barium hydroxide; [17194-00-2]</pre>	(1) Barium hydroxide; Ba(OH) ₂ ; [17194-00-2]		H. F.		
(2) Water; H ₂ O; [7732-	J. Am. 2632-4	Chem. Soc. 3.	<u>1916</u> , 38,		
VARIABLES:		PREPARED	BY:		
T/K = 298 p/MPa = 0.1 - 49			H. Einag Y. Komat H. L. Cl	su	
EXPERIMENTAL VALUES:					
	solubility of a function of				
Pressure	Bariur	Hydroxi	de	Comments	
p/bar	Ba(OH) ₂ ·8H ₂ O mass %	Ba(OH) ₂ mass %	m_1 /mol kg ⁻¹		
1 1	8.304 8.295	4.510 4.505	0.2754 0.2756	a b	
	8.779 8.802	4.768 4.780	0.2924 0.2932	a b	
490	9.366	5.087	0.3130	с	
was Ba(Of The molal the comp	Solid phase in equilibrium with saturated solution was $Ba(OH)_2 \cdot 8H_2O$. The molal solubility of $Ba(OH)_2$ was calculated by the compiler assuming the mass % referred to $Ba(OH)_2 \cdot 8H_2O$. He also calculated mass % $Ba(OH)_2$.				
	AUXILIARY	INFORMATIO	N		
METHOD/APPARATUS/PROCEDURE:		SOURCE AN	ND PURITY OF MA	TERIALS:	
Mixtures of Ba(OH) ₂ equilibrated at either for 0.5 hour then 2-3 in a U-tube type p which permitted sol withdrawing withorelief. The Ba(OH) ₂ of saturated solution w by titration with solution.	pu		ide. Chemically H ₂ O was used. specified.		
<i>NOTE:</i> The author labe sure unit as megab definition Megabar = 10 ⁶ dynes = The compilers used	ar and used 1.02 kg cm ⁻²	ESTIMATEI) ERROR: No estimates	possible.	
1 bar = 1.02 labeled pressure colur	nn bar.	REFERENCI	2S :		
	MPa p/atm				
245 250 24	100 0.987 1.5 242 9.0 484				

F			
COMPONENTS:		ORIGINAL MEASUREMENTS:	
<pre>(1) Barium hydroxide; Ba(OH)₂; [17194-00-2]</pre>		Reynolds, J. P.	
(2) Wator: H O. [7722.	_10_51	J. Chem. Ed. <u>1975</u> , 52, 521-2.	
(2) Water; H ₂ O; [7732·	-19-2]		
VARIABLES:		PREPARED BY:	
		Y. Komatsu	
T/K = 295 - 305		H. Einaga	
EXPERIMENTAL VALUES:			
	tration solubil	ity product of Ba(OH)2	
t/°C	K _{s0}	Method	
		(See below)	
	2.00 x 1	 0 ⁻²	
. room			
room	1.02 x 1	0 ⁻² A	
room	2.14 x 1	0 ⁻² A	
room	4.28 x 1	0 ⁻² B	
room	1.25 x 1	0 ⁻² B	
room	3.00 x 1	0 ⁻² B	
22	4.03 x 1	0 ⁻² C	
28	1.08 x 1	0 ⁻¹ C	
32	2.56 x 1	0 ⁻¹ C	
Colid wh	and management	an devine at year tang	
erature	was Ba(OH) ₂ ·H ₂ (on drying at room temp- D (Method A).	
	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:	
Method A. Distille saturated with Ba(C	ed water was OH) ₂ .8H ₂ O by	(1) Barium hydroxide. Specified to be the hydrate Ba(OH) ₂ ·8H ₂ O.	
shaking. After equil residual solid phase	ibration, the	(2) Water. Distilled.	
(the filtrate was)	reserved for	(2) water. Distilled.	
Method B); it was d: days and then wei			
solubility, c_1 , and t product, $K_{s0} = 4c_1^3$,	he solubility		
product, $K_{s0} = 4c_1^{3}$, lated. All procedures	were calcu-		
out at a not specifi perature.			
Method B. The filtrat	e reserved in	ESTIMATED ERROR	
Method A was titrated HNO ₃ to determine the	with standard	No estimates possible.	
which the solubility	product was	NO COOTWALED DODATATE.	
calculated from $K_{s0} =$	(1/2)[OH]°.	REFERENCES ·	
Method C. Methods A			
carried out at an elev ture using a wate	r bath for		
preparation of the sation.			
C1011.			

19.18 21.46 24.20 24.98

27.41 27.31

27.42 27.6

4.67 3.27 2.50

2.33

1.75 1.79

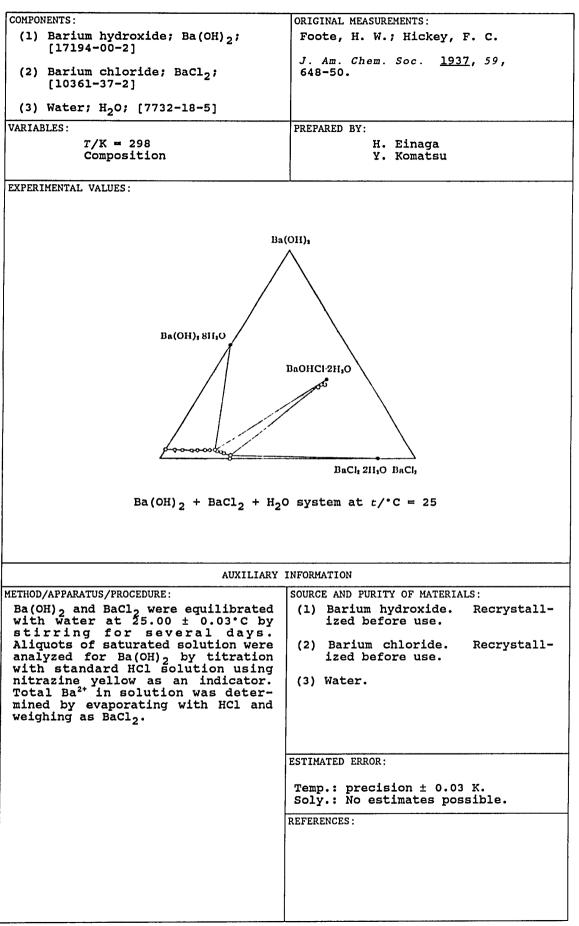
1.78 0

COMPONENTS :			ORIGINAL MEASUREMENTS:
<pre>(1) Barium hydroxide; Ba(OH)₂; [17194-00-2]</pre>			Schreinemakers, F. A. H.
	rium chlorid 0361-37-2]	de; BaCl ₂ ;	Z. Phys. Chem. Stoechiom. Verwandtschaftsl. <u>1909</u> , 68, 83-103.
(3) Wa	ter; H ₂ 0; [3	7732-18-5]	
VARIABLES	:		PREPARED BY:
T/K = 303 Composition			H. Einaga Y. Komatsu
EVDEDTMEN			
EXPERIMEN	TAL VALUES:		
EXPERIMEN		position of the	saturated solution at 30°C
EXPERIMEN		BaO mass %	saturated solution at 30°C Solid phase
LAFERINEN	Comp BaCl ₂	BaO mass %	Solid phase
LAFERIMEN	Comp BaCl ₂ mass ² %	BaO mass % 4.99	
EAFERIMEN	Comp BaCl ₂ mass % 0 10.77 12.81	BaO mass % 4.99 4.45 4.58	Solid phase Ba(OH) ₂ .8H ₂ O
EAFERIMEN	Comp BaCl ₂ mass % 0 10.77 12.81 17.08	BaO mass % 4.99 4.45 4.58 4.60	Solid phase Ba(OH) ₂ .8H ₂ O
LAFERINEN	Comp BaCl ₂ mass % 0 10.77 12.81	BaO mass % 4.99 4.45 4.58	Solid phase Ba(OH) ₂ .8H ₂ O
EAFERIMEN	Comp BaCl ₂ mass % 0 10.77 12.81 17.08	BaO mass % 4.99 4.45 4.58 4.60	Solid phase Ba(OH) ₂ ·8H ₂ O " "
LAFERIMEN	Comp BaCl ₂ mass % 0 10.77 12.81 17.08 18.04	BaO mass % 4.99 4.45 4.58 4.60 4.62 4.65 4.64	Solid phase Ba(OH) ₂ ·8H ₂ O " " Ba(OH) ₂ ·8H ₂ O + BaClOH·2H ₂ O
EAFERINEN	Comp BaCl ₂ mass ² % 0 10.77 12.81 17.08 18.04 18.10	BaO mass % 4.99 4.45 4.58 4.60 4.62 4.65	Solid phase Ba(OH) ₂ ·8H ₂ O " "

11

BaCl2 · 2H20

BaClOH·2H20 11


 $BaClOH \cdot 2H_2O + BaCl_2 \cdot 2H_2O$

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Nothing specified.	(1) Barium hydroxide.
	(2) Barium chloride.
	(3) Water.
	Nothing specified about materials.
	ESTIMATED ERROR:
	No estimates possible.
	REFERENCES :
ί	

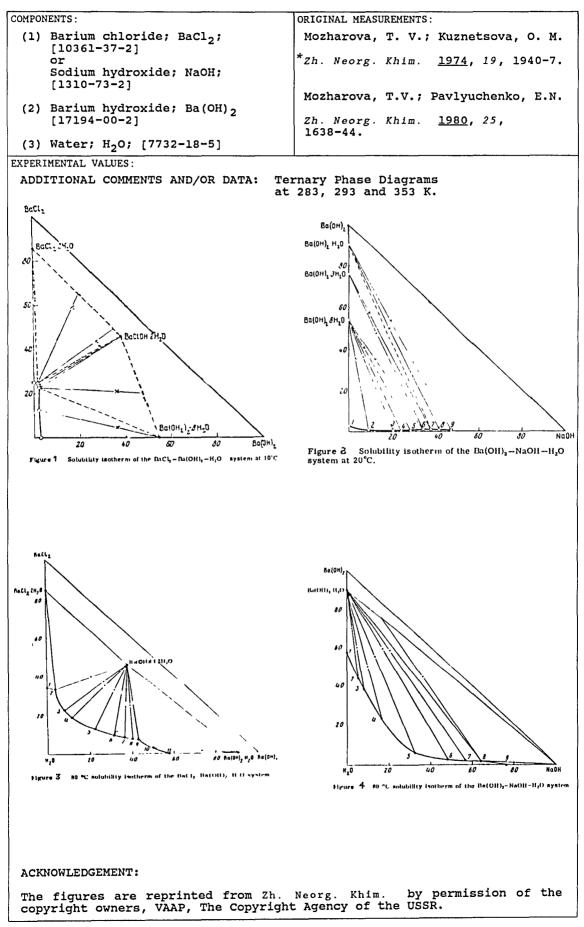
COMPONENTS :			ORIGINAL MEASUREMENTS:
 (1) Barium hydroxide; Ba(OH)₂; [17194-00-2] (2) Barium chloride; BaCl₂; [10361-37-2] 			Foote, H. W.; Hickey, F. C.
			J. Am. Chem. Soc. <u>1937</u> , 59, 648-50.
(3) Wate	er; H ₂ 0; [7	732-18-5]	
EXPERIMENTA	L VALUES:		
	T	he Ba(OH) ₂ + BaC	$l_2 + H_20$ system at 25°C
	BaCl ₂ mass %	Ba(OH) ₂ mass %	Solid phase
	0	4.489	$Ba(OH)_2 \cdot 8H_2O$
	3.649	4.224	N 12 2
	6.788	4.100	u
	10.10	4.04	и
	12.62	4.03	u .
	15.33	4.05	n
	17.05	4.06	n
	19.31	4.11	$Ba(OH)_2 \cdot 8H_2O + BaOHC1 \cdot 2H_2O$
	19.32	4.13	11
	20.79	3.38	BaOHCl·2H2O
	22.05	3.13	u -
	23.57	2.65	11
	26.69	1.94	BaOHCl·2H2O + BaCl2·2H2O
	26.71	1.95	"
	26.72	1.77	BaCl ₂ ·2H ₂ O
	26.83	1.39	
	26.94	0.89	H
	27.16	0	11

(continued on next page)

CONDONIDA			·····			
COMPONEN				ORIGINAL MEASUREMENTS:		
	<pre>1) Barium hydroxide; Ba(OH)₂; [17194-00-2]</pre>		OH) ₂ ;	Akhmetov, T. G.; Polyakova, G. I.		
(2) Barium chloride; BaCl ₂ ; [10361-37-2]		2;	*Zh. Neorg. Khim. <u>1972</u> , 17, 1770-1.			
(3) Wa	ater; H ₂ O;	[7732-18-	5]	Russ. J. Inorg. Chem. (Engl. Transl.) <u>1972</u> , 17, 918-9.		
EXPERIME	NTAL VALUES	:	···· · · · · · · · · · · · · · · · · ·			
		Solubili	ty of Ba(O	$H)_2$ in aqueous $BaCl_2$		
	t/°C	BaCl ₂ mass %	Ba(OH) ₂ mass %	Solid phase		
	40	0 2.7	9.60 8.48	$Ba(OH)_2 \cdot 8H_2O$		
1		5.92	7.54	11		
		9.68	8.06	11		
1		12.85	7.83			
		15.3	8.00	u		
•		16.13	7.74	$Ba(OH)_2 \cdot 8H_2O + BaClOH \cdot 2H_2O$		
		17.30	6.7	BaClOH 2H20		
		17.82	6.43			
		20.60	4.77	11		
		21.70	4.18	11		
		23.5	3.6	11 11		
		26.08	2.76			
		27.2	2.46	BaCl ₂ :2H ₂ O		
ļ		28.26	1.04	2 _H 2		
		28.9	0	11		
	50	0	11.85	Ba (OH) 2 · 8H2O		
	50	2.75	11.87			
		4.05	11.93	H		
		13.8	11.7	$P_2(OH) \rightarrow P_1 O + P_2 C O H \rightarrow O$		
		17.55	7.76	$Ba(OH)_{2} \cdot 8H_{2}O + BaClOH \cdot 2H_{2}O$		
1		10 (1	7 7 5	Pa 01011: 211 0		
		18.61 23.6	7.15 5.25	BaClOH·2H ₂ O		
		24.3	4.15			
		26.6	3.45	H		
		27.1	2.96	11		
		28.0	2.7	11		
		31.32	2.54	$Bac1 = 2H_{2}O$		
		30.8	1.3	BaCl ₂ ² H ₂ O		
1		31.02	0	u .		
1						
				<u>, , , , , , , , , , , , , , , , , , , </u>		

(continued on next page)

•


[
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Barium hydroxide; Ba(OH) ₂ ; [17194-00-23]	Akhmetov, T. G.; Polyakova, G. I.
<pre>(2) Barium chloride; BaCl₂; [10361-37-2]</pre>	*2h. Neorg. Khim. <u>1972</u> , 17, 1770-1.
(3) Water; H ₂ O; [7732-18-5]	Russ. J. Inorg. Chem. (Engl. Transl.) <u>1972</u> , 17, 918-9.
VARIABLES:	PREPARED BY:
T/K = 313 - 323	H. Einaga
$BaCl_2 mass \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	I. Lambert
Baciz - 2H20 Baciz - 2H20 Baciz - 2H20 Baciz - 2H20 Baciz - 2H20	$BaCl_2 -Ba(OH)_2 -H_2O$ System at
different temperatures (C^{2} C): 1) 25; 2) 40; 3) 50.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Ba(OH) and BaCl were equilibrated	(1) Barium hydroxide. Purified by
with water at 40° or 50° C for 7 to 10 hours. Ba(OH) ₂ and BaCl ₂ in the	recrystallization.
saturated solutions were determined volumetrically (ref 1).	(2) Barium chloride. Purified by recrystallization.
	ESTIMATED ERROR: No estimates possible. REFERENCES: 1. Schwarzenbach, G.; Flaschka, H. <u>Complexometric Titration</u> (Russ. Transl.). Moscow: Izd. Khimiya, 1970.

COMPONENTS :	ORIGINAL MEAS	IIDEMENTC .			
(1) Barium chloride; BaCl [10361-37-2]	·2;	Mozharova,	Mozharova, T. V.; Kuznetsova, O. M.		
(2) Barium hydroxide; Ba [17194-00-2]	[*] Zh. Neorg. Khim. <u>1974</u> , 19, 1940-7. Russ. J. Inorg. Chem. (Engl. Transl.) <u>1974</u> , 19, 1060-5.				
(3) Water; H ₂ O; [7732-18-	·5]				
VARIABLES: <i>T</i> /K = 283, 293			H. Einaga I. Lambert		
Composition					
EXPERIMENTAL VALUES: The BaCl ₂ +	Ba(OH) ₂ + H	I ₂ 0 system at	10 and 20	° C	
	BaCl ₂	Ba(OH) ₂	Solid		
t/°C	mass %	mass %	Phase		
. 10	0 13.52	2.48 1.53	A A		
	22.60	1.87	A + B		
	23.79	1.75	В	İ	
	24.56	1.65	B + C		
	25.04	0	С		
20	0 9.50	3.89 3.04	A A		
	20.87	3.20	A + B		
	23.37	2.63	В		
	26.13	1.88	B + C		
	26.42	0	с		
Solid Phases: A Ba	a (OH) ₂ · 8H ₂ O	; B BaClOF	^{1•2H} 2 ⁰ ; С	BaCl ₂ ·2H ₂ O.	
	AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PUR	ITY OF MATER	IALS:	
Ba(OH) ₂ and BaCl ₂ were equivith water at 10.0 ± 0.1 a 0.1°C by stirring for t The Ba ²⁺ , Cl ⁻ , and OH ⁻ ion	and $20.0 \pm$	(l) Barium pure.	chloride	. Chemically	
saturated solutions were d (no procedures are give original paper).	letermined	(2) Barium grade, r before u	ecrystalli	Analytical zed from water	
The phase diagram at 10°C on another page.	is given				
		ESTIMATED ERRO	R:		
		No es	stimates po	ssible.	
	REFERENCES :				

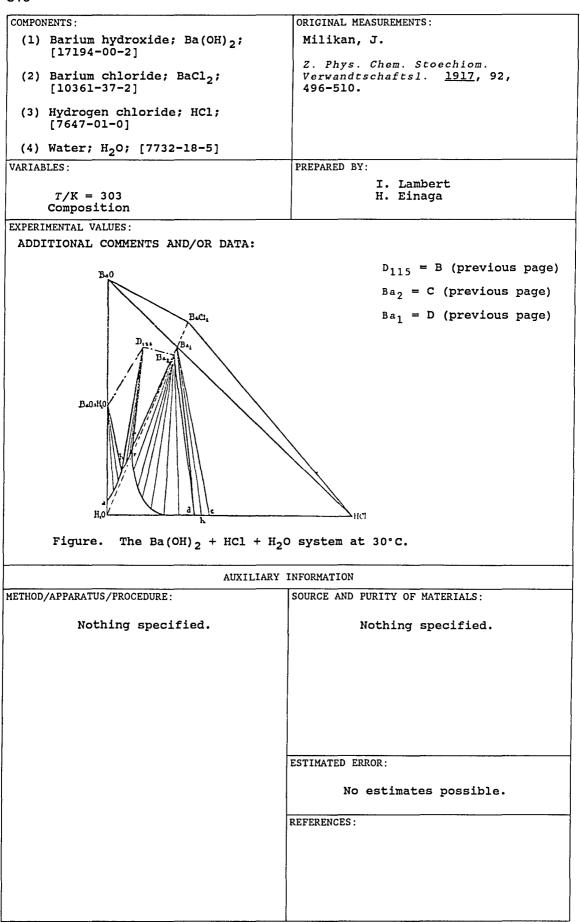
3	0	6

COMPONENTS: (1) Barium ch					
(1) Barium ch		· ···· ·	ORIGINAL MEASU	REMENTS :	
<pre>(1) Barium chloride; BaCl₂; [10361-37-2]</pre>			Mozharova, T.V.; Pavlyuchenko, E.N.		
<pre>(2) Barium hydroxide; Ba(OH)₂ [17194-00-2] (3) Water; H₂O; [7732-18-5] VARIABLES:</pre>				Khim. <u>1979</u> , 24, 2 org. Chem. (Engl.	2522-8.
			Transl.) <u>1</u>	<u>979</u> , 24, 1401-5.	
			PREPARED BY:		
T/K = 333 Compositio	'n		Н	. L. Clever	
EXPERIMENTAL VALU					
-	The BaCl		+ H ₂ O system	-	
		BaCl ₂	Ba(OH) ₂	Solid Phase	
	<i>t/</i> °C	mass %	mass %		
	60	0 5.53	18.94 18.64	A A	
		10.70	18.99	A + B	
		13.53 17.71 22.86	13.36 8.98 5.02	B B B	
		25.27 27.73	4.32 3.15	B B	
		31.14	2.55	B + C	
		31.60	0	с	
		AUXILIARY	INFORMATION		
ETHOD/APPARATUS/F Experimental p in (ref 1). (ref 1) for de	procedures t See compi	he same as	SOURCE AND PURT	TY OF MATERIALS: ecified, probabl (ref 1).	y the
Experimental j in (ref 1).	procedures t See compi etails. gram at 60°(he same as lation of	SOURCE AND PURI Nothing sp	ecified, probabl	y the
Experimental p in (ref 1). (ref 1) for de The phase dia	procedures t See compi etails. gram at 60°(he same as lation of	SOURCE AND PURI Nothing sp	ecified, probabl	y the
in (ref 1). (ref 1) for de The phase dia	procedures t See compi etails. gram at 60°(he same as lation of	SOURCE AND PURI Nothing sp same as	ecified, probabl (ref 1).	y the

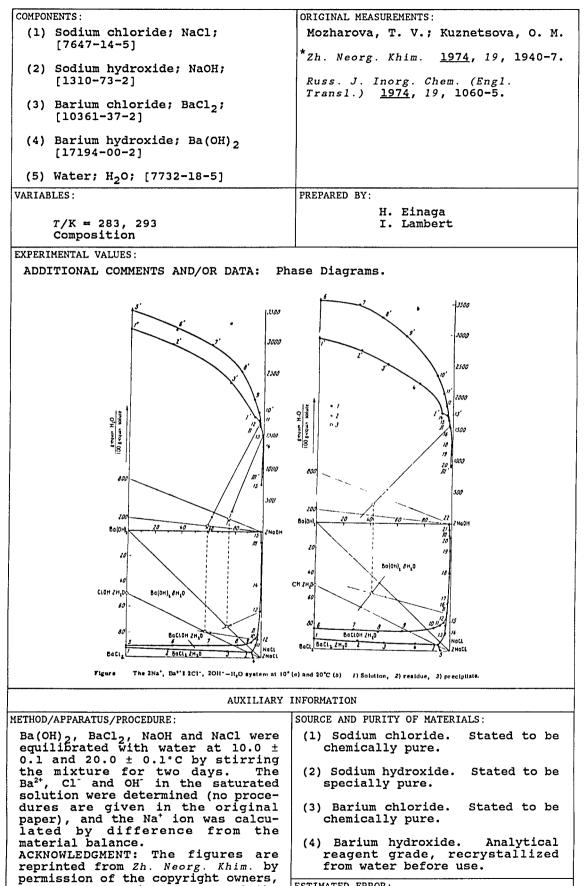
CONDONED TO A CONDUCT OF A COND			
COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Barium chloride; BaCl₂; [10361-37-2]</pre>	Mozharova, T.V.; Pavlyuchenko, E.N.		
(2) Barium hydroxide; Ba(OH) ₂		Khim. <u>1980</u> , 25, 1638-44	
[17194-00-2]	*Russ. J. Transl.)	Inorg. Chem. (Engl. 1980, 25, 909-14.	
(3) Water; H ₂ O; [7732-18-5]		· · ·	
VARIABLES:	PREPARED BY:		
m/W _ 050		I. Einaga I. Lambert	
T/K = 353 Composition	-	. Lampert	
EXPERIMENTAL VALUES:	_L		
The $BaCl_2 + Ba(OH)_2$	+ H ₂ O system	at 80°C	
BaCl ₂	Ba (OH) 2	Solid	
t/°C mass %	mass %	Phase	
80 0	57.60		
. 2.91	49.97	A A	
7.15	42.80	A + B	
7.82	40.09	В	
8.08	36.56	B	
9.76 12.80	31.40 22.09	B	
12.00	11.31	B	
22.93	8.01	B	
33.37	3.37	B + C	
34.30	ο	с	
AUXILIARY	INFORMATION		
ETHOD/APPARATUS/PROCEDURE:		ITY OF MATERIALS:	
Experimental procedures the same as in (ref 1). See compilation of (ref 1) for details.	Nothing sp same as	ecified, probably the (ref 1).	
The phase diagram at 80°C is given on another page.			
	ESTIMATED ERROR		
	10 es	timates possible.	
	REFERENCES :		
		a, T.V.;Kuznetsova,O.M. rg. Khim. <u>1974</u> , 19,	

COMPONENTS :		ORIGINAL MEASUREMENTS:
(1)	Barium hydroxide; Ba(OH) ₂ ; [17194-00-2]	Milikan, J.
(2)	Barium chloride; BaCl ₂ ; [10361-37-2]	Z. Phys. Chem. Stoechiom. Verwandtschaftsl. <u>1917</u> , 92, 496-510.
(3)	Hydrogen chloride; HCl; [7647-01-0]	
(4)	Water; H ₂ O; [7732-18-5]	

The Ba(OH) $_2$ +	HCl + H ₂ O s	system at 30°C
HCl	BaO	Solid Phase
mass %	mass 8	
0	4.99	A
3.77	12.38	А
4.49	14.01	А
5.98	17.18	A
6.32	17.90	A
6.34	17.98	A + B
6.57	18.46	A + B
6.59	18.15	A + B
6.64	18.83	A + B
6.72	18.79	В
7.51	19.07	в
8.47	20.32	B
8.75	20.72	В
9.60	21.93	B + C
9.56	21.90	B + C
9.60	21.97	с
9.66	20.32	С
9.66	18.21	С
10.48	9.55	С
12.90	2.83	С
18.27	0.16	с с с с с
32.35	0	с
37.34	0	C + D
38.63	0	D


Solid Phases: A. Ba(OH)₂·8H₂O

B. $BaCl_2 \cdot Ba(OH)_2 \cdot 4H_2O$


C. $BaCl_2 \cdot 2H_2O$

D. $BaCl_2 \cdot H_2O$

Another table gives the data in mol percent. (continued on the next page)

	ENTS: Sodium chlor [7647-14-5]	cide; NaC	L;	Mozharov		Kuznetsova, O. <u>1974</u> , <i>19</i> , 1940-
(2)	Sodium hydro [1310-73-2]	oxide; Na(DH;	Russ. J.	Inorg. Cl	nem. (Engl.
(3)	Barium chlor [10361-37-2]		L ₂ ;	ıransı.)	<u>1974</u> , 19	, 1000- <u>3</u> .
(4)	Barium hydro [17194-00-2]		(OH) ₂			
(5)	Water; H ₂ O;	[7732-18-	-5]			
EXPERI	MENTAL VALUES:					
	The [BaCl ₂ +	· 2NaOH ≒	$Ba(OH)_2 + 2N$	aCl] + H ₂	O system a	at 10 and 20°C
		NaCl	NaOH	BaCl ₂	-	Solid Phase
	t/°C	mass %	mass %	mass %	mass %	
	10	-	-	24.56	1.65	A + B
		5.44 15.69	-	18.21 7.25	1.60 1.63	A + B A + B
		24.80	-	2.50	-	A + C
		24.55	-	0.76	1.81	A + B + C
		-	-	22.60	1.87	B + D
		5.37		15.58	2.19	
		10.51	-	8.89	2.44	
		16.71 20.59	- 0.93	2.31	3.03 2.42	B + D B + D
		20.53	2.13	-	1.44	
		24.17	1.32	-	1.36	B + C
		23.45	2.29	-	1.05	
		23.14	3.18	-	0.93	B + C + D
		19.68 14.46	7.61 13.85	-	0.27 0.13	
		3.89	30.50	_	0.41	C + D C + D + E
		-	34.65	-	0.69	D + E
	20	-	-	26.13	1.88	A + B
		5.56	-	19.12	1.77	
		9.91	-	14.58	1.63	A + B
		16.32 24.50	-	7.52 3.00	1.77	A + B A + C
		24.50	-	1.38	1.93	A + B + C
		-	-	20.87	3.20	B + D
		4.27	-	14.30	3.36	
		7.30	-	10.59	3.34	B + D B + D
		11.18 17.65	0.98	6.07 -	3.96 3.83	B + D B + D
		19.22	2.15	-	2.44	B + D B + D
		20.26	3.19	-	1.63	B + D
		24.05	1.79	-	1.45	B + C
		23.61	2.13	-	1.31	B + C
		22.86 31.31	3.47 5.71	_	1.11 0.91	B + C B + C + D
		19.49	7.60	-	0.62	C + D
		19.12	7.97	-	0.45	C + D
		14.02	14.83	-	2.14	C + D
		8.65	21.96	-	0.19	C + D C + D
		4.97 4.42	28.20 29.22	_	0.57 0.52	C + D C + D + E
		2.22	30.35	-	0.67	D + E
		-	34.58	-	1.46	D + E
		0.91	50.01 49.61	-	0.16 0.43	C + F + G F + G
	Solid Phas	es: A E	aCl ₂ ·2H ₂ O;	B BaClO	H·2H ₂ O;	C NaCl;
	borra ruas		$(OH)_{2} \cdot 8H_{2}O;$) ₂ ·3H ₂ 0;	- Marti
			$a(OH)_2 H_2O;$	G NaOH.		

ESTIMATED ERROR:

No estimates possible.

VAAP, The Copyright Agency of the

USSR

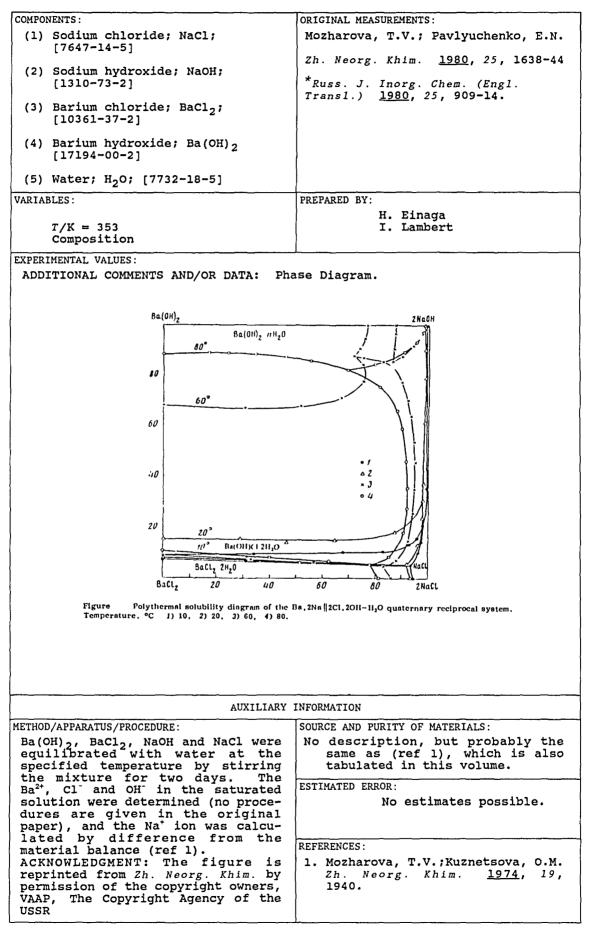
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Barium hydroxide; Ba(OH)₂; [17194-00-2]</pre>	Mozharova, T.V.; Pavlyuchenko, E.N.
<pre>(2) Barium chloride; BaCl₂; [10361-37-2]</pre>	Zh. Neorg. Khim. <u>1979</u> , 24, 2522-8 *Russ. J. Inorg. Chem. (Engl. Transl.) <u>1979</u> , 24, 1401-5.
<pre>(3) Sodium hydroxide; NaCl; [1310-73-2]</pre>	112ns1.) <u>1979</u> , 24, 1401-5.
(4) Sodium chloride; NaCl; [7647-14-5]	
(5) Water; H ₂ O; [7732-18-5]	

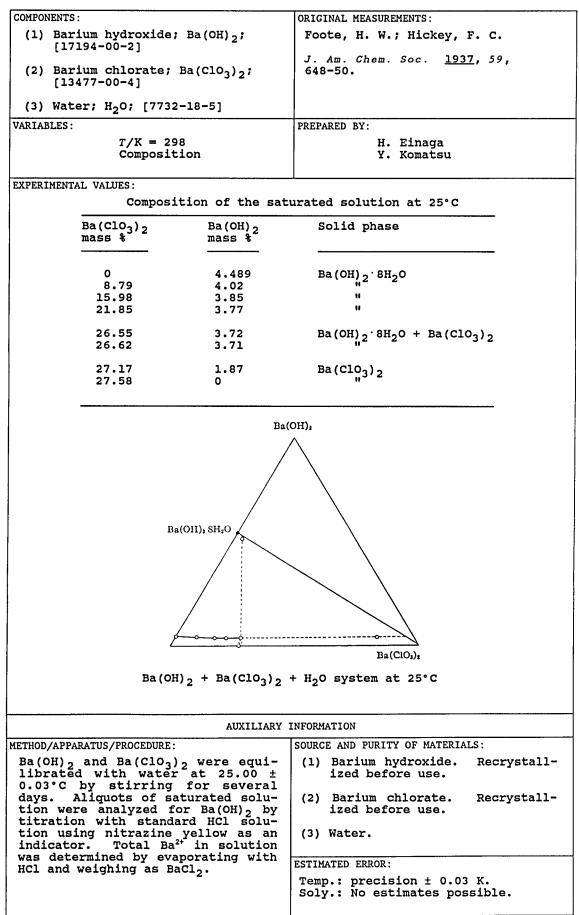
	NaCl	NaOH	BaCl ₂	Ba (OH) 2	Solid Phase
t/°C	mass %	mass %	mass %	mass %	
60	-	-	31.14	2.55	A + B
	6.69	-	21.97	2.26	A + B
	13.07	-	15.33	2.11	A + B
	23.40	-	6.70	-	B + C
	23.23	-	5.87	5.87	A + B +
	24.41	-	2.64	2.77	B + C
	22.12	1.36	-	3.03	B + C
	23.42	3.01	-	2.38	B + C
	22.88	3.99	-	2.30	B + C
	21.71	6.61	-	2.26	B + C
	18.30	9.25	-	2.38	B + C
	16.30	11.60	-	2.74	B + C
	15.77	12.39	-	2.97	B + C
	13.74	14.74	_	3.49	B + C
	11.98	16.84	_	4.24	B + C
	9.64	19.51	-	5.83	B + C
	7.37	21.83	-	8.83	B + C +
	-	-	10.70	18.99	B + E
	6.21		1.09	20.12	B + E
	7.40	2.99	-	16.20	B + E
	7.70	6.73	-	12.68	B + E
	7.16	11.71		11.33	B + E
	6.02	15.42	-	13.39	B + E
	5.03	16.25	-	16.09	B + D +
	-	20.25	-	12.55	D + E
	2.15	19.16		13.52	D + E
	3.73	17.75	-	14.67	D + E
	5.37	17.41	-	14.49	B + D
	6.49	20.42	-	10.65	B + D
	-	27.88	-	7.76	D + F
	1.67	26.35		8.33	D + F
	4.40	24.22	-	8.29	D + F
	6.83	22.59	-	9.22	C + D +
	6.08	25.76	-	6.24	C + F
	4.38	30.87	-	3.72	C + F
	3.95	33.28	-	2.18	C + F
	3.06	37.32	-	2.18	C + F
	1.96	46.29	-	0.51	C + F
	1.90	61.36	-	0.15	C + F +
Continue	ed on the nex	t page.	(Solid phas	es defined	on next p

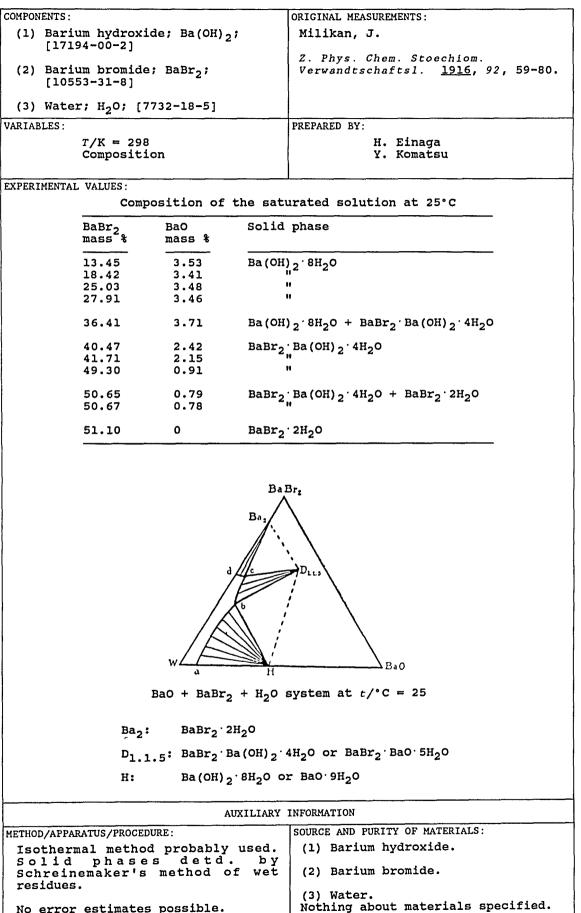
COMPONENTS: (1) Barium hydroxide; BaCl ₂ ; [17194-00-2]	ORIGINAL MEASUREMENTS: Mozharova, T.V.; Pavlyuchenko, E.N.
(2) Barium chloride; BaCl ₂ ; [10361-37-2]	Zh. Neorg. Khim. <u>1979</u> , 24, 2522-8. *Russ. J. Inorg. Chem. (Engl.
<pre>(3) Sodium hydroxide; NaOH; [1310-73-2]</pre>	Transl.) <u>1979</u> , 24, 1401-5.
<pre>(4) Sodium chloride; NaCl; [7647-14-5]]</pre>	
(5) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 333 Composition	H. L. Clever
EXPERIMENTAL VALUES: ADDITIONAL COMMENTS AND/OR DATA:	
Solid Phases: A BaCl ₂ ·2H ₂ O;	B BaClOH·2H ₂ O; C NaCl;
D Ba (OH) 2 · 3H2O	E Ba(OH) ₂ ·8H ₂ O;
$F Ba(OH)_2 H_2O;$	G NaOH·H ₂ O.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Ba(OH) ₂ , BaCl ₂ , NaOH and NaCl were equilibrated with water at the specified temperature by stirring the mixture for two days. The Ba ²⁺ , Cl and OH in the saturated solution were determined (no proce- dures are given in the original paper), and the Na ⁺ ion was calcu- lated by difference from the material balance (ref 1).	No description, but probably the same as (ref 1), which is also tabulated in this volume.
	ESTIMATED ERROR:
	No estimates possible.
	REFERENCES: 1. Mozharova, T.V.;Kuznetsova, O.M. <i>Zh. Neorg. Khim.</i> <u>1974</u> , <i>19</i> , 1940.

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Sodium chloride; NaCl; [7647-14-5]</pre>	Mozharova, T.V.; Pavlyuchenko, E.N.
<pre>(2) Sodium hydroxide; NaOH; [1310-73-2]</pre>	Zh. Neorg. Khim. <u>1980</u> , 25, 1638-44 *Russ. J. Inorg. Chem. (Engl. Transl.) <u>1980</u> , 25, 909-14.
<pre>(3) Barium chloride; BaCl₂; [10361-37-2]</pre>	Iransi.) <u>1980</u> , 23, 909-14.
<pre>(4) Barium hydroxide; Ba(OH)₂ [17194-00-2]</pre>	
(5) Water; H ₂ O; [7732-18-5]	

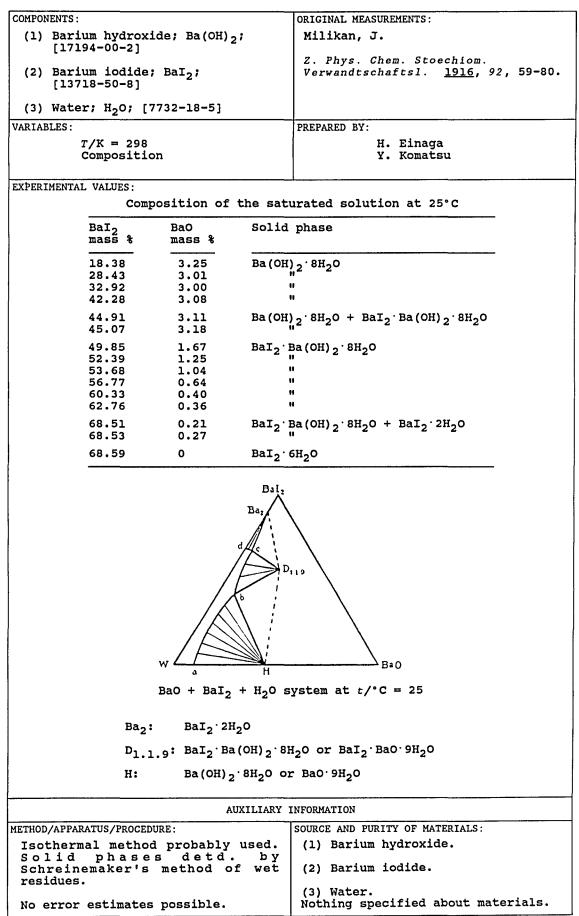
	NaCl	NaOH	BaCl ₂	Ba (OH) ₂	Solid Phase
t/°C	mass %	mass %	mass %	mass %	
80		-	33.37	3.37	$\overline{A + B}$
	9.22	-	22.13	2.42	A + B
	15.44	-	13.44	2.60	A + B
	22.80	-	9.40	-	B + C
	22.17	-	8.39	2.19	A + B +
	24.56		3.38	3.48	B + C
	24.39	1.76	-	3.83	B + C
	21.95	4.14	-	3.54	B + C
	20.85	6.26	-	3.49	B + C
	18.62	8.98	-	4.07	B + C
	15.40	12.38	-	5.38	в + с
	13.26	14.38	-	6.44	
	11.38	16.30	-	9.01	B + C
	10.35	16.72	-	11.43	B + C
	-	-	7.15	42.80	B + D
	4.16	1.30		44.64	B + D
	4.32	3.41	-	43.08	
	4.65	6.40	-	39.16	B + D
	5.29	9.51	-	32.90	B + D
	6.33	12.29	-	28.77	B + D
	8.04	16.18	-	20.20	B + C +
	8.30	17.35	-	18.12	C + D
	7.70	20.45	-	13.73	C + D
	5.79	28.59	-	6.27	C + D
	4.25	34.64	-	3.54	C + D
	2.48	63.45	-	1.50	C + D +
	-	63.98	-	1.48	D + E
	2.95	72.16	-	-	C + E


D Ba(OH)₂· H_2O ; E NaOH.


.


-

315


.....

No error estimates possible.

COMPONENTS :			ORIGINAL MEASUREMENTS	l:
(1) Barium h [17194-0	ydroxi 0-2]	de; Ba(OH) ₂ ;	Terres, E.; Brück	kner, K. Angew. Phys. Chem
(2) Barium h [25417-8		lfide; Ba(SH) ₂ ;	<u>1920</u> , 26, 25-32.	ingew. Inys. onem
(3) Water; H	20; [7	732-18-5]		
XPERIMENTAL VAL	UES :			
-	The Ba	$Ba(OH)_2 + Ba(SH)_2 + Ba(SH)_2$	H ₂ O system at 0 to Ba(OH) ₂	Solid
	:/*C	/g (100 g sln) ⁻¹	/g (100 g sln) ⁻¹	Phase
-	0	0.92	1.49	A
		5.45	0.88	А
		13.6	0.6	В
		19.6	0.6	В
		26.3	0.65	B
		22.5	0.69	В
		27.8	0.65	B
		28.6	0.70	в
			A 6A	~
		29.0	0.60	C
			0.60 0.96	C C
	20	29.0		
	20	29.0 32.6	0.96	С

1.03

1.08

1.95

.

1.0

1.1

1.0

0.9

1.18

4.65

3.8

1.9

1.5

1.5

1.65

1.44

1.39 1.32 1.29

12.9

11.0

8.0

3.0

5.38

2.56

2.52

2.13

2.10

2.07

22.3

19.0

18.5

9.0

6.0

4.6

4.0

4.2

3.7

2.05

в

В

в

В

в

в

С

С

A

в

в

в

B

в

в

в

в

C

A

A в

в в

в

в

В (?)

В Ĉ

A

Α

Α

в

в

в

в в

В

С

(?)

15.60

17.90

29.0 17.1

26.2

29.0

30.0

32.8

4.5

9.55

15.3

20.4

27.5

17.6

20.7

25.1

30.6

35.2

1.15

7.82

10.03

12.25

19.9

27.0

28.8

33.0

33.5

37.2

1.81

5.5

9.6

12.4

21.0

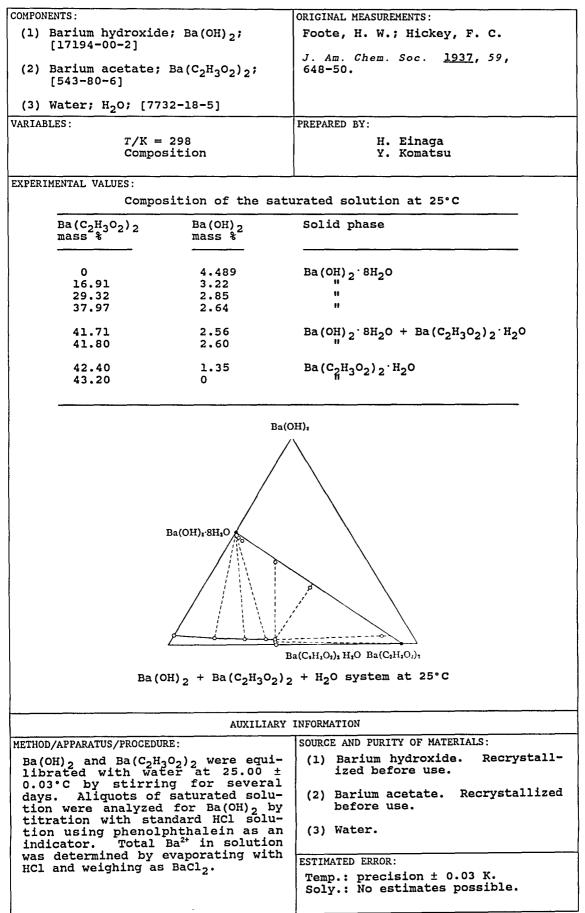
25.0

30.0

31.4

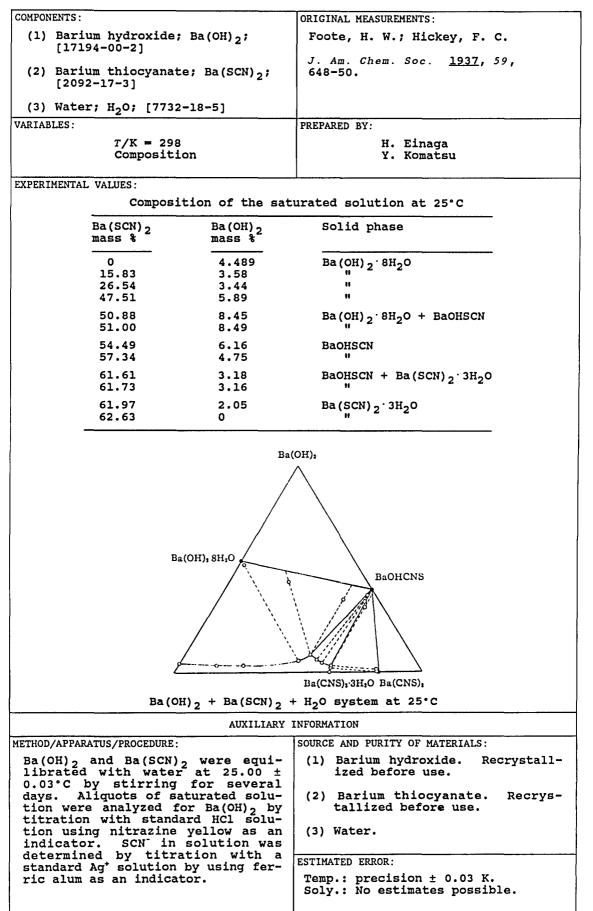
39.0

34.95


40

60

			and the second	
	NENTS:		ORIGINAL MEASUREMENT	
(1)	Barium hydrox: [17194-00-2]	lde; Ba(OH) ₂ ;	Terres, E.; Bruc	
(2)	Barium hydrosu [25417-81-6]	lfide; Ba(SH) ₂ ;	Z. Elektrochem. <u>1920</u> , 26, 25-32.	Angew. Phys. Chem.
(3)	Water; H ₂ 0; [3	732-18-5]		
VARIA	BLES:		PREPARED BY:	
	T/K = 273 - 3 Composition	73	I. Lam H. L.	bert Clever
EXPERI	IMENTAL VALUES:	P(OR) + PP(CR) +	N O system at 0 to	
		$a(OH)_2 + Ba(SH)_2 +$		
		Ba (SH) 2	Ba (OH) 2	Phase
	t/°C	/g (100 g sln) ⁻¹	/g (100 g sln) ⁻	·
	100	1.32 7.1	41.9 30.5	A A
		7.6	29.5	A
		11.9	27.3	A
		13.0 35.2	24.4 5.8	B B
		41.8	5.0	c
		43.7	1.96	C
	Solid 1	Phases: A. Ba(OH)	2 ^{.8H2} O	
		B. Ba(OH)	Ba(SH), 10H20 or	Ba (OH) (SH) · 5H ₂ O
	The solid nh	C. Ba(SH)		
	original papersolution comp	C. Ba(SH) ase was identified l er. There is uncert position at which the so gives the solubi	2 ^{.4H} 2 ^O by inspection of F tainty in identify he solid changes o	ig. 4 in the ring the exact composition.
	original pape solution comp The paper als	C. Ba(SH) ase was identified for. There is uncer- position at which the so gives the solubit to 100°C.	2 ^{.4H} 2 ^O by inspection of F tainty in identify he solid changes o lity of Ba(SH)2 ^{.4H}	ig. 4 in the ring the exact composition.
	original pape solution comp The paper als water from -:	C. Ba(SH) ase was identified l er. There is uncer- bosition at which the so gives the solubit 15 to 100°C. AUXILIARY	2 ^{.4H} 2 ^O by inspection of F tainty in identify he solid changes o lity of Ba(SH)2 ^{.4H} INFORMATION	ig. 4 in the ing the exact composition. N ₂ O in pure
Sol are ove:	original pape solution comp The paper alg water from -: D/APPARATUS/PROCE utions of Ba(mixed and a	C. Ba(SH) ase was identified l er. There is uncer- bosition at which the so gives the solubit 15 to 100°C. AUXILIARY	2 ^{.4} H ₂ O by inspection of F tainty in identify he solid changes o lity of Ba(SH) ₂ .4H INFORMATION SOURCE AND PURITY OF Technical comme	Fig. 4 in the Fing the exact composition.
Sol are over take <u>Anal</u> oxic pre pre sol Bac spe	original paper solution comp The paper als water from -: D/APPARATUS/PROCE utions of Ba(mixed and a rnight after es place. <u>lysis of solut</u> dized into sul: cipitates as cipitated fro ution by add l ₂ or H ₂ SO ₄ d cies in exces	C. Ba(SH) ase was identified ber. There is uncer- bosition at which the so gives the solubit to 100°C. AUXILIARY DURE: OH)2 and Ba(SH)2 110wed to stand the precipitation the precipitation cion: Sulfide is fate by H202 which BaS04. BaS04 is om the remaining ition of either epending on which s. The BaS04 is	2 ^{.4} H ₂ O by inspection of F tainty in identify he solid changes o lity of Ba(SH) ₂ .4H INFORMATION SOURCE AND PURITY OF Technical comme used. The Ba(S	Fig. 4 in the Fing the exact composition.
Sol are ove: take Anai oxic pre sol BaC: spe dete	original pape solution comp The paper als water from -: D/APPARATUS/PROCE utions of Ba (mixed and a rnight after es place. <u>lysis of solut</u> dized into sul: cipitates as cipitated fro ution by add l ₂ or H ₂ SO ₄ d cies in exces ermined gravime <u>lysis of soli</u>	C. Ba(SH) ase was identified l bar. There is uncer- bosition at which the so gives the solubit to 100°C. AUXILIARY DURE: OH) ₂ and Ba(SH) ₂ 110wed to stand the precipitation the precipitation the remaining ition of either epending on which s. The BaSO ₄ is barrically. d: The solid is	2.4H ₂ O by inspection of F tainty in identify he solid changes o lity of Ba(SH) ₂ .4H INFORMATION SOURCE AND PURITY OF Technical comme used. The Ba(S hydrolysis of Ba	Fig. 4 in the ring the exact composition. M ₂ O in pure F MATERIALS: rcial products are SH) ₂ is obtained by SS.
Soli are ove: take Anai opre pre soli Bac: spe dete Ana dis wit: pher and	original paper solution comp The paper ala water from -: D/APPARATUS/PROCE utions of Ba(mixed and a rnight after es place. <u>lysis of solut</u> dized into sul: cipitates as cipitates as cipitates froution by add l ₂ or H ₂ SO ₄ d cies in exces ermined graving <u>lysis of soli</u> solved in wat h standard HC nolphthalein (C. Ba(SH) ase was identified ber. There is uncer- bosition at which the so gives the solubit to gives the solubit to 100°C. AUXILIARY DURE: OH)2 and Ba(SH)2 110wed to stand the precipitation the precipitation the solution of either epending on which s. The BaSO4 is ber and titrated 1 solution using titration of OH') ge (titration of	2.4H ₂ O by inspection of F tainty in identify he solid changes o lity of Ba(SH) ₂ .4H INFORMATION SOURCE AND PURITY OF Technical comme used. The Ba(S hydrolysis of Ba	Fig. 4 in the Fing the exact composition.
Soliare ove: take Anai opre pre soli Bac: spe dete Ana dis wit: pher and	original paper solution comp The paper als water from -: D/APPARATUS/PROCE utions of Ba(mixed and a rnight after es place. <u>lysis of solut</u> dized into sul: cipitated after ution by add l ₂ or H ₂ SO ₄ d cies in exces ermined graving <u>lysis of soli</u> solved in wat h standard HC nolphthalein (methyl orang	C. Ba(SH) ase was identified ber. There is uncer- bosition at which the so gives the solubit to gives the solubit to 100°C. AUXILIARY DURE: OH)2 and Ba(SH)2 110wed to stand the precipitation the precipitation the solution of either epending on which s. The BaSO4 is ber and titrated 1 solution using titration of OH') ge (titration of	2.4H ₂ O by inspection of F tainty in identify he solid changes of lity of Ba(SH) ₂ .4H INFORMATION SOURCE AND PURITY OF Technical comme used. The Ba(S hydrolysis of Ba ESTIMATED ERROR: No estimate	Fig. 4 in the ring the exact composition. M ₂ O in pure F MATERIALS: rcial products are SH) ₂ is obtained by SS.
Soli are ove: take Anai opre pre soli Bac: spe dete Ana dis wit: pher and	original paper solution comp The paper als water from -: D/APPARATUS/PROCE utions of Ba(mixed and a rnight after es place. <u>lysis of solut</u> dized into sul: cipitated after ution by add l ₂ or H ₂ SO ₄ d cies in exces ermined graving <u>lysis of soli</u> solved in wat h standard HC nolphthalein (methyl orang	C. Ba(SH) ase was identified ber. There is uncer- bosition at which the so gives the solubit to gives the solubit to 100°C. AUXILIARY DURE: OH)2 and Ba(SH)2 110wed to stand the precipitation the precipitation the solution of either epending on which s. The BaSO4 is ber and titrated 1 solution using titration of OH') ge (titration of	2.4H ₂ O by inspection of F tainty in identify he solid changes of lity of Ba(SH) ₂ .4H INFORMATION SOURCE AND PURITY OF Technical comme used. The Ba(S hydrolysis of Ba ESTIMATED ERROR: No estimate	Fig. 4 in the ring the exact composition. M ₂ O in pure F MATERIALS: rcial products are SH) ₂ is obtained by SS.


2	2	2
J	2	2

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Barium hydroxide; Ba(OH)₂; [17194-00-2]</pre>	Parsons, C. L.; Corson, H. P.
(2) Barium nitrate; Ba(NO ₃) ₂ ; [10022-31-8]	J. Am. Chem. Soc. <u>1910</u> , 32, 1383-7.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 Composition	H. Einaga Y. Komatsu I. Lambert
EXPERIMENTAL VALUES:	
The $Ba(OH)_2 + Ba(NO_3)_2$	₂ + H ₂ O system at 25°C
Barium Nitrate Barium Hy	
$/g (100 g H_2 0)^{-1}$ /g (100 g H_2 0)	$m_1/mol kg^{-1}$ Gravity Phase
0 4.29	0.250 1.0512 A
0.43 4.29 1.45 4.35	0.250 1.0538 A
1.45 4.35 1.88 4.35	0.254 1.0640 A 0.254 1.0651 A
2.53 4.42	0.254 1.0651 A 0.258 1.0711 A
2.79 4.40	0.257 1.0711 A
3.14 4.46	0.260 1.0774 A
3.47 4.48	0.262 1.0790 A
4.04 4.52	0.264 1.0840 A
4.41 4.53	0.264 1.0864 A
4.44 4.52	0.264 1.0885 A
5.32 4.54	0.265 1.0937 A
5.46 4.55	0.266 1.0949 A
5.66 4.60	0.269 1.0975 A
6.08 4.64	0.271 1.1010 A
6.55 4.61	0.269 1.1044 A
6.82 4.65	0.271 1.1062 A
7.01 4.72	0.276 1.1133 A
7.55 4.72 8.66 4.83	0.276 1.1220 A 0.282 1.1288 A
10.21 4.93	0.282 1.1288 A 0.288 1.1371 A
11.48 5.02	0.293 1.1448 A + B
11.04 3.22	0.188 1.1210 B
10.66 1.55	0.090 1.1002 B
10.30 0	0 1.0797 B
Solid Phases: A Ba(OH) ₂ ·8H ₂ O; B Ba	(NO ₃) ₂
AUXILIARY I	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Solid $Ba(OH)_2$ was added to aqueous $Ba(NO_3)_2$ solution in tightly stop-	(1) Barium hydroxide.
pered bottles and rotated for four months at 25°C to attain equi-	(2) Barium nitrate.
librium. Aliquots of saturated solution were removed and the Ba(OH) ₂ determined by titration	Specially pure samples of each component were used.
with standard HNO3 solution using phenolphthalein as indicator. The	ESTIMATED ERROR:
phenolphthalein as indicator. The	
$Ba(NO_3)_2$ was determined by acidification of an aliquot with	No estimates possible.
HNO_3 , evaporation to dryness,	
weighing the residue, and subtrac-	······
tion of the amount corresponding to	REFERENCES:
Ba (OH) 2.	
~	

t

```
324
```


4.70

COMPONENTS :			ORIGINAL MEASU	REMENTS:	
(1) Barium hydro [17194-00-2]	xide; Ba(OH) ₂ ;	Malquori, C		
(2) Barium alumi Al ₂ O ₃ ·2BaO·5		49-65-4]	Gazz. Chim.	Ital. <u>192</u>	<u>86</u> , 56, 51-5.
(3) Aluminum oxi [1344-28-1]	-				
(4) Water; H ₂ O;	[7732-18-	51			
VARIABLES:	.		PREPARED BY:		
T/K = 293 Composition				. Lambert	
EXPERIMENTAL VALUES:	The BaC	$+ Al_2O_3 +$	H ₂ O system at	20°C	
BaO A	1203	Solid	BaO	Al ₂ 0 ₃	Solid
mass % ma	ass 8	Phase	mass %	mass %	Phase
3.3200 -		 A	2.1170	0.6250	$\overline{\mathbf{B} + \mathbf{C}}$
3.3200 0	.0012	A			
	.0020	A	1.8730	0.4560	С
3.4500 0	4300	A	1.7320	0.3780	c
3.5000 0.	6800	A + B	1.6540 1.3300	0.3454 0.2790	C C
1	.6730	A + B	1.3300	0.2750	C
I	6590	A + B	1.2100	0.2080	C + D
3.5230 0.	6610	A + B	1.1940	0.2130	C + D
		_	1.2060	0.2040	C + D
2.2110 0.	6410	В	1.2090	0.2170	C + D
2.1310 0.	6280	в + с	0.9016	0.1179	D
	6180	B + C	0.5187	0.0373	D
2.1540 0.	6370	B + C	0.0100	0.0020	D
Solid Phases:	A. Ba	(он) ₂ · 8н ₂ о	в.	Al ₂ 0 ₃ .2Ba	о· 5н ₂ 0
	C. Al	203.Bao.eH ⁵ 0	D. D.	A1203.xH50	D
		AUXILIARI	INFORMATION	NATION AND TA	1.0.
METHOD/APPARATUS/PROCH			SOURCE AND PURIT		1
Mixtures of Al Ba(OH) ₂ or γ -Al ₂ O	03.2BaO	5H ₂ O and	(1) Barium		. Nothing
lowed to equilib	'3 IN Walt rate in	a thermo-) specifie		Prepared by
stated bath at	20°C. 7	The equi-			on a sat.
libration time is			soln. of	Ba(OH) at	the boiling
The solid phase			point.	The soluti	the boiling ion is conc.
filtration, an			by disti	llation and	l the product
analyzed for alur	ninum as	Al ₂ O ₃ and		izes from s	
for barium as BaS	0 ₄ .				ree methods.
If mixtures of Al	-0- and F	a(OH) _ in	or Al(N	$(a)_{a}$	H with AlCl ₃ reaction of
water are used,	the equi	libration	CO_2 on 1	Na or K al	uminate. γ :
time is much lo	nger (ab	out five	hydrolys.	is of bariu	m aluminate.
months).				hree cases d at 150°C.	the product
				- uc 130 ¢.	
			ESTIMATED ERROR:		
			No es	timates pos	sible
			REFERENCES :		
		i			
La			L		

•

MPONENTS :	ORI	GINAL MEASUREMENT	TS :
<pre>(1) Barium hydroxide; Ba(OH) [17194-00-2]</pre>	2 ⁷ He	erz, W.	
(2) Alkali halides; see table below.		ngew. Chem. <u>19</u>	<u>910</u> , <i>67</i> , 365-8.
(3) Water; H ₂ O; [7732-18-5]			
RIABLES:	PRE	PARED BY:	
T/K = 298 Concentration of LiCl, NaCl, and RbCl.	ксі,	I. Lar	
PERIMENTAL VALUES:			
The solubility of $Ba(OH)_2$	in aqueous	alkali halide	solutions at 25°C
Alkali Halide	C1-	OH-	Ba(OH) ₂
Alkali Halide	Cl ⁻ c/mol L ⁻¹		Ba(OH) ₂ c_1 /mol L ⁻¹
Alkali Halide			$\frac{c_1/\text{mol } L^{-1}}{0.278}$
	$\frac{c/\text{mol } L^{-1}}{0}$ 0.75	c/mol L ⁻¹ 0.555 0.745	$\frac{c_1/\text{mol } L^{-1}}{0.278}$ 0.373
Lithium chloride; LiCl	$\frac{c/\text{mol } L^{-1}}{0}$	c/mol L ⁻¹ 0.555 0.745 0.937	$\frac{c_1/\text{mol } L^{-1}}{0.278}$ 0.373 0.468
Lithium chloride; LiCl	$\frac{c/\text{mol } L^{-1}}{0}$ 0.75	c/mol L ⁻¹ 0.555 0.745	$\frac{c_1/\text{mol } L^{-1}}{0.278}$ 0.373
Lithium chloride; LiCl	$\frac{c/\text{mol } L^{-1}}{0}$	c/mol L ⁻¹ 0.555 0.745 0.937	$\frac{c_1/\text{mol } L^{-1}}{0.278}$ 0.373 0.468
Lithium chloride; LiCl [7447-41-8]	$\frac{c/\text{mol } L^{-1}}{0}$ 0.75 1.42 2.3 0 0.73	c/mol L ⁻¹ 0.555 0.745 0.937 1.336 0.555 0.630	$\begin{array}{r} c_1/\text{mol } L^{-1} \\ \hline 0.278 \\ 0.373 \\ 0.468 \\ 0.668 \\ 0.668 \\ 0.278 \\ 0.315 \end{array}$
Lithium chloride; LiCl [7447-41-8] Sodium chloride; NaCl;	$\frac{c/\text{mol } L^{-1}}{0}$ 0.75 1.42 2.3 0 0.73 1.43	c/mol L ⁻¹ 0.555 0.745 0.937 1.336 0.555 0.630 0.699	$\begin{array}{r} c_{1}/\text{mol } L^{-1} \\ \hline 0.278 \\ 0.373 \\ 0.468 \\ 0.668 \\ 0.668 \\ 0.278 \\ 0.315 \\ 0.350 \end{array}$
Lithium chloride; LiCl [7447-41-8] Sodium chloride; NaCl;	$\frac{c/\text{mol } L^{-1}}{0}$ 0.75 1.42 2.3 0 0.73	c/mol L ⁻¹ 0.555 0.745 0.937 1.336 0.555 0.630	$\begin{array}{r} c_1/\text{mol } L^{-1} \\ \hline 0.278 \\ 0.373 \\ 0.468 \\ 0.668 \\ 0.668 \\ 0.278 \\ 0.315 \end{array}$
Lithium chloride; LiCl [7447-41-8] Sodium chloride; NaCl;	$\frac{c/\text{mol } L^{-1}}{0}$ 0.75 1.42 2.3 0 0.73 1.43	c/mol L ⁻¹ 0.555 0.745 0.937 1.336 0.555 0.630 0.699	$\begin{array}{r} c_{1} / \text{mol } L^{-1} \\ \hline 0.278 \\ 0.373 \\ 0.468 \\ 0.668 \\ 0.668 \\ 0.278 \\ 0.315 \\ 0.350 \end{array}$
Lithium chloride; LiCl [7447-41-8] Sodium chloride; NaCl; [7647-14-5]	c/mol L ⁻¹ 0 0.75 1.42 2.3 0 0.73 1.43 2.82 0 0.86	c/mol L ⁻¹ 0.555 0.745 0.937 1.336 0.555 0.630 0.699 0.806	$\begin{array}{r} c_1/\text{mol } L^{-1} \\ \hline 0.278 \\ 0.373 \\ 0.468 \\ 0.668 \\ 0.668 \\ 0.278 \\ 0.315 \\ 0.315 \\ 0.350 \\ 0.403 \end{array}$
Lithium chloride; LiCl [7447-41-8] Sodium chloride; NaCl; [7647-14-5] Potassium chloride; KCl;	c/mol L ⁻¹ 0 0.75 1.42 2.3 0 0.73 1.43 2.82 0 0.86 1.75	c/mol L ⁻¹ 0.555 0.745 0.937 1.336 0.555 0.630 0.699 0.806 0.555 0.645 0.660	$\begin{array}{r} c_1/\text{mol } L^{-1} \\ \hline 0.278 \\ 0.373 \\ 0.468 \\ 0.668 \\ 0.668 \\ 0.315 \\ 0.350 \\ 0.403 \\ 0.403 \\ 0.278 \\ 0.323 \\ 0.330 \end{array}$
Lithium chloride; LiCl [7447-41-8] Sodium chloride; NaCl; [7647-14-5] Potassium chloride; KCl;	c/mol L ⁻¹ 0 0.75 1.42 2.3 0 0.73 1.43 2.82 0 0.86	c/mol L ⁻¹ 0.555 0.745 0.937 1.336 0.555 0.630 0.699 0.806 0.555 0.645	$\begin{array}{r} c_1/\text{mol } L^{-1} \\ \hline 0.278 \\ 0.373 \\ 0.468 \\ 0.668 \\ 0.668 \\ 0.315 \\ 0.350 \\ 0.403 \\ 0.278 \\ 0.323 \end{array}$
Lithium chloride; LiCl [7447-41-8] Sodium chloride; NaCl; [7647-14-5] Potassium chloride; KCl;	c/mol L ⁻¹ 0 0.75 1.42 2.3 0 0.73 1.43 2.82 0 0.86 1.75	c/mol L ⁻¹ 0.555 0.745 0.937 1.336 0.555 0.630 0.699 0.806 0.555 0.645 0.660	$\begin{array}{r} c_1/\text{mol } \text{L}^{-1} \\ \hline 0.278 \\ 0.373 \\ 0.468 \\ 0.668 \\ 0.668 \\ \hline 0.278 \\ 0.315 \\ 0.350 \\ 0.403 \\ \hline 0.403 \\ 0.278 \\ 0.323 \\ 0.330 \end{array}$

The compiler calculated the solubility of Ba(OH)₂ from the relation: $c_{Ba(OH)2} = (1/2)c_{OH-}$

The greater increase of $Ba(OH)_2$ solubility in LiCl solutions compared to NaCl, KCl, and RbCl solutions was attributed by the author to the lower dissociation of LiOH compared with other alkali hydroxides.

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Excess Ba(OH) ₂ ·8H ₂ O was stirred with the salt solution until saturation was attained. After decantation, an aliquot of saturated solution was removed by aspiration. The hydroxide ion was determined by titration with stand- ard sulfuric acid solution using phenolphthalein indicator, and the chloride ion was determined by titration with standard silver nitrate solution using potassium chromate indicator.	Nothing specified.
chiomate indicator.	ESTIMATED ERROR:
	Error on OH^- and Cl^- determinations is estimated by the author to be less than 1 %.
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Barium hydroxide; Ba(OH)₂; [17194-00-2]</pre>	Schreinemakers, F. A. H.
<pre>(2) Sodium hydroxide; NaOH; [1310-73-2]</pre>	Z. Phys. Chem., Stoechiom. Verwandtschaftsl. <u>1909</u> , 68, 83-103.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 303 Composition	H. Einaga Y. Komatsu

NaOH nass %	BaO mass %	Solid phase
0	4.99	Ba (OH) 2 · 8H2O
4.78	1.29	
6.43	0.89	N
9.63	0.57	11
11.62	0.53	
17.87	0.47	11
23.28	1.06	11
24.63	1.87	$Ba(OH)_2 \cdot 8H_2O + Ba(OH)_2 \cdot 3H_2O$
26.14	1.84	Ba (OH) 2 · 3H2O
27.72	1.75	
28.43	1.58	U
29.24	1.34	$Ba(OH)_2 \cdot 3H_2O + Ba(OH)_2 \cdot H_2O$
32.12	0.82	Ba (OH) 2 · H2O
34.72	0.59	
54.72	0.33	
41.09	0.57	$Ba(OH)_2 H_2O$, $NaOH H_2O$
+42	0	NaOH·H ₂ O

AUXILIARY INFORMATION METHOD/APPARATUS/FROCEDURE: Nothing specified. (1) Barium hydroxide. (2) Sodium hydroxide. (3) Water. Nothing specified about materials. ESTIMATED ERROR: No estimates possible. REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Barium hydroxide; Ba(OH)₂; [17194-00-2]</pre>	Neale, S. M.; Stringfellow, W. A.
<pre>(2) Sodium hydroxide; NaOH; [1310-73-2]</pre>	Trans. Faraday Soc. <u>1932</u> , 28, 765-6.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
	H. Einaga
T/K = 298 c ₂ /mol L ⁻¹ = 0 - 1.837	Y. Komatsu
EXPERIMENTAL VALUES:	
The solubility of Ba(OH)	in aqueous NaOH at 25°C
NaOH (1/2)	Ba(OH) ₂ Ba(OH) ₂
	$bl L^{-1}$ $c_1/mol L^{-1}$
0 0. 0 0.	54 0.27 546 0.273
	548 0.274
0.4417 0.3	3052 0.1526
	2440 0.1220 2450 0.1225
	0,0864 ₅ 725 0,0862 ₅
1.230 0.1	.215 0.0607 ₅
1.230 0.1	.207 0.06035
	0.0415
1.837 0.0 1.837 0.0	086 0.043 082 0.041
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Solid Ba(OH) ₂ was shaken with CO ₂ free aqueous NaOH solution at 25°C	(1) Barium hydroxide. Merck, Inc. Recrystallized before use.
overnight. The resulting saturated solutions were allowed to stand at	(2) Sodium hydroxide. Specified to
25.00 ± 0.05 °C for several hours. An aliquot of the clear solution	be pure and carbonate free.
was titrated with standard HCl solution.	Nothing else specified.
	POTIMATED EDDOD.
	ESTIMATED ERROR:
	Relative error: less than 1.5 % in solutions where the NaOH con- centration was < 1.23 mol L ⁻¹ .
	REFERENCES :
1	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Barium hydroxide; Ba(OH) ₂ ; [17194-00-2]	Scholder, R.; Pätsch, R.
(2) Sodium hydroxide; NaOH; [1310-73-2]	Z. Anorg. Allg. Chem. <u>1935</u> , 222, 135-44.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 293 $c_2/mol L^{-1} = 0 - 19.4$	H. Einaga Y. Komatsu

NaOH	BaO	Ba(OH) ₂	Solid Phase
$\frac{c_2/\text{mol } L^{-1}}{2}$	/g (100 mL) ⁻¹	c1/mol L ⁻¹	
0	3.470	0.2263	A
0.56	1.473	0.09607	A
0.97	0.942	0.0614	A
1.34	0.706	0.0460	A
1.80	0.549	0.0358	A
2.31	0.443	0.0289	A
3.19	0.328	0.0214	A
3.75	0.292	0.0190	A
4.57	0.247	0.0161	A
5.70	0.241	0.0157	A
7.0	0.244	0.0159	A
7.92	0.274	0.0179	A
9.17	0.386		A
9.9		0.0252	
	0.553	0.0361	A
11.07	0.966	0.0630	A
11.28	1.064	0.06399	A
11.64	1.317	0.08589	A
11.78	1.598	0.1042	A
12.25	1.687	0.1100	В
13.6	1.543	0.1006	B
14.0	1.494	0.09744	с
14.8	1.102	0.07187	c
14.9	1.081	0.07050	c
16.5	0.714	0.0466	c
17.0	0.675	0.0400	c
18.9	0.641	0.0418	D
19.2	0.638	0.0416	D
19.4	0.645	0.0421	D
Solid Phases	: A Ba(OH) ₂ .8 C Ba(OH) ₂ .1	H ₂ O; B Ba(OH .5H ₂ O; D Ba(OH	$)_{2}^{4H_{2}0};$ $)_{2}^{H_{2}0}.$
The authors	noted Ba(OH) ₂ W	as weakly ampho	teric.
The compiler	calculated the	Ba(OH) ₂ concen	trations.
	AUXILIARY INFO	RMATION	
THOD/APPARATUS/PROCEDURE:	SOU	RCE AND PURITY OF	MATERIALS:
Aqueous solutions of E	a(OH) = and (CH)	1) Barium hydro	oxide. Ba(OH) ₂ ·8H
NaOH were mixed and equi a closed Ni coated Cu	librated in	was used.	
20.0 ± 0.02 °C for 7-14		2) Sodium hydr	oxide. Pure Na
stirring. The solid pha			ed in water to >
tered off under a N_2 a			filtered to remo
excess of standard HCl a	added. The		rbonate before us
		TUPOTUDIA CA	rouace perore us
OH was detd. by backtit			
standard NaOH solution in the filtrate was de	. The Ba ²⁺	IMATED ERROR:	

insoluble carbonate before use. ESTIMATED ERROR: in the filtrate was determined as sulfate by gravimetry. The NaOH concentration detd by difference.

Temp.: precision ± 0.02 K. Soly.: No estimates possible.

COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Sodium hydroxide; NaOH;</pre>	Mozharova, T. V.; Kuznetsova, O. M.		
[1310-73-2]	*Zh. Neorg. Khim. <u>1974</u> , 19, 1940-7.		
 (2) Barium hydroxide; Ba(OH)₂	Russ. J. Inorg. Chem. (Engl.		
[17194-00-2] (3) Water; H₂O; [7732-18-5]	Transl.) <u>1974</u> , 19, 1060 - 5.		
VARIABLES:	PREPARED BY:		
T/K = 283, 293	H. Einaga		
Composition	I. Lambert		

EXPERIMENTAL VALUES:					
The Na	OH + 1	Ba(OH) ₂ + H	2 ⁰ system at	10 and 20°C	<u>. </u>
		NaOH	Ba(OH) ₂	Solid Phase	
	/°C	mass %	mass %		
	10	0	2.48	A	
		9.27	0.33	A	
		20.68	0.08	A	
		23.82	0.17	А	
		28.26	0.21	А	
		34.65	0.69	A	
		-	-	A + B	
		37.79	0.67	B + C	
		41.59	0.59	С	
		47.03	0.28	C + D	
	20	0	3.89	А	
-		12.52	0.31	A	
		28.50	0.38	A	
		32.41	0.66	A	
		33.64	0.72	A	
		34.58	1.46	A + B	
		35.40	1.16	В	
		37.80	0.87	B + C	
		41.53	0.38	B + C	
		49.61	0.47	B + C	
		44.13	0.43	B + C	
		-	-	C + E	
Solid Phases:	A Ba	а (ОН) 2 ^{.8H2} O	; B Ba(Of	и) ₂ ·зн ₂ о	
	C Ba	а (он) ₂ · н ₂ о	D NaOH	2H ₂ O E	NaOH·H ₂ O
		AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDUR	E:		SOURCE AND PUR	ITY OF MATERIA	ALS:
Ba(OH) ₂ and NaOH we with water at 10.0 \pm 0.1°C by stirring	0.1 a	and 20.0 \pm		hydroxide. de was used	A specially •
0.1°C by stirring The Ba ²⁺ and OH saturated solution (no procedures are	were d give	letermined n in the	(2) Barium grade, r before u	ecrystalliz	Analytical ed from water
original paper), a was calculated from balance.	na the	e Na' ion material	ESTIMATED ERRO	R:	
The phase diagram at on another page.	: 20°C	is given	No es	stimates pos	sible.

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Sodium hydroxide; NaOH; [1310-73-2]</pre>	Mozharova, T.V.; Pavlyuchenko, E.N.
 (2) Barium hydroxide; Ba(OH)₂ [17194-00-2] (3) Water; H₂O; [7732-18-5] 	Zh. Neorg. Khim. <u>1979</u> , 24, 2522-8. *Russ. J. Inorg. Chem. (Engl. Transl.) <u>1979</u> , 24, 1401-5.
VARIABLES:	PREPARED BY:
T/K = 333 Composition	H. L. Clever

EXPERIN	MENTAL	VALUES:

The NaOH	+ Ba(OH)2	+ H ₂ 0 syst	em at 60°C	
	NaOH	Ba(OH)2	Solid Phase	
t/°C	mass %	mass %	Thabe	
60	0	18.94	A	
	3.58	12.71	A	
	8.63	8.79	A	
	9.74	7.48	A	
	12.24	7.08	Α	
	15.76	6.06	A	
	16.38	6.89	A	
	18.39	8.70	A	
	20.28	11.10	A	
	20.25	12.55	A + B	
	23.81	9.44	В	
	24.91	8.79	В	
	27.88	7.76	B + C	
	29.82	5.20	С	
	32.01	4.33	c	
	35.86	2.57	c	
	36.64	2.03	С	
	39.95	2.13	c	
	43.21	1.94	С	
	47.84	1.35	С	
	48.94	1.31	С	
	53.37	1.23	С	
	56.86	0.71	с	
	60.18	0.70	C + D	
	63.9	0	D	
Solid Phases:	A Ba(OH) ₂	·8H20;	B Ba(OH) ₂ ·3H ₂ O;	
	C Ba(OH)	2 ^{.H2} 0;	D NaOH H ₂ O.	
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:		SOURCE AND	PURITY OF MATERIALS:	i
Experimental procedures same as in (ref 1). See	are the the com-		ription, but probabl in (ref 1).	y the
pilation of (ref 1) for de	etails.	ESTIMATED E		
The phase diagram at 60°C in the original paper.	is shown		o estimates possible.	
		REFERENCES :		
			rova, T.V.;Kuznetsova eorg. Khim. <u>1974</u> , 19	

COMPONENTS :		ORIGINAL MEAS	UREMENTS :	
(1) Sodium hydroxide; NaOH;		Mozharova, T.V.; Pavlyuchenko, E.N.		
[1310-73-2]			· · · · · · · · · · · · · · · · · · ·	
		Zh. Neorg.	Khim. <u>1980</u> , 25, 1638-44	
(2) Barium hydroxide; Ba(OH) ₂				
[17194-00-2]	' 2	*Russ. J.	Inorg. Chem. (Engl.	
		Transl.)	<u>1980, 25, 909-14.</u>	
(3) Water; H ₂ O; [7732-18-5]	1		<u>1,500</u> , 20, 505 1	
VARIABLES:		PREPARED BY:		
			H. Einaga	
T/K = 353			I. Lambert	
Composition				
EXPERIMENTAL VALUES:				
The NaOH -	+ Ba(OH)2	+ H ₂ O system	at 80°C	
		- 	Colid	
	NaOH	Ba (OH) 2	Solid	
- / 0			Phase	
t/°C	mass %	mass %		
80		57.60	<u> </u>	
80	0		A	
	4.64	43.75	A	
1	7.99	37.91	A	
	16.07	24.80	A	
	33.04	4.64	A	
	48.19	2.60	A	
	56.66	2.23	A	
	63.98	1.48	A + B	
	75.8	0	В	
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PUR	ITY OF MATERIALS:	
Experimental procedures same as in (ref 1). See pilation of (ref 1) for det	the com-	No descrip same as in	otion, but probably the (ref l).	
The phase diagram at 80°C on another page.	is shown			
		ESTIMATED ERRO	R •	
		No e	stimates possible.	
		REFERENCES :	<u> </u>	
		l. Mozharov Zh. Neor 1940.	va, T.V.;Kuznetsova, O.M. [.] g. Khim. <u>1974</u> , 19,	

Grigoryan, G. O. A. 269, 22, 211-4.
Α.
<u>969</u> , 22, 211-4.
Ja
ert
Solid
Phase
<u> </u>
A
А А
A
A
Α
A
A A
A
A + B
В
B
ATERIALS:
ide. Analytical
droxide. Chemi-
- morgible
s possible.
V.;
:; Musakin, A.P. <i>alysis,'</i> GONTI, <u>5</u> , p. 145.

COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Barium hydroxide; Ba(OH)₂; [17194-00-2]</pre>	Janković, S. Rastvorljivost Nekih Soli i Hidrokisida Zemnoalkalnih Metala u		
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	Sistemima Voda-Etil Alkohol i Voda-Metil Alkohol, i Struktura Takvih Zasicenih Rastvora. <u>Doctoral</u> <u>Dissertation</u> ,		
(3) Water; H ₂ O; [7732-18-5]	Faculty of Pharmacy, Zagreb, 1958.		

EXPERIMENTAL VALUES:

Composition	of	the	caturatod	golution	at	25.0
COMPOSITION	OI	сne	saturated	SOLUTION	at	25°C

Water	Ethanol		Barium hydroxide	
mol %	mol % ^a	mass %	10 ⁵ w ₁	m ₁ /mmol kg ⁻¹⁸
94.6	5.4	12.7	139.04	8.13
93.8	6.2	14.5	134.41	7.86
92.7	7.3	16.8	129.06	7.54
91.4	8.6	19.4	122.08	7.13
86.0	14.0	29.4	87.96	5.14
80.7	19.3	38.0	65.85	3.85
73.5	26.5	48.0	39.56	2.31
62.6	37.4	60.4	16.25	0.949
40.3	59.7	79.1	5.20	0.304
34.2	65.8	83.1	3.25	0.190
12.3	87.7	94.8	1.20	0.0700

^aCalculated by compiler.

Properties of the saturated solution at 25°C

Water	Relative	Conductivity	Viscosity
mol %	Density d ²⁵	$10^5 \kappa/S \text{ cm}^{-1}$	η/mPa s
94.6	0.9918	1690	1.61
93.8	0.9867	1460	1.71
92.7	0.9823	1190	1.86
91.4	0.9760	1020	1.93
86.0	0.9602	600	2.29
80.7	0.9431	400	2.50
73.5	0.9207	204	2.72
62.6	0.8901	84	2.53
40.3	0.8458	17.3	1.95
34.2	0.8324	11.0	1.83
12.3	0.8045	2.55	1.36

(continued on next page)

COMPONENTS:	ORIGINAL MEASUREMENTS:	
 Barium hydroxide; Ba(OH)₂; [17194-00-2] Ethanol; C₂H₆O; [64-17-5] Water; H₂O; [7732-18-5] 	Janković, S. <u>Doctoral Dissertation</u> , Faculty of Pharmacy, Zagreb, <u>1958</u> .	
VARIABLES: T/K = 298 C_2H_60 mass % = 12.7 - 94.8	PREPARED BY: J. W. Lorimer	
EXPERIMENTAL VALUES:		

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Salt and solution were stirred for 8 days in a thermostat. After equilibration, samples were removed for analysis through a pipet fitted with a glass wool filter. Density was measured using a pycnometer; the contents of which were then used for analysis of sulfate by volumetric or colorimetric methods. Viscosity was measured using a Vogel-Ossag viscometer and conduc- tivity with a Philips bridge (CM 4249; average reading error 2 %) and dip cell.	 (1) Barium hydroxide. Ba(OH)₂·H₂O, Mallinckrodt, pro analysi. (2) Ethanol. C. Erba, anhydrous, 99.9 - 100 % pure, density 0.795. (3) Water. Redistilled. ESTIMATED ERROR: Temp.: precision within ± 0.05 K. Soly: No estimates possible. REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Barium hydroxide; Ba(OH) ₂ ; [17194-00-2]	Herz, W.; Knoch, M. Z. Anorg. Chem. <u>1904</u> , 41, 315-24.
(2) 2-Propanone (acetone); C ₃ H ₆ O; [67-64-1]	2. Knorg. Chem. <u>1304</u> , 41, 315-24.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
- /	H. Einaga
T/K = 298 Acetone/vol % = 0 - 70	Y. Komatsu
EXPERIMENTAL VALUES:	
The solubility of Ba(OH) ₂	in aqueous acetone at 25°C
2-Propanone Water (1	/2) $Ba(OH)_2$ $Ba(OH)_2$
Vol % Vol % /	mmol (100 mL sln.) ⁻¹ c_1 /mol L ⁻¹
0 100	55.08 0.2754
10 90	31.84 0.1592
20 80	17.79 0.0890
30 70	9.1 0.045 ₅
40 60	4.75 0.0238
50 50	1.54 0.0770
60 40	0.48 0.0024
70 30	0.08 0.0004
In solutions with more than of Ba(OH) ₂ could be detected The compiler calculated the o	70 vol % acetone, no dissolution concentrations of Ba(OH) ₂ .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The water + acetone mixed solvent	SOURCE AND TORITI OF INTERIALS.
was saturated with $Ba(OH)_2$ at 25°C. The dissolved $Ba(OH)_2$ was deter- mined by titration with standard acid (not specified) using phenolphthalein indicator.	Nothing specified.
	ESTIMATED ERROR:
	No estimates possible.
	REFERENCES ·

COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Barium hydroxide; Ba(OH) ₂ ; [17194-00-2]	van Meurs, G. J.	
(2) Phenol; C ₆ H ₆ O; [108-95-2]	Z. Phys. Chem., Stoechiom. Verwandtschaftsl. <u>1916</u> , 91, 313-46.	
(3) Water; H ₂ O; [7732-18-5]		
ARIABLES:	PREPARED BY:	
	H. Einaga	
T/K = 298 Composition	Y. Komatsu	
XPERIMENTAL VALUES:		
The $Ba(OH)_2 + C_6H_6O$	+ H ₂ O system at 25°C	
Phenol Barium	Hydroxide Solid	
(1/2) mol % mol %	Ba(OH) ₂ Phase	
0.76 1		
	.19 A	
2.51 3	.09 A	
	62 A + B 63 A + B	
	.29 B .30 B	
	.67 B	
	.44 B	
	.89 B	
	.70 B	
	.53 B	
	.06 B .98 B	
70.74 5	.04 B + C	
70.36 4	.94 C	
73.48 3 74.27 0	.28 C C	
Solid Phases: A Ba(OH) ₂ 8H ₂ O	; B Ba (C_cH_cO) $2^{+}4H_2O$; C C _c H _c O	
ETHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Ba(OH) ₂ and phenol were equi-		
librated with water at 25°C by shaking. The resulting saturated solutions were analyzed for Ba(OH) ₂ by titration with standard HCl or H_2SO_4 solution, and for phenol by the titration method of Koppeschaar (ref 1).	Nothing specified.	
	ESTIMATED ERROR:	
	No estimates possible.	
	REFERENCES: 1. Koppeschaar, W. F. Z. Anal. Chem. <u>1876</u> , 15, 233.	

338			
COMPONENTS :	ORIGINAL MEASUREME	NTS:	
<pre>(1) Barium hydroxide; Ba(OH)₂; [17194-00-2]</pre>	van Meurs, G. S		
(2) 1,3-Benzenediol; C ₆ H ₆ O ₂ ; [108-46-3]		Z. Phys. Chem., Stoechiom. Verwandtschaftsl. <u>1916</u> , 91, 313-46.	
(3) Water; H ₂ O; [7732-18-5]			
VARIABLES:	PREPARED BY:	· · · · · · · · · · · ·	
T/K = 303 Composition		H. Einaga Y. Komatsu	
EXPERIMENTAL VALUES: The Ba(OH) $_2$ +	C ₆ H ₆ O ₂ + H ₂ O system at	30°C	
1,3-Benzenediol	Barium Hydroxide (1/2)Ba(OH) ₂	Solid Phase	
mol %	mol %	111000	
2.45	3.42	A	
4.37 5.77	5.29 6.62	A A	
9.40	10.38	A	

14.56

14.45 14.21

10.42 6.86 3.30

0

A + B

В в

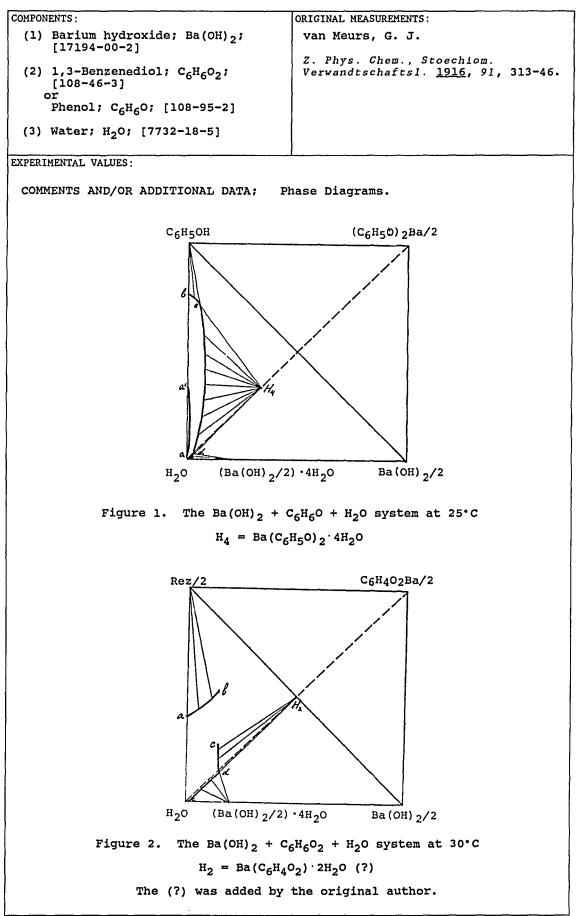
0000

Solid Phases:

13.96

18.00 20.44

47.75 43.63 40.71 38.81


A Ba(OH)₂ \cdot 8H₂O

 $B Ba(C_6H_4O_2) \cdot 2H_2O$

c c₆H₆O₂

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: Ba(OH) ₂ and 1,3-benzenediol were equilibrated with water at 30°C by	SOURCE AND PURITY OF MATERIALS: Nothing specified.
shaking. The resulting saturated solutions were analyzed for $Ba(OH)_2$ by titration with standard HCl or H_2SO_4 solution, and for 1,3-benzenediol by the titration method of Degener (ref 1), with slight modifications.	
	ESTIMATED ERROR:
	No estimates possible.
	REFERENCES :
	<pre>1. Degener, P. J. Prakt. Chem. [2] <u>1879</u>, 20, 322.</pre>

COMPONENTS: (1) Barium hydroxide; Ba(OH) ₂ ; [17194-00-2] (2) Sucrose; C ₁₂ H ₂₂ O ₁₁ ; [57-50-1]		ORIGINAL	ORIGINAL MEASUREMENTS: Nishizawa, K.; Hachihama, Y. Z. Elektrochem. Angew. Phys. Chem. 1929, 35, 385-92.		
(3) V	Water; H ₂ O; [7732-18-5]			
EXPERIM	ENTAL VALUES:				
	The Ba(OH) ₂	(BaO) + C ₁₂	H ₂₂ 0 ₁₁ + H ₂ 0 sys	stem at 25,	45 and 75°C
		Sucrose	Barium Oxide	Water	Solid Phase
	t/°C	mass %	mass %	mass %	Flidse

t/°C	mass %	mass %	mass %	Phase
25	0	3.99	96.01	A
	3.70	5.52	90.78	Δ,
	5.47	6.33	88.20	Δ *
	9.58	8.12	82.30	~ *
	16.58	11.11	72.21	Â.
	20.09	12.55	67.36	*
	0.16 0.16	3.99 4.01	95.85 95.83	A + E A + E
			55100	
	0.71	0.95	98.34	В
	1.40	0.70	97.90	В
	1.88	0.66	97.46	В
	9.95	0.74	89.31	B
	12.61	0.86	86.53	В
	12.76	0.93	81.81	В
	21.93	1.04	77.03	в
	27.61	1.22	71.17	в
	31.44	1.29	62.27	в
	39.68	1.52	58.50	В
	45.58	1.83	52.59	В
	50.01	1.75	48.24	В
	61.76	1.75	36.49	B
	67.86	1.50	30.64	B + C
	66.96	1.46	31.58	B + C
	68.23	0.33	31.44	с
	67.32	0	32.68	С
45	0	8.67	91.33	A
	0.13	8.99	90.88	A + B
	0.14	7.32	92.54	ъ
	0.18			В
	0.19	3.60	96.22	B
		3.20	96.61	В
	0.31	1.54	98.15	В
	0.39	1.32	98.29	B
	1.76	0.64	97.60	В
	5.13	0.61	94.26	В
	7.83	0.66	91.51	В
	12.25	0.72	87.03	В
	13.44	0.74	85.82	В
	20.22	0.85	78.93	B
	22.22	0.88	76.90	В
	27.22	0.91	71.87	в
	31.76	0.99	67.25	В
	41.12	1.11	57.77	в
	46.35	1.09	52.56	в
	51.29	1.10	47.61	В
	51.50	1.12	47.38	в
	63.56	1.08	35.36	B
	72.52	1.25	26.23	B + C
	71.05	0	28.95	С

	C ₁₂ H ₂₂ O ₁₁ ; [57-		35, 385-92.	
(3) Water; H ₂ C); [7732-18-5]			
PERIMENTAL VALUE	:S :			
The Ba(C	$(BaO) + C_1$	$2^{H_{22}O_{11}} + H_{2}O$ sys	stem at 25, 45 a	nd 75°C
	Sucrose	Barium Oxide	Water Sol: Phas	
t/	°C mass %	mass &	mass %	
-7	·5 0	34.00	66.00 A	-
	0.67	34.82	64.51 A +	D
	0.83	33.34	65.83 D	
	0.73	32.24	67.03 D	
	0.67	29.62	69.71 D	
	0.78	28.79	70.43 D	
	0.67	27.82	71.51 D	
	0.48	26,76	72.76 D	
	0.99	25.08	73.93 B +	D
	1.00	25.09	73.91 B +	
	1.09	24.81	74.10 B	
	0.97	23.92	75.11 B	
	0.79	23.07	76.14 B	
	0.68	20.79	78.53 B	
	0.40	19.11	80.49 B	
	0.15	9.36	90.49 B	
	0.17	3.62	96.21 B	
	1.59	0.70	97.71 B	
	2.27	0.61	97.12 B	
	7.08	0.58	92.34 B	
	12.69	0.68	86.63 B	
	19.05	0.66	80.29 B	
	25.12	0.72	74.16 B	
	27.27	0.72	72.01 B	
	34.11	0.72	65.17 B	
	41.13	0.89	57.98 B	
	51.95	1.03 0.78	47.02 B	
	58.90		40.32 B	
	62.94 72.31	0.73 0.56	36.33 B 27.13 B	
		0100	27720 2	
	79.06 79.81	0.48 0.46	20.46 B + 19.73 B +	
	78.58	0	21.42 C	
* Super	saturated		·····	
Solid Ph	ases: A Ba(Ol	H) ₂ ·8H ₂ O; B C ₁	2H22011 BaO;	
	C C12H	₂₂ 0 ₁₁ ; D C ₁	2H22011 · 3BaO.	
The auth see:		these data in an		papers,
J. Soc.	Chem. Ind. Jpn.	. <u>1925</u> , <i>28</i> , 272,		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
(continu	ed on next page	e)		

CONTONITION	
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Barium hydroxide; Ba(OH) ₂ ; [17194-00-2]	Nishizawa, K.; Hachihama, Y.
(2) Sucrose; C ₁₂ H ₂₂ O ₁₁ ; [57-50-1]	Z. Elektrochem. Angew. Phys. Chem. 1929, 35, 385-92.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298, 318, and 348 Composition	H. Einaga Y. Komatsu
EXPERIMENTAL VALUES:	
ADDITIONAL DATA AND/OR COMMENTS: Ph	ase Diagrams at 25 and 75°C.
С.Н.О.: ВаО-Н.О 25°с 9°Ч с.Н.О.: ВаО с.Н.О.: ВаО С.Н.О.: ВаО С.Н.О.: ВаО-Н.О 25°с ВаО-Н.О 25°с ВаО-Н.О 25°с ВаО-Н.О 25°с ВаО-Н.О 25°с ВаО-Н.О 25°с ВаО-Н.О 25°с ВаО-Н.О 25°с С.Н.О.: ВаО-Н.О 25°с ВаО-Н.О 25°с С.Н.О.: ВаО-Н.О 25°с С.Н.О.: ВаО-Н.О 25°с ВаО-Н.О С.Н.О.: ВаО-Н.О С.Н.О.: ВАО-Н.О С.В.С.В.С С.В.С.В.С ВАО-Н.О С.В.С.В.С ВАО-Н.О С.В.С.В.С ВАО-Н.О С.В.С.В.С ВАО-Н.О С.В.С.В.С ВАО-Н.О С.В.С.В.С ВАО-Н.О С.В.С.В.С ВАО-Н.С ВАО-Н.О С.В.С.В.С ВАО-Н.С ВАО-Н.С ВАО-Н.С ВАО-Н.С ВАО-Н.С ВАО-Н.С ВАО-ВАО-Н.С ВАО-ВАО-ВАО-ВАО-ВАО-ВАО-ВАО-ВАО-ВАО-ВАО-	
ርዚ	0, CHO BaO CHO 3820 BaO
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Sucrose and Ba(OH) ₂ aqueous mix- tures were equilibrated within ± 0.05°C at a specified temperature for 2 - 4 days at 25 and 45°C and for 8 - 12 hours at 75°C. Aliquots of saturated solution were analyzed for Ba(OH) ₂ gravimetrically as	 Barium hydroxide. Analytical grade, purified by recrystal- lization from water. Sucrose. Purified by recrys- tallization from aqueous ethanol.
BaSO ₄ , and for sucrose by the method of Quinsumbing and Thomas (ref 1) after neutralization with HCl followed by inversion by the Soxhlet method (ref 2).	(3) Water. Distilled CO ₂ free water.
	ESTIMATED ERROR:
	No estimates possible.
	REFERENCES: 1. Quinsumbing, F.A.; Thomas, A.W. J. Am. Chem. Soc. <u>1921</u> , 43, 1502
	1503. 2. Tollens, B. "Handbuch der Kohlenhydrate", p. 333.

SYSTEM INDEX

Page numbers preceded by E refer to evaluation texts whereas those not preceded by E refer to compilated tables. Substances are index as in Chemical Abstracts, for example ammonium acetate is indexed under acetic acid, ammonium salt.

Acetic acid, ammonium salt (multicomponent)	
+ acetic acid, magnesium salt	E52, 100
+ ammonia	E52, 100
+ magnesium hydroxide	E52, 100
Acetic acid, barium salt (aqueous)	
+ barium hydroxide	E290, 323
Acetic acid, magnesium salt (multicomponent)	
+ acetic acid, ammonium salt	E52, 100
+ ammonia	E52, 100
+ magnesium hydroxide	E52, 100
Acetic acid, sodium salt (aqueous)	
+ calcium hydroxide	E116, E117, 219
Aluminium oxide (multicomponent)	
+ barium aluminium oxide	E290, 325
+ barium hydroxide	E290, 325
Ammonia (aqueous)	·
+ calcium hydroxide	157
+ strontium hydroxide	E254, 272
Ammonia (multicomponent)	,
+ acetic acid, ammonium salt	E52, 100
+ acetic acid, magnesium salt	E52, 100
+ ammonium chloride	E52, 77, 86, 87
+ magnesium chloride	E52, 86, 87
+ magnesium hydroxide	E52, 77, 86, 87,
· magnesium nyuroxide	93-95, 100
+ nitric acid, ammonium salt	E52, 95
+ nitric acid, magnesium salt	•
	E52, 95
+ sulfuric acid, ammonium salt + sulfuric acid, magnesium salt	E52, 93 E52, 93
+ thiocyanic acid, ammonium salt	E52, 94
+ thiocyanic acid, magnesium salt	E52, 94
Ammonium chloride (aqueous)	-110 150
+ calcium hydroxide	E119, 158
Ammonium chloride (multicomponent)	
+ ammonia	E52, 77, 86, 87
+ magnesium chloride	E52, 86, 87
+ magnesium hydroxide	E52, 77, 86, 87
Barium aluminium oxide (multicomponent)	
+ aluminium oxide	E290, 325
+ barium hydroxide	E290, 325
Barium bromide (aqueous)	1290, 010
+ barium hydroxide	166, E288, 318
Barium chloride (aqueous)	100, 2200, 510
+ barium hydroxide	166, E288,
+ Dallum Hydroxide	300-308
+ colcium budrowido	E117, 196
+ calcium hydroxide Barium chloride (multicomponent)	ülli, 190
	E287-E289,
+ barium hydroxide	309-316
the second se	-
+ hydrochloric acid	E288, 309-310
+ sodium chloride	E287-E289,
	311-316
+ sodium hydroxide	E287-E289,
	311-316

Barium hydrosulfide (aqueous) E288, E290, + barium hydroxide 320, 321 Barium hydroxide + 2-furancarboxaldehyde E290, E291, 247 E290, 337, 339 + phenol E284-E294. + water 295-299 Barium hydroxide (aqueous) + 1.2-benzenediol E290, 338, 339 + acetic acid, barium salt E290, 323 + barium bromide 166, E288, 318 + barium chlorate E290, 317 + barium chloride 166, E288, 300-308 E288, E290, 320, + barium hydrosulfide 321 + barium iodide 166, E288, 319 E290, 334-335 E290, 326 E290, 322 + ethanol + lithium chloride + nitric acid, barium salt + nitrous acid, barium salt 188 E290, 326 + potassium chloride E287, E288, 333 + potassium hydroxide + rubidium chloride E290, 326 E290, 326 + sodium chloride E287-E289, 308, + sodium hydroxide 327-329 E290, 340-342 + sucrose + thiocyanic acid, barium salt E290, 324 Barium hydroxide (multicomponent) E290, 325 + aluminium oxide + barium aluminium oxide E290, 325 + barium chloride E287-E289, 309-316 E288, 309-310 + hydrochloric acid E52, E53, 90, 91 + magnesium chloride E52, E53, 90, 91 + magnesium hydroxide + sodium chloride E287-E289. 311-316 E287-E289, + sodium hydroxide 311-316 Barium iodide (aqueous) 166, E288, 319 + barium hydroxide 166, E291 + barium oxide Beryllium bromide (multicomponent) + beryllium hydroxide E6, 25, 26 + hydrobromic acid E6, 25, 26 E6, 25, 26 + sodium hydroxide Beryllium chloride (multicomponent) E6, 23, 24 + beryllium hydroxide + sodium hydroxide E6, 23, 24 Beryllium hydroxide E1-E11,12-15 + water Beryllium hydroxide (aqueous) E2, 19 + hydrogen chloride + nitric acid 22 E6, 33 + nitric acid, beryllium salt E6, 48 + nitric acid, sodium salt E6, 20, 21 + perchloric acid E5, E6, 44 + perchloric acid, sodium salt E2-E6, 34-41 + sodium hydroxide E6, 29 + sulfuric acid, beryllium salt Beryllium hydroxide (multicomponent) E6, 25, 26 + beryllium bromide + beryllium iodide E6, 27, 28

Beryllium hydroxide (multicomponent)	
+ berylllium chloride	E6, 23, 24
+ carbonic acid, disodium salt	E5, E6, 46
+ carbonic acid, monosodium salt	E5, E6, 43, 45
+ citric acid	E6, 47
+ hydrobromic acid	E6, 25, 26
+ hydroiodic acid	E6, 27, 28
+ perchloric acid, sodium salt	E5, E6, 45-47
+ potassium hydroxide	E6, 32
+ sodium fluoride	E5, E6, 43
+ sodium hydroxide	E6, 23-28, 30, 31
+ sulfuric acid, beryllium salt	E6, 30-32
Beryllium iodide (multicomponent)	
+ beryllium hydroxide	E6, 27, 28
+ hydroiodic acid	E6, 27, 28
+ sodium hydroxide	E6, 27, 28
Beryllium oxide (aqueous)	
+ hydrogen fluoride	E6, 16, 17, 18
Beryllium oxide (multicomponent)	
+ hydrogen fluoride	E6, 18
+ nitric acid	E6, 18
+ sodium fluoride	E6, 42
+ sodium hydroxide	E6, 42
Boric acid (aqueous)	
+ calcium hydroxide	E120, 159-161
+ magnesium hydroxide	E60, 78
2-Butanol, 2-methyl- (aqueous)	
+ strontium hydroxide	E254, 272
•	
Calcium bromide (aqueous)	
+ calcium hydroxide	E119, E120, 166,
-	181-183
Calcium chloride (aqueous)	
Calcium chloride (aqueous) + calcium hydroxide	E119, E120, 163-
Calcium chloride (aqueous) + calcium hydroxide	E119, E120, 163- 174
+ calcium hydroxide	
+ calcium hydroxide Calcium chloride (multicomponent)	174
+ calcium hydroxide Calcium chloride (multicomponent)	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246
+ calcium hydroxide Calcium chloride (multicomponent)	174 E52, E53, 88, 89, E119, E120, E122,
+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89
+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176
+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89
+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89
+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246
+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245,
+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246
+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246 E120, E122, 245,
+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride + sucrose	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246 E120, E122, 245,
<pre>+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride + sucrose Calcium hydroxide</pre>	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246 E120, E122, 245, 246
<pre>+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride + sucrose Calcium hydroxide + water</pre>	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246 E120, E122, 245, 246 E113-E130,
<pre>+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride + sucrose Calcium hydroxide + water Calcium hydroxide (aqueous)</pre>	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246 E120, E122, 245, 246 E113-E130,
<pre>+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride + sucrose Calcium hydroxide + water</pre>	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246 E120, E122, 245, 246 E113-E130, 131-155
<pre>+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride + sucrose Calcium hydroxide + water Calcium hydroxide (aqueous) + acetic acid, sodium salt</pre>	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246 E120, E122, 245, 246 E113-E130, 131-155 E116, E117, 219
<pre>+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride + sucrose Calcium hydroxide</pre>	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246 E120, E122, 245, 246 E113-E130, 131-155 E116, E117, 219 157
<pre>+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride</pre>	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246 E120, E122, 245, 246 E113-E130, 131-155 E116, E117, 219 157 E119, 158 E117, 196 E120, 159-161
<pre>+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride + sucrose Calcium hydroxide + water Calcium hydroxide (aqueous) + acetic acid, sodium salt + ammonia + ammonium chloride + barium chloride</pre>	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E120, E120, E122, 177, 178, 245, 246 E120, E122, 245, 246 E113-E130, 131-155 E116, E117, 219 157 E119, 158 E117, 196
<pre>+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride + sucrose Calcium hydroxide + water Calcium hydroxide (aqueous) + acetic acid, sodium salt + ammonia + ammonium chloride + boric acid</pre>	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246 E120, E122, 245, 246 E113-E130, 131-155 E116, E117, 219 157 E119, 158 E117, 196 E120, 159-161
<pre>+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride + sucrose Calcium hydroxide + water Calcium hydroxide (aqueous) + acetic acid, sodium salt + ammonia + ammonium chloride + boric acid</pre>	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246 E120, E122, 245, 246 E113-E130, 131-155 E116, E117, 219 157 E119, 158 E117, 196 E120, 159-161 E119, E120, 166,
<pre>+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride + sucrose Calcium hydroxide + water Calcium hydroxide (aqueous) + acetic acid, sodium salt + ammonia + ammonium chloride + barium chloride + boric acid + calcium bromide</pre>	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246 E120, E122, 245, 246 E113-E130, 131-155 E116, E117, 219 157 E119, 158 E117, 196 E120, 159-161 E119, E120, 166, 181-183
<pre>+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride + sucrose Calcium hydroxide + water Calcium hydroxide (aqueous) + acetic acid, sodium salt + ammonia + ammonium chloride + barium chloride + boric acid + calcium bromide + calcium chloride</pre>	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246 E120, E122, 245, 246 E113-E130, 131-155 E116, E117, 219 157 E119, 158 E117, 196 E120, 159-161 E119, E120, 166, 181-183 E119, E120, 163-174
<pre>+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride + sucrose Calcium hydroxide + water Calcium hydroxide (aqueous) + acetic acid, sodium salt + ammonia + ammonium chloride + barium chloride + boric acid + calcium bromide + calcium chloride + calcium chloride + calcium chloride + calcium iodide</pre>	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246 E120, E122, 245, 246 E113-E130, 131-155 E116, E117, 219 157 E119, 158 E117, 196 E120, 159-161 E119, E120, 166, 181-183 E119, E120, 163-174 E119, E120, 184
<pre>+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride + sucrose Calcium hydroxide (aqueous) + acetic acid, sodium salt + ammonia + ammonia + ammonium chloride + barium chloride + boric acid + calcium bromide + calcium chloride + calcium chloride</pre>	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246 E113-E130, 131-155 E116, E117, 219 157 E119, 158 E117, 196 E120, 159-161 E119, E120, 166, 181-183 E119, E120, 163-174 E119, E120, 184 E116, E117, 225
<pre>+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride + sucrose Calcium hydroxide + water Calcium hydroxide (aqueous) + acetic acid, sodium salt + ammonia + ammonium chloride + barium chloride + boric acid + calcium bromide + calcium bromide + calcium chloride + calcium chloride + calcium iodide + cesium chloride + chloric acid, sodium salt</pre>	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246 E120, E122, 245, 246 E113-E130, 131-155 E116, E117, 219 157 E119, 158 E117, 196 E120, 159-161 E119, E120, 166, 181-183 E119, E120, 163-174 E119, E120, 184 E116, E117, 225 E116, E117, 209
<pre>+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride + sucrose Calcium hydroxide (aqueous) + acetic acid, sodium salt + ammonia + ammonium chloride + barium chloride + boric acid + calcium bromide + calcium bromide + calcium chloride + calcium salt + ethanol + 2-furancarboxaldehyde</pre>	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246 E120, E122, 245, 246 E113-E130, 131-155 E116, E117, 219 157 E119, 158 E117, 196 E120, 159-161 E119, E120, 166, 181-183 E119, E120, 163-174 E119, E120, 184 E116, E117, 209 E122, 229, 230
<pre>+ calcium hydroxide Calcium chloride (multicomponent) + calcium hydroxide + hydrochloric acid + magnesium chloride + magnesium hydroxide + sodium chloride + sucrose Calcium hydroxide + water Calcium hydroxide (aqueous) + acetic acid, sodium salt + ammonia + ammonium chloride + barium chloride + boric acid + calcium bromide + calcium bromide + calcium chloride + calcium iodide + cesium chloride + chloric acid, sodium salt + ethanol</pre>	174 E52, E53, 88, 89, E119, E120, E122, 175-178, 245, 246 E119, 175, 176 E52, E53, 88, 89 E52, E53, 88, 89 E119, E120, E122, 177, 178, 245, 246 E120, E122, 245, 246 E113-E130, 131-155 E116, E117, 219 157 E119, 158 E117, 196 E120, 159-161 E119, E120, 166, 181-183 E119, E120, 163-174 E119, E120, 184 E116, E117, 225 E116, E117, 209 E122, 229, 230 E122, E124, 247

```
Calcium hydroxide (aqueous)
         + lithium hydroxide
                                                        E116, 197, 198
         + magnesium hydroxide
                                                       E120, 162
E122, 226-228
E120, E121,
         + methanol
         + nitric acid, calcium salt
                                                       189-194
         + nitric acid, sodium salt
                                                       E116-E118,
                                                       214-218
         + nitrous acid, calcium salt
                                                       188
         + nitrous acid, sodium salt
                                                       E116, E117, 213
         + perchloric acid, sodium salt
                                                       E116, E117, 210
         + phenol
                                                       E122, 234, 235
         + potassium bromide
                                                       E118, 224
                                                       E116-E118, 208,
         + potassium chloride
                                                        221-223
         + potassium hydroxide
                                                       E116, 220
         + 1,2,3-propanetriol
                                                       E122, E123, 231, 232
         + sodium bromide
                                                       E116, E117, 211
         + sodium chloride
                                                       E116-E118,
                                                       203-208
         + sodium iodide
                                                       E116, E117, 212
         + strontium chloride
                                                       E117, 195
         + sucrose
                                                       E120, E122,
                                                       236-242
         + sulfuric acid, calcium salt
                                                       E120, 185
         + water-d2
                                                       E120, 156
Calcium hydroxide (multicomponent)
         + calcium chloride
                                                       E52, E53, 88, 89,
                                                       E119, E120, E122,
                                                       175-178, 245, 246
         + calcium oxide
                                                       E120, E122,
                                                       243, 244
         + formaldehyde
                                                       E122, 233
         + formic acid, calcium salt
                                                       E122, 233
         + hydrochloric acid
                                                       E119, 175, 176
         + magnesium chloride
                                                       E52, E53, 88, 89
         + magnesium hydroxide
                                                       E52, E53, 88, 89
                                                       E120, 186, 187
E116, E119, E120,
E122, 177, 178,
202, 245, 246
         + potassium hydroxide
         + sodium chloride
         + sodium hydroxide
                                                       E116, E123, 186,
                                                           187, 202, 233
                                                       E120, E122,
         + sucrose
                                                       243-246
         + sulfuric acid, calcium salt
                                                       E120, 186, 187
Calcium iodide (aqueous)
         + calcium hydroxide
                                                       E119, E120, 184
Calcium oxide (multicomponent)
         + calcium hydroxide
                                                       E120, E122,
                                                        243, 244
         + sucrose
                                                        E120, E122,
                                                       243, 244
Carbon dioxide (multicomponent)
                                                       E52, 98, 99
         + carbonic acid, magnesium salt
         + magnesium hydroxide
                                                      E52, 98, 99
Carbonic acid, calcium salt (aqueous)
                                                       E51, 101
         + magnesium hydroxide
Carbonic acid, disodium salt (multicomponent)
         + beryllium hydroxide
                                                       E5, E6, 46
         + perchloric acid, sodium salt
                                                       E5, E6, 46
Carbonic acid, magnesium salt (multicomponent)
         + carbon dioxide
                                                       E52, 98, 99
         + magnesium hydroxide
                                                       E52, 98, 99
```

I

Carbonic acid, monosodium salt (multicomponent)	
+ beryllium hydroxide	E5, E6, 43
+ beryllium hydroxide	E5, E6, 45
+ perchloric acid, sodium salt	E5, E6, 45
+ sodium fluoride	E5, E6, 43
Cesium chloride (aqueous)	===
+ calcium hydroxide	E116, E117, 225
Chloric acid, barium salt (aqueous)	2110, 211, 210
+ barium hydroxide	E290, 317
Chloric acid, sodium salt (aqueous)	E290, 317
	B116 B113 000
+ calcium hydroxide	E116, E117, 209
Chromium oxide (multicomponent)	
+ magnesium hydroxide	E60, 79, 80
+ magnesium oxide	E60, 79, 80
Citric acid (multicomponent)	
+ beryllium hydroxide	E6, 47
+ perchloric acid, sodium salt	E6, 47
•	
Ethane, 1,1'-oxybis-	
+ strontium hydroxide	E254, 272
1,2-Ethanediol (aqueous)	
+ strontium hydroxide	E254, 272
Ethanol (aqueous)	2201, 212
	E290, 334, 335
+ barium hydroxide	
+ calcium hydroxide	E122, 229, 230
+ magnesium hydroxide	E60, 111
+ strontium hydroxide	E254, 270-272
N-Ethylethanamine (aqueous)	
+ strontium hydroxide	E254, 272
-	
Formaldehyde (multicomponent)	
+ calcium formate	E122, 233
+ calcium hydroxide	E122, 233
+ sodium hydroxide	E122, 233
	B122, 200
Formic acid, calcium salt (multicomponent)	E100 000
+ calcium hydroxide	E122, 233
+ formaldehyde	E122, 233
+ sodium hydroxide	E122, 233
2-Furancarboxaldehyde	
+ barium hydroxide	E290, E291, 247
+ calcium hydroxide	E122, E124, 247
Glucose (aqueous)	
+ magnesium hydroxide	E60
Hydrobromic acid (multicomponent)	
+ beryllium bromide	E6, 25, 26
+ beryllium hydroxide	E6, 25, 26
+ sodium hydroxide	E6, 25, 26
	80, 23, 20
Hydrochloric acid (aqueous)	80 10
+ beryllium hydroxide	E2, 19
+ magnesium hydroxide	E56-E58, 102, 103
Hydrochloric acid (multicomponent)	
+ barium chloride	E288, 309-310
+ barium hydroxide	E288, 309-310
+ calcium chloride	E119, 175, 176
+ calcium hydroxide	E119, 175, 176
+ strontium chloride	E253, 263
+ strontium hydroxide	E253, 263
Hydrogen fluoride (aqueous)	2007 200
	RC 16 17
+ beryllium oxide	E6, 16, 17
Hydrogen fluoride (multicomponent)	FC 10
+ beryllium oxide	E6, 18
+ nitric acid	E6, 18
Hydrogen peroxide (aqueous)	
+ magnesium hydroxide	E58, 74, 75

```
Hydroiodic acid (multicomponent)
         + beryllium hydroxide
                                                           E6, 27, 28
         + beryllium iodide
                                                           E6, 27, 28
          + sodium hydroxide
                                                           E6, 27, 28
Hypochlorous acid, calcium salt (aqueous)
          + calcium hydroxide
                                                           E120, 179, 180
Lithium chloride (aqueous)
                                                           E290, 326
         + barium hydroxide
         + calcium hydroxide
                                                           E116, E117, 199
         + magnesium hydroxide
                                                           E51, E53, E54,
                                                           105
Lithium hydroxide (aqueous)
          + calcium hydroxide
                                                           E116, 197, 198
Magnesium chloride (aqueous)
         + magnesium hydroxide
                                                           E52, E53, 81-85
Magnesium chloride (multicomponent)
         + ammonia
                                                           E52, 86, 87
                                                           E52, 86, 87
E52, E53, 90, 91
          + ammonium chloride
          + barium hydroxide
                                                           E52, E53, 88, 89
E52, E53, 88, 89
E52, E53, 88, 89
E52, E53, 86-91
          + calcium chloride
         + calcium hydroxide
          + magnesium hydroxide
Magnesium hydroxide
          + water
                                                           E50-E64, 65-73
Magnesium hydroxide (aqueous)
         + boric acid
                                                           E60, 78
          + calcium hydroxide
                                                           E120, 162
                                                           E51, 101
         + carbonic acid, calcium salt
         + ethanol
                                                           E60, 111
          + glucose + water
                                                           E60
         + hydrochloric acid
                                                           E56-E58, 102, 103
         + hydrogen peroxide
                                                           E58, 74, 75
         + lithium chloride
                                                           E51, E53, E54,
                                                           105
         + magnesium chloride
                                                           E52, E53, 81-85
         + methanol
                                                           E60, 110
         + nitric acid, ammonium salt
                                                           E52, 76
         + nitric acid, sodium salt
                                                           E56-E58, 102, 103
                                                           E56, 108
E51, E53, E54,
          + perchloric acid, sodium salt
          + potassium bromide
                                                           105
                                                           E51, E53, E54,
          + potassium chloride
                                                           104, 105
                                                           E51, E53, E54,
         + potassium hydroxide
                                                           105
          + potassium iodide
                                                           E51, E53, E54,
                                                           105
                                                           E51, E53, E54,
          + sodium chloride
                                                           E56-E58, 102-105
          + sulfuric acid, magnesium salt
                                                           E59, 92
          + sulfuric acid, potassium salt
                                                           E51, E53, E54,
                                                           105
          + sulfuric acid, sodium salt
                                                           E50, E51, E53,
                                                           E56-E58, 105,
                                                           109
Magnesium hydroxide (multicomponent)
         + acetic acid, ammonium salt
+ acetic acid, magnesium salt
                                                           E52, 100
                                                           E52, 100
E52, 77, 86, 87,
         + ammonia
                                                           93-95, 100
                                                           E52, 77, 86, 87
E52, E53, 90, 91
         + ammonium chloride
         + barium hydroxide
         + calcium chloride
                                                           E52, E53, 88, 89
         + calcium hydroxide
                                                           E52, E53, 88, 89
```

Magnesium hydroxide (multicomponent)	
+ carbon dioxide	E52, 98, 99
+ carbonic acid, magnesium salt	E52, 98, 99
+ thiocyanic acid, ammonium salt	E52, 94
+ chromium oxide	E60, 79, 80
+ magnesium chloride	E52, 86-91
+ magnesium oxide	E60, 79, 80
+ magnesium sulfocyanate	E52, 94
+ nitric acid, ammonium salt	E52, 95
+ nitric acid, magnesium salt	E52-E54, 95-97
+ nitric acid, sodium salt	E53, E54, 96, 97
+ sodium chloride	E54, 106, 107
+ sodium hydroxide	E54, 106, 107
+ sulfuric acid, ammonium salt	E52, 93
+ sulfuric acid, magnesium salt	E52, 93
Magnesium oxide (multicomponent)	HCO TO OO
+ chromium oxide	E60, 79, 80
+ magnesium hydroxide	E60, 79, 80
D-Mannitol (aqueous)	8054 070
+ strontium hydroxide	E254, 272
Methanol (aqueous)	T100 006 000
+ calcium hydroxide	E122, 226-228
+ magnesium hydroxide	E60, 110
+ strontium hydroxide	E254, 272
Nitric acid (aqueous)	
+ beryllium hydroxide	22
Nitric acid (multicomponent)	
+ beryllium oxide	E6, 18
+ hydrogen fluoride	E6, 18
Nitric acid, ammonium salt (aqueous)	
+ magnesium hydroxide	E52, 76
Nitric acid, ammonium salt (multicomponent)	
+ ammonia	E52, 95
+ magnesium hydroxide	E52, 95
+ nitric acid, magnesium salt	E52, 95
Nitric acid, barium salt (aqueous)	
+ barium hydroxide	E290, 322
Nitric acid, beryllium salt (aqueous)	
+ beryllium hydroxide	E6, 33
Nitric acid, calcium salt (aqueous)	
+ calcium hydroxide	E120, E121, 189-194
Nitric acid, magnesium salt (multicomponent)	
+ ammonia	E52, 95
+ magnesium hydroxide	E52-E54, 95-97
+ nitric acid, ammonium salt	E52, 95
+ nitric acid, sodium salt	E53, E54, 96, 97
Nitric acid, sodium salt (aqueous)	- 4 4 4
+ beryllium hydroxide	E6, 48
+ calcium hydroxide	E116-E118, 214-218
+ magnesium hydroxide	E56-E58, 102, 103
Nitric acid, sodium salt (multicomponent)	
+ magnesium hydroxide	E53, E54, 96, 97
+ nitric acid, magnesium salt	E53, E54, 96, 97
Nitric acid, strontium salt (aqueous)	E253, 269
+ strontium hydroxide	E233, 209
Nitrous acid, barium salt (aqueous)	188
+ barium hydroxide	100
Nitrous acid, calcium salt (aqueous)	188
+ calcium hydroxide Nitrous acid, sodium salt (aqueous)	100
+ calcium hydroxide	E116, E117, 213
Nitrous acid, strontium salt (aqueous)	,,
+ strontium hydroxide	188, 268
· Officeran with an and a second seco	-

```
Perchloric acid (aqueous)
                                                   E6, 20
         + beryllium oxide
Perchloric acid, sodium salt (aqueous)
                                                        E5, E6, 44
         + bervllium hydroxide
                                                        E116, E117, 210
         + calcium hydroxide
                                                        E56, 108
         + magnesium hydroxide
Perchloric acid, sodium salt (multicomponent)
         + bervllium hvdroxide
                                                        E5. E6. 43. 45-47
                                                        E5, E6, 46
         + carbonic acid, disodium salt
         + carbonic acid, monosodium salt
                                                        E5. E6. 45
         + citric acid
                                                        E6, 47
Phenol (aqueous)
                                                        E290, 337, 339
         + barium hydroxide
         + calcium hydroxide
                                                        E122, 234, 235
Potassium bromide (aqueous)
         + calcium hydroxide
                                                        E118, 224
                                                        E51, E53, E54,
         + magnesium hydroxide
                                                        105
                                                        E118, 224
         + calcium hydroxide
Potassium chloride (aqueous)
         + barium hydroxide
                                                        E290, 326
                                                        E116-E118, 208,
         + calcium hydroxide
                                                        221-223
Potassium hydroxide (aqueous)
         + calcium hydroxide
                                                        E116, 220
         + magnesium hydroxide
                                                        E51, E53, 105
Potassium hydroxide (multicomponent)
                                                        E6, 32
         + bervllium hvdroxide
                                                        E120, 186, 187
         + calcium hydroxide
                                                        E120, 186, 187
         + sodium hydroxide
         + sulfuric acid, beryllium salt
                                                        E6, 32
                                                        E120, 186, 187
         + sulfuric acid, calcium salt
Potassium iodide (aqueous)
         + magnesium hydroxide
                                                        E51, E53, E54,
                                                        105
Potassium sulfate (aqueous)
         + magnesium hydroxide
                                                        E51, E53, E54,
                                                        105
1,2,3-Propanetriol (aqueous)
                                                       E122, E123, 231, 232
         + calcium hydroxide
                                                       E254, 272
         + strontium hydroxide
1-Propanol
                                                       E254, 272
         + strontium hydroxide
2-Propanone (aqueous)
                                                       E254, 272
         + strontium hydroxide
Pyridine (aqueous)
         + strontium hydroxide
                                                       E254, 272
Rubidium chloride (aqueous)
         + barium hydroxide
                                                       E290, 326
Sodium bromide (aqueous)
                                                       E116, E117, 211
         + calcium hydroxide
Sodium chloride (aqueous)
         + barium hydroxide
                                                       E290, 326
                                                       E116-E118, 203-208
         + calcium hydroxide
         + magnesium hydroxide
                                                       E51, E53, E54,
                                                       E56-E58, 102-105
Sodium chloride (multicomponent)
                                                       E287-E289, 311-316
         + barium chloride
         + barium hydroxide
                                                       E287-E289, 311-316
                                                       E119, E120, E122,
         + calcium chloride
                                                       177, 178, 245, 246
                                                       E116, E119,
E122, 177, 178,
         + calcium hydroxide
                                                                      E120,
                                                       202, 245, 246
```

Sodium chloride (multicomponent)	
+ magnesium hydroxide	E54, 106, 107
+ sodium hydroxide	E54, 106, 107, E116,
	202, E287-E289,
	311-316 E120, E122, 245, 246
+ sucrose Sodium fluoride (multicomponent)	E120, E122, 243, 240
+ beryllium hydroxide	E5, E6, 42, 43
+ carbonic acid, monosodium salt	E5, E6, 43
+ perchloric acid, sodium salt	E5, E6, 43
+ sodium hydroxide	E5, E6, 42
Sodium hydroxide (aqueous)	•
+ beryllium hydroxide	E2-E6, 34-42
Sodium hydroxide (multicomponent)	
+ barium chloride	E287-E289, 311-316
+ barium hydroxide	E287-E289, 311-316
+ beryllium bromide	E6, 25, 26
+ beryllium chloride	E6, 23, 24
+ beryllium hydroxide	E6, 23-28, 30, 31
+ beryllium iodide	E6, 27, 28
+ beryllium oxide + calcium hydroxide	E6, 42 E116, E123, 186,
+ calcium nydroxide	187, 202, 233
+ formaldehyde	E122, 233
+ formic acid, calcium salt	E122, 233
+ hydrobromic acid	E6, 25, 26
+ hydroiodic acid	E6, 27, 28
+ magnesium hydroxide	E54, 106, 107
+ potassium hydroxide	E120, 186, 187
+ sodium chloride	E54, 106, 107, E116,
	202, E287-E289,
	311-316
+ sodium fluoride	E6, 42
+ sulfuric acid, beryllium salt	E6, 30, 31
+ sulfuric acid, calcium salt	E120, 186, 187
Sodium iodide (aqueous)	
+ calcium hydroxide	E116, E117, 212
Strontium bromide (aqueous)	7050 064
+ strontium hydroxide	E253, 264
Strontium chloride (aqueous) + calcium hydroxide	E117, 195
+ strontium hydroxide	E253, 261, 262
Strontium chloride (multicomponent)	
+ hydrochloric acid	E253, 263
+ strontium hydroxide	E253, 263
Strontium hydrosulfide (aqueous)	
+ strontium hydroxide	E253, 266, 267
Strontium hydroxide	
+ water	E248-E255, 256-260
Strontium hydroxide (aqueous)	
+ ammonia	E290, 340-342
+ 1,2-ethanediol	E254, 272
+ ethanol	E254, 270-272
+ N-ethylethanamine	E254, 272
+ D-mannitol	E254, 272
+ methanol + 2-methyl-2-butanol	E254, 272 E254, 272
+ 2-metny1-2-butano1 + nitric acid, strontium salt	E254, 272 E253, 269
+ nitrous acid, strontium salt	188, 268
+ 1,1'-oxybisethane	E254, 272
+ 1,2,3-propanetriol	E254, 272
+ 1-propanol	E254, 272
+ 2-propanone	E254, 272
+ pyridine	E254, 272
+ strontium bromide	E253, 264
+ strontium chloride	E253, 261, 262

352			
1	 	 	 _

Strontium hydroxide (aqueous)	
+ strontium hydrosulfide	E253, 266, 267
+ strontium iodide	E253, 265
+ urea	E254, 272
Strontium hydroxide (multicomponent)	
+ hydrochloric acid	E253, 263
+ strontium chloride	E253, 263
Strontium iodide (aqueous)	
+ strontium hydroxide	E253, 265
Sucrose (aqueous)	
+ barium hydroxide	E290, 340-342
+ calcium hydroxide	E120, E122, 236-242
+ strontium hydroxide	E253, 275-283
Sucrose (multicomponent)	·
+ calcium chloride	E120, E122, 245, 246
+ calcium hydroxide	E120, E122, 243-246
+ calcium oxide	E120, E122, 243, 244
+ sodium chloride	E120, E122, 245, 246
Sulfuric acid, ammonium salt (multicomponent)	,,,,,
+ ammonia	E52, 93
+ magnesium hydroxide	E52, 93
+ sulfuric acid, magnesium salt	E52, 93
Sulfuric acid, beryllium salt (aqueous)	132, 30
+ beryllium hydroxide	E6, 29
Sulfuric acid, beryllium salt (multicomponent)	80, 23
+ beryllium hydroxide	E6, 30-32
+ potassium hydroxide	E6, 32
+ potassium hydroxide + sodium hydroxide	E6, 30, 31
Sulfuric acid, calcium salt (aqueous)	E0, 50, 51
+ calcium hydroxide	E120, 185
	8120, 185
Sulfuric acid, calcium salt (multicomponent)	E120, 186, 187
+ potassium hydroxide	E120, 186, 187
+ sodium hydroxide	E120, 186, 187
Sulfuric acid, magnesium salt (aqueous)	TEO 02
+ magnesium hydroxide	E59, 92
Sulfuric acid, magnesium salt (multicomponent)	E52, 93
+ ammonia	
+ magnesium hydroxide	E52, 93
+ sulfuric acid, ammonium salt	E52, 93
Sulfuric acid, sodium salt (aqueous)	
+ magnesium hydroxide	E50, E51, E53, E54,
	E56-E58, 105,
	109
Thiocyanic acid, ammonium salt (multicomponent)	750 04
+ ammonia	E52, 94
+ magnesium hydroxide	E52, 94
+ thiocyanic acid, magnesium salt	E52, 94
Thiocyanic acid, barium salt (aqueous)	
+ barium hydroxide	E290, 324
Thiocyanic acid, magnesium salt (multicomponent)	
+ ammonia	E52, 94
+ magnesium hydroxide	E52, 94
+ thiocyanic acid, ammonium salt	E52, 94
Urea (aqueous)	
+ strontium hydroxide	E254, 272

REGISTRY NUMBER INDEX

Pages preceded by E refer to evaluation texts whereas those not preceded by E refer to compiled tables. 50-00-0 E122, 233 50-99-7 E60 56-81-5 E122, E123, 231, 232, E254, 272 57-13-6 E254, 272 57-50-1 E120, E122, 236-246, E253, 275-283, E290, 340-342 60-29-7 E254, 272 64-17-5 E60, 111, E122, 229, 230, E254, 270-272, E290, 334, 335 67-56-1 E60, 110, E122, 226-228, E254, 272 67-64-1 E254, 272, E290, 336 69-65-8 E254. 272 E254, 272 71-23-8 75-85-4 E254, 272 77-92-9 E6, 47 98-01-1 E122, E124, 247 107-21-1 E254, 272 108 - 46 - 3E290, 338, 339 108-95-2 E122, 234, 235, E254, 273, 274, E290, 337, 339 109-89-7 E254, 272 110-86-1 E254, 272 124-38-9 E52, 98, 99 127-09-3 E116, E117, 219 142-72-3 E52, 100 144-55-8 E5, E6, 43, 45 306-61-6 E52, 94 471-34-1 E51, 101, E50 497-19-8 E5, E6, 46 543-80-6 E290, 323 E122, 233 544-17-2 E52, 98, 99 546-93-0 631-61-8 E52, 100 166, E291 1304-28-5 E6, E9 1304-56-9 1305-62-0 E52, E53, 75, 88, 89, E112-E130, 131-153, 156-247 1305-78-8 E120, E122, 243, 244 E49-E64, 65-71, 74-111, E120, 162 1309-42-8 E60, 79, 80 1309-48-4 1310-58-3 E6, 32, E51, E53, E54, 105, E116, E120, 186, 187, 220, .E287, E288, 333 1310-65-2 E116, 197, 198 1310-73-2 E2, E4-E6, E8, 23-28, 30, 31, 34-42, E50, E51, E55, 106, 107, E116, E120, E122, 186, 187, 200-202, 233, E287-E289, 308, 311-316, 327-332 1311-10-0 188, E254, 268 1314-11-0 E254 E50, E58, E59, 72, 73, 90 1317-43-7 1317-74-4 E60 1333-82-0 E60, 79, 80 1344-28-1 E290, 325

1762-94-4 E52, 94 2092-17-3 E290, 324 79, 80 3448-20-9 5145-46-0 98, 99 5508-11-3 300-308, 311-314 5908-64-5 323 E52, 95 6484-52-2 E52, 76 6684-52-2 7447-40-7 E51, E53-E55, 104, 105, E116-E118, 208, 221-223, E290, 326 7447-41-8 E51, E53, E54, 105, E116, E117, 199, E290, 326 7487-88-9 E52, E59, 92, 93 7601-89-0 E5, E6, 43-47, E50, E51, E53, E56, E58, E59, 72, 73, 108, E116, E117, 210 7601-90-3 E2, E3, E6, 20, 21 7604-39-3 E6, 16-18 7631-99-4 E5, E6, 48, E53, E55, E56, E58, 96, 97, 102, 103, E116, E117, 214-218 7632-00-0 E116, E117, 213 E2, E3, 19, E56-E58, 102, 103, E119, 175, 176, E253, 263, E288, 309, 310 7647-01-0 7647-14-5 E5, E51, E53, E54, E56-E58, 102-107, E116-E120, 177, 178, 202-208, 245, 246, E288, E290, 311-316, 326 7647-15-6 E116, E117, 211 7647-17-8 E116, E117, 225 7664-41-7 E52, 77, 86, 87, 93-95, 100, E116, 157, E254, 272 7681-11-0 E51, E53, E54, 105 7681-38-1 E51, E53, E54, 105 7681-49-4 E5, E6, 42, 43 7681-82-5 E116, E117, 212 E6, 18, 22 7697-37-2 E49, E60, 74, 75 7722-84-1 E1-E11, 12-48, E49-E64, 65-111, E112-E130, 131-246, 7732-18-5 E248-E255, 256-283, E284-E294, 295-342 7757-82-6 E50, E51, E56, E58, 109 7758-02-3 E51, E53, E54, 105, E116, 224 88, 89, 165, 166, 168, 169, 172, 175, 176 7774-34-7 7775-09-9 E116, E117, 209 7778-18-9 E120, 185-187 7778-54-3 E120, 179, 180 7778-80-5 E51, E53, E54, 105 7783-20-2 E52, 93 E52, E53, 81-91 7786-30-3 7787-33-9 166, 319 7787-38-4 188 7787-47-5 E6, 23, 24 7787-53-3 E6, 27, 28 7787-56-6 31 7787-86-4 E6, 25, 26 7789-20-0 E120, 156 7789-41-5 E119, E120, 166, 181-183 7789-53-9 264 7790-40-1 265 7791-11-9 E290, 326 7791-18-6 85 7791-28-8 166, 318

10022-31-8 E290, 322 10025-70-4 261-263 E6, 27, 28 10034-85-2 10035-04-8 166, 168, 172, 175, 176 E6, 25, 26 10035-10-6 10042-76-9 E253, 269 E60, 78, E120, 159-161 10043-35-3 E52, E53, 88, 89, E119, E120, 163-178, 180, 245, 10043-52-4 246 10101-41-4 185, 187 10102-68-8 E119, E120, 184 E120, E121, 189-194 10124-37-5 166, 300-316 10326-27-9 10361-37-2 E117, 196, E288, 166, 300-316 10377-60-3 E52-E54, 95-97 E253, 264 10476-81-0 E117, 195, E253, 261-263 10476-85-4 E253, 265 10476-86-5 E288, 318 10553-31-8 12125-02-9 E52, 76, 77, 86, 87, E119, 158 12135-37-4 E253, 266, 267 12177-68-3 E116, E124, 154, 155 12200-64-5 311, 313, 314, 327, 330, 331 188, E291, 295, 300-306, 308, 309, 311-314, 317-325, 327, 12230-71-6 329-331, 337, 341, 342 E290, 325 12349-65-4 13327-32-7 E1-E11, 12-15, 19, 21-41, 43-48 13450-96-9 188, 268 13470-06-9 188, 268 E290, 317 13477-00-4 13477-28-6 166, 181-183 13477-34-4 189-191 13510-49-1 E6, 29-32 13597-99-4 E2, 33 13598-21-5 E6, E9, 16, 17, 18, 20, 42 13718-50-8 166, E288, 319 13780-06-8 188 14031-58-4 178 14452-57-4 74 15136-63-7 188 16569-85-0 79, 80 16056-95-4 263 17194-00-2 E52, E53, 90, 91, E284-E294, 295-342 18480-07-4 E248-E255, 256-283 21800-33-9 E254, 260 22322-71-0 309, 310 22326-55-2 E291 167, 168, 172, 175, 176 25094-02-4 25417-81-6 E288, E290, 320, 321 26288-25-5 333 27735-52-0 179 28800-94-4 191 35602-48-3 88, 89, 165-168, 172, 175, 176 340-342 39102-97-1 276-283 39113-36-5 42821-46-5 321

```
60762-59-6 75
66905-77-9 E291, 297, 311, 313, 314, 327, 329-331
87552-50-5 166, 167
126604-73-7 188, 268
```

T.

AUTHOR INDEX

Pages preceded by E refer to evaluation texts whereas those not preceded by E refer to compiled tables.

E285-E287, E293, 303, 304 Akhmetov, T.G. Alekseev, A.I. E130 Alpysbaeva, E.T. E130 Anderson, E. E130 Babayan, G.G. E130 Baes, C.F. E5, E11 E6, E9, E11, E50, E60, E63, E124, E128, E254, Bailey, S.M. E255, E291, E293 Bakashova, R.P. E2, E5, E10, 39, 40 Balezin, S.A. E129 Bassett, Jr., H. E113-E115, E120, E121, E126, 142, 143, 150, 151, 191-194 E113-E115, E127, 149-151 Bates, R.G. Bauer, O. E285-E287, E292, 297 Beckmann, E. E294 Belevantsev, V.I. E6, E11, 16, 17, 20 Belfiori, O. E64 E122, E127, 233 Belkin, D.J. Belkina, N.V. E122, K127, 233 E113, E120, E125, 185 Bell, J.M. Berdyukova, V.A. 188, E255, 268 Berger, A.S. E116, E127, 198 Bertin, F. E2, E5, E10, 44 Bethelot, M. E129 Bialas, J. E50, E51, E61, 67 E50, E61, E63, E129, E255, E293 Bineau, M.A. Bleyer, B. E6-E8, E10, 32 Blistanova, T.D. E2, E5, E10, 39, 40 Bodlander, G. E129 Boivin, E. E129 Borcsik, M. E59, E63 Boryachek, A.E. E51, E62, 107 E113-E115, E127, 149-151 Bower, V.E. Britton, H.T.S. E11, E64 Brown, W.E. E130 E249, E253, E255, 266, 267, E288, E292, 320, 321 Bruckner, K. Buchmeier, W. E291, E294 Bucholz, C.F. E255 E120, E122, E128, 241 Bugaenko, I.F. Burnazyan, A.S. E130 E52, E61, 85, 88, 89, E113, E120, E126, 162 Bury, C.R. Busch, W. E50, E51, E61, 70 E52, E62 Busse, W. E113, E116, E125, 208 Cabot, G.L. E113, E126, 140, 150, 151 Calingaert, G. E113, E120, E122, E123, E125, E126, 185, 189, 190, Cameron, F.K. 232, 237 E5, E11 Carpeni, B. Chang, T.N. E130 E113, E116, E119, E125, 158 Chapin, E.S. Chaplygina, N.M. E113, E116, E127, 197 E50, E60, E62, 78, E120, E126, 161 Chelishcheva, A.G. E113, E126, 138 Chlopin, W. E6, E9, E11, E50, E60, E63, E124, E128, E254, Churney, K.L. E255, E291, E293

Claasen, H. Copeland, L.E. Corson, H.P. Cundall, J.T. d'Agostino, E. D'Ans, J. d'Anselme, A. Dalton, J. Danilov, V.F. Davies, C.W. Davies, E.H.R. Davy, H. de la Croix, F. Deon, P.H. Dmitrienko, T.I. Donnay, J.D.H. Driessens, F.C. Dschorbenadse, D. Dubourg, J. Dupre, F.T.B. Edmiston, M.D. Eidmann, E. Einaga, H. Eraizer, L.N. Evans, W.H. Feitknecht, W. Figee, Th. Fishchenko, V.N. Fleury, M.G. Foote, H.W. Fratini, N. Fredholm, H. Fresenius, R. Freund, H.E. Fricke, R. Frum, F.S. Fuchs, P. Fyfe, A. Garrett, A.B. Garvin, D. Geiderovich, O.T. Gerasimova, T.Yu. Gilbert, R.A. Gjaldbaek, J.K. Goldammer, A. Golitsina, N.S. Graham, T. Greenberg, S.A. Gregory, T.M. Grigoryan, G.O. Grineva, I.R. Gromova, E.T. Grove, C. Grube, G. Guthrie, F. Haber, F.

E129 E113, E127, 150, 151 E286, E287, E290, E292, 322 E113, E125, 134 E113, E116, E125, 221 E52, E62 E113, E116, E125, 200 E63, E129 E59, E63 E64, E129 E52, E61, 85, 88, 89, E113, E120, E126, 162 E293 E129 E129 E60, E62, 79, 80 E9, E11, E60, E63, E124, E128, E254, E255, E291, E293 E130 E113, E116, E118, E127, 150, 151, 206 E129 E50, E51, E61, 67 E128, 153 E294 E53, E55, E56, E62, 96, 97 E130 E6, E9, E11, E50, E60, E63, E124, E128, E254, E255, E291, E293 E64 E119, E125, 165 E120, E122, E128, 242 E50, E60, E61 E285-E288, E290, E292, 301, 302, 317, 323, 324 E113-E116, E127, 150, 151, 201, 220 E51, E52, E55, E62, 87 E50, E51, E61, E63, 65 E52, E62 E2, E10, 37 E2, E10, 33 E113, E120, E122, E126, 239 E50, E61, E63 E2, E5, E8, E10, 14, 15, 19, 21, 38 E124, E128 E2, E10, 29 E130 E2, E5, E8, E10, 19, 21, 38 E51-E53, E61, E64, 81, 82 E129 E6, E11, 18, 42 E129 E113, E127, E130, 150, 151 E130 E285, E287, E293, 333 E130 E51, E62, 107 E113-E118, E126, 150, 151, 195, 196, 199, 204, 209-214, 219, 222, 224, 225 E249-E253, E255, 259, 276-279 E113, E125, 131, E249, E250, E254, 256, E285-E287, E292, 296 E2, E6, E8, E10, 35

Hachihama, M. E249, E252, E253, E255, 282, 283, E285-E287, E290, E292, 340-342 Halow, I. E6, E9, E11, E50, E60, E63, E124, E128, E254, E255, E291, E293 Hansen, W.C. E119, E120, E127, 186, 187 Harned, H.S. E51, E62 Haslem, R.T. E113, E126, 140, 150, 151 Hedin, R. E113-E115, E127, 146-148 Henry, O. E63 Herold, I. E113, E125, 136 Herz, W. E51, E52, E55, E61, 76, E122, E123, E125, 231, E285-E287, E290, E292, 326, 336 Herzfeld, A. E113, E115, E125, 135 Hickey, F.C. E285-E288, E290, E292, 301, 302, 317, 323, 324 Hitchcock, D.I. 150, 151 E59, E63 Holland, H.D. Horn, G. E50, E51, E53, E56, E62, 108 Hostetler, P.B. E51-E56, E62, 90, 91 Hoyle, B.E. E129 Humme, H. E2, E10, 37 Itkina, L.S. E113, E116, E119, E127, 197 Ivanov-Emin, B.N. E130 Jankovic, S. E60, E62, 110, 111, E122, E127, 226-230, E254, E255, 270, 271, E290, E292, 334, 335 Johnston, J. E113-E118, E126, 150, 151, 195, 196, 199, 204, 209-214, 219, 222, 224, 225 Kaganski, I.M. E130 Kalinina, V.F. E6, E10, 22, 41, 48 Karaulov, N.E. E120, E122, E128, 242 Karibyan, A.N. E130 Karsten, C.J.B. E129 Kaufmann, S.W. E6-E8, E10, 32 Kaziev, G.Z. E130 Kernot, G. E113, E116, E125, 221 Khachatryan, A.A. E285, E287, E293, 333 Khodakovsky, I.L. E6, E10, E11, 18, 22, 41, 42, 48 Khodzhamamedov, A.M. 183 Khutsistova, F.M. E255, 268 Kiessewetter, F. E59, E62, 92 Kilde, G. 205 Kingerley, R.W. E120, E126, 156 Kirwan, J. E63 Kline, W.D. E51, E52, E55, E61, 98, 99 E249, E250, E252, E253, E255, 260, 280, 281 Klinkenberg, A. E122, E123, E125, 231, E285-E287, E290, E292, 336 Knoch, M. Kohlraush, F. E50, E51, E61, 66 Kokot, T.K. E5, E6, E11, 43, 47 Kolenkova, M.A. E2, E5, E10, 39, 40 Kolthoff, I.M. E113, E116, E126, 157 Komar, N.P. E113, E116, E118, E127, E128, 207, 223 Koneczny, H. E120, E122, E128, 243, 244 Korenman, I.M. E2, E10, 33 Kotsupalo, N.P. E116, E127, 198 Koudelka, L. E113, E127, 152 Kovalenko, P.N. E2, E10, 29 Koz'menko, O.A. E6, E11, 16, 17, 20 Krasnobaeva, O.N. E59, E63 Ksenzenko, V.I. 183 E2, E5, E6, E10, 12, E50, E51, E61, 69 Kuhlmann, A. Kulagina, O.N. E51, E62, 107 Kuliev, Ch.A. 183 E285-E289, E293, 305, 308, 311, 312, 330 Kuznetsova, O.M.

La Mer, V.K. Lambert, I. Lamy, A. Lanza, E. Larocque, G.L. Lefevre, A. Lepeshkov, I.N. Lewis, N.B. Leyson, L.T. Litvinov, S.D. Loiseau, D. Loven, J.M. Lucas, R. Lukens, H.S Lunge, G. Lutz, H.D. Maass, O. Maben, T. Maeda, T. Maigret, E. Makarov, S.Z. Malquori, C. Markel, S.A. Marshall, W.L. Martell, A.E. Mayer, A. Jr. McHaffie, I.R. Mellor, J.W. Merlin, J.C. Mesmer, R.E. Mielczarek, M. Milikan, J. Miller, L.B. Mitskevich, B.F. Miyamoto, H. Montel, J. Moody, G.T. Moreno, E.C. Mosebach, R. Movsesyan, M.S. Mozharova, T.V. Mtschedlow-Petrossian, O.P. Muhs, G. Nacken, R. Nasanen, R. Neale, S.M. Nikolaev, A.V. Nishizawa, K. Nouvel, Novoselova, A.V. Noyes, A.A. Nuryev, A. Nussbaum, M. Nuttall, R.L.

E120, E126, 156 E56-E58, E62, 102, 103 E113, E125, 132 E5, E11 E113, E126, 144 E56-E58, E62, 102, 103 E59, E63 E11 E113, E125, 137 E59, E63 E129 E51, E52, E55, E61, 86, 93-95, 100 E129 E52, E61, 84 E113, E119, E125, 163 E291, E294 E113, E126, 144 E113, E125, 133 E52, E61, E64, 83 E50, E51, E55, E61, 106, E113, E116, E125, 202, 203 E60, E62, 74, 75, E119, E127, 170-173 E285-E287, E290, E292, 325 E113, E119, E128, 174, 177, 178 E113-E116, E118, E127, 215-218 E6, E9, E11, E60, E63, E124, E128, E254, E255, E291, E293 E50, E51, E61, 101 E113, E126, 139 E50, E63, E113, E124, E128, E129, E249, 150, 151, E255, E285, E293, E294 E2, E5, E10, 44 E5, E11 E120, E122, E128, 243, 244 E119, E120, E126, E128, 166-168, 175, 176, 181, 182, 184, E249, E253, E255, 261-265, E285, E288, E292, E293, 309, 310, 318, 319 E113, E126, 141 E5, E6, E10, 45, 46 E293 E56-E58, E62, 102, 103 E113, E125, 137 E130 E113, E116, E118, E127, 150, 151, 206 E285, E287, E293, 333 E113, E119, E128, 174, 177, 178, E285-E289, E293, 305-308, 311-316, 330-332 E130 E51, E52, E55, E61, 76 E113, E116, E118, E127, 150, 151, 206 E51, E53, E55, E62, E64, 104 E285-E287, E292, 328 E50, E60, E62, 78, E120, E126, 161 E249, E252, E253, E255, 282, 283, E285-E287, E290, E292, 340-342 E50, E51, E56-E58, E61, 71, 109 E11 E113, E116, E119, E125, 158 183 E249-E253, E255, 259, 276-279 E6, E9, E11, E50, E60, E63, E124, E128, E254, E255, E291, E293

O'Connor, E.R. E119, E120, E126, 169, 179, 180 E2, E5, E10, 13 E9, E11, E60, E63, E124, E128, E254, E255, E291, E293 Orazkulieva, G.L. 183 E293 Osenkova, N.N. E130 E51, E62 E120, E122, E128, 242 E6, E9, E11, E50, E60, E63, E124, E128, E254, E255, E291, E293 Parsons, C.L. E249, E253, E254, 269, E286, E287, E290, E292, 322 E285-E287, E289, E292, 329 E120, E122, E123, E126, 232, 237 E129 Pavlyuchenko, E.N. E285-E288, E293, 306, 307, 313-316, 331, 332 Peligot, E.M. E129 Pellegrino, M. E113, E116, E125, 221 Pelouze, T.J. E129 Peppler, R.B. E113, E127, 145 Perkins, C.L. E249, E253, E254, 269 E52, E62 Peshchevitskii, B.I. E6, E11, 16, 17, 20 Petropavlovskii, I.A. E130 Pham van Thuong, E11 E129 E56, E62, E118, E128 Polyakova, G.I. E285-E287, E293, 303, 304 E2, E5, E10, 39, 40 188, E255, 268 Portnova, N.L. E130 Portnova, S.M. E113, E116, E119, E127, 197 E59, E63 E63 Pressler, E.E. E119, E120, E127, 186, 187 E6, E10, 23-28, 30, 31 Pushnyakova, V.A. E116, E127, 198 Quataroli, A. E64 E120, E122, E126, 240, E249-E253, E255, 260, 280, 281 E2, E5, E6, E10, 12, E50, E51, E61, 69 Rendleman, Jr., J.A. E290, E294 E11 Reshetnikova, L.P. E11 E60, E62, 79, 80 Reynolds, J.P. E285, E293, 299 Robinson, W.O. E63, E120, E125, 189, 190 E50, E51, E61, 66 Rosenthiel, A. E285, E292, 295 E253, E254, 272 E129 E64

Oka, Y.

Ondik, H.M.

Osann, R.

Owen, B.B.

Ozerov, D.V.

Parker, V.B.

Patsch, R.

Pavesi, A.

Patten, H.E.

Perrin, D.D.

Phillips, R.

Pitzer, K.S.

Popov, A.I.

Poty, B.

Precht, H.

Prytz, M.

Reinders, W.

Revzin, G.E.

Rothmund, V.

Rubenbauer, J.

Rulhmann, R.

Saalman, E.

Salomom, M.

Samchuk, A.I.

Samoilova, T.H.

Sapronov, A.R.

Sawenkow, W.W.

E64

E129

E293

E130

E2, E6, E8, E10, 34

E5, E6, E10, 43, 45-47

E120, E122, E128, 241

E120, E122, E128, 242

E285, E292, 295

Rotondi, E.

Roy, D.M.

Roy, R.

Remy, H.

Renz, C.

Rose, F.

Popova, T.B.

Sborgi, U. E120, E126, 159, 160 Scheibler, C. E249-E252, E254, 257, E293 E2, E5, E10, 14, 15, E64 Schindler, P. E285-E287, E289, E292, 329 Scholder, R. E119, E120, E125, E128, 165, 166, E285-E289, E292, Schreinemaker, F.A.H. E293, 300, 327 Schumm, R.H. E6, E9, E11, E50, E60, E63, E124, E128, E254, E255, E291, E293 Selivanoff, F.F. E129 Semenenko, K.N. E11 Sennikov, S.G. E60, E62, 79, 80 Sestini, F. E11 Shenstone, W.A. E113, E125, 134 Shipley, J.W. E113, E126, 139 Shirasaki, T. E50-E52, E55, E62, 77 Sidersky, M.D. E249-E253, E255, 258, 275 Sidgwick, N.V. E11 Sill, H.F. E285-E287, E292, 298 Silvester, L.F. E51, E56, E62, E118, E128 Sinanyan, I.M. E130 Sinyuta, T.I. E116, E118, E127, 207 Smith, E.R. E113-E115, E127, 149-151 Smith, R.M. E6, E9, E11, E60, E63, E124, E128, E254, E255, E291, E293 Soboleva, G.I. E6, E10, E11, 18, 22, 41, 42, 48 Stenger, V.A. E113, E116, E126, 157 Steyaer, H. E130 Stock, D.F. E64 Stringfellow, W.A. E285-E287, E292, 328 Suter, R.W. E128, 153 Tamm, O. E50, E51, E61, 68 Taylor, C.M. E113, E126, 140, 150, 151 Taylor, H.S. E126, E120, E121, E126, 191-194, E249, E253, E255, 266, 267, E288, E292, 320, 321 Terres, E. Thomas, G. E2, E5, E10, 44 Thun, H.P. E130 Tichborne, R.C. E129 E255, E293 Tilden, W.A. Tipson, R.T. E294 Travers, A. E50, E51, E56-E58, E61, 71, 109 E124, E127, 247, E290, E292 Trimble, F. Tschernjawski, W.L. E130 Tschugaeff, L. E113, E126, 138 Tsurko, N.G. E113, E119, E128, 174, 177, 178 Tsygankova, S.A. E2, E10, 33 Tugarinov, I.A. E6, E10, E11, 18, 22, 41, 42, 48 Umarova, N.S. 183 van Oordt, G. E2, E6, E8, E10, 35 E122, E126, 234, 235, E254, E255, 273, 274, E290, Van Meurs, G.J. E292, 337-339 Van Gelder, D.W. E120, E122, E126, 240 Verbeeck, F. E130 Verbeeck, R.M.H. E130 E11, E60, E62, 74, 75, E119, E127, 170-173 Vol'nov, I.I. E60, E62, 79, 80 Volkova, L.V. E113, E120, E122, E125, 238 von Ginnekin, P.J.M. E113, E116, E118, E127, E128, 207, 223 Vovk, S.I. Waggaman, W.H. E63 E6, E9, E11, E50, E60, E63, E124, E128, E254, Wagman, D.D. E255, E291, E293 Walther, J.V. E58, E59, E63, 72, 73, E116, E128, 154, 155 Warington, R. E63

E120, E122, E125, 236 E113, E127, 145 E50, E51, E61, 101 E51, E53, E54, E62, 105 E124, E128 E113, E126, 141 E129 E294

Whitby, L. White, H.J. Jr. E124, E128 Witt, J.C. E113, E126, 141 Wittstein, L. E129 Wolfram, M.L. E294 Wood, J.K. E2, E6, E8, E10, 36 Yakhontova, E.L. E130 Yamane, S. E52, E61, E64, 83 Yan'shin, V.P. E120, E122, E128, 242 Yeatts, L.B. E113-E116, E118, E127, 215-218 Yokoyama, T. E120, E122, E127, 245, 246 Zahorsky, B. E113, E119, E125, 164 Zakirova, A.B. E2, E5, E10, 39, 40 Zaventyaeva, T.I. E130 Zharov, E.F. E130 Zozulya, A.F. E113, E119, E128, 174, 177, 178

Weisberg, J.

Wells, L.S.

Whipple, G.C.

SOLUBILITY DATA SERIES

Volume 1	H. L. Clever, Helium and Neon
Volume 2	H. L. Clever, Krypton, Xenon and Radon
Volume 3	M. Salomon, Silver Azıde, Cyanide, Cyanamıdes, Cyanate, Selenocyanate and
	Thiocyanate
Volume 4	H. L. Clever, Argon
Volume 5/6	C. L. Young, Hydrogen and Deuterium
Volume 7	R. Battino, Oxygen and Ozone
Volume 8	C. L. Young, Oxides of Nitrogen
Volume 9	W. Hayduk, Ethane
Volume 10	R. Battino, Nitrogen and Air
Volume 11	B. Scrosati and C. A. Vincent, Alkali Metal, Alkaline Earth Metal and Ammonium
	Halides, Amide Solvents
Volume 12	C. L. Young, Sulfur Dioxide, Chlorine, Fluorine and Chlorine Oxides
Volume 13	S. Stekterski, T Mioduski and M. Salomon, Scandium, Yttrium, Lanthanum and
	Lanthanide Nitrates
Volume 14	H. Mıyamoto, M. Salomon and H. L. Clever, Alkaline Earth Metal Halates
Volume 15	A. F. M. Barton, Alcohols with Water
Volume 16/17	E. Tomlinson and A. Regosz, Antibiotics: 1, β-Lactam Antibiotics
Volume 18	O. Popovych, Tetraphenylborates
Volume 19	C. L. Young, Cumulative Index: Volumes 1-18
Volume 20	A. L. Horvath and F. W. Getzen, Halogenated Benzenes, Toluenes and Phenols with Water
Volume 21	C. L. Young and P. G. T. Fogg, Ammonia, Amines, Phosphine, Arsine, Stibine,
Volume 21	Silane, Germane and Stannane in Organic Solvents
Volume 22	T. Mioduski and M. Salomon, Scandium, Yttrium, Lanthanum and Lanthanide
	Halides in Nonaqueous Solvents
Volume 23	T. P. Dirkse, Copper, Silver, Gold and Zinc, Cadmium, Mercury Oxides and
	Hydroxides
Volume 24	W. Hayduk, Propane, Butane and 2-Methylpropane
Volume 25	C. Hırayama, Z. Galus and C. Guminski, <i>Metals in Mercury</i>
Volume 26	M. R. Masson, H. D. Lutz and B. Engelen, Sulfites, Selenites and Tellurites
Volume 27/28	H. L. Clever and C. L. Young, <i>Methane</i>
Volume 29	H. L. Clever, Mercury in Liquids, Compressed Gases, Molten Salts and Other Elements
Volume 30	H. Miyamoto and M. Salomon, Alkali Metal Halates, Ammonium Iodate and Iodic
volume 50	Acid
Volume 31	J. Eysseltová and T. P. Dirkse, Alkah Metal Orthophosphates

Volume 32	P. G. T. Fogg and C L. Young, Hydrogen Sulfide, Deuterium Sulfide and Hydrogen
	Selenide
Volume 33	P. Franzosini, Molten Alkalı Metal Alkanoates
Volume 34	A. N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides.
	Part 1: Non-cyclic Substituents
Volume 35	A. N. Paruta and R Piekos, 4-Aminobenzenesulfonamides.
	Part II: 5-Membered Heterocyclic Substituents
Volume 36	A. N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides.
	Part III: 6-Membered Heterocyclic Substitutents and Miscellaneous Systems
Volume 37	D. G. Shaw, Hydrocarbons with Water and Seawater.
	Part I: Hydrocarbons C ₅ to C ₇
Volume 38	D. G. Shaw, Hydrocarbons with Water and Seawater.
	Part II: Hydrocarbons C_8 to C_{36}
Volume 39	C. L. Young, Cumulative Index: Volumes 20-38
Volume 40	J. Hala, Halides, Oxyhalides and Salts of Halogen Complexes of Titanium,
	Zirconium, Hafnum, Vanadium, Niobium and Tantalum
Volume 41	C -Y. Chan, I. N. Lepeshkov and K. H. Khoo, Alkaline Earth Metal Perchlorates
Volume 42	P. G. T. Fogg and W. Gerrard, Hydrogen Halides in Non-aqueous Solvents
Volume 43	R. W. Cargill, Carbon Monoxide
Volume 44	H. Miyamoto, E M. Woolley and M. Salomon, Copper and Silver Halates
Volume 45/46	R. P. T. Tomkins and N. P. Bansal, Gases in Molten Salts
Volume 47	R. Cohen-Adad and J. W. Lorimer, Alkali Metal and Ammonium Chlorides in Water
	and Heavy Water (Binary Systems)
Volume 48	F. Getzen, G. Hefter and A Maczynski, Esters with Water. Part 1: Esters 2-C to 6-C
Volume 49	F. Getzen, G. Hefter and A. Maczynski, Esters with Water.
	Part II: Esters 7-C to 32-C
Volume 50	P. G. T. Fogg, Carbon Dioxide in Non-aqueous Solvents at Pressures less than 200 kPa
Volume 51	J. G. Osteryoung, M. M. Schreiner, C. Guminski and Z. Galus, Intermetallic Compounds in Mercury
Volume 52	I. Lambert and H. L. Clever, Alkaline Earth Hydroxides in Water and Aqueous Solutions