INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

ANALYTICAL CHEMISTRY DIVISION COMMISSION ON SOLUBILITY DATA

SOLUBILITY DATA SERIES

Volume 56

ALCOHOLS WITH HYDROCARBONS

•

SOLUBILITY DATA SERIES

Editor-in-Chief J.W. Lorimer The University of Western Ontario London, Ontario, Canada

F.W.Getzen (USA) Sub-editor Liquid/Liquid Systems C.L.Young Sub-editor Indexes

EDITORIAL BOARD

W.E.Acree, Jr (USA) H.Akaiwa (Japan) H.L.Clever (USA) A.F.Danil de Namor (UK) M.-T.Saugier-Cohen Adad (France) J.Eysseltová (Czech Republic) P.G.T.Fogg (UK) H.Gamsjäger (Austria) G.T.Hefter (Australia) J.B.Jensen (Denmark) S.Krause (USA) C.F.Magalhães (Portugal) J.Sangster (Canada) V.M.Valyashko (Russia)

Managing Editor

P.D. Gujral

IUPAC Secretariat, Oxford, UK

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY IUPAC SECRETARIAT: Bank Court Chambers, 2-3 Pound Way Templars Square, Cowley, Oxford OX4 3YF, UK

SOLUBILITY DATA SERIES

Volume 56

ALCOHOLS WITH HYDROCARBONS

Volume Editors

David Shaw

Adam Skrzecz

University of Alaska Fairbanks, Alaska Institute of Physical Chemistry Warsaw, Poland

John W. Lorimer

Andrzej Maczynski

The University of Western Ontario London, Ontario, Canada Institute of Physical Chemistry Warsaw, Poland

Contributors (*Evaluators)

Adam Skrzecz*

John W. Lorimer*

Andrzej Maczynski*

OXFORD UNIVERSITY PRESS

IUPAC Solubility Data Series Rates for 1994

Subscriptions:	UK and Europe	Rest of World
Full subscription	£265	\$ 395
Single volume	£75	\$115
Reduced rates are available	to members of IUPAC. Please app	ly directly to the publisher
details.		

Prices include postage by surface mail or, for subscribers in the USA and Canada by Airfreight or in Japan, India, Australia and New Zealand by Air Speeded Post. Airmail rates are available on request.

for

The IUPAC Solubility Data Series is published quarterly in March, June, September and December by Oxford University Press. Subscription is \$395 per year. Second Class postage paid at Newark, New Jersey. ISSN 0191-5622.

POSTMASTER: Send address corrections to IUPAC Solubility Data Series, c/o Virgin Mailing and Distribution, Cargo Atlantic, 10 Camptown Road, Irvington, New Jersey 07111-1105, USA.

New subscriptions may be registered at any time during the year but will be reckoned as running from January 1st of the year in which the subscription is received. Claims regarding non-receipt of issues must be received within 4 months of publication or date of order, whichever is later. Back issues are available—for information contact Journals Customer Services Department, Oxford University Press, Walton Street, Oxford OX2 6DP.

Order Information

Payment is required with all orders and may be made by the following methods: Cheque (made payable to Oxford University Press) National Girobank (Account 500 1056) Credit Card (Access, Visa, American Express, Diners Club) Direct Debit: Please send for further details UNESCO Coupons Bankers: Barclays Bank plc, PO Box 333, Oxford Code 20-65-18. Account 00715654 Please send orders to: Journals Subscription Department, Oxford University Press, Walton Street, Oxford OX2 6DP. Tel: +44(0)865 56767, Fax: +44(0)865 267773

Any enquires regarding this publication should be addressed to: USA and Canada: Oxford University Press, 2001 Evans Road, Cary, NC 27513, USA. Rest of World: Journals Customer Services Department, Oxford University Press, Walton Street, Oxford OX2 6DP, UK.

©1994 International Union of Pure and Applied Chemistry. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the Copyright owner.

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

		CONTENTS	
Intro	oductior	to the Solubility of Liquids in Liquids	viii
Pref	ace to t	he Volume	xv
Note	e: an as	terisk (*) indicates presence of a Critical Evaluation	
1	Meth	aanol-d	
	1.1	Cyclohexane-d ₁₂	1*
	1.2	Hexane-d ₁₄	3
	1.3	Cyclohexane	4*
	1.4	Hexane	10
2	Meth	anol-d4	
	2.1	Cyclohexane	11*
3	Meth	anol	
	3.1	Butane	16*
	3.2	Cyclopentane	23*
	3.3	Pentane	25*
	3.4	Cyclohexane- a_{12}	34*
	3.3	Flexane- a_{14}	40
	3.0	Cyclonexane Methylmolonentono	41 ⁺
	3.1	2.2 Dimethylbutone	103*
	3.0	2.2-Dimethylbutane	100
	3 10	Hevane	107
	3.11	2-Methylpentane	100
	3.12	3-Methylpentane	142
	3.13	1-Heptene	144
	3.14	Methylcyclohexane	146*
	3.15	Heptane	154*
	3.16	2,2,3-Trimethylbutane	177
	3.17	2,5-Dimethyl-1,5-hexadiene	178
	3.18	3-Methylheptane	179
	3.19	Octane	180*
	3.20	2,2,4-Trimethylpentane	195*
	3.22	1,2,4-Trimethylbenzene	204
	3.22	Nonane	205*
	3.23	2,2,5-1 rimethylhexane	217
	3.24	1,2,3,4-1 etrahydronaphthalene	218
	3.25	Cymene	219
	3.20	Biggelo[4 4 0]decone	219
	3.27	trans-Bigvelo[4.4.0]decane	219
	3 20	Decane	220
	3 30	Diethylmethylbenzene	222
	3.31	Ethylisopropylbenzene	233
	3.32	sec-Pentylbenzene	233
	3.33	Undecane	234*
	3.34	Diisopropylbenzene	236
	3.35	Triethylbenzene	236
	3.36	1-Dodecene	237
	3.37	Isopropylnaphthalene	238
	3.38	1,2,3,4-Tetrahydroisopropylnaphthalene	238
	3.39	Diisopropylmethylbenzene	238
	3.40	Tetradecane	239
	3.41	sec-Pentylnaphthalene	240
	3.42	Diisopropylnaphthalene	240
	3.43	Dipentylbenzene	240
		• •	

4	Ethanol	
	4.1 Heptane	242
	4.2 2,2,4-Trimethylpentane	242
	4.3 Decane	243*
	4.4 Hexadecane	246
	4.5 Octadecane	247
	4.6 Dotriacontane	248
5	2-Propanol	
	5.1 Octane	249
	5.2 Dodecane	249
	5.3 Hexadecane	250
	5.4 Heptadecane	250
	5.5 Dotriacontane	251
6	1-Butanol	
	6.1 Octane	251
	6.2 Dodecane	252
	6.3 Hexadecane	252
	6.4 Heptadecane	253
	6.5 Dotriacontane	253
		200
7	Pentane	
-	7.1 Benzyl alcohol	254
	···· ···· j ········	
8	Cyclohexane	
	8.1 Benzyl alcohol	255
	8.2 Cinnamyl alcohol	255
		200
9	2.2-Dimethylbutane	
	9.1 Benzyl alcohol	256
		200
10	2,3-Dimethylbutane	
	10.1 Benzyl alcohol	256
11	Hexane	
	11.1 Benzyl alcohol	257*
	11.2 Phenethyl alcohol	261
	11.3 Cinnamyl alcohol	261
	,	=01
12	2-Methylpentane	
	12.1 Benzyl alcohol	262
	•	
13	3-Methylpentane	
	13.1 Benzyl alcohol	262
	•	
14	Benzyl alcohol	
	14.1 1-Heptene	263
	14.2 Methylcyclohexane	263
	14.3 2.2-Dimethylpentane	264
	14.4 2,3-Dimethylpentane	264
	14.5 2.4-Dimethylpentane	264
	14.6 Heptane	204
	14.7 2-Methylhexane	265
	14.8 2.2.3-Trimethylbutane	200
	14.9 2.5-Dimethyl-1.5-hexadiene	200
	14.10 2.3-Dimethylhexane	200
	14.11 2.4-Dimethylhexane	270
	14.12 2.5-Dimethylhexane	270
	14.13 3.4-Dimethylhexane	210
	14.14 3-Ethylhexane	210
	14.15 3-Ethyl-2-methylnentane	210
	· ·	270

14	Benzyl alcohol (continued) 14.16 2-Methylheptane	
	14.17 3-Methylheptane	270
	14.18 4-methylneptane	270
	14.20 2,2,4-Trimethylpentane	273*
	14.21 2,7-Dimethyloctane	275
	14.22 Undecane	276
	14.23 Dodecane	276
	14.24 Indecane	276
	14.25 Tetradecane	276
	14.27 Hexadecane	276
	14.28 Heptadecane	276
	14.29 1-Phenylhexadecane	277
15	1-Heptene	
	15.1 Phenethyl alcohol	278
	13.2 Cinnamyi alconol	278
16	Methylcyclohexane	
	16.1 Phenethyl alcohol	278
		278
17	2,2-Dimethylpentane	
	17.1 Phenethyl alcohol	279
18	2,3-Dimethylpentane	
	18.1 Phenethyl alcohol	279
19	2,4-Dimethylpentane	
	19.1 Phenethyl alcohol	279
20	Hentane	
	20.1 Phenethyl alcohol	280*
	20.2 Cinnamyl alcohol	282
21	2-Methylhevane	
~1	21.1 Phenethyl alcohol	283
22		205
22	2,2,3-Trimethylbutane	
	22.1 Phenetnyl alcohol	283
23	Phenethyl alcohol	
	23.1 2,5-Dimethyl-1,5-hexadiene	282
	23.2 2,2,4-1 rimethylpentane	282
24	2,5-Dimethyl-1,5-hexadiene	
	24.1 Cinnamyl alcohol	282
25	2.2.4-Trimethylpentane	
	25.1 Cinnamyl alcohol	282
26	1-Octanol	
20	26.1 Dotriacontane	284
Cont		204
Syste	in index	285
Regi	stry Number Index	289
Auth	or Index	291
0-1 -		
Solut	builty Data Series: Published and Forthcoming Volumes	295

INTRODUCTION TO THE SOLUBILITY DATA SERIES

SOLUBILITY OF LIQUIDS IN LIQUIDS

NATURE OF THE PROJECT

The Solubility Data project (SDP) has as its aim a comprehensive review of published data for solubilities of gases, liquids and solids in liquids or solids. Data of suitable precision are compiled for each publication on data sheets in a uniform format. The data for each system are evaluated and, where data from different sources agree sufficiently, recommended values are proposed. The evaluation sheets, recommended values, and compiled data sheets are published on consecutive pages.

This series is concerned primarily with liquid-liquid systems, but a limited number or related solid-liquid, fluid-fluid and multicomponent (organic-water-salt) systems are included where it is considered logical and appropriate. Solubilities at elevated and low temperatures and at elevated pressures have also been included, as it is considered inappropriate to establish artificial limits on the data presented if they are considered relevant or useful.

For some systems, the two components may be miscible in all proportions at certain temperatures and pressures. Data on reported miscibility gaps and upper and lower critical solution temperatures are included where appropriate and when available.

COMPILATIONS AND EVALUATIONS

The formats for the compilations and critical evaluations have been standardized for all volumes. A description of these formats follows.

Compilations

The format used for the compilations is, for the most part, self-explanatory. A compilation sheet is divided into boxes, with detailed contents described below.

Components: Each component is listed according to IUPAC name, formula, and Chemical Abstracts (CA) Registry Number. The Chemical Abstracts name is also included if this differs from the IUPAC name, as are trivial names if appropriate. IUPAC and common names are cross-referenced to Chemical Abstracts names in the System Index.

The formula is given either in terms of the IUPAC or Hill (1) system and the choice of formula is governed by what is usual for most current users: i.e., IUPAC for inorganic compounds, and Hill system for organic compounds. Components are ordered on a given compilation sheet according to:

(a) saturating components:

- (b) non-saturating components in alphanumerical order;
- (c) solvents in alphanumerical order.

The saturating components are arranged in order according to the IUPAC 18-column periodic table with two additional rows:

H, alkali elements, ammonium, alkaline earth elements
transition elements
boron, carbon, nitrogen groups; chalcogenides, halogens
noble gases
Ce to Lu
Th to the end of the known elements, in order of atomic number

Organic compounds within each Hill formula are ordered in the following succession:

- (a) by degree of unsaturation
- (b) by order of increasing chain length in the parent hydrocarbon
- (c) by order of increasing chain length of hydrocarbon branches
- (d) numerically by position of unsaturation
- (e) numerically by position by substitution
- (f) alphabetically by IUPAC name.

Example:	
C ₅ H ₈	cyclopentane
•••	2-methyl-1,3-butadiene
	1,4-pentadiene
	1-pentyne
C_5H_{10}	cyclopentane
	3-methyl-1-butene
	2-methyl-2-butene
	1-pentene
	2-pentene
$C_{5}H_{12}$	2,2-dimethylpropane
	2-methylbutane
	pentane
C ₅ H ₁₂ O	2,2-dimethyl-1-propanol
••••	2-methyl-1-butanol
	2-methyl-2-butanol
	3-methyl-1-butanol
	3-methyl-2-butanol
	1-pentanol
	2-pentanol
	3-pentanol
C ₆ H ₁₂ O	cyclohexanol
	4-methyl-1-penten-3-ol
	1-hexen-3-ol
2	4-hexen-3-ol

Deuterated (^{2}H) compounds follow immediately the corresponding H compounds.

Original Measurements: References are abbreviated in the forms given by Chemical Abstracts Service Source Index (CASSI). Names originally in other than Roman alphabets are given as transliterated by Chemical Abstracts. In the case of multiple entries (for example, translations) an asterisk indicates the publication used for compilation of the data.

Variables: Ranges of temperature, pressure, etc. are indicated here.

Prepared by: The names of all compilers are given here.

Experimental Values: Components are described as (1), (2), etc., as defined in the "Components" box. Data are reported in the units used in the original publication, with the exception that modern names for units and quantities are used; e.g., mass per cent for weight per cent; mol dm³ for molar; etc. In most cases, both mass and molar values are given. Usually, only one type of value (e.g., mass per cent) is found in the original paper, and the compiler has added the other type of value (e.g., mole per cent) from computer calculations based on 1989 atomic weights (2). Temperatures are expressed as $t/^{\circ}$ C, $t/^{\circ}$ F or T/K as in the original; if necessary, conversions to T/K are made, sometimes in the compilations, and always in the critical evaluation. However, the author's units are expressed according to IUPAC recommendations (3) as far as possible.

Errors in calculations, fitting equations, etc. are noted, and where possible corrected. Material inserted by the compiler is identified by the word "compiler" or by the compiler's name in parentheses or in a footnote. In addition, compiler-calculated values of mole or mass fractions are included if the original data do not use these units. If densities are reported in the original paper, conversions from concentrations to mole fractions are included, but otherwise this is done in the evaluation, with the values and sources of the densities being quoted and referenced.

Details of smoothing equations (with limits) are included if they are present in the original publication and if the temperature or pressure ranges are wide enough to justify this procedure and if the compiler finds that the equations are consistent with the data.

The precision of the original data is preserved when derived quantities are calculated, if necessary by the inclusion of one additional significant figure. In some cases graphs have been included, either to illustrate presented data more clearly, or if this is the only information in the original. Full grids are not usually inserted as it is not intended that users should read data from the graphs.

Method: The apparatus and procedure are mentioned briefly. Abbreviations used in Chemical Abstracts are often used here to save space, reference being made to sources of further detail if these are cited in the original paper.

Source and Purity of Materials: For each component, referred to as (1), (2), etc., the

following information (in this order and in abbreviated form) is provided if available in the original paper: source and specified method of preparation; properties; degree of purity.

Estimated Error: If estimated errors were omitted by the original authors, and if relevant information is available, the compilers have attempted to estimate errors (identified by "compiler" or the compiler's name in parentheses or in a footnote) from the internal consistency of data and type of apparatus used. Methods used by the compilers for estimating and reporting errors are based on Ku and Eisenhart (4).

Comments and/or Additional Data: Many compilations include this section which provides short comments relevant to the general nature of the work or additional experimental and thermodynamic data which are judged by the compiler to be of value to the reader.

References: The format for these follows the format for the Original Measurements box, except that final page numbers are omitted. References (usually cited in the original paper) are given where relevant to interpretation of the compiled data, or where cross-reference can be made to other compilations.

Evaluations

The evaluator's task is to assess the reliability and quality of the data, to estimate errors where necessary, and to recommend "best" values. The evaluation takes the form of a summary in which all the data supplied by the compiler have been critically reviewed. There are only three boxes on a typical evaluation sheet, and these are described below.

Components: The format is the same as on the Compilation sheets.

Evaluator: The name and affiliation of the evaluator(s) and date up to which the literature was checked.

Critical Evaluation:

(a) Critical text. The evaluator checks that the compiled data are correct, assesses their reliability and quality, estimates errors where necessary, and recommends numerical values based on all the published data (including theses, reports and patents) for each given system. Thus, the evaluator reviews the merits or shortcomings of the various data. Only published data are considered. Documented rejection of some published data may occur at this stage, and the corresponding compilations may be removed.

The solubility of comparatively few systems is known with sufficient accuracy to enable a set of recommended values to be presented. Although many systems have been studied by at least two workers, the range of temperatures is often sufficiently different to make meaningful comparison impossible.

Occasionally, it is not clear why two groups of workers obtained very different but internally consistent sets of results at the same temperature, although both sets of results were obtained by reliable methods. In such cases, a definitive assessment may not be possible. In some cases, two or more sets of data have been classified as tentative even though the sets are mutually inconsistent.

(b) Fitting equations. If the use of a smoothing equation is justifiable the evaluator may provide an equation representing the solubility as a function of the variables reported on all the compilation sheets, stating the limits within which it should be used.

(c) Graphical summary. In addition to (b) above, graphical summaries are often given.

(d) Recommended values. Data are recommended if the results of at least two independent groups are available and they are in good agreement, and if the evaluator has no doubt as to the adequacy and reliability of the applied experimental and computational procedures. Data are reported as tentative if only one set of measurements is available, or if the evaluator considers some aspect of the computational or experimental method as mildly undesirable but estimates that it should cause only minor errors. Data are considered as doubtful if the evaluator considers some aspect of the computational or experimental method as undesirable but still considers the data to have some value where the order of magnitude of the solubility is needed. Data determined by an inadequate method or under ill-defined conditions are rejected. However, references to these data are included in the evaluation together with a comment by the evaluator as to the reason for their rejection.

(e) References. All pertinent references are given here, including all those publications appearing in the accompanying compilation sheets and those which, by virtue of their poor precision, have been rejected and not compiled.

(f) Units. While the original data may be reported in the units used by the investigators, the final recommended values are reported in SI units (3) when the data can be converted accurately.

QUANTITIES AND UNITS USED IN COMPILATION AND EVALUATION OF SOLUBILITY DATA

Mixtures, Solutions and Solubilities

A mixture (5, 6) describes a gaseous, liquid or solid phase containing more than one substance, where the substances are all treated in the same way.

A solution (5, 6) describes a liquid or solid phase containing more than one substance, when for convenience one of the substances, which is called the *solvent*, and may itself be a mixture, is treated differently than the other substances, which are called *solutes*. If the sum of the mole fractions of the solutes is small compared to unity, the solution is called a *dilute solution*.

The solubility of a solute 1 (solid, liquid or gas) is the analytical composition of a saturated solution, expressed in terms of the proportion of the designated solute in a designated solvent (7).

"Saturated" implies equilibrium with respect to the processes of dissolution and demixing; the equilibrium may be stable or metastable. The solubility of a substance in metastable equilibrium is usually greater than that of the same substance in stable equilibrium. (Strictly speaking, it is the activity of the substance in metastable equilibrium that is greater.) Care must be taken to distinguish true metastability from supersaturation, where equilibrium does not exist.

Either point of view, mixture or solution, may be taken in describing solubility. The two points of view find their expression in the reference states used for definition of activities, activity coefficients and osmotic coefficients. Note that the composition of a saturated mixture (or solution) can be described in terms of any suitable set of thermodynamic components.

Physicochemical Quantities and Units

Solubilities of solids have been the subject of research for a long time, and have been expressed in a great many ways, as described below. In each case, specification of the temperature and either partial or total pressure of the saturating gaseous component is necessary. The nomenclature and units follow, where possible, ref. (3)

A note on nomenclature. The nomenclature of the IUPAC Green Book (3) calls the solute cpmponent B and the solvent component A. In compilations and evaluations, the first-named component (component 1) is the solute, and the second (component 2 for a two-component system) is the solvent. The reader should bear these distinctions in nomenclature in mind when comparing equations given here with those in the Green Book.

1. Mole fraction of substance 1, x_1 or x(1):

$$x_1 = n_1 / \sum_{s=1}^{c} n_s$$
 [1]

where n_s is the amount of substance of s, and c is the number of distinct substances present (often the number of thermodynamic components in the system). Mole per cent of substance 1 is $100 x_1$.

2. Ionic mole fractions of salt i, x_{i+} , x_{i-} : For a mixture of s binary salts i, each of which ionizes completely into v_{s+} cations and v_{s-} anions, with $v_s = v_{s+} + v_{s-}$ and a mixture of p non-electrolytes j, of which some may be solvent components, a generalization of the definition in (8) gives:

$$x_{i+} = \frac{v_{i+}x_i}{1 + \sum_{i=1}^{s} (v_i - 1)x_s}, \quad x_{i-} = \frac{v_{i-}x_{i+}}{v_{i+}} \quad i = 1...s$$
[2]

$$x'_{j} = \frac{x_{j}}{1 + \sum_{i=1}^{s} (v_{i} - 1)x_{i}}, \quad j = (s+1), \dots, p \quad [3]$$

The sum of these mole fractions is unity, so that, with c = s + p,

$$\sum_{i=1}^{s} (x_{i+} + x_{i-}) + \sum_{i=s+1}^{c} x_{i}' = 1$$
[4]

General conversions to other units in multicomponent systems are complicated. For a threecomponent system containing non-electrolyte 1, electrolyte 2 and solvent 3,

$$x_{1} = \frac{v_{2} x_{1}'}{v_{2} - (v_{2} - 1)x_{2}} \qquad x_{2} = \frac{x_{2}}{v_{2} - (v_{2} - 1)x_{2}} \qquad [5]$$

These relations are used in solubility equations for salts, and for tabulation of salt effects on solubilities of gases (see below).

3. Mass fraction of substance 1, w_1 or w(1):

$$w_1 = g_1 / \sum_{s=1}^{c} g_s$$
 [6]

where g_s is the mass of substance s. Mass per cent of substance 1 is 100 w_1 . The equivalent terms weight fraction, weight per cent and g (1)/100 g solution are no longer used.

4. Molality of solute 1 in a solvent 2, m_1 :

$$m_1 = n_1 / n_2 M_2$$

(7)

SI base units: mol kg⁻¹. Here, M_2 is the molar mass of the solvent.

5. Aquamolality, Solvomolality of substance 1 in a mixed solvent with components 2, 3 (9), $m_1^{(3)}$:

$$m_1^{(3)} = m_1 \overline{M} / M_3$$
^[8]

SI base units: mol kg⁻¹. Here, the average molar mass of the solvent is

$$\overline{M} = x_2' M_2 + (1 - x_2') M_3$$
^[9]

and x_2 ' is the solvent mole fraction of component 2. This term is used most frequently in discussing comparative solubilities in water (component 2) and heavy water (component 3) and in their mixtures.

6. Amount concentration of solute 1 in a solution of volume V, c_1 :

$$c_1 = [\text{formula of solute}] = n_1/V$$
 [10]

SI base units: mol m⁻³. The symbol c_1 is preferred to [formula of solute], but both are used. The old terms *molarity*, *molar* and *moles per unit volume* are no longer used.

7. Mass concentration of solute 1 in a solution of volume V, ρ_1 :SI base units: kg m⁻³.

$$\rho_1 = g_1 / V \tag{11}$$

8. Mole ratio, $r_{n,12}$ (dimensionless)

$$r_{n,12} = n_1 / n_2$$
 [12]

Mass ratio, symbol $r_{g,12}$, may be defined analogously.

Mole and mass fractions are appropriate to either the mixture or the solution point of view. The other quantities are appropriate to the solution point of view only. Conversions between pairs of these quantities can be carried out using the equations given in Table 1 at the end of this Introduction. Other useful quantities will be defined in the prefaces to individual volumes or on specific data sheets.

9. Density, ρ :

$$\rho = g/V$$
^[13]

SI base units: kg m⁻³. Here g is the total mass of the system.

10. Relative density, $d = \rho/\rho^{\circ}$: the ratio of the density of a mixture at temperature *t*, pressure *p* to the density of a reference substance at temperature *t*', pressure *p*'. For liquid solutions, the reference substance is often water at 4°C, 1 bar. (In some cases 1 atm is used instead of 1 bar.) The term *specific gravity* is no longer used.

Thermodynamics of Solubility

Thermodynamic analysis of solubility phenomena provides a rational basis for the construction of functions to represent solubility data, and thus aids in evaluation, and sometimes enables thermodynamic quantities to be extracted. Both these are often difficult to achieve because of a lack of experimental or theoretical activity coefficients. Where thermodynamic quantities can be found, they are not evaluated critically, since this task would involve examination of a large body of data that is not directly relevant to solubility. Where possible, procedures for evaluation are based on established thermodynamic methods. Specific procedures used in a particular volume will ybe described in the Preface to that volume.

REFERENCES

- 1. Hill, E.A. J. Am. Chem. Soc. 1900, 22, 478.
- 2. IUPAC Commission on Atomic Weights and Isotopic Abundances. Pure Appl. Chem. <u>1989</u>, 63, 975.
- 3. Mills, I.; et al., eds. Quantities, Units and Symbols in Physical Chemistry (the Green Book). Blackwell Scientific Publications. Oxford, UK. <u>1993</u>.
- 4. Ku, H.H., p. 73; Eisenhart, C., p. 69; in Ku, H.H., ed. Precision Measurement and Calibration. NBS Special Publication 300. Vol. 1. Washington. <u>1969</u>.
- 5. Regaudy, J.; Klesney, S. P. Nomenclature of Organic Chemistry (IUPAC), ("The Blue Book"), Pergamon, Oxford, <u>1979.</u>
- 6. Gold, V.; et al., eds. Compendium of Chemical Technology (the Gold Book). Blackwell Scientific Publications. Oxford, UK. <u>1987</u>.
- 7. Freiser, H.; Nancollas, G.H., eds. *Compendium of Analytical Nomenclature* (the Orange Book). Blackwell Scientific Publications. Oxford, UK. <u>1987</u>. Sect. 9.1.8.
- 8. Robinson, R.A.; Stokes, R.H. *Electrolyte Solutions*. Butterworths. London. <u>1959</u>. 2nd ed.
- Lorimer, J.W. in Cohen-Adad, R.; Lorimer, J.W. Alkali Metal and Ammonium Chlorides in Water and Heavy Water (Binary Systems). IUPAC Solubility Data Series, Vol. 47. Pergamon Press. Oxford, UK, <u>1991</u>. p. 495.

A.F.M. Barton Perth, WA, Australia

F.W. Getzen Raleigh, NC, USA

G.T. Hefter Perth, WA, Australia

D.G. Shaw Fairbanks, AK, USA

January, 1994

	x _i	Wi	m _i	C _i
<i>x_i</i> =	<i>x</i> _i	$\frac{1}{1 + \frac{M_i}{M_c} \left(\frac{1}{w_i} - 1 + \sum_{j \neq i}^{c-1} \left(\frac{M_c}{M_j} - 1\right) \frac{w_j}{w_i}\right)}$	$\frac{1}{1 + \frac{1}{m_i M_c} + \sum_{j \neq i}^{c-1} \frac{m_j}{m_i}}$	$\frac{1}{1 + \frac{1}{M_c} \left(\frac{\rho}{c_i} - M_i\right) + \sum_{j \neq i}^{c-1} \frac{c_j}{c_i} \left(1 - \frac{M_j}{M_c}\right)}$
<i>w</i> _i =	$\frac{1}{1 + \frac{M_c}{M_i} \left(\frac{1}{x_i} - 1 + \sum_{j \neq i}^{c-1} \left(\frac{M_j}{M_c} - 1\right) \frac{x_j}{x_i}\right)}$	Wi	$\frac{1}{1 + \frac{1}{m_i M_i} \left(1 + \sum_{j \neq i}^{c-1} m_j M_j\right)}$	<u>c_iM_i</u> ρ
<i>m</i> _{<i>i</i>} =	$\frac{1}{M_c \left(\frac{1}{x_i} - 1 - \sum_{j \neq i}^{c-1} \frac{x_j}{x_i}\right)}$	$\frac{1}{M_i\left(\frac{1}{w_i}-1-\sum_{j\neq i}^{c-1}\frac{w_j}{w_i}\right)}$	mi	$\frac{1}{\frac{1}{c_i}\left(\rho - \sum_{j \neq i}^{c-1} c_j M_j\right) - M_i}$
<i>c</i> _{<i>i</i>} =	$\frac{\rho}{M_i + M_c \left(\frac{1}{x_i} - 1 + \sum_{j \neq i}^{c-1} \left(\frac{M_j}{M_c} - 1\right) \frac{x_j}{x_i}\right)}$	$\frac{\rho w_i}{M_i}$	$\frac{\rho}{\frac{1}{m_i}\left(1+\sum_{j\neq i}^{c-1}M_jm_j\right)+M_i}$	Ci

Table 1. Interconversions between Quantities Used as Measures of Solubility c-component Systems Containing c - 1 Solutes i and Single Solvent c

 ρ - density of solution; M_i - molar masses of i. For relations for 2-component systems, set summations to 0.

.

×i

PREFACE TO THE VOLUME

Scope of the Volume

This volume surveys solubility data which have been published in the open literature up to the end of 1988 for binary systems containing hydrocarbons and alcohols. The hydrocarbons include those with four or more carbon atoms and of all structural types (aliphatic, aromatic, unsaturated, etc.); i.e., all hydrocarbons which are liquids at room temperature and pressure. The alcohol in the binary pair is most commonly methanol, but some less systematic data exist for ethanol and a few higher alcohols such as benzyl alcohol. Altogether 120 systems containing 280 data sets are presented. From these, it has been possible to make critical evaluations for only 24 systems, which indicates the pronounced lack of data for alcohols other than methanol.

Components of these systems were (with one or two exceptions) always well-defined substances. Only numerical data are given because data published originally in graphical form are inherently imprecise, especially given the high precision of the tabulated data for many systems. The literature contains a large amount of imprecise and conflicting data. Where possible, recommended or tentative values of critical solution composition, critical solution temperature and mutual solubility, all at 0.1 MPa, are given, but and in many cases this cannot be done because of insufficient information.

This volume is the result of a careful search of the chemical literature. The goal of that search was to include all published data for the systems indicated in the title. Each Critical Evaluation includes a closing date for the literature for that system, generally December, 1988. In spite of these efforts, some published measurements may have been missed. The editors will appreciate having their attention brought to any omitted source of solubility data for inclusion in future volumes.

For purposes of comparison, the compilers and evaluators of this volume have, in so far as is possible, expressed all original results in mass percent and mole fraction as well as in the units given by the original investigators. Conversions, where they have been made, are clearly attributed to the compiler and the sources of any data not provided by the original investigators (such as density) are specified. Definitions of mass percent and mole fraction as well as their relation to other common measures of solubility are given in the *Introduction to the Solubility Data Series: Solubility of Liquids in Liquids* in this volume. A table of conversion formulas is included at the end of the *Introduction*.

General Properties of Systems Exhibiting Liquid-Liquid Equilibria

The alcohol-hydrocarbon systems all exhibit liquid-liquid equilibria, giving rise to a *coexistence* or *connodal* curve which is the locus of the ends of the tie-lines joining phases in equilibrium (at a given temperature) as a function of temperature. For a general discussion, see for example (ref. 1, 2); a schematic phase diagram which incorporates features found for the systems discussed in this volume is shown in Fig. 1. The coexistence curve separates homogeneous and metastable heterogeneous regions of the system. Within the coexistence curve lies the *spinodal* curve, which is the boundary between metastable and unstable regions of the system. With care, points between

Fig. 1. Schematic phase diagram for a binary liquid-liquid system. L_1 , L_2 - coexisting liquid phases; s solid phase 2; m - metastable liquid region; ml - monotectic line; mt - monotectic point; $T_{m,2}$ melting point of pure component 2.

the coexistence and spinodal curves can be reached experimentally, i.e., one liquid phase can become supersaturated with respect to the other. The coexistence and spinodal curves

coincide at a *critical solution point*, which for alcohol-hydrocarbon systems, in the ranges of pressure which have been investigated, is always an *upper critical solution point*, which has an *upper critical solution temperature*, UCST, (sometimes referred to in the older literature as an "upper consolute temperature") and a corresponding *upper critical solution composition*. Points within the spinodal curve cannot be reached by experiment; the process of *spinodal decomposition* takes place in that region.

In principle, each of the two branches of the coexistence curve extends downwards from the critical solution point until the system reaches a *monotectic* point, where a pure solid phase and two conjugate liquid phases are in mutual equilibrium, and the end of the stable part of the solubility curve of the solid is reached. For alcohol-hydrocarbon systems, the monotectic has been observed in only one system, methanol-cyclohexane, on the cyclohexane-rich side of the phase diagram; the monotectic for the alcohol-rich branch would be expected to occur at a very much lower temperature because of the lower melting point of methanol.

Modern Theories of Critical Solution Behavior

The phenomenon of critical solution points is analogous to the phenomenon of the critical point in one-component systems, about which many precise data have been collected (ref. 2). Analogs also exist in solid-solid equilibria. This ubiquitous phenomenon has thus given rise to intense theoretical and experimental investigation, especially during the past 20 years. Classical thermodynamics predicts that the composition near the critical point is a quadratic function of temperature, i.e., the critical index β (see below) is exactly 1/2, but it has been known for a long time that the experimental value is closer to 1/3 (ref. 2). The classical thermodynamic theory assumes that the Gibbs energy is an analytic function of temperature and composition, so that a

Taylor expansion about the critical point is valid. The general conclusions of modern theory (ref. 3) are that the Gibbs energy is not analytic in the neighborhood of the critical solution point, as a result of long-range fluctuations in composition, but can be *scaled* in a region very near the critical point. The scaling equation is characterized by a universal *critical index*, β , defined by (ref. 2)

$$\beta = \lim_{T \to T_c} \left(\frac{\partial \ln[(x_i'' - x_i')]}{\partial \ln |T - T_c|} \right)$$
(1)

where $x_i'' - x_i'$ is the difference in mole fraction of component i between the more concentrated and the more dilute phases in equilibrium at temperature T, and T_c is the critical solution temperature.

At temperatures not far from the critical point, usually when $\theta = 1 - T/T_c > 10^{-3}$ (ref. 3), the classical thermodynamic description of the liquid-liquid equilibrium is expected to be valid. The following equation contains corrections to the scaling equation for the whole region (ref. 4):

$$x_{i}^{\prime\prime} - x_{i}^{\prime} = B_{1} |\theta|^{\beta} + B_{2} |\theta|^{\beta + w} + B_{3} |\theta|^{\beta + 2w} + \dots$$
(2)

with the B_i constants. The locus of the bisector of the tie-lines (the *binodal* curve) defines a second critical index, α , through the equation

$$(x_i'' + x_i')/2 = x_{ci} + A_1 |\theta|^{1-\alpha} + A_2 |\theta| + A_3 |\theta|^{1-\alpha+w} + \dots$$
(3)

where the empirical index w = 0.5 (but see ref. 4) is called the first Wegner correction term (ref. 5). Combining eqns. (1) and (2), as in ref. 6, gives

$$x_{i} = x_{cl} \pm (B_{1}/2) |\theta|^{\beta} \pm (B_{2}/2) |\theta|^{\beta+w} + A_{1} |\theta| \pm (B_{3}/2) |\theta|^{\beta+2w} + A_{2} |\theta|^{1-\alpha+w}$$
(4)

The form of eqn. (4) and the sequence of coefficients is derived from experience in fitting experimental data for this volume. In particular, powers of 1 and 1 - $\alpha = 0.89$ in θ have been combined as a single power of unity.

Modern theories give $\beta = 0.329$, $\alpha = 0.11$ (ref. 7). In this volume, the slightly older theoretical value $\beta = 0.325 \pm 0.003$ will be used, as in most modern papers quoted herein.

Equation (4) gives a fitting equation for the coexistence curve in terms of the critical parameters α and β , the Wegner correctios w and arbitrary constants. The critical parameters can be given their theoretical values (which in some cases are not well known), or can be used as fitting parameters. It has been found (ref. 3) for the systems acetonitrile - cyclohexane and carbon tetrachloride - perfluoroheptane that an equation of the form (4) represents data very well over the whole experimental range of temperature. Although the classical equation is equally successful in representing the data, it gives, of course, a dependence on temperature which is inconsistent with theory very near the critical solution temperature. (For discussion of the theory of the "crossover" problem between scaling and classical equations, see ref. 8, and for practical consequences in fitting

data see ref. 3.) Many data for methanol-hydrocarbon systems have been obtained within $\theta = 10^{-3}$ of the critical solution temperature. For that reason, fitting equations of the form (4) are used in this volume; their use in practice will be discussed briefly below. Experimental Methods

Most solubility measurements of hydrocarbon-alcohol systems have been made in the temperature range which is considered to be "room temperature", i.e., 273 - 320 K. Except in more recent precise work, pressure has seldom been specified, and is assumed to be approximately 0.1 MPa (1 atm). There are two principal methods: isothermal equilibration and the cloud - point method. Isothermal equilibration of systems of known overall composition is carried out at a carefully-controlled temperature, and the equilibrated phases are analyzed by a variety of methods, physical or chemical. In the cloud-point method, systems of accurately-known composition are heated in a closed tube until the meniscus between coexisting phases just disappears. Heating and cooling over small intervals in temperature then establishes a point on the coexistence curve, occasionally with precision which approaches the mK range.

Both the isothermal equilibration and cloud-point methods are subject to errors arising from gravitational effects. In the isothermal equilibration method, if the whole of each phase is analyzed and the system is near the critical solution point, where the two coexisting phases have almost the same composition and density, the isothermal compressibility approaches an infinite value. Thus, just above the critical point, the fluid becomes compressed significantly by its own weight, and its density varies with height. At some particular height, there is a density equal to the critical density. In most experiments, only the average density (or composition) is measured, so there will be an apparent range of critical densities which will lead to a flat top in the coexistence curve. This phenomenon is very marked in gases (ref. 2), and more recent work has demonstrated its importance in liquid-liquid systems; for a review, see ref. 8. In the cloud-point method, on the other hand, the first nucleation of small droplets is observed visually at a given position in the sample container at which the pressure is higher at the surface of the liquid. An estimate of the effect of this pressure can be obtained from the measured value of $(\partial T_c/\partial p)_c$ which, for the system cyclohexane-methanol, has the value 3.30×10^{-7} K Pa⁻¹ (ref. 6). In this system, critical solution temperatures have been measured to a precision of 10⁻⁴ K (ref. 5); a change in critical solution temperature of this magnitude will be caused by change in depth of 4 cm for a liquid density of 0.8 g cm⁻³. Thus corrections must be made for any pressure head above the point of observation. In a sealed tube, where the pressure is unknown, the associated error in temperature is also unknown. In general, if care is taken in keeping the pressure constant, the cloud-point method is capable of greater precision than the isothermal equilibration method.

With either method, small amounts of impurities have a very large influence on the critical solution temperature, and a smaller influence on the critical solution composition (ref. 9, 10). Thermodynamics applied to the simple mixture model makes two general predictions about the effect of impurities. These predictions have been found in practice to apply to systems which are

not simple mixtures, and thus are more general than it would appear. The predictions are (ref. 1): Introduction of a third component which is equally soluble in the first two components will lower the critical solution temperature, i.e. it will increase the mutual solubility. Introduction of a third component which is much less soluble in one of the first two components than in the other will always raise the critical solution temperature, i.e. there will be a decrease in mutual solubility.

The simple theory also predicts that, to a first approximation, the critical solution temperature varies linearly with mole fraction of impurity. For the alcohol-hydrocarbon systems, water is a common impurity which is difficult to remove from the starting products and difficult to avoid as a contaminant which enters during experimental manipulations. Because water is always much more soluble in alcohols than in hydrocarbons, contamination by water should lead to an increase in the critical solution temperature, other things being equal. Many examples of this behavior can be found in the alcohol-hydrocarbon systems, where the lowest critical solution temperature should be closest to the correct value, if water is the main impurity.

Yet another complication occurs in connection with the isothermal equilibration method. In a mixture of, for example, methanol and cyclohexane near the critical point, the slightly denser methanol-rich phase wets the walls of the container preferentially, and surrounds the cyclohexanerich phase (ref. 11). Thus, location of the critical point by optical (including visual) methods can be difficult in cells with heights and widths of comparable dimensions.

Procedures Used in Critical Evaluations

1. Fitting Equations for Coexistence Curves. Equation (4) above is the basis of the fitting procedure used in the Critical Evaluations in this volume. Simple least-squares theory (ref. 12), as used by authors of recent papers (such as ref. 6), requires that all error should be in the dependent variable (x), with the independent variable (θ) known accurately. Since the temperature appears in a non-linear form in the fitting equation, an estimated value of T_c is used to calculate values of θ , then the value of parameter T_c is varied systematically until minimum standard error of estimate is found for x (see ref. 12). The error in T_c must be found by examining the variation in the standard error of estimate near its minimum value for various trial values of T_c .

In the cloud-point method, errors in composition (arising from weighing the components and in evaporation during transfer to the apparatus) can actually be comparable to errors in θ , but this is not usually the case. Clearly, a more general least-squares approach is indicated, in which errors in both temperature and composition are taken into account. Some limited progress in this direction has been made, e.g., by Aizpiri et al., ref. 13, but the whole question of a statistically valid approach to fitting experimental data to eqn. (4) appears to be a matter for further research.

For this volume the simpler approach, despite its shortcomings from the point of view of statistical theory, has been found to give excellent representations of the experimental data. In the Critical Evaluations, it would appear that more significant figures are given for the parameters of

the fitting equations than are justified by the respective standard deviations. However, it should be noted that the errors in the parameters are highly correlated, and retention of the larger number of digits is necessary to achieve a correct calculation.

According to eqn. (4), the difference $x_i - x_{ci}$ is a function of $\theta = 1 - T/T_c$ only, which suggests that variations in T_c and x_{ci} for different sets of data for a given system should be taken into account in large measure by plotting T/T_c against $x_i - x_{ci}$, where T_c and x_{ci} are the values for each individual set; values of T/T_c are thus less than unity, and of x_{ci} generally in the range -0.5 to + 0.5. Hoelscher, Schneider and Ott (ref. 14) used a similar plot to compare phase diagrams of different methanol - *n*-alkane systems. In this volume, the method has been found to be useful in one case only, that of methanol - cyclohexane. The large effects of small amounts of impurities on T_c appear to have been eliminated, and comparisons among the sets of data have thus been facilitated.

2. Correlations between Critical Solution Temperatures and Compositions and Chain Length in Systems of Alcohols and Homologous Series of Hydrocarbons

Within a particular system, reported critical solution parameters and mutual solubilities show substantial scatter; as examples, see the Critical Evaluations for the systems methanol - cyclohexane and methanol - hexane. As noted above, both x_{cl} and (especially) T_c are very sensitive to the presence of impurities. Therefore, correlations of these quantities with a characteristic molecular parameter should prove useful as an indication of the consistency of the data and the presence of outliers. In making such comparisons, it should be noted that x_{cl} has been measured in the better experiments to about ± 0.001 at best, while T_c for between-laboratory and within-laboratory determinations can probably be defined to within only ± 0.1 K at best, even though average determinations within one laboratory have been recorded with uncertainties of only ± 0.001 K.

Haarhaus and Schneider, ref. 15, suggested that T_c is linear in $\ln n$ for methanol - *n*-alkane systems, where *n* is the number of carbon atoms in the chain. However, this dependence does not account for the expected asymptotic approach to a constant value at very high chain length. A more satisfactory dependence can be found from Flory-Huggins theory (ref. 16), from which the following equations may be derived:

$$1/T_c = (1/T_c^{-1})[1 + (1/\psi_1)(1/V_r^{1/2} + 1/2V_r)]$$
⁽⁵⁾

$$x_{cl} = \frac{1}{1 + V_r^{-3/2}} \tag{6}$$

where $V_r = V_{m,2}/V_{m,1}$ is the ratio of the molar volumes of pure liquids 2 and 1 at the temperature of interest (the number of lattice sites occupied by the chain in Flory-Huggins theory), T_c^{∞} is the critical temperature at infinite chain length, and ψ_1 is a parameter related to the non-ideal entropy of mixing. Sufficiently precise density data for calculation of the appropriate values of V_r at the critical solution temperature are not available for all alcohols and hydrocarbons of interest. In addition, the Flory-Huggins relations are not expected to hold for molecules of such different polarities as alcohols and hydrocarbons. Therefore, an approximate approach is indicated. For *n*alkanes with sufficiently long chains, V_r is approximately linear to *n*, the number of carbon atoms in the hydrocarbon chain, and the dependence of V_r on temperature can be absorbed in the fitting coefficients. Thus, eqns. (7) and (8) below have been found to provide satisfactory semi-empirical relations for T_c and x_{c1} :

$$1/T_c = a + b/n^{1/2} \tag{7}$$

$$x_{c1} = c + d/n^{1/2}$$
 (8)

where n is the number of carbon atoms in the n-alkane, T_c is the upper critical solution temperature of the system and x_{c1} is the critical mole fraction of methanol.

2.1 Methanol-n-Alkane Series In this series, values of T_c , x_{c1} and solubilities were compared over the range from butane to hexadecane, resulting in the rejection of some data as outliers. An example of rejected UCST data are those of Fischer and Neupauer, who measured the UCST of methanol with alkanes from pentane to undecane and found values much higher (e.g. in the system methanol - heptane 14.6 K higher) than the recommended or tentative values. For this reason, all their UCST data are considered unreliable and are rejected. Recommended or tentative values were derived from the reliable data for each system, as discussed in individual evaluations. Least-squares fits to equations (7) and (8) give:

$$10^{3}$$
K/T_c = 0.9888(0.011) + 5.5543(0.029)/n^{1/2} (9)

$$x_{1c} = 1.2066(0.013) - 1.6071(0.034)/n^{1/2}$$
(10)

Numerical quantities in parentheses are estimated standard deviations of the fitting coefficients.

The standard errors of estimate are 0.0053 for eqn. (9) and 0.0054 for eqn. (10). The equations were constructed using all available values except those for *n*-hexadecane, which appear to be aberrant; T_c appears to be low by about 7 K and x_{c1} high by about 0.07. The recommended or tentative data for T_c and x_{1c} together with values calculated from the fitting equations are shown in Table 1; the linearity in $1/n^{1/2}$ is shown in figs. 2 and 3. Except for *n*-hexadecane, the calculated values of T_c deviate a maximum of 1.0 K from the recommended values, and the calculated values of x_{1c} deviate a maximum of 0.009 from the recommended or tentative values.

Fig. 3. Dependence of critical solution compositions and mutual solubilities at 300 K on reciprocal square root of carbon number for methanol-*n*-alkane systems. Critical solution compositions, x_{c1} : •; solid line, fitting equation; note the aberrant point for hexadecane at \blacklozenge , $1/n^{1/2} = 0.25$ and two points for tetradecane, \blacksquare . Mutual solubilities: \Box , for methanol- and cyclohexane-rich branches; O, diameter of "coexistence" curve; solid curve, fitting equation (see text).

Table 1. Observed and calculated values of $T_{cr} x_{c1}$ and mutual solubility at 300 K for the systems methanol-*n*-alkanes.

hydrocarbon	T_{c}/F	ζ.	x ₁₀			<i>x</i> ₁		<i>x</i> ₂		
-	obsď.	calc.	obsd.	calc.		obsđ.	calc.	obsd.	calc.	
butane	265.8	265.5	0.403	0.403		-	-	-	-	
pentane	287.2	288.0	0.497	0.488		-	-	-	-	
hexane	307.1	307.1	0.554	0.551		0.276	0.275	0.225	0.225	
heptane	324.3	323.8	0.599	0.599		0.175	0.177	0.108	0.107	
octane	339.4	338.7	0.639	0.638		0.136	0.137	0.063	0.063	
nonane	351.9		352.1	0.662	0.671		0.115	0.111	0.040	0.040
decane	364.0	364.3	0.703	0.698		0.090	0.092	0.028	0.027	
undecane	375.2	375.4	-	0.722		-	0.078	-	0.016	
dodecane	-	385.8	-	0.743		-	0.071	-	0.011	
tridecane	-	395.4	-	0.761		•	0.066	-	0.008	
tetradecane	-	404.3	•	0.777		-	0.058	-	0.006	
pentadecane	-	412.7	-	0.792		-	0.060	-	0.004	
hexadecane	413.4	420.6	0.876	0.805		0.059	0.059	0.003	0.003	

In fig. 3, recommended or tentative values of mutual solubilities at 300 K are plotted against $1/n_{1/2}$. According to the extended scaling equation, the composition is a function of $\theta = 1 - T/T_c$. The curve for the five hydrocarbons for which data are available can be rationalized by noting that both $1/T_c$ and x_{c1} are linear in $1/n_{1/2}$, so that introduction of these dependencies into the scaling equation at a fixed temperature T gives, at least approximately, an equation of the same form, but with $1/n_{1/2}$ replacing T_c . As usual, six parameters were needed to represent the data well, with values (and standard deviations in parentheses):

$$x_1 = x_{cl} \pm B_1 \theta^{\beta} \pm B_2 \theta^{\beta+w} + A_1 \theta \pm B_3 \theta^{\beta+2w} + A_2 \theta^{1-\alpha+w}$$
(11)

where $\theta = |1 - (n_c/n)^{1/2}|$, + and - refer to the branches below and above the critical composition, and the constants have their theoretical values $\beta = 0.329$, $\alpha = 0.11$, w = 0.5. The constants (with standard deviations in parentheses) are:

 $\begin{array}{ll} x_{c1} = 0.5180 \; (0.0030) & (1/n_{1/2})_c = 0.419 \; (0.001) \\ B_1 = 0.8859 \; (0.018) & B_2 = -0.4140 \; (0.1059) & B_3 = 0.0573 \; (0.15) \\ A_1 = 0.4326 \; (0.099) & A_2 = -0.6520 \; (0.17) & s = 0.0025 \\ s \; \text{is the standard error of estimate in composition.} \end{array}$

The value of x_{c1} for hexadecane is evidently aberrant. Figure 3 also includes two nonevaluated solubilities for methanol-*n*-tetradecane, which fall close to the curve and thus appear to be of reasonable quality.

2.2 Benzyl Alcohol-n-Alkane Series

Values of the UCST for systems containing benzyl alcohol and alkanes from hexane to hexadecane were treated as described above for the methanol-*n*-alkane systems. These data were smoothed by the following equation:

$$10^{3}$$
K/T_c = 1.0338(0.021) + 5.4476(0.056)/n^{1/2} (12)

The experimental UCST data together with the calculated values and smoothing curve are shown in Table 2. In this series of systems, the solubilities at the UCST were not of adequate quality for fitting.

Table 2.	Experimental and smoothed values of T_{i}	
for	the systems benzyl alcohol-n-alkane.	

Hydrocarbon	T_{c}/K	
	obsd.	calc.
hexane	322.0-323.8	323.1
heptane	324.9-333.0	325.3
octane	327.7	328.4
nonane	-	332.2
decane	-	336.3
undecane	339.4	340.6
dodecane	345.1	345.0
tridecane	350.5	349.5
tetradecane	355.0	354.0
pentadecane	359.7	358.6
hexadecane	363.0	363.1

REFERENCES

- 1. Prigogine, I.; Defay, R. *Chemical Thermodynamics*, transl. Everett, D.H. Longmans, Green and Co., London, New York, Toronto. <u>1954</u>, Chap. 16.
- 2. Rowlinson, J.S.; Swinton, F.L. Liquids and Liquid Mixtures. 3rd ed. Butterworth Scientific, London. 1982, Chap. 3; sect. 4.8, 4.9.
- 3. Singh, R.R.; Van Hook, W.A. J. Chem. Phys. 1987, 87, 6088.
- 4. Ley-Koo, M.; Green, M.S. Phys. Rev. A 1981, 23, 2650.
- 5. Wegner, F. Phys. Rev. B 1972, 5, 4529.
- 6. Ewing, M.B.; Johnson, K.A.; McGlashan, M.L. J. Chem. Thermodyn. 1988, 20, 49.
- 7. Le Guillou, J.C.; Zinn-Justin, J. Phys. Rev. B 1980, 21, 3976.
- 8. J.V. Sengers and J.M.H. Levelt Sengers, Ann. Rev. Phys. Chem. 1986, 37, 189.
- 9. Tweekrem, J.L.; Jacobs, D.T. Phys. Rev. A 1983, 27, 2773.
- 10. Cohn, R.H.; Jacobs, D.T. J. Chem. Phys. 1984, 80, 856.
- 11. Moldover, M.R.; Cahn, J.W. Science 1980, 207, 1073.
- 12. Bevington, P.R. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York. 1969, Chap. 9.
- 13. Aizpiri, A.G.; Rubio, R.G.; Diaz Peña, M. J. Chem. Phys. 1988, 88, 1934.
- 14. Hoelscher, I.F.; Schneider, G.M.; Ott, J.B. Fluid Phase Equilibria 1986, 27, 153.
- 15. Haarhaus, U.; Schneider, G.M. J. Chem. Thermodyn. <u>1988</u>, 20, 1121.
- 16. Flory, P.J. Principles of Polymer Chemistry. Cornell University Press. Ithaca, N.Y. <u>1953</u>; pp. 544-5.

J.W. Lorimer, London, Canada

A. Maczynski, Warsaw, Poland

A. Skrzecz, Warsaw, Poland

August, 1994

	1
COMPONENTS:	EVALUATOR:
(1) Methanol-d; CDH ₃ O; [1455-13-6]	A. Skrzecz
(2) Cyclohexane-d ₁₂ ; C ₆ D ₁₂ ; [1735-1	7-7] Institute of Physical Chemistry Polish Academy of Sciences Warsaw, Poland July, 1989
CRITICAL EVALUATION:	
Solubilities and upper critical solution cyclohexane- d_{12} have been reported in the	temperatures (UCST) for the system methanol-d- e two references listed below:
Author(s) T/K	x_1 x_1 (2)-rich phase (1)-rich phase
1. Rabinovich 1971 317.3 UCST	- · ·
2. Schoen 1986 314.935 UCST	0.516 0.516
Critical Solution Temperature and Composition	ition .
The values of Schoen et al., ref 2, is an method and degree of deuterization of co systems investigated by the authors. This	ccepted as tentative because information is given about the mponents, and the value is consistent with other similar information is lacking in ref 1.
Mutual Solubility	
The authors give, for temperatures wit	hin about 0.3 K of the critical,
	$\Delta n = B_n 1 - T/T_c ^{\beta}$
where Δn is the difference in refractive in amplitude constant, the critical index is β calibration factor for conversion to compo comment.	idex between coexisting phases, $B = 0.136 \pm 0.004$ is an $= 0.323 \pm 0.004$, and the sample variance is 6.2×10^{-5} . The osition is unknown, so these data are given without further
TENTATIVE DATA:	
UCST: $T_{c} = 314.935 \pm 0.001 \text{ K}$ x	$c_1 = 0.516$
REFERENCES:	

- 1. Rabinovich, I.B.; Tsvetkov, V.G. Zh. Fiz. Khim. 1971, 45, 822.
- 2. Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922.

2	
COMPONENTS: (1) Methanol- <i>d</i> ; CDH ₃ O; [1455-13-6]	ORIGINAL MEASUREMENTS: Rabinovich, I.B.; Tsvetkov, V.G.
-	Zh. Fiz. Khim. <u>1971</u> , 45, 822-3;
(2) Cyclohexane- d_{12} ; C ₆ D ₁₂ ;	Russ. J. Phys. Chem. (Engl.
{1735-17-7]	Transl.) 1971, 45, 814.
VARIABLES:	PREPARED BY:
One temperature: 317 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 44.1°C.	
Solubility data were presented on a	graph only.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The cloud point method was used. The temperature of appearance of turbidity was observed. No further details were reported.	 (1) source not specified; purified by methods described in ref 1. (2) source not specified; purified by methods described in ref 1.
	ESTIMATED ERROR: temp. ±0.1 K.
	REFERENCES: 1. Rabinovich, I.B. Vliyanie izitopii na fiziko- khimicheskie svoistva zhidkostei, Izd. Nauka, Moskva, 1968.
COMPONENTS:	ORIGINAL MEASUREMENTS:
COMPONENTS: (1) Methanol-d; CDH ₃ O; [1455-13-6]	ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D.
COMPONENTS: (1) Methanol-d; CDH ₃ O; [1455-13-6] (2) Cyclohexane-d ₁₂ ; C ₆ D ₁₂ ;	ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D.
COMPONENTS: (1) Methanol-d; CDH ₃ O; [1455-13-6] (2) Cyclohexane-d ₁₂ ; C ₆ D ₁₂ ; [1735-17-7]	ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922-8.
COMPONENTS: (1) Methanol-d; CDH ₃ O; [1455-13-6] (2) Cyclohexane-d ₁₂ ; C ₆ D ₁₂ ; <u>[1735-17-7]</u> VARIABLES: One temperature: 315 K	ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922-8. PREPARED BY: A. Skrzecz
COMPONENTS: (1) Methanol-d; CDH_3O ; [1455-13-6] (2) Cyclohexane- d_{12} ; C_6D_{12} ; [1735-17-7] VARIABLES: One temperature: 315 K EXPERIMENTAL VALUES:	ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922-8. PREPARED BY: A. Skrzecz
COMPONENTS: (1) Methanol-d; CDH ₃ O; [1455-13-6] (2) Cyclohexane- d_{12} ; C ₆ D ₁₂ ; <u>[1735-17-7]</u> VARIABLES: One temperature: 315 K EXPERIMENTAL VALUES: The UCST was reported to be 41.785°C	ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922-8. PREPARED BY: A. Skrzecz at $x_1 = 0.516$.
COMPONENTS: (1) Methanol-d; CDH ₃ O; [1455-13-6] (2) Cyclohexane-d ₁₂ ; C ₆ D ₁₂ ; [1735-17-7] VARIABLES: One temperature: 315 K EXPERIMENTAL VALUES: The UCST was reported to be 41.785°C The corresponding mass percentage, c	ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922-8. PREPARED BY: A. Skrzecz at x ₁ = 0.516. salculated by the compiler is
COMPONENTS: (1) Methanol-d; CDH ₃ O; [1455-13-6] (2) Cyclohexane- d_{12} ; C ₆ D ₁₂ ; [1735-17-7] VARIABLES: One temperature: 315 K EXPERIMENTAL VALUES: The UCST was reported to be 41.785°C The corresponding mass percentage, c 100w ₁ = 26.8.	ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922-8. PREPARED BY: A. Skrzecz at x ₁ = 0.516. calculated by the compiler is
COMPONENTS: (1) Methanol-d; CDH ₃ O; [1455-13-6] (2) Cyclohexane- d_{12} ; C ₆ D ₁₂ ; [1735-17-7] VARIABLES: One temperature: 315 K EXPERIMENTAL VALUES: The UCST was reported to be 41.785°C The corresponding mass percentage, c 100w ₁ = 26.8. AUXILIARY	ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922-8. PREPARED BY: A. Skrzecz at $x_1 = 0.516$. calculated by the compiler is INFORMATION
COMPONENTS: (1) Methanol-d; CDH ₃ O; [1455-13-6] (2) Cyclohexane- d_{12} ; C ₆ D ₁₂ ; [1735-17-7] VARIABLES: One temperature: 315 K EXPERIMENTAL VALUES: The UCST was reported to be 41.785°C The corresponding mass percentage, c 100w ₁ = 26.8. AUXILIARY METHOD/APPARATUS/PROCEDURE:	ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922-8. PREPARED BY: A. Skrzecz at $x_1 = 0.516$. calculated by the compiler is INFORMATION SOURCE AND PURITY OF MATERIALS:
COMPONENTS: (1) Methanol-d; CDH ₃ O; [1455-13-6] (2) Cyclohexane- d_{12} ; C ₆ D ₁₂ ; [1735-17-7] VARIABLES: One temperature: 315 K EXPERIMENTAL VALUES: The UCST was reported to be 41.785°C The corresponding mass percentage, c 100w ₁ = 26.8. AUXILIARY METHOD/APPARATUS/PROCEDURE: The differences of refractive index between two coexisting liquid phases	ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922-8. PREPARED BY: A. Skrzecz at $x_1 = 0.516$. calculated by the compiler is INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Merck, Uvasol quality, degree of deuteration > 99 %; used as
COMPONENTS: (1) Methanol-d; CDH ₃ O; [1455-13-6] (2) Cyclohexane- d_{12} ; C ₆ D ₁₂ ; [1735-17-7] VARIABLES: One temperature: 315 K EXPERIMENTAL VALUES: The UCST was reported to be 41.785°C The corresponding mass percentage, c 100w ₁ = 26.8. AUXILIARY METHOD/APPARATUS/PROCEDURE: The differences of refractive index between two coexisting liquid phases were measured. The samples were prepared by mixing the required	ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922-8. PREPARED BY: A. Skrzecz at x ₁ = 0.516. calculated by the compiler is INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Merck, Uvasol quality, degree of deuteration > 99 %; used as received.
COMPONENTS: (1) Methanol-d; CDH ₃ O; [1455-13-6] (2) Cyclohexane- d_{12} ; C ₆ D ₁₂ ; [1735-17-7] VARIABLES: One temperature: 315 K EXPERIMENTAL VALUES: The UCST was reported to be 41.785°C The corresponding mass percentage, c 100w ₁ = 26.8. AUXILIARY METHOD/APPARATUS/PROCEDURE: The differences of refractive index between two coexisting liquid phases were measured. The samples were prepared by mixing the required masses of components in a glove box.	<pre>ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922-8. PREPARED BY: A. Skrzecz at x₁ = 0.516. calculated by the compiler is INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Merck, Uvasol quality, degree of deuteration > 99 %; used as received. (2) Merck, Uvasol quality,</pre>
COMPONENTS: (1) Methanol-d; CDH ₃ O; [1455-13-6] (2) Cyclohexane- d_{12} ; C_6D_{12} ; [1735-17-7] VARIABLES: One temperature: 315 K EXPERIMENTAL VALUES: The UCST was reported to be 41.785°C The corresponding mass percentage, c 100w ₁ = 26.8. AUXILIARY METHOD/APPARATUS/PROCEDURE: The differences of refractive index between two coexisting liquid phases were measured. The samples were prepared by mixing the required masses of components in a glove box. The deflection of a He/Ne laser beam after passing through the two	<pre>ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922-8. PREPARED BY: A. Skrzecz at x₁ = 0.516. calculated by the compiler is INFORMATION SOURCE AND FURITY OF MATERIALS: (1) Merck, Uvasol quality, degree of deuteration > 99 %; used as received. (2) Merck, Uvasol quality, degree of deuteration > 99 %; used as received.</pre>
COMPONENTS: (1) Methanol-d; CDH ₃ O; [1455-13-6] (2) Cyclohexane- d_{12} ; C ₆ D ₁₂ ; [1735-17-7] VARIABLES: One temperature: 315 K EXPERIMENTAL VALUES: The UCST was reported to be 41.785°C The corresponding mass percentage, C 100 w_1 = 26.8. METHOD/APPARATUS/PROCEDURE: The differences of refractive index between two coexisting liquid phases were measured. The samples were prepared by mixing the required masses of components in a glove box. The deflection of a He/Ne laser beam after passing through the two compartments of the differential refractometer coll was resumed to be the sample of the sample of the sample of the differential refractometer coll was resumed to be the sample of th	<pre>ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922-8. PREPARED BY: A. Skrzecz at x₁ = 0.516. calculated by the compiler is INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Merck, Uvasol quality, degree of deuteration > 99 %; used as received. (2) Merck, Uvasol quality, degree of deuteration > 99 %; used as received. ESTIMATED ERROP.</pre>
COMPONENTS: (1) Methanol-d; CDH ₃ O; [1455-13-6] (2) Cyclohexane- d_{12} ; C ₆ D ₁₂ ; [1735-17-7] VARIABLES: One temperature: 315 K EXPERIMENTAL VALUES: The UCST was reported to be 41.785°C The corresponding mass percentage, C 100w ₁ = 26.8. AUXILIARY METHOD/APPARATUS/PROCEDURE: The differences of refractive index between two coexisting liquid phases were measured. The samples were prepared by mixing the required masses of components in a glove box. The deflection of a He/Ne laser beam after passing through the two compartments of the differential refractometer cell was measured as the distance necessary to shift the	<pre>ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922-8. PREPARED BY: A. Skrzecz at x₁ = 0.516. calculated by the compiler is INFORMATION SOURCE AND FURITY OF MATERIALS: (1) Merck, Uvasol quality, degree of deuteration > 99 %; used as received. (2) Merck, Uvasol quality, degree of deuteration > 99 %; used as received. ESTIMATED ERROR: temp. ±0.001 K (UCST),</pre>
COMPONENTS: (1) Methanol-d; CDH ₃ O; [1455-13-6] (2) Cyclohexane- d_{12} ; C_6D_{12} ; [1735-17-7] VARIABLES: One temperature: 315 K EXPERIMENTAL VALUES: The UCST was reported to be 41.785°C The corresponding mass percentage, c 100w ₁ = 26.8. AUXILIARY METHOD/APPARATUS/PROCEDURE: The differences of refractive index between two coexisting liquid phases were measured. The samples were prepared by mixing the required masses of components in a glove box. The deflection of a He/Ne laser beam after passing through the two compartments of the differential refractometer cell was measured as the distance necessary to shift the light detection unit. The refractive index of the coexisting phases was	<pre>ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922-8. PREPARED BY: A. Skrzecz at x₁ = 0.516. calculated by the compiler is INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Merck, Uvasol quality, degree of deuteration > 99 %; used as received. (2) Merck, Uvasol quality, degree of deuteration > 99 %; used as received. ESTIMATED ERROR: temp. ±0.001 K (UCST), ±0.003 K (24 h stability).</pre>
COMPONENTS: (1) Methanol-d; CDH ₃ O; [1455-13-6] (2) Cyclohexane- d_{12} ; C ₆ D ₁₂ ; [1735-17-7] VARIABLES: One temperature: 315 K EXPERIMENTAL VALUES: The UCST was reported to be 41.785°C The corresponding mass percentage, c 100w ₁ = 26.8. AUXILIARY METHOD/APPARATUS/PROCEDURE: The differences of refractive index between two coexisting liquid phases were measured. The samples were prepared by mixing the required masses of components in a glove box. The deflection of a He/Ne laser beam after passing through the two compartments of the differential refractometer cell was measured as the distance necessary to shift the light detection unit. The refractive index of the coexisting phases was related to the composition by resuming accurate of the differential	<pre>ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922-8. PREPARED BY: A. Skrzecz at x₁ = 0.516. calculated by the compiler is INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Merck, Uvasol quality, degree of deuteration > 99 %; used as received. (2) Merck, Uvasol quality, degree of deuteration > 99 %; used as received. ESTIMATED ERROR: temp. ±0.001 K (UCST), ±0.003 K (24 h stability). REFERENCES:</pre>
COMPONENTS: (1) Methanol-d; CDH ₃ O; [1455-13-6] (2) Cyclohexane- d_{12} ; C_6D_{12} ; [1735-17-7] VARIABLES: One temperature: 315 K EXPERIMENTAL VALUES: The UCST was reported to be 41.785°C The corresponding mass percentage, C 100w ₁ = 26.8. AUXILIARY METHOD/APPARATUS/PROCEDURE: The differences of refractive index between two coexisting liquid phases were measured. The samples were prepared by mixing the required masses of components in a glove box. The deflection of a He/Ne laser beam after passing through the two compartments of the differential refractometer cell was measured as the distance necessary to shift the light detection unit. The refractive index of the coexisting phases was related to the composition by measuring several mixtures as function of temperature. The	ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922-8. PREPARED BY: A. Skrzecz at x ₁ = 0.516. calculated by the compiler is INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Merck, Uvasol quality, degree of deuteration > 99 %; used as received. (2) Merck, Uvasol quality, degree of deuteration > 99 %; used as received. ESTIMATED ERROR: temp. ±0.001 K (UCST), ±0.003 K (24 h stability). REFERENCES:

•

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Methanol-d; CDH ₃ O; [1455-13-6]	Khurma, J.R.; Fenby, D.V.		
(2) Hexane-d ₁₄ ; C ₆ D ₁₄ ; [21666-38-6]	Aust. J. Chem. <u>1982</u> , 35, 1281-4.		
VARIABLES:	PREPARED BY:		
Temperature: 301 - 305 K	A. Skrzecz		

EXPERIMENTAL VALUES:

Mutual solubility of methanol-d and hexane- d_{14}

Т/К	(2)-rich phase	(1)-rich phase	100 w, (compi (2)-rich phase	ler) (1)-rich phase
301.24	0.3333	-	14.15	-
303.29	-	0.6926	-	42.62
304.53	-	0.6301	-	35.96
304.59	0.4758	-	23.03	-
304.79	-	0.5939	-	32.53
304.84	UCST 0.560	0.560	29.6	29.6

AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The cloud point method was used. Sample tubes containing mixtures of known composition were prepared by distillation under vacuum from the bulk degassed pure components and sealed. The phase separation was observed visually. The temperature of a silicone oil bath was controlled by a precision temperature controller (Tronac PTC 60) and measured with calorimeter thermometers which had been calibrated against a platinum resistance thermometer. For each sample the phase separation temperature was measured several times.	 (1) Merck, Sharpe and Dohme Canada Ltd, isotopic purity > 99 atom % D; dried over freshly activated molecular sieve type 3A, degassed by vacuum sublimation. (2) Merck, Sharpe and Dohme Canada Ltd, isotopic purity > 98 atom % D; dried over freshly cut Na, degassed by vacuum sublimation.
	ESTIMATED ERROR:
	temp. ±0.02 K, ±0.06 K (UCST).
	REFERENCES:

COMPONENTS:	EVALUATOR:
(1) Methanol-d; CDH ₃ O; [1455-13-6]	A. Maczynski
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Institute of Physical Chemistry Polish Academy of Sciences Warsaw, Poland
	J.W. Lorimer Department of Chemistry The University of Western Ontario London, Ont., Canada
	July, 1989

CRITICAL EVALUATION:

4

Data on solubilities and upper critical solution temperatures (UCST) for the system methanol-d - cyclohexane are summarized in Table 1.

Table 1.	Summary	of solubility	dat for	the system	methanol-d	(1) -	cyclohexane	(2)
----------	---------	---------------	---------	------------	------------	-------	-------------	-----

Author(s)	Rang	e		
	<i>T/</i> K	<i>p/</i> MPa	<i>x</i> ₁	<i>x</i> ₁
			(2)-rich phase	(1)-rich phase
1. Cardinaud 1960	319.8 UCST		0.5	0.5
2. Rabinovich 1971	320.7 UCST		-	-
3. Schoen 1986	320.187 UCST		0.530	0.530
4. Singh 1987	316-321.307 UCST		0.354-0.514	0.514-0.757
	317.1-323.6	0.1-11.8	0.400-0.493	0.587 - 0.757

Critical Solution Temperature and Composition

The four reported values of UCST, ref. 1-4, vary over a range of 1.5 K. The values of Schoen and Wichers, ref. 3, and of Singh and Van Hook, ref 4, were determined with careful attention to details. However, only Singh and Van Hook have given details of the careful analysis by which the results were obtained, so their value, $T_c = 321.307$ K at 0.1 MPa, is considered as *tentative*.

The critical composition is reported in refs. 1, 3 and 4, and varies from $x_1 = 0.5$ to 0.530. The average of the values in refs. 3 and 4. For reasons given above, the value of Singh and Van Hook found by analysis of all data at all pressures, $x_{1c} = 0.5140 \pm 0.0006$, is considered as *tentative*. Their value for data at 0.1 MPa alone is $x_{1c} = 0.510 \pm 0.002$.

Mutual Solubility

The only data not at the critical solution point are those of Singh and Van Hook, who fitted their data using the equation

(continued)

CRITICAL EVALUATION: (continued)

$$x_1 = x_{1c} \pm A | 1 - T/T_c |^{\beta}$$

where + and - refer to the branches below and above the critical composition, $\beta = 0.340 \pm 0.013$, $A = 1.02 \pm 0.07$, $T_c/K = 321.307 \pm 0.001$, $x_{c1} = 0.510 \pm 0.002$, variance 3.2×10^{-5} . The evaluators find that this equation does not, in fact, predict the data correctly. An independent least-squares calculation with fixed T_c and β as given above yields $x_{c1} = 0.5083 \pm 0.0007$, $A = 1.0168 \pm 0.0046$, (std. error of estimate)² = 2.9 × 10^{-6}. These recalculated values have been used to calculate the data in Table 2. Note that the value at p = 0 MPa is 0.032 K lower than any of the values at 0.1 MPa.

The data of Singh and Van Hook at high pressure are shown on the compilation sheets. At all pressures, their data are considered to be *tentative*.

Pressure coefficient of critical solution temperature

Singh and Van Hook also measured the value:

$$(\partial T_c/\partial p)_r = (3.173 \pm 0.012) \times 10^{-7} \text{ K Pa}^{-1}$$

TENTATIVE DATA:

Table 2. Mutual solubilities in the system methanol-d (1) - cyclohexane (2) at p = 0.1 MPa

<i>T/</i> K	x_1		x_1
(2)-ricl	ı phase	(1)-rich	phase
316.00	0.256		0.760
317.00	0.274		0.743
318.00	0.294		0.723
319.00	0.319		0.698
320.00	0.352		0.665
320.50	0.376		0.641
321.00	0.413		0.604
321.20	0.442		0.575
321.30	0.482		0.535
323.33	0.514	UCST	

The precision is estimated to be at least ± 0.002 in mole fraction. Note that the critical composition derived from the fitting equation (0.508) agrees well with that estimated by Singh and Van Hook for data at 0.1 MPa.

REFERENCES:

Cardinaud, R. Bull. Soc. Chim. Fr. <u>1960</u>, 622.
 Rabinovich, I.B.; Tsvetkov, V.G. Zh. Fiz. Khim. <u>1971</u>, 45, 822.
 Schoen, W; Wiechers, R.; Woermann, D. J. Chem. Phys. <u>1986</u>, 85, 2922.
 Singh, R.R.; Van Hook, W.A. J. Chem. Phys. <u>1987</u>, 87, 6097.

6					
COMPONENTS: (1) Methanol- <i>d</i> ; CDH ₃ O; [1455-13-6]	ORIGINAL MEASUREMENTS: Cardinaud, R.				
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Bull. Soc. Chim. Fr. <u>1960</u> , 622-6.				
VARIABLES:	PREPARED BY:				
One temperature: 320 K	A. Skrzecz				
EXPERIMENTAL VALUES:					
The UCST was reported to be 46.6°C at The corresponding mass percentage, c 28 g(1)/100g sln.	t $x_1 = 0.5$. Calculated by the compiler is				
AUXILIARY	INFORMATION				
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The components were weighed in ampoules and protected against moisture. The influence of water impurity (0.004 mole fraction) was investigated. Solubility data were reported in a graph.	 SOURCE AND PURITY OF MATERIALS: (1) obtained in the laboratory; 97 - 98 % CH₃OD, boiled with Mg, distilled; b.p. 65.3 °C. (2) source not specified; dried over CaCl₂, distilled over Mg(ClO₄)₂. 				
3- «F	ESTIMATED ERROR: temp. ±0.2 K.				
	REFERENCES :				
······································					
COMPONENTS: (1) Methanol- <i>d</i> ; CDH ₃ O; [1455-13-6] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	ORIGINAL MEASUREMENTS: Rabinovich, I.B.; Tsvetkov, V.G. Zh. Fiz. Khim. <u>1971</u> , 45, 822-3; Russ. J. Phys. Chem. (Engl. Transl.) 1971, 45, 458.				
VARIABLES:	PREPARED BY:				
One temperature: 321 K	λ. Skrzecz				
EXPERIMENTAL VALUES:					
The UCST was reported to be 47.5°C.					
Solubility data were presented on a graph only.					
AUXILIARY INFORMATION					
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The temperature of appearance of turbidity was observed. No further details were reported.	 SOURCE AND FURITY OF MATERIALS: (1) source not specified; purified by methods described in ref 1. (2) source not specified; purified by methods described in ref 1. 				
	ESTIMATED ERROR: temp. ±0.1 K.				
	REFERENCES: 1. Rabinovich, I.B. Vliyanie izitopii na fiziko- khimicheskie svoistva zhidkostei, Izd. Nayka, Moskva, <u>1968</u> .				

COMPONENTS	ORTGINAL MEASUREMENTS .
	Orbran N. Mashan R.
(1) Methanol-d; CDH_3O ; [1455-13-6]	Schoen, w.; wiechers, R.;
(2) Cyclonexane; C_6H_{12} ; [110-82-7]	woermann, D.
	J. Chem. Phys. <u>1986</u> , 85, 2922-8.
VARIABLES:	PREPARED BY:
One temperature: 320 K	A. SKrzecz
EXPERIMENTAL VALUES:	
The Woom are repeated to be 47.027^{0}	at w = 0.520
The UCST was reported to be 47.037 C	at $x_1 = 0.530$.
The corresponding mass percentage, c	alculated by the compiler is
$w_1 = 0.307.$	
AUXILIARY	INFORMATION
METHOD / A PPARATUS / PROCEDURE ·	SOURCE AND PURITY OF MATERIALS.
The differences of refractive index	(1) Merck, Uvasol guality, degree of
between two coexisting liquid phases	deuteration > 99 %; used as
were measured. Samples were made by mixing the required masses of	received.
components in a glove box. The	(2) Aldrich, Gold Label quality,
The deflection of a He/Ne laser beam	guaranteed purity > 99 %, water
compartments of the differential	
refractometer cell was measured as	
light detection unit. The refractive	
index of the coexisting phases was	
measuring several mixtures as a	ESTIMATED ERROR:
function of temperature. The	temp. ±0.008 K (UCST),
measurements were made over the range: UCST - 2 K	± 0.003 K (24 h stability).
	REFERENCES :
	ļ

COMPONENTS :				ORIGINAL MEASUREMENTS:
(1) Methanol-	d; CDH ₃ O;	[1455-13-6]		Singh, R.R.; Van Hook, W.A.
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]				J. Chem. Phys. <u>1987</u> , 87, 6097-110.
VARIABLES:				PREPARED BY:
Temperature: Pressure : 0.	316 - 321 1 - 11.8 M	K IPa		A. Skrzecz
EXPERIMENTAL V	ALUES:		l	
Solubili	ty of metl	nanol-d and c	yclo	hexane
T/K	p/MPa	<i>x</i> ₁	100	
320.049	0.1	0.3539	(CON 17	1911er) 7.70
320.854	0.1	0.3996	20	.72
320.858	0.11	0.3996	20	.72
321.768	3.23	0.3996	20	.72
322.841	6.39	0.3996	20	.72
323.104	6.92	0.3996	20	.72
324.266	9.96	0.3996	20).72
324.756	11.77	0.3996	20	0.72
321.213	1.82	0.4339	23	.13
321.173	0.1	0.4362	23	
321.180	0.12	0.4362	23	3.30
322.112	2.84	0.4362	23	3.30
321.984	2.45	0.4362	23	
321.306	0.1	0.4932	27	7.65
321.302	0.09	0.4932	27	7.65
521.507	1.10	0.4552	61	
	·····-			(continued)
		AUXILIARY	<u>INE</u>	ORMATION
METHOD/ APPARAT	US/PROCED	JRE:		SOURCE AND PORITY OF MATERIALS:
The point at	which the	intensity of	E	(1) Aldrich Chemical Co., isotop
laser decreas	ed to one	-half its		Mg-activated I., 2X dist. under
incident valu	e was tak	en as the		dry Ar; no impurities by glc.
temperature o	f phase solution	eparation. I	For	(2) Fisher Scientific, ASC grad
stirrer was w	armed to a	about 5-10 K		in a spinning band column;
above T _c and a	a sample,	prepared		no impurities by glc.
gravimetrical	ly, was a	dded under		
manually and	the bath	temperature		BUILINIED ERROR:
then allowed	to decreas	se at about 2	2-5	temp. ±0.001 K (reproducibilit
mK per min, W	nlie a com	nputer		pressure ±0.01 MPa.
temperature a	nd light	intensity. 1	The	
rapid change	in intens	ity at the		REFERENCES:
	n 11000 to	instruct the	2	
transition wa	tore the	relevant data	. I	1. Sinch, R.R. Thesis
transition wa computer to s then to warm	tore the i the appara	relevant data atus and repe	a, eat	 Singh, R.R. Thesis, University of Tennesee,

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Methanol-d; CDH₃O; [1455-13-6] Singh, R.R.; Van Hook, W.A. (2) Cyclohexane; C₄H₁₂; [110-82-7] J. Chem. Phys. 1987, 87, 6097-110. EXPERIMENTAL VALUES: (continued) Solubility of methanol-d and cyclohexane 100 w₁ (compiler) \boldsymbol{x}_1 T/K p/MPa 0.4932 322.119 2.93 27.65 5.27 0.4932 27.65 322.858 322.680 4.71 0.4932 27.65 323.599 8.44 0.4932 27.65 323.912 9.64 0.4932 27.65 321.307 0.1 0.514 29.3 UCST calc. by authors for 0.1 MPa 321.138 0.1 0.5872 35.84 0.5872 321.936 2.61 35.84 322.214 0.5872 3.55 35.84 35.84 321.988 0.5872 2.88 317.969 0.1 0.7261 51.00 317.970 0.09 0.7261 51.00 318.468 1.97 0.7261 51.00 320.357 8.04 0.7261 51.00 51.00 320.333 7.98 0.7261 316.050 0.1 0.7571 55.03 317.163 3.38 0.7571 55.03 317.167 3.35 0.7571 55.03 0.7571 318.118 6.03 55.03 319.177 9.265 0.7571 55.03 319.108 9.05 0.7571 55.03 COMMENTS AND ADDITIONAL DATA:

The authors give extensive analysis of their data, with fitting equations of the form

 $x_{1} = x_{c1} \pm A \left| 1 - T/T_{c}^{\circ} \right|$ $T_{c}^{\circ} = T_{c} + cp$

where T_c , T_c° are the critical solution temperatures at zero pressure and pressure p, x_{c1} is the critical composition, $c = (3.173 \pm 0.012) \times 10^{1}$ K MPa⁻¹ is the pressure coefficient of T_c and A is an amplitude constant. For analysis of all data at all pressures, they find $T_c/K = 321.326 \pm 0.002$, $x_{c1} = 0.514 \pm 0.002$, while for data at 0.1 MPa alone, $T_c/K = 321.307 \pm 0.001$, $x_{c1} = 0.510 \pm 0.002$.

.

10					
COMPONENTS:			ORIGINAL MEASUREMENTS:		
(1) Methanol	-d; CDH ₃ O; [3	1455-13-6]	Khurma, J.R.; Fen	by, D.V.	
(2) Hexane; (C ₆ H ₁₄ ; [110-5	4-3]	Aust. J. Chem. <u>1</u>	<u>.982</u> , 35, 1281-4.	
VARIABLES:			PREPARED BY:	-	
Temperature:	297 - 308 K		A. Skrzecz		
EXPERIMENTAL	VALUES:		<u> </u>	······	
Mutua	al solubilit	y of methanol-d	d and hexane		
т/к (2)	x ₁ -rich phase	(1)-rich phase	100 w ₁ (compi e (2)-rich phase	ler) (1)-rich phase	
296.80	0.2329	-	10.43	-	
300.99	~	0.7798	-	57.59	
304.45	-	0.7332	-	51.31	
306.89	0.4546	-	24.22	-	
307.23		0.6588	-	42.54	
307.29	0.4942	-	27.26	-	
307.46	~	0.5920	-	35.75	
307.58	0,5462	-	31.58	-	
307.59 UCS	F 0.560	0.560	32.8	32.8	
AUXILIARY INFORMATION					
METHOD/APPARA	TUS/PROCEDUR	E:	SOURCE AND PURITY	OF MATERIALS:	
The cloud p Sample tubes known compose distillation bulk degasse sealed. The observed visu of a silicond	point metho s containing sition were under vac ed pure co phase sep ually. The s oil bath w	d was used. mixtures of prepared by uum from the mponents and aration was temperature as controlled	 (1) Merck, Sharpe Canada Ltd, isot atom % D; dried activated molecul 3A, degassed by v sublimation. (2) Philips, rese 	and Dohme opic purity > 99 over freshly ar sieve type acuum earch grade;	

by a precision temperature controller

(Tronac PTC 60) and measured with calorimeter thermometers which had

been calibrated against a platinum resistance thermometer. For each sample the phase separation temperature was measured several

times.

(2) Philips, research grade; dried over freshly-cut Na, degassed by vacuum sublimation.

ESTIMATED ERROR:

temp. ±0.02 K, ±0.04 K (UCST).

REFERENCES:

COMPONENTS		EVALUATOR:	
		LVALORION.	
(1) Methanol-d ₄ (me [811-98-3]	$thyl-d_3$ -alcohol-d); CD ₄ O;	A. Maczynski	
		Institute of Physical Ch	emistry
(2) Cyclohexane; C ₆	H ₁₂ ; [110-82-7]	Polish Academy of Scie	ences
_		Warsaw, Poland	
		J.W. Lorimer	
		Department of Chemis	try
		The University of Wes	tern Ontario
		London, Ont., Canada	
		July, 1989	
CRITICAL EVALUATION	DN:		
	· · · · · · · · · · · · · · · · · · ·		
cyclohexane were rep	ported in the following two par	pers: (UCS1) for the system	methanol-d ₄ -
Author(s)	T/K p/N	$MPa \qquad x_1$	<i>x</i> ₁
		(2)-rich n	hase (1)-rich phase

	1/1	<i>p</i> /mi a	~1	~1
			(2)-rich phase	(1)-rich phase
1. Schoen 1986	342.922 UCST		0.530	0.530
2. Singh 1987	317.7-318.593 UCST	0.1	0.369-0.509	0.509-0.518
	317.1-323.6	2.5-11.1	0.369-0.515	0.515-0.628

Critical Solution Temperature and Composition

The two reported values of UCST, refs 1 and 2, are in poor agreement. The value $T_c = 518.593 \pm 0.006$ K at 0.1 MPa of Singh and Van Hook, ref 2, is considered as *tentative* because these workers reported greater care in the purification of the components and gave data over a wide range of temperature and pressure. Schoen et al., ref 1, used as-received chemicals, and did not report any procedures to remove water, which may account partially for their higher value.

The critical composition is reported in refs 1 and 2, and do not agree satisfactorily. For the reasons stated previously, the value $x_c = 0.509 \pm 0.005$ at 0.1 MPa of Singh and Van Hook is considered as *tentative*.

Mutual Solubility

Only Singh and Van Hook reported composition data below the critical temperature. They correlated their data with the equations

 $|x_1 - x_{cl}| = B |1 - T/T_c|^{\beta}$

and

$$|x - x_{c1}| = B[1 - T/(T_c^{\rho} + cp)]^{\beta}$$

(continued)

CRITICAL EVALUATION: (continued)

where p is the pressure, $c = (3.173 \pm 0.012) \times 10^{-7}$ K Pa⁻¹ is the pressure coefficient of the critical solution temperature. They give various sets of fitting parameters, as follows.

data for 0.1 MPa only (authors' Table II)	data for all pressures (authors' Table II)	fixed $\beta = 0.325$ (authors' Table III)
0.509 ±0.005	0.515 ± 0.001	$0.514\ 0\ \pm 0.000\ 6$
0.95 ± 0.02	1.28 ± 0.07	1.18 ± 0.037
0.325 ± 0.034	0.338 ± 0.008	(0.325)
318.593 ±0.006	318.597 ±0.002	318.601 ± 0.002
	318.574 ±0.002	318.569 ± 0.002
6.7×10^{-5}	4.8×10^{-5}	1.66 × 10 ⁻⁴
	data for 0.1 MPa only (authors' Table II) 0.509 ± 0.005 0.95 ± 0.02 0.325 ± 0.034 318.593 ± 0.006 6.7×10^{-5}	data for 0.1 MPa only (authors' Table II)data for all pressures (authors' Table II) 0.509 ± 0.005 0.515 ± 0.001 0.95 ± 0.02 1.28 ± 0.07 0.325 ± 0.034 0.338 ± 0.008 318.593 ± 0.006 318.597 ± 0.002 318.574 ± 0.002 6.7×10^{-5} 4.8×10^{-5}

The quantities T_c and T_c^0 are the critical solution temperatures at 0.1 MPa and zero pressure. The evaluators find that large errors in composition arise from use of these equations, possibly because of excessive rounding of the *B* parameter. Thus, the equations should be used as rough guides only. For the data at 0.1 MPa and fixed $\beta = 0.325$, the evaluators find: $T_c = 318.601 \pm 0.001$ K, $B = 0.9362 \pm 0.020$, $x_{c1} = 0.4911 \pm 0.0017$, s = 0.0050 (variance 2.5×10^{-5}), values that are close to those of Singh and Van Hook, but which actually reproduce the experimental data better. The evaluators' parameters are recommended for calculations.

The complete high pressure data of Singh and Van Hook are shown on the compilation and should be considered as *tentative*.

REFERENCES:

1. Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922.

2. Singh, R.R.; Van Hook, W.A. J. Chem. Phys. 1987, 87, 6097.
| COMPONENTS : | ORIGINAL MEASUREMENTS: |
|---|--|
| (1) Methanol-d, (methyl-d. | Schoen, W.; Wiechers, R.; |
| a]coho] = d; CD.0; [811=98=3] | Woermann, D. |
| (2) $Cyclobevano: CH : [110-82-7]$ | T Chem Phys 1986 85 2922-8 |
| (5) Cycromexane, $C_{6n_{12}}$, $[110-82-7]$ | $\frac{1}{1}$ |
| | |
| VADTADY DO | |
| One terrestance 205 M | PREPARED BY: |
| One temperature: 325 K | A. SKrzecz |
| | |
| EXPERIMENTAL VALUES: | |
| | |
| The UCST was reported to be 51.772°C | at $x_1 = 0.530$. |
| The corresponding mass percentage, c | alculated by the compiler is |
| 32.6 g(1)/100g sln. | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| AUXILIARY | INFORMATION |
| METHOD /A PDADATHS / PDOCEDUDE - | SOURCE AND DUDTTY OF MATERIALS. |
| The differences of refractive index | (1) Merck, Uvasol quality, degree of |
| between two coexisting liquid phases | deuteration > 99 %; used as |
| Were measured. Samples were made by | received. |
| Components in a glove box. The | (2) Aldrich, Gold Label guality, |
| deflection of a He/Ne laser beam | guaranteed purity > 99 %, water |
| Compartments of a differential | < 0.005 %; used as received. |
| refractometer cell was measured as | |
| the distance necessary to shift the | |
| index of the coexisting phases was | |
| related to the composition by | ESTIMATED EPROP. |
| measuring several mixtures as a function of temperature mag | $t_{emp} \pm 0.001 \text{ K} (1005\text{m})$ |
| measurements were made over the | ± 0.003 K (24 h stability). |
| range: UCST - 2 K. | · • • • • • |
| | REFERENCES : |
| | |
| | |
| | |
| | |
| | |

COMPONENTS:			ORIGINAL MEASUREMENTS:
(1) Methanol-	d, (methyl-	-d3 alcohol-d);	Singh, R.R.; Van Hook, W.A.
(2) Cyclohexane; C_6H_{12} ; [110-82-7]			J. Chem. Phys. <u>1987</u> , 87, 6097-110.
VADTABLES.		<u></u>	PREPARED BY:
VARIABLES.			
Temperature: Pressure : 0.	318 - 319 1 - 11.8 M	K IPa	A. SKIZECZ
EXPERIMENTAL V	ALUES:		
Solubili	ty of meth	$anol-d_4$ and cyc	lohexane
T/K	p/MPa	x ₁ 10 (c	0 w ₁ ompiler)
217 666	0 1	0 3699	20.03
318.945	4.13	0.3689	20.03
320.350	8.56	0.3689	20.03
318.176	0.1	0.4022	22.38
	3.88	0.4022	22.38
318.553	0.1	0.4593	26.69
319.803	4.04	0.4593	26.69
321.215	8.49	0.4593	26.69
318.596	0.1	0.4808	28.41
319.596	3.27	0.4808	28.41
320.708	6.87	0.4808	28.41
318.593	0.1	0.514	31.2 UCST calculated by the authors
318.599	0.1	0.5176	31.50
320.795	7.02	0.5176	31.50
322.086	11.09	0.5176	31.50
318.584	0.1	0.5488	34.26
319.894	4.23 8.54	0.5488	34.26
5211202	0.54	010400	54120
			(continued)
		AUXILIARY I	NFORMATION
METHOD/APPARAT	US/PROCEDU	IRE:	SOURCE AND PURITY OF MATERIALS:
The point at	which the	intensity of	(1) MSD Isotopes, isotopic purity
an emerging b	eam from a	3-mW He-Ne	99 % D; purified over Mg
incident valu	ed to one- e wag take	nall 108	Ar: no impurities by glc
temperature o	f phase se	paration. For	(2) Fisher Scientific. ASC grade:
a run, the ce	11 with ma	ignetic	stored over Na wire, distilled
stirrer was w	armed to a	bout 5-10 K	in a spinning band column;
above T _c and a	a sample,	prepared	no impurities by glc.
gravimetrically, was added under Vacuum. The pressure was set manually and the bath tomorature			ESTIMATED ERROR:
then allowed to decrease at about 2-5		se at about 2-5	temp. ±0.001 K (reproducibility);
mK per min, w	hile a con	nputer	pressure ±0.01 MPa.
temperature a	onitorea p	ntensity The	
rapid change	in intensi	ty at the	REFERENCES:
transition was used to instruct the			
computer to s	tore the 1	elevant data,	1. Singh, R.R. Thesis,
the experimen	t a precel	ected number	University of Tennesee,
of times. Fo	r details.	see ref 1.	

COMPONENTS:

```
(1) Methanol-d, (methyl-d,
alcohol-d); CD,0; [811-98-3]
```

(2) Cyclohexane; C₆H₁₂; [110-82-7]

Singh, R.R.; Van Hook, W.A.
J. Chem. Phys. <u>1987</u>, 87,
6097-110.

ORIGINAL MEASUREMENTS:

EXPERIMENTAL VALUES: (continued)

Solubility of methanol- d_{L} and cyclohexane

<i>Т/</i> К	p/MPa	<i>x</i> ₁	100 W _i (compiler)
318.501	0.1	0.5794	37.12
319.425	3.01	0.5794	37.12
320.682	6.97	0.5794	37.12
318.103	0.1	0.6279	41.97
318.880	2.55	0.6279	41.97
320.416	7.39	0.6279	41.97

COMMENTS AND ADDITIONAL DATA:

The authors give extensive analysis of their data, with fitting equations of the form

$$x_{1} = x_{c1} \pm A | 1 - T/T_{c}^{\circ} |$$
$$T_{c}^{\circ} = T_{c} + cp$$

where T_c , T_c° are the critical solution temperatures at zero pressure and pressure p, x_{c1} is the critical composition, $c = (3.173 \pm 0.012) \times 10^{-1}$ K MPa' is the pressure coefficient of T_c and A is an amplitude constant. For analysis of all data at all pressures, they find $T_c/K = 318.597 \pm 0.002$, $x_{c1} = 0.514 \pm 0.001$, while for data at 0.1 MPa alone, $T_c/K = 318.593 \pm 0.006$, $x_{c1} = 0.515 \pm 0.001$.

COMPONENTS:	EVALUATOR:
(1) Methanol; CH ₄ O; [67-56-1]	A. Maczynski and A. Skrzecz Institute of Physical Chemistry
(2) Butane; C ₄ H ₁₀ ; [106-97-8]	Polish Academy of Sciences Warsaw, Poland
	J.W. Lorimer Department of Chemistry The University of Western Ontario London, Ont., Canada
	July, 1989

CRITICAL EVALUATION:

16

Table 1 gives solubilities and upper critical solution temperature (UCST) and compositions for the system methanol-butane which have been reported in the literature.

. т	Table 1. Solubilities, critical solution temperatures and composition in the system methanol(1) - butane (2)					
Author(s)		Range				
	T/K	p/MPa	<i>x</i> ₁	<i>x</i> ₁		
			(2)-rich phas	se (1)-rich phase		
1. Noda 1975	249.8-265.8 UCS	T	0.127-0.403	0.403-0.693		
2. Haarhaus 1988	263.8-292.6	5-140	0.285-0.384	0.418-0.607		
	266.45 at 0.1 MI	Pa				

Critical solution temperature and composiition

Of the two values for each of these quantities, those of Noda are closest to the correlations discussed in the *Preface*, and are accepted as *tentative*: $T_c = 265.8$ K, $x_{c1} = 0.403$.

Mutual solubility

Noda et al., ref 1, reported solubility data at normal pressure. Haarhaus and Schneider, ref 2, extrapolated their data measured at high pressures to 0.1 MPa, and gave the results in terms of the Simon equation

$$T/K = T_c/K + k |x_1 - x_{c1}|^{\nu}$$

with

$$y = \alpha x_1 / [1 + x_1(\alpha + 1)]$$

$$y_c = \alpha x_{c1} / [1 + x_{c1}(\alpha - 1)]$$

valid over the range 0.25 < $x_1 < 0.6$ or 264 < T/K < 266.45, where $T_c = 266.45$ K k = -1425 $\alpha = 9.02$ $x_{c1} = 0.399$ $\nu = 2.30$

These data overlap those of Noda et al., which are shown in the figure along with the curve calculated from the results of Haarhaus and Schneider. Clearly, the two sets of data coincide satisfactorily in the region $0.3 < x_1 < 0.6$, but deviate significantly outside that range. Thus, the equations of Haarhaus and Schneider give *tentative* values in the range $0.3 < x_1 < 0.6$, with uncertainties of $\Delta T = 0.2$ K for given x_1 , or $\Delta x_1 = 0.005$ for given T. Typical values are given in the table below.

Pressure Coefficient of Critical Solution Temperature

This quantity can be calculated from the fitting equations of Haarhaus and Schneider:

$$(\partial T/\partial p)_{x} = T_{o}/ac = 2.66 \times 10^{-7} \text{ K Pa}^{-1}$$

where T_0 , a and c are constants given on the compilation sheet.

Fig. 1. Solubilities in the system methanolbutane at p = 0.1 MPa. Solid line and **I**: results of Haarhaus and Schneider (extrapolated for $x_1 < 0.25$, > 0.6); O, results of Noda et al.

TENTATIVE DATA:

<i>x</i> ₁	T/K	<i>x</i> ₁	<i>T/</i> K
(2)-rich phase		(1)-rich	phase
0.00		0.40	0.66.15
0.30	264.0	0.40	266.45
0.35	266.1	0.41	266.44
0.36	266.2	0.42	266.41
0.37	266.4	0.43	266.36
0.38	266.4	0.44	266.28
0.39	266.4	0.45	266.19
0.403	265.8	0.50	265.41
(UCST)		0.55	264.25
		0.60	262.84

REFERENCES:

1. Noda, K.; Sato, K.; Nayatsuka, K.; Ishida, K. J. Chem. Eng. Jpn. <u>1975</u>, 8, 492.

2. Haarhaus, U.; Schneider, G.M. J. Chem. Thermodyn. 1980, 20, 1121.

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Methanol; CH ₄ O; [67-56-1] (2) Butane; C ₄ H ₁₀ ; [106-97-8]	Noda, K.; Sato, K.; Nagatsuka, K.; Ishida, K. <i>J. Chem. Eng. Jpn.</i> <u>1975</u> , 8, 492-3.		
VARIABLES:	PREPARED BY:		
Temperature: 250 - 266 K	A. Skrzecz		

EXPERIMENTAL VALUES:

	Mut	cual solubility of me	ethanol and buta	ne
t∕°c	100 w ₁ (2)-rich pha	(compiler) ase (1)-rich phase	x ₁ (2)-rich phase	(1)-rich phase
-23.4	7.4	-	0.127	-
-19.2	-	55.4	-	0.693
-18.6	8.4	-	0.143	-
-15.0	-	51.6	-	0.659
-10.0	-	44.7	-	0.594
-9.5	14.9	-	0.241	-
-9.1	16.7	-	0.267	-
-8.1	-	34.2	-	0.485
-7.9	-	33.1	-	0.473
-7.8	21.5	-	0.332	-
-7.4 U	CST 27.1	27.1	0.403	0.403

AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The cloud point method was used. No further details were reported.	(1) source not specified; guaranteed reagent grade; used as received.
	(2) Takachido Chemical Industry Co., Ltd., standard reagent; used as received.
	ESTIMATED ERROR:
	not specified
	REFERENCES:

COMPONENTS:			ORIGINAL MEASUR	EMENTS:	
(1) Methanol; CH ₄ O; [67-56-1]			Haarhaus, U.; Schneider, G.M.		
(2) Butane; C ₄ H ₁₀ ; [2	106-97-8]		J. Chem. Thermodyn. <u>1988</u> , 20, 1121-9.		
VARIABLES:			PREPARED BY:		
Temperature: 264 - Pressure: 5 - 140 M	293 K Pa		A. Skrzecz		
EXPERIMENTAL VALUES:			8		
Mutual solu	bility of 1	methanol a	and butane		
<i>Т/К р/М</i> Ра	x, (2)-rich phase	(1)-rich phase	100 w ₁ (con (2)-rich e phase	npiler) (1)-rich phase	
263.8 5.0 264.2 5.0 265.2 5.0 266.3 5.0 266.8 5.0 267.0 5.0 267.1 5.0 267.5 5.0 267.6 5.0	0.285 0.302 - - 0.330 - -	0.607 0.601 0.568 0.523 0.486 0.481 	18.0 19.3 - 21.4	46.0 45.4 42.0 37.7 34.3 33.8 	
267.7 5.0 267.8 5.0 264.8 10.0 265.2 10.0 265.4 10.0	0.384 _ 0.285	0.457 0.607 0.601	25.6 18.0	31.7 46.0 45.4	
1			(cor	ntinued)	
	AUX:	ILIARY IN	FORMATION		
METHOD/APPARATUS/PRO Visual measurements in a modified optica Cell, similar to tha ref 1, at constant p Constant cooling rat Was drawn from a bur temperature; butane into the cell which about 273 K. Precau against contaminatio as described in ref	CEDURE: were perfo l high-pres t described ressures us e. Methand ette at roo was condens was condens tions taken n by water 2.	ormed ssure d in sing a ol om sed to n were	SOURCE AND PURI (1) Reidel de Ha received; purity glc, H ₂ O < 0.01 Fischer titratio (2) Messer-Gries received; purity glc.	TY OF MATERIALS: aen; used as y > 99.5 mole % by mole % by Karl on. sheim; used as y > 99.5 mole % by	
			ESTIMATED ERROR	:	
			sol. ±0.002 mo temp. ±0.1-0.2 pressure ±0.1 M and ±0.5 MPa at	le fraction; K (total accuracy) MPa at p < 100 MPa t p > 100 MPa.	
			REFERENCES:		
			 Liphard, K. J. Chem. The 805. Ott, J.B.; I Schneider, G Thermodyn. 	G.; Schneider, G.M. ermodyn. <u>1975</u> , 7, Hoelscher, I.F.; .M. <i>J. Chem.</i> 1 <u>986</u> , 18, 815.	

20						
COMPONENTS: C				ORIGINAL MEASUREMENTS:		
(1) Methanol; CH ₄ O; [67-56-1]				Haarhaus, U.; Schneider, G.M.		
(2) Butan	e; C ₄ H ₁₀ ;	[106-97-8]		J. Chem. Thermodyn. <u>1988</u> , 20, 1121-9.		
EXPERIMENT	AL VALUES	: (continue	d)			
	Mu	utual solubi	lity of	methanol and buta	ne	
T/K	p/MPa	x	•	100 W ₁ (c	compiler)	
·	•	(2)-rich phase	(1)-ric pha	h (2)-rich se phase	(1)-rich phase	
266 3	10 0	_	0 568	_	42.0	
200.5	10.0	0 303	-	10 3		
200.4	10.0	0.302	0 5 7 2		27 7	
267.5	10.0	-	0.523	-	24.2	
268.1	10.0	-	0.486	-	34.3	
268.3	10.0	-	0.481	-	33.8	
268.4	10.0	0.330	-	21.4	-	
268.8	10.0	-	0.436	-	29.9	
268.8	10.0	-	0.424	-	28.9	
268.9	10.0	-	0.418	-	28.4	
269.0	10.0	0.384	0.457	25.6	31.7	
267.0	20.0	-	0.607	-	46.0	
267.4	20.0	-	0.601	-	45.4	
267.9	20.0	0.285	-	18.0	_	
268 6	20.0	-	0.568		42.0	
200.0	20.0	0 202	-	10.3	-	
200.0	20.0	0.302	0 = 22	-	37 7	
269.8	20.0	-	0.523	-	37.7	
270.4	20.0		0.486	-	34.3	
270.6	20.0	-	0.481	-	33.8	
270.7	20.0	0.330	-	21.4	-	
271.2	20.0	-	0.436	-	29.9	
271.2	20.0	-	0.424	-	28.9	
271.2	20.0	-	0.418	-	28.4	
271.3	20.0		0.457	-	31.7	
271.4	20.0	0.384		25.6	-	
271.2	40.0	-	0.607	-	46.0	
271.3	40.0		0.601	-	45.4	
272 2	40.0	0.285	-	18.0	-	
272.0	40.0	-	0 568	1010	42.0	
273.0	40.0	0 202	0.500	10 2	42.0	
273.3	40.0	0.302	0	19.3	27 7	
2/4.1	40.0	-	0.523	-	3/./	
274.8	40.0	-	0.486	-	34.3	
274.9	40.0	-	0.481	-	33.8	
275.0	40.0	0.330	-	21.4	-	
275.5	40.0	-	0.436	-	29.9	
275.5	40.0	-	0.424	_	28.9	
275.6	40.0	-	0.457	-	31.7	
275 6	40 0	-	0 418	-	28.4	
275.0	40.0	0 304	0.410	25 6		
275.7	40.0	0.304		25.0		
274.9	60.0	-	0.607	-	46.0	
275.1	60.0	-	0.601		45.4	
276.1	60.0	0.285	-	18.0	-	
277.0	60.0	-	0.568	-	42.0	
277.3	60.0	0.302	-	19.3	-	
278.1	60.0	-	0.523		37.7	
278 7	60.0	-	0 186	-	34.3	
270 0	60.0		0.400		23.8	
270.9	60.0	0 220	0.401		JJ+0	
2/9.1	60.0	0.330		21.4	-	
279.5	60.0	-	0.436	-	29.9	
279.5	60.0	-	0.424	-	28.9	
279.6	60.0	-	0.457	-	31.7	

COMPONENTS:

Methanol; CH₄O; [67-56-1]
 Butane; C₄H₁₀; [106-97-8]

ORIGINAL MEASUREMENTS:

Haarhaus, U.; Schneider, G.M.

J. Chem. Thermodyn. <u>1988</u>, 20, 1121-9.

EXPERIMENTAL VALUES: (continued)

Mutual solubility of methanol and butane

Т/К	p/MPa	x	1	100 W ₁ (C	ompiler)	
		(2)-rich	(1)-rich	(2)-rich	(1)-ric	h
		phase	phase	phase	pha	se
070 6	<i></i>					
2/9.6	60.0		0.418	-	28.4	
279.7	60.0	0.384		25.6		
278.3	80.0	-	0.607	-	46.0	
278.5	80.0	-	0.601	-	45.4	
279.8	80.0	0.284	-	17.9	-	
280.4	80.0	-	0.568	-	42.0	
280.9	80.0	0.302	-	19.3	-	
281.8	80.0	-	0.523	_	37.7	
282.4	80.0	-	0.486	-	34.3	
282 5	80.0	_	0 491	_	33.0	
202.0	00.0		0.401		33.0	
282.7	80.0	0.330	-	21.4	-	
283.1	80.0	-	0.436	-	29.9	
283.2	80.0	-	0.457	-	31.7	
283 2	80.0	_	0 424	_	28 9	
203.2	00.0	0 204	0.424	25 6	20.9	
203.3	80.0	0.384	0.418	25.0	28.4	
281.3	100.0	-	0.607	-	46.0	
281.7	100.0		0.601	-	45.4	
283.0	100.0	0.285	-	18.0	-	
283.5	100.0		0.568	-	42.0	•
284.1	100.0	0.302	-	19.3	-	
285.1	100.0	-	0.523	-	37.7	
285.7	100.0	-	0.486	-	34.3	
285.9	100.0	-	0.481	-	33.8	
286.1	100.0	0.330	-	21.4	-	
286.4	100.0	-	0.436	-	29.9	
286.5	100.0	-	0.424	_	28.9	
286.6	100.0	-	0.457	_	31.7	
286 6	100.0	_	0.457		20 /	
200.0	100.0		0.410		20.4	
200.7	100.0	0.384	-	25.0		
284.2	120.0	-	0.607	-	46.0	
284.6	120.0	-	0.601	-	45.4	
286 1	120.0	0 285	-	18 0	-	
200.1	120.0	0.200		10.2	_	
207.2	120.0	0.302	0	19.3	~ ~ ~	
288.2	120.0	-	0.523	-	3/./	
288.8	120.0		0.486	-	34.3	
289.0	120.0	-	0.481	-	33.8	
289.2	120.0	0.330	-	21.4	-	
289.6	120.0	-	0.457	-	31.7	
289.6	120.0	-	0.436	-	29.9	
289.6	120.0	-	0.424	-	28.9	
289.7	120.0	-	0.418	-	28.4	
289.8	120.0	0.384	-	25.6	-	
287.1	140.0	-	0.607	-	46.0	
289.0	140.0	0.285	-	18.0	-	
289.1	140.0	-	0.568	-	42.0	
290.1	140.0	0 302	-	10 3		
291 0	140 0	-	0 523		37 7	
201 7	140.0		0.020	-	3/ . /	
491./	140.0	-	0.480	-	34.3	
291.9	140.0	-	0.481		33.8	
292.1	140.0	0.330	-	21.4	-	
292 4	140 0	_	0 436	_	20 0	
222.9 202 E	140.0	_	0.430	-	27.7	
472.3	140.0	-	0.45/	-	31.1	
492.5	140.0	.	0.424	-	28.9	
292.6	140.0	0.384	0.418	25.6	28.4	
					(continued)

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Haarhaus, U.; Schneider, G.M.
(2) Butane; C ₄ H ₁₀ ; [106-97-8]	J. Chem. Thermodyn. <u>1988</u> , 20, 1121-9.

EXPERIMENTAL VALUES: (continued)

COMMENTS AND ADDITIONAL DATA:

Data for isopleths at high pressures were fitted to the Simon equation

 $p(x,T) / MPa = a[(T/T_o)^{c-1}]$

From these equations, the corresponding (T, x) isobars were calculated and were fitted to the equation

 $T/K = T_c/K + k |y - y_c|^{\nu}$

where

 $y = \alpha x_1 / [1 + x_1 (\alpha - 1)]$ $y_{c} = \alpha x_{c1} / [1 + x_{c1} (\alpha - 1)]$

COCLETCE	enco rouna		bour creat	01 0001mu		
<i>x</i> ₁	T _o /K	а	C	S		
0.285	262.92	131.4	7.66	0.21		
0.302	263.85	122.8	8.02	0.14		
0.330	265.82	139.7	7.35	0.12		
0.384	266.47	135.7	7.56	0.16		
0.418	266.29	131.0	7.72	0.13		
0.424	266.31	136.8	7.52	0.10		
0.436	266.22	133.7	7.62	0.12		
0.457	266.43	135.6	7.60	0.15		
0.481	265.71	137.0	7.48	0.10		
0.486	265.54	137.9	7.45	0.04		
0.568	263.75	112.7	8.78	0.35		
0.601	262.98	167.1	6.83	0.17		
0.607	262.52	141.3	7.72	0.37		
p/MPa	<i>Т_с/</i> К	k	α	<i>x</i> _{c1}	ν	S
	-			•••	<u></u>	
0.1	266.45	-1425	9.02	0.399	2.30	0.17
5.0	267.81	-1173	8.70	0.399	2.24	0.17
10.0	268.96	-1440	7.46	0.399	2.42	0.16
20.0	271.32	-1192	6.11	0.400	2.46	0.15
40.0	275.61	-1292	5.01	0.401	2.62	0.14
60.0	279.58	-1902	5.16	0.400	2.76	0.16
80.0	283.25	-1300	4.25	0.402	2.70	0.16
100.0	286.59	-1615	4.34	0.401	2.77	0.15
120.0	289.69	-1849	4.44	0.400	2.80	0.15
					~ ~ ~ ~	~ * *

ents found are (s = std error of estimate):

Simon equations are also given for (p, x) pairs, which are of the same form as those for the (T, x) pairs.

COMPONENTS:	EVALUATOR:
(1) Methanol; CH ₄ O; [67-56-1]	A. Maczynski
(2) Cyclopentane; C ₅ H ₁₀ ; [287-92-3]	Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland. July 1989.
CRITICAL EVALUATION:	

Table 1 gives solubilities and upper critical solution temperatures (UCST) and compositions for the system methanol - cyclopentane which have been reported in the literature.

Table 1. Solubilities, upper critical solution temperatures and compositions for the system methanol (1) - cyclopentane (2)

Authors	Range			
	<i>T/</i> K		x_1	in (1)-rich phase
1. Fischer et al. 1949	312	UCST		-
2. Kiser et al. 1961	278.0 - 289	.8 UCST		0.554 - 0.722

Fischer and Neupauer (ref 1) found UCST = 39.0° C by the cloud-point method in a micro meltingpoint apparatus with mg-sized samples. This value is rejected; the original paper is not compiled. All UCST reported in ref 1 for different alcohol - hydrocarbon systems are higher by about 10 - 20 K than the recommended values, which indicates significant contamination by impurities, probably water.

The data of Kiser et al. are accepted as tentative since their values for other systems are reliable.

TENTATIVE DATA:

T/K	$x_1 \text{ in } (1)$)-rich phase
278	0.72	
283	0.67	
288	0.55	
289.8	0.47	UCST (critical composition estimated by Evaluator)

REFERENCES:

1. Fischer, R.; Neupauer, E. Mikrochem. Ver. Mikrochim. Acta 1949, 34, 319.

2. Kiser, R.W.; Johnson, G.D.; Shetlar, M.D. J. Chem. Eng. Data 1961, 6, 338.

24			
COMPONENTS:		ORIGINAL MEASUREMENTS:	
(1) Methanol; CH40; [67-56-1]		Kiser, R.W.; Johnson, G.D.;	
(2) Cyclope	entane; C ₅ H ₁₀ ; [287-92-3]	J. Chem. Eng. Data <u>1961</u> , 6, 3 41.	38-
VARIABLES:		PREPARED BY:	
Temperature	e: 276 - 290 K	A. Skrzecz	
EXPERIMENTAL	, VALUES:		
	Solubility of cyclope	entane in methanol	
t/ ₀ C 5 10 15 16.6	mass(2)/vol(1)/g cm ⁻ 68 86 140 UCST	100 w_1 (compiler) x_2 (compile 46 0.28 52 0.33 64 0.45	r)
	AUXILIARY IN	FORMATION	
METHOD/APPAR	ATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS	:
The method samples of k noting the t The cloud po	involved heating/cooling mown composition and emp. of phase transition. bint was more reproducible.	(1) E.I. duPont de Nemours; di. $n_{\rm D}(20^{\circ}{\rm C}) = 1.3294$; b.p. 64.6°C, f.p99°C. (2) Matheson, Coleman and Bell used as received; $n_{\rm D}(20^{\circ}{\rm C}) =$ 1.4046.	st.; ;
		ESTIMATED ERROR: soly. 2 % temp. 0.2 K REFERENCES: 1. International Crirical Table vol. 3. New York. <u>1933</u> .	es.

COMPONENTS:	EVALUATOR:
(1) Methanol; CH ₄ O; [67-56-1]	A. Skrzecz Institute of Physical Chemistry
(2) Pentane; C ₅ H ₁₂ ; [109-66-0]	Polish Academy of Sciences Warsaw, Poland
	J.W. Lorimer Department of Chemistry
	The University of Western Ontario London, Ont., Canada
	July, 1989

CRITICAL EVALUATION:

Table 1 summarizes solubilities and upper critical solution temperatures (UCST) and compositions for the system methanol-pentane which have been reported in the literature.

Table 1. Solubility data for the system methanol (1) - pentane (2)

Author(s)	T/K	<i>x</i> ₁	<i>x</i> ₁
		(2)-rich phase	(1)-rich phase
1. Cornish 1934	286.4 and 287.90 UCST	-	-
2. Fischer 1949	311.2 UCST	-	-
3. Francis 1954	287.90 UCST	-	-
4. Kiser 1961	278-287.40 UCST	-	0.690-0.745
5. Haarhaus 1988	272-316	0.209-0.492	0.492-0.789
	286.92 (UCST at 0.1 MPa	a)	

Critical solution temperature and composition

Five values have been reported for T_c but only one for x_{c1} . The values of T_c of Cornish et al., ref. 1, were obtained with two different samples, both of questionable purity. The UCST of Fischer and Neupauer, ref 2, is rejected, because all their values of UCST for different alcohol-hydrocarbon systems are higher by about 10-20 K than recommended values; the paper is not compiled. The value of Francis, ref. 3, was found using as-received methanol and pentane from an unspecified source. The average of the values of T_c of Kiser et al. and of Haarhaus and Schneider are considered as *tentative* because they were obtained through a carefully-conducted study with precautions to avoid contamination with water. As well, this value correlates reasonable with values for other hydrocarbons, as explained in the *Preface* to this volume. Thus, the *tentative* values are: $T_c = 287.2 \pm 0.3$ K, $x_{c1} =$ 0.497.

Mutual solubility

Kiser et al., ref. 4, used distilled methanol but as-received pentane. Haarhaus and Schneider, ref 5, extrapolated their data measured at high pressures to 0.1 MPa, and gave the results in terms of the Simon equation

$$T/K = T_c/K + k |x_1 - x_{cl}|^{1}$$

with

$$y = \alpha x_1 / [1 + x_1(\alpha + 1)]$$

$$y_c = \alpha x_{c1} / [1 + x_{c1}(\alpha - 1)]$$

valid over the range $0.2 < x_1 < 0.8$ or 270 < T/K < 286.92, where

 $T_{\rm c} = 286.92 \ {\rm K}$ $k = -883 \ \alpha = 0.83 \ x_{\rm c1} = 0.497$

The solubility data of Kiser et al. are shown in the figure along with the curve calculated from the results of Haarhaus and Schneider. Clearly, the two data points of Kiser et al. are slightly higher than the curve; thus all composition data for this system must be considered as *tentative*.

The equations of Haarhaus and Schneider give *tentative* values in the range $0.2 < x_1 < 0.8$, with uncertainties of $\Delta T = 0.3$ K for given x_1 , or $\Delta x_1 = 0.005$ for given T, and selected values are given in the table below. See the compilation sheets for the data of Haarhaus and Schneider at higher pressures, where the methods of fitting and extrapolation are described. These data were obtained under cafrefully-controlled conditions, and can be considered as tentative.

Pressure Coefficient of Critical Solution Temperature

This quantity can be calculated from the fitting equations of Haarhaus and Schneider:

$$(\partial T/\partial p)_x = T_o/ac = 3.26 \times 10^{-7} \text{ K Pa}^{-1}$$

where T_0 , a and c are constants given on the compilation sheet.

<i>X</i> 1	T/K	<i>x</i> 1	T/K
(2)-rich phase	·	(1)-rich phase	·
0.20	274.8	0.50	286.9
0.25	280.2	0.55	286.9
0.30	283.7	0.60	286.5
0.35	285.7	0.65	285.2
0.40	286.6	0.70	282.3
0.45	286.9	0.75	277
0.497	287.2	0.80	268.1
(UCST)			

REFERENCES:

1. Cornish, R.E.; Archibald, R.C.; Murphy, E.A.; Evans, H.M. Ind. Eng. Chem. 1934, 26, 397.

Table 2. Tentative mutual solubilities in the system methanol (1) - pentane (2)

2. Fischer, R.; Neupauer, E. Mikrochem. Ver. Mikrochim. Acta 1949, 34, 319.

3. Francis, A.W. J. Am. Chem. Soc. 1954, 76, 393.

4. Kiser, R.W.; Johnson, G.D.; Shetlar, M.D. J. Chem. Eng. Data 1961, 6, 338.

5. Haarhaus, U.; Schneider, G.M. J. Chem. Thermodyn. 1988, 20, 1121.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH40; [67-56-1]	Cornish, R.E.; Archibald, R.C.;
(2) Pentane; C_5H_{12} ; [109-66-0]	Murphy, E.A.; Evans, H.M.
	Ind. Eng. Chem. <u>1934</u> , 26, 397-406.
VARIABLES:	PREPARED BY:
Temperature: 286 and 288 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 14.75°C	a) and 13.2°C b).
a), b) data for cyclohexane (2) from PURITY OF MATERIALS" below.	n different sources; see "SOURCE AND
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The method was not specified.	<pre>SOURCE AND PURITY OF MATERIALS: (1) source not specified; distilled; p(25°C)/ρ(4°C) = 0.78656, (corrected for buoyancy), anhydrous. (2) a) Eastman Kodak Company (presumably from petroleum); dist., boiling range < 0.1 K. b) source not specified; purified in the laboratory, less pure than a).</pre>
	ESTIMATED ERROR: not specified.
Components :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Francis, A.W.
(2) Pentane; C ₅ H ₁₂ ; [109-66-0]	J. Am. Chem. Soc. <u>1954</u> , 76, 393-5.
VARIABLES:	PREPARED BY:
One temperature: 288 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 14.75° C.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The observations were madein narrow, graduated, glass-stoppered tubes immersed in a water bath in a large silvered Dewar flask. Mixtures were made up by volume from graduated pipets until cloudiness just disappeared or reappeared. The bath temperature was adjusted by addition	<pre>SOURCE AND PURITY OF MATERIALS: (1) J.T. Baker anhydrous, C.P.; used as received. (2) source not specified. ESTIMATED ERROR: temp. ±0.2 K</pre>
of small quantities of cooler or warmer water and stirred several minutes.	REFERENCES:

	29
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Kiser, R.W.; Johnson, G.D.; Shetlar, M.D.
(2) Pentane; C ₅ H ₁₂ ; [109-66-0]	J. Chem. Eng. Data <u>1961</u> , 6, 338-41.
VARIABLES:	PREPARED BY:
Temperature: 278 - 287 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Solubility of penta	ne in methanol
$t/^{\circ}C$ g(2)/100 ml(1) 100 w ₁ (c	compiler) x ₂ (compiler)
5 62.0 43.5	0.255
10 81.0 50.3 14.25 UCST	0.310
AUXILIARY	INFORMATION
METHOD / A PPARATUS / PROCEDURE ·	SOURCE AND PURITY OF MATERIALS.
The isoplethal or cloud point method was used. Samples of known composition were heated and/or cooled and the temperature of phase transition was noted. In general, the phase transition most reproducible and easily observed, and therefore chosen, was the unmixing temperature (cloud point) obtained when a miscible solution was cooled until the finely dispersed solute was just no longer completely miscible.	 (1) E.I. du Pont de Nemours and Co.; distilled; n_p(20°C) = 1.3293, b.p. 64.6°C (corrected), f.p99°C. (2) Eastman Organic Chemicals, technical grade; used as received; absence of unsaturated compounds by u.v. analysis, impurities ≤ 0.05 mole % (benzene) by glc analysis.
	ESTIMATED ERROR: soly. ±2% (relative error); temp. ±0.2 K.
	REFERENCES: 1. International Critical Tables vol. 3, New York, <u>1933</u> .

Components:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Haarhaus, U.; Schneider, G.M.
(2) Pentane; C ₅ H ₁₂ ; [109-66-0]	J. Chem. Thermodyn. <u>1988</u> , 20, 1121-9.
VARIABLES:	PREPARED BY:
Temperature: 272 - 316 K Pressure: 5 - 140 MPa	A. Skrzecz
EXPERIMENTAL VALUES:	
Mutual solubility of m	ethanol and pentane
T/K p/MPa x ₁ (2)-rich (1)-rich phase phas	100 w ₁ (compiler) (2)-rich (1)-rich e phase phase
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
288.4 5.0 - 0.5589 288.5 5.0 0.4561 - 288.5 5.0 - 0.5396 288.6 5.0 0.4918 - 273.6 10.0 - 0.7889	- 36.01 27.14 - - 34.23 30.06 - - 62.40 (continued)
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE: Visual measurements were performed in a modified optical high-pressure cell, similar to that described in ref 1, at constant pressures using a constant cooling rate. Components were drawn into a gas-tight syringe successively and mixed by shaking. The homogenous mixture was transferred into an evacuated cell at room temperature. The precautions taken against water contamination are described in ref 2.	SOURCE AND PURITY OF MATERIALS: (1) Reidel de Haen; used as received; purity > 99.5 mole % by glc, H ₂ O < 0.01 mole % by the Karl Fischer titration. (2) Fluka; used as received; purity > 99.5 mole % by glc.
	ESTIMATED ERROR:
	sol. fo.0001 mole fraction; temp. $\pm 0.1-0.2$ K (total accuracy); pressure ± 0.1 MPa at $p < 100$ MPa and ± 5 MPa at $p > 100$ MPa.
	REFERENCES:
	 Liphard, K.G.; Schneider, G.M. J. Chem. Thermodyn. <u>1975</u>, 7, 805. Ott, J.B.; Hoelscher, I.F.; Schneider, G.M. J. Chem. Thermodyn. <u>1986</u>, 18, 815.

COMPONENTS:				ORIGINAL MEASUREMENTS:		
(1) Methanol; CH ₄ O; [67-56-1]				Haarhaus, U.; Schneider, G.M.		
(2) Penta	ane; C ₅ H ₁₂ ;	[109-66-0]		J. Chem. Thermodyn. <u>1988</u> , 20 1121-9.	,	
EXPERIMEN	TAL VALUES	: (continue	ed)			
	Mu	tual solubi	lity of	methanol and pentane		
T/K	n/MPa	x	•	100 w. (compiler)		
-/	<i>P</i> 7 4	(2)-rich	''(1)-ric	h (2) -rich (1) -rich		
		phase	pha	se phase phase		
279.1	10.0	0.2093	-	10.52 -		
281.2	10.0	-	0.740	8 - 55.93		
285.7	10.0	0.2814	-	14.81 -		
285.9	10.0	-	0.693			
288.8	10.0	0.3459	-	19.02 -		
289.4	10.0	_	0.602	8 - 40.26		
289.8	10.0	0.4101	-	23.59 -		
289.9	10.0	-	0.566	8 - 36.75		
290.0	10.0	-	0.558	9 - 36.01		
290.0	10.0	0.4561	0.539	6 27.14 34.23		
290.1	10.0	0.4918	-	30.06 -		
276.3	20.0	-	0.788	9 – 62.40		
281.7	20.0	0.2093	0 740			
288.5	20.0	-	0.740	1 - 50.07		
288.6	20.0	0.2814	-	14.81 -		
290.6	20.0	-	0.655	7 - 45.82		
291.7	20.0	0.3459	-	19.02 -	•	
292.3	20.0		0.602	8 - 40.26		
292.7	20.0	0.4101	0.566	8 23.59 36.75		
292.8	20.0	-	0.558	9 - 36.01		
292.9	20.0	0.4561	0.539			
280.9	40.0	-	0.788	9 - 62.40		
286.6	40.0	0.2093	_	10.52 -		
288.9	40.0	-	0.740	8 - 55.93		
293.5	40.0	-	0.693	1 - 50.07		
293.7	40.0	0.2814	-	14.81 -		
295.5	40.0	-	0.000	/ = 45.82		
296.7	40.0	0.3459	-	19.02 -		
297.4	40.0	-	0.602	8 - 40.26		
297.8	40.0	0.4101	0.566	8 23.59 36.75		
298.0	40.0	0.4561	0.558	9 27.14 36.01		
298.0	40.0	0.4918	0.539	5 30.05 34.23		
291.1	60.0	0.2093	-	10.52 -		
293.3	60.0	_	0.740	8 - 55.93		
298.0	60.0	-	0.693	1 - 50.07		
298.2	60.0	0.2814	-	14.81 -		
299.9	60.0	-	0.655	7 - 45.82		
301.2	60.0	0.3459	-	19.02 -		
301.8	60.0	-	0.602	8 - 40.26		
302.2	60.0	0.4101	0.566	8 23.59 36.75		
302.3	6U.U	-	0.558			
302.5	60.0	0.4561	0.539	33 - 34.23 8 27,14 30.06		
289.1	80.0	-	0.788	9 - 62.40		
294.9	80.0	0.2093	-	10.52 -		
297.1	80.0	-	0.740	8 – 55.93		

(continued)

Components:	ORIGINAL MEASUREMENTS:	
(1) Methanol; CH ₄ O; [67-56-1]	Haarhaus, U.; Schneider, G.M.	
(2) Pentane; C ₅ H ₁₂ ; [109-66-0]	J. Chem. Thermodyn. <u>1988</u> , 20, 1121-9.	

EXPERIMENTAL VALUES: (continued)

32

Mutual solubility of methanol and pentane

T/K	p/MPa	x	1	$100 w_1 (com)$	piler)
		(2)-rich	(1)-rich	(2)-rich	(1)-rich
		phase	phase	phase	phase
302.0	80.0	-	0.6931	-	50.07
302.1	80.0	0.2814	-	14.81	
303.9	80.0	-	0.6557	-	45.82
305.1	80.0	0.3459		19.02	-
305.8	80.0	-	0.6028	-	40.26
306.2	80.0	0.4101	0.5668	23.59	36.75
306.3	80.0	-	0.5589	-	36.01
306.4	80.0	-	0.5396	-	34.23
306.5	80.0	0.4561	0.4918	27.14	30.06
292.4	100.0	-	0.7889	-	62.40
298.3	100.0	0.2093	-	10.52	-
300.8	100.0	-	0.7408	-	55.93
305.5	100.0	-	0.6931	-	50.07
305.6	100.0	0.2814	-	14.81	-
307.6	100.0		0.6557	-	45.82
308.5	100.0	0.3459	-	19.02	-
309.4	100.0	-	0.6028	-	40.26
309.8	100.0	0.4101	0.5668	23.59	36.75
310.0	100.0	-	0.5589	-	36.01
310.0	100.0	-	0.5396	-	34.23
310.1	100.0	0.4561	0.4918	27.14	30.06
295.5	120.0	-	0.7889	-	62.40
303.9	120.0	-	0.7408	-	55.93
308.8	120.0	0.2814	0.6931	14.81	50.07
310.9	120.0		0.6557	-	45.82
311.9	120.0	0.3459	-	19.02	-
313.1	120.0		0.5668		36.75
313.2	120.0	0.4101	0.5589	23.59	36.01
313.3	120.0	-	0.5396	-	34.23
313.4	120.0	0.4561	0.4918	27.14	30.06
298.3	140.0	-	0.7889	-	62.40
304.5	140.0	0.2093	-	10.52	-
306.9	140.0	-	0.7408	-	55.93
311.7	140.0	-	0.6931	-	50.07
311.8	140.0	0.2814	-	14.81	-
313.9	140.0	-	0.6557	-	45.82
314.8	140.0	0.3459	-	19.02	-
315.7	140.0	-	0.6028	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	40.26
316.2	140.0	0.4101	0.5668	23.59	36.75
316.3	140.0	-	0.5589	-	36.01
316.3	140.0	-	0.5396	-	34.23
314.4	140.0	0.4561	0.4918	27.14	30.06

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Methanol; CH₄O; [67-56-1] Haarhaus, U.; Schneider, G.M. J. Chem. Thermodyn. 1988, 20, (2) Pentane; C_5H_{12} ; [109-66-0] 1121-9. EXPERIMENTAL VALUES: (continued) COMMENTS AND ADDITIONAL DATA: Data for isopleths at high pressures were fitted to the Simon equation $p(x,T)/MPa = a[(T/T_{o})^{c}-1]$ From these equations, the corresponding (T, x) isobars were calculated and were fitted to the equation $T/K = T_c/K+k|y-y_c|^{\nu}$ where $y = \alpha x_1 / [1 + x_1 (\alpha - 1)]$ $y_{c} = \alpha x_{c1} / [1 + x_{c1} (\alpha - 1)]$ The coefficients found are (s = std. error of estimate): T_/K а C S \boldsymbol{x}_1 0.2093 276.04 98.2 9.03 0.30 0.2814 0.09 282.60 89.1 9.61 0.3459 285.58 88.5 9.74 0.23 286.70 9.17 0.4101 96.2 0.11 0.4561 286.90 94.6 9.27 0.07 0.4918 287.00 95.1 9.27 0.05 0.5396 94.7 0.08 286.89 9.28 0.5589 286.85 96.5 9.18 0.13 0.5668 9.01 286.80 99.5 0.06 0.6028 286.35 96.7 9.16 0.05 0.6557 284.92 114.0 8.25 0.33 8.98 0.6931 282.81 100.2 0.27 • 0.7408 278.27 100.9 8.88 0.21 0.7889 270.41 87.4 0.41 9.73 p/MPa T_c/K k α X_{c1} ν s 0.1 286.92 -883 0.83 0.497 3.36 0.04 -899 5.0 288.49 0.83 0.496 3.37 0.04 10.0 290.03 -874 0.86 0.494 3.35 0.05 20.0 292.90 -860 0.91 0.490 3.34 0.06 0.490 40.0 298.00 -900 0.90 3.35 0.09 60.0 302.44 -886 0.91 0.489 3.35 0.10 0.89 3.35 80.0 306.42 -903 0.491 0.10 100.0 310.01 -924 0.87 0.493 3.35 0.10 120.0 0.495 0.08 0.82 313.33 -844 3.28 140.0 316.34 -906 0.85 0.494 3.32 0.09 Simon equations are also given for (p, x) pairs, which are of the same form as those for the (T, x) pairs.

COMPONENTS:	EVALUATOR:
(1) Methanol; CH ₄ O; [67-56-1]	A. Maczynski
(2) Cyclohexane-d ₁₂ ; C ₆ D ₁₂ ; [1735-17-7]	Institute of Physical Chemistry Polish Academy of Sciences Warsaw, Poland
	J.W. Lorimer The University of Western Ontario London, Ontario, Canada
	July, 1989

CRITICAL EVALUATION:

34

Table 1 gives solubilities, upper critical solution temperatures (UCST) and compositions for the system methanol-cyclohexane- d_{12} which have been reported in the literature.

Table 1. Solubilities, critical solution temperature and composition in the system methanol (1) - cyclohexane- d_{12} (2)

Author(s)	F	Range		
	<i>T/</i> K	p/MPa	x ₁ (2)-rich phase	x ₁ (1)-rich phase
1. Rabinovich 1971	316.4 UCST		-	-
2. Houessou 1985	315.280 UCST		0.512	0.512
3. Schoen 1986	313.364 UCST		0.516	0.516
4. Singh 1987	310.3-314.935 UC	ST	0.315-0.514	0.514-0.630
	311.0-319.0	1.9-13.1	0.315-0.500	0.539-0.630

Critical Solution Temperature and Composition

The four reported values of UCST, ref 1-4, average 314.505 K, std. dev. 1.0 K, well outside the precision of the data; the value of Rabinovich, ref. 1, appears to be unacceptably high, and that of Schoen et al., ref. 3, too low. The values in refs. 2 and 4 were all obtained through carefully-conducted experiments; the differences may arise from varying amounts of water. Their average value $T_c = 315.11 \pm 0.24$ K is considered to be *tentative*. However, the various values given by Singh and Van Hook should be taken into account, as discussed below.

The critical composition is reported in refs. 2-4. The data average $x_c = 0.514 \pm 0.002$, the spread being equal to the estimated error given by Singh and Van Hook; this value is *recommended*.

Mutual Solubility

Only Singh and Van Hook reported compositions below the critical temperature; Schoen et al. gave only differences in refactive index. They correlated their data with the equations

$$|x_1 - x_{cl}| = B |1 - T/T_c|^{\beta}$$

and

$$|x_1 - x_{c1}| = B[1 - T/(T_c^{\rho} + cp)]^{\beta}$$

where p is the pressure and $c = (3.173 \pm 0.012) \times 10^{-7}$ K Pa⁻¹ is the pressure coefficient of the critical solution temperature. They give various sets of fitting parameters, as follows.

parameter	data for 0.1 MPa only (authors' Table II)	data for all pressures (authors' Table II)	fixed $\beta = 0.325$ (authors' Table III)
<i>x</i> _{c1}	0.515 ± 0.003	0.517 ± 0.001	0.514 0 ±0.000 6
В	1.09 ± 0.12	1.22 ± 0.06	0.968 ±0.025
β	0.355 ± 0.026	0.317 ± 0.010	
T _c /K	314.870 ±0.007		314.935 ±0.007
T _c ^o /K		314.898 ±0.010	314.912 ± 0.001
variance	5.8 ×10 ⁻⁵	8.3 ×10 ⁻⁵	1.66×10^{-4}

The quantities T_c and T_c^0 are the critical solution temperatures at 0.1 MPa and zero pressure. The evaluators find that large errors in composition arise from use of these equations, possibly because of excessive rounding of the reported parameters. Thus, the equations should be used as rough guides only. For the data at 0.1 MPa and fixed $\beta = 0.325$, the evaluators find: $T_c = 314.863 \pm 0.001$ K, $B = 0.7493 \pm 0.038$, $x_{c1} = 0.5087 \pm .0045$, s = 0.013 (variance 1.7×10^{-4}), values that are within the error limits stated for the critical parameters in the section above, but which actially reproduce the experimental data better. The Evaluators' parameters are recommended for calculations.

The complete data of Singh and Van Hook at high pressures are shown on the compilation and should be considered as *tentative*.

REFERENCES:

- 1. Rabinovich, I.B.; Tsvetkov, V.G. Zh. Fiz. Khim. 1971, 45, 822.
- Houessou, C.; Guenoun, P.; Gastaud, P.; Perrot, F.; Beysens, D. Phys. Rev. A <u>1985</u>, 32, 1818.
- 3. Schoen, W; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922.
- 4. Singh, R.R.; Van Hook, W.A. J. Chem. Phys. 1987, 87, 6097.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Rabinovich, I.B.; Tsvetkov, V.G.
(2) Cyclohexane-d ₁₂ ; C ₆ D ₁₂ ; [1735-17-7]	Zh. Fiz. Khim. <u>1971</u> , 45, 822-3; Russ. J. Phys. Chem. (Engl. Transl.) <u>1971</u> , 45, 814.
VARIABLES:	PREPARED BY:
One temperature: 316 K	A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 43.2°C. Solubility data were presented on a g	raph only.
AUXILIARY IN	ORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The temperature of appearance of turbidity was observed. No further details were reported.	SOURCE AND PURITY OF MATERIALS: (1), (2) source not specified; purified by methods described in ref 1.
	ESTIMATED ERROR:
	temp. ±0.1 K.
	REFERENCES: 1. Rabinovich, I.B. Vliyanie izitopii na fiziko-khimicheskie svoistva zhidkostei, Izv. Nauka, Moskva, 1968.
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methanol; $CH_{4}O;$ [67-56-1] (2) Cyclohexane- $d_{12};$ $C_{6}D_{12};$ [1735-17-7]	Houessou, C.; Guenoun, P.; Gastaud, P.; Perrot, F.; Beysens, D.
	Phys. Rev. A 1985, 32, 1818-33.
VARIABLES:	PREPARED BY:
One temperature: 315 K	A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 42.130°C a fraction (calculated by the compiler) x	at 25.90 mass % methanol, or mole 1 = 0.5121.
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE: An initially homogeneous mixture was quenched thermally through a few mK. If a ring of scattered light appeared (sign of spinodal decomposition) it was assumed that the initial temp. was T_c . Composition was determined by weighing to 0.1 mg. The coexistence curves were found as in ref. 1 from measured refractive index in both phases. Care was taken to avoid moisture and dust by baking syringes and cells under vacuum and working in a dust-free area.	 SOURCE AND PURITY OF MATERIALS: (1) Merck, guaranteed purity > 99.5%, water < 0.05%, acetone < 0.01%; used as received. (2) Centre d'Etudes Nucléaires de Saclay, guaranteed purity 99.7%, impurities: water < 0.02%, acetone not detectable; used as received.
	ESTIMATED ERROR: not specified
	REFERENCES: 1. Jacobs, D.T.; Anthony, D.J.; Mockler, R.C.; O'Sullivan, W.J. Chem. Phys. <u>1977</u> , 20, 219.

	37
COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Cyclohexane-d ₁₂ ; C ₆ D ₁₂ ; [1735-17-7]	ORIGINAL MEASUREMENTS: Schoen, W.; Wiechers, R.; Woermann, D. <i>J. Chem. Phys.</i> <u>1986</u> , 85, 2922-8.
VARIABLES: One temperature: 313 K	PREPARED BY: A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 40.214°C The corresponding mass fraction, cal w ₁ = 0.262.	at $x_1 = 0.516$. culated by the compiler is
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The differences of refractive index between two coexisting liquid phases were measured. The samples were prepared by mixing the required weight of components in a glove box. The deflection of He/Ne laser beam after passing through the two compartments of the differential refractometer cell was measured as the distance necessary to shift the light detection unit. The refractive index of the coexisting phases was	 SOURCE AND PURITY OF MATERIALS: (1) Merck, Uvasol quality, guaranteed purity > 99.7 %, water < 0.03 %; used as received. (2) Merck, Uvasol quality, degree of deuteration > 99 %; used as received.
related to the composition by measuring several mixtures as a function of temperature. The measurements were made over the range: UCST - 2 K.	ESTIMATED ERROR: temp. ±0.001 K (UCST), ±0.003 K (24 h stability). REFERENCES:

COMPONENTS:			ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]			Singh, R.R.; Van Hook, W.A.
(2) Cyclohexan [1735-17	e-d ₁₂ ; C ₆ D -7]	12;	J. Chem. Phys. <u>1987</u> , 87, 6097-110.
VARIABLES:	<u></u>		PREPARED BY:
Temperature: 3 Pressure : 0.1	10 - 315 - 13.1 M	K Pa	A. Skrzecz
EXPERIMENTAL VA	LUES:		
Solubili T/K	ty of met p/MPa	hanol and cyclo x ₁ 100	bhexane- d_{12}
310 267	0 1	0 3147 1	3 26
311 000	1 02	0.31/7 1	13.26
311.009	1.92	0.3147 1	
212 971	7 95	0.3147 1	2 26
312.071	10.03	0.3147 1	2 26
313.301	10.03	0.3147 1	
314.551	2 97	0.4405 2	
315.025	3.07	0.4405 2	
216 240	5.02	0.4405 2	
317.239	8.90	0.4405 2	20.77
214 902	0 1	0 4649	2.44
315.730	2 74	0.4649	22.44 DD . 44
316.827	6.16	0.4649	22.44
318.744	9.03	0.4649	22.44
318,454	11.34	0.4649	22.44
314.863	0.1	0.4978	24.81
315.867	3.12	0.4978	24.81
317.102	7.01	0.4978 2	24.81
319.091	13.14	0.4978 2	24.81
			(continued)
		AUXILIARY IN	IFORMATION
METHOD/APPARATU	IS/PROCEDU	RE:	SOURCE AND PURITY OF MATERIALS:
The point at which the intensity of an emerging beam from a 3-mW HeNe laser) becomes one-half of the incident was taken as the temperature of phase separation. For a run, the cell with magnetic stirrer was warmed to about 5-10 K above T _c and a sample prepared gravimetrically was added under vacuum. The pressure was set manually and the bath temperature then allowed to decrease at about 2-5 mK per min, while a computer continously monitored pressure, temperature and light intensity. The rapid change in intensity at the			 (1) Fisher Scientific, ASC grade; refluxed over Mg activated withI₂, twice distilled under dry Ar; distilled in a spinning band column; no impurities by glc. (2) MSD isotopes, isotopic purity 99% D; purified over Na wire; no impurities by glc.
computer to st then to warm t the experimen of times. For	ore the r he appara t a prese details,	elevant data, tus and repeat lected number see ref 1.	
			ESTIMATED ERROR:
			<pre>temp. ±0.001 K (reproducibility); pressure ±0.01 MPa.</pre>
}			REFERENCES:
			1. Singh, R.R. Thesis, University of Tennesee, <u>1987</u> .

COMPONENTS:			ORIGINAL MEASUREMENTS:
(1) Methanol;	СН40; [67	-56-1]	Singh, R.R.; Van Hook, W.A.
(2) Cyclohexane- d_{12} ; C ₆ D ₁₂ ; [1735-17-7]			J. Chem. Phys. <u>1987</u> , 87, 6097-110.
EXPERIMENTAL V	ALUES: (C	ontinued)	
Solubil	ity of me	thanol and c	yclohexane-d ₁₂
T/K	p/MPa	<i>X</i> ,	100 w,
•		•	(compiler)
318.724	12.08	0.4978	24.81
314.870	0.1	0.514	25.3 UCST calculated by the authors at 0.1 MPa
314.860	0.1	0.5388	28.00
315.831	3.05	0.5388	28.00
316.549	5.28	0.5388	28.00
317.318	7.73	0.5388	28.00
318.257	10.33	0.5388	28.00
314.946	0.1	0.5400	28.10
314.795	0.1	0.5694	30.57
315.579	2.58	0.5694	30.57
317.252	7.81	0.5694	30.57
316.460	5.32	0.5694	30.57
316.362	5.04	0.5694	30.57
318.066	10.35	0.5694	30.57
314.561	0.1	0.5809	31.58
315.677	3.13	0.5809	31.58
316.374	5.31	0.5809	31.58
317.921	10.14	0.5809	31.58
313.935	0.1	0.6300	36.18
314.834	2.6	0.6300	36.18
315.622	5.07	0.6300	36.18
316.510	7.84	0.6300	36.18
317.875	12.12	0.6300	36.18

COMMENTS AND ADDITIONAL DATA:

The authors give extensive analysis of their data, with fitting equations of the form

 $x_{1} = x_{c1} \pm A | 1 - T/T_{c}^{\circ} |$ $T_{c}^{\circ} = T_{c} + cp$

where T_c , T_c^{0} are the critical solution temperatures at zero pressure and pressure p, x_{c1} is the critical composition, $c = (3.173 \pm 0.012) \times 10^{1}$ K MPa⁻¹ is the pressure coefficient of T_c and A is an amplitude constant. For analysis of all data at all pressures, they find $T_c/K = 314.935 \pm 0.002$, $x_{c1} = 0.514 \pm 0.001$, while for data at 0.1 MPa alone, $T_c/K = 314.870 \pm 0.007$, $x_{c1} = 0.515 \pm 0.003$.

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Methanol; CH ₄ O; [67-56-1]	Khurma, J.R.; Fenby, D.V.	
(2) Hexane-d ₁₄ ; C ₆ D ₁₄ ; [21666-38-6]	Aust. J. Chem. <u>1982</u> , 35, 1281-4.	
VARIABLES:	PREPARED BY:	
Temperature: 302 - 304 K	A. Skrzecz	

EXPERIMENTAL VALUES:

Mutual solubility of methanol and hexane- d_{14}

T/K	x ₁ (2)-rich phase	(1)-rich phase	100 w ₁ (compi (2)-rich phase	ler) (1)-rich phase
302 34	0 3683	_	15.71	-
502.54	019009		20072	
302.86	-	0.6793		40.37
304.11	0.4441	-	20.34	-
304.22	0.5091	-	24.89	-
304.25	0.5462	-	27.78	-
304.29	-	0.5986	-	32.28
304.30	UCST 0.560	0.560	28.9	28.9

	· · · · · · · · · · · · · · · · · · ·		
AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. Sample tubes containing mixtures of known composition were prepared by distillation under vacuum from the bulk degassed pure components and sealed. The phase separation was observed visually. The temperature of a silicone oil bath was controlled by a precision temperature controller (Tronac PTC 60) and measured with calorimeter thermometers which had been calibrated against a platinum resistance thermometer. For each sample the phase separation temperature was measured several times.	 SOURCE AND PURITY OF MATERIALS: (1) BDH Aristar grade, dried over freshly-activated molecular sieve type 3A, degassed by vacuum sublimation. (2) Merck, Sharpe and Dohme Canada Ltd., isotopic purity > 98 atom % D; dried over freshly-cut Na, degassed by vacuum sublimation. 		
	ESTIMATED ERROR: temp. ±0.02 K, ±0.04 K (UCST).		
	REFERENCES:		

COMPONENTS:	EVALUATOR:
(1) Methanol; CH ₄ O; [67-56-1]	A. Skrzecz Institute of Physical Chemistry
(2) Cyclohexane; $C_{c}H_{12}$; [110-82-7]	Polish Academy of Sciences
	Warsaw, Poland
	J.W. Lorimer
	Department of Chemistry
	The University of Western Ontario
	London, Ont., Canada
	July, 1989

CRITICAL EVALUATION:

A survey of solubilities and upper critical solution temperatures (UCST) for the system methanol-cyclohexane which have been reported in the literature is given in Table 1.

Table 1. Summary of Solubility Data for the system methanol (1) - cyclohexane (2)

Author(s)	Range			
<i>T/</i> K		<i>x</i> ₁	<i>x</i> ₁	``` <i>`</i>
		(2)-rich phase	(1)-rich phase	
1. Timmermans 1922	332.6-354.1 UCST	-	-	
2. Mondain-Monval 1926	322.2 UCST	-	-	
3. Jones 1930	279.3-318.7 UCST	0.068-0.5053	0.5053-0.847	
4. Cornish 1934	318.2, 293 UCST	-	-	
5. Eckfeld 1943	302.3-318.3 UCST	0.146-0.482	0.507-0.805	
6. Francis 1944	318 UCST	-	-	
7. Francis 1944	318 UCST	-	-	
8. Sieg 1951	319.0 UCST	-	-	
9. Quantie 1954	322.4 UCST	0.534	0.534	
10. Cardinaud 1960	319.6 UCST	0.5	0.5	
11. Kiser 1961	288-318.9 UCST	-	0.733-0.859	
12. Debye 1962	318.3 UCST	0.53	0.53	
13. Marinichev 1965	308, 318	0.169-0.437	0.607-0.784	
14. Gimler 1965	318.4 UCST	-	-	
15. Roth 1966	264.2-437.3 ^a	0.122-0.500	0.635-0.912	
16. Campbell 1967	313.2-319.2 UCST	0.228-0.433	0.588-0.739	
17. Kurtynina 1968	298	0.112	0.830	
18. Rudakovskaya 1968	293	0.112	0.845	
19. Huang 1969	318.3 UCST	vol. fract. 0.2	86; $x_1 = 0.517$	
20. Sergeeva 1969	313	0.245	0.727	
21. Warren 1969	318.4 UCST	vol. fract. 0.2	86; $x_1 = 0.517$	
22. Rabinovich 1971	319.0 UCST	-	-	
23. Sergeeva 1971	298	0.075	0.821	
24. Huang 1974	318.3 UCST	-	-	
				(continued)

Author(s)	Range				
	T/K	x_1		<i>x</i> ₁	
		(2)-rich J	phase	(1)-ricl	h phase
25. Takeuchi 1975	298	(0.129		0.825
26. Budantseva 1976	293	(0.139		0.857
27. Sugi 1976	298	l I	0.125		0.828
28. Jacobs 1977	318.6 UCST	(0.517		0.517
29. Becker 1978	303.8-318.5 U	JCST	0.165-0	.513	0.513-0.794
30. Scheibner 1978	318.2 UCST		0.518		0.518
31. Yosida 1978	318.2 UCST		-		-
32. Balasubramanian 1979	322.3 UCST	(0.51		0.51
33. Nagata 1980	298	1	0.124		0.828
34. Nagata 1981	313.2	(0.237		0.735
35. Eden 1982	318.2 UCST	I	0.518		0.518
36. Nagata 1983	298.2	ł	0.125		0.829
37. Tveekrem 1983	322.9 UCST		0.521		0.521
38. Kopelman 1984	319.0 UCST		(28.98	vol %)	
39. Cohn 1984	320.6 UCST		(30.4 v	ol %)	
40. Nagata 1984	298.2	1	0.125		0.829
41. Nagata 1984	298.2	ł	0.125		0.829
42. Houessou 1985	318.0 UCST		0.517		0.517
43. Schoen 1986	318.3 UCST		0.524		0.524
44. Hradetzky 1986	252.7-318.9 L	JCST	0.058-0	.506	0.506-0.889
45. Singh 1986	318.8 UCST		0.508		0.508
46. Jacobs 1986	319.1 UCST		0.523		0.523
47. Schmidt 1986	318.7 UCST		-		-
48. Singh 1987	317.5-323.8 ^b	1	0.362-0	.514	0.514-0.631
49. Aizpiri 1988	299.9-322.5 ^c		0.163-0	.515	0.568-0.815
50. Ewing 1988	317.1-318.4		0.358-0	.509	0.514-0.651
51. Brunner 1988	318.1 UCST		0.508		0.508

^{a,b,c} At elevated pressures: ^a p = 0.1-563 MPa, ^b p = 0.1-12.6 MPa, ^c p = 0.1-14.4 MPa.

Critical Solution Temperature and Composition

Forty values of the UCST have been reported in refs. 1-12, 14, 16, 19, 21, 22, 24, 28-32, 35, 37-39, and 42-50. Timmermans, ref. 1, reported UCST as a function of pressure; extrapolation of his data by the evaluators indicated an unreasonably high value of the UCST, so these data are rejected. The remaining values are summarized in Table 2 in increasing order. One value of Cornish et al., ref. 4, was lower by more than 25 K, probably because of contamination of the cyclohexane with benzene.

The critical solution temperature is extremely sensitive to impurities. All values higher than 319.1 K (refs. 2, 9, 32, 37, 39) can be rejected for one or more reasons: probable significant amounts of impurities (water, for example), lack of information about sources, unspecified purity of chemicals, or insufficient description of experimental methods. Similarly, all values below 318.3 K can be rejected for similar reasons; in these cases, examination of the data suggests that contamination by hydrocarbon impurities is a possibility.

The remaining 17 determinations lie in the range 318.25 to 319.094 K, and include all modern results of high precision. Their average and ± 1 standard deviation are: $T_c = 318.70 \pm 0.25$ K, with 95 % confidence limits on the mean of ± 0.12 K. If only the precise results of Singh and Van Hook, refs. 45, 48, of Ewing et al., ref. 50, and of Aizpiri et al., ref. 49, are considered, the value is $T_c = 318.61 \pm 0.23$ K, with 95 % confidence limits on the mean of ± 0.36 K. In conclusion, there is little to choose between the results of Singh and Van Hook on the one hand, and Ewing et al. and Aizpiri et al. on the other, so the present stage of knowledge suggests *recommendation* of the value;

$T_{\rm c} = 318.70 \pm 0.25$ K.

Table 2. Critical solution temperature in the system methanol-cyclohexane

T _c	Author	year	ref.	
293	Cornish, Archibald	1934	4	
316.2	Campbell, Kartzmark	1967	16	
317.976	Houessou et al.	1985	42	
318	Francis	1944	6	
318	Francis	1944	7	
318.1	Brunner	1988	51	
318.193	Scheibner et al.	1978	30	
318.2	Cornish, Archibald	1934	4	
318.2	Eden	1982	35	
318.25	Yosida, Ikushima	1978	31	
318.285	Huang, Webb	1969	19	
318.288	Schoen, Wiechers	1986	43	
318.29	Eckfeld, Lucasse	1943	5	
318.290	Huang et al.	1974	24	
318.3	Debye et al.	1962	12	
318.3	Roth et al.	1966	15 ^a	
318.3	Huang	1969	19	
318.412	Ewing et al.	1988	50	
318.422	Aizpiri et al.	1988	49	
318.44	Warren, Webb	1969	21	
318.5	Becker et al.	1978	29	
				(continued)

in th	ne system methanol-cyclohexa	ne	
T _c	Author	year	ref.
318.6	Cardinaud	1960	10
318.674	Jacobs et al.	1977	28
318.7	Schmidt	1986	47
318.72	Gimler et al.	1965	14
318.75	Jones, Amstell	1930	3
318.815	Singh, Van Hook	1987	48
318.816	Singh, Van Hook	1986	45
318.9	Kiser et al.	1961	11
318.93	Hradetsky, Bittrich	1986	44
318.98	Kopelman et al.	1984	38
319.0	Rabinovitch, Tsvetkov	1971	22
319.00	Sieg	1951	8
319.094	Jacobs	1986	46
319.2	Campbell, Kartzmark	1967	16
320.560	Cohn, Jacobs	1984	39
322.3	Mondain-Monval	1926	2
322.3	Balasubramanian, Mitra	1979	32
322.4	Quantie	1954	9
322.875	Tveekrem, Jacobs	1983	37

Table 2 (continued). Critical solution temperature

^a From Evaluator's analysis

Twenty-five values of critical composition have been reported in refs. 3, 9, 10, 12, 19, 21, 28-30, 32, 35, 37-39, 42, 43, 45, 46, 48 and 51, or have been calculated by the evaluators from the solubility data of refs. 5, 15 and 16. The values lie between 0.496 and 0.534 mole fraction of methanol. Table 2 summarizes the values in increasing order. Values reported in volume per cent, refs. 19, 21, 38 and 39, have been converted to mole fractions by the evaluators, assuming that the volume fractions were calculated from the volumes of pure methanol and cyclohexane at 20°C, where the respective densities are 0.7865 and 0.7739 g cm⁻³, from ref. 40. Values above mole fraction 0.521 were, in general, derived from experiments using as-received chemicals, or chemicals from unspecified sources (refs. 9, 37-39, 43, 46), and are rejected. The values of Cardinaud, ref. 10, and Quantie, ref. 9, are insufficiently precise to merit consideration. The value of Aizpiri et al. ref. 49, appears to be too low, although solubility data (refs. 5, 15, 16) analyzed by the evaluators gives some limited support for their value. Their favorable comparison of their value with that of Ewing et al., ref. 50, is based on an erroneous reading of the latter paper.

However, they did point out the difficulty in deducing the critical composition from a coexistence curve which has such a flat top as that for methanol-cyclohexane. The remaining values give average abd standard deviation: $x_{c1} = 0.5154 \pm 0.0052$, 95 % confidence limits ± 0.0028 . If those values are omitted for which the corresponding critical solution temperature has been rejected, there is only a slight change: $x_{c1} = 0.5124 \pm 0.0053$, 95 % confidence limits ± 0.0036 . The present stage of knowledge suggests *recommendation* of the value;

$$x_{c1} = 0.515 \pm 0.005$$

Table 3. Critical mole fraction of methanol in the system methanol-cyclohexane

<i>x</i> _{c1}	Author	year	ref.
0.489	Roth et al.	1966	15 ^a
0.493	Campbell, Kartzmark	196 7	16 ^a
0.496	Eckfeld, Lucasse	1943	5 ^a
0.4986	Aizpiri et al.	1988	49
0.5	Cardinaud	1960	10
0.5053	Jones, Amstell	1930	3
0.506	Hradetsky, Bittrich	1986	44
0.508	Singh, Van Hook	1986	45
0.508	Brunner	1988	51
0.50955	Ewing et al.	1988	50
0.514	Balusubramanian	1979	32
0.513	Becker et al.	1978	29
0.514	Singh, Van Hook	1987	48
0.5168	Jacobs et al.	1977	28
0.517	Huang, Webb	1969	19
0.517	Warren, Webb	1969	21
0.5172	Houessou et al.	1985	42
0.5179	Scheibner et al.	1978	30
0.518	Eden	1982	35
0.521	Tveekrem, Jacobs	1983	37
0.5214	Kopelman, Gammon	1984	38
0.5232	Jacobs	1986	46
0.524	Schoen, Wiechers	1986	43
0.53	Quantie	1954	9
0.538	Cohn, Jacobs	1984	39

^a from Evaluator's analysis

Mutual Solubility

Four hundred and twenty-five values of mutual solubilities have been reported in 23 publications, not including critical solution points; 249 of these are shown in fig. 1. Data from papers (refs. 17, 18, 20, 23, 25-27, 33, 34, 36, 40, 41) which are restricted to one or two temperatures have been combined for convenience in plotting, and are indicated by plus signs. Several of these (the data of ref. 26 and of ref. 23 for the cyclohexane-rich liquid) are clearly aberrant, and are rejected. The remaining 246 points lie in a band of vertical width about 3 K, which can arise in large part from differences in critical solution temperature.

The extensive data (176 points) of Ewing, Johnson and McGlashan (ref. 50) have not been included on the plot. The aim of their work was to examine the shape of the coexistence curve in the neighborhood of the critical solution point, and to this end the very precise measurements were restricted to a maximum of 1.3 K below the critical solution temperature. Thus these data would contribute simply to the density of points near the top of the curve in fig. 1, without contributing to our aim, which is to examine the whole coexistence curve.

In refs. 3, 5, 15, 16, 29, 44, 48 and 49, both solubility data and the coordinates of the critical solution point (determined either by the authors or the evaluators) are available. Therefore, these data from various sources can be compared by plotting T/T_c against $x_1 - x_{c1}$, which allows for differences in the critical coordinates, as discussed in the Preface to this volume. Although the remaining data (refs. 11, 13) may be of good quality, they cannot be compared because they belong to sets with unknown critical coordinates. The plot in reduced coordinates (fig. 2) shows that most of the selected data is of reasonable quality. (On the plot, the width of a symbol corresponds to $\Delta T = 1.6$ K, $\Delta x_1 = 0.0125$.) Exceptions arise as follows. There are two aberrant points in the data of Jones and Amstell, ref. 3. The data of Roth et al., ref. 15, and of Singh and Van Hook, ref. 48, appear to require a value of x_{c1} larger by about 0.0125 (one symbol width) to bring them into line with the other data. While this would give a reasonable increase in the value of x_{c1} for the work of Roth et al., it would give an unreasonably high increase to the value of Singh and Van Hook, so we have preferred not to carry out this change. The points of Aizpiri et al., ref. 49, are centred well compared to the other points, but appear to be somewhat too broad at lower temperatures. These data have been extrapolated from higher pressures, and, while the experiments and analysis of the data were done with great care, the extrapolation procedure may not have been completely reliable.

The best results, which fortunately also cover the largest range of composition. appear to be those of Hradetsky and Bittrich, ref. 45, and these form the basis of the following fitting equation:

$$x_1 = x_{c1} \pm B_1 \theta^{\beta} \pm B_2 \theta^{\beta+w} + A_1 \theta \pm B_3 \theta^{\beta+2w} + A_2 \theta^{1-\alpha+w}$$

where $\theta = |1 - T/T_c|$, + and - refer to the branches below and above the critical composition, and the constants have their theoretical values $\beta = 0.329$, $\alpha = 0.11$, w = 0.5. The constants (with standard deviations in parentheses) are:

$x_{c1} = 0.5066 \ (0.0023)$	$T_{\rm c}/{\rm K}=318.93~(0.3)$
$B_1 = 0.7010 \ (0.024)$	$B_2 = 1.5034 (0.22) B_3 = -3.8731 (0.49)$
$A_1 = -1.1231 \ (0.21)$	$A_2 = 1.9341 \ (0.46) \ s = 0.0077$

s is the total standard error of estimate in composition. This equation is included in fig. 1. It should be noted that six coefficients are needed to obtain a good fit, but the almost-vertial intersection with the

monotectic line appears to be slightly high (0.007 mole fraction) at the cyclohexane-rich end and slightly low by the same amount at the methanol-rich end. Thus the predicted values, especially at the lowest temperatures, should be interpreted with caution. Table 3 gives selected values calculated from the fitting equation. These can be *recommended* in the range of temperature given in the table, bearing in mind that the equilibrium temperatures are very sensitive to impurities.

Solubilities at high pressure, 0.1 to 612 MPa, were reported by Roth et al., ref. 15, Singh and Van Hook, ref. 48, and Aizpiri et al., ref. 49. Howewer, because different regions of temperature and pressure were studied, a detailed evaluation is not possible. All of these high pressure values are accepted as *tentative*.

Table 4. Recomment	nded values of solubility	in the system	
methanol (1) - cyclohexane (2).			
<i>T/</i> K	<i>x</i> ₁	<i>x</i> ₁	
	(2)-rich pha	ase (1)-rich phase	
280.0	0.068	0.877	
285.0	0.081	0.865	
290.0	0.097	0.851	
295.0	0.115	0.835	
300.0	0.138	0.816	
305.0	0.169	0.792	
310.0	0.214	0.758	
315.0	0.298	0.703	
318.70 ± 0.25	UCST 0.	515 ± 0.005	

Monotectic Point and Sub-monotectic Region

This system is the only alcohol-hydrocarbon system for which data are available for the monotectic, and these are contained in one paper only, that of Hradetsky and Bittrich, ref. 44. If the cocordinates of the ends of the monotectic line given by these workers are accepted, the sub-monotectic liquid phase (at high methanol content) can be fitted to a quadratic function:

$$T = T_{mt} + a(x_1 - x_{mt}'') + b(x_1 - x_{mt}'')^2$$

with $T_{\rm mt} = 275.4$ K, the monotectic temperature (found by graphical interpolation), constants (with standard deviations) a = -305 (68), b = -2860 (1600), and $x_{\rm mt}^{*} = 0.889$ the mole fraction at the intersection of the coexistence and sub-monotectic curves. At the ends of the monotectic line, the three phases methanol-rich liquid, solid cyclohexane and methanol-poor liquid are in equilibrium; thus these points are isothermally invariant.

The melting curve of cyclohexane (at low methanol content) shows the point of inflection expected from a substance like cyclohexane with a low entropy of fusion (cf. ref. 52). This curve can be fitted accurately by a cubic equation which passes through $T_{m,2} = 279.6$ K, the melting point of pure cyclohexane (at $x_1 = 0$), and $x_{mt}' = 0.058$, the mole fraction at the intersection of the monotectic line and the melting curve:

Fig. 2: Solubilities in the system methanol (1) - cyclohexane (2) in reduced coordinates $T/T_{cr} x_1 - x_{c1}$. Filled circles: ref. 3; open up triangles, ref. 5; filled squares, ref. 15; filled diamonds, ref. 16; filled down triangles, ref. 29; open circles, ref. 44; open up triangles, ref. 48; open squares, ref. 49.
CRITICAL EVALUATION: (continued)

$$T = T_{m,2} + (T_{mt} - T_{m,2})(x_1/x'_{mt}) + cx_1(x_1 - x'_{mt}) + dx_1(x_1 - x'_{mt})^2$$

with constants c = -535 (520), $d = -4.73 \times 10^4$ (1.3×10^4). These data are *tentative*. As noted above, the compositions at the ends of the monotectic line differ by about 0.007 mole fraction from the extrapolated values of Hradetsky and Bittrich, ref. 44, who estimate the precision of their compositions to be 0.002-0.003. This precision is considered by these evaluators to be closer to 0.01 mole fraction.

The midpoint of the monotectic line, at $x_1 = 0.474$, lies at a lower value of x_1 than the critical solution composition, $x_{c1} = 0.515$, thus indicating that the coexistence curve is slightly asymmetric, in agreement with the measurements of Aizpiri et al., ref. 49.

Pressure coefficient of critical solution temperature

Three values have been reported; see Table 5.

Table 5. Pressure coefficient of critical solution temperature

$10^7 (\partial T_c / \partial p)_{\rm xc} / {\rm K \ Pa^{-1}}$	Authors	ref.
3.173 ± 0.012	Singh, Van Hook	48
3.42 ± 0.04 (quadratic fit)	Aizpiri et al.	49
3.21 ± 0.02 (linear fit to data)		
3.299 ± 0.048	Ewing et al.	50

The average of these, excluding the linear fit of Aizpiri et al. (which the authors consider less reliable), is $10^7 (\partial T_c / \partial p)_{xc} / K Pa^{-1} = 3.30 \pm 0.12$; the result of Ewing et al. is almost exactly the mean of the other two. This average result is considered as *tentative*.

REFERENCES

- 1. Timmermans, J. Arch. Neerland. Sci. 1922, 6, 147.
- 2. Mondain-Monval, P. C. R. Hebd. Séances Acad. Sci. 1926, 183, 1104.
- 3. Jones, D.C.; Amstell, S. J. Chem. Soc. 1930, 1316.
- 4. Cornish, R.E.; Archibald, R.C.; Murphy, E.A.; Evans, H.M. Ind. Eng. Chem. <u>1934</u>, 26, 397.
- 5. Eckfeld, E.L.; Lucasse, W.W. J. Phys. Chem. <u>1943</u>, 47, 164.
- 6. Francis, A.W. Ind. Eng. Chem. <u>1944</u>, 36, 1096.
- 7. Francis, A.W. Ind. Eng. Chem. <u>1944</u>, 36, 764.
- 8. Sieg, L. Chem.-Ing.-Tech. 1951, 23, 112.
- 9. Quantie, C. Proc. Roy. Soc. London, Ser. A 1954, 224, 90.
- 10. Cardinaud, R. Bull. Soc. Chim. Fr. 1960, 622.
- 11. Kiser, R.W.; Johnson, G.D.; Shetlar, M.D. J. Chem. Eng. Data <u>1961</u>, 6, 338.
- 12. Debye, P.; Chu, B.; Kaufmann, H. J. Chem. Phys. <u>1962</u>, 36, 3378.
- 13. Marinichev, A.N.; Susarev, M.P. Zh. Prikl. Khim. 1965, 38, 1619.
- 14. Gimler, G.H.; Gilmore, W.; Huang, J.; Webb, W.W. Phys. Rev. Lett. 1965, 14, 491.
- 15. Roth, K.; Schneider, G.; Franck, E.U. Ber. Bunsen-Ges. Phys. Chem. 1966, 70, 5.
- 16. Campbell, A.N.; Kartzmark, E.M. Can. J. Chem. <u>1967</u>, 45, 2433.

(continued)

CRITICAL EVALUATION: (continued)

REFERENCES (continued)

- Kurtynina, L.M.; Smirnova, N.A.; Andrukovich, P.F. Khim. Termodin. Rastvorov <u>1968</u>, (2), 43.
- Rudakovskaya, T.S.; Soboleva, S.A.; Timofeev, V.S.; Serafimov, L.A. Zh. Prikl. Khim. <u>1968</u>, 41, 1556.
- 19. Huang, J.S.; Webb, W.W. J. Chem. Phys. 1969, 50, 3677.
- 20. Sergeeva, V.F.; Eskaraeva, L.A. Zh. Obshch. Khim. 1969, 39, 731.
- 21. Warren, C.; Webb, W.W. J. Chem. Phys. 1969, 50, 3694.
- 22. Rabinovich, I.B.; Tsvetkov, V.G. Zh. Fiz. Khim. 1971, 45, 822.
- 23. Sergeeva, V.F.; Eskaraeva, L.A.; Usmanova, I.Z.; Glybovskaya, V.A. Zh. Obshch. Khim. 1971, 41, 1895.
- 24. Huang, J.S.; Goldburg, W.I.; Bjerkaas, A.W. Phys. Rev. Lett. 1974, 32, 921.
- 25. Takeuchi, S.; Nitta, T.; Katayama, T. J. Chem. Eng. Jpn. 1975, 8, 248.
- Budantseva, L.S.; Lesteva, T.M.; Nemtsov, M.S. Zh. Fiz. Khim. <u>1976</u>, 50, 1343; Deposited Doc. VINITI <u>1976</u>, 438.
- 27. Sugi, H.; Nitta, T.; Katayama, T. J. Chem. Eng. Jpn. 1976, 9, 12.
- 28. Jacobs, D.T.; Anthony, D.J.; Mockler, R.C.; O'Sullivan, W. J. Chem. Phys. 1977, 20, 219.
- Becker, F.; Kiefer, M.; Rhensius, P.; Spoerner, A.; Steiger, A. Z. Phys. Chem. (Wiesbaden) <u>1978</u>, 112, 139.
- Scheibner, B.A.; Sorensen, C.M.; Jacobs, D.T.; Mockler, R.C.; O'Sullivan, W.J. Chem. Phys. <u>1978</u>, 31, 209.
- 31. Yosida, Y.; Ikushima, A. J. Phys. Soc. Jpn. 1978, 45, 1949.
- 32. Balasubramanian, D.; Mitra, P. J. Phys. Chem. 1979, 83, 2724.
- 33. Nagata, I.; Katoh, K. Thermochim. Acta 1980, 39, 45.
- 34. Nagata, I.; Katoh, K.; Koyabu, J. Thermochim. Acta 1981, 47, 225.
- 35. Eden, D. Rev. Sci. Instrum. 1982, 53, 105.
- 36. Nagata, I.; Ohta, T. J. Chem. Eng. Data 1983, 28, 256.
- 37. Tveekrem, J.L.; Jacobs, D.T. Phys. Rev. 1983, 27A, 2773.
- 38. Kopelman, R.B.; Gammon, R.W.; Moldover, M.R. Phys. Rev. 1984, 29A, 2048.
- 39. Cohn, R.H.; Jacobs, D.T. J. Chem. Phys. 1984, 80, 856.
- 40. Nagata, I. J. Chem. Thermodyn. <u>1984</u>, 16, 737.
- 41. Nagata, I. Fluid Phase Equilib. <u>1984</u>, 18, 83.
- 42. Houessou, C.; Guenoun, P.; Gastaud, P.; Perrot, F.; Beysens, D. Phys. Rev. A <u>1985</u>, 32, 1818.
- 43. Schoen, W.; Wiechers, R.; Woermann, D. J. Chem. Phys. 1986, 85, 2922.
- 44. Hradetzky, G.; Bittrich, H.-J. Int. Data Ser., Sel. Data Mixtures, Ser. A 1986, 218.
- 45. Singh, R.R.; Van Hook, A. J. Chem. Thermodyn. <u>1986</u>, 18, 1021.
- 46. Jacobs, D.T. Phys. Rev. A 1986, 33, 2605.
- 47. Schmidt, J.W. J. Chem. Phys. 1986, 85, 3631.
- 48. Singh, R.R.; Van Hook, W.A. J. Chem. Phys. 1987, 87, 6097.
- 49. Aizpiri, A.G.; Rubio, R.G.; Diaz Peña, M. J. Chem. Phys. <u>1988</u>, 88, 1934.
- 50. Ewing, M.B.; Johnson, K.A.; McGlashan, M.L. J. Chem. Thermodyn. 1988, 20, 49.
- 51. Brunner, E. J. Chem. Thermodyn. <u>1988</u>, 20, 439.
- 52. Prigogine, I.; Defay, R. (transl. Everett, D.H.) Chemical Thermodynamics. Longmans, Green and Co., New York, London, Toronto, 1954. p. 360.

	5		
COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Methanol; CH_4O ; [67-56-1]	Timmermans, J.		
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	*Arch. Neerland. Sci. <u>1922</u> , 6,		
	147-51.		
	J. Chim. Phys. <u>1923</u> , 20, 491.		
VADTADI DC.			
Temporature: 333 - 354 K	A Skraoga		
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	A. SKIZECZ		
EXPERIMENTAL VALUES:	I		
USCT of methanol and cycl	Lohexane		
$t/^{\circ}C$ p/atm p/MPa	(compiler)		
59.45 50. 4.90			
61.02 100. 9.81			
63.98 200. 19.61			
69.10 400. 39.23			
81.0 1000. 98.07			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The method was reported in ref 1.	(1) source not specified, anhydrous; distilled over Na.		
	(2) source not specified; b.p. 80.75°C, f.p. 6.50°C.		
	ESTIMATED ERROR: not specified.		
	REFERENCES: 1. Kohnstamm, P.; Timmermans, J. Versl. Akad. Amsterdam <u>1912</u> , 21, 783.		

52	
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH40; [67-56-1]	Mondain-Monval, P.
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	C.R. Hebd. Séances Acad. Sci. <u>1926</u> , 183, 1104-6.
VARIABLES:	PREPARED BY:
One temperature: 322 K	A. Skrzecz
EXPERIMENTAL VALUES:	4. <i>a</i>
The UCST was reported to be 49.1°C.	
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The method was not specified.	 (1) Source not specified; b.p. 64.7°C (2) Source not specified.
	ESTIMATED ERROR: not specified
	REFERENCES:
COMPONENTS	OPTOTNAL MEASUDEMENTS.
(1) Methanol; CH.O; [67-56-1]	Cornish. R.E.; Archibald. R.C.;
(2) Cyclohexane; $C_{2}H_{12}$; [110-82-7]	Murphy, E.A.; Evans, H.M.
	Ind. Eng. Chem. <u>1934</u> , 26, 397- 406.
VARIABLES:	PREPARED BY:
Temperature: 293, 318 K	A. Skrzecz
EXPERIMENTAL VALUES:	•
The UCST was reported to be 45.0°C a) a different sources; see "SOURCE AND PURI"	and 20°C b) for cyclohexane (2) from TY OF MATERIALS" below.
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The method was not specified.	 (1) source not specified; distilled; ρ(25°C)/ρ(4°C) = 0.78656 (corr. for buoyancy), anhydrous. (2) a) Eastman Kodak Co., used as received. b) Kahlbaum; used as received; probably contained benzene.
	ESTIMATED ERROR: not specified

REFERENCES:

COMPONENT			ORICIN	AL MEACUDEMENTE .	
COMPONENTS:		ORIGINAL MEASUREMENTS:			
(1) Methanol; CH ₄ O; [67-56-1]		Jon	es, D.C.; Amste	11, S.	
(2) Cyc	clohexane; C ₆ H ₁₂ ; [:	L10-82-7]	J.	Chem. Soc. <u>193</u>	<u>0</u> , 1316-23.
VARIABLES	S:		PREPAR	RED BY:	
Tempera	ature: 279 - 319 K		A	Skrzecz	
EXPERIMEN	NTAL VALUES:				
	Mutual solubility	y or methanol	and	cyclonexane	
	100 W ₁			x_1 (compile	er)
	(2)-rich phase	(1)-rich ph	ase	(2)-rich phase	(1)-rich phase
0.1	2.70	-		0.0679	-
	-	67.77		-	0.8467
30.40	-	00.00		-	0.8010
30.0	4.50	-		0.1101	-
32.3	0.0U	-		0.1002	**
37.5	8.53	-		0.1301	-
40.05	-	51.04		-	0.7325
42.08	12.07	40.40		-	0.6945
42.00	13.07	-		0.2831	-
44.02	10.75	40.51		-	0.0414
45.10	10.75	_		0.37/4	-
45.52	19.30	-		0.3007	-
45 52	20.74	30 95		-	0.5751
45.53	22.40	-		0.4312	-
45.56	~	30.14		-	0.5312
45.58	27,19	29.20		0,4952	0.5200
45.60	UCST 28.00	28.00		0.5053	0.5053
<u> </u>					
		AUXILIARY	INFORM	ATION	
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:			
The c	loud point metho	d was used.	(1)	B.D.H., analyt	ical reagent grade
Known sealed	masses of comport into tubes.	nents were To exclude	twice distilled, dried with		
moistur	re during the fill	ing procedure		treated with f	reshly burnt lime,
and st were du	torage of reagent: ried by beating wi	s, the tubes		acetone free,	twice distilled;
and kep	pt in a desiccator	and filling	(2)	a) Poluenc Fre	res, "pur", m.p.
Was acc	complished inside (dry-box (air		2.6°C; disti	lled; m.p. 6.48°C.
calciur	m chloride and	phosphoric		m.p. 1.0°C;	distilled;
OXide). been s	The thermomete: standardized at t	rs used had		m.p. 6.48°C.	aterial obtained
effect	of water on the	e solubility		by the cata	lytic method;
curve v	was studied.			m.p. 6.48°C.	
		ESTIM/	ATED ERROR:		
			not	specified.	
			DEFER		
			ALTERI	:01013	
L		·	l		

54					
COMPONENTS	:		ORIGI	NAL MEASUREMENTS:	
(1) Methanol; CH,O; [67-56-1]		Eck	feld, E.L.; Luca	sse, W.W.	
(1) Mechanici, $C_{L_{0}}$ [0, 50 1] (2) Cyclohexane: $C_{H_{0}}$; [110-82-7]		J.	Phys. Chem. <u>194</u>	3, 47, 164-83.	
	8 12 1	-		-	
VARIABLES:			PREPA	RED BY:	
Temperat	ure: 302 - 318 K	ſ	Α.	Skrzecz	
EVDEDIMENT					
EXPERIMENT	Mutual solubility	y of methanol	and	cyclohexane	
t/°c	g(1)/1	.00g sln		x ₁ (c	compiler)
	(2)-rich phase	(1)-rich ph	ase	(2)-rich phase	(1)-rich phase
29.19	-	61.06		-	0.8046
30.46	-	60.05		-	0.7979
31.30	6.11	-		0.1460	-
33.19	7.88	_		0.1835	-
34.01	-	57.09		-	0.7775
34.13	8.19	-		0.1898	-
35.95	9.08	-		0.2078	-
38.62	-	52.12		-	0.7409
39.05	11.02	_		0.2455	-
42.05	14.01	-		0.2997	-
42.29	-	46.06		-	0.6916
44.15	18.16	_		0.3682	_
44.24	-	40.23		-	0.6387
44.81	-	21.17		-	0.6136
44.87	-	36.15		-	0.5979
45.07	-	33.18		-	0.5660
45.09	24.07	_		0.4543	-
45.14		30.09		-	0.5306
45.14	26.14	28.12		0.4818	0.5068
45.14 U	CST (by interpo	lation)		-	_
					······
		AUXILIARY	INFORM	ATION	
METHOD/APPA	ARATUS/PROCEDURE:		SOURCE	E AND PURITY OF MAT	ERIALS:
The clou	d point method wa	is used. The	(1)	J.T.Baker Compa	ny (Phillipsburg
were fi	lled very care	fully with		purified by iod	oform reaction
reagents	in a dry chest w	with P_2O_5 to		to remove ace	tone, twice
and the	n placed into a	water bath.	residual salts, twice distilled		
Machiner	y for stirring t	the bath and		from sodium met	hylate and then
the top	of the bath. A s	strong light		= 0.78654 agree	d with literature
mounted	over the bath	furnished	(2)	values.	manus (Midland
cloudine	ss and clearner	ss in the	(2)	Michigan), comm	ercial grade;
ampoules	. The temperature	e of clearing		nitrated to rem	ove unsaturated
change o	f the miscibility	temperature		and water, drie	d with anhydrous
over 2-m	onth period.	the offects		Na ₂ SO ₄ , distille	ed, dried with Na
of added	salt.	che errecus		and distilled;	1.p. 0.48 ±0.02 C.
			ESTIM	ATED ERROR:	og alm (annilan)
			tem	p. ± 0.03 g(1)/10 p. ± 0.02 K and \pm	0.01 K near the
				UCST (precis	ion of the
				measurements	• / •
			REFERI	ENCES:	

	5
СОМРОNENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	ORIGINAL MEASUREMENTS: Francis, A.W. Ind. Eng. Chem. <u>1944</u> , 36, 764-71.
VARIABLES:	PREPARED BY:
One temperature: 318 K	A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 45°C.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The reagents were introduced and stirred with a thermometer in test tubes which were warmed and cooled gradually in a bath. The temperature of disappearance or reappearance of the cloudiness was read two or three times in each direction.	SOURCE AND PURITY OF MATERIALS: (1) SOURCE not specified. (2) SOURCE not specified. ESTIMATED ERROR: not specified. REFERENCES:
	L
СОМРОNENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	ORIGINAL MEASUREMENTS: Francis, A.W. Ind. Eng. Chem. <u>1944</u> , 36, 1096-1104.
VARIABLES:	PREPARED BY:
One temperature: 318 K	A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 45°C.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The reagents, about 1 mL of each, were introduced into a small tube and stirred with a thermometer while the tube was warmed gradually in a bath of water or glycerol or was cooled with ice or a bath of acetone and dry	<pre>SOURCE AND PURITY OF MATERIALS: (1) source not specified; dried. (2) source not specified; b.p. 80.8°C. ESTIMATED ERROR:</pre>
ice. The temperature of disappearance	not specified.

(2)	source not specified;
	b.p. 80.8°C.

STIMA	TED	ERROR	:
not	spe	ecifie	ed.

or reappearance of the cloud was read three or four times in each REFERENCES: direction. The proportion of components was modified to obtain

critical solution temperature.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; Cr_40 ; $[67-56-1]$ (2) Cyclohexane: C_rH_{12} ; $[110-82-7]$	ChemIngTech. 1951. 23. 112~3.
VARIABLES:	PREPARED BY:
One temperature: 319 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 45.85°C.	
Mutual solubility was presented on a	graph only.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A mixture of known composition was	with Mg, fractionated; physical
sealed in an ampoule and the temperature of appearance or	properties were in agreement with literature values.
disappearance of turbidity was observed. The ampoules and pipettes	(2) source not specified, pure grade fractionated; physical
were filled in a moistureless	properties were in agreement with literature values.
	ESTIMATED ERROR:
	not specified.
	REFERENCES:
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Quantie, C.
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Proc. Roy. Soc., Ser. A <u>1954</u> ,
	224, 90-104.
VARIABLES:	PREPARED BY:
One temperature: 322 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 49.2°C a	t 39.4 g(1)/100g sln.
is 0 534	e, x_1 , calculated by the complier
	TNEODNATION
	COURCE AND DUDTER OF VATERIALS.
The cloud point method was used. The	(1) source not specified.
method was based on the fact that the separation of a noncritical	(2) source not specified.
mixture in a vertical tube starts with the formation of a sharp	
boundary at the top or the bottom.	
critical concentration, diffuse	
Finally, if the mixture has the	ESTIMATED ERROR:
critical composition and the rate of cooling is slow, a sharp boundary	not specified.
appears at a certain height at	REFERENCES:
independent of further variation of	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH_4O ; [67-56-1]	Cardinaud, R.
(2) Cyclohexane; C _c H ₁₂ ; [110-82-7]	Bull. Soc. Chim. Fr. 1960, 622-6.
	,
One temperatures 210 K	PREFARED BIT
one cemperature: 319 K	A. SKrzecz
	l
EXPERIMENTAL VALUES:	
The UCST was reported to be 45.4°C a	$t x_1 = 0.5.$
The corresponding mass percentage, c	alculated by the compiler is
28 g(1)/100g sln.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The cloud point method was used. The components were weighed in ampoules	(1) Source not specified, purity 99.5%: boiled with Mg. distilled
and protected against moisture. The	b.p. 64.7 °C.
influence of water impurity (0.004	
Mole fraction) was investigated.	(2) source not specified; aried over CaCle, distilled over Mg(ClO ₄)
graph.	
	ESTIMATED ERROR:
	temp. ±0.2°C.
	REFERENCES:
1	

58			
COMPONENTS:			ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]		Kiser, R.W.; Johnson, G.D.;	
(2) Cyclol	nexane; C ₆ H ₁₂ ; [110-82-7]		Shetlar, M.D.
			J. Chem. Eng. Data <u>1961</u> , 6, 338-41.
VARIABLES:			PREPARED BY:
Temperatu	ce: 288 - 319 K		A. Skrzecz
EXPERIMENTAL	VALUES:		
	Solubility of c	yclo	hexane in methanol
t/°C	g(2)/100 ml(1) g(2	2)/10	$\log \sin (\text{compiler}) x_2 (\text{compiler})$
15	34.4	30.2	0.141
20	38.4	32.7	0.156
25	43.5	35.6	0.174
30	50.3	39.2	0.197
35	60.	43.6	0.227
40	/4.	48.9	0.267
	AUXILI	TARY J	INFORMATION
METHOD/APPAR	ATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
The isople was used composition and the transition phase transition phase transition and easil chosen, was (cloud p miscible the finely no longer	ethal or cloud point met a. Samples of kn on were heated and/or co- temperature of ph- n was noted. In general, insition most reproducil by observed, and therefore is the unmixing temperation is obtained when solution was cooled un dispersed solute was ju- completely miscible.	hod own oled ase the ble ore ure a til ust	 (1) E.I. du Pont de Nemours and Co.; distilled; n^D_D 1.3293, b.p. 64.6°C (corrected), f.p99°C. (2) Matheson, Coleman and Bell, spectroquality; used as received contained no unsaturated material, estimated impurities <0.02 mole%; n²⁰_D 1.4259.
			ESTIMATED ERROR: soly. ±2% (relative error); temp. ±0.2°C.
			REFERENCES: 1. International Critical Tables vol. 3, New York, <u>1933</u> .
		ł	

	08
СОМРОNENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	ORIGINAL MEASUREMENTS: Debye, P.; Chu, B.; Kaufmann, H. J. Chem. Phys. <u>1962</u> , 36, 3378-81.
VARIABLES: One temperature: 318 K	PREPARED BY: A. Skrzecz
FYDEDIMENTAL VALUES.	
The UCST was reported to be 45.15°C and the the the test of te	at 30 g(1)/100g sln. We, x_1 , calculated by the compiler
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The critical opalescence of binary liquid mixtures was investigated. The solutions were prepared from weighed amounts of components. The temperatures of phase separation were determined in separate experiments by visual observation. The solutions were filtered directly into the scattering cell through a thermostatted glass frit. The scattering cell was fitted with a stopcock using a teflon plug. Evaporation was estimated at < 0.5%.	 SOURCE AND PURITY OF MATERIALS: (1) Mallinckrodt, analytical grade; dried with calcinated CaO, refluxed for one day with CaO and NaOH, fractionally distilled only one peak by glc. (2) Matheson, Coleman, and Bell; passed through a column of silica gel, distilled; only one peak by glc. ESTIMATED ERROR: not specified.
СОМРОNENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	ORIGINAL MEASUREMENTS: Gimler, G.H.; Gilmore, W.; Huang, J,; Webb, W.W. Phys. Rev. Lett. <u>1965</u> , 14, 491-4.
VARIABLES:	PREPARED BY:
One temperature: 318 K	A: Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 45.222°C	•
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The refractive index along the coexistance curve was measured. No further details were reported.	SOURCE AND PURITY OF MATERIALS: (1) source not specified; purified. (2) source not specified; purified.
	ESTIMATED ERROR: temp. ±0.01°C.
	REFERENCES:

60					
COMPONE	NTS:	1977 <u>- In 1989 - 1999</u> - 1997 - <u>1997 - 1997</u> - 1997 - 19		ORIGINAL MEASUREMENTS:	
(1) Methanol; CH ₄ 0; [67-56-1]			Marinichev, A.N.; Susarev, M.P.		
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]		[*] Zh. Prikl. Khim. (Leningrad) <u>1965</u> , 38, 1619-21; J. Appl. Chem. (USSR) <u>1965</u> , 38, 1582-4.			
VARIABL	ES:	<u></u>		PREPARED BY:	
Temper Pressu	Temperature: 308 and 318 K Pressure: 334, 520 mHg			A. Skrzecz	
EXPERIM	ENTAL VALUES:			L <u></u>	
	Mutual solu	ubility of me	thanol	and cyclohexane	
t/°c	p/mmHg	x (2)-rich phase	1 (1)-1 phase	100 w ₁ (compiler) rich (2)-rich (1)-rich e phase phase	
35	333.5	0.169	0.78	4 7.19 58.02	
45	519.9	0.437	0.60	7 22.81 37.03	
	<u> </u>	AUXILI	ARY IN	FORMATION	
METHOD/	APPARATUS/PROC	CEDURE:		SOURCE AND PURITY OF MATERIALS:	
Liquid - liquid equilibrium and vapor - liquid equilibrium data were measured with a Bushmakin apparatus, ref 1 and 2. No further details were reported.			 (1) source not specified; purified; b.p. 64.65°C, n₀(20°C) = 1.3286, ρ(20°C)/ρ(4°C) = 0.7915. (2) source not specified; purified; b.p. 80.75°C, n₀(20°C) = 1.4263, ρ(20°C)/ρ(4°C) = 0.7786. 		
				ESTIMATED ERROR:	
				not specified	
				REFERENCES:	
				 Bushmakin, I.N.; Voeikova, E.D. Zh. Obshch. Khim. <u>1949</u>, 19, 1615. Bushmakin, I.N. Zh. Obshch. Khim. <u>1959</u>, 32, 812. 	

	61
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Roth, K.; Schneider, G.; Franck, E.U.
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Ber. Bunsenges. Phys. Chem. <u>1966</u> , 70, 5-10.
VARIABLES:	PREPARED BY:
Temperature: 264 - 437 K Pressure : 0.1 - 563 MPa	A. Skrzecz
EXPERIMENTAL VALUES:	
Solubility of methanol and cyclol $t/^{\circ}C$ p/MPa x_{1} 100	nexane ^W 1
23. 0.1 0.122 37.4 49.0 0.122 45.2 82.5 0.122 48. 97.0 0.122 50.2 102.0 0.122 60.0 126.5 0.122 90.6 213.5 0.122 108.1 271.0 0.122 131.1 353.0 0.122 150.7 425.0 0.122 40.0 0.1 0.262 151.6 34.0 0.262 154.6 46.0 0.262 158.1 62.5 0.262 63.6 88.5 0.262 63.6 88.5 0.262 156.7 112.5 0.262 157.7 112.5 0.262 157.8 183.0 0.262 157.8 183.0 0.262 157.8 183.0 0.262 158.1 62.5 0.262 159.8 183.0 0.262 159.8 183.0 0.262 159.8 183.0 0.262 159.8 183.0 0.262 150.7 112.5 0.262 150.	5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
AUXILIARY INF	FORMATION
METHOD/APPARATUS/PROCEDURE: The visual direct observation method was used. A mixture of known composition was placed in a high pressure cell with a colorless sapphire window described in ref 1. The cell was thermostatted in an Al block; commercial high pressure equipment was used and pressure was measured by weight manometer. Two procedures were used: changes of temp. at constant pressure and changes of pressure at constant temp. Both methods gave similar results; the second was less time-consuming and was used in most cases). Each point was measured several times.	 SOURCE AND PURITY OF MATERIALS: (1) Merck, for analysis grade; twice distilled with Mg turnings; impurities 0.02 mole % by temperature-time freezing curve; m.p98.0 ±0.2°C. (2) BASF; distilled, crystallized, distilled; impurities 0.06 mole% by temperature-time freezing curve; m.p. 6.50 ±0.05°C.
	ESTIMATED ERROR: soly. ±1 % (estimated precision); temp. < ±0.1°C; pressure: ±5 MPa (0-400 MPa), ±10 MPa (400-600 MPa). REFERENCES: 1. Schneider, G. Z. Phys. Chem. (Frankfurt) 1963, 37, 333.

62			
COMPONENTS:		ORIGINAL MEASUREMENTS:	
(1) Methanol; CH ₄ O; [67-56-1]		Roth, K.; Schneider, E.U.	G.; Franck,
(2) Cyclohexane	; C ₆ H ₁₂ ; [110-82-7]	Ber. Bunsenges. Phys	. Chem. <u>1966</u> ,
EXPERIMENTAL VALUES	(continued)		
Solubility	of methanol and c	yclohexane	
t/°c p	D/MPa x ₁	100 w ₁	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	89.0 0.262 93.0 0.262 96.0 0.262 06.0 0.262 42.0 0.262 57.0 0.262 16.0 0.262 32.0 0.262 0.1 0.395 53.0 0.395	12. 12. a) 12. b) 12. b) 12. b) 12. b) 12. b) 12. b) 12. b) 20. 20.	
65.1 68.7 73.9 1 78.4 1 82.5 1 85.4 1 90.1 2 90.6 2 95.2 2 100.3 2	75.5 0.395 93.0 0.395 20.5 0.395 72.0 0.395 96.0 0.395 22.0 0.395 26.0 0.395 26.0 0.395 26.0 0.395 26.0 0.395 58.0 0.395	20. 20. 20. 20. 20. 20. 20. 20. 20. 20.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	90.0 0.395 46.0 0.395 43.0 0.395 0.1 0.500 28.5 0.500 49.0 0.500 71.0 0.500 97.5 0.500 48.0 0.500 79.5 0.500	20. b) 20. b) 20. b) 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	
89.9 2 92.5 2 96.2 2 97.3 2 99.5 2 106.0 2 118.9 3 131.2 3' 139.6 4 164.1 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27.5 27.5 a) 27.5 b) 27.5 b) 27.5 b) 27.5 b) 27.5 b) 27.5 b) 27.5 b) 27.5 b) 27.5 b)	
44.4 54.1 59.4 68.3 75.1 1 80.6 1 86.5 1 88.6 2 89.4 2 90.85 2	$\begin{array}{ccccc} 0.1 & 0.635 \\ 29.5 & 0.635 \\ 50.0 & 0.635 \\ 91.0 & 0.635 \\ 25.0 & 0.635 \\ 58.0 & 0.635 \\ 94.0 & 0.635 \\ 94.0 & 0.635 \\ 13.0 & 0.635 \\ 13.0 & 0.635 \\ 23.0 & 0.635 \end{array}$	40. 40. 40. 40. 40. 40. 40. 40. 40. 40.	
91.1 2: 92.1 2: 93.6 2: 95.5 2: 100.9 2:	24.0 0.635 33.0 0.635 36.0 0.635 51.0 0.635 52.0 0.635	40. a) 40. 40. b) 40. b) 40. b)	(continued)

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Methanol; CH₂O; [67-56-1] Roth, K.; Schneider, G.; Franck, E.U. (2) Cyclohexane; C₆H₁₂; [110-82-7] Ber. Bunsenges. Phys. Chem. 1966, 70, 5-10. EXPERIMENTAL VALUES: (continued) Solubility of methanol and cyclohexane t/°C x_1 p/MPa 100 W. 40. 113.1 319.0 0.635 b) 416.0 131.7 0.635 40. b) 147.1 509.0 0.635 40. b) 39.4 0.1 50. 0.725 53.5 44.0 0.725 50. 72.5 60.0 0.725 50. 65.0 97.0 0.725 50. 70.1 121.5 0.725 50. 75.1 150.0 0.725 50. 0.725 79.9 177.0 50. 83.3 200.0 0.725 50. a) 84.4 208.0 0.725 50. 85.0 211.0 0.725 50. 85.6 216.0 0.725 50. 85.9 210.0 0.725 50. b) 50. 87.3 214.0 0.725 b) 90.5 228.0 0.725 50. b) 98.1 .255.0 50. 0.725 b) 111.8 50. 319..0 0.725 b) 133.6 442.0 50. b) 0.725 30.1 10.1 0.795 60. 44.1 45.0 0.795 60. 50.0 70.5 0.795 60. 58.05 109.0 0.795 60. 64.05 141.0 0.795 60. 60. 64.5 143.0 0.795 a) 66.8 156.0 0.795 60. 60. 69.65 160.5 0.795 b) 0.795 75.7 181.0 60. b) 80.2 198.0 0.795 60. b) 90.4 239.0 0.795 60. b) 100.2 286.0 60. b) 0.795 117.6 386.0 0.795 60. b) 0.860 13. 0.1 70. 59.0 29. 0.869 70. a) 30.1 59.5 0.860 70. b) 40.1 88.0 0.860 70. b) b) 51.0 121.5 0.860 70. 64.5 143.0 0.860 70. b) 70.1 194.0 0.860 70. b) 90.4 286.0 70. 0.860 b) 110.1 392.0 0.860 70. b) 510.0 127.3 70. 0.860 b) -9. 0.1 0.912 80. b) 19.5 81.5 0.912 80. b) 29. 59.0 0.912 80. b) 35.3 133.0 0.912 80. b) 50.2 191.0 0.912 80. b) 70.3 289.0 0.912 80. b) 90.9 416.0 0.912 80. b) 112.6 612.0 0.912 80. b) COMMENTS: Mass per cent values are presumably primary data and are given in the same form as in original paper.

 COMPONENTS:
 ORIGINAL MEASUREMENTS:

 (1) Methanol; CH40; [67-56-1]
 Campbell, A.N.; Kartzmark, E.M.

 (2) Cyclohexane; C6H12; [110-82-7]
 Can. J. Chem. 1967, 45, 2433-9.

 VARIABLES:
 PREPARED BY:

 Temperature: 313 - 319 K
 A. Skrzecz

EXPERIMENTAL VALUES:

Mutual solubility of methanol and cyclohexane

t∕°C	100 W ₁		x ₁ (compiler)		
	(2)-rich phase	(1)-rich phase	(2)-rich phase	(1)-rich phase	
40.0	10.1	51.9	0.228	0.739	
45.0	15.7	40.4	0.329	0.640	
45.5	18.0	37.7	0.366	0.614	
45.6	19.5	37.5	0.389	0.612	
45.8	19.5	35.2	0.389	0.588	
45.87	22.5	35.2	0.433	0.588	
46.0	UCST (interpolat	ed) -	-	-	

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The analytical method was used. A heterogeneous mixture was stirred for at least 24 h in a vessel with a mercury seal and then allowed to settle for another 24 h until the meniscus was clearly defined. Samples of each phase were weighed, a weighed excess of the appropriate pure	(1) source not specified, highest purity obtainable; n_0 (25°C) = 1.32693. (2) source not specified, highest purity obtainable; n_0 (25°C) = 1.42352.
component was added to produce	ESTIMATED ERROR:
homogeneity and the mixture was	
analyzed by the refractive index	temp. ±0.01 K (precision of
method.	thermostating).
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	<pre>Kurtynina, L.M.; Smirnova, N.A.; Andrukovich, P.F. Khim. Termodin. Rastvorov 1968, (2), 43-52.</pre>
VARIABLES:	PREPARED BY:
One temperature: 298 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Solubility of methanol in cyclohexane, (compiler). Solubility of cyclohexane in methanol, (compiler).	25°C: $x_1 = 0.112$, 100 $w_1 = 4.58$ 25°C: $x_2 = 0.170$, 100 $w_2 = 34.98$
	-
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The analytical method was used. A flask containing a stirrer with Hg seal was used. An equimolar mixture was thermostatted and mixed for 2.5 h and then allowed to separate until both phases were clear. Composition was measured by density, usinf a pycnometer.	(1) source not specified, pure grade; distilled; b.p. 64.53° C, $n_{\rm D}(20^{\circ}$ C) = 1.3288, $\rho(25^{\circ}$ C)/ $\rho(4^{\circ}$ C) = 0.78674. (2) source not specified, pure for analysis grade; distilled; b.p. 80.74°C, $n_{\rm D}(20^{\circ}$ C) = 1.4263, $\rho(25^{\circ}$ C)/ $\rho(4^{\circ}$ C) = 0.77375.
	ESTIMATED ERROR:
	density ±0.00005 g/mL. solubility: no estimates possible.
	REFERENCES :

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Methanol; CH₂O; [67-56-1] Rudakovskaya, T.S.; Soboleva, S.A.; Timofeev, V.S.; (2) Cyclohexane; C₆H₁₂; [110-82-7] Serafimov, L.A. ⁷Zh. Prikl. Khim. (Leningrad) 1968, 41, 1556-61; J. Appl. Chem. (USSR) 1968, 41, 1479 -82. VARIABLES: PREPARED BY: One temperature: 298 K A. Skrzecz EXPERIMENTAL VALUES: Solubility of methanol in cyclohexane, $25^{\circ}C$: 100 w₁ = 4.6, x₁ = 0.11 (compiler). Solubility of cyclohexane in methanol, 25°C: 100 w_2 = 35.2, x_2 = 0.155 (compiler). Data for the ternary system cyclohexane-methanol-vinyl acetate are also given. AUXILIARY INFORMATION SOURCE AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: A titration method, ref 1, was used. (1) source not specified; purified; 0.01 mass% H,O; b.p. $64.5^{\circ}C$, $n_{n}(20^{\circ}C) = 1.3290$. (2) source not specified; purified; 0.01 mass% H,O; b.p. $80.5^{\circ}C, n_{0}(20^{\circ}C) = 1.4262.$ ESTIMATED ERROR: not specified. density ±0.00005 g/mL. solubility: no estimates possible. **REFERENCES:** 1. Alders, L. Zhidkostnaya ekstraktsiya, I.L., 1962.

	67
Components:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH40; [67-56-1]	1. Huang, J.S.; Webb, W.W.
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	J. Chem. Phys. <u>1969</u> , 50, 3677-93.
	2. Warren, C.; Webb, W.W.
	J. Chem. Phys. <u>1969</u> , 50, 3694- 700.
	3. Huang, J.S.; Goldburg, W.I.; Bjerkaas, A.W.
	Phys. Rev. Lett. <u>1974</u> , 32, 921-3.
VARIABLES:	PREPARED BY:
One temperature: 318 K	A. Skrzecz
EXPERIMENTAL VALUES:	
UCST/°C vol% x ₁ MeOH (compiler)	100 w, ref. (compiler)
45.135 28.6 0.289 45.29 28.6 0.289 45.140	0.517 1 0.517 2 - 3
AUXILIAR	Y INFORMATION
METHOD/APPARATUS/PROCEDURE: 1. The reflectivity of the critical interface as a function of temperature at 632.8 nm from a He-Ne laser was measured. The critical mixture was prepared in a glass optical cell sealed at liquid N ₂ temp. Before each reflectivity measurement, the sample was stirred in a thermostat for 8-12 h. Experiments were repeated several times after 8 and 72 h. A Beckman	<pre>15-mW He-Ne laser. The bath temperature was stabilized at the critical temperature and then quickly dropped to about 2 mK below this value. The dynamic light -scattering behavior of the mixture undergoing phase separation near the critical point was studied. d SOURCE AND PURITY OF MATERIALS: n (1) Fisher Scientific Company,</pre>
NBS Pt resistance thermometer was used. Composition was measured at 20°C.	 (2) Phillips Petroleum Company, (2) Phillips Petroleum Company,
2. The meniscus profile was determined in a cubic glass cell containing the mixture, which was illuminated with parallel light, from a photograph. The cell was carefully cleaned and dried before filling, then was placed in the water bath.	ESTIMATED ERROR: temp. ±0.001 K for refs 1, 3; ±0.01 K for ref 2.
3. The mixture, sealed in a glass tube and placed in a water bath, was illuminated with of a	REFERENCES:

		*	r	
COMPONENTS:				ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ 0; [67-56-1]			1. Sergeeva, V.F.; Eskareva,	
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]			[*] Zh. Obshch. Khim. <u>1969</u> , 39, 731-4; Russ. J. Gen. Chem. <u>1969</u> , 39, 697-9.	
				2. Sergeeva, V.F.; Eskareva, L.A.; Usmanova, I.Z.; Glybovskaya, V.A. *Zh. Obshch. Khim. <u>1971</u> , 41, 1895-9; Russ. J. Gen. Chem. <u>1971</u> , 41, 1908-11.
VARIABLES:				PREPARED BY:
Temperature:	298, 313 K		-	A. Skrzecz
EXPERIMENTAL	VALUES: Mutual so	lubility o: Coexisting	f meth g phas	anol and cyclohexane ses ' and "
t°C	<i>x</i> 1'	x2"	100 1	v ₁ ' 100 w ₂ " ref.
25	0.075	0.179	2.99	36.4 2
40	0.2451	0.2738	11.00	0 49.76 1
Data for the cyclohexane-me	ternary sy athanol-nap	stems cyclo hthalene a:	ohexan re als	ne-methanol-stearic acid and so given in refs 1 and 2, resp.
		AUXILIA	RY INI	ORMATION
METHOD/APPARA	TUS/PROCEDU	RE:		SOURCE AND PURITY OF MATERIALS:
The analytica analyses by re	al method w	as used, w	ith	(1) source not specified; anhydrous, dist. over Na; $n_p(20^{\circ}C)$ = 1.3288, $\rho(20^{\circ}C)/\rho)4^{\circ}AC$) = 0.7912. (2) source not specified; treated with H ₂ SO ₄ and HNO ₃ , washed with alkali and H ₂ O, dried over anhydrous Na ₂ SO ₄ , dist. over Na; m.p. 6.2°C, $n_p(20^{\circ}C)$ = 1.4262, $\rho(20^{\circ}C)/\rho)4^{\circ}AC$) = 0.7787. ESTIMATED ERROR: not specified. REFERENCES:

	69			
COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	ORIGINAL MEASUREMENTS: Rabinovich, I.B.; Tsvetkov, V.G. Zh. Fiz. Khim. <u>1971</u> , 45, 822-3; Russ. J. Phys. Chem. (Engl. Transl.) <u>1971</u> , 45, 814.			
VARIABLES:	PREPARED BY:			
One temperature: 319 K	A. Skrzecz			
EXPERIMENTAL VALUES: The UCST was reported to be 45.8°C.	Solubility data are graphical only.			
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The temperature of appearance of turbidity was observed. No further details were reported.	SOURCE AND FURITY OF MATERIALS: (1), (2) sources not specified; purified as described in ref 1.			
	ESTIMATED ERROR: temp. ±0.1 K.			
	REFERENCES: 1. Rabinovich, I.B. Vliyanie izitopii na fiziko- khimicheskie svoistva zhidkostei, Izd. Nauka, Moskva, <u>1968</u> .			
COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	ORIGINAL MEASUREMENTS: Budantseva, L.S.; Lesteva, T.M.; Nemtsov, M.S. Zh. Fiz. Khim. <u>1976</u> , 50, 1343-4; Russ. J. Phys. Chem. (Engl.			
	Transl.) <u>1976</u> , 50, 814; [*] Dep. Doc. VINITI <u>1976</u> , 438.			
VARIABLES: One temperature: 293 K	PREPARED BY: A. Skrzecz			
EXPERIMENTAL VALUES: Solubilities, 20° C: methanol in cyclohexane: $x_1 = 0.1390$, $100 w_1 = 5.790$ (compiler); cyclohexane in methanol: $x_2 = 0.1430$, $100 w_2 = 30.47$ (compiler).				
AUXILIARY INFORMATION				
METHOD/APPARATUS/PROCEDURE: The analytical method was used, with analyses by glc. Measurements only for ternary systems are described.	SOURCE AND PURITY OF MATERIALS: (1) source not specified. (2) source not specified; dist., purity > 99.9%			
	ESTIMATED ERROR:			
	REFERENCES:			

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Methanol; CH₄O; [67-56-1] Takeuchi, S.; Nitta, T.; Katayama, Τ. J. Chem. Ind. Jpn. 1975, 8, 248 (2) Cyclohexane; C₆H₁₂; [110-82-7] -50. VARIABLES: PREPARED BY: One temperature: 298 K A. Skrzecz EXPERIMENTAL VALUES: Solubilities at 25°C: methanol in cyclohexane: $x_1 = 0.1291$, 100 $w_1 = 5.34$ (compiler). cyclohexane in methanol: $x_2 = 0.1752$, 100 $w_2 = 35.81$ (compiler). Data are also given for the ternary system methanol-cyclohexanecyclopentane. AUXILIARY INFORMATION SOURCE AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: The analytical method was used, (1) Merck Uvasol, spectral grade, with components handled under dry N2. dried with molecular sieve 3A, A 30-mL tube with screw cap, and dist.; small imputity by glc (area ratio 1:700). containing 15 mL mixture, was thermostated at 25°C in a liquid paraffin bath, shaken violently (2) Wako Pure Chemical Ind., 1td., after thermal equilibration, then guaranteed grade; dried with let stand for > 6 h. 1 mL samples molecular sieve 4A, dist.; no were removed with preheated impurities by glc. syringes, transferred to tubes with 0.5 mL toluene to prevent phase separation, and analyzed by glc ESTIMATED ERROR: (Shimadzu glc GC-4A, integrator ITG-2A). not specified **REFERENCES:**

	71			
Components:	ORIGINAL MEASUREMENTS:			
(1) Methanol; CH ₄ O; [67-56-1]	Sugi, H.; Nitta, T.; Katayama, T.			
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	J. Chem. Ind. Jpn. <u>1975</u> , 9, 12-6.			
VARIABLES:	PREPARED BY:			
One temperature: 298 K	A. Skrzecz			
EXPERIMENTAL VALUES: Solubilities at 25°C: methanol in cyclohexane: $x_1 = 0.1250$, 100 $w_1 = 5.158$ (compiler). cyclohexane in methanol: $x_2 = 0.1717$, 100 $w_2 = 35.25$ (compiler).				
	- -			
AUXILIARY INFORMATION				
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
A titration method similar to that of ref 1 was used. A pre-weighed amount of homogeneous liquid mixture was placed in a thermostated 100-mL flask fitted with a cap through which two piston burets were inserted. One component was titrated to a turbid endpoint, then the other was added until turbidity	 Wako Chemical Ind., Ltd., spectrograde reagent, dried with molecular sieve 3A, fractionated. Wako Chemical Ind., ltd., guaranteed reagent; dried with molecular sieve 4A, fractionated. 			
disappeared. The procedure was	ESTIMATED ERROR:			
repeated several times.	temp. ±0.01 K			
	REFERENCES:			
	1. Othmer, D.F.; White, R.E.; Trueger, E. <i>Ind. Eng. Chem.</i> <u>1941</u> , 33, 1240.			

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Methanol; CH ₄ 0; [67-56-1]	Jacobs, D.T.; Anthony, D.J.;	
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Mockler, R.C.; O'Sullivan, W.J.	
	Chem. Phys. <u>1977</u> , 20, 219-26.	
VARIABLES:	PREPARED BY:	
One temperature: 319 K	A. Skrzecz	
EXPERIMENTAL VALUES:		
The UCST was reported to be 45.474°C	at 28.94 g(1)/100g sln.	
The corresponding mole fraction valu	e, x_1 , calculated by the compiler	
is 0.5168.		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
a function of temperature in one-	purity 99.95%; used as received;	
and two- phase region. A heated	the major impurity was water.	
triangle shape with a one inch hole	(2) Fischer, spectranalyzed grade,	
bored parallel to the base and held by two optically flat pieces of	purity 99.98%, used as received;	
glass sealed with teflon was used.	$n_{\rm D}^{25}$ 1.4232.	
The temperature was monitored with a thermistor. Before filling, the cell	ESTIMATED ERROR:	
was baked overnight in an oven at	soly. ± 0.03 % by weight of water in	
(dry nitrogen atmosphere and	the fluid; temp. ±0.015°C.	
desiccant). The components were separately syringed into the cell	BEFEBENCES:	
while in the dry box and the cell		
was sealed and weighed.		
[
(1) Methanol; CH_4O ; [67-56-1]	Scheibner, B.A.; Sorensen,C.M.;	
(2) Cyclohexane; $C_{6}H_{12}$; [110-82-7]	Jacobs, D.T.; Mockler, R.C.;	
	O'Sullivan, W.J.	
	Chem. Phys. <u>1978</u> , 31, 209-16.	
VARIABLES:	PREPARED BY:	
One temperature: 318 K	A. Skrzecz	
I EYPERTMENTAL VALUES.	I	
EXPERIMENTAL VALUES:		
EXPERIMENTAL VALUES: The UCST was reported to be 45.043°C	at 29.03 g(1)/100g sln.	
The UCST was reported to be 45.043°C The corresponding mole fraction value	at 29.03 g(1)/100g sln. We, x_1 , calculated by the compiler	
EXPERIMENTAL VALUES: The UCST was reported to be 45.043°C The corresponding mole fraction valu is 0.5179.	at 29.03 g(1)/100g sln. We, x_1 , calculated by the compiler	
EXPERIMENTAL VALUES: The UCST was reported to be 45.043°C The corresponding mole fraction valu is 0.5179.	at 29.03 g(1)/100g sln. We, x_1 , calculated by the compiler	
EXPERIMENTAL VALUES: The UCST was reported to be 45.043°C The corresponding mole fraction valu is 0.5179.	at 29.03 g(1)/100g sln. We, x_1 , calculated by the compiler	
EXPERIMENTAL VALUES: The UCST was reported to be 45.043°C The corresponding mole fraction valu is 0.5179. AUXILIARY	at 29.03 g(1)/100g sln. We, x_1 , calculated by the compiler INFORMATION	
EXPERIMENTAL VALUES: The UCST was reported to be 45.043°C The corresponding mole fraction valu is 0.5179. AUXILIARY METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The	at 29.03 g(1)/100g sln. He, x ₁ , calculated by the compiler INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Fisher, "spectranalyzed", purity	
EXPERIMENTAL VALUES: The UCST was reported to be 45.043°C The corresponding mole fraction valu is 0.5179. AUXILIARY METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The sample cell consisted of two pyrex	at 29.03 g(1)/100g sln. We, x_1 , calculated by the compiler INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Fisher, "spectranalyzed", purity 99.95%; d_4^{20} 0.7914.	
EXPERIMENTAL VALUES: The UCST was reported to be 45.043°C The corresponding mole fraction valu is 0.5179. AUXILIARY METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The sample cell consisted of two pyrex spheres joined by a length of precision bore tubing. The total mass	at 29.03 g(1)/100g sln. He, x ₁ , calculated by the compiler INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Fisher, "spectranalyzed", purity 99.95%; d ₄ ²⁰ 0.7914. (2) Fisher, "spectranalyzed", purity	
EXPERIMENTAL VALUES: The UCST was reported to be 45.043°C The corresponding mole fraction valu is 0.5179. AUXILIARY METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The sample cell consisted of two pyrex spheres joined by a length of precision bore tubing. The total mass of the sample was 40.238 g. The	at 29.03 g(1)/100g sln. Me, x ₁ , calculated by the compiler INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Fisher, "spectranalyzed", purity 99.95%; d ₄ ²⁰ 0.7914. (2) Fisher, "spectranalyzed", purity 99.98%; d ₄ ²⁰ 0.7786.	
EXPERIMENTAL VALUES: The UCST was reported to be 45.043°C The corresponding mole fraction valu is 0.5179. AUXILIARY METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The sample cell consisted of two pyrex spheres joined by a length of precision bore tubing. The total mass of the sample was 40.238 g. The sample cell was filled in a dry box under a nitrogen atmosphere heated to	at 29.03 g(1)/100g sln. Ne, x ₁ , calculated by the compiler INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Fisher, "spectranalyzed", purity 99.95%; d ₄ ²⁰ 0.7914. (2) Fisher, "spectranalyzed", purity 99.98%; d ₄ ²⁰ 0.7786. ESTIMATED ERROR:	
EXPERIMENTAL VALUES: The UCST was reported to be 45.043°C The corresponding mole fraction valu is 0.5179. AUXILIARY METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The sample cell consisted of two pyrex spheres joined by a length of precision bore tubing. The total mass of the sample was 40.238 g. The sample cell was filled in a dry box under a nitrogen atmosphere heated to well above critical temperature (T _c),	<pre>at 29.03 g(1)/100g sln. at 29.03 g(1)/100g sln. at 29.03 g(1)/100g sln. at 29.03 g(1)/100g sln. at 29.03 g(1)/100g sln. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Fisher, "spectranalyzed", purity 99.95%; d₄²⁰ 0.7914. (2) Fisher, "spectranalyzed", purity 99.98%; d₄²⁰ 0.7786. ESTIMATED ERROR: temp. ±0.001 K; composition ±0.02 g(1)/100g sln. </pre>	
EXPERIMENTAL VALUES: The UCST was reported to be 45.043°C The corresponding mole fraction valu is 0.5179. METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The sample cell consisted of two pyrex spheres joined by a length of precision bore tubing. The total mass of the sample was 40.238 g. The sample cell was filled in a dry box under a nitrogen atmosphere heated to well above critical temperature (T _c), shaken vigorously and then mounted in a well stirred oil bath at a	at 29.03 g(1)/100g sln. Ne, x ₁ , calculated by the compiler INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Fisher, "spectranalyzed", purity 99.95%; d ₄ ²⁰ 0.7914. (2) Fisher, "spectranalyzed", purity 99.98%; d ₄ ²⁰ 0.7786. ESTIMATED ERROR: temp. ±0.001 K; composition ±0.02 g(1)/100g sln.	
EXPERIMENTAL VALUES: The UCST was reported to be $45.043^{\circ}C$ The corresponding mole fraction value is 0.5179. METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The sample cell consisted of two pyrex spheres joined by a length of precision bore tubing. The total mass of the sample was 40.238 g. The sample cell was filled in a dry box under a nitrogen atmosphere heated to well above critical temperature (T_c) , shaken vigorously and then mounted in a well stirred oil bath at a temperature 5 K above T_c . After	<pre>at 29.03 g(1)/100g sln. ne, x₁, calculated by the compiler INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Fisher, "spectranalyzed", purity 99.95%; d₄²⁰ 0.7914. (2) Fisher, "spectranalyzed", purity 99.98%; d₄²⁰ 0.7786. ESTIMATED ERROR: temp. ±0.001 K; composition ±0.02 g(1)/100g sln. REFERENCES:</pre>	

				7.	
COMPONENTS:			ORIGINAL MEASUREMENTS:		
(1) Methanol; CH₄O; [67-56-1]			Becker, F.; Kiefer	r, M.; Rhensius, P.	
(2) Cyclohexane: $C_{H_{12}}$: [110-82-7]			Spoerner, A.: S	teiger. A.	
(2) cyclonexane, $c_{6n_{12}}$, $[110-82-7]$			Z Phys Chem (W	iechaden) 1979	
			112 120-52	1050auen) <u>1970</u> ,	
			112, 139-52.		
VARIABLES	·····	·····	DEEDARED BY.		
Temperatur	e: 304 - 318	ĸ	A. Skrzecz		
EXPERTMENTAL	VALUES		[·····	
Mu	tual solubil	ity of methanol	and cyclohexane		
t/°c			a(1)/100a sl	n (compiler)	
(2)-rich phase	(1)-rich phas	e (2)-rich phase	(1)-rich phase	
30.70	0.165	(_, 	7.00	-	
31.10	-	0.794	-	59.5	
33.30	0.184	_	7,91	_	
33.60	_	0.780	_	57.4	
35.75	-	0.766	_	55.5	
36.80	0.217	_	9.54	-	
37.30	0 222	_	9.94	_	
37.50	-	0 752	5.80	53 6	
38.80	-	0.752	10.94	-	
20.05	-	-	10.04	-	
39.05	-	0.739	-	51.9	
39.55	0.254	-	11.48	-	
40.20	0.203	-	11.96	-	
40.40	-	0.724	-	50.0	
40.95	0.273	-	12.51	-	
41.40	0.283	-	13.06	-	
41.40	-	0.710	-	48.2 (continued)	
	·····			(continued)	
		AUXILIARY	INFORMATION		
METHOD/APPAR	TUS/PROCEDURE:		SOURCE AND PURITY OF MA	TERIALS:	
The cloud	point met	hod was used.	(1) Merck, for ana	alysis grade;	
A cylindr canacity	containing a	vessel of 5 mL capillary for	dried over CaCl ₂ , fractionated;		
mixture	injections,	a tube for	$n_{\rm D}^{20}$ 1.3286.	. ,52 1011,	
resistance	thermometer	, tubes for in-	(2) Merck for an	alveis grade.	
stirrer,	a jacket	for flow of	purified by co	olumn chromatograph	
thermostat	ing liquid	and external	on silica gel	and then on basic	
beam going	through the	liquid fell on	$n_{\rm D}^{20}$ 1.4264.	le; i.p. 6.60°C,	
phototrans	istor (Sime	ns BPX 81 III)	, D		
smaller b	registered. Solution view when	n second phase	· · · · · · · · · · · · · · · · · · ·		
begin to a	ppear.	-	ESTIMATED ERROR:	fue shi an t	
			temp. $\pm 0.05^{\circ}C$, $\pm 0.05^{\circ}$	01°C (stability of	
			thermostati	ing).	
			REFERENCES:		

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Becker, F.; Kiefer, M.; Rhensius, P. Spoerner, A.; Steiger, A. Z. Phys. Chem. (Wiesbaden) <u>1978</u> ,
	112, 139-52.

EXPERIMENTAL VALUES: (Continued)

Mutual solubility of methanol and cyclohexane				
t/ºC	°C x ₁		g(1)/100g sln (compiler)	
((2)-rich phase	(1)-rich phase	(2)-rich phase	(1)-rich phase
42.15	0.300	-	14.03	-
42.45	-	0.695	-	46.5
42.70	0.313	-	14.78	-
43.15	-	0.680	-	44.7
43.20	0.329	-	15.73	-
43.70	-	0.666	-	43.2
43.85	0.347	-	16.83	-
44.10	0.358	-	17.51	-
44.15	-	0.656	-	42.1
44.40	0.372	-	18.40	-
44.60	0.382	-	19.05	-
44.60	-	0.637	-	40.1
44.75	0.393	-	19.78	-
44.90	-	0.619	-	38.2
44.95	0.409	-	20.85	-
45.05	-	0.603	-	36.6
45.15	0.423	0.590	21.82	35.4
45.20	0.436	0.576	22.74	34.1
45.25	-	0.563	-	32.9
45.30	0.451	-	23.82	-
45.30	0.463	-	24.71	-
45.30	-	0.551	-	31.8
45.35	0.475	-	25.62	-
45.35	0.487	-	26.55	-
45.35	0.499	-	27.49	-
45.35	-	0.539	-	30.8
45.35	-	0.525	-	29.6
45.35 U	JCST 0.513	0.513	28.6	28.6

COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	ORIGINAL MEASUREMENTS: Yosida, Y.; Ikushima, A. <i>J. Phys. Soc. Jpn.</i> <u>1978</u> , 45, 1949-56.
VARIABLES:	PREPARED BY:
Property and the state of the s	A. 5/1/2002
The UCST was reported to be 318.25 K	.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The intensity of the Rayleigh scattering was measured near the critical point. The critical temperature corresponded to the maximum scattering intensity.	 SOURCE AND PURITY OF MATERIALS: (1) Dotite Spectrozole; used as received. (2) Dotite Spectrozole; used as received.
	ESTIMATED ERROR: temp. ±0.01 K.
	REFERENCES:
	•
COMPONENTS:	ORIGINAL MEASUREMENTS:
(2) Cyclohexane; C_6H_{12} ; [110-82-7]	J. Phys. Chem. <u>1979</u> , 83, 2724-7.
VARIABLES:	PREPARED BY:
One temperature: 322 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 49.1°C a The corresponding mass percentage, c 28 g(1)/100g sln.	t $x_1 = 0.51$. calculated by the compiler is
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The method was described in ref 1. The experiments were conducted with sealed tubes to avoid moisture contamination. No further details were reported.	 SOURCE AND PURITY OF MATERIALS: (1) SOURCE NOT SPECIFIED, the best analytical grade available; used as received. (2) SOURCE NOT SPECIFIED, the best analytical grade available; used as received.
	ESTIMATED ERROR: not specified.
	REFERENCES: 1. Hales, B.J.; Bertrand, G.L.; Hepler, L.G. <i>J. Phys. Chem.</i> <u>1960</u> , 70, 3970.

COMPONENTS: ORIGINAL MEASUREMENTS: 1. Nagata I.; Katoh, K. (1) Methanol; CH₄O; [67-56-1] Thermochim. Acta 1980, 39, (2) Cyclohexane; C₆H₁₂; [110-82-7] 45-62. 2. Nagata, I.; Katoh, K.; Koyabu, J. Thermochim. Acta 1981, 47, 225-33. 3. Nagata, I.; Ohta, T. J. Chem. Eng. Data 1983, 28, 256-9. PREPARED BY: VARIABLES: Temperature: 298, 313 K A. Skrzecz **EXPERIMENTAL VALUES:** Mutual solubility of methanol and cyclohexane Coesisting phases ' and " t/℃ X, ' 100 w,' 100 w₂" x," ref 0.1244 25 0.1715 5.132 35.22 1 40 0.2371 0.2652 10.58 48.66 2 25 0.1250 0.1713 5.160 35.19 3 AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: Titration and analytical methods were used. On the flat, polished upper (1) Wakoh Chemical Co., face of an equilibrium vessel was a spectrograde; used as received; lid fitted with a Teflon O-ring and $n_{\rm p}(25^{\circ}{\rm C}) = 1.32658.$ held tightly by bolts. The lid (2) Wakoh Chemical Co., contained two feed tubes, two sampling spectrograde; used as received or tubes, a thermistor and a pressure dist.; $n_{\rm p}(25^{\circ}{\rm C}) = 1.42352$. measuring tube connected to a Hq manometer. The lower sampling tube ESTIMATED ERROR: was pressurized with N2. The vessel was immersed in a water thermostat. temp. ±0.01 K. During titration, component 2 was solubility ±0.002 mole fraction. added from a buret to a known amount of component 1 until the mixture became turbid. In the analytical **REFERENCES:** method a mixture was stirred for 2 h and after complete separation samples were taken by preheated hypodermic syringes and analyzed by glc.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH40; [67-56-1]	Eden, D.
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Rev. Sci. Instrum. <u>1982</u> , 53, 105-6.
VARIABLES:	PREPARED BY:
One temperature: 318 K	A. Skrzecz
EXPERIMENTAL VALUES:	I
The UCST was reported to be $45.05^{\circ}C$:	at an unspecified composition.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The turbidity of a sample of known Composition was measured at 632.8 nm	(1), (2) sources not specified, dry.
in a specially-constructed cell. The	
syringes, then the cell was sealed by	
a stopcock and placed in a water bath.	
and fulcher decails are given.	
	temp. ±0.0015 K:
	REFERENCES:
L	I
COMPONENTS .	ODICINAL MEASUDEMENTS.
(1) Methanol; CH_40 ; $[67-56-1]$	Kopelman, R.B.; Gammon, R.W.;
$(-)$ cycronexalle, c_{012} , $[110-02-7]$	Phys. Rev. 1984, 29A, 2048-53.
VARIABLES:	PREPARED BY:
One temperature: 319 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 45.83°C	at 0.2898 volume fraction of methanol.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The turbidity of a mixture close to	(1) Baker, analyzed grade "photorex"
thin cell (0.2 mm optical path) with	received.
a very small volume (0.08 mL) was	(2) Mallinkradt "Graatwir"
The "momentary" critical temperature	spectrophotometric grade;
method which exploited the rapid	< 0.02 % water impurity;
of the thermostat and the sample as	used as received.
well as the secular increase in	ESTIMATED ERROR:
The thermostat was set to a	not specified.
temperature just above the expected	
turbidity was monitored The critical	REFERENCES:
Concentration was determined by	
Observing the behavior of the	
temperature. Care was taken to avoid	
contact of components with moisture.	

78		
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Methanol; CH ₄ O; [67-56-1]	Tveekrem, J.L.; Jacobs, D.T.	
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Phys. Rev. <u>1983</u> , 27A, 2773-6.	
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
Effect of water on T_c and x_c	J.W. Lorimer and A. Skrzecz	
The HCST was reported to be 49 725°C	at 29.3 a(1)/100a sln	
The corresponding mole fraction value	x_{i} calculated by the compiler	
is 0.521.	c, x[, carcaracca x] one comprise	
For additions of water, the followin	g results were found:	
water concentration t_c/c	$\beta \qquad \beta \qquad \phi_c$	
$vol.$ x_3 0.05 0.002 49.7	25 0.325 0.302	
0.45 0.018 65.5	97 0.338 0.319	
0.65 0.025 72.4	94 0.338 0.323 65 0.344 0.331	
Mole fraction of water, x_3 , was calculated fraction ϕ_3 , by assuming no volume of pure components:	ulated by compiler from volume f mixing and tabulated densities for	
$x_3 = \frac{\phi_3 [V_2 + x_1 (V_1)]}{\psi_3 [V_2 + x_1 (V_1)]}$	$(1 - V_2)$	
$V_3 - \phi_3 (V_3)$	$-V_2$	
The data in the table were fitted wi	th the scaling equation	
$\Delta n = b \left(1 - T/T_{\rm c}\right)^{\beta}$		
by least squares, with Δn the difference in refractive index between coexisting phases, b a constant and β the critical index. The relative changes of T_c and ϕ_c were found to be linear in vol % H ₂ O, and proportional		
$\phi_c/\phi_{co} - 1 = k(T_c/$	$T_{\rm co}$ - 1)	
with $k = 1.0$ and subscript co indica water.	ting the critical value with no added	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The refractive index difference	(1) Matheson, Coleman, and Bell,	
proportional to the difference in	as received.	
volume fraction between the phases, was used as a measure. Before	(2) Matheson, Coleman, and Bell.	
filling, the cell was baked overnight	spectrophotometric grade;	
and allowed to cool in a dry nitrogen atmosphere. The total volume of the	used as received.	
mixture was 6.2 mL. The method was		
described in ref 1. The influence of impurity effects of water on the		
critical temperature was measured.		
	ESTIMATED ERROR:	
	temp. ± 0.0015 K;	
	impurities 0.05 \pm 0.1 vol % of H ₂ O.	
	REFERENCES:	
	1. Jacobs, D.T.	
	J. Phys. Chem. <u>1982</u> , 86, 1895.	
L		

	/0	
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Methanol; CH₄O; [67-56-1]	Cohn. R.H.: Jacobs. D.T.	
(2) Cyclohexane: $C_{H_{12}}$: [110-82-7]	J. Chem. Phys. 1984, 80, 856-9.	
(3) Acetone $(2$ -propanone dimethy)	<u> </u>	
(c) neccone (z propanone, dimethy)		
(67-64-1)		
VARIABLES:	PREPARED BY:	
Effect of acetone (3) on T. and X.	A. Skrzecz and J.W. Lorimer	
EXPERIMENTAL VALUES:		
The UCST was reported to be 47.410°C	at volume fraction of methanol	
$0.304 = 29.6 \pm 0.1 \text{ g}(1)/100 \text{g sln} = 0.$	525 mole fraction (mole fraction	
by compiler).	·	
For additions of asstance the fallen		
For additions of acetone, the follow	ing results were found:	
acetone concentration $t_c/$	ϕ_{c}	
0.00 0.0000 47.4	10 0.329 0.304	
0.52 0.0053 45.5	60 0.330 0.301	
1.05 0.0107 $43.81.53$ 0.0155 42.3	3 - 0.299	
Mole fraction of acetone, x_3 , was call fraction ϕ_1 by assuming no volume of	lculated by compiler from volume	
pure components:	mining and capatalea achieters for	
$x_2 = \frac{\phi_3 [V_2 + x_1 (V_2 + v_2)]}{V_2 + v_2 (V_2 + v_2)}$	$(1 - V_2)$	
$V_3 - \phi_3 (V_3)$	- V ₂)	
where V_i is the molar volume for pure The data in the table were fitted wi	<pre>component i. th the scaling equation</pre>	
$\Delta n = a \left((T_{c} - T) \right)$	$\beta_{T_{n}}^{\beta}$	
by least squares, with Δn the differ	ence in refractive index between	
Coexisting phases, a a constant and	β the critical index. The relative	
changes of T_c and φ_c were found to be	= proportional:	
with $k = 1.0$ and subscript co indica	ting the critical value with no added	
acetone.	-	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The refractive index method was used.	(1) J.T. Baker, spectrophotometric	
was sealed to prevent evaporation or	grade, used as received.	
Contamination. The refractive index	(2) Kodak, spectrophotometric grade;	
fraction) was determined at 632.8 nm	usea as received.	
with resolution of 0.00015.		
The coexistence curve as a function		
graphically. The influence of		
impurities (acetone) was tested.		
	ESTIMATED ERROR:	
	temp. ±0.0015 K (experimental), ±0.015 K (UCST).	
	REFERENCES:	

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Methanol; CH ₄ 0; [67-56-1]	1. Nagata I.	
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Fluid Phase Equilib. <u>1984</u> , 18, 83-92.	
	2. Nagata, I.	
	J. Chem. Thermodyn. <u>1984</u> , 16, 737-41.	
VARIABLES:	PREPARED BY:	
One temperature: 298 K	A. Skrzecz	
EXPERIMENTAL VALUES:		
Mutual solubility of me Coesisting pha	thanol and cyclohexane ases ' and "	
t/°C x ₁ ' x ₂ " 100	w ₁ ' 100 w ₂ " ref	
25 0.1248 0.1714 5.	149 35.20 1	
25 0.1251 0.1712 5.	163 35.17 2	
AUXILIARY II	VFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The turbidity titration method was used. For details, see ref 1.	(1) Wakoh Pure Chemical Industries Ltd., spectrograde; dried over CaO, dist.; $\rho(25^{\circ}C) = 0.7865$. (2) Wakoh Pure Chemical Industries Ltd., special grade; dist.; $\rho(25^{\circ}C) = 0.7739$. = 1.42352.	
	ESTIMATED ERROR: temp. ±0.01 K. solubility < ±0.001 mole fraction.	
	REFERENCES:	
	1. Nagata, I.; Katoh, K.; Thermochim. Acta <u>1980</u> , 39, 45.	

	81	
COMPONENTS: (1) Methanol; CH_4O ; $[67-56-1]$ (2) Cyclohexane; C_6H_{12} ; $[110-82-7]$ VARIABLES: One temperature: 318 K EXPERIMENTAL VALUES: The UCST was reported to be 44.826°C The corresponding mole fraction valu is 0.5172.	ORIGINAL MEASUREMENTS: Houessou, C.; Guenoun, P.; Gastaud, P.; Perrot, F.; Beysens, D. Phys. Rev. A 1985, 32, 1818-33. PREPARED BY: A. Skrzecz at 28.97 g(1)/100g sln. e, x ₁ , calculated by the compiler	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: An initially homogeneous mixture was thermally quenched through a few mK. If a ring of scattered light appeared indicating spinodal decomposition, then it was assumed that initial temperature was T_c . The mass compo- sition of the mixture was determined by weighing with a resolution of 0.1 mg. The coexistence curves were determined, as in ref 1, by measuring the refractive index in both phases in the inhomogeneous region. During the operations care was taken to avoid moisture and dust by baking the syringes and cells over night under vacuum and preparing the mixtures in a dust-free area.	<pre>SOURCE AND PURITY OF MATERIALS: (1) Merck, guaranteed purity > 99.5% main impurities: ethanol < 0.1%, water < 0.05%, acetone < 0.01%; used as received. (2) Eastman Kodak company, < 0.02% of water; used as received. ESTIMATED ERROR: not specified. REFERENCES: 1. Jacobs, D.T.; Anthony, D.J.; Mockler, R.C.; O'Sullivan, W.J. Chem. Phys. <u>1977</u>, 20, 219.</pre>	
CONDONENTES		
<pre>(1) Methanol; CH₄O; [67-56-1] (2) Cyclohexane; C₆H₁₂; [110-82-7]</pre>	Singh, R.R.; van Hook, A. J. Chem. Thermodyn. <u>1986</u> , 18, 1021-4.	
VARIABLES:	PREPARED BY:	
One temperature: 319 K	A. Skrzecz	
EXPERIMENTAL VALUES: The UCST was reported to be 318.816 K at $x_1 = 0.508$. The corresponding mass percentage, calculated by the compiler is 28.2 g(1)/100g sln.		
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: The method was not described. Neither pure liquid nor mixtures were exposed to the atmosphere at any time. Degassing was carried out using at least five free-pump-thaw cycles with a pumping pressure of 0.001 Pa or less. The mean value was reported. The gas effect on liquid- liquid critical point was studied.	 SOURCE AND PURITY OF MATERIALS: (1) source not specified; dried over molecular sieve, fractionated, distilled from magnesium turning under argon atmosphere. (2) source not specified; fractionated, degassed, dried numerous times over fresh sodium. ESTIMATED ERROR: 	
	temp. ±0.002 K. REFERENCES:	

82					
COMPONENTS :			ORIGINAL	MEASUREMENTS:	
(1) Methanol; CH.O; [67-56-1]		Hradetzky, G.: Bittrich, HJ.			
(1) Mechanor, Ch_{0} , $[07-50-1]$		Tnt.	Data Ser. S	el. Data Mixtures.	
(2) 0]0101	0, 0, 0, 0, 12, 1		Sor	a 1986 218	· · · · · · · · · · · · · · · · · · ·
				<u>1900</u> , 210	•
WADTADT FC.			PPEPARED	RV.	
Temperatur	0. 275 - 319 K		A. Sk	776C7	
Temperacur	$e_{1} = 275 - 519$ K		A. DA.	12002	
EVER THEN AT	WAT UPC -			·	
EXPERIMENTAL	Mutual solub	ility of meth	anol and	d cvclohexan	e
	IIIdduur Dorub				-
T/K (2)-rich phase	(1)-rich phas	e (2)·	100 w ₁ (comp -rich phase	(1)-rich phase
	,			•	74 70
275.61	-	0.8862		-	74.78
280.05	0.0716			2.85	-
280.15	0.0699	-		2.78	- 72 48
201.25	_	0.0757			/2.40
283.95	0.0732	-		2.92	-
284.05	0.0817	-		3.28	-
286.25	-	0.8616		-	70.33
288.45	0.0910	-		3.67	-
291.35	-	0.8475		-	67.91
292.55	-	0.8372		4.05	_ 66.19
295.65	0.1117	-		4.57	-
298.91	-	0.8222		-	63.78
					(continued)
		AUXILIARY	INFORMATI	ON	
METHOD / A PPARA	TUS /PROCEDURE		SOURCE A	ND PURTTY OF M	ATERIALS
The gloud-	noint method w	ac ucod	(1) VE	B Louna Work	o (Louna CDP)
Glass ampo	ules of about	20 mL	st	ated purity	> 99.9 mass %; used
capacity f	illed with know	wn masses of	as	received; <	50 mg/kg water as
to avoid c	ontamination w	ith moisture	me	thod.	Kari Fischer
were immer	sed in a water	thermostat			
equipped w.	ith a Hg-in-gla r (ASMW, cert	ass ified by the	(2) VEI an:	B Laborchemi alvtical grad	e (Apolda, GDR), de: washed with
Bureau of	Standards, GDR). Phase	H ₂ S	SO_4 , fraction	ally dist., dried
changes we	re observed vi	sually as	OV	er molecular	sieve type 3A;
Weighings	accurate to 0.	0001 g.	gle	c (no aromat	ic impurities).
Readings a	ccurate to with	hin 0.01 K.	ESTIMATE	D ERROR:	
0.03 K. C	ritical solution	on temp.	solv.	±0.0005 mol	e fraction.
and compos.	ition determin	ed	-	±0.002 (mon	otectic (1)-rich
graphically rule. Mono	y using Caille tectic temp. a	t-Mathias nd		phase), ±0.	003 mole fraction
composition	s determined g	raphically.		phase);	
			temp.	±0.03 K (LL	E, UCST),
				phase), ± 0.1	- (1) - rich 2 K (SLE - (2) - rich
				phase), ±0.	3 K monotectic temp
			REFERENC	ES:	

COMPONENTS :			ORIGINAL MEASUREMENTS:	
(1) Nothered: $(40, 167-56-1)$		Uradataku C. Dittriah HT		
(1) Metha (2) Cyclo	hexane; C_6H_{12} ; [110-82-7]	hradecsky, G.; Bitt	rich, nJ.
			Int. Data ser., Sel Ser. A. <u>1986</u> , 21	. Data Mixtures, 8.
EXPERIMENTAL	VALUES: (continu	ued)		
	Mutual solubi	lity of metha	nol and cyclohexane	
m/K	Y		100 w. (compi	ler
(2)-rich phase	(1)-rich phas	e (2)-rich phase	(1)-rich phase
299.55	0.1364		5.67	-
302.35	0.1545	0.8050	6.50	61,12
307.13	-	0.7767	_	56.98
308.69	0.2036	-	8.87	-
			_	
308.75	0.2042	-	8.90	-
309.21	0.2093	-	9.16	5/ 50
312 42	-	0./595	-	54.59
312.43	-	0.7352	_	51.39
022110		017002		01000
312.67	-	0.7343	-	51.27
312.99	0.2525	-	11.40	-
314.43	-	0.7156	-	48.93
315.45	-	0.6911	-	46.00
315.53	-	0.6918	-	46.08
315.57	0.3065	_	14.40	-
316.10	-	0.6797	-	44.69
316.87	-	0.6571	-	42.18
317.00	0.3505	-	17.04	-
317.15	-	0.6493	-	41.35
317.67	-	0.6217	_	38.49
318.15	-	0.6028	-	36.62
318.45	0.4133	-	21.15	-
318.64	0.4476	-	23.58	-
318.73	-	0.5435	-	31.19
318.85	0 4670	-	25,01	_
318,93	0.4861	-	26.48	-
318.93	0.4940	-	27.10	-
318.93 U	CST 0.5060	0.5060	28.06	28.06
Liquid	lus curves of 1	methanol and o	cyclohexane	
T/K	v		100 W. (COMD)	iler)
-/*	(2)-rich phase	(1)-rich pha	use (2)-rich phase	(1)-rich phase
252.65	-	0.9391	-	85.45
264.15	-	0.9190	-	81.20
267.15	-	0.9132	-	80.02
269.85	-	0.8999	-	77.39
275.4 a)	0.058	0.889	2.29	75.3
2/6.2	0.0473		1.855	-
277 0	0.0380	-	1.041	-
277.0	0.0216		0.834	_
277.2	0.0202	-	0.779	-
279.6	0.0000	-	0.000	-
1				

84	
COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	ORIGINAL MEASUREMENTS: Jacobs, D.T. Phys. Rev. A <u>1986</u> , 33, 2605-11.
VARIABLES: One temperature: 319 K	PREPARED BY: A. Skrzecz
The UCST was reported to be 45.944°C The corresponding mole fraction valu is 0.5232.	at 29.41 g(1)/100g sln. We, x_1 , calculated by the compiler
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The turbidity above upper critical consolute point was measured. The transmitted light intensity of a laser beam (Melles Griot 05-LLP-831 3mW polarized He-Ne laser, 632.8 nm) compared to the incident light intensity was used to determine an effective extinction. The composition was prepared by weight. The components were loaded into the cell in a dry box under dry N ₂ atmosphere. The cell was immersed in a well stirred water bath, the temperature was monitored.	<pre>SOURCE AND PURITY OF MATERIALS: (1) Baker Photrex, purity 99.9+%, less than 0.05% H₂O; used as received. (2) Kodak Spectro ACS, purity 99.9+% less than 0.02% H₂O; used as received. ESTIMATED ERROR: soly. ±0.05 g(1)/100g sln; temp. ±0.001 K (UCST). REFERENCES:</pre>
COMPONENTE -	
<pre>(1) Methanol; CH₄O; [67-56-1] (2) Cyclohexane; C₆H₁₂; [110-82-7]</pre>	Schmidt, J.W. J. Chem. Phys. <u>1986</u> , 85, 3631-5.
VARIABLES:	PREPARED BY:
one temperature: 319 K	A. SKrzecz

EXPERIMENTAL VALUES:

The UCST was reported to be 45.5°C.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: The UCST was located by using bulk index of refraction measurements. Upon comparison with ref 1, author estimated that there was about 0.01% H_2O in the sample.	<pre>SOURCE AND PURITY OF MATERIALS: (1) source not specified, purity 99.8% with < 0.1% H₂O. (2) source not specified, contain < 0.02% H₂O.</pre>	
	ESTIMATED ERROR: not specified.	
	REFERENCES: 1. Eckfeld, E.L.; Lucasse, W.W. J. Chem. Phys. <u>1943</u> , 47, 164.	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
---	---	
(1) Methanol; CH,O; [67-56-1]	Schoen, W.; Wiechers, R.;	
(2) Cyclohexane; C ₂ H ₁₂ ; [110-82-7]	Woermann, D.	
	J. Chem. Phys. 1986, 85, 2922-8.	
VARIABLES:	PREPARED BY:	
One temperature: 318 K	A. Skrzecz	
EXPERIMENTAL VALUES:	<u> </u>	
The UCST was reported to be 45.138°C	at $x_1 = 0.524$.	
The corresponding mass percentage, c	alculated by the compiler is	
29.5 g(1)/100g sln. AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: The differences of refractive index between two coexisting liquid phases were measured. The samples were prepared by mixing the required weight of components in a glove box. The deflection of a He/Ne laser beam after passing through the two compartments of the differential refractometer cell was measured as the distance necessary to shift the light detection unit. The refractive index of the coexisting phases was related to the composition by measuring several mixtures as function of temperature. The measurements were made over the range: UCST - 2 K.	<pre>SOURCE AND PURITY OF MATERIALS: (1) Merck, Uvasol quality, guaranteed purity > 99.7 %, water < 0.03 %; used as received. (2) Aldrich, Gold Label quality, guaranteed purity > 99 %, water < 0.005 %; used as received. ESTIMATED ERROR: temp. ±0.002 K (UCST), ±0.003 K (24 h stability). REFERENCES:</pre>	
Components :	ORIGINAL MEASUREMENTS:	
(1) Methanol; CH ₄ O; [67-56-1]	Brunner, E.	
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	J. Chem. Thermodyn. <u>1988</u> , 20, 439-45.	
VARIABLES:	PREPARED BY:	
One temperature: 318 K	A. Skrzecz	
EXPERIMENTAL VALUES: The UCST was reported to be 318.10 K The corresponding mass percentage, c	at $x_1 = 0.508$. Calculated by the compiler is	
28.2 g(1)/100g sln.		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The effect of small amounts of dissolved gases and water on critical temperature was investigated. Critical temperature was determined visually as the temperature slowly decreased (cooling rate <0.0002 K/s). The reported UCST was the value for water-free mixture extrapolated from four series (each of four or five measurements) of experiments with	<pre>SOURCE AND PURITY OF MATERIALS: (1) Merck; used as received; purity 99.99 mole % by glc, 0.004 mole % of H₂O by the Karl Fischer method. (2) BASF, purity 99.7 wt%; distilled; purity 99.94 mole% by glc, 0.0075 mole % of H₂O by the Karl Fischer method. ESTIMATED ERROR: temp. ±0.05 K (UCST water-free), ±0.01 K (reproducibility).</pre>	
known concentrations of water.	REFERENCES:	

86						
COMPONENTS:				ORIGINAL MEASUREMENTS:		
(1) Methanol; C	H ₄ 0; [67-9	56-1]	Singh, R.R.; Van Hook, W.A.			
(2) Cyclohexane	; C ₆ H ₁₂ ; [110-82-7]	J. Chem. Phys. <u>1987</u> , 87, 6097-110.			
VARIABLES:				PREPARED BY:		
Temperature: 31 Pressure : 0.1	8 - 319 K - 12.6 MP	a		A. Skrzecz		
EXPERIMENTAL VAL	UES:					
Solubility	of metha	nol and cyclo	ohe	nexane		
T/K	p/MPa	$x_1 = 1$.00	0 W ₁		
317.541 317.938 318.541 319.252 320.050 320.745 321.332 321.268 321.200 318.502 318.652 319.771 320.642 320.645 320.645 320.638 321.586 322.307	0.1 0.1 2.02 4.67 6.98 9.04 8.76 8.52 0.1 0.1 3.44 6.18 6.18 6.15 9.17 11.56	0.3617 0.3715 0.4158 0.4158 0.4158 0.4158 0.4158 0.4158 0.4158 0.4158 0.4158 0.4216 0.4305 0.4305 0.4305 0.4305 0.4305 0.4305 0.4305 0.4305 0.4305 0.4305 0.4305	17 18 21 21 21 21 21 21 21 21 21 21 21 21 21	17.75 18.37 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 22.35 22.35 22.35 22.35 22.35 22.35 22.35 22.35 22.35 22.35 22.35 22.35 22.35		
322.288 322.246 322.216	11.39 11.23 11.14	0.4305 0.4305 0.4305	22 22 22	22.35 22.35 22.35		
				(continued)		
		AUXILIARY	INF	VFORMATION		
METHOD/APPARATUS	/PROCEDUR	E:		SOURCE AND PURITY OF MATERIALS:		
The point at which the intensity of an emerging beam from a 3-mW He-Ne laser decreased to one-half its incident value was taken as the temperature of phase separation. For a run, the cell with magnetic stirrer was warmed to about 5-10 K above T _c and a sample, prepared gravimetrically, was added under vacuum. The pressure was set manually and the bath temperature then allowed to decrease at about 2-5 mK per min, while a computer continously monitored pressure, temperature and light intensity. The rapid change in intensity at the transition was used to instruct the computer to store the relevant data, then to warm the apparatus and repeat the experiment a preselected number of times. For details, see ref 1.				<pre>(1) Aldrich Chemical Co., isotopic purity 99.5 % D; purified over Mg-activated I₂, 2X dist. under dry Ar; no impurities by glc. (2) Fisher Scientific, ASC grade; stored over Na wire, distilled in a spinning band column; no impurities by glc. ESTIMATED ERROR: temp. ±0.001 K (reproducibility); pressure ±0.01 MPa. REFERENCES: 1. Singh, R.R. Thesis, University of Tennesee, 1987.</pre>		

87 ORIGINAL MEASUREMENTS: COMPONENTS: (1) Methanol; CH₂O; [67-56-1] Singh, R.R.; Van Hook, W.A. (2) Cyclohexane; C₆H₁₂; [110-82-7] J. Chem. Phys. 1987, 87, 6097-110. EXPERIMENTAL VALUES: (continued) Solubility of methanol and cyclohexane T/K p/MPa x_1 100 w, (compiler) 318.709 0.1 0.4404 23.05 319.647 3.07 0.4404 23.05 320.473 5.63 0.4404 23.05 321.694 9.59 0.4404 23.05 322.411 11.82 0.4404 23.05 322.533 12.06 0.4404 23.05 318.761 0.1 0.4520 23.90 3.19 319.763 0.4520 23.90 320.715 6.44 0.4520 23.90 320.758 0.4520 6.53 23.90 23.90 321.663 9.36 0.4520 322.638 12.55 0.4520 23.90 0.4520 322.625 12.49 23.90 318.799 0.1 0.4704 25.27 318.805 0.1 0.4841 26.32 0.4841 319.768 3.07 26.32 320.673 5.95 0.4841 26.32 0.4841 321.519 0.88 26.32 321.488 8.50 0.4841 26.32 321.493 8.51 0.4841 26.32 322.613 12.17 0.4841 26.32 318.793 26.77 0.1 0.4899 318.815 0.1 0.4940 27.10 3.05 0.4940 319.796 27.10 319.770 2.94 0.4940 27.10 319.752 2.74 0.4940 27.10 6.16 0.4940 320.829 27.10 320.785 5.94 0.4940 27.10 322.067 10.01 0.4940 27.10 322.064 9.99 0.4940 27.10 322.155 10.20 0.4940 27.10 322.805 12.32 0.4940 27.10 318.785 0.1 0.4993 25.52 318.815 0.1 0.514 28.7 UCST calc. by authors at 0.1 mPa 0.5318 30.19 318.803 0.1 2.86 30.19 319.704 0.5318 320.780 6.20 30.19 0.5318 321.745 9.31 0.5318 30.19 322.467 11.78 0.5318 30.19 30.19 0.5318 322.457 11.73 321.797 9.54 0.5318 30.19 318.800 0.1 0.5363 30.57 319.782 3.13 30.57 0.5363 320.787 6.26 0.5363 30.57 (continued)

88

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Methanol; CH₄O; [67-56-1] Singh, R.R.; Van Hook, W.A. (2) Cyclohexane; C₆H₁₂; [110-82-7] J. Chem. Phys. 1987, 87, 6097-110. EXPERIMENTAL VALUES: (continued) Solubility of methanol and cyclohexane 100 w₁ (compiler) p/MPa \boldsymbol{x}_1 T/K 321.728 9.23 0.5363 30.57 9.09 30.57 321.691 0.5363 0.1 318.714 0.5783 34.30 318.661 0.1 0.5886 35.26 0.5886 319.623 2.69 35.26 320.700 6.09 0.5886 35.26 318.130 0.1 0.6315 39.48 COMMENTS AND ADDITIONAL DATA: The authors give extensive analysis of their data, with fitting equations of the form $x_1 = x_{c1} \pm A | 1 - T/T_c^{\circ} |$ $T_c^\circ = T_c + cp$ where T_c , T_c^0 are the critical solution temperatures at zero pressure and pressure p, x_{c1} is the critical composition, $c = (3.173 \pm 0.012) \times 10^{-1}$ K MPa⁻¹ is the pressure coefficient of T_c and A is an amplitude constant. For analysis of all data at all pressures, they find $T_c/K = 318.827 \pm 0.005$, $x_{c1} = 0.514 \pm 0.00$, while for data at 0.1 MPa alone, $T_c/K = 318.815 \pm 0.003$, $x_{c1} = 0.511 \pm 0.002$.

COMPONENTS :			ORIGINAL MEASUREMENTS:		
(1) Methan	ol; CH40; [67-	56-1]	Aizpiri, A.G.; Rubio, R.G.; Diaz Peña, M.		
(2) Cycloh	exane; C ₆ H ₁₂ ; [110-82-7]	J. Chem. Phys. <u>1988</u> , 88, 1934-43.		
VARIABLES:			PREPARED BY:		
Temperatur Pressure:	e: 300 - 323 K 0.1 - 14.4 MPa		A. Skrzecz		
EXPERIMENTAL	VALUES:				
	Solubility	y of methano	l and cyclohexane		
T/K	p/MPa	x_1 1	00 w ₁ compiler)		
306.7	20 1.01	0.1630	6.90		
307.2	18 2.64	0.1630	6.90		
307.7	81 4.49	0.1630	6.90		
308.3	00 6.28	0.1630	6.90		
308.8	21 0 20	0.1630	6.90		
309.3	63 11.69	0.1630	6.90		
310.2	46 13.05	0.1630	6.90		
310.5	21 1.13	0.2041	8.89		
310.9	84 2.72	0.2041	8.89		
311.5	16 4.49	0.2041	8.89		
311.9	90 6.23	0.2041	8.89		
312.4	63 7.79	0.2041	8.89		
	74 9.15 84 10.62	0.2041	8.89		
313.6	46 11.95	0.2041	8.89		
313.9	43 13.03	0.2041	8.89		
313.4	79 0.78	0.2468]	11.09		
313.9 314.3	71 2.28 85 3.56	0.2468]	L1.09 L1.09		
314.8	10 4.87	0.2468	11.09		
315.2	47 6.25	0.2468	11.09		
315.4	81 6.99 72 8.28	0.2468]	L1.09		
316.3	63 9.87	0.2468	11.09		
			(continued)		
		AUXILIARY	INFORMATION		
METHOD/APPA	RATUS/PROCEDUR	Е:	SOURCE AND PURITY OF MATERIALS:		
A mixture o	f known compos	ition was	(1) Fluka puriss., 0.05 % H ₂ O; and		
prepared gr	avimetrically,	placed in	Carlo Erba RS-ACS, purity >99.9%;		
a thick-wal	led glass tupe	(see rei	both samples had no impurities		
vacuum. At	a fixed temp.	, pressure	molecular sieves 3A.		
was adjuste	d until turbid	itv was	(2) Merck, purity 99.5%; no organic		
observed.	Temp. was then	increased	impurities by glc; kept under dry		
and the pro	cedure repeate	d. Each	N2 and molecular sieves 4A.		
reading was	repeated 3-5	times.			
authors for	selected isob	ars using	ESTIMATED ERROR:		
$X_1 = A_2 + A$	$t + A_{2} t^{1-\alpha} +$	A_{1} t			
where $t = (T_c - T)/T_c$, $\alpha = 0.110$, $\beta = 0.325$. Each branch of the curve was			temp. ±0.001 K;		
			pressure ±0.01 MPa;		
fitted inde	pendently.		soly. ±0.1 mass % (compiler)		
			± 0.0005 mole fraction (UCST) at $p = 0.1$ MDa		
			U.I MPd.		
			REFERENCES:		
			1. De Loos, T.W.; van der Krooi,		
			H.J.; Poot, W.; Ott, P.L.		
			Defit Prog. Rep. <u>1983</u> , 8, 200.		
L					

COMPONENTS: ORIGINAL MEASUREMENTS: Aizpiri, A.G.; Rubio, R.G.; (1) Methanol; CH₄O; [67-56-1] Diaz Peña, M. (2) Cyclohexane; C₆H₁₂; [110-82-7] J. Chem. Phys. 1988, 88, 1934-43. EXPERIMENTAL VALUES: (continued) Solubility of methanol and cyclohexane T/K p/MPa 100 W. x_1 (compiler) 10.94 0.2468 11.09 316.685 316.951 11.81 0.2468 11.09 12.97 317.299 0.2468 11.09 314.425 1.15 0.2611 11.86 314.764 2.01 11.86 0.2611 315.495 4.51 0.2611 11.86 316.205 6.86 11.86 0.2611 316.728 8.35 0.2611 11.86 11.86 317.277 10.29 0.2611 0.2611 317.700 11.82 11.86 315.922 0.88 0.2991 13.98 316.389 13.98 2.18 0.2991 316.778 3.31 0.2991 13.98 4.99 317.361 0.2991 13.98 317.843 6.43 0.2991 13.98 318.156 7.36 0.2991 13.98 318.562 8.60 13.98 0.2991 318.981 9.87 0.2991 13.98 319.351 11.01 0.2991 13.98 319.674 12.02 0.2991 13.98 13.22 320.059 0.2991 13.98 317.286 0.40 0.3538 17.25 1.41 0.3538 17.25 317.620 317.898 2.24 0.3538 17.25 17.25 318.162 3.04 0.3538 318.463 3.96 0.3538 17.25 4.97 318.797 0.3538 17.25 319.199 6.18 0.3538 17.25 319.535 7.24 0.3538 17.25 319.881 8.32 0.3538 17.25 320.258 9.48 0.3538 17.25 320.772 11.07 0.3538 17.25 321.141 12.24 0.3538 17.25 321.376 12.99 0.3538 17.25 317.853 0.50 0.3791 18.86 1.47 0.3791 318.198 18.86 318.673 2.91 0.3791 18.86 4.01 319.031 0.3791 18.86 319.411 5.20 0.3791 18.86 319.863 6.54 0.3791 18.86 7.82 320.272 0.3791 18.86 320.718 18.86 9.23 0.3791 321.179 10.73 0.3791 18.86 11.86 321.524 0.3791 18.86 321.867 13.03 0.3791 18.86 0.68 0.3997 318.156 20.22 1.68 318.493 0.3997 20.22 2.69 318.826 0.3997 20.22 3.97 319.241 0.3997 20.22 319.677 5.31 0.3997 20.22 320.107 6.64 0.3997 20.22 320.515 7.93 0.3997 20.22 320.894 9.13 0.3997 20.22 321.293 0.3997 10.42 20.22 321.659 11.61 0.3997 20.22

(continued)

COMPC	NENTS:			ORIGINAL MEASUREMENTS:	
(1)	Methanol;	СН ₄ 0; [67-	·56-1]	Aizpiri, A.G.; Rubio, F	R.G.;
(2)	(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]			J. Chem. Phys. <u>1988</u> , 8	38, 1934-43.
EXPER	IMENTAL VALU	ES: (contin	ued)		,,
	Solubili	ty of meths	anol and cycl		
		cy or meent			
	<i>T/K</i>	р/мРа	x ₁ 1 (c	npiler)	
	321.963	12.61	0.3997 2	.22	
	318.376	0.66	0.4199 2	. 60	
	318.800	1.92	0.4199 2	.60	
	319.084	2.82	0.4199 2	.60	
	319.428	3.86	0.4199 2	.60	
	319.513	4.14	0.4199 2	.60	
	319.949	5.52	0.4199 2	.60	
	320.480	7.11	0.4199 2	.60	
ļ	320.842	8.24	0.4199 2	. 60	
	321.167	9.28	0.4199 2	. 60	
1	321.013	11 99	0.4199 2	60 60	
	322.268	12.86	0.4199 2	. 60	
	318.552	0.85	0.4409 2	.09	
	318.855	1.74	0.4409 2	.09	
	319.301	3.13	0.4409 2	.09	
	319.656	4.22	0.4409 2	.09	
	320.041	5.39	0.4409 2	.09	
1	520.505	0.75	014405 2		
	320.870	8.00	0.4409 2	. 09	
ł	321.228	9.07	0.4409 2	.09	
	321.019	11.31	0.4409 2	.09	•
	322.398	12.89	0.4409 2	.09	
	318.664	0.96	0.4489 2	. 67	
	319.032	2.04	0.4489 2	. 67	
	319.398	3.14	0.4489 2	. 67	
	319.851	4.53	0.4489 2	.67	
	520.252	5.05	0.4409 2	. 67	
	320.644	6.97	0.4489 2	. 67	
	320.961	7.97	0.4489 2	.67	
	321.300	9.27	0.4489 2	• 0 / 67	
	322.120	11.71	0.4489 2	. 67	
1	322.478	12.88	0.4489 2	.67	
	318.471	0.92	0.4809 2	.07	
	319.069	1.73	0.4809 2	.07	
	319.486	2.97	0.4809 2	. 07	
	319.831	4.05	0.4809 2	. 07	
	320.283	5.41	0.4809 2	.07	
	320.624	6.47	0.4809 2	. 07	
	320.964	7.50	0.4809 2	.07	
	321.366	9.27	0.4809 2	.07	
	322,120	11.71	0.4809 2	. 07	
	322.478	12.60	0.4809 2	.07	
1	318.638	0.57	0.5151 2	.80	
	318.790	1.01	0.5151 2	.80	
	319.081	1.81	0.5151 2	.80	
	319.464	2.95	0.5151 2	.80	
	319.777	3.90	0.5151 2	.80	
	320.164	5.09	0.5151 2	.80	
	320.584	6.39	0.5151 2	.80	
1	320.9/8	1.00	0.5151 2	. 00	

(continued)

Compon	NENTS:			ORIG	INAL ME	ASUREMEN	TS:		
(1)	Methanol; CH	I ₄ 0; [67-	56-1]	Ai	zpiri, Diaz P	A.G.; eña. M.	Rubio,	R.G	•;
(2)	Cyclohexane;	C ₆ H ₁₂ ;	[110-82-7]	J.	Chem.	Phys.	<u>1988</u> ,	88,	1934-43.
XPER	IMENTAL VALUES:	(contir	nued)	L					
	Solubility	of metha	anol and cyc	lohexa	ine				
	T/K	p/MPa	x ₁	$100 w_1$	orl				
	321.440	9.07	0.5151	28.80					
	321.774	10.18	0.5151	28.80					
	322.114	11.28	0.5151	28.80					
	322.522	12.61	0.5151	28.80					
	319 034	2.06	0.5446	31 29					
	319.418	3.23	0.5446	31.29					
	319.819	4.43	0.5446	31.29					
	320.211	5.61	0.5446	31.29					
	320.599	6.79	0.5446	31.29					
	320.994	8.04	0.5446	31.29					
	321.791	10.54	0.5446	31.29					
	322.156	11.74	0.5446	31.29					
	322.541	12.99	0.5446	31.29					
	318.412	0.62	0.5685	33.40					
	318.820	1.82	0.5685	33.40					
	319.197	2.96	0.5685	33.40					
	320.031	5.54	0.5685	33.40					
	320.399	6.67	0.5685	33.40					
	320.778	7.87	0.5685	33.40					
	321.155	9.06	0.5685	33.40					
	321.498	10.14	0.5685	33.40					
	321.852	11.28	0.5685	33.40					
	318.404	1.02	0.5822	34.66					
	318.800	2.17	0.5822	34.66					
	319.204	3.42	0.5822	34.66					
	319.642	4.75	0.5822	34.66					
	320.073	6.06	0.5822	34.66					
	320.509	7.45	0.5822	34.66					
	320.938	8./9	0.5822	34.00					
	321.752	11.42	0.5822	34.66					
	322.159	12.72	0.5822	34.66					
	318.011	0.44	0.6003	36.38					
	318.346	1.45	0.6003	36.38					
	318.713	2.56	0.6003	36.38					
	319.089	3.70	0.6003	36.38					
	319.417 319.743	4.72	0.6003	36.38					
	320.183	7.08	0.6003	36.38					
	320.608	8.43	0.6003	36.38					
	320.899	9.36	0.6003	36.38					
	321.326	10.74	0.6003	36.38					
	321.674	11.87	0.6003	36.38					
	321,900 317 507	12.03	0.6283	30.J8 30 16					
	318.004	1.92	0.6283	39.16					
	318.394	3.05	0.6283	39.16					
	318.848	4.44	0.6283	39.16					
	319.215	5.59	0.6283	39.16					
	319.614	6.79	0.6283	39.16					
	320.018	8.01	0.6283	39.16					
	320.404 320 793	9.25	0.6283	30.16					
	321.289	12.02	0.6283	39.16					
	321.594	12.99	0.6283	39.16					
	316.913	0.52	0.6577	42.25				1-	ontinua
								(0	oncinued

COMPONENTS:

(1) Methanol; CH₄O; [67-56-1]

(2) Cyclohexane; C₆H₁₂; [110-82-7]

ORIGINAL MEASUREMENTS:

Aizpiri, A.G.; Rubio, R.G.; Diaz Peña, M.

J. Chem. Phys. <u>1988</u>, 88, 1934-43.

EXPERIMENTAL VALUES: (continued)

Solubility of methanol and cyclohexane 100 W \boldsymbol{x}_1 T/Kp/MPa (compiler) 317.291 1.61 0.6577 42.25 317.636 2.62 0.6577 42.25 3.97 0.6577 42.25 318.081 5.21 318.498 0.6577 42.25 318.794 6.12 0.6577 42.25 319.227 7.45 0.6577 42.25 7.82 319.342 0.6577 42.25 9.36 319.827 0.6577 42.25 10.50 0.6577 42.25 320.184 12.01 0.6577 42.25 320.655 321.076 13.42 0.6577 42.25 316.116 0.38 0.6882 45.66 316.510 1.45 0.6882 45.66 45.66 317.010 2.87 0.6882 0.6882 317.433 3.92 45.66 317.973 5.41 0.6882 45.66 318.640 7.58 0.6882 45.66 319.150 9.02 0.6882 45.66 11.05 319.823 0.6882 45.66 320.290 12.35 0.6882 45.66 321.035 14.36 0.6882 45.66 0.7091 48.13 315.037 0.96 315.425 2.11 0.7091 48.13 316.020 0.7091 4.15 48.13 316.605 6.02 0.7091 48.13 317.115 7.58 0.7091 48.13 317.607 8.94 0.7091 48.13 10.24 318.033 0.7091 48.13 318.175 10.63 0.7091 48.13 318.666 12.10 0.7091 48.13 318.902 12.84 0.7091 48.13 319.173 13.73 0.7091 48.13 313.591 0.62 0.7296 50.67 313.910 1.60 0.7296 50.67 0.7296 314.298 2.80 50.67 314.749 4.21 0.7296 50.67 315.178 5.58 0.7296 50.67 315.519 6.66 0.7296 50.67 315.852 7.76 0.7296 50.67 316.124 8.63 0.7296 50.67 316.467 9.74 0.7296 50.67 316.723 10.56 0.7296 50.67 317.060 11.65 0.7296 50.67 50.67 317.372 12.68 0.7296 309.502 1.37 0.7685 55.83 310.035 2.85 0.7685 55.83 310.366 4.03 0.7685 55.83 310.875 5.85 0.7685 55.83 311.456 8.03 0.7685 55.83 311.956 9.39 0.7685 55.83 312.465 55.83 11.11 0.7685 313.086 12,96 0.7685 55.83 299,930 0.65 0.8151 62.66 300.542 2,59 0.8151 62.66 301.230 4.73 0.8151 62.66 301.589 5.89 0.8151 62.66 302,168 7.62 0.8151 62.66 302.718 9.59 0.8151 62.66

303,022

10.61

0.8151

62.66

COMPONENTS	<u>, , , , , , , , , , , , , , , , , , , </u>			ORIGINAL	MEASUREMEN	TS:	
(1) Moth		[67-56-1]		Aignir	i A.G.	Rubio, P.G.	
(1) Mech		[0/-20-1]		Diaz	Peña, M.	RUDIO, R.G.;	
(2) Cycl	ohexane; C ₆	н ₁₂ ; [110-82	2-7]	J. Chei	m. Phys.	<u>1988</u> , 88, 193	34-43.
						·····	
EXPERIMENTA	AL VALUES: (C	ontinued)					
Mut	ual solubil	lity of meth	hanol an	nd cyclob	exane (si	moothed data)	
T/K	p/MPa	(2)-rich	1 (1)-ria	. h	$100 w_1$ (c)	ompiler)	
		phase	pha	ase	phas	e phase	
299.748	0.1	0.1212	0.814	41	4.99	62.51	
306.443	0.1	0.1041	0.78	50	6.95	56.03	
310.225	0.1	0.2023	0.76	43	8.81	55.25	
313.263	0.1	0.2468	0.73	18	11.09	50.95	
313.409	0.1	0.2495	0.72	98	11.23	50.70	
314.072	0.1	0.2621	0.71	99	11.91	49.46	
314.726	0.1	0.2762	0.70	B7	12.69	48.09	
315.639	0.1	0.2990	0.68	98	13.97	45.85	
310.025	0.1	0.3102	0.68	04	14.02	44 • / 4	
316.774	0.1	0.3359	0.65	75	16.15	42.23	
317.186	0.1	0.3533	0.64	14	17.22	40.51	
317.398	0.1	0.3637	0.63	16	17.87	39.49	
317.719	0.1	0.3822	0.613	37	19.06	37.69	
317.898	0.1	0.3946	0,60	12	19.88	36.47	
318 000	0.1	0.3990	0.59	36	20.22	33.90	
318,186	0.1	0.4208	0.57	40	21.67	33.91	
318.231	0.1	0.4261	0.56	84	22.04	33.40	
318.309	0.1	0.4367	0.55	69	22.79	32.36	
318.361	0.1	0.4452	0.54	74	23.40	31.53	
318.375	0.1	0.44/8	0.54	40 35	23.59	28 67	
318.498	0.1	0.4859	0.50	02	26.46	27.59	
318.422	UCST 0.1	0.4986	0.49	86	27.46	27.46	
200 040	1 0	0 1115	0 01		A 50	(2, 10	
300.040	1.0	0.1115	0.81	20	4.50	58 80	
309.426	1.0	0.1903	0.77	32	8.21	56.48	
310.486	1.0	0.2029	0.76	51	8.83	55.36	
313.551	1.0	0.2480	0.73	28	11.16	51.08	
313.719	1.0	0.2510	0.73	05	11.31	50.79	
314.370	1.0	0.2633	0.72	08	11.98	49.57	
315.020	1.0	0.2769	0.70	96 08	12.72	48.19	
316.344	1.0	0.3108	0.68	90 04	14.03	42.83	
	T • A	0.0100	5.00	- 1	# 41 00	-8-8 4 7 7	
317.081	1.0	0.3356	0.65	78	16.13	42.26	
317.485	1.0	0.3523	0.64	19	17.16	40.56	
317.702	1.0	0.3628	0.63	18	17.82	39.51	
318.028	1.0	0.3814	0.61	34 16	10 70	37.66	
318.264	1.0	0.3983	0.60	62	20.13	35.98	
318.402	1.0	0.4106	0.58	36	20.96	34.79	
318.486	1.0	0.4193	0.57	45	21.56	33.95	
318.542	1.0	0.4260	0.56	75	22.03	33.31	
318.605	1.0	0.4345	0.55	84	22.63	32.50	
318.670	1.0	0.4452	0.54	70	23.40	31,49	
318.680	1.0	0.4470	0.54	49	23.53	31.31	
318.789	1.0	0.4761	0.51	32	25.71	28.64	
318.817	1.0	0.4908	0.49	69	26.85	27.33	
318.728	UCST 1.0	0.4986	0.49	86	27.46	27.46	
300.521	2.5	0.1196	0.81	38	4 92	62 46	
307.174	2.5	0.1623	0.78	96		58,83	
309.878	2.5	0.1885	0.77	31	8.13	56.47	
310.922	2.5	0.2007	0.76	50	8.73	55.34	
314.043	2.5	0.2470	0.73	21	11.10	50.99	

(continued)

COMPONENTS	:			ORIGINAL MEASUREMENTS:		
(1) Meth	nanol; CH40	; [67-56-1]		Aizpiri, A.G.; Rubio, R.G.;		
(2) Cycl	(2) Cyclohexane; C ₄ H ₁₂ ; [110-82-7]			Diaz Pena, M.		
		0 12 .	-	J. Chem. Phys. <u>1988</u> , 88, 1934-43.		
EXPERIMENT	AL VALUES: (continued)				
Mut	cual solubi	lity of met	hanol an	d cyclohexane (smoothed data)		
m/w	n/MDa			100 H (compiler)		
17K	р/мра	(2)-rich	¹ (1)-ric	(2) -rich (1) -rich		
314.200	2.5	0.2499	0.729	99 11.26 50.71		
314.860	2.5	0.2627	0.720	11.94 49.49		
315.509	2.5	0.2768	0.709	12 12.72 48.15		
316.496	2.5	0.3018	0.688	7 14.13 45.72		
317 593	2.5	0.3130	0.679	42 14•78 44•63		
317.984	2.5	0.3543	0.642	1 17.28 40.58		
318.205	2.5	0.3650	0.631	.9 17.95 39.52		
318.536	2.5	0.3837	0.613	4 19.16 37.66		
318.695	2.5	0.3945	0.602	4 19.88 36.58		
318.762	2.5	0.3995	0.597	2 20.21 36.08		
318.875	2.5	0.4089	0.587			
319.041	2.5	0.4193	0.575			
319.097	2.5	0.4325	0.560	19 22.49 32.72		
319.179	2.5	0.4448	0.546	6 23.37 31.46		
319.184	2.5	0.4456	0.545	6 23.43 31.37		
319.303	2.5	0.4759	0.508	1 25.69 28.23		
319.329	2.5	0.4917	0.487	3 26.92 26.57		
319.245	UCST 2.5	0.4986	0.498	6 27.46 27.46		
301.311	5.0	0.1143	0.812	4.68 62.22		
310 632	5.0	0.1623	0.789			
312.098	5.0	0.2055	0.762	8 8.96 55.02		
314.848	5.0	0.2454	0.733	11.02 51.13		
314.994	5.0	0.2479	0.731	.2 11.15 50.88		
315.657	5.0	0.2601	0.721	.4 11.80 49.64		
316.325	5.0	0.2739	0.710	1 12.56 48.26		
317 751	5.0	0.2994	0.688			
517.751	5.0	0.5110	0.078	J 14.00 44.55		
318.427	5.0	0.3346	0.657	1 16.07 42.18		
319.033	5.0	0.3623	0.631	5 17.78 39.48		
319.365	5.0	0.3825	0.612	25 19.08 37.57		
319.511	5.0	0.3933	0.602	19.80 36.56		
319.578	5.0	0.3988	0.596	i9 20.16 36.05		
319.723	5.0	0.4124	0.583	7 21.09 34.80		
319.800	5.0	0.4210	0.575	14 21.68 34.03		
319.859	5.0	0.4285	0.568	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
320.008	5.0	0.4531	0.543	9 23.98 31.22 24.03 21.16		
320.011	5.0	0.4538	0.543	2 24.03 31.10		
320.148	5.0	0.5039	0.493	5 27.89 27.05		
320.049	UCST 5.0	0.4986	0.498	6 27.46 27.46		
302.841	10.0	0.1191	0.813	6 4,90 62,43		
309.381	10.0	0.1618	0.790	6.85 58.93		
312.141	10.0	0.1880	0.773	4 8.10 56.51		
313.110	10.0	0.1990	0.765	i9 8.64 55.47		
316.402	10.0	0.2465	0.731	.1 11.08 50.86		
316.551	10.0	0.2491	0.729	11.21 50.60		
317 054	10.0	0.2011	0.719	11 11.00 49.43		
319.022	10.0	0.27/5	0.706	39 14.30 47.82		
319.441	10.0	0.3171	0.672	25 15.02 43.88		
			- · · · Þ			

(continued)

90							
COMPONENTS :		ORIGINAL MEASUREMENTS:					
(1) Methanol; CH ₄ O	; [67-56-1]	Aizpiri, A.G.; Rubio, R.G.; Diaz Peña, M.					
(2) Cyclohexane; C	₆ H ₁₂ ; [110-82-7]	J. Chem. Phys. <u>1988</u> , 88, 1934-43.					
EXPERIMENTAL VALUES: (EXPERIMENTAL VALUES: (continued)						
Mutual solubi	Mutual solubility of methanol and cyclohexane (smoothed data)						
Т/К р/МРа	(2)-rich ^x 1 (1)-ri	100 w ₁ (compiler) ch (2)-rich (1)-rich					
	phase ph	ase phase phase					
320.024 10.0	0.3380 0.65	48 16.28 41.93					
320.426 10.0	0.3551 0.63	93 17.33 40.29					
320.651 10.0	0.3662 0.62	91 18.03 39.24					
320.954 10.0	0.3837 0.61	25 19.16 37.57					
321.100 10.0	0.3937 0.60	29 19.82 36.63					
321.165 10.0	0.3986 0.59	81 20.15 36.17					
321.315 10.0	0.4114 0.58	55 21.02 34.97					
321.390 10.0	0.4189 0.57	80 21.53 34.27					
321.451 10.0	0.4257 0.57	11 22.01 33.64					
321.517 10.0	0.4341 0.56	25 22.60 32.86					
321.597 10.0	0.4466 0.54	95 23.50 31.71					
321.619 10.0	0.4507 0.54	52 23.80 31.34					
321.726 10.0	0.4815 0.51	20 26.12 28.54					
321.736 10.0	0.4869 0.50	60 26.54 28.06					
321.666 UCST 10.0	0.4986 0.49	86 27.46 27.46					
303.728 13.0	0.1306 0.81	30 5.41 62.34					
310.232 13.0	0.1663 0.78	86 7.06 58.68					
313.046 13.0	0.1904 0.77	16 8.22 56.26					
313.933 13.0	0.1997 0.76	50 8.68 55.34					
317.304 13.0	0.2454 0.73	08 11.02 50.82					
317.468 13.0	0.2483 0.72	86 11.17 50.55					
318.052 13.0	0.2590 0.72	03 11.74 49.51					
318.934 13.0	0.2773 0.70	58 12.75 47.74					
319.986 13.0	0.3041 0.68	38 14.26 45.16					
320.501 13.0	0.3201 0.67	02 15.20 43.62					
320.952 13.0	0.3365 0.65	59 16.18 42.05					
321.381 13.0	0.3552 0.63	93 17.34 40.29					
321.597 13.0	0.3662 0.62	93 18.03 39.26					
321.863 13.0	0.3820 0.61	45 19.05 37.77					
322.019 13.0	0.3929 0.60	41 19.77 36.75					
322.083 13.0	0.3979 0.59	93 20.10 36.28					
322.238 13.0	0.4116 0.58	58 21.03 35.00					
322.315 13.0	0.4196 0.57	77 21.58 34.25					
322.378 13.0	0.4271 0.57	02 22.11 33.56					
322.467 13.0	0.4397 0.55	72 23.00 32.39					
322.514 13.0	0.4478 0.54	86 23.59 31.63					
322.546 13.0	0.4543 0.54	17 24.07 31.03					
322.628 13.0	0.4785 0.51	52 25.89 28.81					
322.655 13.0	0.4939 0.49	76 27.09 27.38					
322 576 11090 12 0	0 4986 0 49	86 27 A6 27 A6					
J22.3/0 0031 13.0	0.4900 0.49	00 2/140 2/140					

COMMENTS AND ADDITIONAL DATA:

00

The authors fitted the experimental isopleths to an equation

 $t/^{\circ}C = a + b(p/MPa) + c(p/MPa)^{2}$

and obtained the parameters by the method of maximum likelihood. They next fitted the calculated isobars for each branch of the coexistence curve with the equation

$$\lambda = A_0 + A_1 \theta + A_2 \theta^{1-\alpha} + B \theta^{\beta}$$

where the composition variable λ was taken as either the mole or volume fraction of methanol; mole fraction was found to be preferable; the scaled temperature is $\theta = |1 - T/T_c|$.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH_4O ; [67-56-1]	Aizpiri, A.G.; Rubio, R.G.; Diaz Peña, M.
(2) Cyclonexane; C_6H_{12} ; [110-82-7]	J. Chem. Phys. <u>1988</u> , 88, 1934-43.

EXPERIMENTAL VALUES: (continued)

They found the exponents to have the renormalization group values (β = 0.325, α = 0.110). The values of T_c at rounded pressures are included in the tables for smoothed data.

The critical solution temperature was found to increase quadratically with pressure, and has errors \pm 0.005-0.010 K. The critical solution composition used in the tables of rounded values is an average for all pressures and both branches. The errors in these data (\pm 0.004-0.006), and inconsistent values for the two branches, masked any dependence on pressure.

The diameter of the coexistence curve was found to decrease nonlinearly with decreasing temperature at all pressures; i.e., the critical composition, as mole fraction of methanol, decreases with decreasing temperature.

Pressure dependence of critical solution temperature

The increase in T_c with pressure was found to be

 $(\partial T_c/\partial p)_{x_c} = (3.42\pm0.04)\times10^{-7} \text{ K Pa}^{-1}$

from a quadratic fit to the data, or $(3.21 \pm 0.02) \times 10^{-7}$ K Pa⁻¹ for a linear fit. The quadratic fit was found to represent the data better.

98					
COMPONENTS :			ORIGINAL MEASUREMENT	S:	
(1) Methanol; CH ₄ O; [67-56-1]			Ewing, M.B.; Johnson, K.A.; McGlashan, M.L.		
(2) Cyclohex	ane; C ₆ H ₁₂ ; [110	9-82-7]	J. Chem. Thermoo 49-62.	lyn. <u>1988</u> , 20,	
VARIABLES:	VARIABLES:				
Temperature	: 317 - 319 K		A. Skrzecz, J.W.	. Lorimer	
EXPERIMENTAL VA	LUES:		I		
М	utual solubilit	y from expts	. in calorimeter	- run c	
T/K	(2) -rich phase	(1) _ wich pha	$100 w_1 (cor$	npiler)	
317 1813	(2) - Fich phase	(1) - (1) - (1)	17,161		
317.1813	0.35239	-	17.161	-	
317.3065	0.35767	-	17.492	-	
317.3513	-	0.64936	-	41.351	
317.4277	0.36313	-	17.836		
317,4370	-	0.64616		41.012	
317.5200	_	0.64291	_	40.669	
317.5290	0.36828	-	18.164	-	
317,6034	_	0.63954		40.316	
317.6313	0.37336	_	18.490	-	
317.6763	-	0.63621	- ·	39.970	
317.7206	0.37841		18.816	-	
317.7450	-	0.63268	-	39.605	
317.8073	0.38332	-	19.137	-	
317.8182	-	0.62919	-	39.247	
317.8842	-	0.62557	-	38.878	
317.8862	0.38826	-	19.461	-	
317.9447	-	0.62196	-	38.514	
317.9598	0.39321		19.789	-	
318.0073	-	0.61815	-	38.131	
318.0246	0.39789	-	20.102	-	
318.0605	-	0.61435	-	37.753	
318.1065	-	0.61048	-	37.371	
318.1374	0.40709	-	20.723	-	
318.1561	-	0.60653	-	36.983	
318.1859	0.41197	-	21.057	-	
318.1987	-	0.60246	-	36.587	
318.2268	0.41620	-	21.348	-	
318.2287	-	0.59932	-	36.284	
318.2569	-	0.59618	-	35.983	
			(cor	tinued)	
		AUXILIARY IN	FORMATION	K	
METHOD/APPAR	ATUS/PROCEDURE:		SOURCE AND PURIT	Y OF MATERIALS:	
The isotherma	al displacement				
calorimeter a	and the dilution	n glass	(1), (2) source :	not specified;	
dilatometer (ref 1,2) were filled with			dried, degassed	as in ref 1.	
a known amoui	nt or one compoi	nent at a			
temperature about 2 K below UCST and			ESTIMATED ERROR:		
the second component was injected				(+-+-]	
until the two-phase region was			$temp. < \pm 0.001 \text{ K}$	(cotal error	
reached. The mixture was heated until			estimated by aut	uors).	
transparency and the mean temperature			DEFEDENCES	····	
(WILDIN U.2 I	at which fill	ne uropiets	REPERENCES:		
appeared and	uisappeared Was		1 Euine M.D.	Tohngon V A	
In the calor	Lmeter, temp. Wa	as measured	L. EWING, M.B.;	Johnson, K.A.;	
with a pead t	nermistor call	Jracea	MCGIashan, M	. Ц.	
(to 0 2 -W)	Mothenol could	have come	1007 10 04	0 1700, 17, 513;	
contact with	air and thoref	a nave some	<u>1907</u> , 19, 94	J •	
minture contact	air anu thereit	Jre une			
mixture could	L CONCAIN SOME 1	notardie.	I		

COMPONENTS :			ORIGINAL MEASUREMENTS:				
(1) Methan	ol; CH40; [67-56	-1]	Ewing, M.B.; Johnson, K.A.; McGlashan, M.L.				
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]			J. Chem. Thermodyn.	<u>1988</u> , 20,			
EVDEDINENTAL 1	49-62.						
EXPERIMENTAL							
Mu	tual solubility	from experi	ments in calorimeter	r – run c			
T /1	K (2)-rich phase	(1)-rich ph	$100 w_1$ hase (2)-rich phase	(compiler) (1)-rich phase			
318.2641	0.42040	-	21.639	-			
318.2997	0.42464	-	21.935	-			
318.3057	-	0.58974	-	35.370			
	-	0.58646	5 -	35.062			
318.3475	-	0.58309) –	34.746			
318.3607	0.43317	_	22.538	-			
318.3650	-	0.57969) -	34.430			
318.3796	-	0.57632	-	34.119			
318.3834	0.43726	-	22.829	-			
318.3893	-	0.57391	L -	33.898			
318.3988	-	0.57152	-	33.679			
318.4062	0.44137	0 56023	23.125	-			
318.4152	_	0.56671		33.242			
318.4223	-	0.56432	-	33.027			
318.4256	0.44546	-	23.421	-			
	-	0.56155	23,697	32.778			
510.4401	0.44520		23.037	•			
318.4412	-	0.55679		32.354			
318.4456	-	0.55423	3 -	32.128			
318.4519	0.45320	0.55167	23,986	51.902			
318.4557	-	0.54905	5 -	31.673			
318.4606	-	0.54640	-	31.442			
318.4667	0.45716	-	24.279	-			
318.4673	-	0.54372	-	31.209			
318.4728	0.46088	-	24.555	-			
210 4760		0 5205/		20 762			
318.4795	-	0.53548	* –	30.502			
318.4809	0.46469	-	24.840	-			
318.4825	-	0.53264	1 –	30.260			
318.4867	0.46834	-	25.115	-			
318.4900	0.47194	-	25,388	-			
318.4915	-	0.52700	D –	29.785			
318.4946	0.47563	-	25.669	-			
318.4956	0.47921	-	25.944	-			
318.4964	0.48263	-	26.208	-			
318.4978	-	0.52409	9 –	29.541			
318.4988	0.48600	-	26.470	-			
318.4992	0.49276	-	27.000	-			
318.4997	0.50574	-	28.035	_			
318.5002	0.50264	-	27.786	-			
318.5006	0.51205	-	28.547	-			
318.5009	0.50893	- 0 50111	28.293	-			
310.3010	_	0.5211.	-	29.293			
318.5011	0.48947	-	26.741	-			
318.5016	0.51516	-	28.802	-			
318.5020	-	0.5181		29.046			

COMPONENTS: ORIGINAL MEASUREMENTS: Ewing, M.B.; Johnson, K.A.; (1) Methanol; CH₂O; [67-56-1] McGlashan, M.L. (2) Cyclohexane; C₆H₁₂; [110-82-7] J. Chem. Thermodyn. <u>1988</u>, 20, 49-62. EXPERIMENTAL VALUES: (continued) Mutual solubility of methanol and cyclohexane from experiments in dilatometer - run d1 T/K100 w₁ (compiler)
(2)-rich phase (1)-rich phase X_1 (2)-rich phase (1)-rich phase 317.1663 0.35822 17.526 317.3088 0.36424 17.907 317.3290 0.64894 41.307 317.4580 0.64401 40.785 317.4587 0.37173 18.385 0.63396 317.6782 39.737 317.7254 0.38771 19.425 317.7837 0.62828 39.154 317.8496 0.62438 38.758 0.39590 317.8640 19.969 317.9171 0.39903 20.178 -317.9613 0.40283 -20.434 317.9700 0.61647 37.964 318.0360 ----0.61109 -37.431 318.0388 0.40959 20.894 318.0741 0.41334 21.151 318.0902 0.60626 36.957 318.1697 0.42450 21.926 318.1750 0.59631 35.995 318.2040 0.42796 22.169 318.2164 0.59160 35.547 0.43418 318.2483 22.609 318.2545 0.58567 34.987 318.2865 0.44036 23.052 318.2866 34.407 0.57944 318.3017 0.44324 23.260 318.3189 0.44987 23.742 318.3300 0.56848 33.403 318.3407 0.45173 23.878 318.3437 0.56451 33.044 318.3489 0.56230 32.845 318.3517 0.45488 24.110 0.55724 318.3626 32.394 318.3689 0.55265 31.989 318.3747 0.45862 24.387 318.3785 0.54684 31.480 0.46346 24.748 318.3856 318.3940 0.53631 30.572 0.46812 318.3942 25.098 318.4022 0.53102 30.123 318.4037 0.47417 25.558 318.4062 0.52600 29.701 318.4092 0.47855 25.893 318.4124 0.51839 29.068 318.4149 0.48423 26.332 0.51443 28.742 318.4150 _ -318.4193 0.49832 27.440 318.4193 _ 0.49325 -27.038 318.4196 0.48995 26.779 (continued)

COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]			ORIGINAL MEASUREMENTS: Ewing, M.B.; Johnso McGlashan, M.L. J. Chem. Thermodyn. 49-62.	n, K.A.; <u>1988</u> , 20,	
EXPERIMENTAL V	ALUES: (continue	ed)			
	Mutual solu from expe	oility of met riments in d	chanol and cyclohexa ilatometer - run d2	ine	
T/K	<i>X</i> ,		100 w, (comp	oiler)	
	(2)-rich phase	(1)-rich pha	ase (2)-rich phase	(1)-rich phase	
317.0601	-	0.65144	-	41.573	
317.3468	0.37286	-	18.458		
317.4808	-	0.63287	-	39.625	
317.5199	0.38535	-	19.270	-	
317.6402	-	0.62628	-	38.951	
317.7717	-	0.61690	-	38,006	
317.9037	-	0.60641	_	36.972	
317.9583	-	0.60177	-	36.521	
			01 404		
317.9654	0.41/45	0 59/92	21.434	35 862	
318.0715	_	0.58813	-	35.219	
318.0879	0.43353	-	22.563	_	
318.1182	-	0.58145	-	34.594	
318.1347	0.44356	-	23.283	-	
318.1418	-	0.57573	-	34.065	
318.1830	0.45314	-	23.982	-	
318.2089	-	0.55541	-	32.232	
210 2161	0 46269	_	24 764	•	
318.2255	-	0.54842	24.764	31,618	
318.2370	0.47392	0.53717	25.538	30.646	
318.2413	-	0.52952	-	29.996	
318.2442	-	0.52260	-	29.417	
318.2447	-	0.51361	-	28.675	
318.2504	0.48594	0 50176	26.465	27 715	
318.2540	-	0.57461	_	33.962	
318.2826	-	0.56740	-	33.305	
318,2890	0.45742	_	24 298	_	
318.3024	-	0.55884	-	32.536	
318.3071	0.46275	-	24.695	-	
318.3196	-	0.55187	-	31.920	
318.3268	0.47191	-	25.385	-	
318.3389	-	0.53531	-	30.995	
318.3393	0.48129	-	26.104	-	
318.3454	-	0.52449	-	29.574	
318.3462	0.48760	-	26.595	-	
318,3481	-	0.51902	-	29,120	
318.3484	-	0.50971	_	28.357	
318.3485	-	0.51376	-	28.687	
318.3486	-	0.50555	-	28.020	
COMMENTS AND ADDITIONAL DATA: The authors give a careful analysis of their data based on the fitting equation					
$x = x_{c} \pm (B_{1}/2) t ^{\beta} + A_{1} t ^{1-\alpha} + A_{2} t \pm (B_{2}/2) t ^{\beta+\omega} + A_{3} t ^{1-\alpha+\omega}$					
where current theoretical values for the critical exponents $\alpha = 0.11$, $\beta = 0.325$ and the first Wegner exponent $w = 0.5$ were used, x_c is the critical mole fraction of cyclohexane, \pm refers to the two branches of the coexistence curve and $t = T/T_c - 1$. They found that mole fraction was a better order parameter than mass fraction.					

COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]		ORIGINAL MEASUREMENTS: Ewing, M.B.; Johnson, K.A.; McGlashan, M.L. J. Chem. Thermodyn. <u>1988</u> , 20, 49-62.	
EXPERIMENTAL VALUES: (continued)		
For the combine coefficients (± 1 s minimum standard es	ed runs in the dila std. dev.) by least rror of estimate in	tometer, they found the following squares and by varying T_c until x was found.	
$x_{c} = 0.50955 \pm A_{2} = 0.59 \pm 0.$ s(x) = 0.00212	: 0.00039 24 3	$B_1/2 = 0.8794 \pm 0.0071$ $B_2/2 = 0.37 \pm 0.16$ $T_c/K = 318.412 \pm 0.001$	
The authors at temperature of phase	lso determined dire se separation, as g	ctly the effect of pressure on the iven in the table below.	
Effect of pres	sure on phase separ	ation of methanol and cyclohexane	
x ₁ (p	$-p^{\circ})/kPa$	г/к	
0.63466	74.1 31 62.3 31 48.4 31	7.5015 7.4990 7.4911	
	32.4 31	7.4860	
0.55766	69.9 31 58.0 31 45.4 31 32.6 31	8.2303 8.2268 8.2202 8.2163	
0.60466	66.4 31 55.4 31 45.0 31	8.2734 8.2691 8.2641	
	30.7 31	8.2610	
0.50177	64.8 31 50.6 31 56.5 31 18.5 31 10.2 31	8.3119 8.3076 8.3025 8.2695 8.2940	
0.49964	71.4 31 60.1 31 44.7 31 33.5 31 20.9 31	8.3137 8.3112 8.3080 8.3059 8.2971	
0.43580	73.9 31 59.8 31 45.7 31	8.1093 8.1048 8.0999	
0.38761	40.73127.53112.431	7.5325 7.5300 7.5240	
These results were	fitted to the equa	tion:	

102

$$T/K = a + b(p - p^{\circ})$$

with $p^{\circ} = 100$ kPa. From the three values of b nearest the critical composition, they recommend:

$$(\partial T_c / \partial p)_{x=x_c} = (3.299 \pm 0.048) \times 10^{-7} \text{ K Pa}^{-1}$$

Note: The authors give results as mole fraction of cyclohexane, rather than mole fraction of methanol, as given here.

COMPONENTS:EVALUATOR:(1) Methanol; CH4O; [67-56-1]A. Maczynski and A. Skrzecz(2) Methylcyclopentane; C6H12; [96-37-7]Institute of Physical Chemistry Polish Academy of Sciences Warsaw, PolandJ.W. Lorimer Department of Chemistry The University of Western Ontario London, Ont., CanadaJuly, 1989		
(1) Methanol; CH4O; [67-56-1]A. Maczynski and A. Skrzecz(2) Methylcyclopentane; C6H12; [96-37-7]Institute of Physical Chemistry Polish Academy of Sciences Warsaw, PolandJ.W. Lorimer Department of Chemistry The University of Western Ontario London, Ont., CanadaJuly, 1989	COMPONENTS:	EVALUATOR:
 (2) Methylcyclopentane; C₆H₁₂; [96-37-7] Institute of Physical Chemistry Polish Academy of Sciences Warsaw, Poland J.W. Lorimer Department of Chemistry The University of Western Ontario London, Ont., Canada July, 1989 	(1) Methanol; CH ₄ O; [67-56-1]	A. Maczynski and A. Skrzecz
J.W. Lorimer Department of Chemistry The University of Western Ontario London, Ont., Canada July, 1989	(2) Methylcyclopentane; C ₆ H ₁₂ ; [96-37-7]	Institute of Physical Chemistry Polish Academy of Sciences Warsaw, Poland
July, 1989		J.W. Lorimer Department of Chemistry The University of Western Ontario London, Ont., Canada
		July, 1989

CRITICAL EVALUATION:

Data on solubilities and upper critical solution temperature (UCST) for the system methanol (1) - methylcyclopentane (2) were reported in the following two papers.

Author(s)				
	<i>T/</i> K	<i>x</i> ₁	in (1)-rich phase	
1. Fischer 1949	320.4	UCST	-	
2. Kiser 1961	278.2 - 30	5.3 UCST	0.651 - 0.848	

Critical Solution Temperature and Composition

The UCST by Fischer and Neupauer, ref 1, is rejected; the paper is not compiled. All values of UCST reported in ref 1 for different alcohol- hydrocarbon systems are higher by about 10-20 K than the recommended or tentative values, which suggests presence of significant amounts of inpurities, mainly water.

The value of Kiser et al., 305.3 K, is accepted as *tentative* since values from this source are reliable for other systems.

Mutual Solubilities

Only data for the methanol-rich phase are available. The data of Kiser et al. in the table are accepted as *tentative* since values from this source are reliable for other systems. The table gives these tentative data together with those calculated from the fitting equation:

$$x_1 = x_{c1} - B_1 \theta^{\beta} - B_2 \theta^{\beta+w}$$

where $\theta = |1 - T/T_c|$, the indices have their theoretical values $\beta = 0.329$, w = 0.5, and the value of T_c was constrained to be 305.3 K. The constants (with standard deviations in parentheses) are:

 $x_{c1} = 0.455 (0.014) B_1 = 1.039 (0.072) B_2 = -0.57 (0.15) s = 0.003$

CRITICAL EVALUATION: (continued)

s is the standard error of estimate in composition. The equation is valid for the temperature range 278 - 305 K, but note that evaluation of the critical solution composition involves a somewhat long extrapolation in composition.

Tentative values of solubility for the system methanol (1) - methylcyclopentane (2)

> T/K x_1 in (1)-rich phase obs.
> calc.
>
>
> 278.2
> 0.848
> 0.850
>
>
> 283.2
> 0.835
> 0.831
>
>
> 288.2
> 0.807
> 0.809
>
>
> 293.2
> 0.777
> 0.779
>
>
> 298.2
> 0.651
> 0.651
>
>
> 305.3
> 0.455 \pm 0.014
> UCST

REFERENCES:

- 1. Fischer, R.; Neupauer, E. Mikrochim. Acta 1949, 34, 319.
- 2. Kiser, R.W.; Johnson, G.D.; Shetlar, M.D. J. Chem. Eng. Data 1961, 6, 338.

	105
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Kiser, R.W.; Johnson, G.D.; Shetlar, M.D.
<pre>(2) Methylcyclopentane; C₆H₁₂; [96-37-7]</pre>	J. Chem. Eng. Data <u>1961</u> , 6, 338-41.
VARIABLES:	PREPARED BY:
Temperature: 278 - 305 K	A. Skrzecz
EXPERIMENTAL VALUES:	1
Solubility of methy $t/^{\circ}C$ g(2)/100 mL(1) 100 w ₁ (c	clcyclopentane in methanol compiler) x ₂ (compiler)
5 38.0 32.1	0.152
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.165
20 59.5 42.9	0.223
25 74. 48.5	0.264
	0.349
AUXILIAR	Y INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The isoplethal or cloud point method was used. Samples of known composition were heated and/or cooled and the temperature of phase transition was noted. In general, the phase transition most reproducible and easily observed, and therefore chosen, was the unmixing temperature (cloud point) obtained when a miscible solution was cooled until the finely dispersed solute was just no longer completely miscible.	 (1) E.I. du Pont de Nemours and Co.; distilled; n₀(20°C) = 1.3293, b.p. 64.6°C (corrected), f.p99°C. (2) Matheson, Coleman and Bell; used as received; a trace of benzene and 1.5 mole % of unsaturated impurities by u.v. analysis; n²⁰ 1.37500.
	ESTIMATED ERROR:
	soly. ±2% (relative error); temp. ±0.2 K.
	REFERENCES:
	1. International Critical Tables vol. 3, New York, <u>1933</u> .

106	
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Kiser, R.W.; Johnson, G.D.; Shetlar, M.D.
(2) 2,2-Dimethylbutane; C ₆ H ₁₄ ;	
[75-83-2]	J. Chem. Eng. Data <u>1961</u> , 6, 338-41.
VARIABLES:	PREPARED BY:
Temperature: 278 - 287 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Solubility of 2,2-d	imethylbutane in methanol
$t/^{\circ}C$ g(2)/100 ml(1) 100 w ₁ (c	compiler) x ₂ (compiler)
5 59. 42.3	0.214
10 80. 50.0	0.271
14.2 UCST	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The isoplethal or cloud point method was used. Samples of known composition were heated and/or cooled and the temperature of phase transition was noted. In general, the phase transition most reproducible and easily observed, and therefore chosen, was the unmixing temperature (cloud point) obtained when a miscible solution was cooled until the finely dispersed solute was just no longer completely miscible.	 (1) E.I. du Pont de Nemours and Co.; distilled; n_p(20°C) = 1.3293, b.p. 64.6°C (corrected), f.p99°C. (2) Matheson, Coleman and Bell; used as received; 0.1 mole % of impurities of unsaturated compounds by u.v. analysis; n_p(20°C) = 1.36885.
	ESTIMATED ERROR: soly. ±2% (relative error); temp. ±0.2 K.
	REFERENCES: 1. International Critical Tables vol. 3, New York, <u>1933</u> .

		107
COMPONENTS	:	ORIGINAL MEASUREMENTS:
(1) Methai	nol; CH40; [67-56-1]	Kiser, R.W.; Johnson, G.D.;
		Shetlar, M.D.
(2) 2,3-D	imethylbutane; C ₆ H ₁₄ ;	J. Chem. Eng. Data <u>1961</u> , 6, 338-41
[79-29	9-8]	
VARIABLES	<u>- //</u>	DDEDADED BV.
Temperatu	re: 278 - 294 K	A Skrzecz
EXPERIMENT	AL VALUES:	
•	Solubility of 2,3-d	limethylbutane in methanol
t/°c	g(2)/100 mL(1) 100 w ₁ (c	compiler) x ₂ (compiler)
5	49.5 ^{39 °}	0.186
10	59.3 42.5	0.216
15	76. 48.5	0.262
20	170. 68.5	0.444
20.4	UCST	
	AUXILIAR	Y INFORMATION
METHOD/APP	ARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The isople was used. composition and the to transition phase trans and easily chosen, we (cloud point miscible of the finely no longer	ethal or cloud point method Samples of known on were heated and/or cooled emperature of phase n was noted. In general, the nsition most reproducible y observed, and therefore as the unmixing temperature int) obtained when a solution was cooled until y dispersed solute was just completely miscible.	 (1) E.I. du Pont de Nemours and Co.; distilled; n₀(20°C) = 1.3293, b.p. 64.6°C (corrected), f.p99°C. (2) Matheson, Coleman and Bell; used as received; a trace of benzene and 1.5 mole % of unsaturated impurities by u.v. analysis; n₀(20°C) = 1.37500.
	• - · · · · · · · · · · · · · · · · · ·	ESTIMATED ERROR: soly. ±2% (relative error); temp. ±0.2 K.
		REFERENCES: 1. International Critical Tables vol. 3, New York, <u>1933</u> .

COMPONENTS:	EVALUATOR:	
(1) Methanol; CH ₄ O; [67-56-1]	A. Skrzecz Institute of Physical Chemistry	
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	Polish Academy of Sciences, Warsaw, Poland	
	J.W. Lorimer Department of Chemistry The University of Western Ontario London, Ont., Canada	
	July, 1989	

CRITICAL EVALUATION:

A survey of solubilities and upper critical solution temperatures (UCST) and compositions for the system methanol-hexane which have been reported in the literature is given in Table 1.

Table 1. Summary of solubility data for the system methanol (1) - hexane (2)

Author(s)	T/K	<i>x</i> ₁	<i>x</i> ₁
		(2)-rich phase	(1)-rich phase
1 Rothmund 1808	278-316	0 077-0 444	0 540-0 895
2 Ringham 1007	216 0 LICST	0.077-0.444	0.040-0.090
2. Diligitati 1907	217.0 UCST	-	-
A Howard 1006	317.0 UCS1	-	-
4. Howard 1920	309-315.2 UCS1	0.2/1-0.598	-
5. Rising 1928	309.7	0.62 (from vol %)	-
6. Ferguson 1932	315.6 UCST	-	-
7. Cornish 1934	303.3 and 305 UCST	-	-
8. Ssementschenko 1934	305.7 UCST	-	-
9. Francis 1944	308 UCST	-	-
10. Sieg 1951	308.0 UCST	•	-
11. Suhrmann 1951	303-307.8 UCST	- vol %	- vol %
12. Smirnov 1954	309.8 UCST	-	-
13. Quantie 1954	301.3 UCST	0.5654	0.5654
14. Kogan 1956	275-293	0.104-0.181	0.816-0.889
15. Kiser 1961	278-306.4 UCST	-	0.717-0.870
16. Savini 1965	298-306.9 UCST	0.270-0.560	0.560-0.791
17. Myers 1966	309.6 UCST		
18. Schmidt 1969	293-307.7 UCST	0.193-0.553	0.553-0.822
19. Rudakovskaya 1972	285-293	0.126-0.204	0.821-0.857
20. Sergeeva 1973	298	0.210	0.791
21. Radice 1975	255-298	0.052-0.232	0.802-0.932
22. Budantseva 1976	293	0.236	0.839
23. Balasubramanian 1979	306.9 UCST	0.40	0.40
24. Skripov 1980	308.08 UCST	0.4133	0.4133
25. Grekova 1981	309.3	0.539	-

(continued)

CRITICAL EVALUATION: (continued)

Table 1 (continued). Summary of solubility data for the system methanol (1) - hexane (2)

Author(s)	T/K	x_1	x_1	
	(2)-rich phase	(1)-rich pha	ase
26. Khurma 1982	298-306.70 UCS	ST 0.255-	0.560	0.560-0.774
27. Alekhin 1983	308.0 UCST	0.547		0.547
28. Kasapova 1983	299-307.40 UCS	T 0.251-	0.5695	0.5695-0.765
29. Hoelscher 1986	280-340 ^a	0.219-0.540	0.540-0).806
	307.2 UCST	(0.535	
30. Hradetzky 1986	245-306.75 UCS	ST 0.047-0.5	46 0.54	6-0.930
31. Nagata 1987	298	0.255	0.799	

^a At elevated pressures, p = 0.1 - 151 MPa; critical values at 0.1 MPa.

(continued)

(continued)

Critical Solution Temperature and Composition

The 24 values of critical solution temperature which have been reported vary over the range 307 to 316 K (see Table 2, where they are arranged in order). Of these, values greater than 304 K are from work done before 1932 (refs. 2, 3, 4, 6), all of which are deficient in specifying materials or method, and are rejected. Similarly, all values less than 306.4 K (refs. 7, 8, 13) or greater than 307.8 K (refs. 9, 10, 12, 17, 24, 25, 27) were also obtained using chemicals from unspecified sources or using unspecified methods, and are rejected. The remaining nine values (from refs. 11, 15, 16, 18, 23, 26, 28, 29, 30) give an average $T_c = 307.1 \pm 0.5$ K (std. dev.). What appear to be the results obtained using the most care (refs. 27-29) give: $T_c = 307.1 \pm 0.3$ K, i.e., with a slightly improved standard deviation. The result using the nine values is *recommended*: $T_c = 307.1 \pm 0.5$ K

The 11 values of critical composition which have been reported vary from $x_{c1} = 0.40$ to 0.570 (Table 3, again arranged in order). If values less than 0.40 (refs. 22, 23) are rejected, the average is 0.553. If those values are rejected for which the corresponding critical solution temperatures are also rejected (refs. 13, 24, 26), the remaining six values give the *recommended* value $x_{c1} = 0.554 \pm 0.013$.

Table 2. Critical solution temperature in the system methanol-hexane

T _c	Author	year	ref.
301.3	Quantie	1954	13
303.3	Cornish	1934	7
305	Cornish	1934	7
305.7	Ssmentschenko	1934	8
306.4	Kiser et al.	1961	15
306.70	Khurma, Fenby	1982	26
306.75	Hradetsky, Bittrich	1986	30
306.9	Savini et al.	1965	16

CRITICAL EVALUATION: (continued)

Table	2	(continued).	Critical	solution	temperature
		in the syste	m metha	anol-hexa	ine

T _c	Author	year	ref.
306.9	Balasubramanian, Mitra	1979	23
307.2	Hoelscher et al.	1986	27
307.40	Kasapova et al.	1983	28
307.7	Schmidt et al.	1969	18
307.8	Suhrmann, Walter	1951	11
200	The sector	1011	•
308	Francis	1944	9
308.0	Sieg	1951	10
308.0	Alekhin et al.	1983	27
308.09	Skripov et al.	1980	24
309.3	Grekova et al.	1981	25
309.6	Mvers et al.	1966	17
309.8	Smirnov, Predvoditelev	1954	12
315.2	Howard, Patterson	1907	2
315.6	Ferguson	1932	6
316.0	Bingham	1910	3
317.0	Schuekarew	1910	3

Table 3. Critical mole fraction of methanolin the system methanol-hexane

<i>x</i> _{c1}	Author	year	ref.
0.40	Balasubramanian, Mitra	1979	23
0.413	Skripov et al.	1980	24
0.535	Hoelscher et al.	1986	29
0.539	Grekova et al.	1981	25
0.546	Hradetsky, Bittrich	1986	30
0.547	Alekhin et al.	1983	27
0.553	Schmidt et al.	1969	18
0.560	Savini et al.	1965	16
0.560	Khurma, Fenby	1982	26
0.5654	Quantie	1954	13
0.5695	Kasapova et al.	1983	28

Mutual Solubility

One hundred and thirty-seven values of mutual solubilities have been reported in 15 publications, not including critical solution points; most of these are shown in fig. 1. The exceptions are the values of Rising, ref. 5, for which the composition is given as an equal-volume mixture, and the values of Suhrmann, ref. 11, which are also given as volume ratios. These data are rejected. It is clear from the figure that the older data of Rothmund, ref. 1 (\blacksquare in fig. 1), and of Howard and Patterson, ref. 3 (crosses), as well as the modern data of Nagata, ref. 31 ("ant" in the figure) are aberrant, and are rejected. For the hexane-rich phase, fig. 1 shows that the datum of Sergeeva and Ustanova, ref. 20 (|) is aberrant, and is therefore rejected. The values of Hoelscher et al. (\bullet), which were extrapolated from experimental solubilities at high pressures, appear to be in serious error, especially at $x_1 = 0.2$ and 0.8; all values are rejected. Note that this conclusion places their solubilities at high pressures in question, especially far from the critical solution point; their coexistence curve is probably too narrow at all pressures.

Other questionable (and therefore rejected) values are from Kogan et al., ref. 14 (too broad a coexistence curve), Radice and Knickle, ref. 21, except for one value at 255 K.

The most consistent of the remaining 90 points are those of Khurma and Fenby, ref. 26, and of Hradetsky and Bittrich, ref. 30. The latter cover the widest range of composition, and were used to construct a fitting equation:

$$x_1 = x_{c1} \pm B_1 \theta^{\beta} \pm B_2 \theta^{\beta+w} + A_1 \theta \pm B_3 \theta^{\beta+2w} + A_2 \theta^{1-\alpha+w}$$

ywhere $\theta = |1 - T/T_c|$, + and - refer to the branches below and above the critical composition, and the constants have their theoretical values $\beta = 0.329$, $\alpha = 0.11$, w = 0.5. The constants (with standard deviations in parentheses) are:

$x_{c1} = 0.5501 \ (0.0020)$	$T_{\rm c}/{\rm K} = 306.74 \ {\rm K} \ (1.2 \ {\rm K})$)
$B_1 = 0.8472 \ (0.20)$	$B_2 = 0.1100 \ (0.15)$	$B_3 = -0.6908 \ (0.28)$
$A_1 = -1.254 \ (0.13)$	$A_2 = 1.6950 \ (0.28)$	s = 0.0070

s is the total standard error of estimate in composition. Table 4 gives recommended values calculated from this equation.

The only data measured at high pressures are those of Hoelscher et al., ref. 29, up to 151 MPa; they are considered as *tentative*.

Table 4. Recommended values of solubility in the systemmethanol (1) - hexane (2).

T/K	<i>x</i> ₁	<i>x</i> ₁
	(2)-rich phase (1)-rich phase
255.0	0.0453	0.9234
260.0	0.0573	0.9150
270.0	0.0855	0.8956
275.0	0.1024	0.8841
265.0	0.0706	0.9058

CRITICAL EVALUATION: (continued)

Table 4 (continued). Recommended values of solubility in the system methanol (1) - hexane (2).

280.0	0.1221	0.8709
285.0	0.1457	0.8553
290.0	0.1752	0.8363
295.0	0.2151	0.8115
300.0	0.2764	0.7752
305.0	0.4011	0.6988
306.0	0.4514	0.6594
306.8	0.546	0.546 UCST

Pressure coefficient of critical solution temperature

Two values are available: $(\partial T_c/\partial p)_{xc} = (3.38 \pm 0.12) \times 10^{-7}$ K Pa⁻¹ from Myers et al., ref. 7, and K Pa⁻¹ calculated from the fitting data of Hoelscher et al., ref. 29, 3.58×10^{-7} K Pa⁻¹, with unknown certainty. The average of these values, 3.5×10^{-7} K Pa⁻¹, may be taken as a *tentative* value

Fig. 1: Solubilities in the system methanol (1) - hexane (2). Line: fitting equation (see text).
Points and reference: ■, 1; cross, 4; ♦, 14; ▲, 15; +, 16; v, 18; ◊, 19; |, 20; △, 21; ×, 22; ○, 26; v, 28; ●, 29; □, 30; ant, 31. The plot gives an overall impression of the data.

112

CRITICAL EVALUATION: (continued)

REFERENCES:

- 1. Rothmund, V. Z. Phys. Chem. <u>1898</u>, 26, 433.
- 2. Bingham, E.C. Am. Chem. J. <u>1907</u>, 37, 549.
- 3. Schuekarew, A. Z. Phys. Chem. <u>1910</u>, 71, 90.
- 4. Howard, E.J.; Patterson, W.H. J. Chem. Soc., London 1926, 129, 2787.
- 5. Rising, M.M.; Hicks, J.S. J. Am. Chem. Soc. <u>1928</u>, 48, 1929.
- 6. Ferguson, J.B. J. Phys. Chem. <u>1932</u>, 36, 1123.
- 7. Cornish, R.E.; Archibald, R.C.; Murphy, E.A.; Evans, H.M. Ind. Eng. Chem. <u>1934</u>, 26, 397.
- 8. Ssementschenko, V.; Gratschewa, S.; Davidoffskaja, E. Kolloid. Z. 1934, 68, 275.
- 9. Francis, A.W. Ind. Eng. Chem. 1944, 36, 764.
- 10. Sieg, L. Chem.-Ing.-Tech. 1951, 23, 112.
- 11. Suhrmann, R.; Walter, R. Abh. Braunschweig. Wiss. Ges. 1951, 3, 135.
- 12. Smirnov, B.A.; Predvoditelev, A.A. Zh. Fiz. Khim. 1954, 28, 906.
- 13. Quantie, C. Proc. Roy. Soc., London, Ser. A 1954, 224, 90.
- Kogan, V.B.; Deizenrot, I.V.; Kul'byaeva, T.A.; Fridman, V.M. Zh. Prikl. Khim. <u>1956</u>, 29, 1387.
- 15. Kiser, R.W.; Johnson, G.D.; Shetlar, M.D. J. Chem. Eng. Data 1961, 6, 338.
- 16. Savini, L.G.; Winterhalter, D.R.; Van Ness, H.C. J. Chem. Eng. Data 1965, 10, 171.
- 17. Myers, D.B.; Smith, R.A.; Katz, J.; Scott, R.L. J. Phys. Chem. 1966, 70, 3341.
- 18. Schmidt, R.; Werner, G.; Schuberth, H. Z. Phys. Chem. <u>1969</u>, 242, 381.
- 19. Rudakovskaya, T.S.; Vinogradova, L.I.; Timofeev, V.S.; Serafimov, L.A. Sb. Nauch. Tr. Ivanov. Energ. Inst. <u>1972</u>, (14), 249.
- 20. Sergeeva, V.F.; Ustanova, I.Z. Zh. Obshch. Khim. 1973, 43, 1878.
- 21. Radice, F.C.; Knickle, H.N. J. Chem. Eng. Data 1975, 20, 371.
- Budantseva, L.S.; Lesteva, T.M.; Nemtsov, M.S. Zh. Fiz. Khim. <u>1976</u>, 50, 1343; Deposited Doc. VINITI <u>1976</u>, 438.
- 23. Balasubramanian, D.; Mitra, P. J. Phys. Chem. 1979, 83, 2724.
- 24. Skripov, V.P.; Vitkalov, V.S.; Kolpakov, Yu.D. Zh. Fiz. Khim. 1980, 54, 1754.
- 25. Grekova, I.G.; Shimanskaya, E.T.; Shimanskii, Yu.I. Ukr. Fiz. Zh. 1981, 26, 283.
- 26. Khurma, J.R.; Fenby, D.V. Aust. J. Chem. 1982, 355, 1281.
- 27. Alekhin, A.D.; Barkov, M.G.; Kuleshova, N.P. Ukr. Fiz. Zh. 1983, 28, 68.
- Kasapova, N.L.; Pozharskaya, G.I.; Kolpakov, Yu.D.; Skripov, V.P. Zh. Fiz. Khim. <u>1983</u>, 57, 2182.
- 29. Hoelscher, I.F.; Schneider, G.M.; Ott, J.B. Fluid Phase Equilib. 1986, 27, 153.
- 30. Hradetzky, G.; Bittrich, H.-J. Int. Data Ser., Sel. Data Mixtures, Ser. A 1986, 216.
- 31. Nagata, I. Thermochim. Acta 1987, 114, 227.

COMPONENTS:		ORIGINAL MEASUREMENTS:			
(1) Met	hanol; (CH40; [67-56-	1]	Rothmund, V.	
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]		Z. Phys. Chem. <u>1898</u> ,	<i>26</i> , 433-92.		
VARIABLE	s:			PREPARED BY:	
Tempera	ture: 27	78 - 316 K		A. Skrzecz	
EXPERIME	NTAL VAI	LUES:			
		Mutual so	lubility of	methanol and hexane	
t/	°c	10	0 w ₁	x_1 (compile	ler)
		(2)-rich	(1)-rich	(2)-rich	(1)-rich
		phase	phase	phase	phase
4.45	±0.25	-	75.96	-	0.8947
9.00	±0.60	3.02	-	0.0773	-
9.95	±0.35	-	73.60	-	0.8823
15.22	±0.28	3.35	-	0.0853	-
21.67	±0.28	-	67.75	-	0.8496

AUXILIARY INFORMATION

-

65.60

59.39

-

49.60

-

41.33

36.44

30.41

0.1139

0.2232

0.3003

0.4439

-

_

-

-

-

0.8368

0.7973

0.7258

0.6545

0.6066

0.5403

-

-

-

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The cloud point method was used.	(1) source not specified, pure
The measurements were carried out in	grade; purified with I ₂ and NaOH,
thick-walled glass capillaries. The	distilled, dried with CaO,
temperatures of appearance and	distilled over Ba(OH) ₂ and then
disappearance of turbidity were	over Na.
observed and the mean value was	(2) Kahlbaum, synthetic; dried
adopted.	over CaCl ₂ , twice fractionated
	over Na.
	ESTIMATED ERROR:
	temp.: see above.
	REFERENCES :

114

23.95 ±0.35

24.52 ±0.22

32.40 ±0.20

36.60 ±0.30

39.17 ±0.17

41.10 ±0.10

41.82 ±0.12

42.52 ±0.12

42.85 ±0.15 22.89

40.05 ±0.20

4.56

-

-

9.65

-

13.76

-

-

	115
COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Hexane; C ₆ H ₁₄ ; [110-54-3]	ORIGINAL MEASUREMENTS: Bingham, E.C. Am. Chem. J. <u>1907</u> , 37, 549-57.
VARIABLES:	PREPARED BY:
One temperature: 316 K	A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 42.8°C.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The components were added from burettes to thick-walled glass tubes of about 2 mm internal diameter and 6-7 mm long which were sealed. The tubes and the components during the adding procedure were protected from moisture. No further details were reported.	<pre>SOURCE AND PURITY OF MATERIALS: (1) Kahlbaum, the best provided; used as received. (2) Kahlbaum, the best provided; used as received. ESTIMATED ERROR: not specified. REFERENCES:</pre>
COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Hexane; C ₆ H ₁₄ ; [110-54-3]	ORIGINAL MEASUREMENTS: Schuekarew, A. Z. Phys. Chem. <u>1910</u> , 71, 90-108.
VARIABLES:	PREPARED BY:
One temperature: 317 K	A. Skrzecz
EXPERIMENTAL VALUES:	.
The UCST was reported to be 43.8°C.	

AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: The method was not specified. Only measurements of vapor pressure were reported.	 SOURCE AND PURITY OF MATERIALS: (1) source not specified, without acetone; distilled over Na; constant boiling temperature. (2) source not specified; b.p. 69°C, ρ(17°C) = 0.6632. 	
	ESTIMATED ERROR: not specified.	
	REFERENCES:	

116	
Components:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Howard, E.J.; Patterson, W.H.
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	J. Chem. Soc. (London) <u>1926</u> , 129, 2787-91.
VARIABLES:	PREPARED BY:
Temperature: 309, 315 K	A. Skrzecz
EXPERIMENTAL VALUES:	L
Solubility of methan	ol in hexane
$t/^{\circ}$ C 100 w_1 x_1	(compiler)
	0.700
	0.729
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Experiments were carried out in	(1) source not specified.
stoppered tubes of thick glass to	practically water free by means of
to avoid evaporation and water absorption. No further details were	the solubility curve in ref 1.
reported.	(2) obtained by fractional dist. of petrol; b.p. range 68-69°C.
	ESTIMATED ERROR:
	not specified.
	REFERENCES :
	1. Rothmund, Z. Phys. Chem. <u>1898</u> , 26, 433.

Components:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Rising, M.M.; Hicks, J.S.
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	J. Am. Chem. Soc. <u>1928</u> , 48, 1929-33.
VARIABLES:	PREPARED BY:
Temperature: 309, 315 K	A. Skrzecz

EXPERIMENTAL VALUES:

Solubility at 36.55°C: methanol in hexane, 1 vol.(1) in 2 vol.(2) or 100 $W_1 = 38$, $x_1 = 0.62$ (compiler), using $\rho(1)(20^{\circ}C) = 0.79129$, $\rho(2)(20^{\circ}C) = 0.79129$ 0.65925 by ref 1.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The cloud point method was used. A	
mixture of known composition was	(1) source not specified, treated
slowly cooled and warmed in a test	with lime; $\rho(15^{\circ}C) = 0.79578$.
tube and the appearance and	(2) synthetic; b.p. range
disappearance of turbidity was	68.6-69.0°C; used as received.
observed visually.	
	ESTIMATED ERROR: not specified.
	REFERENCES: 1. Selected Values of Properties of Hydrocarbons and Related Compounds APL Project 44 TPC
	Texas A & M Univ. <u>1973</u> .

118	
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ 0; [67-56-1]	Ferguson, J.B.
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	J. Phys. Chem. <u>1932</u> , 36, 1123-28.
VARIABLES:	PREPARED BY:
Temperature: 316 K	A. Skrzecz
EXPERIMENTAL VALUES:	•••••••••••••••••••••••••••••••••••••••
The UCST was reported to be 42.4°C.	
ΔΙΙΥΤΙ ΤΔΡΥ	TNEOPMATION
	SOURCE AND DUDITY OF MATERIALS.
The sealed tube method was used. No further details were reported.	 (1) Kahlbaum's best grade; dried over freshly ignited lime for three weeks, distilled; b.p. 45°C at 327.9 mm Hg. (2) Eastman Kodak, synthetic; washed with 95% H₂SO₄, distilled H₂O, dilute KMnO₄, distilled H₂O, dried with Na, distilled; b.p. 45°C at 333.0 mm Hg.
	ESTIMATED ERROR: not specified.
	REFERENCES :
COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1]	ORIGINAL MEASUREMENTS: Ssementschenko, W.; Gratschewa, S.; Davidoffskaja F
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	Kolloid. Z. <u>1934</u> , 68, 275-86.
VARIABLES:	PREPARED BY:
One temperature: 306 K	A. Skrzecz
EXPERIMENTAL VALUES:	· · · · · · · · · · · · · · · · · · ·
The UCST was reported to be 32.55°C.	
(The aritmetic mean value of three e 33.05°C was reported.)	experiments viz.,: 32.5, 32.1 and
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The experiments were conducted in sealed ampoules and the temperature of water thermostat was observed. No further details were reported.	 SOURCE AND PURITY OF MATERIALS: (1) source not specified; twice distilled over Mg. (2) Kahlbaum; fractionated; b.p. range 66-67°C.
	ESTIMATED ERROR: temp. ±0.1 K (deviation of thermostat temperature).
	REFERENCES:

COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Hexane; C ₆ H ₁₄ ; [110-54-3]	ORIGINAL MEASUREMENTS: Cornish, R.E.; Archibald, R.C.; Murphy, E.A.; Evans, H.M. Ind. Eng. Chem. <u>1934</u> , 26, 397-406.
VARIABLES: Temperature: 303 and 305 K	PREPARED BY: A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 32°C a) a), b) data for hexane (2) from diff OF MATERIALS" below.	and 30.1°C b). Gerent sources; see "SOURCE AND PURITY
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The method was not specified.	 SOURCE AND PURITY OF MATERIALS: (1) source not specified; distilled; ρ(25°C) = 0.78656, (corrected for air buoyancy), anhydrous. (2) Eastman Kodak Company, synthetic (presumably from propyl iodide).
	ESTIMATED ERROR: not specified.
	REFERENCES :
Components:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Francis, A.W.
(2) Hexane; C,H,,; [110-54-3]	Ind. Eng. Chem. 1944, 36, 764-71.

(1) Mechanol, Ch_0 , $[0, -30-1]$	riancis, A.w.	
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	Ind. Eng. Chem. <u>1944</u> , 36, 764-71.	
VARIABLES:	PREPARED BY:	
One temperature: 308 K	A. Skrzecz	
EXPERIMENTAL VALUES:		
The UCST was reported to be 35° C.		
ΑΙΙΥΤΙ ΤΑΡΥ ΤΝΕΟΡΜΑΤΤΟΝ		
The cloud point method was used. The reagents were introduced and stirred with a thermometer in test tubes which were warmed and cooled gradually in a bath. The temperature	(1) source not specified.	
	(2) obtained from petroleum.	
or disappearance or reappearance of the cloudiness was read two or three	ESTIMATED ERROR:	
times in each direction.	not specified.	
	REFERENCES :	

120								
COMPONENTS:	ORIGINAL MEASUREMENTS:							
(1) Methanol; CH ₄ O; [67-56-1]	Sieg, L.							
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	ChemIngTech. <u>1951</u> , 23, 112-3.							
VARIABLES:	PREPARED BY:							
One temperature: 308 K	A. Skrzecz							
EXPERIMENTAL VALUES:								
The UCST was reported to be 34.8°C.								
Mutual solubility was presented on a graph only.								
AUXILIARY IN	FORMATION							
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:							
The cloud point method was used. A mixture of known composition was sealed in an ampoule and the temperature of appearance or disappearance of turbidity was observed. The ampoules and pipettes were filled in a moistureless atmosphere over P_2O_5 .	 (1) source not specified; boiled with Mg, fractionated; physical properties were in agreement with literature values. (2) prepared from C₃H₇I; fractionated; physical properties were in agreement with literature values. 							
	ESTIMATED ERROR:							
	not specified.							
	REFERENCES:							
COMPONENTS :			ORIGINAL MEASUREMENTS:					
--	------------	--	---	---------------------------------	-------------	------------	------------	----
(1) Methanol; CH ₄ O; [67-56-1]			Suhrmann, R.; Walter, R.					
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]			Abh. Braunschweig. Wiss. Ges. <u>1951</u> , 3 135-52					
VARIABLES:				PREPAR	ED BY:			
Temperature: 3	303 - 308	к		A. 9	Skrzecz			
EXPERIMENTAL VALU	ES:							
	Mutual	solubility	7 of	metha	nol and hey	ane		
t/°c	vol % o	f (1)	•••					
		- (-)		(compiler)		(cor	(compiler)	
	(2)-rich	(1)-rich	(2)	(compiler)		(COMPILER)		
	nhase	phase	(2) nh	ase	phase	phase	phase	••
	Fundo	pnaoo	P		Purane	P	F	
29.9	-	40.0	-		44.5		0.683	
32.1	-	35.0	_		39.3	-	0.635	
33.8	20.0	_	23	.1	-	0.447	-	
33.9	-	30.0	-		34.0	-	0.581	
34.5	24.0	27.6	27	• 5	31.4	0.505	0.552	
34.6 UCST	25.9	25.9	29	.6	29.6	0.531	0.531	
		AUXIL	IARY.	INFORMA	TION			
METHOD/APPARATUS/	PROCEDURE:			SOURCE AND PURITY OF MATERIALS:				
The cloud point method was used. A mixture of known composition was prepared from microburettes which were closed by tube with silica gel or CaCl ₂ . A sample was heated to homogeneity and then temperature of cloud point was observed in a thermostat. The influence of the third component on UCST was observed. The data were reported in vol $%$ measured at 20°C.		 (1) Riedel de Haen and Merck, for analysis grade; dried through two weeks over CaCl₂, distilled several times over Mg(ClO₄)₂; b.p. 64.78°C, n(18°C) = 1.3292, ρ(20°C) = 0.7950 - 0.7955. (2) Ruhrchemie Holten; distilled three times; ρ(20°C) = 0.6608. 						
			ESTIMATED ERROR:					
			temp. ±0.1 K.					
			REFERENCES :					
1				1				

122					
COMPONENTS :	ORIGINAL MEASUREMENTS:				
(1) Methanol; CH ₄ O; [67-56-1]	Quantie, C.				
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	Proc. Roy. Soc. London ser. A <u>1954</u> 224, 90-104.				
VARIABLES:	PREPARED BY:				
One temperature: 301 K	A. Skrzecz				
EXPERIMENTAL VALUES: UCST = 28.1°C at 100 w_1 = 32.6 or x_1	EXPERIMENTAL VALUES: UCST = 28.1°C at 100 w_1 = 32.6 or x_1 = 0.565 (compiler).				
AUXILIARY	INFORMATION				
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The method was based on the fact that the separation of a noncritical mixture in a vertical tube starts with the formation of a sharp boundary at the top or the bottom. If the mixture is very near the critical concentration, diffuse boundaries start at both ends. Finally, if the mixture has the critical composition and the rate of cooling is slow, a sharp boundary appears at a certain height at the critical temperature which is nearly	SOURCE AND PURITY OF MATERIALS: (1) source not specified. (2) source not specified. ESTIMATED ERROR: not specified. REFERENCES:				
independent of further variation of temperature.					
[
(1) Methanol; CH ₄ O; [67-56-1]	ORIGINAL MEASUREMENTS: Smirnov, B.A.; Predvoditelev, A.A.				
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	Zh. Fiz. Khim. <u>1954</u> , 28, 906-13.				
VARIABLES:	PREPARED BY:				
One temperature: 310 K	A. Skrzecz				
EXPERIMENTAL VALUES: The UCST was reported to be 36.6°C.					
AUXILIARY INFORMATION					
METHOD/APPARATUS/PROCEDURE: The method was not specified.	<pre>SOURCE AND PURITY OF MATERIALS: (1) source not specified, technical grade; three times distilled;</pre>				
	ESTIMATED ERROR: temp. ±0.3 K.				
	REFERENCES:				

124 COMPONENTS : ORIGINAL MEASUREMENTS: (1) Methanol; CH₄O; [67-56-1] Kiser, R.W.; Johnson, G.D.; Shetlar, M.D. (2) Hexane; C₄H₁₄; [110-54-3] J. Chem. Eng. Data 1961, 6, 338-41. VARIABLES: PREPARED BY: Temperature: 278 - 306 K A. Skrzecz EXPERIMENTAL VALUES: Solubility of hexane in methanol t/℃ $g(2)/100 ml(1) 100 w_1$ (compiler) x, (compiler) 5 32.4 28.7 0.130 10 37.0 31.6 0.147 42.7 34.9 15 0.166 20 49.5 38.5 0.189 25 60.4 43.4 0.222 30 80. 51.5 0.283 33.2 UCST Concentrations were recalculated using the density equation for methanol by ref 1 : $\rho/\rho(4^{\circ}C) = 0.80999 - 9.253 10^{-4} (t/^{\circ}C) - 4.1 10^{-7} (t/^{\circ}C)^{2}$ AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The isoplethal or cloud point method (1) E.I. du Pont de Nemours and Co.; distilled; $n_0(20^{\circ}C) = 1.3293$, b.p. 64.6°C (corrected), was used. Samples of known composition were heated and/or cooled and the temperature of phase transition was noted. In general, the f.p. -99°C. phase transition most reproducible (2) Fisher certified; used as and easily observed, and therefore chosen, was the unmixing temperature (cloud point) obtained when a received; absence of unsaturated compounds by u.v. analysis, without impurities by glc miscible solution was cooled until analysis, estimated impurities < 0.05 mole $\frac{1}{2}$; $n_{\rm p}(20^{\circ}{\rm C}) = 1.3794$. the finely dispersed solute was just no longer completely miscible. ESTIMATED ERROR: soly. ±2% (relative error); temp. ±0.2 K. **REFERENCES:** 1. International Critical Tables vol. 3, New York, 1933.

	125
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Savini, L.G.; Winterhalter, D.R.;
	Van Ness, H.C.
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	
	J. Chem. Eng. Data <u>1965</u> , 10, 171-2.
VARIABLES:	PREPARED BY:
Temperature: 208 - 207 K) Skrzecz
EXPERIMENTAL VALUES:	
Mutual solubility of methanc	ol and hexane
t/c x_1	100 w_1 (compiler)
(2)-rich phase (1)-rich pha	ise (2)-rich phase (1)-rich phase
	12.09 58.46
30 0.330 0.745	15.48 52.07
33.7 0.535 0.590	29.96 34.86
33.7 a) 0.560 0.560	32.12 32.12
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The isothermal dilution calorimeter for heat of mixing determination was used. No further details were reported.	 (1) Fisher Scientific Co., certified reagent; purity > 99.9%; b.p. 64.4 ±0.05°C; used as received. (2) Philips Petroleum Co., pure
	distilled; purity > 99 mole %; distilled; purity 99.9% by glc.
	ESTIMATED ERROR:
	Accuracy of results to well within ±1%.
	REFERENCES :

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Myers, D.B.; Smith, R.A.; Katz, J.
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	Scott, R.L.
	J. Phys. Chem. <u>1966</u> , 70, 3341-3.
VARIABLES:	PREPARED BY:
One temperature: 310 K	A. Skrzecz
-	
EXPERIMENTAL VALUES:	
The NCST was reported to be 200 6 K a	+ 1 a+m
The ocsi was reported to be 509.8 K a	it I alm.
The derivative dT_c/dP was determined T_c	to be 0.0338 ± 0.0012 K/bar.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The synthetic method was used.	(1) not specified.
The apparatus was the same as used	(2) not enorified
over Hg in a glass tube attached to	(2) not specified.
a stainless steel U tube. Pressure	
up to 10 MPa was applied from a	
observed through a window in a	
plywood box. Critical phenomena were	
determined while slowly stirring the	
ic bar and while cooling the bath at	
a rate of 0.1°C per min or less.	ESTIMATED EBROR:
Three to eleven points were deter-	t_{emp} +0.05 K
	combi Toron Vi
	DEFEDENCES.
	1. Furrow, S.D.
	M.S. Thesis, University of Maine
	<u>1962</u> .

COMPONENTS:		ORIGINAL MEASUREMENTS:		
(1) Methanol; CH ₄ O; [67	-56-1]	Schmidt, R.; Werner,G.; Schuberth, H		
(2) Hexane; C ₆ H ₁₄ ; [110-	54-3]	Z. Phys. Chem. <u>19</u>	<u>69</u> , 242, 381-90.	
MADTADI DE		DDDDDDD DV.		
VARIABLES:		TREFARED DI.		
Temperature: 293 - 308	K	A. Skrzecz		
EXPERIMENTAL VALUES:				
Mutual	solubility of	methanol and hexane		
t/°C :	x ₁	100 W ₁ (com	piler)	
(2)-rich phase	(1)-rich pha	se (2)-rich phase	(1)-rich phase	
20.0 0.193	0.822	8.17	63.2	
22.5 0.217	0.808	9.34	61.0	
25.0 0.245	0.792	10.77	58.6	
27.5 0.280	0.771	12.63	55.6	
30.0 0.324	0.743	15.13	51.8	
32.5 0.391	0.696	19.27	46.0	
34.5 UCST 0.553	0.553	31.5	31.5	
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The temperature of turbidity was observed in sealed ampoules. The experimental results were symmetrized by the method of Malesinska, ref 1, and the smoothed values were reported.		SOURCE AND PURITY OF MATERIALS: (1) VEB Leuna-Werke 'Walter Ulbricht'; boiled with Mg, fractionated; $n_{\rm b}(15^{\circ}{\rm C}) = 1.3306$, $\rho(20^{\circ}{\rm C}) = 0.7914$, b.p. 64.50°C. (2) VEB Synthesewerk Schwarzheide; fractionated; b.p. 68.70°C, $n_{\rm b}(15^{\circ}{\rm C}) = 1.3776$, $\rho(20^{\circ}{\rm C}) = 0.6590$.		
		ESTIMATED ERROR: temp. ±0.15 K (dif experimenta temperature REFERENCES: 1. Malesinska, B.; Bull. Acad. Pol Chim. <u>1960</u> , 3,	ference between 1 and calculated). Malesinski, W. . Sci., Ser. Sci. 61.	

ORIGINAL MEASUREMENTS: COMPONENTS: (1) Methanol; CH₂O; [67-56-1] Rudakovskaya, T.S.; Vinogradova, L.I.; Timofeev, V.S.; (2) Hexane; $C_{6}H_{14}$; [110-54-3] Serafimov, L.A. Sb. Nauch. Tr. Ivanov. Energ. Inst. <u>1972</u>, (14), 249-55. VARIABLES: PREPARED BY: Temperature: 285 and 293 K A. Skrzecz EXPERIMENTAL VALUES: Mutual solubility of methanol and hexane t∕°C 100 W. x, (compiler) (2)-rich phase (1)-rich phase (2)-rich phase (1)-rich phase 12. 5.1 69.0 0.126 0.8569 20. 8.7 63.0 0.204 0.8208 AUXILIARY INFORMATION SOURCE AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: (1) source not specified; The titration method was used. purified; b.p. 64.5°C, n²⁰ 1.3290. No further details were reported. (2) source not specified; purified; b.p. 68.8°C, n²⁰ 1.3746. ESTIMATED ERROR: not specified. **REFERENCES:**

Components:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1] (2) Hexane; C ₆ H ₁₄ ; [110-54-3]	Budantseva, L.S.; Lesteva, T.M.; Nemtsov, M.S. Zh. Fiz. Khim. <u>1976</u> , 50, 1343-44; Russ. J. Phys. Chem. (Engl. Transl.) <u>1976</u> , 50, 814; *Dep. Doc. VINITI <u>1976</u> , 438.
VARIABLES:	PREPARED BY:
One temperature: 293 K	A. Skrzecz
EXPERIMENTAL VALUES: Solubilities at 20°C: methanol in hexane: $x_1 = 0.2360$, w hexane in methanol: $x_2 = 0.1610$, w	v ₁ = 10.30 (compiler). v ₁ = 34.04 (compiler).
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The analytical method was used. Hexane was analyzed by gas chromatography. The measurements were described for ternary systems only.	SOURCE AND FURITY OF MATERIALS: (1) source not specified. (2) source not specified; distilled; purity > 99.9%.
	ESTIMATED ERROR: not specified.
Components:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Sergeeva, V.F.; Ustanova, I.Z. Zh. Obshch. Khim. <u>1973</u> , 43,
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	1878-81; J. Gen. Chem. USSR (Engl. Transl.) <u>1973</u> , 43, 1866-8.
VARIABLES:	PREPARED BY:
One temperature: 298 K	A. Skrzecz
EXPERIMENTAL VALUES: Solubilities at 20°C: methanol in hexane: $x_1 = 0.210$, w_1 hexane in methanol: $x_2 = 0.209$, w_1	= 8.99 (compiler). = 41.54 (compiler).
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The method was not specified.	SOURCE AND PURITY OF MATERIALS: (1), (2) source not specified; purified and dried; physical properties agreed with literature.
	ESTIMATED ERROR: not specified

130			
COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Methanol; CH ₄ O; [67-56-1]	Radice, F.C.; Knickle, H.N.		
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	J. Chem. Eng. Data <u>1975</u> , 20, 371-2.		
VARIABLES:	PREPARED BY:		
Temperature: 255 - 298 K	A. Skrzecz		
EXPERIMENTAL VALUES:			
Mutual solubility of methanol	and hexane		
t/°C 100 w ₁	<i>x</i> 1		
(2)-rich phase (1)-rich p	hase (2)-rich phase (1)-rich phase		
-17.8 ±0.5 1.98 83.68	0.0515 0.9324		
5.0 ±0.25 4.12 74.36	0.1036 0.8864		
25.0 ±0.25 10.11 60.04	0.2322 0.8016		
AUXILIARY IN	FORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The analytical method was used. The	(1) Phillips Petroleum Co., pure		
cells were charged with about 15 mL	grade; purity > 99.5% by glc;		
of mixture of approx. 70 mass %	used as received.		
hexane, then they were tightly	(2) Philling Potroloum Co. nuro		
placed in a constant temperature bath	grade; purity > 99.0% by glc; used		
for more than 3 h. Samples of each	as received.		
layer were analyzed by glc.			
Data for the ternary system methanol			
- hexane - 2-propanol are also given.			
	solv. $< \pm 0.01$ % (relative error of		
	analysis);		
	temp.: see above.		
	REFERENCES:		

ł

	131
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Balasubramanian, D.; Mitra, P.
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	J. Phys. Chem. <u>1979</u> , 83, 2724-7.
VARIABLES:	PREPARED BY:
One temperature: 307 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 33.7°C at	$x_i = 0.40.$
The corresponding mass percentage, ca	lculated by the compiler, is
100 W ₁ = 20.	
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE: The method was described in ref 1. Experiments were conducted with sealed tubes to avoid moisture contamination. No further details were reported.	SOURCE AND PURITY OF MATERIALS: (1), (2) source not specified; the best analytical grade available; used as received.
	ESTIMATED ERROR:
	not specified
	REFERENCES: 1. Hales, B.J.; Bertrand, G.L.; Hepler, L.G. J. Phys. Chem. <u>1960</u> , 70, 3970.
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1] (2) Hexane; C ₆ H ₁₄ ; [110-54-3]	Skripov, V.P.; Vitkalov, V.S.; Kolpakov, Yu. D. Zh. Fiz. Khim. <u>1980</u> , 54, 1754-8; Russ. J. Phys. Chem. (Engl.
VARIABLES:	PREPARED BY:
One temperature: 307 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 34.93° C at The corresponding mole fraction, calc is $x_1 = 0.5867$.	$t w_1 = 34.55.$ ulated by the compiler,
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND FURITY OF MATERIALS:
Light scattering near the critical point was observed in a glass ampoule of 70 mm length and 9 mm diameter with magnetic stirrer when equilibrium was stabilized after a change in temp. The system was thermostatted for 30-40 h.	(1), (2) source not specified.
	ESTIMATED ERROR:
	temp. ±0.003 K.

REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Methanol; CH ₄ O; [67-56-1]	Grekova, I.G.; Shimanskaya, E.T.;		
•			
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	Shimanskii, Yu.I.		
	Ukr. Fiz. Zh. 1981, 26, 283-7.		
VARIABLES:	PREPARED BY:		
One temperature: 309 K	A. Skrzecz		
EXDEDIMENTAL VATUES.	L		
The solubility was reported to be 36	.12°C at $w_1 = 30.6$.		
The corresponding mole fraction, cal	culated by the compiler,		
is $x_1 = 0.539$.			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The optical schlieren method of	(1) not specified; distilled.		
Töpler, ref 1, was used. The	(2) not specified, distilled		
gravitational effect near the	(2) not specified, distified.		
critical liquid-liquid point.			
	ESTIMATED ERROR:		
	not specified.		
	REFERENCES :		
	1. Shimanska, O.T.; Shimanski, Yu.I.		
	Visn. Kiev. Univ., Ser. Fiz.		
	<u>[</u>		
COMPONENTS	OPTOTNAL MEASUPEMENTS.		
(1) Methanol: CH.O: [67-56-1]	Alekhin, A.D.: Barkov, M.G.:		
(2) Hevane: C.H. : [110-54-3]	Kuleshova N.P.		
	$R_{\rm resolution} = 1002 - 20 - 60 - 72$		
VARTABLES	DRI. FIZ. 211. 1903, 20, 00-72.		
One temperature: 308 K	A. SKrzecz		
EXPERIMENTAL VALUES:			
The UCST was reported to be 34.8°C a	t w = 31.0.		
The corresponding mole fraction, cal	culated by the compiler.		
$i_{\rm c} x = 0.547$	Surded by the comprise,		
$15 x_1 = 0.547.$			
A 111/1 ** * A 114	τηξορματίου		
METHOD/APPARATUS/PROCEDURE: The light scattering method was used	SOURCE AND PURITY OF MATERIALS:		
The apparatus and procedure were	(i) source not specified.		
described in ref 1.	(2) source not specified.		
light at the angle of 90 degree was			
measured.			
	ESTIMATED ERROR: temp. ±0.005 K.		
	REFERENCES:		
	Fiz. zhidkogo sostoyaniya <u>1975</u> ,		

Components:	ORIGINAL MEASUREMENTS:		
(1) Methanol; CH40; [67-56-1]	Khurma, J.R.; Fenby, D.V.		
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	Aust. J. Chem. <u>1982</u> , 35, 1281-4.		
VARIABLES:	PREPARED BY:		
Temperature: 298 - 307 K	A. Skrzecz		
EXPERIMENTAL VALUES:			

	Mutual solubili	ty of methanol an	nd hexane		
T/K	x	1	100 w ₁ (compiler)		
	(2)-rich phase	(1)-rich phase	(2)-rich phase	(1)-rich phase	
297.89	0.2551	-	11.30	-	
300.25	-	0.7737	-	55.97	
303.73	-	0.7327	-	50.48	
304.93	0.3845	-	18.85	-	
305.32	-	0.6945	-	45.81	
306.14	0.4466	-	23.08	-	
306.62	0.5120	-	28.06	-	
306.66	-	0.6038	-	36.17	
306.66	-	0.5880	-	34.67	
306.70	UCST 0.560	0.560	32.1	32.1	

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The cloud point method was used. (1) B.D.H., Aristar grade; dried Sample tubes containing mixtures of known composition were prepared by over freshly activated molecular distillation under vacuum from the sieve type 3A, degassed by vacuum bulk degassed pure components and sublimation. sealed. Phase separation was observed visually. The temperature (2) Phillips, research grade; of a silicone oil bath was dried over freshly cut Na, controlled by a precision temperature degassed by vacuum sublimation. controller (Tronac PTC 60) and measured with calorimeter thermometers which had been ESTIMATED ERROR: calibrated against a platinum resistance thermometer. For each temp. ±0.02 K, ±0.04 K (UCST). sample the phase separation temp. was measured several times. **REFERENCES:**

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Methanol; CH₄O; [67-56-1] Kasapova, N.L.; Pozharskaya, G.I.; Kolpakov, Yu.D.; Skripov, V.P. (2) Hexane; $C_{k}H_{14}$; [110-54-3] Zh. Fiz. Khim. 1983, 57, 2182-5. PREPARED BY: VARIABLES: Temperature: 299 - 307 K A. Skrzecz EXPERIMENTAL VALUES: Mutual solubility of methanol and hexane T/K 100 W1 X_1 (2)-rich phase (1)-rich phase (2)-rich phase (1)-rich phase 298.85 0.2515 11.09 300.95 -0.7655 _ 54.80 303.20 -0.7411 _ 51.52 303.95 0.3462 16.43 -305.89 ----0.6835 ----44.50 306.71 0.4498 -23.29 -306.79 -0.6484 40.67 ----307.03 _ 0.6032 _ 36.08 307.06 0.5442 -30.72 -307.37 0.4680 -25.30 -307.40 UCST 0.5695 0.5695 32.94 32.94 AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The optical method was used, ref 1. (1) source not specified; distilled The ampoules with the mixture were prepared in liquid nitrogen. They with Mg. were heated in a thermostat, mixed (2) source not specified, chemical pure by chromatography; used as with a magnetic stirrer and then slowly cooled with the step of 0.005 received. - 0.01 K up to the temperature in which the insensitivity of the scattered light was changed. The mean of two experiments was reported. The wavelengths of 0.578, 0.546 and 0.436 were used. ESTIMATED ERROR: temp. ±0.01 K. **REFERENCES:** 1. Vitkalov, V.S.; Kolpakov, Yu.D. in the book: Teplofizika i

termodinamika, UNTs AN SSSR,

Sverdlovsk 1974, 27.

COMPONENTS:			ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₂ O; [67-56-1]			Hoelscher, I.F.; Schneider, G.M.;
(2) Heyenes $CH = (110-54-2)$			Ott, J.B.
(2) Hexane; $C_6 n_{14}$; [110-54-3]			Fluid Phase Equilib. <u>1986</u> , 27, 153-69.
VARIABLES:			PREPARED BY:
Temperature: 2 Pressure: 0.1	80 - 340 H - 151 MPa	K	A. Skrzecz
EXPERIMENTAL VALUE	S:		
Solubil	ity of met	chanol and hexa	ine
T/K	p/MPa	x ₁ 100 (con	W ₁ mpiler)
307.2	0.1	0.54 30	4 UCST extranolated
292.7	1.0	0.219 9	.4 bebi extraporated
295.0	10.0	0.219 9	.4
297.4	20.0	0.219 9	.4
299.7	30.0	0.219 9	· · 4
303.9	49.9	0.219 9	· · ·
305.9	59.9	0.219 9	.4
309.4	80.0	0.219 9	.4
312.6	99.8	0.219 9	.4
315.6	120 8	0 219 9	. 4
318.3	140.3	0.219 9	.4
319.8	150.4	0.219 9	0.4
297.5	1.0	0.249 11	0
300.0	10.0	0.249 11	
			(continued)
		AUXILIARY IN	FORMATION
METHOD/APPARATUS/PI A high-pressur with sapphire w seals Al-to-Au- stirring was us measured by Hei calibrated again gauge, temperat alumel thermoco certified plati Equilibrium tem visual observat as the sample w composition was volumes added to precautions wer- moisture from th 0.1 MPa were ext	ROCEDURE: e optical indows wit to-Al and ed. Press se gauge of nst a dead ure by chi uple calif num res. t ps. were f ion of pha as cooled. determing o the cel e taken to he samples trapolated	cell (ref 1) th sandwich magnetic sure was calibrated d-weight romel-to- prated against thermometer. found from ase separation . The ed from the ll. Special p exclude s. Data for d.	SOURCE AND PURITY OF MATERIALS: (1) Fisher, purity 0.999 mole fraction; distilled twice over Na in 2 m column packed with glass helices; purity > 0.9999 mole fraction by glc analysis. (2) Phillips, research grade; purity 0.9989 mole fraction by glc analysis; used as received.
			ESTIMATED ERROR:
			temp. ± 0.2 K, ± 0.1 K at $p = 0.1$
			MPa. pressure ± 0.2 MPa. composition ± 0.005 mole fraction.
			REFERENCES: 1. Liphard, K.G.; Schneider, G.M. J. Chem. Thermodyn. <u>1975</u> , 7, 805.

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Methanol; CH₂O; [67-56-1] Hoelscher, I.F.; Schneider, G.M.; Ott, J.B. (2) Hexane; C₆H₁₄; [110-54-3] Fluid Phase Equilib. 1986, 27, 153-69. EXPERIMENTAL VALUES: (Continued) Solubility of methanol and hexane p/MPa 100 W. T/K \boldsymbol{x}_1 (compiler) 302.8 20.0 0.249 11.0 305.2 30.0 0.249 11.0 307.7 40.0 0.249 11.0 310.0 50.0 0.249 11.0 312.0 60.0 0.249 11.0 315.7 80.0 0.249 11.0 318.9 100.3 0.249 11.0 322.0 120.4 0.249 11.0 324.9 140.5 0.249 11.0 150.4 326.5 0.249 11.0 302.1 1.0 0.297 13.6 10.0 13.6 305.1 0.297 13.6 308.0 20.0 0.297 13.6 310.4 30.0 0.297 13.6 0.297 312.6 40.0 315.1 50.0 0.297 13.6 13.6 317.3 60.0 0.297 80.0 13.6 321.1 0.297 100.4 0.297 13.6 324.8 120.3 0.297 13.6 328.1 140.3 0.297 13.6 331.3 13.6 150.1 0.297 332.7 305.0 1.0 0.336 15.8 15.8 10.0 0.336 307.8 310.7 20.0 0.336 15.8 30.0 15.8 313.4 0.336 316.0 40.0 0.336 15.8 50.0 15.8 318.3 0.336 320.6 60.0 0.336 15.8 79.9 0.336 15.8 324.6 328.4 100.4 0.336 15.8 331.8 120.5 0.336 15.8 335.1 140.3 0.336 15.8 336.6 150.4 0.336 15.8 307.6 1.0 0.438 22.5 310.6 10.0 0.438 22.5 313.6 20.0 0.438 22.5 316.4 29.9 0.438 22.5 319.0 40.0 0.438 22.5 321.4 50.0 0.438 22.5 323.7 59.9 0.438 22.5 80.0 22.5 327.9 0.438 331.7 100.8 0.438 22.5 120.8 335.2 0.438 22.5 338.1 140.3 0.438 22.5 339.6 149.9 22.5 0.438 307.5 1.0 0.510 27.9 310.5 10.0 0.510 27.9 313.6 20.0 0.510 27.9 316.5 30.0 0.510 27.9

(continued)

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Methanol; CH₄O; [67-56-1] Hoelscher, I.F.; Schneider, G.M.; Ott, J.B. (2) Hexane; C₆H₁₄; [110-54-3] Fluid Phase Equilib. 1986, 27, 153-69. EXPERIMENTAL VALUES: (Continued) Solubility of methanol and hexane 100 w₁ (compiler) T/K p/MPa X_1 319.1 40.0 0.510 27.9 321.5 50.0 0.510 27.9 323.7 0.510 27.9 60.0 327.9 80.0 0.510 27.9 331.7 100.4 0.510 27.9 335.0 120.0 0.510 27.9 338.1 140.3 0.510 27.9 339.6 150.4 0.510 27.9 307.5 0.572 1.0 33.2 310.5 10.0 0.572 33.2 313.6 20.0 0.572 33.2 316.4 30.0 0.572 33.2 319.1 40.0 0.572 33.2 321.4 50.0 0.572 33.2 323.7 60.0 0.572 33.2 0.572 327.8 80.0 33.2 331.6 100.5 0.572 33.2 335.0 120.3 0.572 33.2 337.9 140.3 0.572 33.2 339.3 150.4 0.572 33.2 302.9 1.0 49.4 0.724 306.0 10.0 0.724 49.4 309.0 20.0 0.724 49.4 311.6 30.0 0.724 49.4 40.0 313.8 0.724 49.4 316.1 50.0 0.724 49.4 317.9 49.4 60.0 0.724 321.4 80.0 0.724 49.4 324.4 100.6 0.724 49.4 326.7 120.3 0.724 49.4 329.0 140.5 0.724 49.4 330.0 150.5 0.724 49.4 279.9 1.1 0.806 60.7 0.806 282.7 10.0 60.7 285.4 20.0 0.806 60.7 30.1 288.2 60.7 0.806 290.8 40.0 0.806 60.7 50.0 0.806 293.2 60.7 295.5 59.9 0.806 60.7 299.7 79.9 0.806 60.7 303.4 100.3 0.806 60.7 307.1 120.1 0.806 60.7 139.8 310.2 0.806 60.7 311.8 149.9 0.806 60.7 311.8 149.9 0.806 60.7

138

COMPONENTS:

(1) Methanol; CH40; [67-56-1]

(2) Hexane; C_6H_{14} ; [110-54-3]

ORIGINAL MEASUREMENTS:

- Hoelscher, I.F.; Schneider, G.M.; Ott, J.B.
- Fluid Phase Equilib. <u>1986</u>, 27, 153-69.

EXPERIMENTAL VALUES: (Continued)

COMMENTS AND ADDITIONAL DATA:

Data for isopleths at high pressures were fitted to the Simon equation

$$p(x,T)/MPa = a[(T/T_o)^{c}-1]$$

From these equations, the corresponding (T, x) isobars were calculated and were fitted to the equation

 $T/K = T_c/K + k |y - y_c|^{\nu}$

where

$$y = \alpha x_{1} / [1 + x_{1} (\alpha - 1)]$$

$$y_{c} = \alpha x_{c1} / [1 + x_{c1} (\alpha - 1)]$$

The coefficients found are (s = std. error of estimate):

<i>x</i> ₁	Т / К	а	C	s/K			
0.219	292.4	114.66	9.38	0.07			
0.249	297.1	92.07	10.36	0.13			
0.297	302.0	105.63	9.15	0.12			
0.336	304.7	103.36	9.02	0.04			
0.438	307.3	89.26	9.87	0.03			
0.510	307.2	84.87	10.17	0.02			
0.572	307.1	81.21	10.50	0.04			
0.724	302.5	48.70	16.12	0.08			
0.806	279.5	109.69	7.88	0.07			
p/MPa	T _c /K	k	α	x _{c1}	v	S	<u> </u>
0.1	307.2	-4420	0.596	0.535	4.280	0.10	
25	315.1	-4540	0.589	0.539	4 252	0 16	
50	321.5	-3649	0.638	0.533	4.087	0.10	
75	326.9	-2828	0.709	0.525	3,900	0.19	
100	331.6	-2225	0.790	0.517	3,718	0.18	
125	335.8	-1791	0.880	0.508	3.544	0 15	
150	339.6	-1472	0.978	0.500	3.378	0.13	

Equations are also given for (p, x) pairs, which are of the same form as those for the (T, x) pairs.

COMPONENTS:			ORIGINAL MEASUREMENTS:		
(1) Methanol; CH ₄ O; [67-56-1]			Hradetzky, G.; Bit	trich, HJ.	
(2) Hexane; C ₆ H ₁₄ ; [110-82-7]			Int. Data Ser., Se	el. Data Mixtures,	
			<i>Ser.</i> A <u>1986</u> , 216.		
VARIABLES:			PREPARED BY:		
Temperatur	e: 245 - 307 H	ζ	A. Skrzecz		
EXPERIMENTAL VALUES:					
Mutual solubility of methan			ol and hexane		
17K	<i>x</i> ₁		$100 w_1 (comp)$	iler)	
(2)-rich phase	(1)-rich phas	e (2)-rich phase	(1)-rich phase	
245.15	-	0.9300	-	83.16	
257.37	0.0467	-	1.79	-	
259.85	-	0.9086	-	78.71	
261.25	0.0590	-	2.28	-	
265.59	0.0730	-	2.84	-	
266.07	-	0.8997		76.93	
269.63	0.0884	-	3.48	-	
269.65	0.0835		3.28	-	
270.95	-	0.8899	-	75.03	
273.35	-	0.8849	-	74.08	
273.97	0.0992	-	3.93	_	
275.49	0.1154	-	4.63	-	
280.11	-	0.8665	-	70.70	
282.17	0.1356	-	5.51	-	
283.15	-	0.8600	-	69.55	
284.20	0.1536	-	6.32	-	
	<u>-</u>		inne	(Continued)	
		AUXILIARY	INFORMATION		
METHOD/APPARA	TUS/PROCEDURE:		SOURCE AND PURITY OF MA	ATERIALS:	
Glass ampo	point method v	vas used.	(1) VEB Leuna Werke	e (Leuna, GDR),	
capacity f	illed with kno	own masses of	as received; <	50 mg/kg water as	
to avoid c	nents and seal ontamination w	led carefully	determined by Karl Fischer		
were immer	sed in a water	thermostat	meenour		
equipped with a Hg-in-glass		(2) VEB Laborchemie (Apolda, GDR), analytical grade: washed with			
Bureau of	Bureau of Standards, GDR). Phase		H ₂ SO ₄ , fractionally dist., dried		
changes were observed visually as the mixture was cooled at 0.02 K/min Weighings accurate to 0.0001 g.		over molecular sieve type 3A; purity 99.9 mole % by capillary glc (no aromatic impurities).			
				Reproducib	ccurate to with ility of temp.
0.03 K. C	ritical soluti	on temp.	soly. ±0.0002 mole	e fraction,	
graphicall	y using Caille	ed et-Mathias	10.004 mole	iraction for UCST.	
rule.			temp. ±0.03 K		
1			REFERENCES:		
the second se					

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Hradetzky, G.; Bittrich, HJ.
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	Int. Data Ser., Sel. Data Mixtures, Ser. A <u>1986</u> , 216.

EXPERIMENTAL VALUES: (continued)

Mutual solubility of methanol and hexane				
T/K	<i>x</i> 1		100 w ₁ (compiler)	
I	(2)-rich phase	(1)-rich phase	(2)-rich phase	(1)-rich phase
285.39	0.1616	-	6.69	-
285.85	-	0.8494	-	67.71
286.15	-	0.8516	-	68.09
289.25	0.1783	-	7.47	~
292.55	-	0.8274	-	64.06
292.81	-	0.8229	-	63.34
293.15	0.2104	-	9.01	-
293.41	0.2074	-	8.87	-
297.27	0.2523	-	11.15	-
298.15	0.2583	-	11.46	-
299.63	-	0.7805	-	56.94
300.67	-	0.7675	-	55.10
300.75	0.2942	-	13.42	-
302.60	-	0.7466	-	52.28
303.33	0.3415	-	16.17	-
304.05	0.3547	-	16.97	-
304.48	-	0.7180	-	48.63
304.85	0.3796	-	18.53	-
304.90	-	0.7043	-	46.97
306.20	0.4551	-	23.70	-
306.21	-	0.6512	-	40.97
306.37	0.4610	-	24.13	-
306.49	0.4736	-	25.07	-
306.57	-	0.6236	-	38.12
306.64	0.4983	-	26.97	-
306.71	0.5005	-	27.14	-
306.72	0.5296	-	29.51	-
306.73	-	0.5840	-	34.30
306.75 t	JCST 0.546	0.546	30.9	30.9

	141
Components:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₂ O; [67-56-1]	Nagata, I.
(2) Hexane; $C_{4}H_{14}$; [110-54-3]	Thermochim. Acta <u>1987</u> , 114, 227-38.
VARIABLES:	PREPARED BY:
One temperature: 298 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Mutual solubilities at 25°C:	
methanol in hexane: $x_1 = 0$.2550, 100 w ₁ = 9.74 (compiler).
bauana da mathamala a - 0	2005 - 1000 - 40.00 (commilton)
$nexane in methanol: x_2 = 0$.2005, $100w_2 = 40.28$ (compiler).
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The analytical method was used.	(1) source not specified, C.P.grade;
A two-phase mixture in an equilibrium	dried over CaO, distilled; no impurities by glc: density at
intensely for 2 h and then was	25°C was in agreement with
allowed to settle for 2 h within a thermostatted water bath Both	literature value.
phases were withdrawn with Hamilton	(2) source not specified; no
Syringes and analyzed by glc (Shimadzu GC-8C and integrator	impurities by glc; density
Shimadzu C-E1B). Four analyses	in literature; used as
were made for each phase.	received.
	coly to 002 mole fraction
	(reproducibility);
	temp. ±0.01 K.
	REFERENCES:

142	
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Myers, D.B.; Smith, R.A.; Katz, J.
(2) 2-Methylpentane; C_6H_{14} ;	Scott, R.L.
[107-83-5]	J. Phys. Chem. <u>1966</u> , 70, 3341-3.
VARIABLES:	PREPARED BY:
One temperature: 306 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 305.8 K a	it 1 atm.
The derivative $d\pi/dP$ was determined :	t_{0} be 0 0330 t_{0} 0000 K/bar
The derivative dr _c /dr was determined	Co be 0.0330 1 0.0009 K/bar.
	,
AUXILIARY	INFORMATION
The synthetic method was used.	(1) not specified.
The apparatus was the same as used	
in ref 1. Mixtures were contained over Hg in a glass tube attached to	(2) not specified.
a stainless steel U tube. Pressure	
up to 10 MPa was applied from a nitrogen cylinder. Samples were	
observed through a window in a	
determined while slowly stirring the	
mixture with a glass-enclosed magnet-	
a rate of 0.1°C per min or less.	
Three to eleven points were deter-	ESTIMATED ERROR:
mineu.	cemp. 10.05 K.
	REFERENCES:
	1. Furrow, S.D. M.S. Thesis. University of Maine
	<u>1962</u> .

	143
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Kiser, R.W.; Johnson, G.D.;
(2) 3-Methylpentane: C.H.:	Shectar, M.D.
[96-14-0]	J. Chem. Eng. Data <u>1961</u> , 6, 338-41.
VARIABLES:	PREPARED BY:
Temperature: 278 - 300 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Solubility of 3-met	hylpentane in methanol
t/C g(2)/100 ml(1) 100 w ₁ (c	compiler) x_2 (compiler)
5 38.9 32.6	0.152
	0.173
15 53.0 40.0	0.198
20 65. 45.1	0.234
25 91. 53.6	0.301
27.2 UCST	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The isoplethal or cloud point method was used. Samples of known composition were heated and/or cooled and the temperature of phase transition was noted. In general, the phase transition most reproducible and easily observed, and therefore chosen, was the unmixing temperature (cloud point) obtained when a miscible solution was cooled until the finely dispersed solute was just no longer completely miscible.	 (1) E.I. du Pont de Nemours and Co.; distilled; n₀(20°C) = 1.3293, b.p. 64.6°C (corrected), f.p99°C. (2) Matheson, Coleman and Bell; used as received; n₀(20°C) = 1.3762
	ESTIMATED ERROR: soly. ±2% (relative error); temp. ±0.2 K.
	REFERENCES: 1. International Critical Tables vol. 3, New York, <u>1933</u> .

COMPONENTS:	EVALUATOR:
(1) Methanol; CH ₄ O; [67-56-1]	A. Maczynski
(2) 1-Heptene; C ₇ H ₁₄ ; [592-76-7]	Institute of Physical Chemistry Polish Academy of Sciences Warsaw, Poland
	July, 1989

CRITICAL EVALUATION:

The upper critical solution temperature (UCST) for the system methanol (1)-1-heptene (2) was reported in the two following papers:

 Author(s)
 T/K

 1. Francis 1944
 285 UCST

 2. Pavlova 1975
 271.6 UCST

The UCST data of Francis, ref 1, and Pavlova et al., ref 2, are treated as tentative. Although the values differ by 13 K, there is no valid criterion for preferring one over the other.

REFERENCES:

1. Francis, A.W. Ind. Eng. Chem. 1944, 36, 764.

2. Pavlova, O.P.; Gaile, A.A.; Proskuryakov, K.A.; Li, I.F. Zh. Fiz. Khim. <u>1975</u>, 49, 2874.

	145
COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1]	ORIGINAL MEASUREMENTS: Francis, A.W.
(2) 1-Heptene; C ₇ H ₁₄ ; [592-76-7]	Ind. Eng. Chem. <u>1944</u> , 36, 764-71.
VARIABLES:	PREPARED BY:
One temperature: 285 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 12°C.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The reagents were introduced and stirred with a thermometer in test tubes which were warmed and cooled gradually in a bath. The temperature of disappearance or reappearance of the cloudiness was read two or three times in each direction.	<pre>SOURCE AND PURITY OF MATERIALS: (1) source not specified, "substancially pure"; used as received. (2) obtained by the Grignard reaction; purified; p(20°C) = 0.6980, b.p. range 93 - 93.5°C. ESTIMATED ERROR: not specified. REFERENCES:</pre>
	I
COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) 1-Heptene: CH ₄ : [592-76-7]	ORIGINAL MEASUREMENTS: Pavlova, O.P.; Gaile, A.A.; Proskuryakov, K.A.; Li, L.F.
(1) 1 neptene, 07114, [352 / 0 /]	Zh. Fiz. Khim. <u>1975</u> , 49, 2874-6.
VARIABLES:	PREPARED BY:
One temperature: 272 K	A. Skrzecz
EXPERIMENTAL VALUES:	1

The UCST was reported to be -1.6° C.

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The method was not specified.	SOURCE AND FURITY OF MATERIALS: (1) source not specified. (2) source not specified.
	ESTIMATED ERROR: not specified.
	REFERENCES :

COMPONENTS:	EVALUATOR:
(1) Methanol; CH ₄ O; [67-56-1]	A. Skrzecz and A. Maczynski Institute of Physical Chemistry
(2) Methylcyclohexane; C_7H_{14} ;	Polish Academy of Sciences
[108-87-2]	Warsaw, Poland
	J.W. Lorimer Department of Chemistry The University of Western Ontario London, Ont., Canada July, 1989

CRITICAL EVALUATION:

146

Table 1 lists reported solubilities, upper critical solution temperatures (UCST) and compositions for the system methanol (1) - methylcyclohexane (2).

Table 1. Solubilities, upper critical solution temperatures and compositionsfor the system methanol (1) - methylcyclohexane (2)

Author(s)	Range		
	<i>T/</i> K	<i>x</i> ₁	<i>x</i> ₁
		(2)-rich phase	(1)-rich phase
1. Francis 1944	320 UCST	-	-
2. Francis 1944	320 UCST	-	-
3. Sieg 1951	317.7 UCST	-	-
4. Francis 1954	319 UCST	-	-
5. Kiser 1961	278-319.2 UCST	-	0.769-0.902
6. Schmidt 1969	293.2-318.2 UCST	0.132-0.566	0.566-0.865
7. Nagata 1984	298.2	0.174	0.855

Critical Solution Temperature and Composition

The UCST values of Francis, refs. 1, 2, 4, were obtained with either as-received chemicals or chemicals from unspecified sources; these data are unreliable. The values of Sieg, ref. 3, and Schmidt et al., ref. 6, were found using purified chemicals; Sieg reported precautions to keep the system anhydrous. Kiser et al., ref. 5, used purified methanol, but as-received methylcyclohexane. Schmidt et al. give more extensive solubility data near the critical point, and appear to have carried out more careful work. Therefore, their value, $T_c = 318.2$ K, is *tentative*.

Mutual Solubilities

Thirty values have been reported, in addition to data for critical solution points. These are plotted in fig. 1. The data of Schmidt et al., ref. 6, cover a large range of temperature. Kiser et al.,

CRITICAL EVALUATION: (continued)

ref 5, reported solubility of methylcyclohexane in methanol only and found values lower than those in ref. 6 by about 0.005 mole fraction at all measured temperatures; these data are probably within the range of expected error. (The width of a symbol on the plot is 1.6 K or 0.0125 mole fraction.) The two values of Nagata, ref 7, obtained with chemicals used as received from unspecified sources, are higher by 0.01-0.02 mole fraction than those of Schmidt et al., and are rejected. The data from ref. 6 are considered as *tentative*.

The data of Schmidt et al. were fitted to the equation

$$x_{1} = x_{c1} \pm B_{1}\theta^{\beta} \pm B_{2}\theta^{\beta+w} + A_{1}\theta \pm B_{3}\theta^{\beta+2w} + A_{2}\theta^{1-\alpha+w}$$

where $\theta = |1 - T/T_c|$, + and - refer to the branches below and above the critical composition, and the indices have their theoretical values $\beta = 0.325$, $\alpha = 0.11$, w = 0.5. The constants (with standard deviations in parentheses) are:

$x_{c1} = 0.5618 \ (0.0003)$	$T_{\rm c}/{\rm K} = 317.93 \ (0.055)$	
$B_1 = 0.9346 \ (0.014)$	$B_2 = -0.3759 (0.11)$	$B_3 = 0.1358 (0.23)$
$A_1 = -2.6154 \ (0.045)$	$A_2 = 4.8821 \ (0.11)$	s = 0.0005

s is the total standard error of estimate in temperature and composition, assuming equal weights for each; the term in A_2 is necessary to obtain a good fit. Vlaues calculated from this equation are given in Table 2 below.

Table 2. Tentative solubilities in the system methanol-methylcyclohexane

<i>T/</i> K	<i>x</i> ₁	<i>x</i> ₁
	(2)-rich phase	(1)-rich phase
295.0	0.140	0.858
300.0	0.171	0.841
305.0	0.209	0.819
310.0	0.259	0.789
315.0	0.342	0.737
318.2	0.566	0.566 UCSI

REFERENCES:

- 1. Francis, A.W. Ind. Eng. Chem. <u>1944</u>, 36, 764.
- 2. Francis, A.W. Ind. Eng. Chem. 1944, 36, 1096.
- 3. Sieg, L. Chem.-Ing.-Tech. 1951, 23, 112.
- 4. Francis, A.W. J. Am. Chem. Soc. 1954, 76, 393.
- 5. Kiser, R.W.; Johnson, G.D.; Shetlar, M.D. J. Chem. Eng. Data <u>1961</u>, 6, 338.
- 6. Schmidt, R.; Werner, G.; Schuberth, H. Z. Phys. Chem. <u>1969</u>, 242, 381.

7. Nagata, I. J. Chem. Thermodyn. <u>1984</u>, 16, 737.

(continued)

	170
СОМРОNENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Methylcyclohexane; C ₇ H ₁₄ ; [108-87-2]	ORIGINAL MEASUREMENTS: Francis, A.W. Ind. Eng. Chem. <u>1944</u> , 36, 764-71.
VARIABLES:	PREPARED BY:
One temperature: 320 K	A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 47°C.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The reagents were introduced and stirred with a thermometer in test tubes which were warmed and cooled gradually in a bath. The temperature of disappearance or reappearance of the cloudiness was read two or three times in each direction.	<pre>SOURCE AND PURITY OF MATERIALS: (1) source not specified, "substancially pure"; used as received. (2) source not specified. ESTIMATED ERROR: not specified. REFERENCES: . . . </pre>
	-
COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Methylcyclohexane; C ₇ H ₁₄ ; [108-87-2]	ORIGINAL MEASUREMENTS: Francis, A.W. Ind. Eng. Chem. <u>1944</u> , 36, 1096-1104.
VARIABLES:	PREPARED BY:
One temperature: 320 K	A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 47°C.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The reagents, about 1 mL of each, were introduced into a small tube and stirred with a thermometer while the tube was warmed gradually in a bath of water or glycerol or was cooled	 SOURCE AND PURITY OF MATERIALS: (1) SOURCE not specified; dried. (2) SOURCE not specified; b.p. 100.8°C.
with ice or a bath of acetone and dry ice. The temperature of disappearance Or reappearance of the cloud was road	ESTIMATED ERROR: not specified.
three or four times in each direction. The proportion of components was modified to obtain critical solution temperature.	REFERENCES :

-

150	
СОМРОNENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Methylcyclohexane; C ₇ H ₁₄ ; [108-87-2]	ORIGINAL MEASUREMENTS: Sieg, L. ChemIngTech. <u>1951</u> , 23, 112-3.
VARIABLES:	PREPARED BY:
	A. 5AI 4804
The UCST was reported to be 44.5°C.	
Mutual solubility was presented on a	graph only.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. A mixture of known composition was sealed in an ampoule and the temperature of appearance or disappearance of turbidity was observed. The ampoules and pipettes were filled in a moistureless atmosphere over P ₂ O ₅ .	 SOURCE AND PURITY OF MATERIALS: (1) source not specified; boiled with Mg, fractionated; physical properties were in agreement with literature values. (2) source not specified, pure grade fractionated; physical properties were in agreement with literature values.
	ESTIMATED ERROR: not specified.
	REFERENCES:
COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Methylcyclohexane; C ₇ H ₁₄ ; [108-87-2]	ORIGINAL MEASUREMENTS: Francis, A.W. J. Am. Chem. Soc. <u>1954</u> , 76, 393-5.
VARIABLES:	PREPARED BY:
One temperature: 319 K	A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 46°C.	L
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The observations were made in narrow graduated glass stoppered tubes immersed in a water bath in a large silver Dewar flask. Compositions were made up by volume from graduated	<pre>SOURCE AND PURITY OF MATERIALS: (1) J.T. Baker, anhydrous, chemical pure grade; used as received. (2) source not specified.</pre>
pipettes until cloudiness just disappeared or reappeared. The bath temperature was adjusted by addition	ESTIMATED ERROR:

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Methanol; CH_2O ; [67-56-1]	Kiser, R.W.; Johnson, G.D.;		
	Shetlar, M.D.		
(2) Methylcyclohexane; C ₇ H ₁₄ ;			
[108-87-2]	J. Chem. Eng. Data <u>1961</u> , 6, 338-41.		
VARIABLES:	PREPARED BY:		
Temperature: 278 - 319 K	A. Skrzecz		
EXPERIMENTAL VALUES:			
Solubility of methy	/lcyclohexane in methanol		
$t/^{\circ}C$ g(2)/100 ml(1) 100 w	(compiler) x_2 (compiler)		
5 26.9 25	0 0.0983		
10 29.8 27	.1 0.108		
15 33.2 29	.4 0.120		
20 37.2 32	0 0.133		
25 42.2 34	.9 0.149		
30 48.8 38	.4 0.169		
35 57.5 42	.5 0.194		
40 70.9 47	.9 0.231		
46.0 UCST			
ρ/ρ(4 C) = 0.80999 - 9.253 × 10	(L/C) - 4.1 × 10 (L/C)		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The isoplethal or cloud point method was used. Samples of known composition were heated and/or cooler and the temperature of phase transition was noted. In general, the phase transition most reproducible and easily observed, and therefore was chosen, was the unmixing temperature (cloud point) obtained when a miscible solution was cooled until finely dispersed solute was just no longer completely	<pre>(1) E.I. du Pont de Nemours and Co.; distilled; n₀(20°C) = 1.3293, b.p. 64.6°C (corrected), f.p99°C. (2) Matheson, Coleman and Bell, spectroquality; used as received n₀(20°C) = 1.42315.</pre>		
miscible.	ESTIMATED ERROR:		
	soly. ±2% (relative error); temp. ±0.2 K.		
	REFERENCES :		
	 International Critical Tables vol. 3, New York, <u>1933</u>. 		

151

J

152					
COMPONENTS:			ORIGINAL MEASUREMENTS:		
(1) Methanol: CH.O: [67-56-1]		Schmidt, R.; Werner, G.; Schuberth, H.			
(2) Methylc	vclohexane;	C-H,;	Z. Phys. Chem.	<u>1969, 242, 381-90.</u>	
[108-87	-21	7 14-	-		
	-				
VARIABLES:			PREPARED BY:		
Temperature	: 293 - 318	ĸ	A. Skrzecz		
EXPERIMENTAL V	ALUES:				
Mu	tual solubil	ity of methanc	l and methylcyclo	nexane	
t/°C	2	¢ ₁	100 w ₁ (co	ompiler)	
(2)-rich phase	(1)-rich pha	se (2)-rich phas	se (1)-rich phase	
20.0	0.132	0.865	4.73	67.6	
22.5	0.144	0.856	5.20	66.0	
25.0	0.158	0.846	5.77	64.2	
27.5	0.174	0.836	6.43	62.5	
30.0	0.192	0.826	7.20	60.8	
32.5	0.213	0.815	8.12	59.0	
35.0	0.239	0.801	9.30	56.8	
37.5	0.270	0.785	10.77	54.4	
40.0	0.310	0.764	12.79	51.4	
42.5	0.368	0.729	15.97	46.7	
45.0 UCS1	0.566	0.566	29.9	29.9	
	<u> </u>	AUXILIARY	INFORMATION		
METHOD/APPARAT	TUS/PROCEDURE:		SOURCE AND PURITY OF	MATERIALS:	
The cloud	point meth	od was used.	(1) VEB Leuna-W	erke 'Walter	
observed	in sealed	ampoules.	Ulbricht'; boiled with Mg, fractionated; b.p. 64.50°C.		
The exper	rimental r	esults were	n_0^{15} 1.3306,	d ²⁰ 0.7914.	
Malesinska	ref 1, and	the smoothed	(2) VEB Buna-Werke Schkopau;		
values were	e reported.		fractionate n ¹⁵ 1,4257	d; b.p. 100.93°C, d ²⁰ 0.7692.	
			_D 1142077	· · · · · · · · · · · · · · · · · · ·	
				······	
			ESTIMATED ERROR:		
			temp. ±0.15 K (experiment temperate	difference between ntal and calculated ure).	
			REFERENCES :		
			1. Malesinska, 1 Bull. Acad. 1 Chim. <u>1960</u> ,	B.; Malesinski, W. Pol. Sci., Ser. Sci. 3, 61.	
1					

	100
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Nagata, I.
(2) Methylcyclohexane; C ₇ H ₁₄ ; [108-87-2]	J. Chem. Thermodyn. <u>1984</u> , 16, 737-41.
VARIABLES:	PREPARED BY:
One temperature: 298 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Mutual solubilities at 25°C:	
methanol in methylcyclohexane: x_1	= 0.1739, 100 w ₁ = 6.428 (compiler).
methylcyclohexane in methanol: x_2	= 0.1453, 100w ₂ = 34.25 (compiler).
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The turbidity titration method was used. Details of the measurements are given in ref 1.	<pre>SOURCE AND PURITY OF MATERIALS: (1), (2) source not specified, A two-phase mixture in an spectrograde; densities agreed with values in literature; used as received.</pre>
	ESTIMATED ERROR:
	temp. ±0.01 K.
	REFERENCES:
	l. Nagata, I.; Katoh, K. Thermochim. Acta <u>1980</u> , 39, 45.

COMPONENTS:	EVALUATOR:
(1) Methanol; CH ₄ O; [67-56-1]	A. Skrzecz Institute of Physical Chemistry
(2) Heptane; C ₇ H ₁₆ ; [142-82-5]	Polish Academy of Sciences Warsaw, Poland
	J.W. Lorimer Department of Chemistry The University of Western Ontario London, Ont., Canada
	July, 1989

CRITICAL EVALUATION:

Solubilities and upper critical solution temperatures (UCST) for the system methanol (1) - heptane (2) have been reported in the references listed below.

Table 1. Summary of solubility data for the system methanol (1) - heptane (2)

Author(s)		Range	
	T/K	<i>x</i> ₁	<i>x</i> ₁
		(2)-rich phase	(1)-rich phase
1. Cornish 1934	324.7 UCST	-	-
2. Francis 1944	324 UCST	-	-
3. Fischer 1949	338.7 UCST	-	-
4. Sieg 1951	324.2 UCST	-	-
5. Francis 1954	324 UCST	-	-
6. Kogan 1956	275-313	0.098-0.240	0.866-0.934
7. Tagliavini 1958	291-323	0.104-0.433	0.756-0.911
8. Kiser 1961	278-324.4 UCST	-	0.843-0.933
9. Chernova 1965	325.1 UCST	0.6291	0.6291
10. Savini 1965	303-318	0.210-0.317	0.822-0.879
11. Sergeeva 1973	298	0.130	0.900
12. Viswanathan 197	73 325.02 UCST	0.6135	0.6135
13. Budantseva 1976	5 293-313	0.176-0.295	0.835-0.912
14. Hradetzky 1986	254-324.06 UCST	0.036-0.610	0.610-0.956
15. Letcher 1986	298	0.176	-
16. Ott 1986	320-357 ^a	0.296-0.579	0.579-0.787
	324.5 UCST	0.588	
17. Ranjan 1986	325.060, 325.68 UC	ST -	-
18. Higashiuchi 1987	7 298-323	0.153-0.453	0.790-0.900
19. Nagata 1987	298	0.158	0.893

^a At elevated pressures, p = 0.1-151 MPa; UCST at 0.1 MPa.

CRITICAL EVALUATION: (continued)

Critical Solution Temperature and Composition

Twelve values of the UCST have been reported, ranging from 324.0 to 338.7 K; see Table 1. The value of Fischer and Neupauer, ref 3, was rejected, and is not compiled; all values in ref. 3 for different alcohol-hydrocarbon systems are higher by about 10-20 K than recommended or tentative values, which indicates presence of significant impurities, probably water. The values of Francis, refs. 2, 5, appear reliable, but are less precise. The remaining values are clustered in two groups. One group of four values (refs. 9, 12, 17) shows an average $T_c = 325.2 \pm 0.3$ K (std. dev.), but all are rejected because of use of unpurified chemicals from unspecified sources or lack of precautions to eliminate water, or both. The other group of five values (refs. 1, 4, 8, 14, 16) shows an average $T_c = 324.4 \pm 0.3$ K (std. dev.). The value of Cornish, ref. 1, was obtained with unspecied materials and by an unspecified method, and is rejected. The remaining four values give a recommended value:

 $T_{\rm c} = 324.3 \pm 0.2 \text{ K} (\pm 1 \text{ std. dev.}).$

Only four values of the critical comosition are reported (Table 1). Again, two groups of two each are found. The two higher values (refs. 9, 12) are rejected for the same reasons as the corresponding critical solution temperatures. The average of the two lower values (refs. 14, 16) gives a standard deviation within the authors' estimated precision. This value is therefore *recommended*:

 $x_{c1} = 0.599 \pm 0.016 (\pm 1 \text{ std. dev.})$

Mutual Solubility

One hundred and fifteen values of mutual solubilities have been reported in 11 publications, not including critical solution points; these are shown in fig. 1. Inspection of the plot indicates that, except for points at the three highest mole fractions of ethanol, all data of both Kogan et al., ref. 6, and of Tagliavini and Arich, ref. 7, are clearly aberrant, and are rejected. Similarly, one of the four values of Savini et al., ref. 10, one of the two values of Sergeeva et al., ref. 11, all the values of Budantseva et al., ref. 13, the value of Letcher et al., ref. 15, and seven of the values on the methanol-rich side and near the critical solution temperature of Higashuichi et al., ref. 18, are rejected.

Of the remaining 88 values, the data of Ott et al., ref. 16 (extrapolated from high pressures) are close to those of Hradetsky and Bittrich, ref. 14. The respective critical solution temperatures agree to 0.3 K, so adjustment for this reason would not bring the two sets of results into coincidence. (The width of a symbol in fig. 1 is $\Delta T = 1.6$ K, $\Delta x_c = 0.0125$.) Therefore, for construction of the fitting equation, all 88 points were used. The equation is:

$$x_1 = x_{c1} \pm B_1 \theta^{\beta} \pm B_2 \theta^{\beta+w} + A_1 \theta \pm B_3 \theta^{\beta+2w} + A_2 \theta^{1-\alpha+w}$$

where $\theta = |1 - T/T_c|$, + and - refer to the branches below and above the critical composition, and the constants have their theoretical values $\beta = 0.329$, $\alpha = 0.11$, w = 0.5. The constants (with standard deviations in parentheses) are:

$x_{c1} = 0.5903 \ (0.0062)$	$T_{\rm c}/{\rm K} = 324.01 \ {\rm K} \ (0.02 \ {\rm K})$	
$B_1 = 0.7508 \ (0.058)$	$B_2 = 0.7327 \ (0.40)$	$B_3 = -1.5583 \ (0.68)$
$A_1 = -1.3605 (0.34)$	$A_2 = 1.6335 \ (0.65)$	s = 0.029

s is the total standard error of estimate in composition. This equation has been used to calculate the *recommended* values in Table 2 below, whose acuracy is estimated to be \pm 0.001 in mole fraction.

The only measurements at high pressure are those of Ott et al., ref 8, up to 151 MPa.

CRITICAL EVALUATION: (continued)

Consequently, these data (which can be found on the compilation sheets) are considered as *tentative*. These workers extrapolated their data measured at high pressures to 0.1 MPa, and gave the results in terms of the equation

$$T/K = T_c/K + k |x_1 - x_{cl}|^{V}$$

with

$$y = \alpha x_1 / [1 + x_1(\alpha + 1)]$$

$$y_c = \alpha x_{c1} / [1 + x_{c1}(\alpha - 1)]$$

The equation is valid over the range $0.2 < x_1 < 0.8$ or 270 < T/K < 286.92, where, at 0.1 MPa, v = 3.780 $T_c = 324.5$ K k = -1755 $\alpha = 0.500$ $x_{c1} = 0.588$ See the compilation sheets for the data of Ott et al. at higher pressures, where the methods of fitting and extrapolation are described.

Pressure Coefficient of Critical Solution Temperature

This quantity can be calculated from the fitting equations of Ott et al.:

$$(\partial T_c / \partial p)_x = T_o / ac = 3.65 \times 10^{-7} \text{ K Pa}^{-1}$$

where T^{o} , a, c are constants given on the compilation sheet.

Fig. 1. Solubilities in the system methanol (1) - heptane (2). Line: fitting equation (see text).
Points and reference: Points and reference: ●, 6; , 7; ■, 8; ◆, 10; , 11; O, 13; △, 14; □, 15; ◊, 16; v, 18; +, 19. The plot gives an overall impression of the data.

(continued)
CRITICAL EVALUATION: (continued)

Table 2.	Recommended v	values o	f solub	oility in	the system
	methanol ((1) - hej	ptane ((2)	

<i>T/</i> K	<i>x</i> ₁	<i>x</i> ₁	
	(2)-rich phase	(1)-rich phase	
250.0	0.028	0.950	
260.0	0.039	0.947	
270.0	0.058	0.940	
280.0	0.084	0.930	
285.0	0.102	0.923	
290.0	0.122	0.915	
295.0	0.147	0.905	
300.0	0.175	0.892	
305.0	0.209	0.875	
310.0	0.251	0.853	
315.0	0.305	0.823	
320.0	0.382	0.772	
324.0	0.565	0.616	
324.3	0.599	0.599	UCST

REFERENCES:

- 1. Cornish, R.E.; Archibald, R.C.; Murphy, E.A.; Evans, H.M. Ind. Eng. Chem. <u>1934</u>, 26, 397.
- 2. Francis, A.W. Ind. Eng. Chem. <u>1944</u>, 36, 764.
- 3. Fischer, R.; Neupauer, E. Mikrochem. Ver. Mikrochim. Acta 1949, 34, 319.
- 4. Sieg, L. Chem.-Ing.-Tech. <u>1951</u>, 23, 112.
- 5. Francis, A.W. J. Am. Chem. Soc. 1954, 76, 393-5.
- Kogan, V.B.; Deizenrot, I.V.; Kul'byaeva, T.A.; Fridman, V.M. Zh. Prikl. Khim. <u>1956</u>, 29, 1387.
- 7. Tagliavini, G.; Arich, G. Ric. Sci. 1958, 28, 1902-10.
- 8. Kiser, R.W.; Johnson, G.D.; Shetlar, M.D. J. Chem. Eng. Data 1961,6, 338.
- 9. Chernova, N.I. Zh. Fiz. Khim. 1965, 39, 2388.
- 10. Savini, L.G.; Winterhalter, D.R.; Van Ness, H.C. J. Chem. Eng. Data 1965, 10, 171.
- 11. Sergeeva, V.F.; Ustanova, I.Z. Zh. Obshch. Khim. 1973, 43, 1878.
- 12. Viswanathan, B.; Govidarajan, K.; Gopal, E.S.R. Indian J. Pure Appl. Phys. <u>1973</u>, 11, 157.
- Budantseva, L.S.; Lesteva, T.M.; Nemstov, M.S. Zh. Fiz. Khim. <u>1976</u>, 50, 1344; Deposited Doc. VINITI <u>1976</u>, 437.
- 14. Hradetzky, G.; Bittrich, H.-J. Int. Data Ser., Sel. Data Mixtures, Ser. A 1986, 217.
- 15. Letcher, T.M.; Wootton, S.; Shuttleworth, B.; Heyward, C. J. Chem. Thermodyn. <u>1986</u>, 18, 1037.
- 16. Ott, J.B.; Hoelscher, I.F.; Schneider, G.M. J. Chem. Thermodyn. 1986, 18, 815.
- 17. Ranjan, M.; Jayalaxmi, V.; Vani, V.; Gopal, E.S.R. Indian J. Phys. 1986, 60A, 98-109.
- Higashiuchi, H.; Sukuragi, Y.; Iwai, Y.; Arai, Y.; Nagatani, M. Fluid Phase Equilib. <u>1987</u>, 36, 35.
- 19. Nagata, I. Thermochim. Acta 1987, 114, 227.

COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Heptane; C ₇ H ₁₆ ; [142-82-5]	ORIGINAL MEASUREMENTS: Cornish, R.E.; Archibald, R.C.; Murphy, E.A.; Evans, H.M. Ind. Eng. Chem. <u>1934</u> , 26, 397-406.
VARIABLES:	PREPARED BY:
One temperature: 325 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 51.5°C.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The method was not specified.	SOURCE AND PURITY OF MATERIALS: (1) source not specified; distilled; $\rho(25^{\circ}C)/\rho(4^{\circ}C) = 0.78656,$ (corrected for air buoyancy), anhydrous. (2) source not specified.
	ESTIMATED ERROR: not specified.
	REFERENCES:
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol · CH O · $(67-56-1)$	Francis, A.W.

(2) Heptane; C_7H_{16} ; [142-82-5]	Ind. Eng. Chem. <u>1944</u> , 36, 764-71.
VARIABLES: One temperature: 324 K	PREPARED BY: A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 51°C.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The reagents were introduced and stirred with a thermometer in test tubes which were warmed and cooled gradually in a bath. The temperature of disappearance or reappearance of the cloudiness was read two or three times in each direction.	<pre>SOURCE AND PURITY OF MATERIALS: (1) source not specified, "substancially pure"; used as received. (2) obtained from Jeffrey pine, no more information. ESTIMATED ERROR: not specified. REFERENCES:</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Francis, A.W.
(2) Heptane; C ₇ H ₁₆ ; [142-82-5]	J. Am. Chem. Soc. <u>1954</u> , 75, 393-5.
VARIABLES:	PREPARED BY:
One temperature: 324 K	A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 51°C.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. Observations were amde in narrow graduated glass-stoppered tubes immersed in a water bath in a large silvered Dewar. Compositions were made up by volume from graduated pipets until cloudiness just	<pre>SOURCE AND PURITY OF MATERIALS: (1) J.T. Baker, anhydrous, CP grade; used as received. (2) source not specified. ESTIMATED ERROR:</pre>
bath temp. was afjusted by adding small amounts of cooler or warmer water and stirring several minutes.	REFERENCES:
	Lanan
Components :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Sieg, L.
(2) Heptane; C ₇ H ₁₆ ; [142-82-5]	ChemIngTech. <u>1951</u> , 23, 112-3.
VARIABLES:	PREPARED BY:
One temperature: 324 K	A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 51.0°C. Mutual solubility was presented on a	graph only.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. A mixture of known composition was sealed in an ampoule and the temp. of appearance or disappearance of turbidity was observed. The ampoules and pipets were filled in moisture- free atmosphere over P_2O_5 .	 SOURCE AND PURITY OF MATERIALS: (1) source not specified; boiled with Mg, fractionated; physical properties were in agreement with literature values. (2) source not specified, pure grade; fractionated; physical properties were in agreement with literature values.
	ESTIMATED ERROR:
	not specified.

REFERENCES:

.....

160						
COMPONE	NTS:			ORIGIN	AL MEASUREMENTS:	
(1) Methanol; CH ₄ O; [67-56-1]			Kogan, V.B.; Deizenrot, I.V.;			
(2) H	eptane;	C-H.; [142-82.	-51	Ku	l'byaeva, T.A	A.; Fridman, V.M.
	•	-/-16/ (Zh. Prikl. Khim. <u>1956</u> , 29, 1387-92.		
VARIABL	.ES:			PREPARED BY:		
Tempe	rature:	275 - 313 K		A. 5	krzecz	
EXPERIM	IENTAL VA	LUES:				
1	utual	solubility of m	methanol and	i hept	ane	
	/°C	100 w ₁			x_1 (cor	npiler)
	(2)-rich phase	(1)-rich p	hase	(2)-rich pha	ase (1)-rich phase
	2	3.36	81.90		0.0981	0.9340
1 1	.0	3.75	78.91		0.1086	0.9213
1	0 a)	3.8	79.0		0.110	0.922
2	0	6.6	77.6		0.181	0.916
2	0 a)	6.6	77.7		0.181	0.916
4	0	9.19	67.4		0.2404	0.866
			AUXILIARY	INFORMA	TION	
METHOD/	APPARATU	S/PROCEDURE:		SOURCE	AND PURITY OF	MATERIALS:
The a two-p shake with The p after deter with	nalytic hase mi n in a water j hases w separa mined i phthali	al method was xture was peri thermostatted acket for seve ere removed fo tion. Methano n duplicate by c anhydride.	used. The odically buret ral hours. r analysis l was reaction	(1)	source not s grade; disti water; n_0 (20° source not s received; b. n_0 (20°C) = 1.	<pre>pecified, pure lled; < 0.01% of C) = 1.3391. pecified; used as p. 98.4°C, 3877.</pre>
				ESTIMA	TED ERROR:	
				soly temp	7. < ±1% (rel; metham 5. ±0.05 K.	ative error of nol concentration);
				REFERE	NCES:	
1						

				161	
COMPONENTS	:		ORIGINAL MEASUREM	ENTS:	
(1) Methanol; CH40; [67-56-1]			Tagliavini, G.; J	Arich, G.	
(2) Hepta	ne; C ₇ H ₁₆ ; [142 [.]	-82-5]	Ric. Sci. <u>1958</u> ,	28, 1902-10.	
VARIABLES:			PREPARED BY:		
Temperatu	re: 291 - 323	K	A. Skrzecz		
EXPERIMENT	AL VALUES:				
]	Mutual solubil	ity of methanol	and heptane		
t/°c	:	κ.	100 w. (comp	iler)	
-, -	(2)-rich phase	(1)-rich phase	e (2)-rich phase	(1)-rich phase	
	., -				
18.	0.1045	0.9110	3.60	76.60	
30.	0.1681	0.8835	6.07	70.80	
40.	0.2536	0.8486	9.80	64.19	
50.	0.4326	0.7563	19.60	49.81	
AUXILIARY INFORMATION					
METHOD/APP	ARATUS / PROCEDU	RE:	SOURCE AND PURTTY	OF MATERIALS:	
			(1) Merck, purifie	ed by ref 2.	
The analy	tical method w	as used. The	distilled over Na	$p(15^{\circ}C) =$	
procedure	and apparatus	were	$0.79360, n.(20^{\circ}C)$	= 1.32860.	
described	in ref 1. Co	mposition was	(2) Philips; analy	vzed acc. to ref	
determine	d from refract	ive index	3. purity 99.95%;	$n_{\rm c}(20^{\circ}{\rm C}) =$	
calibrati	on curves for	homogeneous	1.38767.	1.38767.	
mixtures.	Data were re	ported			
together	with ternary s	vstem heptane			
- methano	1 - morpholine	·			
	• • • • • • • • • • • • • • • • • • • •		FORTHAMED EDDOD.		
			ESTIMATED ERROR:		
			soly. ±0.0002	mole fraction.	
			REFERENCES:		
			1. Tagliavini. G	.: Arich. G.:	
			Biancani. M.	Ann. Chim. 1955.	
			45, 292.	<u></u> /	
			2. Gillo, L. An	n. Chim. 1939.	
			12, 281.	<u> </u>	
			3. Anderson. J.A	.; Zerwekh, C.F.	
			Anal. Chem.	1949, 21, 911.	
1					

162 ORIGINAL MEASUREMENTS: COMPONENTS: (1) Methanol; CH₂O; [67-56-1] Kiser, R.W.; Johnson, G.D.; Shetlar, M.D. (2) Heptane; C₇H₁₆; [142-82-5] J. Chem. Eng. Data 1961, 6, 338-41. PREPARED BY: VARIABLES: Temperature: 278 - 324 K A. Skrzecz EXPERIMENTAL VALUES: Solubility of heptane in methanol t/°C g(2)/100 ml(1) 100 w, (compiler) x, (compiler) 5 18.1 18.3 0.0670 20.0 20.0 0.0740 10 22.5 22.0 0.0829 15 25.4 24.3 0.0931 20 26.7 28.7 0.1045 25 32.7 29.5 0.1180 30 . 35 , 37.8 32.7 0.1346 45.0 36.8 0.1567 40 UCST 51.2 Concentrations were recalculated using the density equation for methanol by ref 1 : $\rho/\rho(4^{\circ}C) = 0.80999 - 9.253 10^{-4} (t/^{\circ}C) - 4.1 10^{-7} (t/^{\circ}C)^{2}$ AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: (1) E.I. du Pont de Nemours and Co.; The isoplethal or cloud point method distilled; $n_0(20^{\circ}C) = 1.3293$, b.p. 64.6[°]C (corrected), f.p. -99[°]C. was used. Samples of known composition were heated and/or cooled and the temperature of phase transition was noted. In general, the phase transition most reproducible (2) Eastman Organic Chemicals; used as received; 0.8 mole % of and easily observed, and therefore chosen, was the unmixing temperature (cloud point) obtained when a impurity, probably unsaturated by u.v. analysis; $n_0(20^{\circ}C) =$ miscible solution was cooled until 1.3879. the finely dispersed solute was just no longer completely miscible. ESTIMATED ERROR: soly. ±2% (relative error); temp. ±0.2 K. **REFERENCES:** 1. International Critical Tables vol. 3, New York, 1933.

COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) Methanol; CH ₄ O; [67-56-1]	Savini, L.G.; Winterhalter, D.R.;		
(2) Heptane; C ₇ H ₁₆ ; [142-82-5]	Van Ness, H.C.		
	J. Chem. Eng. Data <u>1965</u> , 10, 171-2.		
VARIABLES:	PREPARED BY:		
Temperature: 303 and 318 K	A. Skrzecz		
	l		
EXPERIMENTAL VALUES: Mutual solubility of methano	l and heptane		
$t/^{\circ}C$ x ,	100 w, (compiler)		
(2)-rich phase (1)-rich pha	se (2)-rich phase (1)-rich phase		
30 0.210 0.879	7.83 69.91		
45 0.317 0.822	12.92 59.62		
AUXILIARY			
METHOD/APPARATUS/PROCEDURE: The isothermal dilution calorimeter	(SOURCE AND FURITY OF MATERIALS: (1) Fisher Scientific Co., certified		
for heat of mixing determination was	reagent; purity > 99.9%;		
reported.	used as received.		
	(2) Philips Petroleum Co., pure		
a a	of impurities by glc; used as		
	received.		
	Accuracy of results to well		
	REFERENCES:		
	I		
COMPONENTS	ORTGINAL MEASUREMENTS .		
(1) Methanol; CH,O; [67-56-1]	Chernova, N.I.		
(2) Heptane; $C_{7}H_{44}$; [142-82-5]	Zh. Fiz. Khim. <u>1965</u> , 39, 2388-93;		
	Russ. J. Phys. Chem. (Engl.		
	Transl.) 1965, 39, 1275-8.		
VARIABLES:	PREPARED BY:		
One temperature: 325 K	A. Skrzecz		
EXPERIMENTAL VALUES:	• · · · · · · · · · · · · · · · · · · ·		
The UCST was reported to be 51.9°C a	$t w_1 = 35.05 \text{ or } x_1 = 0.6921 \text{ (compiler).}$		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
mixtures of known composition were	pure grade; used as received.		
prepared in ampoules which after	(2) gourge not gradified chemical		
sealed. The moment of appearance of	pure grade; used as received.		
The second phase as drops was reported. Temperature was measured	ESTIMATED ERROR:		
with a Beckmann thermometer. The	soly. $W_1 = \pm 0.05$.		
measured UCST using three methanol samples of different purity was	temp. ±0.1 K.		
reported to be 55, 52.5, 50.4°C.	REFERENCES:		
The calculated UCST with "pure" methanol obtained after data analysis	s		
is reported above. The solubility			
Luata were reported in a plot.	<u> </u>		

 COMPONENTS:
 ORIGINAL MEASUREMENTS:

 (1) Methanol; CH₄O; [67-56-1]
 Sergeeva, V.F.; Ustanova, I.Z.

 (2) Heptane; C₇H₁₆; [142-82-5]
 Zh. Obshch. Khim. <u>1973</u>, 43, 1878-81; J. Gen. Chem. USSR (Engl. Transl.) <u>1973</u>, 43, 1866 -8.

 VARIABLES:
 PREPARED BY:

 One temperature: 298 K
 A. Skrzecz

EXPERIMENTAL VALUES:

Solubilities at 25°C:

methanol in heptane: $x_1 = 0.130$, or 100 $w_1 = 4.56$ (compiler). heptane in methanol: $x_2 = 0.100$, or 100 $w_2 = 25.8$ (compiler).

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The method was not specified.	(1), (2) source not specified; purified, dried; physical properties agreed with data in literature.
	ESTIMATED ERROR:
	not specified.
	REFERENCES:

Components:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Viswanathan, B.; Govidarajan, K.; Gopal, E.S.R.
(2) Heptane; C ₇ H ₁₆ ; [142-82-5]	
	Indian J. Pure Appl. Phys. <u>1973</u> ,
	11, 157-62.
VARIABLES:	PREPARED BY:
One temperature: 325 K	A. Skrzecz

EXPERIMENTAL VALUES:

UCST = 51.87°C at $x_1 = 0.6135$ or 100 $w_1 = 33.67$ (compiler).

Solubility data in the range $50.6 - 51.87^{\circ}C$ were presented in a graph only.

AUXILIARY	INFORMATION
-----------	-------------

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The cloud point method was used. A mixture of known composition was sealed in a small glass bulb of size 8-10 mL. Phase transition was observed during slow cooling in a thermostat (ref 1-3). Critical temp. and composition were found from a cube-root fit to the data.	 (1), (2) source not specified; analytical reagent grade. ESTIMATED ERROR: soly. ±0.0015 mole fraction (UCST); temp. ±0.002°C (stability of thermostating), ±0.05°C (UCST). REFERENCES: 1. Gambhir, R.D.; Viswanathan, B.; Gopal, E.S.R. Indian J. Appl. Phys. 1971, 9, 787. 2. Gopal, R.; Rice, O.K. J. Chem. Phys. 1955, 23, 2428. 3. Viswanathan, B.; Gambhir, R.D.; Gopal, E.S.R. J. Chem. Phys.
	<u>1970</u> , 53, 4405.
	•

COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Heptane; C ₇ H ₁₆ ; [142-82-5]	ORIGINAL MEASUREMENTS: Budantseva, L.S.; Lesteva, T.M.; Nemtsov, M.S. Zh. Fiz. Khim. <u>1976</u> , 50, 1344; Russ. J. Phys. Chem. (Engl. Transl.) <u>1976</u> , 50, 814; *Dep. Doc. VINITI <u>1976</u> , 437.
VARIABLES:	PREPARED BY:
Temperature: 293 and 313 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Mutual solubility of methanol and hepta	ne
$t/^{\circ}C$ x_{1}	100 w ₁ (compiler)
(2)-rich phase (1)-rich phase	e (2)-rich phase (1)-rich phase
40 0.2950 0.8350	11.80 61.81
AUXILIARY IN	FORMATION
METHOD/APPARATUS/FROCEDURE: The analytical method was used. Hydrocarbon was analysed by glc according to ref 1.	SOURCE AND PURITY OF MATERIALS: (1), (2) source not specified.
	ESTIMATED ERROR: not specified
	<pre>KEFERENCES: 1. Budantseva, L.S.; Lesteva, T.M.; Nemtsov, M.S. Zh. Fiz. Khim. <u>1976</u>, 50, 1343; Dep. Doc VIVIMI 1076 438</pre>
	DOC. VINITI <u>1970</u> , 438.
r	r
COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1]	ORIGINAL MEASUREMENTS: Letcher, T.M.; Wootton, S.; Shuttleworth, B.; Heyward, C.
(2) Heptane; C ₇ H ₁₆ ; [142-82-5]	J. Chem. Thermodyn. <u>1986</u> , 18, 1037-42.
VARIABLES:	PREPARED BY:
One temperature: 298 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Solubility at 298.2 K: methanol in heptane: $x_1 = 0.176$, or	r w ₁ = 6.39 (compiler).
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The cloud point method adopted from ref. 1 was used. One of the components was added to a weighed mixture in a 100 mL long-necked flask until one drop caused the clear solution to become cloudy. The flask was immersed in a controlled water bath and shaken continuously. Data for the ternary system heptane- methanol-water are also given.	 (1) Carlo Erba, analytical grade, purity 99.5 mole %; purified by passing through columns containing silica gel and basic alumina. (2) Merck, Uvasol grade; dried with Mg-activated with I₂, distilled.
	ESTIMATED ERROR: soly. ±0.005 mole fraction
	REFERENCES: 1. Briggs, S.W.; Comings, E.W. Ind. Eng. Chem. <u>1943</u> , 35, 411.

				167
COMPONENTS:	<u></u>		ORIGINAL MEASUREMENTS:	
(1) Methanol; CH ₂ O; [67-56-1]			Hradetzky, G.; Bitt	rich, HJ.
(2) Heptane: $C_{2}H_{42}$; [142-82-5]		Int. Data Ser., Sel. Data Mixtures,		
	1 10 -	-	Ser. A <u>1986</u> , 217.	
3				
VARIABLES:	<u> </u>		PREPARED BY:	
Temperatur	e: 254 - 324 K		A. Skrzecz	
EXPERIMENTAL	VALUES:			
	Mutual solub	llity of meth	anol and heptane	
T/K	<i>x</i> ₁		100 w_1 (compi	ler)
(2)-rich phase	(1)-rich phas	e (2)-rich phase ((1)-rich phase
253.65	-	0.9540	-	86.90
254.60	-	0.9560	-	87.42
257.25	0.0358	-	1.17	-
258.05	-	0.9509	-	86.10
261.06	0.0436	-	1.44	-
263.05	-	0.9480	-	85.36
263.43	0.0483	-	1.60	-
264.18	-	0.9449	-	84.58
267.70	-	0.9440	-	84.35
268.91	0.0588	-	1.96	-
270.05	-	0.9380	-	82.87
273.60	-	0.9343	-	81.97
274.21	0.0690		2.32	-
277.10	0.0755	-	2.54	-
278.01	-	0.9286	-	80.62
279.24	0.0791	-	2.67	-
				(continued)
	·····	ΑΠΥΤΙ ΤΑΡΥ	TNEODMATION	
		AUXILIANI		·····
METHOD/APPAR	ATUS/PROCEDURE:		SOURCE AND PURITY OF MAT	ERIALS:
The cloud-	point method wa	as used.	(1) VEB Leuna Werke	(Leuna, GDR),
capacity f	filled with know	wn masses of	as received; <	50 mg/kg water as
pure compo	onents and seal	ed carefully	determined by Ka	arl Fischer
were immer	sed in a water	thermostat	methou.	
equipped w	vith a Hg-in-gla	ass ified by the	(2) ALFA (Ventron D:	iv. Danvers, USA),
Bureau of	Standards, GDR). Phase	molecular sieve	type 3A;
changes we	ere observed vis	sually as	purity 99.86 mole % by capillary	
Weighings accurate to 0.0001 g.		gic.		
Readings a	accurate to with	hin 0.01 K.	ESTIMATED ERROR:	
0.03 K. C	Critical solution	on temp.	soly. ±0.0002 mole	fraction,
and compos	sition determin	ed	±0.006 mole :	fraction for UCST;
rule. Mor	notectic temp.	c-matnias and	temp. 10.03 K	
compositio	ons determined	graphically.		
1				
			REFERENCES :	
1			1	

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Methanol; CH₂O; [67-56-1] Hradetsky, G.; Bittrich, H.-J. Int. Data ser., Sel. Data Mixtures, (2) Heptane; C₇H₁₆; [110-82-7] Ser. A. 1986, 217. EXPERIMENTAL VALUES: (continued) Mutual solubility of methanol and heptane T/K **X**1 g(1)/100g sln (compiler) (2)-rich phase (1)-rich phase (2)-rich phase (1)-rich phase 280.50 0.9270 _ 80.24 280.86 0.0830 _ 2.81 ----281.30 0.9241 -79.56 _ 281.39 0.0850 -2.88 ----284.55 0.0960 3.28 -285.55 0.1000 -3.43 -286.50 -0.9200 -78.62 286.83 -0.9155 -77.60 0.1282 4.49 290.95 --292.31 0.1346 -4.74 _ 292.55 -0.9051 -75.31 4.81 293.16 0.1364 -----299.33 -0.8899 -72.10 0.1762 300.80 -6.40 -305.05 0.8737 _ 68.87 -307.21 0.2113 ----7.89 -308.65 0.2208 8.31 --309.20 0.2272 8.59 ----309.71 -0.8565 65.62 311.75 0.2573 -9.97 -312.31 0.2636 10.27 --314.15 ---0.8340 -61.64 315.39 0.3004 ----12.07 -0.8019 318.59 --56.42 319.03 0.3573 15.09 -------321.20 _ 0.4116 18.28 -323.09 ----0.7174 -44.80 323.35 0.5015 24.34 --323.52 -0.6899 -41.57 323.80 0.5544 28.46 --323.92 0.5712 ----29.87 ----323.94 -0.6256 -34.82 324.04 0.6023 -32.63 -324.04 -0.6069 33.05 ••• 324.06 0.6147 ---33.78

0.610

33.3

33.3

168

324.06 UCST 0.610

				100
COMPONENTS :				ORIGINAL MEASUREMENTS:
(1) Methanol; CH40; [67-56-1]			Ott, J.B.; Hoelscher, I.F.; Schneider G.M.	
(2) Heptane; (C ₇ H ₁₆ ; [142-	82-5]		
			J. Chem. Thermodynamics <u>1986</u> , 18, 815-26.	
VARIABLES:				PREPARED BY:
Temperature: 3 Pressure: 0.1	317 - 357 K - 151 MPa	ζ.		A. Skrzecz
EXPERIMENTAL VALU	ES:			
Solubi	lity of met	hanol and h	iepta	ane
T/K	p/MPa	x, 1	00 w	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
320.3	0.1	0.7871	COM	17
321.3	0.1	0.3913	17	.05
324.4	0.1	0.6493	37	. 19
319.5	10.1	0.296	11.	.9
322.1	20.0	0.296	11	.9
324.6	30.0	0.296	11.	.9
326.7	40.0	0.296	11	.9
328.8	50.0	0.296	11.	.9
331.1	60.1	0.296	11	.9
334.4	80.0	0.296	11	.9
227 4	100 2	0.000		0
33/.4	100.3	0.296	11	.9
342 2	140.3	0.290	11	• •
343.2	150.4	0.296	11	9
320.8	1.0	0.362	15	4
	210	01002	10	(continued)
				(,
		AUXILIAR	<u>Y 1NI</u>	ORMATION
METHOD/APPARATUS/ A high-pressu with sapphire seals Al-to-Au stirring was u measured by He calibrated aga gauge, tempera alumel thermoc certified plat Equilibrium te visual observa as the sample composition wa volumes added precautions we moisture from 0.1 MPa were e	PROCEDURE: re optical windows wit -to-Al and sed. Press ise gauge of inst a dead ture by chr ouple calif inum res. t mps. were f tion of pha was cooled. s determine to the cel re taken to the samples xtrapolated	cell (ref) ch sandwich magnetic sure was calibrated d-weight comel-to- brated again chermometer. found from ase separation The ed from the cl. Special b exclude s. Data for l.	L) ion	SOURCE AND PURITY OF MATERIALS: (1) Fisher, purity 0.999 mole fraction; distilled twice over Na in 2 m column packed with glass helices; purity > 0.9999 mole fraction by glc analysis. (2) Phillips, research grade; purity 0.9989 mole fraction by glc analysis; used as received.
				ESTIMATED ERROR:
				temp. ± 0.2 K, ± 0.1 K at $p = 0.1$
				MFA. pressure ±0.2 MPa. composition ±0.005 mole fraction, ±0.0005 mole fraction at 0.1 MPa.
			REFERENCES: 1. Liphard, K.G.; Schneider,	
				G.M. J. Chem. Thermodyn. <u>1975</u> , 7, 805.

I.

COMPONENTS :			ORIGINAL MEASUREMENTS:
<pre>(1) Methanol; (2) Heptane;</pre>	CH ₄ O; [67- C ₇ H ₁₆ ; [142-	56-1] 82-5]	Ott, J.B.; Hoelscher, I.F.; Schneider, G.M. J. Chem. Thermodynamics <u>1986</u> , 18, 815-26.
EXPERIMENTAL VALU	JES: (Contin	ued)	entane
	n/MPa	Y.	eptane
-/	<i>P</i> / 111 G		compiler)
323.7	10.0	0.362 `	15.4
326.7	20.0	0.362	15.4

323.7	10.0	0.362	15.4
326.7	20.0	0.362	15.4
329.3	30.0	0.362	15.4
331.8	40.0	0.362	15.4
224 1	50 0	0 362	16 /
334.1	50.0	0.302	15.4
336.3	60.0	0.362	15.4
340.0	80.0	0.362	15.4
343.6	100.7	0.362	15.4
346.6	120.2	0.362	15.4
349.8	140.8	0.362	15.4
0.000	2.000	01002	2011
251 2	150 4	0 262	16 4
351.2	100.4	0.302	15.4
323.5	1.0	0.421	18.9
326.4	10.0	0.421	18.9
329.5	20.1	0.421	18.9
332.1	30.1	0.421	18.9
334.6	40.1	0.421	18.9
337.0	50.0	0.421	18.9
220 2	60.0	0 421	19 0
333.2	70.0	0.421	10.9
343.0	/9.8	0.421	18.9
347.1	100.0	0.421	18.9
350.6	120.5	0.421	18.9
353.6	139.7	0.421	18.9
355.3	150.6	0.421	18.9
324 7	1 0	0 493	22 0
324.7	10.1	0.403	23.0
328.0	10.1	0.483	23.0
330.8	20.0	0.483	23.0
333.7	30.0	0.483	23.0
336.4	40.2	0.483	23.0
338.7	50.0	0.483	23.0
341.0	60.1	0.483	23.0
0.2.0		01405	2310
345 3	80.4	0 402	22.0
240 0	100.3	0.403	23.0
349.0	100.3	0.403	23.0
352.3	120.3	0.483	23.0
355.6	140.4	0.483	23.0
357.0	150.4	0.483	23.0
324.8	1.0	0.487	23.3
327.7	10.1	0.487	23.3
330.7	20.0	0.487	23.3
222 0	2010	0 407	22.2
222.0	30.1	0.407	23.3
330.4	40.1	0.48/	23.3
338.7	50.1	0.487	23.3
340.9	60.0	0.487	23.3
345.1	80.1	0.487	23.3
349.0	100.8	0.487	23.3
352.4	120.6	0.487	23.3
355 6	140 2	0 /07	23.3
257.0	140.2	0.407	23.3
35/.0	T20.2	0.487	23.3
324.7	1.0	0.541	27.4
327.9	10.0	0.541	27.4
330.9	20.0	0.541	27.4

(continued)

COMPONENTS:

- (1) Methanol; CH₄O; [67-56-1]
- (2) Heptane; C₇H₁₆; [142-82-5]

ORIGINAL MEASUREMENTS:

Ott, J.B.; Hoelscher, I.F.; Schneider, G.M.

(continued)

J. Chem. Thermodynamics <u>1986</u>, 18, 815-26.

EXPERIMENTAL VALUES: (Continued)

Solub	ility of met	hanol and	heptane
T/K	p/MPa	X 1	100 W ₁
		•	(compiler)
333.8	30.0	0.541	27.4
336.4	40.0	0.541	27.4
338.9	50.0	0.541	27.4
341.1	60.0	0.541	27.4
345.4	79.9	0.541	27.4
349.1	100.1	0.541	27.4
352.7	120.3	0.541	27.4
355.7	140.5	0.541	27.4
357.3	150.4	0.541	27.4
324.7	1.0	0.579	30.5
227 0	10.2	0 570	20 F
331 0	20.2	0.579	30.5
333 0	30 0	0.575	30.5
336.5	40.1	0.579	30.5
338.9	50.1	0.579	30.5
341.2	60.1	0.579	30.5
345.4	80.1	0.579	30.5
349.2	100.6	0.579	30.5
352.6	120.6	0.579	30.5
355.6	140.8	0.579	30.5
357.2	150.6	0.579	30.5
324.8	1.0	0.611	33.4
327.9	10.0	0.611	33.4
331.1	20.1	0.611	33.4
334.0	30.0	0.611	33.4
336.7	40.1	0.611	33.4
339.1	50.1	0.611	33.4
341.3	60.2	0.611	33.4
345.4	80.0	0.611	33.4
349.2	100.3	0.611	33.4
252 6	110 0		•• •
352.0	119.8	0.611	33.4
353.8	140.7	0.611	33.4
324 5	10.9	0.011	33.4
324.5	10 1	0.000	38.3
330 7	20.0	0.000	30.3
333 6	30 1	0.660	20.2
336.2	40.0	0.660	30.3
338.6	50.0	0.660	30.3
340.8	60.0	0.660	38.3
		0.000	5015
345.0	79.9	0,660	38.3
348.7	100.3	0.660	38.3
352.1	120.3	0.660	38.3
355.1	140.5	0.660	38.3
356.6	150.6	0.660	38.3
322.3	1.0	0.748	48.7
325.0	10.0	0.748	48.7
327.9	20.1	0.748	48.7
330.6	30.0	0.748	48.7
332.8	40.0	0.748	48.7
F			
335.2	50.0	0.748	48.7
337.2	60.0	0.748	48.7
340.6	80.0	0.748	48.7
343.9	100.8	0.748	48.7
346.7	120.5	0.748	48.7

172 COMPONENTS: ORIGINAL MEASUREMENTS: Ott, J.B.; Hoelscher, I.F.; (1) Methanol; CH₄O; [67-56-1] Schneider, G.M. (2) Heptane; C₇H₁₆; [142-82-5] J. Chem. Thermodynamics 1986, 18, 815-26. EXPERIMENTAL VALUES: (Continued) Solubility of methanol and heptane 100 W1 T/K p/MPa \boldsymbol{x}_1 (compiler) 48.7 0.748 349.1 140.1 48.7 149.8 0.748 350.1 0.777 52.7 319.5 1.0 322.5 10.1 0.777 52.7 20.0 0.777 52.7 325.1 52.7 327.9 30.1 0.777 330.1 40.1 0.777 52.7 332.0 50.0 0.777 52.7 60.0 0.777 52.7 334.0 52.7 0.777 337.2 80.0 52.7 339.9 100.6 0.777 0.777 52.7 341.9 120.5 0.777 140.5 52.7 343.0 150.7 0.777 52.7 343.7 COMMENTS AND ADDITIONAL DATA: Data for isopleths at high pressures were fitted to the Simon equation $p(x,T)/MPa = a[(T/T_{o})^{c}-1]$ From these equations, the corresponding (T, x) isobars were calculated and were fitted to the equation $T/K = T_{a}/K + k |y-y_{a}|^{\nu}$ where $y = \alpha x_1 / [1 + x_1 (\alpha - 1)]$ $y_{c} = \alpha x_{c1} / [1 + x_{c1} (\alpha - 1)]$ The coefficients found are (s = std. error of estimate): T/K s/K \boldsymbol{x}_1 а C 0.296 316.3 63.38 14.81 0.41 0.362 84.36 0.09 320.5 11.27 100.37 9.72 0.07 0.421 323.2 324.4 0.483 10.42 0.06 88.03 0.487 324.4 90.13 10.25 0.08 0.541 10.49 0.05 324.4 86.03 0.579 324.3 81.38 10.88 0.05 324.5 82.78 10.78 0.06 0.611 0.660 324.1 80.09 11.09 0.03 0.748 321.8 65.16 14.12 0.10 0.777 318.8 33.91 22.02 0.36 (continued)

COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) Heptane; C ₇ H ₁₆ ; [142-82-5]			OR: O	IGINAL MEASUR tt, J.B.; Schneider . Chem. Th 18, 815-2	REMENTS: Hoelscher, , G.M. ermodynami 6.	I.F.; cs <u>1986</u> ,
EXPERIMENTAL VA	LUES: (Cont	inued)				
p/MPa	T _c /K	k	α	<i>x</i> _{c1}	ν	S
0.1 25 50 75 100 125 150	324.5 332.5 339.0 344.5 349.2 353.4 357.1	-1755 -568 -700 -926 -1294 -1823 -2218	0.500 0.650 0.617 0.584 0.566 0.547 0.551	0.588 0.580 0.579 0.578 0.576 0.575 0.573	3.780 3.059 3.086 3.167 3.303 3.451 3.526	0.16 0.11 0.07 0.05 0.07 0.08 0.10

Equations are also given for (p, x) pairs, which are of the same form as those for the (T, x) pairs.

r.

.

174	
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Ranjan, M.; Jayalaxmi, V.; Vani, V,; Guha, S,; Gopal, E.S.R.
(2) Heptane; C ₇ H ₁₆ ; [142-82-5]	Indian J. Phys. <u>1986</u> , 60A, 98-109.
VARIABLES:	PREPARED BY:
One temperature: 325 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 325.60 K	and 325.68 K a).
a) data for a stirred sample; see "M	ETHOD/APPARATUS/PROCEDURE" below.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
binary liquid mixture at its critical composition as a function oftemp. at kHz frequency was studied. The	(1) source not specified.
resistance was measured in the one- and two-phase regions. The experiments were done over a range	
3 K above and 2 K below T. Two pair of stainless steel electrodes coated with Pt black were fixed on	
either side of the center of a Pyrex glass cell 3.5 cm high. Electrodes had diameter 2.5 cm, separation 1	
mm. The resistance value from one pair of electrodes was normalized relative to the other pair. The	ESTIMATED ERROR:
observed anomaly in resistance, in the range 15 to -15 mK around T_c , was attributed to the gravity	DEEEDENCES
effect. Similar experiments were done with samples (a) stirred at about 1 rev/min.	

					175
COMPONENTS:			ORIGINAL MEASUREME	INTS:	
(1) Methan	ol; CH40; [67-56	5-1]	Higashiuchi,	H.; Sukuragi,	Y.;
(2) Heptan	ne; C ₇ H ₁₆ ; [142-82	2-5]	Iwai, Y.; An Fluid Phase Eq 35-47.	cai, Y.; Naga quilib. <u>1987</u>	tani, M. , 36,
VARIABLES:			PREPARED BY:		
Temperatur	:e: 298 - 323 K		A. Skrzecz		
EXPERIMENTAL	VALUES:				
M	Mutual solubilit	y of methano	l and heptane		
t∕°c	<i>x</i> ₁		100 W ₁	(compiler)	
((2)-rich phase	(1)-rich pha	se (2)-rich pl	hase (1)-ric	h phase
25.00	0.1530	0.8995	5.46	74.11	
30.00	0.2004	0.8871	7.42	71.53	
35.00	0.2412	0.8764	9.23	69.39	
40.00	0.2925	0.8491	11.68	64.28	
45.00	0.3515	0.8264	14.77	60.35	
50.00	0.4527	0.7897	20.92	54.56	
		AUXILIARY	INFORMATION		
METHOD/APPAR	ATUS/PROCEDURE:		SOURCE AND PURITY	OF MATERIALS:	
The analy Thermostat Walled of Similar t Samples of Were care	ytical method tically controll glass cells to that of ref 1 f both phases in afully withdra	was used. ed double- which were were used. equilibrium wn with a	 (1) source no reagent g used as r (2) source no reagent g 	t specified, rade, purity eceived. t specified, rade, purity	<pre>guaranteed > 99%; guaranteed > 99%;</pre>
precision compositio chromatogn details we	syringe ons were determ rphy with FID. ere reported.	and the nined by gas No further	used as r	eceived.	
			ESTIMATED ERROR:		
			soly. ±1% (ac temp. ±0.05 K	curancy); (thermostati	ing).
			REFERENCES: 1. Fabries, J Renon, H J. Chem. E	F.; Gustin,	, JL.; <u>77</u> , 22, 303
1			1		

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Nagata, I.
(2) Heptane; C ₇ H ₁₆ ; [142-82-5]	Thermochim. Acta <u>1987</u> , 114, 227~38.
	DDEDADED BV.
VARIABLES:	FREFARED DI.
One temperature: 298 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Solubilities 25°C	
methanol in heptane: $x_1 = 0$.1582, $w_1 = 5.67$ (compiler).
heptane in methanol: $x_2 = 0$.1074. w ₂ = 27.34 (compiler).
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: The analytical method was used. A two-phase mixture in an equilibrium cell of volume 70 mL was stirred intensely for 2 h and then was allowed to settle for 2 h within a thermostatted water bath. Both phases were withdrawn with Hamilton syringes and analyzed by glc (Shimadzu GC-8C and integrator Shimadzu C-E1B). Four analyses were made for each phase.	(1) source not specified, C.P.grade; dried over CaO, distilled; no impurities by glc; density at 25°C was in agreement with literature value.
	(2) source not specified; no impuri- ties by glc; density at 25°C was in agreement with literature values; used as received.
	ESTIMATED ERROR:
	solv. ±0.002 mole fraction
	(reproducibility); temp. ±0.01 K.
	REFERENCES:
	1

Components:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Sieg, L.
(2) 2,2,3-Trimethylbutane; C ₇ H ₁₆ ; [464-06-2]	ChemIngTech. <u>1951</u> , 23, 112-3.
VARIABLES:	PREPARED BY:
One temperature: 301 K	A. Skrzecz
EXPERIMENTAL VALUES:	

The UCST was reported to be 28.2°C.

Mutual solubility was presented on a graph only.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The cloud point method was used. A mixture of known composition was sealed in an ampoule and the temp. of appearance or disappearance of turbidity was observed. The	(1) source not specified; boiled with Mg, fractionated; physical properties agreed with values in literature.
ampoules and pipets were filled in a moisture-free atmosphere over P ₂ O ₅ .	(2) source not specified, pure grade; fractionated; physical properties agreed with values in literature.
	ESTIMATED ERROR: not specified.
	REFERENCES:

ORIGINAL MEASUREMENTS: COMPONENTS: Francis, A.W. (1) Methanol; CH₄O; [67-56-1] (2) 2,5-Dimethyl-1,5-hexadiene Ind. Eng. Chem. 1944, 36, 764-71. (diisobutene); C₈H₁₄; [627-58-7] PREPARED BY: VARIABLES: A. Skrzecz One temperature: 273 K EXPERIMENTAL VALUES: The UCST was reported to be 0°C. AUXILIARY INFORMATION SOURCE AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The (1), (2) source not specified. reagents were introduced and stirred with a thermometer in test tubes which were warmed and cooled gradually in a bath. The temperature of disappearance or reappearance of the cloudiness was read two or three times in each direction. ESTIMATED ERROR: not specified. **REFERENCES:**

			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
COMPONENTS :			ORIGINAL MEASUREMENTS:	
(1) Methanol; CH40; [67-56-1]			Kiser, R.W.; Johnson, G.D.;	
			Shetlar, M.D.	
(2) 3-Meth	ylheptane; C ₈ H ₁₈ ;			
[589-8	1-1]		J. Chem. Eng. Data <u>1961</u> , 6, 338-41.	
VARIABLES:			PREPARED BY:	
Temperatur	e: 278 - 333 K		A. Skrzecz	
EXPERIMENTAL	VALUES:			
	Solubility	of 3-met	hylheptane in methanol	
t/°c	g(2)/100 ml(1)	100 W ₁ (compiler) x_2 (compiler)	
5	15.4	16.1	0.0509	
10	17.0	17.5	0.0562	
15	19.0	19.3	0.0628	
20	21.2	21.1	0.0699	
25	24.2	23.5	0.0794	
30	27.4	26.0	0.0895	
35	31.4	28.8	0.1018	
40	36.5	32.1	0.1170	
60.2	UCST			
Concentra	tions were recalcul	lated usi	ng the density equation for methanol	
by ref 1	:			
p/p(4 C) = 0.80999 - 9.253	10 (7/	C) = 4.1 10 (t/C)	
			······································	
		AUXILIARY	INFORMATION	
METHOD/APPAR	ATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:	
The isople	thal or cloud point	t method	(1) E.I. du Pont de Nemours and Co.;	
compositio	Samples of known on were heated and/(or cooled	distilled; $n_{0}(20^{\circ}C) = 1.3293$, b.p. 64.6°C (corrected).	
and the te	mperature of phase		f.p99°C.	
phase trar	i was noted. In gene isition most reprodu	eral, the ucible	(2) Matheson, Coleman and Bell;	
and easily	observed, and the	refore	used as received; 0.3 mole % of	
(cloud poi	is the unmixing temp int) obtained when a	perature	unsaturated compounds by u.v. analysis: n_{20} (20°C) = 1.3984.	
miscible	solution was coole	ed until		
no longer	completely miscible	was just e.		
-	• •		ESTIMATED ERROR:	
			soly. ±2% (relative error);	
			temp. ±0.2 K.	
1				
			REFERENCES:	
			vol. 3, New York, <u>1933</u> .	
]				

COMPONENTS:	EVALUATOR:
(1) Methanol; CH ₄ O; [67-56-1]	A. Skrzecz
(2) Octane: C ₀ H ₁₀ : [111-65-9]	Polish Academy of Sciences
	Warsaw, Poland
	J.W. Lorimer
	Department of Chemistry
	The University of Western Ontario
	London, Ont., Canada
	July, 1989

CRITICAL EVALUATION:

A survey of solubilities and upper critical solution temperatures (UCST) and compositions for the system methanol (1) - octane (2) which have been reported in the literature is given in Table 1.

Table 1. Summary of solubility data in the system methanol (1) - octane (2)

Author(s)	Kange		
	<i>T/</i> K	x_1	<i>x</i> ₁
		(2)-rich phase	(1)-rich phase
1. Fischer 1949	355.2 UCST	-	-
2. Sieg 1951	339.9 UCST	-	-
3. Kogan 1956	275-318	0.074-0.215	0.914-0.955
4. Kiser 1961	278-338.9 UC	CST -	0.914-0.959
5. Sergeeva 1973	298	0.100	0.937
6. Budantseva 1976	293	0.155	0.960
7. Iwai 1986	298	0.141	0.940
8. Ott 1986	324-372 ^a	0.304-0.603	0.646-0.825
	339.3 UCST		
9. Higashiuchi 1987	298-333	0.118-0.416	0.837-0.940
10. Nagata 1987	298	0.097	0.937

^a At elevated pressures, p = 0.1-151 MPa; UCST at 0.1 MPa.

Critical Solution Temperature and Composition

Four values have been reported for the UCST. The value of Fischer and Neupauer, ref 1, is rejected. All values of UCST reported in ref. 1 for different alcohol-hydrocarbon systems are higher by about 10-20 K than the recommended or tentative values, which suggests presence of significant amounts of impurities, mainly water. The values of Sieg, ref. 2, Kiser et al., ref. 3, and Ott et al., ref. 8, agree remarkably well; their average (with ± 1 std. dev.) is *recommended*:

 $T_{\rm c} = 339.4 \pm 0.5 \, {\rm K}$

(continued)

CRITICAL EVALUATION: (continued)

The critical solution composition was given by Ott et al., ref. 8, as $x_{c1} = 0.639$ at 0.1 MPa; this value is considered as *tentative* in view of the care taken in its determination.

Mutual Solubility

Sieg, ref. 1, gave mutual solubilities from 293 K to the UCST in graphical form only; these are rejected. The remaining data 58 data which have been reported are plotted in fig. 1, from which it is seen that the data of Kogan et al., ref. 3, at low methanol content, and one value at high methanol content, should be rejected. Similarly, the two values of Kiser et al., ref. 8, the high methanol value of Sergeeva, ref. 5, al data of Bundantseva et al., ref. 6, and the high methanol values of Iwai, ref. 7, and of Nagata, ref. 10, also appear to be aberrant, and are rejected. The remaining 46 values have been fitted to the equation:

$$x_1 = x_{c1} \pm B_1 \theta^{\beta} \pm B_2 \theta^{\beta+w} + A_1 \theta \pm B_3 \theta^{\beta+2w} + A_2 \theta^{1-\alpha+w}$$

where $\theta = |1 - T/T_c|$, + and - refer to the branches below and above the critical composition, and the constants have their theoretical values $\beta = 0.329$, $\alpha = 0.11$, w = 0.5. The constants (with standard deviations in parentheses) are:

$x_{c1} = 0.6285 \ (0.0034)$	$T_{\rm c}/{\rm K} = 339.46 \ {\rm K} \ (0.01)$
$B_1 = 0.7117 \ (0.033)$	$B_2 = 0.6939 (0.25) B_3 = -1.3085 (0.22)$
$A_1 = -1.2182 \ (0.44)$	$A_2 = 1.1928 (0.43)$ $s = 0.011$

s is the total standard error of estimate in composition. This equation is plotted in fig. 1, and is used to calculate the *recommended* values in Table 2. The estimated accuracy of the data in Table 2 is 0.001 in mole fraction.

The only data reported at high pressures are those of Ott et al., ref 8, up to 151 MPa. Consequently, these data (which can be found on the compilation sheets) are considered as *tentative*. Ott, Hoelscher and Schneider, ref. 8, extrapolated their data measured at high pressures to 0.1 MPa, and gave the results in terms of the Simon equation

$$T/K = T_c/K + k |x_1 - x_{cl}|^{\nu}$$

with

$$y = \alpha x_{1} / [1 + x_{1} (\alpha + 1)]$$

$$y_{c} = \alpha x_{c1} / [1 + x_{c1} (\alpha - 1)]$$

valid over the range $0.2 < x_1 < 0.8$ or 270 < T/K < 286.92, where $T_c = 286.92$ K k = -883 $\alpha = 0.83$ $x_{c1} = 0.497$

Pressure Coefficient of Critical Solution Temperature

This quantity can be calculated from the fitting equations of Ott et al.:

$$(\partial T/\partial p)_r = T_o/ac = 3.64 \times 10^{-7} \text{ K Pa}^{-1}$$

where T_0 , a and c are constants given on the compilation sheet.

(continued)

10. Nagata, I. Thermochim. Acta 1987, 114, 227.a,

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Fischer, R.; Neupauer, E.
(2) Octane; C ₈ H ₁₈ ; [111-65-9]	Mikrochem. Ver. Mikrochim. Acta <u>1949</u> , 34, 319-35.
VARIABLES:	PREPARED BY:
One temperature: 355 K	A. Skrzecz
EXPERIMENTAL VALUES:	I
The UCST was reported to be 82.0°C.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The sample in a sealed glass capillary was placed in a melting point microapparatus and the appearance and disappearance of the monicous with temperature changes	SOURCE AND FURITY OF MATERIALS: (1) source not specified; purified; $n_{\rm D}(20^{\circ}{\rm C}) = 1.3313.$ (2) source not specified; $n_{\rm D}(20^{\circ}{\rm C}) = 1.3965.$
Was observed. The mass of the sample was 0.001-0.002 g. The method is	ESTIMATED ERROR: temp. ±0.5 K.
described in ref 1.	REFERENCES: 1. Fischer, R.; Karasek, G. Mikrochemie <u>1947</u> , 33, 316.
	F
COMPONENTS: (1) Methanol; CH ₄ 0; [67-56-1]	ORIGINAL MEASUREMENTS: Sieg, L.
(2) Octane; C ₈ H ₁₈ ; [111-65-9]	ChemIngTech. <u>1951</u> , 23, 112-3.
VARIABLES:	PREPARED BY:
One temperature: 340 K	A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 66.7°C. Mutual solubility was presented on a	graph only.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. A mixture of known composition was sealed in an ampoule and the temperature of appearance or disappearance of turbidity was observed. The ampoules and pipets were filled in a moistureless atmosphere over P_2O_5 .	<pre>SOURCE AND PURITY OF MATERIALS: (1) source not specified; boiled with Mg, fractionated; physical properties were in agreement with literature values. (2) source not specified, pure grade fractionated; physical properties were in agreement with literature values. ESTIMATED ERROR:</pre>
	not specified.

REFERENCES:

ORIGINAL MEASUREMENTS: COMPONENTS: (1) Methanol; CH₄O; [67-56-1] Kogan, V.B.; Deizenrot, I.V.; Kul'byaeva, T.A.; Fridman, V.M. (2) Octane; C₈H₁₈; [111-65-9] Zh. Prikl. Khim. 1956, 29, 1387-92. PREPARED BY: VARIABLES: Temperature: 275 - 318 K A. Skrzecz EXPERIMENTAL VALUES: Mutual solubility of methanol and octane t/°C x_1 (compiler) 100 W1 (2)-rich phase (1)-rich phase (2)-rich phase (1)-rich phase 85.67 0.0928 0.9552 2 2.79 2.20 84.25 0.0744 0.9502 10 10 a) 2.2 84.4 0.074 0.951 0.158 0.943 5.0 82.3 20 a) 25 4.9 80.60 0.155 0.9368 7.13 74.88 0.2149 0.9140 45 a) from octane - methanol - water ternary equilibrium data. (1)-rich phase was observed to be the lower layer. AUXILIARY INFORMATION SOURCE AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: (1) source not specified, pure The analytical method was used. The grade; distilled; < 0.01% of two-phase mixture was periodically water; $n_p(20^{\circ}C) = 1.3391$. shaken in a thermostatted burette with water jacket for several hours. The phases were taken out for (2) source not specified; used as received; b.p. 125.4°C, analysis after separation. Methanol was determined two-times by reaction $n_{\rm p}(20^{\circ}{\rm C}) = 1.3976.$ with phthalic anhydride. ESTIMATED ERROR: soly. < ±1% (relative error of methanol concentration); temp. ±0.05 K. **REFERENCES:**

			185
COMPONENTS:		ORIG	INAL MEASUREMENTS:
(1) Methan	ol; CH40; [67-56-1	.] Ki	ser, R.W.; Johnson, G.D.;
(2) Octane	; C ₈ H ₁₈ ; [111-65-9]		Shetlar, M.D.
		5.	Chem. Eng. Data <u>1961</u> , 6, 556-41.
VARIABLES:		PREP	ARED BY:
m	050 000 V		
Temperatur	UAT HES.	A.	SKEZeCZ
EXPERIMENTAL	VALUES:		
	Solubility	y of octane in	methanol
t∕°c	g(2)/100 ml(1)	100 w ₁ (comp	iler) x_2 (compiler)
5	12.2	13.1	0.0407
10	13.6	14.5	0.0455
15	15.2	16.0	0.0508
20	16.7	17.4	0.0559
25	18.4	19.0	0.0616
30	20.6	20.8	0.0688
35	23.0	22.8	0.0767
40	26.0	25.1	0.0861
65.7	UCS	т	
		AUXILIARY INFOF	MATION
METHOD/APPAR	ATUS/PROCEDURE:	SOUR	CE AND PURITY OF MATERIALS:
The isople was used. composition and the te	thal or cloud poi Samples of known on were heated and emperature of phas	nt method (1 /or cooled e) E.I. du Pont de Nemours and Co.; distilled; $n_0(20^{\circ}C) = 1.3293$, b.p. 64.6°C (corrected), f.p99°C.
transition phase tran and easily chosen, wa (cloud point miscible s the finely no longer	was noted. In generation most repro- sition most repro- vobserved, and the sthe unmixing te- int) obtained when solution was coole dispersed solute completely miscib	neral, the (2 ducible erefore mperature a d until was just le.) Eastman Organic Chemicals, practical grade; passage through short columns of silica gel until the unsaturated compounds were removed, purified; estimated impurities < 0.2 molea $n_{\rm D}(20^{\circ}{\rm C}) = 1.3975.$
		ESTI	MATED ERROR:
		sc	<pre>ply. ±2% (relative error); pmp. ±0.2 K.</pre>
		REFF 1.	RENCES: International Critical Tables vol. 3, New York, <u>1933</u> .

ł

-

l

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Budantseva, L.S.; Lesteva, T.M.;
(2) Octane; C ₈ H ₁₈ ; [111-65-9]	Nemtsov, M.S.
	211. F12. KNIM. <u>1976</u> , 50, 1344; Russ. J. Phys. Chem. (Engl. Transl.) <u>1976</u> , 50, 814; *Dep. Doc. VINITI <u>1976</u> , 437.
VARIABLES:	PREPARED BY:
One temperature: 293 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Solubilities at 20°C:	
methanol in octane: $x_1 = 0.1550$, or	$100 w_1 = 4.894$ (compiler).
octane in methanol: $x_2 = 0.0400$, or	$100 w_2 = 12.93$ (compiler).
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND FURITY OF MATERIALS:
The analytical method was used. Hydrocarbon was analyzed by glc as in ref. 1.	(1), (2) source not specified
	ESTIMATED ERROR:
	REFERENCES: 1. Budantseva, L.S.; Lesteva, T.M.; Nemtsov, M.S. Zh. Fiz. Khim. <u>1976</u> , 50, 1343; *Dep. Doc. VINITI <u>1976</u> , 437.
	r
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Sergeeva, V.F.; Ustanova, I.Z.
(2) Octane; C ₈ H ₁₈ ; [111-65-9]	Zh. Obshch. Khim. <u>1973</u> , 43, 1878-81; J. Gen. Chem. USSR (Engl. Transl.) <u>1973</u> , 43, 1866-8.
VARIABLES:	PREPARED BY:
One temperature: 298 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Solubilities at 25°C:	
methanol in octane: $x_1 = 0.100$, or	100 w ₁ = 3.02 (compiler)
octane in methanol: $x_2 = 0.063$, or	100 w ₂ = 19.3 (compiler)
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The method was not specified.	<pre>(1), (2) source not specified; purified, dried; physical properties agreed with values in literature.</pre>
	ESTIMATED ERROR:
	not specified
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Methanol; CH₄O; [67-56-1] (2) Octane; C₈H₁₈; [111-65-9]</pre>	Iwai, Y.; Nishimura, Y.; Wanatabe, Y.; Arai, Y. <i>Fluid Phase Equilib</i> . <u>1986</u> , 25, 107-12.
VARIABLES:	PREPARED BY:
One temperature: 298 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Solubilities at 25°C:	
methanol in octane: $x_1 = 0.1406$ or octane in metanol: $x_2 = 0.0604$	100 $w_1 = 4.39$. or 100 $w_2 = 18.6$.
AUXILIARY INF	FORMATION
METHOD/APPARATUS/PROCEDURE: The analytical method was used. Double-walled glass cells (thermostatically controlled) were used (similar to those in ref 1). Samples of both phases in equilibrium were withdrawn with a precision syringe and compositions were determined by gc with FID. The binary data are given in ref 2. Data on the ternary system octane- methanol-toluene are also given.	SOURCE AND PURITY OF MATERIALS: (1), (2) source not specified, reagent grade, purity > 99%; without purification; no impurities were detected by glc with FID.
	ESTIMATED ERROR: soly. ±1% (accuracy); temp. ±0.0.05 K. REFERENCES: 1. Fabries, JF.; Gustin, JL.; Renon, H. J. Chem. Eng. Data 1977, 22, 303-8. 2. Higashiuchi, H. Unpublished.

188			
COMPONENTS :			ORIGINAL MEASUREMENTS:
(1) Methanol;	CH40; [67-	56-1]	Ott, J.B.; Hoelscher, I.F.; Schneider, G.M.
(2) Octane; C ₈	H ₁₈ ; [111-6	5-9]	J. Chem. Thermodyn. <u>1986</u> , 18, 815-26.
VARIABLES:			PREPARED BY:
Temperature: 3 Pressure: 0.1	24 - 372 H - 151 MPa	<	A. Skrzecz
EXPERIMENTAL VALUE	ES:		
Solubil T/K	lity of met	hanol and oc	tane 10 w.
	F)	(c	ompiler)
335.2	0.1	0.8248	56.91
336.4	0.1	0.4491	18.61
339.5	0.1	0.6510	34.35
323.7	1.0	0.304	10.9
328.4	19.9	0.304	10.9
330.4	30.2	0.304	10.9
332.7	40.1	0.304	10.9
334.3	50.1	0.304	10.9
336.0	60.0	0.304	10.9
338.6	80.2	0.304	10.9
341.4	100.8	0.304	10.9
343.6	120.8	0.304	10.9
344.4	140.9	0.304	10.9
345.4	150.7	0.304	10.9 (continued)
			(concinded)
	·····	AUXILIARY	INFORMATION
METHOD/APPARATUS/ A high-pressur with sapphire v -to-Al sandwick stirring was us measured with a against a dead temperature wit thermocouple ca certified plat: thermometer. I were obtained of phase separa cooled. Compos from the volume glass cell, vol by a vacuum jac atmospheric pre- stirred with a stirring bar. were made durin precautions were	PROCEDURE: re optical vindows with seals and sed. Press Heise gat weight gat th a chrome alibrated a inum resist Equilibrium from visual ation was added to lume 30 mL, oket was us essure. The PTFE-coate Visual mean of cooling re taken to	cell (ref 1) th Al-to-Au d magnetic sure was uge calibrate uge, el-to-alumel against a tance m temperature l observation he sample was determined o the cell. , surrounded sed at he sample was ed magnetic asurements . Special o exclude	SOURCE AND PURITY OF MATERIALS: (1) Fisher, purity 0.999 mole fraction; distilled twice over Na in 2 m column packed with glass helices; purity > 0.9999 mole fraction by glc analysis. (2) Phillips, pure grade; dist. 2x in a 2-m column packed with glass helices; purity 0.9989 mole fraction by glc. A
			ESTIMATED ERROR: temp. ± 0.2 K, ± 0.1 K at $p = 0.1$ MPa. pressure ± 0.2 MPa. composition ± 0.005 mole fraction, ± 0.0001 mole fraction at 0.1 MPa.
			REFERENCES: 1. Liphard, K.G.; Schneider, G.M. J. Chem. Thermodyn. <u>1975</u> , 7, 805.

COMPONENTS:			ORIGINAL MEASUREMENTS:
(1) Methanol;	CH40; [67-	56-1]	Ott, J.B.; Hoelscher, I.F.; Schneider, G.M.
(2) Octane; C ₈ H ₁₈ ; [111-65-9]			J. Chem. Thermodyn. <u>1986</u> , 18, 815-26.
EXPERIMENTAL VALU	ES: (Contin	ued)	
Solubi	lity of met	hanol and o	octane
T/K	p/MPa	X,	100 w.
	••	' ((compiler)
332.6	1.0	0.373	14.3
335.3	10.0	0.373	14.3
337.9	20.2	0.373	14.3
340.3	30.0	0.373	
342.5	40.1 50 0	0.373	14.3
346.7	60.0	0.373	14.3
350.1	80.0	0.373	14.3
352.8	100.7	0.373	14.3
355.6	120.6	0.373	14.3
358.1	140.8	0.373	14.3
359.1	150.5	0.373	14.3
336.6	1.0	0.439	18.0
339.0	10.0	0.439	
342.5	19.9	0.439	
347.5	40.0	0.439	18.0
349.9	50.0	0.439	18.0
352.0	60.0	0.439	18.0
356.1	80.0	0.439	18.0
359.8	100.6	0.439	18.0
362.8	120.5	0.439	18.0
367 4	140.0	0.439	
338.5	1.0	0.489	21.2
341.6	10.1	0.489	21.2
344.7	20.0	0.489	21.2
347.6	30.1	0.489	21.2
350.1	40.1	0.489	21.2
352.5	50.1	0.489	21.2
)	60 3	0.400	21. 2
354.7	80 A	0.489	41.4 21.2
362.7	100.8	0.489	21.2
366.2	120.8	0.489	21.2
369.2	140.8	0.489	21.2
370.8	151.0	0.489	21.2
339.4	1.0	0.555	25.9
342.5	10.0	0.555	25.9
345.6	19.9	0.555	25.9
348.6	30.1	0.555	25.9
351.3	40.2	0.555	25.9
353.6	50.0	0.555	25.9
355.7	60.2	0.555	25.9
360.0	80.0	0.555	25.9
363.9	100.6	0.555	25.9
367.2	120.7	0.555	25.9
370.5	141.1	0.555	25.9
372.1	151.0	0.555	25.9
339.8	1.0	0.586	28.4
342.9	T0.3	0.586	20.4
1			

•

COMPO	NENTS:				ORIGINAL MEASUREMENTS:
(1)	(1) Methanol; CH ₄ O; [67-56-1]			Ott, J.B.; Hoelscher, I.F.;	
(2)	Octane; C	H ₁₈ ; [111-6	5-9]		
					J. Chem. Thermodyn. <u>1986</u> , 18, 815-26.
EXPER	IMENTAL VALU	ES: (Contin	ued)		
	Solubi	litv of met	hanol and	octan	e
	T/K	p/MPa	x ₁ 1	100 W	
				(comp	iler)
	346.1	20.2	0.586	28.	4
	348.9	30.0	0.586	28.	4
	351.4	40.1 50 1	0.586	20.	4
	356.3	60.3	0.586	28.	4
	360.4	80.2	0.586	28.	4
	364.1	100.6	0.586	28.	4
	367.5	120.4	0.586	28.	4
	370.6	140.1	0.586	28.	4
	372.3	150.7	0.586	28.	4
	339.8	1.0	0.603	29.	9
	342.9	10.0	0.603	29.	9
	346.2	20.0	0.603	29.	9
	349.0	29.8	0.603	29.	9
	351.7	40.1	0.603	29.	9
	354.0	50.0	0.603	29.	9
	360.7	80.2	0.603	29.	9
	364.4	100.6	0.603	29.	9
	368.0	121.1	0.603	29.	9
	371.2	140.8	0.603	29.	9
	339.7	1.0	0.646	33.	9
	342.8	10.0	0.646	33.	9
	346.1	20.1	0.646	33.	9
	348.9	30.1	0.646	33.	9
	351.5	40.1	0.646	33.	9
	353.9	50.1	0.646	33.	9
	360.2	80.0	0.646	22.	9 0
	500.5	00.0	0.040	55.	5
	364.2	101.2	0.646	33.	9
	367.5	121.0	0.646	33.	9
	370.8	141.0	0.646	33.	9
	372.1	120.8	0.646	33.	ע ר
	342.0 316 1	9.9 201	0.659	35. 25	4 2
	349.1	30.1	0.659	35.	2
	351.5	40.0	0.659	35	2
	353.9	50.0	0.659	35.	2
	356.2	60.1	0.659	35.	2
	360.4	80.0	0.659	35.	2
	364.3	100.8	0.659	35.	2
	368.0	121.0	0.659	35.	2
	371.0	140.7	0.659	35.	2
	339.2	0.9	0.716	41.	4
	342.4	9.9	0.716	41.	4
	345.7	20.0	0.716	41.	4
	348.3	30.1	0.716	41.	4
	351.0	40.1	0.716	41.	4
	353.5	50.1	0.716	41.	4

	· · · · · · · · · · · · · · · · · · ·		- <u></u> r-	
COMPONENTS :				ORIGINAL MEASUREMENTS:
(1) Methanol;	CH40; [67-	-56-1]		Ott, J.B.; Hoelscher, I.F.; Schneider, G.M.
(2) Octane; C	₈ H ₁₈ ; [111-6	55-9]		J. Chem. Thermodyn. <u>1986</u> , 18,
			. <u> </u>	
EXPERIMENTAL VALU	ES: (Contir	ued)		
Solubi T/K	lity of met	thanol and	100 w	e
-,		1	(comp	iler)
355.7	60.1	0.716	41.	4
359.8	100 6	0.716	41.4	4 A
366.8	120.8	0.716	41.	4
369.9	140.5	0.716	41.	4
371.2	150.6	0.716	41.	4
338.3	1.0	0.766	47.9	9
341.4	9.9	0.766	47.9	9
344•/ 317 1	20.0	0.766	47.	
34/.4	23.3	0.700	47.	2
350.1	40.1	0.766	47.	9
352.4	50.0	0.766	47.	9
354.7	60.0	0.766	47.	9
358.7	80.1	0.766	47.	9
362.2	100.7	0.766	47.	
368.3	141.3	0.766	47.	
369.3	151.4	0.766	47.9	9
338.1	1.0	0.771	48.	6 (continued)
341.4	10.0	0.771	48.0	6
344.5	20.0	0.771	48.	6
347.2	30.0	0.771	48.	
352.1	50.0	0.771	40.	6 6
354.4	60.0	0.771	48.	6
358.2	79.9	0.771	48.	6
361.7	100.5	0.771	48.	6
364.9 367.6	120.7 140.7	0.771 0.771	48.0	6 6
268 0	151 3	0 771	401	
337.4	1.0	0.771	48.	3
340.5	10.0	0.790	51.	3
343.5	20.0	0.790	51.	3
346.3	30.0	0.790	51.3	3
348.3	40.0	0.790	51.	3
351.0	50.1	0.790	51.3	3
357.0	80.0	0.790	51.	3
360.4	100.8	0.790	51.	3
363.3	120.8	0.790	51.	3
365.7	140.8	0.790	51.	3
367.0	150.7	0.790	51.3	3
332.1	1.0	0.825	56.9	9
330.5 330 F	20.0	0.825	56.5	9
342.0	30.0	0.825	56.0	9
344.4	40.0	0.825	56.9	9
346.3	50.0	0.825	56.	9
348.3	60.1	0.825	56.9	9
351.6	80.1	0.825	56.	9
354.5	100.8	0.825	56.	9
350./ 358 9	140 0	0.825	56. E6	9 9
358.6	150.9	0.825	56	9
358.6	150.9	0.825	56.	9
				· · · · · · · · · · · · · · · · · · · ·
				(continued)

.

```
192
```

COMPONENTS:

(1) Methanol; CH₄O; [67-56-1]

(2) Octane; C₈H₁₈; [111-65-9]

ORIGINAL MEASUREMENTS:

- Ott, J.B.; Hoelscher, I.F.; Schneider, G.M.
- J. Chem. Thermodyn. <u>1986</u>, 18, 815-26.

EXPERIMENTAL VALUES: (Continued)

COMMENTS AND ADDITIONAL DATA:

Data for isopleths at high pressures were fitted to the Simon equation

$$p(x,T)/MPa = a[(T/T_o)^{c}-1]$$

From these equations, the corresponding (T, x) isobars were calculated and were fitted to the equation

 $T/K = T_c/K + k |y - y_c|^{\nu}$

where

$$y = \frac{\alpha x_{1}}{[1+x_{1}(\alpha-1)]}$$
$$y_{c} = \frac{\alpha x_{c1}}{[1+x_{c1}(\alpha-1)]}$$

The coefficients found are (s = std. error of estimate):

<i>x</i> 1	<i>T</i> _/K	а	C	s/K		
0.304	323.3	48.62	21.08	0.33		
0.373	332.2	69.16	14.82	0.13		
0.439	336.4	90.58	11.15	0.10		
0.489	338.2	89.49	10.77	0.07		
0.555	339.1	86.91	10.88	0.09		
0.586	339.5	86.10	11.00	0.08		
0.603	339.5	84.83	10.98	0.07		
0.646	339.4	83.11	11.25	0.08		
0.659	339.6	91.44	10.52	0.08		
0.716	338.9	77.86	11.84	0.09		
0.766	337.9	65.43	13.40	0.09		
0.771	337.8	66.70	13.43	0.05		
0.790	336.9	61.51	14.48	0.09		
0.825	331.6	28.08	23.31	0.31		
p/MPa	T _c /K	k	α	x _{c1}	ν	S
0.1	339.3	-32.95	0.460	0.639	4.208	0.22
25	347.4	-1966	0.518	0.641	3.878	0.16
50	353.9	-2114	0.514	0.642	3.849	0.16
75	359.4	-2249	0.516	0.639	3.797	0.18
100	364.1	-2427	0.516	0.637	3.770	0.22
125	368.4	-2615	0.518	0.635	3.749	0.26
150	372 2	-2683	0 524	0 633	3 708	0 32

Equations are also given for (p, x) pairs, which are of the same form as those for the (T, x) pairs.
Competence					
COMPONENTS :		ORIGINAL MEASUREMENTS:			
(1) Methanol; CH ₄ O; [67-56-1]		Higashiuchi	, H.; Sukuragi	, Y.;	
(2) Octane;	C ₈ H ₁₈ ; [111-65-	-9]	Iwai, Y.;	Arai, Y.; Naga	tani, M.
			Fluid Phase	Equilib. <u>1987</u>	<u>,</u> 36,
			35-47.		
VARIABLES:			PREPARED BY:		i
Temperature	: 298 - 333 K		A. Skrzecz		
EXPERIMENTAL V	ALUES:				
Mu	tual solubility	y of methano	l and octane		
t/°c	<i>x</i> ₁		100	w ₁ (compiler)	
	(2)-rich phase	(1)-rich ph	ase (2)-rich	n phase (1)-rio	ch phase
25.00	0.1182	0.9396	3.62	81.3	36
30.00	0.1411	0.9314	4.41	79.2	20
35.00	0.1687	0.9181	5.39	75.8	37
40.00	0.2012	0.9098	6.60	73.8	39
45.00	0.2390	0.9020	8.10	72.0	8
50.00	0.2823	0.8808	9.94	67.4	6
55.00	0.3513	0.8600	13.19	63.2	28
60.00	0.4158	0.8374	16.64	59.0	09
	·····				
		AUXILIARY	INFORMATION		
METHOD/APPARAT	US/PROCEDURE:		SOURCE AND PURIT	TY OF MATERIALS:	
The analyti	cal method was	used.	(1) source r	not specified,	guaranteed
Thermostati	cally controll	ed double-	reagent	grade, purity	> 99%;
of ref 1 we	re used.	t to those	useu as	recerved.	
Samples of	both phases in	equilibrium	(2) source r	not specified,	guaranteed
precision s	wringe and com	with a positions	used as	grade, purity received.	98.0%;
were determ	ined by gas ch	romatography			
with FID.	No further det	ails were			
					······································
			ESTIMATED ERROR	:	
		soly. ±1% (a	accuracy);	201	
		Lemp. ±0.05	c (unermostat)	.119) •	
		REFERENCES:	JF.: Gustin	. JI.:	
			Renon,	н.	,,
1			J. Chem.	Eng. Data <u>19</u>	<u>77</u> , 22, 303

194	
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Nagata, I.
(2) Octane; C ₈ H ₁₈ ; [111-65-9]	Thermochim. Acta <u>1987</u> , 114, 227-38
VARIABLES:	PREPARED BY:
One temperature: 298 K	A. Skrzecz
EXPERIMENTAL VALUES:	· · · · · · · · · · · · · · · · · · ·
Solubilities at 25°C:	
methanol in octane: $x_1 = 0.0968, 1$	00 $w_1 = 2.92$ (compiler)
octane in methanol: $x_2 = 0.0632$, 1	00 $w_2 = 19.39$ (complier).
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A two-phase mixture in an equilibrium	(1) source not specified, C.P.grade; dried over CaO, distilled; no
intensely for 2 h and then allowed	25°C was in agreement with
water bath. Samples of both phases	literature value.
and analyzed by glc (Shimadzu GC-8C	ties by glc; density at 25°C was
and integrator shimadzu C-EIB). Four analyses were made for each phase.	values; used as received.
	soly. ±0.002 mole fraction
	(reproducibility); temp. ±0.01 K.
	REFERENCES :

COMPONENTS:	EVALUATOR:
(1) Methanol; CH ₄ O; [67-56-1]	A. Skrzecz and A. Maczynski Institute of Physical Chemistry
(2) 2,2,4-Trimethylpentane; C ₂ H ₁₈ ;	Polish Academy of Sciences
[540-84-1]	Warsaw, Poland
	J.W. Lorimer
	Department of Chemistry
	The University of Western Ontario
	London, Ont., Canada
	July, 1989
CRITICAL EVALUATION:	

Table 1 summarizes reported solubilities, upper critical solution temperatures (UCST) and compositions for the system methanol (1) - 2,2,4-trimethylpentane (2).

Table 1. Solubilities, upper critical solution temperatures and compositions for the system methanol (1) - 2,2,4-trimethylpentane (2)

Author(s)	Range			
	<i>T/</i> K	<i>x</i> ₁	<i>x</i> ₁	
		(2)-rich phase	(1)-rich phase	
1. Cornish 1934	315.7 UCST	-	-	
2. Francis 1944	316 UCST	-	-	
3. Sieg 1951	315.7 UCST	-	-	
4. Francis 1954	273-315.8 UCST	0.144-0.643	0.643-0.923	
5. Buchowski 1959	291 and 293	0.177	0.875-0.879	
6. Kiser 1961	278-316.2 UCST	-	0.784-0.920	
7. Budantseva 1976	293	0.246	0.922	

Critical Solution Temperature and Composition

The five reported values of the UCST, ref. 1-4 and 6, are in good agreement; their average is (omitting the less precise value of ref. 2) $T_c = 315.8 \pm 0.2$ K (± 1 std. dev). The critical composition was reported to be $x_{c1} = 0.643$ in ref. 4; this value is *tentative*.

Mutual Solubility

Solubilities for 2,2,4-trimethylpentane in methanol, at four common temperatures reported in refs. 4 and 6, agree within 0.002 mole fraction. By comparison, the value at 293.2 K of Buchowski and Teperek, ref 5, is low by 0.004 mole fraction. The values of Budantseva et al., ref 7, at 293.2 K for the mole fraction of methanol are 0.2460 (2,2,4-TMP-rich phase) and 0.9220 (methanol-rich phase), compared to Francis' values of 0.224 and 0.8909, i.e., both values are high by about mole fraction 0.02. Therefore the combined data of Francis, ref 4, and Kiser, ref. 6, for the alcohol-rich phase are *recommended*, while the remaining data of Francis, ref. 4, are considered as *tentative*.

CRITICAL EVALUATION: (continued)

The figure shows these recommended data together with the fitting equation:

$$x_1 = x_{1c} \pm B_1 \theta^{\beta} \pm B_2 \theta^{\beta+w} + A_1 \theta \pm B_3 \theta^{\beta+2w} + A_2 \theta^{1-\alpha+w}$$

where $\theta = |1 - T/T_c|$, + and - refer to the branches below and above the critical composition, and the indices have their theoretical values $\beta = 0.325$, $\alpha = 0.11$, w = 0.5. The constants (with standard deviations in parentheses) are:

$x_{\rm c} = 0.656 \ (0.015)$	$T_{\rm c}/{\rm K} = 315.8 \ (0.1)$	
$B_1 = 0.9671 \ (0.46)$	$B_2 = -0.8218 (3.1)$	$B_3 = -0.6296 (5.1)$
$A_1 = -3.298 \ (0.74)$	$A_2 = 5.2455 (1.5)$	s = 0.014

s is the total standard error of estimate in temperature and composition, assuming equal weights for each; the equation is valid over the temperature range 270-316 K.

Table 2. Values of solubility in the system
methanol (1) - 2,2,4-trimethylpentane (2)
t - tentative value; r - recommended value
(All values for the 2,2,4-TMP- rich phase are tentative)

T/K x_1		<i>x</i> ₁		
	(2)-rich phase	(1)-rich phase		
273.2	0.144	0.923		
278.2	-	0.920		
283.2	0.158	0.911		
288.2	0.212	0.901		
293.2	0.224	0.890		
298.2	0.237	0.876		
303.2	-	0.858		
308.2	-	0.832		
315.8	0.643	0.643 UCST		

REFERENCES:

- 1. Cornish, R.E.; Archibald, R.C.; Murphy, E.A.; Evans, H.M. Ind. Eng. Chem. <u>1934</u>, 26, 397.
- 2. Francis, A.W. Ind. Eng. Chem. 1944, 36, 764.
- 3. Sieg, L. Chem.-Ing.-Tech. <u>1951</u>, 23, 112.
- 4. Francis, A.W. J. Am. Chem. Soc. 1954, 76, 393.
- 5. Buchowski, H.; Teperek, J. Rocz. Chem. 1959, 33, 1093.
- 6. Kiser, R.W.; Johnson, G.D.; Shetlar, M.D. J. Chem. Eng. Data <u>1961</u>, 6, 338.
- Budantseva, L.S.; Lesteva, T.M.; Nemstov, M.S. Zh. Fiz. Khim. <u>1976</u>, 50, 1344; Deposited Doc. VINITI <u>1976</u>, 437.

Fig. 1. Phase diagram of the system methanol-2,2,4-trimethylpentane; line, fitting equation; points: Francis, ref. 2, ●; Buchowski and Teperek, ref. 5, ◊; Kiser et al., ref. 6 ×; Budantseva et al., ref. 7 ♦.

198	
COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1] VARIABLES: One temperature: 316 K	ORIGINAL MEASUREMENTS: Cornish, R.E.; Archibald, R.C.; Murphy, E.A.; Evans, H.M. Ind. Eng. Chem. <u>1934</u> , 26, 397-406. PREPARED BY: A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 42.5°C.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The method was not specified.	SOURCE AND PURITY OF MATERIALS: (1) source not specified; distilled; $\rho(20^{\circ}C)/\rho(20^{\circ}C) = 0.78656$, (corr. for buoyancy), anhydrous. (2) source not specified; purified; boiling range <0.1^{\circ}C, b.p. 99.3 ± 0.05 K, f.p107.5 $\pm 0.5^{\circ}C$, $n_{D}(20^{\circ}C) = 1.39162 \pm 0.00012$, $\rho(20^{\circ}C)/\rho(20^{\circ}C) = 30.69314$ ± 0.00001 .
	ESTIMATED ERROR: not specified.
	REFERENCES:
p	•
COMPONENTS: (1) Methanol; CH ₄ O; [67-56-1]	ORIGINAL MEASUREMENTS: Francis, A.W.
(2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1]	Ind. Eng. Chem. <u>1944</u> , 36, 764-71.
VARIABLES:	PREPARED BY:
One temperature: 316 K	A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 43°C.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The reagents were introduced and stirred with a thermometer in test tubes which were warmed and cooled gradually in a bath. The temperature of disappearance or reappearance of the cloudiness was read two or three times in each direction.	<pre>SOURCE AND PURITY OF MATERIALS: (1) source not specified, "substantially pure"; used as received. (2) source not specified. ESTIMATED ERROR: not specified. REFERENCES:</pre>

	199
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Sieg, L.
(2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1]	ChemIngTech. <u>1951</u> , 23, 1093-8.
VARIABLES:	PREPARED BY:
Temperature: 316 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 42.5°C. Mutual solubility was presented on	a graph only.
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The cloud point method was used. A	
mixture of known composition was	(1) source not specified; boiled
sealed in an ampoule and the temp. of	with Mg, fractionated.
appearance or disappearance of	
turbidity was observed. Ampoules and	(2) source not specified; pure
pipets were filled in a moisture-free	grade; fractionated. For both (1)
atmosphere over P205.	and (2), physical properties
	agreed with values in literature.
	ESTIMATED ERROR:
	not specified.
	REFERENCES :

 COMPONENTS:
 ORIGINAL MEASUREMENTS:

 (1) Methanol; CH40; [67-56-1]
 Francis, A.W.

 (2) 2,2,4-Trimethylpentane; C8H18;
 J. Am. Chem. Soc. 1954, 76, 393-5.

 [540-84-1]
 PREPARED BY:

 VARIABLES:
 PREPARED BY:

 Temperature: 273 - 316 K
 A. Skrzecz

EXPERIMENTAL VALUES:

Mutual solubility of methanol and 2,2,4-trimethylpentane

t∕°c	100 W	1	x _i (compiler)		
	(2)-rich phase	(1)-rich phase	(2)-rich phase	(1)-rich phase	
0	4.5	77.0	0.144	0.9227	
10	5.0	74.2	0.158	0.9111	
15	7.0	72.0	0.212	0.9016	
20	7.5	69.6	0.224	0.8909	
25	8.0	66.6	0.237	0.8767	
42.6	UCST 33.6	33.6	0.643	0.643	

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The observations were made in narrow graduated glass-stoppered tubes immersed in a water bath in a large silvered Dewar. Compositions were made up by volume from graduated pipets until cloudiness just disappeared or reappeared. The bath temperature was adjusted by addition of small quantities of cooler or warmer water and stirred several minutes.	SOURCE AND PURITY OF MATERIALS: (1) J.T. Baker, anhydrous, chemical pure grade; used as received. (2) source not specified, reagent grads.
	ESTIMATED ERROR:
	REFERENCES:

	201	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Methanol; CH ₄ O; [67-56-1]	Buchowski, H.; Teperek, J.	
(2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1]	Rocz. Chem. <u>1959</u> , 33, 1093-8.	
VARIABLES:	PREPARED BY:	
Temperature: 291 and 293 K	A. Skrzecz	
EXPERIMENTAL VALUES:		
Mutual solubility of methanol	and 2,2,4-trimethylpentane	
t/°c 100 w ₁	x ₁ (compiler)	
(2)-rich phase (1)-rich phase	e (2)-rich phase (1)-rich phase	
18. 5.7 67.0	0.177 0.879	
20 66.2	- 0.875	
AUXILIARY IN	FORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The titration method was used. A	(1) F.O.Ch. (Poland) pure grade;	
known amount of methanol was titrated	heated with I ₂ and Mg; distilled;	
with isooctane until turbidity was	$\rho(20^{\circ}C) = 0.7915 \text{ g/mL}, n(20^{\circ}C) =$	
Was calc, from weight and mass	1.3288.	
balance. Data for the ternary	(2) high purity reagent from	
system isooctane-methanol-water	Warsaw Univ.; $\rho(20^{\circ}C) = 0.6920$	
are also given.	g/mL , $n(20^{\circ}C) = 1.3914$, agreed	
	as received.	
	ESTIMATED ERROR:	
	temp. ±0.5°C.	
	REFERENCES :	

202	
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ 0; [67-56-1]	Kiser, R.W.; Johnson, G.D.;
(2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ;	Shetlar, M.D.
[540-84-1]	J. Chem. Eng. Data <u>1961</u> , 6, 338-41.
VARIABLES:	PREPARED BY:
Temperature: 278 - 316 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Solubility of 2,2,4	-trimethylpentane in methanol
$t/C = g(2)/100 \text{ m1}(1) = 100 \text{ W}_1 (C)$	compiler) x_2 (compiler)
	0.0798
	0.0890
	0.0996
	0.1112
	0.1254
	0.141/
35 50.0 41.7	0.5163
40 /0. 42.0	0.2103
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The isoplethal or cloud point method was used. Samples of known composition were heated and/or cooled and the temperature of phase transition was noted. In general, the phase transition most reproducible and easily observed, and therefore chosen, was the unmixing temperature (cloud point) obtained when a miscible solution was cooled until the finely dispersed solute was just no longer completely miscible.	 (1) E.I. du Pont de Nemours and Co.; distilled; n₀(20°C) = 1.3293, b.p. 64.6°C (corrected), f.p99°C. (2) Eastman Organic Chemicals; purified; without unsaturated material by u.v. analysis, less than 0.04 mole % of impurity by glc; n₀(20°C) = 1.39145.
	ESTIMATED ERROR: soly. ±2% (relative error); temp. ±0.2 K.
	REFERENCES: 1. International Critical Tables vol. 3, New York, <u>1933</u> .

.

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Methanol; CH ₄ 0; [67-56-1]	Budantseva, L.S.; Lesteva, T.M.; Nemtsov, M.S.	
(2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ;		
[540-84-1]	Zh. Fiz. Khim. <u>1976</u> , 50, 1344; Russ. J. Phys. Chem. (Engl. Transl.) <u>1976</u> , 50, 814; *Dep. Doc. VINITI <u>1976</u> , 437.	
VARIABLES:	PREPARED BY:	
One temperature: 293 K	A. Skrzecz	
EXPERIMENTAL VALUES:		

Solubilities at 20°C:

methanol in 2,2,4-trimethylpentane: $x_1 = 0.2460$ or 100 $w_1 = 8.384$.

2,2,4-trimethylpentane in methanol: $x_2 = 0.0780$ or 100 $w_2 = 23.17$.

COMMENTS: The papers in Zh. Phys. Khim. consist of a short abstract only.

AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: The analytical method was used. Hydrocarbon was analysed by glc method by ref 1.	SOURCE AND PURITY OF MATERIALS: (1), (2) source not specified. ESTIMATED ERROR: not specified. REFERENCES:	
	 Budantseva, L.S.; Lesteva, T.M.; Nemtsov, M.S. Zh. Fiz. Khim. <u>1976</u>, 50, 1343; Dep. Doc. VINITI <u>1976</u>, 438. 	

 COMPONENTS:
 ORIGINAL MEASUREMENTS:

 (1) Methanol; CH40; [67-56-1]
 Francis, A.W.

 (2) 1,2,4-Trimethylbenzene (pseudocumene); C9H12; [95-63-6]
 Ind. Eng. Chem. 1944, 36, 1096-1104.

 VARIABLES:
 PREPARED BY:

 One temperature: 247 K
 A. Skrzecz

 EXPERIMENTAL VALUES:
 The UCST was reported to be -26°C.

AUXILIARY IN	ORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The reagents, about 1 mL of each, were introduced into a small tube and stirred with a thermometer while the tube was warmed gradually in a bath of water or glycerol or was cooled with ice or a bath of acetone and dry ice. The temperature of disappearance or reappearance of the cloud was read 3 or 4 times in each direction. The proportion of components was varied to obtain the UCST.	SOURCE AND PURITY OF MATERIALS: (1) source not specified; dried. (2) source not specified; properties agreed with literature values; b.p. 169°C.
	ESTIMATED ERROR:
	REFERENCES :

COMPONENTS:	EVALUATOR:
(1) Methanol; CH ₄ O; [67-56-1]	A. Skrzecz Institute of Physical Chemistry
(2) Nonane; C ₉ H ₂₀ ; [111-84-2]	Polish Academy of Sciences Warsaw, Poland
	J.W. Lorimer Department of Chemistry The University of Western Ontario London, Ont., Canada
	July, 1989

Table 1 lists solubilities and upper critical solution temperatures (UCST) and compositions for the system methanol (1) - nonane (2) which have been reported in the literature.

Table 1. solubilities, upper critical solution temperatures and compositions for the system methanol (1) - nonane (2)

	Range	
<i>T/</i> K	x ₁ (2)-rich phase	x ₁ (1)-rich phase
367.3 UCST	-	-
275-333	0.072-0.279	0.936-0.961
351.2 UCST	-	-
278-313	-	0.948-0.974
349-387 ^a	0.481-0.681	0.709-0.832
352.6 UCST	0.662	0.662
298-333	0.100-0.311	0.909-0.966
	<i>T/</i> K 367.3 UCST 275-333 351.2 UCST 278-313 349-387 ^a 352.6 UCST 298-333	Range T/K x_1 (2)-rich phase367.3 UCST-275-3330.072-0.279351.2 UCST-278-313-349-387 a0.481-0.681352.6 UCST0.662298-3330.100-0.311

^a At elevated pressures, p = 0.1-150.4 MPa.

Critical Solution Temperature and Composition

The UCST of Fischer and Neupauer, ref 1, was rejected since all values of the UCST reported in ref 1 for different alcohol-hydrocarbon systems are higher by about 10-20 K than recommended or tentative values, suggesting a significant amount of impurities, probably mainly water. Zieborak and Maczynska, ref. 3, and Hoelscher et al., ref. 5, took great care to prevent contamination by moisture. Their values are both considered to be reliable, and average $T_c = 351.9 \pm 0.7$ K (std. dev.); this value is recommended.

Only one value of the critical solution composition has been reported: $x_{c1} = 0.662$ by Hoelscher et al. ref. 5. This value is considered to be *tentative*.

Mutual Solubility

Forty-six values of mutual solubility, in addition to points designated specifically as critical solution points, have been reported. These are shown in the figure, from which it is seen that there are two regions of overlap. For the solubility of nonane in ethanol (ethanol-rich phase), the data of Kogan et al., ref 2, Kiser et al., ref. 4, and Higashiuchi et al., ref. 6, overlap. In general, the data of Kogan et al. show more scatter in this region, especially when compared to the fitting curve for all data (see below), and are rejected. The data of Kogan et al., ref. 2, and of Higsshiuchi et al., ref. 6, overlap in the region of the solubility of ethanol in nonane (nonane-rich region), and the former show considerable scatter. However, if the data of kogan et al. are removed, the resulting calculated fitting equation approaches zero mole fraction of ethanol at ablut 270 K, in contradiction to the behavior of the neighboring systems ethanol-dacane and ethanol-octane. Thus, the Kogan et al.'s data appear to show the correct trend at lower temperatures, and are included in the tentative fitting equation. The data of Hoelscher et al., ref. 5, appear to be slightly high near the shoulder on the ethanol-rich side of the coexistence curve.

The data of Hoelscher et al., ref. 5, require further comment. these authors extrapolated their data measured at high pressures to 0.1 MPa, and gave the results at p = 0.1 MPa in terms of fitting equations and tables of constants which, with values calculated therefrom, are given on the compilation sheets. The basic experimental data were obtained through a carefully-conducted study with precautions to avoid cintamination with water, ad are considered as *tentative*. In conclusion, all solubilities for this system must be considered as *tentative*.

See the compilation sheets for the data of Hoelscher et al. at high pressures, where the methods of fitting and extrapolation are described. These data can also be considered as *tentative*.

The mutual solubilities given in the table below were obtained by fitting all data to the equation:

$$x_1 = x_{c1} \pm B_1 \theta^{\beta} \pm B_2 \theta^{\beta+w} + A_1 \theta \pm B_3 \theta^{\beta+2w} + A_2 \theta^{1-\alpha+w}$$

where $\theta = |1 - T/T_c|$, + and - refer to the branches below and above the critical composition, and the constants have their theoretical values $\beta = 0.325$, $\alpha = 0.11$, w = 0.5. The constants (with standard deviations in parentheses) are:

$x_{c1} = 0.6690 \ (0.0046)$	$T_{\rm c}/{\rm K} = 352.7 ~{\rm K} ~(0.1)$	l K)
$B_1 = 0.6424 \ (0.044)$	$B_2 = 1.2233 \ (0.27)$	$B_3 = -2.2157 (0.42)$
$A_1 = -2.1493 \ (0.21)$	$A_2 = 2.6624 \ (0.39)$	s = 0.014

s is the standard error of estimate in composition. The values of x_{c1} and T_c are within the 95 % confidence limits calculated for the recommended and tentative values given above.

Pressure Coefficient of Critical Solution Temperature

This quantity can be calculated from the fitting equations of Hoelscher et al., ref. 5:

$$(\partial T/\partial p)_{rc} = T_o/ac = 3.59 \times 10^{-7} \text{ K Pa}^{-1}$$

where T_0 , a and c are constants given on the compilation sheet.

	Tentati	ve values of m	utual solubili	ty in the	
	sys	tem methanol	(1) - nonane	(2)	
T/K	<i>x</i> ₁	<i>x</i> ₁	T/K	x_1	<i>x</i> ₁
	(2)-rich	(1)-rich		(2)-rich	(1)-rich
	phase	phase		phase	phase
270	0.0732	0.9660	315	0.1688	0.9477
275	0.0751	0.9662	320	0.1937	0.9411
280	0.0788	0.9660	325	0.2229	0.9326
285	0.0845	0.9653	330	0.2573	0.9216
290	0.0923	0.9642	335	0.2982	0.9073
295	0.1022	0.9625	340	0.3480	0.8876
300	0.1146	0.9602	345	0.4116	0.8587
305	0.1296	0.9570	350	0.5053	0.8059
310	0.1476	0.9529	352.70	0.669 UCS	T

REFERENCES:

- 1. Fischer, R.; Neupauer, E. Mikrochem. Ver. Mikrochim. Acta 1949, 34, 319.
- Kogan, V.B.; Deizenrot, I.V.; Kul'byaeva, T.A.; Fridman, V.M. Zh. Prikl. Khim. <u>1956</u>, 29, 1387.
- 3. Zieborak, K.; Maczynska, Z. Rocz. Chem. <u>1958</u>, 32, 295.
- 4. Kiser, R.W.; Johnson, G.D.; Shetlar, M.D. J. Chem. Eng. Data 1961, 6, 338.
- 5. Hoelscher, I.F.; Schneider, G.M.; Ott, J.B. Fluid Phase Equilib. 1986, 27, 153.
- Higashiuchi, H.; Sukuragi, Y.; Iwai, Y.; Arai, Y.; Nagatani, M. Fluid Phase Equilib. 1987, 36, 35.

Fig. 1: Mutual solubilities in the system methanol-nonane; ♦, ref. 2; ▲, ref. 4; ●, ref. 5; □, ref. 6; solid curve, fitting equation.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Fischer, R.; Neupauer, E.
(2) Nonane; C ₉ H ₂₀ ; [111-84-2]	Mikrochem. Ver. Mikrochim. Acta
	<u>1949</u> , <i>34</i> , 319-35.
VARIABLES:	PREPARED BY:
One temperature: 367 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 94.0°C.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The cloud point method was used. The sample in a sealed glass	(1) source not specified; purified; $n_{0}(20^{\circ}C) = 1.3313.$
capillary was placed in a melting	(2) source not specified:
appearance and disappearance of the	$n_{\rm p}(20^{\circ}{\rm C}) = 1.4047.$
was observed. The mass of the sample	ESTIMATED ERROR:
ref 1.	DEFEDENCES.
	1. Fischer, R.; Karasek, G.
	Mikrochemie <u>1947</u> , 33, 316.
COMPONENTS: (1) Methanol: CH.O: [67-56-1]	ORIGINAL MEASUREMENTS: Zieborak K: Maczynska Z
	Lieboluk, K., Mozynsku, L.
(2) Nonane; C ₉ H ₂₀ ; [111-84-2]	Rocz. Chem. <u>1958</u> , 32, 295-302.
VARIABLES:	PREPARED BY:
One temperature: 351 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 78.0° C.	
Solubility data were presented on a	graph only.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A mixture of constant composition	distilled in the presence of Na;
temperature of turbidity and	(2) obtained from Synthin;
clearness was observed visually. The mean of several results was reported	unsaturated hydrocarbons removed
	in presence of butanol, washed
	with a pase and H_2O , distilled; b.p. 150.7°C, $n_p(25°C) = 1.4046$.
	ESTIMATED ERROR:

REFERENCES:

_	209
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Kogan, V.B.; Deizenrot, I.V.;
(2) Nonane; C ₉ H ₂₀ ; [111-84-2]	Kul'byaeva, T.A.; Fridman, V.M. Zh. Prikl. Khim. <u>1956</u> , 29, 1387-92.
VARIABLES:	PREPARED BY:
Temperature: 275 - 333 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Mutual solubility of metha	nol and nonane
$t/^{\circ}$ C 100 w_1	x ₁ (compiler)
(2)-rich phase (1)-rich	phase (2)-rich phase (1)-rich phase
2 1.91 86.17	0.0723 0.9614
10 a) 2.6 86.2	0.096 0.962
20 2.80 86.17	0.1034 0.9614
20 a) 2.8 84.5	0.103 0.956
40 3.77 79.93	0.1356 0.9410
60 8.80 78.48	0.2786 0.9359
AUXILIA	Y INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The analytical method was used. Th two-phase mixture was periodicall shaken in a thermostatted burett with water jacket for several hours The phases were taken out for analysis after separation. Methano was determined two-times by reactic with phthalic anhydride.	e (1) source not specified, pure grade; distilled; < 0.01% of water; $n_p(20^{\circ}C) = 1.3391$. (2) source not specified; used as received; b.p. 150.5°C, $n_p(20^{\circ}C) = 1.4035$.
	ESTIMATED ERROR:
	<pre>soly. < ±1% (relative error of</pre>
	REFERENCES :

210		
COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Methanol; CH ₄ O; [67-56-1]	Kiser, R.W.; Johnson, G.D.;	
(2) Nonane; C ₂ H ₂₀ ; [111-84-2]	Shetlar, M.D.	
	J. Chem. Eng. Data <u>1961</u> , 6, 338-41.	
VARIABLES:	PREPARED BY:	
Temperature: 278 - 313 K	A. Skrzecz	
EXPERIMENTAL VALUES:		
Solubility of nonar	le in methanol	
$t/^{\circ}C$ g(2)/100 ml(1) 100 w ₁ (4	compiler) x_2 (compiler)	
5 8.4 9.4	0.0254	
10 9.5 10.6	0.0288	
15 10.5 11.6	0.0319	
20 11.6 12.8	0.0353	
25 12.9 14.1	. 0.0394	
30 14.2 15.4	0.0434	
35 15.5 16.6	0.0475	
40 17.0 18.0	0.0520	
Concentrations were recalculated usi by ref 1 : ρ/ρ(4°C) = 0.80999 - 9.253 10 ⁻⁴ (t/	ng the density equation for methanol °C) - 4.1 10 ^{.7} (t/°C) ²	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The isoplethal or cloud point method was used. Samples of known composition were heated and/or cooled and the temperature of phase transition was noted. In general, the phase transition most reproducible and easily observed, and therefore chosen, was the unmixing temperature (cloud point) obtained when a miscible solution was cooled until the finely dispersed solute was just no longer completely miscible.	 (1) E.I. du Pont de Nemours and Co.; distilled; n₀(20°C) = 1.3293, b.p. 64.6°C (corrected), f.p99°C. (2) Matheson, Coleman and Bell; used as received; contained small amounts of unsaturated impurities; n₀(20°C) = 1.40545. ESTIMATED ERROR: soly. ±2% (relative error); temp. ±0.2 K. REFERENCES: 1. International Critical Tables yol. 3. New York, 1933. 	

COMPONENTS:		ORIGINAL MEASUREMENTS:
(1) Methanol; CH40; [6]	-56-1]	Hoelscher, I.F.;
(2) Nonane; C ₉ H ₂₀ ; [111	-84-2]	Schneider, G.M.: Ott, J.B.
		Fluid Phase Equilib. <u>1986</u> , 27, 153-69.
VARIABLES:		PREPARED BY:
Temperature: 349 - 387 Pressure: 0.1 - 150 MP	K a	A. Skrzecz
EXPERIMENTAL VALUES:		
Solubility of m	ethanol and non	ane
Т/К р/мРа	x ₁ 10 (cc	mpiler)
352.6 0.1	0.66 3	2.7 UCST extrapolated
348.8 1.0	0.481 1	8.8
	0.481 1	8.8
357.0 30.0	0.481 1	8-8
359.5 40.0	0.481 1	8.8
361.6 50.0	0.481 1	8.8
363.6 60.0	0.481 1	8.8
367.5 80.0	0.481 1	8.8
370.9 100.5	0.481 1	8.8
374.1 120.3	0.481 1	8.8
377.2 140.3	0.481 1	8.8
378.6 150.4	0.481 1	8.8
351.0 1.0	0.517 2	1.1
354.0 10.0	0.517 2	1.1
	0.51/ 2	1.5
362.5 40.0	0.517 2	1.1
364.8 50.0	0.517 2	1.1
367.1 60.0	0.517 2	1.1
		(continued)
	AUXILIARY I	NFORMATION
METHOD/APPARATUS/FROCEDURE: A high-pressure optica With sapphire windows w	l cell (ref 1)	SOURCE AND PURITY OF MATERIALS: (1) Fisher, purity 0.999 mole fraction: distilled twice over Na
-to-Al sandwich seals a	nd magnetic	in 2 m column packed with glass
stirring was used. Pre	ssure was	helices; purity > 0.9999 mole
measured with a Heise g	auge calibrated	fraction by glc analysis.
against a dead-weight g	auge,	(2) Fluka, purissimum grade,
thermocouple calibrated	mel-to-alumel	purity > 99.5 %; purity 0.9955
Certified platinum resi	stance	used as received.
thermometer. Equilibri	um temperatures	
were obtained from visu	al observation	
of phase separation as	the sample was	
Cooled. Composition wa	s determined	
from the volumes added	to the cell.	
exclude moisture Data	e taken to	
Were extrapolated.	IOI V.I MPA	
		ESTIMATED ERROR:
		temp. IU.2 K, IU.1 K at $p = 0.1$
		nressure +0 2 MPa
		composition ±0.005 mole fraction.
		REFERENCES:
		G.M. J. Chem. Thermodyn. 1975.
		7, 805.

COMPONENTS :					ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]					Hoelscher, I.F.; Schneider, G.M.: Ott. J.B.
(2)	(2) Nonane; C _o H ₂₀ ; [111-84-2]				
					Fluid Phase Equilib. <u>1986</u> , 27, 153-69.
EXPER	IMENTAL VAL	UES: (Continu	led)		
	Solub	ility of met)	nanol and	nonan	e
	T/K	p/MPa	x_1	100	7 ,1
	371.3	80.0	0.517	(comp 21.	11er) 1
	374.9	100.6	0.517	21.	1
	378.3	120.3	0.517	21.	1
	381.7	140.0	0.517	21.	1
	383.2	150.4	0.517	21.	1
	352.4	1.0	0.578	25.	5
	355.6	10.0	0.578	25.	5
	358.9	20.0	0.578	25.	5
	364 5	40.0	0.578	25.	5
	504.5	40.0	0.570		
	366.8	50.0	0.578	25.	5
	369.1	60.0	0.578	25.	5 5
	373.3	100.3	0.578	25.	5
	381.1	120.0	0.578	25.	5
	384.4	140.4	0.578	25.	5
	386.1	150.4	0.578	25.	5
	352.8	1.0	0.612	28.	3
	356.1	10.0	0.612	28.	3
	359.2	20.0	0.612	28.	3
	362.2	30.0	0.612	28.	3
	365.0	40.0	0.612	28.	3
	367.4	50.0	0.612	28.	3
	369.7	60.0	0.612	28.	3
	374.0	80.0	0.612	28.	3
	3//.9	120.3	0.612	20.	2
	384 6	140.3	0.612	20.	3
	386.1	150.0	0.612	28.	3
	352.9	1.0	0.644	31.	1
					_
	356.0	10.0	0.644	31.	1
	359.4	20.0	0.644	.لد دد	1
İ	364 0	40 0	0.644	21.	⊥ 1
	346.1	20.2	0.586	28	4
	348.9	30.0	0.586	28.	4
	351.4	40.1	0.586	28.	4
	354.0	50.1	0.586	28.	4
	356.3	60.3	0.586	28.	4
	360.4	80.2	0.586	28.	4
	364.1	100.6	0.586	28.	4
	367.5	120.4	0.586	28.	4
	370.6	140.1	0.586	28.	4
	372.3	150.7	0.586	28.	4
	339.8	1.0	0.603	29.	۲ ۵
	342.9	10.0	0.003	29.	ت
	340.2 319 0	20.0 20 Q	0.603	29. 29	9
	351.7	40.1	0.603	29.	9
	354.0	50.0	0.603	29.	9
			· ·	-	

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Methanol; CH₂O; [67-56-1] Hoelscher, I.F.; Schneider, G.M.: Ott, J.B. (2) Nonane; C_oH₂₀; [111-84-2] Fluid Phase Equilib. 1986, 27, 153<u>-69</u>. EXPERIMENTAL VALUES: (Continued) Solubility of methanol and nonane 100 W₁ T/Kp/MPa x_1 (compiler) 0.603 356.4 60.0 29.9 360.7 80.2 0.603 29.9 29.9 364.4 100.6 0.603 29.9 368.0 121.1 0.603 371.2 140.8 0.603 29.9 339.7 33.9 1.0 0.646 342.8 10.0 0.646 33.9 346.1 20.1 33.9 0.646 348.9 30.1 0.646 33.9 351.5 40.1 0.646 33.9 50.1 0.646 353.9 33.9 356.2 60.0 0.646 33.9 360.3 80.0 0.646 33.9 364.2 101.2 0.646 33.9 367.5 121.0 0.646 33.9 370.8 141.0 0.646 33.9 372.1 150.8 0.646 33.9 342.8 0.659 9.9 35.2 346.1 20.1 0.659 35.2 349.0 30.1 0.659 35.2 351.5 40.0 35.2 0.659 353.9 50.0 0.659 35.2 356.2 60.1 0.659 35.2 360.4 80.0 0.659 35.2 364.3 100.8 0.659 35.2 35.2 368.0 121.0 0.659 35.2 371.0 140.7 0.659 339.2 0.9 0.716 41.4 342.4 9.9 0.716 41.4 345.7 20.0 0.716 41.4 348.3 30.1 41.4 0.716 41.4 351.0 40.1 0.716 353.5 50.1 41.4 0.716 367.4 50.0 0.644 31.1 369.5 60.0 0.644 31.1 373.8 80.0 0.644 31.1 377.8 100.5 0.644 31.1 381.3 119.8 0.644 31.1 31.1 384.8 139.8 0.644 386.4 149.9 0.644 31.1 0.681 352.6 1.0 34.8 355.7 10.0 0.681 34.8 358.8 20.0 0.681 34.8 361.8 30.0 0.681 34.8 364.8 40.1 0.681 34.8 367.1 50.0 0.681 34.8 34.8 369.3 60.0 0.681 373.7 80.0 0.681 34.8 377.7 34.8 0.681 100.3 381.1 120.3 0.681 34.8 384.6 140.3 0.681 34.8 386.3 149.9 0.681 34.8 0.709 352.9 1.0 37.8 37.8 356.1 10.0 0.709 359.4 20.0 0.709 37.8 (continued)

214						
COMPONENTS :	ORIGINA					
(1) Methanol; CH ₄ O; [67-56-1]	Hoels					

(2) Nonane; C₉H₂₀; [111-84-2]

AL MEASUREMENTS:

oelscher, I.F.; Schneider, G.M.: Ott, J.B.

Fluid Phase Equilib. <u>1986</u>, 27, 153-69.

EXPERIMENTAL VALUES: (Continued)

Sol T/	ubilit 'K	y of 1 <i>p/</i> MPa	nethanc x	ol and	nonan 100 w ₁	e
362.	2	30.0	0.	709	(comp 37.	iler) 8 8
367.	4	50.0	ö.	709	37.	8
369.	6	60.0	0.	709	37.	8
373.	0	80.0	0.	709	37.	D
377.	6	100.3	0.	709 709	37.	8 R
384.	7	140.1	ö.	709	37.	8
386.	5	149.9	0.	709	37.	8
352.	2	1.0	0.	774	46.	1
355.	0	10.0	0.	774	46.	1
361.	7	30.0	0.	774	46.	1
364.	5	40.0	0.	774	46.	ī
366.	9	50.0	0.	774	46.	1
369.	1	60.0	0.	774	46.	1
373.	2	80.0	0.	774	46.	1
377.	1	99.8	0.	774	46.	1
380.	່ຽ ວ	140.2	0.	774	40.	1.
385.	7	149.9	0.	774	46.	1
351.	4	1.0	0.	800	50.	0
354.	4	10.0	0.	800	50.	0
357.	6	20.0	0.	800	50.	0
360.	8	30.0	0.	800	50.	0
363.	4	40.0	0.	800	50.	0
365.	8	50.0	0.	800	50.	0
372.	1	80.0	0.	800	50.	0
375.	9	100.4	0.	800	50.	ŏ
379.	3	120.3	0.	800	50.	Ó
382.	5	140.3	0.	800	50.	0
384.	1	150.2	0.	800	50.	0
349.	0	10.0	0.	832	55.	3
552.		10.0	0.	052	55.	5
356.	0	20.0	0.	832	55.	3
359.	5	40.0	0.	832	55	ב ר
363.	7	50.0	0.	832	55.	3
365.	8	60.0	ο.	832	55.	3
369.	5	80.0	0.	832	55.	3
372.	6	100.3	0.	832	55.	3
375.	7	120.3	0.	832	55.	3
378.	2	140.0	0.	832	55.	ປ າ
200.	4	149.9	0.	032	55.	3
380.	2	149.9	ο.	832	55.	3

COMPONENTS:

(1) Methanol; CH₄O; [67-56-1]

(2) Nonane; C₉H₂₀; [111-84-2]

ORIGINAL MEASUREMENTS: Hoelscher, I.F.; Schneider, G.M.: Ott, J.B. Fluid Phase Equilib. 1986, 27,

153-69.

EXPERIMENTAL VALUES: (Continued)

COMMENTS AND ADDITIONAL DATA:

Data for isopleths at high pressures were fitted to the Simon equation

$$p(x,T)/MPa = a[(T/T_{o})^{c}-1]$$

From these equations, the corresponding (T, x) isobars were calculated and were fitted to the equation

 $T/K = T_c/K + k |y - y_c|^{\nu}$

where

$$y = \alpha x_{1} / [1 + x_{1} (\alpha - 1)]$$

$$y_{c} = \alpha x_{c1} / [1 + x_{c1} (\alpha - 1)]$$

The coefficients found are (s = std. error of estimate):

 x,	Т	а	C	s/K			
0.481	348.5	93.56	11.61	0.11			
0.517	350.8	93.14	10.90	0.15			
0.578	352.2	97.13	10.22	0.15			
0.612	352.5	85.82	11.13	0.06			
0.644	352.7	95.21	10.41	0.15			
0.681	352.3	92.63	10.51	0.13			
0.709	352.7	94.31	10.49	0.17			
0.774	351.9	85.98	11.04	0.14			
0.800	351.0	81.03	11.71	0.12			
0.832	349.3	63.50	14.46	0.19			
					<u></u>		
 p/MPa	T _c /K	k	α	x _{c1}	v	S	
0.1	352.6	-1946	0,985	0,662	3,622	0.11	
25	360.6	-2986	0.991	0.667	3.812	0.11	
50	367.2	-5137	0.902	0.669	4.111	0.10	
75	372.9	-7292	0.838	0.670	4.290	0.09	
100	377.8	-8701	0.793	0.670	4.359	0.08	
-							
125	382.2	-1187	0.767	0.670	4,502	0.07	
125 150	382.2 386.2	-1187 -1410	0.767 0.751	0.670 0.670	4.502 4.565	0.07 0.08	

Equations are also given for (p, x) pairs, which are of the same form as those for the (T, x) pairs.

COMPONENTS :			ORIGINAL MEASUREMENTS	:	
(1) Methanol	; CH ₄ O; [67-5	6-1]	Higashiuchi, H.; Sukuragi, Y.;		
(2) Nonane;	C ₀ H ₂₀ ; [111-84	-2]	Iwai, Y.; Arai, Y.; Nagatani, M.		
	/ 20		Fluid Phase Equi	lib. <u>1987</u> , 36,	
			35-47.		
VARIABLES:			PREPARED BY:		
Temperature:	298 - 333 K		A. Skrzecz	<u></u>	
EXPERIMENTAL VA	LUES :				
Mut	ual solubilit	y of methano	l and nonane		
t∕°c	x_1	-	100 W ₁ (con	npiler)	
	(2)-rich phase	e (1)-rich ph	ase (2)-rich phas	se (1)-rich phase	
25.00	0.0999	0.9664	2.70	87.78	
30.00	0.1209	0.9608	3.32	85.96	
35.00	0.1298	0.9557	3.59	84.35	
40.00	0.1575	0.9454	4.46	81.22	
45.00	0.1846	0.9377	5.35	78.99	
50.00	0.2138	0.9348	6.36	78.17	
55.00	0.2554	0.9234	7.89	75.07	
60.00	0.3109	0.9091	10.13	71.42	
		AUXILIARY	INFORMATION		
METHOD / APPARATI	IS / PROCEDURE ·		SOURCE AND PURITY OF	MATERIALS:	
METHOD/APPARATUS/PROCEDURE: The analytical method was used. Thermostatically controlled double- walled glass cells which were similar to that of ref 1 were used. Samples of both phases in equilibrium were carefully withdrawn with a precision syringe and the compositions were determined by gas chromatogrphy with FID. No further details were reported.			 (1) source not spreagent grade used as reces (2) source not spreagent grade used as reces 	pecified, guaranteed e, purity > 99%; ived. pecified, guaranteed e, purity 98.0%; ived.	
			ESTIMATED ERROR:		
			soly. ±1% (accura temp. ±0.05°C (th	ancy); ermostating).	
			REFERENCES: 1. Fabries, JF Renon, H. <i>J. Chem. Eng.</i>	.; Gustin, JL.; <i>Data <u>1977</u>, 22,</i> 303	

	217				
COMPONENTS:	ORIGINAL MEASUREMENTS:				
(1) Methanol; CH ₄ O; [67-56-1]	Kiser, R.W.; Johnson, G.D.; Shetlar, M.D.				
(2) 2,2,5-Trimethylhexane; C ₉ H ₂₀ ;					
[3522-94-9]	J. Chem. Eng. Data <u>1961</u> , 6, 338-41.				
VARIABLES:	PREPARED BY:				
Temperature: 278 - 331 K	A. Skrzecz				
EXPERIMENTAL VALUES:					
Solubility of 2,2,5	-trimethylhexane in methanol				
$t/^{\circ}C$ g(2)/100 ml(1) 100 w ₁	(compiler) x_2 (compiler)				
5 16.2 16	.7 0.0478				
10 17.9 18	.3 0.0529				
15 20.0 20	.1 0.0591				
20 22.1 21	.8 0.0652				
25 24.7 23	.9 0.0727				
30 28.0 26	.4 0.0821				
35 31.6 28	.9 0.0922				
40 36.0 31	.8 0.1043				
57.5 UCST					
AUXILIARY INFORMATION					
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:				
The isoplethal or cloud point method was used. Samples of known composition were heated and/or cooled and the temperature of phase transition was noted. In general, the phase transition most reproducible and easily observed, and therefore chosen, was the unmixing temperature (cloud point) obtained when a miscible solution was cooled until the finely dispersed solute was just no longer completely miscible.	 (1) E.I. du Pont de Nemours and Co.; distilled; n₀(20°C) = 1.3293, b.p. 64.6°C (corrected), f.p99°C. (2) Matheson, Coleman and Bell; used as received; 0.2 mole % of impurities of unsaturated nature by u.v. analysis; n₀(20°C) = 1.3997. 				
	ESTIMATED ERROR: soly. ±2% (relative error); temp. ±0.2 K.				
	REFERENCES: 1. International Critical Tables vol. 3, New York, <u>1933</u> .				
	•				

COMPONENTS:ORIGINAL MEASUREMENTS:(1) Methanol; CH40; [67-56-1]Herz, W.; Schutan, P.(2) 1,2,3,4-Tetrahydronaphthalene
(tetralin); C10H12; [119-64-2]Z. Phys. Chem. 1922, 101,
269-85.VARIABLES:PREPARED BY:One temperature: 298 KA. Skrzecz

EXPERIMENTAL VALUES:

The solubility of methanol in 1,2,3,4-tetrahydronaphthalene at $25^{\circ}C$ was reported to be 49.4% (type of % was not reported).

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: The saturated mixture was kept at 25°C for 24 h and its density was measured. The concentration was calculated from density as a fn. of concentration obtained from four experimental points.	SOURCE AND PURITY OF MATERIALS: (1) source not specified; purified with Ag ₂ O to remove aldehyde, distilled over CaO to remove H ₂ O: b.p. 64.1°C at 747 Torr, $\rho(25°C)/\rho4°C) = 0.7867.$ (2) GmbH in Rodleben; dist. in vacuum over Na, dist. several times; b.p. 207.3°C, $\rho(15.1°C) =$ 0.9731, $\rho(15.1°C) = 0.9658.$
	ESTIMATED ERROR: not specified.
	REFERENCES:

Components:	ORIGINAL MEASUREMENTS:				
(1) Methanol; CH ₄ O; [67-56-1]	Francis, A.W.				
(2) Cymene (methyl(1-methylethyl)- benzene); C ₁₀ H ₁₄ ; [25155-15-1]	Ind. Eng. Chem. <u>1944</u> , 36, 1096-1104.				
(3) Diethylbenzene; C ₁₀ H ₁₄ ; [25340-17-4]					
<pre>(4) Bicyclo[4.4.0]decane (decalin, decahydronaphthalene); C₁₀H₁₈; [91-17-8]</pre>					
VARIABLES:	PREPARED BY:				
Temperatures: 240, 255, 374 K	A. Skrzecz				
EXPERIMENTAL VALUES:					
Methanol + Cymene: UCST = -33°C. Methanol + Diethylbenzene: UCST = -18°C. Methanol + Bicyclo[4.4.0]decane: UCST = 101°C.					
AUXILIARY IN	FORMATION				
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The reagents, about 1 mL of each, were introduced into a small tube and stirred with a thermometer while the tube was warmed gradually in a bath of water or glycerol or was cooled with ice or a bath of acetone and dry ice. The temp. of disappearance or reappearance of the cloud was read three or four times in each direction. The proportion of components was varied to obtain the critical solution temperature.	SOURCE AND FURITY OF MATERIALS: (1) source not specified; dried. (2) presumably synthesized by alkylation and distilled in the laboratory; the isomers were not separated, structure was not investigated; properties agreed with those recorded for meta and para isomers; b.p. 176°C. (3) As for (2); b.p. 187°C. (4) Source not specified; b.p. 194.6°C. ESTIMATED ERROR:				
	not specified.				
	REFERENCES:				

ł

220					
COMPONENTS :	······		ORIGINAL MEASUREMENTS:		
(1) Methand	ol; CH ₄ O; [67-5	56-1]	Antosik, M.; S	tafiej, A.	
(2) trans-Bicyclo[4.4.0]decane			Fluid Phase Eq	uilib. <u>1990</u> , 58,	
(trans-	-decalin, tran	s-decahydro-	325-33.		
naphtha	alene); $C_{10}H_{18}$;	[493-02-7]			
VARIABLES:			PREPARED BY:		
Temperature	e: 319 - 370 K		A. Skrzecz		
EXPERIMENTAL	VALUES:				
Mutu	ual solubility	of methanol	and trans-decali	n	
T/K	<i>x</i> ₁		100 W ₁ (c	compiler)	
	(2)-rich phas	e (1)-rich ph	ase (2)-rich ph	ase (1)-rich phase	
319.43	-	0.9515	-	81.97	
326.00	-	0.9455	-	80.08	
337.07	-	0.9352	-	76.98	
345.28	0.2584	-	7.472	-	
353.03	0.3133	-	9.563	-	
355.23	0.3388	-	10.615	-	
360.59	-	0.9060	-	69.08	
364.32	0.4576	-	10.322	-	
364.80	_	0.8694	-	60.67 EC 07	
365.54	-	0.8510	-	56.97	
365.07	0.4918	-	10.32	-	
369.00	0 5255	0.8478	-	-	
368 83	0.5233	_	20.42	_	
369.17	0.6120	-	26.77	-	
369.84	-	0.7822	-	45.43	
000004		011022		(continued)	
				(0001	
AUXILIARY INFORMATION					
METHOD/APPARA	TUS/PROCEDURE:		SOURCE AND PURITY (OF MATERIALS:	
The cloud p	point method w	as used.	(1) source not specified; distilled; nurity 99.9 wt% by glc with FID:		
composition	n was sealed i	n glass	water < 0.03 wt% (Karl Fischer).		
ampoules an (stability	nd immersed in within 0.005	thermostat K) with a			
platinum re	esistance ther	mometer.	(2) source not specified; distilled; purity 99.8 wt% by glc with FID.		
Sample was	mixed by a gl ed in the mech	ass ball anicllv-			
agitated an	mpoule. Visua	1			
disappeara	ns of appearan nce of turbidi	ce and ty were			
made during	g heating/cool	ing.			
				5 mole fraction	
			(estimat	ed); in the vicinity of	
			UCST,	in the vicinity of	
			±0.2 K t UCST (r	emp. much lower than eproducibility).	
			REFERENCES:		

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Antosik, M.; Stafiej, A.
<pre>(2) trans-Bicyclo[4.4.0]decane (trans-decalin, trans -decahydro-naphthalene); C₁₀H₁₈; [493-02-7]</pre>	Fluid Phase Equilib. <u>1990</u> , 58, 325-33.

```
EXPERIMENTAL VALUES: (continued)
```

Mutual solubility of methanol and trans-decalin

T/K	<i>x</i> ₁		100 w ₁ (comp:	iler)
	(2)-rich phase	e (1)-rich phase	(2)-rich phase	(1)-rich phase
369.87	0.6785	-	32.85	-
369.96	0.6948	-	34.54	-
370.04	-	0.7556	-	41.74
370.07	0.7357	-	39.21	- ·
370.08	0.7275	0.7275	38.22	38.22 UCST a)

a) Upper critical solution temperature and composition were extrapolated by the authors from experimental data.

Authors' correlation equation:

 $\begin{aligned} x &= 0.7313 - 23.8596 \ t + 17.7653 \ t^{0.9} + 7.5694 \ t^{1.4} + 1.6184 \ b \ t^{0.4564} + \\ &- 1.8048 \ b \ t^{0.9564} \end{aligned}$ where $t &= 1 - T/T_c$ $b &= 1 \ for \ x > x_c, \ -1 \ for \ x < x_c$ $T_c, \ x_c - upper \ critical \ solution \ temperature, \ composition. \end{aligned}$

COMPONENTS:	EVALUATOR:
(1) Methanol; CH ₄ O; [67-56-1]	A. Skrzecz
	Institute of Physical Chemistry
(2) Decane; C ₁₀ H ₂₂ ; [124-18-5]	Polish Academy of Sciences
	Warsaw, Poland
	J.W. Lorimer
	Department of Chemistry
	The University of Western Ontario
	London, Ont., Canada
	July, 1989

Table 1 lists solubilities and upper critical solution temperatures (UCST) and compositions for the system methanol (1) - decane (2) which have been reported in the literature.

Table 1. Solubilities, upper critical solution temperatures and compositionsfor the system methanol (1) - decane (2)

Author(s)		Range	
	T/K	<i>x</i> ₁	<i>x</i> ₁
		(2)-rich phase	(1)-rich phase
1. Bingham 1907	349 UCST	-	-
2. Fischer 1949	374.7 UCST	-	-
3. Zieborak 1956	364 UCST	-	-
4. Zieborak 1958	364.1 UCST	-	•
5. Kiser 1961	278-313	-	0.966-0.983
6. Hoelscher 1986	359-390 ^a	0.512-0.689	0.718-0.831
	363.9 or 364.	.0	0.703
7. Higashiuchi 1987	298-333	0.083-0.238	0.938-0.976

^a At elevated pressures, p = 0.1-100.6 MPa critical values at 0.1 MPa.

Critical Solution Temperature and Composition

The UCST of Bingham, ref. 1, and of Fischer and Neupauer, ref. 2, are rejected. The value of ref. 1 is in poor agreement with others and all values of UCST reported in ref. 2 for different alcohol-hydrocarbon systems are higher by about 10-20 K than recommended or tentative values, indicating a significant amount of impurities, probably water. Values of the UCST by Zieborak et al., refs. 3 and 4, and by Hoelscher et al., ref. 6, are in good agreement, and the average $T_c = 364.0 \pm 0.2$ K (std. dev.) is *recommended*; both sets of workers took great care to prevent contamination with moisture. (The paper of Hoelscher et al. actually gives two separate values, but their difference is well within experimental error.)

(continued)

CRITICAL EVALUATION: (continued)

The only value of the critical composition is that of Hoelscher et al., ref. 6: $x_{c1} = 0.703$. This value is considered to be *tentative*.

Mutual Solubility

Thirty-three values of mutual solubility, in addition to points designated specifically as critical solution points, have been reported. These are shown in the figure, from which it is seen that the only region of overlap is between the values of Kiser et al., ref. 5, and Higashiuchi et al., ref. 7 for the solubility of methanol in decane. At a general level of error of about 0.005 mole fraction, points in this region can be *recommended*. The remaining points appear to lie on a smooth curve, and are considered as *tentative*.

The data of Hoelscher et al., ref. 6, require comment. These authors extrapolated their data measured at high pressures to 0.1 MPa, and gave the results for p = 0.1 MPa in terms of fitting equations and tables of constants, which, with values calculated therefrom, are given on the compilation sheets. The basic experimental data were obtained through a carefully-conducted study with precautions to avoid contamination with water, and are considered to be *tentative*.

See the compilation sheets for the data of Hoelscher et al. at higher pressures, where the methods of fitting and extrapolation are described. These data can also be considered as *tentative*.

The mutual solubilities given in the table below were obtained by fitting all data to the equation:

$$x_1 = x_{c1} \pm B_1 \theta^{\beta} \pm B_2 \theta^{\beta+w} + A_1 \theta \pm B_3 \theta^{\beta+2w} + A_2 \theta^{1-\alpha+w}$$

where $\theta = |1 - T/T_c|$, + and - refer to the branches below and above the critical composition, and the constants have their theoretical values $\beta = 0.325$, $\alpha = 0.11$, w = 0.5. The constants (with standard deviations in parentheses) are:

$x_{c1} = 0.7047 \ (0.0012)$	$T_{\rm c}/{\rm K} = 363.9 \ (0.1)$
$B_1 = 0.5522 \ (0.012)$	$B_2 = 1.2526 \ (0.078) \ B_3 = -1.9516 \ (0.13)$
$A_1 = -2.5764 \ (0.070)$	$A_2 = 3.1246 \ (0.14) \ s = 0.0033$

s is the total standard error of estimate in composition.

Pressure Coefficient of Critical Solution Temperature

This quantity can be calculated from the fitting equations of Hoelscher et al.:

$$(\partial T/\partial p)_r = T_o/ac = 3.60 \times 10^{-7} \text{ K Pa}^{-1}$$

where T_0 , a and c are constants given on the compilation sheet.

CRITICAL EVALUATION: (continued)

Table 2. Recommended values of mutual solubility in the system methanol (1) - decane (2).

T/K	x ₁ (2)-rich phase	x ₁ (1)-rich phase	T/K	x ₁ (2)-rich phase	x ₁ (1)-rich phase
270	0.0413	0.9893	320	0.1636	0.9548
275	0.0450	0.9867	330	0.2180	0.9423
280	0.0503	0.9841	340	0.2886	0.9245
285	0.0573	0.9813	350	0.3834	0.8964
290	0.0661	0.9784	355	0.4459	0.8738
300	0.0895	0.9720	360	0.5301	0.8360
310	0.1215	0.9643	363.5	0.6405	0.7644
			364.0	0.703 UC	ST

REFERENCES:

- 1. Bingham, E.C. Am. Chem. J. 1907, 37, 549.
- 2. Fischer, R.; Neupauer, E. Mikrochem. Ver. Mikrochim. Acta 1949, 34, 319.
- 3. Zieborak, K.; Maczynska, Z.; Maczynski, A. Bull. Acad. Pol. Sci., Cl.3 1956, 4, 153.
- 4. Zieborak, K.; Maczynska, Z. Rocz. Chem. <u>1958</u>, 32, 295.
- 5. Kiser, R.W.; Johnson, G.D.; Shetlar, M.D. J. Chem. Eng. Data <u>1961</u>, 6, 338.
- 6. Hoelscher, I.F.; Schneider, G.M.; Ott, J.B. Fluid Phase Equilib. <u>1986</u>, 27, 153.
- Higashiuchi, H.; Sukuragi, Y.; Iwai, Y.; Arai, Y.; Nagatani, M. Fluid Phase Equilib. <u>1987</u>, 36, 35.

Fig. 1: Mutual solubilities in the system methanol-decane; ▲, ref. 5; ●, ref. 6; □, ref. 7; solid curve, fitting equation.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH_2O ; [67-56-1]	Bingham, E.C.
(2) Decane; C ₁₀ H ₂₂ ; [124-18-5]	Am. Chem. J. <u>1907</u> , 37, 549-57.
VARIABLES:	PREPARED BY:
One temperature: 349 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 76°C.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
burettes to thick-walled glass tubes	used as received.
of about 2 mm internal diameter and	(a) Wahlhaum the best musuided.
tubes and the components during the	used as received.
adding procedure were protected from	ESTIMATED EDDOR
reported.	not specified.
	REFERENCES :
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH40; [67-56-1]	Fischer, R.; Neupauer, E.
(2) Decane; $C_{10}H_{22}$; [124-18-5]	Mikrochem. Ver. Mikrochim. Acta
	<u>1949</u> , <i>34</i> , 319-35.
VARIABLES:	PREPARED BY:
One temperature: 375 K	A. Skrzecz
EXPERIMENTAL VALUES	
The UCST was reported to be 101.5°C.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The cloud point method was used. The sample in a sealed glass	(1) source not specified; purified; $n_{1}(20^{\circ}C) = 1.3313$.
capillary was placed in a melting	
point microapparatus and the appearance of the	(2) source not specified; $n_{c}(20^{\circ}C) = 1.4157$.
meniscus with temperature changes	
was observed. The mass of the sample Was 0.001-0.002 g. The method is	ESTIMATED ERROR:
described in ref 1.	
	REFERENCES:
	1. Fischer, R.: Karasek G

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Zieborak, K.; Maczynska, Z.;
	Maczynski, A.
(2) Decane; C ₁₀ H ₂₂ ; [124-18-5]	Bull. Acad. Pol. Sci. Cl3 <u>1956</u> , 4, 153-7.
VARIABLES:	PREPARED BY:
One temperature: 364 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 91°C.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The critical solution temperature was determined by the conventional method. Special care was taken to prevent contamination with moisture. No further details were reported.	 source not specified; dehydrated distilled in the presence of Na; b.p. 64.7°C. obtained from Fischer-Tropsch synthesis; unsaturated hydrocarbons removed by repeated shaking with H₂SO₄; b.p. 174.2°C.
	ESTIMATED ERROR: not specified.
	REFERENCES :
	Į
Components :	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Zieborak, K.; Maczynska, Z.
(2) Decane; C ₁₀ H ₂₂ ; [124-18-5]	Rocz. Chem. <u>1958</u> , 32, 295-302.
VARIABLES:	PREPARED BY:
One temperature: 364 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 90.9°C.	
Solubility data were presented on a	graph only.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The cloud point method was used. A mixture of constant composition was sealed in a glass tube and the temperatures of turbidity and clarity were observed visually. The mean of several results was reported.	 source not specified; distilled in the presence of Na; b.p. 64.7°C, n₀(25°C) = 1.3265. obtained from Synthin; unsaturated hydrocarbons removed by repeated shaking with H₂SO₄ in presence of butanol, washed with a base and H₂O, distilled; b.p. 174.2°C, n₀(25°C) = 1.4157.
	ESTIMATED ERROR: not specified.
	REFERENCES:

				227
COMPO	ONENTS:			ORIGINAL MEASUREMENTS:
(1)	Methano	D1; CH40; [67-5	6-1]	Kiser, R.W.; Johnson, G.D.;
(2)	Decane	; C ₁₀ H ₂₂ ; [124-18	3-5]	J. Chem. Eng. Data <u>1961</u> , 6, 338-41.
VARIA	ABLES :			PREPARED BY:
Tem	perature	278 - 313 K		A. Skrzecz
EXPER	RIMENTAL Y	VALUES:		
	_	Solubil	ity of decan	e in methanol
	t∕°C	g(2)/100 ml(1)) 100 w ₁	(compiler) x_2 (compiler)
	5	6.2	7.1	0.0170
	10	6.8	7.8	0.0188
	15	7.4	8.5	0.0205
	20	8.1	9.3	0.0225
	25	8.9	10,2	0.0248
	30	9.8	11.1	0.0275
	35	10.9	12.3	0.0306
	40	12.0	13.4	0.0337
			AUXILIARY	INFORMATION
METHO	D/APPARA	TUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
The was comj and tran phas and chos (clo miso the no	isoplet used. position the tern nsition se trans easily sen, was oud poir cible so finely longer o	chal or cloud p Samples of kno were heated a operature of ph was noted. In sition most rep observed, and the unmixing t) obtained wh plution was coo dispersed solu completely misc	oint method wn nd/or cooled ase general, the roducible therefore temperature en a led until te was just ible.	 (1) E.I. du Pont de Nemours and Co.; distilled; n₀(20°C) = 1.3293, b.p. 64.6°C (corrected), f.p99°C. (2) Matheson, Coleman and Bell; used as received; contained some unidentified unsaturated material, estimated impurities <0.5 mole %; n₀(20°C) = 1.4116.
				ESTIMATED ERROR: soly. ±2% (relative error); temp. ±0.2 K. REFERENCES: 1. International Critical Tables vol. 3, New York, <u>1933</u> .

COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) Methanol; CH ₄ O; [67-56-1]	Hoelscher, I.F.; Schneider, G.M.: Ott. J.B.		
(2) Decane; C ₁₀ H ₂₂ ; [111-84-2]			
	Fluid Phase Equilib. <u>1986</u> , 27, 153-69.		
VARIABLES:	PREPARED BY:		
Temperature: 359 - 390 K Pressure: 0.1 - 100 MPa	A. Skrzecz		
EXPERIMENTAL VALUES:			
Solubility of methanol and deca <i>T/K p/MPa x</i> 1 100 (com	ne W ₁ piler)		
364.0 0.1 0.70 34	.4 UCST extrapolated		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1		
365.4 20.0 0.512 19	.1		
368.2 30.0 0.512 19	.1		
370.9 40.0 0.512 19 373.4 50.0 0.512 19	.1		
375.8 60.0 0.512 19	.1		
380.1 80.0 0.512 19 383 3 100 3 0.512 19	.1		
	• •		
361.9 1.0 0.567 22 364 9 10 0 567 23	.8		
368.0 20.0 0.567 22	.8		
371.0 30.0 0.567 22	.8		
374.1 40.0 0.567 22	• 8		
	(continued)		
AUXILIARY IN	FORMATION		
METHOD/APPARATUS/PROCEDURE: A high-pressure optical cell (ref 1) with sapphire windows with Al-to-Au -to-Al sandwich seals and magnetic stirring was used. Pressure was measured with a Heise gauge calibrated against a dead-weight gauge, temperature with a chromel-to-alumel thermocouple calibrated against a certified platinum resistance thermometer. Equilibrium temperatures were obtained from visual observation of phase separation as the sample was cooled. Composition was determined from the volumes added to the cell. Special precautions were taken to exclude moisture. Data for 0.1 MPa were extrapolated.	SOURCE AND PURITY OF MATERIALS: (1) Fisher, purity 0.999 mole fraction; distilled twice over Na in 2 m column packed with glass helices; purity > 0.9999 mole fraction by glc analysis. (2) Phillips, purity 99 %; dist. in a 2-m glass column packed with glass beads; purity 0.9988 mole fraction by glc analysis.		
	ESTIMATED ERROR:		
	temp. ± 0.2 K, ± 0.1 K at $p = 0.1$ MPa. pressure ± 0.2 MPa. composition ± 0.005 mole fraction.		
	REFERENCES: 1. Liphard, K.G.; Schneider, G.M. J. Chem. Thermodyn. <u>1975</u> , 7, 805.		
COMPONENTS :			ORIGINAL MEASUREMENTS:
--	---	-----------------------	--
(1) Methanol; CH ₄ 0; [67-56-1]			Hoelscher, I.F.; Schneider, G.M.: Ott, J.B.
(2) Decane;	C ₁₀ H ₂₂ ; [111-	84-2]	Fluid Phase Equilib. 1986, 27.
			153-69.
EXPERIMENTAL VAI	UES: (Contin	ued)	
Solub	ility of met	chanol and	decane
T/K	p/MPa	<i>x</i> ₁	100 w ₁ (compiler)
376.9	50.0	0.567	22.8
379.5	60.0	0.567	22.8
384.2	100.3	0.567	22.8
363.4	1.0	0.611	26.1
366.5	10.0	0.611	26.1
369.9	20.0	0.611	26.1
372.7	30.0	0.611	26.1
378.5	50.0	0.611	26.1
381.1	60.0 80.0	0.611	26.1
389.6	100.3	0.611	26.1
363.9	1.0	0.631	27.8
366.9	10.0	0.631	27.8
370.2	20.0	0.631	27.8
375.1	30.0	0.631	27.8
378.8	50.0	0.631	27.8
381.3	60.0	0.631	27.8
386.0	80.0	0.631	27.8
389.9	100.3	0.631	27.8
364.0	1.0	0.689	33.3
370.5	20.0	0.689	33.3
373.4	30.0	0.689	33.3
376.0	40.0	0.689	33.3
378.6	50.0	0.689	33.3
381.1	60.0 80 0	0.689	33.3
565.7	0010	0.005	55.5
389.8	99.9	0.689	33.3
364.1 267 F	1.0	U.718 0 719	36 A
370.3	20.0	0.718	36.4
373.5	30.0	0.718	36.4
376.3	40.0	0.718	36.4
378.6	50.0	0.718	36.4
381.0	60.0	0.718	36.4 36.4
389.7	100.3	0.718	36.4
363.9	1.0	0.769	42.8
367.0	10.0	0.769	42.8
370.4	20.0	0.769	42.8
373.2	30.0	0.769	42.8
375.8	40.0	0.769	42.8
380.7	50.0 60.0	0.769	42.8
384.9	80.0	0.769	42.8
388.7	100.6	0.769	42.8
362 3	1.0	0.803	47 9

.

1

i

(continued)

COMPONENTS : ORIGINAL MEASUREMENTS: Hoelscher, I.F.; (1) Methanol; CH₄O; [67-56-1] Schneider, G.M.: Ott, J.B. (2) Decane; C₁₀H₂₂; [111-84-2] Fluid Phase Equilib. 1986, 27, 153-69. EXPERIMENTAL VALUES: (Continued) Solubility of methanol and decane 100 W₁ (compiler) T/K p/MPa \boldsymbol{x}_1 365.8 47.9 10.0 0.803 368.9 20.0 0.803 47.9 371.9 30.0 0.803 47.9 374.6 40.0 0.803 47.9 377.0 50.0 0.803 47.9 379.3 60.0 0.803 47.9 383.6 80.0 0.803 47.9 387.3 100.3 0.803 47.9 0.831 52.5 360.9 1.0 363.9 10.0 0.831 52.5 366.8 20.0 0.831 52.5 0.831 369.5 30.0 52.5 372.0 40.0 0.831 52.5 0.831 374.6 50.0 52.5 376.9 60.0 0.831 52.5 380.9 80.0 0.831 52.5 384.9 100.3 0.831 52.5 COMMENTS AND ADDITIONAL DATA: Data for isopleths at high pressures were fitted to the Simon equation $p(x,T)/MPa = a[(T/T_{o})^{c}-1]$ From these equations, the corresponding (T, x) isobars were calculated and were fitted to the equation $T/K = T_c/K+k|y-y_c|^{\nu}$ where $y = \alpha x_1 / [1 + x_1 (\alpha - 1)]$ $y_{c} = \alpha x_{c1} / [1 + x_{c1} (\alpha - 1)]$ The coefficients found are (s = std. error of estimate): \boldsymbol{x}_1 T_K а С s/K 0.512 359.0 84.54 11.82 0.15 0.567 361.4 125.27 8.10 0.11 362.9 9.64 0.611 101.12 0.15 0.631 363.4 10.18 0.08 95.31 0.689 363.8 104.89 0.08 9.71 0.718 363.8 95.76 10.49 0.14 0.769 78.65 363.5 12.28 0.04 0.803 362.0 12.87 0.07 72.60 0.831 360.6 104.86 10.30 0.08 (continued)

COMPONENTS:

•

COMPONENTS:	ORIGINAL MEASUREMENTS:	
 Methanol; CH₄O; [67-56-1] Decane; C₁₀H₂₂; [111-84-2] 	Hoelscher, I.F.; Schneider, G.M.: Ott, J.B. Fluid Phase Equilib. 1986. 27.	
	153-69.	

EXPERIMENTAL VALUES: (Continued)

p/MPa	T _c /K	k	α	x _{c1}	ν	S
0.1	363.9	-2739	0.494	0.703	2.479	0.10
25	372.0	-8994	0.361	0.707	3.115	0.12
50	378.8	-1572	0.482	0.697	3.410	0.11
75	384.6	-2744	0.844	0.682	3.513	0.10
100	389.8	-8565	1.814	0.663	3.453	0.11
125	394.5	-8866	5.453	0.649	3.336	0.12
150	398.8	-4096	1.086	0.644	3.181	0.24

Equations are also given for (p, x) pairs, which are of the same form as those for the (T, x) pairs.

232					
COMPONENTS:			ORIGINAL MEASUREMENTS:		
(1) Methanol; CH ₄ O; [67-56-1]		Higashiuchi, H.; Sukuragi, Y.;			
(2) Decane; C ₁₀ H ₂₂ ; [124-18-5]			Iwai, Y.; Arai Fluid Phase Equi 35-47.	, Y.; Nagatani, M. <i>lib. <u>1987</u>, 36</i> ,	
VARIABLES:			PREPARED BY:		
Temperature:	298 - 333 K	·····	A. Skrzecz		
EXPERIMENTAL VA	LUES :				
	Mutual sol	ubility of m	ethanol and decane		
t∕°c	<i>x</i> 1		100 w ₁ (compiler)		
1 (2)-rich phase	(1)-rich ph	ase (2)-rich pha	se (1)-rich phase	
25.00	0.0830	0.9763	2.00	90.27	
30.00	0.0970	0.9674	2.36	86.98	
35.00	0.1184	0.9648	2.94	86.06	
40.00	0.1378	0.9583	3.47	83.81	
45.00	0.1509	0.9563	3.85	83.13	
50.00	0.1805	0.9480	4.73	80.41	
55.00	0.2041	0.9443	5.46	79.24	
60.00	0.2377	0.9376	6.56	77.19	
		AUXILIARY	INFORMATION		
METHOD/APPARATU	S/PROCEDURE:		SOURCE AND PURITY OF	MATERIALS:	
The analytical method was used. Thermostatically controlled double- walled glass cells which were similar to that of ref 1 were used. Samples of both phases in equilibrium were carefully withdrawn with a precision syringe and the compositions were determined by gas chromatogrphy with FID. No further details were reported.		 (1) source not s reagent grad used as rece (2) source not s reagent grad used as rece 	pecified, guaranteed e, purity > 99%; ived. pecified, guaranteed e, purity > 99%; ived.		
			ESTIMATED ERROR:		
			temp. ±0.05 K (t	ancy); hermostating).	
			REFERENCES: 1. Fabries, JF Renon, H. J. Chem. Eng.	.; Gustin, JL.; <i>Data <u>1977</u>, 22,</i> 303	

	233		
Components:	ORIGINAL MEASUREMENTS:		
(1) Methanol; CH ₄ O; [67-56-1]	Francis, A.W.		
(2) Diethylmethylbenzene; C ₁₁ H ₁₆ ; [25550-13-4]	Ind. Eng. Chem. <u>1944</u> , 36, 1096-1104.		
(3) Ethylisopropylbenzene (ethyl (1-methylethyl)benzene); C ₁₁ H ₁₆ ; [26573-16-0]			
(4) sec-Pentylbenzene; C ₁₁ H ₁₆ ; [3968-85-2]			
VARIABLES:	PREPARED BY:		
Temperature: 283, 268, 267 K	A. Skrzecz		
EXPERIMENTAL VALUES: Methanol-Diethylmethylbenzene: UCS	T = 10°C.		
Methanol-Ethylisopropylbenzene: UC Methanol-sec-Pentylbenzene: UCST =	ST = -5°C. -6°C.		
AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The reagents, about 1 mL of each, were introduced into a small tube and stirred with a thermometer while the tube was warmed gradually in a bath of water or glycerol or was cooled with ice or a bath of acetone and dry ice. The temp. of disappearance or reappearance of the cloud was read three or four times in each direction. The proportions of components were varied to obtain the UCST.	SOURCE AND PURITY OF MATERIALS: (1) source not specified; dried. (2) presumably synthesized by alkylation and distilled in the laboratory; the isomers were not separated, structure was not investigated; properties agreed with those recorded for meta and para isomers; b.p. range 204-5°C. (3) As for (2); b.p. 194.8°C, $\rho(20^{\circ}C)/\rho(4^{\circ}C) = 0.8616.$ (4) source not specified; properties agreed with values in literature; b.p. 192°C.		
	ESTIMATED ERROR: not specified.		
	REFERENCES:		

COMPONENTS:	EVALUATOR:
(1) Methanol; CH ₄ O; [67-56-1]	A. Skrzecz and A. Maczynski
(2) Undecane; C ₁₁ H ₂₄ ; [1120-21-4]	Institute of Physical Chemistry Polish Academy of Sciences Warsaw, Poland
	July, 1989

CRITICAL EVALUATION:

Table 1 gives reported solubilities and upper critical solution temperatures (UCST) for the system methanol (1) - undecane.

Table 1. Solubilities and upper critical solution temperatures (UCST)for the system methanol (1) - undecane (2)

Author(s)	T/K	<i>x</i> ₁	<i>x</i> ₁
		(2)-rich phase	(1)-rich phase
1. Fischer 1949	386.7 UCST	-	-
2. Zieborak 1956	376 UCST	-	-
3. Zieborak 1958	375.2 UCST	-	-

The UCST of Fischer and Neupauer, ref. 1, is rejected because all UCST values reported in ref 1 for different alcohol-hydrocarbon systems are higher by about 10-20 K than Recommended values, which suggests a significant presence of impurities, probably water. This paper, ref. 1, is not compiled. The data of Zieborak et al., refs. 2 and 3, are considered reliable since great care was taken to prevent contamination with moisture. The UCST data of Zieborak et al., refs 2 and 3, are accepted as *tentative*.

TENTATIVE DATA:

UCST = 376 K

REFERENCES:

- 1. Fischer, R.; Neupauer, E. Mikrochem. Ver. Mikrochim. Acta 1949, 34, 319.
- 2. Zieborak, K.; Maczynska, Z.; Maczynski, A. Bull. Acad. Pol. Sci., Cl.3 1956, 4, 153.
- 3. Zieborak, K.; Maczynska, Z. Rocz. Chem. 1958, 32, 295.

	235
Components:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Zieborak, K.; Maczynska, Z.;
(2) Undecane; C ₁₁ H ₂₄ ; [1120-21-4]	Maczynski, A. Bull. Acad. Pol. Sci. Cl3 <u>1956</u> , 4, 153-7.
VARIABLES: One temperature: 376 K	PREPARED BY: A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 103°C.	
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE: The critical solution temperature was determined by the conventional method. Special care was taken to prevent contamination with moisture. No further details were reported.	SOURCE AND FURITY OF MATERIALS: (1) source not specified; dist. in presence of Na; b.p. 64.7°C. (2) Obtained from Fischer-Tropsch synthesis; unsatd. hydrocarbons removed by repeated shaking with H ₂ SO ₄ ; b.p. 195.8°C.
	ESTIMATED ERROR:
	not specified.
	REFERENCES:
	· · · · · · · · · · · · · · · · · · ·
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Methanol; CH₄O; [67-56-1] (2) Undecane; C₁₁H₂₄; [1120-21-4]</pre>	Zieborak, K.; Maczynska, Z. <i>Rocz. Chem. <u>1958</u>, 32, 295-</i> 302.
VARIABLES: One temperature: 375 K	PREPARED BY: A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 102.0° Solubility data were presented on	C. a graph only.
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. A mixture of constant composition was sealed in a glass tube and the temps. of turbidity and clarity were observed visually. The mean of several results was reported.	SOURCE AND PURITY OF MATERIALS: (1) source not specified; dist. in presence of Na; b.p. 64.7° C, $n_{0}(25^{\circ}$ C) = 1.4202.
	ESTIMATED ERROR: not specified.
	REFERENCES:

COMPONENTS:ORIGINAL MEASUREMENTS:(1) Methanol; CH40; [67-56-1]Francis, A.W.(2) Diisopropylbenzene (bis(1-methyl
ethyl)benzene); C12H18;
[25321-09-9]Ind. Eng. Chem. 1944, 36,
1096-1104.(3) Triethylbenzene; C12H18;
[25340-18-5]PREPARED BY:VARIABLES:PREPARED BY:
A. Skrzecz

EXPERIMENTAL VALUES:

Methanol-Diisopropylbenzene: UCST = 9°C. Methanol-Triethylbenzene: UCST = 19°C.

AUXILIARY INFORMATION

1

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The cloud point method was used. The	(1) source not specified; dried.
reagents, about 1 mL of each, were	(2) presumably synthesized by
introduced into a small tube and	alkylation and distilled; the
stirred with a thermometer while the	isomers were not separated,
tube was warmed gradually in a bath	structure was not investigated;
of water or glycerol or was cooled	properties agreed with those
with ice or a bath of acetone and dry	recorded for meta and para
ice. The temperature of	isomers; b.p. 205°C.
disappearance or reappearance of the	(3) as for (2) (no m- or p-
cloud was read three or four times in	isomers); b.p. range 217-8°C,
each direction. The proportion of	$\rho(20^{\circ}C)/\rho(4^{\circ}C) = 0.8737.$
components was varied to obtain the	
UCST.	
	ESTIMATED ERROR:
	not specified.

REFERENCES:

	237
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH40; [67-56-1]	Vojtko, J.; Hrusovsky, M.; Fancovic,
(2) 1-Dodecene; C ₁₂ H ₂₄ ; [112-41-4]	K.; Rattay, V.; Hargas, R. Chem. Zvesti <u>1973</u> , 27, 477-81.
VARIABLES:	PREPARED BY:
One temperature: 274 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Solubilities at 0.5°C:	
methanol in 1-dodecene: 100 $w_1 = 1$	1.6 or $x_1 = 0.079$ (compiler).
1-dodecene in methanol: 100 $w_2 = 0$	6.6 or $x_2 = 0.013$ (compiler).
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The analytical method was used. The mixtures, prepared by weighing the pure components, were stirred	(1) source not specified; rectified; b.p. 65°C, $n_0(20^\circ\text{C}) = 1.3285$, $\rho(20^\circ\text{C})/\rho(4^\circ\text{C}) = 0.7918$.
Equilibrium was reached after 10 h at the desired temp. Samples were taken by a syringe with a long needle Composition was determined by glc using the internal standard method. Data are also given for the ternary system 1-dodecene-methanol-	(2) obtained from a technical mixture of $C_{11} - C_{15}$ alkanes by rectification; b.p. 88.9°C at 10 Torr, $n_{\rm D}(20^{\circ}{\rm C}) = 1.4300$, $\rho(20^{\circ}{\rm C})/\rho(4^{\circ}{\rm C}) = 0.7600$.
solubility was also determined by isothermal titration as in ref 1.	ESTIMATED ERROR:
	temp. ±0.1 K.
	REFERENCES:
	1. Othmer, D.F.; White, R.E.; Trueger E. Ind. Eng. Chem. <u>1941</u> , 33, 1240.

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Methanol; CH₄O; [67-56-1] Francis, A.W. (2) Isopropylnaphthalene ((1-methyl-Ind. Eng. Chem. 1944, 36, ethyl)naphthalene); C13H14; 1096-1104. [29253-36-9] (3) 1,2,3,4-Tetrahydroisopropylnaphthalene (isopropyltetralin); C₁₃H₁₈; [26916-60-9] (4) Diisopropylmethylbenzene; $C_{13}H_{20}$; [26444-54-2] PREPARED BY: VARIABLES: Temperatures: 284, 330 K A. Skrzecz EXPERIMENTAL VALUES: Methanol-Isopropylnaphthalene: UCST = 11°C. Methanol-1,2,3,4-Tetrahydroisopropyl-naphthalene: UCST = 57°C. Methanol-Diisopropylmethylbenzene: UCST = 32°C. AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The cloud point method was used. The (1) source not specified; dried. reagents, about 1 mL of each, were (2) source not specified; introduced into a small tube and properties agreed with values in stirred with a thermometer while the literature; b.p. 264°C. tube was warmed gradually in a bath (3) as for (2); b.p. $256-66^{\circ}C$, of water or glycerol or was cooled $\rho(20^{\circ}C)/\rho(4^{\circ}C) = 0.9536.$ (4) as for (2); b.p. 217°C. with ice or a bath of acetone and dry ice. The temperature of disappearance or reappearance of the cloud was read 3 or 4 four times in each direction. The proportion of components was varied to obtain the UCST. ESTIMATED ERROR: not specified **REFERENCES:**

Components:	ORIGINAL MEASUREMENTS:			
(1) Methanol; CH40; [67-56-1]	Pliskin, I.; Treybal, R.E.			
(2) Tetradecane; C ₁₄ H ₃₀ ; [629-59-4]	J. Chem. Eng. Data <u>1966</u> , 11, 49-52.			
VARIABLES:	PREPARED BY:			
One temperature: 298 K	A. Skrzecz			
EXPERIMENTAL VALUES:				
Solubilities at 25.0°C:				
methanol in tetradecane: 100 $w_1 = 1.00$ or $x_1 = 0.058$.				
tetradecane in methanol: 100 $w_2 = 3.48$ or $x_2 = 0.00579$.				

AUXILIARY INFORMATION

Т

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubilities were determined by	(1), (2) source not specified;
titration to a cloud point. No	distilled.
further details were reported.	
	ESTIMATED ERROR:
	not specified.
	REFERENCES:

240	
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Methanol; CH ₄ O; [67-56-1]	Francis, A.W.
(2) sec-Pentylnaphthalene; C ₁₅ H ₁₈ ; (structure not specified)	Ind. Eng. Chem. <u>1944</u> , 36, 1096-1104.
<pre>(3) Diisopropylnaphthalene; (bis(1-methylethyl)naphthalene); C₁₆H₂₀; [38640-62-9]</pre>	
<pre>(4) Dipentylbenzene; C₁₆H₂₆; (mixture of isomers)</pre>	
VARIABLES:	PREPARED BY:
Temperatures: 322, 331, 349 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Methanol-sec-Pentylnaphthalene: UC Methanol-Diisopropylnaphthalene: U Methanol-Dipentylbenzene: UCST = 7	ST = 49°C. CST = 58°C. 6°C.
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The reagents, about 1 mL of each, were introduced into a small tube and stirred with a thermometer while the tube was warmed gradually in a bath of water or glycerol or was cooled with ice or a bath of acetone and dry ice. The temperature of disappearance or reappearance of the cloud was read 3 or 4 four times in each direction. The proportion of components was varied to obtain the UCST.	SOURCE AND PURITY OF MATERIALS: (1) source not specified; dried. (2) source not specified; b.p. 300°C in agreement with values in literature. (3) source not specified; b.p. 305-15°C, $\rho(20°C)/\rho(4°C) = 0.9541$. (4) presumably synthesized by alkylation and dist.; isomers were not separated, structure was not investigated; properties agreed with those for m- and p-isomers; b.p. 265°C. ESTIMATED ERROR:
	not specified
	REFERENCES:

COMPONENTS:		ORIGINAL MEASUREMENTS:			
(1) Methanol; CH ₄ 0; [67-56-1]		Rogalski, M.; Stryjek, R.			
(2) Hexadecane; C ₁₆ H ₃₄ ; [544-76-3]		Bull. Acad. Polon. Sci. Chim. <u>1980</u> ,	Sci., Ser. 28, 139-47.		
VARIABLES:			PREPARED BY:		
Temperature	: 298 - 413 K		A. Skrzecz		
EXPERIMENTAL	VALUES:				
Mutual solubility of methan			ol and hexadecane		
T/K	<i>x</i> ₁	-	100 w ₁ (compi	100 w ₁ (compiler)	
	(2)-rich phas	se (1)-rich pha	ase (2)-rich phase (1)-rich phase		
297.95	-	0.9970	-	97.92	
300.75	0.0590	-	0.879	-	
324.16	0.1283	-	2.040	-	
327.35	-	0.9948	-	96.44	
383.55	-	0.9782	-	86.39	
395.25	0.5716	-	15.881	-	
407.35	-	0.9442	-	70.54	
409.35	0.7654	-	31.584	-	
412.65	0.8454	-	43.623	-	
412.95	-	0.8913	-	53.71	
413.35 UC	ST 0.8760	0.8760	49.990	49.99 a)	
a) Composi	tion, UCST est	imated by aut	hors from a large-scal	le graph.	
		AUXILIARY IN	FORMATION		
METHOD (ADDAD		2.	COURCE AND DUDIEN OF	MAMEDIATC.	
The cloud n	aint method wa	s used	(1) Source not speci	fied.	
Samples of 4-5 g of various			distilled at atmosph	eric pressure.	
Samples of 4-5 g of Various			nurity above 99.9% h	v alc.	
ampoules which were placed in a				1 9200	
thermostat. The sample was then			(2) source not speci	fied; purified	
heated to a	temp. somewhat	at higher	by crystallization u	sing a	
than that o	f complete hom	nogeneity and	Mollinari type cryst	allizer;	
then cooled	at 0.5-1 K/h	until	purity above 99.9% b	y glc.	
turbidity r	eappeared. Th	ne cycle was			
repeated; a	verage temp. v	vas taken as			
the equilibrium value. Samples were					
mixed continuously by rotating the					
ampoules.					
			FSTTMATED EDDOD.		
			solv +0 001 of mole	fraction	
			temp. +0.1 K at 207	$K: \pm 0.5 K at$	
			353 K.	., 2010 h au	
			REFERENCES:	<u> </u>	

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Ethanol; C2H60; [64-17-5] Francis, A.W. (2) Heptane; C7H16; [142-82-5] Ind. Eng. Chem. 1944, 36, 764-71. (3) 2,2,4-Trimethylpentane; C8H18; [540-84-1] PREPARED BY: VARIABLES: PREPARED BY: Temperatures: 203, 213 K A. Skrzecz

EXPERIMENTAL VALUES:

Methanol-Heptane: UCST = -60° C.

Methanol-2,2,4-Trimethylpentane: UCST = -70° C.

AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The reagents were introduced into a test tube and stirred with a thermometer while the tube was warmed and cooled gradually in a bath. The temperature of disappearance or reappearance of the cloudiness was read 2 or 3 times in each direction.	<pre>SOURCE AND PURITY OF MATERIALS: (1) source not specified; "substantially pure", used as received. (2) obtained from Jeffrey pine; no other information. (3) sourca not specified.</pre>	
	ESTIMATED ERROR: not specified REFERENCES:	

COMPONENTS:	EVALUATOR:
(1) Ethanol; C ₂ H ₆ O; [64-17-5]	A. Maczynski
(2) Decane; C ₁₀ H ₂₂ ; [124-18-5]	Institute of Physical Chemistry Polish Academy of Sciences Warsaw, Poland
	July, 1989

CRITICAL EVALUATION:

Solubilities and upper critical solution temperatures (UCST) for the system ethanol (1)-decane (2) have been reported in the references listed below.

Author(s)	T/K		x_1	<i>x</i> ₁
			(2)-rich phase	(1)-rich phase
1. Bingham 1907	258	UCST	-	-
2. Sadovnikova 1971	293		0.0347	0.8781
3. Balasubramanian 1979	306.7	7 UCST	0.31	0.31

The UCST value of Bingham, ref 1, is inconsistent with both other sources, and is rejected. The UCST and solubility data of Sadovnikova and Aleksandrova, ref 2, and Balasubramanian and Mitra, ref 3, are accepted as Tentative.

TENTATIVE DATA:

T/K	<i>x</i> ₁	<i>x</i> ₁		
	(2)-rich phase	(1)-rich phase		
293	0.035	0.878		
306.7	0.31	0.31 UCST		

REFERENCES:

1. Bingham, E.C. Am. Chem. J. <u>1907</u>, 37, 549.

2. Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir Politekh. Inst. 1971, 137.

3. Balasubramanian, D.; Mitra, P. J. Phys. Chem. 1979, 83, 2724.

COMPONENTS: (1) Ethanol; C_2H_6O ; [64-17-5] (2) Decane; $C_{10}H_{22}$; [124-18-5]	ORIGINAL MEASUREMENTS: Bingham, E.C. Am. Chem. J. <u>1907</u> , 37, 549-57.
VARIABLES:	PREPARED BY:
One temperature: 298 K	A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be $-15^{\circ}C.$	
	CODMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The components were added from	(1), (2) Kahlbaum, the best
burets to thick-walled glass tubes	provided; used as received.
of about 2 mm internal diameter and	
C 7 mm leng which were gooled . The	
6-7 mm long which were sealed. The	
tubes and the components were	
protected from moisture during	
filling. No further details are	
reported.	
	ESTIMATED FROD.
	not sposified
	REFERENCES:
	• • • • • • • • • • • • • • • • • • •
COMPONENTS	OPTOTNAL MEASUREMENTS.
	ORIGINAL MAISOREMENTS.
(1) Ethonol. CHO: $[64-17-5]$	Sadownikowa I V · Alokcandrowa
(1) Ethanol; C_2H_60 ; [64-17-5]	Sadovnikova, L.V.; Aleksandrova,
(1) Ethanol; C_2H_6O ; [64-17-5] (2) Decane; $C_{10}H_{22}$; [124-18-5]	Sadovnikova, L.V.; Aleksandrova, M.V.
(1) Ethanol; $C_{2}H_{6}O$; [64-17-5] (2) Decane; $C_{10}H_{22}$; [124-18-5]	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech.
<pre>(1) Ethanol; C₂H₆O; [64-17-5] (2) Decane; C₁₀H₂₂; [124-18-5]</pre>	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12),
<pre>(1) Ethanol; C₂H₆O; [64-17-5] (2) Decane; C₁₀H₂₂; [124-18-5]</pre>	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12), 137-9.
(1) Ethanol; $C_{2}H_{6}O$; [64-17-5] (2) Decane; $C_{10}H_{22}$; [124-18-5] VARIABLES:	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12), 137-9. PREPARED BY:
(1) Ethanol; $C_{2}H_{6}O$; [64-17-5] (2) Decane; $C_{10}H_{22}$; [124-18-5] VARIABLES: One temperature: 293 K	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12), 137-9. PREPARED BY: A. Skrzecz
(1) Ethanol; C_2H_60 ; [64-17-5] (2) Decane; $C_{10}H_{22}$; [124-18-5] VARIABLES: One temperature: 293 K	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12), 137-9. PREPARED BY: A. Skrzecz
(1) Ethanol; $C_{2}H_{6}O$; [64-17-5] (2) Decane; $C_{10}H_{22}$; [124-18-5] VARIABLES: One temperature: 293 K EXPERIMENTAL VALUES:	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12), 137-9. PREPARED BY: A. Skrzecz
(1) Ethanol; $C_{2}H_{6}O$; [64-17-5] (2) Decane; $C_{10}H_{22}$; [124-18-5] VARIABLES: One temperature: 293 K EXPERIMENTAL VALUES:	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12), 137-9. PREPARED BY: A. Skrzecz
(1) Ethanol; C_2H_6O ; [64-17-5] (2) Decane; $C_{10}H_{22}$; [124-18-5] VARIABLES: One temperature: 293 K EXPERIMENTAL VALUES: Solubilities at 20°C:	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12), 137-9. PREPARED BY: A. Skrzecz
(1) Ethanol; C_2H_6O ; $[64-17-5]$ (2) Decane; $C_{10}H_{22}$; $[124-18-5]$ VARIABLES: One temperature: 293 K EXPERIMENTAL VALUES: Solubilities at 20°C: ethanol in decane: 100 w, = 1.15 or	<pre>Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u>, (12), 137-9. PREPARED BY: A. Skrzecz</pre>
(1) Ethanol; C_2H_6O ; $[64-17-5]$ (2) Decane; $C_{10}H_{22}$; $[124-18-5]$ VARIABLES: One temperature: 293 K EXPERIMENTAL VALUES: Solubilities at 20°C: ethanol in decane: 100 w_1 = 1.15 or decane in ethanol: 100 w_2 = 32.00 c	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12), 137-9. PREPARED BY: A. Skrzecz $x_1 = 0.0347$ (compiler). pr $x_2 = 0.1219$ (compiler).
(1) Ethanol; C_2H_6O ; $[64-17-5]$ (2) Decane; $C_{10}H_{22}$; $[124-18-5]$ VARIABLES: One temperature: 293 K EXPERIMENTAL VALUES: Solubilities at 20°C: ethanol in decane: 100 $w_1 = 1.15$ or decane in ethanol: 100 $w_2 = 32.00$ c	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12), 137-9. PREPARED BY: A. Skrzecz $x_1 = 0.0347$ (compiler). pr $x_2 = 0.1219$ (compiler).
(1) Ethanol; C_2H_6O ; $[64-17-5]$ (2) Decane; $C_{10}H_{22}$; $[124-18-5]$ VARIABLES: One temperature: 293 K EXPERIMENTAL VALUES: Solubilities at 20°C: ethanol in decane: 100 $w_1 = 1.15$ or decane in ethanol: 100 $w_2 = 32.00$ c AUXILIARY INF	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12), 137-9. PREPARED BY: A. Skrzecz $x_1 = 0.0347$ (compiler). $x_2 = 0.1219$ (compiler). FORMATION
(1) Ethanol; C_2H_6O ; $[64-17-5]$ (2) Decane; $C_{10}H_{22}$; $[124-18-5]$ VARIABLES: One temperature: 293 K EXPERIMENTAL VALUES: Solubilities at 20°C: ethanol in decane: 100 w_1 = 1.15 on decane in ethanol: 100 w_2 = 32.00 c AUXILIARY INI METHOD/APPARATUS/PROCEDURE:	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12), 137-9. PREPARED BY: A. Skrzecz $x_1 = 0.0347$ (compiler). $pr x_2 = 0.1219$ (compiler). FORMATION SOURCE AND FURITY OF MATERIALS:
(1) Ethanol; C_2H_60 ; $[64-17-5]$ (2) Decane; $C_{10}H_{22}$; $[124-18-5]$ VARIABLES: One temperature: 293 K EXPERIMENTAL VALUES: Solubilities at 20°C: ethanol in decane: 100 w_1 = 1.15 or decane in ethanol: 100 w_2 = 32.00 c AUXILIARY INI METHOD/APPARATUS/PROCEDURE: The titration method was used The	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12), 137-9. PREPARED BY: A. Skrzecz $x_1 = 0.0347$ (compiler). $x_2 = 0.1219$ (compiler). FORMATION SOURCE AND PURITY OF MATERIALS: (1) SOURCE pot specified: dist. or
(1) Ethanol; C_2H_6O ; $[64-17-5]$ (2) Decane; $C_{10}H_{22}$; $[124-18-5]$ VARIABLES: One temperature: 293 K EXPERIMENTAL VALUES: Solubilities at 20°C: ethanol in decane: 100 $w_1 = 1.15$ or decane in ethanol: 100 $w_2 = 32.00$ c AUXILIARY INI METHOD/APPARATUS/PROCEDURE: The titration method was used. The	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12), 137-9. PREPARED BY: A. Skrzecz $x_1 = 0.0347$ (compiler). $r_2 = 0.1219$ (compiler). FORMATION SOURCE AND PURITY OF MATERIALS: (1) source not specified; dist. on 20 MB columns of (20°C)
(1) Ethanol; C_2H_6O ; $[64-17-5]$ (2) Decane; $C_{10}H_{22}$; $[124-18-5]$ VARIABLES: One temperature: 293 K EXPERIMENTAL VALUES: Solubilities at 20°C: ethanol in decane: 100 $w_1 = 1.15$ or decane in ethanol: 100 $w_2 = 32.00$ c AUXILIARY INI METHOD/APPARATUS/PROCEDURE: The titration method was used. The data for the ternary system decane-	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12), 137-9. PREPARED BY: A. Skrzecz $x_1 = 0.0347$ (compiler). $x_2 = 0.1219$ (compiler). SOURCE AND PURITY OF MATERIALS: (1) source not specified; dist. on 20 TP column; $n_0(20^{\circ}C) = 1.3627$.
(1) Ethanol; C_2H_6O ; $[64-17-5]$ (2) Decane; $C_{10}H_{22}$; $[124-18-5]$ VARIABLES: One temperature: 293 K EXPERIMENTAL VALUES: Solubilities at 20°C: ethanol in decane: 100 $w_1 = 1.15$ on decane in ethanol: 100 $w_2 = 32.00$ c AUXILIARY INI METHOD/APPARATUS/PROCEDURE: The titration method was used. The data for the ternary system decane- ethanol-water are also given.	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12), 137-9. PREPARED BY: A. Skrzecz $x_1 = 0.0347$ (compiler). $rx_2 = 0.1219$ (compiler). FORMATION SOURCE AND PURITY OF MATERIALS: (1) source not specified; dist. on 20 TP column; $n_0(20^{\circ}C) = 1.3627$. (2) as for (1); $n_0(20^{\circ}C) = 1.4119$.
(1) Ethanol; C_2H_6O ; $[64-17-5]$ (2) Decane; $C_{10}H_{22}$; $[124-18-5]$ VARIABLES: One temperature: 293 K EXPERIMENTAL VALUES: Solubilities at 20°C: ethanol in decane: 100 $w_1 = 1.15$ or decane in ethanol: 100 $w_2 = 32.00$ c AUXILIARY INI METHOD/APPARATUS/PROCEDURE: The titration method was used. The data for the ternary system decane- ethanol-water are also given.	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12), 137-9. PREPARED BY: A. Skrzecz $x_1 = 0.0347$ (compiler). $x_2 = 0.1219$ (compiler). FORMATION SOURCE AND PURITY OF MATERIALS: (1) source not specified; dist. on 20 TP column; $n_0(20^{\circ}C) = 1.3627$. (2) as for (1); $n_0(20^{\circ}C) = 1.4119$. ESTIMATED ERROR:
(1) Ethanol; C_2H_6O ; $[64-17-5]$ (2) Decane; $C_{10}H_{22}$; $[124-18-5]$ VARIABLES: One temperature: 293 K EXPERIMENTAL VALUES: Solubilities at 20°C: ethanol in decane: 100 $w_1 = 1.15$ or decane in ethanol: 100 $w_2 = 32.00$ c AUXILIARY INI METHOD/APPARATUS/PROCEDURE: The titration method was used. The data for the ternary system decane- ethanol-water are also given.	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12), 137-9. PREPARED BY: A. Skrzecz $x_1 = 0.0347$ (compiler). $r_{x_2} = 0.1219$ (compiler). FORMATION SOURCE AND PURITY OF MATERIALS: (1) source not specified; dist. on 20 TP column; $n_0(20^{\circ}C) = 1.3627$. (2) as for (1); $n_0(20^{\circ}C) = 1.4119$. ESTIMATED ERROR: temp. $t_0.1^{\circ}C$.
(1) Ethanol; C_2H_6O ; $[64-17-5]$ (2) Decane; $C_{10}H_{22}$; $[124-18-5]$ VARIABLES: One temperature: 293 K EXPERIMENTAL VALUES: Solubilities at 20°C: ethanol in decane: 100 $w_1 = 1.15$ or decane in ethanol: 100 $w_2 = 32.00$ c AUXILIARY INI METHOD/APPARATUS/PROCEDURE: The titration method was used. The data for the ternary system decane- ethanol-water are also given.	Sadovnikova, L.V.; Aleksandrova, M.V. Sb. Nauch. Tr., Vladimir. Vech. Politekh. Inst. <u>1971</u> , (12), 137-9. PREPARED BY: A. Skrzecz $x_1 = 0.0347$ (compiler). Dr $x_2 = 0.1219$ (compiler). FORMATION SOURCE AND FURITY OF MATERIALS: (1) source not specified; dist. on 20 TP column; $n_0(20^{\circ}\text{C}) = 1.3627$. (2) as for (1); $n_0(20^{\circ}\text{C}) = 1.4119$. ESTIMATED ERROR: temp. ±0.1°C.

	245	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Ethanol; C ₂ H ₆ O; [64-17-5]	Balasubramanian, D.; Mitra, P.	
(2) Decane; C ₁₀ H ₂₂ ; [124-18-5]	J. Phys. Chem. <u>1979</u> , 83, 2724-7.	
VARIABLES:	PREPARED BY:	
One temperature: 307 K	A. Skrzecz	
EXPERIMENTAL VALUES: The UCST was reported to be 33.5°C at $x_1 = 0.31$ or 100 $w_1 = 12.7$		
(compiler).		
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: The method is described in ref 1. Experiments were conducted in sealed tubes to avoid moisture contamination. No further details are reported.	SOURCE AND PURITY OF MATERIALS: (1), (2) source not specified; best analytical grade avaliable; ised as received.	
	ESTIMATED ERROR:	
	not specified	
	REFERENCES :	
	1. Hales, B.J.; Bertrand, G.L.; Hepler, L.G. J. Phys. Chem. <u>1960</u> , 70, 3970.	

246 ORIGINAL MEASUREMENTS: COMPONENTS: French, H.T.; Richards, A.; (1) Ethanol; C₂H₆O; [64-17-5] Stokes, R.H. (2) Hexadecane; $C_{16}H_{34}$; [544-76-3] J. Chem. Thermodyn. 1979, 11, 671-86. PREPARED BY: VARIABLES: A. Skrzecz Temperature: 298 - 325 K EXPERIMENTAL VALUES: Mutual solubility of ethanol and hexadecane t/°C 100 w₁ (compiler) X_1 (2)-rich phase (1)-rich phase (2)-rich phase (1)-rich phase 298.15 a) 0.315 0.957 8.56 81.91 11.64 75.80 308.15 a) 0.393 0.939 318.15 a) 0.516 0.913 17.82 68.10 48.05 324.97 b) ---0.8197 ---38.13 -325.15 b) 0.7518 ----See METHOD for explanation of a), b). AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: Two methods were used. (1) source not specified; purified a) The compositions of conjugated as described in ref 1; b.p. 325.25 solutions at given temperatures K at 32.597 kPa. were found by analysis of the (2) Fluka AG, high-purity enthalpy of mixing curve obtained material; passed through a column in an isothermal displacement of activated alumina; b.p. 325.25 calorimeter. K at 7 Pa. b) Visual determination of the phase separation temperature was made by changing the bath temperature at fixed composition. ESTIMATED ERROR: not specified. **REFERENCES:** 1. Stokes, R.H.; Burfitt, C.J. J. Chem. Thermodyn. 1973, 3, 623.

	247		
COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) Ethanol; C ₂ H ₆ O; [64-17-5] (2) Octadecane; C ₁₈ H ₃₈ ; [593-45-3]	Chang, SS.; Maurey, J.R.; Pummer, W.J. <i>J. Chem. Eng. Data</i> <u>1983</u> , 28, 187-9.		
VARIABLES: Temperature: 283 - 338 K	PREPARED BY: A. Skrzecz		
EXPERIMENTAL VALUES:			
Solubility of octadecane in ethanol			
$t/^{\circ}$ C100 w_2 x_2 10. (solid)0.8930.313.141.917.052.222.259.528.464.136.164.436.6	(compiler) 0.00162 0.0266 0.0358 0.0491 0.0670 0.0928 0.0946		
AUXILIARY IN	FORMATION		
METHOD/APPARATUS/PROCEDURE: The cloud-point method was used. A mixture of known composition was encased with magnetic stirrer in a 5-mL vial and then submerged in a temperature-controlled bath. The temperature of the bath was lowered and raised at a very slow rate and the appearance and disappearance of turbidity was observed visually.	SOURCE AND PURITY OF MATERIALS: (1) commercially available, 200-proof, purity better than 99.9%; used as received; 0.039% water (Karl Fischer). (2) commercially available, purity 97%; used as received; m.p. 301.1 K.		
	ESTIMATED ERROR: temp. ±0.1 K. REFERENCES:		

240	
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Ethanol; C ₂ H ₆ O; [64-17-5]	Chang, SS.; Maurey, J.R.; Pummer, W.J.
(2) Dotriacontane; $C_{32}H_{46}$;	
[544-85-4]	J. Chem. Eng. Data <u>1983</u> , 28,
	187-9.
VARIABLES:	PREPARED BY:
Temperature: 303 - 338 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Solubility of dotria	contane in ethanol
t/°C g(2)/100g sln	x ₂ (compiler)
30. 0.0081	0.000083
60. 0.71	0.00073
65. 2.9	0.00304
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The cloud-point method was used.	(1) commercially available,
A mixture of known composition was	200-proof, purity better than
encased with magnetic stirrer in a	99.9%; used as received; 0.039%
5-mL vial and then submerged in a	water (Karl Fischer).
temperature of the bath was lowered	(2) commercially available, purity 97%: used as received: m.p. 342.1
and raised at a very slow rate and	K.
the appearance and disappearance of	
turbidity was observed visually.	
	ECTIVATED EDDOD.
	ESTIMATED ERVK.
	temp. ±0.1 K.
	REFERENCES :

COMPONENTS:			ORIGINAL MEASUREMENTS:	
(1) 2-Propanol; C ₃ H ₈ O; [67-63-0]		67-63-0]	Ralston, A.W.; Hoerr, C.W.;	
(2) Octane; C_8H_{18} ; [111-65-9]		55-9]	Crews, L.T.	
(3) Dodecane; $C_{12}H_{26}$; [112-40-3]		2-40-3]	J. Org. Chem. <u>1944</u> , 9, 319-28.	
VARIABLES:			PREPARED BY:	
Temperatu	re: 198 - 213	К	A. Skrzecz	
EXPERIMENTAL	VALUES:			
	Solu	oility of octa	ne in 2-propanol	
t/°C	100 mass	100 w_2 (compi	x_2 (compiler)	
	ratio 2:1			
-75.0	7.1	6.6	0.036	
-70.0	9.9	9.0	0.049	
-65.0	15.9	13.7	0.077	
-60.0	36.0	26.5	0.159	
Soluble	at temperature	e −55.0°C.		
	Solub:	ility of dodec	ane in 2-propanol	
t/°C	100 mass	100 w_2 (compi	x_2 (compiler)	
	ratio 2:1			
-50.0	0.1	0.1	0.0004	
-40.0	0.7	0.7	0.0025	
-30.0	2.7	2.6	0.0094	
-20.0	9.0	8.3	0.0308	
-15.0	21.1	17.4	0.0693	
Soluble a	at temperatur	e above -9.6°C	•	
		AUXILIARY	INFORMATION	
METHOD/APPARA	TUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:	
The cloud	point method w	as used	(1) source not specified.	
(ref 1,2,3)). Mixtures of	f(1) and (2)	(2) obtained by the reaction on	
glass tube	s and sealed.	After heating	butyl bromide with Na;	
to homogen	eity and cool:	ing to give	distilled; f.p56.84°C.	
a water ba	th and heated	electrically	(3) prepared by catalytic	
at <0.1 K	per minute. So he temperaturo	olubility was	hydrogenation of dodecane;	
crystals d	isappeared. To	emperature was	uisciilu, i.p. 5.04 c.	
read to ±0	.1 K with an 1 r and "conside	NBS calibrated		
accurate t	o within ±0.2	°C" (ref 1).	ESTIMATED EDDOD.	
Graphically smoothed data were		ta were	not specified.	
1				
			REFERENCES:	
			1. Harwood, H.J.; Ralston, A.W.;Selby J. Am. Chem. Soc. 1941. 63. 1916.	
			2. Hoerr, C.W.; Ralston, A.W.	
			J. Am. Cnem. Soc. <u>1942</u> , 64, 2824. 3. Hoerr, C.W.; Binkerd. E.F.:	
			Pool, W.O.; Ralston, A.W.	
			J. Org. Chem. <u>1944</u> , 9, 68.	

250			
COMPONENTS:			ORIGINAL MEASUREMENTS:
(1) 2-Propanol; C ₃ H ₈ O; [67-63-0]		-63-0]	Ralston, A.W.; Hoerr, C.W.;
(2) Hexadecane; $C_{16}H_{34}$; [544-76-3]		4-76-3]	Crews, L.T.
(3) Heptadecane; $C_{17}H_{36}$; [629-78-7]		29-78-7]	J. Org. Chem. <u>1944</u> , 9, 319-28.
VARIABLES:			PREPARED BY:
Temperature: $253 - 288$ K			A. Skrzecz
EXPERIMENTAL VALUES:			••••••••••••••••••••••••••••••••••••••
Solubility of bevadecane in 2-propagol			
t/°c	100 mass	100 W. (COM	miler) x (compiler)
.,	ratio 2:1	100 #2 (00.	
-20.0	< 0.1	< 0.1	< 0.0003
-10.0	0.4	0.4	0.0011
0.0	1.7	1.7	0.0045
10.0	7.5	7.0	0.0195
15.0	21.2	17.5	0.0533
Soluble	at temperature	above 18.2°C	
	Solub	ility of hep	tadecane in 2-propanol
t/°c	100 mass	$100 w_3$ (compi	ler) x, (compiler)
	ratio 2:1	2	
-10.0	< 0.1	< 0.1	< 0.0002
0.0	0.8	0.8	0.0020
10.0	5.0	4.8	0.0123
15.0 11.7 10.5		10.5	0.0284
Soluble at temperature above 21.8°C.			•
			······································
		AUXILIARY	INFORMATION
METHOD/APPARA	TUS/PROCEDURE:	_	SOURCE AND PURITY OF MATERIALS:
The cloud (ref 1.2.3	point method wa). Mixtures of	s used (1) and (2)	(1) source not specified.
of known c	omposition were	placed in	(2) obtained by reaction of
glass tube to homogen	s and sealed. A eitv and coolin	fter heating g to give	hexadecyl lodide with Na; distilled. crystallized from
crystals a	sealed tube wa	s placed in	acetone, twice vacuum distilled;
a water ba at <0.1 K	th and heated e per minute. Sol	ubility was	f.p. 18.18°C.
taken as t	he temperature	at which	
read to ±0	.1 K with an NB	perature was S calibrated	
thermometer and "considered to be		ed to be	
Graphicall	y smoothed data	were	ESTIMATED ERROR:
reported.			not specified.
ļ			REFERENCES ·
			1. Harwood, H.J.; Ralston, A.W.; Selby
			J. Am. Chem. Soc. <u>1941</u> , 63, 1916. 2. Hoerr, C.W.: Ralston, A.W.
			J. Am. Chem. Soc. <u>1942</u> , 64, 2824.
			J. HOERT, C.W.; BINKERD, E.F.; Pool, W.O.; Ralston, A.W.
			J. Org. Chem. <u>1944</u> , 9, 68.

.

COMPONENTS: ORIGINAL MEASUREMENTS: (1) 2-Propanol; C_3H_8O ; [67-63-0] Ralston, A.W.; Hoerr, C.W.; (2) 1-Butanol; $C_4H_{10}O$; [71-36-3] Crews, L.T. (3) Dotriacontane; $C_{72}H_{44}$; [544-85-4] J. Org. Chem. 1944, 9, 319-28.	
(1) 2-Propanol; $C_{3}H_{8}O$; [67-63-0]Ralston, A.W.; Hoerr, C.W.;(2) 1-Butanol; $C_{4}H_{10}O$; [71-36-3]Crews, L.T.(3) Dotriacontane; $C_{72}H_{44}$; [544-85-4]J. Org. Chem. 1944, 9, 319-28.	
(2) 1-Butanol; $C_{4}H_{10}O$; [71-36-3] Crews, L.T. (3) Dotriacontane; $C_{72}H_{4}$; [544-85-4] J. Org. Chem. 1944, 9, 319-28.	
(3) Dotriacontane; $C_{1,2}H_{i,2}$; [544-85-4] J. Org. Chem. 1944, 9, 319-28.	
32.00	
(4) Octane; C ₈ H ₁₈ ; [111-65-9]	
VARIABLES: PREPARED BY:	·
Temperature: 198 - 355 K A. Skrzecz	
EXPERIMENTAL VALUES:	
C-lubility of detuinentance in 2 supercel	
$t/^{\circ}$	
t/C 100 mass 100 W_2 (compiler) X_2 (compiler) ratio 2:1	
50.0 0.2 0.2 0.0003	
60.0 2.2 2.2 0.0029	
70.1 12.2 10.9 0.0160	
82.3 24.4 19.6 0.0315	
Solubility of octane in 1-butanol	
$t/^{\circ}$ C 100 mass 100 w ₂ (compiler) x ₂ (compiler)	
ratio 2:1	
-75.0 12.2 10.9 0.0734	
-70.0 15.4 13.3 0.0908	
-65.0 22.1 18.1 0.1254	
-60.0 45.1 31.1 0.2264	
Soluble at temperature -55.0°C.	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:	
The cloud point method was used (1) source not specified.	
(ref 1,2,3). Mixtures of (1) and (2) of known composition were placed in (2) source not specified.	
glass tubes and sealed. After heating	
crystals a sealed tube was placed in hexadecyl iodide with Na;	
a water bath and heated electrically recrystallized 3X from	
taken as the temperature at which	
crystals disappeared. Temperature was read to ±0.1 K with an NBS calibrated thermometer and "considered to be f.p56.84°C.	of .;
accurate to within ±0.2 °C" (ref 1). ESTIMATED ERROR:	
reported. not specified.	
REFERENCES :	
1. Harwood, H.J.; Ralston, A.W.; J. Am. Chem. Soc. 1941, 63.	elby 916.
2. Hoerr, C.W.; Ralston, A.W.	921
3. Hoerr, C.W.; Binkerd, E.F.; Pool, W.O.; Ralston, A.W.	.024.

252			
COMPONENTS :			ORIGINAL MEASUREMENTS:
(1) 1-Butanol; $C_{2}H_{10}O$; [71-36-3]		36-3]	Ralston, A.W.; Hoerr, C.W.;
(2) Dodecane; $C_{12}H_{26}$; [112-40-3]		40-3]	Crews, L.T.
(3) Hexadecane; $C_{1x}H_{3x}$; [544-76-3]		4-76-3]	J. Org. Chem. <u>1944</u> , 9, 319-28.
VARIABLES:			PREPARED BY:
Temperatur	re: 213 - 288 K		A. Skrzecz
EXPERIMENTAL V	VALUES:		
± /° a	Solubil:	ity of dodec	ane in 1-putanoi
	TOU mass	100 w ₂ (60	x_2 (complier)
-60.0		0.5	0 0022
-50.0	1.0	1.0	0.0043
=40.0	2.0	2.0	0.0086
-30.0	4.6	4.4	0.0196
-20.0	13.6	12.0	0.0559
-15.0	31.4	23.9	0.1202
Soluble a	at temperature	above -9.6°C	•
	-		
	Solubil	ity of hexad	ecane in 1-butanol
t/°c	100 mass	$100 w_2$ (co	x_2 (compiler) x_2 (compiler)
	ratio 2:1	-	-
-20.0	0.3	0.3	0.0010
-10.0	1.2	1.2	0.0039
0.0	4.1	3.9	0.0132
10.0	16.7	14.3	0.0518
15.0	50.	33.	0.141
Soluble a	at temperature	above 18.2°C	•
		AUXILIARY	INFORMATION
METHOD/APPARA	TUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
The cloud	point method w	as used	(1) source not specified.
of known co). Mixtures of omposition were	(1) and (2) placed in	(2) prepared by catalytic
glass tubes	s and sealed. A	fter heating	hydrogenation of dodecene;
crystals a	sealed tube wa	s placed in	uisciiieu, i.p5.04 C.
a water bat	th and heated e per minute, Sol	lectrically ubility was	(3) obtained be reaction of hexadecyl iodide with Na;
taken as th	ne temperature	at which	dist., recryst. from acetone,
read to ±0.	isappeared. Tem 1 K with an NB	perature was 5 calibrated	2X vacuum dist.; f.p. 18.18 C.
thermometer and "considered to be accurate to within ± 0.2 °C" (ref 1). Graphically smoothed data were		ed to be	
		were	ESTIMATED ERROR:
reported.			not specified.
1			REFERENCES:
			1. Harwood, H.J.; Ralston, A.W.; Selby
			2. Hoerr, C.W.; Ralston, A.W.
			J. Am. Chem. Soc. <u>1942</u> , 64, 2824. 3. Hoerr. C.W. Binkerd F.F.
			Pool, W.O.; Ralston, A.W.
			J. Org. Chem. <u>1944</u> , 9, 68.

			25.
COMPONENTS:			ORIGINAL MEASUREMENTS:
(1) 1-Butan	nol; C ₄ H ₁₀ O; [7]	L-36-3]	Ralston, A.W.; Hoerr, C.W.;
(2) Heptade	ecane; C ₁₇ H ₃₆ ; [629-78-7]	Crews, L.T.
(3) Dotriad	contane; C ₃₂ H ₆₆ ;	[544-85-4]	J. Org. Chem. <u>1944</u> , 9, 319-28.
VARIABLES:			PREPARED BY:
Temperature	e: 263 - 288 K	; 323, 333 K	A. Skrzecz
EXPERIMENTAL	VALUES:		
± .0-	Solubi	lity of hepta	decane in 1-butanol
t/c	100 mass	$100 W_2$ (Com	apiler) X ₂ (compiler)
	rat10 2:1	• •	6 AAAA
-10.0	0.4	0.4	0.0012
0.0	2.7	2.6	0.0083
10.0	13.0	11.5	0.0385
15.0	35.6	26.3	0.0989
Soluble a	at temperature	above 21.8 C	•
	Solubi	lity of dotri	acontane in 1-butanol
+ 1%	100 mage	100 W (Comr	viler) v (compiler)
<i>c</i> / c	ratio 2.1	100 #2 (00mp	
50.0	0.9	0.9	0,0015
60.0	9.2	8.4	0.0149
Soluble a	at temperature	70.1°C.	
	.		
		AUXILIARY	INFORMATION
METHOD/APPARA	TUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
The cloud p	point method wa	as used	(1) source not specified.
(ref 1,2,3) of known co). Mixtures of omposition were	(1) and (2) e placed in	(2) obtained by heating stearic acid
glass tubes	and sealed.	After heating	to 350°C in the presence of
to nomogene crvstals a	sealed tube wa	ng to give as placed in	Raney nickel catalyst; twice vacuum distilled; f.p. 21.72°C.
a water bat	th and heated	electrically	
taken as th	per minute. So. ne temperature	at which	(3) obtained by reaction of hexacecvl iodide with Na;
crystals d	isappeared. Ter	mperature was	recryst. 3X from CHCl ₃ at
thermometer	and "consider	red to be	-30 C; f.p. 70.16 C.
accurate to	o within ±0.2	'C" (ref 1).	ESTIMATED ERROR:
reported.	y smoothed data	a were	not specified.
1			REFERENCES:
			J. Am. Chem. Soc. <u>1941</u> , 63, 1916.
			2. Hoerr, C.W.; Ralston, A.W.
			3. Hoerr, C.W.; Binkerd, E.F.;
l			Pool, W.O.; Ralston, A.W. J. Org. Chem. 1944, 9, 68.
1			

254	
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Pentane; C ₅ H ₁₂ ; [109-66-0]	Durandet, J.; Gladel, Y.L.;
(2) Benzyl alcohol (benzenemethanol);	Graziani, F.
C ₇ H ₈ O; [100-51-6]	Rev. Inst. Fr. Petrole <u>1955</u> , 10,
	585-94.
VARIABLES:	PREPARED BY:
One temperature: 328 K	A. Skrzecz
EXPERIMENTAL VALUES:	1
The solution temperature of a mixtur	e of (1) and (2) containing
50 volume % pentane was reported to	be 54.8 ⁻ C.
The corresponding values (compiler)	are:
$w_1 = 37, x_2 = 0.47.$	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The cloud point method of sealed	(1) source not specified.
of the mixture were assumed to be	(2) source not specified, pure
additive. No further details are reported in the paper.	grade; distilled; $\rho(20^{\circ}C)/\rho(4^{\circ}C)$ = 1.045, $n_{c}(20^{\circ}C)$ = 1.5400,
	,,,
	ESTIMATED ERROR
	not specified.
	-
	REFERENCES: 1. Gladel, Y.L.; Durandet, J.
	Rev. Inst. Franc. Petrole <u>1944</u> , 9. 221.
	-,

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Francis, A.W.
<pre>(2) Benzyl alcohol (benzenemethanol); C₇H₈O; [100-51-6]</pre>	Ind. Eng. Chem. <u>1944</u> , 36, 764-71.
<pre>(3) Cinnamyl alcohol (3-phenyl-2-propen-1-ol); C₉H₁₀O; [104-54-1]</pre>	
VARIABLES:	PREPARED BY:
Temperature: 275, 312 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Cyclohexane + Benzyl alcohol: UCST	= 2°C.
Cyclohexane + Cinnamyl alcohol: UC	ST = 39°C.
	•
AUXILIARY IN	FORMATION
METHOD /APPARATUS /PROCEDURE ·	SOURCE AND PURITY OF MATERIALS.
The cloud point method was used. The	(1), (2) source not specified.
reagents were introduced and stirred	
with a thermometer in test tubes	
which were warmed and cooled	
gradually in a bath. The temp. of	
the cloudiness was read two or three	
times in each direction.	
	ESTIMATED ERROR:
	not specified.
	REFERENCES:
	1

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) 2,2-Dimethylbutane; C ₆ H ₁₄ ; [75-83-2]	Maman, A. C.R. Hebd. Séances Acad. Sci.		
(2) 2,3-Dimethylbutane; C ₆ H ₁₄ ; [79-29-8]	<u>1934</u> , <i>198</i> , 1323-5.		
<pre>(3) Benzyl alcohol (benzenemethanol); C₇H₈O; [100-51-6]</pre>			
VARIABLES:	PREPARED BY:		
Temperatures: 336 K	A. Skrzecz		
EXPERIMENTAL VALUES:			
2,2-Dimethylbutane + Benzyl alcoh	ol: UCST = 62.9°C.		
2,3-Dimethylbutane + Benzyl alcoh	ol: UCST = 54.4°C.		
AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The method was not specified.	(1) Synthesized from pinacoline and phosphorus pentabromide, product hydrogenated; b.p. 52.5°C, $\rho(20^{\circ}C) = 0.6518$, $n_{D}(20^{\circ}C) =$ 1.37054. (2) synthesized from anhydrous pinacone and KHSO ₄ , product was hydrogenated; b.p. 58.2°C, $\rho(20^{\circ}C) = 0.6591$, $n_{D}(20^{\circ}C) =$ 1.37471. (3) source not specified.		
	ESTIMATED ERROR:		
	REFERENCES:		

ł

COMPONENTS:	EVALUATOR:
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]	A. Skrzecz
(2) Benzyl alcohol (benzenemethanol) C ₇ H ₈ O; [100-51-6]	Institute of Physical Chemistry Polish Academy of Sciences Warsaw, Poland
	July, 1989

CRITICAL EVALUATION:

Table 1 lists reported solubilities and upper critical solution temperatures (UCST) for the system hexane (1)-benzyl alcohol (2).

Table 1. Solubilities and upper critical solution temperaturesfor the system hexane (1)-benzyl alcohol (2)

<i>T/</i> K	<i>x</i> ₁	<i>x</i> ₁
	(2)-rich phase	(1)-rich phase
323.8 UCST	-	-
330	(0.50 m)	L(1)/mL sln)
322.1 UCST	-	-
323.6	(0.50 m)	L(1)/mL sln)
323.7 UCST	0.50	0.50
	<i>T</i> /K 323.8 UCST 330 322.1 UCST 323.6 323.7 UCST	T/K x_1 (2)-rich phase 323.8 UCST - 330 (0.50 m) 322.1 UCST - 323.6 (0.50 m) 323.7 UCST 0.50

The values of Maman, ref 1, and Balasubramanian and Mitra, ref. 5, are accepted as *tentative*. The solubility values of Mulliken and Wakeman, ref. 2, Francis, ref. 3, and Durandet et al., ref 4, are rejected, since they are in poor agreement with the others or they are expressed only as volumetric ratios with no supporting density data which would enable conversion to other units.

TENTATIVE DATA:

*T/*K *x*₁ 323 UCST 0.50

REFERENCES:

1. Maman, A. C. R. Hebd. Séances Acad. Sci. 1934, 198, 1323-5.

2. Mulliken, S.P.; Wakeman, R.L. Rec. Trav. Chim. Pays-Bas 1935, 54, 366.

3. Francis, A.W. Ind. Eng. Chem. 1944, 36, 764.

4. Durandet, J.; Gladel, Y.L.; Graziani, F. Rev. Inst. Fr. Petrole 1955, 10, 585.

5. Balasubramanian, D.; Mitra, P. J. Phys. Chem. 1979, 83, 2724.

258	
COMPONENTS: (1) Hexane; C ₆ H ₁₄ ; [110-54-3] (2) Benzyl alcohol (benzenemethanol); C ₇ H ₈ O; <u>[100-51-6]</u> VARIABLES: One temperature: 324 K EXPERIMENTAL VALUES: The UCST was reported to be 50.6°C.	ORIGINAL MEASUREMENTS: Maman, A. Compt. Rend. Hebd. Séances Acad. Sci <u>1934</u> , 198, 1323-5. PREPARED BY: A. Skrzecz
METHOD/APPARATUS/PROCEDURE: The method was not specified.	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) synthesized by catalytic hydrogenation of hexanol or by electrolysis of aq. potassium butyrate; b.p. 69.5° C, $\rho(20^{\circ}) =$ 0.6583, $n_{0}(20^{\circ}$ C) = 1.37518. (2) source not specified. ESTIMATED ERROR: not specified. REFERENCES:
L <u></u>	I
COMPONENTS: (1) Hexane; C ₆ H ₁₄ ; [110-54-3] (2) Benzyl alcohol (benzenemethanol); C ₇ H ₈ O; [100-51-6] VARIABLES: One temperature: 330 K EXPERIMENTAL VALUES: Mutual solubility of hexane and k vol(2).	ORIGINAL MEASUREMENTS: Mulliken, S.P.; Wakeman, R.L. Rec. Trav. Chim. Pays-Bas <u>1935</u> , 54, 366-72. PREPARED BY: A. Skrzecz Denzyl alcohol at 57°C: 1 vol(1) in 1
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. Miscibility was determined in a glass-stoppered tube of 4 mm inside diameter. One-tenth mL of each component was measured into the tube which was strapped to a thermometer and warmed. The reported solubility temperature was the point at which cloudiness first appeared upon cooling in a homogeneous mixture.	<pre>SOURCE AND PURITY OF MATERIALS: (1) source not specified; purest commercial sample available; used as received; b.p. 69 - 70°C (2) source not specified. ESTIMATED ERROR: not specified. REFERENCES: </pre>

ł

COMPONENTS: (1) Hexane; C ₆ H ₁₄ ; [110-54-3] (2) Benzyl alcohol (benzenemethanol); C ₇ H ₈ O; [100-51-6] VARIABLES:	ORIGINAL MEASUREMENTS: Francis, A.W. Ind. Eng. Chem. <u>1944</u> , 36, 764-71. PREPARED BY:	
One temperature: 322 K	A. Skrzecz	
EXPERIMENTAL VALUES: The UCST was reported to be 49°C.		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The reagents were introduced and stirred with a thermometer in test tubes which were warmed and cooled gradually in a bath. The temperature of disappearance or reappearance of	SOURCE AND PURITY OF MATERIALS: (1) obtained from petroleum. (2) source not specified.	
the cloudiness was read two or three times in each direction.	ESTIMATED ERROR: not specified.	
	REFERENCES:	
	•••••••••••••••••••••••••••••••••••••••	
COMPONENTS: (1) Hexane; C ₆ H ₁₄ ; [110-54-3] (2) Benzyl alcohol (benzenemethanol); C ₇ H ₈ O; [100-51-6]	ORIGINAL MEASUREMENTS: Durandet, J.; Gladel, Y.L.; Graziani, F. Rev. Inst. Fr. Petrole <u>1955</u> , 10, 585-94.	
VARIABLES:	PREPARED BY:	
One temperature: 324 K	A. Skrzecz	
EXPERIMENTAL VALUES: The solution temperature of a mixture of (1) and (2) containing 50 volume % hexane was reported to be 50.4° C. The corresponding mass percentage and mole fraction value, calculated by the compiler, are 39 g(1)/100g sln and $x_1 = 0.44$.		
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: The cloud point method of sealed tubes, ref 1, was used. The volumes of the mixture were assumed to be additive. No further details are reported in the paper.	SOURCE AND PURITY OF MATERIALS: (1) source not specified. (2) source not specified, pure grade; distilled; $\rho(20^{\circ})/\rho(4^{\circ}C) =$ 1.045, $n_0(20^{\circ}C) =$ 1.5400. ESTIMATED ERROR.	
	not specified.	
	REFERENCES: 1. Gladel, Y.L.; Durandet, J. Rev. Inst. Franc. Petrole <u>1944</u> ,	

260 COMPONENTS: ORIGINAL MEASUREMENTS: (1) Hexane; C₆H₁₄; [110-54-3] Balasubramanian, D.; Mitra, P. (2) Benzyl alcohol (benzenemethanol); J. Phys. Chem. 1979, 83, 2724-7. C₇H₈O; [100-51-6] VARIABLES: PREPARED BY: One temperature: 324 K A. Skrzecz EXPERIMENTAL VALUES: UCST = 50.5° C at $x_1 = 0.50$ or 100 $w_1 = 7.1$ (compiler). AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The method is described in ref 1. (1), (2) source not specified, the Experiments were conducted in sealed best analytical grade available; tubes to avoid contamination with used as received. moisture. No further details were reported. ESTIMATED ERROR: not specified. **REFERENCES:** 1. Hales, B.J.; Bertrand, G.L.; Hepler, L.G. J. Phys. Chem. <u>1960</u>, 70, 3970.

	261		
COMPONENTS: (1) Hexane; C ₆ H ₁₄ ; [110-54-3]	ORIGINAL MEASUREMENTS: Francis, A.W.		
<pre>(2) Phenylethylalcohol (benzeneethanol); C₈H₁₀O; [60-12-8]</pre>	Ind. Eng. Chem. <u>1944</u> , 36, 764-71.		
<pre>(3) Cinnamyl alcohol (3-phenyl-2-propen-1-ol); C₉H₁₀O; [104-54-1]</pre>			
VARIABLES: Temperature: 306, 373 K	PREPARED BY: A. Skrzecz		
EXPERIMENTAL VALUES:			
Hexane + Phenylethyl alcohol: UCST	= 33°C.		
Hexane + Cinnamyl alcohol: UCST =	100°C.		
METHOD / APPARATIIS / PROCEDIRE ·	SOURCE AND PURITY OF MATERIALS		
The cloud point method was used. The	(1) obtained from petroleum.		
reagents were introduced and stirred	(2) source not specified.		
with a thermometer in test tubes	(3) source not specified.		
which were warmed and cooled gradually in a bath. The temp. of			
disappearance or reappearance of			
the cloudiness was read two or three			
times in each direction.			
	ESTIMATED ERROR:		
	not specified.		
	REFERENCES:		

COMPONENTS: ORIGINAL MEASUREMENTS: (1) 2-Methylpentane; C₆H₁₄; [107-83-5] Maman, A. Compt. Rend. Hebd. Séances Acad. (2) 3-Methylpentane; C₆H₁₄; Sci. <u>1934</u>, 198, 1323-5. [96-14-0] (3) Benzyl alcohol (benzenemethanol); C₇H₈O; [100-51-6] VARIABLES: PREPARED BY: Temperatures: 332, 323 K A. Skrzecz EXPERIMENTAL VALUES: 2-Methylpentane-Benzyl alcohol: UCST = 58.8°C. 3-Methylpentane-Benzyl alcohol: UCST = 50.1°C. AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: (1) synthesized from methylmagnesium iodide and The method was not specified. ethyl butyrate, product dehydrated, then catalytically hydrogenated; b.p. 60.5°C, $\rho(20^{\circ}C)/\rho(4^{\circ}C) = 0.6519, n_{p}(20^{\circ}C) =$ 1.37170. (2) synthesized from ethylmagnesium iodide and ethyl acetate, product dehydrated, then catalytically hydrogenated; b.p. $62.7^{\circ}C, \rho(20^{\circ}C)/\rho(4^{\circ}C) = 0.6614,$ $n_{\rm p}(20^{\circ}{\rm C}) = 1.37639.$ (3) source not specified. ESTIMATED ERROR: not specified. **REFERENCES:**

	203		
COMPONENTS :	ORIGINAL MEASUREMENTS:		
	Francis, A.W.		
(1) Benzvl alcohol			
(henzenemethanol) · CHO·	Ind Eng Chem 1944, 36		
	764-73		
[100-21-6]	/64-/1.		
(2) 1-Heptene; C ₇ H ₁₄ ; [592-76-7]			
<pre>(3) Methylcyclohexane; C₇H₁₄; [108-87-2]</pre>			
VARIABLES:	PREPARED BY:		
Temperature: 265, 287 K	A. Skrzecz		
EXPERIMENTAL VALUES:			
Benzyl alcohol + 1-Heptene: UCST =	-8°C.		
Benzyl alcohol + Methylcyclohexane: UCST = 14°C.			
AUXILIARY IN	FORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The cloud point method was used. The	(1) source not specified.		
reagents were introduced and stirred	(2) obtained by Grignard reacyion;		
with a thermometer in test tubes	purified; $\rho(20^{\circ}C) = 0.6980;$ b.p.		
which were warmed and cooled	range 93-93.5°C.		
gradually in a bath. The temp. of	(3) source not specified.		
diananananan ay yanyananan af	(b) bource not specifica.		
disappearance of reappearance of			
the cloudiness was read two or three			
times in each direction.			
	ESTIMATED ERROR:		
	not specified.		
	REFERENCES :		
	······································		

COMPONENTS: ORIGINAL MEASUREMENTS: Miller, V.A. (1) Benzyl alcohol (benzenemethanol) C₇H₈O; [100-51-6] Ind. Eng. Chem., Anal. Ed. 1945, 17, 5-12. (2) 2,2-Dimethylpentane; C₇H₁₆; [590-35-2] (3) 2,3-Dimethylpentane; C₇H₁₆; [565-59-3] (4) 2,4-Dimethylpentane; C₇H₁₆; [108-08-7] PREPARED BY: VARIABLES: Temperatures: 320, 338 K A. Skrzecz EXPERIMENTAL VALUES: Solution temperatures and compositions: benzyl alcohol + 2,2-Dimethylpentane: 64.7°C. 50 vol. %, or 100 w, = 61, $x_1 = 0.59$ (compiler). benzyl alcohol + 2,3-Dimethylpentane: 46.4°C. 50 vol. \$, or 100 w₁ = 60, $x_1 = 0.58$ (compiler). benzyl alcohol + 2,4-Dimethylpentane: 64.9°C. 50 vol. %, or 100 w, = 61, $x_1 = 0.59$ (compiler). AUXILIARY INFORMATION SOURCE AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: (1) source not specified. The cloud point method was used. A tube containing the sample, stirrer (2) source not specified; purified and fitted with a resistance chemically, distilled, stored thermometer was placed in an air bath over P₂O₅, distilled; f.p. tube in a liquid bath. Temperature $-123.7^{\circ}C, n_{p}(20^{\circ}C) = 1.3823.$ was measured with an iron-constantan (3) source not specified; purified thermocouple and a Leeds & Northrup chemically, distilled, stored Type K potentiometer. over P₂O₅, distilled. (4) source not specified; purified chemically, distilled, stored over P₂O₅, distilled; f.p. $-119.3^{\circ}C, n_{0}(20^{\circ}C) = 1.3818.$ ESTIMATED ERROR: temp. ±0.1 K. **REFERENCES**:
COMPONENTS:	EVALUATOR:
 (1) Benzyl alcohol (benzenemethanol) C₇H₈O; [100-51-6] 	A. Maczynski and A. Skrzecz
	Institute of Physical Chemistry
(2) Heptane; C ₇ H ₁₆ ; [142-82-5]	Polish Academy of Sciences
	Warsaw, Poland
	July, 1989.

CRITICAL EVALUATION:

Quantitative solubilities and upper critical solution temperatures (UCST) for the system benzyl alcohol (1)-heptane (2) have been reported in the references listed below.

Author(s)	T/K	x_1	<i>x</i> ₁
		(2)-rich phase	(1)-rich phase
1. Francis 1944	333 UCST	-	-
2. Miller 1945	324	(50 mL(1)/100 r	nL sln)
3. Durandet 1955	273.2 - 324.9 UCST	0.028 - 0.062	0.854 - 0.886

The UCST value of Francis, ref 1, is in poor agreement with the others, and is rejected. The value of Durandet et al., ref 3, is accepted as Tentative with a probable uncertainity of 1 K in temperature.

Durandet et al., ref 3, determined mutual solubility at 273 K by two methods with good agreement; their mean value is adopted as Tentative. The data from the same authors for 288 and 325 K, which were obtained by one method only, are also regarded as Tentative.

TENTATIVE DATA:

T/K	x_1	x_1
	(2)-rich phase	(1)-rich phase
273	0.028	0.885
288	0.062	0.854

REFERENCES:

325 UCST

1. Francis, A.W. Ind. Eng. Chem. 1944, 36, 764.

- 2. Miller, V.A. Ind. Eng. Chem. Anal. Ed. 1945, 17, 5.
- 3. Durandet, J.; Gladel, Y.L.; Graziani, F. Rev. Inst. Fr. Petrole 1955, 10, 585.

266			
COMPONENTS: (1) Benzyl alcohol (benzenemethanol) C_7H_80 ; [100-51-6] (2) Heptane; C_7H_{16} ; [142-82-5]	ORIGINAL MEASUREMENTS: Francis, A.W. Ind. Eng. Chem. <u>1944</u> , 36, 764-71.		
VARIABLES:	PREPARED BY:		
One temperature: 333 K	A. Skrzecz		
EXPERIMENTAL VALUES:			
The UCST was reported to be 60°C.			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/FROCEDURE: The cloud point method was used. The reagents were introduced and stirred with a thermometer in test tubes which were warmed and cooled in a bath gradually. The temperature	SOURCE AND PURITY OF MATERIALS: (1) source not specified. (2) obtained from Jeffrey pine, no more information.		
cloudiness was read two or three times in each direction.	ESTIMATED ERROR: not specified.		
	REFERENCES :		
COMPONENTS:	ORIGINAL MEASUREMENTS:		
C-H-O: [100-51-6]	Ind. Eng. Chem., Anal. Ed. 1945.		
(2) Heptane; C_7H_{16} ; [142-82-5]	17, 5-12.		
VARIABLES:	PREPARED BY:		
One temperature: 324 K	A. Skrzecz		
EXPERIMENTAL VALUES: Solution temperature and composition: benzyl alcohol + heptane: 50.7°C at 50 vol. % or 100 $w_1 = 60$, $x_1 = 0.59$			
AUXILIARY			
The cloud point method was used. A tube containing the sample, stirrer and resistance thermometer was placed in an air bath tube in a liquid bath. Temperature was measured with an iron constantan thermocouple and a Leeds & Northrup Type K potentiometer.	 SOURCE AND PURITY OF MATERIALS: (1) source not specified. (2) source not specified; purified chemically, distilled, stored over P₂O₅, distilled. ESTIMATED ERROR: ESTIMATED ERROR: 		
	temp. ±0.1 K.		
	REFERENCES :		

		r	
Components :		ORIGINAL MEASUREMENTS:	
(1) Benzyl alcohol (be C ₇ H ₈ O; [100-51-6]	(1) Benzyl alcohol (benzenemethanol) C ₇ H ₈ O; [100-51-6]		del, Y.L.;
(2) Heptane; C ₇ H ₁₆ ; [14	2-82-5]	Rev. Inst. Fr. Pet 585-94.	trole <u>1955</u> , 10,
VARIABLES:		PREPARED BY:	
Temperature: 273 - 325	; K	A. Skrzecz	
EXPERIMENTAL VALUES:			
Mutual solubi	lity of benzyl a	lcohol and heptane	
t/°c	100 w,	x, (compiler)	
(2)-rich phas	se (1)-rich pha	se (2)-rich phase	(1)-rich phase
0. a) 3.0	89.3	0.028	0.886
0. b) 2.7	89.9	0.025	0.892
0. 3.0	89.1	0.028	0.883
15. a) 6.7	86.3	0.062	0.854
51.7 UCST -	-	-	-
Mutual solubility of benzyl alcohol and heptane t/°C 100 vol(1)/vol sln (2)-rich phase (1)-rich phase 18 80. 38.5 10		·	
51.1 -	50.	<u></u>	
	AUXILIARY IN	FORMATION	
METHOD/APPARATUS/PROCEDURE: The cloud point method a), using sealed tubes, and the titration method b) (ref 1, 2) were used. Solubility data are given on a graph. The volumes of the mixture were assumed to be additive. No further details were reported.		SOURCE AND PURITY OF MATERIALS: (1) source not specified, pure grade; dist.; $\rho(20^{\circ}C)/\rho(4^{\circ}C) =$ 1.045, $n_{\rm p}(20^{\circ}C) =$ 1.5400. (2) "motor A.S.T.M."; used as received; $\rho(20^{\circ}C)/\rho(4^{\circ}C) =$ 0.6828, $n_{\rm p}(20^{\circ}C) =$ 1.3880.	
		ESTIMATED ERROR:	
		REFERENCES: 1. Gladel, Y.L.; Du Rev. Inst. France 1944, 9, 221. 2. Graziani, F. T: Recherche E.N.S. Determination d liquide-liquide	urandet, J. 5. Petrole ravail de .P. 'un equilibre

ł

268	
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzyl alcohol (benzenemethanol)	Miller, V.A.
С ₇ H ₈ O; [100-51-6]	Ind. Eng. Chem., Anal. Ed. <u>1945</u> ,
(2) 2-Methylhexane; C ₇ H ₁₆ ; [591-76-4]	17, 5-12.
(3) 2,2,3-Trimethylbutane; C ₇ H ₁₆ ;	
[464-06-2]	
VARIABLES:	PREPARED BY:
Temperature: 327, 330 K	A. Skrzecz
EXPERIMENTAL VALUES:	
Solution temperatures and composi	tions:
Benzyl alcohol + 2-Methylhexane: 0.59 (compiler).	57.25°C. 50 vol. $x_1 = 61, x_1 =$
Benzyl alcohol + 2,2,3-Trimethylb $x_1 = 0.59$ (compiler).	utane: 53.5°C. 50 vol. %, or 100w ₁ = 61
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The cloud point method was used. A	(1) source not specified.
tube containing the sample, stirrer and fitted with a resistance thermometer was placed in an air bath	(2) source not specified; purified chemically, distilled, stored
was measured with an iron-constantan	
Type K potentiometer.	<pre>(3) source not specified; purified chemically, distilled, stored over P₂O₅, distilled; f.p. -25.1°C, n_p(20°C) = 1.3897</pre>
	ESTIMATED ERROR:
	temp. ±0.1 K.
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Benzyl alcohol (benzenemethanol) C₇H₈O; [100-51-6] (2) 2,5-Dimethyl-1,5-hexadiene (diisobutene); C₈H₁₄; [627-58-7] 	Francis, A.W. Ind. Eng. Chem. <u>1944</u> , 36, 764-71.
VARIABLES:	PREPARED BY:
One temperature: 288 K	A. Skrzecz
EXPERIMENTAL VALUES:	
The UCST was reported to be 15°C.	
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The reagents were introduced and stirred with a thermometer in test tubes which were warmed and cooled gradually in a bath. The temperature of disappearance or reappearance of the cloudiness was read two or three times in each direction.	SOURCE AND FURITY OF MATERIALS: (1) source not specified. (2) source not specified.
	ESTIMATED ERROR: not specified.
	REFERENCES :

ł

I

(1) Benzyl alcohol (benzenemethanol) Maman, λ. (2) 2, 3-Dimethylhexane; C _g H ₁₈ ; Compt. Rond. Hebd. Séances Acad. (3) 2, 4-Dimethylhexane; C _g H ₁₈ ; Sci. 1937, 205, 319-21. (3) 2, 4-Dimethylhexane; C _g H ₁₈ ; Sci. 1937, 205, 319-21. (5) 3, 4-Dimethylhexane; C _g H ₁₈ ; Sci. 1937, 205, 319-21. (5) 3, 4-Dimethylhexane; C _g H ₁₈ ; Sci. 1937, 205, 319-21. (5) 3, 4-Dimethylhexane; C _g H ₁₈ ; Sci. 1937, 205, 319-21. (6) 3-Ethylhexane; C _g H ₁₈ ; Sci. 1937, 205, 319-21. (6) 3-Ethylhexane; C _g H ₁₈ ; Sci. 1937, 205, 319-21. (6) 3-Ethylhexane; C _g H ₁₈ ; Sci. 1937, 205, 319-21. (7) 3-Ethyl-2-Methylhexane; C _g H ₁₈ ; Sci. 1937, 205, 319-21. (8) 2-Methylheptane; C _g H ₁₈ ; Sci. 1937, 205, 319-21. (9) 3-Methylhexane; C _g H ₁₈ ; Sci. 1937, 205, 319-21. (10) 4-Methylheptane; C _g H ₁₈ ; Sci. 1937, 205, 319-21. (11) Benzyl alcohol + N. Skrzecz (12) Benzyl alcohol + N. Skrzecz (13) 2,4-Dimethylhexane 51.4 1.40069 0.7139 (3) 2,4-Dimethylhexane 51.4 1.40170 0.7216 (13) 2,4-Dimethylhexane 51.4 1.40128 0.7026 <t< th=""><th>COMPON</th><th>ENTS:</th><th></th><th>ORIGINAL</th><th>MEASUREMENTS:</th><th></th></t<>	COMPON	ENTS:		ORIGINAL	MEASUREMENTS:	
(2) 2,3-Dimethylhexane; C _g H ₁₆ ; Compt. Rond. Hebd. Séances Acad. (3) 2,4-Dimethylhexane; C _g H ₁₆ ; Sci. 1937, 205, 319-21. (3) 2,4-Dimethylhexane; C _g H ₁₆ ; Sci. 1937, 205, 319-21. (4) 2,5-Dimethylhexane; C _g H ₁₆ ; Sci. 1937, 205, 319-21. (5) 3,4-Dimethylhexane; C _g H ₁₆ ; Sci. 1937, 205, 319-21. (5) 3,4-Dimethylhexane; C _g H ₁₆ ; Sci. 1937, 205, 319-21. (6) 3-Ethylhexane; C _g H ₁₆ ; Sci. 1937, 205, 319-21. (6) 3-Ethylhexane; C _g H ₁₆ ; Sci. 1937, 205, 319-21. (7) 3-Ethylhexane; C _g H ₁₆ ; Sci. 1937, 205, 319-21. (8) 2-Methylheptane; C _g H ₁₆ ; Sci. 1937, 205, 319-21. (9) 3-Methylheptane; C _g H ₁₆ ; Sci. 1937, 205, 319-21. (10) 4-Methylheptane; C _g H ₁₆ ; Sci. 1937, 205, 319-21. (11) 589-53-7] Newthylheptane; C _g H ₁₆ ; (12) 2,3-Dimethylhexane 51.4 1.40069 0.7139 (3) 2,4-Dimethylhexane 51.3 1.39288 0.6970 (3) 2,5-Dimethylhexane 51.4 1.40069 0.7139 (3) 2,4-Dimethylhexa	(1)	(1) Benzyl alcohol (benzenemethanol)		Maman,	Α.	
(3) $2, 4$ -Dimethylhexane; $C_{g}H_{1g}$; [589-43-5] (4) $2, 5$ -Dimethylhexane; $C_{g}H_{1g}$; [592-13-2] (5) $3, 4$ -Dimethylhexane; $C_{g}H_{1g}$; [616-99-8] (7) 3 -Ethyl-2-Methylpentane; $C_{g}H_{1g}$; [609-26-7] (8) 2 -Methylheptane; $C_{g}H_{1g}$; [592-27-8] (9) 3 -Methylheptane; $C_{g}H_{1g}$; [589-63-1] (10) 4 -Methylheptane; $C_{g}H_{1g}$; [589-53-7] VARIABLES: Temperature: $320-338$ K EXFREMIENTAL VALUES: Component (1) Benzyl alcohol + (2) $2,3$ -Dimethylhexane 51.4 (1) Advision (2) $2,4$ -Dimethylhexane 51.4 (1) $3,2,4$ -Dimethylhexane 51.4 (1) $3,2,4$ -Dimethylhexane 51.4 (1) $3,2,4$ -Dimethylhexane 51.4 (1) $4,4$ -Dimethylhexane 51.4 (1) $4,4$ -Dimethylhexane 51.4 (1) $4,4$ -Dimethylhexane 51.4 (1) $4,4$ -Dimethylhexane 51.4 (1) $4,4$ -Dimethylhexane 51.4 (1) $4,4$ -Dimethylhexane 51.4 (2) $3,4$ -Dimethylhexane 51.4 (3) $2,4$ -Dimethylhexane 51.4 (4) $4,4$ -Dimethylhexane 51.4 (5) $3,4$ -Dimethylhexane 51.4 (5) $3,4$ -Dimethylhexane 51.4 (1) $4,4$ -Dimethylhexane 51.9 (1) $4,4$ -Dimethylhexane 51.9 (1) $4,4$ -Dimethylhexane 51.9 (1) $4,4$ -Dimethylhexane 51.9 (1) $4,4$ -Dimethylheptane 51.9 (1)	(2)	2,3-Dimethylhexane; C ₈ H ₁₈ ; [584-94-1]		Compt. Sci.	Rend. Hebd. <u>1937</u> , 205,	Séances Acad. 319-21.
<pre>(4) 2,5-Dimethylhexane; C_gH₁₈; [592-13-2] (5) 3,4-Dimethylhexane; C_gH₁₈; [616-99-8] (7) 3-Ethyla-2-Methylpentane; C_gH₁₈; [609-26-7] (8) 2-Methylheptane; C_gH₁₈; [599-27-8] (9) 3-Methylheptane; C_gH₁₈; [589-61-1] (10) 4-Methylheptane; C_gH₁₈; [589-53-7] VARIABLES: PREPARED BY: Temperature: 320-338 K EXPERIMENTAL VALUES: Component UCSTy^oC n_b(20^oC) ρ(20^oC)/g cm⁻³ (pure components) (1) Benzyl alcohol + (2) 2,3-Dimethylhexane 51.4 1.40069 0.7139 (3) 2,4-Dimethylhexane 57.3 1.39584 0.6993 (4) 2,5-Dimethylhexane 57.3 1.39584 0.6993 (4) 2,5-Dimethylhexane 49.2 1.40128 0.7124 (7) 3-Ethyla-2-Methylpentane 46.6 1.40353 0.7182 (8) 2-Methylheptane 59.9 1.39531 0.6984 (9) 3-Methylheptane 54.9 1.39531 0.6984 (9) 3Methylheptane 54.9 1.39531 0.6984 (10) 4-Methylheptane 54.9 1.39531 0.6984 (10) 4-Methylheptane 54.9 1.39531 0.6984 (10) 4-Methylheptane 54.9 1.39531 0.6984 (10) 4-Methylheptane 54.9 1.39531 0.6984 (11) source not specified. METHOD/APPARATUS/FROCEDURE: The method was not specified.</pre>	(3)	2,4-Dimethylhexane; C ₈ H ₁₈ ; [589-43-5]				
<pre>(5) 3,4-Dimethylhexane; C_gH₁₈; [53-48-2] (6) 3-Ethylhexane; C_gH₁₈; [60-26-7] (7) 3-Ethyl-2-Methylpentane; C_gH₁₈; [69-26-7] (8) 2-Methylheptane; C_gH₁₈; [589-81-1] (10) 4-Methylheptane; C_gH₁₈; [589-53-7] VARIABLES: PREPARED BY: Temperature: 320-338 K A. Skrzecz EXPERIMENTAL VALUES: Component UCST/°C n_b(20°C) p(20°C)/g cm⁻³ (pure components) (1) Benzyl alcohol + (2) 2, 3-Dimethylhexane 51.4 1.40069 0.7139 (3) 2, 4-Dimethylhexane 57.3 1.39584 0.66993 (4) 2, 5-Dimethylhexane 57.3 1.39588 0.6970 (5) 3, 4-Dimethylhexane 65.3 1.39288 0.6970 (5) 3, 4-Dimethylhexane 46.4 1.40470 0.7216 (6) 3-Ethylhexane 49.2 1.40128 0.7124 (7) 3-Ethyl-2-Methylpentane 46.6 1.40353 0.7182 (8) 2-Methylheptane 55.9 1.39523 0.6984 (9) 3-Methylheptane 55.9 1.39513 0.6984 (9) 3-Methylheptane 55.9 1.39824 0.7036 AUXILLARY INFORMATION METHOD/AFFARATUS/FROCEDURE: The method was not specified.</pre>	(4)	2,5-Dimethylhexane; C ₈ H ₁₈ ; [592-13-2]				
(6) 3-Ethylhexane; C _g H ₁₈ ; [616-99-8] (7) 3-Ethyl-2-Methylpentane; C _g H ₁₈ ; [609-26-7] (8) 2-Methylheptane; C _g H ₁₈ ; [592-27-8] (9) 3-Methylheptane; C _g H ₁₈ ; [589-81-1] (10) 4-Methylheptane; C _g H ₁₈ ; [589-53-7] VARIABLES: PREPARED BY: Temperature: 320-338 K λ. Skrzecz EXPERIMENTAL VALUES: Λ. Skrzecz Component UCST'°C n ₀ (20°C) ρ(20°C)/g cm ⁻³ (pure components) (1) Benzyl alcohol +	(5)	3,4-Dimethylhexane; C ₈ H ₁₈ ; [583-48-2]				
<pre>(7) 3-Ethyl-2-Methylpentane; C_gH₁₈; [609-26-7] (8) 2-Methylheptane; C_gH₁₈; [589-27-8] (9) 3-Methylheptane; C_gH₁₈; [589-81-1] (10) 4-Methylheptane; C_gH₁₈; [589-53-7] VARIABLES: Temperature: 320-338 K EXPERIMENTAL VALUES: Component UCST/°C n₀(20°C) ρ(20°C)/g cm⁻³ (pure components) (1) Benzyl alcohol + (2) 2,3-Dimethylhexane 51.4 1.40069 0.7139 (3) 2,4-Dimethylhexane 57.3 1.39584 0.6993 (4) 2,5-Dimethylhexane 65.3 1.39288 0.6970 (5) 3,4-Dimethylhexane 46.4 1.40470 0.7216 (6) 3-Ethylhexane 49.2 1.40128 0.7124 (7) 3-Ethyl-2-Methylpentane 46.6 1.40353 0.7122 (8) 2-Methylheptane 59.9 1.39531 0.6984 (9) 3-Methylheptane 55.9 1.3929 0.7045 (10) 4-Methylheptane 55.9 1.3929 0.7045 (10) 4-Methylheptane 54.9 1.39614 0.7036 AUXILIARY INFORMATION METHOD/AFPARATUS/FROCEDURE: The method was not specified.</pre>	(6)	3-Ethylhexane; C ₈ H ₁₈ ; [616-99-8]				
<pre>(8) 2-Methylheptane; C_gH₁₈; [592-27-8] (9) 3-Methylheptane; C_gH₁₈; [589-81-1] (10) 4-Methylheptane; C_gH₁₈; [589-53-7] VARIABLES: Temperature: 320-338 K EXPERIMENTAL VALUES: Component UCST/°C n₀(20°C) ρ(20°C)/g cm⁻³ (pure components) (1) Benzyl alcohol + (2) 2,3-Dimethylhexane 51.4 1.40069 0.7139 (3) 2,4-Dimethylhexane 57.3 1.39584 0.6993 (4) 2,5-Dimethylhexane 65.3 1.39288 0.6997 (5) 3,4-Dimethylhexane 46.4 1.40470 0.7216 (6) 3-Ethylhexane 49.2 1.40128 0.7124 (7) 3-Ethyl-2-Methylpentane 46.6 1.40353 0.7182 (8) 2-Methylheptane 55.9 1.39513 0.6984 (9) 3-Methylheptane 55.9 1.39814 0.7036 (10) 4-Methylheptane 54.9 1.39814 0.7036 MUXILIARY INFORMATION METHOD/AFPARATUS/FROCEDURE: The method was not specified. METHOD/AFPARATUS/FROCEDURE: The method was not specified.</pre>	(7)	3-Ethyl-2-Methylpentane; C ₈ H ₁ [609-26-7]	18;			
(9) 3-Methylheptane; CgH1g; [589-81-1] [589-81-1] (10) 4-Methylheptane; CgH1g; [589-53-7] PREPARED BY: A. Skrzecz VARIABLES: PREPARED BY: A. Skrzecz Temperature: 320-338 K A. Skrzecz EXPERIMENTAL VALUES: Component Component UCST/°C n ₀ (20°C) ρ(20°C)/g cm ⁻³ (pure components) (1) Benzyl alcohol + 1.40069 0.7139 (2) 2, 3-Dimethylhexane 51.4 1.40069 0.7139 (3) 2, 4-Dimethylhexane 57.3 1.39288 0.6970 (4) 2, 5-Dimethylhexane 46.4 1.40470 0.7216 (6) 3-Ethylhexane 49.2 1.40128 0.7124 (7) 3-Ethyl-2-Methylpentane 46.6 1.40353 0.7182 (8) 2-Methylheptane 59.9 1.39531 0.6984 (9) 3-Methylheptane 55.9 1.39829 0.7045 (10) 4-Methylheptane 54.9 1.39814 0.7036 MUXILIARY INFORMATION METHOD/APPARATUS/FROCEDURE: The method was not specified. SOURCE AND PURITY OF MATERIALS: The method was not specified. Other components: source not specified.	(8)	2-Methylheptane; C ₈ H ₁₈ ; [592-27-8]				
(10) 4-Methylheptane; C _g H ₁₈ ; [589-53-7] VARIABLES: Temperature: PREFARED BY: A. Skrzecz EXPERIMENTAL VALUES: Component PREFARED BY: A. Skrzecz EXPERIMENTAL VALUES: Component n ₀ (20°C) ρ(20°C)/g cm ⁻³ (pure components) (1) Benzyl alcohol + (2) 2,3-Dimethylhexane 51.4 1.40069 0.7139 (3) 2,4-Dimethylhexane 57.3 1.39584 0.6993 (4) 2,5-Dimethylhexane 65.3 1.39288 0.6970 (5) 3,4-Dimethylhexane 46.4 1.40470 0.7216 (6) 3-Ethylhexane 49.2 1.40128 0.7124 (7) 3-Ethyl-2-Methylpentane 46.6 1.40353 0.7182 (8) 2-Methylheptane 59.9 1.39511 0.6984 (9) 3-Methylheptane 51.9 1.39814 0.7036 AUXILLARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) source not specified. METHOD/APPARATUS/FROCEDURE: SOURCE AND PURITY OF MATERIALS: (1) source not specified. The method was	(9)	3-Methylheptane; C ₈ H ₁₈ ; [589-81-1]				
VARIABLES: PREPARED BY: Temperature: 320-338 K A. Skrzecz EXPERIMENTAL VALUES: Component UCST/°C n ₀ (20°C) p(20°C)/g cm ⁻³ (pure components) (1) Benzyl alcohol + (2) 2,3-Dimethylhexane 51.4 1.40069 0.7139 (2) 2,3-Dimethylhexane 57.3 1.39584 0.6993 6933 (3) 2,4-Dimethylhexane 57.3 1.39288 0.6970 6933 (4) 2,5-Dimethylhexane 65.3 1.39288 0.6970 6933 (4) 2,5-Dimethylhexane 46.4 1.40470 0.7216 603 (5) 3,4-Dimethylhexane 49.2 1.40128 0.7124 607124 (7) 3-Ethyl-2-Methylpentane 46.6 1.40353 0.7182 6984 (8) 2-Methylheptane 55.9 1.39814 0.7036 6044 (9) 3-Methylheptane 55.9 1.39814 0.7036 6054 6054 6054 6054 6054 6054 6054 6054 6054 6054 6054 6054 6054 6054 6054	(10)	4-Methylheptane; C ₈ H ₁₈ ; [589-53-7]				
Temperature: J20-338 K A. SKP2ecz EXPERIMENTAL VALUES: Component UCST/°C $n_0(20^\circ C) - \rho(20^\circ C)/g \text{ cm}^{-3}$ (pure components) (1) Benzyl alcohol + (2) 2,3-Dimethylhexane 51.4 1.40069 0.7139 (3) 2,4-Dimethylhexane 57.3 1.39584 0.6993 (4) 2,5-Dimethylhexane 65.3 1.39288 0.6970 (5) 3,4-Dimethylhexane 46.4 1.40470 0.7216 (6) 3-Ethylhexane 49.2 1.40128 0.7124 (7) 3-Ethyl-2-Methylpentane 46.6 1.40353 0.7182 (8) 2-Methylheptane 59.9 1.39531 0.6984 (9) 3-Methylheptane 55.9 1.39814 0.7036 AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The method was not specified. SOURCE AND PURITY OF MATERIALS: (1) source not specified. Other components: source not specified. Other components: source not specified. ESTIMATED ERROR: not specified.	VARIAB	LES:		PREPARED	BY:	
EXPERIMENTAL VALUES: Component UCST/°C $n_b (20°C)$ $\rho (20°C)/g$ cm ⁻³ (pure components) (1) Benzyl alcohol + (pure components) (2) 2,3-Dimethylhexane 51.4 1.40069 0.7139 (3) 2,4-Dimethylhexane 57.3 1.39584 0.6993 (4) 2,5-Dimethylhexane 65.3 1.39288 0.6970 (5) 3,4-Dimethylhexane 46.4 1.40470 0.7216 (6) 3-Ethylhexane 49.2 1.40128 0.7124 (7) 3-Ethylhexane 49.2 1.40128 0.7182 (8) 2-Methylheptane 59.9 1.39531 0.6984 (9) 3-Methylheptane 55.9 1.39829 0.7045 (10) 4-Methylheptane 54.9 1.39814 0.7036 AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The method was not specified. SOURCE AND PURITY OF MATERIALS: (1) source not specified. Other components: source not specified. Other components: source not specified. Specified. Measured physical properties given in the table.	Temp	erature: 320-338 K		A. SKrz	ecz	
Component UCSTY C $h_b(20 \text{ C})$ $p(20 \text{ C})$ /g cm (pure components) (1) Benzyl alcohol + (pure components) (2) 2,3-Dimethylhexane 51.4 1.40069 0.7139 (3) 2,4-Dimethylhexane 57.3 1.39584 0.6993 (4) 2,5-Dimethylhexane 65.3 1.39288 0.6970 (5) 3,4-Dimethylhexane 46.4 1.40470 0.7216 (6) 3-Ethylhexane 49.2 1.40128 0.7124 (7) 3-Ethyl-2-Methylpentane 46.6 1.40353 0.7182 (8) 2-Methylheptane 59.9 1.39813 0.6984 (9) 3-Methylheptane 55.9 1.39814 0.7036 METHOD/APPARATUS/PROCEDURE: The method was not specified. METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The method was not specified. (1) source not specified. Other components: source not specified. Other components: source not specified.	EXPERI	IENTAL VALUES:		<i>м</i> о	- (DO ⁰ C)	• • • • • • • • • • • • • • • • • • • •
(1)Benzyl alcohol +(2)2,3-Dimethylhexane51.41.400690.7139(3)2,4-Dimethylhexane57.31.395840.6993(4)2,5-Dimethylhexane65.31.392880.6970(5)3,4-Dimethylhexane46.41.404700.7216(6)3-Ethylhexane49.21.401280.7124(7)3-Ethyl-2-Methylpentane46.61.403530.7182(8)2-Methylheptane59.91.395310.6984(9)3-Methylheptane55.91.398290.7045(10)4-Methylheptane54.91.398140.7036AUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:The method was not specified.SOURCE AND PURITY OF MATERIALS:(1)source not specified.Other components: source not specified.Other components: source not specified.ESTIMATED ERROR: not specified.		Component	UCST	/ C	$n_{\rm D}(20 \text{ C})$	$\rho(20C)/g cm^2$
(2) 2,3-Dimethylhexane 51.4 1.40069 0.7139 (3) 2,4-Dimethylhexane 57.3 1.39584 0.6993 (4) 2,5-Dimethylhexane 65.3 1.39288 0.6970 (5) 3,4-Dimethylhexane 46.4 1.40470 0.7216 (6) 3-Ethylhexane 49.2 1.40128 0.7124 (7) 3-Ethyl-2-Methylpentane 46.6 1.40353 0.7182 (8) 2-Methylheptane 59.9 1.39531 0.6984 (9) 3-Methylheptane 55.9 1.39814 0.7036 AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The method was not specified. The method was not specified. SOURCE AND PURITY OF MATERIALS: (1) source not specified. Other components: source not specified. Other components: source not specified. ESTIMATED ERROR: not specified.		(1) Benzvl alcohol +			(pure com	ponencaj
(3) 2,4-Dimethylhexane57.31.395840.6993(4) 2,5-Dimethylhexane65.31.392880.6970(5) 3,4-Dimethylhexane46.41.404700.7216(6) 3-Ethylhexane49.21.401280.7124(7) 3-Ethyl-2-Methylpentane46.61.403530.7182(8) 2-Methylheptane59.91.395310.6984(9) 3-Methylheptane55.91.398290.7045(10) 4-Methylheptane54.91.398140.7036AUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE: The method was not specified.SOURCE AND PURITY OF MATERIALS: (1) source not specified.Other components: source not specified. Measured physical properties given in the table.ESTIMATED ERROR: not specified.		(2) 2,3-Dimethylhexane	51.4		1.40069	0,7139
(4) 2,5-Dimethylhexane65.31.392880.6970(5) 3,4-Dimethylhexane46.41.404700.7216(6) 3-Ethylhexane49.21.401280.7124(7) 3-Ethyl-2-Methylpentane46.61.403530.7182(8) 2-Methylheptane59.91.395310.6984(9) 3-Methylheptane55.91.398290.7045(10) 4-Methylheptane54.91.398140.7036AUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:(1) source not specified.Other components: source not specified.Other components: source not specified.ESTIMATED ERROR:not specified.		(3) 2,4-Dimethylhexane	57.3		1.39584	0.6993
(5) 3,4-Dimethylhexane46.41.404700.7216(6) 3-Ethylhexane49.21.401280.7124(7) 3-Ethyl-2-Methylpentane46.61.403530.7182(8) 2-Methylheptane59.91.395310.6984(9) 3-Methylheptane55.91.398290.7045(10) 4-Methylheptane54.91.398140.7036AUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:The method was not specified.Source AND FURITY OF MATERIALS:(1) source not specified.Other components: source not specified.Other components: source not specified.ESTIMATED ERROR:not specified.		(4) 2,5-Dimethylhexane	65.3		1.39288	0.6970
<pre>(6) 3-Ethylhexane 49.2 1.40128 0.7124 (7) 3-Ethyl-2-Methylpentane 46.6 1.40353 0.7182 (8) 2-Methylheptane 59.9 1.39531 0.6984 (9) 3-Methylheptane 55.9 1.39829 0.7045 (10) 4-Methylheptane 54.9 1.39814 0.7036 AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The method was not specified. (1) source not specified. Other components: source not specified. Measured physical properties given in the table. ESTIMATED ERROR: not specified.</pre>		(5) 3,4-Dimethylhexane	46.4		1.40470	0.7216
<pre>(7) 3-Ethyl-2-Methylpentane 46.6 1.40353 0.7182 (8) 2-Methylheptane 59.9 1.39531 0.6984 (9) 3-Methylheptane 55.9 1.39829 0.7045 (10) 4-Methylheptane 54.9 1.39814 0.7036 AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The method was not specified. METHOD was not specified. </pre> Source AND PURITY OF MATERIALS: (1) source not specified. Other components: source not specified. Measured physical properties given in the table. ESTIMATED ERROR: not specified.		(6) 3-Ethylhexane	49.2		1.40128	0.7124
<pre>(8) 2-Methylheptane 59.9 1.39531 0.6984 (9) 3-Methylheptane 55.9 1.39829 0.7045 (10) 4-Methylheptane 54.9 1.39814 0.7036 AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The method was not specified. M</pre>		(7) 3-Ethyl-2-Methylpentane	46.6		1.40353	0.7182
(9) 3-Methylheptane 55.9 1.39829 0.7045 (10) 4-Methylheptane 54.9 1.39814 0.7036 AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The method was not specified. SOURCE AND PURITY OF MATERIALS: (1) source not specified. Other components: source not specified. Other components: source not specified. Specified. Measured physical properties given in the table. ESTIMATED ERROR: not specified.		(8) 2-Methylheptane	59.9		1.39531	0.6984
(10) 4-Methylheptane 54.9 1.39814 0.7036 AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The method was not specified. The method was not specified. (1) source not specified. Other components: source not specified. Measured physical properties given in the table. ESTIMATED ERROR: not specified.		(9) 3-Methylheptane	55.9		1.39829	0.7045
AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The method was not specified. (1) source not specified. Other components: source not specified. Measured physical properties given in the table. ESTIMATED ERROR: not specified.		(10) 4-Methylheptane	54.9		1.39814	0.7036
METHOD/APPARATUS/PROCEDURE: The method was not specified. SOURCE AND PURITY OF MATERIALS: (1) source not specified. Other components: source not specified. Measured physical properties given in the table. ESTIMATED ERROR: not specified.	AUXILIARY INFORMATION					
The method was not specified. (1) source not specified. Other components: source not specified. Measured physical properties given in the table. ESTIMATED ERROR: not specified.	METHOD,	/APPARATUS/PROCEDURE:		SOURCE AN	ND PURITY OF MA	ATERIALS:
Other components: source not specified. Measured physical properties given in the table. ESTIMATED ERROR: not specified.	The method was not specified.		(1) source not specified.			
specified. Measured physical properties given in the table. ESTIMATED ERROR: not specified.	•		Other components: source not		source not	
properties given in the table. ESTIMATED ERROR: not specified.			specified. Measured physical			
ESTIMATED ERROR: not specified.				propert	ies given in	the table.
not specified.				ESTIMATE	ERROR ·	
				not sp	ecified.	
REFEDENCES				REFERENCE	· · ·	

		271
COMPONENTS:		EVALUATOR:
 (1) Benzyl alcohol (benzenemethanol) C₇H₈O; [100-51-6] (2) Octane; C₈H₁₈; [111-65-9] 		A. Maczynski and A. Skrzecz Institute of Physical Chemistry Polish Academy of Sciences Warsaw, Poland July, 1989
CRITICAL EVALUATION: Table 1 lists reported solubilities and upper critical solution temperatures (UCST) for the system benzyl alcohol (1) - octane (2). Table 1. Solubilities and upper critical solution temperatures for the system benzyl alcohol (1) - octane (2)		
Author(s)	T/K	composition
1. Mulliken 1935 2. Maman 1937	328 327.7 U	1 mL(1)/1 mL(2) CST -
The value of Maman, ref 2, is accepted as Tentative with a probable temperature uncertainity of 1 K. The solubility value of Mulliken and Wakeman, ref 1, is rejected since it is expressed only as a volumetric ratio with no supporting data on densities from which mass or mole fractions can be calculated.		
TENTATIVE DATA:		
$UCST = 328 \pm 1$	K.	

REFERENCES:

i.

1. Mulliken, S.P.; Wakeman, R.L. Rec. Trav. Chim. Pays-Bas 1935, 54, 366.

2. Maman, A. C. R. Hebd. Séances Acad. Sci. 1937, 205, 319.

ORIGINAL MEASUREMENTS: Mulliken, S.P.; Wakeman, R.L. Rec. Trav. Chim. Pays-Bas <u>1935</u> , 54, 366-72.
PREPARED BY:
A. SKrzecz
of benzyl alcohol and octane was vol(2).
INFORMATION
<pre>SOURCE AND PURITY OF MATERIALS: (1) source not specified. (2) source not specified; purest commercial sample available; used as received; b.p. about 125°C. ESTIMATED ERROR: not specified. REFERENCES:</pre>
-
ORIGINAL MEASUREMENTS: Maman, A. C. R. Hebd. Séances Acad. Sci. <u>1937</u> , 205, 319-21.
PREPARED BY:
A. Skrzecz
INFORMATION
<pre>SOURCE AND PURITY OF MATERIALS: (1) source not specified. (2) source not specified; ρ(20°C) = 0.7023, n_p(20°C) = 1.39765. ESTIMATED ERROR: not specified. REFERENCES:</pre>

COMPONENTS:	EVALUATOR:		
 (1) Benzyl alcohol (benzenemethanol); C₇H₈O; [100-51-6] (2) 2,2,4-Trimethylpentane; C₈H₁₈; [540-84-1] 	A. Maczynski Institute of Physical Chemistry Polish Academy of Sciences Warsaw, Poland July, 1989		
CRITICAL EVALUATION:			
Solubilities and upper critical solution temperatures (UCST) for the system benzyl alcohol (1)-2,2,4-trimethylpentane (2) were reported in the following two papers:			
Author(s) T/K composit	ion		

1. Mulliken 1935	347	1 mL(1)/1 mL(2)
2. Francis 1944	346 UCST	-

The available data for this system are inadequate for a detailed evluation. Therefore these values are considered as Tentative.

REFERENCES:

1. Mulliken, S.P.; Wakeman, R.L. Rec. Trav. Chim. Pays-Bas 1935, 54, 366.

2. Francis, A.W. Ind. Eng. Chem. 1944, 36, 764.

2/4			
COMPONENTS: (1) Benzyl alcohol (benzenemethanol) C ₇ H ₈ O; [100-51-6] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1] VARIABLES: One temperature: 347 K EXPERIMENTAL VALUES: The temperature of mutual solubility 2,2,4-trimethylpentane was reported to	ORIGINAL MEASUREMENTS: Mulliken, S.P.; Wakeman, R.L. Rec. Trav. Chim. Pays-Bas 1935, 54, 366-72. PREPARED BY: A. Skrzecz of benzyl alcohol and to be 74°C at 1 vol(1) in 1 vol(2).		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. Miscibility was determined in a glass-stoppered tube of 4 mm inside diameter. One-tenth mL of each component was measured into the tube which was then strapped to a thermometer and warmed. The reported solubility temperature was the point at which cloudiness first appeared upon cooling in a homogenous mixture.	<pre>SOURCE AND PURITY OF MATERIALS: (1) source not specified. (2) source not specified; purest commercial sample available; used as received; b.p. range 98 - 99°C. ESTIMATED ERROR: not specified. REFERENCES:</pre>		
COMPONENTS: (1) Benzyl alcohol (benzenemethanol) C ₇ H ₈ O; [100-51-6] (2) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1] VARIABLES:	ORIGINAL MEASUREMENTS: Francis, A.W. Ind. Eng. Chem. <u>1944</u> , 36, 764-71. PREPARED BY:		
One temperature: 346 K	A. Skrzecz		
EXPERIMENTAL VALUES: The UCST was reported to be 73°C.			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The reagents were introduced and stirred with a thermometer in test tubes which were warmed and cooled gradually in a bath. The temperature of disappearance or reappearance of the cloudiness was read two or three times in each direction.	SOURCE AND PURITY OF MATERIALS: (1) source not specified. (2) source not specified.		
	ESTIMATED ERROR: not specified. REFERENCES:		

	275	
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Benzyl alcohol (benzenemethanol) C ₇ H ₈ O; [100-51-6]	Mulliken, S.P.; Wakeman, R.L.	
(2) 2,7-Dimethyloctane; C ₁₀ H ₂₂ ; [1072-16-8]	Rec. Trav. Chim. Pays-Bas <u>1935</u> , 54, 366-72.	
VARIABLES:	PREPARED BY:	
One temperature: 345 K	A. Skrzecz	
EXPERIMENTAL VALUES:	<u>1</u>	
The temperature of mutual solubility of benzyl alcohol and . 2,7-dimethyloctane was reported to be $72^{\circ}C$ at 1 vol(1) in 1 vol(2).		
•		
AUXILIARY IN	FORMATION	
METHOD / A PPARATUS / PROCEDURE ·	SOURCE AND PURITY OF MATERIALS.	
The cloud point method was used.	(1) source not specified.	
Miscibility was determined in a		
glass-stoppered tube of 4 mm inside	(2) source not specified; purest	
diameter. One-tenth mL of each	commercial sample available; used	
component was measured into the tube	as received; b.p. range 159-160°C.	
thermometer and warmed. The reported		
solubility temperature was the point		
at which cloudiness first appeared		
upon cooling in a homogenous mixture.		
	ESTIMATED ERROR:	
	not specified.	
	REFERENCES :	

276			
COMPONENTS :		ORIGINAL MEASUREMENTS:	
(1) Benzyl alcohol (benzenemethanol) $C_7H_80; [100-51-6]$ (2) Undecane; $C_{11}H_{24}; [1120-21-4]$ (3) Dodecane; $C_{12}H_{26}; [112-40-3]$ (4) Tridecane; $C_{13}H_{28}; [629-50-5]$ (5) Tetradecane; $C_{14}H_{30}; [629-59-4]$ (6) Pentadecane; $C_{15}H_{32}; [629-62-9]$ (7) Hexadecane; $C_{16}H_{34}; [544-76-3]$ (8) Heptadecane; $C_{12}H_{14}; [629-78-7]$		Durandet, J. Graziani, Rev. Inst. F 585-94.	; Gladel, Y.L.; F. Tr. Petrole <u>1955</u> , 10,
VARIABLES:		PREPARED BY:	
Temperature: 339 K		A. Skrzecz	
EXPERIMENTAL VALUES:		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Component	ucst/°c	n _p (20°C)	$\rho(20^{\circ}C)/\rho(4^{\circ}C)$
(1) Benzyl alcohol $+$		1.5400	1.045
(1) Denzyl diconol ((2) Undecane	66.2	-	-
(2) Didecane	71.9	_	* <u>-</u>
(4) Tridecane	77.3	_	_
(4) IIIuecane (5) Tetradecane	77.5 81 8	1 4290	- 0 7612
(5) Techadecane	86 5	1 4331	0.7676
(7) Hevadecane	89.8	1.4362	0.7738
(8) Heptadecane	92.8	1.4369	0.787
	AUXILIARY IN	FORMATION	
METHOD / APPARATUS / PROCEDURE:		SOURCE AND PURI	TY OF MATERIALS:
The cloud point method of se	aled	(1) source not specified, pure	
tubes, ref 1, was used. Solubility		grade; distil	iled.
aranh The volume of the mix	turo wac	(2) obtained	by distillation from
assumed to be additive No	further	netroleum fr	of a see table for
details were reported in the	naner.	measured phys	sical properties.
	paper.	measured phys	
		ESTIMATED ERROR	:
		not specifie	ed.
		REFERENCES:	
l		1. Gladel, Y.	.L.; Durandet, J.
		Rev. Inst. Franc. Petrole	
		1944. 9. 2	221.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Benzyl alcohol (benzenemethanol) C₇H₈O; [100-51-6]</pre>	Tilitschejew, M.D.; Kuryndin, K.S.
(2) 1-Phenylhexadecane (cetylbenzol); C ₂₂ H ₃₈ ; [1459-09-2]	Chem. Zentralbl. <u>1931</u> , 102, 2559-61.
VARIABLES:	PREPARED BY:
One temperature: 303 K	A. Skrzecz
EXPERIMENTAL VALUES:	J
The UCST was reported to be 27.9°C.	
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE: The method was not specified. Presumably it is described in ref 1.	SOURCE AND PURITY OF MATERIALS: (1) source not specified. (2) synthesized from petroleum fraction, benzene and AlCl ₃ ; b.p. 191-4°C at 6 Torr, $\rho(0^{\circ}C) = 0.8805, \rho(20.5^{\circ}C) =$ 0.8640, $n_{\rm b}(18.8^{\circ}C) = 1.4839.$
	ESTIMATED ERROR: not specified.
	REFERENCES: 1. Tilitschejew, M.D.; Kuryndin, M.D. Neftjanoe Chosjaistwo <u>1930</u> , 19, 586-98.

278		
COMPONENTS :	ORIGINAL MEASUREMENTS:	
 (1) 1-Heptene; C₇H₁₄; [592-76-7] (2) Methylcyclohexane; C₇H₁₄; [108-87-2] (3) Phenylethyl alcohol (benzeneethanol); C₈H₁₀O; [60-12-8] (4) Cinnamyl alcohol (3-phenyl-2-propen-1-ol); C₉H₁₀O; [104-54-1] 	Ind. Eng. Chem. <u>1944</u> , 36, 764-71.	
VARIABLES:	PREPARED BY:	
Temperature: 259-324 K	A. Skrzecz	
EXPERIMENTAL VALUES:	L	
l-Heptene + Phenylethyl alcohol: U l-Heptene + Cinnamyl alcohol: UCST	$CST = -14^{\circ}C.$ $= 47^{\circ}C.$	
Methylcyclohexane + Cinnamyl alcohol: UCST = 51°C.		
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The reagents were introduced and stirred with a thermometer in test tubes which were warmed and cooled gradually in a bath. The temp. of disappearance or reappearance of the cloudiness was read two or three times in each direction.	SOURCE AND FURITY OF MATERIALS: (1) obtained by Grignard reaction; purified; $\rho(20^{\circ}C) = 0.6980$, b.p. range 93-93.5°C. (2) source not specified. (3) source not specified. (4) source not specified.	
	ESTIMATED ERROR:	
	not specified. REFERENCES:	

	279	
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) 2,2-Dimethylpentane; C ₇ H ₁₆ ; [590-35-2]	Miller, V.A.	
<pre>(2) 2,3-Dimethylpentane; C₇H₁₆; [565-59-3]</pre>	Ind. Eng. Chem., Anal. Ed. <u>1945</u> , 17. 5-12.	
<pre>(3) 2,4-Dimethylpentane; C₇H₁₆; [108-08-7]</pre>		
(4) Phenethyl alcohol		
(benzeneethanol); C ₈ H ₁₀ O;		
[60-12-8]		
VARIABLES:	PREPARED BY:	
Temperature: 301-320 K	A. Skrzecz	
100 $w_1 = 40$, $x_1 = 0.45$ (compiler). 2,3-Dimethylpentane + Phenethyl alcohol: 28.2°C at 50 vol. % or 100 $w_1 = 40$, $x_1 = 0.45$ (compiler). 2,4-Dimethylpentane + Phenethyl alcohol: 467.05°C at 50 vol. % or 100 $w_1 = 40$, $x_1 = 0.45$ (compiler).		
AUXILIARY IN	FORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The cloud point method was used. A tube containing the sample, stirrer and fitted with a resistance thermometer was placed in an air bath tube in a liquid bath. Temperature was measured with an iron-constantan thermocouple and a Leeds & Northrup Type K potentiometer.	 (1) source not specified; purified chemically, distilled, stored over P₂O₅, distilled; f.p. -123.7°C, n_p(20°C) = 1.3823. (2) source not specified; purified chemically, distilled, stored over P₂O₅, distilled. (3) source not specified; purified chemically, distilled, stored over P₂O₅, distilled, stored over P₂O₅, distilled; f.p. -119.3°C, n_p(20°C) = 1.3818. (4) source not specified. 	
	ESTIMATED ERROR:	
	temp. IU.I K	
	REFERENCES:	

200	
COMPONENTS:	EVALUATOR:
(1) Heptane; C ₇ H ₁₆ ; [142-82-5]	A. Maczynski
(2) Phenethyl alcohol (benzeneethanol); C ₈ H ₁₀ O; [60-12-8]	Institute of Physical Chemistry Polish Academy of Sciences Warsaw, Poland
	July, 1989

CRITICAL EVALUATION:

Solubilities and upper critical solution temperatures (UCST) for the system heptane (1)-phenethyl alcohol (2) were reported in the following two papers:

	Author(s)	<i>T</i> /K	composition
1.	Francis 1944	307 UCSI	г -
2.	Miller 1945	293.9	50 mL(1)/100 mL sln

The available data for this system are inadequate for a detailed evaluation. Therefore these values are considered to be Tentative.

REFERENCES:

1. Francis, A.W. Ind. Eng. Chem. 1944, 36, 764.

2. Miller, V.A. Ind. Eng. Chem. Anal. Ed. 1945, 17, 5.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Heptane; C ₇ H ₁₆ ; [142-82-5]	Francis, A.W.
(2) Phenethyl alcohol	Ind. Eng. Chem. <u>1944</u> , 36, 764-71.
(benzeneethanol); C ₈ H ₁₀ O;	
[60-12-8]	
VARIABLES:	PREPARED BY:
One temperature: 307 K	A. Skrzecz
EXPERIMENTAL VALUES: The UCST was reported to be 34°C.	• • • • • • • • • • • • • • • • • • •
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The reagents were introduced and stirred with a thermometer in test tubes which were warmed and cooled slowly in a bath. The temperature of disappearance or reappearance of cloudiness was read two or three times in each direction.	<pre>SOURCE AND FURITY OF MATERIALS: (1) obtained from Jeffrey pine, no more information. (2) source not specified. ESTIMATED ERROR: not specified.</pre>
	REFERENCES:
F	
COMPONENTS :	ORIGINAL MEASUREMENTS:
COMPONENTS: (1) Heptane; C_7H_{16} ; [142-82-5]	ORIGINAL MEASUREMENTS: Miller, V.A.
COMPONENTS: (1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Phenethyl alcohol	ORIGINAL MEASUREMENTS: Miller, V.A. Ind. Eng. Chem., Anal. Ed. <u>1945</u> ,
<pre>COMPONENTS: (1) Heptane; C₇H₁₆; [142-82-5] (2) Phenethyl alcohol (benzeneethanol); C₈H₁₀O; (60, 12, 0)</pre>	ORIGINAL MEASUREMENTS: Miller, V.A. Ind. Eng. Chem., Anal. Ed. <u>1945</u> , 17, 5-12.
COMPONENTS: (1) Heptane; C_7H_{16} ; [142-82-5] (2) Phenethyl alcohol (benzeneethanol); $C_8H_{10}O$; [60-12-8]	ORIGINAL MEASUREMENTS: Miller, V.A. Ind. Eng. Chem., Anal. Ed. <u>1945</u> , 17, 5-12.
COMPONENTS: (1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Phenethyl alcohol (benzeneethanol); C ₈ H ₁₀ O; [60-12-8] VARIABLES: One terreconstruct 204 K	ORIGINAL MEASUREMENTS: Miller, V.A. Ind. Eng. Chem., Anal. Ed. <u>1945</u> , 17, 5-12. PREPARED BY:
COMPONENTS: (1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Phenethyl alcohol (benzeneethanol); C ₈ H ₁₀ O; [60-12-8] VARIABLES: One temperature: 294 K	ORIGINAL MEASUREMENTS: Miller, V.A. Ind. Eng. Chem., Anal. Ed. <u>1945</u> , 17, 5-12. PREFARED BY: A. Skrzecz
COMPONENTS: (1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Phenethyl alcohol (benzeneethanol); C ₈ H ₁₀ O; [60-12-8] VARIABLES: One temperature: 294 K EXPERIMENTAL VALUES:	ORIGINAL MEASUREMENTS: Miller, V.A. Ind. Eng. Chem., Anal. Ed. <u>1945</u> , 17, 5-12. PREPARED BY: A. Skrzecz
COMPONENTS: (1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Phenethyl alcohol (benzeneethanol); C ₈ H ₁₀ O; [60-12-8] VARIABLES: One temperature: 294 K EXPERIMENTAL VALUES: Solution temperature of a mixture of	ORIGINAL MEASUREMENTS: Miller, V.A. Ind. Eng. Chem., Anal. Ed. <u>1945</u> , 17, 5-12. PREPARED BY: A. Skrzecz (1) and (2) containing
COMPONENTS: (1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Phenethyl alcohol (benzeneethanol); C ₈ H ₁₀ O; [60-12-8] VARIABLES: One temperature: 294 K EXPERIMENTAL VALUES: Solution temperature of a mixture of 50 volume % heptane: 20.7°C at 100 w	ORIGINAL MEASUREMENTS: Miller, V.A. Ind. Eng. Chem., Anal. Ed. <u>1945</u> , 17, 5-12. PREFARED BY: A. Skrzecz (1) and (2) containing $1 = 40, x_1 = 0.45.$
COMPONENTS: (1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Phenethyl alcohol (benzeneethanol); C ₈ H ₁₀ O; [60-12-8] VARIABLES: One temperature: 294 K EXPERIMENTAL VALUES: Solution temperature of a mixture of 50 volume % heptane: 20.7°C at 100 w	ORIGINAL MEASUREMENTS: Miller, V.A. Ind. Eng. Chem., Anal. Ed. <u>1945</u> , 17, 5-12. PREPARED BY: A. Skrzecz (1) and (2) containing $1 = 40, x_1 = 0.45.$
COMPONENTS: (1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Phenethyl alcohol (benzeneethanol); C ₈ H ₁₀ O; [60-12-8] VARIABLES: One temperature: 294 K EXPERIMENTAL VALUES: Solution temperature of a mixture of 50 volume % heptane: 20.7°C at 100 w	ORIGINAL MEASUREMENTS: Miller, V.A. Ind. Eng. Chem., Anal. Ed. <u>1945</u> , 17, 5-12. PREPARED BY: A. Skrzecz (1) and (2) containing $1 = 40, x_1 = 0.45.$
COMPONENTS: (1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Phenethyl alcohol (benzeneethanol); C ₈ H ₁₀ O; [60-12-8] VARIABLES: One temperature: 294 K EXPERIMENTAL VALUES: Solution temperature of a mixture of 50 volume % heptane: 20.7°C at 100 w	ORIGINAL MEASUREMENTS: Miller, V.A. Ind. Eng. Chem., Anal. Ed. <u>1945</u> , 17, 5-12. PREPARED BY: A. Skrzecz (1) and (2) containing $1 = 40, x_1 = 0.45.$
COMPONENTS: (1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Phenethyl alcohol (benzeneethanol); C ₈ H ₁₀ O; [60-12-8] VARIABLES: One temperature: 294 K EXPERIMENTAL VALUES: Solution temperature of a mixture of 50 volume % heptane: 20.7°C at 100 w	ORIGINAL MEASUREMENTS: Miller, V.A. Ind. Eng. Chem., Anal. Ed. <u>1945</u> , 17, 5-12. PREPARED BY: A. Skrzecz (1) and (2) containing $1 = 40$, $x_1 = 0.45$.
COMPONENTS: (1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Phenethyl alcohol (benzeneethanol); C ₈ H ₁₀ O; [60-12-8] VARIABLES: One temperature: 294 K EXPERIMENTAL VALUES: Solution temperature of a mixture of 50 volume % heptane: 20.7°C at 100 w AUXILIARY	ORIGINAL MEASUREMENTS: Miller, V.A. Ind. Eng. Chem., Anal. Ed. 1945, 17, 5-12. PREFARED BY: A. Skrzecz (1) and (2) containing $1 = 40, x_1 = 0.45.$ INFORMATION
COMPONENTS: (1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Phenethyl alcohol (benzeneethanol); C ₈ H ₁₀ O; [60-12-8] VARIABLES: One temperature: 294 K EXPERIMENTAL VALUES: Solution temperature of a mixture of 50 volume % heptane: 20.7°C at 100 w AUXILIARY METHOD/APPARATUS/PROCEDURE: The cloud point method was used. A tube containing the sample, stirrer and fitted with a resistance thermometer was placed in an air bath tube in a liquid bath. Temperature was measured with an iron-constantan thermocouple and a Leeds & Northrup	ORIGINAL MEASUREMENTS: Miller, V.A. Ind. Eng. Chem., Anal. Ed. <u>1945</u> , 17, 5-12. PREPARED BY: A. Skrzecz (1) and (2) containing $1 = 40, x_1 = 0.45$. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) source not specified; purified chemically, distilled, stored over P ₂ O ₅ , distilled. (2) source not specified. ESTIMATED ERROR:
COMPONENTS: (1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Phenethyl alcohol (benzeneethanol); C ₈ H ₁₀ O; [60-12-8] VARIABLES: One temperature: 294 K EXPERIMENTAL VALUES: Solution temperature of a mixture of 50 volume % heptane: 20.7°C at 100 w AUXILIARY METHOD/APPARATUS/PROCEDURE: The cloud point method was used. A tube containing the sample, stirrer and fitted with a resistance thermometer was placed in an air bath tube in a liquid bath. Temperature Was measured with an iron-constantan thermocouple and a Leeds & Northrup Type K potentiometer.	ORIGINAL MEASUREMENTS: Miller, V.A. Ind. Eng. Chem., Anal. Ed. <u>1945</u> , 17, 5-12. PREPARED BY: A. Skrzecz 2 (1) and (2) containing 1 = 40, x ₁ = 0.45. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) source not specified; purified chemically, distilled, stored over P ₂ O ₅ , distilled. (2) source not specified. ESTIMATED ERROR: temp. ±0.1 K.
COMPONENTS: (1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Phenethyl alcohol (benzeneethanol); C ₈ H ₁₀ O; [60-12-8] VARIABLES: One temperature: 294 K EXPERIMENTAL VALUES: Solution temperature of a mixture of 50 volume % heptane: 20.7°C at 100 w AUXILIARY METHOD/APPARATUS/PROCEDURE: The cloud point method was used. A tube containing the sample, stirrer and fitted with a resistance thermometer was placed in an air bath tube in a liquid bath. Temperature was measured with an iron-constantan thermocouple and a Leeds & Northrup Type K potentiometer.	ORIGINAL MEASUREMENTS: Miller, V.A. Ind. Eng. Chem., Anal. Ed. 1945, 17, 5-12. PREPARED BY: A. Skrzecz (1) and (2) containing $1 = 40, x_1 = 0.45.$ INFORMATION SOURCE AND PURITY OF MATERIALS: (1) source not specified; purified chemically, distilled, stored over P ₂ O ₅ , distilled. (2) source not specified. ESTIMATED ERROR: temp. ±0.1 K. REFERENCES:

282		
COMPONENTS:	ORIGINAL MEASUREMENTS:	
 (1) Heptane; C₇H₁₆; [142-82-5] (2) Phenylethyl alcohol (benzeneethanol); C₈H₁₀O; [60-12-8] 	Francis, A.w. Ind. Eng. Chem. <u>1944</u> , 36, 764-71.	
 (3) 2,5-Dimethyl-1,5-hexadiene (diisobutene); C₈H₁₄; [627-58-7] (4) 2,2,4-Trimethylpentane; C₈H₁₈; 		
[540-84-1] (5) Cinnamyl alcohol (3-phenyl-2-propen-1-ol); C ₉ H ₁₀ O; [104-54-1]		
VARIABLES:	PREPARED BY:	
Temperatures: 259 to 388 K	A. Skrzecz	
EXPERIMENTAL VALUES:	· · · · · · · · · · · · · · · · · · ·	
Heptane + Cinnamyl alcohol: UCST =	102°C.	
Phenylethyl alcohol + 2,5-Dimethyl	-1,5-hexadiene: UCST = -14°C.	
Phenylethyl alcohol + 2,2,4-Trimethylpentane: UCST = 49° C.		
2,5-Dimethyl-1,5-hexadiene + Cinnamyl alcohol: UCST = 60° C.		
2,2,4-Trimethylpentane + Cinnamyl	alcohol: UCST = 115°C.	
AUXILIARY IN	FORMATION	
METHOD/APPARATUS/PROCEDURE: The cloud point method was used. The reagents were introduced and stirred with a thermometer in test tubes which were warmed and cooled gradually in a bath. The temp. of disappearance or reappearance of the cloudiness was read two or three times in each direction.	<pre>SOURCE AND PURITY OF MATERIALS: (1) obtained from Jeffrey pine; no more information. (2)-(5) source not specified.</pre>	
	ESTIMATED ERROR:	
	not specified. REFERENCES:	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) 2-Methylhexane; C ₇ H ₁₆ ; [591-76-4]	Miller, V.A.
(2) 2,2,3-Trimethylbutane; C ₇ H ₁₆ ;	Ind. Eng. Chem., Anal. Ed. <u>1945</u> ,
[464-06-2]	17, 5-12.
(3) Phenylethyl alcohol	
(benzeneethanol) $C_{a}H_{10}O$; [60-12-8]	
VARIABLES:	PREPARED BY:
Temperatures: 308, 312 K	A. Skrzecz
Solution temperatures and composi	tions:
2-Methylbeyane + Phenylethyl alco	$hol: 39.1^{\circ}C. 50 vol. *. or 100w = 40.$
z = 0.45 (compiler)	101. 53.1 C, 50 VOI. 4, 01 100# = 40,
$x_1 = 0.43$ (complicit).	
2.2.2-Trimethylbutane + Phenyleth	x^{1} alcohol: 34 45°C 50 vol x or
$\frac{2}{2}, \frac{2}{3}, \frac{3}{100} $	
100 $W_1 = 40, X_1 = 0.45$ (compiler).	
AUXILIARY	INFORMATION
	SOUDCE AND PURITY OF MATERIALS.
The cloud point method was used. A	(1), (2) source not specified;
tube containing the sample, stirrer	purified chemically, distilled,
and fitted with a resistance thermometer was placed in an air bath	stored over P_2O_5 , distilled.
tube in a liquid bath. Temperature	(3) source not specified.
was measured with an iron-constantan	
Type K potentiometer.	
	ESTIMATED ERROR:
	temp. ±0.1 K.
	REFERENCES:

284		
COMPONENTS:		ORIGINAL MEASUREMENTS:
(1) 1-Octanol;	; C ₈ H ₁₈ O; [111-87-5]	Chang, SS.; Maurey, J.R.; Pummer, W.J.
(2) Dotriacon [544-85-4]	cane; C ₃₂ H ₆₆ ;]	J. Chem. Eng. Data <u>1983</u> , 28, 187-9.
VARIABLES:		PREPARED BY:
Temperature: 303 - 338 K		A. Skrzecz
EXPERIMENTAL VALU	ES:	
	Solubility of dotri	acontane in octanol
t/°C	100 w ₂ x ₂	(compiler)
30.	0.27	0.00078
60.	17.	0.056
65.	67.	0.370
	AUXILIARY 1	INFORMATION
METHOD/APPARATUS/	PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The cloud-poi	nt method was used.	(1) commercially available; used
A mixture of k	nown composition was	as received.
placed with ma	gnetic stirrer in a	
5-mL vial and	then submerged in a	(2) commercially available, purity
temperature-co	ntrolled bath. The	97%; used as received; m.p.
temperature of	the path was lowered	342.1 K.
the annearance	and disappearance of	
turbidity was	observed visually.	
		ESTIMATED ERROR:
		temp. ±0.1 K.
		REFERENCES :

SYSTEM INDEX	
Pages preceded by E refer to evaluation texts whereas those not preceded by E refer to complled tables.	
Benzeneethanol (phenethyl alcohol)	
+ 2,5-dimethyl-1,5-hexadiene	282
+ 2,2-dimethylpentane	279
+ 2,3-dimethylpentane	279
+ 2,4-dimethylpentane	279
+ 1-hentene	E280, 281
+ hexane	278
+ methylcyclohexane	278
+ 2-methylhexane	283
+ 2,2,3-trimethylbutane	283
+ 2,2,4-trimethylpentane	282
Benzenemethanol (benzyl alcohol)	
+ 22 dimethylbutane	255
+ 2.3-dimethylbutane	256
+ 2,5-dimethyl-1,5-hexadiene	267
+ 2,3-dimethylhexane	270
+ 2,4-dimethylhexane	270
+ 2,5-dimethylhexane	270
+ 3,4-dimethylhexane	275
+ 2, /-dimethyloctane	273
+ 2.3-dimethylpentane	204 264
+ 2,4-dimethylpentane	264
+ dodecane	276
+ 3-ethylhexane	270
+ 3-ethyl-2-methylpentane	270
+ heptadecane	276
+ neptane	E265, 266-267
+ heradecane	203
+ hexane	E257. 258-260
+ methylcyclohexane	277
+ 2-methylhexane	268
+ 2-methylheptane	270
+ 3-methylheptane	270
+ 4-methylneptane	270
+ 3-methylpentane	270
+ octane	E271 272
+ pentadecane	276
+ pentane	254
+ 1-phenylhexadecane	277
+ tetradecane	276
+ 11decane + 2.2.3 trimethylbutene	276
+ 2.24-trimethylpentane	200 F273 271
+ undecane	276
trans-Bicyclo[4.4.0]decane	2.0
+ methanol	220, 221
Bicyclo[4.4.0]decane	
+ methanol	219
Butane	
	EIO-E17, 18-22

1 Dutonal	
+ dodecane	252
+ dotrzacontane	253
+ heptadecane	253
+ hexadecane	252
Cyclohexane	<i>4</i> , 9 1
+ benzenemethanol	255
+ methanol + methanol d	E41-E50, 51-102
+ methanol- d .	E11 E12 13-15
+ 3-phenyl-2-propen-1-ol	255
Cyclohexane- d_{12}	E24 E25 26 20
+ methanol	E34, E35, 30-39 E1 2
Cyclopentane	1.1, 2
+ methanol	E23, 24
Cymene + methanol	210
Decane	217
+ ethanol	E243, 244-245
+ methanol	E222-E224, 225-232
+ methanol	219
Diethylmethylbenzene	
+ methanol	23 3
+ benzenemethanol	256
2,3-Dimethylbutane	
+ benzenemethanol	256
2,3-Dimethyl-1,3-nexadiene + benzeneethanol	282
+ benzenemethanol	269
+ methanol	178
+ 3-phenyl-2-propen-1-0l 2 3-Dimethylheyane	282
+ benzenemethanol	270
2,4-Dimethylhexane	
+ benzenemethanol 25-Dimethylbevone	270
+ benzenemethanol	270
3,4-Dimethylhexane	
+ benzenemethanol	270
+ benzenemethanol	275
2,2-Dimethylpentane	
+ benzeneethanol	279
2.3-Dimethylpentane	204
+ benzeneethanol	279
+ benzenemethanol	264
+ benzeneethanol	279
+ benzenemethanol	264
Dipentylbenzene	040
Diisopropylbenzene	240
+ methanol	236
Diisopropylmethylbenzene	•••
+ methanol Diisontopylaanbthalene	238
+ methanol	240
Dodecane	
+ benzenemethanol	276
+ l-butanol	252
+ 2-propanol	249
1-Dodecene	007
Dotriacontane	<i>دی</i> ا
+ l-butanol	253
+ ethanol	248
+ 1-octanol + 2-propanol	284 251
propuno.	

Ethanol	
+ decane	E243, 244-245
+ dotriacontane	248
+ heptane	242
+ nexadecane + octadecane	240 247
+ 2,2,4-trimethylpentane	242
3-Ethylhexane	
+ benzenemethanol 3.Ethyl.2.methylpentane	270
+ benzenemethanol	270
Ethylisopropylbenzene	210
+ methanol	233
heptauecane + benzenemethanol	276
+ 1-butanol	253
+ 2-propanol	250
Heptane	F000 001
+ benzenemethanol	E280, 281 E265 266-267
+ ethanol	242
+ methanol	E154-E157, 158-176
1-Heptene	070
+ benzenemethanol	2/8
+ methanol	Ē144, 145
+ 3-phenyl-2-propen-1-ol	278
Hexadecane	252
+ benzenemethanol	252 276
+ ethanol	246
+ methanol	241
+ 2-propanol	250
+ benzeneethanol	261
+ benzenemethanol	E257, 258-260
+ methanol-d	10
+ meinanoi + 3-phenyl-2-propen-1-ol	E108-E113, 114-141
Hexane-d.,	201
+ methanol	40
+ methanol-d	3
+ methanol	238
Methanol	200
+ trans-bicyclo[4.4.0]decane	220, 221
+ bicyclo[4.4.0]decane	219
+ outaile	E10-E17 18-22
T LAUDICATUE	F41-E50 51-102
+ cyclohexane-d2	E41-E50, 51-102 E34-E35, 36-39
+ cyclohexane-d2 + cyclopentane	E41-E50, 51-102 E34-E35, 36-39 E23, 24
+ cyclohexane-d2 + cyclopentane + cymene + cymene	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E334 E334 235 333
+ cyclohexane-d2 + cyclopentane + cymene + decane + diethylbenzene	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E222-E224, 225-232 219
+ cyclohexane-d2 + cyclohexane-d2 + cyclopentane + cymene + decane + diethylbenzene + diethylbenzene + diethylmethylbenzene	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E222-E224, 225-232 219 233
+ cyclohexane-d2 + cyclohexane-d2 + cyclopentane + cymene + decane + diethylbenzene + diethylbenzene + 2,2-dimethylbutane	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E222-E224, 225-232 219 233 106
+ cyclohexane-d2 + cyclopentane + cymene + decane + diethylbenzene + diethylmethylbenzene + 2,2-dimethylbutane + 2,3-dimethylbutane	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E222-E224, 225-232 219 233 106 107
+ cyclohexane-d2 + cyclohexane-d2 + cyclopentane + cymene + decane + diethylbenzene + diethylmethylbenzene + 2,2-dimethylbutane + 2,3-dimethylbutane + 2,5-dimethyl-1,5-hexadiene + dientylbenzene	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E222-E224, 225-232 219 233 106 107 178 240
 + cyclohexane-d2 + cyclohexane-d2 + cyclopentane + cymene + decane + diethylbenzene + diethylmethylbenzene + 2,2-dimethylbutane + 2,3-dimethylbutane + 2,5-dimethylbutane + 2,5-dimethylbutane + dipentylbenzene + dipentylbenzene + disopropylbenzene 	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E222-E224, 225-232 219 233 106 107 178 240 236
 + cyclohexane-d2 + cyclohexane-d2 + cyclopentane + cymene + decane + diethylbenzene + diethylbenzene + 2,2-dimethylbutane + 2,3-dimethylbutane + 2,5-dimethyl-1,5-hexadiene + dipentylbenzene + disopropylbenzene + disopropylbenzene + disopropylmethylbenzene 	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E222-E224, 225-232 219 233 106 107 178 240 236 238
 + cyclohexane-d2 + cyclohexane-d2 + cyclopentane + decane + diethylbenzene + diethylbenzene + 2,2-dimethylbutane + 2,3-dimethylbutane + 2,3-dimethylbutane + 2,5-dimethylbutane + dipentylbenzene + disopropylbenzene + diisopropylmethylbenzene + diisopropylmathtalene + 1,dodecore 	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E222-E224, 225-232 219 233 106 107 178 240 236 238 240 236
 + cyclohexane-d2 + cyclohexane-d2 + cyclopentane + decane + diethylbenzene + diethylbenzene + 2,2-dimethylbutane + 2,3-dimethylbutane + 2,3-dimethylbutane + 2,3-dimethyl-1,5-hexadiene + dipentylbenzene + disopropylbenzene + disopropylmethylbenzene + disopropylmethylbenzene + 1-dodecene + ethylisopropylbenzene 	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E222-E224, 225-232 219 233 106 107 107 178 240 236 238 240 237 233
 + cyclohexane-d2 + cyclohexane-d2 + cyclopentane + cymene + decane + diethylbenzene + diethylmethylbenzene + 2,2-dimethylbutane + 2,3-dimethylbutane + 2,5-dimethyl-1,5-hexadiene + disopropylbenzene + disopropylbenzene + disopropylnaphthalene + 1-dodecene + ethylisopropylbenzene + heptane 	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E222-E224, 225-232 219 233 106 107 178 240 236 238 240 237 233 E154-E157, 158-176
 + cyclohexane-d2 + cyclohexane-d2 + cyclopentane + decane + diethylbenzene + diethylmethylbenzene + 2,2-dimethylbutane + 2,3-dimethylbutane + 2,5-dimethyl-1,5-hexadiene + dipentylbenzene + diisopropylbenzene + diisopropylmethylbenzene + diisopropylmethylbenzene + 1-dodecene + heptane + 1-heptene 	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E222-E224, 225-232 219 233 106 107 178 240 236 238 240 237 233 E154-E157, 158-176 E144, 145
 + cyclohexane-d2 + cyclohexane-d2 + cyclopentane + decane + diethylbenzene + diethylmethylbenzene + 2,2-dimethylbutane + 2,3-dimethylbutane + 2,5-dimethyl-1,5-hexadiene + dipentylbenzene + diisopropylbenzene + diisopropylmethylbenzene + diisopropylmethylbenzene + 1-dodecene + ethylisopropylbenzene + heptane + 1-heptene + hexane 	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E222-E224, 225-232 219 233 106 107 178 240 236 238 240 237 233 E154-E157, 158-176 E144, 145 E108-E113, 114-141
 + cyclohexane-d2 + cyclohexane-d2 + cyclopentane + cymene + decane + diethylbenzene + diethylbenzene + 2,2-dimethylbutane + 2,3-dimethylbutane + 2,3-dimethylbutane + 2,5-dimethyl-1,5-hexadiene + dijsopropylbenzene + dijsopropylbenzene + dijsopropylmethylbenzene + dijsopropylbenzene + hettane + hexane + hexane-d14 + bexadecane 	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E222-E224, 225-232 219 233 106 107 178 240 236 238 240 237 233 E154-E157, 158-176 E144, 145 E108-E113, 114-141 40 241
 + cyclohexane-d2 + cyclohexane-d2 + cyclopentane + cymene + decane + diethylbenzene + diethylmethylbenzene + 2,2-dimethylbutane + 2,3-dimethylbutane + 2,3-dimethylbutane + 2,5-dimethyl-1,5-hexadiene + dijsopropylbenzene + diisopropylbenzene + diisopropylmethylbenzene + diisopropylmethylbenzene + heptane + 1-heptene + hexane + hexane + hexane + hexane + methylcyclohexane 	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E222-E224, 225-232 219 233 106 107 178 240 236 238 240 237 233 E154-E157, 158-176 E144, 145 E108-E113, 114-141 40 241 E146-E148, 149-153
 + cyclohexane-d2 + cyclohexane-d2 + cyclopentane + decane + diethylbenzene + diethylmethylbenzene + 2,2-dimethylbutane + 2,3-dimethylbutane + 2,3-dimethylbutane + 2,5-dimethyl-1,5-hexadiene + dijsopropylbenzene + diisopropylbenzene + diisopropylmethylbenzene + diisopropylnaphthalene + 1-dodecene + ethylisopropylbenzene + heptane + 1-heptene + hexane-d14 + hexadecane + methylcyclohexane + methylcyclopentane 	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E222-E224, 225-232 219 233 106 107 178 240 236 238 240 237 233 E154-E157, 158-176 E144, 145 E108-E113, 114-141 40 241 E146-E148, 149-153 E103, E104, 105
 + cyclohexane-d2 + cyclohexane-d2 + cyclopentane + decane + diethylbenzene + diethylmethylbenzene + 2,2-dimethylbutane + 2,3-dimethylbutane + 2,3-dimethylbutane + 2,5-dimethyl-1,5-hexadiene + dipentylbenzene + diisopropylbenzene + diisopropylmethylbenzene + diisopropylnaphthalene + 1-dodecene + ethylisopropylbenzene + heptane + 1-heptene + hexane-d14 + hexane-d14 + hexadecane + methylcyclopentane + 2-methylheptane 	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E222-E224, 225-232 219 233 106 107 178 240 236 238 240 237 233 E154-E157, 158-176 E144, 145 E108-E113, 114-141 40 241 E146-E148, 149-153 E103, E104, 105 179
 + cyclohexane-d2 + cyclohexane-d2 + cyclopentane + decane + diethylbenzene + diethylbenzene + diethylbutane + 2,2-dimethylbutane + 2,3-dimethylbutane + 2,5-dimethyl-1,5-hexadiene + dijeentylbenzene + diisopropylbenzene + diisopropylmethylbenzene + diisopropylmethylbenzene + hethylisopropylbenzene + heptane + 1-heptene + hexane-d14 + hexane-d14 + hexadecane + methylcyclopentane + 2-methylpentane + 3-methylpentane 	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E222-E224, 225-232 219 233 106 107 178 240 236 238 240 236 238 240 237 233 E154-E157, 158-176 E144, 145 E108-E113, 114-141 40 241 E146-E148, 149-153 E103, E104, 105 179 142
 + cyclohexane-d2 + cyclohexane-d2 + cyclopentane + decane + diethylbenzene + diethylbenzene + diethylbutane + 2,2-dimethylbutane + 2,3-dimethylbutane + 2,5-dimethyl-1,5-hexadiene + dijsopropylbenzene + diisopropylbenzene + diisopropylmethylbenzene + diisopropylmethylbenzene + diisopropylnaphthalene + 1-dodecene + heptane + hexane-d₁₄ + hexane-d₁₄ + hexadecane + methylcyclohexane + methylcyclopentane + 2-methylheptane + 3-methylpentane + nonane 	E41-E50, 51-102 E34-E35, 36-39 E23, 24 219 E222-E224, 225-232 219 233 106 107 178 240 236 238 240 237 233 E154-E157, 158-176 E144, 145 E108-E113, 114-141 40 241 E146-E148, 149-153 E103, E104, 105 179 142 143 E205-E207, 208-216

.

ŝ

Methanol	2400 2400 400 400
+ octane	E180-E182, 183-194
+ pentane + sec-pentulbenzene	E23-E27, 28-33
+ sec-pentylochic + sec-pentylochic + sec-	235
+ isopropylnaphthalene	238
+ tetradecane	239
+ 1,2,3,4-tetrahydronaphthalene	218
+ 1,2,3,4-tetrahydroisopropylnaphthalene	238
+ triethylbenzene	236
+ 1,2,4-trimethylbenzene	204
$\pm 2.2.5$ -trimethylbevane	1// 217
+ 2,2,5-trimethylnextane	E195-E197 108-203
+ undecane	E234, 235
Methanol-d	
+ cyclohexane	E4, E5, 6-9
+ cyclohexane-dl2	E1, 2
+ hexane	10
+ nexane-a ₁₄	3
d_4	E11 E12 12 15
Methylcyclohexane	EII, EI2, 15-15
+ benzeneethanol	278
+ benzenemethanol	263
+ methanol	E146-E148, 149-153
+ 3-phenyl-2-propen-1-ol	278
Methylcyclopentane	
+ methanol	E103-E104, 105
2-Meinyinepiane	070
- Delizenemanoi 3.Methylhentane	270
+ henzenemethanol	270
+ methanol	179
4-Methylheptane	
+ benzenemethanol	270
2-Methylhexane	
+ benzeneethanol	283
+ Denzenemeinanoi 2-Methylpentane	208
+ benzenemethanol	262
+ methanol	143
3-Methylpentane	
+ benzenemethanol	262
+ methanol	143
Nonane	
+ meinanol	E205-E207, 208-216
+ ethanol	247
Octane	247
+ 1-butanol	251
+ benzenemethanol	E271, 272
+ methanol	E180-E182, 183-194
+ 2-propanol	249
1-Octanol	
+ domacontane	284
+ benzenemethanol	276
Pentane	270
+ benzenemethanol	254
+ methanol	E25-E27, 28-33
1 -Phenylhexadecane	
+ benzenemethanol	277
sec-rentyidenzene	022
T IIIcilianoi sec-Pentylnanhthalene	233
+ methanol	240
2-Propanol	270
+ dodecane	249
+ dotriacontane	251
+ heptadecane	250
+ hexadecane	250
+ octane	249

2-Propen-l-ol, 3-phenyl- (cinnamyl alcohol)	
+ cyclohexane	255
+ 2,5-dimethyl-1,5-hexadiene	282
+ heptane	282
+ 1-heptene	278
+ hexane	261
+ methylcyclohexane	278
+ 2.2.4-trimethylpentane	282
Tetradecane	
+ benzenemethanol	276
+ methanol	239
1.2.3.4-Tetrahydronaphthalene	
+ methanol	218
1,2,3, 4-Tetrahydroisopropylnaphthalene	
+ methanol	238
Tridecane	
+ benzenemethanol	276
Triethylbenzene	
+ methanol	236
1,2,4-Trimethylbenzene	
+ methanol	204
2,2,3-Trimethylbutane	
+ benzeneethanol	283
+ benzenemethanol	268
+ methanol	177
2,2,4-Trimethylpentane	
+ benzeneethanol	282
+ benzenemethanol	E279, 280
+ ethanol	242
+ methanol	E195-E197, 198-203
+ 3-phenyl-2-propen-l-ol	282
2,2,5-Trimethylhexane	
+ methanol	217
Undecane	
+ benzenemethanol	276
+ methanol	E234, 235

REGISTRY NUMBER INDEX

Page preceded by E refer to evaluation texts whereas those not preceded by E refer to compiled tables.

60-12-8 64-17-5 67-56-1	261, 278, 279, E280, 281-283 242, E243, 244-248 E16, E17, 18-24, E25-E27, 28-33, E34, E35, 36-40, E41-E50, 51-102, E103, E104, 105-107, E108-E113, 114-143, E144, 145, E146-E148, 149-153, E154-E157, 158-179, E180-E182, 183-194, E195-E197, 198-204, E205-E207, 208-221, E222- E224, 225-233, E234, 235-241
67-63-0	249-251
71-36-3	251-253
75-83-2	106, 256
79-29-8	107, 256
91-17-8	219
95-63-6	204
96-14-0	143, 262
96-37-7 100-51-6 104-54-1 106-97-8 107-83-5	E103, E104, 105 254-256, E257, 258-260, 262-264, E265, 266-270, E271, 272, E273, 274-277 255, 261, 278, 282 E16, E17, 18-22 142, 262
108-08-7	264, 279
108-87-2	E146-E148, 149-153, 263, 278
109-66-0	E25-E27, 28-33, 254
110-54-3	10, E108-E113, 114-141, E257, 258-261
110-82-7	E5, E6, 7-11, E13, 14-16, E41-E50, 51-102, 255

111-65-9	E180-E182, 183-194, 249, 251, E271, 272, 283
111-84-2	E205-E207, 208-216
111-87-5	284
112-40-3	249, 252, 276
112-41-4	237
119-64-2	218
124-18-5	E222-E224, 225-232, E243, 244, 245
142-82-5	E154-E157, 158-176, E265, 266, 267, E280, 281, 282, 242
287-92-3	E23, 24
464-06-2	177, 268, 283
493-02-7	220, 221
540-84-1	E195-E197, 198-203, E273, 274, 282, 242
544-76-3	241, 250, 252, 276
544-85-4	246, 248, 251, 253, 284
565-59-3	264, 279
583-48-2	270
584-94-1	270
589-43-5	270
589-53-7	270
589-81-1	179, 270
590-35-2	264, 279
591-76-4	268, 283
592-13-2	270
592-27-8	270
592-76-7	E144, 145, 263, 278
593-45-3	247
609-26-7	270
616-99-8	270
627-58-7	178, 269, 282
629-50-5	276
629-59-4	239, 276
629-62-9	276
629-78-7	250, 253, 276
811-98-3	E11, E12, 13-15
1072-16-8	275
1120-21-4	E234, 235, 276
1455-13-6	E1, 2, 3, E4, E5, 6-10
1459-09-2	277
1735-17-7	E1, 2, E34, E35, 36-39
3522-94-9	217
3968-85-2	232
21666-38-6	3, 40
25155-15-1	219
25321-09-9	236
25340-17-4	219
25340-18-5	236
25550-13-4	233
26444-54-4	238
26573-16-0	233
26916-60-9	238
29253-36-9	238
38640-62-9	240

Pages preceded by an E refer to evaluation texts while those not preceded by E refer to compiled tables.

Aizpiri, A.G. Alekhin, A.D. Aleksandrova, M.V. Amstell, S. Andrukovich, P.F. Anthony, D.J. Antosik, M. Arai, Y. Archibald, R.C. Arich, G. Balasubramanian, D. Barkov, M.G. Becker, F. Beysens, D Bingham, E.C. Bittrich, H.-J. Bjerkaas, A.W. Brunner, E. Buchowski, H. Budantseva, L.S. Campbell, A.N. Cardinaud, R. Chang, S.-S. Chernova, N.I. Chu, B. Cohn, R.H. Cornish, R.E. Crews, L.T. Davidoffskaya, E. Debye, P. Defay, R. Deizenrot, I.V. Diaz Pe a, M. Durandet, J. Eckfeld, E.L. Eden, D. Eskaraeva, L.A. Evans, H.M. Ewing, M.B. Fancovic, K. Fenby, D.V. Ferguson, J.B. Fischer, R. Francis, A.W. Franck, E.U. French, H.T. Fridman, V.M. Gaile, A.A. Gammon, R.W. Gastaud, P. Gilmore, W Gimler, G.H. Gladel, V.L. Glybovskaya, V.A. Goldburg, W.I. Gopal, E.S.R. Govidarajan, K. Gratschewa, S. Graziani, F.

E41-E50, 89-97 E108-E113, 132 see Sadovnikova, L.V. see Jones, D.C. see Kurtynina, L.M. see Jacobs, D.T. 220, 221 see Higashiuchi, H. see Cornish, R.E. see Higashiuchi, H. E41-E50, 75, E108-E113, 131, E243, 245, E257, 260 see Alekhin, A.D. E41-E50, 73, 74, E43-E48, 94 see Houessou, C E108-E113, 115, E222-E224, 225, E243, 244 see Hradetsky, G. see Huang, J.S. E41-E50, 85 E195-E197, 201 E41-E50, 69, E108-E113, 129, E154-E157, 166, E180-E182, 186, E195-E197, 203 E41-E50, 64 E4, E5, 6, E41-E50, 57 247, 248, 284 E154-E157, 163 Ee Debye, P. E41-E50, 79 E25-E27, 28, E41-E50, 52, E108-E113, 119, E154-E157, 158, E195-E197, 198 see Ralston, A.W. see Ssementschenko, V. E41-E50, 59 see Prigogine, I. see Kogan, V.B. see Aizpiri, A.G. 254, E257, 259, E265, 267, 276 E41-E50, 54 E41-E50, 77 see Sergeeva, V.F. see Cornish, R.E. E41-E50, 98-102 see Vojtko, J. see Khurma, J.R. see Knurma, J.K. E103-E104, 118, E108-E113 E23, E25-E27, E103, E104, 118, E108-E113, E180-E182, 183, E205-E207, 208, E222-E224, 225, E234 E25-E27, 28, E41-E50, 55, E108-E113, 119, E146-E148, 149, 150, E154-E157, 158, 159, 178, 240, 242 255, E257, 259, 261, 263, E265, 266, 269, E273, 274, 278, E280, 281, 282 see Roth, K. 246 246 see Kogan, V.B. see Pavlova, O.P. see Kopelman, R.B. see Houessou, C see Gimler, G.H. E41-E50, 59 see Durandet, J. see Sergeeva, V.F. see Huang, J.S. see Rajan, M. see Viswanathan, B. see Ssementchhenko, V. see Durandet, J.

Grekova, I.G. Guenoun, P. Guha, S. Haarhaus, U. Hargas, R. Heyward, C. Herz, W. Hicks, J.S. Higashiuchi, H. Hoelscher, I.F. Hoerr, C.W. Houessou, C. Howard, E.J. Hradetzky, G. Hrusovsky, M. Huang, J. Ikushima, A. Ishida, K. Iwai, Y. Jacobs, D.T. Jayalaxmi, V. Johnson, K.A. Johnson, G.D. Jones, D.C. Kartzmark, E.M. Kasapova, N.L. Katayama, T. Katoh, K. Katz, J. Kaufmann, H. Khurma, J.R. Kiefer, M. Kiser, R.W. Knickle, H.N. Kogan, V.B. Kolpakov, Yu.D. Kopelman, R.B. Koyabu, J. Kul'byaeva, T.A. Kuleshova, N.P. Kurtynina, L.M. Kuryndin, K.S. Lesteva, T.M. Letcher, T.M. Li, I.F. Lucasse, W.W. Maczynska, Z. Maczynski, A. Maman, A. Marinicev, A.N. Maurey, J.R. McGlashan, M.L. Miller, V.A. Mitra, P. Mockler, R.C Moldover, M.R. Mondain-Monval, P. Mulliken, S.P. Murphy, E.A. Myers, D.B.

E108-E113, 132 see Houessou, C. see Rajan, M. E16, E17, 19-22, E25, 30-33 see Vojtko, J. see Letcher, T.M. 218 See Rising, M.M. E154-E157, 175, 193, E205-E207, 216, E222-E224, 232 see Ott, J.B.; E108-E113, 135-138, E205-E207, 211-215, E222-E224, 228-231 see Ralston, A.W. E34, E35, 36, E41-E50, 81 E108-E113, 116 E41-E50, 82, 83, E108-E113, 139, 140, E154-E157, 167, 168 see Vojtko, J. see Gimler, G.H.; E41-E50, 67 see Yosida, Y. see Noda, K. E180-E182, 187 see Scheibner, B.A.; Tveekrem, J.L.; Cohn, R.H.; E41-E50, 72, 84 see Rajan, M. see Ewing, M.B. see Kiser, R.W. E41-E50, 53 see Campbell, A.N. E108-E113, 134 see Takeuchi, S.; Sugi, H. see Nagata, I. see Myers, D.B. see Debye, P. 3, 10, 40, É108-E113, 133 s, 10, 40, E103-E113, 155 see Becker, F. E23, 24, E25-E27, 29, E41-E50, **58**, E103, E104, 105-107, E108-E113, 124, 143, E146-E148, 151, E154-E157, 162, E180-E182, 162, 179, E180-E182, 185, E195-E197, 202, E205-E207, 210, 217, E222-E224, 227 see Radice, F.C E108-E113, 123, E154-E157, 160, E180-E182, 184, E205-E207, 209 see Skripov, V.P.; Kasapova, N.L. E41-E50, 77 see Nagata, I see Kogan, V.B. see Alekhin, A.D. E41-E50, 65 see Tilitschejew, M.D. see Budantseva, L.S. E154-E157, 106 see Pavlova, O.P. see Eckfeld, E.L. see Zieborak, K. see Zieborak, K 256, E257, 258, 262, 270-272 E41-E50, 60 see Chang, S.-S. see Ewing, M.B. 264, E265, 268, 279, E280, 289, 283 see Balasubramanian, D. see Jacobs, D.T.; Scheibner, B.A. see Kopelman, A.B. E41-E50, 52 E257, 258, E271, 272, E273, 274, 275 see Cornish, R.E. E108-E113, 126, 142

Nagata, I. Nagatani, M. Nayatsuka, K. Nemtsov, M.S. Neupauer, E. Nishimura, Y. Nitta, T. Noda, K. O'Sullivan, W.J. Ohta, T. Ott, J.B. Patterson, W.H. Pavlova, O.P. Perrot, F. Pliskin, I. Pozharskaya, G.T. Predvoditelev, A.A. Prigogine, I. Proskuryakov, K.A. Pummer, W.J. Quantie, C. Rabinovich, I.B. Radice, F.C Ralston, A.W. Ranjan, M. Rattay, V Rhensius, P. Richards, A. Rising, M.M. Rogalski, M. Roth, K. Rothmund, V. Rubio, R.G. Rudakovskava, T.S. Sadovnikova, L.V. Sato, K. Savini, L.G. Scheibner, B.A. Schmidt, J.W. Schmidt, R. Schneider, G.M. Schoen, W. Schuberth, H. Schuekarew, A. Schutan, P. Scott, R.L. Serafimov, L.A. Sergeeva, V.F. Shetlar, M.D. Shimanskaya, E.T. Shimanskii, Yu. I. Shuttleworth, B. Sieg, L. Singh, R.R. Skripov, V.P. Smirnov, B.A Smirnova, N.A. Smith, R.A. Soboleva, S.A. Sorensen, C.M. Spoerner, A. Ssementschenko, V. Stafiej, A. Steiger, A.

E41-E50, 76, 80, E108-E113, 141, E146-E148, 153, E154-E157, 176, E180-E182, 194 see Higashiuchi, H. see Noda, K. see Budantseva, L.S. see Fischer, R. see Iwai, Y see Takeuchi, S.; Sugi, H. E16, E17, 18 see Jacobs, D.T.; Scheibner, B.A. see Nagata, I. see Hoelscher, I.F.; E154-E157, 169-173, E180-E182, 188-192 see Howard, E.J. E144, 145 see Houessou, C. 239 see Kasapova, N.L. see Smirnov, B.A. E41-E50 see Pavlova, O.P. see Chang, S.-S. E41-E50, 56, E108-E113, 122 E1, 2, E4, E5, 6, E34, E35, 36, E41-E50, 69 E108-E113, 130 249-253 E154-E157, 174 see Vojtko, J. see Becker, F see French, H.T. E108-E113, 117 241 E41-E50, 61-63 E108-E113, 114 see Aizpiri, A.G. E41-E50, 66, E108-E113, 128 E243, 244 see Noda, K. E108-E113, 125, E154-E157 E41-E50, 72 E41-E50, 84 E108-E113, 127, E146-El48, 152 see Haarhaus, U.; Hoelscher, I.F.; Ott, J.B.; Roth, K. El, 2, E4, E5, 7, E11, E12, 13, E34, E35, 37, E41-E50, 85 see Schmidt, R. E108-E113, 115 see Herz, Ŵ see Myers, D.B. see Rudakovskaya, T.S E41-E50, 68, E108-E113, 129, E154-E157, 164, E280-E282, 180 see Kiser, R.W. see Grekova, I.G. see Grekova, I.G. see Letcher, T.M. E41-E50, 56, E108-E113, 120, E146-E148, 150, E154-E157, 159, 177, E180-E182, 183, E195-E197, 199 E4, E5, 8, 9, E11, E12, 14, 15, E34, E35, 38, 39, E41-E50, 81, 86-88 E108-E113, 131 E108-E113, 122 see Kurtynina, L.M. see Myers, D.B. see Rudakovskaya, T.S. see Scheibner, B.A. see Becker, F. E108-E113, 118 see Antosik, M. see Becker, F.

Stokes, R.H. Stryjek, R. Sugi, H. Suhrmann, R. Sukuragi, Y. Susarev, P. Tagliavini, G. Takeuchi, S. Teperek, J. Tilitschejew, M.D. Timmermans, J. Timofeev, V.S. Treybal, R.E. Tsvetkov, V.G. Tveekrem, J.L. Usmanova, I.Z. Ustanova, I.Z. Van Ness, H.C. Van Hook, W.A. Vani, V. Vinogradova, L.I. Viswanathan, B. Vitkalov, V.S. Vojtko, J. Wakeman, R.L. Walter, R. Wanatabe, Y. Warren, C. Webb, W.W. Werner, G. Wiechers, R. Winterhalter, D.R. Woermann, D.

Wootton, S. Yosida, Y. Zieborak, K. see French, H.T. see Rogalski, M. E41-E50, 71 E108-E113, 121 see Higashiuchi, H. see Mariniichev, A.N. E154-E157, 161 E41-E50, 70 see Buchowski, H. 277 E41-E50, 51 see Rudakovskaya, T.S. see Pliskin, J. see Rabinovitch, I.B. E41-E50, 78 see Sergeeva, V.F. see Sergeeva, V.F. see Savini, L.G. see Singh, R.R. see Rajan, M. see Rudakovskaya, T.S. E154-E157, 165 see Skripov, V.P. 237 see Mulliken, S.P. see Suhrmann, R. see Iwai, Y. E41-E50, 67 see Gimler, G.H.; Huang, J.S.; Warren, C. see Schmidt, R. see Schoen, W. see Savini, L.G. see Schoen, W. see Letcher, T.M. E41-E50, 75 E205-E207, 208, E222-E224, 226, E234, 235, 278

SOLUBILITY DATA SERIES

Volume 1	H. L. Clever, Helium and Neon
Volume 2	H. L. Clever, Krypton, Xenon and Radon
Volume 3	M. Salomon, Silver Azide, Cyanide, Cyanamides, Cyanate,
	Selenocyanate and Thyocyanate
Volume 4	H. L. Clever, Argon
Volume 5/6	C. L. Young, Hydrogen and Deuterium
Volume 7	R. Battino, Oxygen and Ozone
Volume 8	C. L. Young, Oxides of Nitrogen
Volume 9	W. Hayduk, Ethane
Volume 10	R. Battino, Nitrogen and Air
Volume 11	B. Scrosati and C. A. Vincent, Alkali Metal, Alkaline Earth Metal and
	Ammonium Halides, Amide Solvents
Volume 12	C. L. Young, Sulfur Dioxide, Chlorine, Fluorine and Chlorine Oxides
Volume 13	S. Siekierski, T. Mioduski and M. Salomon, Scandium, Yttrium,
	Lanthanum and Lanthanide Nitrates
Volume 14	H. Miyamoto, M. Salomon and H. L. Clever, Alkaline Earth Metal
	Halates
Volume 15	A. F. M. Barton, Alcohols with Water
Volume 16/17	E. Tomlinson and A. Regosz, Antibiotics: 1, B-Lactam Antiobiotics
Volume 18	O. Popovych, Tetraphenylborates
Volume 19	C. L. Young, Cumulative Index: Volumes 1–18
Volume 20	A. L. Horvath and F. W. Getzen, Halogenated.Benzenes, Toluenes and
	Phenols with Water
Volume 21	C. L. Young and P. G. T. Fogg, Ammonia, Amines, Phosphine, Arsine,
	Stibine, Silane, Germane and Stannane in Organic Solvents
Volume 22	T. Mioduski and M. Salomon, Scandium, Yttrium, Lanthanum and
	Lanthanide Halides in Nonaqueous Solvents
Volume 23	T. P. Dirkse, Copper, Silver, Gold and Zinc, Cadmium, Mercury Oxides
	and Hydroxides
Volume 24	W. Hayduk, Propane, Butane and 2-Methylpropane
Volume 25	C. Hirayama, Z. Galus and C. Guminski, <i>Metals in Mercury</i>
Volume 26	M. R. Masson, H. D. Lutz and B. Engelen, Sulfites, Selenites and
	Tellurites
Volume 27/28	H L Clever and C L. Young Methone
Volume 29	H. L. Clever, Mercury in Liquids, Compressed Gases, Molten Salts and
volume 27	Other Flowents
Volume 30	H Mivamoto and M Salomon Alkali Metal Halates Ammonium Iodate
Volume 50	and Iodic Acid
Volume 31	I Eusseltová and T. P. Dircha Alkali Matal Orthanhashatas
Volume 32	D. G. T. Fong and C. I. Voung, Hudrogen Sulfide, Deuterium Sulfide and
Volume 52	Hudrogen Salanida
Volume 33	D Franzosini Maltan Alkali Matal Alkanoatas
Volume 34	A N Daputa and D Diekos d duringhansangsulfanguidas
Volume 34	n. 17. 1 aruta anu n. 1 16605, 4-211111000112010541jonannaes. Dart 1: Non molio Substitutante
Volume 25	A M Depute and D. Diokog. A dwine have an application of the
voluine 35	A. IN. FAIULA AND K. FICKOS, 4-AIMINODENZENESUIJONAMIAES.
	rari II, 5-Memberea rielerocyclic Sudsilillenis

Volume 36	A. N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides.
	Part III: 6-Membered Heterocyclic Substituents and Miscellaneous
	Systems
Volume 37	D. G. Shaw, Hydrocarbons with Water and Seawater.
	Part I: Hydrocarbons C_5 to C_7
Volume 38	D. G. Shaw, Hydrocarbons with Water and Seawater.
	Part II: Hydrocarbons C ₈ to C ₃₆
Volume 39	C. L. Young, Cumulative Index: Volumes 20-38
Volume 40	J. Hala, Halides, Oxyhalides and Salts of Halogen Complexes of
	Titanium, Zirconium, Hafnium, Vanadium, Niobium and Tantalum
Volume 41	CY. Chan, I. N. Lepeshkov and K. H. Khoo, Alkaline Earth Metal
	Perchlorates
Volume 42	P. G. T. Fogg and W. Gerrard, Hydrogen Halides in Non-aqueous
	Solvents
Volume 43	R. W. Cargill, Carbon Monoxide
Volume 44	H. Miyamoto, E. M. Woolley and M. Salomon, Copper and Silver
	Halates
Volume 45/46	R. P. T. Tomkins and N. P. Bansal, Gases in Molten Salts
Volume 47	R. Cohen-Adad and J. W. Lorimer, Alkali Metal and Ammonium
	Chlorides in Water and Heavy Water (Binary Systems)
Volume 48	F. Getzen, G. Hefter and A. Maczynski, Esters with Water.
	Part I: Esters 2-C to 6-C
Volume 49	F. Getzen, G. Hefter and A. Maczynski, Esters with Water.
	Part II: Esters 7-C to 32-C
Volume 50	P. G. T. Fogg, Carbon Dioxide in Non-aqueous Solvents at Pressures
	Less Than 200 kPa
Volume 51	J. G. Osteryoung, M. M. Schreiner, C. Guminski and Z. Galus,
	Intermetallic Compounds in Mercury
Volume 52	I. Lambert and H. L. Clever, Alkaline Earth Hydroxides in Water and
	Aqueous Solutions
Volume 53	C. L. Young, Cumulative Index: Volumes 40-52
Volume 54	W. E. Actee, Jr, Polycyclic Aromatic Hydrocarbons in Pure and Binary Solvents

Volume 55

ne 55 S. Siekierski and S. L. Phillips, Actinide Nitrates

-