INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

ANALYTICAL CHEMISTRY DIVISION COMMISSION ON EQUILIBRIUM DATA SUBCOMMITTEE ON SOLUBILITY DATA

SOLUBILITY DATA SERIES

Volume 1

HELIUM AND NEON - Gas Solubilities

SOLUBILITY DATA SERIES

Editor-in-Chief

A. S. KERTES Institute of Chemistry The Hebrew University Jerusalem, Israel

EDITORIAL BOARD

A.F.M. Barton (Australia) R. Battino (USA) H.L. Clever (USA) R. Cohen-Adad (France) E.A. Dancy (Canada) S.S. Davis (UK) I. Eliezer (USA) W. Gerrard (UK) L.H. Gevantman (USA) P. Huyskens (Belgium)

`

J.W. Lorimer (Canada) G.H. Nancollas (USA) O. Popovych (USA) M. Salomon (USA) B. Scrosati (Italy) A. Viallard (France) C.A. Vincent (Scotland) E. Wilhelm (Austria) E.M. Woolley (USA) C.L. Young (Australia)

SOLUBILITY DATA SERIES

Volume 1

HELIUM AND NEON — Gas Solubilities

Volume Editor

H. LAWRENCE CLEVER Chemistry Department

Emory University Atlanta, GA, U.S.A.

Evaluators

RUBIN BATTINO

Wright State University Dayton, Ohio, U.S.A.

H. LAWRENCE CLEVER

Emory University Atlanta, GA, U.S.A. COLIN L. YOUNG University of Melbourne Parkville, Victoria, Australia

Compilers

ARDIS L. CRAMER Emory University

SUSAN A. JOHNSON Emory University M. ELIZABETH DERRICK Valdosta State College

TRINA D. KITTREDGE Emory University CARROLL E. EDDLEMAN Emory University

> PATRICK L. LONG Emory University

PERGAMON PRESS

OXFORD · NEW YORK · TORONTO · SYDNEY · PARIS · FRANKFURT

υ.к.	Pergamon Press Ltd., Headington Hill Hall, Oxford OX3 0BW, England
U.S.A.	Pergamon Press Inc., Maxwell House, Fairview Park, Elmsford, New York 10523, U.S.A.
CANADA	Pergamon of Canada, Suite 104, 150 Consumers Road, Willowdale, Ontario M2 J1P9, Canada
AUSTRALIA	Pergamon Press (Aust.) Pty. Ltd., P.O. Box 544, Potts Point, N.S.W. 2011, Australia
FRANCE	Pergamon Press SARL, 24 rue des Ecoles, 75240 Paris, Cedex 05, France
FEDERAL REPUBLIC OF GERMANY	Pergamon Press GmbH, 6242 Kronberg-Taunus, Pferdstrasse 1, Federal Republic of Germany

Copyright © 1979 International Union of Pure and Applied Chemistry

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the publishers.

First edition 1979

British Library Cataloguing in Publication Data

Helium and neon. - (International Union of Pure and Applied Chemistry. IUPAC Solubility data series; vol. 1): 1. Helium - Solubility - Tables 2. Neon -Solubility - Tables 1. Clever, H. Lawrence II. Series 546'751'5420212 QD181.H4 78-40965 ISBN 0 08 022351 6

In order to make this volume available as economically and as rapidly as possible the authors' typescripts have been reproduced in their original forms. This method unfortunately has its typographical limitations but it is hoped that they in no way distract the reader. CONTENTS

Foreword	vii
Editor's Preface	xi
The Solubility of Gases in Liquids	xv
<pre>1. Helium solubilities up to 2 bar l.l Water l.2 Salt solutions (aqueous) l.3 Salt solutions (non-aqueous) l.4 Organic compounds and water l.5 Hydrocarbons</pre>	1 16 34 35
Saturated Cyclic Aromatic 1.6 Organic compounds containing oxygen 1.7 Organic compounds containing halogen 1.8 Organic compounds containing sulfur 1.9 Organic compounds containing nitrogen 1.10 Other organic compounds 1.11 Inorganic compounds 1.12 Miscellaneous fluids including biological fluids	40 59 68 81 90 98 100 109 110 114
2. Neon solubilities up to 2 bar 2.1 Water 2.2 Salt solutions (aqueous) 2.3 Organic compounds and water 2.4 Hydrocarbons	124 138 179
Saturated Cyclic Aromatic	185 204 214 226
 2.5 Organic compounds containing oxygen 2.6 Organic compounds containing halogen 2.7 Organic compounds containing sulfur 2.8 Organic compounds containing nitrogen 2.9 Other organic compounds 2.10 Inorganic Compounds 	228 235 243 245 248 249
2.11 Miscellaneous fluids including biological fluids	250
3. Helium solubilities above 2 bar 3.1 Water 3.2 Salt solutions (aqueous) 3.3 Hydrocarbons 3.4 Other organic compounds 3.5 Inorganic compounds 3.6 Miscellaneous fluids	257 261 263 280 282 356
 4. Neon solubilities above 2 bar 4.1 Hydrocarbons 4.2 Inorganic compounds 	357 359
System Index	386
Registry Number Index	392

,

Foreword

If the knowledge is undigested or simply wrong, more is not better

How to communicate and disseminate numerical data effectively in chemical science and technology has been a problem of serious and growing concern to IUPAC, the International Union of Pure and Applied Chemistry, for the last two decades. The steadily expanding volume of numerical scientific and technological information, the formation of new interdisciplinary areas in which chemistry is a partner, and the links between these and existing traditional subdisciplines in chemistry, along with an increasing number of users, have been considered as urgent aspects of the information problem in general, and of the numerical data problem in particular.

Among the several numerical data projects initiated and operated by various IUPAC commissions, the *Solubility Data Project* is probably one of the most ambitious ones. It is concerned with preparing a comprehensive critical compilation of data on solubilities in all physical systems, of gases, liquids and solids. Both the basic and applied branches of almost all scientific disciplines require a knowledge of solubilities as a function of solvent, temperature and pressure. Solubility data are basic to the fundamental understanding of processes relevant to agronomy, biology, chemistry, geology and oceanography, medicine and pharmacology, and metallurgy and materials science. Knowledge of solubility is very frequently of great importance to such diverse practical applications as drug dosage and drug solubility in biological fluids, anesthesiology, corrosion by dissolution of metals, properties of glasses, ceramics, concretes and coatings, phase relations in the formation of minerals and alloys, the deposits of minerals and radioactive fission products from ocean waters, the composition of ground waters, and the requirements of oxygen and other gases in life support systems.

The widespread relevance of solubility data to many branches and disciplines of science, medicine, technology and engineering, and the difficulty of recovering solubility data from the literature, lead to the proliferation of published data in an ever increasing number of scientific and technical primary sources. The sheer volume of data has overcome the capacity of the classical secondary and tertiary services to respond effectively.

While the proportion of secondary services - of the review article type - is generally increasing due to the rapid growth of all forms of primary literature, the review articles become more limited in scope and more specialized. The disturbing phenomenon is that in some disciplines, certainly in chemistry, authors are reluctant to treat even those limited-inscope reviews exhaustively. There is a trend to preselect the literature, sometimes under the pretext of reducing it to manageable size. The crucial problem with such preselection - as far as numerical data are concerned is that there is no indication as to whether the material excluded was done by design or by less than thorough literature search. We are equally concerned that most current secondary sources, critical in character as they may be, give scant attention to numerical data.

On the other hand, tertiary sources - handbooks, reference books, and other tabulated and graphical compilations - as they exist today, are comprehensive but, as a rule, uncritical. They usually attempt to cover whole disciplines, thus obviously are superficial in treatment. Since they command a wide market, we believe that their service to advancement of science is at least questionable. Additionally, the change which is taking place in the generation of new and diversified numerical data, and the rate by which this is done, is not reflected in an increased third-level service. The emergence of new tertiary literature sources does not parallel the shift that has occurred in the primary literature.

The status of current secondary and tertiary services being as they are briefly stated above, the innovative approach of the Solubility Data Project is that its compilation and critical evaluation work involve consolidation and reprocessing services when both activities are based on intellectual and scholarly reworking of information from primary sources. It comprises compact compilation, rationalization and simplification, and the fitting of isolated numerical data into a critically evaluated general framework.

The Solubility Data Project developed a mechanism which involves a number of innovations in exploiting the literature fully, and which contains new elements of a more imaginative approach of transfer of reliable information from primary to secondary/tertiary sources. The fundamental trend of the Solubility Data Project is toward integration of secondary and tertiary services with the objective of producing in-depth critical analysis and evaluation which are characteristic to secondary services, in a scope as broad as conventional tertiary services.

Fundamental to the philosophy of the project is the recognition that the basic element of strength is the active participation of career scientists in it. Consolidating primary literature data and producing a truly critically-evaluated set of numerical data, and synthesizing data in a meaningful relationship, are demands considered worthy of the efforts of top scientists. Career scientists, who themselves contribute to science by their involvement, in active scientific research, are the backbone of the project. The scholarly work is commissioned to recognized authorities, involving a process of careful selection in the best tradition of IUPAC. This selection in turn is the key to the quality of the output. These top experts are expected to view their specific topics dispassionately, paying equal attention to their own contributions and to those of their peers. They digest literature data into a coherent story by weeding out what is wrong from what is believed to be right. To fulfill this task, the evaluator must cover all relevant open literature. No reference is excluded by design and every effort is made to detect every bit of relevant primary source. Poor quality or wrong data are mentioned and explicitly disqualified as such. In fact, it is only when the reliable data are presented alongside the unreliable data that proper justice can be done. The user is bound to have incomparably more confidence in a succinct evaluative commentary and a comprehensive review with a complete bibliography to both good and poor data.

It is the standard practice that any given solute-solvent system consists of two essential parts: I. Critical Evaluation and Recommended Values, and II. Compiled Data Sheets.

The Critical Evaluation part gives the following information: (i) a verbal text of evaluation which discusses the numerical solubility information appearing in the primary sources located in the literature. The evaluation text concerns primarily the quality of data after consideration of the purity of the materials and their characterization, the experimental method employed and the uncertainties in control of physical parameters, the reproducibility of the data, the agreement of the worker's results on accepted test systems with standard values, and finally, the data fit to generally accepted graphical tests;

(ii) a set of recommended numerical data. Whenever possible, the set of recommended data includes weighted average and standard minimum deviations, and a set of smoothing equations derived from the experimental data endorsed by the evaluator;

(iii) a graphical plot of recommended data.

The compilation part consists of data sheets of the best experimental data in the primary literature. Generally speaking, such independent data sheets are given only to the best and endorsed data covering the known range of experimental parameters. Data sheets based on primary sources where the data are of a lower precision are given only when no better data are available. Experimental data with a precision poorer than considered acceptable are reproduced in the form of data sheets when they are the only known data for a particular system. Such data are considered to be still suitable for some applications, and their presence in the compilation should alert researchers to areas that need more work.

The typical data sheet carries the following information:

(i) components - definition of the system - their names, formulas and Chemical Abstracts registry numbers;

(ii) reference to the primary source where the numerical information is reported. In cases when the primary source is a less common periodical or a report document, published though of limited availability, abstract references are also given;

(iii) experimental variables;

(iv) identification of the compiler, his affiliation and the date of compilation;

(v) experimental values as they appear in the primary source. Whenever available, the data are given both in tabular and graphical form. If auxiliary information is available, the experimental data are converted also to SI units by the compiler.

Under the general heading of Auxiliary Information, the essential experimental details are summarized:

(vi) experimental method used for the generation of data;

(vii) type of apparatus and procedure employed;

(viii) source and purity of materials;

(ix) estimated error;

(x) references relevant to the generation of experimental data as cited in the primary source.

This new approach to numerical data presentation, developed during our four years of existence, has been strongly influenced by the diversity of background of those whom we are supposed to serve. We thus deemed it right to preface the evaluation/compilation sheets in each volume with a detailed discussion of the principles of the accurate determination of relevant solubility data and related thermodynamic information.

Finally, the role of education is more than corollary to the efforts we are seeking. The scientific standards advocated here are necessary to strengthen science and technology, and should be regarded as a major effort in the training and formation of the next generation of scientists and engineers. Specifically, we believe that there is going to be an impact of our project on scientific-communication practices. The quality of consolidation adopted by this program offers down-to-earth guidelines, concrete examples which are bound to make primary publication services more respon-sive than ever before to the needs of users. The self-regulatory message to scientists of 15 years ago to refrain from unnecessary publication has not achieved much. The literature is still, in 1978, cluttered with poor-quality articles. The Weinberg report (in "Reader in Science Information," Eds. J. Sherrod and A. Hodina, Microcard Editions Books, Indian Head Inc., 1973, p. 292) states that "admonition to authors to restrain themselves from premature, unnecessary publication can have little effect unless the climate of the entire technical and scholarly community encourages restraint...' We think that projects of this kind translate the climate into operational terms by exerting pressure on authors to avoid submitting low-grade mater-ial. The type of our output, we hope, will encourage attention to quality as authors will increasingly realize that their work will not be suited for permanent retrievability unless it meets the standards adopted in this project. It should help to dispel confusion in the minds of many authors of what represents a permanently useful bit of information of an archival value, and what does not.

If we succeed in that aim, even partially, we have then done our share in protecting the scientific community from unwanted and irrelevant, wrong numerical information.

A. S. Kertes

July 1978

Editor's Preface

The users of this volume will find (1) the best available experimental solubility data of helium and neon gas in liquids as reported in the scientific literature, (2) tables of smoothed mole fraction solubility data for the systems which were studied over a temperature interval and (3) tables of either tentative or recommended solubility data when two or more laboratories reported solubility data over the same range of temperature and pressure. Users have the option of using the experimental values either directly or in their own smoothing equations or of using the smoothed values prepared by the compilers and evaluators. The goal was to cover the literature thoroughly enough so that the user need not do a detailed literature search for helium and neon solubility data prior to 1978.

Some words of explanation are required with respect to units, corrections, smoothing equations, auxiliary data and data sources, nomenclature and other points. The experimental data are presented in the units found in the original paper. In addition the original data are often converted to other units, especially mole fraction. Temperatures have been converted to Kelvin. In evaluations of solubility data, S.I. units are used.

Only in the past 10 to 15 years have experimental methods for the determination of the solubility of gases in liquids developed to the point where 0.5 percent or better accuracy is attained. Only a small fraction of the literatures' gas solubility data are accurate to 0.5 percent. The corrections for non-ideal gas behavior and for expansion of the liquid phase on dissolution of the gas are small and well within the normal experimental error. Thus such corrections were not made for the helium and neon gas solubility data at low pressure.

The lack of high accuracy is also the reason that, excepting water as a solvent, only a two-constant equation is used to smooth and evaluate the gas solubility data. A Gibbs energy of solution equation linear in temperature is used

 $\Delta G^{\circ}/J \mod^{-1} = - RT \ln X_1 = A + BT$

or in alternate form

 $\ln X_1 = -\Delta G^{\circ}/RT = -(A/R)/T - (B/R)$

where A is ΔH° , B is $-\Delta S^{\circ}$, X₁ is the mole fraction solubility at a gas partial pressure of 101.325 kPa⁻¹ (1 atm), and R is 8.31433 J K⁻¹ mol⁻¹.

An inconsistency, which we believe is justified, is found with respect to the solubility data in water. Much time and effort was expended in evaluating the solubility data of each gas in water. A recommended equation and table of values are presented. However, for systems which contain water and other solvent components such as electrolytes or water miscible polar organic compounds, the experimental gas solubility in water from that paper is given, even when it is at variance with our recommended values. These data of sometimes poorer quality are presented because the author's ratio of gas solubility in water to solubility in the aqueous solution may be more accurate than the solubility itself. This may be especially true of some of the solubility data in aqueous electrolyte solutions.

Solvent density data were often required in making solubility unit conversions. The density data were not directly referenced. The main sources of density data are Circular 461 of the U.S. National Bureau of Standards

American Petroleum Research Project 44 Publications

The International Critical Tables, Volume III (E.W. Washburn, Editor) McGraw-Hill Co., 1931 Smow Table, Pure and Applied Chemistry 1976, 45, 1-9

Smow Table, Pure and Applied Chemistry 1976, 45, 1-9
Thermodynamic Properties of Aliphatic Alcohols, R. C. Wilhoit and B. J. Zwolinski, J. Phys. Chem. Ref. Data 1973, 2, Supplement No. 1
Organic Solvents, J. A. Riddick and W. B. Bunger (Technique of Chemistry, Volume II, A. Weissberger, Editor) Wiley-Interscience, New York, 1970, 3rd Ed. The Ostwald Coefficient, L

The Ostwald coefficient, L, is defined as the ratio of the volume of gas absorbed to the volume of the absorbing liquid, all measured at the same temperature:

 $L = \frac{V(q)}{V(1)}$

If the gas is ideal and Henry's Law is applicable, the Ostwald coefficient is independent of the partial pressure of the gas. It is necessary, in practice, to state the temperature and total pressure for which the Ostwald coefficient is measured. The mole fraction solubility, X, is related to the Ostwald coefficient by

$$X = \left[\frac{RT}{P(g) L V^{O}(1)} + 1 \right]^{-1}$$

where P is the partial pressure of gas. The mole fraction solubility will be at a partial pressure of P(g).

The Absorption Coefficient, B

There are several "absorption coefficients", the most commonly used one being defined as the volume of gas, reduced to 273.15K and 1 atmosphere, absorbed per unit volume of liquid when the total pressure is 1 atmosphere. β is related to the Bunsen coefficient by

 $\beta = \alpha (1-P(1))$

where P(1) is the partial pressure of the liquid in atmosphere.

The Henry's Law Constant

A generally used formulation of Henry's Law may be expressed as

 $P(g) = K_H X$

where ${\rm K}_{\rm H}$ is the Henry's Law constant and X the mole fraction solubility. Other formulations are

 $P(g) = K_2C(1)$

or

 $C(g) = K_{c}C(1)$

where K_2 and K_c are constants, C the concentration, and (1) and (g) refer to the liquid and gas phases. Unfortunately, K_H , K_2 and K_c are all sometimes referred to as Henry's Law constants. Henry's Law is a limiting law but can sometimes be used for converting solubility data from the experimental pressure to a partial gas pressure of 1 atmosphere, provided the mole fraction of the gas in the liquid is small, and that the difference in pressures is small. Great caution must be exercised in using Henry's Law.

The Mole Ratio, N

The mole ratio, N, is defined by

N = n(g)/n(1)

Table 1 contains a presentation of the most commonly used inter-conversions not already discussed.

For gas solubilities greater than about 0.01 mole fraction at a partial pressure of 1 atmosphere there are several additional factors which must be taken into account to unambiguously report gas solubilities. Solution densities or the partial molar volume of gases must be known. Corrections should be made for the possible non-ideality of the gas or the non-applicability of Henry's Law.

The solubility data are supplemented with partial molal volume and calorimetric enthalpy of solution data when they are available.

Chemical Abstracts recommended names and registry numbers were used throughout. Common names are cross referenced to Chemical Abstract recommended names in the index.

The Editor would appreciate users calling errors and omissions to his attention.

The Editor gratefully acknowledges the advice and comments of members of the IUPAC Commission on Equilibrium Data and the Subcommittee on Solubility Data; the cooperation and hard work of the Evaluators and compilers; and the untiring efforts of the typists Peggy Tyler, Carolyn Dowie, and Lesley Flanagan.

Acknowledgment is made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of the compilation and evaluation of the gas solubility data.

H. Lawrence Clever

July 1978

THE SOLUBILITY OF GASES IN LIQUIDS

C. L. Young, R. Battino, and H. L. Clever

INTRODUCTION

The Solubility Data Project aims to make a comprehensive search of the literature for data on the solubility of gases, liquids and solids in liquids. Data of suitable accuracy are compiled into data sheets set out in a uniform format. The data for each system are evaluated and where data of sufficient accuracy are available values recommended and in some cases a smoothing equation suggested to represent the variation of solubility with pressure and/or temperature. A text giving an evaluation and recommended values and the compiled data sheets are published on consecutive pages.

DEFINITION OF GAS SOLUBILITY

The distinction between vapor-liquid equilibria and the solubility of gases in liquids is arbitrary. It is generally accepted that the equilibrium set up at 300K between a typical gas such as argon and a liquid such as water is gas-liquid solubility whereas the equilibrium set up between hexane and cyclohexane at 350K is an example of vapor-liquid equilibrium. However, the distinction between gas-liquid solubility and vapor-liquid equilibrium is often not so clear. The equilibria set up between methane and propane above the critical temperature of methane and below the critical temperature of propane may be classed as vapor-liquid equilibrium or as gas-liquid solubility depending on the particular range of pressure considered and the particular worker concerned.

The difficulty partly stems from our inability to rigorously distinguish between a gas, a vapor, and a liquid, which has been discussed in numerous textbooks. We have taken a fairly liberal view in these volumes and have included systems which may be regarded, by some workers, as vapor-liquid equilibria.

UNITS AND QUANTITIES

The solubility of gases in liquids is of interest to a wide range of scientific and technological disciplines and not solely to chemistry. Therefore a variety of ways for reporting gas solubility have been used in the primary literature and inevitably sometimes, because of insufficient available information, it has been necessary to use several quantities in the compiled tables. Where possible, the gas solubility has been quoted as a mole fraction of the gaseous component in the liquid phase. The units of pressure used are bar, pascal, millimeters of mercury and atmosphere. Temperatures are reported in Kelvin.

EVALUATION AND COMPILATION

The solubility of comparatively few systems is known with sufficient accuracy to enable a set of recommended values to be presented. This is true both of the measurement near atmospheric pressure and at high pressures. Although a considerable number of systems have been studied by at least two workers, the range of pressures and/or temperatures is often sufficiently different to make meaningful comparison impossible.

Occasionally, it is not clear why two groups of workers obtained very different sets of results at the same temperature and pressure, although both sets of results were obtained by reliable methods and are internally consistent. In such cases, sometimes an incorrect assessment has been given. There are several examples where two or more sets of data have been classified as tentative although the sets are mutually inconsistent.

Many high pressure solubility data have been published in a smoothed form. Such data are particularly difficult to evaluate, and unless specifically discussed by the authors, the estimated error on such values can only be regarded as an "informed guess".

xv

Many of the high pressure solubility data have been obtained in a more general study of high pressure vapor-liquid equilibrium. In such cases a note is included to indicate that additional vapor-liquid equilibrium data are given in the source. Since the evaluation is for the compiled data, it is possible that the solubility data are given a classification which is better than that which would be given for the complete vapor-liquid data (or vice versa). For example, it is difficult to determine coexisting liquid and vapor compositions near the critical point of a mixture using some widely used experimental techniques which yield accurate high pressure solubility data. For example, conventional methods of analysis may give results with an expected error which would be regarded as sufficiently small for vapor-liquid equilibrium data but an order of magnitude too large for acceptable high pressure gas-liquid solubility.

It is occasionally possible to evaluate data on mixtures of a given substance with a member of a homologous series by considering all the available data for the given substance with other members of the homologous series. In this study the use of such a technique has been very limited.

The estimated error is often omitted in the original article and sometimes the errors quoted do not cover all the variables. In order to increase the usefulness of the compiled tables estimated errors have been included even when absent from the original article. If the error on *any* variable has been inserted by the compiler this has been noted.

PURITY OF MATERIALS

The purity of materials has been quoted in the compiled tables where given in the original publication. The solubility is usually more sensitive to impurities in the gaseous component than to liquid impurities in the liquid component. However, the most important impurities are traces of a gas dissolved in the liquid. Inadequate degassing of the absorbing liquid is probably the most often overlooked serious source of error in gas solubility measurements.

APPARATUS AND PROCEDURES

In the compiled tables brief mention is made of the apparatus and procedure. There are several reviews on experimental methods of determining gas solubilities and these are given in References 1-7.

METHODS OF EXPRESSING GAS SOLUBILITIES

Because gas solubilities are important for many different scientific and engineering problems, they have been expressed in a great many ways:

The Mole Fraction, X(g)

The mole fraction solubility for a binary system is given by:

$$X(g) = \frac{n(g)}{n(g) + n(1)}$$

 $= \frac{W(g)/M(g)}{\{W(g)/M(g)\} + \{W(1)/M(1)\}}$

here n is the number of moles of a substance (an *amount* of substance), W is the mass of a substance, and M is the molecular mass. To be unambiguous, the partial pressure of the gas (or the total pressure) and the temperature of measurement must be specified.

The Weight Per Cent Solubility, wt%

For a binary system this is given by

wt% = $100 W(g) / \{W(g) + W(1)\}$

where W is the weight of substance. As in the case of mole fraction, the pressure (partial or total) and the temperature must be specified. The weight per cent solubility is related to the mole fraction solubility by

$$X(g) = \frac{\{wt\$/M(g)\}}{\{wt\$/M(g)\} + \{(100 - wt\$)/M(1)\}}$$

The Weight Solubility, $\ensuremath{C_W}$

The weight solubility is the number of moles of dissolved gas per gram of solvent when the partial pressure of gas is 1 atmosphere. The weight solubility is related to the mole fraction solubility at one atmosphere partial pressure by

X(g) (partial pressure 1 atm) = $\frac{C_{w}^{M}(1)}{1 + C_{w}^{M}(1)}$

where M(1) is the molecular weight of the solvent.

The Moles Per Unit Volume Solubility, n

Often for multicomponent systems the density of the liquid mixture is not known and the solubility is quoted as moles of gas per unit volume of liquid mixture. This is related to the mole fraction solubility by

$$X = \frac{n v^{0}(1)}{1 + n v^{0}(1)}$$

where $v^{O}(1)$ is the molar volume of the liquid component.

The Bunsen Coefficient, α

The Bunsen coefficient is defined as the volume of gas reduced to 273.15K and 1 atmosphere pressure which is absorbed by unit volume of solvent (at the temperature of measurement) under a partial pressure of 1 atmosphere. If ideal gas behavior and Henry's law is assumed to be obeyed,

$$\alpha = \frac{V(g)}{V(1)} \frac{273.15}{T}$$

where V(g) is the volume of gas absorbed and V(1) is the original (starting) volume of absorbing solvent. The mole fraction solubility X is related to the Bunsen coefficient by

X (l atm) =
$$\frac{\alpha}{\alpha + \frac{273.15}{T} \frac{v^{O}(g)}{v^{O}(1)}}$$

where $v^{\rm O}(g)$ and $v^{\rm O}(1)$ are the molar volumes of gas and solvent at a pressure of one atmosphere. If the gas is ideal,

$$X = \frac{\alpha}{\alpha + \frac{273.15R}{v^{\circ}(1)}}$$

Real gases do not follow the ideal gas law and it is important to establish the real gas law used for calculating α in the original publication and to make the necessary adjustments when calculating the mole fraction solubility.

The Kuenen Coefficient, S

This is the volume of gas, reduced to 273.15K and 1 atmosphere pressure, dissolved at a partial pressure of gas of 1 atmosphere by 1 gram of solvent. TABLE 1 Interconversion of parameters used for reporting solubility

$$L = \alpha(T/273.15)$$

$$C_{W} = \alpha/v_{o}\rho$$

$$K_{H} = \frac{17.033 \times 10^{6} \rho_{soln}}{\alpha M(1)} + 760$$

$$L = C_{W} v_{t,gas}\rho$$

where v is the molal volume of the gas in $\rm cm^3 mol^{-1}$ at 0°C, ρ the density of the solvent at the temperature of the measurement, $\rho_{\rm soln}$ the density of the solution at the temperature of the measurement, and v_t gas the molal volume of the gas (cm³mol^{-1}) at the temperature of the measurement.

SALT EFFECTS

The effect of a dissolved salt in the solvent on the solubility of a gas is often studied. The activity coefficient of a dissolved gas is a function of the concentration of all solute species (see ref. 8). At a given temperature and pressure the logarithm of the dissolved gas activity coefficient can be represented by a power series in C_S , the electrolyte concentration, and C_i, the nonelectrolyte solute gas concentration

$$\log f_{i} = \sum_{m,n} k_{mn} C_{s}^{n} C_{i}^{m}$$

It is usually assumed that only the linear terms are important for low C_{S} and Ci values when there is negligible chemical interaction between solute species.

$$\log f_i = k_s C_s + k_i C_i$$

where k_s is the salt effect parameter and k_i is the solute-solute gas interaction parameter. The dissolved gas activity is the same in the pure solvent and a salt solution in that solvent for a given partial pressure and temperature

$$a_i = f_i S_i = f_i^{\circ} S_i^{\circ}$$
 and $f_i = f_i^{\circ} \frac{s}{s_i^{\circ}}$

where S_i and S_i^{o} are the gas solubility in the salt solution and in the pure solvent, respectively, and the f's are the corresponding activity coefficients. It follows that log $\underline{f_i} = \log \underline{S_i}^o = k_s C_s + k_i (S_i - S_i^o)$. When the fi

quantity $(S_i - S_i^{0})$ is small the second term is negligible even though k_s and k_i may be of similar magnitude. This is generally the case for gas solubilities and the equation reduces to

$$\log \frac{f_i}{f_i^o} = \log \frac{s_i^o}{s_i} = k_s C_s$$

which is the form of the empirical Setschenow equation in use since the 1880's. A salt that increases the activity coefficient of the dissolved gas is said to salt-out and a salt that decreases the activity coefficient of the dissolved gas is said to salt-in.

Although salt effect studies have been carried out for many years, there appears to be no common agreement of the units for either the gas solubility or the salt concentration. Both molar (mol dm⁻³) and molal (mol kg⁻¹) are used for the salt concentration. The gas solubility ratio S_i^{o}/S_i is given as Bunsen coefficient ratio and Ostwald coefficient ratio,

which would be the same as a molar ratio; Kueunen coefficient ratio, volume dissolved in 1 g or 1 kg of solvent which would be a molal ratio; and mole fraction ratio. Recent theoretical treatments use salt concentration in mol dm⁻³ and $S_1 S_1$ ratio as mole fraction ratio with each salt ion acting as a mole. Evaluations which compare the results of several workers are made in the units most compatible with present theory.

TEMPERATURE DEPENDENCE OF GAS SOLUBILITY

In a few cases it has been found possible to fit the mole fraction solubility at various temperatures using an equation of the form

 $\ln x = A + B / (T/100K) + C \ln (T/100K) + DT/100K$

It is then possible to write the thermodynamic functions $\overline{\Delta G_1^0}$, $\overline{\Delta H_1^0}$, $\overline{\Delta S_1^0}$ and $\Delta \overline{C}^{\circ} p_{j}$ for the transfer of the gas from the vapor phase at

101,325 Pa partial pressure to the (hypothetical) solution phase of unit mole fraction as:

> $\Delta \overline{G}_{1}^{\circ} = -RAT - 100 RB - RCT ln (T/100) - RDT^{2}/100$ $\Delta \overline{S}_{1}^{\circ} = RA + RC \ln (T/100) + RC + 2 RDT/100$ $\Delta \overline{H}_{1}^{\circ} = -100 \text{ RB} + \text{RCT} + \text{RDT}^{2}/100$ ∆C°_{p1} = RC + 2 RDT/100

In cases where there are solubilities at only a few temperatures it is convenient to use the simpler equations

 $\Delta \overline{G}_1^\circ = - RT \ln x = A + BT$

in which case $A = \Delta \overline{H}_1^\circ$ and $-B = \Delta \overline{S}_1^\circ$.

REFERENCES

- Battino, R.; Clever, H. L. <u>Chem.Rev. 1966, 66, 395.</u>
 Clever, H. L.; Battino, R. in <u>Solutions and Solubilities</u>, Ed. M. R. J. Dack, J. Wiley & Sons, New York, 1975, Chapter 7.
 Hildebrand, J. H.; Prausnitz, J. M.; Scott, R. L. <u>Regular and Related</u>
- Regular and Related Solutions, Van Nostrand Reinhold, New York, 1970, Chapter 8.

- 4. Markham, A. E.; Kobe, K. A. <u>Chem. Rev. 1941, 63, 449.</u>
 5. Wilhelm, E.; Battino, R. <u>Chem. Rev. 1973, 73, 1.</u>
 6. Wilhelm, E.; Battino, R.; Wilcock, R. J. <u>Chem. Rev. 1977, 77, 219.</u>
 7. Kertes, A. S.; Levy, O.; Markovits, G. Y. in <u>Experimental Thermochemistry</u>
 Vol. J. F. B. Vodar and B. LeNaindre Butterworth London 1974 II, Ed. B. Vodar and B. LeNaindre, Butterworth, London, 1974, Vol. Chapter 15.
- 8. Long, F. A.; McDevit, W. F. Chem. Rev. 1952, 51, 119.

APPENDIX I. Conversion F			k						k ⁻³	L		
Non-SI Unit	:	L (no	on-S	īτ	Jnit) = I Unit		1	(ŞI	Uni	t)	= Uni	
LENGTH			<u> </u>	(5)	L OILL	/		<u>K -</u>			iit, 1	
Å (angstrom) cm (centimeter) in (inch) ft (foot)		3	1 254	x x	10^{-10} 10^{-2} 10^{-4} 10^{-4}	(*) (*) (*) (*)	3	937 280	1 008 840	x x x x	10^{10} 10^{2} 10^{-5} 10^{-6}	(*) (*)
AREA									SI	Un	nit, 1	m ²
cm ² in ² ft ²	9	64 290			10-4 10-8 10-8	(*) (*) (*)	1	550 076	003	х	10 ⁴ 10-3 10-5	(*)
VOLUME									SI	Un	nit, 1	"3
cm ³ in ³ ft ³ 1 (litre) UKgal (UK gallon) USgal (US gallon)	16 2	45	461	х	10-6 10-12 10-8 10-3 10-7 10-7	(*) (*) (*)	6 3	531 21	467 1 997	x x x	$ \begin{array}{r} 10^{6} \\ 10^{-2} \\ 10^{-5} \\ 10^{3} \\ 10^{-2} \\ $	(*)
MASS									SI	Un	it, 1	kg
g (gram) t (tonne) lb (pound)	45	359	1	x	10 ⁻³ 10 ³ 10 ⁻⁸	(*) (*) (*)	2	204	1	х	10 ³ 10-3 10-6	(*) (*)
DENSITY									SIU	nit	:, kg	m ⁻³
g cm ⁻³ g l ⁻¹ lb in ⁻³ lb ft ⁻³ lb UKgal ⁻¹ lb USgal ⁻¹	1	601 99	1 991 847	x x x	10^{3} 10^{-2} 10^{-5} 10^{-3} 10^{-4}	(*) (*)	6	242 100	1 728 795 224	x x x	10 ⁻³ 10 ^{-1:} 10 ⁻⁸ 10 ⁻⁷ 10 ⁻⁹	1 (*)
PRESSURE					SI	Unit,	Pa	(pas	cal,	kg		s ⁻²)
dyn cm ⁻² at (kgf cm ⁻²) atm (atmosphere) bar lbf in ⁻² (p.s.i.) lbf ft ⁻² inHg (inch of mercury) mmHg (millimeter of mercury, torr)		101 894 47	665 325 1 757 880	x x x	$10^{-1} \\ 10^{-1} \\ 10^{-3} \\ 10^{-3} \\ 10^{-3} \\ 10^{-4} \\ 10^{-4} \\ 10^{-4} \\ 10^{-1} \\ 10^{$	(*) (*) (*) (*)	1	450 20 952	1 377 886 999	x x x x x	10 10-1: 10-1: 10-5 10-10 10-10 10-6 10-10 10-9	o (*) 0

•

APPENDIX I. Conversion Facto	rs k and k ⁻¹	
Non-SI Unit	k l (non-SI Unit) = k (SI Unit)	k ⁻¹ 1 (SI Unit) = <u>k-1 (non-SI Uni</u> t)
ENERGY	Uni	t, J (joule, kg $m^2 s^{-2}$)
erg cal _{IT} (I.T. calorie) cal _{th} (thermochemical calorie kW h (kilowatt hour) l atm ft lbf hp h (horse power hour) Btu (British thermal unit)	2 684 519	$1 \times 10^{7} (*)$ 2 388 459 × 10 ⁻⁷ 2 390 057 × 10 ⁻⁷ 2 777 778 × 10 ⁻¹³ 2 777 778 × 10 ⁻⁹ 9 869 233 × 10 ⁻⁹ 7 375 622 × 10 ⁻⁷ 3 725 062 × 10 ⁻¹³ 9 478 172 × 10 ⁻¹⁰

An asterisk (*) denotes an exact relationship

COMPONENTS:	EVALUATOR:
<pre>1. Helium; He; 7440-59-7 2. Water; H₂O; 7732-18-5</pre>	R. Battino Department of Chemistry Wright State University Dayton, OH 45431 USA
	April 1977

CRITICAL EVALUATION:

The data produced by eight workers were considered to be sufficiently accurate to use for the smoothing equation. However, in fitting the data those points which showed deviations greater than two standard deviations were rejected. Thus we used 59 data points obtained as follows (reference number of data points used from that reference): 1-8, 2-5, 3-5, 4-24, 5-3, 6-1, 7-1, 8-1, 9-11. The fitting equation used was

 $\ln X_1 = A + B/(T/100K) + C \ln (T/100K) + DT/100K$ (1)

Using T/100K as the variable rather than T/K gives coefficients of approximately equal magnitude. The best fit for 59 points gave

 $\ln x_1 = -41.4611 + 42.5962/(T/100K) + 14.0094 \ln (T/100K)$ (2)

where X_1 is the mole fraction solubility of helium at 101.325 Pa (1 atm) partial pressure of gas. The fit in $\ln X_1$ gave a standard deviation of 0.54% taken at the middle of the temperature range. Table 1 gives smoothed values at 5K intervals for the mole fraction solubility at 101.325 Pa and the Ostwald coefficient.

Table 1 also gives the thermodynamic functions $\Delta \overline{G}_{1}^{\circ}$, $\Delta \overline{H}_{1}^{\circ}$, $\Delta \overline{S}_{1}^{\circ}$, and $\Delta \overline{C}_{p}^{\circ}$ for the transfer of the gas from the vapor phase at 101.325 Pa partial 1 gas pressure to the (hypothetical) solution phase of unit mole fraction. These were calculated from the smoothing equation according to the following equations:

 $\Delta \overline{G}_{1}^{\circ} = -RAT - 100RB = RCT \ln (T/100) - RDT^{2}/100$ (3) $\Delta \overline{S}_{1}^{\circ} = RA + RC \ln (T/100) + RC + 2RDT/100$ (4) $\Delta \overline{H}_{1}^{\circ} = -100RB + RCT + RDT^{2}/100$ (5) $\Delta \overline{C}_{P_{1}}^{\circ} = RC + 2RDT/100$ (6)

Since the three constant equations gave the best fit, $\Delta \overline{C}_p^\circ$ is independent of temperature.

Several sets of data were rejected for purposes of the fitting equation or preparing separate data sheets. The data of Shoor, et al. (10) were obtained via a gas chromatographic method and were about 4% low. Friedman's single value (11) was 1.5\% low. Antropoff's values (12) were erratically very high. Hawkin's single value (13) was 12\% low. The measurements of Feillolay and Lucas (14) at 25 and 35°C were 2 to 5 percent high despite a reproducibility of ± 0.5 percent. Ramsay, Collie and Traver's (15) early value was only qualitative (± 10\%) and it is about 30 percent low. Valentiner's (16) measurements were done at three temperatures using a mixture of gases that was 70\% neon and 30\% helium. His values calculated using this mixture were only qualitative. Estreicher's measurements (17) were very high.^a

Weiss (5) also measured the solubility of ³He in water. Those data appear just following the natural helium in water data sheets.

Figure 1 shows the temperature dependence of solubility for helium obtained from the smoothing equation. There is a pronounced minimum at 303 K.

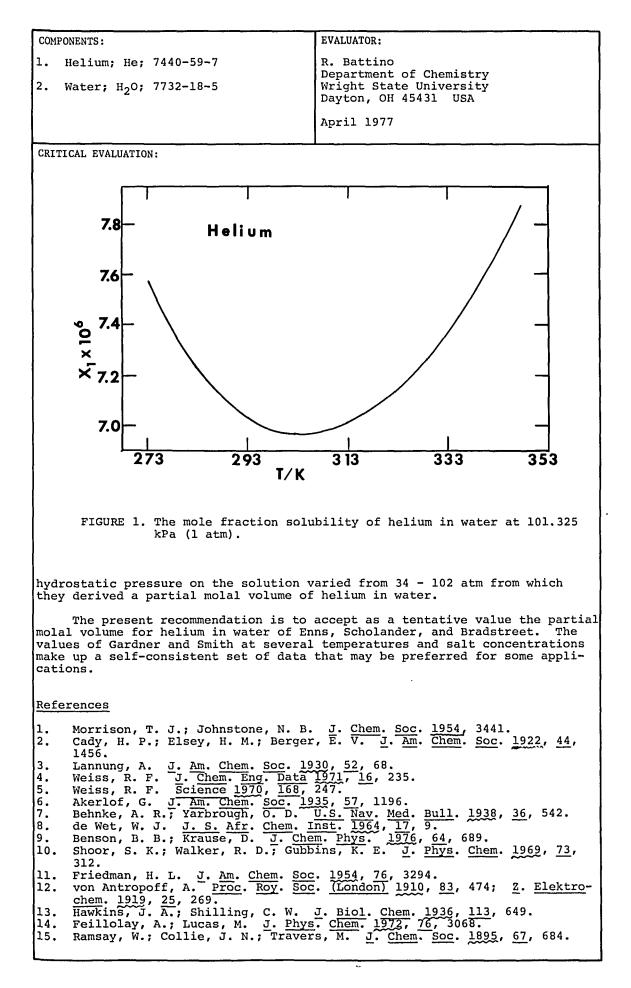
Experimental values of the partial molal enthalpy of solution and of the partial molal volume of the dissolved gas would complement the solubility data. No report of the direct calorimetric determination of the enthalpy of solution of helium in water was found. There are no reports of the partial molal volume of helium in water from experiments at atmospheric pressure. There are reports of the partial molal volume of helium in water

COMPONENTS:	EVALUATOR:
 Helium; He; 7440-59-7 Water; H₂O; 7732-18-5 	R. Battino Department of Chemistry Wright State University Dayton, OH 45431 USA
	April 1977

CRITICAL EVALUATION:

Table 1. Smoothed values of helium solubility in water and thermodynamic functions^a using equation 1 at 101.325 kPa (1 atm) partial pressure of helium.

Т/К	Mol Fraction ^b X ₁ x 10 ⁶	Ostwald ^C L x 10 ³	$\Delta \overline{G}_1^0 / kJ mol - 1^d$	$\Delta \overline{H}_1^0 / J \text{ mol}^{-1}$	$\Delta \overline{S}_{1}^{O}/JK^{-1}mol^{-1}$
273.15	7.585	9.436	26.77	-3600	-111.2
278.15	7.389	9.361	27.32	-3017	-109.1
283.15	7.237	9.330	27.87	-2435	-107.0
288.15	7.123	9.341	28.40	-1853	-105.0
293.15	7.044	9.389	28.91	-1270	-103.0
298.15	6.997	9.474	29.42	- 688	-101.0
303.15	6.978	9.594	29.92	- 105	- 99.06
308.15	6.987	9.748	30.42	+ 477	- 97.16
313.15	7.020	9.935	30.90	1059	- 95.28
318.15	7.077	10.16	31.37	1642	- 93.44
323.15	7.158	10.41	31.83	2224	- 91.62
328.15	7.261	10.70	32.28	2807	- 89.83
333.15	7.385	11.02	32.73	3389	- 88.07
338.15	7.532	11.38	33.17	3971	- 86.33
343.15	7.700	11.77	33.59	4554	- 84.62
348.15	7.890	12.20	34.01	5136	- 82.94


a ▲Cp was independent of temperature and has the value 116 J K⁻¹ mol⁻¹.
 b The mole fraction solubility of helium at 101.325 kPa (1 atm) partial pressure of the gas.

c Ostwald coefficient.

d cal_{th} = 4.184 joule.

and aqueous salt solutions derived from high pressure gas solubility data, from high pressure density data, and from a study of aqueous helium solutions under hydrostatic pressure. The values of the partial molal volume of helium in water from the high pressure studies are summarized in Table 2.

Four of the sets of values of the helium partial molal volume in water depend on the high helium pressure solubility measurements of Wiebe and Gaddy (19). Both Michaels, Gerver, and Bijl (18), and Namiot (21) have derived the partial molal volume values for helium in water from the least square fit of the Krichevskii - Kasarnovskii equation (20) to the Wiebe and Gaddy solubility data. It is generally accepted that although the Krichevskii - Kasarnovskii equation often fits the experimental gas solubility data well, the partial molal volumes derived from the equation are low. This seems to be the case for the helium and water system. Gardner and Smith (23) have fitted both the Wiebe and Gaddy and their own data to a theoretical equation which is a quadratic in pressure and which assumes a pressure dependent partial molal volume of the dissolved gas. Popov and Draken (24) calculated an apparent molal volume of helium in water from their measurement of density of the gas saturated solutions at pressures of 20 to 100 atm. They used the Wiebe and Gaddy solubility data to calculate the gas concentration in the solutions. Their value of the helium apparent molal volume is so high when compared with values by the other methods that it must be considered dubious unless it is substantiated by future work. Enns, Scholander, and Bradstreet (22) studied the equilibrium pressure of helium required to maintain a constant concentration of dissolved gas as the

COMPONENTS:	EVALUATOR:				
1. Helium; He; 7440-59-7	R. Battino Department of Chemistry				
2. Water; H ₂ O; 7732-18-5	Wright State University Dayton, OH 45431 USA				
	April, 1977				
CRITICAL EVALUATION:					
Table 2. Summary of literature dissolved in water.	values of the partial molal volume of helium				
T/K P/atm ^a V ₁ /cm ³ mol ⁻¹	Reference and Comments				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Michaels, Gerver, and Bijl (18). High pres- sure helium solubility data of Wiebe and Gaddy (19) fitted to the Krichevskii and Kasarnovskii (20) equation.				
273.15 25 - 1000 17	Namiot (21). Same data and treatment as above.				
298.15 34 - 102 29.7 29.7	Enns, Scholander, and Bradstreet (22). A study of the helium equilibrium pressure re- quired to maintain a fixed concentration of helium dissolved in water as the hydrostatic pressure increased from 34 to 102 atm.				
298.1525 - 100014.8323.1525 - 100020.0	Gardiner and Smith (23). The Wiebe and Gaddy (19) data treated as described below.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gardiner and Smith (23). Their high pressure (100 - 600 atm) gas solubility data were fit- ted to a theoretical equation which was quadratic in pressure. A pressure dependent partial molal volume was assumed. They also report partial molal volumes of helium dis- solved in 1 and 4 molal aqueous NaCl solu- tions.				
373.15 (1) 43.6 200 30.7 400 17.8 600 4.9					
298.15 20 - 100 78.4 ± 1.9	Popov and Drakin (24). The density of the helium saturated water was measured over the pressure range and apparent molal volumes were calculated using the solubility data of Wiebe and Gaddy (19).				
^a 1 atm = 101.325 kPa					
 Valentiner, S. Preuss. Bergakad. Clausthal Festschrift 1925, 414. Estreicher, S. Z. Physik. Chem. 1899, 31, 176. Michaels, A.; Gerver, J.; Bijl, A. Physica 1936, 3, 797. Wiebe, R.; Gaddy, V. L. J. Am. Chem. Soc. 1935, 57, 847. Krichevskii, I. R.; Kasarnovskii, J. S. J. Am. Chem. Soc. 1935, 57, 2168. Namiot, A. Yu. Zh. Strukt. Khim. 1961, 2, 408. Enns, T.; Scholander, P.; Bradstreet, E. D. J. Phys. Chem. 1965, 69, 389. Gardiner, G. E.; Smith, N. O. J. Phys. Chem. 1972, 76, 1195. Popov, G. A.; Drakin, S. I. Zh. Fiz. Khim. 1974, 48, 631. Abrosimov, V.K.; Strakhov, A.N.; Krestov, G.A.; Izv. Vyssh. Ucheb. Zaved., Khim. Khim Tekhnol. 1974, 17, 1463. 					
of the solubility of helium in v from 13 % high to 2 % low. The v	and Krestov (25) made five determinations water from 10 - 45 $^{\rm OC}$ and their values ranged values were too erratic to use. However, a ubility values in $H_2O + D_2O$ mixtures and in				

] <u>, , , , , , , , , , , , , , , , , , ,</u>			ORIGINAL MEASUREMENTS:
⊥. Hellum;	He; 7440-59-7		Cady, H.P.; Elsey, H.M.; Berger, E.V.
2. Water;	H ₂ O; 7732-18-5		
	2		J.Am.Chem. Soc. 1922, 44, 1456-1461.
VARIABLES:			PREPARED BY:
т	/K: 275.15 - 30	3.15	R. Battino
EXPERIMENTAL			
т/к	Mol Fraction $x_1 \times 10^4$	Bunsen Coefficient/	<u>΄α</u>
275.15 275.15	0.07540* 0.07523*	0.00938 0.00936	
283.15 283.15	0.07260* 0.07139	0.00903 0.00888	
298.15 298.15	0.06949* 0.06925*	0.00862 0.00859	
303.15 303.15 303.15 303.15	0.06539 0.06482 0.06628 0.06749	0.00810 0.00803 0.00821 0.00836	
		AUXILIARY	INFORMATION
determined Gentle sti hours diss gas dissol	olume of degass by displacemer rring for more olves the gas. ved is determin ated and thermo	sed water is nt of mercury, than 24 The amount of ned by read-	gas by liquefaction and absorption
APPARATUS/PR Procedure	by displacement rring for more olves the gas. ved is determint ated and thermo	sed water is nt of mercury. than 24 The amount of ned by read- ostated gas described in	SOURCE AND PURITY OF MATERIALS: 1. Helium. Extracted from natural gas by liquefaction and absorptio on charcoal. "Pure" by spectro- scopic examination.

		ORIGI	INAL MEASUREMENTS:	
59-7		Lan	nnung, A.	
 Helium; He; 7440-59-7 Water; H₂O; 7732-18-5 				
18-2				
		<u> 7</u> .	<u>Am. Chem. Soc. 1930, 52, 68 - 8</u>	
	·	PREPARED BY:		
T/K: 288.15 - 303.15			R.Battino	
	· · · · · · · · · · · · · · · · · · ·	<u></u>		
	N-1 P		D	
17K			Coefficient	
	$x_1 \times 1$	0*	≪ x 10 ²	
	0.071	6 *	0.89 0.88	
293.15	0.071	7	0.89	
293.15	0.070	1* 4*	0.87	
	0.069	4 4*	0.86 0.86	
	AUXILIARY	INFOR	RMATION	
	AUXILIARY		RMATION CE AND PURITY OF MATERIALS:	
c proced	ure.	SOURC	CE AND PURITY OF MATERIALS: Helium. Linde. 99.5 percent wit	
c proced ile sett measured	ure. ing on	SOURC	CE AND PURITY OF MATERIALS: Helium. Linde. 99.5 percent wit 0.5 per cent neon.	
ile sett	ure. ing on	SOURC	CE AND PURITY OF MATERIALS: Helium. Linde. 99.5 percent wit	
ile sett	ure. ing on	SOURC	CE AND PURITY OF MATERIALS; Helium. Linde. 99.5 percent wit 0.5 per cent neon. Water. Distilled. The specific	
ile sett	ure. ing on	SOURC	CE AND PURITY OF MATERIALS; Helium. Linde. 99.5 percent wit 0.5 per cent neon. Water. Distilled. The specific	
ile sett	ure. ing on	SOURC	CE AND PURITY OF MATERIALS; Helium. Linde. 99.5 percent wit 0.5 per cent neon. Water. Distilled. The specific	
ile sett	ure. ing on	SOUR(1. 1 2. 1	CE AND PURITY OF MATERIALS: Helium. Linde. 99.5 percent wit 0.5 per cent neon. Water. Distilled. The specific conductivity was 2 x 10 ⁻⁷ .	
ile sett	ure. ing on	SOUR(1. 1 2. 1	CE AND PURITY OF MATERIALS; Helium. Linde. 99.5 percent wit 0.5 per cent neon. Water. Distilled. The specific	
ile sett measured	ure. ing on on gas	SOUR(1. 1 2. 1	CE AND PURITY OF MATERIALS: Helium. Linde. 99.5 percent wit 0.5 per cent neon. Water. Distilled. The specific conductivity was 2 x 10 ⁻⁷ . MATED ERROR:	
ed on the app	ure. ing on on gas e design aratus re appar-	SOUR(1. 2. ESTI	CE AND PURITY OF MATERIALS: Helium. Linde. 99.5 percent wit 0.5 per cent neon. Water. Distilled. The specific conductivity was 2 x 10 ⁻⁷ . MATED ERROR: & T/K = 0.03	
ile sett measured ed on th The app	ure. ing on on gas e design aratus re appar-	SOUR(1. 1 2. 1 ESTIN REFE	CE AND PURITY OF MATERIALS: Helium. Linde. 99.5 percent wit 0.5 per cent neon. Water. Distilled. The specific conductivity was 2 x 10 ⁻⁷ . MATED ERROR: \$T/K = 0.03 CRENCES:	
ed on the app	ure. ing on on gas e design aratus re appar-	SOUR(1. 1 2. 1 ESTIN REFE	CE AND PURITY OF MATERIALS: Helium. Linde. 99.5 percent wit 0.5 per cent neon. Water. Distilled. The specific conductivity was 2 x 10 ⁻⁷ . MATED ERROR: & T/K = 0.03	
ed on the app	ure. ing on on gas e design aratus re appar-	SOUR(1. 1 2. 1 ESTIN REFE	CE AND PURITY OF MATERIALS: Helium. Linde. 99.5 percent wit 0.5 per cent neon. Water. Distilled. The specific conductivity was 2 x 10 ⁻⁷ . MATED ERROR: $\delta T/K = 0.03$ CRENCES: v. Antropoff, A.	
	- 303.1 - 303.1 T/K 288.15 293.15 293.15 303.15 303.15 solubilit raction which we	- 303.15 T/K Mol Frac X ₁ x 1 288.15 0.071 288.15 0.070 293.15 0.070 303.15 0.069 303.15 0.069 303.15 0.069 olubility at 101. raction solubility which were used in	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

COMPONENTS:	ORIGINAL MEASUREMENTS:
Son ONEN13.	Akerlof, A.
l. Helium; He; 7440-59-7	
2. Water; H ₂ O; 7732-18-5	
2	<u>J. Am. Chem. Soc</u> . 1935, <u>57</u> , 1196-1201
VARIABLES:	PREPARED BY:
T/K: 298.15	R.Battino
EXPERIMENTAL VALUES:	
T/K Mol Frac	
x ₁ x 10	4 Coefficient $\sim \times 10^{2}$
298.15 0.0693	3* 0.86
	<u></u>
The mole fraction solubility at 101.33 helium was calculated by the compiler	25 kPa (l atm) partial pressure of •
*Solubility value which was used in the	ne final smoothing equation for the
recommended solubility values given in	n the critical evaluation.
AUXILIARY	INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS:
Volume of solution determined by the direct displacement of mercury. Gas	 Helium. Source not given. Gas 98 per cent helium.
uptake determined by using a gas	
buret. Water degassed by boiling in vacuum.	2. Water. No information given.
APPARATUS/PROCEDURE:	ESTIMATED ERROR:
Details of procedure and diagram of	
apparatus in original paper.	
	REFERENCES :
]	

COMPONENTS:	ORIGINAL MEASUREMENTS:
l. Helium; He; 7440-59-7	Behnke, A.R.; Yarbrough, O.D.
1. Hellum; He; /440-39-7	
2. Water; H ₂ O; 7732-18-5	
	U. <u>S</u> . <u>Nav</u> . <u>Med</u> . <u>Bull</u> . 1938, <u>36</u> , 542 -
	548.
VARIABLES:	PREPARED BY:
T/K: 311.15	
	R. Battino
EXPERIMENTAL VALUES:	
T/K Mol Fract	cion Bunsen Coefficient
X ₁ x 10	$a^4 \propto 10^2$
311.15 0.0705	58* 0.872
The mole fraction solubility at 101.32 gas. The mole fraction solubility calc	25 kPa (1 atm) partial pressure of the pulated by the compiler.
*Solubility value which was used in th	e final smoothing equation for the
recommended solubility values given in	the critical evaluation.
AUXILIARY	INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS:
	 Helium. Source not given. 97.65 percent helium.
	2. Water. No information given.
4	
	ESTIMATED ERROR:
APPARATUS/PROCEDURE:	
Used the Van Slyke procedure (1).	
	REFERENCES :
	<pre>1. Van Slyke, D.D.; Dillon, R.T.; Margaria, R.</pre>
	J. Biol. Chem. 1934, 105, 571.

COMPONENTS:	ORIGINAL MEASUREMENTS:				
	Morrison, T.J.; Johnstone, N.B.				
1. Helium; He; 7440-59-7					
<pre>2. Water; H₂0; 7732-18-5</pre>	J. Chem. Soc. 1954, 3441 - 3446.				
VARIABLES:	PREPARED BY:				
т/к: 277.75 - 346.15	R. Battino				
EXPERIMENTAL VALUES:					
T/K Mol Fraction Kuenen Coefficient $X_1 \times 10^4$ S x 10^3	T/K Mol Fraction Kuenen Coefficient X ₁ x 10 ⁴ S x 10 ³				
277.75 0.07588 9.44	313.55 0.06814 8.41				
279.15 0.07515 9.35 284.15 0.07269 9.04	318.05 0.06858 8.45 322.05 0.06984 8.59				
285.15 0.07213" 8.97	327.55 0.07100 8.71				
286.35 0.0/134 8.8/	329.05 0.07187 8.81				
289.75 0.07009 8.71 294.85 0.06871 8.53	331.75 0.07262 8.89 333.65 0.07376* 9.02 340.55 0.07576* 9.23				
297.85 0.06827 8.47	340.55 0.07576 9.23				
297.85 0.06827 8.47 300.55 0.06816 8.45	340.55 0.07576* 9.23 343.65 0.07746* 9.42				
300.550.068168.45306.150.067398.34307.750.067998.41	343.65 0.07746* 9.42 344.55 0.07750* 9.42 346.15 0.07790* 9.46				
307.75 0.06799 8.41	548.15 0:07750 5:40				
Kuenen coefficient x 10^3 at a helium y The mole fraction solubility at a heli (l atm) was calculated by the compiler	ubility value is reported above as the partial pressure of 101.325 kPa (1 atm) ium partial pressure of 101.325 kPa r. the final smoothing equation for the n the critical evaluation.				
AUXILIARY	INFORMATION				
METHOD:	SOURCE AND PURITY OF MATERIALS:				
The previously degassed solvent is flowed in a thin film through the	 Helium. British Oxygen Co. Ltd. Spectroscopically pure. 				
gas in a glass absorption spiral. Volume changes are measured in burets	2. Water. No information given.				
APPARATUS/PROCEDURE:	ESTIMATED ERROR:				
The apparatus described by Morrison and Billett (1) was used.					
	REFERENCES:				
	1. Morrison, T.J.; Billett, F. J. <u>Chem</u> . <u>Soc</u> . 1952, 3819.				

COMPONENTS:			ORIGI	NAL MEASUREMENTS	5:
				Wet, W.J.	
l. Helium; He; 7440-59-7					
2. Water; H ₂ O; 7732-18-5					
2.,			<u>J</u> .	S. Afr. Chem.	<u>Inst</u> . 1964, <u>17</u> , 9-13
VARIABLES:			PREPA	ARED BY:	· · · · · · · · · · · · · · · · · · ·
T/K: 291.25	- 305.75			R. Bat	tino
EXPERIMENTAL VALUES:			l	······································	<u> </u>
		N = 3 13			
	T/K Mol Fract			Bunsen Coefficient	
		X ₁ x 10	0 ⁴	$\propto \times 10^2$	
	291.25	0.0716	5	0.89	
	298.45			0.88	
	305.75	0.0695	5*	0.86	
Mole fraction solubi helium calculated by			Pa (1	atm) partial	pressure of the
*Solubility value wh	nich was	used in th	ne fi	nal smoothing	equation for the
		AUXILIARY	INFOR	MATION	
METHOD:		AUXILIARY		MATION CE AND PURITY OF	MATERIALS ;
METHOD: Degassed liquid is film through a glas ing the gas. Volume calibrated burets.	s spiral	n a thin contain-	SOUR	CE AND PURITY OF Helium. Conta: per cent impu:	MATERIALS: ined less than 0.3 rity. Passed over rcoal at liquid air
Degassed liquid is film through a glas ing the gas. Volume	s spiral	n a thin contain-	SOUR 1. 1	CE AND PURITY OF Helium. Conta: per cent impur activated char	ined less than 0.3 rity. Passed over rcoal at liquid air
Degassed liquid is film through a glas ing the gas. Volume	s spiral	n a thin contain-	SOUR 1. 1	CE AND PURITY OF Helium. Conta: per cent impur activated char temperatures.	ined less than 0.3 rity. Passed over rcoal at liquid air
Degassed liquid is film through a glas ing the gas. Volume	s spiral	n a thin contain-	SOUR 1. 1	CE AND PURITY OF Helium. Conta: per cent impur activated char temperatures.	ined less than 0.3 rity. Passed over rcoal at liquid air
Degassed liquid is film through a glas ing the gas. Volume	s spiral	n a thin contain-	SOUR 1. 1	CE AND PURITY OF Helium. Conta: per cent impur activated char temperatures.	ined less than 0.3 rity. Passed over rcoal at liquid air
Degassed liquid is film through a glas ing the gas. Volume	s spiral	n a thin contain-	SOUR(CE AND PURITY OF Helium. Conta: per cent impur activated char temperatures. Water. Distil	ined less than 0.3 rity. Passed over rcoal at liquid air
Degassed liquid is film through a glas ing the gas. Volume	s spiral	n a thin contain-	SOUR(CE AND PURITY OF Helium. Conta: per cent impur activated char temperatures.	ined less than 0.3 rity. Passed over rcoal at liquid air
Degassed liquid is film through a glas ing the gas. Volume calibrated burets. APPARATUS/PROCEDURE: Used modification o Billett (1) apparat	s spiral s determ: of Morriso us. Degas	n a thin contain- ined via on and ssing as	SOUR(CE AND PURITY OF Helium. Conta: per cent impur activated char temperatures. Water. Distil	ined less than 0.3 rity. Passed over rcoal at liquid air
Degassed liquid is film through a glas ing the gas. Volume calibrated burets. APPARATUS/PROCEDURE: Used modification o	s spiral s determ: of Morriso us. Degas	n a thin contain- ined via on and ssing as	SOUR(1. 1) 2. 1 ESTI REFE 1. 1	CE AND PURITY OF Helium. Conta: per cent impurativated char temperatures. Nater. Distil: MATED ERROR:	ined less than 0.3 rity. Passed over rcoal at liquid air led. .; Billett, F. 1948, 2033;

COMPONENTS :	ODICINAL NEACURENEURS
	ORIGINAL MEASUREMENTS:
1. Helium; He; 7440-59-7	Weiss, R.F.
2. Water; H ₂ O; 7732-18-5	
	<u>Science</u> 1970, <u>168</u> , 247
VARIABLES:	PREPARED BY:
T/K: 273.15 - 313.29	R. Battino
EXPERIMENTAL VALUES:	
T/K Mol Fraction Bunsen $X_1 \times 10^4$ Coefficient/ α	
273.75 0.07520* 0.009355	
293.26 0.07025* 0.008724	
313.29 0.07058* 0.008713	
The mole fraction solubility is at 10 the helium. The mole fraction solubility	01.325 kPa (1 atm) partial pressure of lity was calculated by the compiler.
*Solubility values which were used in	the final smoothing equation for the
recommended solubility values given i	in the critical evaluation.
	INFORMATION
METHOD: The Scholander micro-gasometric technique as adapted by Douglas (1)	SOURCE AND PURITY OF MATERIALS: 1. Helium. Air Reduction reactor
was used. The gas is dissolved in	grade. Better than 99.99 per cent.
previously degassed water over mercury All volumes are read on a micrometer	2. Water. Distilled.
which displaces mercury.	
APPARATUS/PROCEDURE:	ESTIMATED ERROR:
THE FRANCE FERE	
	REFERENCES:
	LDouglas, E. J. Phys. <u>Chem</u> . 1964, <u>68</u> , 169; <u>ibid</u> ., 1965, <u>69</u> , <u>2608</u> .
	}

COMPONENTS:			ORIGINA	L MEASUREMENTS:				
l. Heliur	m; He; 7440-59	-7	Weiss	Weiss, R.F.				
2. Water; H ₂ O; 7732-18-5								
	,	-						
			J.Che	m.Eng.Data 19	71, <u>16</u> , 235-241.			
VARIABLES:		······	Danatan					
VARIABLES.	т/к: 273.75	- 313.30	PREPARE	R. Batti	no			
	-,							
EXPERIMENTA	L VALUES:		<u> </u>	<u></u>				
т/к	Mol Fraction		т/к	Mol Fraction				
	$x_1 \times 10^4$	Coefficient		$x_1 \times 10^4$	Coefficient			
273.75	0.07525*	0.009361	303.41	0.06974*	0.008639			
273.75 273.75	0.07518* 0.07521*	0.009353 0.009356	303.39 303.37	0.06953* 0.06971*	0.008612 0.008602			
273.75	0.07517*	0.009351	303.37	0.06944*	0.008601			
			303.40	0.06953*	0.008612			
283.42 283.44	0.07267* 0.07218*	0.009038 0.008978	303.39	0.06949*	0.008607			
283.43	0.07242*	0.009008	313.29	0.07021*	0.008667			
283.44	0.07218* 0.07236*	0.008978	313.29	0.07088 0.07071*	0.008750			
283.44	0.07236"	0.009000	313.30 313.29	0.07052*	0.008729 0.008705			
293.25	0.07018*	0.008716						
293.26 293.26	0.07047* 0.07005*	0.008752 0.008700						
293.26	0.07042*	0.008746						
293.23	0.07033*	0.008734						
293.28	0.07001*	0.008695						
The mole the heli	e fraction sol ium. The mole	ubility is at fraction solub	101.325 ility wa	kPa (1 atm) p s calculated	artial pressure of by the compiler.			
*Solubil	ity values wh	ich were used :	in the f	inal smoothing	g equation for the			
recommen	laea solubilit	y values given	in the	critical evalu	lation.			
			Y INFORMAT					
METHOD: The	e Scholander m	icro-gasometri		AND PURITY OF MA	TERIALS; uction. Better than			
vas used.	e as adapted b . The gas is d	issolved in		.99 per cent				
previous	ly degassed wa	ter over		-				
	All volumes a er which displ		2. Wa	ter. Distille	d.			
MICI OMECE	si which dispi	aces mercury.						
			100000					
APPARATUS/H	PROCEDURE :	<u></u>		ED ERROR:				
			8T/K	= 0.01				
			DEPENDEN	ICEC .				
			REFEREN					
				as, E. ys. <u>Chem</u> . 196	4, 68, 169.			
			ībid.	1965, <u>69</u> , 26	08.			
				· • • •				
			ļ					

	COMPONENTS:			ORIGINAL MEASUREMENTS:		
l. Helium; He; 7440-59-7				Benson, B.B.; Krause, D.		
2. Water; H ₂ O; 7732-18-5						
2. water, n ₂ 0; //.	32-18-5		}			
			<u>J</u> .	<u>Chem. Phys. 1976, 64, 689 - 70</u>)9.	
VARIABLES:			PPFP	ARED BY:		
T/K: 274.1	15 - 325.15		f KEr	R. Battino		
EXPERIMENTAL VALUES:			L			
	т/к	Mol Frac	tion			
		$x_1 \times 1$	0 ⁴	Coefficient		
	274.151	0.0763	01	0.9502		
	278.143	0.0743		0.9264		
	278.145	0.0744		0.9272		
	283.147	0.0728		0.9069		
	288.149 288.152	0.0717 0.0716	85 [*]	0.8930 0.8920		
	293.150	0.0708	01*	0.8801		
	298.147	0.0705	22*	0.8757		
	303.159	0.0703	04*	0.8717		
	308.153	0.0703	73*	0.8712		
	313.153	0.0708		0.8754		
	318.152	0.0712		0.8789		
	325.153	0.0718	55"	0.8910		
helium was calcula	ated by the	compiler	25 KJ	Pa (1 atm) partial pressure of		
helium was calcula *Solubility values	s which wer	compiler e used in	the	final smoothing equation for t critical evaluation.	the	
helium was calcula *Solubility values	s which wer	compiler e used in	the n the	final smoothing equation for t e critical evaluation.	the	
helium was calcula *Solubility values recommended solub: METHOD: Gas-free wa	s which were ility values	compiler e used in s given i: AUXILIARY	the n the INFOI	final smoothing equation for t e critical evaluation. RMATION	the	
helium was calcula *Solubility values recommended solub: METHOD: Gas-free wa are equilibrated.	s which were ility values ater and the and volume	compiler e used in s given in AUXILIARY e pure gas	the n the INFOI	final smoothing equation for t e critical evaluation.		
helium was calcula *Solubility values recommended solubs METHOD: Gas-free wa are equilibrated, les of the liquid are isolated. The	s which were ility values ater and the and volumes and gaseous gas dissoly	compiler e used in s given i: AUXILIARY e pure gas tric samp s phases ved in the	the n the INFOI	final smoothing equation for t e critical evaluation. RMATION RCE AND PURITY OF MATERIALS;	the	
helium was calcula *Solubility values recommended solub: METHOD: Gas-free wa are equilibrated, les of the liquid are isolated. The water is extracted moles determined of	s which were ility values ater and the and volumes and gaseous gas dissolv and the no on a special	compiler e used in s given i AUXILIARY e pure gas tric samp- s phases yed in the umber of mercury	the n the INFOI SOUR 1. 2.	final smoothing equation for the critical evaluation. RMATION RCE AND PURITY OF MATERIALS: Helium. No information given.		
helium was calcula *Solubility values recommended solub: METHOD: Gas-free wa are equilibrated, les of the liquid are isolated. The water is extracted moles determined commonweter. After r	ater and the and volume and gaseous gas dissolv and the nu on a special cemoval of v	compiler e used in s given is AUXILIARY e pure gas tric samp- s phases yed in the imber of l mercury water vap-	the n the INFOI SOUR 1. 2.	final smoothing equation for the critical evaluation. RMATION RCE AND PURITY OF MATERIALS: Helium. No information given.		
helium was calcula *Solubility values recommended solub: METHOD: Gas-free wa are equilibrated, les of the liquid are isolated. The water is extracted moles determined co manometer. After r or, the number of the gaseous phase	ater and the and volumet and gaseous gas dissolv and the nu on a special cemoval of v moles of he sample is n	compiler e used in s given in AUXILIARY e pure gas tric samp- s phases yed in the imber of l mercury water vap- elium in neasured	the n the INFOI	final smoothing equation for the critical evaluation. RMATION RCE AND PURITY OF MATERIALS: Helium. No information given.		
helium was calcula *Solubility values recommended solub: METHOD: Gas-free wa are equilibrated, les of the liquid are isolated. The water is extracted moles determined of manometer. After r or, the number of the gaseous phase with the same mano (and fugacity) abo	ater and the and volumet and gaseous gas dissolv and the nu on a special removal of w moles of he sample is no ometer. The powe the solu	compiler e used in s given in AUXILIARY e pure gas tric samp- s phases yed in the imber of l mercury water vap- elium in measured pressure	the n the INFOI	final smoothing equation for the critical evaluation. RMATION RCE AND PURITY OF MATERIALS: Helium. No information given.		
helium was calcula *Solubility values recommended solub: METHOD: Gas-free wa are equilibrated, les of the liquid are isolated. The water is extracted moles determined of manometer. After r or, the number of the gaseous phase with the same mano (and fugacity) abo be calculated from	ater and the and volume and gaseous gas dissolv and the nu on a special removal of w moles of he sample is n ometer. The ove the solu	compiler e used in s given i: AUXILIARY e pure gas tric samp- s phases yed in the imber of l mercury water vap- elium in measured pressure ition may m analysi	the n the INFOI	final smoothing equation for the critical evaluation. RMATION RCE AND PURITY OF MATERIALS: Helium. No information given.		
helium was calcula *Solubility values recommended solub: METHOD: Gas-free wa are equilibrated, les of the liquid are isolated. The water is extracted moles determined of manometer. After r or, the number of the gaseous phase with the same mano (and fugacity) abo be calculated from Real gas correction ted maximum error	s which were ility values ater and the and volumes and gaseous gas dissolv and the nu on a special removal of w moles of he sample is no ometer. The ove the solution the helium	compiler e used in s given i AUXILIARY e pure gas tric samp- s phases yed in the imber of l mercury water vap- elium in measured pressure ition may a nalysi e. Predic-	the n the INFOI	final smoothing equation for the critical evaluation. RMATION RECE AND FURITY OF MATERIALS: Helium. No information given. Water. No information given.		
helium was calcula *Solubility values recommended solub: METHOD: Gas-free wa are equilibrated, les of the liquid are isolated. The water is extracted moles determined of manometer. After r or, the number of the gaseous phase with the same mano (and fugacity) abo be calculated from Real gas correction ted maximum error APPARATUS/PROCEDURE:	ater and the and volumet and gaseous gas dissolv and the nu on a special cemoval of w moles of he sample is n ometer. The ove the solu a the heliur ons are made is 0.02 per	compiler e used in s given is AUXILIARY e pure gas tric samp- s phases yed in the imber of l mercury water vap- slium in measured pressure ition may n analysis e. Predic- c cent.	the n the SOUR 1. 2.	final smoothing equation for the critical evaluation. RMATION RCE AND PURITY OF MATERIALS: Helium. No information given.	.0	
helium was calcula *Solubility values recommended solub: METHOD: Gas-free wa are equilibrated, les of the liquid are isolated. The water is extracted moles determined of manometer. After r or, the number of the gaseous phase with the same mano (and fugacity) abo be calculated from Real gas correction ted maximum error	ater and the and volumes and gaseous gas dissolv and gaseous gas dissolv and the nu on a special cemoval of v moles of he sample is n ometer. The ove the solu a the heliur ons are made is 0.02 per	compiler e used in s given is AUXILIARY e pure gas tric samp- s phases yed in the imber of l mercury water vap- slium in measured pressure ition may n analysis e. Predic- c cent.	the n the SOUR 1. 2. ESTI 0.1 Cal	final smoothing equation for the critical evaluation. RMATION RECE AND FURITY OF MATERIALS: Helium. No information given. Water. No information given. IMATED ERROR: Smoothed data fit t		
METHOD: Gas-free wa are equilibrated, les of the liquid are isolated. The water is extracted moles determined of the gaseous phase with the same mano (and fugacity) abo be calculated from Real gas correction ted maximum error APPARATUS/PROCEDURE: No drawings of the	ater and the and volumes and gaseous gas dissolv and gaseous gas dissolv and the nu on a special cemoval of v moles of he sample is n ometer. The ove the solu a the heliur ons are made is 0.02 per	compiler e used in s given is AUXILIARY e pure gas tric samp- s phases yed in the imber of l mercury water vap- slium in measured pressure ition may n analysis e. Predic- c cent.	the n the SOUR 1. 2. 5. ESTI 0.1 Cal is	final smoothing equation for the critical evaluation. RMATION RMATION RECE AND PURITY OF MATERIALS: Helium. No information given. Water. No information given. Water. No information given. IMATED ERROR: Smoothed data fit to 12 per cent rms in the solubilities of the solubilities	:o ty	
METHOD: Gas-free wa are equilibrated, les of the liquid are isolated. The water is extracted moles determined of the gaseous phase with the same mano (and fugacity) abo be calculated from Real gas correction ted maximum error APPARATUS/PROCEDURE: No drawings of the	ater and the and volumes and gaseous gas dissolv and gaseous gas dissolv and the nu on a special cemoval of v moles of he sample is n ometer. The ove the solu a the heliur ons are made is 0.02 per	compiler e used in s given is AUXILIARY e pure gas tric samp- s phases yed in the imber of l mercury water vap- slium in measured pressure ition may n analysis e. Predic- c cent.	the n the SOUR 1. 2. 5. ESTI 0.1 Cal is	final smoothing equation for the critical evaluation. RMATION RECE AND FURITY OF MATERIALS: Helium. No information given. Water. No information given. IMATED ERROR: Smoothed data fit the L2 per cent rms in the solubilities of the solubiliti	:o ty	
METHOD: Gas-free wa are equilibrated, les of the liquid are isolated. The water is extracted moles determined of the gaseous phase with the same mano (and fugacity) abo be calculated from Real gas correction ted maximum error APPARATUS/PROCEDURE: No drawings of the	ater and the and volumes and gaseous gas dissolv and gaseous gas dissolv and the nu on a special cemoval of v moles of he sample is n ometer. The ove the solu a the heliur ons are made is 0.02 per	compiler e used in s given is AUXILIARY e pure gas tric samp- s phases yed in the imber of l mercury water vap- slium in measured pressure ition may n analysis e. Predic- c cent.	the n the SOUR 1. 2. 5. ESTI 0.1 Cal is	final smoothing equation for the critical evaluation. RMATION RECE AND FURITY OF MATERIALS: Helium. No information given. Water. No information given. IMATED ERROR: Smoothed data fit the L2 per cent rms in the solubilities of the solubiliti	:o ty	
METHOD: Gas-free wa are equilibrated, les of the liquid are isolated. The water is extracted moles determined of the gaseous phase with the same mano (and fugacity) abo be calculated from Real gas correction ted maximum error APPARATUS/PROCEDURE: No drawings of the	ater and the and volumes and gaseous gas dissolv and gaseous gas dissolv and the nu on a special cemoval of v moles of he sample is n ometer. The ove the solu a the heliur ons are made is 0.02 per	compiler e used in s given is AUXILIARY e pure gas tric samp- s phases yed in the imber of l mercury water vap- slium in measured pressure ition may a analysis e. Predic- c cent.	the n the SOUR 1. 2. 5. ESTI 0.1 Cal is	final smoothing equation for the critical evaluation. RMATION RECE AND FURITY OF MATERIALS: Helium. No information given. Water. No information given. IMATED ERROR: Smoothed data fit the L2 per cent rms in the solubilities of the solubiliti	:o ty	
METHOD: Gas-free wa are equilibrated, les of the liquid are isolated. The water is extracted moles determined of the gaseous phase with the same mano (and fugacity) abo be calculated from Real gas correction ted maximum error APPARATUS/PROCEDURE: No drawings of the	ater and the and volumes and gaseous gas dissolv and gaseous gas dissolv and the nu on a special cemoval of v moles of he sample is n ometer. The ove the solu a the heliur ons are made is 0.02 per	compiler e used in s given is AUXILIARY e pure gas tric samp- s phases yed in the imber of l mercury water vap- slium in measured pressure ition may a analysis e. Predic- c cent.	the n the SOUR 1. 2. 5. ESTI 0.1 Cal is	final smoothing equation for the critical evaluation. RMATION RECE AND FURITY OF MATERIALS: Helium. No information given. Water. No information given. IMATED ERROR: Smoothed data fit the L2 per cent rms in the solubilities of the solubiliti		

-

.

COMPONENTE -			OPICINAL MEASUREMENTS .		
COMPONENTS: 1. Helium; He; 7440-59-7			ORIGINAL MEASUREMENTS: Abrosimov, V.K.; Strakhov, A.N.;		
			Krestov, G.A.		
2. Water-d ₂ ; D ₂ O; 7789-20-0					
			Izv. Vyssh. Ucheb. Zaved., Khim.		
			Khim. <u>Tekhnol</u> .1974, <u>17</u> , 1463-1465.		
VARIABLES:			PREPARED BY:		
T/K: 283.38 - 318.45 P/kPa: 101.325 (1 atm)			R. Battino		
			<u> </u>		
EXPERIMENTAL VALUES:	т/к	Mol Frac	tion Bunsen		
	1/10		Coefficient		
		X1 × 1	$\frac{0^4}{\alpha \times 10^2}$		
	283.38	0.092	276 1.148		
	292.72	0.086			
	298.15 308.25				
	318.45	0.089	541 1.050		
·					
Mole fraction solub	ilitv at 1	101.325 P;	a (1 atm) partial pressure of gas		
calculated by compil					
		AUXILIARY	INFORMATION		
METHOD:			INFORMATION SOURCE AND PURITY OF MATERIALS;		
The authors also		the	·		
1	m in pure	the	·		
The authors also solubility of heliu	m in pure	the	·		
The authors also solubility of heliu	m in pure	the	·		
The authors also solubility of heliu	m in pure	the	·		
The authors also solubility of heliu	m in pure	the	·		
The authors also solubility of heliu	m in pure	the	·		
The authors also solubility of heliu	m in pure	the	·		
The authors also solubility of heliu	m in pure	the	·		
The authors also solubility of heliu and mixtures of H ₂ O APPARATUS/PROCEDURE: The apparatus (1	m in pure and D ₂ O.	the water	SOURCE AND PURITY OF MATERIALS: - ESTIMATED ERROR: - 6X (X = 0.01 (compiler)		
The authors also solubility of heliuw and mixtures of H ₂ O APPARATUS/PROCEDURE: The apparatus (1 of the apparatus us	m in pure and D ₂ O.	the water	SOURCE AND PURITY OF MATERIALS: - ESTIMATED ERROR: - 6X (X = 0.01 (compiler)		
The authors also solubility of heliu and mixtures of H ₂ O APPARATUS/PROCEDURE: The apparatus (1	m in pure and D ₂ O.	the water	SOURCE AND PURITY OF MATERIALS: ESTIMATED ERROR: $\delta x_1/x_1 = 0.01$ (compiler)		
The authors also solubility of heliuw and mixtures of H ₂ O APPARATUS/PROCEDURE: The apparatus (1 of the apparatus us	m in pure and D ₂ O.	the water	SOURCE AND PURITY OF MATERIALS: ESTIMATED ERROR: $\delta X_1 / X_1 = 0.01$ (compiler) REFERENCES:		
The authors also solubility of heliuw and mixtures of H ₂ O APPARATUS/PROCEDURE: The apparatus (1 of the apparatus us	m in pure and D ₂ O.	the water	SOURCE AND PURITY OF MATERIALS: ESTIMATED ERROR: $\delta X_1 / X_1 = 0.01$ (compiler) REFERENCES:		
The authors also solubility of heliuw and mixtures of H ₂ O APPARATUS/PROCEDURE: The apparatus (1 of the apparatus us	m in pure and D ₂ O.	the water	SOURCE AND PURITY OF MATERIALS: ESTIMATED ERROR: $\delta X_1/X_1 = 0.01 \text{ (compiler)}$ REFERENCES: 1. Patsatsiya, K.M.; Krestov, G.A. <u>Zh. Fiz. Khim.</u> 1970, <u>44</u> , 1835.		
The authors also solubility of heliuw and mixtures of H ₂ O APPARATUS/PROCEDURE: The apparatus (1 of the apparatus us	m in pure and D ₂ O.	the water	SOURCE AND PURITY OF MATERIALS: ESTIMATED ERROR: $\delta X_1/X_1 = 0.01$ (compiler) REFERENCES: 1. Patsatsiya, K.M.; Krestov, G.A. <u>Zh. Fiz. Khim.</u> 1970, <u>44</u> , 1835. 2. Ben-Naim, A.; Baer, S. <u>Trans. Faraday Soc</u> . 1963, <u>59</u> ,		
The authors also solubility of heliuw and mixtures of H ₂ O APPARATUS/PROCEDURE: The apparatus (1 of the apparatus use	m in pure and D ₂ O.	the water	SOURCE AND PURITY OF MATERIALS: ESTIMATED ERROR: $\delta X_1/X_1 = 0.01$ (compiler) REFERENCES: 1. Patsatsiya, K.M.; Krestov, G.A. <u>Zh. Fiz. Khim.</u> 1970, <u>44</u> , 1835. 2. Ben-Naim, A.; Baer, S.		

. . .

1 14

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Helium-3; ³ He; 14762-55-1	Weiss, R.F.
2. Water; H ₂ O; 7732-18-5	
	<u>Science</u> 1970, <u>168</u> , 247 - 248.
VARIABLES:	DREDADED DV
T/K: 273.75 - 313.29	PREPARED BY:
P/kPa: 101.325 (1 atm)	H.L. Clever
EXPERIMENTAL VALUES:	
T/K Bunsen	Ostwald
Coefficient α x 10 ²	Coefficient L x 10 ²
$\overline{273.75}$ 0.9254 ± 0.002	
293.26 0.8620 ± 0.001	
313.29 0.8574 ± 0.001	
The Bunsen coefficients are the mean of	of A and E magningments
The Ostwald coefficients were calculat	ed by the compiler.
	INFORMATION
METHOD: The Scholander microgasometric	SOURCE AND PURITY OF MATERIALS:
technique as adapted by Douglas (1) was used. The equilibrium chamber was	1. Helium-3. Monsanto Research.
enlarged to contain approximately 10	Greater than 99.97 per cent helium with ${}^{3}\text{He}/{}^{4}\text{He} = 10^{4}$.
ml of solvent. The procedures for degassing the water and transferring	
the gas were checked for air contamin-	2. Water. No information given.
ation by gas chromatography. All vol-	
umes were read on a micrometer which displaces mercury.	
-	
APPARATUS/PROCEDURE:	ESTIMATED ERROR:
	Bunsen coefficient 0.3 per cent.
	REFERENCES :
	1.Douglas, E.
	J. Phys. Chem. 1964, 68, 169;
	<u>ibid</u> . 1965, <u>69</u> , 2608.
1	

COMPONENTS: 1. Helium; He; 7440-59-7 2. Sea Water University Atlanta, Georgia 30322 U.S.A. January 1978

CRITICAL EVALUATION:

Evaluation of the Solubility of Helium in Sea Water.

There are three reports of the solubility of helium in sea water (1,2,3). König (1) reports helium solubility values at four temperatures which he estimates to have an uncertainty of five percent. Weiss (2,3) reports four to five helium solubility values at each of five temperatures which he estimates to have an uncertainty of one-half of one percent. The three sets of data agree within the accuracy estimates of the two authors.

Presented here are the helium Bunsen solubility values determined by Weiss in water, sea water and in two dilutions of sea water. Weiss has fitted his data by the method of least squares to an equation for the natural logarithm of the Bunsen coefficient, α , which is consistent with both the integrated form of the Vant Hoff equation and the Setschenow salt effect equation. The equation, which is valid for the temperature range of 272.15 to 313.15 K and the salinity range of 0 to 40 S % reproduced Weiss' helium Bunsen values with root-mean-square deviation of 2 x 10⁻⁵ at S % = 18.152. The equation is

 $\ln \alpha = - 34.6261 + 43.0285 (100/T) + 14.1391 \ln (100/T)$

+ S %, $[-0.042340 + 0.022624 (T/100) - 0.0033120 (T/100)^2]$

Weiss gave equations for the solubility of helium from moist air at one atm total pressure in units of ml He(STP) dm⁻³ sea water and ml He(STP) kg⁻¹ sea water which assumed that the helium behaves as an ideal gas and has a mol fraction of 5.24×10^{-6} (3) in dry air. The equations are

 $\ln[m1 \text{ He}(\text{STP}) \text{ dm}^{-3}] = -152.9405 + 196.8840 (100/T) + 126.8015 \ln (T/100)$

- 20.6767 (T/100) + S %. [-0.040543 + 0.021315 (T/100)

 $-0.0030732 (T/100)^2$]

and

 $\ln[\text{ml He}(\text{STP}) \text{ kg}^{-1}] = -167.2178 + 216.3442 (100/T) + 139.2032 \ln (T/100)$

- 22.6202 (T/100) + S % [-0.044781 + 0.023541 (T/100)

-0.0034266 (T/100)²]

Weiss' paper (2) gives extensive tables of the helium Bunsen coefficient and of the ml He(STP) from moist air kg^{-1} sea water as a function of temperature and salinity as calculated from the above equations.

In addition to the natural helium solubility in sea water, Weiss also reports the solubility of 3 He in sea water. The 3 He solubility data sheet follows the natural helium solubility data sheet.

1. König, H. Z. Naturforsch. 1963, 18a, 363.

2. Weiss, R. F. J. Chem. Eng. Data 1971, 16, 235.

3. Weiss, R. F. Science 1970, 168, 247.

4. Glukauf, E. <u>Proc. Roy. Soc.</u> A 1946, <u>185</u>, 98. and <u>Compendium of Meteorology</u>, American Meteorological Soc., Boston, MA 1951, <u>3</u> - 11.

COMPONENTS	COMPONENTS:				ORIGINAL MEASUREMENTS:				
l. Heli	l. Helium; He; 7440-59-7			Weiss, R. F.					
(
2. Sea	2. Sea Water								
4			J. (chem. Eng.	Data 197	1, 16, 235-2	241.		
VARIABLES: T/K: 271.57 - 313.61			PREPARED BY:						
He P/kPa: 101.325 (1 atm) Salinity /mil ⁻¹ : 0 - 36.425			H.L.Clever, S.A.Johnson						
	TAL VALUES:	18	Sal 1.152	ini	ty o/	3.668	3	6.425	
T/K	Bunsen x 103	T/K	Bunsen x 103	Ŧ7		Bunsen x 10 ³	T/K	Bunsen x 10 ³]
273.75	9.361		<u> </u>		1.57	7.977	273.21	7.766	
273.75	9.353 9.356	278.21	8.346		1.57	7.978 7.980	273.21 273.21	7.736 7.795	
273.75	9.351	278.22	8.387				273.22	7.764	
283.42	9.038	278.22 278.22	8.367 8.360		7.07	7.746 7.705	273.23	7.795	
283.43	9.008	278.22	8.371		7.07	7.714	283.72	7.554	
283.44	8.978 8.978			28	3.11	7.610	283.72 283.72	7.475 7.538	
283.44	9.000			28	3.11	7.637	283.72	7.471	
293.23	8.734			28	3.11	7.642	283.73	7.462	
293.25	8.716				3.40		293.27	7.464	
293.26	8.752 8.700	298.29	8.018	-	3.40 3.40	7.511 7.537	293.29 293.29	7.409 7.402	
293.26	8.746 8.695	298.29 298.29	8.034 8.033	20	8.26	7.453	293.30	7.405	Í
	0.095	298.29	8.037		8.26	7.433	303.28	7.402	
303.37	8.602 8.612			29	8.26	7.503	303.29 303.29	7.457 7.407	}
303.39	8.635				3.50		303.30	7.431	}
303.39 303.39	8.601 8.607				3.50	7.532 7.496	303.30	7.435	
303.40	8.612			50	5.50	/1150	313.61	7.487	
303.41	8.639			31	3.31	7.646	313.61 313.61	7.488 7.471	ĺ
313.29 313.29	8.667			31	3.31	7.637	313.61	7.501]
313.29	8.705		AUXILI					<u>, , , , , , , , , , , , , , , , , , , </u>	
313.30	8.729								{
the Sch	Solubility Slander mi	v determin	ations by	7	SOURC		Y OF MATERI. Air Reduc	ALS: tion. Specif	Fed
nique as	s used by	Douglas ((1), with	•	1 - •	> 99.99 %	pure. G	as chromato-	-
minor mo	odificatio	on.			l I	graphic c air.	hecks show	wed ≥ 0.01 %	5
									.
					2.			through 0.45 nd poisoned	, µ
1					l	with 1 mg	/l of HgC	12.	
					Į				
					Į				
				ESTIMATED ERROR:					
APPARATUS/PROCEDURE: An equilibrium chamber, containing pure gas satu-			$\delta T/K = 0.01^{\circ}$						
rated wi	ith water	vapor, is	s separate	ed			δsalinity	= 0.004 %	
by mercu	ury from a ing degass	a closed a	side chamb	ber					
ratus is	s tipped o	on its sid	le, allowi	ing	1	RENCES :			
equilib	l water to rium chamb	o flow int	o the solution i	İs	1.	Douglas, 68, 169.		hys. <u>Chem</u> . 1	L964,
aided by	y mechanic	al shakir	ng.		ł		5, <u>69</u> , 26	08.	
					l				
					[

ORIGINAL MEASUREMENTS:		
Weiss, R.F.		
Egiongo 1070 169 247-240		
<u>Science</u> 1970, <u>168</u> , 247-248.		
PREPARED BY:		
S.A.Johnson		
Ostwald t Coefficient L x 10 ²		
.0025 0.7773 .0029 0.7967		
.0015 0.8597		
of 4 or 5 measurements.		
ated by the compiler.		
Y INFORMATION		
SOURCE AND PURITY OF MATERIALS;		
1. Helium. Air Reduction Co.		
Reactor grade, better than 99,99		
percent He. The ratio $^{3}\text{He}/^{4}\text{He}$ was less than 10^{-6} .		
2. Sea Water. No information given.		
2. Sea water. No information given.		
ESTIMATED ERROR:		
REFERENCES:		
1. Douglas, E.		
J. Phys. Chem. 1964, 68, 169; ibid. 1965, 69, 2608.		
<u>1910</u> . 1903, <u>05</u> , 2000.		

1. Helium-3; He: 14762-55-1 Weiss, R.F. 2. Sea Water Science 1970, 168, 247 - 248. VARIABLES: FREPARED BY: T/K: 273.21 - 313.61 PREPARED BY: Salinity/mil-1: 36.425 S.A.Johnson EXPERIMENTAL VALUES: T/K Bunsen Coefficient a x 10 ² 273.21 0.7655 ± 0.0012 0.7657 293.28 0.7339 ± 0.0009 0.7680 313.61 0.7346 ± 0.0028 0.8434 The Bunsen coefficients are the mean of four measurements. The Ostwald coefficients were calculated by the compiler. METHOD: The Scholander microgasometric technique as adapted by Douglas (1) was urad The equilibrium obamber was SOURCE AND FURITY OF MATERIALS: 1. Helium-3. Monsanto Research.		
2. Sea Water Science 1970, 168, 247 - 248. WARLARLES: T/K: 273.21 - 313.61 P/KPa: 101.325 (1 atm) Salinity/mil-1, 36.425 FREFARED BY: S.A.Johnson EXPERIMENTAL VALUES: T/K Bunsen Coefficient a × 10 ² Ostwald Coefficient L × 10 ² 273.21 0.7655 + 0.0012 O.7657 0.7657 Ostwald Coefficient L × 10 ² District Coefficient L × 10 ² 293.28 0.7336 ± 0.0028 0.8434 The Bunsen coefficients are the mean of four measurements. The Ostwald coefficients were calculated by the compiler. NUMELIARY INFORMATION METHOD: The Scholander microgasometric technique as adapted by Douglas (1) was used. The equilibrium chamber woo field to nothe the produces for degessing the water and transferring the gas were checked for air contamin- tation by gas chromatography. All volumes placed mercury. Summer coefficient 0.4 per cent. APPARATUS/PROCEDURE: ESTIMATED ERROR: Bunsen coefficient 0.4 per cent.	COMPONENTS:	ORIGINAL MEASUREMENTS:
Science 1970, 168, 247 - 248. WARLARLES: T/K: 273.21 - 313.61 PKPARED BY: S.A.Johnson SA.Johnson SA.Johnson Control of the second secon	l. Helium-3; He: 14762-55-1	Weiss, R.F.
VARIABLES: T/K: 273.21 - 313.61 P/kPa: 101.325 (1 atm) S.A.Johnson EXPERIMENTAL VALUES: T/K Bunson Coefficient a x 10 ⁰ Ostwald Coefficient L x 10 ⁰ 273.21 0.7655 ± 0.0012 0.7657 233.61 0.7339 ± 0.0009 0.7657 313.61 0.7346 ± 0.0028 0.8434 The Bunsen coefficients are the mean of four measurements. The Ostwald coefficients were calculated by the compiler. METHOD: The Scholander microgasometric change as adapted by Douglas (1) Was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamin- tation by gas chromotography. All volumes 1. Helium-3. Nonsanto Research. Greater than 99.97 per cent heliu with 3Re/4He = 104. 2. Sea Water. No information given. 2. Sea Water. No information given. APPARATUS/PROCEDURE: ESTIMATED ERROR: Bunsen coefficient 0.4 per cent.	2. Sea Water	
VARIABLES: T/K: 273.21 - 313.61 P/kPa: 101.325 (1 atm) S.A.Johnson EXPERIMENTAL VALUES: T/K Bunson Coefficient a x 10 ⁰ Ostwald Coefficient L x 10 ⁰ 273.21 0.7655 ± 0.0012 0.7657 233.61 0.7339 ± 0.0009 0.7657 313.61 0.7346 ± 0.0028 0.8434 The Bunsen coefficients are the mean of four measurements. The Ostwald coefficients were calculated by the compiler. METHOD: The Scholander microgasometric change as adapted by Douglas (1) Was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamin- tation by gas chromotography. All volumes 1. Helium-3. Nonsanto Research. Greater than 99.97 per cent heliu with 3Re/4He = 104. 2. Sea Water. No information given. 2. Sea Water. No information given. APPARATUS/PROCEDURE: ESTIMATED ERROR: Bunsen coefficient 0.4 per cent.		
T/K: 273.21 - 313.61 P/kPa: 101.325 (1 atm) Salinity/mill': 36.425 S.A.Johnson EXPERIMENTAL VALUES: T/K Bunsen 0.7657 0.7655 ± 0.0012 0.7657 233.28 0.7339 ± 0.0002 0.8434 The Bunsen coefficients are the mean of four measurements. The Ostwald coefficients were calculated by the compiler. METHOD: The Scholander microgasometric technique as adapted by Douglas (1) Was end a maproximately 10 Million of solvent. The procedures for degassing the water and transforring the gas were checked for air contamination given. AMPARATUS/PROCEDURE: APPARATUS/PROCEDURE: APPARATUS/PROCEDURE:		<u>Science</u> 1970, <u>168</u> , 247 - 248.
P/kPa: 101.325 (1 atm) Salinity/mi1 ⁻¹ : 36.425 S.A.Johnson EXPERIMENTAL VALUES:	VARIABLES:	PREPARED BY:
Salinity/mill 136.425 EXPERIMENTAL VALUES:	·	S.A.Johnson
T/K Bunsen Coefficient a x 10 ² Ostwald Coefficient L x 10 ² 273.21 0.7655 ± 0.0012 0.7657 293.28 0.7339 ± 0.0009 0.7680 313.61 0.7346 ± 0.0028 0.8434 The Bunsen coefficients are the mean of four measurements. The Ostwald coefficients were calculated by the compiler. METHOD: The Scholander microgasometric technique as adapted by Douglas (1) was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the 938 were checked for air contanin- ation by gas chromatography. All volumes Souwer. No information given. 2. Sea Water. No information given. SSTIMATED ERROR: Bunsen coefficient 0.4 per cent. APPARATUS/PROCEDURE: ESTIMATED ERROR: Bunsen coefficient 0.4 per cent.	P/kPa: 101.325 (1 atm) Salinity/mil ⁻¹ : 36.425	
Coefficient a × 10 ² Coefficient L × 10 ² 273.21 0.7655 ± 0.0012 0.7657 293.28 0.7339 ± 0.0009 0.7880 313.61 0.7346 ± 0.0028 0.8434 The Bunsen coefficients are the mean of four measurements. The Scholander microgasometric technique as adapted by Douglas (1) was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamin- stion by gas chromatography. All volumes Source AND FURITY OF MATERIALS: 1. Helium-3. Monsanto Research. Greater than 99.97 per cent heliu with ³ He/ ⁴ He = 10 ⁴ . APPARATUS/PROCEDURE: ESTIMATED ERROR: Bunsen coefficient 0.4 per cent.		
a x 10 ² L x 10 ² 273.21 0.7655 ± 0.0012 0.7657 293.28 0.7339 ± 0.0009 0.7880 313.61 0.7346 ± 0.0028 0.8434 The Bunsen coefficients are the mean of four measurements. The Ostwald coefficients were calculated by the compiler. AUXILIARY INFORMATION METHOD: The Scholander microgasometric technique as adapted by Douglas (1) METHOD: The Scholander microgasometric technique as adapted by Douglas (1) METHOD: The Scholander microgasometric technique as adapted by Douglas (1) METHOD: The Scholander microgasometric technique as adapted by Douglas (1) MERITY OF MATERIALS: SOURCE AND PURITY OF MATERIALS: Content of the procedures for degassing the water and transferring the gas were checked for air contamination by gas chromatography. All volumes ESTIMATED ERROR: Bunsen coefficient 0.4 per cent. REFERENCES: J. Phys. Chem. 1964, <u>68</u> , 169;		
273.21 0.7655 ± 0.0012 0.7657 293.28 0.7339 ± 0.0009 0.7880 313.61 0.7346 ± 0.0028 0.8434 The Bunsen coefficients are the mean of four measurements. The Sunsen coefficients were calculated by the compiler. AUXILIARY INFORMATION METHOD: The Scholander microgasometric SOURCE AND PURITY OF MATERIALS: technique as adapted by Douglas (1) National approximately 10 Method colspan="2">Helium-3. Monsanto Research. Grateer than 99.97 per cent heliu with "He/"He = 104. Gegassing the water and transferring to gas chromatography. All volumes ESTIMATED ERROR: Were read on a micrometer which dis- Placed mercury. APPARATUS/PROCEDURE: ESTIMATED ERROR: LESTIMATED ERROR: J. Phys. Chem. 1964, 68, 169;	Coefficient a x 10 ²	
293.28 0.7339 ± 0.0009 0.7880 313.61 0.7346 ± 0.0028 0.8434 The Bunsen coefficients are the mean of four measurements. The Ostwald coefficients were calculated by the compiler. MULLIARY INFORMATION METHOD: The Scholander microgasometric technique as adapted by Douglas (1) was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamination given. All volumes SOURCE AND PURITY OF MATERIALS: 2. Sea Water. No information given. Sea Water. No information given. APPARATUS/PROCEDURE:	·	······································
313.61 0.7346 ± 0.0028 0.8434 The Bunsen coefficients are the mean of four measurements. The Ostwald coefficients were calculated by the compiler. METHOD: The Scholander microgasometric technique as adapted by Douglas (1) was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamination by gas chromatography. All volumes SOURCE AND PURITY OF MATERIALS: APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: APPARATUS/PROCEDURE: ESTIMATED ERROR: Bunsen coefficient 0.4 per cent. REFERENCES: I. Douglas, E. J. Phys. Chem. 1964, 68, 169; J. Phys.		
AUXILIARY INFORMATION METHOD: The Scholander microgasometric technique as adapted by Douglas (1) was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamination by gas chromatography. All volumes SOURCE AND PURITY OF MATERIALS: 1. Helium-3. Monsanto Research. Greater than 99.97 per cent heliu with ³ He/ ⁴ He = 10 ⁴ . 2. Sea Water. No information given. ation by gas chromatography. All volumes 2. Sea Water. No information given. APPARATUS/PROCEDURE: ESTIMATED ERROR: Bunsen coefficient 0.4 per cent. REFERENCES: 1. Douglas, E. J. Phys. Chem. 1964, <u>68</u> , 169;		
AUXILIARY INFORMATION METHOD: The Scholander microgasometric technique as adapted by Douglas (1) was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamination by gas chromatography. All volumes SOURCE AND PURITY OF MATERIALS: 1. Helium-3. Monsanto Research. Grater than 99.97 per cent heliu with ³ He/ ⁴ He = 10 ⁴ . 2. Sea Water. No information given. ation by gas chromatography. All volumes 2. Sea Water. No information given. APPARATUS/PROCEDURE: ESTIMATED ERROR: 1. Douglas, E. J. Phys. Chem. 1964, <u>68</u> , 169;		
AUXILIARY INFORMATION METHOD: The Scholander microgasometric technique as adapted by Douglas (1) was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamin- ation by gas chromatography. All volumes were read on a micrometer which dis- placed mercury. APPARATUS/FROCEDURE: ESTIMATED ERROR: Bunsen coefficient 0.4 per cent. REFERENCES: 1. Douglas, E. J. Phys. Chem. 1964, <u>68</u> , 169;	The Bunsen coefficients are the mean of	of four measurements.
AUXILIARY INFORMATION METHOD: The Scholander microgasometric technique as adapted by Douglas (1) was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamin- ation by gas chromatography. All volumes were read on a micrometer which dis- placed mercury. APPARATUS/FROCEDURE: ESTIMATED ERROR: Bunsen coefficient 0.4 per cent. REFERENCES: 1. Douglas, E. J. Phys. Chem. 1964, <u>68</u> , 169;	The Ostwald coefficients were calculat	ed by the compiler.
METHOD: The Scholander microgasometric technique as adapted by Douglas (1) was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamin- ation by gas chromatography. All volumes SOURCE AND PURITY OF MATERIALS: 1. Helium-3. Monsanto Research. Greater than 99.97 per cent heliu with ³ He/ ⁴ He = 10 ⁴ . 2. Sea Water. No information given. ation by gas chromatography. All volumes Source AND PURITY OF MATERIALS: 1. Helium-3. Monsanto Research. Greater than 99.97 per cent heliu with ³ He/ ⁴ He = 10 ⁴ . 2. Sea Water. No information given. Sea Water. No information given. APPARATUS/PROCEDURE: ESTIMATED ERROR: Bunsen coefficient 0.4 per cent. REFERENCES: 1. Douglas, E. <u>J. Phys. Chem.</u> 1964, <u>68</u> , 169;		
METHOD: The Scholander microgasometric technique as adapted by Douglas (1) was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamin- ation by gas chromatography. All volumes were read on a micrometer which dis- placed mercury. SOURCE AND PURITY OF MATERIALS: 1. Helium-3. Monsanto Research. Greater than 99.97 per cent heliu with ³ He/ ⁴ He = 10 ⁴ . 2. Sea Water. No information given. PPARATUS/PROCEDURE: ESTIMATED ERROR: Bunsen coefficient 0.4 per cent. REFERENCES: 1. Douglas, E. <u>J. Phys. Chem.</u> 1964, <u>68</u> , 169;		
METHOD: The Scholander microgasometric technique as adapted by Douglas (1) was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamin- ation by gas chromatography. All volumes SOURCE AND PURITY OF MATERIALS: 1. Helium-3. Monsanto Research. Greater than 99.97 per cent heliu with ³ He/ ⁴ He = 10 ⁴ . 2. Sea Water. No information given. ation by gas chromatography. All volumes Source AND PURITY OF MATERIALS: 1. Helium-3. Monsanto Research. Greater than 99.97 per cent heliu with ³ He/ ⁴ He = 10 ⁴ . APPARATUS/PROCEDURE: ESTIMATED ERROR: Bunsen coefficient 0.4 per cent. REFERENCES: 1. Douglas, E. J. Phys. Chem. 1964, <u>68</u> , 169;		
 technique as adapted by Douglas (1) was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamin- ation by gas chromatography. All volumes APPARATUS/PROCEDURE: APPARATUS/PROCEDURE: I. Helium-3. Monsanto Research. Greater than 99.97 per cent heliu with ³He/⁴He = 10⁴. Sea Water. No information given. Sea Water. No information given. ESTIMATED ERROR: Bunsen coefficient 0.4 per cent. REFERENCES: Douglas, E. J. Phys. Chem. 1964, <u>68</u>, 169; 		
 was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamin- ation by gas chromatography. All volumes 2. Sea Water. No information given. were read on a micrometer which dis- placed mercury. APPARATUS/PROCEDURE: ESTIMATED ERROR: Bunsen coefficient 0.4 per cent. REFERENCES: 1. Douglas, E. J. Phys. Chem. 1964, <u>68</u>, 169; 		
the gas were checked for air contamination 2. Sea water. No information given. ation by gas chromatography. All volumes were read on a micrometer which displaced mercury. APPARATUS/PROCEDURE: ESTIMATED ERROR: Bunsen coefficient 0.4 per cent. REFERENCES: 1. Douglas, E. J. Phys. Chem. 1964, 68, 169;	technique as adapted by Douglas (1)	SOURCE AND PURITY OF MATERIALS:
APPARATUS/PROCEDURE: Bunsen coefficient 0.4 per cent. REFERENCES: 1. Douglas, E. J. Phys. Chem. 1964, <u>68</u> , 169;	was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for	SOURCE AND PURITY OF MATERIALS: 1. Helium-3. Monsanto Research. Greater than 99.97 per cent helium
APPARATUS/PROCEDURE: Bunsen coefficient 0.4 per cent. REFERENCES: 1. Douglas, E. J. Phys. Chem. 1964, <u>68</u> , 169;	was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamin- ation by gas chromatography. All volum were read on a micrometer which dis-	<pre>SOURCE AND PURITY OF MATERIALS: 1. Helium-3. Monsanto Research. Greater than 99.97 per cent helium with ³He/⁴He = 10⁴. 2. Sea Water. No information given.</pre>
REFERENCES: 1. Douglas, E. J. Phys. Chem. 1964, <u>68</u> , 169;	was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamin- ation by gas chromatography. All volum were read on a micrometer which dis-	<pre>SOURCE AND PURITY OF MATERIALS: 1. Helium-3. Monsanto Research. Greater than 99.97 per cent helium with ³He/⁴He = 10⁴. 2. Sea Water. No information given. hes</pre>
<pre>1. Douglas, E. J. Phys. Chem. 1964, 68, 169;</pre>	was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamin- ation by gas chromatography. All volum were read on a micrometer which dis- placed mercury.	<pre>SOURCE AND PURITY OF MATERIALS: 1. Helium-3. Monsanto Research. Greater than 99.97 per cent helium with ³He/⁴He = 10⁴. 2. Sea Water. No information given. es ESTIMATED ERROR:</pre>
<pre>1. Douglas, E. J. Phys. Chem. 1964, 68, 169;</pre>	was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamin- ation by gas chromatography. All volum were read on a micrometer which dis- placed mercury.	<pre>SOURCE AND PURITY OF MATERIALS: 1. Helium-3. Monsanto Research. Greater than 99.97 per cent helium with ³He/⁴He = 10⁴. 2. Sea Water. No information given. es ESTIMATED ERROR:</pre>
	was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamin- ation by gas chromatography. All volum were read on a micrometer which dis- placed mercury.	<pre>SOURCE AND PURITY OF MATERIALS: 1. Helium-3. Monsanto Research. Greater than 99.97 per cent helium with ³He/⁴He = 10⁴. 2. Sea Water. No information given. es ESTIMATED ERROR:</pre>
	was used. The equilibrium chamber was enlarged to contain approximately 10 ml of solvent. The procedures for degassing the water and transferring the gas were checked for air contamin- ation by gas chromatography. All volum were read on a micrometer which dis- placed mercury.	<pre>SOURCE AND PURITY OF MATERIALS: 1. Helium-3. Monsanto Research. Greater than 99.97 per cent helium with ³He/⁴He = 10⁴. 2. Sea Water. No information given. es ESTIMATED ERROR: Bunsen coefficient 0.4 per cent. REFERENCES: 1. Douglas, E. J. Phys. Chem. 1964, <u>68</u>, 169;</pre>

. .

. .

• •

• •

COMPONENTS:	EVALUATOR:
l. Helium; He; 7440-59-7	H. L. Clever Chemistry Department
2. Water; H ₂ O; 7732-18-5	Emory University Atlanta, GA 30322
3. Electrolyte	USA
	February 1978

CRITICAL EVALUATION: The Solubility of Helium in Electrolyte Solutions.

TABLE 1. The salt effect parameter, k_{sX}, for helium dissolved in various elctrolyte solutions.

Solvent	т/к		$k_{sX} = (1/m) 1$	og (X ^O /X)	
System		Akerlof 1935 (3)	Morrison, Clever, Johnstone Reddy 1955 (4) 1964 (7)		Shoor, Walker, Gubbins 1969 (5)
кон + н ₂ о	298.15 313.15 333.15 353.15				0.15 ^a 0.15 ^a 0.15 ^a 0.15 ^a
$HC1 + H_2O$	298.15		0.023		
$HC10_4 + H_20$	298.15	-0.034			
$HNO_3 + H_2O$	298.15		0.002		
$LiCl + H_2O$ $LiI + H_2O$	298.15 298.15	-0.017 -0.028	0.065		
$NaC1 + H_2O$	298.15	0.067	0.096		
NaBr + H_2O	298.15 298.15	0.069	0.102 0.083		
$KC1 + H_2O$ $KI + H_2O$	298.15	0.009	0.098		
$NaNO_3 + H_2O$ $Na_2SO_4 + H_2O$	298.15 298.15	0.064	0.141		
$BaCl_2 + H_2O$	298.15		0.109		
$MH_4Cl + H_2O$ (CH ₃) ₄ NI + H ₂ O (C ₂ H ₅) ₄ NBr + H ₂			0.042 0.014 -0.009		
$(C_{4}H_{9})_{4}NBr + H_{2}$	0298.15 308.15			-0.017 -0.033	
NaI + CH ₃ OH	303.15		0.116		

a These values are $(1/C) \log (X^O/X)$, but for KOH solutions near unit molarity the molar and molal values differ by only about one percent. The values for KOH + H₂O are a factor of 10 greater than reported in the original paper which appears to contain a decimal error.

There are four reports (3,4,5,6) of the solubility of helium at 1 atm in aqueous salt solutions, and there is one report (7) of the solubility of helium at 1 atm in a methanol and salt solution.

The results are summarized below as the Setschenow salt effect parameter, $K_{SX} = (1/m) \log (X^{\circ}/X)$ where m is the salt molality and X°/X is the mole fraction ratio of the helium solubility in the pure solvent, X° , to the helium solubility in the salt solution, X. This form of the salt effect parameter has come into use in the past several years as a result of the theoretical developments based on scaled particle theory (1,2).

Actually the theory defines the salt effect parameter as $k_s = (1/C)\log(X^{\circ}/X)$ in the limit C+O, where C is the electrolyte concentration in moles dm⁻³. In the limit of infinite dilution k_{sc} and k_{sx} should go to the same value in aqueous solutions. Much of the literature's salt effect data are in the form of an S°/S ratio where S° is the gas volume (STP) dissolved

EVALUATOR:

USA

H. L. Clever

Chemistry Department

Emory University Atlanta, GA 30322

COMPONENTS:

1. Helium; He; 7440-59-7

2. Water; H₂O; 7732-18-5

3. Electrolyte

CRITICAL EVALUATION:

in 1.000 kg of pure solvent, and S is the gas volume (STP) dissolved in the salt solution containing 1.000 kg of solvent.

The relationship between the X°/X and S°/S ratios is

$$X^{\circ}/X = \frac{S^{\circ}/V_{m}}{1000/M} / \frac{S/V_{m}}{(1000/M) + m_{M}^{+} + m_{n}^{-}}$$

where V_m is the molar volume of the gas at 273.15 K and 101.325 kPa (1 atm), and M is the solvent molecular weight, and m_{M+} and m_{A-} are the molalities of the salt cation and anion, respectively.

For a one molal solution of a 1 - 1 electrolytes dissolved in water

 $X^{\circ}/X = 57.50 S^{\circ}/55.50 S$

and $k_{sy} = (1/1)\log(X^{\circ}/X) = \log(S^{\circ}/S) + \log(57.50/55.50) = \log S^{\circ}/S + 0.015$

The salt effect parameters, k_{sx}, are summarized in Table 1.

Akerlof's (3) tabulation of values appears to contain several errors. Akerlof reports a helium in water Bunsen coefficient of 0.0086 which he compares with Lannung's earlier value of 0.0087. Akerlof appears to have used the Lannung value in his calculation of the salt effect parameters. We have recalculated the values using Akerlof's value for helium in water. In addition Akerlof's values of k_s for helium in aqueous LiCl and aqueous LiI are not consistent with the salt molalities and helium solubilities reported in the paper. They have been recalculated using the molalities and solubilities in the paper.

Both the Morrison and Johnstone (4) and the Akerlof (3) salt effect parameters are based on only two solubility measurements, the solubility of helium in pure water and the solubility of helium in one salt solution. Morrison and Johnstone used a salt concentration near 1 g. equivalent Kg^{-1} H₂O and estimate an uncertainty of 0.010 in k_s. Akerlof used much higher salt concentrations. Both Akerlof (3) and Morrison and Johnstone (4) report salt effect parameters for helium in LiCl, NaCl, and KCl solutions.

The k_{SX} values of the two laboratories do not agree within the expected experimental error for the three salt solutions. The k_{SX} values for aqueous LiCl even differ in sign. The difference in values may reflect a concentration effect on k_{SX} but more experimental work is needed to confirm such an effect. At present we recommend the Morrison and Johnstone values as the more probable values, especially for comparison with theories that apply in the limit of infinite dilution.

Both Shoor, Walker and Gubbins (5) and Feillolay and Lucas (6) carried out their studies as a function of both temperature and salt concentration. Both of their data sets appear to be internally consistent, and are recommended as tentative values. Feillolay and Lucas (6) have theoretical reasons to suggest the k_s values go through a maximum at a salt concentration some place between 1 and 2 molal. Their experimental data appear to show the predicted trend at two temperatures, but more studies of this point are needed to make a convincing case. In Table 1 we have recorded only the average k_{SX} value, but Feillolay and Lucas' complete set of data are given on the data page for their paper.

The k_{sx} value for helium dissolved in NaI and CH₃OH based on the report of Clever and Reddy (7) appears to fall within the same numerical range expected for helium in NaI and H₂O. The value contains uncertainties because of assumptions about the solution vapor pressure and the validity of Henry's law in the system.

COMPONENTS: EVALUATOR: Helium; He; 7440-59-7 H. L. Clever 1. Chemistry Department 2. Water; H₂O; 7732-18-5 Emory University Atlanta, Georgia 30322 USA 3. Electrolyte CRITICAL EVALUATION: Shoor, S. K.; Gubbins, K. E. J. Phys. Chem. 1969, 73, 498. Masterton, W. L.; Lee, T. P. J. Phys. Chem. 1970, 74, 1776. Akerlof, G. J. Am. Chem. Soc. 1935, 57, 1196. Morrison, T. S.; Johnstone, N. B. B. J. Chem. Soc. 1955, 3655. Shoor, S. K.; Walker, R. D., Jr.; Gubbins, K. E. J. Phys. Chem 1. 2. з. 4. 5. J. Phys. Chem. 1969, 73, 312. Feillolay, A.; Lucas, M. J. Phys. Chem. 1972, 76, 3068. Clever, H. L.; Reddy, G. S. J. Chem. Eng. Data 1963, 8, 191. 6. 7. ADDED NOTE. Mishnina, Avdeeva, and Bozhovskaya (8) give a table of smoothed values of Bunsen coefficients for helium dissolved in aqueous sodium chloride solutions. The table was prepared from the water solubility data of Morrison and Johnstone (9) and the helium solubility in sodium chloride solution of Cherepennikov (10). The Cherepennikov paper was not available to the Evaluator, and the Setschenow parameters were not included in the evaluation. However, a data sheet is included which shows the smoothed Bunsen coefficients from 278.15 - 318.15 K and NaCl concentrations from 0 - 5.4 g eq dm⁻³, and the Setschenow parameters at five degree intervals over the 40 degree range as quoted by Mishnina, Avdeeva, and Bozhovskaya (8). 8. Mishnina, T.A.; Avdeeva, O.I.; Bozhovskaya, T.K. Materialy Vses. Nauchn. Issled. <u>Geol. Inst.</u> 1961, <u>46</u>, 93. 9. Morrison, T.J.; Johnstone, N.B. J. Chem. Soc. 1954, 3441. 10. Cherepennikov, A. A. Coll. Reports of the Sci. Conf. 1958, LICI, L.

COMPONENTS:	ORIGINAL MEASUREMENTS:			
1. Helium; He; 7440-59-7	Morrison, T.J.; Johnstone, N.B.B.			
2. Water; H ₂ O; 7732-18-5	T Cham Car JOFF Sere Sere			
3. Acids	<u>J</u> . <u>Chem</u> . <u>Soc.</u> 1955, 3655-3659.			
VARIABLES:	PREPARED BY:			
T/K: 298.15 P/kPa: 101.325 (1 atm)	T.D.Kittredge, H.L.Clever			
EXPERIMENTAL VALUES:				
T/K $k_s = (1/m) \log (s^{o}/s) k_{sX}$	= $(1/m) \log (X^{O}/X)$			
Hydrochloric acid; HCl; 7647-01-0				
298.15 0.008	0.023			
Nitric acid; HNO ₃ ; 7697-37-2				
298.15 -0.013	+0.002			
The values of the Setschenow salt effect parameters, k_s , were apparently determined from only two solubility measurements. They were the solubility of helium in pure water, S ^O , and the solubility of helium in a near one equivalent of acid per 1.000 kg of water solution, S. Neither solubility value is given in the paper. The S ^O /S ratio was referenced to a solution containing 1.000 kg of water. The compiler calculated the salt effect parameter k_{sX} from the mole fraction solubility ratio X ^O /X. The acids were assumed to be 100 per cent ionized and both cation and anion were used in the mole fraction calculation.				
AUXILIARY	INFORMATION			
ME THOD:	SOURCE AND PURITY OF MATERIALS:			
Gas absorption in a flow system.	1. Helium. British Oxygen Co. Ltd.			
Sas apportant in a riow system.				
	2. Water. No information given.			
	3. Acids. No information given.			
APPARATUS/PROCEDURE:	ESTIMATED ERROR: $\mathbf{S} \mathbf{k}_{e} = 0.010$			
The previously degassed solvent flows in a thin film down an absorption				
spiral containing helium gas plus				
solvent vapor at a total pressure of l atm. The volume of gas absorbed is measured in attached calibrated burets (1).	REFERENCES: 1. Morrison, T.J.;Billett, F. <u>J. Chem. Soc.</u> 1952, 3819.			

COMPONENTS:			ORIGINAL MEASUREMEN	TS:
		Akerlof, G.		
	; He; 7440-59-7			
2. Water;	H ₂ O; 7732-18-5		J. Am. Chem. So	c. 1935, <u>57</u> ,1196-1201.
3. Perchlo	oric Acid; HClO ₄ ; 7601-9	90-3		,,
VARIABLES:			PREPARED BY:	
	/K: 298.15 Pa: 101.325 (1 atm)	1	T.D.Kit	tredge, H.L.Clever
EXPERIMENTAL	VALUES:			
т/к	He Solubility mol a dm ³ (STP) 1.000 b	acid	k=	k _{sX} =
	dm ³ (STP) 1.000 } 1.000 kg H ₂ O	cg H ₂ O	(1/m) log (S ^O /	S) (1/m)log(X ^O /X)
<u> </u>	- 2			
298.15	0.0086 0.0 0.0187 6.89	9	-0.049	-0.034
solution	r is not clear as to wh is for 1.000 kg of H ₂ O arameter, k _{SX} , was cafc olubility was for salt a	or fo	or 1.000 kg of so	lution. The salt
·····	AUX	LIARY	INFORMATION	
METHOD: C			SOURCE AND PURITY O	F MATERIALS.
presatura solvent mined by the solve displaces	absorption. The helium ated with water vapor, a salt concentration was o a density measurement, ent volume was measured ment of an equivalent vo	the deter- and by olume	1. Helium. Sour stated to be	ce not given. Gas 98 per cent He with ity present in the
	ry. The gas-liquid inter ly stirred for two hours		2. Water. No in	formation given.
although	equilibrium appeared to hed within a matter of n	o be	3. Perchloric a	cid. No information.
APPARATUS/PI	ROCEDURE:		ESTIMATED ERROR:	K = 0.01
			01/	K = 0.01
			REFERENCES :	
		I		

COMPONENTS:	ORIGINAL MEASUREMENTS:
our onenis.	Morrison, T.J.; Johnstone, N.B.B.
l. Helium; He; 7440-59-7	Morrison, 1.0., Jonnstone, N.B.B.
2. Water; H ₂ O; 7732-18-5	
3. Ammonium Type Salts	<u>J. Chem. Soc</u> . 1955, 3655 - 3659.
VARIABLES:	PREPARED BY:
T/K: 298.15 P/kPa: 101.325 (1 atm)	T.D.Kittredge, H.L.Clever
	I.D.AICHEdge, A.H.CIEVEL
EXPERIMENTAL VALUES:	
T/K $k_s = (1/m) \log (S^0/S) k_s$	$x = (1/m) \log (x^{o}/x)$
Ammonium chloride ; NH ₄ Cl; 12125-	-02-9
298.15 0.027	0.042
N, N, N-Trimethyl methanaminium : C ₄ H _{l2} NI; 75-58-1	iodide (Tetramethyl ammonium iodide);
298.15 -0.001	+0.014
N, N, N-Triethyl ethanaminium bro C ₈ H ₂₀ NBr; 71-91-0	omide (Tetraethyl ammonium bromide);
298.15 -0.024	-0.009
containing 1.000 kg of water. The c parameter k _{SX} from the mole fraction were assumed to be 100 per cent ion together in the mole fraction calcu	n solubility ratio X ⁰ /X. The salts ized and cation and anion were summed
AUXILIARY	INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS;
Gas absorption in a flow system.	1. Helium. British Oxygen Co. Ltd.
	2. Water. No information given.
	3. Salts. No information given.
APPARATUS/PROCEDURE:	ESTIMATED ERROR: $\delta k_5 = 0.010$
The previously degassed solvent flo	~
in a thin film down an absorption spiral containing helium gas plus	
solvent vapor at a total pressure of 1 atm. The volume of the gas	REFERENCES: 1.Morrison, T.J.; Billett, F.
absorbed is measured in attached	J. Chem. Soc. 1952, 3819.
calibrated burets.(1).	

COMPONENTS:	ORIGINAL MEASUREMENTS:	
1. Helium; He; 7440-59-7		
 Refium; Re; 7440-59-7 Water; H₂O; 7732-18-5 	Feillolay, A.;Lucas, M.	
2. water, h ₂ O, 7732-18-5 3. N,N,N-Tributy1-1-butanaminium Brom- ide (Tetrabuty1 Ammonium Bromide); C ₁₆ H ₃₆ NBr 1643-19-2	<u>J. Phys</u> . <u>Chem</u> .1972, <u>76</u> , 3068 - 3072.	
VARIABLES:	PREPARED BY:	
T/K: 298.15 - 308.15 Salt/mol kg ⁻¹ H ₂ O: 0 - 4	P.L.Long, H.L.Clever	
EXPERIMENTAL VALUES: Solubility T/K ml He (STP) kg ⁻¹ H ₂ O	Salt $k_s = (1/m) \log(s^{\circ}/s)$ mole kg ⁻¹ H ₂ O	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	INFORMATION	
METHOD:	 SOURCE AND PURITY OF MATERIALS: 1. Helium. 1'Air Liquide. Stated to be of 99.99 per cent purity. 2. Water. No information given. 3. N,N,N-Tributy1-1-butanaminium bromide. Southwestern Analytical Chemical. Polarographic grade, used as received. 	
APPARATUS/PROCEDURE: The apparatus is modeled after the apparatus used by Hung (1). The procedure was the same as that used by Hung except that the time allowed for equilibration is longer. In the present work the gas- liquid equilibration required about 16 hours.	ESTIMATED ERROR: 6 S/S = 0.005 REFERENCES: 1. Hung, J.H. 1968, Ph.D. thesis, Clark University, Worcester, MA.	

COMPONENTS:	
	ORIGINAL MEASUREMENTS: Morrison, T.J.; Johnstone, N.B.B.
l. Helium; He; 7440-59-7	Notifison, 1.5., boundedne, N.B.B.
2. Water; H ₂ O; 7732-18-5	
3. Barium Chloride; BaCl ₂ ; 10361-37-2	J. Chem. Soc. 1955, 3655 - 3659.
VARIABLES:	PREPARED BY:
T/K: 298.15 P/kPa: 101.325 (1 atm)	T.D.Kittredge, H.L.Clever
EXPERIMENTAL VALUES:	
T/K $k_s =$	k _{sX} =
(1/m) log (S ^O /S	$(1/m) \log (X^{O}/X)$
298.15 0.086	0.109
The value of the Setschenow salt effe	ct parameter, k _a , was apparently
determined from only two solubility m	easurements. They were the solubility
of helium in pure water, S ^O , and the equivalent of salt per kg of water so	solubility of helium in a near one lution, S. The S ^o /S ratio was referenced
to a solution containing 1.000 kg of	water. The compiler calculated the salt
effect parameter, k _{sX} .	
AUXILIARY	
METHOD:	INFORMATION
	INFORMATION SOURCE AND PURITY OF MATERIALS:
Gas absorption in a flow system.	SOURCE AND PURITY OF MATERIALS:
	SOURCE AND PURITY OF MATERIALS; 1. Helium. British Oxygen Co. Ltd. 2. Water. No information given. 3. Barium chloride. No information
	SOURCE AND PURITY OF MATERIALS; 1. Helium. British Oxygen Co. Ltd. 2. Water. No information given.
	SOURCE AND PURITY OF MATERIALS; 1. Helium. British Oxygen Co. Ltd. 2. Water. No information given. 3. Barium chloride. No information
	SOURCE AND PURITY OF MATERIALS; 1. Helium. British Oxygen Co. Ltd. 2. Water. No information given. 3. Barium chloride. No information
	SOURCE AND PURITY OF MATERIALS; 1. Helium. British Oxygen Co. Ltd. 2. Water. No information given. 3. Barium chloride. No information
Gas absorption in a flow system.	SOURCE AND PURITY OF MATERIALS; 1. Helium. British Oxygen Co. Ltd. 2. Water. No information given. 3. Barium chloride. No information
	<pre>SOURCE AND PURITY OF MATERIALS: 1. Helium. British Oxygen Co. Ltd. 2. Water. No information given. 3. Barium chloride. No information given. ESTIMATED ERROR:</pre>
Gas absorption in a flow system. APPARATUS/PROCEDURE: The previously decassed solvent flows	<pre>SOURCE AND PURITY OF MATERIALS: 1. Helium. British Oxygen Co. Ltd. 2. Water. No information given. 3. Barium chloride. No information given. ESTIMATED ERROR:</pre>
Gas absorption in a flow system. APPARATUS/PROCEDURE: The previously degassed solvent flows in a thin film down an absorption spiral containing helium gas plus	SOURCE AND PURITY OF MATERIALS: 1. Helium. British Oxygen Co. Ltd. 2. Water. No information given. 3. Barium chloride. No information given. ESTIMATED ERROR: $\delta k_s = 0.010$
Gas absorption in a flow system. APPARATUS/PROCEDURE: The previously degassed solvent flows in a thin film down an absorption spiral containing helium gas plus solvent vapor at a total pressure of	<pre>SOURCE AND PURITY OF MATERIALS: 1. Helium. British Oxygen Co. Ltd. 2. Water. No information given. 3. Barium chloride. No information given. ESTIMATED ERROR:</pre>
Gas absorption in a flow system. APPARATUS/PROCEDURE: The previously degassed solvent flows in a thin film down an absorption spiral containing helium gas plus solvent vapor at a total pressure of 1 atm. The volume of gas absorbed is measured in attached calibrated	<pre>SOURCE AND PURITY OF MATERIALS: 1. Helium. British Oxygen Co. Ltd. 2. Water. No information given. 3. Barium chloride. No information given. ESTIMATED ERROR:</pre>
Gas absorption in a flow system. APPARATUS/PROCEDURE: The previously degassed solvent flows in a thin film down an absorption spiral containing helium gas plus solvent vapor at a total pressure of l atm. The volume of gas absorbed is	SOURCE AND PURITY OF MATERIALS: 1. Helium. British Oxygen Co. Ltd. 2. Water. No information given. 3. Barium chloride. No information given. ESTIMATED ERROR: $\delta k_s = 0.010$ REFERENCES:
Gas absorption in a flow system. APPARATUS/PROCEDURE: The previously degassed solvent flows in a thin film down an absorption spiral containing helium gas plus solvent vapor at a total pressure of 1 atm. The volume of gas absorbed is measured in attached calibrated	<pre>SOURCE AND PURITY OF MATERIALS: 1. Helium. British Oxygen Co. Ltd. 2. Water. No information given. 3. Barium chloride. No information given. ESTIMATED ERROR:</pre>

.

HN VOL 1-D

COMPONENTS:		ORIGINAL MEASUREMENTS:			
1. Helium; He; 7440-59-7		Shoor, S.K.;Walker, R.D.; Gubbins, K.E.			
2. Water; H ₂ O; 7732-18-5		0000-1107			
	2	1010 50			
3. Potas -3	sium Hydroxide; KOH;	1310-58	J. Phys.	<u>Chem</u> . 1969,	<u>73</u> , 312 - 317.
VARIABLES:	т/к: 298.15 - 353.15		PREPARED BY:	P.L.Long, H	.L.Clever
KOH/mol dm ⁻³ : 0 - 7.60					
EXPERIMENT	AL VALUES:			·····	
т/к	Helium Solubility Mol Fraction x 106	Solubilit Ratio X ^O /	y Potassiu /X Wt %	m Hydroxide mol dm ⁻³	$k_{s} = \frac{\log (x^{o}/x)}{C}$
298.15	6.7	1.00 1.39 1.75 3.57 13.1	0.00 5.00 9.00 19.00 32.40	0.00 0.92 1.70 3.99 7.60	0.155 0.143 0.139 0.147
313.15	6.7	1.00 1.36 1.73 3.71 12.7	5.00 9.00	0.00 0.92 1.70 3.99 7.60	0.145 0.140 0.142 0.145
333.15	7.2	1.00 1.39 1.96 3.59 13.0	0.00 5.00 9.00 19.00 32.40	0.00 0.92 1.70 3.99 7.60	0.155 0.172 0.139 0.147
353.15	8.0	1.00 1.44 1.89 3.77 13.7	0.00 5.00 9.00 19.00 32.40	0.00 0.92 1.70 3.99 7.60	0.172 0.163 0.144 0.150
The k _s v of 10 er	alues were calculate Fror in the original	d by the c paper. The	compiler. T KOH molar	here appears ities are at	to be a factor 298.15 K.
		AUXILIARY	INFORMATION		
METHOD: Ga	METHOD: Gas chromatograph (1).			PURITY OF MATER Source not 99.99 per c	given. Minimum
			 Water. Distilled and degassed in glass-teflon still. 		
		yzed r a maxin	eagent grade	e. Baker Anal- which contained 2 ^{CO} 3. KOH solu- om atm CO2.	
APPARATUS	APPARATUS/PROCEDURE:		ESTIMATED E	RROR: _{\$T/K} =	0.05
Gas chromatographic analysis, thermal conductivity detector, nitrogen carrier gas. The helium saturated solutions were prepared by bubbling the gas through presaturators and then through the KOH solution. Samp- les were withdrawn from the solution over a period of 48 hours to deter- mine equilibrium. Samples transfered from saturator to gas chromatograph in gas-tight Hamilton syringes.			K.E.; Carden	, S.N.; Walker, <u>og</u> . 1965, <u>3</u> , 98.	

COMPONENTS :			ORIGINAL MEASUREMENTS:	
			Akerlof, G.	
l. Helium;	He; 7440-59-7			
2. Water; H	20; 7732-18-5		J Am. Chem. Soc.	1935, <u>57</u> , 1196-1201
3. Alkali	Halides		<u><u><u></u></u>. <u>Al</u>. <u>Olem</u>. <u>Doc</u>.</u>	1999, <u>97</u> , 1190 1201
VARIABLES:			PREPARED BY:	
T/K P/kPa	: 298.15 : 101.325 (1	atm)	T.D.Kitt	redge, H.L.Clever
EXPERIMENTAL V		·····		
Т/К Н d 1	le solubility m ³ (STP) .000 kg H ₂ 0	mol salt 1.000 kg H ₂ ($(1/m) \log (S^{O}/S)$ $= k_{S}$	$(1/m) \log (X^{O}/X) = k_{SX}$
Lithium	Chloride; LiCl	; 7447-41-8		
298.15	0.0086 0.0136	0.0 6.18	-0.032	-0.017
)	Iodide; LiI; 1			
298.15	0.0086 0.0109	0.0 2.40	-0.043	-0.028
Sodium	Chloride; NaCl;	7647-14-5		
298.15	0.0086 0.0043	0.0 5.81	0.052	0.067
Potassi	um Chloride; KC	1; 7447-40-3	7	
298.15	0.0086 0.0048	0.0 4.72	0.054	0.069
solutions i effect para	The paper is not clear as to whether the solubility of helium in the salt solutions is for 1.000 kg of H_2O or for 1.000 kg of solution. The salt effect parameter, $k_{\rm SX}$, was calculated by the compiler, assuming the solubili was for 1.000 kg H_2O .			
		AUXILIARY	INFORMATION	
METHOD: Gas a	bsorption. The	helium was	SOURCE AND PURITY OF M	
solvent sal	t concentration	was deter-	1. Helium. Source cent He with N ₂	the impurity
the solvent	density measure volume was mea	sured by	present in the 2. Water. No infor	greatest amount.
of mercury.	t of an equival The gas-liquid	interface	3. Alkali Halides.	
was gently although eq	stirred for two uilibrium appea within a matte	hours, red to be	given.	
100			ESTIMATED ERROR:	
APPARATUS/PRO	CEDURE :		ESTIMATED ERROR: δ T/K	= 0.01
			REFERENCES :	
1				
L			1	

COMPONENTS:	ORIGINAL MEASUREMENTS:		
	Morrison, T.J.; Johnstone, N.B.B.		
l. Helium; He; 7440-59-7			
2. Water; H ₂ O; 7732-18-5	<u>J</u> . Chem. Soc. 1955, 3655 - 3659.		
3. Alkali Halides	<u>o. citem. 300</u> . 1955, 3655 - 3659.		
VARIABLES: T/K: 298.15	PREPARED BY:		
P/kPa: 101.325 (1 atm)	T.D.Kittredge		
EXPERIMENTAL VALUES:			
T/K $k_s = (1/m) \log (S^{O}/S) k_{s_x} = (1/m) \log (X^{O}/X)$			
	(1/, 109 (x / x)		
Lithium Chloride; LiCl; 7447-41-8 298.15 0.050	0.065		
	0.005		
Sodium Chloride; NaCl; 7647-14-5 298.15 0.081	0,096		
	0.090		
Sodium Bromide; NaBr; 7647-15-6	0.102		
Potassium Chloride; KCl; 7447-40-7 298.15 0.068	0.083		
	0.003		
Potassium Iodide; KI; 7681-11-0			
298.15 0.083	0.098		
The values of the Setschenow salt effect parameters, k_s , were apparently determined from only two solubility measurements. They were the solubility of helium in pure water, S ^O , and the solubility of helium in a near one equivalent of salt per kg of water solution, S. The S ^O /S ratio was referenced to a solution containing 1.000 kg of water. The compiler calculated the salt effect parameter k_{SX} from the mole fraction solubility ratio X ^O /X.			
AUXILIARY	INFORMATION		
METHOD:	SOURCE AND PURITY OF MATERIALS:		
Gas absorption in a flow system.	1. Helium. British Oxygen Co. Ltd.		
	2. Water. No information given.		
	3. Alkali Halides. No information		
	given.		
APPARATUS/PROCEDURE:	ESTIMATED ERROR:		
The previously degassed solvent flows	$\delta k_{s} = 0.010$		
in a thin film down an absorption spiral containing helium gas plus			
solvent vapor at a total pressure of 1 atm. The volume of gas absorbed is	REFERENCES :		
measured in attached calibrated	1. Morrison, T.J.; Billett, F.		
burets (1).	<u>J</u> . <u>Chem</u> . <u>Soc</u> . 1952, 3819.		

COMPONENTS:	ORIGINAL MEASUREMENTS:		
l. Helium; He; 7440-59-7	Mishnina, T.A.; Avdeeva, O.I.;		
2. Water; H ₂ O; 7732-18-5	Bozhovskaya, T.K.		
3. Sodium Chloride; NaCl; 7647-14-5	<u>Materialy Vses. Nauchn. Issled.</u> <u>Geol. Inst. 1961, 46</u> , 93 - 110.		
VARIABLES:	PREPARED BY:		
T/K: 278.15 - 318.15 NaCl/ g eq dm ⁻³ : 0 - 5.4 P/kPa: 101.325 (1 atm)	A. L. Cramer		
EXPERIMENTAL VALUES:			
Bunsen Coeffic: NaCl/g eg dm ⁻³	Setschenow		
	Parameter,		
0.0 0.5 1.0 1.5 2.0 2.5	3.0 3.5 4.0 4.5 5.0 5.4 k _s		
278.15 9.4 8.6 7.9 7.3 6.7 6.2 283.15 9.1 8.3 7.6 7.0 6.4 5.9	5.7 5.2 4.8 4.4 4.1 3.8 0.073 5.4 5.0 4.6 4.2 3.9 3.6 0.074		
288.15 8.8 8.0 7.4 6.8 6.2 5.7 293.15 8.6 7.9 7.2 6.6 6.0 5.5	5.3 4.8 4.4 4.2 3.7 3.5 0.076 5.0 4.6 4.2 3.9 3.6 3.3 0.077		
298.15 8.5 7.8 7.1 6.5 5.9 5.4 303.15 8.4 7.7 6.9 6.4 5.8 5.3	4.9 4.5 4.1 3.8 3.4 3.2 0.079 4.8 4.4 4.0 3.7 3.3 3.1 0.080		
308,15 8,4 7.6 6.9 6.3 5.8 5.2	4.8 4.3 4.0 3.6 3.3 3.0 0.082		
313.15 8.4 7.6 6.9 6.3 5.7 5.2 318.15 8.5 7.6 6.9 6.3 5.7 5.2	4.7 4.3 3.9 3.5 3.2 2.8 0.084 4.7 4.3 3.9 3.5 3.2 2.9 0.086		
AUXILIARY	INFORMATION		
METHOD: SOURCE AND PURITY OF MATERIALS;			
The table of smoothed Bunsen coeffici- ents of helium dissolved in aqueous sodium chloride solutions was prepared by the authors from the data of Morrison and Johnstone (1) and of Cherepennikov (2). The secondary source of data is used because the original Cherepennikov solubility data was not available to the compiler.			
APPARATUS/PROCEDURE:	ESTIMATED ERROR:		
	<pre>REFERENCES: 1. Morrison, T.J.; Johnstone, N.B. J. Chem. Soc. 1954, 3441. 2. Cherepennikov, A.A. Coll. Reports of the Sci. Conf. 1958, LICI, L.</pre>		

COMPONENTS:	ORIGINAL MEASUREMENTS:		
l. Helium; He; 7440-59-7	Morrison, T.J.; Johnstone, N.B.B.		
2. Water; H ₂ O; 7732-18-5			
3. Sodium Sulfate; Na ₂ SO ₄ ; 7757-82-6	<u>J. Chem</u> . <u>Soc</u> . 1955, 3655 - 3659		
VARIABLES:	PREPARED BY:		
T/K: 298.15 P/kPa: 101.325 (1 atm)	T.D.Kittredge, H.L.Clever		
EXPERIMENTAL VALUES:			
T/K $k_s =$	k _{sX} =		
(1/m) log (S ^O /S)	(1/m) log (X ^O /X)		
298.15 0.118	0.141		
The value of the Setschenow salt effect parameter, $k_{\rm g}$, was apparently determined from only two solubility measurements. They were the solubility of helium in pure water, S ^o , and the solubility of helium in a near one equivalent of salt per 1.000 kg of water solution, S. The S ^o /S ratio was referenced to a solution containing 1.000 kg of water. The compiler calculated the salt effect parameter, $k_{\rm SX}$.			
	TUDODUARTON		
	INFORMATION		
METHOD:	SOURCE AND PURITY OF MATERIALS: 1. Helium. British Oxygen Co., Ltd.		
Gas absorption in a flow system.			
	2. Water. No information given.		
	3. Sodium Sulfate. No information given		
	32,70		
APPARATUS/PROCEDURE:	ESTIMATED ERROR:		
The previously degassed solvent flows in a thin film down an absorption	δk _s = 0.010		
spiral containing helium gas plus solvent vapor at a total pressure of	REFERENCES:		
l atm. The volume of gas absorbed is measured in attached calibrated burets (l).	1. Morrison, T.J.; Billett, F. <u>J</u> . <u>Chem</u> . <u>Soc</u> . 1952, 3819.		

			ORIGINAL MEASUREMENTS:	
1 11-1-2	. II 7440 FO. 7		Akerlof, G.	
	; He; 7440-59-7			
2. Water;	H ₂ O; 7732-18-5		J. Am. Chem. Soc.	1935, <u>57</u> ,1196-1201.
3. Sodium Nitrate; NaNO ₃ ;7631-99-4				
VARIABLES:			PREPARED BY:	
T/K: 298.15 P/kPa: 101.325 (1 atm)		T.D.Kittro	edge, H.L.Clever	
EXPERIMENTAL	L VALUES:			
T/K	He solubility dm ³ (STP) He	mol salt	$k_s =$	k _{sX} =
	1.000 kg H ₂ O	1.000 kg H ₂ C	, (l/m)log(S ^O /S)	$(1/m) \log (X^O/X)$
298.15	0.0086 0.0039	0.0 6.95	0.049	0.064
			INFORMATION	
METHOD: Gas	absorption. The	helium was	SOURCE AND PURITY OF	
solvent mined by the solv	absorption. The rated with water salt concentrati a density measu rent volume was m ment of an equiv	helium was vapor, the on was deter- rement, and easured by	SOURCE AND PURITY OF 1 1. Helium. Source stated to be 9 N ₂ the impurit greatest amoun	not given. Gas 8 per cent He with y present in the t.
solvent mined by the solv displace of mercu	salt concentrati y a density measu yent volume was m ment of an equiv ary. The gas-liqu	helium was vapor, the on was deter- rement, and easured by alent volume id interface	SOURCE AND PURITY OF 1 1. Helium. Source stated to be 9 N_2 the impurit greatest amoun 2. Water. No info	not given. Gas 8 per cent He with y present in the t. rmation given.
solvent mined by the solv displace of mercu was gent although	salt concentration a density measurement volume was memory of an equiv	helium was vapor, the on was deter- rement, and easured by alent volume id interface wo hours, eared to be	SOURCE AND PURITY OF 1 1. Helium. Source stated to be 9 N ₂ the impurit greatest amoun	not given. Gas 8 per cent He with y present in the t. rmation given.
plesatur solvent mined by the solv displace of mercu was gent although establis utes.	salt concentrati salt concentrati a density measu ent volume was m mment of an equiv ry. The gas-liqu ly stirred for t equilibrium app shed within a mat	helium was vapor, the on was deter- rement, and easured by alent volume id interface wo hours, eared to be	SOURCE AND PURITY OF 1 1. Helium. Source stated to be 9 N_2 the impurit greatest amoun 2. Water. No info	not given. Gas 8 per cent He with y present in the t. rmation given.
solvent mined by the solv displace of mercu was gent although establis	salt concentrati salt concentrati a density measu ent volume was m mment of an equiv ry. The gas-liqu ly stirred for t equilibrium app shed within a mat	helium was vapor, the on was deter- rement, and easured by alent volume id interface wo hours, eared to be	SOURCE AND PURITY OF 1 1. Helium. Source stated to be 9 N ₂ the impurit greatest amoun 2. Water. No info 3. Sodium Nitrate ESTIMATED ERROR:	not given. Gas 8 per cent He with y present in the t. rmation given.
plesatur solvent mined by the solv displace of mercu was gent although establis utes.	salt concentrati salt concentrati a density measu ent volume was m mment of an equiv ry. The gas-liqu ly stirred for t equilibrium app shed within a mat	helium was vapor, the on was deter- rement, and easured by alent volume id interface wo hours, eared to be	SOURCE AND PURITY OF 1 1. Helium. Source stated to be 9 N ₂ the impurity greatest amoun 2. Water. No info 3. Sodium Nitrate ESTIMATED ERROR: \$ T/K	not given. Gas 8 per cent He with y present in the t. rmation given. . No information.
solvent mined by the solv displace of mercu was gent although establis utes.	salt concentrati salt concentrati a density measu ent volume was m mment of an equiv ry. The gas-liqu ly stirred for t equilibrium app shed within a mat	helium was vapor, the on was deter- rement, and easured by alent volume id interface wo hours, eared to be	SOURCE AND PURITY OF 1 1. Helium. Source stated to be 9 N ₂ the impurit greatest amoun 2. Water. No info 3. Sodium Nitrate ESTIMATED ERROR:	not given. Gas 8 per cent He with y present in the t. rmation given. . No information.

COMPONENTS: ORIGINAL MEASUREMENTS: 1. Helium; He; 7440-59-7 Clever, H.L.; Reddy, G.S. 2. Methanol; CH4O; 67-56-1 3. Sodium Iodide; NaI; 7681-82-5 J. Chem. Eng. Data 1963, 8, 191 - 192. VARIABLES: T/K: 303.15 PREPARED BY: NaI/mol dm^{-3} : 0 - 3.53 S.A.Johnson Total P/kPa: 101.325 (1 atm) **EXPERIMENTAL VALUES:** Solubility Salt Effect Parameters T/K Ostwald Sodium Ratio SO/S Coefficient Iodide $L \times 10^2$ mol dm-3 ^ksC ^ksm ^ksX 3.75 (S^O) 0.0 303.15 1.0 1.065 3.52 0.171 0.254 0.198 0.116 0.419 2.92 1.285 2.225 1.69 1.32 (Values at infinite dilution) 2.560 1.46 2.31 1.10 3.395 2.82 4.165 3.53 0.90 The salt effect parameters are: $k_{sC} = (1/C) \log(S^{O}/S)$ $k_{sm} = (1/m) \log(S^{O}/S)$ $k_{eX} = (1/m) \log (X^{O}/X)$ where c is the NaI concentration in mol dm^{-3} of solution, m is the NaI concentration in mol kg^{-1} of methanol, S^O/S is the Ostwald coefficient of solubility ratio, and X^O/X is the mol fraction solubility ratio assuming 100 per cent dissociation of the NaI. The density of the methanol + NaI solution as a function of NaI molarity is: $\rho/g \text{ cm}^{-3} = 0.781 + 0.129 \text{ C}$ AUXILIARY INFORMATION METHOD: SOURCE AND PURITY OF MATERIALS: Helium. Matheson Co., Inc. Reg-ular grade, stated to be 99.99 per cent pure. 2. Methanol. Merck Anhydrous. 3. Sodium Iodide. Baker, Analyzed Reagent Grade. ESTIMATED ERROR: APPARATUS/PROCEDURE: The apparatus was modeled after that of Markham and Kobe (1). A length of TRUEBORE tub-ing of 0.4643 cm² crossection was used as the gas buret. The volume of **REFERENCES:** helium, presaturated with solvent vapor, taken up by 103.1 cm³ of 1. Markham, A.E.; Kobe, K.A. J. Am. Chem. Soc. 1941, 63, 449. solution was measured.

COMPONENTS :	ORIGINAL MEASUREMENTS:
1. Helium; He; 7440-59-7	Cargill, R.W.
2. Ethanol (Ethyl Alcohol); C ₂ H ₆ O; 64-17-5	<u>J. Chem. Soc., Faraday</u> <u>Trans. 1</u> . 1978, <u>74</u> , 1444 - 1456.
3. Water; H ₂ O; 7732-18-5	
VARIABLES: T/K: 277.35 - 335.15 He P/kPa: 101.325 (1 atm) Ethanol/X ₂ : 0.0 - 0.982	PREPARED BY: P.L.Long
EXPERIMENTAL VALUES:	
Mol Fraction	$(cm^3 kg^{-1})$ S/cm ³ kg ⁻¹
	.970 9.33 .961 9.14
	.961 9.14 .930 8.51
	.953 8.97
	.976 9.46
	.968 9.29 .954 8.99
	.945 8.81
	.936 8.63
314.25 31.83 0	.937 8.65
	.959 9.10
	9.964 9.978 9.51
	.954 8.99
294.25 33.99 0	.950 8.91
	.941 8.73
	.961 9.14 .979 9.53
	.967 9.27
	.958 9.08
	.947 8.85
	.953 8.97
	.952 8.95 .971 9.35
334.45 29.90 0	.980 9.55
*Values in water. For other helium + w laboratory see reference 3 data sheet	vater solubility values from the same
AUXILIARY	INFORMATION
METHOD: Absorption of gas by a thin	SOURCE AND PURITY OF MATERIALS:
film of liquid. Modification of the	l. Helium.
Morrison and Billett method. Modifi-	
cations include replacing Valve A with a constant-flow pump (Watson-	2. Ethanol.
Marlow MHRE/22, with Neoprene tub-	
ing), and measuring the mass of the	3. Water.
solvent leaving the absorption tube	
(instead of the volume) on a top-	
pan balance (1). The solubility,S, is reported as cm ³ He,at 273.15 K	
and 101.325 kPa, absorbed in 1.000 kg	
solvent.	
	ESTIMATED ERROR:
APPARATUS/PROCEDURE: Modification of the	
Morrison and Billet apparatus. The	
solvent is degassed using the vapor- pump principle (1). Each determina-	
tion contains about 20 cm ³ of gas	
in up to 500 cm ³ of solvent, which	REFERENCES:
is then recycled. The density of	1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033;
the solution is checked after each	Ibid.1952, 3819.
run, so that the exact composition of the solution can be determined	2. International Critical Tables
(2).	1928, III, 116-119.
	3. Morrison, T. J.; Johnstone, N. B.
	J. Chem. Soc. 1954, 3441.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2. Ethanol; (Ethyl Alcohol); $C_{2}H_{6}O$ 3. Water; $H_{2}O$; 7732-18-5 The set of the set of	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>1</u> .
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
332.65 30.07 1.605 40.3 0.885 278.55 35.90 1.432 27.0 294.85 33.92 1.513 32.6 314.25 31.83 1.602 40.0	
294.85 33.92 1.513 32.6 314.25 31.83 1.602 40.0	
314.25 31.83 1.602 40.0	
328.75 30.42 1.652 44.9	
0.982 278.85 35.87 1.484 30.5	
289.15 34.59 1.541 34.8	
299.15 33.43 1.584 38.4 309.15 32.35 1.642 43.9	
320.15 31.24 1.702 50.4	
333.15 30.02 1.789 61.5	

00000000000	
COMPONENTS :	ORIGINAL MEASUREMENTS:
1. Helium; He; 7440-59-7	R. W. Cargill
2. 2-Methyl-2-propanol (<u>t</u> -Butanol); C ₄ H ₁₀ O; 75-65-0	<u>J. Chem. Soc., Faraday</u> <u>Trans. 1</u> . 1978, <u>74</u> , 1444 - 1456.
3. Water; H ₂ O; 7732-18-5	
VARIABLES:	PREPARED BY:
T/K: 277.45 - 334.25 Mole Fractions (x): 0.00 - 0.85	4 P. L. Long
EXPERIMENTAL VALUES:	
t-Butanol Mol Fraction <u>T/K</u> 10 ⁴ T ⁻¹ log	$(S/cm^3 kg^{-1}) = S/cm^3 kg^{-1}$
0.00* 278.35 35.93	0.970 9.33
284.05 35.21	0.961 9.14
294.45 33.97	0.930 8.51 0.953 8.97
<u>332.35</u> 30.09 0.006 277.75 36.01	0.953 8.97 0.984 9.64
286.05 34.97	0.962 9.16
293.75 34.05	0.946 8.83
304.75 32.82	0.944 8.79
314.35 31.82 323.55 30.91	0.952 8.95 0.952 8.95
323.55 30.91 333.45 29.99	0.952 8.95 0.963 9.18
0.011 277.85 36.00	0.979 9.53
285.15 35.08	0.960 9.12
294.75 33.93	0.942 8.75
304.65 32.83 313.15 31.94	0.942 8.75 0.941 8.73
313.15 31.94 324.05 30.86	0.954 8.99
333.85 29.97	0.967 9.27
0.029 278.25 35.94	0.944 8.79
285.75 35.01	0.930 8.51
294.85 33.92 303.15 32.99	0.933 8.57 0.946 8.83
318.95 31.36	0.970 9.33
0.046 277.45 36.05	0.907 8.07
279.15 35.83	0.907 8.07
*Values in water. For other helium laboratory see reference 3 data she	+ water solubility values from the same et.
AUXILIAR	Y INFORMATION
METHOD: Absorption of gas by a thin	SOURCE AND PURITY OF MATERIALS:
film of liquid. Modification of the	
Morrison and Billett method. Modifi-	l. Helium.
Cations include replacing Valve A with a constant-flow pump (Watson-	2. t-Butanol.
Marlow MHRE/22, with Neoprene tub-	
ing), and measuring the mass of the	3. Water.
solvent leaving the absorption tube	
(instead of the volume) on a top-pan balance (1). The solubility, S,	
is reported as cm ³ He at 273.15 K an	a
101.325 kPa absorbed in 1.000 kg	
solvent.	
	ESTIMATED ERROR:
APPARATUS/PROCEDURE: Modified Morrison	
and Billet apparatus. The solvent	
was degassed using the vapor-pump principle (1). Each determination	
contained about 20 cm ³ of gas in up	
to 500 cm ³ of solvent, which was the	n REFERENCES: 1. Morrison, T. J.; Billett, F. J.
recycled. The density of the solu-	Chem. Soc. 1948, 2033.
tion was checked after each run, so that the exact composition of the	ibid. 1952, 3819.
solution could be determined (2).	2. International Critical Tables
	1928, <u>III</u> , 113. 3. Morrison, T. J.; Johnstone, N. B.
L	J. Chem. Soc. 1954, 3441.

COMP	ONENTS:					<u> </u>	
L. Helium; He; 7440-59-7			R. W. Carg	ill			
2.	2-Methyl-2- C ₄ H ₁₀ O; 75-		(<u>t</u> -Butano	ol);	<u>J. Chem. S</u> 1978, <u>74</u> ,	<u>oc., Faraday</u> 1444 - 1456.	<u>Trans. 1</u> .
3.	Water; H ₂ O;	7732-18-	-5				
	Deterral				L	······································	
Mo	-Butanol ol Fraction	_T/K	$10^{4} T^{-1}$	10g (S	/cm ³ kg ⁻¹)	<u>S/cm³ kg-1</u>	
	0.046	285.15	35.08		.906	8.05	
		294.85	33.92	0	.921	8.34	
		304.15	32.88	0	.931	8.53	
		313.85	31.87		.981	9.57	
		324.05	30.86		.009	10.2	
		333.35	30.00		.047	11.1	
	0.072	278.15	35.96		.928	8.47	
		286.65	34.90		.933	8.57	
		296.75	33.70		.960	9.12	
		306.05	32.68		.984	9.64	
		320.65	31.19		.045	11.1	
		331.65	30.16		.106	12.8	
	0.102	282.15	35.45		.980	9.55	
		299.55	33.38		.017	10.4	
		308.15	32.46		.035	10.8	
		318.35	31.42		.095	12.4	
	0.144	332.75	30.06		.170	<u>14.8</u> 9.71	
	0.144	277.95 286.85	35.98		.987 .039		
		299.45	34.87 33.40			10.9 12.4	
		307.45	32.53		.094 .142	13.9	
		322.05	31.06		.201	15.9	
		333.85	29.96		.245	17.6	
	0.314	278.05	35.97		.215	16.4	
	0.014	287.25	34.82		.261	18.2	
		296.55	33.72		.300	20.0	
		308.35	32.44		.359	22.9	
		321.75	31.08		.413	25.9	
		333.85	29.96		.485	30.5	
	0.530	277.45	36.05		.351	22.4	
		287.25	34.82		.399	25.1	
		297.15	33.66		.449	28.1	
		308.65	32.41		.497	31.4	
		320.65	31.19		.559	36.2	
		334.55	29.90		.623	42.0	
	0.714	279.15	35.83		.432	27.0	
		279.55	35.77		.436	27.3	
		289.15	34.59		.494	31.2	
		289.75	34.52		.479	30.1	
		303.15	33.01		.546	35.2	
		319.45	31.30		.653	45.0	
	0.854	281.35	35.55		.487	30.7	
		289.15	34.59		.532	34.0	
		298.55	33.50		.585	38.5	
		320.25	31.23	1	.703	50.5	

COMPONENTS:			ORIGINAL MEASUR	
l. Helium; He;	7440-59-7	,	Friedman, H.	ц.
2. Water; H ₂ O;				
E.				
3. Nitromethane	; CH ₃ NO ₂ ;	75-52-5	<u>J. Am. Chem</u> .	<u>Soc</u> . 1954, <u>76</u> , 3294-3297.
VARIABLES:		PREPARED BY:	······	
T/K: P/kPa: 9		0 mmHg)	P	. L. Long
EXPERIMENTAL VALUES	:			· · · · · · · · · · · · · · · · · · ·
	Т/К	Mol Fraction	Bunsen	Ostwald
		$x_{1} \times 10^{4}$	$\begin{array}{c} \text{Coefficient} \\ \alpha \times 10^2 \end{array}$	Coefficient L x 10 ²
	Water			
	298.00			0.91 0.93
		0.0687	0.85	0.96 0.93 av.
	1.7 c 1 .			-
	Water s	aturated with	nitromethane	(about 4 mol percent)(2) 0.89
	298.00			0.84
			0.81	0.92 0.88 av.
	Nitron-	thang gatures		
	298.00	chane saturate	a with water	(about 12 mol percent)(2) 1.70
				1.63
			1.53	1.67 av.
Bunsen coeffici	ent and t by the c s law is	he mole fracti compiler with t obeyed.	on solubility he assumption	t about 700 mmHg. The at 101.325 kPa (l atm) s that the gas is ideal, $\times 10^{-2}$.
		AUXILIARY	INFORMATION	
METHOD: Gas abso essentially tha and Herzberg (1 included a magn instead of shak vessel, and bal against a colum electrical cont. balancing the ga atmosphere.	t employe). Modifi etic stir ing the s ancing th n of merc acts inst	d by Eucken cations ring device aturation e gas pressure ury with ead of	 Helium. A grade, 99 spectrosc Water. Co Nitrometh Distilled 	nductivity water. ane. Source not given.
		vent was de- ocedure, re-	ESTIMATED ERROF	t: δT/K = 0.05 δP/mmHg = 0.3

COMPONENTS:			ORIGINAL MEASUREMENTS:		
1. Helium; He; 7440-59-7			J.; Megyery-Ba ; Patyi, L.	log, K.;	
2. Pentane; C ₅ I	H ₁₂ ; 10	9-66-0	Rusz, D.	; ratyr, m.	
			Hung. J. I	nd. Chem. 1976,	<u>4</u> , 269-280.
VARIABLES:		PREPARED BY:			
T/K: 298.15 P/kPa: 101.325 (l atm)				S. A. Johnson	ı
EXPERIMENTAL VALUES	:				
	т/к	Mol Fraction		Ostwald	
		$x_1 \times 10^4$	Coefficient	Coefficient L x 10 ²	
:	298.15	2.6	5.0	5.5	
		AUXILIARY	Y INFORMATION		
METHOD:		AUXILIAR		URITY OF MATERIALS	
Volumetric met	hod. Th hai, an		SOURCE AND P Both the g grade reag	URITY OF MATERIALS gas and liquid v gents of Hungari rigin. No furthe	vere analyti- lan or
Volumetric met Bodor, Bor, Mo used.	hai, an	e apparatus of	SOURCE AND P Both the g grade reag foreign or	gas and liquid v gents of Hungari rigin. No furthe	vere analyti- lan or
Volumetric met Bodor, Bor, Mol	hai, an	e apparatus of	SOURCE AND P Both the g grade reag foreign or mation.	gas and liquid v gents of Hungari rigin. No furthe	vere analyti- Lan or er infor-
Volumetric met Bodor, Bor, Mo used.	hai, an	e apparatus of	SOURCE AND P Both the g grade reag foreign or mation.	gas and liquid v gents of Hungari rigin. No furthe ROR:	vere analyti- an or er infor-
Volumetric met Bodor, Bor, Mo used.	hai, an	e apparatus of	SOURCE AND PI Both the g grade reag foreign or mation. ESTIMATED ER REFERENCES: 1. Bodor, Sipos	yas and liquid v yents of Hungari rigin. No furthe ROR: δX ₁ /X ₁ = 0 E.; Bor, Gy.; M	vere analyti- an or er infor-).03

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Helium; He; 7440-59-7	Clever, H.L.; Battino, R.; Saylor,J.H. Gross, P.M.
2. Hexane; C ₆ H ₁₄ ; 110-54-3	
	<u>J.Phys.Chem</u> . 1957, <u>61</u> , 1078-1083.
VARIABLES:	PREPARED BY:
T/K 288.15 - 314.95 P/kPa: 101.325 (1 atm)	P.L.Long
EXPERIMENTAL VALUES:	
	Ostwald
$\begin{array}{c} \text{Coefficient C} \\ \text{X}_1 \times 10^4 \qquad \textbf{X} \times 10^2 \\ \hline \end{array}$	coefficient L x 10 ²
288.15 2.35 4.06	
298.45 2.57 4.38	
314.95 3.11 5.18	5.97
Smoothed Data. $\Delta G^{\circ}/J \mod^{-1} = -RTln X$	
Smoothed Data. $\Delta G^{\circ}/J \mod f = -RTIN X$ Std. Dev. $\Delta G^{\circ} = 34.3$,	±
	$\Delta S^{O}/J K^{-1} mol^{-1} = -41.756$
T/K Mol Fractior $X_1 \times 10^4$	$\Delta G^{O}/J \text{ mol}^{-1}$
288.15 2.33	20,043
293.15 2.46 298.15 2.60	20,252 20,461
303.15 2.74	20,669
308.15 2.89 313.15 3.04	20,878 21,087
There is a report of the partial molal dilatometry at 298.15 K of 42.3 ± 1 cm	volume of helium in hexane by $n^3 \text{ mol}^{-1}$ (3).
The Bunsen coefficients were calculate	ed by the compiler.
	INFORMATION
METHOD: Volumeteric. The solvent is	SOURCE AND PURITY OF MATERIALS:
saturated with gas as it flows	1. Helium, Matheson Co., Both standard and research grade used.
through an 8 mm x 180 cm glass spiral attached to a gas buret. The	
pressure is maintained at 1 atm as the gas is absorbed.	2. Hexane. Humphrey-Wilkinson, Inc., N.Haven, CN. Shaken with H ₂ SO ₄ ,
	washed, dried over sodium, dis-
ADDED NOTE.Makranczy, J.; Megyery- Balog, K.;Rusz, L.;Patyi, L. <u>Hung</u> . J.	tilled.
Ind. Chem. 1976, 4, 269 report an Ostwald coefficient of 0.044 at 298.15	
K for this system. The value was not	
used in the smoothed data fit above.	
APPARATUS/PROCEDURE: The apparatus is a	ESTIMATED ERROR:
modification of that of Morrison and	δ T/K = 0.05
Billett (1). The modifications in- clude the addition of a spiral stor-	SP/torr = 3 $SX_1/X_1 = 0.03$
age for the solvent, a manometer for	REFERENCES: 1. Morrison, T.J.; Billett, F.
constant reference pressure, and an extra buret for highly soluble gases.	
The solvent is degassed by a modi- fication of the method of Baldwin	2. Baldwin, R.R.; Daniel, S.G.
and Daniel (2).	J. <u>Appl. Chem</u> . 1952, <u>2</u> , 161.
	3. Ng, W.Y.;Walkley, J. J. Phys. <u>Chem</u> . 1969, <u>73</u> , 2274.

COMPONENTS:			ORIGINAL MEASUREMEN	TS:
		Clever, H.L.; B		
1. Helium; He;	1. Helium; He; 7440-59-7		Saylor, J.H.;	Gross, P.M.
2. Heptane; C ₇ H ₁₆ ; 142-82-5				
		J. Phys. Chem.	1957, <u>61</u> , 1078 -1083.	
VARIABLES:		_	PREPARED BY:	
	.15 - 314.9		P.L.L	ong
P/kPa: 101.325 (1 atm)				
EXPERIMENTAL VALUES	5: т/к	Mol Fractic	on Bunsen	Ostwald
		$x_{-} = 10^{4}$	$\frac{\text{Densen}}{\text{Coefficient}}$	Coefficient
	288.15	2.24	3.46	3.65
	298.15 314.95	2.49 2.95	3.78 4.40	4.13 5.07
Smoothed Data.			$x_1 = 7766.6 + 42.$	
		•	Coef. Corr. 0.9 $\Delta S^{O}/J K^{-1} mol^{-1}$	
	•		•	= -42.929
	т/к м	ol Fraction $X_1 \times 10^4$	▲G ^O /J mol ⁻¹	
	288.15	2.24	20,136	
	293.15 298.15		20,351	
	298.15	2.49 2.63	20,566 20,780	
	308.15 313.15	2.63 2.76	20,995 21,210	
			•	-
There are two reports of the partial methods heptane. The partial molal volume by $c cm^3 mol^{-1}$. An apparent molal volume by urated solution at pressures of 90 to is 37.5 \pm 0.3 cm ³ mol ⁻¹ (4). The value tentative recommended value. The Bunsen coefficients were calculated		a density deter 100 atm and a te by dilatometry a	mination of the sat- mperature of 298.15 K t l atm (3) is the	
		AUXILIARY	INFORMATION	
METHOD: Volumete	ric. The so	lvent is	SOURCEAND PURITY C	OF MATERIALS:
saturated with through an 8 mm spiral attached	x 180 cm g to a gas b	lass uret. The		eson Co. Both standard grades were used.
pressure is mai pressure of 1 a absorbed.	tm as the g	as is	2. Heptane. Phi Bartlesville as received.	llips Petroleum Co., , OK, pure grade, used
ADDED NOTE.Makr Balog, K.;Rusz, Ind. Chem. 1976 Ostwald coeffic K for this syst used in the smooth	L.;Patyi, , 4, 269 re ient of 0.0 em. The val	L. <u>Hung. J.</u> port an 44 at 298.15 ue was not		
APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1). The modifications in- clude the addition of a spiral stor-		8 P	P/K = 0.05 P/torr = 3 $R_1/X_1 = 0.03$	
age for the sol constant reference extra buret for The solvent is of fication of the and Daniel (2).	nce pressur highly sol degassed by	e, and an uble gases. a modi-	J. <u>Chem.Soc</u> . 1948 2. Baldwin, R.R. J. <u>Appl. Chem</u> 3. Ng, W.Y.;Walk J. Phys. Chem	1. 1952, <u>2</u> , 161. ley, J. 1. 1969, 73, 2274.
			4. Popov, G.A.;D Zh. Fiz. Khim	$\frac{1}{1}$

CON	1PONENTS:	EVALUATOR:
1. 2.	Helium; He; 7440-59-7 Octane; C ₈ H ₁₈ ; 111-65-9	H. L. Clever Chemistry Department Emory University Atlanta, Georgia 30322 U.S.A.
		USA April 1978

CRITICAL EVALUATION:

The solubility of helium in octane was measured by Clever, Battino, Saylor, and Gross (1), by Makranczy, Megyery-Balog, Rusz, and Patyi (2), and by Wilcock, Battino, and Danforth (3).

The value of Makranczy, et al. (Ostwald coefficient 0.037, mole fraction 2.5 x 10^{-4} at 298.15 K) is not recommended. It was reported to only two significant figures and it is 3-5 percent higher than the smoothed data value at 298.15 K from the other two laboratories.

The smoothed data of Clever et al. ranges from 4.7 percent higher at 288.15 to 2.1 percent higher at $3\overline{13.15}$ K than the smoothed data of Wilcock Although the two data sets agree within experimental error, the more et al. recent data of Wilcock <u>et al</u>. were determined with a better degassing proce-dure and with better control of temperature and pressure than used in the earlier work. Thus the two data sets were combined by the method of least squares to a Gibbs energy equation linear in temperature with a weight of 2 for the Wilcock <u>et al</u>. data and a weight of 1 for the Clever et al. data.

The recommended values for the transfer of one mole of helium from the gas at a pressure of 101.325 kPa to the hypothetical unit mole fraction solution are

 $\Delta G^{\circ}/J \text{ mol}^{-1} = - RT \ln X_1 = 8486.3 + 40.965 T$

Std. Dev. $\Delta G^\circ = 49$, Coef. Corr. = 0.9954

 $\Delta H^{\circ}/J \text{ mol}^{-1} = 8486.3, \Delta S^{\circ}/J K^{-1} \text{ mol}^{-1} = -40.965$

The recommended solubility values and Gibbs energy as a function of temperature are in Table 1.

TABLE 1. The solubility of helium in octane. The mole fraction solubility at 101.325 kPa and the Gibbs energy as a function of temperature.

т/к	Mol Fraction $X_1 \times 10^4$	$\Delta G^{o}/J \text{ mol}^{-1}$
283,15	1.971	20,085
288.15	2.098	20,290
293.15	2.229	20,495
298.15	2.363	20,700
303.15	2.500	20,905
308.15	2.641	21,110
313.15	2.784	21,314
318.15	2.930	21,519

Ng and Walkley (4) report a partial molal volume of helium in octane by dilatometry of 47.8 \pm 1 cm³ mol⁻¹ at 298.15 K.

- 1. Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M. J. Phys. Chem. 1957, <u>61</u>, 1078.
- Makranczy, J.; Megyery-Balog, K.; Rusz, L.; Patyi, L. Hung. J. Ind. 2. Chem. 1976, 4, 269. Wilcock, R. J.; Battino, R.; Danforth, W. F.; Wilhelm, E. J. Chem.
- з. Thermodyn. 1978, <u>10</u>, 817. Ng, W. Y.; Walkley, J. <u>J. Phys. Chem</u>. 1969, <u>73</u>, 2274.

4.

COMPONENTS:			ORIGINAL MEASUREME	NTS:	
l. Helium; He; 7440-59-7		Clever, H.L.;B Saylor, J.H.			
2. Octane; C ₈ H ₁₈ ; 111-65-9					
			J. Phys. Chem.	1957, <u>61</u> , 1078-1	083.
VARIABLES:			PREPARED BY:		
T/K: 288.15 - 314.75 P/kPa: 101.325 (1 atm)		P.:	L.Long		
P/kPa: 1	.01.325 (1 8	atm)			
EXPERIMENTAL VALUES	S:- <u>T/K</u>	Mol Fractio	on Bunsen	Ostwald Coefficient	
		$x_1 \times 10^4$	$\propto \times 10^2$		
	288.15	2.17	3.00	3.17	
	298.15	2.42	3.22	3.52	
	314.75	2.87	3.85	4.44	
Smoothed Data.	$\Delta G^{O}/J \text{ mol}^{-1}$	¹ = 7936.1 +	+ 42.601 T = - R	T ln X _l	
	Std. Dev. 4	$\Delta G^{O} = 2.7,$	Coef. Corr. 0.9	999	
See the evaluat	ion of the	helium + oct	tane system for	the recommended G	ibbs
energy equation					
The Bunsen coef	ficients we values were	re calculate adjusted to	ed by the compil	um dissolved in o er. sure of helium of	
The Bunsen coef	ficients we values were	re calculate adjusted to ry's law.	ed by the compil o a partial pres	er.	
The Bunsen coef The solubility 101.325 kPa (1	ficients we values were atm) by Hen	re calculato adjusted to ry's law. AUXILIARY	ed by the compil o a partial pres INFORMATION	er. sure of helium of	
The Bunsen coef	ticients we values were atm) by Hen c. The solve as it flows m glass spi: The total p	re calculato adjusted to ry's law. AUXILIARY ent is sat- s through ral attached pressure is	ed by the compil o a partial pres INFORMATION SOURCE AND PURITY 1. Helium. Mat and researc 2. Octane. Hum N. Haven, C	er. sure of helium of	andar d.

COMPONENTS :			ORIGINAL MEAS	UREMENTS :
l. Helium; He; 7440-59-7			.J.; Battino, R.; th, W.F; Wilhelm, E.	
2. Octane; C ₈ H	H ₁₈ ; 111-6	5-9		. ,
8 18.		<u>J.Chem.Thermodyn</u> . 1978, <u>10</u> , 817-822.		
VARIABLES:			PREPARED BY:	······································
T/K: 288.23 - 312.92				
P/kPa: 101.325 (1 atm)			A.L. Cramer	
EXPERIMENTAL VALUE	S:			
	T/K M	Aol Fraction	Bunsen	Ostwald
		$x_{1} \times 10^{4}$	$\alpha \times 10^2$	Coefficient
		$\frac{x_1 \times 10}{1}$.	α χ 10	X 10
	283.23	1.933	2.697	2.797
	298.33 312.92	2.370	3.250	3.550
	312.92	2.733	3.685	4.221
Smoothed Data:	∆G ^O /J mo	$pl^{-1} = -RT \ln 2$	$x_1 = 8585.2$	+ 40.731 T
	Std. Dev	$AG^{O} = 27, CO$	Def. Corr. =	0.9990
101.325 kPa (1 The Bunsen coef	atm) by H fficients	Henry's law. were calculate	ed by the co	
101.325 kPa (1 The Bunsen coef	atm) by I fficients report of	Henry's law. were calculate this work app	ed by the co eared in Con	mpiler. f. Int. Thermodyn. Chim.,
101.325 kPa (1 The Bunsen coef A preliminary r	atm) by I fficients report of	<pre>Aenry's law. were calculate this work app 2 - 128; Chem.</pre>	ed by the co eared in Con	mpiler. f. Int. Thermodyn. Chim.,
101.325 kPa (1 The Bunsen coef A preliminary r {C.R.}, 4th 197	atm) by H fficients report of 75, <u>6</u> , 12:	<pre>Henry's law. were calculate this work app 2 - 128; Chem. AUXILIARY</pre>	ed by the co eared in <u>Con</u> <u>Abstr</u> . 1977 INFORMATION	mpiler. f. Int. Thermodyn. Chim.,
101.325 kPa (1 The Bunsen coef A preliminary r {C.R.}, 4th 197 METHOD /APPARATU The apparatu	atm) by H fficients report of 75, <u>6</u> , 12: NS/PROCEDU	Henry's law. were calculate this work app 2 - 128; <u>Chem</u> . AUXILIARY WRE: ed on the de-	ed by the co eared in <u>Con</u> <u>Abstr</u> . 1977 INFORMATION SOURCE AND PU 1. Helium	mpiler. <u>f. Int. Thermodyn. Chim.</u> , <u>7, 86</u> , 22375d. URITY OF MATERIALS: Matheson Co. Inc.
101.325 kPa (1) The Bunsen coef A preliminary n {C.R.}, 4th 197 METHOD /APPARATU The apparatu sign of Morrisc	atm) by I fficients report of 75, <u>6</u> , 12: DS/PROCEDU IS is base on and Bil	Henry's law. were calculate this work app 2 - 128; <u>Chem</u> . AUXILIARY RE: ed on the de- llett (1), and	ed by the co eared in <u>Con</u> <u>Abstr</u> . 1977 INFORMATION SOURCE AND PU 1. Helium Purest	mpiler. <u>f. Int. Thermodyn. Chim.</u> , <u>7, 86</u> , 22375d. URITY OF MATERIALS: <u>1. Matheson Co. Inc.</u> <u>1. commercially available</u>
101.325 kPa (1) The Bunsen coef A preliminary n {C.R.}, 4th 197 METHOD /APPARATU The apparatu sign of Morriso the version use Battino, Evans,	atm) by I fficients report of 75, <u>6</u> , 12: /S/PROCEDU is is base on and Bil ed is desc , and Danf	Auxiliary's law. were calculato this work apport 2 - 128; <u>Chem</u> . AUXILIARY RE: ed on the de- liett (1), and cribed by forth (2). The	ed by the con eared in <u>Con</u> <u>Abstr</u> . 1977 INFORMATION SOURCE AND PU 1. Helium Purest grade.	mpiler. <u>f. Int. Thermodyn</u> . <u>Chim</u> ., <u>86</u> , 22375d. URITY OF MATERIALS: Matheson Co. Inc. commercially available
101.325 kPa (1) The Bunsen coef A preliminary n {C.R.}, 4th 197 METHOD /APPARATU The apparatu Sign of Morriso the version use Battino, Evans, degassing appar	atm) by I fficients report of 75, <u>6</u> , 12: DS/PROCEDU as is base on and Bil ed is desc , and Danf ratus and	Auxiliary's law. were calculato this work appo 2 - 128; <u>Chem</u> . AUXILIARY WRE: ed on the de- llett (1), and cribed by forth (2). The procedure are	ed by the con- eared in <u>Con</u> <u>Abstr</u> . 1977 INFORMATION SOURCE AND PU 1. Helium Purest grade. 2. Octane	mpiler. <u>f. Int. Thermodyn. Chim.</u> , <u>86</u> , 22375d. URITY OF MATERIALS: Matheson Co. Inc. commercially available Phillips Petroleum Co.
101.325 kPa (1) The Bunsen coef A preliminary 1 {C.R.}, 4th 197 METHOD /APPARATU The apparatu sign of Morriso the version use Battino, Evans, degassing appar described by Ba and Wilhelm (3)	atm) by H fficients report of 75, <u>6</u> , 123 DS/PROCEDU IS iS base on and Bill ed is deso , and Danf ratus and attino, Ba	AUXILIARY AUXILIARY AUXILIARY RE: ed on the de- lett (1), and cribed by forth (2). The procedure are anzhof, Bogan,	ed by the con- eared in <u>Con</u> <u>Abstr</u> . 1977 INFORMATION SOURCE AND PU 1. Helium Purest grade. 2. Octane	mpiler. <u>f. Int. Thermodyn</u> . <u>Chim</u> ., <u>86</u> , 22375d. URITY OF MATERIALS: Matheson Co. Inc. commercially available
101.325 kPa (1) The Bunsen coef A preliminary n {C.R.}, 4th 197 METHOD /APPARATU The apparatu sign of Morrisc the version use Battino, Evans, degassing appar described by Ba and Wilhelm (3) Degassing. solvent is place	atm) by I fficients report of 75, <u>6</u> , 12: 05/PROCEDU is is base on and Bill ed is desc , and Danf ratus and attino, Ba 0. Up to 500 ced in a f	Auxiliary's law. were calculate this work apper 2 - 128; Chem. AUXILIARY RE: ed on the de- llett (1), and cribed by forth (2). The procedure are anzhof, Bogan,) cm ³ of llask of such	ed by the con- eared in <u>Con</u> <u>Abstr</u> . 1977 INFORMATION SOURCE AND PU 1. Helium Purest grade. 2. Octane	mpiler. <u>f. Int. Thermodyn. Chim.</u> , <u>86</u> , 22375d. URITY OF MATERIALS: Matheson Co. Inc. commercially available Phillips Petroleum Co.
101.325 kPa (1) The Bunsen coef A preliminary n {C.R.}, 4th 197 METHOD /APPARATU The apparatu sign of Morrisc the version use Battino, Evans, degassing appar described by Ba and Wilhelm (3) Degassing. solvent is place size that the 1	atm) by I fficients report of 75, <u>6</u> , 12: 05/PROCEDU us is base on and Bil ed is desc , and Danf ratus and attino, Ba Up to 500 ced in a fi liquid is	Auxiliary's law. were calculate this work apper 2 - 128; Chem. AUXILIARY RE: ed on the de- llett (1), and cribed by forth (2). The procedure are anzhof, Bogan,) cm ³ of lask of such about 4 cm	ed by the con- eared in <u>Con</u> <u>Abstr</u> . 1977 INFORMATION SOURCE AND PU 1. Helium Purest grade. 2. Octane	mpiler. <u>f. Int. Thermodyn. Chim.</u> , <u>86</u> , 22375d. URITY OF MATERIALS: Matheson Co. Inc. commercially available Phillips Petroleum Co.
101.325 kPa (1) The Bunsen coef A preliminary n {C.R.}, 4th 197 METHOD /APPARATU The apparatu sign of Morrisc the version use Battino, Evans, degassing appar described by Ba and Wilhelm (3) Degassing. solvent is plac size that the J deep. The liqu and vacuum is a	atm) by I fficients report of 75, <u>6</u> , 12: DS/PROCEDU is is base on and Billed is desc , and Danf ratus and attino, Ba , and Danf ratus and attino, Ba , up to 500 ced in a f liquid is rapplied ir	Auxiliary's law. were calculato this work apper 2 - 128; Chem. AUXILIARY RE: ed on the de- lett (1), and procedure are anzhof, Bogan,) cm ³ of Elask of such about 4 cm pidly stirred, htermittently	ed by the con- eared in <u>Con</u> <u>Abstr</u> . 1977 INFORMATION SOURCE AND PU 1. Helium Purest grade. 2. Octane	mpiler. <u>f. Int. Thermodyn. Chim.</u> , <u>86</u> , 22375d. URITY OF MATERIALS: Matheson Co. Inc. commercially available Phillips Petroleum Co.
101.325 kPa (1) The Bunsen coef A preliminary n {C.R.}, 4th 197 (C.R.}, 4th 19	atm) by I fficients report of 75, <u>6</u> , 12: OS/PROCEDU is is base on and Bill ed is desc , and Danf ratus and attino, Ba Up to 500 ced in a fi liquid is rat uid is rap applied in id N ₂ trap	AUXILIARY AUXILIARY AUXILIARY AUXILIARY RE: ed on the de- llett (1), and cribed by forth (2). The procedure are anzhof, Bogan, cm ³ of flask of such about 4 cm oidly stirred, htermittently o until the	ed by the con- eared in <u>Con</u> <u>Abstr</u> . 1977 INFORMATION SOURCE AND PU 1. Helium Purest grade. 2. Octane	mpiler. <u>f. Int. Thermodyn</u> . <u>Chim.</u> , <u>7, 86</u> , 22375d. URITY OF MATERIALS: Matheson Co. Inc. commercially available Phillips Petroleum Co. per cent minimum.
101.325 kPa (1) The Bunsen coef A preliminary n {C.R.}, 4th 197 METHOD /APPARATU The apparatu sign of Morrisc the version use Battino, Evans, degassing appar described by Ba and Wilhelm (3) Degassing. solvent is place size that the 1 deep. The liqui and vacuum is a through a liqui	atm) by I fficients report of 75, <u>6</u> , 12: OS/PROCEDU is is base on and Bill ed is desc , and Danf ratus and attino, Ba Up to 500 ced in a fi liquid is rat uid is rap applied in id N ₂ trap	AUXILIARY AUXILIARY AUXILIARY AUXILIARY RE: ed on the de- llett (1), and cribed by forth (2). The procedure are anzhof, Bogan, cm ³ of flask of such about 4 cm oidly stirred, htermittently o until the	ed by the con eared in <u>Con</u> <u>Abstr</u> . 1977 INFORMATION SOURCE AND PU 1. Helium Purest grade. 2. Octane 99 mol	<pre>mpiler. f. Int. Thermodyn. Chim., , 86, 22375d. URITY OF MATERIALS: Matheson Co. Inc. commercially available Phillips Petroleum Co. per cent minimum.</pre>
101.325 kPa (1) The Bunsen coef A preliminary n {C.R.}, 4th 197 METHOD /APPARATU The apparatu sign of Morrisc the version use Battino, Evans, degassing appar described by Ba and Wilhelm (3) Degassing. solvent is plac size that the J deep. The liqu and vacuum is a through a liqui permanent gas n to 5 microns. Solubility E	atm) by I fficients report of 75, <u>6</u> , 12: DS/PROCEDU is is base on and Billed is desc , and Danf ratus and attino, Ba , and	Auxiliary's law. were calculate this work apper 2 - 128; Chem. AUXILIARY RE: ed on the de- lett (1), and cribed by Forth (2). The procedure are anzhof, Bogan,) cm ³ of Elask of such about 4 cm oidly stirred, htermittently o until the pressure drops tion. The de-	ed by the con eared in <u>Con</u> <u>Abstr</u> . 1977 INFORMATION SOURCE AND PU 1. Helium Purest grade. 2. Octane 99 mol	<pre>mpiler. f. Int. Thermodyn. Chim., , 86, 22375d. URITY OF MATERIALS: . Matheson Co. Inc. commercially available . Phillips Petroleum Co. per cent minimum.</pre>
101.325 kPa (1) The Bunsen coef A preliminary n {C.R.}, 4th 197 (C.R.}, 4th 197 METHOD /APPARATU The apparatu Sign of Morrisc the version use Battino, Evans, degassing appar described by Ba and Wilhelm (3) Degassing. solvent is plac size that the J deep. The liqu and vacuum is a through a liqui permanent gas n to 5 microns. Solubility I gassed solvent	atm) by I fficients report of 75, <u>6</u> , 12: DS/PROCEDU as is base on and Bail at is desc , and Danf ratus and attino, Bail attino, Bail	Auxiliary's law. were calculate this work apper 2 - 128; Chem. AUXILIARY TRE: ed on the de- lett (1), and cribed by forth (2). The procedure are anzhof, Bogan,) cm ³ of Elask of such about 4 cm oidly stirred, htermittently o until the pressure drops tion. The de- d in a thin	ed by the con eared in <u>Con</u> <u>Abstr</u> . 1977 INFORMATION SOURCE AND PU 1. Helium Purest grade. 2. Octane 99 mol	<pre>mpiler. f. Int. Thermodyn. Chim., , 86, 22375d. URITY OF MATERIALS: Matheson Co. Inc. commercially available Phillips Petroleum Co. per cent minimum.</pre>
101.325 kPa (1) The Bunsen coef A preliminary n {C.R.}, 4th 197 METHOD /APPARATU The apparatu sign of Morrisc the version use Battino, Evans, degassing appar described by Ba and Wilhelm (3) Degassing. solvent is place size that the J deep. The liqui and vacuum is a through a liqui permanent gas n to 5 microns. Solubility D gassed solvent film down a glatining the sol	atm) by I fficients report of 75, <u>6</u> , 12: DS/PROCEDU IS iS base on and Bill ed is desc , and Danf ratus and attino, Ba). Up to 500 ced in a fi liquid is ratus and attino, Ba). Up to 500 ced in a fi liquid is ratus and attino, Ba). Up to 500 ced in a fi liquid is ratus and attino, Ba).	AUXILIARY AUXILIARY AUXILIARY AUXILIARY RE: ed on the de- llett (1), and cribed by forth (2). The procedure are anzhof, Bogan, cm ³ of flask of such about 4 cm oidly stirred, ntermittently o until the pressure drops cion. The de- l in a thin tube con- olus the sol-	ed by the con- eared in Con- <u>Abstr</u> . 1977 INFORMATION SOURCE AND PU 1. Helium Purest grade. 2. Octane 99 mol ESTIMATED ER REFERENCES:	mpiler. $\frac{1}{4}$. Int. Thermodyn. Chim., $\frac{1}{86}$, 22375d. URITY OF MATERIALS: $\frac{1}{2}$ Matheson Co. Inc. commercially available $\frac{1}{2}$ Phillips Petroleum Co. per cent minimum. ROR: $\frac{\delta T/K = 0.03}{\delta P/mmHg} = 0.5$ $\frac{\delta X_1/X_1}{\delta I} = 0.02$
101.325 kPa (1) The Bunsen coef A preliminary n {C.R.}, 4th 197 METHOD /APPARATU The apparatu sign of Morrisc the version use Battino, Evans, degassing appar described by Ba and Wilhelm (3) Degassing. solvent is place size that the J deep. The liqui and vacuum is a through a liqui permanent gas n to 5 microns. Solubility I gassed solvent film down a glat taining the solvent	atm) by I fficients report of 75, <u>6</u> , 12: DS/PROCEDU is is base on and Bill ed is desc , and Danf ratus and attino, Ba o Up to 500 ced in a fi liquid is ratus and attino, Ba o to 200 ced in a fi liquid is ratus and attino, Ba o ceterminat is passed ass spiral lute gas p a total pr	AUXILIARY AUXILIARY AUXILIARY AUXILIARY RE: ed on the de- llett (1), and cribed by forth (2). The procedure are anzhof, Bogan, cm ³ of flask of such about 4 cm oidly stirred, ntermittently o until the pressure drops cion. The de- lin a thin tube con- olus the sol- cessure of one	ed by the co eared in Con <u>Abstr</u> . 1977 INFORMATION SOURCE AND PU 1. Helium Purest grade. 2. Octane 99 mol ESTIMATED ER REFERENCES: 1.Morrison	mpiler. <u>f. Int. Thermodyn. Chim.</u> , <u>86</u> , 22375d. URITY OF MATERIALS: Matheson Co. Inc. commercially available Phillips Petroleum Co. per cent minimum. ROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta x_1/x_1 = 0.02$
101.325 kPa (1) The Bunsen coef A preliminary n {C.R.}, 4th 197 METHOD /APPARATU The apparatu sign of Morrisc the version use Battino, Evans, degassing appar described by Ba and Wilhelm (3) Degassing. solvent is place size that the J deep. The liqui and vacuum is a through a liqui permanent gas n to 5 microns. Solubility I gassed solvent film down a gla taining the solvent atm. The volum found by differ	atm) by I fficients report of 75, <u>6</u> , 12:	AUXILIARY AUXILIARY AUXILIARY AUXILIARY RE: ed on the de- lett (1), and cribed by forth (2). The procedure are anzhof, Bogan, cm ³ of flask of such about 4 cm oidly stirred, netermittently o until the pressure drops tion. The de- lin a thin tube con- cessure of one absorbed is yeen the ini-	ed by the con- eared in <u>Con</u> <u>Abstr</u> . 1977 INFORMATION SOURCE AND PU 1. Helium Purest grade. 2. Octane 99 mol ESTIMATED ER REFERENCES: 1.Morrison J. Chem. 2.Battino,	mpiler. <u>af. Int. Thermodyn. Chim.</u> , <u>af. 1nt. Thermodyn. Chim.</u> , <u>af. 22375d.</u> <u>JRITY OF MATERIALS:</u> <u>Matheson Co. Inc.</u> <u>commercially available</u> <u>commercially avail</u>
101.325 kPa (1) The Bunsen coef A preliminary n {C.R.}, 4th 197 (C.R.}, 4th 197 METHOD /APPARATU The apparatu sign of Morrisc the version use Battino, Evans, degassing appar described by Ba and Wilhelm (3) Degassing. solvent is place size that the J deep. The liquing permanent gas n to 5 microns. Solubility I gassed solvent film down a glat taining the solvent film down a glat taining the volum found by differtial and final	atm) by I fficients report of 75, <u>6</u> , 12:	Auxiliary's law. were calculate this work apper 2 - 128; Chem. AUXILIARY RE: ed on the de- lett (1), and cribed by forth (2). The procedure are anzhof, Bogan,) cm ³ of flask of such about 4 cm oidly stirred, htermittently o until the pressure drops tion. The de- l in a thin tube con- blus the sol- ressure of one absorbed is yeen the ini- In the buret	Abstr. 1977 INFORMATION SOURCE AND PT 1. Helium Purest grade. 2. Octane 99 mol ESTIMATED ER REFERENCES: 1.Morrison J. Chem. 2.Battino, J.Am.Oil	mpiler. <u>f. Int. Thermodyn. Chim.</u> , <u>86</u> , 22375d. <u>URITY OF MATERIALS:</u> <u>Matheson Co. Inc.</u> <u>commercially available</u> <u>Commercially available</u>
101.325 kPa (1) The Bunsen coef A preliminary n {C.R.}, 4th 197 (C.R.}, 4th 197 METHOD /APPARATU The apparatu sign of Morrisc the version use Battino, Evans, degassing appar described by Ba and Wilhelm (3) Degassing. solvent is place size that the J deep. The liquing permanent gas n to 5 microns. Solubility I gassed solvent film down a glat taining the solvent film down a glat taining the volum found by differtial and final	atm) by I fficients report of 75, <u>6</u> , 12:	AUXILIARY AUXILIARY AUXILIARY AUXILIARY RE: ed on the de- lett (1), and procedure are anzhof, Bogan, cm ³ of cmth (2). The procedure are anzhof, Bogan, cm ³ of clask of such about 4 cm pidly stirred, ntermittently o until the pressure drops cion. The de- lin a thin tube con- plus the sol- cessure of one absorbed is yeen the ini- in the buret collected in	ed by the co pared in <u>Con</u> <u>Abstr</u> . 1977 INFORMATION SOURCE AND PU 1. Helium Purest grade. 2. Octane 99 mol ESTIMATED ER REFERENCES: 1.Morrison J. Chem. 2.Battino, J.Am.Oil 3.Battino, Wilhelm,	mpiler. <u>f. Int. Thermodyn. Chim.</u> , <u>86</u> , 22375d. URITY OF MATERIALS: Matheson Co. Inc. commercially available Phillips Petroleum Co. per cent minimum. ROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.02$

COMPONENTS:	ORIGINAL MEASUREMENTS:
1	
1. Helium; He; 7440-59-7	Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M.
2. 3-Methylheptane; C ₈ H ₁₈ ; 589-81-1	
	J. Phys. Chem. 1957, 61, 1078-1083.
VARIABLES:	PREPARED BY:
т/к: 288.15 - 314.75	P. L. Long
P/kPa: 101.325 (1 atm)	
EXPERIMENTAL VALUES: T/K Mol Fraction	Bunsen Ostwald
	Coefficient Coefficient $\alpha \times 10^2$ L x 10^2
288.15 2.24 298.15 2.49	3.12 3.29 3.44 3.75
314.75 2.95	3.98 4.59
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = -RT \ln$	Х ₁ = 7823.7 + 42.733 т
Std. Dev. $\Delta G^\circ = 4.9$,	-
	$\Delta s^{0} J K^{-1} mol^{-1} = -42.733$
$\Delta n^{-}/5$ MOL - = 7823.7 ,	20 / 0 K MOT42,133
T/K Mol Fract	cion ΔG°/J mol ⁻¹
x ₁ x 10) ⁴
288.15 2.24	20,137
293.15 2.36	20,351
298.15 2.50 303.15 2.63	
308.15 2.76	20,992
313.15 2.90 318.15 3.04	21,206 21,419
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law.	a partial pressure of helium of
The Bunsen coefficients were calculate	ed by the compiler.
AUXILIARY	INFORMATION
METHOD: Volumetric. The solvent is sat-	SOURCE AND PURITY OF MATERIALS:
urated with gas as it flows through	1. Helium. Matheson Co., Inc. Both
an 8 mm x 180 cm glass spiral attached to a gas buret. The total pressure	standard and research grades were used.
of solute gas plus solvent vapor is	2. 3-Methylheptane. Humphrey-
maintained at 1 atm as the gas is absorbed.	Wilkinson, Inc. Shaken with
	H ₂ SO ₄ , washed, dried over Na, distilled through a vacuum column
1	
	ESTIMATED ERROR:
APPARATUS/PROCEDURE: The apparatus is a	$\delta T/K = 0.05$
modification of that of Morrison and Billett (1). The modifications in-	$\delta P/torr = 3$
clude the addition of a spiral stor- age for the solvent, a manometer for	$\delta X_1 / X_1 = 0.03$
a constant reference pressure, and an	REFERENCES:
extra buret for highly soluble gases. The solvent is degassed by a modi-	1. Morrison, T. J.; Billett, F. J. <u>Chem. Soc. 1948</u> , 2033;
fication of the method of Baldwin and	
Daniel (2).	 Baldwin, R. R.; Daniel, S. G. J. Appl. Chem. 1952, 2, 161.

~

COMPONENTS:	ORIGINAL MEASUREMENTS:
	Clever, H. L.; Battino, R.;
1. Helium; He; 7440-59-7	Saylor, J. H.; Gross, P. M.
2. 2,3-Dimethylhexane; C ₈ H ₁₈ ; 584-	
94-1	J. Phys. Chem. 1957, <u>61</u> , 1078-1083.
VARIABLES:	PREPARED BY:
т/к: 288.15 - 314.05	P. L. Long
P/kPa: 101.325 (1 atm)	
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald
$x_1 \times 10^4$	Coefficient Coefficient $\alpha \ge 10^2$ L $\ge 10^2$
288.15 2.26	3.19 3.37
298.15 2.47 314.05 2.89	3.44 3.76 3.95 4.54
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = RT \ln J$	$x_1 = 7200.1 + 44.850 T$
Std. Dev. $\Delta G^\circ = 15.8$, Coef. Corr. = 0.9996
$AH^{\circ}/T mol^{-1} = 7200 l$	$\Delta S^{\circ}/J K^{-1} mol^{-1} = -44.850$
$\begin{array}{ccc} T/K & Mol Fractor \\ X_1 \times 10 \\ \hline \end{array}$	tion ΔG°/J mol ⁻¹ 04
288.15 2.25	20,124
293.15 2.37	
298.15 2.49 303.15 2.61	
308.15 2.73	21,021
313.15 2.86 318.15 2.99	
The solubility values were adjusted 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calcula	
AUXILIARY	INFORMATION
METHOD: Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral at- tached to a gas buret. The total pressure of solute gas plus solvent vapor is maintained at 1 atm as the gas is absorbed.	 SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Both standard and research grades were used. 2. 2,3-Dimethylhexane. Humphrey-Wilkinson, Inc. Shaken with H₂SO₄, washed, dried over Na, distilled through a vacuum column
APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1).The modifications in- clude the addition of a spiral stor- age for the solvent, a manometer for a constant reference pressure, and an extra buret for highly soluble gases. The solvent is degassed by a modi- fication of the method of Baldwin and Daniel (2).	1. Morrison, T. J.; Billett, F. J. <u>Chem. Soc</u> . 1948, 2033;

COMPONENTS:	OPT CINAL MEANINESSING		
CONTONENTS:	ORIGINAL MEASUREMENTS:		
1. Helium; He; 7440-59-7	Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M.		
2. 2,4-Dimethylhexane; C ₈ H ₁₈ ; 589-			
43-5	J. Phys. Chem. 1957, 61, 1078-1083.		
VARIABLES:	PREPARED BY:		
T/K: 288.15 - 314.15	P. L. Long		
P/kPa: 101.325 (1 atm)			
EXPERIMENTAL VALUES:			
T/K Mol Fraction $x_1 \times 10^4$	BunsenOstwaldCoefficientCoefficient $\alpha \times 10^2$ L $\times 10^2$		
288.15 2.42	3.35 3.53		
298.15 2.72 314.15 3.33	3.71 4.05 4.46 5.13		
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = RT \ln X_{J}$	= 9304.5 + 36.983 T		
Std. Dev. $\Delta G^\circ = 17.7$,	Coef. Corr. = 0.9993		
$\Delta H^{\circ}/J \text{ mol}^{-1} = 9304.5,$	$\Delta s^{-1} = -36.983$		
T/K Mol Fract	ion $\Delta G^{\circ}/J \mod^{-1}$		
$x_1 \times 10^{-17}$)4		
288.15 2.41	19,961		
293.15 2.57	20,146		
298.15 2.74 303.15 2.92	20,331 20,516		
308.15 3.10	20,701		
313.15 3.28 318.15 3.47	20,886 21,070		
The solubility values were adjusted to a partial pressure of helium of 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculated by the compiler.			
AUXILIARY	INFORMATION		
METHOD:	SOURCE AND PURITY OF MATERIALS:		
METHOD: Volumetric. The solvent is saturated with gas as it flows through an 8 mm x 180 cm glass spiral attached to a gas buret. The total	 Helium. Matheson Co., Inc. Both standard and research grades were used. 		
pressure of solute gas plus solvent vapor is maintained at 1 atm as the gas is absorbed.	2. 2,4-Dimethylhexane. Humphrey- Wilkinson, Inc. Shaken with H ₂ SO ₄ , washed, dried over Na, distilled through a vacuum column		
	ESTIMATED ERROR:		
APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1). The modifications in- clude the addition of a spiral stor- age for the solvent, a manometer for	$\delta T/K = 0.05$ $\delta P/torr = 3$ $\delta X_1/X_1 = 0.03$		
a constant reference pressure, and an extra buret for highly soluble gases. The solvent is degassed by a modi- fication of the method of Baldwin and Daniel (2).	REFERENCES: 1. Morrison, T. J.; Billett, F. <u>J. Chem. Soc</u> . 1948, 2033; <u>ibid</u> .1952, 3819.		
2011202 (2),	 Baldwin, R. R.; Daniel, S. G. J. <u>Appl. Chem</u>. 1952, <u>2</u>, 161. 		

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Helium; He; 7440-59-7 2,2,4-Trimethylpentane (Iso- catapos C Hesi 540-84-1 	Clever, H. L.; Battino, R; Saylor, J. H.; Gross, P. M.
octane; C ₈ H ₁₈ ; 540-84-1	J. Phys. Chem. 1957, 61, 1078-1083.
VARIABLES:	PREPARED BY:
T/K: 288.15 - 314.95 P/kPa: 101.325 (1 atm)	P. L. Long
EXPERIMENTAL VALUES:	
T/K Mol Fraction $X_1 \times 10^4$	Bunsen Ostwald Coefficient Coefficient $\alpha \times 10^2$ L x 10^2
288.15 2.76 298.15 3.10 314.95 3.63	3.76 3.97 4.20 4.58 4.80 5.53
Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = - RT \ln$	X ₁ = 7670.1 + 41.489 т
Std. Dev. ΔG° = 11.6,	-
	$\Delta s^{-1} \ k^{-1} \ mol^{-1} = 41.489$
	tion $\Delta G^{\circ}/J \text{ mol}^{-1}$
288.15 293.15 293.15 298.15 3.08 303.15 3.24 308.15 3.41 313.15 3.58	19,833 20,040
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate	
AUXILIARY	INFORMATION
METHOD: Volumetric. The solvent is saturated with gas as it flows through an 8 mm x 180 cm glass spiral attached to a gas buret. The total pressure of solute gas plus solvent vapor is maintained at 1 atm as the gas is absorbed.	 SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Both standard and research grades were used. 2. 2,2,4-Trimethylpentane. Enjay Co. Used as received.
APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1). The modifications in- clude the addition of a spiral stor- age for the solvent, a manometer for	ESTIMATED ERROR: $\begin{array}{l} \delta T/K = 0.05 \\ \delta P/torr = 3 \\ \delta X_1/X_1 = 0.03 \end{array}$
a constant reference pressure, and an extra buret for highly soluble gases. The solvent is degassed by a modi- fication of the method of Baldwin and Daniel (2).	1. Morrison, T. J.; Billett, F. J. <u>Chem. Soc</u> . 1948, 2033;

COMPONENTS:	ORIGINAL MEASUREMENTS:
	Clever, H. L.; Battino, R.;
1. Helium; He; 7440-59-7	Saylor, J. H.; Gross, P. M.
2. Nonane; C ₉ H ₂₀ ; 111-84-2	
	<u>J. Phys</u> . <u>Chem</u> . 1957, <u>61</u> , 1078-1083.
VARIABLES:	PREPARED BY:
T/K: 288.15 - 314.95	P. L. Long
P/kPa: 101.325 (1 atm)	
EXPERIMENTAL VALUES:	Pumpon Option 12
T/K Mol Fraction $X_1 \times 10^4$	Bunsen Ostwald Coefficient Coefficient α x 10 ² L x 10 ²
288.15 2.03	2.56 2.70
298.15 2.41 314.95 2.87	3.00 3.28 3.53 4.07
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = - RT \ln$	$X_1 = 9558.8 + 37.394 T$
Std. Dev. ∆G° = 49.7,	Coef. Corr. = 0.9952
$\Delta H^{\circ}/J \text{ mol}^{-1} = 9558.8,$	$\Delta S^{\circ}/J K^{-1} mol^{-1} = -37.394$
T/K Mol Fract X ₁ x 10	cion ΔG°/J mol ⁻¹)4
288.15 2.06	
293.15 2.21 298.15 2.36	20,521 20,708
303.15 2.51	20,895
308.15 2.67 313.15 2.83	21,082 21,269
318.15 3.00	21,456
The solubility values were adjusted to 101.325 kPa (l atm) by Henry's law.	
The Bunsen coefficients were calculate	ed by the compiler.
	INFORMATION
METHOD: Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral at- tached to a gas buret. The total pressure of solute gas plus solvent vapor is maintained at 1 atm as the gas is absorbed.	 SOURCE AND PURITY OF MATERIALS; 1. Helium. Matheson Co., Inc. Both standard and research grades were used. 2. Nonane. Phillips Petroleum Co. Used as received.
ADDED NOTE. Makranczy, J.; Megyery- Balog, K.;Rusz, L.;Patyi, L. <u>Hung</u> , J. Ind. Chem. 1976, 4, 269 report an Ostwald coefficient of 0.028 at 298.15 K for this system. The value was not used in the smoothed data fit above.	
APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1). The modifications in- clude the addition of a spiral stor- age for the solvent, a manometer for	ESTIMATED ERROR: $\begin{array}{rcl} & \delta T/K &= & 0.05 \\ & \delta P/torr &= & 3 \\ & \delta X_1/X_1 &= & 0.03 \end{array}$
a constant reference pressure, and an extra buret for highly soluble gases. The solvent is degassed by a modi- fication of the method of Baldwin and Daniel (2).	REFERENCES: 1. Morrison, T. J.; Billett, F. <u>J. Chem. Soc</u> . 1948, 2033; <u>ibid</u> .1952, 3819.
	 Baldwin, R. R.; Daniel, S. G. J. <u>Appl</u>. <u>Chem</u>. 1952, <u>2</u>, 161.

.

COMPONENTS:	EVALUATOR:
 Helium; He; 7440-59-7 Decane; C₁₀H₂₂; 124-18-5 	H. L. Clever Chemistry Department Emory University Atlanta, Georgia 30322 U.S.A.
	April 1978

CRITICAL EVALUATION:

The solubility of helium in decane was measured by Clever, Battino, Saylor, and Gross (1), by Makranczy, Megyery-Balog, Rusz, and Patyi (2), and by Wilcock, Battino, and Danforth (3).

The value of Makranczy et al. (Ostwald coefficient 0.025, mole fraction 2.0 x 10^{-4} at 298.15 K) is not recommended. It was reported to only two significant figures and it is 15 - 20 percent lower than the smoothed data value at 298.15 K from the other two laboratories.

The smoothed data values of Wilcock et al. range from 4.4 percent higher at 288.15 K to 1.7 percent higher at 313.15 K. The two data sets agree within experimental error but the more recent data were determined with a better degassing procedure and with better control of temperature and pressure than used in the earlier work. Thus the data sets were combined with a weight of 2 to the Wilcock et al. values and a weight of 1 to the Clever et al. values by the method of least squares to a Gibbs energy equation linear in temperature. The solubility value at 288.35 K (1) was more than two standard deviations from the fit. It was omitted and the remaining solubility values were fitted again.

The recommended values for the thermodynamic changes in transfer of one mole of helium from a pressure of 101.325 kPa to the hypothetical unit mole fraction solution are

 $\Delta G^{\circ}/J \text{ mol}^{-1} = - RT \ln X_1 = 6,619.1 + 47.144 T$

Std. Dev. AG° = 31, Coef. Corr. = 0.9987

 $\Delta H^{\circ}/J \text{ mol}^{-1} = 6,619.1, \Delta S^{\circ}/J K^{-1} \text{ mol}^{-1} = -47.144$

The recommended mole fraction solubility and Gibbs energy values are in Table 1.

TABLE 1. The solubility of helium in decane. The mole fraction solubility and the Gibbs energy at 101.325 kPa as a function of temperature.

т/к	Mol Fraction $X_1 \times 10^4$	∆G°/J mol ⁻¹
283.15	2.072	19,968
288.15	2.176	20,203
293.15	2.281	20,439
298.15	2.387	20,675
303.15	2.494	20,911
308.15	2.603	21,146
313.15	2.713	21,382
318.15	2.823	21,618

Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M. J. Phys. Chem. 1. 1957, <u>61</u>, 1078.

Makranczy, J.; Megyery-Balog, K.; Rusz, L.; Patyi, L. Hung. J. Ind. 2.

<u>Chem</u>. 1976, <u>4</u>, 269. Wilcock, R. J.; Battino, R.; Danforth, W. F.; Wilhelm, E. J. <u>Chem</u>. <u>Thermodyn</u>. 1978, <u>10</u>, 817. з.

COMPONENTS: **ORIGINAL MEASUREMENTS:** Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M. 1. Helium; He; 7440-59-7 2. Decane; C₁₀H₂₂; 124-18-5 J. Phys. Chem. 1957, 61, 1078-1083 VARIABLES: PREPARED BY: P. L. Long T/K: 288.35 - 314.55 P/kPa: 101.325 (1 atm) EXPERIMENTAL VALUES: T/K Mol Fraction Ostwald Bunsen Coefficient Coefficient $x_1 \times 10^4$ $\alpha \times 10^2$ L x 10' 288.35 2.04 2.35 2.48 2.39 2.73 2,98 298.15 3.48 3.02 314.55 2.69 Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = - RT \ln X_1 = 7690.5 + 43.806 T$ Std. Dev. $\Delta G^{\circ} = 69.7$, Coef. Corr. = 0.9929 See the evaluation of helium + decane for the recommended Gibbs energy equation and the recommended solubility values. The solubility values were adjusted to a partial pressure of helium of 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculated by the compiler. AUXILIARY INFORMATION METHOD: Volumetric. The solvent is sat-SOURCE AND PURITY OF MATERIALS: urated with gas as it flows through an 8 mm x 180 cm glass spiral at- Helium. Matheson Co., Inc. Both standard and research grades were tached to a gas buret. The total pressure of solute gas plus solvent used. vapor is maintained at 1 atm as the Decane. Humphrey-Wilkinson, Inc. Shaken with H₂SO₄, washed, dried gas is absorbed. over Na. ESTIMATED ERROR: APPARATUS/PROCEDURE: The apparatus is a $\delta T/K = 0.05$ modification of that of Morrison and Billett (1). The modifications in-clude the addition of a spiral stor- $\delta P/torr = 3$ $\delta x_1 / x_1 = 0.03$ age for the solvent, a manometer for **REFERENCES:** a constant reference pressure, and an extra buret for highly soluble gases. The solvent is degassed by a modifi-1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033; ibid.1952, 3819. cation of the method of Baldwin and Daniel (2). Baldwin, R. R.; Daniel, S. G. J. <u>Appl</u>. <u>Chem</u>. 1952, <u>2</u>, 161. 2.

COMPONENTS:	OPTCINAL MEACUPENEMME		
L. Helium; He; 7440-59-7	ORIGINAL MEASUREMENTS: Wilcock, R.J.; Battino, R.;		
	Danforth, W.F; Wilhelm, E.		
2. Decane; C ₁₀ H ₂₂ ; 124-18-5	J. <u>Chem</u> . <u>Thermodyn</u> . 1978, <u>10</u> , 817-822.		
VARIABLES:	PREPARED BY:		
т/к: 283.18 - 313.35			
P/kPa: 101.325 (1 atm)	A.L. Cramer		
EXPERIMENTAL VALUES:			
T/K Mol Fraction	Bunsen Ostwald Coefficient Coefficient		
$x_1 \times 10^4$	$\alpha \times 10^2$ L × 10 ²		
	2 420 2 500		
283.18 2.081 298.23 2.367	2.420 2.509 2.710 2.959		
313.35 2.756	3.105 3.562		
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln$	$X_1 = 6885.8 + 46.223 T$		
Std. Dev. $\Delta G^{\circ} = 26$, C	oef. Corr. = 0.9993		
See the evaluation of helium + decane equation and recommended solubility v			
The solubility values were adjusted t 101.325 kPa (1 atm) by Henry's law.	o a partial pressure of helium of		
The Bunsen coefficients were calculat	ed by the compiler.		
A preliminary report of this work app {C.R.}, 4th 1975, <u>6</u> , 122-128; <u>Chem</u> Al	peared in <u>Conf. Int. Thermodyn</u> . <u>Chim</u> ., <u>ostr</u> . 1977, <u>86</u> , 22375d.		
AUXILIARY	INFORMATION		
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). See the helium + octane data sheet for more details.	 Helium. Matheson Co. Inc. Purest commercially available grade. Decane. Phillips Petroleum Co. 99 mol per cent minimum. 		
	ESTIMATED ERROR:		
	<pre>REFERENCES: 1.Morrison,T.J.;Billett,F. J.Chem.Soc. 1948, 2033. 2.Battino,R.;Evans,F.D.;Danforth,W.F. J.Am.Oil Chem. Soc. 1968, 45, 830. 3.Battino, R.; Banzhof,M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.</pre>		

ORIGINAL MEASUREMENTS:
Makranczy, J.; Megyery-Balog, K.;
Rusz, L.; Patyi, L.
Hung. J. Ind. Chem. 1976, 4, 269-280.
PREPARED BY:
S. A. Johnson
Bunsen Ostwald
$\begin{array}{cc} \text{Coefficient} & \text{Coefficient} \\ \alpha \times 10^2 & \text{L} \times 10^2 \end{array}$
2.0 2.2
, , , , , , , , , , , , , , , , ,
ent were calculated by the compiler.
INFORMATION
SOURCE AND PURITY OF MATERIALS:
Both the gas and liquid were analyti-
cal grade reagents of Hungarian or foreign origin. No further informa-
tion.
- ESTIMATED ERROR:
ESTIMATED ERROR: $\delta X_1 / X_1 = 0.03$
$\delta X_1 / X_1 = 0.03$ REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.;
δX ₁ /X ₁ = 0.03 REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G.
$\delta X_1 / X_1 = 0.03$ REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.;

-

-

COMPONENTS:	ORIGINAL MEASUREMENTS:
	Clever, H. L.; Battino, R.;
1. Helium; He; 7440-59-7	Saylor, J. H.; Gross, P. M.
2. Dodecane; C ₁₂ H ₂₆ ; 112-40-3	
	<u>J. Phys. Chem</u> . 1957, <u>61</u> , 1078-1083.
VARIABLES:	PREPARED BY:
T/K: 288.15 - 314.55 P/kPa: 101.325 (1 atm)	P. L. Long
EXPERIMENTAL VALUES: T/K Mol Fraction	Bunsen Ostwald
, c	Coefficient Coefficient
$x_1 \times 10^4$	$\begin{array}{c} \alpha \times 10^2 \qquad \text{L} \times 10^2 \\ \hline \end{array}$
288.15 2.00	1.98 2.09
298.15 2.24 314.55 2.58	2.20 2.40 2.49 2.87
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = -RT \ln$	
	-
Std. Dev. $\Delta G^\circ = 16.4$,	
$\Delta H^{\circ}/J \text{ mol}^{-1} = 7207.5,$	$\Delta s^{-1} \text{ mol}^{-1} = -45.761$
T/K Mol Fract	$\Delta G^{\circ}/J \text{ mol}^{-1}$
$x_1 \times 10$)4
288.15 2.01	•
293.15 2.12 298.15 2.22	20,622 20,851
303.15 2.33	21,080
308.15 2.44	21,309
313.15 2.56 318.15 2.67	21,538
JT0.TJ 2.07	21,766
······································	
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law.	
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law.	o a partial pressure of helium of
The solubility values were adjusted to	o a partial pressure of helium of
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate	o a partial pressure of helium of
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY	o a partial pressure of helium of ed by the compiler.
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD Volumetric. The solvent is sat- urated with gas as it flows through	o a partial pressure of helium of ed by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Both
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral at-	o a partial pressure of helium of ed by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS:
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral at- tached to a gas buret. The total pressure of solute gas plus solvent	o a partial pressure of helium of ed by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Both standard and research grades were used.
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral at- tached to a gas buret. The total	<pre>> a partial pressure of helium of ed by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Both standard and research grades were used. 2. Dodecane. Humphrey-Wilkinson,</pre>
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral at- tached to a gas buret. The total pressure of solute gas plus solvent vapor is maintained at 1 atm as the gas is absorbed.	 a partial pressure of helium of by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: Helium. Matheson Co., Inc. Both standard and research grades were used. Dodecane. Humphrey-Wilkinson,
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral at- tached to a gas buret. The total pressure of solute gas plus solvent vapor is maintained at 1 atm as the gas is absorbed. ADDED NOTE. Makranczy, J.; Megyery- Balog, K.;Rusz, L.;Patyi, L. Hung. J.	 a partial pressure of helium of by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Both standard and research grades were used. 2. Dodecane. Humphrey-Wilkinson, Inc. Shaken with H₂SO₄, washed,
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral at- tached to a gas buret. The total pressure of solute gas plus solvent vapor is maintained at 1 atm as the gas is absorbed. ADDED NOTE. Makranczy, J.; Megyery- Balog, K.;Rusz, L.;Patyi, L. <u>Hung. J.</u> Ind. Chem. 1976, 4, 269 report an	 a partial pressure of helium of by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: Helium. Matheson Co., Inc. Both standard and research grades were used. Dodecane. Humphrey-Wilkinson, Inc. Shaken with H₂SO₄, washed, dried over Na.
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral at- tached to a gas buret. The total pressure of solute gas plus solvent vapor is maintained at 1 atm as the gas is absorbed. ADDED NOTE. Makranczy, J.; Megyery- Balog, K.;Rusz, L.;Patyi, L. <u>Hung</u> . J. Ind. Chem. 1976, 4, 269 report an Ostwald coefficient of 0.022 at 298.15	 a partial pressure of helium of by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: Helium. Matheson Co., Inc. Both standard and research grades were used. Dodecane. Humphrey-Wilkinson, Inc. Shaken with H₂SO₄, washed, dried over Na.
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral at- tached to a gas buret. The total pressure of solute gas plus solvent vapor is maintained at 1 atm as the gas is absorbed. ADDED NOTE. Makranczy, J.; Megyery- Balog, K.;Rusz, L.;Patyi, L. <u>Hung</u> . J. Ind. Chem. 1976, 4, 269 report an	 a partial pressure of helium of by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: Helium. Matheson Co., Inc. Both standard and research grades were used. Dodecane. Humphrey-Wilkinson, Inc. Shaken with H₂SO₄, washed, dried over Na.
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral at- tached to a gas buret. The total pressure of solute gas plus solvent vapor is maintained at 1 atm as the gas is absorbed. ADDED NOTE. Makranczy, J.; Megyery- Balog, K.;Rusz, L.;Patyi, L. <u>Hung</u> . J. Ind. Chem. 1976, 4, 269 report an Ostwald coefficient of 0.022 at 298.15 K for this system. The value was not used in the smoothed data fit above. APPARATUS/PROCEDURE: The apparatus is a	 a partial pressure of helium of by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: Helium. Matheson Co., Inc. Both standard and research grades were used. Dodecane. Humphrey-Wilkinson, Inc. Shaken with H₂SO₄, washed, dried over Na.
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral at- tached to a gas buret. The total pressure of solute gas plus solvent vapor is maintained at 1 atm as the gas is absorbed. ADDED NOTE. Makranczy, J.; Megyery- Balog, K.;Rusz, L.;Patyi, L. <u>Hung</u> . J. <u>Ind. Chem</u> . 1976, <u>4</u> , 269 report an Ostwald coefficient of 0.022 at 298.15 K for this system. The value was not used in the smoothed data fit above. APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and	<pre>b a partial pressure of helium of ed by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Both standard and research grades were used. 2. Dodecane. Humphrey-Wilkinson, Inc. Shaken with H₂SO₄, washed, dried over Na. ESTIMATED ERROR:</pre>
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral at- tached to a gas buret. The total pressure of solute gas plus solvent vapor is maintained at 1 atm as the gas is absorbed. ADDED NOTE. Makranczy, J.; Megyery- Balog, K.;Rusz, L.;Patyi, L. <u>Hung. J.</u> Ind. Chem. 1976, 4, 269 report an Ostwald coefficient of 0.022 at 298.15 K for this system. The value was not used in the smoothed data fit above. APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1). The modifications in- clude the addition of a spiral stor-	<pre>o a partial pressure of helium of ed by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Both standard and research grades were used. 2. Dodecane. Humphrey-Wilkinson, Inc. Shaken with H₂SO₄, washed, dried over Na. ESTIMATED ERROR:</pre>
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral at- tached to a gas buret. The total pressure of solute gas plus solvent vapor is maintained at 1 atm as the gas is absorbed. ADDED NOTE. Makranczy, J.; Megyery- Balog, K.;Rusz, L.;Patyi, L. <u>Hung</u> . J. <u>Ind. Chem</u> . 1976, <u>4</u> , 269 report an Ostwald coefficient of 0.022 at 298.15 K for this system. The value was not used in the smoothed data fit above. APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1). The modifications in- clude the addition of a spiral stor- age for the solvent, a manometer for	<pre>b a partial pressure of helium of ed by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Both standard and research grades were used. 2. Dodecane. Humphrey-Wilkinson, Inc. Shaken with H₂SO₄, washed, dried over Na. ESTIMATED ERROR:</pre>
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral at- tached to a gas buret. The total pressure of solute gas plus solvent vapor is maintained at 1 atm as the gas is absorbed. ADDED NOTE. Makranczy, J.; Megyery- Balog, K.;Rusz, L.;Patyi, L. <u>Hung</u> . J. Ind. Chem. 1976, 4, 269 report an Ostwald coefficient of 0.022 at 298.15 K for this system. The value was not used in the smoothed data fit above. APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1). The modifications in- clude the addition of a spiral stor- age for the solvent, a manometer for a constant reference pressure, and an extra buret for highly soluble gases.	<pre>b a partial pressure of helium of ed by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Both standard and research grades were used. 2. Dodecane. Humphrey-Wilkinson, Inc. Shaken with H₂SO₄, washed, dried over Na. ESTIMATED ERROR:</pre>
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral at- tached to a gas buret. The total pressure of solute gas plus solvent vapor is maintained at 1 atm as the gas is absorbed. ADDED NOTE. Makranczy, J.; Megyery- Balog, K.;Rusz, L.;Patyi, L. <u>Hung</u> . J. <u>Ind. Chem. 1976, 4</u> , 269 report an Ostwald coefficient of 0.022 at 298.15 K for this system. The value was not used in the smoothed data fit above. APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1). The modifications in- clude the addition of a spiral stor- age for the solvent, a manometer for a constant reference pressure, and an	<pre>b a partial pressure of helium of ed by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Both standard and research grades were used. 2. Dodecane. Humphrey-Wilkinson, Inc. Shaken with H₂SO₄, washed, dried over Na. ESTIMATED ERROR:</pre>
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral at- tached to a gas buret. The total pressure of solute gas plus solvent vapor is maintained at 1 atm as the gas is absorbed. ADDED NOTE. Makranczy, J.; Megyery- Balog, K.;Rusz, L.;Patyi, L. Hung. J. Ind. Chem. 1976, 4, 269 report an Ostwald coefficient of 0.022 at 298.15 K for this system. The value was not used in the smoothed data fit above. APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1). The modifications in- clude the addition of a spiral stor- age for the solvent, a manometer for a constant reference pressure, and an extra buret for highly soluble gases. The solvent is degassed by a modi-	<pre>b a partial pressure of helium of ed by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Both standard and research grades were used. 2. Dodecane. Humphrey-Wilkinson, Inc. Shaken with H₂SO₄, washed, dried over Na. ESTIMATED ERROR:</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Helium; He; 7440-59-7	Makranczy, J.; Megyery-Balog, K.;
2. Tridecane; C ₁₃ H ₂₈ ; 629-50-5	Rusz, L.; Patyi, L.
13 20	
	Hung. J. Ind. Chem. 1976, 4, 269-280.
VARIABLES:	PREPARED BY:
T/K: 298.15	FREFARED DI:
P/kPa: 101.325 (1 atm)	S. A. Johnson
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald
$x_{1} \times 10^{4}$	Coefficient Coefficient α x 10 ² L x 10 ²
298.15 1.9	1.7 1.9
The mole fraction and Bunsen coefficie	ent were calculated by the compiler.
·	
AUXILIARY	INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS;
METHOD: Volumetric method. The apparatus of	SOURCE AND PURITY OF MATERIALS; Both the gas and liquid were analyti-
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS; Both the gas and liquid were analyti- cal grade reagents of Hungarian or
METHOD: Volumetric method. The apparatus of	SOURCE AND PURITY OF MATERIALS; Both the gas and liquid were analyti-
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS; Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa-
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS; Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa-
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS; Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa-
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS; Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa-
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS; Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa-
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS; Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa-
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS; Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa- tion.
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS; Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa-
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND PURITY OF MATERIALS; Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa- tion.
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa- tion.
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analytical grade reagents of Hungarian or foreign origin. No further information. ESTIMATED ERROR: $\delta x_1/x_1 = 0.03$
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa- tion. ESTIMATED ERROR: $\delta X_1/X_1 = 0.03$ REFERENCES:
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analytical grade reagents of Hungarian or foreign origin. No further information. ESTIMATED ERROR: $\delta X_1/X_1 = 0.03$ REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.;
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analytical grade reagents of Hungarian or foreign origin. No further information. ESTIMATED ERROR: $\delta X_1/X_1 = 0.03$ REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G.
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND PURITY OF MATERIALS; Both the gas and liquid were analytical grade reagents of Hungarian or foreign origin. No further information. ESTIMATED ERROR: $\delta x_1/x_1 = 0.03$ REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G. Veszpremi Vegyip. Egy. Kozl. 1957, 1, 55;
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analytical grade reagents of Hungarian or foreign origin. No further information. ESTIMATED ERROR: $\delta X_1/X_1 = 0.03$ REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.;

*

COMPONENTS:			ORIGINAL MEAS	UREMENTS:
			Clever, H.	L.; Battino, R.;
l. Helium; He;	7440-59-7	1	Saylor,	J. H.; Gross, P. M.
2. Tetradecane	; C ₁₄ ^H ₃₀ ; 629-59	-4		
	14 50		J. Phys. C	hem. 1957, 61, 1078-1083.
			<u> </u>	
VARIABLES:			PREPARED BY:	
	88.35 - 314.10			P. L. Long
P/kPa: 1	01.325 (1 atm)			
	-			
EXPERIMENTAL VALUES	T/K Mol Frac	tion	Bunsen	Ostwald
	•	~	Coefficient	Coefficient
	x ₁ x 1	.0*	α x 10 ²	$L \times 10^{2}$
	288.35 2.10)	1.76	1.86
	298.15 2.26		1.99	2.17
-	314.10 2.60)	2.12	2.44
Smoothed Data:	$\Delta G^{\circ}/J \text{ mol}^{-1} = -$	- RT ln	$x_1 = 6310.9$) + 48.565 T
	Std. Dev. AG° =		-	
	•			$mol^{-1} = -48.565$
	T/K Mo	ol Fract	tion $\Delta G^{\circ}/J$	mol ⁻¹
		$x_1 \times 10$)4	
	288.15	2.09	20,	305
	293.15	2.18	20,	548
	298.15 303.15	2.28 2.38		.791 .033
	308.15	2.47		276
	313.15 318.15	2.57 2.67		519 ,762
		2.07		
The solubility	values were adju	isted to	o a partial	pressure of helium of
101.325 kPa (1	atm) by Henry's	law.		
The Bunsen coef	ficients were ca	alculate	ed by the co	ompiler.
	At	IXILIARY	INFORMATION	
			· · · · · · · · · · · · · · · · · · ·	
	c. The solvent is as it flows the		SOURCE AND PU	JRITY OF MATERIALS: n. Matheson Co., Inc. Both
	m glass spiral a		standa	ard and research grades were
	buret. The tot ute gas plus sol		used.	
	ined at 1 atm as			lecane. Humphrey-Wilkinson,
gas is absorbed				Shaken with H ₂ SO ₄ , washed, over Na.
	ranczy, J.; Megy		urreu	over na.
	L.;Patyi, L. <u>Hu</u> 5, 4, 269 report			
	ient of 0.017 at		\$	
	em. The value wat the data fit a			
			ESTIMATED ER	ROR:
	E: The apparatus that of Morriso			$\delta T/K = 0.05$
	e modifications			$\delta P/torr = 3$ $\delta X_1/X_1 = 0.03$
clude the addit	ion of a spiral	stor-		
aye for the sol	vent, a manomete rence pressure,	and an	REFERENCES:	
extra buret for	highly soluble	gases.	1. Morris	son, T. J.; Billett, F.
	degassed by a mo method of Baldy			em. <u>Soc</u> . 1948, 2033; 1952, 3819.
Daniel (2).				
			2. Baldwi J. Apr	in, R. R.; Daniel, S. G. 51. <u>Chem</u> . 1952, <u>2</u> , 161.
		````		
Non-second second se		`	l	

	ORIGINAL MEASUREMENTS:
l. Helium; He; 7440-59-7	Makranczy, J.; Megyery-Balog, K.;
2. Pentadecane; C ₁₅ H ₃₂ ; 629-62-9	Rusz, L.; Patyi, L.
or	
Hexadecane; C ₁₆ H ₃₄ ; 544-76-3	Hung. J. Ind. Chem. 1976, <u>4</u> , 269-280.
VARIABLES:	PREPARED BY:
T/K: 298.15 P/kPa: 101.325 (1 atm)	S. A. Johnson
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald
$x_1 \times 10^4$	$\begin{array}{ccc} \text{Coefficient} & \text{Coefficient} \\ \alpha \times 10^2 & \text{L} \times 10^2 \end{array}$
Pentadecan	e; C _{15^H32} ; 629-62-9
298.15 1.8	1.5 1.6
Hexadecane	; C ₁₆ H ₃₄ ; 544-76-3
298.15 1.8	1.4 1.5
AUXILIARY	INFORMATION
AUXILIARY METHOD:	INFORMATION SOURCE AND PURITY OF MATERIALS:
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS; Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa-

•

,

COMPONENTS:	EVALUATOR:
1. Helium; He; 7440-59-7 2. Cyclohexane; C ₆ H ₁₂ ; 110-82-7	H. L. Clever Chemistry Department Emory University Atlanta, GA 30322 USA
	January 1978
CRITICAL EVALUATION:	
	clohexane was measured by Lannung (1), Sross (2). The two data sets agree to

within better than one percent over 288 - 303 K, the temperature range of common measurement. The agreement is well within the estimated experi-mental error of the methods used. Dymond and Hildebrand (3) show a helium in cyclohexane solubility value at 298.15 K on a graph. Their value was not used in the evaluation.

The two data sets were combined on a one to one weight basis for the recommended values (Table 1). The recommended thermodynamic values for the transfer of one mole of helium from the gas at 101.325 kPa (1 atm) to the hypothetical unit mole fraction solution are

 $\Delta G^{\circ}/J \mod^{-1} = 10,164 + 40.841 T$ 

Std. Dev.  $\Delta G^{\circ} = 23.2$ , Coef. Corr. = 0.9980

 $\Delta H^{\circ}/J \mod^{-1} = 10,164, \Delta S^{\circ}/J K^{-1} \mod^{-1} = -40.841$ 

The recommended mole fraction solubilities at 101.325 kPa and the Gibbs energy changes are summarized at five degree intervals between 288.15 and 318.15 K in Table 2.

TABLE 1. Parameters for Gibbs energy equation.

$\Delta G^{\circ}/J \text{ mol}^{-1} = A + BT$	Std. Dev. AG°	No. Exp. Points	Weight	Reference
10,297 + 40.398 T 10,009 + 41.341 T	28.3 6.0	6 3	1 1	1 2
10,164 + 40.841 T	23.2	9		1 + 2

TABLE 2. Recommended mole fraction solubility and Gibbs energy of solution at 101.325 kPa (1 atm).

T/K	Mol Fraction $X_1 \times 10^4$	∆G°/J mol ⁻¹
288.15	1.06	21,933
293.15	1.14	22,137
298.15	1.22	22,341
303.15	1.30	22,545
308.15	1.39	22,749
313.15	1.48	22,954
318,15	1.58	23,158

 Lannung, A. J. Am. Chem. Soc. 1930, 52, 68.
 Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M. J. Phys. Chem. 1957, <u>61</u>, 1078. 3. Dymond, J.; Hildebrand, J. H. <u>Ind. Eng. Chem. Fundam.</u> 1967, <u>6</u>, 130.

REPARED BY:	<u>n. Soc</u> . 1930, <u>52</u> , 68 - 80.
REPARED BY:	<u>n. Soc</u> . 1930, <u>52</u> , 68 - 80.
REPARED BY:	n. <u>Soc</u> . 1930, <u>52</u> , 68 - 80.
P	
	P. L. Long
Bunsen	Ostwald
efficient α x 10 ²	Coefficient L x 10 ²
2.21	2.33
2.20 2.39	2.32 2.56
2,32	2.49
	3.00 2.94
	·····
= 10,297 +	
Coef. Corr.	. = 0.9948
ane.	e the critical evaluation
a partial p	
a partial p	pressure of helium of
a partial p twald coeff	pressure of helium of
a partial p twald coeff NFORMATION OURCE AND PUR 1. Helium.	Dressure of helium of Ficient were calculated by ITY OF MATERIALS: Linde's Liquid Air.
a partial p twald coeff NFORMATION OURCE AND PUR 1. Helium.	pressure of helium of Ficient were calculated by ITY OF MATERIALS:
a partial p twald coeff FORMATION OURCE AND PUR 1. Helium. Contain neon. 2. Cyclohe shaken separat until n distill jected,	Dressure of helium of Ficient were calculated by ITY OF MATERIALS: Linde's Liquid Air.
a partial p twald coeff FORMATION OURCE AND PUR 1. Helium. Contain neon. 2. Cyclohe shaken separat until n distill jected,	Diversible of the pressure of helium of Ficient were calculated by ITY OF MATERIALS: Linde's Liquid Air. Hed 0.5 per cent by volume exane. Poulenc Frères, with fuming sulfuric acid ted and shaken with water Heutral. Kept over $P_2O_5$ , and ted over $P_2O_5$ . First $\frac{1}{2}$ re- m.p. = 6.0°C. Distilled a, used m.p. 6.3°.
a partial p twald coeff twald coeff FORMATION OURCE AND PUR 1. Helium. Contain neon. 2. Cyclohe shaken separat until n distill jected, over Na	Diversible of the pressure of helium of Ficient were calculated by ITY OF MATERIALS: Linde's Liquid Air. Hed 0.5 per cent by volume exane. Poulenc Frères, with fuming sulfuric acid ted and shaken with water Heutral. Kept over $P_2O_5$ , and ted over $P_2O_5$ . First $\frac{1}{2}$ re- m.p. = 6.0°C. Distilled a, used m.p. 6.3°.
a partial p twald coeff FORMATION OURCE AND PUR I. Helium. Contain neon. 2. Cyclohe shaken separat until n distill jected, over Na STIMATED ERROM	The pressure of helium of Example the pressure of helium of Example the pressure of the pressure of the pressure of the press and the pressure of the press of the pressure of the press  The press of the prese of the press of
	efficient α x 10 ² 2.21 2.20 2.39 2.32 2.70 2.65 = 10,297 + Coef. Corr.

	OPTOTIVAL MELO	
COMPONENTS:	ORIGINAL MEAS	
1. Helium; He; 7440-59-7		L.; Battino, R.; J. H.; Gross, P. M.
2. Cyclohexane; C ₆ H ₁₂ ; 110-82-7	1 .	
	J. Phys. C	chem. 1957, 61, 1078 - 1083.
VARIABLES:	PREPARED BY:	
T/K: 288.15 - 314.75		P. L. Long
		-
EXPERIMENTAL VALUES:		
T/K Mol Fraction	Bunsen	Ostwald
	Coefficient	Coefficient
$x_1 \times 10^4$	α x 10 ²	$L \times 10^2$
288.15 1.06	2.20	2.32
298.45 1.23 314.75 1.51	2.53 3.05	2.76 3.51
	5.05	
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = -RT \ln$	$x_1 = 10,009$	+ 41.341 T
Std. Dev. ∆G° = 6.0,	Coef. Corr	. = 0.9999
The Bunsen coefficients were calculat		mniler
		mpiler.
AUXILIARY		mpiler.
	INFORMATION	
METHOD: Volumetric. The solvent is sat-	INFORMATION SOURCE AND PUT	RITY OF MATERIALS;
METHOD: Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral attache	INFORMATION SOURCE AND PUT 1. Helium d search	RITY OF MATERIALS; Matheson Co. Both re- and standard grades were
METHOD: Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral attache to a gas buret. The total pressure	INFORMATION SOURCE AND PUT 1. Helium d search used w	RITY OF MATERIALS; Matheson Co. Both re- and standard grades were ith no difference in re-
METHOD: Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral attache	INFORMATION SOURCE AND PU 1. Helium search used w sults.	RITY OF MATERIALS: Matheson Co. Both re- and standard grades were ith no difference in re-
METHOD: Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral attache to a gas buret. The total pressure is maintained at 1 atm as the gas is	INFORMATION SOURCE AND PUT 1. Helium d search used w sults. 2. Cycloh	RITY OF MATERIALS: Matheson Co. Both re- and standard grades were ith no difference in re- exane. Phillips Petroleum
METHOD: Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral attache to a gas buret. The total pressure is maintained at 1 atm as the gas is	INFORMATION SOURCE AND PUT 1. Helium d search used w sults. 2. Cycloh	RITY OF MATERIALS: Matheson Co. Both re- and standard grades were ith no difference in re- exane. Phillips Petroleum artlesville, OK. Used as
METHOD: Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral attache to a gas buret. The total pressure is maintained at 1 atm as the gas is	INFORMATION SOURCE AND PUT 1. Helium d search used w sults. 2. Cycloh Co., B	RITY OF MATERIALS: Matheson Co. Both re- and standard grades were ith no difference in re- exane. Phillips Petroleum artlesville, OK. Used as
METHOD: Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral attache to a gas buret. The total pressure is maintained at 1 atm as the gas is	INFORMATION SOURCE AND PUT 1. Helium d search used w sults. 2. Cycloh Co., B	RITY OF MATERIALS: Matheson Co. Both re- and standard grades were ith no difference in re- exane. Phillips Petroleum artlesville, OK. Used as
METHOD: Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral attache to a gas buret. The total pressure is maintained at 1 atm as the gas is absorbed.	INFORMATION SOURCE AND PUT 1. Helium d search used w sults. 2. Cycloh Co., B receiv	RITY OF MATERIALS; Matheson Co. Both re- and standard grades were ith no difference in re- exane. Phillips Petroleum artlesville, OK. Used as ed.
METHOD: Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral attache to a gas buret. The total pressure is maintained at 1 atm as the gas is absorbed. APPARATUS/PROCEDURE: The apparatus is a	INFORMATION SOURCE AND PUT 1. Helium d search used w sults. 2. Cycloh Co., B	RITY OF MATERIALS: Matheson Co. Both re- and standard grades were ith no difference in re- exane. Phillips Petroleum artlesville, OK. Used as ed. OR:
METHOD: Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral attache to a gas buret. The total pressure is maintained at 1 atm as the gas is absorbed. APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1). The modifications in-	INFORMATION SOURCE AND PUT 1. Helium d search used w sults. 2. Cycloh Co., B receiv	RITY OF MATERIALS: Matheson Co. Both re- and standard grades were ith no difference in re- exane. Phillips Petroleum artlesville, OK. Used as ed. OR: $\delta T/K = 0.05$ $\delta P/torr = 3$
METHOD: Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral attache to a gas buret. The total pressure is maintained at 1 atm as the gas is absorbed. APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1). The modifications in- clude the addition of a spiral stor-	INFORMATION SOURCE AND PUT 1. Helium d search used w sults. 2. Cycloh Co., B receiv	RITY OF MATERIALS: Matheson Co. Both re- and standard grades were ith no difference in re- exane. Phillips Petroleum artlesville, OK. Used as ed. OR: δT/K = 0.05
METHOD: Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral attache to a gas buret. The total pressure is maintained at 1 atm as the gas is absorbed. APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1). The modifications in- clude the addition of a spiral stor- age for the solvent, a manometer for a constant reference pressure, and an	INFORMATION SOURCE AND PUT 1. Helium d search used w sults. 2. Cycloh Co., B receiv ESTIMATED ERR REFERENCES:	RITY OF MATERIALS: Matheson Co. Both re- and standard grades were ith no difference in re- exane. Phillips Petroleum artlesville, OK. Used as ed. OR: $\delta T/K = 0.05$ $\delta P/torr = 3$ $\delta X_1/X_1 = 0.03$
METHOD: Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral attache to a gas buret. The total pressure is maintained at 1 atm as the gas is absorbed. APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1). The modifications in- clude the addition of a spiral stor- age for the solvent, a manometer for a constant reference pressure, and an extra buret for highly soluble gases.	INFORMATION SOURCE AND PU 1. Helium d search used w sults. 2. Cycloh Co., B receiv ESTIMATED ERR REFERENCES: 1. Morriso	RITY OF MATERIALS: A. Matheson Co. Both re- and standard grades were ith no difference in re- exane. Phillips Petroleum artlesville, OK. Used as ed. OR: $\delta T/K = 0.05$ $\delta P/torr = 3$ $\delta X_1/X_1 = 0.03$ n, T. J.; Billett, F.
METHOD: Volumetric. The solvent is saturated with gas as it flows through an 8 mm x 180 cm glass spiral attache to a gas buret. The total pressure is maintained at 1 atm as the gas is absorbed. APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1). The modifications in- clude the addition of a spiral stor- age for the solvent, a manometer for a constant reference pressure, and an extra buret for highly soluble gases. The solvent is degassed by a modifi- cation of the method of Baldwin and	INFORMATION SOURCE AND PU 1. Helium d search used w sults. 2. Cycloh Co., B receiv ESTIMATED ERR REFERENCES: 1. Morriso J. Chem	RITY OF MATERIALS: Matheson Co. Both re- and standard grades were ith no difference in re- exane. Phillips Petroleum artlesville, OK. Used as ed. OR: $\delta T/K = 0.05$ $\delta P/torr = 3$ $\delta X_1/X_1 = 0.03$
METHOD: Volumetric. The solvent is saturated with gas as it flows through an 8 mm x 180 cm glass spiral attache to a gas buret. The total pressure is maintained at 1 atm as the gas is absorbed. APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1). The modifications in- clude the addition of a spiral stor- age for the solvent, a manometer for a constant reference pressure, and an extra buret for highly soluble gases. The solvent is degassed by a modifi-	INFORMATION SOURCE AND PU 1. Helium d search used w sults. 2. Cycloh Co., B receiv ESTIMATED ERR REFERENCES: 1. Morriso J. Chem ibid. 1	RITY OF MATERIALS: Matheson Co. Both re- and standard grades were ith no difference in re- exane. Phillips Petroleum artlesville, OK. Used as ed. OR: $\delta T/K = 0.05$ $\delta P/torr = 3$ $\delta X_1/X_1 = 0.03$ n, T. J.; Billett, F. Soc. 1948, 2033; 952, 3819.
METHOD: Volumetric. The solvent is sat- urated with gas as it flows through an 8 mm x 180 cm glass spiral attache to a gas buret. The total pressure is maintained at 1 atm as the gas is absorbed. APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1). The modifications in- clude the addition of a spiral stor- age for the solvent, a manometer for a constant reference pressure, and an extra buret for highly soluble gases. The solvent is degassed by a modifi- cation of the method of Baldwin and	INFORMATION SOURCE AND PUT 1. Helium d search used w sults. 2. Cycloh Co., B receiv ESTIMATED ERR REFERENCES: 1. Morriso J. Chem ibid. 1 2. Baldwin	RITY OF MATERIALS; Matheson Co. Both re- and standard grades were ith no difference in re- exane. Phillips Petroleum artlesville, OK. Used as ed. OR: $\delta T/K = 0.05$ $\delta P/torr = 3$ $\delta X_1/X_1 = 0.03$ n, T. J.; Billett, F. Soc. 1948, 2033;

COMPONENTS:	ODICINAL MERCURPLEMENT
COM UNENTS :	ORIGINAL MEASUREMENTS: Clever, H. L.; Saylor, J. H.;
1. Helium; He; 7440-59-7	Gross, P. M.
<ol> <li>Methylcyclohexane; C₇H₁₄;</li> </ol>	
108-87-2	J. Phys. Chem. 1958, 62, 89 - 91.
VARIABLES:	PREPARED BY:
T/K: 289.15 - 316.25	
P/kPa: 101.325 (1 atm)	P. L. Long
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald
$x_1 \times 10^4$	Coefficient Coefficient $\alpha \ge 10^2$ L $\ge 10^2$
289.15 1.46	2.57 2.72
303.15 1.68 316.25 2.07	2.93 3.25 3.54 4.10
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = -RT \ln$	
	-
Std. Dev. $\Delta G^\circ = 69.5$ ,	Coef. Corr. = 0.9917
$\Delta H^{\circ}/J \text{ mol}^{-1} = 9804.7,$	$\Delta s^{\circ}/J K^{-1} mol^{-1} = -39.657$
T/K Mol Fract	tion $\Delta G^{\circ}/J \mod^{-1}$
X ₁ × 10	
288.15 1.42	21,232
293.15 1.52 208.15 1.62	21,430
298.15 1.62 303.15 1.73	21,628 21,827
308.15 1.85	22,025
313.15 1.96 318.15 2.08	22,223 22,421
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate	
AUXILIARY	INFORMATION
METHOD: Volumetric (1). The apparatus	SOURCE AND PURITY OF MATERIALS:
is a modification of that used by Morrison and Billett (2). Modifica- tions include the addition of a	<ol> <li>Helium. Matheson Co., Inc. Both standard and research grades were used.</li> </ol>
spiral solvent storage tubing, a manometer for constant reference	2. Methylcyclohexane. Eastman
pressure, and an extra gas buret for highly soluble gases.	Kodak Co., white label. Dried over Na and distilled; corrected b.p. 100.95 to 100.97°, lit.
	b.p. 100.93°.
APPARATUS/PROCEDURE: (a.) Degassing.	ESTIMATED ERROR: $\delta T/K = 0.05$
700 ml of solvent is shaken and evacuated while attached to a cold	$\begin{array}{rcl} \delta P / mm & Hg = 3 \\ \delta X_1 / X_1 = 0.03 \end{array}$
trap, until no bubbles are seen; sol-	
vent is then transferred through a 1 mm. capillary tubing, released as a	REFERENCES:
fine mist into a continuously evacu-	1. Clever, H. L.; Battino, R.;
ated flask. (b.) Solvent is satura- ted with gas as it flows through	Saylor, J. H.; Gross, P. M. <u>J. Phys</u> . <u>Chem</u> . <u>1957, 61</u> , 1078.
8 mm x 180 cm of tubing attached to a	
gas buret. Pressure is maintained at l atm. as the gas is absorbed.	2. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033; <u>ibid.1952</u> , 3819.

COMPONENTS:	OPTOTNAL MEACUPENTING
	ORIGINAL MEASUREMENTS: Wilcock, R. J.; Battino, R;
1. Helium; He; 7440-59-7	Wilhelm, E.
2. Cyclooctane; C ₈ H ₁₆ ; 292-64-8	
	J. <u>Chem</u> . <u>Thermodyn</u> . 1977, <u>9</u> , 111-115.
VARIABLES:	PREPARED BY:
T/K: 289.23 - 313.51	H. L. Clever
P/kPa: 101.325	
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald
$x_1 \times 10^4$	Coefficient Coefficient $\alpha \times 10^2$ L x $10^2$
289.23 0.805	1.35 1.429
289.23 0.805 298.15 0.822 313.51 1.015	1.37 1.491 1.66 1.907
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = -RT \ln$	<i>±</i>
	Coef. Corr. = 0.9888
$\Delta H^{\circ}/J \text{ mol}^{-1} = 7618.0,$	$\Delta s^{\prime} J \kappa^{-1} mol^{-1} = -52.284$
T/K Mol Fract X ₁ x 10	tion $\Delta G^{\circ}/J \text{ mol}^{-1}$
293.15 0.81	6 22,945
298.15 0.860 303.15 0.904	
308.15 0.95 313.15 0.99	0 23,729
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. 5 calculated by the compiler.	
AUXILIARY	INFORMATION
METHOD: The apparatus is based on the	SOURCE AND PURITY OF MATERIALS:
METHOD: The apparatus is based on the design by Morrison and Billett (1) and the version used is described by	SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Minimum purity 99.995 mol per
METHOD: The apparatus is based on the design by Morrison and Billett (1) and the version used is described by	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>1. Helium. Matheson Co., Inc. Minimum purity 99.995 mol per cent.</li> <li>2. Cyclooctane. Chemical Samples Co. 99 mol per cent, fractionally distilled, n(Na D, 298.15 K) =</li> </ul>
METHOD: The apparatus is based on the design by Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). APPARATUS/PROCEDURE: Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapid- ly stirred and vacuum is applied in-	<pre>SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Minimum purity 99.995 mol per cent. 2. Cyclooctane. Chemical Samples Co. 99 mol per cent, fractionally distilled, n(Na D, 298.15 K) = 1.4562. ESTIMATED ERROR:</pre>
METHOD: The apparatus is based on the design by Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). APPARATUS/PROCEDURE: Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapid- ly stirred and vacuum is applied in- termittently through a liquid N ₂ trap until the permanent gas residual	<pre>SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Minimum purity 99.995 mol per cent. 2. Cyclooctane. Chemical Samples Co. 99 mol per cent, fractionally distilled, n(Na D, 298.15 K) = 1.4562.</pre>
METHOD: The apparatus is based on the design by Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). APPARATUS/PROCEDURE: Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapid- ly stirred and vacuum is applied in- termittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns.	<pre>SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Minimum purity 99.995 mol per cent. 2. Cyclooctane. Chemical Samples Co. 99 mol per cent, fractionally distilled, n(Na D, 298.15 K) = 1.4562. ESTIMATED ERROR:</pre>
METHOD: The apparatus is based on the design by Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). APPARATUS/PROCEDURE: Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapid- ly stirred and vacuum is applied in- termittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent passes in a thin film	<pre>SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Minimum purity 99.995 mol per cent. 2. Cyclooctane. Chemical Samples Co. 99 mol per cent, fractionally distilled, n(Na D, 298.15 K) = 1.4562. ESTIMATED ERROR:</pre>
METHOD: The apparatus is based on the design by Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). APPARATUS/PROCEDURE: Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapid- ly stirred and vacuum is applied in- termittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de-	<pre>SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Minimum purity 99.995 mol per cent. 2. Cyclooctane. Chemical Samples Co. 99 mol per cent, fractionally distilled, n(Na D, 298.15 K) = 1.4562. ESTIMATED ERROR:</pre>
METHOD: The apparatus is based on the design by Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). APPARATUS/PROCEDURE: Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapid- ly stirred and vacuum is applied in- termittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent passes in a thin film down a glass spiral containing the solute gas and solvent vapor at a total pressure of one atm. The vol-	SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Minimum purity 99.995 mol per cent. 2. Cyclooctane. Chemical Samples Co. 99 mol per cent, fractionally distilled, n(Na D, 298.15 K) = 1.4562. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.03$ REFERENCES:
METHOD: The apparatus is based on the design by Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). APPARATUS/PROCEDURE: Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapid- ly stirred and vacuum is applied in- termittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent passes in a thin film down a glass spiral containing the solute gas and solvent vapor at a total pressure of one atm. The vol- ume of gas absorbed is measured in the attached gas buret, and the	SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Minimum purity 99.995 mol per cent. 2. Cyclooctane. Chemical Samples Co. 99 mol per cent, fractionally distilled, n (Na D, 298.15 K) = 1.4562. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.03$ REFERENCES: 1. Morrison, T. J.; Billett, F. <u>J. Chem. Soc</u> . 1948, 2033. 2. Battino, R.; Evans, F. D.;
METHOD: The apparatus is based on the design by Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). APPARATUS/PROCEDURE: Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapid- ly stirred and vacuum is applied in- termittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent passes in a thin film down a glass spiral containing the solute gas and solvent vapor at a total pressure of one atm. The vol- ume of gas absorbed is measured in	SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Minimum purity 99.995 mol per cent. 2. Cyclooctane. Chemical Samples Co. 99 mol per cent, fractionally distilled, n(Na D, 298.15 K) = 1.4562. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.03$ REFERENCES: 1. Morrison, T. J.; Billett, F. <u>J. Chem. Soc</u> . 1948, 2033.

COMPONENTS:			ORIGINAL MEAS		
l. Helium	m; He; 7440-	59-7	Geller, E. Wilhelm,	B.; Battino, R.; E.	
2. <u>cis</u> -1, C ₈ H ₁₆ ;	,2-Dimethylc; 2207-01-4	yclohexane;			
			<u>J</u> . <u>Chem</u> . <u>1</u>	<u>hermodyn</u> . 1976, <u>8</u> , 197 [.]	-202
VARIABLES:			PREPARED BY:		
T/F	K: 297.96 -	298.28		H. L. Clever	
P/kPa	a: 101.325	(1 atm)			
EXPERIMENTAL V		Mal Tree all an		Ostwald	
	т/к	Mol Fraction $X_1 \times 10^4$	Bunsen Coefficient $\alpha \times 10^2$		
	297.96 298.28	1.48 1.40	2.34 2.22	2.55 2.42	
101.325 kPa	a (l atm) by	were adjusted t Henry's law. s were calculat		pressure of helium of	
		AUXILIARY	INFORMATION		
METHOD: The a	apparatus is	based on the	SOURCE AND PL	JRITY OF MATERIALS;	
design by and the ve	Morrison and	based on the d Billett (1) is described by	SOURCE AND PU 1. Helium Chemic	URITY OF MATERIALS: h. Either Air Products ( sals, Inc. or Matheson ( 99 mol % or better.	
design by and the ve	Morrison and ersion used :	based on the d Billett (1) is described by	SOURCE AND PU 1. Helium Chemic Inc., 2. <u>cis-</u> 1, <u>Chemic</u>	<ul> <li>a. Either Air Products a</li> <li>als, Inc. or Matheson (</li> <li>99 mol % or better.</li> <li>2-Dimethylcyclohexane.</li> <li>al Samples Co., fractic</li> </ul>	Co., onal
design by and the ve Battino, E	Morrison and ersion used f Evans and Dar	based on the d Billett (1) is described by nforth (2).	SOURCE AND PU 1. Helium Chemic Inc., 2. cis-1, Chemic ly dis	<ul> <li>a. Either Air Products a</li> <li>als, Inc. or Matheson (</li> <li>99 mol % or better.</li> <li>2-Dimethylcyclohexane.</li> </ul>	Co., onal
design by and the ve Battino, F APPARATUS/P 500 cm ³ of s flask of su	Morrison and ersion used : Evans and Dar ROCEDURE: De solvent is p ch size that	based on the d Billett (1) is described by nforth (2). egassing. Up to blaced in a the liquid is	SOURCE AND PU 1. Helium Chemic Inc., 2. cis-1, Chemic ly dis	<ul> <li>a. Either Air Products and als, Inc. or Matheson (99 mol % or better.</li> <li>2-Dimethylcyclohexane.</li> <li>cal Samples Co., fraction the stored in data and stored in data</li></ul>	Co., onal
design by and the ve Battino, E APPARATUS/P 500 cm ³ of flask of su about 4 cm o ly stirred,	Morrison and ersion used : Evans and Dar ROCEDURE: De solvent is p ch size that deep. The li and vacuum	based on the d Billett (1) is described by nforth (2). egassing. Up to blaced in a the liquid is quid is rapid- is applied in-	SOURCE AND PU 1. Helium Chemic Inc., 2. cis-1, Chemic ly dis n _D (298	<ul> <li>a. Either Air Products a cals, Inc. or Matheson ( 99 mol % or better.</li> <li>2-Dimethylcyclohexane.</li> <li>aal Samples Co., fraction tilled and stored in data ( 1.15 K) 1.4337.</li> </ul>	Co., onal
design by and the ve Battino, E APPARATUS/P 500 cm ³ of s flask of su about 4 cm o ly stirred, termittentl	Morrison and ersion used a Evans and Dar ROCEDURE: De solvent is p ch size that deep. The li and vacuum y through a	based on the d Billett (1) is described by nforth (2). egassing. Up to blaced in a the liquid is quid is rapid- is applied in- liquid N ₂ trap	SOURCE AND PU 1. Helium Chemic Inc., 2. cis-1, Chemic ly dis n _D (298	<pre>A. Either Air Products a cals, Inc. or Matheson ( 99 mol % or better. 2-Dimethylcyclohexane. cal Samples Co., fractic tilled and stored in da c.15 K) 1.4337.</pre>	Co., onal
design by and the ve Battino, E APPARATUS/P 500 cm ³ of a flask of su about 4 cm ly stirred, termittentl until the poperssure dro	Morrison and ersion used for Evans and Dar ROCEDURE: De solvent is p ch size that deep. The li and vacuum y through a ermanent gas ops to 5 mic	based on the d Billett (1) is described by nforth (2). egassing. Up to blaced in a the liquid is quid is rapid- is applied in- liquid N ₂ trap s residual erons.	SOURCE AND PU 1. Helium Chemic Inc., 2. cis-1, Chemic ly dis n _D (298	<pre>A. Either Air Products a cals, Inc. or Matheson ( 99 mol % or better. 2-Dimethylcyclohexane. cal Samples Co., fractic tilled and stored in da tilled and stored in da til</pre>	Co., onal
design by and the ve Battino, E Battino, E APPARATUS/P 500 cm ³ of a flask of su about 4 cm ly stirred, termittentl until the pe pressure dr Solubility I	Morrison and ersion used is Evans and Dar ROCEDURE: De solvent is p ch size that deep. The li and vacuum y through a ermanent gas ops to 5 mic Determinatio	based on the d Billett (1) is described by nforth (2). egassing. Up to placed in a the liquid is quid is rapid- is applied in- liquid N ₂ trap s residual prons. on. The de-	SOURCE AND PU 1. Helium Chemic Inc., 2. cis-1, Chemic ly dis n _D (298	<pre>A. Either Air Products a cals, Inc. or Matheson ( 99 mol % or better. 2-Dimethylcyclohexane. cal Samples Co., fractic tilled and stored in da c.15 K) 1.4337.</pre>	Co., onal
design by and the ve Battino, F Battino, F APPARATUS/P 500 cm ³ of a flask of suc about 4 cm o ly stirred, termittentl until the po- pressure dro Solubility I gassed solvo film down a	Morrison and ersion used for Evans and Dar Evans and Dar ROCEDURE: De solvent is p ch size that deep. The li and vacuum y through a ermanent gas ops to 5 mic Determinatio ent is passe glass spira	based on the d Billett (1) is described by nforth (2). egassing. Up to blaced in a the liquid is quid is rapid- is applied in- liquid N ₂ trap s residual crons. m. The de- d in a thin l tube con-	SOURCE AND PU 1. Helium Chemic Inc., 2. cis-1, Chemic ly dis n _D (298 - ESTIMATED	Either Air Products a sals, Inc. or Matheson ( 99 mol % or better. 2-Dimethylcyclohexane. sal Samples Co., fractic tilled and stored in da 1.15 K) 1.4337. ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.03$	Co., onal
design by and the ve Battino, F Battino, F APPARATUS/P 500 cm ³ of s flask of suc about 4 cm of ly stirred, termittentl until the po pressure dro Solubility I gassed solve film down a taining the solvent vapo	Morrison and ersion used is Evans and Dar Evans and Dar ROCEDURE: De solvent is p ch size that deep. The li and vacuum y through a ermanent gas ops to 5 mic Determinatio Determinatio ent is passe glass spira solute gas or at a tota	based on the d Billett (1) is described by nforth (2). egassing. Up to blaced in a the liquid is quid is rapid- is applied in- liquid N ₂ trap s residual erons. on. The de- id in a thin il tube con- plus the l pressure of	SOURCE AND PU 1. Helium Chemic Inc., 2. cis-1, Chemic ly dis n _D (298 - ESTIMATED REFERENCES: 1. Morris	<pre>A. Either Air Products a cals, Inc. or Matheson ( 99 mol % or better. 2-Dimethylcyclohexane. cal Samples Co., fractic tilled and stored in da tilled and stored in da til</pre>	Co., onal
design by and the ve Battino, F Battino, F APPARATUS/P 500 cm ³ of a flask of suc about 4 cm of ly stirred, termittently until the popressure dr Solubility J gassed solve film down a taining the solvent vapone atm. The	Morrison and ersion used a Evans and Dar Evans and Dar Solvent is p ch size that deep. The li and vacuum y through a ermanent gas ops to 5 mic Determinatio ent is passe glass spira solute gas or at a tota e volume of	based on the d Billett (1) is described by nforth (2). egassing. Up to blaced in a the liquid is quid is rapid- is applied in- liquid N ₂ trap s residual erons. m. The de- id in a thin the tube con- plus the l pressure of gas absorbed	SOURCE AND PU 1. Helium Chemic Inc., 2. <u>cis</u> -1, Chemic ly dis n _D (298 - ESTIMATED REFERENCES: 1. Morris <u>J. Che</u>	a. Either Air Products a sals, Inc. or Matheson ( 99 mol % or better. 2-Dimethylcyclohexane. sal Samples Co., fraction tilled and stored in da 1.15 K) 1.4337. ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.03$ son, T. J.; Billett, F. Em. Soc. 1948, 2033.	Co., onal
design by and the ve Battino, E Battino, E APPARATUS/P: 500 cm ³ of a flask of su about 4 cm ly stirred, termittent! until the po- pressure dro Solubility I gassed solve film down a taining the solvent vapo one atm. The is found by	Morrison and ersion used for Evans and Dar Evans and Dar Constant of the solvent is p ch size that deep. The li and vacuum y through a ermanent gas ops to 5 mic Determinatio ent is passe glass spira solute gas or at a tota e volume of difference final volum	based on the d Billett (1) is described by nforth (2). egassing. Up to blaced in a the liquid is quid is rapid- is applied in- liquid N ₂ trap s residual erons. on. The de- d in a thin the tube con- plus the l pressure of gas absorbed between the mes in the	SOURCE AND PU 1. Helium Chemic Inc., 2. cis-1, Chemic ly dis n _D (298 - ESTIMATED REFERENCES: 1. Morris <u>J. Che</u> 2. Battir Danf	h. Either Air Products of eals, Inc. or Matheson ( 99 mol % or better. 2-Dimethylcyclohexane. al Samples Co., fraction tilled and stored in da 15 K) 1.4337. ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta x_1/x_1 = 0.03$ tion, T. J.; Billett, F. m. Soc. 1948, 2033. to, R.; Evans, F. D.; forth, W. F.	Donal ark.
design by and the ve Battino, E Battino, E Battino, E APPARATUS/P 500 cm ³ of a flask of su about 4 cm ly stirred, termittentl until the p pressure dro Solubility I gassed solve film down a taining the solvent vap one atm. The is found by initial and	Morrison and ersion used i Evans and Dar Evans and Dar Constant is p ch size that deep. The li and vacuum y through a ermanent gas ops to 5 mic Determinatio ent is passe glass spira solute gas or at a tota e volume of difference	based on the d Billett (1) is described by nforth (2). egassing. Up to blaced in a the liquid is quid is rapid- is applied in- liquid N ₂ trap s residual erons. on. The de- d in a thin a thin tube con- plus the l pressure of gas absorbed between the mes in the	SOURCE AND PU 1. Helium Chemic Inc., 2. cis-1, Chemic ly dis n _D (298 - ESTIMATED REFERENCES: 1. Morris <u>J. Che</u> 2. Battir Danf	a. Either Air Products a sals, Inc. or Matheson ( 99 mol % or better. 2-Dimethylcyclohexane. al Samples Co., fraction tilled and stored in da 15 K) 1.4337. ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.03$ fon, T. J.; Billett, F. m. Soc. 1948, 2033. No, R.; Evans, F. D.;	co.,

•

COMPONENTS:	ORIGINAL MEASUREMENTS:		
1. Helium; He; 7440-59-7	Geller, E. B.; Battino, R.;		
<ol> <li><u>trans</u>-1,2-Dimethylcyclohexane; C₈H₁₆; 6876-23-9</li> </ol>	Wilhelm, E.		
-8.19,	<u>J. Chem. Thermodyn</u> . 1976, <u>8</u> , 197-202.		
VARIABLES:	PREPARED BY:		
T/K: 298.03 P/kPa: 101.325 (1 atm)	H. L. Clever		
EXPERIMENTAL VALUES:	<b>I</b>		
T/K Mol Fraction $x_1 \times 10^4$	BunsenOstwaldCoefficientCoefficient $\alpha \ge 10^2$ L $\ge 10^2$		
298.03 1.80	2.78 3.03		
The solubility value was adjusted to 101.325 kPa (1 atm) by Henry's law.			
The Bunsen coefficient was calculate	ed by the compiler.		
AUXILIARY	INFORMATION		
METHOD: The apparatus is based on the	SOURCE AND PURITY OF MATERIALS:		
design by Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2).	<ol> <li>Helium. Either Air Products &amp; Chemicals, Inc. or Matheson Co., Inc., 99 mol % or better.</li> </ol>		
APPARATUS/PROCEDURE: Degassing. Up to 500 cm ³ of solvent is placed in a	2. trans-1,2-Dimethylcyclohexane. Chemical Samples Co., fractional- ly distilled and stored in dark. n _D (298.15) 1.4248.		
flask of such size that the liquid is about 4 cm deep. The liquid is rapid- ly stirred and vacuum is applied in-			
termittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent passes in a thin film	ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.03$		
down a glass spiral containing the solute gas plus the solvent vapor at a total pressure of one atm. The vol- ume of gas absorbed is measured in a buret system, and the solvent is	<pre>REFERENCES: 1. Morrison, T. J.; Billett, F. <u>J. Chem. Soc</u>. 1948, 2033. 2. Battino, R.; Evans, F. D.;</pre>		
collected in a tared flask and weighed.	Danforth, W. F. J. <u>Am. Oil Chem. Soc</u> . 1968, <u>45</u> , 830.		

COMPONENTS:	
	ORIGINAL MEASUREMENTS:
<ol> <li>Helium; He; 7440-59-7</li> <li>cis-1,3-Dimethylcyclohexane; 59</li> </ol>	Geller, E. B.; Battino, R.; Wilhelm. E.
$\frac{213}{\text{mol } \text{%;}C_8\text{H}_{16}\text{; 638-04-0}}$	
3. <u>trans</u> -1,3-Dimethylcyclohexane; 41 mol %;C ₈ H ₁₆ ; 2207-03-6	<u>J. Chem. Thermodyn</u> . 1976, <u>8</u> , 197-202.
VARIABLES: T/K: 298.09	PREPARED BY:
P/kPa: 101.325 (1 atm)	H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald
$x_1 \times 10^4$	$\begin{array}{c} \text{Coefficient} & \text{Coefficient} \\ \alpha \times 10^2 & \text{L} \times 10^2 \end{array}$
298.09 1.68	2.59 2.83
The solubility value was adjusted to 101.325 kPa (1 atm) by Henry's law.	
The Bunsen coefficient was calculate	ed by the compiler.
AUXILIARY	INFORMATION
METHOD: The apparatus is based on the design by Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2).	SOURCE AND PURITY OF MATERIALS: 1. Helium. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol % or better.
	<ol> <li>cis-1,3-Dimethylcyclohexane. Chemical Samples Co., binary mix- ture, analysed by R. I. by auth- ors, used as received.     </li> </ol>
APPARATUS/PROCEDURE: Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is	<ol> <li>trans-1,3-Dimethylcyclohexane. Chemical Samples Co., binary mix- ture, analysed by R. I. by auth-</li> </ol>
about 4 cm deep. The liquid is rapid- ly stirred, and vacuum is applied in-	ors. used as received.
termittently through a liquid N ₂ trap until the permanent gas residual	ESTIMATED ERROR: $\delta T/K = 0.03$
pressure drops to 5 microns. Solubility Determination. The de-	$\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.03$
gassed solvent passes in a thin film	
down a glass spiral tube conatining the solute gas plus the solvent vapor at a total pressure of one atm. The	REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033.
absorbed gas volume is measured in a buret system, and the solvent is	2. Battino, R.; Evans, F. D.;
collected in a tared flask and weighed.	2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. 1968, 45,
	830.

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Helium; He; 7440-59-7	Geller, E. B.; Battino, R.; Wilhelm, E.
2. <u>cis</u> -1,4-Dimethylcyclohexane; 70 mol %; C ₈ H ₁₆ ; 624-29-3	
3. <u>trans</u> -1,4-Dimethylcyclohexane; 30 mol %; $C_{8H_{16}}$ ; 2207-04-7	J. Chem. Thermodyn. 1976, 8, 197-202.
VARIABLES:	PREPARED BY:
T/K: 298.15 - 298.24	H. L. Clever
P/kPa: 101.325 (1 atm)	
EXPERIMENTAL VALUES:	L
T/K Mol Fraction	Bunsen Ostwald
$x_1 \times 10^4$	Coefficient Coefficient $\alpha \times 10^2$ L x $10^2$
298.15 1.64 298.24 1.64	2.53 2.76 2.53 2.76
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law.	o a partial pressure of helium of
The Bunsen coefficients were calculate	ed by the compiler.
AUXILIARY	INFORMATION
METHOD: The apparatus is based on the	SOURCE AND PURITY OF MATERIALS:
design by Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2).	1. Helium. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol % or better.
APPARATUS/PROCEDURE: Degassing. Up to 500 cm ³ of solvent is placed in a	<ol> <li>cis-1,4-Dimethylcyclohexane. Chemical Samples Co., binary mix- ture, analysed by R. I. by auth- ors, used as received.</li> </ol>
flask of such size that the liquid is about 4 cm deep. The liquid is rapid-	<ol> <li>trans-1,4-Dimethylcyclohexane. <u>Chemical Samples Co., binary mix-</u> ture, analysed by R. I. by auth- ors, used as received.</li> </ol>
ly stirred, and vacuum is applied in-	VIN: ubcu ub recetted
termittently through a liquid N ₂ trap	ESTIMATED ERROR:
termittently through a liquid $N_2$ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin	
termittently through a liquid $N_2$ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de-	ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$

COMPONENTS:	EVALUATOR:
<ol> <li>Helium; He; 7440-59-7</li> <li>Benzene; C₆H₆; 71-43-2</li> </ol>	H. L. Clever Chemistry Department Emory University Atlanta, Georgia 30322 USA
	January 1978

CRITICAL EVALUATION:

Since the early qualitative observation of Ramsay, Collie, and Travers (1) that helium is insoluble in benzene, the solubility of helium in benzene at 101,325 kPa (1 atm) was measured by Lannung (2), Clever, Battino, Saylor, and Gross (3), and de Wet (4). The three data sets and an equal weight calculation of the three were each fitted by the method of least squares to a free energy equation linear in temperature,

$$\Delta G^{\circ} = - RT \ln X_1 = A + BT.$$

In the combined data least squares fit only the 298.15 K solubility value from reference 3 fell more than 2 standard deviations from the least square line. That value was omitted and a second least square linear fit found which is the recommended equation. The information on the linear free energy equations is summarized in Table 1. Table 2 contains the recommended mole fraction solubilities of helium in benzene at five degree intervals from 288.15 to 318.15 K.

The recommended thermodynamic values for the transfer of helium from the gas at 101.325 kPa (1 atm) to the hypothetical unit mole fraction solution are

 $\Delta G^{\circ}/J \text{ mol}^{-1} = - RT \ln X_1 = 10,321 + 44,256 T$ 

Std. Dev.  $\Delta G^{\circ} = 22.6$ , Coef. Corr. = 0.9977

 $\Delta H^{\circ}/J \text{ mol}^{-1} = 10,321, \Delta S^{\circ}/J \text{ K}^{-1} \text{ mol}^{-1} = -44.256$ 

TABLE 1. Parameters for  $\Delta G^{\circ} = A + BT$  Equation.

$\Delta G^{\circ}/J \text{ mol}^{-1}$	Std. Dev. $\Delta G^{\circ}$	No. Exp. Points	Weight	Reference
10,318 + 44.260 T 10,242 + 44.422 T 10,057 + 45.153 T	25.0 51.2 25.6	10 3 3	1 1 1	2 3 4
I. 10,349 + 44.140 T II. 10,321 + 44.256 T	30.8 22.6	16 15		

TABLE 2. Solubility of Helium in Benzene. Recommended Mole Fraction Solubility and Gibbs Energy of Solution as a Function of Temperature.

Т/К	Mol Fraction $X_1 \times 10^4$	∆G°/J mol ⁻¹
288.15	0.657	23,073
293.15	0.707	23,294
298.15	0.759	23,515
303.15	0.813	23,737
308.15	0.869	23,958
313.15	0.926	24,179
318.15	0.986	24,401

Popov and Drakin (5) calculated apparent molal volumes of helium dissolved in benzene at 298.15 K from their density measurements of the saturated solutions over the pressure interval of 10 - 100 atm. Their results are:

P/atm	9.98	29.36	58.60	78.30	97.66
$V_1/cm^3 mol^{-1}$	33 ± 6	32 ± 2	30 ± 2	29 ± 0.7	24.4 ± 0.6

COMPONENTS:	EVALUATOR:		
<ol> <li>Helium; He; 7440-59-7</li> <li>Benzene; C₆H₆; 71-43-2</li> </ol>	H. L. Clever Chemistry Department Emory University Atlanta, Georgia 30322		
CRITICAL EVALUATION:			
No report of calorimetric measur helium in benzene was found.	rement of the enthalpy of solution of		
<ol> <li>Ramsay, W.; Collie, J. N.; Traver J. <u>Chem</u>. <u>Soc</u>. 1895, <u>67</u>, 684.</li> </ol>	cs, M.		
2. Lannung, A. J. Am. Chem. Soc. 19	930, <u>52</u> , 68.		
<ol> <li>Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M. J. Phys. Chem. 1957, <u>61</u>, 1078.</li> </ol>			
4. de Wet, W. J. <u>J. S. Afr. Chem. Inst</u> . 1964, <u>17</u> , 9.			
5. Popov, G. A.; Drakin, S. I. Zh.	<u>Fiz</u> . <u>Khim</u> . 1974, <u>48</u> , 631.		

1. Helium; He; 7440-59-7       Lannung, A.         2. Benzene; $C_{6}H_{6}$ ; 71-43-2       J. Am. Chem. Soc. 1930, 52, 68 -         VARIABLES:         T/K: 288.15 - 303.15         PREPARED BY:         DEXTERIMENTAL VALUES:         T/K MOI Fraction         Summer Coefficient         Ostwald         Ostwald         288.15       0.650         288.15       0.650         288.15       0.650         288.15       0.714       1.80       1.93         298.15       0.770       1.93       2.11         298.15       0.766       1.92       2.10         298.15       0.766       1.92       2.10         298.15       0.766       1.92       2.10         298.15       0.766       1.92       2.00         303.15       0.807       2.00       2.02         303.15       0.807       2.00       2.22         Smoothed Data: $\Delta G^O/J$ mol ⁻¹ = -RT ln X ₁ = 10,318 + 44.260 T         Std. Dev.AG ^O = 25.0, Coef. Corr. = 0.9946 <tr< th=""><th colspan="3">COMPONENTS:</th><th>ORIGINAL MEASU</th><th>REMENTS:</th><th></th></tr<>	COMPONENTS:			ORIGINAL MEASU	REMENTS:	
2. Benzene; $C_{6}H_{6}$ ; 71-43-2 J. Am. Chem. Soc. 1930, 52, 68 - VARIABLES: T/K: 288.15 - 303.15 <b>EXPERIMENTAL VALUES:</b> T/K Mol Fraction X ₁ x 10 ⁴ 288.15 288.15 0.650 1.65 1.74 293.15 0.714 293.15 0.714 293.15 0.714 293.15 0.714 293.15 0.714 293.15 0.714 1.80 1.93 293.15 0.714 1.80 1.93 293.15 0.716 1.93 2.10 298.15 0.758 1.90 2.00 2.01 2.23 303.15 0.803 2.00 2.22 Smoothed Data: $\Delta G^{0}/J$ mol ⁻¹ = -RT ln X ₁ = 10,318 + 44.260 T Std. Dev.AG ^o = 25.0, Coef. Corr. = 0.9946 For the recommended Gibbs free energy equation see the critical evaluation of the solubility of helium in benzene. The solubility values were adjusted to a partial pressure of helium of 101.325 kPa (1 atm) by Henry's law. The mole fraction solubility and the Ostwald coefficient were calculated by the compiler. AUXILIARY INFORMATION KETHOD: Gas absorption. The gas is presat- urated with solvent vapor. The gas volume absorbed is the difference between initial and final gas vol- umes. The amount of solvent is detra- the weight of mercury displaced. APPARATUS/FROCEDURE: The apparatus is a <b>J. Am. Chem. Soc.</b> 1930, 52, 68 - <b>J. Meltim. Linde's Liquid Air.</b> Contained 0.5 per cent by volu argewichtsbestimmung'. Melting point 5.48 °C. <b>ESTIMATED ERBOR:</b>	1. Helium; He;	7440-59-	7	Lannung, A.		
J. Am. Chem. Soc. 1930, 52, 68 -         VARIABLES:         T/K: 288.15 - 303.15         T/K: 288.15 - 303.15         PREPARED BY:         T/K: 001 Fraction $x_1 \times 10^4$ 288.15         0.650         1.65         288.15         0.650         1.65         288.15         0.650         1.65         293.15         0.714         1.80         298.15         0.714         298.15         0.714         298.15         0.758         1.90         298.15         0.758         1.90         298.15         0.758         1.90         298.15         0.758         1.90         201         210         298.15         0.803         2.00         298.15         0.758         1.90         291         292.10         293.11         293.15         1.80         1.90 <td colspan="2"></td> <td></td> <td></td> <td></td>						
T/K: 288.15 - 303.15       P.L.Long         P.L.Long         T/K: 288.15 - 303.15         T/K Mol Fraction         Summer P.L.Long         T/K Mol Fraction         Summer P.L.Long         T/K         288.15 0.650         288.15 0.650         288.15 0.714         293.15 0.714         298.15 0.770         298.15 0.770         298.15 0.776         298.15 0.776         298.15 0.766         298.15 0.776         1.90         200         2.01         2.23         Smoothed Data: $\Delta G^0/J \mod^{-1} = -RT \ln X_1 = 10,318 + 44.260 T         Std. Dev.AG0 = 25.0, Coef. Corr. = 0.9946         For the recommended Gibbs free energy equation see the critical evaluation of the solubility of helium in benzene.         AUXILIARY INFORMATION         WETROD:         Gas absorption. The gas is presaturated with solvent vapor. The gas volume absorbed is the difference between initial and final gas volume. The amount of solvent is determined by the weight of mercury displaced.     $	U			J. Am. Chem	. <u>Soc</u> . 1930,	<u>52</u> , 68 - 80.
EXPERIMENTAL VALUES: $T/K  Mol \; Fraction \\ X_1 \times 10^4 \qquad Coefficient \\ Contained \\ Coefficient \\ Contained \\ Coofficient \\ Cont$	VARIABLES:	<u> </u>		PREPARED BY:		
$\frac{T/K}{X_1 \times 10^4}$ $\frac{X_1 \times 10^4}{(288.15 \ 0.650 \ 1.65 \ 1.74}$ $\frac{288.15 \ 0.650 \ 1.65 \ 1.74}{288.15 \ 0.650 \ 1.65 \ 1.74}$ $\frac{288.15 \ 0.650 \ 1.65 \ 1.74}{293.15 \ 0.714 \ 1.80 \ 1.93}$ $\frac{293.15 \ 0.714 \ 1.80 \ 1.93}{293.15 \ 0.710 \ 1.79 \ 1.92}$ $\frac{296.15 \ 0.776 \ 1.92 \ 2.10}{298.15 \ 0.756 \ 1.92 \ 2.10}$ $\frac{298.15 \ 0.756 \ 1.92 \ 2.10}{298.15 \ 0.756 \ 1.92 \ 2.10}$ $\frac{298.15 \ 0.756 \ 1.92 \ 2.10}{298.15 \ 0.756 \ 1.92 \ 2.10}$ $\frac{200 \ 2.22}{200 \ 2.22}$ Smoothed Data: $\Delta G^O/J \ mol^{-1} = -RT \ ln \ X_1 = 10,318 + 44.260 \ T$ Std. Dev. $AG^O = 25.0$ , Coef. Corr. = 0.9946 For the recommended Gibbs free energy equation see the critical evaluation of the solubility of helium in benzene. The solubility values were adjusted to a partial pressure of helium of 101.325 kPa (1 atm) by Henry's law. The mole fraction solubility and the Ostwald coefficient were calculated by the compiler. $\frac{AUXILLARY INFORMATION}{KETROD:}$ Gas absorption. The gas is presaturated with solvent vapor. The gas volume absorbed is the difference between initial and final gas volumes. The amount of solvent is determined by the weight of mercury displaced. $SURCE AND FURITY OF MATERIALS:$ $\frac{SURCE AND FURITY OF MATERIALS:}{SURCE AND FURITY OF MATERIALS:}$ $\frac{SURCE AND FURITY OF MATERIALS:}{SURCE AND FURITY OF MATERIALS:}$	Т/К: 2	88.15 - 3	03.15	P	.L.Long	
$\frac{X_1 \times 10^4}{(288.15 \ 0.650 \ 1.65 \ 1.74}$ $\frac{X_1 \times 10^4}{(288.15 \ 0.650 \ 1.65 \ 1.74}$ $\frac{288.15 \ 0.650 \ 1.65 \ 1.74}{(293.15 \ 0.714 \ 1.80 \ 1.93}$ $\frac{293.15 \ 0.714 \ 1.80 \ 1.93}{(293.15 \ 0.714 \ 1.80 \ 1.93}$ $\frac{293.15 \ 0.770 \ 1.93 \ 2.11}{(298.15 \ 0.766 \ 1.92 \ 2.10 \ 2.22}$ $298.15 \ 0.758 \ 1.90 \ 2.07$ $\frac{298.15 \ 0.766 \ 1.92 \ 2.10}{(298.15 \ 0.766 \ 1.92 \ 2.10 \ 2.22}$ Smoothed Data: $\Delta G^O/J \mod^{-1} = -RT \ln X_1 = 10,318 + 44.260 \ T$ Std. Dev. $\Delta G^O = 25.0$ , Coef. Corr. = 0.9946 For the recommended Gibbs free energy equation see the critical evaluation of the solubility of helium in benzene. The solubility values were adjusted to a partial pressure of helium of 101.325 kPa (1 atm) by Henry's law. The mole fraction solubility and the Ostwald coefficient were calculated by the compiler. $\frac{AUXILLARY INFORMATION}{KETHOD:}$ Gas absorption. The gas is presaturated with solvent vapor. The gas volume absorbed is the difference between initial and final gas volume absorbed is the difference between initial and final gas volume absorbed is the difference between initial and final gas volume absorbed is the difference between initial and final gas volume absorbed is the difference between initial and final gas volume absorbed is the difference between initial and final gas volume absorbed is the difference between initial and final gas volume absorbed is the difference between initial and final gas volume absorbed is the difference between initial and final gas volume absorbed is the difference between initial and final gas volume absorbed is the difference between initial and final gas volume absorbed is the difference between initial and final gas volume absorbed is the difference between initial and final gas volume absorbed is the difference between initial and final gas volume absorbed is the difference between initial and final gas volume absorbed is the difference between initial and final gas volume absorbed is the difference in the there the there there there there there there ther	XPERIMENTAL VALUE	ES:	······			
$\frac{x_1 \times 10^4}{288.15 \\ 288.15 \\ 288.15 \\ 288.15 \\ 0.650 \\ 1.65 \\ 1.74 \\ 293.15 \\ 0.714 \\ 1.80 \\ 1.93 \\ 293.15 \\ 0.714 \\ 1.80 \\ 1.93 \\ 293.15 \\ 0.710 \\ 1.79 \\ 1.92 \\ 298.15 \\ 0.766 \\ 1.92 \\ 2.10 \\ 298.15 \\ 0.766 \\ 1.92 \\ 2.10 \\ 298.15 \\ 0.766 \\ 1.92 \\ 2.10 \\ 2.01 \\ 2.23 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 0.07 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 0.07 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 0.07 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 0.07 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 $		т/к	Mol Fraction			
$\frac{288.15}{293.15} = 0.714 + 1.80 + 1.93}{293.15} = 0.714 + 1.80 + 1.93}{293.15} = 0.710 + 1.79 + 1.92}$ $\frac{298.15}{293.15} = 0.770 + 1.93 + 2.11}{298.15} = 0.766 + 1.92 + 2.10}$ $\frac{298.15}{298.15} = 0.766 + 1.92 + 2.10}{298.15} = 0.766 + 1.92 + 2.10}$ $\frac{303.15}{303.15} = 0.807 + 2.01 + 2.23}{303.15} = 0.803 + 2.00 + 2.22}$ Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln X_1 = 10,318 + 44.260 \text{ T}}$ Std. Dev. $\Delta G^{O} = 25.0$ , Coef. Corr. = 0.9946 For the recommended Gibbs free energy equation see the critical evaluation of the solubility of helium in benzene. The solubility values were adjusted to a partial pressure of helium of 101.325 kPa (1 atm) by Henry's law. The mole fraction solubility and the Ostwald coefficient were calculated by the compiler. AUXILIARY INFORMATION WETHOD: Gas absorption. The gas is presaturated with solvent vapor. The gas volumes. The amount of solvent is determined by the weight of mercury displaced. APPARATUS/PROCEDURE: The apparatus is a			X ₁ x 10 ⁴			
293.15       0.714       1.80       1.93         293.15       0.710       1.79       1.92         298.15       0.766       1.92       2.10         298.15       0.766       1.90       2.07         303.15       0.803       2.00       2.22         Smoothed Data: $\Delta G^{0}/J \mod^{-1} = -RT \ln X_1 = 10,318 + 44.260 T$ Std. Dev. $\Delta G^{0} = 25.0$ , Coef. Corr. = 0.9946         For the recommended Gibbs free energy equation see the critical evaluation of the solubility of helium in benzene.         The solubility values were adjusted to a partial pressure of helium of 101.325 kPa (1 atm) by Henry's law. The mole fraction solubility and the Ostwald coefficient were calculated by the compiler.         AUXILIARY INFORMATION						
$\frac{298.15}{298.15}  0.766 \\ 1.92 \\ 2.10 \\ 2.07 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22 \\ \hline \\$		293.15	0.714	1.80	1.93	
$\frac{303.15 \\ 303.15 \\ 303.15 \\ 0.803 \\ 2.00 \\ 2.22}$ Smoothed Data: $\Delta G^{0}/J \text{ mol}^{-1} = -RT \ln X_1 = 10,318 + 44.260 \text{ T}$ Std. Dev. $\Delta G^{0} = 25.0$ , Coef. Corr. = 0.9946 For the recommended Gibbs free energy equation see the critical evaluation of the solubility of helium in benzene. The solubility values were adjusted to a partial pressure of helium of 101.325 kPa (1 atm) by Henry's law. The mole fraction solubility and the Ostwald coefficient were calculated by the compiler. AUXILIARY INFORMATION METHOD: Gas absorption. The gas is presaturated with solvent vapor. The gas volume absorbed is the difference between initial and final gas volumes. The amount of solvent is determined by the weight of mercury displaced. APPARATUS/PROCEDURE: The apparatus is a		298.15	0.766	1.92	2.10	
Std. Dev. $\Delta G^O$ = 25.0, Coef. Corr. = 0.9946         For the recommended Gibbs free energy equation see the critical evaluation of the solubility of helium in benzene.         The solubility values were adjusted to a partial pressure of helium of 101.325 kPa (1 atm) by Henry's law. The mole fraction solubility and the Ostwald coefficient were calculated by the compiler.         AUXILIARY INFORMATION         METHOD:       SOURCE AND PURITY OF MATERIALS:         Gas absorption. The gas is presaturated with solvent vapor. The gas volume absorbed is the difference between initial and final gas volumes. The amount of solvent is determined by the weight of mercury displaced.       SOURCE AND PURITY OF MATERIALS:         2. Benzene. Kahlbaum, "zur Moleku argewichtsbestimmung". Melting point 5.48 °C.         APPARATUS/PROCEDURE: The apparatus is a       ESTIMATED ERROR:		303.15	0.807	2.01	2.23	
For the recommended Gibbs free energy equation see the critical evaluation of the solubility of helium in benzene. The solubility values were adjusted to a partial pressure of helium of 101.325 kPa (1 atm) by Henry's law. The mole fraction solubility and the Ostwald coefficient were calculated by the compiler. AUXILIARY INFORMATION METHOD: Gas absorption. The gas is presat- urated with solvent vapor. The gas volume absorbed is the difference between initial and final gas vol- umes. The amount of solvent is deter- mined by the weight of mercury displaced. APPARATUS/PROCEDURE: The apparatus is a For the recommended Gibbs free energy equation see the solubility of helium of solution of the solubility of helium of solution of the solubility and the SOURCE AND FURITY OF MATERIALS: 1. Helium. Linde's Liquid Air. Contained 0.5 per cent by volu neon. 2. Benzene. Kahlbaum, "zur Moleku argewichtsbestimmung". Melting point 5.48 °C. ESTIMATED ERROR:	Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln S$			$x_1 = 10,318 +$	44.260 T	
the critical evaluation of the solubility of helium in benzene. The solubility values were adjusted to a partial pressure of helium of 101.325 kPa (1 atm) by Henry's law. The mole fraction solubility and the Ostwald coefficient were calculated by the compiler. AUXILIARY INFORMATION METHOD: Gas absorption. The gas is presat- urated with solvent vapor. The gas volume absorbed is the difference between initial and final gas vol- umes. The amount of solvent is deter- mined by the weight of mercury displaced. APPARATUS/PROCEDURE: The apparatus is a the critical evaluation of the solubility of helium of approximate to a partial pressure of helium of SOURCE AND PURITY OF MATERIALS; 1. Helium. Linde's Liquid Air. Contained 0.5 per cent by volu neon. 2. Benzene. Kahlbaum, "zur Moleku argewichtsbestimmung". Melting point 5.48 °C. ESTIMATED ERROR:		Std. De	$v.\Delta G^{O} = 25.0,$	Coef. Corr.	= 0.9946	
METHOD: Gas absorption. The gas is presat- urated with solvent vapor. The gas volume absorbed is the difference between initial and final gas vol- umes. The amount of solvent is deter- mined by the weight of mercury displaced. APPARATUS/PROCEDURE: The apparatus is a SOURCE AND PURITY OF MATERIALS: 1. Helium. Linde's Liquid Air. Contained 0.5 per cent by volu neon. 2. Benzene. Kahlbaum, "zur Moleku argewichtsbestimmung". Melting point 5.48 °C. ESTIMATED ERROR:	101.325 kPa (1	the cri in benz values w atm) by	tical evaluati ene. ere adjusted t Henry's law. T	on of the sol o a partial p he mole fract	ubility of h pressure of h ion solubili	elium elium of
Gas absorption. The gas is presat- urated with solvent vapor. The gas volume absorbed is the difference between initial and final gas vol- umes. The amount of solvent is deter- mined by the weight of mercury displaced. APPARATUS/PROCEDURE: The apparatus is a			AUXILIARY	INFORMATION		
urated with solvent vapor. The gas volume absorbed is the difference between initial and final gas vol- umes. The amount of solvent is deter- mined by the weight of mercury displaced. APPARATUS/PROCEDURE: The apparatus is a	METHOD:			SOURCE AND PUR	ITY OF MATERIAL	S;
argewichtsbestimmung". Melting point 5.48 °C. APPARATUS/PROCEDURE: The apparatus is a	urated with solvent vapor. The gas volume absorbed is the difference		Containe			
APPARATUS/PROCEDURE: The apparatus is a	mined by the w			argewich	tsbestimmung	zur Molekul- ". Melting
modification of that of von Antropoff $\delta T/K = 0.03$	modification of that of von Antropoff					
(1). A calibrated, combined all glass manometer and bulb is enclosed in an	(1). A calibra manometer and	ted, comb bulb is e	ined all glass nclosed in an			
<pre>air thermostat. Mercury is used as the calibration and confining liquid. The solvent is degassed in the appa- ratus. The solvent and the gas are shaken together until equilibrium is established.</pre> REFERENCES: 1. v. Antropoff, A. Z. Electrochem. 1919, 25, 269.	manometer and bulb is enclosed in an air thermostat. Mercury is used as the calibration and confining liquid. The solvent is degassed in the appa- ratus. The solvent and the gas are shaken together until equilibrium is		1. v. Antro		, <u>25</u> , 269.	
		r until e	quilibrium is			

COMPONENTS :			ORIGINAL MEASUR	REMENTS:
		Clever, H.L.	; Battino, R.;	
l. Helium; He; 7440-59-7		Saylor, J.	H.; Gross, P.M.	
2. Benzene; C ₆ H	1 ₆ ; 71-43-	-2		
			J. Phys. Che	<u>m</u> . 1957, <u>61</u> , 1078 - 1083.
VARIABLES: T/K: 28	88.15 - 31	14.95	PREPARED BY: P	.L.Long
EXPERIMENTAL VALUE	s <u>:</u>	······································		
	т/к	Mol Fraction $X_1 \times 10^4$	Bunsen Coefficient ∝x 10 ²	Ostwald Coefficient L x 10 ²
	288.15		1.68	1.77
	298.15		1.97	2.15
	314.95	0.949	2.33	2.69
Smoothed Data:	<b>▲</b> G ^O = -	RT ln $X_1 = 10$	,242 + 44.422	T (J mol ⁻¹ )
	Std. Dev	$\Delta G^{O} = 51.2,$	Coef. Corr.	= 0.9964
		recommended fra evaluation of ne.		
The solubility values were adjusted to a partial pressure of helium of 101.325 kPa (1 atm) by Henry's law.				ressure of helium of
h <del>an</del>	<u></u>	AUXILIARY	INFORMATION	
METHOD: Volumetr:	ic. The so	olvent is sat-	SOURCE AND PURI	ITY OF MATERIALS;
urated with gas an 8 mm x 180 to a gas buret maintained at 1 absorbed.	cm glass : .The total	spiral attached l pressure is	and stand no differ 2. Benzene.	atheson Co. Both research rad grades were used with ence in results. Jones & Laughlin Steel Co.
			Pittsburg water was and disti	h, PA. Shaken with H ₂ SO ₄ , hed, dried over sodium, lled.
APPARATUS / PROCEDUR			ESTIMATED ERRO	R:
APPARATUS/PROCEDUR modification of Billett (1). The clude the addition	f that of he modific	Morrison and cations in-		$\delta T/K = 0.05$ $\delta P/torr = 3$ $\delta X_1/X_1 = 0.03$
age for the so a constant refe	lvent, a m	manometer for	REFERENCES:	
extra buret for The solvent is	r highly s degassed	soluble gases. by a modi-		T.J.; Billett, F. Soc. 1948, 2033; 2 3819
fication of the Daniel (2).	e method (	of Baldwin and	2. Baldwin,	2, 3819. R.R.; Daniel, S.G. <u>Chem</u> . 1952, <u>2</u> , 161.
1			I	

COMPONENTS :			ORIGINAL MEASU	REMENTS .
			de Wet, W.J	
1. Helium; He;	7440-59-7			
2. Benzene; C ₆ H	6; 71-43-	2		
			<u>J.S. Afr. (</u>	<u>Chem. Inst</u> . 1964, <u>17</u> , 9-13.
VARIABLES:			PREPARED BY:	
_, _,	1.75 - 30		I	.L.Long
P/kPa: 1 EXPERIMENTAL VALUES		1 atm)		
EXPERIMENTAL VALUES	-	Mol Fraction	Bunsen	Ostwald
		X ₁ x 10 ⁴	Coefficient × x 10 ²	Coefficient L x 10 ²
	291.75	0.697	1.76	1.88
	299.15		1.90	2.08
:	305.15	0.837	2.08	2.32
Smoothed Data:	∆G ⁰ /J mc	$1^{-1} = - RT ln$	$x_1 = 10,057$	+ 45.153 T
	Std. Dev	$\Delta G^{O} = 25.6$ ,	Coef. Corr.	. = 0.9964
	For the critical in benze	. evaluation o	ree energy eq f the solubil	quation see the Lity of helium
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law.			o a partial p	pressure of helium of
The mole fracti by the compiler		lity and the o	Ostwald coef:	ficients were calculated
		AUXILIARY	INFORMATION	
METHOD: Molumoty			·····	RITY OF MATERIALS:
To degas, the so large continous until the solver out further rele To saturate, the a thin film thro containing the o gas absorbed is ed buret system.	olvent is ly evacuat nt boils d ease of d solvent ough a gla gas. The v measured	ted bulb freely with- issolved gases is flowed in ass spiral volume of	<ol> <li>Helium. purified at liqui purities than 0.3</li> <li>Benzene. distille</li> </ol>	No source given. The gas l over activated charcoal d air temperature. Im- s estimated to be less 3 percent. No source given. Benzene ed immediately before use.
APPARATUS/PROCEDURI	3:		ESTIMATED ERRO	
The apparatus is that used by Mon and others (2). is saturated wit through a glass	s a modificrison and The degas th gas as spiral co tof solve cal was su	Billett (1) ssed solvent it flows ontaining the ent passed uch that 10 -	J. Chem. ibid. 19	δT/K = 0.05 h, T.J.; Billett, F. <u>Soc</u> . 1948, 2033; 952, 3819.
			Saylo	H.L.; Battino, R.; c, J.H.; Gross, P.M. . <u>Chem</u> . 1957, <u>61</u> , 1078.

СОМ	PONENTS:	EVALUATOR:
1. 2.	Helium; He; 7440-59-7 Methylbenzene (Toluene); C ₇ H ₈ ; 108-88-3	H. L. Clever Emory University Department of Chemistry Atlanta, Georgia 30322 USA
		January 1978

## CRITICAL EVALUATION:

The solubility of helium in toluene was measured by Saylor and Battino (1) and by de Wet (2). The two sets of data agree within 2.7 percent over 288 - 308 K, the temperature range of common measurement. The agreement is within the experimental uncertainty of the method used. The two sets of data have been combined on a one to one weight basis by the method of least squares in a Gibbs energy equation,  $\Delta G^{\circ} = A + BT$  (Table 1). The recommended thermodynamic values for the transfer of helium from the gas at 101.325 kPa (1 atm) to the hypothetical unit mole fraction solution are

 $\Delta G^{\circ}/J \mod^{-1} = -RT \ln X_1 = 10,157 + 42.599 T$ Std. Dev.  $\Delta G^{\circ} = 47$ , Coef. Corr. = 0.9967  $\Delta H^{\circ}/J \mod^{-1} = 10,157$ ,  $\Delta S^{\circ}/J K^{-1} \mod^{-1} = -42.599$ 

The recommended mole fraction solubilities at 101.325 kPa (1 atm) and the Gibbs energy changes at five degree intervals are given in Table 2.

## TABLE 1. Parameters for the Gibbs energy change as a function of temperature.

$\Delta G^{\circ} = A + BT$	Std. Dev. ∆G°	No. Exp. Points	Weight	Reference
10,454 + 41.720 T 10,608 + 40.965 T 10,157 + 42.599 T	36.1 24.7 47.0	4 3 7	1 1	1 2 1 + 2

## TABLE 2. Recommended mole fraction solubility of helium in toluene at 101.325 kPa (1 atm).

т/к	Mol Fraction $X_1 \times 10^4$	∆G°/J mol ⁻¹
288.15	0.858	22,432
293.15	0.923	22,645
298.15	0.990	22,858-
303.15	1.059	23,071
308.15	1.13	23,284
313.15	1.20	23,497
318.15	1.28	23,710
323.15	1.36	23,923
328.15	1.44	24,136

Saylor, J. H.; Battino, R. J. Phys. Chem. 1958, 62, 1334.
 de Wet, W. H. J. S. Afr. Chem. Inst. 1964, 17, 9.

COMPONENTS:	ORIGINAL MEASUREMENTS:	
1. Helium; He; 7440-59-7	Saylor, J. H.; Battino, R.	
<ol> <li>Methylbenzene (Toluene); C₇H₈; 108-88-3</li> </ol>		
	J. Phys. Chem. 1958, <u>62</u> , 1334 - 1337.	
VARIABLES:	PREPARED BY:	
T/K: 288.15 - 328.15 P/kPa: 101.325 (1 atm)	H. L. Clever	
EXPERIMENTAL VALUES:		
T/K Mol Fraction $X_1 \times 10^4$	BunsenOstwaldCoefficientCoefficient $\alpha \times 10^2$ L $\times 10^2$	
288.15 0.846 298.15 0.981 313.15 1.17	1.79     1.89       2.05     2.24       2.42     2.77       2.32     3.52	
328.15 1.45	2.93 3.52	
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = - RT \ln$	*	
Std. Dev. $\Delta G^{\circ} = 36.1,$	Coef. Corr. = 0.9988	
For the recommended free energy equation solubility of helium in toluene.	ion see the critical evaluation of the	
The solubility values were adjusted to a partial pressure of helium of 101.325 kPa (1 atm) by Henry's law.		
The Bunsen coefficients were calculate	ed by the compiler	
AUXILIARY	INFORMATION	
METHOD: Volumetric. The solvent is sat-	SOURCE AND PURITY OF MATERIALS:	
urated with gas as it flows through an 8 mm x 180 cm glass spiral at- tached to a gas buret. The total	<ol> <li>Helium. Matheson Co., Inc. Research grade.</li> </ol>	
pressure is maintained at 1 atm as the gas is absorbed.	<ol> <li>Toluene. Mallinckrodt. Reagent grade. Shaken with conc. H₂SO₄, water washed, dried over Drierite, distilled b.p. 110.40 - 110.60°C.</li> </ol>	
	ESTIMATED ERROR:	
APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1). The modifications in- clude the addition of a spiral stor- age for the solvent, a manometer for	$\delta T/K = 0.03$ $\delta P/torr = 1$ $\delta X_1/X_1 = 0.04$	
age for the solvent, a manometer for a constant reference pressure, and an extra buret for highly soluble gases. The solvent is degassed by a modifi- cation of the method of Baldwin and	REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033; ibid. 1952, 3819.	
Daniel (2).	<ol> <li><u>1910</u>. 1952, 3819.</li> <li>Baldwin, R. R.; Daniel, S. G. J. <u>Appl. Chem</u>. 1952, <u>2</u>, 161.</li> </ol>	

COMPONENTS :	ORIGINAL MEASUREMENTS:		
1. Helium; He; 7440-59-7	de Wet, W. J.		
2. Methylbenzene (Toluene); C ₇ H ₈ ; 108-88-3			
	J. <u>S. Afr</u> . <u>Chem</u> . <u>Inst</u> . 1964, <u>17</u> , 9 - 13.		
VARIABLES:	PREPARED BY:		
T/K: 292.15 - 304.15	P.L. Long		
P/kPa: 101.325 (1 atm)			
EXPERIMENTAL VALUES:	· · · · · · · · · · · · · · · · · · ·		
T/K Mol Fraction	Bunsen Ostwald Coefficient Coefficient		
$x_1 \times 10^4$	$\alpha \times 10^2$ L × 10 ²		
292.15 0.924	1.95 2.09		
299.35 1.01 304.15 1.10	2.12 2.32 2.29 2.55		
304.15 1.10	2.23 2.35		
Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = -RT \ln X_1 = 10,608 + 40.965 T$			
Std. Dev. $\Delta G^{\circ} = 24.7$ ,	Coef. Corr. = 0.9951		
For the recommended free energy equat solubility of helium in toluene.	ion see the critical evaluation of the		
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law.	o a partial pressure of helium of		
The mole fraction solubility and the	Ostwald coefficients were calculated		
AUXILIARY	INFORMATION		
METHOD: Volumetric.	SOURCE AND PURITY OF MATERIALS:		
To degas, the solvent was placed in			
a large continuously evacuated bulb until the solvent boiled freely with- out further release of dissolved gases.	<ol> <li>Helium. No source given. The gas purified over activated charcoal at liquid air temperature. Im- purities estimated to be less than 0.3 percent.</li> </ol>		
To saturate, the solvent is flowed in a thin film through a glass spiral containing the gas. The volume of			
gas absorbed is measured on an at- tached buret system.			
tached buret system.	ESTIMATED ERROR:		
tached buret system. APPARATUS/PROCEDURE:	ESTIMATED ERROR: $\delta T/K = 0.05$		
tached buret system. APPARATUS/PROCEDURE: The apparatus is a modification of that used by Morrison and Billett (1	$\delta T/K = 0.05$		
tached buret system. APPARATUS/PROCEDURE: The apparatus is a modification of that used by Morrison and Billett (1 and others (2). The degassed solvent is saturated with gas as it flows	$\delta T/K = 0.05$		
tached buret system. APPARATUS/PROCEDURE: The apparatus is a modification of that used by Morrison and Billett (1 and others (2). The degassed solven	$\delta T/K = 0.05$		

COMPONENTS:	ORIGINAL MEASUREMENTS:
	Byrne, J. E.; Battino, R.;
1. Helium; He; 7440-59-7	Wilhelm, E.
2. 1,2-Dimethylbenzene (o-Xylene);	
$C_8H_{10}$ ; 95-47-6	J. Chem. Thermodyn. 1975, 7, 515-522.
VARIABLES:	PREPARED BY:
,	
T/K: 283.16 - 313.19 P/kPa: 101.325 (1 atm)	H. L. Clever
EXPERIMENTAL VALUES: T/K Mol Fraction	Bunsen Ostwald
l c	oefficient Coefficient
$x_1 \times 10^4$	$\alpha \times 10^2$ L $\times 10^2$
283.16 0.758	1.42 1.474
283.42 0.757	1.42 1.472
298.12 0.929 298.17 0.936	1.72 1.874 1.73 1.890
313.05 1.112	2.03 2.324
313.09 1.111	2.01 2.300
313.19 1.118	2.04 2.336
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = -RT \ln$	$X_1 = 9508.0 + 45.305 \text{ T}$
Std. Dev. $\Delta G^\circ = 10.4$ ,	-
	$\Delta s^{/}J K^{-1} mol^{-1} = -45.305$
T/K Mol Fract X ₁ × 10	$\frac{1}{4}$ $\Delta G^{\circ}/J \text{ mol}^{-1}$
	······································
283.15 0.758 288.15 0.813	22,336 22,563
293.15 0.870	22,789
298.15 0.928 303.15 0.989	23,016 23,242
308.15 1.05	23,469
313.15 1.12	23,695
<u>318.15</u> <u>1.18</u> The solubility values were adjusted to	23,922 a partial pressure of helium of
101.325 pKa (1 atm) by Henry's law.	The Bunsen coefficients were calculated
by the compiler. AUXILIARY	INFORMATION
METHOD: The apparatus is based on the	SOURCE AND PURITY OF MATERIALS:
design by Morrison and Billett (1)	1. Helium. Either Air Products &
and the version used is described by	Chemicals, Inc., or Matheson Co.,
Battino, Evans, and Danforth (2).	Inc. 99 mol % or better.
	<ol> <li>1,2-Dimethylbenzene. Phillips Petroleum Co. Pure grade.</li> </ol>
APPARATUS/PROCEDURE: Degassing. Up to	
500 cm ³ of solvent is placed in a	
flask of such size that the liquid is about 4 cm deep. The liquid is rapid-	
ly stirred, and vacuum is applied in-	
termittently through a liquid N ₂ trap until the permanent gas residual	ESTIMATED ERROR:
pressure drops to 5 microns.	$\delta T/K = 0.03$ $\delta P/mmHg = 0.5$
Solubility Determination. The de- gassed solvent is passed in a thin	$\delta X_1 / X_1 = 0.03$
film down a glass spiral tube con-	
taining the solute gas and the	REFERENCES:
solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the	1. Morrison, T. J.; Billett, F. J. <u>Chem</u> . <u>Soc</u> . 1948, 2033.
initial and final volumes in the	2. Battino, R.; Evans, F. D.;
buret system. The solvent is collect- ed in a tared flask and weighed.	Danforth, W. F.
	J. Am. Oil Chem. Soc. 1968, 45, 830.
L	<u>.</u>

COMPONENTS:	EVALUATOR:
<ol> <li>Helium; He; 7440-59-7</li> <li>1,3-Dimethylbenzene (<u>m</u>-Xylene); C₈H₁₀; 108-38-3</li> </ol>	H. L. Clever Chemistry Department Emory University Atlanta, Georgia 30322 USA February 1978

## CRITICAL EVALUATION:

The solubility of helium in 1,3-dimethyl benzene was measured by de Wet (1) and by Byrne, Battino, and Wilhelm (2). The two sets of values differ by about 9 per cent over the 288 - 308 K temperature range of common measurement, with de Wet's data being the higher valued. The experimental technique used by the two laboratories is similar, and the gas and solvent appear to be of equivalent purity. Low solubility values could arise from either incomplete degassing, nonattainment of equilibrium, or both. High values could come from contamination of the helium in a more soluble gas. For the helium + 1,3-dimethylbenzene, there is no reason to favor one data set over the other. No recommendation of solubility values can be made without either further experimental work or a factor analysis of the noble gases' solubility in all solvents.

Table 1 gives the fit of the Gibbs energy equation,  $\Delta G^{\circ} = - RT \ln X_1 =$ A + BT, for each of the two data sets and for the combined data set. Table 2 gives the smoothed values of the mole fraction solubility at five degree intervals for the two data sets and the combined data set.

TABLE 1. Parameters for the Gibbs energy as a function of temperature.

$\Delta G^{\circ}/J \text{ mol}^{-1} = A + BT$	Std. Dev. $\Delta G^{\circ}$	No. Exp. Points	Reference
9,982.5 + 42.848 T 10,057 + 41.914 T 9,975.8 + 42.684 T	31.5 36.3 100.	8 3 11	2 1 .

TABLE 2. Comparison of smoothed mole fraction solubility data at 101.325 kPa (l atm).

т/к	Mole F	$raction/X_1 \times 10$	4
	Byrne, et al. (1)	de Wet (2)	Combined
283.15	0.832	-	0.844
288.15	0.896	0.973	0.916
293.15	0.962	1.04	0.988
298.15	1.03	1.12	1.06
303.15	1.10	1.20	1.13
308.13	1.17	1.28	1.20
313.15	1.25	_	1.27

1.

De Wet, W. J. J. S. Afr. Chem. Inst. 1964, 17, 9. Byrne, J. E.; Battino, R.; Wilhelm, E. J. Chem. Thermodyn. 1975, 7, 515. 2.

	ORIGINAL MEAS	JREMENTS:	
1. Helium; He;7440-59-7	de Wet, W.	J.	
<pre>2. 1,3-Dimethylbenzene (m-Xylene);     C₈H₁₀; 108-38-3</pre>			
	J. S. Afr.	<u>Chem</u> . <u>Inst</u> . 1964, <u>17</u> ,	
VARIABLES:	PREPARED BY:		
T/K: 291.35 - 304.75 P/kPa: 101.325 (1 atm)		P. L. Long	
EXPERIMENTAL VALUES:	<b>1</b>		
T/K Mol Fraction	Bunsen	Ostwald	
$x_1 \times 10^4$	$\begin{array}{c} \text{Coefficient} \\ \alpha \times 10^2 \end{array}$	$\begin{array}{c} \text{Coefficient} \\ \text{L x } 10^2 \end{array}$	
291.35 1.01	1.85	1.97	
298.95 1.15 304.75 1.21	2.09 2.19	2.29 2.44	
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = -RT \ln$	$x_1 = 10,057$	+ 41.914 T	
Std. Dev. $\Delta G^\circ$ = 36.3,	Coef. Corr	. = 0.9918	
For the recommended free energy equat solubility of helium in m-xylene.	ion see the	critical evaluation of the	
The solubility values were adjusted t 101.325 kPa (l atm) by Henry's law.	o a partial	pressure of helium of	
AUXILIARY	AUXILIARY INFORMATION		
	INFORMATION		
METHOD: Volumetric.		RITY OF MATERIALS;	
To degas, the solvent is placed in a large continuously evacuated bulb until the solvent boils freely with- out further release of dissolved gase To saturate, the solvent is flowed ir a thin film through a glass spiral	SOURCE AND PU 1. Helium. purifie at liqu puritie than 0. 2. m-Xylen	No source given. The gas d over activated charcoal id air temperature. Im- s estimated to be less 3 percent. e. No source given. m-	
To saturate, the solvent is flowed in a large continuously evacuated bulb until the solvent boils freely with- out further release of dissolved gase	SOURCE AND PU 1. Helium. purifie at liqu than 0. 2. m-Xylen Xylene fore us	No source given. The gas d over activated charcoal id air temperature. Im- s estimated to be less 3 percent. e. No source given. m- distilled immediately be- e.	
To degas, the solvent is placed in a large continuously evacuated bulb until the solvent boils freely with- out further release of dissolved gase To saturate, the solvent is flowed ir a thin film through a glass spiral containing the gas. The volume of gas absorbed is measured on an attack ed buret system. APPARATUS/PROCEDURE: The apparatus is a modification of that used by Morrison and Billett(1) and others (2). The degassed solvent is saturated with gas as it flows	SOURCE AND PU 1. Helium. purifie at liqu than 0. 2. m-Xylene fore us ESTIMATED ERR	No source given. The gas d over activated charcoal id air temperature. Im- s estimated to be less 3 percent. e. No source given. m- distilled immediately be- e.	
To degas, the solvent is placed in a large continuously evacuated bulb until the solvent boils freely with- out further release of dissolved gase To saturate, the solvent is flowed ir a thin film through a glass spiral containing the gas. The volume of gas absorbed is measured on an attack ed buret system. APPARATUS/PROCEDURE: The apparatus is a modification of that used by Morrison and Billett(1)	SOURCE AND PU 1. Helium. purifie at liqu puritie than 0. 2. m-Xylene fore us ESTIMATED ERR REFERENCES: 1. Morrisc J. Chem	No source given. The gas d over activated charcoal id air temperature. Im- s estimated to be less 3 percent. e. No source given. m- distilled immediately be- e. OR:	

ŧ

COMPONENTS:	ORIGINAL MEASUREMENTS:	
1. Helium; He; 7440-59-7	Byrne, J. E.; Battino, R.; Wilhelm, E.	
<pre>2. 1,3-Dimethylbenzene (m-Xylene);         C₈H₁₀; 108-38-3</pre>	WIINEIM, E.	
	T Cham Mharmadum 1075 7 515 533	
	<u>J. Chem. Thermodyn</u> . 1975, <u>7</u> , 515-522.	
VARIABLES:	PREPARED BY:	
T/K: 283.15 - 313.15 P/kPa: 101.325 (1 atm)	H. L. Clever	
EXPERIMENTAL VALUES:		
T/K Mol Fraction	Bunsen Ostwald	
$X_1 \times 10^4$	Coefficient Coefficient α x 10 ² L x 10 ²	
283.15 0.840	1.55 1.604	
283.21 0.841	1.55 1.606	
298.09 1.009 298.20 1.040	1.83 1.998 1.89 2.060	
298.20 1.040	1.84 2.009	
298.24 1.024	1.86 2.029	
313.15 1.258	2.25 2.579	
313.15 1.262	2.26 2.586	
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = -RT \ln$	-	
<pre>Std. Dev. ∆G° = 31.5,</pre>	Coef. Corr. = 0.9979	
	$\Delta S^{\circ}/J K^{-1} mol^{-1} = 42.848$	
T/K Mol Fraction $\Delta G^{\circ}/J \mod 1$ X ₁ x 10 ⁴		
283.15 0.832 22,115		
288.15 0.89		
293.15 0.962	•	
298.15 1.03		
303.15 1.10 308.15 1.17	22,972 23,186	
313.15 1.25	23,400	
AUXILIARY	INFORMATION	
METHOD: The apparatus is based on the design by Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2).	SOURCE AND PURITY OF MATERIALS: 1. Helium. Either Air Products and Chemicals, Inc. or Matheson Co., Inc. 99 mole % or better.	
The Bunsen and Ostwald coefficients were calculated by the compiler.	<ol> <li>m-Xylene. Phillips Petroleum Co., pure grade.</li> </ol>	
were carculated by the compiler.		
APPARATUS/PROCEDURE: Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is		
about 4 cm deep. The liquid is rapid-		
ly stirred and vacuum is applied in-	ESTIMATED ERROR:	
termittently through a liquid N ₂ trap until the permanent gas residual	$\delta T/K = 0.03$	
pressure drops to 5 microns.	$\delta P/mmHg = 0.5$	
Solubility Determination. The	$\delta X_{1}/X_{1} = 0.03$	
degassed solvent passes in thin film	REFERENCES :	
down a glass spiral at a total pressure of one atm of solute gas plus		
solvent vapor. Solubility equilibrium	I. Morrison, T. J.; Billett, F.	
is rapidly attained. The volume of	<u>J. Chem. Soc</u> . 1948, 2033.	
gas absorbed is measured, and the	2. Battino, R.; Evans, F. D.;	
solvent is collected in a tared flask and weighed.	Danforth, W. F.	
	J. Am. Oil Chem. Soc. 1968, 45,	
	830.	

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Helium; He; 7440-59-7	Byrne, J. E.; Battino, R.;
	Wilhelm, E.
<pre>2. 1,4-Dimethylbenzene (p-Xylene); C8H10; 106-42-3</pre>	
C8H10; 100-42-5	J. Chem. Thermodyn. 1975, 7, 515-522.
	<u>J. Chem. Thermodyn.</u> 1975, <u>7</u> , 515-522.
VARIABLES: T/K: 288.13 - 313.17	PREPARED BY: H. L. Clever
P/kPa: 101.325 (1 atm)	
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald Coefficient Coefficient
$x_1 \times 10^4$	$\alpha \times 10^2$ L $\times 10^2$
288.13 0.922	1.68 1.777
288.15 0.923	1.69 1.780
288.17 0.901 298.13 1.051	1.65 1.736 1.90 2.074
298.13 1.051	1.95 2.125
298.13 1.051	1.90 2.074
298.15 1.072 298.17 1.103	1.94 2.117 1.99 2.177
298.17 1.103	1.94 2.114
313.16 1.293	2.30 2.641
313.17 1.309 313.17 1.303	2.33 2.673 2.32 2.662
Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = - RT \text{ Ir}$	
	Coef. Corr. = 0.9957
	$\Delta S^{\circ}/J K^{-1} mol^{-1} = -40.830$
T/K Mol Frac X1 x 1	n4 The solubility
283.15 0.85	
288.15 0.92	20 22,265 pressure of hel-
293.15 0.99 298.15 1.07	
308.15 1.22 313.15 1.31	
318.15 1.39	23,490 calculated by the
AUXILIARY	INFORMATION COMpiler.
METHOD: The apparatus is based on the	SOURCE AND PURITY OF MATERIALS:
design by Morrison and Billett (1)	1. Helium. Either Air Products &
and the version used is described by Battino, Evans, and Danforth (2).	Chemicals, Inc., or Matheson Co., Inc. 99 mol % or better.
	2. 1,4-Dimethylbenzene. Phillips
	Petroleum Co., pure grade.
APPARATUS/PROCEDURE: Degassing. Up to	
500 cm ³ of solvent is placed in a flask of such size that the liquid is	
about 4 cm deep. The liquid is rapid-	
ly stirred, and vacuum is applied in-	
termittently through a liquid N ₂ trap until the permanent gas residual	ESTIMATED ERROR:
pressure drops to 5 microns.	$\delta T/K = 0.03$
Solubility Determination. The de-	$\begin{array}{rcl} & \delta P/mmHg &= 0.5\\ & \delta X_1/X_1 &= 0.03 \end{array}$
gassed solvent passes in a thin film down a glass spiral tube containing	
the solute gas plus the solvent vapor	REFERENCES:
at a total pressure of one atm. The	<ol> <li>Morrison, T. J.; Billett, F. J. <u>Chem. Soc</u>. 1948, 2033.</li> </ol>
volume of gas absorbed is found by difference between the initial and	
final gas volume in the buret system.	2. Battino, R.; Evans, F. D.; Danforth, W. F.
The solvent is collected in a tared flask and weighed.	J. Am. Oil Chem. Soc. 1968, 45,
	830.

COMPONENTS:	ORIGINAL MEASUREMENTS:	
	Lannung, A.	
1. Helium; He; 7440-59-7		
2. Methanol; CH ₄ O; 67-56-1		
	<u>J. Am. Chem. Soc</u> . 1930, <u>52</u> , 68 - 80.	
VARIABLES:	PREPARED BY:	
T/K: 288.15 - 303.15 P/kPa: 101.325 (l atm)	P.L.Long	
EXPERIMENTAL VALUES:		
T/K Mol Fraction	BunsenOstwaldDefficientCoefficient $\propto x \ 10^2$ L x $10^2$	
288.15 0.533 288.15 0.535	2.97 3.13 2.98 3.14	
293.15 0.564 293.15 0.567	3.12 3.35 3.14 3.37	
	3.27 3.57	
303.15 0.625	3.42 3.80	
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = - RT \ln$	$X_1 = 7591.9 + 55.436 T$	
Std. Dev. $\Delta G^{O} = 6.3$ ,	Coef. Corr. = 0.9998	
$\Delta \mathrm{H}^{\mathrm{O}}/\mathrm{J} \mathrm{mol}^{-1} = 7591.9,$	$\Delta s^{\circ}/J \ \kappa^{-1} \ mol^{-1} = -55.436$	
T/K Mol Fraction $\Delta G^{O}/J \text{ mol}^{-1}$ $X_1 \times 10^4$		
	535 23,566	
293.15 0.1 298.15 0.1	564 23,843 595 24,120 625 24,397	
	e fraction solubilities of helium were	
calculated by the compiler.	_	
Clever and Reddy (2) report a Bunsen $0.618 \times 10^{-4}$ at 303 15 K and 101 32	coefficient of 3.38 x $10^{-2}$ (X ₁ = 5 kPa, Value not used in smoothed fit.	
	INFORMATION	
METHOD:	SOURCE AND PURITY OF MATERIALS:	
Gas absorption. The gas is presat- urated with solvent vapor. The gas volume absorbed is the difference	<ol> <li>Helium. Linde Liquid Air Factory. Contained 0.5 per cent by volume neon.</li> </ol>	
between initial and final gas vol- umes.The amount of solvent is deter- mined by the weight of mercury displaced.	<ol> <li>Methanol. B.A.S.F. Distilled from freshly cut strips of mag- nesium metal. The first one-third was discarded.</li> </ol>	
	OTHER DATA: Popov and Drakin report(3 the apparent partial molal volume of He in $CH_3OH$ as 35.3 ± 0.6 cm ³ mol ⁻¹	
APPARATUS/PROCEDURE: The apparatus is a modification of that of von Antropoff (1). A calibrated combined all glass manometer and bulb is enclosed in an	ESTIMATED ERROR: $\delta T/K = 0.03$	
air thermostat. Mercury is used as the calibration and confining liquid The solvent is degassed in the appa- ratus. The solvent and the gas are shaken together until equilibrium is	<ol> <li>von Antropoff, A.</li> <li><u>Z</u>. <u>Elektrochem</u>. 1919, <u>25</u>, 269.</li> <li>Clever, H.L.; Reddy, G.S.</li> </ol>	
established.	J. <u>Chem. Eng.Data</u> 1963, <u>8</u> , J91. 3. Popov, G.A.; Drakin, S.I. <u>Zh. Fiz. Khim</u> . 1974, <u>48</u> , 631.	

COMPONENTS :	<u></u>	E	VALUATOR:	······································	
l Helium.	He; 7440-59-7		H. L. Clever Chemistry Depar	tment	
r. nerrum;	ne, /440-55-7		Emory University		
	(Ethyl Alcohol);		Atlanta, Georgi		
64-17-5		- · .	USA		
			February 1978		
CRITICAL EVALUA	TION:	······································		and the second	
Cargill (2). and 303 K.	ability of helium , There is a 15 Over that temper fraction solubil	degree rang ature range	e of common mea there is an in	surement between creasing diverge	n 288 ence
used by Caro	ium gas used by L gill contained 0. nese impurities w	71 weight p	ained 0.5 perce ercent water.	nt neon. The ef No correction fo	thanol or
	gives details on erature function				
TABLE 1. Pa	arameters for $\Delta G^{\circ}$	= A + BT			
∆G°/J mo	$L^{-1} = A + BT$	Std. Dev. A	G° No. Exp.	Points Weight	Ref
7 050 0		10.2			
7,250.9 -	⊢ 54.434 T ⊢ 45.547 T	19.3 79.1	6 6	1	1 2
	+ 45.428 T	80.0	12	-	-
Gibbs energy TABLE 2. Ca	(1 atm) from the y values in Table alculated mole fr D1.325 kPa (1 atm	2 are for	the combined fi	t.	• 1110
т/к	Mol F	'raction/X1		∆G°/J mol ⁻¹	
	Lannung (1)	Cargill (2	) <u>Combined</u>		
278.15	-	0.605	0.594	22,503	
283.15	~	0.652	0.641	22,730	
288.15 293.15	0.695 0.732	0.701 0.752	0.689 0.740	22,957 23,184	
298.15	0.770	0.804	0.740	23,411	
303.15	0.808	0.858	0.845	23,638	
308.15	_	0.914	0.901	23,866	
313.15	-	0.972	0.958	24,093	
318.15	-	1.030	1.015	24,320	
323.15	-	1.090	1.075	24,547	
328.15 333.15	-	1.155 1.220	1.140 1.200	24,774 25,001	
	<u></u>			hefore solubili	,
values can b recommended	an important sys be recommended. with p/J mol ⁻¹ = - RT	A tentative	acceptance of	the combined da	

 $\Delta H^{\circ}/J \text{ mol}^{-1} = 9,866.8, \Delta S^{\circ}/J K^{-1} \text{ mol}^{-1} = -45.428$ 

ł

l

1

Lannung, A. J. Am. Chem. Soc. 1930, 52, 68.
 Cargill, R. W. J. Chem. Soc., Faraday Trans. 1. 1978, 74, 1444.

COMPONENTS:					
CONFORMENTS:			ORIGINAL MEAS	UREMENTS :	· ···
1. Helium; He; 7440-59-7			Lannung, A	۰.	
<ol> <li>Allow, Ne, 7440 55 7</li> <li>Ethanol (Ethyl Alcohol); C₂H₆O;</li> </ol>					
64-17-5		- 0			
WARTARI PC -				<u>em. Soc</u> . 1930,	<u>52, 68 - 80.</u>
VARIABLES: T/K: 288.15 - 303.15 P/kPa: 101.325 (1 atm)			PREPARED BY:	. L. Long	
EXPERIMENTAL VALU	IES:		- 4		······································
	т/к	Mol Fraction $x_1 \times 10^4$	Bunsen Coefficient a x 10 ²	Ostwald Coefficient L x 10 ²	
	288.15 288.15 293.15 293.15 303.15 303.15	0.699 0.689 0.732 0.737 0.800 0.814	2.70 2.66 2.81 2.83 3.04 3.09	2.85 2.81 3.02 3.04 3.37 3.43	_
See the evaluation		stwald solubil:		atculated by t	me compiler.
	y equatio y values	n. were adjusted t			
The solubility	y equatio y values	n. were adjusted f Henry's law.	to a partial		
The solubilit 101.325 kPa (	y equatio y values	n. were adjusted f Henry's law.	to a partial	pressure of h	elium of
METHOD: Gas absorption rated with so volume absorbe	y equatio y values l atm) by n. The g lvent vap ed is the al and fi ount of s	n. were adjusted f Henry's law. AUXILIARY as is presatu- or. The gas difference nal gas vol- olvent is de-	V INFORMATION SOURCE AND PU 1. Helium Contai neon. 2. Ethanc dan.)	pressure of h URITY OF MATERIAN n. Linde's Li ined 0.5 perce	LS: Lquid Air. ent by volume absolutus, Ph.

COMPONENTS:	<u></u>		ORIGI	NAL MEASUREMEN	TS:	
l. Helium; He; 7440-59-7			Cargill, R. W.			
2. Ethanol (Ethyl Alcohol); C ₂ H ₆ O; 64-17-5			J. Chem. Soc., Faraday Trans. 1. 1978, 74, 1444 - 1456.			
VARIABLES:			PREPA	RED BY:		
	78.85 - 333.15 101.325 (1 atm)			H. L.	Clever	
EXPERIMENTAL VALUES	:			·	·	
T/K	Solubility* Mol F cm ³ kg ⁻¹ X ₁				Ostwald Coefficient L x 10 ²	•
278.15 289.15 299.15 309.15	34.8 ( 38.4 ( 43.9 (	0.627 0.715 0.789 0.902		2.45 2.76 3.01 3.40	2.50 2.92 3.30 3.85	
320.15 333.15		1.035		3.86 4.64	4.52 5.66	
			. 1 .			
	273.15 K and 1 at			-		
Smoothed Data:	$\Delta G^{\circ}/J \mod^{-1} = -I$	RT ln	× ₁ =	9,791.5 + 4	5.547 T	
	Std. Dev. $\Delta G^\circ = 7$	79.1,	Coe	f. Corr. = 0	.9963	
ded free energy	equation.					
	AUXI	LIARY	INFOR	1ATION		
METHOD: Modified	Morrison and Bill		-	E AND PURITY C	F MATERIALS:	
apparatus (1); addition of a c measuring the m (instead of vol	modifications inc onstant flow pump, ass of the solvent ume) on a top-par	lude , and t n bal-	1.	Helium.		
20 cm ³ of gas i solvent. The s	ermination used ak n up to 500 cm ³ of olvent was degasse -pump principle (1	f eđ	2.		ource not giv mol % (0.71 v	
			FSTT	ATED ERROR:		
APPARATUS/PROCEDUR	3:		ESIIF	AILD ERKOR:		
			REFEI	RENCES:		
					J.; Billett, . 1948, 2033; 3819.	
		-				

i

t

COMPONENTS:	ORIGINAL MEASUREMENTS:		
1. Helium; He; 7440-59-7	Battino, R.; Evans, F. D.; Danforth, W. F.; Wilhelm, E.		
2. 2-Methyl-1-propanol; C ₄ H ₁₀ O; 78-83-1			
	<u>J. Chem. Thermodyn</u> . 1971, <u>3</u> , 743-751.		
VARIABLES:	PREPARED BY:		
T/K: 274.02 - 312.76 P/kPa: 101.325 (1 atm)	H. L. Clever		
EXPERIMENTAL VALUES:			
T/K Mol Fraction	Bunsen Ostwald		
$x_1 \times 10^4$	Coefficient Coefficient α x 10 ² L x 10 ²		
274.02 0.87	2.15 2.16 2.17 2.25		
282.91 0.89 295.85 1.00	2.17 2.25 2.43 2.63		
312.76 1.12	2.66 3.05		
Smoothed Data: $\Delta G^\circ = - RT \ln X_1 = 49$	17.5 + 59.956 T		
Std. Dev. ∆G° = 43.8,	Coef. Corr. = 0.9991		
$\Delta H^{\circ}/J \text{ mol}^{-1} = 4917.5,$	$\Delta S^{0}/J K^{-1} mol^{-1} = -59.956$		
, T/K Mol Frac X ₁ x 1	tion $\Delta G^{\circ}/J$ mol ⁻¹		
273.15 0.84	7 21,294		
278.15 0.88	1 21,594		
283.15 0.91 288.15 0.94			
293.15 0.98	2 22,494		
298.15 1.02 303.15 1.05			
308.15 1.08	23,393		
313.15 1.12 The solubility values were adjusted t	23,693		
101.325 kPa (1 atm) by Henry's law.			
The Bunsen coefficients were calculat			
	INFORMATION		
METHOD: A. Degasser (1). B. Absorp- tion of gas in a thin film of liquid	SOURCE AND PURITY OF MATERIALS:		
(2, 3).	<ol> <li>Helium. The Matheson Co., Inc. greater than 99 mol %.</li> </ol>		
	<ol> <li>2-Methyl-l-propanol. Fisher Scientific Co., certified (99 mol %).</li> </ol>		
APPARATUS/PROCEDURE: Degassing. The solvent is sprayed into an evacu-			
ated chamber of an all glass appara-	ESTIMATED ERROR:		
tus; it is stirred and heated until the pressure drops to the vapor	$\delta T/K = 0.03$ $\delta P/mmHq = 0.5$		
pressure of the liquid. Solubility Determination. The degassed liquid	$\delta x_1/x_1 = 0.03$		
passes in a thin film down a glass	REFERENCES :		
spiral tube at a total pressure of	1. Battino, R.; Evans, D. F.		
one atm of solute gas plus solvent vapor. The gas absorbed is measured	Anal. Chem. 1966, <u>38</u> , 1627. 2. Morrison, T. J.;Billett, F.		
in the attached buret system, and the	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
solvent is collected in a tared flask and weighed.	3. Clever, H. L.; Battino, R.;		
	Saylor, J. H.; Gross, P. M. J. Phys. Chem. 1957, <u>61</u> , 1078.		

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Helium; He; 7440-59-7	Wilcock, R.S.; Battino, R.;
	Danforth, W.F; Wilhelm, E.
2. 1-Octanol; C ₈ H ₁₈ O; 111-87-5	J.Chem.Thermodyn. 1978, 10, 817-822.
VARIABLES:	PREPARED BY:
T/K: 282.45 - 298.17	A.L. Cramer
P/kPa: 101.325 (1 atm)	
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald
	Coefficient Coefficient
$\qquad \qquad $	$\alpha \times 10^2$ L x $10^2$
282.45 1.105 298.17 1.207	1.585 1.639 1.709 1.866
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln T$	ζ, = 3932.8 + 61.823 T
	1 1 1 mol ⁻¹ = -61.823
T/K Mol Frac X ₁ x 1	$\Delta G^{2} J \text{ mol}^{-1}$
283.15 1.1 288.15 1.1	
293.15 1.1	75 22,056
298.15 1.20	07 22,365
The solubility values were adjusted to 101.325 kPa by Henry's law.	o a partial pressure of helium of
The Bunsen coefficients were calculate	ed by the compiler.
	~
A preliminary report of this work app {C.R.}, 4th 1975, <u>6</u> , 122-128; <u>Chem.Ab</u>	eared in <u>Conf. Int. Thermodyn</u> . <u>Chim</u> ., str. 1977, 86, 22375d.
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE:	SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co. Inc.
The apparatus is based on the de- sign of Morrison and Billett (1), and	Purest commercially available
the version used is described by	grade.
Battino, Evans, and Danforth (2). The degassing apparatus and procedure are	2. 1-Octanol. Eastman Organic
described by Battino, Banzhof, Bogan,	Chemicals. Distilled.
and Wilhelm (3). See the helium + octane data sheet	
for more details.	
	ESTIMATED ERROR:
	$\delta T/K = 0.03$
	$\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.02$
	REFERENCES:
	1.Morrison,T.J.;Billett,F. J. Chem. Soc. 1948, 2033.
	2.Battino,R.;Evans,F.D.;Danforth,W.F.
	J.Am.Oil Chem. Soc. 1968, <u>45</u> , 830. 3.Battino,R.;Banzhof,M.;Bogan,M.;
}	Wilhelm,E. Anal. Chem. 1971, 43, 806.
	1 AHAL, CHEM, 17/1, 43, 000.

COMPONENTS:	ORIGINAL MEASUREMENTS:	
1. Helium; He; 7440-59-7	Wilcock, R.J.; Battino, R.;	
	Danforth, W.F; Wilhelm, E.	
2. 1-Decanol; C ₁₀ H ₂₂ O; 112-30-1	J. <u>Chem</u> . <u>Thermodyn</u> . 1978, <u>10</u> , 817-822.	
VARIABLES:	PREPARED BY:	
T/K: 282.64 - 313.49	A.L. Cramer	
P/kPa: 101.325 (1 atm)		
EXPERIMENTAL VALUES:		
T/K Mol Fraction	Bunsen Ostwald Coefficient Coefficient	
$x_{1} \times 10^{4}$	$\alpha \times 10^2$ L × 10 ²	
282.64 1.338 298.11 1.512 313.49 1.736	1.587 1.642 1.770 2.006 2.302	
Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = -RT \ln$	$x_1 = 6230.2 + 52.158 T$	
Std. Dev. $\Delta G^{\circ} = 22$ , C		
	$\Delta S^{O}/J \ \kappa^{-1} \ mol^{-1} = -52.158$	
T/K Mol Fra	ction $\Delta G^{O}/J \text{ mol}^{-1}$	
x ₁ x		
283.15 1.3 288.15 1.4		
293.15 1.4		
298.15 1.5 303.15 1.5		
308.15 1.6	58 22,303	
313.15 1.7		
The solubility values were adjusted t 101.325 kPa by Henry's law.	o a partial pressure of helium of	
The Bunsen coefficients were calculat	ed by the compiler.	
	INFORMATION	
METHOD /APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). See the helium + octane data sheet for more details.	grade. 2. 1-Decanol. Eastman Organic Chemicals. Distilled.	
A preliminary report of this work appeared in <u>Conf. Int. Thermodyn</u> . <u>Chim.</u> , {C.R.}, 4th, 1975, 6, 122-128; <u>Chem. Abstr</u> . 1977, <u>86</u> , 22375d.	$\delta P/mHg = 0.03$ $\delta P/mHg = 0.5$ $\delta X_1/X_1 = 0.02$	
	REFERENCES: 1.Morrison,T.J.;Billett,F. J. Chem. Soc. 1948, 2033. 2.Battino,R.;Evans,F.D.;Danforth,W.F. J.Am.Oil Chem. Soc. 1968, 45, 830. 3.Battino,R.;Banzhof,M.;Bogan,M.; Wilhelm, E. <u>Anal. Chem</u> . 1971, 43, 806.	

COMPONENTS:			ORIGINAL MEASUREMENTS:		
1. Helium; He; 7440-59-7			Lannung, A.		
2. Cyclohexanol; C ₆ H ₁₂ O; 108-93-0					
			<u>J. Am. Chem. Soc</u> . 1930, <u>52</u> , 68 - 80.		
VARIABLES:			PREPARED BY:		
	298.15 - 3 Pa: 101.32		P. L. Long		
EXPERIMENTAL VALUE	S:				
-	T/K M	ol Fraction 4 X ₁ x 10	Bunsen Ostwald Coefficient Coefficient $\alpha \times 10^2$ L x $10^2$		
	298.15	0.468	0.99 1.08		
	298.15	0.482	1.02 1.11 1.02 1.13		
	303.15 303.15	0.484 0.532	1.02 1.13 1.12 1.24		
	310.15	0.558	1.17 1.33		
-	310.15	0.578	1.21 1.37		
Smoothed Data:	∆G°/J mo	$1^{-1} = - RT ln$	$X_1 = 11,532 + 44.122 T$		
	Std. Dev	$\Delta G^{\circ} = 84.9,$	Coef. Corr. = 0.9418		
	ΔH ⁰ /J mo		$\Delta S^{\circ}/J K^{-1} mol^{-1} = -44.122$		
	T/1	$ - \frac{x_1 \times 10}{2} $			
298.15 0.473 303.15 0.511					
			24,907 25,128		
308.15 0.550 313.15 0.591			25,349		
The mole fract by the compile			Ostwald coefficients were calculated		
METHOD			· · · · · · · · · · · · · · · · · · ·		
METHOD: Gas absorption. The gas is presatu- rated with solvent vapor. The gas volume absorbed is the difference between initial and final gas vol- umes. The amount of solvent is deter- mined by the weight of mercury displaced.			<pre>SOURCE AND PURITY OF MATERIALS: 1. Helium. Linde's Liquid Air. Contained 0.5 per cent by volume neon. 2. Cyclohexanol. "pur", Poulenc Freres, fractionated twice in vacuo; used portion with m.p. = 23.6 - 23.9 °C.</pre>		
APPARATUS/PROCEDURE: The apparatus is a modification of that of von Antropoff (1). A calibrated, combined all glass manometer and bulb is enclosed in an air thermostat. Mercury is used as the calibration and confining liquid. The solvent is degassed in the appa- ratus. The solvent and the gas are shaken together until equilibrium is established.			ESTIMATED ERROR: $\delta T/K = 0.03$ REFERENCES: 1. v. Antropoff, A. <u>Z. Electrochem</u> . 1919, <u>25</u> , 269.		

COMPONENTS:	ORIGINAL MEASUREMENTS:		
l. Helium; He; 7440-59-7	Lannung, A.		
2. 2-Propanone (Acetone); C ₃ H ₆ O; 67-64-1			
	J. Am. Chem. Soc. 1930, 52, 68 - 80.		
VARIABLES:	PREPARED BY:		
т/к: 288.15 - 298.15	P. L. Long		
He P/kPa: 101.325 (1 atm)			
EXPERIMENTAL VALUES:			
T/K Mol Fraction	Bunsen Ostwald		
$x_1 \times 10^4$	Coefficient Coefficient α x 10 ² L x 10 ²		
288.15 0.907	2.79 2.94		
288.15 0.927 288.15 0.924	2.85 3.01 2.84 3.00		
293.15 0.966	2.95 3.17		
293.15 1.01 293.15 1.01	3.10 3.33 3.09 3.32		
298.15 1.05	3.19 3.48		
298.15 1.09	3.32 3.62		
298.15 1.09	3.31 3.61		
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = -RT \ln T$	v _ 11 077 1 20 142 m		
Smoothed Data: $\Delta G^{2}/J$ mol $^{-} = -RI$ In	$x_1 = 11,277 + 38.143$ T		
	Coef. Corr. = 0.9669		
$\Delta H^{0}/J \text{ mol}^{-1} = 11,277,$	$\Delta S^{\circ}/J K^{-1} mol^{-1} = -38.143$		
T/K Mol Fract	$\Delta G^{\circ}/J \text{ mol}^{-1}$		
$\frac{x_1 \times 10}{2}$	)4 		
288.15 0.919	22,268		
293.15 0.996			
298.15 1.075	5 22,650		
The mole fraction solubility and the by the compiler.	Ostwald coefficients were calculated		
AUXILIARY	INFORMATION		
METHOD:	SOURCE AND PURITY OF MATERIALS:		
Gas absorption. The gas is presatu- rated with solvent vapor. The gas volume absorbed is the difference	1. Helium. Linde's Liquid Air. Contained 0.5 percent by volume neon.		
between initial and final gas vol- umes. The amount of solvent is deter-	2. Acetone. Kahlbaum's "zur Analyse".		
mined by the weight of mercury	Used after tests showed absence of		
displaced.	water, acid and aldehyde.		
	ESTIMATED ERROR:		
APPARATUS/PROCEDURE: The apparatus is a modification of that of von Antropoff	$\delta T/K = 0.03$		
(1). A calibrated, combined all glass			
manometer and bulb is enclosed in an			
air thermostat. Mercury is used as the calibration and confining liquid.	REFERENCES:		
The solvent is degassed in the appa-	1. v. Antropoff, A.		
ratus. The solvent and the gas are	Z. Electrochem. 1919, 25, 269.		
shaken together until equilibrium is established.			
C. CANTTRUCK			
	1		

COMPONENTS :			ORIGINAL MEA	SUBEMENTS .	
1. Helium; He; 7440-59-7			ORIGINAL MEASUREMENTS: Kobatake, Y.; Hildebrand, J.H.		
			, KODALAKE,	, introducing o	
2. Hexadecafluc	2. Hexadecafluoroheptane; C ₇ F ₁₆ ;				
335-57-5	335-57-9			<u>Chem</u> . 1961, <u>65</u> , 331 - 335.	
VARIABLES:	<u> </u>			······	
	91.40 - 3	103.23	PREPARED BY:	.Edelman, M.E.Derrick	
He P/kPa:					
ļ	·····				
EXPERIMENTAL VALUE				0 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	
	т/к	Mol Fraction	Bunsen Coefficient	Ostwald Coefficient	
		$x_{1} \times 10^{4}$	$\propto \times 10^2$	$L \times 10^2$	
	291.40	8.314	8.29	8.85	
	295.47	8.58	8.50	9.20	
	299.24 303.23	8.991 9.294	8.86 9.10	9.70 10.10	
.					
Smoothed Data:	<b>∆</b> G ^O ∕J r	$nol^{-1} = - RT lr$	$x_1 = 7124.$	4 + 34.543T	
		ev. $\Delta G^{\circ} = 11.3$	-		
				_	
	∆H ^O /J r			$mol^{-1} = -34.543$	
			action AGO	/J mol ⁻¹	
	_	x ₁ x	104		
	21	38.15 8.02	2 17		
	29	93.15 8.44 98.15 8.86	1 17	,251 ,423	
		03.15 9.29		,425,596	
The solubility 101.325 kPa (1	y values	were adjusted	to a partia	l pressure of helium of	
	-	-			
The Bunsen and	d Ostwald	coefficients	were calcul	ated by the compiler.	
		AUXILIARY	INFORMATION		
METHOD: The appar	catus cor	sists of a gas	SOURCE AND H	PURITY OF MATERIALS:	
measuring buret	t, an abs	sorption pipet,	1. Helium	. Linde Oxygen Co. Purity	
and reservoir to connections. The			1e 99.9 p	er cent.	
at 25 °C, the p	pipet at	any temperatur	e 2. Hexade	cafluoroheptane. Source not	
from 5 to 30 of glass-enclosed	C. The pi	pet contains a.	given.	Purified as described in	
vide gentle, co	ontinuous	s magnetic stir	- refere	nce 1.	
ring. Pure sol			1		
freezing with 1 uating, then be					
The degassing p	process i	s repeated			
three times. The into the pipet,	, where i	t is then flow. t is again boi			
led under tow by	resaure r	or rinar de-			
gassing. Manipu is such that th	ne solver	it never comes		K = 0.02 $X_1 = 0.003$	
in contact with	n stopcòc	k grease. The		<b>T</b>	
liquid in the p		the difference	REFERENCES:		
		the pipet and	l l. Glew,	D.N.; Reeves, L.W.	
between the car			I T Dhu		
between the can the volume of r	mercury t		$\frac{1}{2} \cdot \frac{1}{1}$	<u>s. Chem</u> . 1956, <u>60</u> , 615.	
between the cap the volume of r it. Gas is adm exact amount is	mercury t itted to s determi	the pipet. Its ned by P-V	<u><u> </u></u>	s. <u>Chem</u> , 1956, <u>60</u> , 615.	
between the cap the volume of r it. Gas is adm exact amount is measurements in	mercury t itted to s determi n the bur	the pipet. Its ned by P-V et before and		<u>s. Chem</u> . 1956, <u>60</u> , 615.	
between the cap the volume of r it. Gas is admi exact amount is	mercury t itted to s determi n the bur tion of g rrer is s	the pipet. Its ned by P-V et before and gas into the set in motion.		<u>s. Cnem</u> . 1956, <u>60</u> , 615.	

.

•

COMPONENTS:	ORIGINAL MEASUREMENTS:			
1. Helium; He; 7440-59-7	Clever, H. L.; Saylor, J. H.; Gross, P. M.			
2. Undecafluoro(trifluoromethyl)- cyclohexane (Perfluoromethyl-	Gross, F. M.			
cyclohexane); C ₇ F ₁₄ ; 355-02-2	J. Phys. Chem. 1958, 62, 89-91.			
VARIABLES:	PREPARED BY:			
T/K: 289.15 - 316.25	P. L. Long			
P/kPa: 101.325 (1 atm)				
EXPERIMENTAL VALUES:				
T/K Mol Fraction X ₁ x 10 ⁴	Bunsen Ostwald Coefficient Coefficient α x 10 ² L x 10 ²			
289.15 7.05	8.17 8.65			
303.15 7.85	8.93 9.91			
316.25 8.23	9.16 10.6			
Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = - RT \ln$				
Std. Dev. ΔG° = 35.0,				
	$\Delta S^{\circ}/J K^{-1} mol^{-1} = -45.274$			
$\begin{array}{ccc} T/K & Mol Fract \\ X_{1} \times 10 \\ \hline \end{array}$	tion ΔG°/J mol ⁻¹ 04			
288.15 7.06				
293.15 7.28 298.15 7.51				
303.15 7.73	18,061			
308.15 7.94 313.15 8.16	18,288 18,514			
318.15 8.38	18,741			
The solubility values were adjusted to a partial pressure of helium of 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculated by the compiler.				
	INFORMATION			
METHOD: Volumetric. (1) The apparatus is a modification of that used by Morrison and Billett ( $2$ ). Modifica- tions include the addition of a	SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Both standard and research grades were used.			
spiral solvent storage tubing, a manometer for constant reference	2. Perfluoromethylcyclohexane.			
pressure, and an extra gas buret for	du Pont FCS-326, shaken with			
highly soluble gases.	concentrated H ₂ SO ₄ , washed,			
	dried over Drierite and distilled b.p. 75.95 to 76.05° at 753 mm.,			
	lit. b.p. 76.14 °C at 760 mmHg.			
APPARATUS/PROCEDURE: (a) Degassing. 700ml	ESTIMATED ERROR:			
of solvent is shaken and evacuated	$\delta T/K = 0.05$			
while attached to a cold trap, until no bubbles are seen; solvent is then	$\frac{\delta P/mm}{\delta X_1/X_1} = 0.03$			
transferred through a 1 mm. capillary				
tubing, released as a fine mist into a continuously evacuated flask.	REFERENCES: 1. Clever, H. J.; Battino, R.;			
(b) Solvent is saturated with gas as	Saylor, J. H.; Gross, P. M.			
it flows through 8 mm x 180 cm of tubing attached to a gas buret. Pres-	<u>J. Phys. Chem</u> . 1957, <u>61</u> , 1078.			
sure is maintained at 1 atm as the gas is absorbed.	<ol> <li>Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033; ibid.1952, 3819.</li> </ol>			

COMPONENTS .	ODICINAL ADICADO
COMPONENTS:	ORIGINAL MEASUREMENTS: Evans, F. D.; Battino, R.
1. Helium; He; 7440-59-7	Drundy I. Dey Ducchio, Ke
2. Hexafluorobenzene; C ₆ F ₆ ; 392-56-3	
	J. Chem. Thermodyn. 1971, 3, 753-760.
VARIABLES:	PREPARED BY:
т/к: 282.91 - 298.46	H. L. Clever
P/kPa: 101.325 (1 atm)	n. L. Clever
EXPERIMENTAL VALUES: T/K Mol Fraction	Bunsen Ostwald
	Coefficient Coefficient
$\underline{\qquad \qquad x_1 \times 10^4}$	$\frac{\alpha \times 10^2}{2} \qquad L \times 10^2$
282.91 1.43	2.82 2.92
283.10 1.41	2.79 2.89
297.63 2.13 298.46 2.13	4.13 4.50 4.13 4.51
Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = - RT \ln$	$x_1 = 18873 + 6.968 T$
Std. Dev. AG° = 28.5,	Coef. Corr. = 0.9049
	$\Delta s^{-1} K^{-1} mol^{-1} = -6.968$
T/K Mol Frac X _l x l	tion ΔG°/J mol ⁻¹ 0 ⁴
278.15 1.23	20,812
283.15 1.43	20,847
288.15 1.64 293.15 1.87	
298.15 2.13	20,951
303.15 2.42	20,986
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate	
	INFORMATION
METHOD: The apparatus is based on the design by Morrison and Billett (1)	SOURCE AND PURITY OF MATERIALS: 1. Helium. Either Air Products &
and the version used is described by	Chemicals, Inc., or Matheson Co.,
Battino, Evans, and Danforth (2).	<pre>Inc. Better than 99 mol per cent. (usually 99.9+).</pre>
	(usually ssesry.
	2. Hexafluorobenzene. Imperial
APPARATUS/PROCEDURE: Degassing. Up to	Smelting Co., Avonmouth, U.K. GC purity 99.7%, density at 25 ^o C
500 cm ³ of solvent is placed in a	$1.60596 \text{ g cm}^{-3}$ , Purified by
flask of such size that the liquid is about 4 cm deep. The liquid is rapid-	see: <u>Anal</u> . <u>Chem</u> . 1968, <u>40</u> , 224.
ly stirred, and vacuum is applied in-	
termittently through a liquid N ₂ trap	DOMINAMED EDDOR:
until the permanent gas residual pressure drops to 5 microns.	ESTIMATED ERROR: $\delta T/K = 0.03$
Solubility Determination. The de-	$\delta P/mmHg = 0.5$
gassed solvent passes in a thin film down a glass spiral tube containing	$\delta x_1 / x_1 = 0.03$
the solute gas plus the solvent vapor	REFERENCES :
at a total pressure of one atm. The	
volume of gas absorbed is found by difference between the initial and	1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033.
final gas volume in the buret system.	
The solvent is collected in a tared flask and weighed.	2. Battino, R.; Evans, F. D.; Danforth, W. F.
LIASY and METAUCA.	J. Am. Oil Chem. Soc. 1968, 45,
	830.

Loour oursured	
COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Helium; He; 7440-59-7	Saylor, J. H.; Battino, R.
2. Fluorobenzene; C ₆ H ₅ F; 462-06-6	
<u> </u>	J. Phys. Chem. 1958, 62, 1334-1337.
	<u>J. Phys. Chem</u> . 1958, <u>62</u> , 1334-1357.
VARIABLES:	PREPARED BY:
т/к: 288.15 - 328.15	H. L. Clever
P/kPa: 101.325 (1 atm)	
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald
$x_{1} \times 10^{4}$	Coefficient Coefficient $\alpha \ge 10^2$ L $\ge 10^2$
288.15 1.01 298.15 1.16	2.44 2.57 2.75 3.00
313.15 1.35	3.14 3.60
328.15 1.52	3.49 4.19
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = -RT \ln$	X ₂ = 7036 8 + 49 930 m
Smootned Data: $\Delta G^{2}/J \mod 4 = -KT \ln I$	~1 - /930.0 + 40.030 I
Std. Dev. ΔG° = 35.4,	Coef. Corr. = 0.9991
	$\Delta s^{\circ}/J K^{-1} mol^{-1} = -48.830$
$\Delta H^{2}/3 \text{ mol} = 7936.8,$	
T/K Mol Frac	
x ₁ × 1	04
288.15 1.02	22,007
293.15 1.08	22,251
298.15 1.15 303.15 1.21	
308.15 1.27	•
313.15 1.34	23,228
318.15 1.40	
323.15 1.47 328.15 1.53	
The solubility values were adjusted t 101.325 kPa (1 atm) by Henry's law.	o a partial pressure of helium of
The Bunsen coefficients were calculat	ed by the compiler.
	INFORMATION
	INFORMATION
METHOD: The apparatus is based on the	SOURCE AND PURITY OF MATERIALS:
design by Morrison and Billett (1) and the version used is described by	1. Helium. Matheson Co., Inc. Both
Clever, Battino, Saylor, and Gross (2	standard and research grades were used.
	2. Fluorobenzene. Eastman Kodak Co.
	2. Fluorobenzene. Eastman Kouak Co. white label, dried over P40 ₁₀ , distilled, b.p. 84.28 - 84.68 °C.
	distilled, b.p. 04.20 % 04.00 C.
	}
	ESTIMATED ERROR:
APPARATUS/PROCEDURE: The solvent is de-	$\delta T/K = 0.03$
gassed by evacuating the space above the liquid and shaking, followed by	$\delta P/mmHg = 1$
passage of the liquid as a fine mist	$\delta X_1 / X_1 = 0.04$
into an evacuated container. The	REFERENCES :
degassed liquid passes as a thin liquid film down a glass spiral tube	1. Morrison, T. J.; Billett, F.
containing the solute gas at a total	J. Chem. Soc. 1948, 2033.
pressure of one atm (1,2).	
	2. Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M.
	J. Phys. Chem. 1957, 61, 1078.

CONDONENTS				
COMPONENTS:	ORIGINAL MEASUREMENTS:			
1. Helium; He; 7440-59-7	de Wet, W. J.			
2. 1,1,2,2-Tetrachloroethane;C ₂ H ₂ Cl ₄ ; 79-34-5				
	<u>J. S. Afr. Chem. Inst</u> . 1964, <u>17</u> , 9-13.			
VARIABLES:	PREPARED BY:			
T/K: 291.25 - 304.05	P. L. Long			
EXPERIMENTAL VALUES:				
T/K Mol Fraction $X_1 \times 10^4$	Bunsen Ostwald Coefficient Coefficient $\alpha \times 10^2$ L x $10^2$			
291.25 0.997	2.12 2.26			
297.45 1.08 304.05 1.15	2.28 2.48 2.42 2.69			
304.05 1.15	2.42 2.03			
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = -RT \ln$	+			
Std. Dev. ΔG° = 13.2,				
$\Delta H^{\circ}/J \text{ mol}^{-1} = 8,193.3,$	$\Delta S^{0}/J K^{-1} mol^{-1} = -48.443$			
T/K Mol Fract $X_1 \times 10$	$AG^{\circ}/J \text{ mol}^{-1}$			
288.15 0.964				
293.15 1.02 298.15 1.08	22,395 22,637			
303.15 1.14 308.15 1.20	22,879 23,121			
308.15 1.20				
The solubility values were adjusted t 101.325 kPa (1 atm) by Henry's law.	o a partial pressure of helium of			
The mole fraction solubility and Ostv by the compiler.	vald coefficients were calculated			
AUXILIARY	INFORMATION			
METHOD: Volumetric.	SOURCE AND PURITY OF MATERIALS:			
To degas, the solvent is placed in	1. Helium. No source given. The gas			
a large continuously evacuated bulb until the solvent boils freely with-	purified over activated charcoal			
out further release of dissolved gases.	at liquid air temperature. Im- purities estimated to be less than 0.3 percent.			
To saturate, the solvent is flowed in				
a thin film through a glass spiral	<ol> <li>1,1,2,2-Tetrachloroethane. No source given. 1,1,2,2-Tetrachloro-</li> </ol>			
containing the gas. The volume of gas absorbed is measured on an attach-	ethane distilled immediately			
ed buret system.	before use.			
	ESTIMATED EDDOD.			
APPARATUS/PROCEDURE:	ESTIMATED ERROR:			
The apparatus is a modification of	δτ/κ = 0.05			
that used by Morrison and Billett(1) and others (2). The degassed solvent				
is saturated with gas as it flows	REFERENCES:			
through a glass spiral containing the gas. The amount of solvent passing	1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033;			
through the spiral is such that 10 -	<u>ibid.</u> 1952, 3819.			
25 ml of gas was absorbed.	<ol> <li>Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M. J. Phys. Chem. 1957, <u>61</u>, 1078.</li> </ol>			

COMPONENTS:			
COM ONENTS.	ORIGINAL MEASUREMENTS: Saylor, J. H.; Battino, R.		
l. Helium; He; 7440-59-7			
2. Chlorobenzene; C ₆ H ₅ Cl; 108-90-7	<u>J. Phys</u> . <u>Chem</u> . 1958, <u>62</u> , 1334 - 1337.		
VARIABLES:	PREPARED BY:		
T/K: 288.15 - 328.15	H. L. Clever		
P/kPa: 101.325 (1 atm)			
EXPERIMENTAL VALUES: T/K Mol Fraction	Bunsen Ostwald		
$x_1 \times 10^4$	$\begin{array}{ccc} \text{Coefficient} & \text{Coefficient} \\ \alpha \times 10^2 & \text{L} \times 10^2 \\ \hline \end{array}$		
288.15 0.597	1.32 1.39		
298.15 0.696 313.15 0.853	1.52 1.66 1.84 2.11		
328.15 0.990	2.11 2.53		
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = - RT \ln$	Х ₁ = 9951.1 + 46.251 т		
Std. Dev. ∆G° = 32.0,	Coef. Corr. = 0.9992		
$\Delta H^{\circ}/J \text{ mol}^{-1} = 9951.1,$	$\Delta S^{\circ}/J K^{-1} mol^{-1} = -46.251$		
T/K Mol Frac X1 x 1			
288.15 0.60 293.15 0.64	•		
293.15 0.64			
303.15 0.74	0 23,972		
308.15 0.78 313.15 0.84			
318.15 0.89	2 24,666		
323.15 0.94 328.15 1.00			
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law.	o a partial pressure of helium of		
The Bunsen coefficients were calculat	ed by the compiler.		
AUXILIARY	INFORMATION		
METHOD: The apparatus is based on the	SOURCE AND PURITY OF MATERIALS:		
design by Morrison and Billett (1)	1. Helium. Matheson Co., Inc.		
and the version used is described by Clever, Battino, Saylor, and	Research grade was used.		
Gross (2).	2. Chlorobenzene. Eastman Kodak Co. white label. Dried over P4010' distilled b.p. 131.67 - 131.71'°C.		
APPARATUS/PROCEDURE: The procedure is to	ESTIMATED ERROR: $\delta T/K = 0.03$		
flow a thin layer of degassed liquid	$\delta T/K = 0.03$ $\delta P/mmHg = 1$		
through a spiral containing the gas. The gas dissolves rapidly and the	$\delta x_1 / x_1 = 0.04$		
saturated liquid flows into a buret			
system. The volume of gas dissolved is determined by the increase in the	REFERENCES:		
solution level at constant pressure.	1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033.		
The volume of liquid the gas dissol- ves in is determined in the burets.			
For low solubilities extra solvent is	<ol> <li>Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M.</li> </ol>		
run through the buret system and weighed. An auxiliary buret is used	J. Phys. Chem. 1957, 61, 1078.		
for high solubilities.			

i i

COMPONENTS:				
	ORIGINAL MEASUREMENTS: Saylor, J. H.; Battino, R.			
1. Helium; He; 7440-59-7				
2. Bromobenzene; C ₆ H ₅ Br; 108-86-1.	<u>J. Phys</u> . <u>Chem</u> . 1958, <u>62</u> , 1334 - 1337.			
VARIABLES:	PREPARED BY:			
T/K: 288.15 - 328.15	H. L. Clever			
P/kPa: 101.325 (1 atm)				
EXPERIMENTAL VALUES:				
T/K Mol Fraction $X_1 \times 10^4$	BunsenOstwaldCoefficientCoefficient $\alpha \times 10^2$ L $\times 10^2$			
288.15 0.441	0.945 0.997			
298.15 0.550 313.15 0.701	1.16 1.27 1.47 1.68			
328.15 0.782	1.61 1.94			
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = - RT \ln$	$X_1 = 11183 + 44.244 T$			
Std. Dev. ΔG° = 115.6	, Coef. Corr. = 0.9890			
$\Delta H^{\circ}/J \text{ mol}^{-1} = 11183,$	$\Delta S^{\circ}/J K^{-1} mol^{-1} = -44.244$			
T/K Mol Frac X ₁ x 1	tion $\Delta G^{\circ}/J \text{ mol}^{-1}$ 04			
288.15 0.45				
293.15 0.49 298.15 0.53				
303.15 0.57	•			
308.15 0.62	1 24,817			
313.15 0.66 318.15 0.71				
323.15 0.76	1 25,480			
328.15 0.81	1 25,702			
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate				
	INFORMATION			
METHOD: The apparatus is based on the design by Morrison and Billett (1) and the version used is described by	SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc. Research grade was used.			
Clever, Battino, Saylor, and Gross (2).	2. Bromobenzene. Eastman Kodak Co.,			
	white label, dried over P4010, distilled, b.p. 155.86 - 155.90°C			
	ESTIMATED ERROR:			
APPARATUS/PROCEDURE: The procedure is to flow a thin layer of degassed liquid	δm/// 0.00			
through a spiral containing the gas.	$\begin{array}{rcl} \delta T/K &= 0.03 \\ \delta P/mmHg &= 1 \end{array}$			
The gas dissolves rapidly and the saturated liquid flows into a buret	$\delta X_1 / X_1 = 0.04$			
system. The volume of gas dissolved	REFERENCES:			
is determined by the increase in the	1. Morrison, T. J.; Billett, F.			
solution level at constant pressure. The volume of liquid the gas dissol-	<u>J. Chem. Soc</u> . 1948, 2033.			
ves in is determined in the burets.	2. Clever, H. L.; Battino, R.;			
For low solubilities extra solvent is run through the buret system and weighed. An auxiliary buret is used	2. Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M. J. Phys. Chem. 1957, 61, 1078.			
for high solubilities.	I			

COMPONENTS :				
	ORIGINAL MEASUREMENTS:			
l. Helium; He; 7440-59-7	Saylor, J. H.; Battino, R.			
2. Iodobenzene; C ₆ H ₅ I; 591-50-4				
	J. Phys. Chem. 1958, 62, 1334 - 1337.			
	and another and and a set of the			
VARIABLES:	PREPARED BY: H. L. Clever			
T/K: 288.15 - 328.15 P/kPa: 101.325 (1 atm)	n. L. Clever			
EXPERIMENTAL VALUES:				
T/K Mol Fraction	Bunsen Ostwald Coefficient Coefficient			
$x_1 \times 10^4$	Coefficient Coefficient $\alpha \times 10^2$ L x 10 ²			
288.15 0.298	0.601 0.634			
298.15 0.385	0.770 0.840			
313.15 0.504 328.15 0.592	0.994 1.14 1.16 1.39			
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = -RT \ln^{-1}$	$X_1 = 13325 + 40.068 T$			
Std. Dev. AG° = 105.9,	Coef. Corr. = 0.9888			
$AH^{2}/I = 13325$	$\Delta s^{-1} K^{-1} mol^{-1} = -40.068$			
	······································			
$\begin{array}{c} T/K & Mol Fract \\ X_1 \times 10 \end{array}$	$\Delta G^{\circ}/J \text{ mol}^{-1}$			
288.15 0.310	24,871			
293.15 0.341 298.15 0.374	L 25,071 4 25,271			
303.15 0.408	3 25,472			
308.15 0.445 313.15 0.484				
318.15 0.524	· · · · · · · · · · · · · · · · · · ·			
323.15 0.560 328.15 0.61				
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate				
	INFORMATION			
METHOD: The apparatus is based on the design by Morrison and Billett (1)	SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc.			
and the version used is described by	Research grade used.			
Clever, Battino, Saylor, and Gross (2).	2. Iodobenzene. Eastman Kodak Co.,			
	white label, shaken with dil.			
	ag. thiosulfate, washed with water, dried over P40 ₁₀ , distil-			
	led 77.40 - 77.60 °C under 20			
	mmHg.			
}				
}				
APPARATUS/PROCEDURE: The procedure is to	ESTIMATED ERROR: $\delta T/K = 0.03$			
flow a thin layer of degassed liquid through a spiral containing the gas.	$\delta P/mmHg = 1$			
The gas dissolves rapidly and the	$\delta X_1 / X_1 = 0.04$			
saturated liquid flows into a buret system. The volume of gas dissolved	REFERENCES:			
is determined by the increase in the	1. Morrison, T. J.; Billett, F.			
solution level at constant pressure. The volume of liquid the gas dissol-	<u>J. Chem. Soc</u> . 1948, 2033.			
ves in is determined in the burets.	2. Clever, H. L.; Battino, R.;			
For low solubilities extra solvent is run through the buret system and	Saylor, J. H.; Gross, P. M.			
weighed. An auxiliary buret is used	J. Phys. Chem. 1957, <u>61</u> , 1078.			
for high solubilities.	L			

ž

i

COMPONENTS :	ORIGINAL MEASUREMENTS:				
1. Helium; He; 7440-59-7	Powell, R. J.				
2. Carbon Disulfide; CS ₂ ; 75-15-0					
2. Carbon 22001110, 052, 70 10 0					
	<u>J. Chem. Eng. Data</u> 1972, <u>17</u> , 302-304.				
VARIABLES:	PREPARED BY:				
T/K: 298.15 P/kPa: 101.325 (1 atm)	P. L. Long				
EXPERIMENTAL VALUES:					
T/K Mol Fraction	Bunsen Ostwald				
$x_1 \times 10^4$	Defficient Coefficient $\alpha \ge 10^2$ L $\ge 10^2$				
298.15 0.39	1.44 1.57				
AUXILIARY	INFORMATION				
METHOD:	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>1. Helium. No source given. Research grade, dried over CaCl₂ before use.</li> <li>2. Carbon Disulfide. No source given. Spectrochemical grade.</li> </ul>				
APPARATUS/PROCEDURE: Dymond and Hilde- brand (1) apparatus which uses an all glass pumping system to spray slugs of degassed solvent into the gas. The amount of gas dissolved is calcu-	ESTIMATED ERROR: $\delta X_1 / X_1 = 0.002$				
lated from the initial and final gas pressures. The solvent is degassed by freezing and pumping followed by boiling under reduced pressure.	REFERENCES: 1. Dymond, J. H.; Hildebrand, J. H. <u>Ind. Eng. Chem. Fundam</u> . 1967, <u>6</u> , 130.				

COMPONENTS:	ORIGINAL MEASUREMENTS:				
	Dymond, J.H.				
1. Helium; He; 7440-59-7					
<pre>2. Sulfinylbismethane (Dimethyl Sulf- oxide); C₂H₆OS (CH₃SOCH₃); 67-68-5</pre>	<u>J. Phys</u> . <u>Chem</u> . 1967, <u>71</u> , 1829 - 1831.				
VARIABLES:	PREPARED BY:				
T/K: 298.15 He P/kPa: 101.325 (1 atm)	M.E.Derrick				
EXPERIMENTAL VALUES:					
T/K Mol Fraction	Bunsen Ostwald Coefficient Coefficient				
$x_1 \times 10^4$	$\alpha \times 10^2$ L x $10^2$				
298.15 0.284	0.893 0.975				
AUXILIARY	INFORMATION				
METHOD:	SOURCE AND PURITY OF MATERIALS;				
The liquid is saturated with the gas	1. Helium. Stuart Oxygen Co. Dried				
at a gas partial pressure of 1 atm. The apparatus is that described by	<ol> <li>before use.</li> <li>Dimethylsulfoxide. Matheson, Coleman, and Bell Co. Spectroguality</li> </ol>				
at a gas partial pressure of 1 atm. The apparatus is that described by Dymond and Hildebrand (1). The appa- ratus uses an all-glass pumping system to spray slugs of degassed solvent into the gas. The amount of gas dis- solved is calculated from the initial	before use. 2. Dimethylsulfoxide. Matheson, Cole- man, and Bell Co. Spectroquality reagent. Dried over 4A molecular seive and a fraction frozen out.				

COMPONENTS:			1	ORIGINAL	MEASUREMENTS:		
1. Helium; He; 7440-59-7				Chang, E. T.; Gokcen, N. A.			
	ydrazine;	сн ₆ n ₂ (NHCH	3 ^{NH} 2)	21		·	
				J. Phys	s. <u>Chem</u> . 196	58, <u>72</u> , 638	- 642.
		- 298.14 - 217.383 - 2.1454 a	tm)	PREPARED	BY: P. L. Lor	ng	
EXPERIMENTAL V. T/K	ALUES: P/Atm	Henry's Constant		raction	Coefficier	nt Coeffi	
253.24	0.8264	$\frac{K \times 10^4}{1.39}$ 1.57	$\frac{X_1 \times 0.1}{0.3}$	.15	$\frac{\alpha \times 10^2}{0.65}$	L x	
273.15	1.0000 1.1448 2.1454	1.78 1.95	0.1 0.2 0.4	18		0.6	
298.14	1.0000 1.1272 2.0617	2.46 2.63	0.1 0.2 0.5	78	0.81	0.8	3 L
The Henry's	1.0000 constant	is defined	0.2 as K/a	$1 \pm 1 = 2$			alues at
one atm wer Smoothed Da mole fracti- fitted to:	ta: The 10	1.325 kPa (		-	Mol Fractic $X_1 \times 10^4$	-	nol ⁻¹
ΔG°/J mol ⁻¹ Std. Dev. Δ	$G^{\circ} = 38.4,$	Coef.		258.15 263.15 268.15 273.15	0.156 0.167 0.178 0.190	23,76 24,07 24,38 24,69	50 71 32 93
∆H°/J mol-l	Corr. = 0 = 7699.0, As°/J K ⁻¹		2.213	278.15 283.15 288.15 293.15 298.15	0.226	25,00 25,31 25,62 25,93 26,24	L5 26 37
<del></del>		AUX	LLIARY 1	INFORMATIC	······	20,2-	
METHOD: The so vacuum in t aratus, App were weighe the apparat liquid stir served unti change. Equ within 10 m 40 m. Subst decompose w solvents th 2 h, and the rected for APPARATUS/PROCE	he previou aratus and d. Gas was us at a kn red, and t l there wa ilibrium w and the P ituted hyd ith time. e P was fo e solubili the gaseou	degassed un sly weighed degassed s introduced own P and T he pressure s no furthe as establis was follow razines app For decompo llowed for ty value wa s decomp. p	der app- olvent into , the ob- r hed ed for ear to sing up to s cor- rod.	SOURCE AN 1. Ho 2. Mo t: No	D PURITY OF M elium. No ir ethylhydrazi ially distil o source or	nformation g ine. Used ir lled, pure s % purity gi	n ini- state.
all Pyrex g sisted of the the measured tainer for stirred with and a manome cathetometed sure. The capacity for 5 ml gas specific	lass const hree calib ment of th the solven h a glass eter with r for meas solvent co r 100 g of ace above apparatus	ruction. It rated volum e gas, a co t, which wa enclosed ma a microslid uring the p ntainer had solvent wi the liquid sections we	con- es for n- s gnet, e res- a th a sur- re	REFERENCE	$\delta P/mmF$ $\delta X_1/X_1$		

COMPONENTS:			ORIGINAL MEASUREMENTS:				
1. Helium; He; 7440-59-7			Cha	ang, E.	. T.; Gokcen,	N. A.	
	-						
		zine; C ₂ H ₈	^N 2				
	CH ₃ ) ₂ ); 57-	-14-/		<u></u> .	Phys.	Chem. 1968,	72, 638 - 642.
VARIABLES:	·····			PREP	ARED BY	:	
T/K: He P/kP	253.05 - a: 118.743					P. L. Long	
		- 2.2511 A	.tm)				
EXPERIMENTAL	VALUES:						······································
T/K	P/Atm	Henry's	Mol F	ract	ion	Bunsen	Ostwald
		Constant K x 10 ⁵	X ₁ x	104		Coefficient $\alpha \times 10^2$	Coefficient L x 10 ²
253.05	1.1719	4.97	0.5				
	2.0347	4.93	1.0			1.53	1.42
	1.0000					1.55	1.42
273.15	1.3684 2.2511	6.72 6.89	0.9 1.5				
	1.0000	0.05	0.6			2.05	2.05
293.16	1.4394	8.70	1.2	953			
293.10	2.2158	8.94	1.9	81			
	1.0000		0.8			2.56	2.77
							ility values at the compiler.
Smoothed Da					T/K	Mol Fraction	$\Delta G^{\circ}/J \text{ mol}^{-1}$
mole fract:	ion solubil	lities were	fitted		248.15	$\frac{X_1 \times 10^4}{0.457}$	20,616
to: ∆G°/J mol ⁻	1 = -BT ln	X.			253.15	0.498	20,855
		+ 47.667 I	•		258.15	0.539 0.583	21,093 21,331
Std. Dev.					268.15	0.628	21,531
	Corr. = (				273.15	0.676 0.724	21,808 22,046
∆H°/J mol-	L = 8787.8	$m_{ol} - 1 = -$	47 667	2	283.15	0.774	22,285
	72 /0 K -		47.007		288.15	0.826 0.880	22,523 22,761
					298.15	0.934	23,000
		AU	XILIARY	INFOR	MATION		
METHOD: The	colvent was						
vacuum in	the previou	usly weighe	ed app-			PURITY OF MATERI	
aratus. App were weigh				1.	Heliu	um. No inform	ation given.
the appara	tus at a kr	nown P and	T, the	2.			zine. Used in
liquid sti: served unt:						ially distill ource or % pu	ed, pure state.
change. Equ	uilibrium v	vas establi	shed			Jurou or o pu	
within 10 m. Subs							
decompose v	with time.	For decomp	osing				
solvents the 2 h, and the			-				
rected for					MARED D	DROD.	
APPARATUS/PRO				511	MATED E	$\delta T/K = 0.0$	3
all Pyrex glass construction. It con- sisted of three calibrated volumes for			-		$\delta P/mmHg = 0$	0.01	
the measure	the measurement of the gas, a con- tainer for the solvent, which was stirred with a glass enclosed magnet, and a manometer with a microslide				$\delta X_1 / X_1 = 0$	.05	
tainer for stirred with			REFE	RENCES:			
and a manor			1.	Chang	, E. T.; Gokc	en, N. A.	
sure. The	cathetometer for measuring the pres- sure. The solvent container had a				J. Phy	ys. Chem. 196	6, <u>70</u> , 2394.
capacity for	or 100 g of	E solvent w	with a				
o mi qas s	pace above	the liquid	sur⊷				
face. The calibrated	apparatus s	sections we	ere				

ŝ

ŝ

	102
COMPONENTS: 1. Helium; He; 7440-59-7	ORIGINAL MEASUREMENTS: Chang, E.T.; Gokcen, N.A.
2. 1,2-Dimethylhydrazine; $C_2H_8N_2$ (NHCH ₃ NHCH ₃ ); 540-73-8	<u>J. Phys</u> . <u>Chem</u> . 1968, <u>72</u> , 638 - 642.
VARIABLES: T/K: 273.15 - 298.15	PREPARED BY:
P/kPa: 101.325 (1 atm)	P. L. Long
EXPERIMENTAL VALUES:	
given an estimated Gibbs energy equ dimethylhydrazine. They used logical ship between the Gibbs energy of so hydrazine, and 1,1-dimethylhydrazin distance of approach of solvent and solvent was determined from a simple extrapolated to obtain the estimate of helium in 1,2-dimethylhydrazine $\Delta G^{O}/cal mol^{-1} = -RT ln$ where K is the Henry's constant determined	$K/atm^{-1} = 2,490 + 7.70T$ fined as $K/atm^{-1} = X_1/P$ . The pressure is ies at 101.325 kPa (1 atm) tabulated below
T/K	Mol Fraction $X_1 \times 10^4$
273.1 278.1 283.1 288.1 293.1 298.1	5 0.0229 5 0.0248 5 0.0268 5 0.0289
AUXILI	LARY INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS:
Estimated data, see above.	
APPARATUS / PROCEDURE :	ESTIMATED ERROR:

**REFERENCES:** 

COMPONENTS:		ORIGINAL MEASUREMENTS:		
l. Helium; He; 7440-59-7		Chang, E.T.; Gokc	CH / M+A+	
2. Hydrazine; N ₂ H	H ₄ ; 302-01-2			
<pre>3. 1,1-Dimethylhy</pre>	ydrazine; C ₂ H ₈ N ₂ 57-14-7	<u>J. Phys. Chem</u> . 196	8, <u>72</u> , 2556 - 2562.	
VARIABLES:	.15 - 303.15	PREPARED BY:		
		P.L.Long	, H.L.Clever	
	0.663 (0.5 atm) - 253.313 (2.5 atm)			
EXPERIMENTAL VALUES:				
1,1-Dimethy1-	$\Delta G^{O} = -RT \ln K H$	lenry's Constant,	Mol Fraction	
hydrazine, X ₃	273.15 - 303.15 K H Unit:cal mol ⁻¹	$K = \bar{X}_{1}/P$ Jnit: atm ⁻¹ K x 10 ⁶ at 288.15 K	$X_1 \times 10^4$ At l atm and 288.15 K	
0.0	1,260 + 19.94T	4.86	0.0486	
0.1	1,230 + 19.02T	8.14	0.0814	
0.2	1,310 + 17.80T	13.07	0.1307	
0.3 0.4	1,900 + 15.03T 2,150 + 13.71T	18.80 23.6	0.1880 0.236	
0.5	2,210 + 13.09T	29.0	0.290	
0.6	2,220 + 12.63T	36.0	0.360	
0.7	2,200 + 12.29T	44.2	0.442	
0.8	2,170 + 11.99T 2,140 + 11.67T	54.2	0.542	
0.9 1.0	2,140 + 11.67T 2,110 + 11.36T	67.0 82.6	0.670 0.826	
The Gibbs energy equation was fitted to data taken in the 273.15 - 303.15 K temperature range. The Henry's constant is based on data measured over the 0.5 - 2.5 atm pressure range. The value in the Table above is the Henry's constant at 288.15 K. Values at other temperatures can be calculated from the Gibbs				
ulated by the cor	-			
and in four mixtu	f helium was measured ares at three temperat obtain the Gibbs energy	ures and several pro	essures. The data	
tervals.	AUXILIARY	INFORMATION		
METHOD: The solvent	was degassed under	SOURCE AND PURITY OF M	ATERIALS:	
vacuum in the pre aratus. Apparatus were weighed. Gas the apparatus at liquid stirred, a served until ther change. Equilibri within 10 m and t 40 m. Substituted decompose with ti solvents the P wa 2 h, and the solu	eviously weighed app- s and degassed solvent was introduced into a known P and T, the and the pressure ob- ce was no further tum was established the P was followed for d hydrazines appear to the. For decomposing us followed for up to ability value was cor- aseous decomp.product.	were not given. Th refractive index o components and sev mixtures are given were freshly disti	f the solvent eral of their . The solvents	
		ESTIMATED ERROR:	0.02	
	The apparatus was of construction. It con-	δP/mmHg	= 0.03 = 0.01	
	calibrated volumes for	$\delta X_1/X_1$		
the measurement of	of the gas, a containe			
	which was stirred	REFERENCES :		
with a glass end	Losed magnet, and a microslide catheto-	1. Chang, E.T.; Go	kcen, N.A.	
	ing the pressure. The	J. Phys. Chem.		
solvent container	had a capacity for			
	with a 5 ml gas space			
	surface. The apparatulibrated to $\pm$ 0.0002 -			
L		<u> </u>		

İ

COMPONENTS:	ORIGINAL MEASUREMENTS:		
l. Helium; He; 7440-59-7	Wood, R.H.; DeLaney, D.E.		
<pre>2. N-Methylacetamide; C₃H₇NO  (CH₃CONHCH₃); 79-16-3</pre>	J. <u>Phys</u> . <u>Chem</u> . 1968, <u>72</u> , 4651 - 4654.		
VARIABLES: T/K: 308.15 - 343.15 He P/kPa: 101.325 (1 atm)	PREPARED BY: P.L.Long		
EXPERIMENTAL VALUES:			
The authors fitted their experimental data by the method of least squares to the equation $\ln x_1 = -1152.5/T - 6.0579$			
which arranges to $\Delta G^{O}/J \mod^{-1} = -RT \ln X_1 = -RT(-1152.5/T - 6.0579)$			

= 9,582.3 + 50.367T

and  $\Delta H^{O}/J \text{ mol}^{-1} = 9,582.3$ ,  $\Delta S^{O}/J \text{ K}^{-1} \text{ mol}^{-1} = -50.367$ 

The experimental data was not included in the paper. It is available in a thesis (1). The smoothed mole fraction helium solubilities at 101.325 kPa and five degree interval from 308.15 to 343.15 K were given in the paper. The Bunsen and Ostwald coefficients and the Gibbs energy of solution were calculated by the compiler.

Smoothed Data: $T/K$	Mol Fraction $X_1 \times 10^4$	Bunsen Coefficient & x 10 ²	Ostwald Coefficient L x 10 ²	∆G ^o /J mol ⁻¹
308,15	0.557	1.62	1.82	25,103
313.15	0.591	1.71	1.96	25,355
318.15	0.626	1.80	2.10	25,607
323.15	0.663	1.90	2.25	25,858
328.15	0.699	1.99	2.39	26,110
333.15	0.738	2.09	2.55	26,362
338.15	0.776	2.19	2.71	26,614
343.15	0.816	2.30	2.88	26,866

## AUXILIARY INFORMATION

	INFORMITION
METHOD:	SOURCE AND PURITY OF MATERIALS:
	<ol> <li>Helium. Source not given. Purity 99.99 per cent.</li> </ol>
	2. N-Methylacetamide.Source not given. Recrystallized three times in a dry box. Typically had a water content of 0.04 mol per cent after a solubility run.
	ESTIMATED ERROR:
APPARATUS/PROCEDURE: A gas buret was connected to a solvent buret through a three-way capillary stopcock. A measured volume of gas was transferred to a known volume of solvent; when	Duplicate runs checked to within 0.5 percent.
equilibrium was reached the total	REFERENCES:
pressure and volume of the system was measured (1). The apparatus and procedure were checked by measuring the solubility of Ar in H ₂ O at 298.15	<ol> <li>DeLaney, D.E. M.S. Thesis, University of Delaware, 1968.</li> </ol>
K. The Bunsen coefficient of 0.03105 checked well with the literature (2).	2. Ben-Naim, A.; Baer, S. Trans. Faraday Soc. 1963,59,2735; <u>ibid</u> . 1964, <u>60</u> , 1736.

COMPONENTS:	ORIGINAL MEASUREMENTS:
l. Helium; He; 7440-59-7	Saylor, J. H.; Battino, R.
2. Nitrobenzene; C ₆ H ₅ NO ₂ ; 98-95-3	
	J. Phys. Chem. 1958, 62, 1334 - 1337.
VARIABLES:	PREPARED BY: H. L. Clever
T/K: 288.15 - 328.15 P/kPa: 101.325 (l atm)	n. h. Cievei
1/// dt 101/015 (1 ddm/	
EXPERIMENTAL VALUES: T/K Mol Fraction	Bunsen Ostwald
, c	Coefficient Coefficient
$x_1 \times 10^4$	$\frac{\alpha \times 10^2}{10^2} = \frac{10^2}{10^2}$
288.15 0.265	0.581 0.613 0.822 0.897
298.15 0.377 313.15 0.494	0.822 0.897 1.06 1.22
328.15 0.540	1.15 1.38
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = - RT \ln$	X ₁ = 13508 + 39.990 T
	Coef. Corr. = 0.9503
$\Delta H^{\circ}/J \text{ mol}^{-1} = 13508,$	$\Delta s^{-1} = -39.990$
T/K Mol Fract	$\Delta G^{\circ}/J \text{ mol}^{-1}$
$x_1 \times 10$	)4
288.15 0.290	
293.15 0.319 298.15 0.350	
303.15 0.383	3 25,631
308.15 0.418 313.15 0.45	
318.15 0.494	4 26,231
323.15 0.53 328.15 0.57	
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law.	a partial pressure of helium of
The Bunsen coefficients were calculate	ed by the compiler.
AUXILIARY	INFORMATION
METHOD: The apparatus is based on the	SOURCE AND PURITY OF MATERIALS:
design by Morrison and Billett (1)	1. Helium. Matheson Co., Inc.
and the version used is described by	Research grade was used.
Clever, Battino, Saylor, and Gross (2).	2. Nitrobenzene. Eastman Kodak Co.,
	white label, distilled from $P_4O_{10}$ , reduced pressure of 10 mm
	of Hg, b.p. $81.0 - 81.2$ C.
	REMINIMED RDDOD-
APPARATUS/PROCEDURE: The procedure is to	ESTIMATED ERROR:
flow a thin layer of degassed liquid through a spiral containing the gas.	$\delta T/K = 0.03$
The gas dissolves rapidly and the	$\begin{array}{rcl} \delta P/mmHg &= 1\\ \delta X_1/X_1 &= 0.04 \end{array}$
saturated liquid flows into a buret system. The volume of gas dissolved	REFERENCES :
is determined by the increase in the	1. Morrison, T. J.; Billett, F.
solution level at constant pressure. The volume of liquid the gas dissol-	J. Chem. Soc. 1948, 2033.
ves in is determined in the burets.	2. Clever, H. L.; Battino, R.;
For low solubilities extra solvent is run through the buret system and	Saylor, J. H.; Gross, P. M. J. Phys. Chem. 1957, 61, 1078.
weighed. An auxiliary buret is used	0. rilys. cilem. 1937, 01, 1078.
for high solubilities.	

.

\$

COMPONENTS :		ORIGIN	AL MEASUREMENT	S:
l. Helium; He;	7440-59-7	1	11, R.J.	
bis (nonaflu	4,4,4-Nonafluoro-N,N- orobutyl)-l-butanamine ibutylamine) ;C ₁₂ F ₂₇ N,		em. Eng. Dat	<u>a</u> 1972, <u>17</u> , 302-304.
VARIABLES:	<u> </u>	PREPAR	ED BY:	<u></u>
T/K: 288.15 - 313.15 He P/kPa: 101.325 (1 atm)			P.L.Lo	ng
EXPERIMENTAL VALUES	•	······································		
т/к	$\begin{array}{c} \text{Mol Fraction} \\ \underline{X_1 \times 10^4} \\ \underline{\qquad }	cient	Ostwald Coefficient L x 10 ²	$R\frac{\Delta \log X_{1}}{\Delta \log T} = N$
298.15	11.67 7.3	4	8.01	4.13
slope R(Alog X1	÷	ne smoo orm:	thed data be	low were calculated by
Smoothed Data:	T/K Mo	ol Frac X _l x l		
The Bunsen and	288.15 293.15 298.15 303.15 308.15 313.15 Ostwald coefficients v	10.87 11.27 11.67 12.08 12.50 12.92	2 	the compiler.
<u></u>	AUXILIAR	V INFORM	ΙΔΤΤΩΝ	
METHOD:		1. He		rce given. Research
		Mi eđ 44	erfluorotribu ning & Manuf 1, used porti 17.85-448.64	ver CaCl ₂ before use. tylamine. Minnesota acturing Co. Distill- on boiling between K which gave a single .15 = 1.880 g cm ⁻³ .

1.Helium-3; 3 He; 14762-55-1Fowell, R. J.2.1,1,2,2,3,3,4,4,4-nonafluoro-N,N- bis(nonafluorobutyl)-1-butnamine (Perfluorotibutylanine); C12F27N 311-89-7J. Chem. Eng. Data 1972, 17, 302-30 J. Chem. Eng. Data 1972, 17, 302-30VARIABLES: T/K 273,15 - 318,15 He P/KPa: 101,325 (1 atm)PREPARED EY: Coefficient a x 102J. L. LongEXPERIMENTAL VALUES: $\frac{X_1 \times 10^4}{298,15}$ Desme Coefficient Coefficient $\times 102^2$ $\frac{Alog X_1}{C} = N$ $4.24$ The author states that solubility measurements were made between 288.15 ar 313,15 x, but only the solubility at 298.15 was given in the paper. The shope R(Alog X_1/Alog T) was given. The smoothed data below were calculated by the compiler from the slope in the form: $\log X_1 = \log(11.02 \times 10^{-4}) + (4.24/R)\log(T/298.15)$ with R = 1.9872 cal R ⁻¹ mol ⁻¹ .Smoothed Data:T/K MOI Fraction X_1 \times 10^4 293.15 11.02 303.15 11.42 313.15, 12.24 313.15, 12.24 313.15 12.24 313.15 12.266The Bunsen and Ostwald coefficients were calculated by the compiler.AUXILIARY INFORMATIONMETHOD:AUXILIARY INFORMATION<	COMPONENTS :	ORIGINAL MEASUREMENTS:
2. $1, 1, 2, 2, 3, 3, 4, 4, 4$ -nonafluoro-N, N- bis (nonafluorobuty1)-1-butanamine (Perfluorotributylanine); C12F27N 311-89-7 VARTABLES: 	_	
bis (nonafluorobutyl)-1-butanamine (Perfluorotributylamine); Cl2F27N 31-69-7 VARIABLES: T/K: 273.15 - 318.15 He P/KPa: 101.325 (1 atm) EXPERIMENTAL VALUES: T/K MOI Fraction Variable States that solubility measurements were made between 268.15 ar 11.02 6.93 7.56 4.24 The author states that solubility measurements were made between 268.15 ar 313.15 K, but only the solubility at 298.15 was given in the paper. The slope R(Alog X/Alog T) was given. The smoothed data below were calculated by the compiler from the slope in the form: log X ₁ = log(11.02 x 10 ⁻⁴ ) + (4.24/R) log(T/298.15) with R = 1.9872 cal K ⁻¹ mol ⁻¹ . Smoothed Data: T/K MOI Fraction 298.15 11.02 MUXILLARY INFORMATION METHOD: METHOD: METHOD: METHOD: APPARATUS/FROCEDURE: Dymond and Hilde- brand (1) apparatus which uses an all gas pressures. The solvent is de- gassed by freezing and pumping (50- Classic classed and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by freezing and pumping (50- Classed by f		Powell, R. J.
T/K: 273.15 - 318.15 He F/KPa: 101.325 (1 atm)P. L. LongEXPERIMENTAL VALUES:T/K Mol Fraction 298.15Bunsen Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient<	bis(nonafluorobutyl)-l-butanamine (Perfluorotributylamine); C ₁₂ F ₂₇ N	J. <u>Chem. Eng</u> . <u>Data</u> 1972, <u>17</u> , 302-304.
$\frac{1}{X_1 \times 10^4}$ $\frac{1}{298,15}$ $\frac{1}{11.02}$ $\frac{1}{6.93}$ $\frac{1}{7.56}$ $\frac{1}{4.24}$ The author states that solubility measurements were made between 288.15 ar slope R(Alog X_1/Alog T) was given. The smoothed data below were calculated by the compiler from the slope in the form: $\log X_1 = \log(11.02 \times 10^{-4}) + (4.24/R)\log(T/298.15)$ with R = 1.9872 cal K ⁻¹ mol ⁻¹ . Smoothed Data: $\frac{1}{7/K}$ $\frac{1}{288.15}$ $\frac{1}{10.25}$ $\frac{1}{299.15}$ $\frac{1}{1.02}$ $\frac{1}{299.15}$ $\frac{1}{299.15}$ $\frac{1}{1.02}$ $\frac{1}{2.24}$ $\frac{1}{318.15}$ $\frac{1}{2.266}$ The Bunsen and Ostwald coefficients were calculated by the compiler. $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $\frac{1}{1.02}$ $$	T/K: 273.15 - 318.15	
$\frac{x_1 \times 10^4}{298.15  11.02}  a \times 10^2  L \times 10^2$ $\frac{x_1 \times 10^4}{298.15  11.02}  6.93  7.56  4.24$ The author states that solubility measurements were made between 288.15 ar 313.15 K, but only the solubility at 298.15 was given in the paper. The slope R(ldog X_1/dlog T) was given. The smoothed data below were calculated by the compiler from the slope in the form: $\log X_1 = \log(11.02 \times 10^{-4}) + (4.24/R)\log(T/298.15)$ with R = 1.9872 cal K ⁻¹ mol ⁻¹ . Smoothed Data: $\frac{T/K}{288.15}  10.25$ 293.15 10.63 298.15 11.02 303.15 11.42 308.15 11.62 303.15 11.62 303.15 12.24 318.15 12.66 The Bunsen and Ostwald coefficients were calculated by the compiler. $\frac{AVXILIARY INFORMATION}{METHOD:}$ METHOD: $\frac{AVPARATUS/PROCEDURE: Dymond and Hilde- Drand (1) apparatus which uses an all gas presures. The solvent is de- gassed by freezing and pumping fol- lowed by boiling under reduced \frac{K_1 \times 10^4}{288.15} = 0.16 \frac{K_1 \times 10^4}{288.15} = 0.16 \frac{K_1 \times 10^4}{288.15} = 0.16$	EXPERIMENTAL VALUES:	
The author states that solubility measurements were made between 288.15 ar 313.15 K, but only the solubility at 298.15 was given in the paper. The slope R( $\lambda$ log X ₁ / $\lambda$ log T) was given. The smoothed data below were calculated by the compiler from the slope in the form: log X ₁ = log(11.02 x 10 ⁻⁴ ) + (4.24/R)log(T/298.15) with R = 1.9872 cal K ⁻¹ mol ⁻¹ . Smoothed Data: T/K Mol Fraction X ₁ x 10 ⁴ 288.15 10.25 293.15 10.25 293.15 11.02 303.15 11.42 303.15 11.42 313.15 12.26 The Bunsen and Ostwald coefficients were calculated by the compiler. METHOD: METHOD: METHOD: METHOD: AUXILIARY INFORMATION METHOD: METHOD: METHOD: METHOD: METHOD: AUXILIARY INFORMATION METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD: METHOD:	Coet	$\begin{array}{llllllllllllllllllllllllllllllllllll$
313.15 K, but only the solubility at 298.15 was given in the paper. The shope K( $\log X_1/\Delta \log T$ ) was given. The smoothed data below were calculated by the compiler from the slope in the form: $\log X_1 = \log(11.02 \times 10^{-4}) + (4.24/R)\log(T/298.15)$ with R = 1.9872 cal K ⁻¹ mol ⁻¹ .Smoothed Data:T/KMol Fraction $X_1 \times 10^4$ 298.15288.1510.63 298.15298.1510.63 298.15298.1511.42 308.15308.1511.42 308.15308.1511.42 308.15308.1511.42 308.15308.1511.42 308.15308.1511.42 308.15308.1511.42 308.15308.1511.42 308.15308.1511.42 308.15308.1511.42 308.15308.1511.42 308.15AUXILIARY INFORMATIONMETHOD:Source AND PURITY OF MATERIALS: 1. Helium-3. Lawrence Radiation Lab oratory, Berkeley, through the efforts of B. J. Alder.Colspan="2">APPARATUS/PROCEDURE: Dymond and Hilde- brand (1) apparatus which uses an all glass pumping system to spray slugs of degased solvent into the gas. The amount of gas dissolved is cal- culated from the initial	298.15 11.02 6	5.93 7.56 4.24
Smoothed Data: $T/K  Mol \; Fraction \\ x_1 \times 10^4 \\ \hline 288.15 \\ 10.25 \\ 293.15 \\ 10.63 \\ 298.15 \\ 11.62 \\ 303.15 \\ 11.42 \\ 308.15 \\ 11.82 \\ 313.15 \\ 12.66 \\ \hline \\ The Bunsen and Ostwald coefficients were calculated by the compiler. \\ \hline \\ AUXILIARY INFORMATION \\ \hline \\ METHOD: \\ \hline \\ METHOD: \\ \hline \\ METHOD: \\ \hline \\ APPARATUS/PROCEDURE: Dymond and Hilde-brand (1) apparatus which uses an all glass pumping system to spray slugs of degassed solvent into the gas. The amount of gas dissolved is cal-culated from the initial and final gas pressures. The solvent is de-gassed by freezing and pumping fol-lowed by boiling under reduced \\ \hline \\ \hline \\ T/K  Mol \; Fraction \\ \hline \\ No return (1) = 0.1 \\ \delta X_1/X_1 = 0.002 \\ \hline \\ REFERENCES: \\ Dymond, J. H.; Hildebrand, J. H. \\ Ind. \; Eng. Chem. Fundam. 1967, 6, 130. \\ \hline \\ \ \\ \ \end{array}$	313.15 K, but only the solubility at a slope $R(\Delta \log X_1/\Delta \log T)$ was given. The by the compiler from the slope in the log $X_1 = \log(11.02)$	298.15 was given in the paper. The ne smoothed data below were calculated form:
$\frac{x_1 \times 10^4}{10.25}$ $\frac{x_1 \times 10^4}{10.25}$ $\frac{293.15}{10.63}$ $\frac{298.15}{11.02}$ $\frac{303.15}{11.42}$ $\frac{308.15}{11.82}$ $\frac{313.15}{12.66}$ The Bunsen and Ostwald coefficients were calculated by the compiler. AUXILIARY INFORMATION METHOD: METHOD: 4000000000000000000000000000000000000	with $R = 1.9872$ cal $K^{-1}$ mol ¹ .	
<ul> <li>METHOD:</li> <li>METHOD:</li> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>Helium-3. Lawrence Radiation Laboratory, Berkeley, through the efforts of B. J. Alder.</li> <li>Perfluorotributylamine. Minnesota Mining &amp; Mfg. Co., column distilled, used portion with b.p.=447.85-448.64K, &amp; single peak GC.</li> <li>APPARATUS/PROCEDURE: Dymond and Hildebrand (1) apparatus which uses an all glass pumping system to spray slugs of degassed solvent into the gas. The amount of gas dissolved is calculated from the initial and final gas pressures. The solvent is degassed by freezing and pumping 'followed by boiling under reduced</li> <li>SOURCE AND PURITY OF MATERIALS:         <ul> <li>Helium-3. Lawrence Radiation Laboratory, Berkeley, through the efforts of B. J. Alder.</li> <li>Perfluorotributylamine. Minnesota Mining &amp; Mfg. Co., column distilled, used portion with b.p.=447.85-448.64K, &amp; single peak GC.</li> </ul> </li> <li>ESTIMATED ERROR:         <ul> <li>N/cal K⁻¹ mol⁻¹ = 0.1</li></ul></li></ul>	288.15 293.15 298.15 303.15 308.15 313.15 318.15	$\begin{array}{c} x_1 \times 10^4 \\ 10.25 \\ 10.63 \\ 11.02 \\ 11.42 \\ 11.82 \\ 12.24 \\ 12.66 \end{array}$
<ul> <li>APPARATUS/PROCEDURE: Dymond and Hildebrand (1) apparatus which uses an all glass pumping system to spray slugs of degassed solvent into the gas. The amount of gas dissolved is calculated from the initial and final gas pressures. The solvent is degassed by freezing and pumping 'followed by boiling under reduced</li> <li>I. Helium-3. Lawrence Radiation Laboratory, Berkeley, through the efforts of B. J. Alder.</li> <li>Perfluorotributylamine. Minnessota Mining &amp; Mfg. Co., column distilled, used portion with b.p.=447.85-448.64K, &amp; single peak GC.</li> <li>ESTIMATED ERROR:</li> <li>ESTIMATED ERROR:</li> <li>More and Mildebrand (1) apparatus which uses an all glass pumping system to spray slugs of degassed solvent into the gas. The solvent is degassed by freezing and pumping 'followed by boiling under reduced</li> </ul>	AUXILIARY	INFORMATION
APPARATUS/PROCEDURE: Dymond and Hilde- brand (1) apparatus which uses an all glass pumping system to spray slugs of degassed solvent into the gas. The amount of gas dissolved is cal- culated from the initial and final gas pressures. The solvent is de- gassed by freezing and pumping 'fol- lowed by boiling under reduced $K^{-1} mol^{-1} = 0.1$ $\delta N/cal K^{-1} mol^{-1} = 0.1$ $\delta X_1/X_1 = 0.002$ REFERENCES: 1. Dymond, J. H.; Hildebrand, J. H. Ind. Eng. Chem. Fundam. 1967, 6 130.		<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>1. Helium-3. Lawrence Radiation Laboratory, Berkeley, through the efforts of B. J. Alder.</li> <li>2. Perfluorotributylamine. Minnesota Mining &amp; Mfg. Co., column distilled, used portion with b.p.=447.85-448.64K, &amp; single</li> </ul>
	brand (1) apparatus which uses an all glass pumping system to spray slugs of degassed solvent into the gas. The amount of gas dissolved is cal- culated from the initial and final gas pressures. The solvent is de- gassed by freezing and pumping 'fol- lowed by boiling under reduced	$\delta N/cal K^{-1} mol^{-1} = 0.1$ $\delta X_1/X_1 = 0.002$ REFERENCES: 1. Dymond, J. H.; Hildebrand, J. H. Ind. Eng. Chem. Fundam. 1967, <u>6</u> ,

Church In-

	<u>.</u>			
COMPONENTS:		ORIGINAL MEASUREMENTS:		
1. Helium; He; 7440-59-7			J.; McHale, J.L.; B.: Wilhelm, E.	
<pre>2. Octamethylcyclotetrasiloxane; C₈^H24^O4^{Si}4; 556-67-2</pre>		Battino, B.; Wilhelm, E. <u>Fluid Phase</u> <u>Equilib</u> .1978, <u>2</u> , 225-230.		
VARIABLES:		PREPARED BY:		
VARIABLES: T/K: 292.15 - 313			I.L. Clever	
P/kPa: 101.325 (1 a	itm)			
EXPERIMENTAL VALUES:		L	— — — — — — — — — — — — — — — — — — —	
Т/К МС	$x_1 \times 10^4$	Bunsen Coefficient α x 10 ²	Ostwald Coefficient L x 10 ²	
292.15	5.20	3.763	4.025	
298.48 313.15	5.57 6.25	4.005 4.408	4.376 5.054	
*****				
The solubility values were kPa by Henry's law.	e adjusted t	o a gas partia	al pressure of 101.325	
The Bunsen coefficients we	re calculat	ed by the com	niler	
Smoothed Data: $\Delta G^{O}/J$ mol				
		L Coef. Corr. =		
		$\Delta S^{O}/J K^{-1} mol$		
LIOM J MOL				
د د		action $\Delta G^{O}/J$	mol ⁻¹	
	x ₁ x	: 10 ⁴		
29	<u> </u>	27 18,	396	
		52 18,	598	
		76 18,		
	8.15 6. 8.15 6.	01 19, 26 19,		
	<u></u>	. <u> </u>		
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURI	TY OF MATERIALS:	
The apparatus is based	on the de-	1. Helium.	Matheson Co., Inc.	
sign of Morrison and Bille		Minimum 99.995.	mole per cent purity	
the version used is described Battino, Evans, and Danfor		55.555.		
The degassing apparatus an	nd procedure	2. Octamet	hylcyclotetrasiloxane.	
are described by Battino, Bogan, and Wilhelm (3).	Banzhof,		Electric Co. Distilled of 298.15 K was 0.9500	
Degassing. Up to 500 d	cm ³ of sol-	$g \text{ cm}^{-3}$ .		
vent is placed in a flask	of such	g cm .		
size that the liquid is all deep. The liquid is rapid				
and vacuum is applied inte	ermittently			
through a liquid N ₂ trap u permanent gas residual pre		ESTIMATED ERROR		
drops to 5 microns.	-DOULC		T/K = 0.03	
Solubility Determination			mHg = 0.5 $/x_1 = 0.02$	
gassed solvent is passed : film down a glass spiral t		1	L	
I say would a diggo obright (		REFERENCES:		
taining the solute gas plu	is the sol-			
vent vapor at a total pres	ssure of		F.J.;Billett,F.	
vent vapor at a total pres one atm. The volume of ga	ssure of as absorbed	J. Chem.	Soc. 1948, 2033.	
vent vapor at a total pres	ssure of as absorbed ween the	J. Chem. 2.Battino,R J.Am.Oil	Soc. 1948, 2033. .;Evans,F.D.;Danforth,W.F. <u>Chem.Soc</u> . 1968, <u>45</u> , 830.	
vent vapor at a total pres one atm. The volume of ga is found by difference be initial and final volumes buret system. The solven	ssure of as absorbed tween the in the t is col-	J. Chem. 2.Battino,R J.Am.Oil 3.Battino,R	Soc. 1948, 2033. .;Evans,F.D.;Danforth,W.F. <u>Chem.Soc</u> . 1968, <u>45</u> , 830. .;Banzhof,M.;Bogan, M.;	
vent vapor at a total pres one atm. The volume of ga is found by difference be initial and final volumes	ssure of as absorbed tween the in the t is col-	J. Chem. 2.Battino,R J.Am.Oil 3.Battino,R Wilhelm,	Soc. 1948, 2033. .;Evans,F.D.;Danforth,W.F. <u>Chem.Soc</u> . 1968, <u>45</u> , 830. .;Banzhof,M.;Bogan, M.;	

COMPONENTS:		ORIGINAL MEASUREMENTS:	~	
1. Helium; He; 7440-59-7		Karasz, F.E.; Halsey, G.D.Jr.		
			1	
2. Argon; Ar; 7440-37-1				
		<u>J. Chem. Phys</u> . 1958, <u>29</u> , 173 - 179.		
VARIABLES:		PREPARED BY:	٦	
T/K: 84.54 - 86.89 He P/kPa: 2.666 - 21.33		P. L. Long		
(2 - 16  cmHg)	2			
EXPERIMENTAL VALUES:			-1	
т/к не	nry's Consta			
10.	⁻⁵ K/cmHg	At He P = 1 cmHg At He P = 76 cm $X_1 \times 10^4$ $X_1 \times 10^4$	нg	
	····		-	
84.54 86.11	4.25 3.53	0.0235 1.79 0.0283 2.15		
86.89	3.40	0.0294 2.23	ļ	
The data were shown in two against mole fraction He d l/T plot. The compiler tool graph to obtain the Henry's	graphs: one issolved in < log K valu s constant va	al values of their solubility data. was a Henry's law plot of He P/cmHg argon; the other was a log K against ues from the points on the second alues given in the Table above. The solubility of He in liquid Ar at		
pressures of one and 76 cml				
The Henry's constant is 1	K/cmHg = (P·	$1/cmHg)/X_1$ .		
	AUXILIARY	INFORMATION		
METHOD:		SOURCE AND PURITY OF MATERIALS:		
A measured amount of hel	ium ase was			
placed in the cell with a placed	measured	received in glass sealed bulbs.		
amount of liquid argon. The was recorded as a function	e pressure of the	2. Argon. Air Reduction Co. Used as		
amount of gas (isotherm) of	r as a	received in glass sealed bulbs fo		
function of temperature (i Only the results from the	sostere). isotherm	reference compartment. The actual solvent was tank argon purified	r	
runs are given above.		with titanium metal.	r	
			r	
			r	
1			r	
	······································	ESTIMATED ERROR:	r	
APPARATUS/PROCEDURE:	ith one	$\delta T/K = 0.01$	r	
A stainless steel cell w compartment for the soluti	on and one	ESTIMATED ERROR: $\delta T/K = 0.01$ $\delta P/cmHg = 0.002$ $\delta X_1/X_1 = 0.001$	r	
A stainless steel cell w compartment for the soluti compartment containing pur	on and one e liquid	$\delta T/K = 0.01$ $\delta P/cmHg = 0.002$ $\delta X_1/X_1 = 0.001$	r	
A stainless steel cell w compartment for the soluti compartment containing pur argon as a reference. The mounted so that movement is	on and one e liquid cell was n one	$\delta T/K = 0.01  \delta P/cmHg = 0.002  \delta X_1/X_1 = 0.001  REFERENCES:$	r	
A stainless steel cell w compartment for the soluti compartment containing pur argon as a reference. The	on and one e liquid cell was n one net agi-	$\delta T/K = 0.01$ $\delta P/cmHg = 0.002$ $\delta X_1/X_1 = 0.001$ REFERENCES: 1. Mallett, M. W.	r	
A stainless steel cell w compartment for the soluti compartment containing pur argon as a reference. The mounted so that movement in direction by an electromagnetic the solution. The ar- pressure checked with lite	on and one e liquid cell was n one net agi- gon vapor	$\delta T/K = 0.01  \delta P/cmHg = 0.002  \delta X_1/X_1 = 0.001  REFERENCES:$	r	
A stainless steel cell w compartment for the soluti compartment containing pur argon as a reference. The mounted so that movement is direction by an electromag tated the solution. The ar	on and one e liquid cell was n one net agi- gon vapor	$\delta T/K = 0.01$ $\delta P/cmHg = 0.002$ $\delta X_1/X_1 = 0.001$ REFERENCES: 1. Mallett, M. W.	r	

COMPONENTS:		<del>,</del>		ORIGINA	L MEASI	UREMENTS :	
l. Helium; He; 7440-59-7		Chang, E. T.; Gokcen, N. A.					
					· · ·		
2. 11000	gen Oxide,	¹²⁰ 4, 10344-	12-0				
				<u>J. Ph</u>	iys. Cl	<u>hem</u> . 1966,	<u>70</u> , 2394-2399.
VARIABLES:		<u>, , , , , , , , , , , , , , , , , , , </u>		PREPARE	ED BY:	······	<u>.                                    </u>
	r/K: 262.0	)2 - 303.16			-		
не н	P/kPa: 39. (0.3	.689 - 193.784 3917 - 1.925 a	4 atm)		1	P. L. Long	
EXPERIMENTAL	VALUES:						
т/к	P/Atm	Henry's Constant K x 10 ⁴		ractic x 10 ⁴		Bunsen Defficient $\alpha \times 10^2$	Ostwald Coefficient L x 10 ²
262.02	0.5261	0.55		.289			
	1.0149 1.2393	0.59 0.56		).599 ).694			
	1.8346	0.61	]	.12			
	1.9125 1.0000	0.55		.05		2.11	2.03
070.35		0 70					
273.15	0.4951 0.6624	0.73 0.68		).361 ).453			
	0.9566	0.73		.698			
	1.2315 1.4186	0.69 0.67		).852 ).950			
	1.8770	0.69		L.30 ).698		2.54	2.54
	1.0000		, i	.090		2.54	2.54
288.10	0.9773 1.3153	0.89 0.86		).870 L.13			
	1.0000	0.00		0.877		3.11	3.28
298.15	0.3917	1.02	(	0.401			
	0.3963	1.02		.404			
	0.7836 1.0192	1.06 0.98		0.830 L.00			
	1.1195 1.1455	0.99 1.07		L.11 L.23			
	$\frac{1.1455}{1.0000}$	1.07		.02		3.57	3.89
		AUXI	LIARY	INFORMA	TION		
METHOD: The	solvent w	as degassed u	nder	SOURCE	AND PIU	RITY OF MATER	TALS
vacuum in	the previo	ously weighed nd degassed so	app-	ł –	Heliu		ce qiven.
		s introduced		±•	nerru	III. NO SOUL	ce given.
		nown P and T the pressure		2.			Research grade. y, source not
served unt	til there w	vas no furthe	r		given	-	y, source not
		was establish P was follow					
40 m.			101				
		e apparatus wa	20.05	ESTIMAT	TED ERR	OR:	······
all glass	construct:	ion. It consis	sted		ለጥ /	K = 0.03	
		volumes for t gas, a contain			δΡ/1	mmHg = 0.01	
for the so	olvent, whi	ich was stirre	ed	DEFERRE		$/X_1 = 0.05$	
		ed magnet, and ring the press		REFERE	NUES:		
with a mid	croslide ca	athetometer. !	The				
		had a capacity th a 5 ml gas					
above the	liquid su	face. The appalibrated to					
± 0.0002-3		arthrated to					
L	-			l			

COMPONENTS:	ORIGINAL MEASUREMENTS:
l. Helium; He; 7440-59-7	Chang, E. T.; Gokcen, N. A.
2. Nitrogen Oxide; N ₂ O ₄ ; 10544-72-6	
	T Thurs them 1966 70 2204-2200
VARIABLES:	<u>J. Phys. Chem. 1966, 70, 2394-2399.</u>
T/K: 262.02 - 303.16	PREPARED BY:
He P/kPa: 39.689 - 193.784	P. L. Long
EXPERIMENTAL VALUES:	
	Fraction Bunsen Ostwald Coefficient Coefficient $10^4$ $\alpha \times 10^2$ L x $10^2$
303.16         0.5759         1.07         0.63           0.8867         1.03         0.83	
0.8867 1.03 0.90 1.0000 1.03	5 3.64 4.04
The Henry's constant is defined as K/a one atm were calculated from the avera Smoothed Data: The 101.325 kPa (1 atm fitted to: $\Delta G^{\circ}/J \text{ mol}^{-1} = - \text{ RT ln}$	) mole fraction solubilities were
Std. Dev. $\Delta G^{\circ} = 35.5$ ,	-
	$\Delta s^{\circ}/J \ k^{-1} \ mol^{-1} = -43.241$
T/K Mol Frac	tion $\Delta G^{\circ}/J \mod^{-1}$
$\frac{X_1 \times 1}{258,15}$ 0.53	
263.15 0.58	8 21,312
268.15 0.64 273.15 0.69	
273.15 0.69 278.15 0.75	
283.15 0.81	1 22,177
288.15 0.87 293.15 0.93	•
298.15 1.00	22,825
303.15 1.07 308.15 1.14	23,042 23,258
AUXILIARY	INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS:
See preceding page.	See preceding page.
APPARATUS / PROCEDURE :	ESTIMATED ERROR:
	Soo preceding -200
See preceding page.	See preceding page.
	REFERENCES:
	See preceding page.
L	I

ļ

,

•

. 1

COMPONENTS:				ORIGINA	L MEASUREMENTS:	
l. Helium;	He; 7440-	59-7		Chang, E.T.; Gokcen, N.A.; Poston, T.M.		
2. Hydrazine; H ₄ N ₂ ; 302-01-2						
				J. Phy	<u>s. Chem</u> . 1968	, <u>72</u> , 638 - 642.
VARIABLES:				PREPARE	D BY:	·····
	K: 278.15 ·				P. L. Lo	ng
He P/k	Pa: 110.46 233	5 (l.09 Atm .757 (2.307				
EXPERIMENTAL				·		
т/к	P/Atm	Henry's Constant K x 10 ⁵	Mol Fra X _l x		Bunsen Coefficient $\alpha \times 10^2$	Ostwald Coefficient L x 10 ²
278.15	1.2333 2.1927 1.0000	0.41 0.49	0.05	8	0.321	0.327
293.16	1.1411 2.0451	0.46 0.54	0.05	2 .0		
308.18	1.0000 1.0902 1.3121 1.9941 2.3070	0.52 0.52 0.59 0.62	0.05 0.05 0.06 0.11 0.14	57 58 .7	0.352	0.378
	1.0000	0.02	0.05		0.390	0.439
283.15 288.15 293.15 298.15 303.15 308.15 313.15	0.047 0.0485 0.050 0.052 0.054 0.056 0.058	28,479 28,898 29,316 29,735 30,153 30,572 30,990 31,409	Β Δ 5 3 S 2 Δ	td Dev	$\Delta G^{O} = 13.4,$ $D1^{-1} = 5198.0$	+ 83.701T Coef. Corr.= 0.999
515.15	0.038		UXILIARY	INFORMA	<b>FION</b>	<u></u>
vacuum in aratus. Ap weighed. G apparatus uid was st observed u change. Th appear to time. When was follow the solubi the presen tion produ		Isly weighed d degassed roduced int P and T. T the pressu was no fur ted hydrazi with ened the pr to two hour was correc gaseous dec	ed app- solvent to the The liq- ire was ther ines cessure ts, and ted for composi-	<ol> <li>He</li> <li>Hy</li> <li>It</li> <li>us</li> <li>fi</li> <li>ρ/9</li> </ol>	drazine.No in: was freshly o e. The density tted to the ed g ml ⁻¹ = 1.020	rmation given. formation on sourc distilled before y was measured, ar guation: 492 - 0.000865t/C.
all glass of three c measuremen for the so a glass en meter for a microsli container solvent wi the liquid	OCEDURE: The construction alibrated with t of the gas lvent, which closed mages measuring the de cathetor had a capase th a 5 ml of surface. The calibrated	on. It cons volumes for as, a conta h was stirn het, and a the pressur- meter.The s city for 10 gas space a he apparatu	sisted the ainer ced with mano- ce with solvent 00 g of above 15 sec-	REFEREN	$\delta T/K$ $\delta P/mmH_0$ $\delta X_1/X_1$ NCES: ang, E.T.; Go	= 0.03 g = 0.01 = 0.05 kcen, N.A. 1966, $\underline{70}$ , 2394.

COMPONENTS:			ORIGINAL MEASUREM	
1. Helium; He; 74	40-59-7			<pre>.; Makarenkov, V.V.; V.; Panchenko, G.M.</pre>
2. Hydrogenated Fi	uel		$\frac{\text{Khim. Tekhnol}}{15(5), 27 -}$	<u>Topl. Masel</u> 1970, 29.
				<u>Fuels</u> <u>Oils</u> (Engl.tran- 353 - 355.
VARIABLES:	_		PREPARED BY:	
T/K: 293 He P/kPa: 10		atm)	S.A	.Johnson
EXPERIMENTAL VALUES:			· · · · · · · · · · · · · · · · · · ·	
	т/к	Bunsen Coefficient a x 10 ²	Ostwald Coefficient L x 10 ²	
	293.15	2.1	2.3	_
				-
The Ostwald coeff:	icient wa	s calculated	by the compile	er.
				i
· · · · · · · · · · · · · · · · · · ·				
		AUXILIARY	INFORMATION	
METHOD:			SOURCE AND PURITY	
Described in refe	cence (1)	•	l. Helium. No	information given.
			2. Hydrogenate given. Dens	d Fuel. Source not sity/g cm ⁻³ 0.832.
			POTIMATED PROD-	······
APPARATUS/PROCEDURE:			ESTIMATED ERROR: δL/L	= 0.06
No description giv	ven.			
			REFERENCES :	
			<ol> <li>Gogitidze, Makarenkov, Malyshev, V "Method of ing Propert</li> </ol>	L.D.; Logvinyuk, V.P.; V.V.; Panchenkov, G.M.; V.V.; Yakovlevskii, V.V. Evaluating the Operat- ties of Jet Fuels and
l			Lubricating Mashinostro	Materials"(Russian), Denie, 1966.

.

COMPONENTS:	ORIGINAL MEASUREMENTS:
l. Helium; He; 7440-59-7	Steinberg, M.; Manowitz, B.
2. Amsco 123-15	
	<u>Ind</u> . <u>Eng</u> . <u>Chem</u> . 1959, <u>51</u> , 47 - 51.
VARIABLES:	PREPARED BY:
T/K: 218.15 - 297.15	H.L.Clever
P/kPa: 101.325 (1 atm)	
EXPERIMENTAL VALUES:	
Coeff	ption icient*
	$\frac{10^2}{6}$
	.3
*The authors define the absorption coe corrected to 288.15 K and 101.325 kPa pressure of 101.325 kPa (1 atm) per un	(1 atm), absorbed under a total system
an Ostwald coefficient.	tify their absorption coefficient as
	7.120 D.1/1 D.2 O.1
	INFORMATION
METHOD: Van Slyke method (1).	SOURCE AND PURITY OF MATERIALS: 1. Helium. No information given.
	2. Amsco 123-15. American Mineral Spirits Solvent Co., No. 140.
	The composition is stated to be 59.6 wt % paraffin, 27.2 wt %
	naphthene, and 13.2 wt %
	aromatics.
APPARATUS/PROCEDURE:	ESTIMATED ERROR:
	10 per cent.
	REFERENCES:
	1. Van Slyke, D.D. J. <u>Biol</u> . <u>Chem</u> . 1939, <u>130</u> , 545.
	Van Slyke, D.D.; Neill, J.M. J. <u>Biol</u> . <u>Chem</u> . 1924, <u>61</u> , 523.

,

COMPONENTS:	ORIGINAL MEASUREMENTS:
l. Helium; He; 7440-59-7	Burrows, G.; Preece. F. H.
2. Apiezon GW oil	
	<u>J. Appl. Chem</u> . 1953, <u>3</u> , 451 - 462.
VARIABLES:	PREPARED BY:
T/K: 293.15 - 356.15 He P/kPa: 101.325 (l atm)	P. L. Long
EXPERIMENTAL VALUES:	
T/K Bunsen	Ostwald -log L
$\frac{10^{2}}{\alpha \times 10^{2}}$	$\frac{L \times 10^2}{1000}$
293.15 1.33	1.43 1.846
295.15 1.45 298.15 1.49	1.57 1.805 1.63 1.789*
307.15 1.82	2.05 1.689
320.65 2.27 321.65 2.26	2.67 1.574 2.67 1.574
341.65 2.65	3.31 1.480
342.15 2.64 355.15 2.85	3.30 1.481 3.71 1.431
355.15 2.85 356.15 2.76	3.60 1.444
^The −log L value is from a graphi	cal interpolation by the authors.
"The -log L value is from a graphi	cal interpolation by the authors.
	cal interpolation by the authors.
AUXIL METHOD: Volumetric. Helium gas and	IARY INFORMATION SOURCE AND PURITY OF MATERIALS;
AUXIL	IARY INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Source not given. 99.8
AUXIL METHOD: Volumetric. Helium gas and solvent brought into contact. The solvent stirred until Hg levels in helium buret indicate no more abso	IARY INFORMATION SOURCE AND PURITY OF MATERIALS; 1. Helium. Source not given. 99.8 per cent purity.
AUXIL METHOD: Volumetric. Helium gas and solvent brought into contact. The solvent stirred until Hg levels in	IARY INFORMATION SOURCE AND PURITY OF MATERIALS; 1. Helium. Source not given. 99.8 per cent purity. 2. Apiezon GW oil.
AUXIL METHOD: Volumetric. Helium gas and solvent brought into contact. The solvent stirred until Hg levels in helium buret indicate no more abso tion of gas. The density, viscosity, and surfac	IARY INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Source not given. 99.8 per cent purity. 2. Apiezon GW oil. density/g cm ³ 0.878 viscosity/cpoise 160.5
AUXIL METHOD: Volumetric. Helium gas and solvent brought into contact. The solvent stirred until Hg levels in helium buret indicate no more abso tion of gas. The density, viscosity, and surfac tension of the solvent was determi	IARY INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Source not given. 99.8 per cent purity. 2. Apiezon GW oil. density/g cm ³ 0.878 viscosity/cpoise 160.5 surface tension/ 31.7
AUXIL METHOD: Volumetric. Helium gas and solvent brought into contact. The solvent stirred until Hg levels in helium buret indicate no more abso tion of gas. The density, viscosity, and surfac	IARY INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Source not given. 99.8 per cent purity. 2. Apiezon GW oil. density/g cm ³ 0.878 viscosity/cpoise 160.5 surface tension/ 31.7 dyne cm ⁻¹ K Above properties at 293.15 K.
AUXIL METHOD: Volumetric. Helium gas and solvent brought into contact. The solvent stirred until Hg levels in helium buret indicate no more abso tion of gas. The density, viscosity, and surfac tension of the solvent was determi at temperatures of 293.15, 313.15, 333.15, and 353.15 K. The 293.15 values are given in the Source and	IARY INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Source not given. 99.8 per cent purity. 2. Apiezon GW oil. density/g cm ³ 0.878 viscosity/cpoise 160.5 surface tension/ 31.7 dyne cm ⁻¹ K Above properties at 293.15 K.
AUXIL METHOD: Volumetric. Helium gas and solvent brought into contact. The solvent stirred until Hg levels in helium buret indicate no more abso tion of gas. The density, viscosity, and surfac tension of the solvent was determi at temperatures of 293.15, 313.15, 333.15, and 353.15 K. The 293.15 values are given in the Source and Purity of Materials. APPARATUS/PROCEDURE: The mixing chambe	IARY INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Source not given. 99.8 per cent purity. 2. Apiezon GW oil. density/g cm ³ 0.878 viscosity/cpoise 160.5 surface tension/ 31.7 dyne cm ⁻¹ K Above properties at 293.15 K. ESTIMATED ERROR:
AUXIL METHOD: Volumetric. Helium gas and solvent brought into contact. The solvent stirred until Hg levels in helium buret indicate no more abso tion of gas. The density, viscosity, and surfac tension of the solvent was determi at temperatures of 293.15, 313.15, 333.15, and 353.15 K. The 293.15 values are given in the Source and Purity of Materials. APPARATUS/PROCEDURE: The mixing chambe was all glass with a capacity of 3	IARY INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Source not given. 99.8 per cent purity. 2. Apiezon GW oil. density/g cm ³ 0.878 viscosity/cpoise 160.5 surface tension/ 31.7 dyne cm ⁻¹ K Above properties at 293.15 K. ESTIMATED ERROR: δL/L = 0.05
AUXIL METHOD: Volumetric. Helium gas and solvent brought into contact. The solvent stirred until Hg levels in helium buret indicate no more abso tion of gas. The density, viscosity, and surfac tension of the solvent was determi at temperatures of 293.15, 313.15, 333.15, and 353.15 K. The 293.15 values are given in the Source and Purity of Materials. APPARATUS/PROCEDURE: The mixing chambe was all glass with a capacity of 3 cm ³ . Stirring was accomplished by magnetically driven disc. The sol	IARY INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Source not given. 99.8 per cent purity. 2. Apiezon GW oil. density/g cm ³ 0.878 viscosity/cpoise 160.5 surface tension/ 31.7 dyne cm ⁻¹ K Above properties at 293.15 K. ESTIMATED ERROR: δL/L = 0.05
AUXIL METHOD: Volumetric. Helium gas and solvent brought into contact. The solvent stirred until Hg levels in helium buret indicate no more abso tion of gas. The density, viscosity, and surfac tension of the solvent was determi at temperatures of 293.15, 313.15, 333.15, and 353.15 K. The 293.15 values are given in the Source and Purity of Materials. APPARATUS/PROCEDURE: The mixing chambe was all glass with a capacity of 3 cm ³ . Stirring was accomplished by magnetically driven disc. The sol	IARY INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Source not given. 99.8 per cent purity. 2. Apiezon GW oil. density/g cm ³ 0.878 viscosity/cpoise 160.5 surface tension/ 31.7 dyne cm ⁻¹ K Above properties at 293.15 K. ESTIMATED ERROR: δL/L = 0.05 A a
AUXIL METHOD: Volumetric. Helium gas and solvent brought into contact. The solvent stirred until Hg levels in helium buret indicate no more abso tion of gas. The density, viscosity, and surface tension of the solvent was determi at temperatures of 293.15, 313.15, 333.15, and 353.15 K. The 293.15 values are given in the Source and Purity of Materials. APPARATUS/PROCEDURE: The mixing chamber was all glass with a capacity of 3 cm ³ . Stirring was accomplished by magnetically driven disc. The sol was degassed by boiling in a heater flask fitted with a water-cooled r flux condenser. The degassed solv	IARY INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Source not given. 99.8 per cent purity. 2. Apiezon GW oil. density/g cm ³ 0.878 viscosity/cpoise 160.5 surface tension/ 31.7 dyne cm ⁻¹ K Above properties at 293.15 K. ESTIMATED ERROR: δL/L = 0.05 r a vent REFERENCES:
AUXIL METHOD: Volumetric. Helium gas and solvent brought into contact. The solvent stirred until Hg levels in helium buret indicate no more abso tion of gas. The density, viscosity, and surfac tension of the solvent was determi at temperatures of 293.15, 313.15, 333.15, and 353.15 K. The 293.15 values are given in the Source and Purity of Materials. APPARATUS/PROCEDURE: The mixing chambe was all glass with a capacity of 3 cm ³ . Stirring was accomplished by magnetically driven disc. The sol was degassed by boiling in a heater flask fitted with a water-cooled r flux condenser. The degassed solv was transferred to the mixing cham	IARY INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Source not given. 99.8 per cent purity. 2. Apiezon GW oil. density/g cm ³ 0.878 viscosity/cpoise 160.5 surface tension/ 31.7 dyne cm ⁻¹ K Above properties at 293.15 K. ESTIMATED ERROR: δL/L = 0.05 value REFERENCES:
AUXIL METHOD: Volumetric. Helium gas and solvent brought into contact. The solvent stirred until Hg levels in helium buret indicate no more abso tion of gas. The density, viscosity, and surface tension of the solvent was determi at temperatures of 293.15, 313.15, 333.15, and 353.15 K. The 293.15 values are given in the Source and Purity of Materials. APPARATUS/PROCEDURE: The mixing chambe was all glass with a capacity of 3 cm ³ . Stirring was accomplished by magnetically driven disc. The sol was degassed by boiling in a heate flask fitted with a water-cooled r flux condenser. The degassed solv was transferred to the mixing cham evacuated to 0.005 mmHg without br ing the vacuum. The helium and so	<pre>IARY INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Source not given. 99.8 per cent purity. 2. Apiezon GW oil. density/g cm³ 0.878 viscosity/cpoise 160.5 surface tension/ 31.7 dyne cm⁻¹ K Above properties at 293.15 K. ESTIMATED ERROR:</pre>
AUXIL METHOD: Volumetric. Helium gas and solvent brought into contact. The solvent stirred until Hg levels in helium buret indicate no more abso tion of gas. The density, viscosity, and surface tension of the solvent was determi at temperatures of 293.15, 313.15, 333.15, and 353.15 K. The 293.15 values are given in the Source and Purity of Materials. APPARATUS/PROCEDURE: The mixing chamber was all glass with a capacity of 3 cm ³ . Stirring was accomplished by magnetically driven disc. The sol was degassed by boiling in a heater flask fitted with a water-cooled r flux condenser. The degassed solv was transferred to the mixing cham evacuated to 0.005 mmHg without br	IARY INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Helium. Source not given. 99.8 per cent purity. 2. Apiezon GW oil. density/g cm ³ 0.878 viscosity/cpoise 160.5 surface tension/ 31.7 dyne cm ⁻¹ K Above properties at 293.15 K. ESTIMATED ERROR: $\delta L/L = 0.05$ reak- New REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:			
1. Helium; He; 7440-59-7	Burrows, G.; Preece, F.H.			
2. Silicone Oils				
	J. Appl. Chem. 1953, 3, 451 - 462.			
VARIABLES:	PREPARED BY:			
T/K: 293.15 - 358.15 He P/kPa: 101.325 (l atm)	P.L.Long			
EXPERIMENTAL VALUES:				
T/K Bunsen	Ostwald -log L			
Coefficient ∝x 10 ²	Coefficient L x 10 ²			
Silicone oil, Dow Co				
293.15 2.90	3.11 1.507			
" 3.10	3.33 1.478			
298.15 3.30 303.15 3.52	3.61 1.443 [*] 3.91 1.408			
318.15 3.80	4.43 1.354			
320.15 4.36 337.15 4.80	5.10 1.292 5.93 1.227			
339.65 4.79	5.96 1.225			
352.65 5.08 357.15 4.90	6.56 1.183 6.41 1.193			
Silicone oil, Dow Co	rning 702			
293.15 1.46	1.57 1.805			
294.15 1.53 298.15 1.59	1.64 1.784 1.74 1.760*			
303.15 1.65	1.83 1.737			
319.15 2.05 326.15 1.99	2.40 1.620 2.38 1.624			
339.65 2.39	2.97 1.527			
357.65 2.35 358.15 2.37	3.08 1.512 3.11 1.507			
The authors reported the belium solu	bilities as -log(Ostwald coefficient),			
the compiler calculated Bunsen and O	stwald coefficients from the log L.			
* The -log L value is from a graphic	al interpolation by the authors.			
AUXILIAF	Y INFORMATION			
METHOD: Volumetric. Helium gas and	SOURCE AND PURITY OF MATERIALS:			
solvent brought into contact. The solvent stirred until Hg levels in	<ol> <li>Helium. Source not given. 99.8 per cent purity.</li> </ol>			
helium buret indicate no more absorp	- 2. Silicone Oils. DC 200 DC 702			
tion of gas.	density/g cm ⁻³ 0.971 1.072			
The density, viscosity, and surface tension of the solvent were determined	viscosity/cpoisel04.4 39.8 surface tension/ 26.7 29.1			
at temperatures of 293.15, 313.15,	dyne cm ⁻¹			
333.15, and 353.15 K. The 293.15 K values are given in the Source and	Above properties at 293.15 K.			
Purity of Materials.				
APPARATUS/PROCEDURE: The mixing chamber	$= \text{ESTIMATED ERROR:} \\ \delta L/L = 0.05$			
was all glass with a capacity of 306 cm ³ . Stirring was accomplished by a	54/4 - 0.05			
magnetically driven disc. The solven	t			
was degassed by boiling in a heated flask fitted with a water-cooled re-	REFERENCES:			
flux condenser. The degassed solvent				
was transferred to the mixing chambe evacuated to 0.005 mmHg, without brea				
ing the vacuum. The helium and solve				
were brought into contact at a pre- determined temperature and pressure.				

÷

ţ

ł

COMPONENTS:			ORIGINAL MEASUREMENTS:			
			Behnke, A.R.; Yarbrough, O.D.			
1. Helium; He; 7440	)-59-7					
2. Olive Oil						
			<u>U.S. Naval Med. Bull</u> . 1938, <u>36</u> , 542- 548.			
VARIABLES:			PREPARED BY:			
T/K: 311. P/kPa: 101.		atm)	P.L.Long			
EXPERIMENTAL VALUES:		·····				
	т/к	Bunsen Coefficien $\alpha \times 10^2$	Ostwald t Coefficient L x 10 ²			
	311.15	1.489 1.482 1.477 1.485 <u>1.467</u> 1.48 Av	. 1.69			
Pressure is 101.325	5 kPa (1	atm).				
The Ostwald coeffic	rient wa	s calculate	d by the compiler.			
		AUXILIARY	INFORMATION			
METHOD:	····	<u> </u>	SOURCE AND PURITY OF MATERIALS:			
Gas-liquid equilibred at 311.15 K by B through the olive of up to 1½ hours.	oubbling	the helium	1. Helium. Source not given. 97.65 per cent pure. Passed through $H_2SO_4$ and pyrogallic acid to re- move $O_2$ and $CO_2$ . Dried.			
			2. Olive oil. Source not given. U.S.P. grade. The composition is about 72 % olein and 28 % palmitin.			
			ESTIMATED ERROR:			
APPARATUS/PROCEDURE: After establishment the gas was extract urated solution in ed shaking in a Van	ted from vacuo b	the sat- y repeat-				
The procedure and similar to those de Slyke (1,2).	calculat	ions were	REFERENCES: 1. Van Slyke, D.D.; Stadie, W.C. <u>J. Biol</u> . <u>Chem</u> . 1021, <u>56</u> , 765.			
			2. Van Slyke, D.D.; Dillon, R.T.; Margaria, R. J. Biol. Chem. 1934, 105, 571.			

COMPONENTS:	ORIGINAL MEASUREMENTS:		
1. Helium; He; 7440-59-7	Battino, R.; Evans, F. D.; Danforth, W. F.		
2. Olive Oil			
	J. Am. Oil Chem. Soc. 1968, 45,		
	830 - 833.		
VARIABLES:	PREPARED BY:		
T/K: 297.84 - 327.93	H. L. Clever		
P/kPa: 101.325 (1 atm)			
EXPERIMENTAL VALUES:			
T/K Mol Fraction			
$x_{1} \times 10^{4}$	Coefficient Coefficient $\alpha \ge 10^2$ L $\ge 10^2$		
297.84 7.01	1.60 1.75		
307.86 6.88 317.98 6.61	1.57 1.76 1.49 1.74		
317.98 6.61	1.49 1.74 1.45 1.75		
Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = - RT \ln$	$X_1 = -2273.7 + 67.990 T$		
Std. Dev. ∆G° = 13.9,	-		
	$\Delta s^{\circ}/J K^{-1} mol^{-1} = -67.990$		
	$\frac{100}{\Delta G^{\circ}/J} = 10^{-1}$		
x x 10	)4		
293.15 7.14			
298.15 7.03	17,998		
303.15 6.92 308.15 6.82	18,338 18,678		
313.15 6.73	19,017		
318.15 6.64	•		
323.15 6.55 328.15 6.46	19,697 20,037		
The solubility values were adjusted to			
101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate			
	INFORMATION		
METHOD: The apparatus is based on the design by Morrison and Billett (1)	SOURCE AND PURITY OF MATERIALS: 1. Helium. Matheson Co., Inc.		
and the version used is a modificatior	99.9995 Min. Vol % Purity.		
of the apparatus of Clever, Battino, Saylor, and Gross (2).	2. Olive Oil. A. U.S.P., Fisher		
	Scientific Co., 0.58% free fatty		
	acid. B. Nutritional Biochemicals		
	Corp., 0.30% free fatty acid.		
	The density was measured and		
	fitted to the equation $\rho/g \text{ cm}^{-3}$		
APPARATUS/PROCEDURE: Degassing.	= $0.9152 - 0.000468t/C$ . The aver- age mol wt is $884 \pm 45$ .		
The solvent is sprayed into an evacu-	ESTIMATED ERROR:		
ated chamber of an all glass appara- tus; it is stirred and heated until	$\delta T/K = 0.03$		
the pressure drops to the vapor	$\delta P/mmHg = 0.5$		
pressure of the liquid. Solubility	$\delta x_1 / x_1 = 0.03$		
Determination. The degassed liquid passes in a thin film down a glass	REFERENCES:		
spiral tube at a total pressure of	1. Morrison, T. J.; Billett, F.		
one atm of solute gas plus solvent	J. <u>Chem</u> . <u>Soc</u> . 1948, 2033.		
vapor. The gas absorbed is measured in the attached buret system, and the	2. Clever, H. L.; Battino, R.;		
solvent is collected in a tared	Saylor, J. H.; Gross, P. M.		
flask and weighed.	<u>J. Phys. Chem</u> . 1957, <u>61</u> , 1078.		

,

ł

COMPONENTS:	ORIGINAL MEASUREMENTS:			
l. Helium; He; 7440-59-7	Cander, L.			
2. Human Lung Homogenate				
	<u>J. Appl. Physiol</u> . 1959, <u>14</u> , 538 - 540.			
VARIABLES: T/K: 310.15	PREPARED BY:			
He P/kPa: 101.325 (1 atm)	P.L.Long, A.L.Cramer			
EXPERIMENTAL VALUES:	sen Ostwald			
Coeff	Ficient Coefficient $10^2$ L x $10^2$			
310.15 0.	92 1.04			
	90 1.02 94 1.07			
	94 1.07			
from four deceas history of acute	are for lung samples ed patients who had no e or chronic lung disease. coefficient is 0.0092 with er cent.			
The Ostwald coefficients were calcula	ted by the compiler.			
AUXILIARY	INFORMATION			
METHOD: Lung sample were obtained from	SOURCE AND PURITY OF MATERIALS:			
deceased patients. The lung was re- moved, perfused with isotonic saline until blood free, minced, blended, and	<ol> <li>Helium. Matheson Co., East Rutherford, NJ.Pure grade.</li> </ol>			
homogenized. The homogenate was press- ed through several layers of gauze to remove any large shreds of connective tissue. The fluid homogenate was deaerated.	<ol> <li>Human Lung Homogenate. Lung from four deceased patients who had no history of acute or chronic lung disease. See Method for details of preparation.</li> </ol>			
APPARATUS/PROCEDURE: The manometric Van Slyke apparatus was used. The tissue homogenate was equilibrated for five minutes by shaking. Excess gas was expelled, and the dissolved gas extracted (1).	ESTIMATED ERROR: Reproducibility was ± 2 percent. REFERENCES: 1. Van Slyke, D.D.; Neill, J.M. J. Biol. Chem. 1924, 61, 523.			

	OR OTHER STREET		
COMPONENTS:	ORIGINAL MEASUREMENTS: Campos Carles, A.;Kawashiro, T.;		
1. Helium; He; 7440-59-7	Piiper, J.		
2. Rat Abdominal Muscle			
	<u>Pflugers</u> <u>Arch</u> . 1975, <u>359</u> , 209 - 218.		
VARIABLES:	PREPARED BY:		
т/к: 310.15	A.L.Cramer		
EXPERIMENTAL VALUES:	· · · · · · · · · · · · · · · · · · ·		
· · ·	prrected Bunsen Dubility Coefficient		
Amol 1 ⁻¹ torr ⁻¹ Am			
310.15 0.521 ± 0.012 [*]	0.608 1.03		
	y gives Krogh's diffusion constant,		
AUXILIARY	INFORMATION		
METHOD: The helium gas was presaturated with water vapor, then passed through an equilibration chamber containing the muscle sample resting on a screen to expose all sides. The gas was passed through the equilibration cham- ber for one hour at a rate of 8 ml m ⁻¹ The muscle was transferred to an ex- traction chamber filled with air, for the same length of time as equilibra- tion. The gas in the extraction chamber was then forced into a gas chromatograph by mercury entering the chamber.	<ol> <li>Helium. No source given. Purity better than 99.9 per cent.</li> <li>Rat Abdominal Muscle. Flat abdom- inal wall muscle layer of about 1.6 g, 1.4 mm thickness, and sur- face area of 10 cm² on one side taken from 250 - 430 g rat.</li> </ol>		
APPARATUS/PROCEDURE:	ESTIMATED ERROR:		
	REFERENCES:		
	<pre>1. Kawashiro, T.;Campos Carles, A.; Perry, S.F.; Piiper, J. Pflugers Arch. 1975, 359, 219.</pre>		

£

ł

COMPONENTS:	ORIGINAL MEASUREMENTS:					
1. Helium; He; 7440-59-7			Lange, P.; Nyström, O.; Röckert, H.			
2. Water; H ₂ O; 7732-18-5						
<ol> <li>Components of infusion solutions, and some other mixtures.</li> </ol>			<u>Foersvarsmedicin</u> 1975, <u>11</u> , 230 - 234.			
VARIABLES: T/K: No information given.			ARED BY:		· · · ·	
He P/kPa: 607.950 (6 atm)			н.г.	Clever		
EXPERIMENTAL VALUES:						
Liquid	Cm ³ of cm ³ of x 10	Liq	Standard Error of the Mean	Number of Determina- tions	Ostwald Coefficient $L \times 10^2$	
Blood with added ascorbic acid, citrate, and dextrose.	4		0.6	11	0.8	
Water + 0.9 wt % NaCl	4		0.7	8	0.8	
Macrodex with NaCl (Pharmacia), 100 ml contain 6 g Dextran 70, and 0.9 g NaCl.	2		0.6	10	0.4	
Macrodex with glucose (Pharm- acia), 100 ml contain 6 g Dextran 70, and 5 g glucose.	3		0.1	6	0.6	
Rheomacrodex with NaCl (Pharm- acia), 100 ml contain 10 g Dextran 70, and 0.9 g NaCl.	2		0.4	11	0.4	
Rheomacrodex with glucose (Pharm- acia), 100 ml contain 10 g Dex- tran 70, and 5 g glucose.	- 4		0.1	5	0.8	
Aminosol 10% (Vitrum), 100 ml contain 10 g amino acids and low mol wt peptides obtained by enzymatic hydrolysis and dialys: of casein.			0.2	10	0.4	
Table continued on next page.						
AU:	XILIARY	INFO	MATION			
METHOD /APPARATUS/PROCEDURE: The		SOUR	CE AND PURIT	Y OF MATERIALS	:	
ent was kept under 6 atm absolu pressure of the gas for seven h while constantly agitated with	ours	1. Helium. No information given.				
netic stirrer. The gas evolved compression from 6 to 1 atm was ured by one of two methods. A. solution under pressure was tra to a closed pipet. The pressure decreased from 6 to 1 atm, and gas evolved from the known solu volume was measured in a calibr part of the pipet (1). B. The g that collected in an inverted t tube from a known volume of the urated solution on decompression	on de- meas- The nsferr was the tion ated as est sat-	ed ESTI	Solvents. above. MATED ERROR:	Information	in text	
6 to 1 atm was measured by merc displacement. There was no mention of eithe gassing the solvent or of the t	ury r de-		δL/L <u>&gt;</u>	0.25		
erature of the measurement in the			RENCES:	I. Mombines	<b>. .</b>	
paper.		1 **	Lange, P.V	N.; Martinsso	л, А.;	

paper.

The compiler estimated an Ostwald coefficient by assuming a 5 atm pres-sure change and dividing (v gas/v solvent) x 100 by 500. The results are useful only as relative solubilities in solvents reported in this paper.

1.	Lange, P.W.; Martinsson, A.;
	Rockert, H.O.E.
	"Underwater Physiology"
	Lambertsen, C. J., Editor
	Academic Press, NY, 1971, p. 239.

COMPONENTS:	· · · · ·	ORIGI	NAL MEASURE	MENTS:	
1. Helium; He; 7440-59-7		Lange, P.; Nyström, O.; Röckert, H.			
2. Water; H ₂ O; 7732-18-5					
<ol> <li>Components of infusion solutions, and some other mixtures.</li> </ol>			<u>Foersvarsmedicin</u> 1975, <u>11</u> , 230 - 234.		
VARIABLES:			RED BY.	om previous	page.
T/K: No information given.			н.1	L.Clever	
He P/kPa: 607.950 (6 atm)					
EXPERIMENTAL VALUES:				<u></u>	
Liquid Cm	1 ³ of	Liq	Standard Error of the Mean	Determina-	Ostwald Coefficient $L \times 10^2$
Vamin N (Vitrum), 100 ml contain a total of 6.995 g of 18 differ- ent amino acids. See complete list below.*	5		0.5	10	1.0
Intralipid 20% (Vitrum), 100 ml contain 20 g fractionated soy- bean oil, 12 g fractionated egg lecithin, and 25 g dilute glycerol (Ph. Int.).	6		0.3		1.2
Water + 5.5 wt % glucose.	5	•	0.1	5	1.0
Water + 20 wt % fructose.	2		0.3	10	0.4
Ethanol, 99.5 %.	9	)	0.6	11	1.8
* 100 ml Vamin N contain: L-Alanine 0.300 g L-Histi L-Arginine 0.330 g L-Isole L-Aspartic acid0.405 g L-Leuci L-Cysteine and L-Lysin L-Cystine 0.140 g L-Meth L-Glutamic acid0.900 g L-Pheny Glycine 0.210 g L-Prol:	eucin ine ne ionir	ie	0.240 g 0.390 g 0.525 g 0.190 g 0.545 g 0.810 g	L-Threonir L-Tryptoph	ne 0.300 g nan 0.100 g e 0.050 g
AUXIL	IARY	INFOR	MATION		
METHOD:		SOURC	E AND PURI	TY OF MATERIAL	S:
See previous page.			See pre	vious page.	
APPARATUS/PROCEDURE:		ESTI	1ATED ERROR	:	
		REFE	RENCES :		

ı

COMPONENTS: 1. Neon; Ne; 7440-01-9 2. Water; H₂O; 7732-18-5 Wright State University Dayton, Ohio 45431 USA May 1977

CRITICAL EVALUATION:

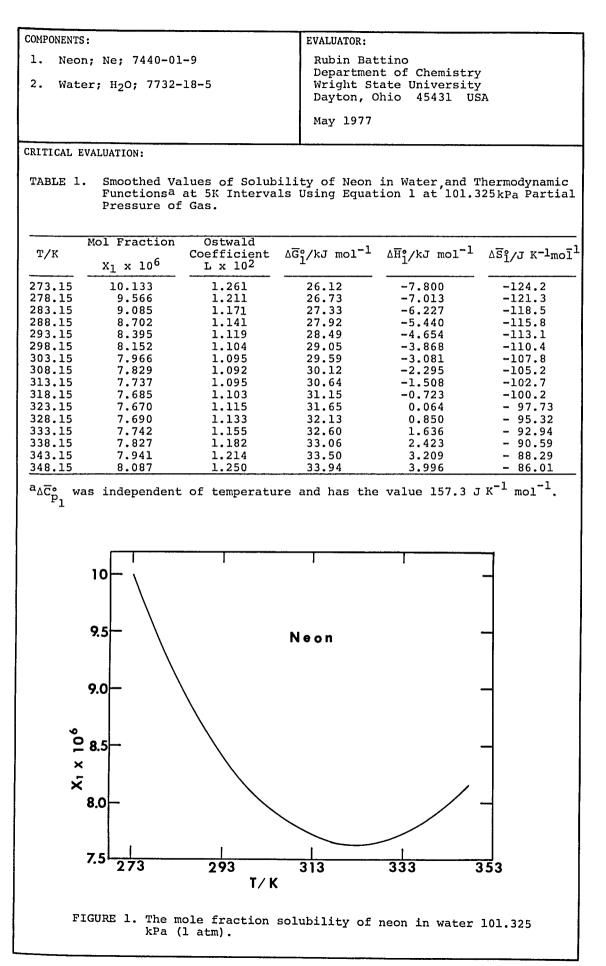
The experimental solubility data produced by nine workers were considered to be sufficiently reliable to use for the smoothing equation. In fitting the data to the equation, those points which differed by about two standard deviations or more from the smoothed values were rejected. We thus used 59 points which were obtained as follows (reference - number of data points used from that reference): 1-9; 2-8; 3-20;4-2; 5-10; 13-3; 14-4; 15-2; 16-1. The fitting equation used was

 $\ln X_1 = A + B/(T/100K) + C \ln (T/100K) + DT/100K$ (1)

Using T/100K as the variable rather than T/K gives coefficients of approximately equal magnitude. The best fit for the 59 data points gave

 $\ln X_1 = -52.8573 + 61.0494/(T/100K) + 18.9157 \ln (T/100K)$ (2)

where  $X_1$  is the mole fraction solubility of neon at 101.325 kPa (1 atm) partial pressure gas. The fit in ln  $X_1$  gave a standard deviation of 0.47% taken at the middle of the temperature range. Table 1 gives smoothed values of the mole fraction solubility at 101.325 kPa (1 atm) partial pressure of gas and the Ostwald coefficient at 5K intervals.


Table 1 also gives the thermodynamic functions  $\Delta \overline{G}_1^\circ$ ,  $\Delta \overline{H}_1^\circ$ ,  $\Delta \overline{S}_2^\circ$ , and  $\Delta \overline{C}^\circ$  for the transfer of gas from the vapor phase at 101.325 kPa¹ partial gas ^p₁ pressure to the (hypothetical) solution phase of unit mole fraction. These thermodynamic properties were calculated from the smoothing equation according to the following equations:

$\Delta \overline{G}_1^\circ = - RAT - 100RB - RCT ln (T/100) - RDT^2/100$	(3)
$\Delta \overline{S}_{1}^{\circ} = RA + RC \ln (T/100) = RC + 2RDT/100$	(4)
$\Delta \overline{H}_{1}^{o} = -100 \text{ RB} + \text{RCT} + \text{RDT}^{2}/100$	(5)
$\Delta \overline{C}_{p_1}^{\circ} = RC + 2RDT/100$	(6)

Several sets of data from other workers were rejected for various reasons. Ikel's data (6) was 3% too low. König's experimental points were all about 6% too low (7). Antropoff's data (8) ranged from a few percent low to very high values at the higher temperatures he investigated. Clever, et al.'s single test value (9) was 5% low. The data of Krestov and Patsatsiya (10) were between 6 and 13% low. This was also the case for another set of data by Krestov (11). The values of Borina, et al. (12) were low. Strakhov, et al. (17) had measurements which were 1.4% low, but showed a high reproducibility (0.2%). An independent set of measurements by the same group (18) was about 5% high. In general, values which are too low result from poor equilibration, a most common source of error in gas solubility determinations.

Figure 1 shows the temperature dependence of solubility for neon. The points were obtained from the smoothing equation. There is a pronounced minimum at about 323 K.

No report of the partial molal volume of neon in water was found. Alexander (19) measured the enthalpy of solution of neon in water at 298.15 K and reported values of -3.8, -4.6, -8.8, and -6.7 kJ mol⁻¹, average -5.85  $\pm$  1.7 kJ mol⁻¹. The average calorimetric enthalpy of solution and the enthalpy of solution from the fit of the least square equation of -3.868 kJ mol⁻¹ differ by just a little more than the estimated experimental error. The agreement is considered satisfactory.



COMPONENTS: EVALUATOR: Rubin Battino 1. Neon; Ne; 7440-01-9 Department of Chemistry Wright State University 2. Water; H₂O; 7732-18-5 Dayton. Ohio 45431 USA May, 1977 CRITICAL EVALUATION: References Morrison, T. J.; Johnstone, N. B. J. Chem. Soc. 1954, 3441. Lannung, A. J. Am. Chem. Soc. 1930, 52, 68. Weiss, R. F. J. Chem. Eng. Data 1971, 16, 235. de Wet, W. J. J. S. Afr. Chem. Inst. 1964, 17, 9. Benson, B. B.; Krause, D. J. Chem. Phys. 1976, 64, 689. Ikels, K. G. DDC, Report No. SAM-TDR-64-28 1964. König, H. Z. Naturforsch. 1963, 18a, 363. von Antropoff, A. Proc. R. Soc. London 1910, 83, 474; Z. Elektrochem. 1919, 25, 269. Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M. J. Phys. Chem. 1. 2. 3. 4. 5. 6. 7. 8. 9. 1957, <u>61</u>, 1078. 10. Krestov, G. A.; Patsatsiya, K. M. Russ. J. Phys. Chem. (Eng. Transl.) 1971, <u>45</u>, 1000. Krestov, G. A.; Patsatsiya, K. M. <u>Izv. Vyssh. Uchebn.Zaved.</u>, <u>Khim</u>. Khim. <u>Tekhnol</u>. 1969, 12, 1333; Chem. Abstr. 1970, 72, 71204s. Borina, A. F.; Lyashchenko, A. K. <u>Russ. J. Phys. Chem</u>. (Engl. 1972, 46, 150. 11. Transl.) 12. 1972, 46, 150.
Borina, A. F. Zh. Fiz. Khim. 1977, 51, 138.
Borina, A. F. Zh. Fiz. Khim. 1977, 51, 406.
Borina, A. F.; Samoilov, O. Ya. Zh. Strukt. Khim. 1974, 15, 395.
Krestov, G. A.; Patsatsiya, G. M. Izv. Vyssh. Uchebn.Zaved., Khim.
Khim. Tekhnol. 1969, 12, 1333.
Strakhov, A. N.; Krestov, G. A.; Abrosimov, V. K.; Badelin, V. G. 13. 14. 15. 16. 17. Zh. Fiz. Khim. 1975, 49, 1583. Abrosimov, V. K.; Strakhov, A. N.; Krestov, G. A. <u>Izv. Vyssh</u>. <u>Uchebn</u>. 18. Zaved., Khim. Khim. Tekhnol. 1974, 17, 1463. Alexander, D. M. J. Phys. Chem. 1959, 63, 994. 19.

COMPONENTS :	ORIGINAL MEASUREMENTS:
	Lannung, A.
l. Neon; Ne; 7440-01-9	hamany, A.
2. Water; H ₂ 0; 7732-18-5	
	J. Am. Chem. Soc. 1930, 52, 68 - 80.
VARIABLES:	PREPARED BY:
T/K: 278.15 - 318.15	R. Battino
Ne P/kPa: 101.325 (1 atm)	
EXPERIMENTAL VALUES:	
T/K Mol Fract	
$X_1 \times 10^{\circ}$	4 Coefficient α
278.15 0.09565	
278.15 0.09404	0.0117
278.15 0.09565	
283.15 0.09246 283.15 0.08924	
283.15 0.09085	
293.15 0.08293	0.0103
293.15 0.08293	- *
293.15 0.08454 298.15 0.08222	
310.15 0.07768	0.0096*
310.15 0.07768	
310.15 0.07929	<b></b>
318.15 0.07630 318.15 0.07630	
AUXILIARY	INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS:
Manometric/volumetric procedure.	
Water is degassed while over mercury. Gas uptake measured on gas	1. Neon. Linde.
buret,	2. Water. Distilled. The specific conductivity was 2 x 10 ⁻⁷ .
	ESTIMATED ERROR:
APPARATUS/PROCEDURE:	
The apparatus is based on the design of v. Antropoff (1). The entire	$\delta T/K = 0.03$
apparatus is designed to be shaken	DEPENDING.
inside of a thermostat.	REFERENCES:
	1. v. Antropoff, A. Z. <u>Elektrochem</u> . 1919, <u>25</u> , 269.
	<ol> <li>v. Antropoff, A.</li> <li><u>Z</u>. <u>Elektrochem</u>. 1919, <u>25</u>, 269.</li> </ol>

COMPONENTS: ORIGINAL MEASUREMENTS: 1. Neon; Ne; 7440-01-9 Morrison, T. J.; Johnstone, N. B. Water; H₂O; 7732-18-5 2. J. Chem. Soc. 1954, 3441 - 3446. VARIABLES: PREPARED BY: т/к: 282.25 - 347.25 R. Battino EXPERIMENTAL VALUES: T/K Mol Fraction T/K Mol Fraction Kuenen Kuenen Coefficient Coefficient  $x_1 \times 10^4$  $x_1 \times 10^4$ S x 10³ <u>s</u> x 10³ 11.7 0.07645* 0.09406 322.65 9.40 282.25 0.07728* 284.65 0.09086 11.3 9.46 331.95 0.07721* 288.15 0.08769 10.9 334.15 9.44 0.07825* 337.55 292.95 0.08535 10.6 9.55 0.07813* 0.08221* 297.55 10.2 338,55 9.53 0.07851* 0.08150 301.95 339.75 9.57 10.1 304.45 0.08019 9.93 345.65 0.08101 9.84 0.08021 9.84 347.25 0.08108 305.25 9.93 0.07686* 9.48 315.25 The original paper reports the neon solubility in water, S, as  $cm^3$  of neon at a partial pressure 760 torr, reduced to 760 torr and 273.15 K, dissolved by 1 kg water. The same solubility value is reported above as the Kuenen coefficient x  $10^3$  at a neon partial pressure of 101.325 kPa (1 atm) The mole fraction solubility at a neon partial pressure of 101.325 kPa (1 atm) was calculated by the compiler. *Solubility values which were used in the final smoothing equation for the recommended solubility values given in the critical evaluation. The authors fitted their solubility data to the equation  $\log_{10} S_{0} =$ -59.412 + 2890/(T/K). AUXILIARY INFORMATION METHOD: SOURCE AND PURITY OF MATERIALS: The previously degassed solvent is 1. Neon. British Oxygen Co. Ltd. flowed in a thin film through the Spectroscopically pure. gas in a glass absorption spiral. Volume changes are measured in burets. 2. Water. No information given. **ESTIMATED ERROR:** APPARATUS / PROCEDURE : The apparatus described by Morrison and Billett (1) was used. **REFERENCES**: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1952, 3819.

COMPONENTS:	ORIGINAL MEASUREMENTS:
	de Wet, W. J.
1. Neon; Ne; 7440-01-9	
2. Water; H ₂ O; 7732-18-5	
	J. S. Afr. Chem. Inst. 1964, 17, 9-13
VARIABLES:	PREPARED BY:
T/K: 291.35 - 306.55	R. Battino
P/kPa: 101.325 (1 atm)	
EXPERIMENTAL VALUES:	L
EXIERTENTAL VALUES:	
T/K Mol Fract	
X1 x 10	$d_{0}^{4}$ Coefficient $\alpha \times 10^{2}$
291.35 0.08290 298.75 0.08143	* 0.0101
306.55 0.07920	<u>,* 0.0098</u>
Mole fraction solubility at 101.325 k	Pa (1 atm) partial pressure of the
neon acalculated by the compiler.	· • • • • • • • • • • • • • • • • • • •
*Solubility value which was used in t	the final smoothing equation for the
recommended solubility values given i	n the critical evaluation.
AUXILIARY	INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS:
METHOD: Degassed liquid is flowed in a thin	SOURCE AND PURITY OF MATERIALS: 1. Neon. Contained less than 0.3
METHOD: Degassed liquid is flowed in a thin film through a glass spiral contain-	SOURCE AND PURITY OF MATERIALS: 1. Neon. Contained less than 0.3 per cent impurity. Passed over
METHOD: Degassed liquid is flowed in a thin	SOURCE AND PURITY OF MATERIALS: 1. Neon. Contained less than 0.3
METHOD: Degassed liquid is flowed in a thin film through a glass spiral contain- ing the gas. Volumes determined via	<ul> <li>SOURCE AND PURITY OF MATERIALS;</li> <li>1. Neon. Contained less than 0.3 per cent impurity. Passed over activated charcoal at liquid air temperatures.</li> </ul>
METHOD: Degassed liquid is flowed in a thin film through a glass spiral contain- ing the gas. Volumes determined via	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>1. Neon. Contained less than 0.3 per cent impurity. Passed over activated charcoal at liquid air</li> </ul>
METHOD: Degassed liquid is flowed in a thin film through a glass spiral contain- ing the gas. Volumes determined via	<ul> <li>SOURCE AND PURITY OF MATERIALS;</li> <li>1. Neon. Contained less than 0.3 per cent impurity. Passed over activated charcoal at liquid air temperatures.</li> </ul>
METHOD: Degassed liquid is flowed in a thin film through a glass spiral contain- ing the gas. Volumes determined via	<ul> <li>SOURCE AND PURITY OF MATERIALS;</li> <li>1. Neon. Contained less than 0.3 per cent impurity. Passed over activated charcoal at liquid air temperatures.</li> </ul>
METHOD: Degassed liquid is flowed in a thin film through a glass spiral contain- ing the gas. Volumes determined via	<ul> <li>SOURCE AND PURITY OF MATERIALS;</li> <li>1. Neon. Contained less than 0.3 per cent impurity. Passed over activated charcoal at liquid air temperatures.</li> </ul>
METHOD: Degassed liquid is flowed in a thin film through a glass spiral contain- ing the gas. Volumes determined via	<ul> <li>SOURCE AND PURITY OF MATERIALS;</li> <li>1. Neon. Contained less than 0.3 per cent impurity. Passed over activated charcoal at liquid air temperatures.</li> </ul>
METHOD: Degassed liquid is flowed in a thin film through a glass spiral contain- ing the gas. Volumes determined via calibrated burets.	<ul> <li>SOURCE AND PURITY OF MATERIALS;</li> <li>1. Neon. Contained less than 0.3 per cent impurity. Passed over activated charcoal at liquid air temperatures.</li> </ul>
METHOD: Degassed liquid is flowed in a thin film through a glass spiral contain- ing the gas. Volumes determined via calibrated burets.	<ul> <li>SOURCE AND PURITY OF MATERIALS;</li> <li>1. Neon. Contained less than 0.3 per cent impurity. Passed over activated charcoal at liquid air temperatures.</li> <li>2. Water. Distilled.</li> </ul>
METHOD: Degassed liquid is flowed in a thin film through a glass spiral contain- ing the gas. Volumes determined via calibrated burets.	<ul> <li>SOURCE AND PURITY OF MATERIALS;</li> <li>1. Neon. Contained less than 0.3 per cent impurity. Passed over activated charcoal at liquid air temperatures.</li> <li>2. Water. Distilled.</li> </ul>
METHOD: Degassed liquid is flowed in a thin film through a glass spiral contain- ing the gas. Volumes determined via calibrated burets. APPARATUS/PROCEDURE: Used modification of Morrison and Billett(1) apparatus. Degassing as	<ul> <li>SOURCE AND PURITY OF MATERIALS;</li> <li>1. Neon. Contained less than 0.3 per cent impurity. Passed over activated charcoal at liquid air temperatures.</li> <li>2. Water. Distilled.</li> </ul>
METHOD: Degassed liquid is flowed in a thin film through a glass spiral contain- ing the gas. Volumes determined via calibrated burets. APPARATUS/PROCEDURE: Used modification of Morrison and	<ul> <li>SOURCE AND PURITY OF MATERIALS;</li> <li>1. Neon. Contained less than 0.3 per cent impurity. Passed over activated charcoal at liquid air temperatures.</li> <li>2. Water. Distilled.</li> </ul>
METHOD: Degassed liquid is flowed in a thin film through a glass spiral contain- ing the gas. Volumes determined via calibrated burets. APPARATUS/PROCEDURE: Used modification of Morrison and Billett(1) apparatus. Degassing as	<pre>SOURCE AND PURITY OF MATERIALS; 1. Neon. Contained less than 0.3   per cent impurity. Passed over   activated charcoal at liquid air   temperatures. 2. Water. Distilled. ESTIMATED ERROR: REFERENCES:</pre>
METHOD: Degassed liquid is flowed in a thin film through a glass spiral contain- ing the gas. Volumes determined via calibrated burets. APPARATUS/PROCEDURE: Used modification of Morrison and Billett(1) apparatus. Degassing as	<pre>SOURCE AND PURITY OF MATERIALS; 1. Neon. Contained less than 0.3   per cent impurity. Passed over    activated charcoal at liquid air    temperatures. 2. Water. Distilled. ESTIMATED ERROR: REFERENCES: 1. Morrison, T. J.; Billett, F.    J. Chem. Soc. 1948, 2033;</pre>
METHOD: Degassed liquid is flowed in a thin film through a glass spiral contain- ing the gas. Volumes determined via calibrated burets. APPARATUS/PROCEDURE: Used modification of Morrison and Billett(1) apparatus. Degassing as	<pre>SOURCE AND PURITY OF MATERIALS; 1. Neon. Contained less than 0.3   per cent impurity. Passed over    activated charcoal at liquid air    temperatures. 2. Water. Distilled. ESTIMATED ERROR: REFERENCES: 1. Morrison, T. J.; Billett, F.</pre>
METHOD: Degassed liquid is flowed in a thin film through a glass spiral contain- ing the gas. Volumes determined via calibrated burets. APPARATUS/PROCEDURE: Used modification of Morrison and Billett(1) apparatus. Degassing as	<pre>SOURCE AND PURITY OF MATERIALS; 1. Neon. Contained less than 0.3 per cent impurity. Passed over activated charcoal at liquid air temperatures. 2. Water. Distilled.  ESTIMATED ERROR: REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033; ibid 1952, 3819. 2. Clever, H. L.; Battino, R.;</pre>
METHOD: Degassed liquid is flowed in a thin film through a glass spiral contain- ing the gas. Volumes determined via calibrated burets. APPARATUS/PROCEDURE: Used modification of Morrison and Billett(1) apparatus. Degassing as	<pre>SOURCE AND PURITY OF MATERIALS: 1. Neon. Contained less than 0.3 per cent impurity. Passed over activated charcoal at liquid air temperatures. 2. Water. Distilled.  ESTIMATED ERROR: REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033; ibid 1952, 3819.</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Krestov, G.A.; Patsatsiya, G.M.
2. Water; H ₂ O; 7732-18-5	
	Izv. Vyssh. Ucheb. Zaved., Khim.
	Khim. Tekhnol. 1969, 12, 1333 - 1337.
VARIABLES:	PREPARED BY:
T/K: 283.15 - 313.15	R. Battino
P/kPa: 101.325 (1 atm)	
EXPERIMENTAL VALUES:	
EAFERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald Coefficient Coefficient
$x_1 \times 10^4$	$\alpha \times 10^2$ L × 10 ²
283.15 0.08779	1.092 1.132
293.15 0.08414* 303.15 0.08089	1.045 1.122 1.002 1.112
313.15 0.07631	<u>0.942</u> 1.080
*Solubility value which was used in th recommended solubility values given in	ne final smoothing equation for the the critical evaluation.
The mole fraction solubility values a	t 101.325 kPa (1 atm) and the Ostwald
coefficients were calculated by the co	mpiler.
	INFORMATION
METHOD: Modification of the apparatus used by Ben-Naim and Baer (1). Also	SOURCE AND PURITY OF MATERIALS:
measured solubility in ethanol-water	No information given.
mixtures.	
· ·	
APPARATUS/PROCEDURE:	ESTIMATED ERROR:
	$\delta x_1 / x_1 = 0.01$ (Compiler)
	UX1/X1- 0.01 (COMPTIEL)
	REFERENCES :
	<ol> <li>Ben-Naim, A.; Baer, S. <u>Trans</u>. <u>Faraday Soc</u>. 1963, <u>59</u>, 2735.</li> </ol>

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Weiss, R. F.
2. Water; H ₂ O; 7732-18-5	
2. "acci, "20, 7752 10 5	
	<u>J. Chem. Eng. Data</u> 1971, <u>16</u> , 235-241.
VARIABLES:	PREPARED BY:
T/K: 273.80 - 313.29 P/kPa: 101.325 (1 atm)	R. Battino
EXPERIMENTAL VALUES:	
T/K Mol Fraction Bunsen Coefficient $X_1 \times 10^4$ $\alpha \times 10^2$	T/K Mol Fraction Bunsen Coefficient $X_1 \times 10^4$ $\alpha \times 10^2$
273.80 0.09922 1.2343	293.31 0.08395 1.0426
273.80 0.09935 1.2359 273.80 0.09892 1.2306	293.32 0.08355* 1.0376 303.43 0.07908 <u>*</u> 0.9796
273.80 0.09974 1.2408	303.45 0.07973* 0.9876
273.79 0.09877 1.2287 283.39 0.08993 1.1186	303.47 0.07913 [*] 0.9802 303.46 0.07869 0.9747
283.43 0.09041 1.1245	303.46 0.07924 [*] 0.9815
283.43 0.09014 [*] 1.1212 283.39 0.09028 [*] 1.1229	303.46 0.07890* 0.9773 303.45 0.07955* 0.9853
283.39 0.09013* 1.1210	313.27 0.07759* 0.9578 313.29 0.07712* 0.9520
283.39 0.09002* 1.1196 293.31 0.08389* 1.0419	313-29 0-07766* 0-9587
293.30 0.08387* 1.0416 293.31 0.08418 1.0454	313.27         0.07710*         0.9517           313.29         0.07707*         0.9514
AUXILIARY	INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS:
The Scholander micro-gasometric technique as adapted by Douglas (1) was used. The gas is dissolved in	<ol> <li>Neon. Air Reduction. Better than 99.99 per cent neon.</li> </ol>
previously degassed water over mercury. All volumes are read on a micrometer which displaces mercury.	2. Water. Distilled.
	ESTIMATED ERROR:
APPARATUS/PROCEDURE:	
	δ <b>τ/</b> κ = 0.01
	REFERENCES:
	<pre>1. Douglas, E. J. Phys. Chem. 1964, 68, 169; ibid. 1965, 69, 2608.</pre>

-----

ł

.

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Borina, A. F.; Lyashchenko, A. K.
2. Water; H ₂ O; 7732-18-5	
	<u>Zh. Fiz. Khim.</u> 1972, <u>46</u> , 249 - 250. <u>Russ. J. Phys. Chem. (Engl. Trans)</u> 1972, <u>46</u> , 150.
VARIABLES: T/K: 293.15	PREPARED BY: R. Battino
P/kPa: 101.325 (1 atm)	A. Battino
EXPERIMENTAL VALUES:	
T/K Mol Fracti X ₁ x 10 ⁴	Coefficient
293.15 0.08335	i.111
The neon solubility in water was a Henry's law.	djusted to 101.325 kPa (1 atm) by
ΔΙΙΧΤΙΤΑΡΥ	INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS: 1. Neon. Less than 0.1 per cent impurities.
	2. Water. Double distilled.
APPARATUS/PROCEDURE:	ESTIMATED ERROR:

COMPONENTS:	ODIOTATIVAL AND AND AND AND AND AND AND AND AND AND
	ORIGINAL MEASUREMENTS: Borina, A. F.; Samoilov, O. Ya.
1. Neon; Ne; 7440-01-9	borina, A. T., Samoriov, O. Ta.
2. Water; H ₂ O; 7732-18-5	
	Zh. Strukt. Khim. 1974, 15, 395-402.
	J. Struct. Chem. 1974, 15, 336-342.
VARIABLES:	PREPARED BY:
T/K: 288.15 - 298.15 Total P/kPa: 98.659 (740 mmHg)	R. Battino
10tal P/KPa: 98.059 (740 hund)	
EXPERIMENTAL VALUES:	
T/K Mol Fraction M	Mol Fraction Ostwald
$X_1 \times 10^9$	$X_1 \times 10^4$ Coefficient
at 1 mmHg 288.15 11.39	$\frac{\text{at l atm}}{0.08656^*} \frac{\text{L x } 10^2}{1.135}$
293.15 10.98	0.08345* 1.112
298.15 10.58	0.08041 1.089
*Solubility values which were used in recommended solubility values given in The mole fraction solubility at 101.3	n the critical evaluation. 325 kPa (1 atm) and the Ostwald
coefficients were calculated by the co	ompiler.
The mole fraction solubility values a inverse of Henry's constant from the coefficients by the author. The inver	experimentally measured Ostwald
at 1 mmHg is K/mmHg = $P/X_1$ .	
	INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS:
The apparatus, described in earlier papers (1,2), was based on the design	
of Ben-Naim and Baer (3). The appa-	of other gases.
ratus is designed to measure the	
difference in volume of the gas before dissolution and after dissolution is	2. Water. Distilled.
complete, with the gas and solvent in	
contact at constant pressure. The	
total pressure of neon + water vapor at its saturation value was always	
740 mmHg during the measurement.	
The author assumed that the gas behaved ideally and that Henry's	
law is obeyed to convert the experi-	ESTIMATED ERROR:
mentally measured Ostwald coefficient to the inverse of Henry's constant.	
co and rundree of neurly a conarant.	$\delta X_1 / X_1 = 0  0.05  (author)$
- · · · ·	$\delta X_{1} / X_{1} = 0.005$ (author)
-	
-	REFERENCES :
-	REFERENCES: 1. Lyashchenko, A.K.; Borina, A.F. Zh. Strukt. Khim. 1971, 12, 964.
-	REFERENCES: 1. Lyashchenko, A.K.; Borina, A.F. <u>Zh. Strukt. Khim.</u> 1971, <u>12</u> , 964. 2. Borina, A.F.; Lyashchenko, A.K.
-	<pre>REFERENCES: 1. Lyashchenko, A.K.; Borina, A.F.     Zh. Strukt. Khim. 1971, 12, 964. 2. Borina, A.F.; Lyashchenko, A.K.     Zh. Fiz. Khim. 1971, 45, 1316. 3. Ben-Naim, A.; Baer, S.</pre>
-	<pre>REFERENCES: 1. Lyashchenko, A.K.; Borina, A.F.     Zh. Strukt. Khim. 1971, 12, 964. 2. Borina, A.F.; Lyashchenko, A.K.     Zh. Fiz. Khim. 1971, 45, 1316.</pre>

;

ł

ł

•

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Benson, B. B.; Krause, D.
2. Water; H ₂ O; 7732-18-5	
	J. Chem. Phys. 1976, 64, 689.
VARIABLES:	PREPARED BY:
T/K: 274.155 - 323.148	R. Battino
P/kPa: 101.325 (1 atm)	
EXPERIMENTAL VALUES:	
T/K Mol F	raction Bunsen
x ₁ :	$x \ 10^4 \qquad \alpha \ x \ 10^2 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$
	10088 1.2560
278.151 0. 279.157 0.	095785* 1.1926 094733* 1.1795
283.149 0.1	091149 1.1347
288.149 0.	087474 1.0883
288.150 0. 293.148 0.	087550 [*] 1.0892 084488 [*] 1.0502
293.152 0.	084467* 1.0498
298.158 0. 303.150 0.	082427 1.0233 080360 0.9963
308.142 0.	078771 0.9751
	078260 0.9669
318.151 0. 323.148 0.	077036, 0.9499 077184, 0.9497
recommended solubility values given i	
AUXILIARY	INFORMATION
METHOD: Gas-free water and the pure gas	SOURCE AND PURITY OF MATERIALS:
are equilibrated, and volumetric samp les of the liquid and gaseous phases	-
are isolated. The gas dissolved in th	
water is extracted and the number of	2. Water. No information given.
moles determined on a special mercury manometer. After removal of water vap	1
or, the number of moles of neon in th	e
gaseous phase sample is measured with the same manometer. The pressure (and	
fugacity) above the solution may be	
calculated from the neon analysis.	
Real gas corrections are made. Predic	
	ESTIMATED ERROR: Smoothed data fit to
Real gas corrections are made. Predic ted maximum error is 0.02 per cent. APPARATUS/PROCEDURE:	ESTIMATED ERROR: Smoothed data fit to 0.12 per cent rms in the solubility.
Real gas corrections are made. Predic ted maximum error is 0.02 per cent.	ESTIMATED ERROR: Smoothed data fit to
Real gas corrections are made. Predic ted maximum error is 0.02 per cent. APPARATUS/PROCEDURE: No drawings of the apparatus are	ESTIMATED ERROR: Smoothed data fit to 0.12 per cent rms in the solubility. Calculated error from measurements is 0.02 per cent.
Real gas corrections are made. Predic ted maximum error is 0.02 per cent. APPARATUS/PROCEDURE: No drawings of the apparatus are	ESTIMATED ERROR: Smoothed data fit to 0.12 per cent rms in the solubility. Calculated error from measurements
Real gas corrections are made. Predic ted maximum error is 0.02 per cent. APPARATUS/PROCEDURE: No drawings of the apparatus are	ESTIMATED ERROR: Smoothed data fit to 0.12 per cent rms in the solubility. Calculated error from measurements is 0.02 per cent.
Real gas corrections are made. Predic ted maximum error is 0.02 per cent. APPARATUS/PROCEDURE: No drawings of the apparatus are	ESTIMATED ERROR: Smoothed data fit to 0.12 per cent rms in the solubility. Calculated error from measurements is 0.02 per cent.
Real gas corrections are made. Predic ted maximum error is 0.02 per cent. APPARATUS/PROCEDURE: No drawings of the apparatus are	ESTIMATED ERROR: Smoothed data fit to 0.12 per cent rms in the solubility. Calculated error from measurements is 0.02 per cent.
Real gas corrections are made. Predic ted maximum error is 0.02 per cent. APPARATUS/PROCEDURE: No drawings of the apparatus are	ESTIMATED ERROR: Smoothed data fit to 0.12 per cent rms in the solubility. Calculated error from measurements is 0.02 per cent.

.

COMPONENTS:		ORIGINAL MEASURE	MENTS:
		Borina, A. F.	
1. Neon; Ne; 7440-01-9			
2. Water; H ₂ O; 7732-18-5			
			1. 1977, <u>51</u> ,138 - 142 5. <u>Chem</u> . 1977, <u>51</u> ,76 - 78
VARIABLES:		PREPARED BY:	
T/K: 288.15 - 30 Total P/kPa: 98.659 (74		R.	Battino
EXPERIMENTAL VALUES:			
	ol Fraction $X_1 \times 10^9$ at 1 mmHg	Mol Fraction X ₁ x 104 at 1 atm	Ostwald Coefficient L x 10 ²
288.15 293.15 298.15 303.15	11.39 10.98 10.58 10.54	0.08656* 0.08345 0.08041* 0.08010	1.135 1.112 1.089 1.101
*Solubility values which recommended solubility va			
The mole fraction solub coefficients were calcula			n) and the Ostwald
at 1 mmHg is K/mmHg = P/X	<b>T</b> -		
	AUXILIARY	INFORMATION	
METHOD/APPARATUS PROCEDURE	:	SOURCE AND PURIT	Y OF MATERIALS:
The apparatus, describe papers (1, 2), was based of Ben-Naim and Baer (3) ratus is designed to mea difference in volume of a dissolution and after dis	on the design The appa- asure the the gas before ssolution is	l. Neon. "Spe Contained of other o	ecially pure" grade. less than 0.1 per cent gases.
complete, with the gas and contact at constant press total pressure of neon + at its saturation value v 740 mmHg during the measu The author assumed that	water vapor vas always irement.		stilled.
contact at constant press total pressure of neon + at its saturation value v 740 mmHg during the measu	water vapor vas always irement. the gas Henry's the experi- l coefficient	ESTIMATED ERROR:	

,

ł

;

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Borina, A. F.
2. Water; H ₂ O; 7732-18-5	
2	
	<u>Zh. Fiz. Khim</u> . 1977, <u>51</u> , 406 - 409.
VARIABLES:	Russ. J. Phys. Chem. 1977, 51,235-23 PREPARED BY:
т/к: 293.15 - 309.15	R, Battino
Total P/kPa: 98.659 (740 mmHg)	
EXPERIMENTAL VALUES:	
$x_1 \times 10^9 x_1$	Fraction Ostwald Number of x 10 ⁴ Coefficient Determinations 1 atm L x 10 ²
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08413 [*] 1.121 5 08086 [*] 1.098 5
305.15 10.40 0.0	07904 1.093 4
	07866* 1.101 5
"Solubility values which were used in recommended solubility values given :	n the final smoothing equation for the in the critical evaluation.
The mole fraction solubility at 101 coefficients were calculated by the c	
The mole fraction solubility values inverse of Henry's constant from the coefficients by the author. The inve at 1 mmHg is K/mmHg = P/X ₁ .	experimentally measured Ostwald
AUXILIARY	INFORMATION
METHOD: The apparatus, described in earlier papers (1,2), was based on the design of Ben-Naim and Baer (3). The appa- ratus is designed to measure the difference in volume of the gas befor dissolution and after dissolution is complete, with the gas and solvent in contact at constant pressure. The total pressure of neon + water vapor at its saturation value was always 740 mmHg during the measurement. The author assumed that the gas behaved ideally and that Henry's	Contained less than 0.1 per cent of other gases. e 2. Water. Double distilled.
law is obeyed to convert the experi- mentally measured Ostwald coeffici-	ESTIMATED ERROR:
ent to the inverse of Henry's con- stant.	$\delta X_1 / X_1 = 0.005$ (author)
	REFERENCES: <ol> <li>Lyashchenko, A.K.; Borina, A.F. Zh. Strukt. Khim. 1971, 12, 964.</li> <li>Borina. A.F.; Lyashchenko, A.K. Zh. Fiz. Khim. 1971, 45, 1316.</li> <li>Ben-Naim. A.; Baer, S. Trans. Faraday Soc. 1963, <u>59</u>, 2735.</li> </ol>

COMPONENTS:		INDICINAL MEAC DEVENDE.
<pre>1. Neon; Ne; 7440-01-9</pre>		ORIGINAL MEAS REMENTS: Abrosimov, V.K.; Strakhov, A.N.;
	i	Krestov, G.A.
2. Water-d ₂ ; D ₂ O; 7789-20-	•0	
		Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol.1974, 17, 1463-1465.
VARIABLES:	<u></u>	PREPARED BY:
T/K: 283.38 - 318. P/kPa: 101.325 (1 at		R. Battino
EXPERIMENTAL VALUES:		
m/r	Mal Dua	- Lion Dun and
T/F	Mol Frac	ction Bunsen Coefficient
	X, x 1	$10^4$ $\alpha \times 10^2$
<u> </u>		
283.3 292.7	8 0.109 2 0.099	
298.1	.5 0.094	466 1.170
308.2 318.4		
510.4		122 1.012
	AUXILIARY	INFORMATION
METHOD:	AUXILIARY	INFORMATION SOURCE AND PURITY OF MATERIALS:
METHOD: The authors also measure solubility of neon in pur and mixtures of H ₂ O and D ₂ O	ed the se water	

ı

·

COMPONENTS:	EVALUATOR:
1. Neon; Ne; 7440-01-9 2. Sea Water	H. L. Clever Chemistry Department Emory University Atlanta, Georgia 30322 USA February 1978

CRITICAL EVALUATION:

There are two reports of the solubility of neon in sea water (1,2). König (1) reports neon solubility values at six temperatures between 273.15 and 298.15 K which he estimates to have an uncertainty of three percent. Weiss (2) reports four to five neon solubility values at each of six temperatures which he estimates to have an accuracy of ± 0.5% and a relative precision of ± 0.3%. The data of König fall consistently about 4 percent below the values of Weiss.

Presented here are the neon Bunsen solubility values of Weiss in water, sea water, and one dilution of sea water. Weiss has fitted his data by the method of least squares to an equation for the natural logarithm of the Bunsen coefficient,  $\alpha$ , which is consistent with both the integrated form of the vant Hoff equation and the Setschenow salt effect equation. The equation, which is valid for the temperature range of 273.15 to 323.15 K and salinity range of 0 to 40 S%, reproduced Weiss' neon Bunsen values with a root-mean-square deviation of 4 x  $10^{-5}$ . The equation is

 $\ln \alpha = -39.1971 + 51.8031(100/T) + 15.7699 \ln (T/100)$ 

+ S% [-0.124695 + 0.078374(T/100) - 0.0127972(T/100)²]

Weiss gives equations for the solubility of neon from moist air at one atm total pressure in units of ml Ne (STP)  $dm^{-3}$  sea water and ml Ne (STP) kg⁻¹ sea water assuming that neon behaves as an ideal gas and has a mol fraction of 1.818 x  $10^{-5}$  (3) in dry air. The equations are

 $\ln[m] Ne(STP) dm^{-3}] = -160.2630 + 211.0969(100/T) + 132.1657 \ln(T/100)$ 

- 21.3165(T/100) + S%.[-0.122883 + 0.077055(T/100) - 0.0125568(T/100)²]

and

 $\ln[m1 \text{ Ne}(\text{STP}) \text{ kg}^{-1}] = -170.6018 + 225.1946(100/T) + 140,8863 \ln(T/100)$ 

- 22.6290(T/100) + S%.[-0.127113 + 0.079277(T/100) - 0.0129095(T/100)²]

where S%, is the salinity.

The Weiss paper gives extensive tables of neon Bunsen coefficients and of ml Ne(STP) kg⁻¹ as a function of temperature and salinity as calculated from the above equations.

König, H. Z. <u>Naturforsch</u>. 1963, <u>18a</u>, 363. 1.

- 2.
- Weiss, R. F. J. Chem. Eng. Data 1971, 16, 235. Gluckauf, E. Proc. Roy. Soc. A. 1946, 185, 98; also Compendium of 3. Meteorology, Amer. Meteorological Soc., Boston, MA 1951, 3 - 11.

COMPONENTS :		ORIGINAL MEASUREMENTS:
		Weiss, R. F.
1. Neon; Ne; 7440-01-9		NC155, A. I.
2. Sea Water		
		<u>J. Chem. Eng. Data</u> 1971, <u>16</u> , 235-241.
VARIABLES:		PREPARED BY:
T/K: 273.22 - 313.63	、	H. L. Clever, S. A. Johnson
Ne P/kPa: 101.325 (1 atm Salinity: 0 - 36.425 %.	)	
EXPERIMENTAL VALUES:	Salini	Ly %o
	18,152	36.425
$\frac{0.0}{T/K} = \frac{Bunsen \times 10^3}{T/K}$	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	$\times 10^3$ T/K Bunsen x 10 ³
273.79 12.287 278.80 12.343		273.22 9.926 273.23 9.971
273.80 12.359		273.23 10.003
	8.22 10.65 8.22 10.60	
27	8.23 10.55	6 276.20 9.705
	8.23 10.59	7 276.20 9.697 276.21 9.754
283.39 11.229 283.39 11.210		276.21 9.699
283.39 11.196		283.70 9.170
283.43 11.245 283.43 11.212		283.70 9.193
000 00 10 116		283.71 9.144 283.72 9.188
293.30 10.416 293.31 10.419		203.72 5.100
293.31 10.454	0 00 0 10	293.28 8.763 7 293.28 8.744
	8.29 9.19 8.29 9.20	
29	8.29 9.21	
303.43 9.796 29 303.45 9.876	8.30 9.20	0 293.29 8.732
303.45 9.853		303.29 8.225 303.30 8.257
303.46 9.747 303.46 9.815		303.30 8.257 303.30 8.257
303.46 9.773		303.30 8.275
303.47 9.802 Continued on next page.		
contrinded on next page.		
		INFORMATION
METHOD: Solubility determin	ations by th	SOURCE AND PURITY OF MATERIALS:
Scholander microgasometri as used by Douglas (1), w		Neon. All Reducation co. specified > 99.99% pure. Gas chromatographic checks showed ≤ 0.01% air.
modifications.		checks showed $\leq$ 0.01% air.
		2. Sea Water. Passed through 0.45 $\mu$
		Millipore filter and poisoned with 1 mg/l of HgCl ₂ .
		I mg/I OI ngc12.
l		
APPARATUS/PROCEDURE: An equil	ibrium cham-	ESTIMATED ERROR: $\delta T/K = 0.01$
ber, containing pure gas	saturated	$\delta$ salinity = 0.004
with water vapor, is sepa mercury from a closed side	rated by le chamber	
containing degassed water	. The appa-	REFERENCES :
ratus is tipped on its si degassed water to flow in	de allowing	
librium chamber. Dissolu	tion is	68, 169.
aided by mechanical shaki	.ng.	<u> 15ia</u> . 1965, <u>69</u> , 2608.
l		

COMPONENTS:	ORIGINAL MEASUREMENTS:
l. Neon; Ne; 7440-01-9	Weiss, R. F.
2. Sea Water	
	<u>J. Chem. Eng. Data</u> 1971, <u>16</u> , 235-241.
VARIABLES:	PREPARED BY:
T/K: 273.22 - 313.63 Ne P/kPa: 101.325 (1 atm) Salinity: 0 - 36.425 %。	H. L. Clever, S. A. Johnson
EXPERIMENTAL VALUES:	
Salini	ty %。
0.0 18.152	36.425
T/K Bunsen x 10 ³ T/K Bunsen	$\frac{x\ 10^3}{313.59}\ \frac{T/K}{7.970}$
313.27       9.578         313.27       9.517         313.29       9.520         313.29       9.587         313.29       9.514	313.59 8.023 313.61 8.006 313.63 8.066
AUXILIARY	INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS:
See previous page.	See previous page.
APPARATUS/PROCEDURE:	ESTIMATED ERROR:
	Coo provious page
See previous page.	See previous page.
	REFERENCES :
	See previous page.

COMPONENTS:EVALUATOR:1. Neon; Ne; 7440-01-9H. L. Clever<br/>Chemistry Department2. Water; H20; 7732-18-5Emory University<br/>Atlanta, GA 303223. ElectrolytesU. S. A.<br/>May 1978

CRITICAL EVALUATION:

Until recently the only neon solubility data in aqueous electrolyte solutionswere the 1954 measurements of Morrison and Johnstone (1) in aqueous LiCl, NaCl, and KI solutions. Between 1971 and 1974 Samoilov, Borina, Lyashchenko and Alekseeva (2, 3, 4, 5, 6, 7, 8) of the N. S. Kurnakov Institute of Inorganic Chemistry, Moscow, reported the solubility of neon in 30 different aqueous electrolyte solutions. They investigated the effect of temperature, pressure and electrolyte concentration on the neon solubility.

The Russian workers discuss the neon solubility data in terms of their interest in the structure of water and aqueous electrolyte solutions. They have used three different solubility units in their different papers: units of volume of gas per unit volume of solution, volume of gas per unit weight of solvent, and Henry's law constant. They have not used the Setschenow salt parameter in their calculations or discussions.

In order to be able to compare the neon solubility behavior in aqueous electrolyte solutions with the behavior of other gases in aqueous electrolyte solutions, the results were recalculated as Setschenow salt parameters on a salt molality basis. When necessary aqueous electrolyte density values were interpolated from International Critical Tables(9) density tables. The Setschenow salt effect parameter was fitted by the method of least squares to an equation linear in molality,  $k_s = a + bm$ . The use of a linear function is not intended to imply that the Setschenow parameter is linear in molality. Feillolay and Lucas (10) have presented evidence for a maximum in  $k_s$  as a function of molality. Presently available salt effect data are not of sufficient accuracy to test the Feillolay and Lucas theory at present. The linear equations are collected in Table 1.

The value of  $k_s$  in the limit  $m \rightarrow 0$  would be desirable, but the  $k_s$  values at low salt concentration are difficult to measure accurately. The linear equations do not give as consistent a set of  $k_s$  values in the limit of  $m \rightarrow 0$  as the set of values at unit molality. Thus Table 1 contains  $k_s$  values at unit molality. In addition, values of the Setschenow salt effect parameter  $k_{sx} = (1/m)\log(X^{\circ}/X)$  at unit salt molality are given in Table 1. In the equation m is the salt molality, and the  $X^{\circ}/X$  ratio is the mole fraction gas solubility ratio with respect to gas, water and all salt ions. The definition is discussed in more detail in the discussion of salt effects on helium solubility.

Lyaschchenko and Borina (5) studied the effect of pressure on the solubility of neon in aqueous HCl, Mg(NO₃)₂, Ca(NO₃)₂ and Ba(NO₃)₂ solutions. In Table 1 two values of  $k_s$  and  $k_{sx}$  are given for these solutions. The first are from the solubility values measured at atmospheric pressure and the second are from the combination of solubility values at all pressures.

The Setschenow parameters reported by Morrison and Johnstone (1) for LiCl, NaCl, and KI solutions were based on only two solubility measurements, water and one molal salt solution, and were stated to have an uncertainty of 0.01. In all three cases the more recent salt effect parameters based on the Kurnakov Institute solubility data agree with the Morrison and Johnstone data within that uncertainty.

Several generalizations about the salt effect parameter can be observed from the data in Table 1. (1) The Setschenow salt parameter decreases as temperature increases; (2) In alkali halide solutions for a given alkali metal cation the Setschenow salt parameter decreases in the order  $Cl^- >$  $Br^- > I^-$ ; (3) For a given halide ion the Setschenow salt parameter decreases in the order Li⁺ > Na⁺ > K⁺ > Rb > Cs⁺; In alkaline earth halide solutions (4) for a given halide ion the Setschenow salt parameter decreases in the order  $Ba^{2+} > Sr^{2+} > Ca^{2+} > Mg^{2+}$ ; (5) For a given alkaline earth cation the pattern is not clear from present data, there is some evidence that the  $Br^-$  ion is more effective at salting out than either the  $Cl^-$  or  $I^-$  ions.

COMPONENTS:			EVALUATOR:		
1. Neon; Ne;	7440-0	1-9	H. L. Clever		
2. Water; H ₂	0: 7732	-18-5	Chemistry Depar Emory Universit		
3. Electroly			Atlanta, GA		
			May 1978		
CRITICAL EVALU	ATION:				
TABLE 1. Su in	mmary o aqueou	f Setschenow salt e s electrolyte solut	ffect parameters fo ions.	or neon dissolv	əd
Solution Ne + H ₂ O	т/к	Equation Parameters	s Setschenow Para one molal elect		Ref- eren
+ salt		k _s = a + b m	$k_s =$ (1/m) log (S ^O /S)	$k_{eY} =$	ce
HCl	293.15	0.0602 - 0.0082 m 0.0719 - 0.0123 m	0.0520 0.0596	0.0586 0.0662	5
NH4C1	293.15	0.0748 - 0.0042 m	0.0706	0.0691	4
-		0.2569 - 0.0815 m		0.189	6
<b>.</b>		0.1871 - 0.0056 m		0.194	6
-	293.15	0.2487 - 0.0181 m	0.2306	0.242	2
$Mg(NO_3)_2$	293.15			0.185	5
	298.15	0.1386 + 0.0417 m 0.206 - 0.023 m		0.183 0.185	7
	303.15		0.1527	0.154	7
CaCl ₂	293.15	0.2073 - 0.0012 m	0.2061	0.218	6
CaBr ₂	293.15	0.2208 - 0.0062 m	0.2146	0.219	6
CaI2	293.15	0.2135 + 0.0080 m	0.2215	0.215	6
Ca(NO ₃ ) ₂		0.2222 - 0.0088 m	0.2084 0.2133	0.209 0.214	5
-		0.2265 - 0.0005 m	0.2260	0.237	6
SrBr ₂	293.15	0.2259 - 0.0018 m	0.2241	0.226	6
-		0.2359 + 0.0077 m		0.251	6
BaBr ₂	293.15	0.2227 + 0.0558 m	0.2785	0.276	6
4			0.2620	0.247	6
Ba (NO ₃ ) ₂	293.15	0.1783 + 0.2105 m 0.1527 + 0.2590 m	0.3889 0.4116	0.376 0.399	5
	298.15 293.15	0.0725 - 0.0007 m	0.059 0.0718	0.074 0.0872	1 3
	288.15	0.0858 - 0.00075 m	0.0851	0.0928	8
	293.15 298.15	0.0826 - 0.0022 m 0.0774 - 0.0009 m	0.0804 0.0765	0.0881 0.0842	8 8
	288.15	0.0979 - 0.00445 m		0.101	8
	293.15 298.15	0.1021 - 0.0099 m 0.0884 - 0.0078 m	0.0922 0.0806	0.100 0.088	8 8
	293.15 303.15	0.0833 + 0.0055 m 0.0822 - 0.0107 m	0.0888 0.0715	0.0905 0.0718	7 7
	298.15 293.15 288.15 293.15 298.15 303.15	0.1040 + 0.0003 m 0.1265 - 0.00375 m 0.1118 + 0.0001 m 0.1076 - 0.0020 m 0.1036 + 0.00045 m	0.1119 0.1056	0.112 0.119 0.131 0.120 0.113 0.112	1 3 8 8 8 8
NaBr	293.15	0.0985 + 0.0001 m	0.0986	0.114	3
NaI	293.15 288.15 293.15 298.15	0.0965 - 0.0003 m 0.1303 - 0.0053 m 0.1045 - 0.0005 m 0.1014 - 0.0011 m	0.0968 0.1250 0.1040 0.1003	0.112 0.133 0.112 0.108	3 8 8 8

•

			EVALUATOR:
. Neon; Ne	e; 7440-0	1-9	H. L. Clever
Water. I	I O. 7777	_10-E	Chemistry Department Emory University
. Water; H	120; 1132	-10-5	Atlanta, GA 30322
. Electrol	lytes		USA
_			May 1978
RITICAL EVA	LUATION:		
TABLE 1. S	Summary o In aqueou	f Setschenow salt s electrolyte solu	effect parameters for neon dissolved tions (continued).
Solution Ne + H ₂ O	т/к	Equation Paramete	rs Setschenow Paramters at Ref- One Molal Electrolyte ere
+ salt		k _s = a + bm	$k_{-} = k_{-} = ce$
			$(1/m) \log (S^{O}/S)  (1/m) \log (X^{O}/X)$
NaNO3	293.15	0.1166 - 0.0043 m	
	298.15 303.15		
КОН	293.15		
KF	293.15	0.1276 - 0.0071 m	0.1205 0.132 2
KCl	293.15		
	288.15		
		0.1164 - 0.0069 m 0.1160 - 0.0074 m	
	295.65		
	298.15		
KBr	293.15	0.0853 + 0.0025 m	0.0878 0.103 3
KI	298.15		0.080 0.095 1
	293.15		
	288.15		
	290.65 293.15		
		0.1001 - 0.00405	
	298.15		
RbCl	293.15	0.1146 - 0.0097 m	0.1049 0.103 2
CsCl	293.15	0.0791 - 0.0011 m	0.0780 0.0934 3
		0.1030 + 0.0046 m	
CsNO3	202 15	0.0691 + 0.0098 m	0.0789 0.0660 7

,

- Lyashchenko, A.K.; Borina, A.F. Zh. Strukt. Knim. 1971, 12, 964.
   Borina, A.F.; Samoilov, O.Ya.; Alekseeva, L.S.
   <u>Zh. Fiz. Khim.</u> 1971, 45, 2554.
   Borina, A.F.; Lyashchenko, A.K. Zh. Fiz. Khim. 1972, 46, 249.
   Lyashchenko, A.K.; Borina, A.F. <u>Zh. Strukt. Khim.</u> 1973, 14, 978.
   Borina, A.F.; Lyashchenko, A.K.; Alekseeva, L.S.
   <u>Zh. Fiz. Khim.</u> 1973, 47, 1748.
   <u>Tyashchenko, A.K. Dokl. Akad. Nauk. SSSR</u> 1974, 217 (2), 380.
   Borina, A.F.; Samoilov, O.Ya. <u>Zh. Strukt. Khim.</u> 1974, <u>15</u>, 395.
   International Critical Mathematica, Washburn, E. W., Editor, McGraw-
- International Critical Tables , Washburn, E. W., Editor, McGraw-Hill Book Co., Inc., New York, 1928, Volume III.
   Feillolay, A.; Lucas, M. J. Phys. Chem. 1972, 76, 3068.

143

			ORIGINAL MEASUREMENT	ç.
1	Ne; 7440-01-9		Lyashchenko, A.K	
2. Water	не, 7440-01-9 ; H ₂ O; 7732-18-	· 5	Jashenenko, K.K	,, borina, n.r.
	=			
3. Hydrod	chloric Acid; H	Cl; 7647-01-0		1072 14 070 001
				. 1973, <u>14</u> ,978 - 981.
WARTART				1973, <u>14</u> , 924 - 927.
VARIABLES:	T/K: 293.15		PREPARED BY:	
Total P,	/kPa: 84.73 (63	5.5 mmHg) - 25 (739 mmHg)	T. D. Kitt	redge, H. L. Clever
HC1/mo1	<u>kg⁻¹ H₂O: 0 -</u>	2.935		
EXPERIMENTA		·····	· · · · · · · · · · · · · · · · · · ·	
	Hydrochloric	P/mmHg	Neon Solubility*	Setschenow
	Acid		-	Parameter
	mol kg ⁻¹ H ₂ O		$s/cm^3 dm^{-3}$	$k_{s} = (1/m) \log(s^{o}/s)$
293.15		720		
293.15	0 1.72	739 737	11.11 9.26	0.0460
	1.72	700.3	8.64	(0.0498)
	1.72	676.8	8.27	(0.0523)
	1.72	635.5	7.68	(0.0552)
	2.935	737	8.71	0.0360
	2.935	701.3	8.29	(0.0355)
•	2.935	671.5	7.90	(0.0363)
	$k_{c} = 0.060$	2 - 0.0082 m (f	rom the two value	s at 737 mmHg).
	-			
	At one molal	HC1, $k_{s} = 0.052$	20 and $k_{sX} = 0.058$	6.
	$k_{-} = 0.071$	9 - 0.0123 m (f	rom all data poin	ts with S corrected
			:0 739 mmHg).	
	At one molal	HC1, $k_{s} = 0.059$	96 and $k_{sX} = 0.066$	2.
			·······	
The Set	tschenow parame	ter k and key	as the Ostwald co were calculated b from references	y the compiler.
	<u></u>			
		AUXILIARY	INFORMATION	
METHOD:		AUXILIARY		MATERIALS.
METHOD:	varatus descri		SOURCE AND PURITY OF	
The app papers (1	paratus, descri 1,2), was based	bed in earlier on the design	SOURCE AND PURITY OF 1. Neon. Especia Contained 0.1	
The app papers (1 of Ben-Na	1,2), was based aim and Baer (3	bed in earlier on the design ). The appa-	SOURCE AND PURITY OF 1. Neon. Especia	lly pure grade.
The app papers (1 of Ben-Na ratus is differenc	1,2), was based aim and Baer (3 designed to me ce in volume of	bed in earlier on the design ). The appa- asure the the gas before	SOURCE AND PURITY OF 1. Neon. Especia Contained 0.1 gases.	lly pure grade. per cent of other
The app papers (1 of Ben-Na ratus is differenc dissoluti	l,2), was based aim and Baer (3 designed to me ce in volume of ion and after d	bed in earlier on the design ). The appa- asure the the gas before issolution is	SOURCE AND PURITY OF 1. Neon. Especia Contained 0.1 gases. 2. Water. Doubly	lly pure grade. per cent of other distilled.
The app papers (1 of Ben-Na ratus is difference dissoluti complete,	1,2), was based aim and Baer (3 designed to me ce in volume of	bed in earlier on the design ). The appa- asure the the gas before issolution is and solvent in	<ul> <li>SOURCE AND PURITY OF</li> <li>1. Neon. Especia Contained 0.1 gases.</li> <li>2. Water. Doubly</li> <li>3. Hydrochloric a</li> </ul>	lly pure grade. per cent of other
The app papers (1 of Ben-Na ratus is difference dissoluti complete, contact a total pre	1,2), was based aim and Baer (3 designed to me ce in volume of ion and after d , with the gas at constant pre- essure of gas +	bed in earlier on the design ). The appa- asure the the gas before issolution is and solvent in ssure. The water vapor	SOURCE AND PURITY OF 1. Neon. Especia Contained 0.1 gases. 2. Water. Doubly	lly pure grade. per cent of other distilled.
The app papers (1) of Ben-Na ratus is difference dissoluti complete, contact a total pre is 739 ±	1,2), was based aim and Baer (3 designed to me- ce in volume of ion and after di , with the gas at constant pre- essure of gas + 1.5 mmHg. The p	bed in earlier on the design ). The appa- asure the the gas before issolution is and solvent in ssure. The water vapor neon partial	<ul> <li>SOURCE AND PURITY OF</li> <li>1. Neon. Especia Contained 0.1 gases.</li> <li>2. Water. Doubly</li> <li>3. Hydrochloric a</li> </ul>	lly pure grade. per cent of other distilled.
The app papers (1) of Ben-Na ratus is difference dissoluti complete, contact a total pre is 739 ± pressure	1,2), was based aim and Baer (3 designed to me- ce in volume of ion and after di , with the gas a at constant pre- essure of gas + 1.5 mmHg. The over water is	bed in earlier on the design ). The appa- asure the the gas before issolution is and solvent in ssure. The water vapor neon partial 721.5 mmHg.	<ul> <li>SOURCE AND PURITY OF</li> <li>1. Neon. Especia Contained 0.1 gases.</li> <li>2. Water. Doubly</li> <li>3. Hydrochloric a grade.</li> </ul>	lly pure grade. per cent of other distilled.
The app papers (1 of Ben-Na ratus is difference dissoluti complete, contact a total pre is 739 ± pressure The value	1,2), was based aim and Baer (3 designed to me- ce in volume of ion and after d , with the gas a at constant pre- essure of gas + 1.5 mmHg. The over water is of k _{sx} was cal	bed in earlier on the design ). The appa- asure the the gas before issolution is and solvent in ssure. The water vapor neon partial 721.5 mmHg. lculated by the	<ul> <li>SOURCE AND PURITY OF</li> <li>1. Neon. Especia. Contained 0.1 gases.</li> <li>2. Water. Doubly</li> <li>3. Hydrochloric a grade.</li> </ul>	lly pure grade. per cent of other distilled.
The app papers (1 of Ben-Na ratus is difference dissoluti complete, contact a total pre is 739 <u>±</u> pressure The value compiler	1,2), was based aim and Baer (3 designed to me to in volume of ion and after d , with the gas a at constant pre- essure of gas + 1.5 mmHg. The over water is over water is assuming that	bed in earlier on the design ). The appa- asure the the gas before issolution is and solvent in ssure. The water vapor neon partial 721.5 mmHg. lculated by the the gas	<ul> <li>SOURCE AND PURITY OF</li> <li>1. Neon. Especia. Contained 0.1 gases.</li> <li>2. Water. Doubly</li> <li>3. Hydrochloric a grade.</li> </ul>	lly pure grade. per cent of other distilled.
The app papers (1 of Ben-Na ratus is difference dissoluti complete, contact a total pre is 739 <u>±</u> pressure The value compiler	1,2), was based aim and Baer (3 designed to me to in volume of ion and after d with the gas a at constant pre- essure of gas + 1.5 mmHg. The over water is over water is assuming that is ideal and th	bed in earlier on the design ). The appa- asure the the gas before issolution is and solvent in ssure. The water vapor neon partial 721.5 mmHg. lculated by the the gas	<ul> <li>SOURCE AND PURITY OF</li> <li>1. Neon. Especia. Contained 0.1 gases.</li> <li>2. Water. Doubly</li> <li>3. Hydrochloric a grade.</li> </ul>	lly pure grade. per cent of other distilled.
The app papers (1 of Ben-Na ratus is difference dissoluti complete, contact a total pre is 739 ± pressure The value compiler behavior is obeyed	1,2), was based aim and Baer (3 designed to me to in volume of ion and after d with the gas a at constant pre- essure of gas + 1.5 mmHg. The over water is over water is assuming that is ideal and th	bed in earlier on the design ). The appa- asure the the gas before issolution is and solvent in ssure. The water vapor neon partial 721.5 mmHg. lculated by the the gas hat Henry's law	<ul> <li>SOURCE AND PURITY OF</li> <li>1. Neon. Especia. Contained 0.1 gases.</li> <li>2. Water. Doubly</li> <li>3. Hydrochloric a grade.</li> </ul>	lly pure grade. per cent of other distilled. acid. Chemically pure
The app papers (1 of Ben-Na ratus is difference dissoluti complete, contact a total pre is 739 ± pressure The value compiler behavior is obeyed The con	1,2), was based aim and Baer (3 designed to me to in volume of ion and after d , with the gas a at constant pre- essure of gas + 1.5 mmHg. The over water is over water is assuming that is ideal and th	bed in earlier on the design ). The appa- asure the the gas before issolution is and solvent in ssure. The water vapor neon partial 721.5 mmHg. lculated by the the gas hat Henry's law	<ul> <li>SOURCE AND PURITY OF</li> <li>1. Neon. Especia. Contained 0.1 gases.</li> <li>2. Water. Doubly</li> <li>3. Hydrochloric a grade.</li> </ul>	lly pure grade. per cent of other distilled. acid. Chemically pure
The app papers (1 of Ben-Na ratus is difference dissoluti complete, contact a total pre is 739 ± pressure The value compiler behavior is obeyed The con solution	1,2), was based aim and Baer (3 designed to me to in volume of ion and after d , with the gas a at constant pre- essure of gas + 1.5 mmHg. The over water is over water is assuming that is ideal and th d.	bed in earlier on the design ). The appa- asure the the gas before issolution is and solvent in ssure. The water vapor neon partial 721.5 mmHg. lculated by the the gas hat Henry's law HCl in the after the	<pre>SOURCE AND PURITY OF 1. Neon. Especia. Contained 0.1 gases. 2. Water. Doubly 3. Hydrochloric a grade. ESTIMATED ERROR:</pre>	lly pure grade. per cent of other distilled. acid. Chemically pure
The app papers (1 of Ben-Na ratus is difference dissoluti complete, contact a total pre is 739 ± pressure The value compiler behavior is obeyed The con solution	1,2), was based aim and Baer (3 designed to me to in volume of ion and after d , with the gas a at constant pre- essure of gas + 1.5 mmHg. The over water is over water is a of $k_{\rm SX}$ was cal assuming that is ideal and th d. centration of H was determined	bed in earlier on the design ). The appa- asure the the gas before issolution is and solvent in ssure. The water vapor neon partial 721.5 mmHg. lculated by the the gas hat Henry's law HCl in the after the	<pre>SOURCE AND PURITY OF 1. Neon. Especia. Contained 0.1 gases. 2. Water. Doubly 3. Hydrochloric a grade. ESTIMATED ERROR:</pre>	lly pure grade. per cent of other distilled. acid. Chemically pure
The app papers (1 of Ben-Na ratus is difference dissoluti complete, contact a total pre is 739 ± pressure The value compiler behavior is obeyed The con solution	1,2), was based aim and Baer (3 designed to me to in volume of ion and after d , with the gas a at constant pre- essure of gas + 1.5 mmHg. The over water is over water is a of $k_{\rm SX}$ was cal assuming that is ideal and th d. centration of H was determined	bed in earlier on the design ). The appa- asure the the gas before issolution is and solvent in ssure. The water vapor neon partial 721.5 mmHg. lculated by the the gas hat Henry's law HCl in the after the	<pre>SOURCE AND PURITY OF 1. Neon. Especia. Contained 0.1 gases. 2. Water. Doubly 3. Hydrochloric a grade. ESTIMATED ERROR:</pre>	<pre>lly pure grade. per cent of other distilled. acid. Chemically pure = 0.0035 - 0.005. Lyashchenko, A.K.</pre>
The app papers (1 of Ben-Na ratus is difference dissoluti complete, contact a total pre is 739 ± pressure The value compiler behavior is obeyed The con solution	1,2), was based aim and Baer (3 designed to me to in volume of ion and after d , with the gas a at constant pre- essure of gas + 1.5 mmHg. The over water is over water is a of $k_{\rm SX}$ was cal assuming that is ideal and th centration of H was determined	bed in earlier on the design ). The appa- asure the the gas before issolution is and solvent in ssure. The water vapor neon partial 721.5 mmHg. lculated by the the gas hat Henry's law HCl in the after the	<pre>SOURCE AND PURITY OF 1. Neon. Especia. Contained 0.1 gases. 2. Water. Doubly 3. Hydrochloric a grade. ESTIMATED ERROR:</pre>	<pre>lly pure grade. per cent of other distilled. acid. Chemically pure = 0.0035 - 0.005. Lyashchenko, A.K. 1971, 45, 1316.</pre>
The app papers (1 of Ben-Na ratus is difference dissoluti complete, contact a total pre is 739 ± pressure The value compiler behavior is obeyed The con solution	1,2), was based aim and Baer (3 designed to me to in volume of ion and after d , with the gas a at constant pre- essure of gas + 1.5 mmHg. The over water is over water is a of $k_{\rm SX}$ was cal assuming that is ideal and th centration of H was determined	bed in earlier on the design ). The appa- asure the the gas before issolution is and solvent in ssure. The water vapor neon partial 721.5 mmHg. lculated by the the gas hat Henry's law HCl in the after the	<pre>SOURCE AND PURITY OF 1. Neon. Especia. Contained 0.1 gases. 2. Water. Doubly 3. Hydrochloric a grade. ESTIMATED ERROR:</pre>	<pre>lly pure grade. per cent of other distilled. acid. Chemically pure = 0.0035 - 0.005. Lyashchenko, A.K. 1971, 45, 1316. Samoilov, 0.Ya.;</pre>
The app papers (1 of Ben-Na ratus is difference dissoluti complete, contact a total pre is 739 ± pressure The value compiler behavior is obeyed The con solution	1,2), was based aim and Baer (3 designed to me to in volume of ion and after d , with the gas a at constant pre- essure of gas + 1.5 mmHg. The over water is over water is a of $k_{\rm SX}$ was cal assuming that is ideal and th centration of H was determined	bed in earlier on the design ). The appa- asure the the gas before issolution is and solvent in ssure. The water vapor neon partial 721.5 mmHg. lculated by the the gas hat Henry's law HCl in the after the	<pre>SOURCE AND PURITY OF 1. Neon. Especia. Contained 0.1 gases. 2. Water. Doubly 3. Hydrochloric a grade. ESTIMATED ERROR:</pre>	<pre>lly pure grade. per cent of other distilled. acid. Chemically pure = 0.0035 - 0.005. Lyashchenko, A.K. 1971, 45, 1316. Samoilov, O.Ya.; 5.</pre>
The app papers (1 of Ben-Na ratus is difference dissoluti complete, contact a total pre is 739 ± pressure The value compiler behavior is obeyed The con solution	1,2), was based aim and Baer (3 designed to me to in volume of ion and after d , with the gas a at constant pre- essure of gas + 1.5 mmHg. The over water is over water is a of $k_{\rm SX}$ was cal assuming that is ideal and th centration of H was determined	bed in earlier on the design ). The appa- asure the the gas before issolution is and solvent in ssure. The water vapor neon partial 721.5 mmHg. lculated by the the gas hat Henry's law HCl in the after the	<pre>SOURCE AND PURITY OF 1. Neon. Especia. Contained 0.1 gases. 2. Water. Doubly 3. Hydrochloric a grade. ESTIMATED ERROR:</pre>	<pre>lly pure grade. per cent of other distilled. acid. Chemically pure = 0.0035 - 0.005. Lyashchenko, A.K. 1971, 45, 1316. Samoilov, O.Ya.; 1971, 45, 2554.</pre>
The app papers (1 of Ben-Na ratus is difference dissoluti complete, contact a total pre is 739 ± pressure The value compiler behavior is obeyed The con solution	1,2), was based aim and Baer (3 designed to me to in volume of ion and after d , with the gas a at constant pre- essure of gas + 1.5 mmHg. The over water is over water is a of $k_{\rm SX}$ was cal assuming that is ideal and th centration of H was determined	bed in earlier on the design ). The appa- asure the the gas before issolution is and solvent in ssure. The water vapor neon partial 721.5 mmHg. lculated by the the gas hat Henry's law HCl in the after the	<pre>SOURCE AND PURITY OF 1. Neon. Especia. Contained 0.1 gases. 2. Water. Doubly 3. Hydrochloric a grade. ESTIMATED ERROR:</pre>	<pre>lly pure grade. per cent of other distilled. acid. Chemically pure = 0.0035 - 0.005. Lyashchenko, A.K. 1971, 45, 1316. Samoilov, O.Ya.; 1971, 45, 2554.</pre>

COMPONENTS:				L MEASUREMENTS:
1. Neon; Ne;			Borina	a, A.F.; Lyashchenko, A.K.
2. Water; H ₂ O	; 7732-18-5			
3. Ammonium C 12125-02-9	hloride; NH ₄ Cl	;		<u>iz. Khim</u> . 1972, <u>46</u> , 249 - 250. J. <u>Phys. Chem</u> . 1972, <u>46</u> ,150-151.
VARIABLES: T/K: Total P/kPa: NH ₄ Cl/mol kg	293.15 -1 ^{98.525} (739 H ₂ O: 0 - 2.	mmHg) 647	PREPARE	D BY: T.D.Kittredge, H.L. Clever
EXPERIMENTAL VAL	UES:			
т/к	Ammonium Chloride mol kg ⁻¹ H ₂ O	Neon Solub S/cm ³ dm ⁻³	oility*	Setschenow Parameter k _s = (1/m) log (S ^O /S)
*The neon sol The neon sol	0 0.161 0.163 0.339 0.343 0.642 0.652 1.315 1.315 2.647 2.647 $k_{s} = 0.0748$ molal NH ₄ C1, ubility, S, is ubility in wat f $k_{s}$ and $k_{sX}$ w	$10.80 10.85 10.41 10.44 10.04 9.98 9.05 9.09 7.56 7.45 - 0.0042 m k_s = 0.0706 the same a er, So, is$	and k	Ostwald coefficient x 10 ³ .
		AUXILIARY	INFORMAT	TION
METHOD:	<u> </u>		SOURCE	AND PURITY OF MATERIALS:
papers (1,2), of Ben-Naim a ratus is desi difference in dissolution a complete, wit contact at co total pressur 739 ± 1.5 mmH pressure over	us, described i was based on nd Baer (3). T gned to measur volume of the nd after disso h the gas and nstant pressur e of gas + wat g. The neon pa water is 721. k _{sx} was calcul	the design he appa- e the gas before lution is solvent in e. The er vapor is rtial 5 mmHg.	1. Net Cor ga: 2. Wa 3. Am pu	on. Especially pure grade. ntained 0.1 per cent of other ses. ter. Doubly distilled. monium chloride. Chemically re grade.
compiler assu is ideal and obeyed. The concent solution was	mĩn̂g that the that Henry's l ration of NH4C determined af titration of	gas behavic aw is l in the ter the	REFEREN 1. BO Zh	$\delta S/cm^3 dm^{-3} = 0.04$ NCES: rina, A.F.; Lyashchenko, A.K. . Fiz. Khim. 1971, 45, 1316.
			$\begin{array}{c c} A1 \\ \underline{Zh} \\ 3. \overline{Bei} \end{array}$	rina, A.F.; Samoilov, O. Ya.; ekseeva, L.S. . Fiz. Khim. 1971, <u>45</u> , 2554. n-Naim, A.; Baer, S. ans. Faraday <u>Soc</u> . 1963, <u>59</u> ,2735.

~

,

,

COMPONENTS: ORIGINAL MEASUREMENTS: Borina, A.F.; Lyashchenko, A.K.; Alekseeva, L.S. 1. Neon; Ne; 7440-01-9 Water; H₂O; 7732-18-5 2. 3. Iron Chloride; FeCl_z; 7705-08-0 <u>Zh. Fiz. Khim. 1973, 47</u>, 1748 - 1751. <u>Russ. J. Phys. Chem</u>. 1973, <u>47</u>, 987 - 989. VARIABLES: T/K: 293.15 Total P/kPa: 98.525 (739 mmHg) FeCl₃/mol kg⁻¹ H₂O: 0 - 0.735 PREPARED BY: T.D. Kittredge, H.L. Clever **EXPERIMENTAL VALUES:**  $k_{s} = (1/m) \log (S^{o}/S)$ Ferric Chloride T/K Neon solubility* mol kg⁻¹  $H_20$  $S/cm^3 dm^{-3}$ 11.11 (S^o) 10.30 293.15 0.0 0.080 0.4110 8.56 0.530 0.2137 7.96 0.1970 0.735  $k_{c} = 0.2569 - 0.0815m$  (value at 0.080m omitted) At one molal FeCl₃,  $k_s = 0.1754$  and  $k_{sX} = 0.189$ . *The neon solubility, S, is the same as the Ostwald coefficient x  $10^3$ . The neon solubility in water, S⁰, is from reference 1. The values of  $k_s$  and  $k_{sX}$  were calculated by the compiler. AUXILIARY INFORMATION METHOD: SOURCE AND PURITY OF MATERIALS: The apparatus, described in earlier papers (1, 2), was based on the design of Ben-Naim and Baer (3). The appa-Specially pure grade. 1. Neon. Contained 0.1 per cent of other gases. ratus is designed to measure the difference in volume of the gas before 2. Water. Distilled. dissolution and after dissolution is complete, with the gas and solvent in contact at constant pressure. The 3. Iron Chloride. Chemically pure. total pressure of gas + water vapor is 739 + 1.5 mmHg. The neon partial pressure is 721.5 mmHg. The value of  $k_{sx}$  was calculated by the compiler ESTIMATED ERROR: assuming that the gas behavior is ideal and that Henry's law is obeyed. The concentration of FeCl₃ was  $\delta S/S = 0.005$ determined after degassing from the density of the solution. The authors point out that there is evidence the **REFERENCES**: Borina, A.F.; Lyashchenko, A.K. <u>Zh. Fiz. Khim</u>. 1971, <u>45</u>, 1316. Borina, A.F.; Samoilov, O. Ya.; Alekseeva, L.S. <u>Zh. Fiz. Khim</u>. 1971, <u>45</u>, 2554. <u>Ben-Naim</u>, A.; Baer, B. <u>Trans. Faraday Soc</u>. 1963, <u>59</u>,2735. iron is in the form of a  $FeC1^{2+}$ 1. complex in the solution. 2. 3.

COMPONENTS:			ORIGINAL MEASUREMENTS:	
-	Ne; 7440-01-9		Borina, A.F.; Lyashchenko, A.K.; Alekseeva, L.S.	
2. Water;	H ₂ 0; 7732-18-5			
3. Magnes	<pre>ium Chloride; MgCl₂;</pre>			
7786-30	0-3		<u>Zh. Fiz. Khim. 1973, 47</u> , 1748-1751. <u>Russ. J.Phys.Chem</u> . 1973, <u>47</u> , 987-98	Ð.
VARIABLES:	K: 293.15		PREPARED BY:	
Total P/kPa	a: 98.525 (739 mmH kg ⁻¹ H ₂ O: 0 - 2.26	g) 6	T.D. Kittredge, H.L. Clever	
EXPERIMENTAL	VALUES:			
Т/К	Magnesium N Chloride	eon solub	5	
	mo1 kg ⁻¹ H ₂ 0	S/cm ³ d	m ⁻³	
293.15	0.0	11.1	1 (S [°] ) -	
	0.272	10.2	1 0.1349	
	0.476 1.017	9.1 7.0		
	1.138	6.9	7 0.1779	
	2.266	4.5	2 0.1724	
	$k_{s} = 0.1871 - 0$	.0056m (v	alue at 0.272m omitted)	
	At one molal Mg	C1 ₂ , k _s =	0.1815 and $k_{sX} = 0.194$ .	
The neon	solubility in water	, S ⁰ , is	s the Ostwald coefficient x 10 ³ . from reference 1. ted by the compiler.	
The neon	solubility in water	, S ⁰ , is	from reference 1.	
The neon :	solubility in water	, S ⁰ , is e calcula	from reference 1. ted by the compiler.	
The neon	solubility in water	, S ⁰ , is e calcula	from reference 1. ted by the compiler. INFORMATION	
The neon The value METHOD: The appara papers (1, of Ben-Nain	solubility in water s of k _s and k _{sX} wer 	, S ⁰ , is e calcula AUXILIARY arlier he design e appa-	from reference 1. ted by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS; 1. Neon. Specially pure grade.	-
The neon The value METHOD: The appara papers (1, of Ben-Nai ratus is d difference	solubility in water s of k _s and k _{sX} wer tus, described in e 2), was based on t m and Baer (3). Th esigned to measure in volume of the g	, S ⁰ , is e calcula AUXILIARY arlier he design e appa- the as before	from reference 1. ted by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases.	
The neon The values The values METHOD: The appara papers (1, of Ben-Nair ratus is d difference dissolutio complete,	solubility in water s of k _s and k _{sX} wer tus, described in e 2), was based on t m and Baer (3). Th esigned to measure in volume of the g n and after dissolu with the gas and so	, S ⁰ , is e calcula AUXILIARY arlier he design e appa- the as before tion is lvent in	<pre>from reference 1. ted by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled. 3. Magnesium Chloride. Chemically</pre>	-
The neon The values The values METHOD: The appara papers (1, of Ben-Nair ratus is d difference dissolutio complete, contact at	solubility in water s of k _s and k _{sX} wer tus, described in e 2), was based on t m and Baer (3). Th esigned to measure in volume of the g n and after dissolu with the gas and so constant pressure.	, S ⁰ , is e calcula AUXILIARY arlier he design e appa- the as before tion is lvent in The	<pre>from reference 1. ted by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled. 3. Magnesium Chloride. Chemically pure.</pre>	
The neon The values The values METHOD: The appara papers (1, of Ben-Nair ratus is d difference dissolutio complete, contact at total pres 739 + 1.5 f	solubility in water s of k _s and k _{sX} wer tus, described in e 2), was based on t m and Baer (3). Th esigned to measure in volume of the g n and after dissolu with the gas and so constant pressure. sure of gas + water mmHg. The neon par	, S ⁰ , is e calcula AUXILIARY arlier he design e appa- the as before tion is lvent in The vapor is tial	<pre>from reference 1. ted by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled. 3. Magnesium Chloride. Chemically pure.</pre>	
The neon The values The values METHOD: The appara papers (1, of Ben-Nain ratus is d difference dissolution complete, contact at total pres 739 + 1.5 pressure i	solubility in water s of k _s and k _{sX} wer tus, described in e 2), was based on t m and Baer (3). Th esigned to measure in volume of the g n and after dissolu with the gas and so constant pressure. sure of gas + water mmHg. The neon par s 721.5 mmHg. The	, S ⁰ , is e calcula AUXILIARY arlier he design the as before tion is lvent in The vapor is tial value of	<pre>from reference 1. ted by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled. 3. Magnesium Chloride. Chemically pure.</pre>	
The neon The value The value METHOD: The appara papers (1, of Ben-Nain ratus is d difference dissolutio complete, contact at total pres 739 + 1.5 pressure i k _s X was ca	solubility in water s of k _s and k _{sX} wer tus, described in e 2), was based on t m and Baer (3). Th esigned to measure in volume of the g n and after dissolu with the gas and so constant pressure. sure of gas + water mmHg. The neon par s 721.5 mmHg. The lculated by the com	, S ⁰ , is e calcula AUXILIARY arlier he design e appa- the as before tion is lvent in The vapor is tial value of piler	<pre>from reference 1. ted by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled. 3. Magnesium Chloride. Chemically pure.</pre>	
The neon The values The values METHOD: The appara papers (1, of Ben-Nair ratus is d difference dissolution complete, contact at total press 739 + 1.5 pressure i k _{sX} was ca assuming t ideal and	solubility in water s of k _s and k _{sX} wer tus, described in e 2), was based on t m and Baer (3). Th esigned to measure in volume of the g n and after dissolu with the gas and so constant pressure. sure of gas + water mmHg. The neon par s 721.5 mmHg. The lculated by the com hat the gas behavio that Henry's law is	, S ⁰ , is e calcula AUXILIARY arlier he design e appa- the as before tion is lvent in The vapor is tial value of piler r is obeyed.	<pre>from reference 1. ted by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled. 3. Magnesium Chloride. Chemically pure. ESTIMATED ERROR:</pre>	
The neon The value The value METHOD: The appara papers (1, of Ben-Nain ratus is d difference dissolutio complete, contact at total press 739 ± 1.5 pressure i k _{SX} was ca assuming t ideal and The con	solubility in water s of k _s and k _{sX} wer tus, described in e 2), was based on t m and Baer (3). Th esigned to measure in volume of the g n and after dissolu with the gas and so constant pressure. sure of gas + water mmHg. The neon par s 721.5 mmHg. The lculated by the com hat the gas behavio that Henry's law is centration of MgCl ₂	, S ⁰ , is e calcula AUXILIARY arlier he design e appa- the as before tion is lvent in The vapor is tial value of piler r is obeyed. was	<pre>from reference 1. ted by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled. 3. Magnesium Chloride. Chemically pure.</pre>	
The neon The value The value METHOD: The appara papers (1, of Ben-Nain ratus is d difference dissolutio complete, contact at total pres 739 ± 1.5 pressure i k _{SX} was ca assuming t ideal and The con determined	solubility in water s of k _s and k _{sX} wer tus, described in e 2), was based on t m and Baer (3). Th esigned to measure in volume of the g n and after dissolu with the gas and so constant pressure. sure of gas + water mmHg. The neon par s 721.5 mmHg. The lculated by the com hat the gas behavio that Henry's law is centration of MgCl ₂ after degassing by	, S ⁰ , is e calcula AUXILIARY arlier he design e appa- the tion is lvent in The vapor is tial value of piler r is obeyed. was	<pre>from reference 1. ted by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled. 3. Magnesium Chloride. Chemically pure. ESTIMATED ERROR:</pre>	
The neon The value The value METHOD: The appara papers (1, of Ben-Nain ratus is d difference dissolutio complete, contact at total pres 739 ± 1.5 pressure i k _{SX} was ca assuming t ideal and The con determined	solubility in water s of k _s and k _{sX} wer tus, described in e 2), was based on t m and Baer (3). Th esigned to measure in volume of the g n and after dissolu with the gas and so constant pressure. sure of gas + water mmHg. The neon par s 721.5 mmHg. The lculated by the com hat the gas behavio that Henry's law is centration of MgCl ₂	, S ⁰ , is e calcula AUXILIARY arlier he design e appa- the tion is lvent in The vapor is tial value of piler r is obeyed. was	<pre>from reference 1. ted by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled. 3. Magnesium Chloride. Chemically pure. ESTIMATED ERROR:</pre>	

۰.

COMPONENTS:	· · · · · · · · · · · · · · · · · · ·		ORIGINAL MEASUREMENTS:
1. Neon; N	e; 7440-01-9		Lyashchenko, A.K.; Borina, A.F.
-	H ₂ O; 7732-18-5		
	um Sulfate; MgSO ₄ ;		<u>Zh. Strukt. Khim</u> . 1971, <u>12</u> , 964-968. <u>J. Struct</u> . <u>Chem</u> . 1971, <u>12</u> , 889-891.
VARIABLES:	K: 293.15		PREPARED BY:
Total P/kPa	$g^{-1} H_2^{0:} 0 - 1.3^{-1}$	nmHg) 47	T.D. Kittredge, H.L. Clever
EXPERIMENTAL	VALUES:		
т/к	Magnesium Sulfate mol kg ¹ H ₂ O	Neon Solu S/cm ³	3
293.15	0	11.1	1 (S [°] )
	0.304 0.492 0.624 1.016 1.347	9.3 8.4 7.9 6.4 5.5	2 0.245 2 0.236 9 0.230
	k _s	= 0.2487	- 0.0181 m
The neon s	olubility, S, is olubility in wate	the same a r, S ^O , is	0.2306 and k _{SX} = 0.242. s the Ostwald coefficient x 10 ³ . from references 1 and 2. were calculated by the compiler.
		AUXILIARY	INFORMATION
paper (1), Ben-Naim an is designed in volume o and after d constant pr of gas + wa The neon pa The value o compiler as ideal and t The MgSO degassing w	us, described in was based on the d Baer (3). The to measure the d f the gas before of issolution is com solvent in conta essure. The tota ter vapor is 739 rtial pressure is f k _{SX} was calcula suming that gas b hat Henry's law i 4 concentration a as determined by a chelating agent	design of apparatus ifference dissolutio plete with ct at 1 pressure ± 1.5 mmHg 721.5. ted by the ehavior is s obeyed. fter titration	Contained 0.1 percent of other gases. n2. Water. Doubly distilled. 3. Magnesium sulfate. Chemically pure reagent grade.
			<ol> <li>Lyashchenko, A.K. <u>Doki. Akad</u>.</li> <li><u>Nauk. SSSR</u> 1974, <u>217</u>, 380.</li> <li>Ben-Naim, A.; Baer, S. <u>Trans.</u> <u>Faraday Soc</u>. 1963, <u>59</u>, 2735.</li> </ol>

COMPONENTS			ORIGINAL MEASUREMEN	1770 -
	Ne; 7440-01-9		Lyashchenko, A.H	
	; н ₂ 0; 7732-18-5			
3. Magne	esium Nitrate; Mg 7-60-3		Zh. <u>Strukt</u> . Khin J. <u>Struct</u> . <u>Chem</u> .	<u>n</u> . 1973, <u>14</u> , 978-981. 1973, <u>14</u> , 924-927.
VARIABLES:		(	PREPARED BY:	
	xPa: 89.27 (669. 98.525 / mol kg ⁻¹ H ₂ O:	(739 mmHcr)	T.D. Kitt	credge, H.L. Clever
EXPERIMENT	CAL VALUES:			
Т/К	Magnesium Nitrate	P/mmHg 1	Neon Solubility*	Setschenow** Parameter
	mol kg ⁻¹ H ₂ O		s/cm ³ dm ⁻³	$k_{s} = (1/m) \log(s^{o}/s)$
293.15	0.0 0.186 0.186 0.186 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325	739 739 705.8 683.5 669.6 739 727 692.5 679.5 739	11.11 (S ^O ) 10.46 9.99 9.69 9.50 9.77 9.62 9.35 9.18 8.07 5.85	0.1408 (0.1408) (0.1363) (0.1363) 0.1717 (0.1704) (0.1433) (0.1433) 0.1912 0.1986
-		739	5.85 the four values at	0.1886
The neon	$k_{s} = 0$ At one molal M	.1386 + 0.04	= 0.1825 and k _{sX} = 17 m (all values). = 0.1803 and k _{sX} = from references 1	- 0.183.
		AUXILIAR	INFORMATION	
METHOD:			SOURCE AND PURITY C	)F MATERIALS.
papers (1 of Ben-Na ratus is differenc dissoluti complete, contact a total pre is 739 <u>+</u> pressure	pparatus, describ (,2), was based of im and Baer (3). designed to meas e in volume of t on and after dis with the gas and t constant press ssure of gas + was 1.5 mmHg. The n- over water is 72 of k _{SX} was calc	n the design The appa- ure the he gas before solution is d solvent in ure. The ater vapor eon partial 1.5 mmHg.	r 1. Neon. Espec Contained 0. gases. e 2. Water. Doub 3. Magnesium ni pure grade.	cially pure grade. I per cent of other oly distilled. Ctrate. Chemically
behavior is obeyed The co	ncentration of M	t Henry's lav g(NO ₃ ) ₂ in		= 0.0035 - 0.005.
determine ion with *The neo as the O The Set	ion after degass d by titration o a chelating agen on solubility, S, ostwald coefficient schenow paramete culated by the co	f the Mg ²⁺ t. is the same nt x 10 ³ . rs k _s and k _s ;	Zh. Fiz. Khi 2. Borina, A.F. Alekseeva, I <u>Zh. Fiz. Khi</u> 3. Ben-Naim, A.	<u>m</u> . 1971, <u>45</u> , 2554.

ř

ι.

COMPONENTS:			ORIGINAT M	EASUREMENTS:
	; 7440-01-9		Lyashchei	
2. Water; H	2 ⁰ ; 7732-18-5			
3. Magnesiu 10377-60	m Nitrate; Mg(NO ₃ ) -3	2'	380-382;	ad. Nauk <u>SSSR</u> 1974, 217 (2), <u>Dokl. Phys. Chem. (Engl</u> . 1974, <u>217</u> , 645 - 647.
VARIABLES:	293.15 - 303.15		PREPARED B	Y:
Total P/kPa:	98.525 (739 mmHg -1 H ₂ O: 0 - 1.50	)	T.D.	. Kittredge, H.L. Clever
EXPERIMENTAL V	ALUES:			
T/K	Nitrate	Neon Sola		Setschenow Parameter
	mol kg ⁻¹ H ₂ O	s/cm ³	dm ⁻³	$k_{s} = (1/m) \log (S^{O}/S)$
293.15	0 0.60 1.50	8	.11 (S ^O ) .52 .15	0.192 0.171
	k _s	= 0.206	- 0.023 m	
	At one molal Mg(NO	3 ⁾ 2′ ^k s	= 0.183 an	nd $k_{sX} = 0.185$ .
303.15	0 0.70 1.45	8	.59 (S ^O ) .28 .36	0.1527 0.1527
		$k_{\rm c} = 0.$	1 5 7 7	
The Setsche	lubility, S, is th now parameters k _S lubility in water,	and k _{sX}	were calc	wald coefficient $x  10^3$ . ulated by the compiler. rences 1 and 2.
		AUXTLTARY	INFORMATION	л
papers (1,2) of Ben-Naim ratus is des difference i dissolution complete, wi contact at c total pressu is 739 $\pm$ 1.5 pressure ove	atus, described in , was based on the and Baer (3). The igned to measure t n volume of the ga and after dissolut th the gas and sol onstant pressure. re of gas + water mmHg. The neon p r water is 721.5 m	e design e appa- he s before ion is vent in The vapor artial mHg.	<ol> <li>Neon Conta gases</li> <li>Wates</li> <li>Magne</li> </ol>	ained 0.1 per cent of other
compiler ass behavior is is obeyed. The Mg(NO	$k_{sX}$ was calculate uming that the gas ideal and that Hen $3^{2}$ concentration	iry's law in the		ERROR: $\delta T/K = 0.02$ $\delta P/mmHg = 1.5$ $5/cm^{3} dm^{-3} = 0.04$ $\delta n/m = 0.02$
end of the s determined b	er degassing and a olubility experime y comparison of th with standard den	nt was e solu-	2. Zh. 1 Borin Aleks	
			3. Ben-I	Naim, A.; Baer, S. s. Faraday Soc. 1963, <u>59</u> ,2735.

COMPONENTS :		OR	IGINAL MEASU	REMENTS .	
	le; 7440-01-9		orina, A.F	.; Lyashchenko, A.	К.;
2. Water:	H ₂ 0; 7732-18-5	ļ	Alekseeva	a, L.S.	
	2				
10043-5	Chloride; CaCl ₂ ;	7.	h. Fiz. Kh	im. 1973, <u>47</u> , 1748	-1751.
10045 5	μ. τ	R	uss. J.Phy	s. <u>Chem</u> . 1973, <u>47</u> ,	987-989.
VARIABLES:	. 207 15	PR	EPARED BY:		<u></u>
Total P/kPa	: 293,15 1: 98.525 (739 mmHg) 2g ⁻¹ H ₂ O: 0 - 2.580		T.D. K	ittredge, H.L. Cle	ver
EXPERIMENTAL	VALUES:				
Т/К	Calcium Chloride	Neon solu	bility*	$k_{s} = (1/m) \log (S^{0})$	/S)
	mol kg ⁻¹ $H_2^0$	S/cm ³			
293.15	0.0 0.349	11.11 9.40 7.76	•	0.2080 0.2075	
	0.751 1.004	7.02		0.1986	
	1.484 2.580	5.38 3.33		0.2122 0.2028	
		0.2073 -			
			20(1 1 1	- 0 210	
	At one molal CaCl	$2^{K_{s}} = 0.$	2061 and K	sX = 0.218.	
The neon s	solubility, S, is the solubility in water, s of k _s and k _{sX} were	5°, 15 fr	om reieren	ce I.	, ³ .
The neon s	solubility in water,	5°, 15 fr	om reieren	ce I.	, ³ .
The neon s	solubility in water, s of k _s and k _{sX} were	5°, 15 fr	d by the c	ce I.	) ³ .
The neon s	solubility in water, s of k _s and k _{sX} were	calculate	d by the c	ce I.	) ³ .
The neon s The values METHOD: The appara papers (1, of Ben-Nain	solubility in water, s of k _s and k _{sX} were A tus, described in ea 2), was based on the n and Baer (3). The	UXILIARY IN calculate UXILIARY IN rlier I e design appa-	om referen d by the c FORMATION DURCE AND PUR . Neon.	ompiler.	nde.
The neon s The values METHOD: The appara papers (1, of Ben-Nain ratus is d difference	tus, described in eat and Baer (3). The esigned to measure the in volume of the ga	UXILIARY IN calculate UXILIARY IN rlier e design appa- he s before 2	om referen d by the c FORMATION DURCE AND PUR . Neon. Contain gases.	ompiler. ompiler. RITY OF MATERIALS: Specially pure gra	nde.
The neon s The values METHOD: The appara papers (1, of Ben-Nain ratus is d difference dissolution	solubility in water, s of k _s and k _{sX} were tus, described in eat 2), was based on the n and Baer (3). The esigned to measure the in volume of the gat n and after dissolut	UXILIARY IN calculate UXILIARY IN rlier e design appa- he s before 2 ion is	om referen d by the c FORMATION DURCE AND PUR . Neon. Contain gases. C. Water.	ompiler. ompiler. ITY OF MATERIALS: Specially pure gra led 0.1 per cent of Distilled.	ide. F other
METHOD: The appara papers (1, of Ben-Nain ratus is d difference dissolution complete, contact at	tus, described in eat 2), was based on the n and Baer (3). The esigned to measure ti in volume of the gas n and after dissolut with the gas and solut constant pressure.	UXILIARY IN calculate UXILIARY IN rlier e design appa- he s before ion is vent in The	om referen d by the c FORMATION DURCE AND PUR . Neon. Contain gases. C. Water.	ompiler. ompiler. NITY OF MATERIALS: Specially pure gra ed 0.1 per cent of	nde. E other
The neon s The values The values METHOD: The appara papers (1, of Ben-Nain ratus is d difference dissolution complete, contact at total press	tus, described in eat 2), was based on the n and Baer (3). The esigned to measure the in volume of the gas n and after dissolut with the gas and solut constant pressure. sure of gas + water	UXILIARY IN Calculate UXILIARY IN rlier e design appa- he s before 2 vent in The vapor is	om referen d by the c FORMATION DURCE AND PUR . Neon. Contain gases. C. Water. Calcium	ompiler. ompiler. ITY OF MATERIALS: Specially pure gra led 0.1 per cent of Distilled.	nde. E other
The neon s The values The values METHOD: The appara papers (1, of Ben-Nain ratus is d difference dissolution complete, contact at total press 739 ± 1.5 i pressure i	tus, described in ear 2), was based on the n and Baer (3). The esigned to measure the in volume of the ga n and after dissolut with the gas and solut constant pressure. sure of gas + water mmHg. The neon part s 721.5 mmHg. The var	UXILIARY IN UXILIARY IN UXILIARY IN UXILIARY IN S rlier I e design appa- he s before 2 vent in 3 The vent in 3 The vapor is ial alue of	om referen d by the c FORMATION DURCE AND PUR . Neon. Contain gases. C. Water. Calcium	ompiler. ompiler. ITY OF MATERIALS: Specially pure gra led 0.1 per cent of Distilled.	nde. E other
METHOD: The appara papers (1, of Ben-Nain ratus is d difference dissolution complete, y contact at total press 739 ± 1.5 m pressure i k _{sX} was ca	A tus, described in east 2), was based on the n and Baer (3). The esigned to measure the in volume of the gas n and after dissolut with the gas and solv constant pressure. sure of gas + water mmHg. The neon part s 721.5 mmHg. The volute of the comp	UXILIARY IN calculate UXILIARY IN rlier e design appa- he s before 2 ion is vent in The vapor is ial alue of iler	om referen d by the c formation purce AND PUR . Neon. Contain gases. . Water. . Calcium pure.	ompiler. MITY OF MATERIALS: Specially pure gra ed 0.1 per cent of Distilled. Chloride. Chemica	nde. E other
The neon s The values The values METHOD: The appara papers (1, of Ben-Nain ratus is d difference dissolution complete, w contact at total press 739 + 1.5 pressure i k _s X was ca assuming t ideal and	A tus, described in eat 2), was based on the n and Baer (3). The esigned to measure the in volume of the gat n and after dissolut with the gas and solut constant pressure. sure of gas + water mmHg. The neon part s 721.5 mmHg. The value culated by the comp hat the gas behavior that Henry's law is	UXILIARY IN Calculate UXILIARY IN UXILIARY IN Crlier 1 e design appa- he s before 2 vent in 3 vent in 3 The vapor is ial alue of iler is obeyed.	om referen d by the c FORMATION DURCE AND PUR . Neon. Contain gases. C. Water. Calcium	ompiler. MITY OF MATERIALS: Specially pure gra ed 0.1 per cent of Distilled. Chloride. Chemica	nde. E other
The neon s The values The values METHOD: The appara papers (1, of Ben-Nain ratus is d difference dissolution complete, to contact at total press 739 + 1.5 m pressure i k _s X was ca assuming t ideal and The con determined	A tus, described in eas 2), was based on the n and Baer (3). The esigned to measure to in volume of the gas n and after dissolut with the gas and solv constant pressure. sure of gas + water mmHg. The neon part s 721.5 mmHg. The volute to the gas behavior that the gas behavior that the gas behavior that Henry's law is centration of CaCl ₂ after degassing by	UXILIARY IN calculate UXILIARY IN rlier e design appa- he s before ion is vent in The vapor is ial alue of iler is obeyed. was	om referen d by the c formation purce AND PUR . Neon. Contain gases. . Water. . Calcium pure.	CE I. ompiler. RITY OF MATERIALS: Specially pure gra led 0.1 per cent of Distilled. Distilled. Chloride. Chemica	nde. E other
METHOD: The value: METHOD: The appara papers (1, of Ben-Nain ratus is d difference dissolution complete, y contact at total press 739 + 1.5 m pressure i k _{sX} was ca assuming t ideal and The con determined titration	A tus, described in ear 2), was based on the n and Baer (3). The esigned to measure the in volume of the gas n and after dissolut with the gas and solut constant pressure. sure of gas + water mmHg. The neon part s 721.5 mmHg. The voluce culated by the comp hat the gas behavior that Henry's law is centration of CaCl ₂	UXILIARY IN calculate UXILIARY IN rlier e design appa- he s before ion is vent in The vapor is ial alue of iler is obeyed. was lating	<ul> <li>om referen</li> <li>d by the c</li> <li>FORMATION</li> <li>FORMATION</li> <li>DURCE AND PUE</li> <li>Neon. Contain gases.</li> <li>Water.</li> <li>Calcium pure.</li> </ul>	CE I. ompiler. RITY OF MATERIALS: Specially pure gra led 0.1 per cent of Distilled. Distilled. Chloride. Chemica	nde. E other
The neon s The values The values METHOD: The appara papers (1, of Ben-Nain ratus is d difference dissolution complete, to contact at total press 739 + 1.5 m pressure i k _s X was ca assuming t ideal and The con determined	A tus, described in eas 2), was based on the n and Baer (3). The esigned to measure to in volume of the gas n and after dissolut with the gas and solv constant pressure. sure of gas + water mmHg. The neon part s 721.5 mmHg. The volute to the gas behavior that the gas behavior that the gas behavior that Henry's law is centration of CaCl ₂ after degassing by	UXILIARY IN calculate UXILIARY IN rlier l e design appa- he s before 2 ion is vent in 3 in 3 vent in 3 ialue of iler is obeyed. was lating	<ul> <li>om referen</li> <li>d by the c</li> <li>d by the c</li> <li>FORMATION</li> <li>DURCE AND PUR</li> <li>Neon. Contain gases.</li> <li>Water.</li> <li>Calcium pure.</li> <li>STIMATED ERRO</li> <li>EFERENCES:</li> <li>Borina, Zh. Fiz</li> <li>Borina,</li> </ul>	ompiler. MITY OF MATERIALS: Specially pure graded 0.1 per cent of Distilled. Chloride. Chemica DR: $\delta S/S = 0.005$ A.F.; Lyashchenko Mim. 1971, 45, A.F.; Samoilov, C	ade. Fother ally b, A.K. 1316.
METHOD: The value: METHOD: The appara papers (1, of Ben-Nain ratus is d difference dissolution complete, y contact at total press 739 + 1.5 m pressure i k _{sX} was ca assuming t ideal and The con determined titration	A tus, described in eas 2), was based on the n and Baer (3). The esigned to measure to in volume of the gas n and after dissolut with the gas and solv constant pressure. sure of gas + water mmHg. The neon part s 721.5 mmHg. The volute to the gas behavior that the gas behavior that the gas behavior that Henry's law is centration of CaCl ₂ after degassing by	UXILIARY IN calculate UXILIARY IN rlier l e design appa- he s before 2 ion is vent in 3 in 3 vent in 3 ialue of iler is obeyed. was lating	<ul> <li>om referen</li> <li>d by the c</li> <li>d by the c</li> <li>FORMATION</li> <li>FORMATION</li> <li>DURCE AND PUR</li> <li>Neon. Contain gases.</li> <li>Water.</li> <li>Calcium pure.</li> <li>STIMATED ERRO</li> <li>EFERENCES:</li> <li>Borina, Zh. Fiz</li> <li>Borina, Aleksec</li> </ul>	ompiler. MITY OF MATERIALS: Specially pure graded 0.1 per cent of Distilled. Chloride. Chemica DR: $\delta S/S = 0.005$ A.F.; Lyashchenko Marking 1971, 45,	nde. F other 111y 0, A.K. 1316. 0. Ya.;

Ì

ì

1

ţ,

CONTROLING	······································		
COMPONENTS: 1. Neon: Ne	; 7440-01-9		INAL MEASUREMENTS: ina, A.F.; Lyashchenko, A.K.;
	-		Alekseeva, L.S.
	1 ₂ 0; 7732-18-5	_	
3. Calcium	Bromide; CaBr ₂ ;7789-41-		Fig Whim 1073 47 1748-1751
		$\frac{2\Pi}{Rus}$	<u>Fiz. Khim</u> . 1973, <u>47</u> , 1748-1751. s. <u>J.Phys</u> . <u>Chem</u> . 1973, <u>47</u> , 987-989.
VARIABLES: T/K:	293.15	PREP	ARED BY:
Total P/kPa:	98.525 (739 mmHg) g ⁻¹ H ₂ O: 0 - 1.831		T.D. Kittredge, H.L. Clever
EXPERIMENTAL V	ALUES:		
Т/К	Calcium Bromide Neon	solubil	ity* k _s = (1/m) log (S ⁰ /S)
	mol kg ⁻¹ H ₂ 0 S/	cm ³ dm ⁻	3
293.15	0.0 1	1.11 (S	°) -
		0.21 9.46	0.2278 0.1716
		8.37 7.09	0.2128 0.2086
	1.161	6.33	0.2104
	1.831	4.48	0.2154
	$k_s = 0.2208 - 0.0062m$	(value	at 0.407m omitted)
	At one molal CaBr ₂ , k _s	= 0.21	46 and k _{sX} = 0.219.
-	AUXILI	ARY INFOR	MATION
METHOD:		SOUR	CE AND PURITY OF MATERIALS:
papers (1, 2	ns, described in earlier 2), was based on the des and Baer (3). The appa	ign	Neon. Specially pure grade. Contained 0.1 per cent of other gases.
difference i	signed to measure the In volume of the gas bef		Water. Distilled.
	and after dissolution i ith the gas and solvent		Calcium Bromide. Chemically pure.
	constant pressure. The are of gas + water vapor	is	
739 + 1.5 mm pressure is	Hg. The neon partial 721.5 mmHg. The value culated by the compiler		
assuming that	at the gas behavior is		MATED ERROR:
	nat Henry's law is obeye entration of CaBr, was	a.	δS/S = 0.005
determined a	fter degassing by		
agent.	the $Ca^{2+}$ by a chelatin		RENCES:
		1. 2.	Borina, A.F.; Lyashchenko, A.K. Zh. Fiz. Khim. 1971, 45, 1316. Borina, A.F.; Samoilov, O. Ya.; Alekseeva, L.S.
		3.	<u>Zh. Fiz. Khim. 1971, 45, 2554.</u>

	• · · · · · · · · · · · · · · · · · · ·
COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Borina, A.F.; Lyashchenko, A.K.; Alekseeva, L.S.
2. Water; H ₂ O; 7732-18-5	
3. Calcium Iodide; CaI ₂ ; 10102-68-8	Zh. Fiz. Khim. 1973, 47, 1748 - 1751.
VARIABLES:	Russ. J.Phys.Chem. 1973, 47,987 -989.
T/K: 293.15 Total P/kPa: 98.525 (739 mmHg) Cal2/mol kg ⁻¹ H ₂ O: 0 - 1.742	PREPARED BY: T.D.Kittredge, H.L.Clever
EXPERIMENTAL VALUES:	1
T/K Calcium Iodide Neon S	$olubility^* k_s = (1/m) \log (S^0/S)$
$\frac{1}{10000000000000000000000000000000000$	
293.15 0 1	1.11 (S ^O ) -
0.162 1	0.29 0.2055
	8.19 0.2340
	6.16 0.2158
1.742	4.45 0.2281
k _s = 0.21	35 + 0.0080 m
At one molal CaI ₂ ,	$k_{s} = 0.2215$ and $k_{sX} = 0.215$
The neon solubility in water, $S^{O}$ , i The values of $k_{S}$ and $k_{SX}$ were calcu	lated by the compiler.
	lated by the compiler.
The values of $k_{S}$ and $k_{SX}$ were calcu	lated by the compiler.
The values of k _s and k _{sX} were calcu AUXILIARY	INFORMATION
The values of k _s and k _{sX} were calcu AUXILIARY METHOD:	INFORMATION SOURCE AND PURITY OF MATERIALS:
The values of k _s and k _{sX} were calcu AUXILIARY METHOD: The apparatus, described in earlier papers (1, 2), was based on the design of Ben-Naim and Baer (3). The appa-	INFORMATION SOURCE AND PURITY OF MATERIALS:
The values of k _s and k _{sX} were calcu AUXILIARY METHOD: The apparatus, described in earlier papers (1, 2), was based on the design of Ben-Naim and Baer (3). The appa- ratus is designed to measure the difference in volume of the gas before	INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases.
The values of k _s and k _{sX} were calcu AUXILIARY METHOD: The apparatus, described in earlier papers (1, 2), was based on the design of Ben-Naim and Baer (3). The appa- ratus is designed to measure the difference in volume of the gas before difference in volume of the gas before dissolution and after dissolution is complete, with the gas and solvent in	INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled.
The values of k _s and k _{sX} were calcu AUXILIARY METHOD: The apparatus, described in earlier papers (1, 2), was based on the design of Ben-Naim and Baer (3). The appa- ratus is designed to measure the difference in volume of the gas before dissolution and after dissolution is	INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled. 3. Calcium iodide. Chemically pure.
The values of $k_s$ and $k_{sX}$ were calcu AUXILIARY METHOD: The apparatus, described in earlier papers (1, 2), was based on the design of Ben-Naim and Baer (3). The appa- ratus is designed to measure the difference in volume of the gas before dissolution and after dissolution is complete, with the gas and solvent in contact at constant pressure. The total pressure of gas + water vapor is 739 $\pm$ 1.5 mmHg. The neon partial pressure is 721.5 mmHg. The value of	INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled. 3. Calcium iodide. Chemically pure.
The values of $k_s$ and $k_{sX}$ were calcu AUXILIARY METHOD: The apparatus, described in earlier papers (1, 2), was based on the design of Ben-Naim and Baer (3). The appa- ratus is designed to measure the difference in volume of the gas before dissolution and after dissolution is complete, with the gas and solvent in contact at constant pressure. The total pressure of gas + water vapor is 739 ± 1.5 mmHg. The neon partial pressure is 721.5 mmHg. The value of $k_{av}$ was calculated by the compiler	INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled. 3. Calcium iodide. Chemically pure.
The values of $k_s$ and $k_{sX}$ were calcu- AUXILIARY METHOD: The apparatus, described in earlier papers (1, 2), was based on the design of Ben-Naim and Baer (3). The appa- ratus is designed to measure the difference in volume of the gas before dissolution and after dissolution is complete, with the gas and solvent in contact at constant pressure. The total pressure of gas + water vapor is 739 ± 1.5 mmHg. The neon partial pressure is 721.5 mmHg. The value of $k_{sX}$ was calculated by the compiler assuming that the gas behavior is	INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled. 3. Calcium iodide. Chemically pure.
The values of $k_s$ and $k_{sX}$ were calcu AUXILIARY METHOD: The apparatus, described in earlier papers (1, 2), was based on the design of Ben-Naim and Baer (3). The appa- ratus is designed to measure the difference in volume of the gas before dissolution and after dissolution is complete, with the gas and solvent in contact at constant pressure. The total pressure of gas + water vapor is 739 $\pm$ 1.5 mmHg. The neon partial pressure is 721.5 mmHg. The value of	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled. 3. Calcium iodide. Chemically pure. ESTIMATED ERROR:</pre>
The values of $k_s$ and $k_{sX}$ were calcu AUXILIARY METHOD: The apparatus, described in earlier papers (1, 2), was based on the design of Ben-Naim and Baer (3). The appa- ratus is designed to measure the difference in volume of the gas before difference is 721.5 mmHg. The value of is 739 ± 1.5 mmHg. The neon partial pressure is 721.5 mmHg. The value of $k_{sx}$ was calculated by the compiler assuming that the gas behavior is ideal and that Henry's law is obeyed. The Ca ²⁺ concentration was determi- ned after degassing by titration with	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled. 3. Calcium iodide. Chemically pure. ESTIMATED ERROR:</pre>
The values of $k_s$ and $k_{sX}$ were calcu AUXILIARY METHOD: The apparatus, described in earlier papers (1, 2), was based on the design of Ben-Naim and Baer (3). The appa- ratus is designed to measure the difference in volume of the gas before difference is 721.5 mmHg. The value of is 739 ± 1.5 mmHg. The neon partial pressure is 721.5 mmHg. The value of $k_{sx}$ was calculated by the compiler assuming that the gas behavior is ideal and that Henry's law is obeyed. The Ca ²⁺ concentration was determi- ned after degassing by titration with	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled. 3. Calcium iodide. Chemically pure. ESTIMATED ERROR:</pre>
The values of $k_s$ and $k_{sX}$ were calcu AUXILIARY METHOD: The apparatus, described in earlier papers (1, 2), was based on the design of Ben-Naim and Baer (3). The appa- ratus is designed to measure the difference in volume of the gas before difference is 721.5 mmHg. The value of is 739 ± 1.5 mmHg. The neon partial pressure is 721.5 mmHg. The value of $k_{sx}$ was calculated by the compiler assuming that the gas behavior is ideal and that Henry's law is obeyed. The Ca ²⁺ concentration was determi- ned after degassing by titration with	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled. 3. Calcium iodide. Chemically pure. ESTIMATED ERROR:</pre>
The values of $k_s$ and $k_{sX}$ were calcu AUXILIARY METHOD: The apparatus, described in earlier papers (1, 2), was based on the design of Ben-Naim and Baer (3). The appa- ratus is designed to measure the difference in volume of the gas before difference is 721.5 mmHg. The value of is 739 ± 1.5 mmHg. The neon partial pressure is 721.5 mmHg. The value of $k_{sx}$ was calculated by the compiler assuming that the gas behavior is ideal and that Henry's law is obeyed. The Ca ²⁺ concentration was determi- ned after degassing by titration with	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Specially pure grade. Contained 0.1 per cent of other gases. 2. Water. Distilled. 3. Calcium iodide. Chemically pure. 5 ESTIMATED ERROR:</pre>

í

,

-----

•

a doub an part of the two provides the second second the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec

.....

agued of the second second of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec

COMPONENTS: ORIGINAL MEASUREMENTS: 1. Neon; Ne; 7440-01-9 Lyashchenko, A.K.; Borina, A.F. 2. Water; H₂O; 7732-18-5 Calcium Nitrate; Ca(NO₃)₂; <u>Zh. Strukt. Khim</u>. 1973, <u>14</u>, 978-981. <u>J. Struct</u>. <u>Chem</u>. 1973, <u>14</u>, 924-927. 10124-37-5 VARIABLES: T/K: 293.15 PREPARED BY: Total P/kPa: 89.25 (669.4 mmHg) -98.525 (739 mmHg) T.D. Kittredge, H.L. Clever  $Ca(NO_3)_2/mol kg^{-1} H_2O: 0 - 1.85$ EXPERIMENTAL VALUES: T/K Calcium P/mmHg Neon Solubility* Setschenow Nitrate Parameter mol kg⁻¹ H₂O  $k_{s} = (1/m) \log (S^{O}/S)$  $S/cm^3 dm^{-3}$ 11.11 (S^O) 739 293.15 0.0 0.195 739 10.08 0.2167 669.4 0.195 9.01 (0.2456)739 0.409 9.14 0.2073 739 7.64 0.830 0.1959 1.85 739 4.82 0.1960 1.85 715.9 4.51 (0.2040) 739 1.85 4.24 0.2261  $k_{c} = 0.2082 + 0.0002 \text{ m}$  (from the five values at 739 mmHg) At one molal Ca(NO₃)₂,  $k_s = 0.2084$  and  $k_{sX} = 0.209$ .  $k_{g} = 0.2222 - 0.0088 \text{ m}$  (all values) At one molal  $Ca(NO_3)_2$ ,  $k_s = 0.2133$  and  $k_{sx} = 0.214$ . *The neon solubility, S, is the same as the Ostwald coefficient x  $10^3$ . The Setschenow parameters  $k_s$  and  $k_{sX}$  were calculated by the compiler. The neon solubility in water, S^o, is from references 1 and 2. AUXILIARY INFORMATION METHOD: SOURCE AND PURITY OF MATERIALS: The apparatus, described in earlier 1. Neon. Especially pure grade. papers (1,2), was based on the design Contained 0.1 per cent of other of Ben-Naim and Baer (3). The appagases. ratus is designed to measure the difference in volume of the gas before 2. Water. Doubly distilled. dissolution and after dissolution is 3. Calcium nitrate. Chemically pure complete, with the gas and solvent in contact at constant pressure. The grade. total pressure of gas + water vapor is 739 + 1.5 mmHg. The neon partial pressure over water is 721.5 mmHg. The value of k_{sX} was calculated by the compiler assuming that the gas ESTIMATED ERROR: behavior is ideal and that Henry's law is obeyed. The concentration of  $Ca(NO_3)_2$  in  $\delta S/S = 0.0035 - 0.005.$ the solution after degassing was deter-mined by titration of the Ca²⁺ ion **REFERENCES:** with a chelating agent. Borina, A.F.; Lyashchenko, A.K. 1. Zh. Fiz. Khim. 1971, 45, 1316. Borina, A.F.; Samoilov, O. Ya.; 2. Alekseeva, L.S. Zh. Fiz. Khim. 1971, 45, 2554. Ben-Naim, A.; Baer, S. з. Trans. Faraday Soc. 1963, 59,2735.

COMPONENTS:			ORIGINAI	MEASUREMENTS:
1. Neon; Ne; 7440-01-9		Borina, A.F.; Lyashchenko, A.K.;		
2. Water; H ₂ O; 7732-18-5			kseeva, L.S.	
3. Stronti	ium Chloride; S:	rCl _a ;		
10476-85-4		<u>Zh. Fiz. Khim. 1973, 47, 1748 - 1751</u> <u>Russ. J. Phys. Chem</u> . 1973, 47, 987 - 989		
VARIABLES:			PREPAREI	) BY:
Total P/kPa SrCl ₂ /mol 1	/K: 293.15 a: 98.525 (739 kg ⁻¹ H ₂ O: 0 -	mmHg) 2.474	Т	.D. Kittredge, H.L. Clever
EXPERIMENTAL	VALUES:			
T/K	Strontium	Neon solubi	lity*	$k_{s} = (1/m) \log (S^{o}/S)$
	Chloride mol kg ⁻¹ H ₂ O	S/cm ³ dm	- 3	
293.15	0.0 0.351	11.11 9.23	(S [°] )	0.2294
	0.495	8.62		0.2226
	$1.029 \\ 1.094$	6.59 6.10		0.2204 0.2380
	2.015	4.04		0.2180
	2.474	3.01		0.2292
		$k_{s} = 0.2265$	- 0.000	5M
	At one molal	$SrCl_{a}$ , k =	0.2260	and $k_{sX} = 0.237$ .
<u> </u>		AUXILIARY	INFORMAT	ION
ÆTHOD:			SOURCE A	ND PURITY OF MATERIALS:
papers (1, of Ben-Naim	tus, described 2), was based m and Baer (3). esigned to meas	on the design The appa-	Co	on. Specially pure grade.
lifference	in volume of t			ntained 0.1 per cent of other ses.
complete, w contact at		he gas before	2. Wa	ntained 0.1 per cent of other
h 1	with the gas and constant press	solution is d solvent in ure. The	3. St	ntained 0.1 per cent of other ses.
739 + 1.5 r	with the gas an constant press sure of gas + w nmHg. The neon	solution is d solvent in ure. The ater vapor is partial	3. St	ntained 0.1 per cent of other ses. ter. Distilled. rontium Chloride. Chemically
739 <u>+</u> 1.5 m pressure is	with the gas and constant press sure of gas + wa nmHg. The neon s 721.5 mmHg.	solution is d solvent in ure. The ater vapor is partial The value of	3. St	ntained 0.1 per cent of other ses. ter. Distilled. rontium Chloride. Chemically
739 <u>+</u> 1.5 r pressure is ^k sX ^{was} cal	with the gas and constant press sure of gas + w nmHg. The neon s 721.5 mmHg. lculated by the	solution is d solvent in ure. The ater vapor is partial The value of compiler	3. St pu	ntained 0.1 per cent of other ses. ter. Distilled. rontium Chloride. Chemically re.
739 <u>+</u> 1.5 r pressure is c _{sX} was cal assuming tl ideal and t	with the gas and constant press sure of gas + way nmHg. The neon s 721.5 mmHg. ' lculated by the hat the gas beh that Henry's la	solution is d solvent in ure. The ater vapor is partial The value of compiler avior is w is obeyed.	3. St pu	ntained 0.1 per cent of other ses. ter. Distilled. rontium Chloride. Chemically
739 <u>+</u> 1.5 r pressure is k _{SX} was cal assuming th ideal and t The cond determined	with the gas and constant press sure of gas + w nmHg. The neon s 721.5 mmHg. " lculated by the hat the gas beh that Henry's la centration of S after degassin	solution is d solvent in ure. The ater vapor is partial The value of compiler avior is w is obeyed. rCl ₂ was g by	3. St pu	ntained 0.1 per cent of other ses. ter. Distilled. rontium Chloride. Chemically re.
739 <u>+</u> 1.5 r pressure is k _{SX} was cal assuming tl ideal and t The cond determined	with the gas an constant press sure of gas + w nmHg. The neon s 721.5 mmHg. lculated by the hat the gas beh that Henry's la centration of S	solution is d solvent in ure. The ater vapor is partial The value of compiler avior is w is obeyed. rCl ₂ was g by	3. St pu	ntained 0.1 per cent of other ses. ter. Distilled. rontium Chloride. Chemically re. ED ERROR: δS/S = 0.005
739 <u>+</u> 1.5 r pressure is k _{SX} was cal assuming tl ideal and t The cond determined	with the gas and constant press sure of gas + w nmHg. The neon s 721.5 mmHg. " lculated by the hat the gas beh that Henry's la centration of S after degassin	solution is d solvent in ure. The ater vapor is partial The value of compiler avior is w is obeyed. rCl ₂ was g by	2. Wa 3. St pu ESTIMATI	ntained 0.1 per cent of other ses. ter. Distilled. rontium Chloride. Chemically re. 2D ERROR: δS/S = 0.005
739 <u>+</u> 1.5 r pressure is k _{SX} was cal assuming th ideal and t The cond determined	with the gas and constant press sure of gas + w nmHg. The neon s 721.5 mmHg. " lculated by the hat the gas beh that Henry's la centration of S after degassin	solution is d solvent in ure. The ater vapor is partial The value of compiler avior is w is obeyed. rCl ₂ was g by	2. Wa 3. St pu ESTIMATI REFEREN 1. Bo Zh	ntained 0.1 per cent of other ses. ter. Distilled. rontium Chloride. Chemically re. $\delta S/S = 0.005$ CES: rina, A.F.; Lyashchenko, A.K. . Fiz. Khim. 1971, 45, 1316.
739 <u>+</u> 1.5 r pressure is k _{SX} was cal assuming tl ideal and t The cond determined	with the gas and constant press sure of gas + w nmHg. The neon s 721.5 mmHg. " lculated by the hat the gas beh that Henry's la centration of S after degassin	solution is d solvent in ure. The ater vapor is partial The value of compiler avior is w is obeyed. rCl ₂ was g by	2. Wa 3. St pu ESTIMATI REFEREN 1. Bo 2. Bo	ntained 0.1 per cent of other ses. ter. Distilled. rontium Chloride. Chemically re. 2D ERROR: δS/S = 0.005 CES: rina, A.F.; Lyashchenko, A.K. . Fiz. Khim. 1971, 45, 1316. rina, A.F.; Samoilov, O. Ya.;
739 <u>+</u> 1.5 r pressure is k _{SX} was cal assuming th ideal and t The cond determined	with the gas and constant press sure of gas + w nmHg. The neon s 721.5 mmHg. " lculated by the hat the gas beh that Henry's la centration of S after degassin	solution is d solvent in ure. The ater vapor is partial The value of compiler avior is w is obeyed. rCl ₂ was g by	2. WA 3. St pu ESTIMATI REFEREN 1. Bo 2. Bo Al Zh 2. Al	ntained 0.1 per cent of other ses. ter. Distilled. rontium Chloride. Chemically re. ED ERROR: $\delta S/S = 0.005$ CES: rina, A.F.; Lyashchenko, A.K. . Fiz. Khim. 1971, 45, 1316. rina, A.F.; Samoilov, O. Ya.; ekseeva, L.S. . Fiz. Khim. 1971, 45, 2554.
739 <u>+</u> 1.5 r pressure is k _{SX} was cal assuming tl ideal and t The cond determined	with the gas and constant press sure of gas + w nmHg. The neon s 721.5 mmHg. " lculated by the hat the gas beh that Henry's la centration of S after degassin	solution is d solvent in ure. The ater vapor is partial The value of compiler avior is w is obeyed. rCl ₂ was g by	2. WA 3. St pu ESTIMATI REFEREN 1. Bo Zh 2. Bo Al 3. Be	ntained 0.1 per cent of other ses. ter. Distilled. rontium Chloride. Chemically re. ED ERROR: $\delta S/S = 0.005$ CES: rina, A.F.; Lyashchenko, A.K. . Fiz. Khim. 1971, 45, 1316. rina, A.F.; Samoilov, O. Ya.; ekseeva, L.S.

1

.'

ŧ

1

1

COMPONENTS: ORIGINAL MEASUREMENTS: 1. Neon; Ne; 7440-01-9 Borina, A.F.; Lyashchenko, A.K.; Alekseeva, L.S. 2. Water; H₂O; 7732-18-5 3. Strontium Bromide; SrBr,; <u>Zh. Fiz. Khim. 1973, 47</u>, 1748 - 1751. <u>Russ. J.Phys.Chem</u>. 1973, <u>47</u>, 987-989. 10476-81-0 VARIABLES: PREPARED BY: Т/К: 293.15 Total P/kPa: 98.525 (739 mmHg) SrBr₂/mol kg⁻¹ H₂O: 0 - 1.345 T.D. Kittredge, H.L. Clever EXPERIMENTAL VALUES:  $k_{c} = (1/m) \log (S^{O}/S)$ T/K Strontium Neon solubility* Bromide mol  $kg^{-1} H_2 O$  $\rm S/cm^3 dm^{-3}$ 11.11 (S^o) 293.15 0.0 0.340 0.2148 9.39 0.438 8.75 0.2368 0.635 (0.1136)9.41 1.345 5.58 0,2224  $k_{c} = 0.2259 - 0.0018m$ At one molal  $\text{SrBr}_2$ ,  $k_s = 0.2241$  and  $k_{sx} = 0.226$ . *The neon solubility, S, is the same as the Ostwald coefficient x  $10^3$ . The neon solubility in water, S^o, is from reference 1. The values of  $k_s$  and  $k_{sx}$  were calculated by the compiler. AUXILIARY INFORMATION METHOD: SOURCE AND PURITY OF MATERIALS: The apparatus, described in earlier papers (1, 2), was based on the design Neon. Specially pure grade. Contained 0.1 per cent of other 1. of Ben-Naim and Baer (3). The appagases. ratus is designed to measure the difference in volume of the gas before 2. Water. Distilled. dissolution and after dissolution is complete, with the gas and solvent in 3. Strontium Bromide. Chemically contact at constant pressure. The pure. total pressure of gas + water vapor is 739 + 1.5 mmHg. The neon partial pressure is 721.5 mmHg. The value of  $k_{sX}$  was calculated by the compiler assuming that the gas behavior is ideal and that Henry's law is obeyed. The concentration of SrBr₂ was ESTIMATED ERROR:  $\delta S/S = 0.005$ determined gravimetrically as SrSO,, after degassing. REFERENCES : 1. Borina, A.F.; Lyashchenko, A.K. <u>Zh. Fiz. Khim.</u> 1971, 45, 1316. Borina, A.F.; Samoilov, O. Ya.; 2. Alekseeva, L.S. <u>Zh. Fiz. Khim</u>. 1971, <u>45</u>, 2554. <u>Ben-Naim, A.;</u> Baer, B. <u>Trans. Faraday Soc</u>. 1963, <u>59</u>,2735. 3.

0000				
COMPONENTS: 1. Neon; Ne; 7440-01-9			ORIGINAL MEASUREMENTS: Borina, A.F.; Lyashchenko, A K.;	
····, ·			ekseeva, L.S.	
	H ₂ O; 7732-18-5			
	Chloride; BaCl ₂ ;			
10361-37-2		$\frac{Zh}{Russ}$	<u>Zh. Fiz. Khim. 1973, 47, 1748-1751.</u> Russ. J.Phys. <u>Chem</u> . 1973, 47, 987-989.	
VARIABLES:	·	PREPAR		
Total P/kPa	K: 293.15 a: 98.525 (739 mmHg) Kg ⁻¹ H ₂ O: 0 - 1.214		T.D. Kittredge, H.L. Clever	
EXPERIMENTAL	VALUES:			
Т/К	Barium Chloride Nec	on solubilit	$y^* k_s = (1/m) \log (S^0/S)$	
	mol kg ⁻¹ H ₂ 0	$S/cm^3 dm^{-3}$	5	
293.15	0.0	11.11 (S ⁰ )		
	0.319 0.599	9.34 7.94	0.2363 0.2436	
	0.866	6.85	0.2425	
	1.214	5.61	0.2444	
	$k_s = 0$ .	.2359 + 0.00	177m	
	At one molal BaCl ₂ ,	$k_{s} = 0.2436$	and $k_{sX} = 0.251$ .	
The neon s	solubility, S, is the s solubility in water, S ^G s of k _s and k _{sX} were ca	, is from r		
The neon s	solubility in water, S ^c	, is from r	reference 1.	
The neon s	solubility in water, S ^α s of k _s and k _{sχ} were ca	, is from r	the compiler.	
The neon s	solubility in water, S ^α s of k _s and k _{sχ} were ca	1, is from in alculated by	the compiler.	
The neon s The values METHOD: The apparat papers (1, of Ben-Naim ratus is de	AUXI AUXI tus, described in earli 2), was based on the on and Baer (3). The appendix to measure the	ILLIARY INFORMA ier design ppa-	the compiler.	
The neon s The values METHOD: The apparat papers (1, of Ben-Naim ratus is de difference	solubility in water, S s of k _s and k _{sX} were ca AUXI tus, described in earl: 2), was based on the c n and Baer (3). The ap	ILLIARY INFORMA	ATION AND PURITY OF MATERIALS: Neon. Specially pure grade. Contained 0.1 per cent of other	
The neon s The values The values METHOD: The apparat papers (1, of Ben-Naim ratus is de difference disfolution complete, v contact at total press	AUXI AUXI AUXI AUXI AUXI AUXI AUXI AUXI	LLIARY INFORMA ier lesign ppa- before n is nt in por is from r strom r source 1. N C Source 2. W 3. H F	ATION AND PURITY OF MATERIALS: Jeon. Specially pure grade. Contained 0.1 per cent of other gases.	
The neon s The values The values METHOD: The apparat papers (1, of Ben-Naim ratus is de difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference contact at total press To pressure is de	AUXI AUXI AUXI AUXI AUXI AUXI tus, described in earli 2), was based on the con- mand Baer (3). The appendent in volume of the gas h and after dissolution with the gas and solver constant pressure. The sure of gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van and gas + water van a	ILIARY INFORMA ILIARY INFORMA ier design pa- before 1. N C SOURCE 1. N C S S S S S S S S S S S S S	ATION AND PURITY OF MATERIALS: Jeon. Specially pure grade. Contained 0.1 per cent of other gases. Water. Distilled. Barium Chloride. Chemically	
The neon s The values The values METHOD: The apparat papers (1, of Ben-Naim ratus is de difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference difference di differen	AUXI AUXI AUXI tus, described in earling 2), was based on the of and Baer (3). The appendent in volume of the gas by and after dissolution with the gas and solver constant pressure. The sure of gas + water var mmHg. The neon partial s 721.5 mmHg. The value compile	LLIARY INFORMA ier lesign ppa- before n is nt in por is le of er	ATION AND PURITY OF MATERIALS: Neon. Specially pure grade. Contained 0.1 per cent of other gases. Nater. Distilled. Barium Chloride. Chemically Dure.	
The neon s The values The values METHOD: The apparat papers (1, of Ben-Nain ratus is de difference dissolution complete, w contact at total press 739 + 1.5 m pressure is k _{SX} was cal assuming th ideal and t	AUXI AUXI AUXI AUXI AUXI AUXI tus, described in earli 2), was based on the con- mand Baer (3). The appendent in volume of the gas h and after dissolution with the gas and solver constant pressure. The sure of gas + water van and gas + water van and after neon partial sore of gas - The valu	LLIARY INFORMA ier hesign pa- before n is nt in he por is le of er s ESTIMA	ATION AND PURITY OF MATERIALS: Jeon. Specially pure grade. Contained 0.1 per cent of other gases. Water. Distilled. Barium Chloride. Chemically	
The neon s The values The values METHOD: The apparat papers (1, of Ben-Nain ratus is de difference disfolution complete, v contact at total press 739 ± 1.5 m pressure is k _{SX} was cal assuming th ideal and to The cond determined	AUXI AUXI AUXI tus, described in earl: 2), was based on the con- and Baer (3). The appendence in volume of the gas has and after dissolution with the gas and solver constant pressure. The sure of gas + water vapion mHg. The neon partial s 721.5 mmHg. The value culated by the compile hat the gas behavior is that Henry's law is obe centration of BaCl ₂ was after degassing by tit	J, 1S from 1         alculated by         alculated by         ILLARY INFORMA         ier         lesign         pa-         before         1. N         pa-         before         1. N         pa-         before         1. N         before         2. W         3. F         por is         le of         er         s         eyed.	TED ERROR:	
The neon s The values The values METHOD: The apparat papers (1, of Ben-Nain ratus is de difference disfolution complete, v contact at total press 739 ± 1.5 m pressure is k _{SX} was cal assuming th ideal and to The cond determined	Auxion Auxion and Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxion Auxio	LLIARY INFORMA ILIARY INFORMA ier design ppa- before 1. N Source 1. N C g before 1. N C g before 1. N C g before 1. N C g before 1. N C g before 1. N C g before 1. N C g before 1. N C g before 1. N C g c c c c c c c c c c c c c	TED ERROR: ATTON AND PURITY OF MATERIALS: Neon. Specially pure grade. Contained 0.1 per cent of other gases. Nater. Distilled. Barium Chloride. Chemically bure. TED ERROR: 6S/S = 0.005 ENCES:	
The neon s The values The values METHOD: The apparat papers (1, of Ben-Nain ratus is de difference disfolution complete, v contact at total press 739 ± 1.5 m pressure is k _{SX} was cal assuming th ideal and to The cond determined	AUXI AUXI AUXI tus, described in earl: 2), was based on the con- and Baer (3). The appendence in volume of the gas has and after dissolution with the gas and solver constant pressure. The sure of gas + water vapion mHg. The neon partial s 721.5 mmHg. The value culated by the compile hat the gas behavior is that Henry's law is obe centration of BaCl ₂ was after degassing by tit	1. IS from r         alculated by         ILLIARY INFORMA         ier         design         opa-         before         1. Norres         before         1. Norres         before         1. Norres         before         1. Norres         before         2. W         3. Here         before         strandard         REFERE         1. Norres         strandard         REFERE         1. Norres         2. Norres	ATION AND PURITY OF MATERIALS: Neon. Specially pure grade. Contained 0.1 per cent of other gases. Nater. Distilled. Barium Chloride. Chemically oure. TED ERROR: $\delta S/S = 0.005$	

COMPONENTS: ORIGINAL MEASUREMENTS: Borina, A.F.; Lyashchenko, A.K.; Neon; Ne; 7440-01-9 1. Alekseeva, L.S. 2. Water; H₂O; 7732-18-5 Barium Bromide; BaBr₂; 3. <u>Zh. Fiz. Khim. 1973, 47, 1748-1751.</u> <u>Russ. J. Phys. Chem</u>. 1973, <u>47</u>, 987-989. 10553-31-8 VARIABLES: PREPARED BY: T/K: 293.15 Total P/kPa: 98.525 (739 mmHg) BaBr₂/mol kg⁻¹ H₂O: 0 - 0.923 T.D. Kittredge, H.L. Clever EXPERIMENTAL VALUES: Neon solubility*  $k_e = (1/m) \log (S^{o}/S)$ T/K Barium Bromide mol kg⁻¹ H₂O  $S/cm^3 dm^{-3}$ 11.11  $(S^{\circ})$ 293.15 0.0 0.189 0.2213 10.09 0.450 8.43 6.29 0.2664 0.2676 0.923  $k_{e} = 0.2227 + 0.0558m$ At one molal BaBr₂,  $k_s = 0.2785$  and  $k_{sX} = 0.276$ . *The neon solubility, S, is the same as the Ostwald coefficient x  $10^3$ . The neon solubility in water, S^o, is from reference 1. The values of  $k_s$  and  $k_{sX}$  were calculated by the compiler. AUXILIARY INFORMATION METHOD: SOURCE AND PURITY OF MATERIALS: The apparatus, described in earlier Neon. Specially pure grade. papers (1, 2), was based on the design Contained 0.1 per cent of other of Ben-Naim and Baer (3). The appa-ratus is designed to measure the gases. Water. Distilled. difference in volume of the gas before 2. dissolution and after dissolution is complete, with the gas and solvent in contact at constant pressure. The Barium Chloride. Chemically 3. pure. total pressure of gas + water vapor is 739 + 1.5 mmHg. The neon partial pressure is 721.5 mmHg. The value of k was calculated by the compiler assuming that the gas behavior is ideal and that Henry's law is obeyed. ESTIMATED ERROR: The concentration of BaBr, was  $\delta S/S = 0.005$ determined gravimetrically as  $BaSO_4$  after degassing. REFERENCES: 1. Borina, A.F.; Lyashchenko, A.K. <u>Zh. Fiz. Khim</u>. 1971, <u>45</u>, 1316. Borina, A.F.; Samoilov, O. Ya.; 2. Alekseeva, L.S. Zh. Fiz. Khim. 1971, 45, 2554. Ben-Naim, A.; Baer, B. Trans. Faraday Soc. 1963, 59,2735 3.

COMPONENTS: 1. Neon: N	le; 7440-01-9		L MEASUREMENTS: na, A.F.; Lyashchenko, A.K.;
			lekseeva, L.S.
2. Water;	H ₂ 0; 7732-18-5		
3. Barium	Iodide; BaI ₂ ;13718-50-8		
		Zh. Russ	<u>Fiz. Khim. 1973, 47, 1748-1751.</u> <u>J.Phys.Chem</u> . 1973, <u>47</u> , 987-989.
VARIABLES:	: 293.15	PREPARE	D BY:
Total P/kPa	98.525 (739 mmHg) 1 H ₂ O: 0 - 0.995		T.D. Kittredge, H.L. Clever
EXPERIMENTAL	VALUES:		
Т/К	Barium Iodide Neon s	solubilit	$y^*$ $k_s = (1/m) \log (S^0/S)$
		$cm^3 dm^{-3}$	
293.15	0.0	11.11 (S ^o	) –
	0.240 0.460	9.21 8.50	0.3394 0.2528
	0.995	5.92	0.2748
	$k_{s} = 0.32$	24 - 0.06	2m
	At one molal Bal ₂ , k _s =	• 0.2620	and k _{sx} = 0.247.
	A117111		
METHOD:	AUXILIA	RY INFORMA	
The apparat papers (1,	us, described in earlier 2), was based on the dest and Baer (3). The appa-	l. N ign C	AND PURITY OF MATERIALS; eon. Specially pure grade. ontained 0.1 per cent of other ases.
ratus is de difference	signed to measure the in volume of the gas befo	ore 2. W	ater. Distilled.
complete, w	and after dissolution is ith the gas and solvent i		arium Iodide. Chemically pure.
	constant pressure. The ure of gas + water vapor	is	
739 + 1.5 m pressure is	mHg. The neon partial 721.5 mmHg. The value of culated by the compiler		
assuming th ideal and t	at the gas behavior is hat Henry's law is obeyed		ED ERROR:
_	entration of Bal ₂ was gravimetrically as BaSO ₄		$\delta S/S = 0.005$
after degas	7	BEEEBEN	010.
	- · · • • • •	REFEREN	CES: orina, A.F.; Lyashchenko, A.K.
		Z	h. <u>Fiz. Khim</u> . 1971, <u>45</u> , 1316. Drina, A.F.; Samoilov, O. Ya.;
		A	lekseeva, L.S. h. <u>Fiz. Khim</u> . 1971, <u>45</u> , 2554.
		<b>3.</b> B	en-Naim, A.; Baer, B. rans. Faraday Soc. 1963, 59,2735.

COMPONENTS: ORIGINAL MEASUREMENTS: 1. Neon; Ne; 7440-01-9 Lyashchenko, A.K.; Borina, A.F. 2. Water; H₂O; 7732-18-5 Barium Nitrate; Ba(NO₂); <u>zh. Strukt. Khim</u>. 1973, <u>14</u>, 978-981. <u>J</u>. <u>struct</u>. <u>Chem</u>. 1973, <u>14</u>, 924-927. 10022-31-8 VARIABLES: T/K: 293.15 PREPARED BY: Total P/kPa: 91.12 (683.9 mmHg) -98.525 (739 mmHg)Ba(NO₃)₂/mol kg⁻¹ H₂O: 0 - 0.354 T.D. Kittredge, H.L. Clever **EXPERIMENTAL VALUES:** T/K Barium P/mmHg Neon Solubility* Setschenow Nitrate Parameter s/cm³ dm⁻³ mol kg⁻¹ H₂O  $k_{s} = (1/m) \log(S^{O}/S)$ 11.11 (S^O) 293.15 0.0 739 0.111 0.2061 739 10.54 0.232 10.00 0.1970 739 0.232 9.85 (0.1747)719 0.232 9.61 (0.1747)701.9 0.232 683.9 9.37 (0.1747)0.252 0.2572 9.57 739 0.252 693.6 8.89 (0.2753)0.354 0.2530 739 9.04  $k_{c} = 0.1783 + 0.2105 \text{ m}$  (from the four values at 739 mmHg) At one molal Ba(NO₃)₃,  $k_s = 0.3889$  and  $k_{sX} = 0.376$ .  $k_{c} = 0.1527 + 0.2590 \text{ m}$  (all values) At one molal Ba(NO₃)₃,  $k_s = 0.4116$  and  $k_{sX} = 0.399$ . The neon solubility in water, So, is from references 1 and 2. AUXILIARY INFORMATION METHOD: SOURCE AND PURITY OF MATERIALS: The apparatus, described in earlier 1. Neon. Especially pure grade. papers (1,2), was based on the design Contained 0.1 per cent of other of Ben-Naim and Baer (3). The appagases. ratus is designed to measure the difference in volume of the gas before 2. Water. Doubly distilled. dissolution and after dissolution is complete, with the gas and solvent in 3. Barium nitrate. Chemically pure contact at constant pressure. The grade. total pressure of gas + water vapor is 739  $\pm$  1.5 mmHg. The neon partial pressure over water is 721.5 mmHg. The value of k_{sX} was calculated by the compiler assuming that the gas ESTIMATED ERROR: behavior is ideal and that Henry's law  $\delta S/S = 0.0035 - 0.005.$ is obeyed. The concentration of the Ba(NO3), in the solution after degassing was **REFERENCES:** determined gravimetrically as BaSO,. Borina, A.F.; Lyashchenko, A.K. <u>Zh. Fiz. Khim</u>. 1971, <u>45</u>, 1316.
 Borina, A.F.; Samoilov, O. Ya.; *The neon solubility, S, is the same as the Ostwald coefficient x  $10^3$ . The Setschenow parameters ks and ksx Alekseeva, L.S. <u>Zh. Fiz. Khim. 1971, 45, 2554.</u> Ben-Naim, A.; Baer, S. <u>Trans. Faraday</u> Soc. 1963, <u>59</u>, 2735. were calculated by the compiler. з.

			ORIGINAL MEASUREMEN	ТЅ•
2. Water	Ne; 7440-01-	-9	_	amoilov, O. Ya.;
2. Water; H ₂ O; 7732-18-5		Alekseeva, L.	s.	
3. Lith:	Lum Chloride;	LiCl; 7447-41-8		
				971, <u>45</u> ,2554 - 2558. em.1971, <u>45</u> ,1445-1447.
VARIABLES	T/K 293.19	5	PREPARED BY:	
Total LiCl/r	P/kPa: 98.529 nol kg ⁻¹ H ₂ O:	5 (739 mmHg)	T.D.K	ittredge, H.L.Clever
EXPERIMENT	TAL VALUES:			· · · · · · · · · · · · · · · · · · ·
т/к	Lithium Chloride mol kg ⁻¹ H ₂ O	Neon Solubility [*] S/cm ³ dm ⁻³		Setschenow Parameter k _S := (1/m)log(S ^{'O} /S')
293.15	0 0.483 0.864 1.162 1.288 2.138	8.95 8.77 7.56	10.30 9.53 9.16 9.00 7.88	0.0681 0.0771 0.0721 0.0710 0.0698
	k,	s' = 0.0725 - 0.000	97 m	
	At one mo	blal LiCl, $k_{s'} = 0$ .	0718 and $k_{sX} = 0$	.0872.
		AUXILIARY	INFORMATION	·····

COMPONENTS: ORIGINAL MEASUREMENTS: Lyashchenko, A. K. 1. Neon; Ne; 7440-01-9 2. Water; H₂O; 7732-18-5 3. Lithium Nitrate; LiNO₃; 7790-69-4 Dok1. Akad. Nauk SSSR 1974, 217 (2), 380 - 382; Dok1. Phys. Chem. (Engl. trans.) 1974, 217, 645 - 647. VARIABLES: PREPARED BY: T/K: 293.15 - 303.15 Total P/kPa: 98.525 (739 mmHg)  $LiNO_3/mol kg^{-1} H_2O: 0 - 2.40$ T. D. Kittredge, H. L. Clever **EXPERIMENTAL VALUES:** Neon Solubility* T/K Lithium Setschenow Nitrate mol kg⁻¹ H₂O Parameter s/cm³ dm⁻³  $k_{s} = (1/m) \log (S^{O}/S)$ 293.15 0 11.11 (S^O) 0.0842 0.84 9.44 1.21 8.53 0.0948 2.40 6.56 0.0953  $k_{\rm s} = 0.0833 + 0.0055 \,\mathrm{m}$ At one molal LiNO₃,  $k_s = 0.0888$  and  $k_{sX} = 0.0905$ 10.59 (S^O) 303.15 0 1.23 8.71 0.0690 1.80 8.16 0.0629  $k_{s} = 0.0822 - 0.0107 m$ At one molal LiNO₃,  $k_s = 0.0715$  and  $k_{sx} = 0.0718$ *The neon solubility, S, is the same as the Ostwald coefficient x 10³. The Setschenow parameters  $\boldsymbol{k}_{S}$  and  $\boldsymbol{k}_{SX}$  were calculated by the compiler. The neon solubility in water, S^o, is from references 1 and 2. AUXILIARY INFORMATION METHOD: SOURCE AND PURITY OF MATERIALS: The apparatus, described in earlier 1. Neon. Especially pure grade. papers (1,2), was based on the design Contained 0.1 per cent of other of Ben-Naim and Baer (3). The appa-ratus is designed to measure the gases. difference in volume of the gas before 2. Water. Doubly distilled. dissolution and after dissolution is complete, with the gas and solvent in 3. Lithium nitrate. Chemically pure contact at constant pressure. The grade. total pressure of gas + water vapor is 739  $\pm$  1.5 mmHg. The neon partial pressure over water is 721.5 mmHg. The value of  $k_{SX}$  was calculated by the compiler assuming that the gas ESTIMATED ERROR: behavior is ideal and that Henry's law  $\delta T/K = 0.02$ is obeyed.  $\delta P/mmHg = 1.5$  $\delta S/cm^3 dm^{-3} = 0.04$ The concentration of LiNO3 in the = 0.04 solution was determined after the = 0.02 δm/m experiment by comparison of the solution density with tabulated **REFERENCES**: density data. 1. Borina, A.F.; Lyashchenko, A.K. Zh. Fiz. Khim. 1971, 45, 1316. 2. Borina, A.F.; Samoilov, O.Ya.; Alekseeva, L.S. Zh. Fiz. Khim. 1971, 45, 2554. 3. Ben-Naim, A.; Baer, S. Trans. Faraday Soc. 1963, <u>59</u>,2735.

00000000000			
COMPONENTS: 1. Neon; Ne; 7440-01-9	ORIGINAL MEASUREMENTS: Borina, A.F.; Samoilov, O. Ya.;		
	Alekseeva, L.S.		
2. Water; H ₂ O; 7732-18-5			
3. Sodium Chloride; NaCl; 7647-14-5	<u>Zh. Fiz. Khim. 1971, 45, 2554-2558.</u> <u>Russ.J.Phys.Chem</u> . 1971, <u>45</u> , 1445-1447.		
VARIABLES:	PREPARED BY:		
T/K: 293.15 Total P/kPa: 98.525 (739 mmHg) NaCl/mol kg ⁻¹ H ₂ O: 0 - 2.188	T.D. Kittredge, H.L. Clever		
EXPERIMENTAL VALUES:			
Chloride	Jeon Solubility Setschenow Parameter		
$\qquad \qquad $	$s'/cm^{3} kg^{-1} H_{2}^{0} k_{s}^{*} = (1/m) \log(s'^{0}/s')$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.44       0.1075         8.72       0.0988         7.25       0.1090         6.66       0.1016		
k _s , = 0.1040	+ 0.0003 m		
At one molal NaCl, k _s ,	= 0.1043 and $k_{sX} = 0.119$ .		
-			
of k _s , are based on the neon solubil: The neon solubility in water, S ^O , is	-		
AUXILIARY	INFORMATION		
METHOD:	SOURCE AND PURITY OF MATERIALS;		
The apparatus, described in an earlier paper (1), was based on the design of Ben-Naim and Baer (2). The apparatus is designed to measure the difference in volume of the gas before dissolution and after dissolution is complete, with the gas and solvent in contact at constant pressure. The total pressure of gas + water vapor is $739 \pm 1.5$ mmHg. The neon partial	<ol> <li>Neon. Especially pure grade. Contained 0.1 per cent of other gases.</li> <li>Water. Doubly distilled.</li> <li>Sodium chloride. Chemically pure grade.</li> </ol>		
pressure is 721.5 mmHg. The value of $k_{sx}$ was calculated by the compiler			
assuming that the gas behavior is idea.	ESTIMATED ERROR:		
and that Henry's law is obeyed. The concentration of NaCl in the solution after the solubility experi-	\$S∕S = 0.005		
ment was determined by titration of the Cl ⁻ with $Hg(NO_3)_2$ .	REFERENCES: 1. Borina, A.F.; Lyashchenko, A.K. <u>Zh. Fiz. Khim</u> . 1971, <u>45</u> , 1316.		
	<ol> <li>Ben-Naim, A.; Baer, S. <u>Trans. Faraday Soc</u>. 1963, <u>59</u>,2735.</li> </ol>		

COMPONENTS: ORIGINAL MEASUREMENTS: Neon; Ne; 7440-01-9 1. Borina, A.F.; Samoilov, O. Ya.; Alekseeva, L.S. Water; H₂O; 7732-18-5 2. 3. Sodium Bromide; NaBr; 7647-15-6 Zh. Fiz. Khim. 1971, 45, 2554-2558. Russ.J.Phys.Chem. 1971, 45, 1445-1447. VARIABLES: PREPARED BY: T/K: 293.15 KPa: 98.525 (739 mmHg) Total P/kPa: 98.525 (739 mm NaBr/mol kg⁻¹ H₂O: 0 - 2.010 T.D. Kittredge, H.L. Clever EXPERIMENTAL VALUES: T/K Sodium Neon Solubility* Neon Solubility Setschenow Bromide Parameter  $s/cm^3 dm^{-3}$  $s'/cm^3 kg^{-1} H_2 O k_s = (1/m) \log (s'^0/s')$ mol  $kg^{-1} H_0$ 11.11 (s^o) 11.13 (S'^O) 293.15 0 0.630 9.43 9.59 0.1027 0.894 8.89 9.11 0.0973 1.253 8.13 8.41 0.0971 0.1017 2.010 6.60 6.95  $k_{c}$ , = 0.0985 + 0.0001 m At one molal NaBr,  $k_{g}$ , = 0.0986 and  $k_{gX}$  = 0.114. *The neon solubility, S, is the same as the Ostwald coefficient x  $10^3$ . The values of  $k_{s}$ , and  $k_{sX}$  were calculated by the compiler. The values of k, are based on the neon solubility ratio per kg H₂O. The neon solubility in water, S^O, is from reference 1. AUXILIARY INFORMATION METHOD: SOURCE AND PURITY OF MATERIALS: 1. Neon. Especially pure grade. Contained 0.1 per cent of other The apparatus, described in an earlier paper (1), was based on the design of Ben-Naim and Baer (2). The gases. apparatus is designed to measure the difference in volume of the gas before 2. Water. Doubly distilled. dissolution and after dissolution is complete, with the gas and solvent in 3. Sodium bromide. Chemically pure contact at constant pressure. The grade. total pressure of gas + water vapor is  $739 \pm 1.5$  mmHg. The neon partial pressure is 721.5 mmHg. The value of k was calculated by the compiler assuming that the gas behavior is ideal and that Henry's law is obeyed. The concentration of NaBr in the ESTIMATED ERROR:  $\delta S/S = 0.005$ solution after the solubility experiment was determined gravimetrically as AgBr. **REFERENCES**: 1. Borina, A.F.; Lyashchenko, A.K. Zh. Fiz. Khim. 1971, 45, 1316. 2. Ben-Naim, A.; Baer, S. Trans. Faraday Soc. 1963, 59, 2735.

164

-----

~ • ÷ • •

COMPONENTS: 1. Neon; Ne; 7440-01-9	ORIGINAL MEASUREMENTS: Borina, A.F.; Samoilov, O. Ya.;
·····	Alekseeva, L.S.
2. Water; H ₂ O; 7732-18-5	
3. Sodium Iodide; NaI; 7681-82-5	<u>Zh. Fiz. Khim. 1971, 45, 2554-2558.</u> <u>Russ.J.Phys.Chem</u> . 1971, <u>45</u> , 1445-1447.
VARIABLES: T/K: 293.15	PREPARED BY:
Total P/kPa: 98.525 (739 mmHg) NaI/mol kg ⁻¹ H ₂ O: 0 - 2.023	T.D. Kittredge, H.L. Clever
EXPERIMENTAL VALUES:	
Iodide	* Neon Solubility Setschenow Parameter
$\qquad \qquad $	$\frac{S'/cm^{3} kg^{-1} H_{2}O}{m} k_{s} = (1/m) \log(S'^{O}/S')$
293.15       0.0       11.11 (S ⁰ )         0.327       10.18         0.651       9.51         1.038       8.39         1.549       7.51         2.023       6.61	11.13 (S'°)- $10.32$ $0.1004$ $9.76$ $0.0876$ $8.71$ $0.1026$ $7.94$ $0.0947$ $7.11$ $0.0962$
k _s , = 0.09	965 - 0.0003 m
At one molal NaI, k _s	= 0.0962 and $k_{sX} = 0.112$ .
_	
of k _s , are based on the neon solub The neon solubility in water, S ^O ,	_
AUXILI	LARY INFORMATION
METHOD: The apparatus, described in an earlier paper (1), was based on the design of Ben-Naim and Baer (2). The apparatus is designed to measure the difference in volume of the gas before dissolution and after dissolution is complete, with the gas and solvent contact at constant pressure. The total pressure of gas + water vapors 739 $\pm$ 1.5 mmHg. The neon partial pressure is 721.5 mmHg. The value $k_{SX}$ was calculated by the compiler assuming that the gas behavior is identified The part of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco	The gases. The gases. The gases. 2. Water. Doubly distilled. 3. Sodium iodide. Chemically pure grade. of
and that Henry's law is obeyed. The concentration of NaI in the solution after the solubility exper ment was determined gravimetrically as AgI.	δS/S = 0.005

COMPONENTS:			OPTOTNAT			
1. Neon; Ne;	7440-01-9		ORIGINAL MEASUREMENTS: Lyashchenko, A.K.			
2. Water; H ₂ 0			Bydshenenko, A.K.			
-	rate; NaNO ₃ ; 76	31-99-4	330-382;	ad. <u>Nauk SSSR</u> 1974, <u>217</u> (2), Dokl. Phys. Chem. (Engl.trans. 7, 645 - 647.		
VARIABLES:			PREPARED	BY:		
Total P/kPa:	293.15 - 303.1 98.525 (739 mm 1 H ₂ 0: 0 - 3.1	lHg)	т.	D. Kittredge, H.L. Clever		
EXPERIMENTAL VAL	UES:					
	Nitrate	Neon Soluk		Setschenow Parameter		
	mol kg ⁻¹ H ₂ O	S/cm c	lm	$\frac{k_{s} = (1/m) \log (S^{O}/S)}{2}$		
293.15	0.80 1.25 1.82 3.10	11.1 9.0 8.0 7.0 5.3	)3 )6 )2 }3	0.1125 0.1115 0.1095 0.1029		
At	^k s one molal NaNC	= 0.1166 - 0.1166 - 0.1166				
			)0 (s ^o )	- sx		
298.15	0 1.05 3.10	8.6	57 11	0.09467 0.09814		
	k _s	= 0.0929 +	0.0017	m		
A	t one molal NaN			ad $k_{sX} = 0.0952$ .		
303.15       0       10.5         0.56       9.5         1.67       7.5         2.72       5.5		50	0.0793 0.0897 0.0918			
At	$k_s = 0.0773 + 0.0058 \text{ m}$ At one molal NaNO ₃ , $k_s = 0.0831$ and $k_{sX} = 0.0827$ .					
	· · · · · · · · · · · · · · · · · · ·	AUXILIARY	INFORMATIO	NC		
METHOD:			SOURCE AN	D PURITY OF MATERIALS;		
The apparatus, described in earlier papers (1,2), was based on the design of Ben-Naim and Baer (3). The appa- ratus is designed to measure the		<ol> <li>Neon. Especially pure grade. Contained 0.1 per cent of other gases.</li> </ol>				
	volume of the g d after dissolu		2. Water. Doubly distilled.			
complete, with the gas and solvent in contact at constant pressure. The total pressure of gas + water vapor is 739 $\pm$ 1.5 mmHg. The neon partial pressure over water is 721.5 mmHg. The value of $k_{sx}$ was calculated by the			<ol> <li>Sodium nitrate. Chemically pure grade.</li> </ol>			
compiler assuming that the gas behavior is ideal and that Henry's law			$\begin{array}{rcl} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$			
tion after deg	oncentration ir assing and at t experiment was	he end of		$\delta S/cm^3 dm^{-3} = 0.04$ $\delta m/m = 0.02$		
mined by compa	rison of the so tandard density	olution	2. $\frac{Zh}{Bor}$	ina, A.F.; Lyashchenko, A.K. <u>Fiz. Khim</u> . 1971, <u>45</u> , 1316. ina, A.F.; Samoilov, O. Ya.;		
as the Ostwal The Setschence	e neon solubility, S, is the same the Ostwald coefficient $x \ 10^3$ . e Setschenow parameters $k_s$ and $k_{sX}$ re calculated by the compiler.		$\frac{Zh}{Ben}$	kseeva, L.S. <u>Fiz. Khim</u> . 1971, <u>45</u> , 2554. -Naim, A.; Baer, S. ns. Faraday <u>Soc</u> . 1963, <u>59</u> ,2735.		

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Lyashchenko, A.K.; Borina, A.F.
2. Water; H ₂ O; 7732-18-5	
3. Potassium hydroxide; KOH; 1310-58-3	<u>Zh. Strukt. Khim. 1971, 12, 964-968.</u> J. <u>Struct. Chem.</u> 1971, <u>12</u> , 889-891.
VARIABLES:	PREPARED BY:
T/K: 293.15 Total P/kPa: 98.525 (739 mmHg) KOH/mol kg ⁻¹ H ₂ O: 0 - 2.905	T.D. Kittredge, H.L. Clever
EXPERIMENTAL VALUES:	• • • • • • • • • • • • • • • • • • •
T/K Potassium hydroxide Neon S	Colubility* k _s = (1/m) log (S ^O /S)
	m ³ dm ⁻³
0.259 1	1.11 (S ^O ) - 0.02 0.1732
	9.01 0.1795 7.51 0.1781
1.790	5.91 0.1531
2.905	3.79 0.1608
k _s = 0.1791	- 0.0079 m
At one molal KOH, $k_s = 0$	1712 and $k = 0.193$
s out mound out, is	SX SSE
AUXILIARY	INFORMATION
ME THOD:	SOURCE AND PURITY OF MATERIALS:
The apparatus, described in an earlier paper (1), was based on the design of Ben-Naim and Baer (3). The apparatus is designed to measure the difference	
in volume of the gas before dissolution and after dissolution is complete with	
the gas and solvent in contact at constant pressure. The total pressure of gas + water vapor is 739 $\pm$ 1.5 mmHg The neon partial pressure is 721.5. The value of $k_{SX}$ was calculated by the	<ol> <li>Potassium hydroxide. Chemically pure reagent grade.</li> </ol>
compiler assuming that gas behavior is ideal and that Henry's law is obeyed.	ESTIMATED ERROR:
The KOH concentration after degassing was determined by titration with HCl.	δs/s = 0.005
	REFERENCES:
	<ol> <li>Borina, A.F.; Lyashchenko, A.K. <u>Zh. Fiz. Khim.</u> 1971, 45, 1316.</li> <li>Lyashchenko, A.K. <u>Dokl. Akad</u>.</li> </ol>
	Nauk.         SSSR 1974,         217,         380.           3.         Ben-Naim,         A.;         Baer,         S.         Trans.           Faraday         Soc.         1963,         59,         2735.

.

201/20120122	······		OPTOTA	-		
	IPONENTS: Neon; Ne; 7440-01-9			ORIGINAL MEASUREMENTS: Borina, A.F.; Lyashchenko, A.K.		
			20111	л,, ш <u>у</u>		
	ium Chloride; KCl; 7	447-40-7	$\frac{Zh}{Russ}$	Zh. <u>Fiz. Khim.</u> 1972, <u>46</u> , 249-250. <u>Russ.J.Phys.Chem</u> . 1972, <u>46</u> , 150-151.		49-250. , 150-151.
VARIABLES:			PREPAI			
T/ Total P/kP KCl/mol kg	(K: 293.15 Pa: 98.525 (739 mmH 1 H ₂ O: 0 − 1.892	g)		T.D. Kittre	edge, H.L.	Clever
EXPERIMENTAL	L VALUES:					
т/к	T/K Potassium Neon Solu Chloride		ubilit	ability* Setschenow Parameter		
		S/cm ³	dm ⁻³	k_=	(l/m) log	(S ^O /S)
293.15	0.0 0.121 0.225 0.223 0.431 0.437 0.915 0.915 1.890 1.892	11.12 10.68 10.44 10.49 9.99 9.8 8.82 8.79 7.00 7.00	4 0 4 7 2 8 8		- 0.1417 0.1201 0.1286 0.1121 0.1176 0.1096 0.1117 0.1035 0.1050	
	k _c =	0.1276	- 0.03	40 m		
The value	At one molal KCl solubility, S, is th es of k _s and k _{SX} were solubility in water,	e same a calcula	s the ted by	Ostwald coe the compil	efficient × ler.	10 ³ .
	· · · · · · · · · · · · · · · · · · ·	AUXILIARY	INFORM	TION		
METHOD			· · · · · · · · · · · · · · · · · · ·			
papers (1, of Ben-Nai ratus is d difference dissolutic complete, contact at total pres 739 ± 1.5 pressure c	paratus, described in (2), was based on the im and Baer (3). The designed to measure t in volume of the ga on and after dissolut with the gas and sol constant pressure. ssure of gas + water mmHg. The neon part over water is 721.5 m of k _{sx} was calculated	design appa- he s before ion is vent in The vapor is ial mHg.	1. 1 2. 1 3. 1	AND PURITY ( eon. Espec ontained 0 ases. ater. Doul otassium ch ure grade.	cially pure l per cent	grade. of other ed.
compiler assuming that the gas behavior is ideal and that Henry's law is obeyed. The concentration of KCl in the solutions after degassing was deter-		$\delta s/cm^3 dm^{-3} = 0.04$			0.04	
	citrating the Cl- ion		2.	orina, A.F h. Fiz. Kh: orina, A.F lekseeva, J h. Fiz. Kh: en-Naim, A	im. 1971, 4 ; Samoilov L.S. im. 1971, 4 ; Baer, S.	15, 1316. 7, O. Ya.; 15, 2554.

	103
COMPONENTED	
COMPONENTS: 1. Neon: Ne: $7440-01-9$	ORIGINAL MEASUREMENTS:
l. Neon; Ne; 7440-01-9 2. Water; H ₂ O; 7732-18-5	Borina, A.F.; Samoilov, O. Ya.; Alekseeva, L.S.
3. Potassium Bromide; KBr; 7758-0	2-3 Zh. <u>Fiz. Khim. 1971, 45, 2554-2558.</u> <u>Russ.J.Phys.Chem</u> . 1971, <u>45</u> , 1445-144
VARIABLES:	PREPARED BY:
T/K: 293.15 Total P/kPa: 98.525 (739 mmHg) KBr/mol kg ⁻¹ H ₂ O: 0 - 1.971	T.D. Kittredge, H.L. Clever
EXPERIMENTAL VALUES:	
Bromide	y* Neon Solubility Setschenow Parameter
$\frac{\text{mol kg}^{-1} \text{H}_2 \text{O} \text{S/cm}^3 \text{dm}^{-3}}{2}$	$\frac{S'/cm^3 kg^{-1} H_2 O}{k_{s'}} = (1/m) \log(S'^{O}/S')$
293.15         0.0         11.11(S ^O )           0.222         10.59           0.668         9.43           0.887         8.89           1.697         7.47           1.971         6.93	$\begin{array}{cccc} 11.13 & (5'^{\circ}) & - \\ 10.69 & 0.0789 \\ 9.67 & 0.0914 \\ 9.18 & 0.0943 \\ 7.93 & 0.0868 \\ 7.43 & 0.0890 \end{array}$
$k_{c} = 0.0$	0853 + 0.0025 m
At one molal KBr, k _s	= 0.0878 and $k_{sX} = 0.103$ .
The neon solubility in water, S ^O	is from reference 1.
AUXI	LIARY INFORMATION
METHOD: The apparatus, described in an earlier paper (1), was based on the design of Ben-Naim and Baer (2). apparatus is designed to measure difference in volume of the gas be dissolution and after dissolution complete, with the gas and solven contact at constant pressure. The total pressure of gas + water vape 739 ± 1.5 mmHg. The neon partial pressure is 721.5 mmHg. The value k _{sx} was calculated by the compile	The gases. the gases. the gases. 2. Water. Doubly distilled. is 3. Potassium bromide. Chemically pure grade. br is 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
assuming that the gas behavior is id and that Henry's law is obeyed. The concentration of KBr in the solution after the solubility exp ment was determined gravimetrical.	leal ESTIMATED ERROR: $\delta S/S = 0.005$ eri-
as AgBr.	REFERENCES: 1. Borina, A.F.; Lyashchenko, A.K. <u>Zh. Fiz</u> . <u>Khim</u> . 1971, <u>45</u> , 1316.
	2. Ben-Naim, A.; Baer, S.

COMPONENTS: ORIGINAL MEASUREMENTS: 1. Neon; Ne; 7440-01-9 Borina, A.F.; Samoilov, O. Ya.; Alekseeva, L.S. Water; H₂O; 7732-18-5 2. 3. Potassium Iodide; KI; 7681-11-0 <u>Zh. Fiz. Khim. 1971, 45, 2554-2558.</u> <u>Russ.J.Phys.Chem</u>. 1971, <u>45</u>, 1445-1447. VARIABLES: PREPARED BY: T/K: 293.15 Total P/kPa: 98.525 (739 mmHg) KI/mol kg⁻¹ H₂O: 0 - 2.682 T.D. Kittredge, H.L. Clever EXPERIMENTAL VALUES: T/K Potassium Neon Solubility* Neon Solubility Setschenow Iodide Parameter mol kg⁻¹ H₂O  $s/cm^3 dm^{-3}$   $s'/cm^3 kg^{-1} H_2 0 k_{s'} = (1/m) \log(s'^0/s')$ 11.13 (s'⁰) 11.11 (s^o) 293.15 0.0 0.398 9.93 10.13 0.1027 0.763 9.21 9.56 0.0865 1.081 8.52 8.96 0.0871 1.534 7.70 8.27 0.0841 2.682 5.88 6.64 0.0836  $k_{c} = 0.0968 - 0.0062 \text{ m}$ At one molal KI,  $k_{g}$ , = 0.906 and  $k_{gX}$  = 0.106. *The neon solubility, S, is the same as the Ostwald coefficient x  $10^3$ . The values of  $k_s$ , and  $k_{sx}$  were calculated by the compiler. The values of k_c, are based on the neon solubility ratio per kg H₂O. The neon solubility in water, S^o, is from reference 1. AUXILIARY INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Especially pure grade. METHOD: The apparatus, described in an earlier paper (1), was based on the Contained 0.1 per cent of other design of Ben-Naim and Baer (2). The apparatus is designed to measure the qases. difference in volume of the gas before 2. Water. Doubly distilled. dissolution and after dissolution is complete, with the gas and solvent in contact at constant pressure. The 3. Potassium iodide. Chemically pure grade. total pressure of gas + water vapor is  $739 \pm 1.5$  mmHg. The neon partial pressure is 721.5 mmHg. The value of k_{sX} was calculated by the compiler assuming that the gas behavior is ideal ESTIMATED ERROR: and that Henry's law is obeyed. The concentration of KI in the solution after the solubility experi- $\delta S/S = 0.005$ ment was determined gravimetrically as AgI. **REFERENCES:** 1. Borina, A.F.; Lyashchenko, A.K. Zh. Fiz. Khim. 1971, 45, 1316. Ben-Naim, A.; Baer, S. Trans. Faraday Soc. 1963,<u>59</u>, 2735. 2.

2010 2010	
COMPONENTS: 1. Neon: Ne: 7440-01-9	ORIGINAL MEASUREMENTS: Borina, A.F.; Samoilov, O. Ya.;
	Alekseeva, L.S.
2. Water; H ₂ O; 7732-18-5	
3. Cesium Chloride; CsCl; 7647-17-8	Zh. <u>Fiz</u> . <u>Khim</u> . 1971, <u>45</u> , 2554-2558. <u>Russ.J.Phys.Chem</u> . 1971, <u>45</u> , 1445-1447.
VARIABLES:	PREPARED BY:
T/K: 293.15 Total P/kPa: 98.525 (739 mmHg) CsCl/mol kg ⁻¹ H ₂ O: 0 - 2.612	T.D. Kittredge, H.L. Clever
EXPERIMENTAL VALUES:	
T/K Cesium Neon Solubility*	Neon Solubility Setschenow
$\frac{\text{Chloride}}{\text{mol kg}^{-1} \text{ H}_2 \text{ S/cm}^3 \text{ dm}^{-3}}$	$\frac{\text{Parameter}}{\text{S'/cm}^3 \text{ kg}^{-1} \text{ H}_2 \text{O}} \qquad \frac{\text{k}_{\text{S'}} = (1/\text{m})\log(\text{S'}^{\circ}/\text{S'})}{\text{k}_{\text{S'}} = (1/\text{m})\log(\text{S'}^{\circ}/\text{S'})}$
$\begin{array}{cccccccc} 293.15 & 0.0 & 11.11 & (S^{O}) \\ 0.428 & 10.13 \\ 0.559 & 9.81 \\ 0.669 & 9.50 \\ 1.066 & 8.88 \\ 1.269 & 8.33 \\ 2.612 & 6.26 \end{array}$	$\begin{array}{cccc} 11.13 & (5'^{\circ}) & - \\ 10.32 & 0.0767 \\ 10.04 & 0.0801 \\ 9.77 & 0.0846 \\ 9.28 & 0.0741 \\ 8.77 & 0.0781 \\ 6.96 \end{array}$
k _s , = 0.0791	- 0.0011 m
At one molal CsCl, k _s , = 0	.0780 and $k_{sX} = 0.0934$ .
*The neon solubility, S, is the same a The values of $k_s$ , and $k_{sX}$ were calcul of $k_s$ , are based on the neon solubili The neon solubility in water, S ^O , is	ated by the compiler. The values . ty ratio per kg H ₂ O.
AUXILIARY	INFORMATION
METHOD: The apparatus, described in an earlier paper (1), was based on the design of Ben-Naim and Baer (2). The apparatus is designed to measure the difference in volume of the gas before dissolution and after dissolution is complete, with the gas and solvent in contact at constant pressure. The total pressure of gas + water vapor is 739 ± 1.5 mmHg. The neon partial pressure is 721.5 mmHg. The value of k was calculated by the compiler	<ol> <li>Cesium chloride. Chemically pure grade.</li> </ol>
assuming that the gas behavior is ideal and that Henry's law is obeyed.	ESTIMATED ERROR:
The concentration of CsCl in the solution after the solubility experi-	$\delta S/S = 0.005$
ment was determined by titration of the $C1^-$ by Hg(NO ₃ ) ₂ .	
	REFERENCES: 1. Borina, A.F.; Lyashchenko, A.K. <u>Zh. Fiz. Khim</u> . 1971, <u>45</u> , 1316.
	2. Ben-Naim, A.; Baer, S. Trans. Faraday Soc. 1963, <u>59</u> , 2735.
	ļ

COMPONENTS :					
1. Neon; Ne; 7440-01-9	ORIGINAL MEASUREMENTS: Lyashchenko, A.K.				
2. Water; H ₂ O; 7732-18-5					
3. Cesium Nitrate; CsNO ₃ ; 7789-18-6	Dokl. Akad. Nauk SSSR 1974, 217 (2), 380-382; Dokl. Phys. Chem. (Engl. trans.) 1974, 217, 645 - 647.				
VARIABLES:	PREPARED BY:				
T/K: 293.15 - 303.15 Total P/kPa: 98.525 (739 mmHg) CsNO ₃ /mol kg ⁻¹ H ₂ O: 0 - 1.15	T.D. Kittredge, H.L. Clever				
EXPERIMENTAL VALUES:					
T/K Cesium Neon Soluk Nitrate	Parameter				
$\frac{\text{mol kg}^{-1} \text{H}_2 \text{O}}{2} \frac{\text{S/cm}^3 \text{ of } \text{S/cm}^3 \text$	$dm^{-3}$ $k_s = (1/m) \log (S^{\circ}/S)$				
293.15 0 11.11 0.48 9.89 1.15 8.34	(S ^O ) 0.1052 0.1083				
$k_{s} = 0.1030 + 1000$	+ 0.0046 m				
At one molal $CsNO_3$ , $k_s = 0$ .	.1076 and k _{sX} = 0.0961.				
303.15 0 10.59 0.48 9.76 1.10 8.65	(S ^O ) – 0.0738 0.0799				
$k_{z} = 0.0691 + 1000$	+ 0.0098 m				
At one molal $CsNO_3$ , $k_s = 0$ .	sx - 0.0000.				
*The neon solubility, S, is the same as the Ostwald coefficient x $10^3$ . The Setschenow parameters $k_s$ and $k_{sX}$ were calculated by the compiler. The neon solubility in water, S ^O , is from references 1 and 2.					
AUXILIARY	INFORMATION				
METHOD:	SOURCE AND PURITY OF MATERIALS:				
The apparatus, described in earlier papers (1,2), was based on the design of Ben-Naim and Baer (3). The appa- ratus is designed to measure the	<ol> <li>Neon. Especially pure grade. Contained 0.1 per cent of other gases.</li> </ol>				
difference in volume of the gas before dissolution and after dissolution is	2. Water. Doubly distilled.				
complete, with the gas and solvent in contact at constant pressure. The total pressure of gas + water vapor is 739 $\pm$ 1.5 mmHg. The neon partial pressure over water is 721.5 mmHg.	<ol> <li>Cesium nitrate. Chemically pure grade.</li> </ol>				
The value of k _{SX} was calculated by the compiler assuming that the gas	ESTIMATED ERROR: An A				
behavior is ideal and that Henry's law is obeyed. The CsNO ₃ concentration in the	$\delta T/K = 0.02$ $\delta P/mmHg = 1.5$ $\delta S/cm^3 dm^{-3} = 0.04$				
solution after degassing and at the	$\frac{\delta m/m}{\delta m/m} = 0.02$				
end of the solubility experiment was determined by comparison of the solu- tion density with standard density tabulations.	REFERENCES: 1. Borina, A.F.; Lyashchenko, A.K. <u>Zh. Fiz. Khim.</u> 1971, <u>45</u> , 1316. 2. Borina, A.F.; Samoilov, O. Ya.;				
	Alekseeva, L.S. <u>Zh. Fiz. Khim.</u> 1971, <u>45</u> , 2554. 3. Ben-Naim, A.; Baer, S. <u>Trans. Faraday Soc</u> . 1963, <u>59</u> ,2735.				

COMPONENTS:	ORIGINAL MEASUREMENTS:		
1. Neon; Ne; 7440-01-9	Morrison, T.J.; Johnstone, N.B.B.		
2. Water; H ₂ O; 7732-18-5			
3. Alkali Halides	<u>J. Chem. Soc</u> . 1955, 3655 - 3659.		
VARIABLES:	PREPARED BY:		
T/K: 298.15 P/kPa: 101.325 (1 atm)	T.D.Kittredge		
EXPERIMENTAL VALUES:			
$T/K  k_{S} = (1/m) \log (S^{O}/S)$	$k_{SX} = (1/m) \log (X^{0}/X)$		
Lithium Chloride; LiCl; 7447	-41-8		
298.15 0.059	0.074		
Sodium Chloride; NaCl; 7647-	·14-5		
298.15 0.097	0.112		
Potassium Iodide; KI; 7681-1	.1-0		
298.15 0.080	0.095		
of water. The compiler calculated the the mole fraction solubility ratio X°/ 100 per cent dissociated and both cati fraction calculation.	X. The electrolytes were assumed to be		
AUXILIARY	INFORMATION		
METHOD:	SOURCE AND PURITY OF MATERIALS:		
Gas absorption in a flow system.	l. Neon. British Oxygen Co. Ltd.		
	2. Water. No information given.		
	3. Electrolyte. No information given.		
APPARATUS/PROCEDURE:	ESTIMATED ERROR:		
	$\delta k_{\rm S} = 0.010$		
The previously degassed solvent flows in a thin film down an absorption	0. ng = 0. 010		
spiral containing neon gas plus solvent vapor at a total pressure of one atm. The volume of gas absorbed is measured in attached calibrated burets (1).	REFERENCES: 1. Morrison, T.J.; Billett, F. <u>J. Chem</u> . <u>Soc</u> . 1952, 3819.		

COMPONENTS: ORIGINAL MEASUREMENTS: Lvashchenko, A.K.; Borina, A.F. 1. Neon; Ne; 7440-01-9 2. Water; H₂O; 7732-18-5 3. Alkali Halides <u>Zh. Strukt</u>. <u>Khim</u>. 1971, <u>12</u>, 964 - 968. J. Struct. Chem. 1971, 12, 889 - 891. VARIABLES: PREPARED BY: T/K: 293.15 Total P/kPa: 98.525 (739 mmHg) T.D.Kittredge, H.L.Clever **EXPERIMENTAL VALUES:** Alkali Halide Neon Solubility  $k_s = (1/m) \log (S^{O}/S)$ т/к mol kg⁻¹ H₂O  $S/cm^3 dm^{-3}$ Potassium Fluoride; KF; 7789-23-3 293.15 0 11.11 0.57 9.36 0.1306 1.39 7.66 0.1162 1.57 7.33 0.1050 1.72 7.00 0.1166 3.07 5.10 0.1101  $k_{\rm S} = 0.1276 - 0.0071 \,\mathrm{m}$ At one molal KF,  $k_s = 0.121$  and  $k_{sX} = 0.132$ . Rubidium Chloride; RbCl; 7791-11-9 293.15 0 11.11 0.172 10.62 0.1139 0.474 9.82 0.1131 0.577 9.69 0.1029 1.018 8.61 0.1088 1.14 8.51 0.1017  $k_s = 0.1146 - 0.0097 m$ At one molal RbCl,  $k_s = 0.105$  and  $k_{sX} = 0.103$ ^{*}The neon solubility, S, is the same as the Ostwald coefficient  $x \ 10^3$ . The neon solubility in water, S^o, is from references 1 and 2. AUXILIARY INFORMATION METHOD: SOURCE AND PURITY OF MATERIALS: The apparatus, described in an earlier paper (1), was based on the design of 1. Neon.Especially pure grade. Contained 0.1 percent of other Ben-Naim and Baer (3). The apparatus gases. is designed to measure the difference in volume of the gas before dissolution 2. Alkali halides. Chemical pure and after dissolution is complete with reagent grade. the gas and solvent in contact at constant pressure. The total pressure of gas + water vapor is 739 ± 1.5 mmHg. The neon partial pressure is 721.5. The value of k_{sX} was calculated by the compiler assuming that gas behavior is ideal and that Henry's law is obeyed. ESTIMATED ERROR: The KF concentration was determined after degassing by titration of the F  $\delta S/S = 0.005$ with Al(NO3)3. The RbCl concentration was determined after degassing by titration with  $Hg(NO_3)_2$ . **REFERENCES**: The Setschenow parameters ks and ksx 1. Borina, A.F.; Lyashchenko, A.K. were calculated by the compiler. Zh. Fiz. Khim. 1971, 45, 1316. 2. Lyashchenko, A.K. 3. Ben-Naim, A.; Baer, S. Dokl. Akad. Nauk. SSSR 1974, 217, Trans. Faraday Soc. 1963, 59, 2735. 380.

COMPONENTS:			ORIGINAL MEASUREMENTS:		
1. Noone N	. Neon; Ne; 7440-01-9		Borina, A.F.; Samoilov, O. Ya.		
	H ₂ O; 7732-18-5				
3. Alkali	Halides			<u>him</u> . 1974, <u>15</u> , 395 - 402 <u>em</u> . 1974, <u>15</u> , 336 - 342.	
VARIABLES:			PREPARED BY:		
T/K: 288.15 - 298.15 Total P/kPa: 98.659 (740 mmHg) Salt/mol kg ⁻¹ H ₂ O: 0 - 4.377			H. L. Clever T. D. Kittredge		
EXPERIMENTAL	VALUES:				
T/K	Alkali	Mol Fraction	Mol Fraction	Setschenow Salt Parameter	
	Halide mol kg ⁻¹ H ₂ O	at 1 mmHg	$x_1 \times 10^4$ at 1 atm	$k_s = (1/m) \log (X^O/X)$	
Lithium	Chloride; LiCl	: 7447-41-8	<u> </u>		
288.15	0	11.39	0.0866		
	0.426	10.24	0.0778	0.1085	
	0.800 1.155	9.74 9.07	0.0740	0.0850 0.0856	
	1.489	9.07	0.0689 0.0650	0.0837	
	1.589	8.34	0.0634	0.0852	
	3.088	6.29	0.0478	0.0835	
293.15	0	10.98	0.08345	-	
	0.483 0.864	10.08 9.25	0.0766 0.0703	0.0769 0.0862	
	1.162	8.86	0.0673	0.0802	
	1.288	8.67	0.0659	0.0796	
	2.138 2.987	7.49	0.0569	0.0777 0.0753	
		6.54	0.0497		
298.15	0 0.330	10.58 10.06	0.0804 0.0765	0.0663	
	0.935	8.97	0.0682	0.0767	
	1.270	8.52	0.0648	0.0741	
	1.590 3.277	7.94 6.05	0.0603 0.0460	0.0784 0.0741	
Table con	ntinued on next	page.			
		AUXILIARY	INFORMATION		
METHOD/APPA	ARATUS/PROCEDURE	5:	SOURCE AND PURIT	Y OF MATERIALS:	
The appa	aratus, describe	ed in earlier	1. Neon. Spec	ially pure grade.	
of Ben-Nai	,2), was based o im and Baer (3),	The appa-	Contained 0.1 per cent of other gases.		
ratus is d difference	lesigned to meas a in volume of t	sure the	-	tilled.	
dissolutio	on and after dis	solution is			
complete w	vith the gas and	l solvent in	3. Salts. No information given.		
contact at	constant press	sure.The total			
always 740	of neon + water ) mmHg during th	vapor was			
The auth	ors assume idea	al gas	1		
pehavior a	and that Henry's	alaw is			
obeyed to convert the experimentally measured Ostwald coefficient to the		ESTIMATED ERROR:			
inverse of	Henry's consta	int.		$5x_1/x_1 = 0.0035$	
See the	last page of th	e compilation			
or data f	rom this paper	for the			
one molal	'values of k _s a electrolyte co	na K _{sX} at	REFERENCES:	D, A.K.; Borina, A.F.	
		meentration.	Zh. Strukt.	. Khim. 1971, 12, 964.	
			2. Borina, A.I	F.; Lyashchenko, A.K.	
			Zh. Fiz. Kl	him. 1971, 45, 1316.	
			3. Ben-Naim, 7 Trans, Fara	A.; Baer, S. aday <u>Soc</u> . 1963, <u>59</u> ,2735.	
			rate	<u></u>	
			1		

.

COMPONENTS:	- <u></u>		ORIGINAL MEASUR	EMENTS:
1. Neon; Ne; 7440-01-9		Borina, A.F.; Samoilov, O. Ya.		
2. Water; H ₂ O; 7732-18-5		Zh. Strukt. Khi	m. 1974, <u>15</u> , 395 - 402.	
	-		Continued from	previous page.
3. Alkali H	alides		001121111011 12011	previous pager
T/K		$x_1 \times 10^9$	$x_{1} \times 10^{4}$	Setschenow Salt Parameter
	$\frac{\text{mol } kg^{-1} H_2 O}{2}$		at l atm	$k_{\rm S} = (1/m) \log (X^{\rm O}/X)$
288.15	Iodide; LiI; 0	103/7-51-2	0.0966	_
208.15	0.533	10.20	0.0866 0.0775	0.0899
	0.654	9.82	0.0746	0.0985
	0.955 1.233	9.18 8.80	0.0698 0.0669	0.0981 0.0909
	2.358	7.11	0.0540	0.0868
293.15	0	10.98		_
	1.083	8.78	0.0667	0.0897
	1.346	8.19	0.0622	0.0946
	1.701 2.350	7.77 7.23	0.0591 0.0550	0.0883 0.0772
298.15	0	10.58	0.0330	-
298.15	0.433	9.72	0.0739	0.0850
	0.433	9.67	0.0735	0.0902
	0.695	9.31	0.0708	0.0799
	1.020 2.330	8.84 7.20	0.0672 0.0547	0.0765 0.0717
Sodium	Chloride; NaCl;		0.0347	0.0717
288.15	0	11.39	0.0866	_
200.15	0.349	10.28	0.0781	0.1276
	0.715	9.33	0.0709	0.1211
	1.952	6.67	0.0507	0.1190 0.1183
	2.341 4.377	6.02 3.75	0.0458 0.0285	0.1102
293.15	0	10.98		_
	0.248	10.31	0.0784	0.1103
	0.658	9.20	0.0699	0.1167
	1.065 1.701	8.47 6.93	0.0644 0.0527	0.1058 0.1175
	2.188	6.32	0.0480	0.1096
298.15	0	10.58	0.0804	-
	0.530	9.37	0.0712	0.0995
	0.590	9.19	0.0698	0.1036 0.1030
	1.075 1.465	8.20 7.28	0.0623 0.0553	0.1108
	2.070	6.40	0.0486	0.1055
	3.070	5.27	0.0401	0.0986
303.15	0	10.54	0.0801	-
	1.184 1.616	7.68 7.14	0.0584 0.0543	0.1161 0.1047
	2.519	5.79	0.0343	0.1032
	2.824	5.29	0.0402	0.1060
Sodium	Iodide; NaI;	7681-82-5		
288.15	0	11.39	0.0866	-
	0.578	9.51 9.36	0.0723 0.0711	0.1355 0.1280
	0.666 1.117	9.36	0.0630	0.1235
	2.430	5.98	0.0455	0.1152
	2.879	5.24	0.0398	0.1171
293.15	0	10.98	0.08345	-
	0.327	10.12 9.52	0.0769 0.0724	0.1083 0.0952
	0.651 1.038	9.52	0.0641	0.1101
	1.550	7.62	0.0579	0.1024
	2.023	6.78	0.0515	0.1035
Table co	ntinued on next	t page.		

COMPONENTS:			ORIGINAL MEASUREMENTS:		
l. Neon; Ne; 7440-01-9		Borina, A.F.; Samoilov, O. Ya.			
2. Water; H ₂ O; 7732-18-5		Zh. Strukt. Khi	<u>im</u> . 1974, <u>15</u> , 395 - 402		
3. Alkali H	Halides		Continued from	previous page.	
т/к		0		Setschenow Salt	
	mol kg ⁻¹ H ₂ O	at 1 mmHg	$X_1 \times 10^4$ at 1 atm	Parameter $k_s = (1/m) \log (X^O/X)$	
Sodium	Iodide; NaI; 76				
298.15	0	10.58	0.0804	_	
	0.540	9.34	0.0710	0.1003	
	0.890	8.61	0.0654	0.1005	
	1.255	7.88		0.1020	
	1.500 3.200	7.53 5.14	0.0572 0.0391	0.0985 0.0980	
Detago				0.0900	
	ium Chloride; KC				
288.15	0 535	11.39	0.0866	- 1091	
	0.535 1.010	9.97 8.73	0.0758 0.0664	0.1091 0.1144	
	1.556	7.89	0.0600	0.1025	
	2.300	6.47	0.0492	0.1068	
	2.934	5.71	0.0434	0.1022	
	3.369	5.44	0.0413	0.0953	
290.65	0	11.19	0.0850	-	
	1.234 2.227	8.22 6.71	0.0625 0.0510	0.1085 0.0997	
	3.031	5.72	0.0435	0.0962	
293.15		10.98	0.08345	-	
	0.122	10.57	0.0803	0.1355	
	0.225	10.33	0.0785	0.1178	
	0.439	9.79	0.0744	0.1135	
	0.915	8.80	0.0669	0.1050 0.1004	
	1.892 3.485	7.09 5.25	0.0539 0.0399	0.0919	
295.65	0	10.78	0.0819	-	
295.05	1.255	8.06	0.0613	0.1006	
	1.971	6.96	0.0529	0.0964	
	2.430	6.26	0.0476	0.0971	
298.15		10.58	0.0804	-	
	0.500	9.57	0.0727	0.0871	
	0.965 1.455	8.71 7.82	0.0662 0.0594	0.0875 0.0902	
	1.865	7.17	0.0545	0.0906	
	3.182	5.58	0.0424	0.0873	
	4.051	4.77	0.0363	0.0854	
Potass	ium Iodide; KI;	7681-11-0			
288.15	0	11.39	0.0866	-	
	0.573	9.66	0.0734	0.1249	
	0.981	8.77	0.0667	0.1157	
	1.870 2.828	7.27 5.67	0.0553 0.0431	0.1043 0.1071	
290.65	0	11.19	0.0850		
290.05	1.630	7.62	0.0579	0.1024	
	2.350	6.52	0.0496	0.0998	
	3.200	5.58	0.0424	0.0944	
293.15	0	10.98	0.08345	-	
	0.398	9.93	0.0755	0.1097	
	0.763	9.30	0.0707	0.0945	
	1.534	7.93	0.0603	0.0921	

Table continued on next page.

COMPONENTS:							
1. Neon; Ne; 7440-01-9				Bori	Borina, A.F.; Samoilov, O.Ya.		
2. Water; H ₂ O;7732-18-5				$\underline{\mathbf{Zh}}$ .	Zh. Strukt. Khim. 1974, 15, 395 - 402		
3. Alkali Halides				Cont	inued from p	previous page.	
т/к	Alkali	Halide	Mol Fract	jon M	ol Fraction $X_1 \times 10^4$	Setschenow Salt Parameter	
	mol kg	1 н ₂ о	at 1 mmH		at 1 atm	$k_s = (1/m) \log (X^O/X)$	
Potass	ium Iodid	e; KI;	7681-11-0	(conti	nued)		
295.65			10.78		0.0819	-	
	1.25 1.77	2 7	8.02 7.37		0.0610 0.0560	0.1026 0.0929	
	2.88	7	5.99		0.0455	0.0884	
298.15	0.55	5	10.58 9.43		0.0804 0.0717	0.0900	
	0.84		8.74 7.53		0.0664 0.0572	0.0982 0.0968	
	1.90		7.02		0.0534	0.0938	
	3.27		5.55		0.0422	0.0857	
Solution Ne + H ₂ O + salt	т/к	Equation k _s =	n Paramete: a + b m	c ]	one molal e: Ka =	$k_{ev}$ =	
Ne + $H_2O$	т/к	Equation k _s =	n Paramete: a + b m	c ]	one molal e: Ka =		
Ne + $H_2O$	288.15	k _s =	a + b m - 0.00375		one molal e: (s = (1/m)log(S ^O , 0.123	lectrolyte $k_{SX} = (1/m) \log (X^{O}/X)$ 0.131	
Ne + $H_2O$ + salt	288.15 293.15	k _s = 0.1265 0.1118	a + b m - 0.00375 + 0.0001		one molal e: (s = (1/m) log(S ^O , 0.123 0.112	lectrolyte	
Ne + $H_2O$ + salt	288.15 293.15 298.15	k _s = 0.1265 0.1118 0.1076	a + b m - 0.00375		one molal e: (s = (1/m)log(S ^O , 0.123	lectrolyte $k_{SX} = (1/m) \log (x^{O}/x)$ 0.131	
Ne + $H_2O$ + salt	288.15 293.15 298.15 303.15 288.15	k _s = 0.1265 0.1118 0.1076 0.1036 0.1303	a + b m - 0.00375 + 0.0001 - 0.0020 + 0.00045 - 0.0053		one molal e: (1/m)log(S ^O , 0.123 0.112 0.106	lectrolyte $k_{SX} = (1/m) \log (X^{O}/X)$ 0.131 0.120 0.113	
Ne + H ₂ O + salt NaCl	288.15 293.15 298.15 303.15 288.15	k _s = 0.1265 0.1118 0.1076 0.1036 0.1303 ted val	a + b m - 0.00375 + 0.0001 - 0.0020 + 0.00045	m m m m m 8 m)	one molal e: (1/m)log(S ^O , 0.123 0.112 0.106 0.104	lectrolyte $k_{SX} = (1/m) \log (X^{O}/X)$ 0.131 0.120 0.113 0.112	
Ne + H ₂ O + salt NaCl	288.15 293.15 298.15 303.15 288.15 (omit	k _s = 0.1265 0.1118 0.1076 0.1036 0.1303 ted val 0.1045	a + b m - 0.00375 + 0.0001 - 0.0020 + 0.00045 - 0.0053 ue at 0.57	m m m m m 8 m) m	<pre>cne molal e: cs = (1/m) log(S^O, 0.123 0.112 0.106 0.104 0.1250</pre>	lectrolyte $k_{SX} = (1/m) \log (X^{O}/X)$ 0.131 0.120 0.113 0.112 0.133	
Ne + H ₂ O + salt NaCl	288.15 293.15 298.15 303.15 288.15 (omit 293.15 298.15 288.15	k _s = 0.1265 0.1118 0.1076 0.1036 0.1303 ted val 0.1045 0.1014 0.0858	a + b m - 0.00375 + 0.0001 m - 0.0020 m + 0.00045 - 0.0053 m ue at 0.57 - 0.0005 m - 0.00011 m - 0.00075	m m m m m m 8 m) m m m	<pre>cne molal e: (1/m) log (S^O, 0.123 0.112 0.106 0.104 0.1250 0.1040 0.1003 0.0851</pre>	lectrolyte $k_{SX} = (1/m) \log (X^{O}/X)$ 0.131 0.120 0.113 0.112 0.133 0.112 0.133 0.112 0.108 0.0928	
Ne + H ₂ O + salt NaCl NaI	288.15 293.15 298.15 303.15 288.15 (omit 293.15 298.15 288.15 293.15	k _s = 0.1265 0.1118 0.1076 0.1036 0.1303 ted val 0.1045 0.1014 0.0858 0.0826	a + b m - 0.00375 + 0.0001 m - 0.0020 m + 0.00045 - 0.0053 m ue at 0.57 - 0.0001 m - 0.00011 m - 0.00075 - 0.0022 m	 m m m m m 8 m) m m m m	<pre>cne molal e: (1/m) log (S^O, 0.123 0.112 0.106 0.104 0.1250 0.1040 0.1003 0.0851 0.0804</pre>	lectrolyte $k_{SX} = (1/m) \log (X^{0}/X)$ 0.131 0.120 0.113 0.112 0.133 0.112 0.133 0.112 0.108 0.0928 0.0881	
Ne + H ₂ O + salt NaCl NaI	288.15 293.15 298.15 303.15 288.15 (omit 293.15 298.15 288.15 293.15 298.15	k _s = 0.1265 0.1118 0.1076 0.1036 0.1303 ted val 0.1045 0.1014 0.0858 0.0826 0.0774	a + b m - 0.00375 + 0.0001 m - 0.0020 m + 0.00045 - 0.0053 m ue at 0.57 - 0.0005 m - 0.00011 m - 0.00075	 m m m m 8 m) m m m m m	<pre>cne molal e: (1/m) log (S^O, 0.123 0.112 0.106 0.104 0.1250 0.1040 0.1003 0.0851 0.0804 0.0765</pre>	lectrolyte $k_{SX} = (1/m) \log (x^{O}/x)$ 0.131 0.120 0.113 0.112 0.133 0.112 0.133 0.112 0.108 0.0928	
Ne + H ₂ O + salt NaCl NaI	288.15 293.15 298.15 303.15 288.15 (omit 293.15 298.15 298.15 298.15 (omit 288.15	k _s = 0.1265 0.1118 0.1076 0.1036 0.1303 ted val 0.1045 0.1014 0.0858 0.0826 0.0774 ted k _s 0.0979	- 0.00375 + 0.0001 - 0.0020 + 0.00045 - 0.0053 ue at 0.57 - 0.0005 - 0.00011 - 0.00075 - 0.0022 - 0.0009 value at 0 - 0.00445	m m m m 8 m) m m .330 m m	<pre>cne molal e: (1/m) log (S^O, 0.123 0.112 0.106 0.104 0.1250 0.1040 0.1003 0.0851 0.0804 0.0765 ) 0.0934</pre>	lectrolyte $k_{SX} = (1/m) \log (X^{O}/X)$ 0.131 0.120 0.113 0.112 0.133 0.112 0.133 0.112 0.108 0.0928 0.0881 0.0842 0.101	
Ne + H ₂ O + salt NaCl NaI LiCl	288.15 293.15 298.15 303.15 288.15 (omit 293.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15	k _s = 0.1265 0.1118 0.1076 0.1036 0.1303 ted val 0.1045 0.1014 0.0858 0.0826 0.0774 ted k _s 0.0979 0.1021	a + b m - 0.00375 + 0.0001 - 0.0020 + 0.00045 - 0.0053 ue at 0.57 - 0.00053 - 0.00053 - 0.00011 - 0.00075 - 0.00022 - 0.0009 f value at 0 - 0.00445 - 0.0099 f	m m m m m m 8 m) m m .330 m	<pre>cne molal e: (1/m) log (S^O, 0.123 0.112 0.106 0.104 0.1250 0.1040 0.1003 0.0851 0.0804 0.0765 ) 0.0934 0.0922</pre>	lectrolyte $k_{SX} =$ $(1/m) \log (X^{O}/X)$ 0.131 0.120 0.113 0.112 0.133 0.112 0.133 0.112 0.108 0.0928 0.0881 0.0842	
Ne + H ₂ O + salt NaCl NaI LiCl	288.15 293.15 298.15 303.15 288.15 (omit 293.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15	k _s = 0.1265 0.1118 0.1076 0.1036 0.1303 ted val 0.1045 0.1014 0.0858 0.0826 0.0774 ted k _s 0.0979 0.1021 ted k _s	- 0.00375 + 0.0001 - 0.0020 + 0.00045 - 0.0053 ue at 0.57 - 0.0005 - 0.00011 - 0.00075 - 0.0022 - 0.0009 value at 0 - 0.00445	m m m m m m 8 m) m m .330 m .330 m	<pre>cne molal e: (1/m) log (S^O, 0.123 0.112 0.106 0.104 0.1250 0.1040 0.1003 0.0851 0.0804 0.0765 ) 0.0934 0.0922</pre>	lectrolyte $k_{SX} = (1/m) \log (X^{O}/X)$ 0.131 0.120 0.113 0.112 0.133 0.112 0.133 0.112 0.108 0.0928 0.0881 0.0842 0.101	
Ne + H ₂ O + salt NaCl NaI LiCl	288.15 293.15 298.15 303.15 288.15 (omit 293.15 298.15 298.15 298.15 298.15 298.15 (omit 288.15 293.15 (omit	k _s = 0.1265 0.1118 0.1076 0.1036 0.1303 ted val 0.1045 0.1014 0.0858 0.0826 0.0774 ted k _s 0.0979 0.1021 ted k _s 0.0884 0.0884	a + b m - 0.00375 + 0.0001 f - 0.0020 f + 0.00045 - 0.0053 f ue at 0.57 - 0.00055 - 0.0001 f - 0.0001 f - 0.0009 f value at 0 - 0.0009 f value at 1 - 0.0078 f - 0.0078 f - 0.0078 f - 0.0048 f - 0.0048 f	m m m m m m m .330 m .330 m m .346 m m m	<pre>cne molal e: (1/m) log (S^O, 0.123 0.112 0.106 0.104 0.1250 0.1040 0.1003 0.0851 0.0804 0.0765 ) 0.0934 0.0922 ) 0.0806 0.1096</pre>	lectrolyte $k_{SX} = (1/m) \log (X^{O}/X)$ 0.131 0.120 0.113 0.112 0.133 0.112 0.133 0.112 0.108 0.0928 0.0881 0.0842 0.101 0.100 0.088 0.117	
Ne + H ₂ O + salt NaCl NaI LiCl LiI	288.15 293.15 298.15 303.15 288.15 298.15 298.15 298.15 298.15 298.15 293.15 293.15 293.15 293.15 293.15 293.15 293.15 293.15 293.15 293.15 293.15 293.15 293.15	k _s = 0.1265 0.1118 0.1076 0.1036 0.1036 0.1303 ted val 0.1045 0.1014 0.0858 0.0826 0.0774 ted k _s 0.0979 0.1021 ted k _s 0.0884 0.0884 0.1144 0.1164	a + b m - 0.00375 + 0.0001 - 0.0020 + 0.00045 - 0.0053 ue at 0.57 - 0.0005 - 0.0005 - 0.00011 - 0.00075 - 0.00025 - 0.00025 - 0.00095 value at 0 - 0.00095 value at 0 - 0.00095 - 0.0005 - 0.0005	m m m 8 m) m 330 m .346 m m m m m	<pre>cne molal e: (1/m) log (S^O, 0.123 0.112 0.106 0.104 0.1250 0.1040 0.1003 0.0851 0.0804 0.0765 ) 0.0934 0.0922 ) 0.0806 0.1096 0.1095</pre>	lectrolyte $k_{SX} = (1/m) \log (X^{O}/X)$ 0.131 0.120 0.113 0.112 0.133 0.112 0.133 0.112 0.108 0.0928 0.0881 0.0842 0.101 0.100 0.088 0.117 0.117	
Ne + H ₂ O + salt NaCl NaI LiCl LiI	288.15 293.15 298.15 303.15 288.15 298.15 298.15 298.15 298.15 298.15 293.15 298.15 293.15 293.15 298.15 293.15	k _s = 0.1265 0.1118 0.1076 0.1036 0.1036 0.1303 ted val 0.1045 0.1014 0.0858 0.0826 0.0774 ted k _s 0.0979 0.1021 ted k _s 0.0884 0.1144 0.1160 ted k _s	a + b m - 0.00375 + 0.0001 - 0.0020 + 0.00045 - 0.0053 ue at 0.57 - 0.00053 - 0.00053 - 0.00011 - 0.00075 - 0.0009 value at 0 - 0.0009 value at 1 - 0.0078 - 0.0078 - 0.0069 - 0.0069 - 0.0074 - 0.0075 - 0.0075 - 0.0075 - 0.0075 - 0.0075 - 0.0009 - 0.0075 - 0.0075 - 0.0075 - 0.0009 - 0.0075 - 0.0075 - 0.0075 - 0.0009 - 0.0075 - 0.0077 - 0.0	m m m m 8 m) m m .330 m .330 m m m .346 m m m .346 m m m .326 m	<pre>cne molal e: (1/m) log (S^O, 0.123 0.112 0.106 0.104 0.1250 0.1040 0.1003 0.0851 0.0804 0.0765 ) 0.0934 0.0922 ) 0.0806 0.1096 0.1095 0.1086 )</pre>	lectrolyte $k_{SX} = \frac{(1/m) \log (X^{0}/X)}{(1/m) \log (X^{0}/X)}$ 0.131 0.120 0.113 0.112 0.133 0.112 0.108 0.0928 0.0881 0.0842 0.101 0.100 0.088 0.117 0.117 0.116	
Ne + H ₂ O + salt NaCl NaI LiCl LiI	288.15 293.15 298.15 303.15 288.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 293.15 (omit 298.15 293.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 293.15 (omit 298.15	k _s = 0.1265 0.1118 0.1076 0.1036 0.1303 ted val 0.1045 0.1014 0.0858 0.0826 0.0774 ted ks 0.0979 0.1021 ted ks 0.0884 0.1144 0.1160 ted ks 0.1041	a + b m - 0.00375 + 0.0001 - 0.0020 + 0.00045 - 0.00053 ue at 0.57 - 0.00053 ue at 0.57 - 0.00011 - 0.00075 - 0.0009 p value at 0 - 0.00445 - 0.0099 p value at 1 - 0.0078 p - 0.0078 p - 0.0048 p - 0.0069 p value at 0 - 0.0074 p - 0.0078 p - 0.0074 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078	m m m m m m m .330 m m .330 m m m .346 m m m m m m m m m m m m m m m m m m m	<pre>cne molal e: (1/m) log (S^O, 0.123 0.112 0.106 0.104 0.1250 0.1040 0.1003 0.0851 0.0804 0.0765 ) 0.0934 0.0922 ) 0.0806 0.1096 0.1095 0.1086 ) 0.1009</pre>	lectrolyte $k_{SX} = (1/m) \log (X^{O}/X)$ 0.131 0.120 0.113 0.112 0.133 0.112 0.133 0.112 0.108 0.0928 0.0881 0.0842 0.101 0.100 0.088 0.117 0.117	
Ne + H ₂ O + salt NaCl NaI LiCl LII KCl	288.15 293.15 298.15 303.15 288.15 298.15 298.15 298.15 298.15 298.15 298.15 293.15 (omit 298.15 298.15 288.15 293.15 288.15 293.15 (omit 298.15 293.15 (omit 295.65 298.15	k _s = 0.1265 0.118 0.1076 0.1036 0.1303 ted val 0.1045 0.1014 0.0858 0.0826 0.0774 ted k _s 0.0979 0.1021 ted k _s 0.0884 0.1164 0.1164 0.1164 0.0893	a + b m - 0.00375 + 0.0001 - 0.0020 + 0.0020 + 0.00045 - 0.00053 - 0.00053 - 0.00053 - 0.00011 - 0.00022 - 0.00095 - 0.00095 value at 0 - 0.00445 - 0.0099 value at 1 - 0.00485 - 0.00785 - 0.00785 - 0.00745 - 0.00745 - 0.00745 - 0.00745 - 0.00745 - 0.00745 - 0.00745 - 0.00745 - 0.00745 - 0.000745 - 0.00075 - 0.000	m m m m m m m .330 m .330 m .330 m .346 m m .122 m m m	<pre>cne molal e: (1/m) log (S^O, 0.123 0.112 0.106 0.104 0.1250 0.1040 0.1003 0.0851 0.0804 0.0765 ) 0.0934 0.0922 ) 0.0806 0.1096 0.1095 0.1086 ) 0.1009 0.0887</pre>	lectrolyte $k_{SX} = (1/m) \log (X^{O}/X)$ 0.131 0.120 0.113 0.112 0.133 0.112 0.133 0.112 0.108 0.0928 0.0881 0.0842 0.101 0.100 0.088 0.117 0.116 0.109 0.0964	
Ne + H ₂ O + salt NaCl NaI LiCl LiI	288.15 293.15 298.15 303.15 288.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 293.15 (omit 298.15 293.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 293.15 (omit 298.15	k _s = 0.1265 0.118 0.1076 0.1036 0.1303 ted val 0.1045 0.1014 0.0858 0.0826 0.0774 ted k _s 0.0979 0.1021 ted k _s 0.0884 0.1164 0.1164 0.1164 0.0893 0.1252	a + b m - 0.00375 + 0.0001 - 0.0020 + 0.00045 - 0.00053 ue at 0.57 - 0.00053 ue at 0.57 - 0.00011 - 0.00075 - 0.0009 p value at 0 - 0.00445 - 0.0099 p value at 1 - 0.0078 p - 0.0078 p - 0.0048 p - 0.0069 p value at 0 - 0.0074 p - 0.0078 p - 0.0074 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078 p - 0.0078	m m m m m m m .330 m .330 m m .346 m m .122 m m m m m m m m	<pre>cne molal e: (1/m) log (S^O, 0.123 0.112 0.106 0.104 0.1250 0.1040 0.1003 0.0851 0.0804 0.0765 ) 0.0934 0.0922 ) 0.0806 0.1096 0.1095 0.1086 ) 0.1009</pre>	lectrolyte $k_{SX} = \frac{(1/m) \log (X^{0}/X)}{(1/m) \log (X^{0}/X)}$ 0.131 0.120 0.113 0.112 0.133 0.112 0.133 0.112 0.108 0.0928 0.0881 0.0842 0.101 0.100 0.088 0.117 0.117 0.116 0.109	
Ne + H ₂ O + salt NaCl NaI LiCl LiI KCl	288.15 293.15 298.15 303.15 288.15 298.15 298.15 298.15 298.15 298.15 298.15 293.15 293.15 (omit 298.15 293.15 293.15 293.15 293.15 293.15 293.15 293.15 293.15 293.15 293.15 293.15 293.15	k _s = 0.1265 0.1118 0.1076 0.1036 0.1036 0.1303 ted val 0.1045 0.1014 0.0858 0.0826 0.0774 ted k _s 0.0979 0.1021 ted k _s 0.0884 0.1144 0.1160 ted k _s 0.1041 0.0893 0.1252 0.1122 0.1053	- 0.00375 + 0.0001 - 0.0020 + 0.00045 - 0.0053 ue at 0.57 - 0.0005 - 0.00011 - 0.0005 - 0.00011 - 0.00075 - 0.0022 - 0.0009 value at 0 - 0.0009 value at 1 - 0.0078 - 0.0078 - 0.0078 - 0.0078 - 0.0078 - 0.00063	m m m m m m m m .330 m .346 m m m .122 m m m m m m m m m m m m	<pre>cne molal e: (1/m) log (S^O, 0.123 0.112 0.106 0.104 0.1250 0.1040 0.103 0.0851 0.0804 0.0765 ) 0.0934 0.0922 ) 0.0806 0.1096 0.1095 0.1086 ) 0.1009 0.0887 0.1174 0.0991</pre>	lectrolyte $k_{SX} = \frac{(1/m) \log (X^{O}/X)}{(1/m) \log (X^{O}/X)}$ 0.131 0.120 0.133 0.112 0.133 0.112 0.108 0.0928 0.0881 0.0842 0.101 0.100 0.088 0.117 0.116 0.109 0.0964 0.125 0.114 0.107	
+ salt NaCl NaI LiCl LII KCl	288.15 293.15 298.15 303.15 288.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 293.15 298.15 298.15 298.15 298.15 288.15 293.15 293.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15	k _s = 0.1265 0.1118 0.1076 0.1036 0.1036 0.1303 ted val 0.1045 0.1014 0.0858 0.0979 0.1021 ted k _s 0.0979 0.1021 ted k _s 0.0884 0.1144 0.1160 ted k _s 0.1041 0.0893 0.1252 0.1053 0.1001 ted k _s	a + b m - 0.00375 + 0.0001 - 0.0020 + 0.0020 + 0.00045 - 0.00053 - 0.00053 - 0.00075 - 0.00022 - 0.00099 value at 0 - 0.00445 - 0.0099 value at 1 - 0.0048 - 0.0078 - 0.0032 - 0.0006 - 0.0006 - 0.0078 - 0.0051	m m m m m m m m .330 m m .330 m m m .336 m m m .122 m m m m .252 m	<pre>cne molal e: (1/m) log (S^O, 0.123 0.112 0.106 0.104 0.1250 0.1040 0.1003 0.0851 0.0804 0.0765 ) 0.0934 0.0922 ) 0.0806 0.1096 0.1095 0.1086 ) 0.1009 0.0887 0.1174 0.1061 0.0991 0.0960</pre>	lectrolyte $k_{SX} = (1/m) \log (X^{O}/X)$ 0.131 0.120 0.113 0.112 0.133 0.112 0.133 0.112 0.108 0.0928 0.0881 0.0842 0.101 0.100 0.088 0.117 0.117 0.116 0.109 0.0964 0.125 0.114	

COMPONENTS:		OPICINAL MELOW	ENENDO -	
		ORIGINAL MEASUREMENTS:		
1. Neon; Ne; 7440-01-9		LIESTOV, G.A	.; Patsatsiya, K.M.	
2. Water; H ₂ O; 7732-18-5				
3. Methanol (Methyl Alcoho 67-56-1	ol); CH ₄ O;	<u>Zh. Fiz. Khim. 1971, 45, 1768 - 1770.</u> <u>Russ. J. Phys. Chem. (Engl. Transl.)</u> 1971, 45, 1000 - 1001.		
VARIABLES:		PREPARED BY:	·····	
T/K: 283.15 - 313. Total P/kPa: 101.325 ()	15 1 atm)	P.	. L. Long	
	l Fraction thanol X ₃	Bunsen Coefficient at 1 atm Total Pressure $\alpha \times 10^2$	Bunsen Coefficient at 1 atm Ne Pressure $\alpha \times 10^2$	
283.15	0.00 0.05 0.10 0.20 0.40 0.60 0.80	1.092 1.162 1.118 1.074 1.360 2.000 2.778	1.105 1.190 1.138 1.100 1.409 2.086 2.920	
293.15	0.00 0.05 0.10 0.20 0.40 0.60 0.80	1.045 1.100 1.084 1.075 1.377 2.035 2.812	1.085 1.132 1.124 1.127 1.470 2.205 3.085	
303.15	0.00 0.05 0.10 0.20 0.40 0.60 0.80	1.002 1.050 1.048 1.075 1.406 2.074 2.850	1.044 1.110 1.125 1.170 1.582 2.395 3.410	
<u>Continued on</u>		THEODUCATION	·····	
	AUXILIARY	INFORMATION		
METHOD: The apparatus (1) is a m of the apparatus of Ben-Na (2). Modifications include a larger water thermostat, dition of an attached dega device, and a bubbler to p the gas with solvent vapor	im and Baer the use of the ad- ssing resaturate	No informat:	ITY OF MATERIALS:	
The authors label their values as Ostwald coeffici However, comparison of the with the results of other for water, and the careful of other papers from the I Laboratory convince the Ev that the solubility values coefficients measured at a pressure of gas + solvent pressure of one atm. The authors do not quote ence for the vapor pressur water + methanol mixtures. could not check the conver the Bunsen coefficent from pressure of one atm to one	ents, $\gamma^{0}$ . ir results authors reading vanovo aluator are Bunsen total vapor a refer- e of the Thus we sion of a total	REFERENCES: 1. Patsatsiy <u>Zh. Fiz</u> . 2. Ben-Naim,	<pre>R: δα/α = 0.01 (Compiler) a, K.M.; Krestov, G.A. <u>Khim</u>. 1970, <u>44</u>, 1835. A.; Baer, S. <u>raday Soc</u>. 1963, <u>59</u>, 2735.</pre>	

ł

COMPONENTS:	· · · · · · · · · · · · · · · · · · ·	ORIGINAL MEAC	IIDEMENTS .	
1. Neon; Ne; 7440-01-	.9	ORIGINAL MEASUREMENTS: Krestov, G.A.; Patsatsiya, K.M.		
2. Water; H ₂ O; 7732-1			-	
3. Methanol (Methyl A 67-56-1		Zh. Fiz. Khim. 1971, <u>45</u> , 1768-1770. Russ. J. Phys. Chem. (Engl. Transl.) 1971, <u>45</u> , 1000-1001.		
VARIABLES: T/K: 283.15 - Total P/kPa: 101.325	· 313.15 (1 atm)	PREPARED BY: P.L. Long		
EXPERIMENTAL VALUES:				
T/K	Mol Fraction Methanol X ₃	Coefficient at 1 atm Total Pressure	Bunsen Coefficient at 1 atm Ne Pressure	
		α x 10 ²	$\alpha \times 10^2$	
313.15	0.00 0.05 0.10 0.20 0.40 0.60 0.80	0.942 0.995 1.017 1.077 1.438 2.122 2.895	1.011 1.088 1.177 1.244 1.737 2.650 3.743	
	AUXILIAR	INFORMATION		
METHOD:			RITY OF MATERIALS:	
See preceding page.		See precedi	-	
	<u> </u>	ESTIMATED ERF	ROR:	
APPARATUS/PROCEDURE: See preceding page.		See precedi	ng page.	
		REFERENCES:		
		See precedi	ng page.	

		ORIGINAL.	MEASUREMENTS :			
7440-01-	9	Krestov, G.A.; Patsatsiya, K.M.				
<pre>3. Ethanol (Ethyl Alcohol); C₂H₆O; 64-17-5</pre>			Izv. Vyssh. Uchebn. Zaved., Khim. Khim Tekhnol. 1969, 12, 1333-1337.			
		PREPARED	BY:			
VARIABLES: T/K: 283.15 - 313.15 Total P/kPa: 101.325 (1 atm)			P. L. Long			
LUES:			······································			
		T/K	Mol Fraction Ethanol X3	Bunsen Coefficient at 1 atm Total Pressure $\alpha \times 10^2$		
0.00 0.02 0.04 0.06 0.08 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.60 0.70 0.80 0.90 1.00	1.092 1.140 1.138 1.113 1.072 1.043 1.021 1.076 1.195 1.334 1.476 1.630 1.791 1.950 2.282 2.624 2.984 3.355 3.726	293.15	0.00 0.02 0.04 0.06 0.08 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.60 0.70 0.80 0.90 1.00	1.045 1.091 1.092 1.062 1.029 1.008 1.027 1.074 1.216 1.362 1.507 1.662 1.826 1.994 2.335 2.675 3.035 3.402 3.772		
<u> </u>	AUXILIARY	INFORMATI	ON			
·		SOURCE A	ND PURITY OF MATE	RIALS:		
atus of Be ifications ger water a degassin resaturate	en-Naim and Baer s include the thermostat, the ng device, and a					
solvent vapor. The authors label their solubility values as Ostwald coefficients, $\gamma^0$ . However, comparison of their results with the results of other workers for water and ethanol, and the careful reading of other papers from the Ivanovo Laboratory convince the Evaluator that the solubility values are Bunsen coefficients measured at a total pressure of gas + solvent vapor pressure of one atm. A knowledge of the solvent vapor pressure is required to convert the above solubility values to Bunsen coefficents at one atm Ne pressure.			δα/α = ES: atsiya, K.M.; rt on the Seco erence on Theo -Ata, 1968. Naim, A.; Baer	ond All-Union ory of Solution,"		
	C; 7732-1 (Ethyl Al (Ethyl Al 2: 283.15 a: 101.32 (UUES: Fraction nol 3 0.00 0.02 0.04 0.06 0.02 0.04 0.06 0.02 0.04 0.06 0.08 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.35 0.40 0.45 0.50 0.35 0.40 0.45 0.50 0.60 0.70 0.80 0.90 1.00 (Complete the second complete	$\frac{1}{2} \cdot 283.15 - 313.15$ a: 101.325 (1 atm) LUES: Fraction Bunsen nol Coefficient 3 at 1 atm Total Pressure a x 10 ² 0.00 1.092 0.02 1.140 0.00 1.092 0.02 1.140 0.04 1.138 0.06 1.113 0.08 1.072 0.10 1.043 0.15 1.021 0.20 1.076 0.25 1.195 0.30 1.334 0.35 1.476 0.40 1.630 0.45 1.791 0.50 1.950 0.60 2.282 0.70 2.624 0.80 2.984 0.90 3.355 1.00 3.726 AUXILIARY tus (1) is a modification atus of Ben-Naim and Baer ifications include the ger water thermostat, the a degassing device, and a resaturate the gas with r. s label their solubility twald coefficients, $\gamma^{0}$ . parison of their results ults of other workers for hanol, and the careful ther papers from the ratory convince the at the solubility values oefficients measured at a re of gas + solvent vapor one atm. A knowledge of vapor pressure is required he above solubility nsen coefficents at one	0; 7732-18-5 (Ethyl Alcohol); $C_{2}H_{6}O$ ; $Izv. Vy$ Khim Te : 283.15 - 313.15 a: 101.325 (1 atm) LUES: Fraction Bunsen T/K nol Coefficient 3 at 1 atm Total Pressure a x 10 ² 0.00 1.092 293.15 0.02 1.140 0.04 1.138 0.06 1.113 0.08 1.072 0.10 1.043 0.15 1.021 0.20 1.076 0.25 1.195 0.30 1.334 0.35 1.476 0.40 1.630 0.45 1.791 0.50 1.950 0.60 2.282 0.70 2.624 0.70 2.624 0.80 2.984 0.90 3.355 1.00 3.726 AUXILIARY INFORMATI AUXILIARY INFORMATI AUXILIARY INFORMATI S label their solubility twald coefficients, $\gamma^{0}$ . parison of their results ults of other workers for haol, and the careful ther papers from the ratory convince the at the solubility values oefficients measured at a re of gas + solvent vapor ne atm. A knowledge of vapor pressure is required 1. Pats "Repo REFERENC REFERENC Conf Alma	0; 7732-18-5 (Ethyl Alcohol); $C_2H_6O$ ; Izv. Vyssh. Uchebn. Z Khim Tekhnol. 1969, I $Khim Tekhnol. 1969, IPREPARED BY:PREPARED BY:P. L. LongPREPARED BY:TotalPressurea x 1020.00 1.092 293.15 0.000.02 1.140 0.020.04 1.138 0.040.06 1.113 0.060.08 1.072 0.080.10 1.043 0.100.15 1.021 0.150.25 1.195 0.250.30 1.334 0.300.35 1.476 0.350.40 1.630 0.400.45 1.791 0.450.50 2.282 0.600.70 2.624 0.700.60 2.282 0.600.70 2.624 0.700.60 2.984 0.800.90 3.355 0.901.00 3.726 1.00AUXILIARY INFORMATIONAUXILIARY INFORMATIONAUXILIARY INFORMATIONAUXILIARY INFORMATIONREFERENCES:TIMATED ERROR:\delta \alpha / \alpha =REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:AUXILIARY INFORMATIONAUXILIARY INFORMATIONREFERENCES:REFERENCES:AUXILIARY INFORMATIONREFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFERENCES:REFE$		

		ORIGINAL ME	ASUPEMENTS .			
7440-01-9		Krestov, G.A.; Patsatsiya, K.M.				
D; 7732-18-	5					
<ol> <li>Water; H₂O; 7732-18-5</li> <li>Ethanol (Ethyl Alcohol); C₂H₆O; 64-17-5</li> </ol>			Izv. Vyssh. Uchebn. Zaved., Khim. Khim Tekhnol. 1969, 12, 1333-1337.			
ARIABLES: T/K: 283.15 - 313.15 otal P/kPa: 101.325 (1 atm)		PREPARED BY	•			
		PREPARED BY: P.L. Long				
ES:		l				
l Fraction hanol X ₃	Bunsen Coefficient at 1 atm Total Pressure $\alpha \times 10^2$	T/K	Mol Fraction Ethanol X ₃	Bunsen Coefficient at 1 atm Total Pressure $\alpha \times 10^2$		
0.00 0.02 0.04 0.06 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.60 0.70 0.80 0.90 1.00	1.002 1.024 1.023 1.005 0.975 C.966 0.983 1.072 1.234 1.387 1.556 1.716 1.860 2.047 2.397 2.746 3.102 3.471 3.826	313.15	0.00 0.02 0.04 0.06 0.08 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.60 0.70 0.80 0.90 1.00	0.942 0.950 0.946 0.935 0.924 0.923 0.968 1.070 1.252 1.440 1.593 1.762 1.933 2.109 2.466 2.823 3.161 3.544 3.906		
	AUXILIARY	INFORMATION				
				AT C .		
2200				ALD;		
£~7~.						
		ESTIMATED H	ERROR:			
JRE: page.		See preceding page.				
		REFERENCES	:			
		See prece	ding page.			
	D; 7732-18- Ethyl Alcoho 283.15 - 3 101.325 (1 ES: L Fraction anol X ₃ 0.00 0.02 0.04 0.06 0.08 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.60 0.70 0.80 0.90 1.00 Page.	D; 7732-18-5 Ethyl Alcohol); C ₂ H ₆ O; 283.15 - 313.15 101.325 (1 atm) ES: I Fraction Bunsen hanol Coefficient X ₃ at 1 atm Total Pressure a x 10 ² 0.00 1.002 0.02 1.024 0.04 1.023 0.06 1.005 0.08 0.975 0.10 C.966 0.15 0.983 0.20 1.072 0.25 1.234 0.30 1.387 0.35 1.556 0.40 1.716 0.45 1.860 0.50 2.047 0.60 2.397 0.70 2.746 0.80 3.102 0.90 3.471 1.00 3.826 AUXILIARY page.	7440-01-9       Krestov,         D; 7732-18-5       Izv. Vyss         Sthyl Alcohol); C2H60;       Izv. Vyss         283.15 - 313.15       PREPARED BY         101.325 (1 atm)       PREPARED BY         ES:       Traction Bunsen to at 1 atm Total Pressure a x 102         0.00       1.002       313.15         0.00       1.002       313.15         0.00       1.002       313.15         0.00       1.023       313.15         0.00       1.023       313.15         0.00       1.023       313.15         0.00       1.024       313.15         0.01       0.983       30.20         0.10       0.983       30.20         0.10       0.983       30.20         0.30       1.387       35         0.30       1.870       3.826         AUXILLARY INFORMATION         Page.         AUXILLARY INFORMATION         See prece         See prece         REFERENCES	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

COMPONENTS :		ORIGINAL MEASUREMENTS:
		Borina, A.F.
1. Neon; Ne; 7440-01-	9	
2. Water; H ₂ O; 7732-1	8-5	
3. Urea; $CH_4N_2O$ ((NH ₂ )	) ₂ CO); 57-13-6	<u>Zh. Fiz. Khim</u> . 1977, <u>51</u> , 138 - 142. <u>Russ</u> . J. <u>Phys</u> . <u>Chem</u> . 1977, <u>51</u> , 76-78.
VARIABLES: T/K: 288.15 -	303.15	PREPARED BY:
Total P/kPa: 98.659		H. L. Clever
Urea/mol kg ⁻¹ H ₂ O: 0	- 11	
EXPERIMENTAL VALUES:		
T/K Urea mol kg ⁻¹ H ₂ O	Mol Fraction N $X_1 \times 10^9$ at 1 mmHg	Nol Fraction X ₁ x 10 ⁴ at 1 atm
288.15 0	11.39	0.0866
0.603	10.80	0.0821
1.125	10.53 10.38	0.0800
1.200 1.850	10.38	0.0789 0.0772
2.120	9.82	0.0746
2.910	9.29	0.0706
4.810	8.45	0.0642
5.040 7.670	8.37 7.78	0.0636 0.0591
9.080	7.40	0.0562
10.960	7.17	0.0545
293.15 0	10.98	0.0835
0.612	10.51	0.0799
1.191	10.34	0.0786
1.695 2.370	9.92 9.36	0.0754 0.0711
3.785	8.90	0.0676
4.950	8.25	0.0627
5.555	8.18 7.67	0.0622 0.0583
6.950 7.580	7.55	0.0574
9.080	7.35	0.0559
Table continued on nex	xt page.	
	AUXILIARY	INFORMATION
METHOD /APPARATUS/PROCE	DURE :	SOURCE AND PURITY OF MATERIALS:
The apparatus, describ		11. Aconspectatly pare grade.
papers (1,2), was base of Ben-Naim and Baer (		Contained 0.1 per cent of other
ratus is designed to m		gases.
ence in volume of the	gas before disso	
lution and after disso		3. Urea. Analytical reagent grade.
plete with the gas and contact at constant pr		
The calculation of t	he inverse Henry	
constant was described	by Borina and	
Samoilov (4). The concentration of	the urea so-	
lution was checked on		ESTIMATED ERROR:
density after each exp	erimentThe cali-	ESTIMIED BARON.
bration curves were pr		
density data from the from the authors'own m		
The solubility measu	rement was	$\delta x_1 / x_1 = 0.0035 - 0.0050$
carried out at a total	pressure of	REFERENCES:
neon + water vapor of solubility values in t	740 mmHg. The	<ol> <li>Lyashchenko, A.K.; Borina, A.F. Zh. Strukt. Khim. 1971, 12, 964.</li> </ol>
were calculated for ei	ther 1 mmHg or	2. Borina, A.F.; Lyashchenko, A.K.
l atm partial pressure	of neon.	Zh. Fiz. Khim. 1971, 45, 1316.
1		3. Ben-Naim, A.; Baer, S. Trans. Faraday Soc. 1963, <u>59</u> ,2735.
		4. Borina, A.F.; Samoilov, O. Ya.
L		Zh. Strukt. Khim. 1974, 15, 395.

COMPONENTS :	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Borina, A. F.
2. Water; H ₂ O; 7732-18-5	<u>Zh</u> . <u>Fiz</u> . <u>Khim</u> . 1977, <u>51</u> , 138 - 142.
3. Urea; $CH_4N_2O$ ((NH ₂ ) ₂ CO);57-13-6	Continued from previous page.

```
EXPERIMENTAL DATA:
```

т/к	Urea	Mol Fraction	Mol Fraction
	mol kg ⁻¹ H ₂ O	$X_1 \times 10^9$ at 1 mmHg	$\begin{array}{c} x_1 \times 10^4 \\ at 1 atm \end{array}$
298.15	0	10.58	0.0804
	0.897	9.92	0.0754
	1.465	9.76	0.0742
	2.172	9.51	0.0723
	3.047	9.09	0.0691
	4.500	8.41	0.0639
	5.805	7.96	0.0605
	6.000	7.88	0.0599
	7.420	7.78	0.0591
	8.350	7.67	0.0583
	10.220	7.15	0.0543
303.15	0	10.54	0.0801
	0.425	10.26	0.0780
	1.080	9.96	0.0757
	1.980	9.48	0.0720
	2.917	9.10	0.0692
	3.310	8.94	0.0679
	4.225	8.58	0.0652
	6.460	7.97	0.0606
	7.740	7.76	0.0590
	8.100	7.72	0.0587
	10.420	7.05	0.0536
	11.070	7.05	0.0536

The inverse of the mole fraction solubility at 1 mmHg is the Henry constant K/mmHg =  $P/X_1$ 

The inverse of the mole fraction solubility at 1 atm pressure is the Henry constant K/atm =  $P/X_1$ .

The mole fraction solubility at 101.325 kPa (1 atm) was calculated by the compiler.

The original paper presents graphs of the enthalpy change and entropy change as a function of urea molality for the transfer on neon gas at a pressure of 101.325 kPa (l atm) to the hypothetical solution of unit neon mole fraction.

COMPONENTS:		ORIGINAL MEAS	UREMENTS :	
l. Neon; Ne; 7440-01-9		Makranczy, J.; Megyery-Balog, K.;		
2. Pentane; C ₅ H ₁₂ ; 109-66	Rusz, L.;	Patyi, L.		
5 12				
		Hung, J. In	d. Chem. 1976	, <u>4</u> , 269-280.
VARIABLES:		PREPARED BY:		
т/к: 298.15				
P/kPa: 101.325 (1	atm)		S. A. Johnson	L
EXPERIMENTAL VALUES:	······································			
T/K Mol	Fraction	Bunsen	Ostwald	-
x	(1 × 10 ⁴	Coefficient a x 10 ²	Coefficient L x 10 ²	
298.15	4.1	8.0	8.7	
The mole fraction and Buns		ont word and	oulstod hu th	- compiler
The more fraction and build	JOCTIECE	Life here out		
	AUXILIARY	INFORMATION		
	AUXILIARY	INFORMATION		
METHOD:		SOURCE AND PU	URITY OF MATERIA	
Volumetric method. The ap	pparatus of	SOURCE AND PU Both the ga cal grade r	as and liquid reagents of Hu	were analyti- Ingarian or
	pparatus of	SOURCE AND PU Both the ga cal grade r foreign ori		were analyti- Ingarian or
Volumetric method. The ap Bodor, Bor, Mohai, and Sip	pparatus of	SOURCE AND PU Both the ga cal grade r	as and liquid reagents of Hu	were analyti- Ingarian or
Volumetric method. The ap Bodor, Bor, Mohai, and Sip	pparatus of	SOURCE AND PU Both the ga cal grade r foreign ori	as and liquid reagents of Hu	were analyti- Ingarian or
Volumetric method. The ap Bodor, Bor, Mohai, and Sip	pparatus of	SOURCE AND PU Both the ga cal grade r foreign ori	as and liquid reagents of Hu	were analyti- Ingarian or
Volumetric method. The ap Bodor, Bor, Mohai, and Sip	pparatus of	SOURCE AND PU Both the ga cal grade r foreign ori	as and liquid reagents of Hu	were analyti- Ingarian or
Volumetric method. The ap Bodor, Bor, Mohai, and Sip	pparatus of	SOURCE AND PU Both the ga cal grade r foreign ori	as and liquid reagents of Hu	were analyti- Ingarian or
Volumetric method. The ap Bodor, Bor, Mohai, and Sip	pparatus of	SOURCE AND PU Both the ga cal grade r foreign ori	as and liquid reagents of Hu	were analyti- Ingarian or
Volumetric method. The ap Bodor, Bor, Mohai, and Sip	pparatus of	SOURCE AND PU Both the ga cal grade r foreign ori tion.	as and liquid reagents of Hu Lgin. No furt	were analyti- Ingarian or
Volumetric method. The ap Bodor, Bor, Mohai, and Sip used.	pparatus of	SOURCE AND PU Both the ga cal grade r foreign ori	as and liquid reagents of Hu Lgin. No furt	were analyti- Ingarian or
Volumetric method. The ap Bodor, Bor, Mohai, and Sip	pparatus of	SOURCE AND PU Both the ga cal grade r foreign ori tion.	as and liquid reagents of Hu Lgin. No furt ROR:	were analyti- ingarian or ther informa-
Volumetric method. The ap Bodor, Bor, Mohai, and Sip used.	pparatus of	SOURCE AND PU Both the ga cal grade r foreign ori tion.	as and liquid reagents of Hu Lgin. No furt	were analyti- ingarian or ther informa-
Volumetric method. The ap Bodor, Bor, Mohai, and Sip used.	pparatus of	SOURCE AND PU Both the ga cal grade r foreign ori tion.	as and liquid reagents of Hu Lgin. No furt ROR:	were analyti- ingarian or ther informa-
Volumetric method. The ap Bodor, Bor, Mohai, and Sip used.	pparatus of	SOURCE AND PU Both the ga cal grade r foreign ori tion. ESTIMATED ERF	as and liquid reagents of Hu Igin. No furt ROR: $\delta X_1/X_1 = 0.$	were analyti- ingarian or ther informa-
Volumetric method. The ap Bodor, Bor, Mohai, and Sip used.	pparatus of	SOURCE AND PU Both the ga cal grade r foreign ori tion. ESTIMATED ERF REFERENCES: 1. Bodor,	As and liquid reagents of Hu Lgin. No furt ROR: $\delta X_1/X_1 = 0.$ E.; Bor, Gy.;	were analyti- ingarian or ther informa-
Volumetric method. The ap Bodor, Bor, Mohai, and Sip used.	pparatus of	SOURCE AND PU Both the ga cal grade r foreign ori tion. ESTIMATED ERF REFERENCES: 1. Bodor, Sipos Veszpre	as and liquid reagents of Hu Igin. No furt ROR: $\delta X_1/X_1 = 0$ E.; Bor, Gy.; s, G. emi Vegyip. Eg	were analyti- ingarian or ther informa-
Volumetric method. The ap Bodor, Bor, Mohai, and Sip used.	pparatus of	SOURCE AND PU Both the ga cal grade r foreign ori tion. ESTIMATED ERF REFERENCES: 1. Bodor, Sipos Veszpre 1957, 1	as and liquid reagents of Hu Igin. No furt ROR: $\delta X_1/X_1 = 0$ . E.; Bor, Gy.; s, G. emi Vegyip. Eq. L, 55;	were analyti- ingarian or ther informa- .03 ; Mohai, B.; gy. <u>Kozl</u> .
Volumetric method. The ap Bodor, Bor, Mohai, and Sip used.	pparatus of	SOURCE AND PU Both the ga cal grade r foreign ori tion. ESTIMATED ERF REFERENCES: 1. Bodor, Sipos Veszpre 1957, 1	as and liquid reagents of Hu Igin. No furt ROR: $\delta X_1/X_1 = 0$ E.; Bor, Gy.; s, G. emi Vegyip. Eg	were analyti- ingarian or ther informa- .03 ; Mohai, B.; gy. <u>Kozl</u> .
Volumetric method. The ap Bodor, Bor, Mohai, and Sip used.	pparatus of	SOURCE AND PU Both the ga cal grade r foreign ori tion. ESTIMATED ERF REFERENCES: 1. Bodor, Sipos Veszpre 1957, 1	as and liquid reagents of Hu Igin. No furt ROR: $\delta X_1/X_1 = 0$ . E.; Bor, Gy.; s, G. emi Vegyip. Eq. L, 55;	were analyti- ingarian or ther informa- .03 ; Mohai, B.; gy. <u>Kozl</u> .

COMPONENTS:			ORIGINAL MEASUREMENTS:		
			Clever, H.L.; Battino, R.; Saylor, J.H.; Gross, P.M.		
1. Neon; Ne; 74			Saytor, J	.n.; Gross, P	• 141 •
2. Hexane; C ₆ H ₁	<b>4; 110-5</b> 4	1-3			
		į	J. Phys. Ch	<u>em</u> . 1957, <u>61</u> ,	1078-1083.
VARIABLES:			PREPARED BY:	·····	
т/к: 28	7.15 - 3	1.85	р	.L.Long	
P/kPa: 1					
EXPERIMENTAL VALUES			·····		
	T/K	Mol Fraction X ₁ x 10 ⁴	Bunsen Coefficient ∝ x 10 ²	Ostwald Coefficient L x 10 ²	
	287.15	3.36	5,77	6.07	
	298.15	3.80	6.48	7.07	
	311.85	4.04	6.75	7.71	
Smoothed Data:	Std. Dev	$AG^{O} = 53.1,$ $D1^{-1} = 5,443.6,$	Coef. Corr. $\Delta S^O/J K^{-1}$	= 0.9959	25
	т/к	Mol Fraction $X_1 \times 10^4$	⊿G ^O /J mol ⁻¹		
	288.15 293.15 298.15 303.15 308.15 313.15	3.44 3.57 3.71 3.84 3.98 4.12	19,109 19,346 19,583 19,821 20,058 20,295		
The solubility 101.325 kPa (1 The Bunsen coef	atm) by H	lenry's law.			on of
	<u> </u>	AUXILIARY	INFORMATION		
METHOD: Volumetri urated with the an 8 mm x 180 c tached to a gas pressure of sol vapor pressure as the gas is a ADDED NOTE. Mak: Balog, K.;Rusz, Ind. Chem. 1976	gas as i m glass s buret. T ute gas p is mainta bsorbed. ranczy, J L.;Patyi	t flows throug piral at- the total blus solvent ined at 1 atm .; Megyery- , L. Hung. J.	h l. Neon. M standar were us results 2. Hexane. New Hav	d and research ed with no dif	Inc. Both n grades fference in kinson, Inc., n with H ₂ SO ₄ ,
Ostwald coeffic: K for this system used in the smooth APPARATUS/PROCEDUR modification of	ient of 0 em. The v othed dat ^E :The app that of	.076 at 298.15 alue was not a fit above. waratus is a Morrison and		$b^{R:} \delta T/K = 0.05 \\ \delta P/torr = 3 \\ \delta X_1/X_1 = 0$	3
Billett (1). The clude the addit age for the solution a constant reference extra buret for	ion of a vent, a m rence pre	spiral stor- anometer for ssure, and an	REFERENCES: 1. Morrison	, T.J.; Billet	
The solvent is of fication of the Daniel (2).	degassed	by a modi-	J. <u>Chem</u> . ibid.195	Soc. 1948, 20	)33;
			J. Appl.	<u>Chem</u> . 1952,	2, 161.

	· · · · · · · · · · · · · · · · · · ·
COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M.
2. Heptane; C ₇ H ₁₆ ; 142-82-5	
2. heptune, c ₇ ., ₁₆ , 112 oz o	J. Phys. Chem. 1957, 61, 1078 - 1083.
VARIABLES:	PREPARED BY:
T/K: 287.15 - 311.95 P/kPa: 101.325 (1 atm)	P. L. Long
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald
$x_{1} \times 10^{4}$	Coefficient Coefficient
287.15 3.30	5.09 5.35
298.15 3.48	5.29 5.77
311.95 3.96	5.92 6.76
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = - RT \ln$	$X_1 = 5,571.9 + 47.347 \text{ T}$
Std. Dev. $\Delta G = 45.0$ ,	Coef. Corr. = 0.9971
$\Delta H^{\circ}/J \text{ mol}^{-1} = 5,571.9$	, $\Delta S^{\circ}/J K^{-1} mol^{-1} = -47.347$
T/K Mol Frac X ₁ x 1	tion ΔG°/J mol ⁻¹ 04
283.15 3.15	18,978
288.15 3.29	
293.15 3.42 298.15 3.55	•
303.15 3.69	
308.15 3.82 313.15 3.96	•
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate	
AUXILIARY	INFORMATION
	SOURCE AND PURITY OF MATERIALS;
urated with the gas as it flows through an 8 mm x 180 cm glass spiral attached to a gas buret. The total pressure of solute gas plus solvent	<ol> <li>Neon. Matheson Co., Inc. Both standard and research grades were used.</li> </ol>
vapor pressure is maintained at 1 atm as the gas is absorbed.	2. Heptane. Phillips Petroleum Co. Bartlesville, OK. Used as
ADDED NOTE. Makranczy, J.; Megyery- Balog, K.;Rusz, L.;Patyi, L. <u>Hung. J.</u> Ind. Chem. 1976, <u>4</u> , 269 report an Ostwald coefficient of 0.069 at 298.1 K for this system. The value was not	received.
used in the smoothed data fit above.	ESTIMATED ERROR:
APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett(1). The modifications in- clude the addition of a spiral stor-	$\begin{array}{r} \delta T/K = 0.05\\ \delta P/torr = 3\\ \delta X_1/X_1 = 0.03 \end{array}$
age for the solvent, a manometer for	REFERENCES :
a constant reference pressure, and an extra buret for highly soluble gases. The solvent is degassed by a modifi- cation of the method of Baldwin and	1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033; <u>ibid.1952, 3819.</u>
Daniel (2).	2. Baldwin, R. R.; Daniel, S. G. J. <u>Appl</u> . <u>Chem</u> . 1952, <u>2</u> , 161.

COMPONENTS:	EVALUATOR:	
l. Neon; Ne; 7440-01-9	H. L. Clever Chemistry Department	
2. Octane; C ₈ H ₁₈ ; 111-65-9	Emory University Atlanta, GA 30322 U.S.A.	
	March 1978	

CRITICAL EVALUATION:

The solubility of neon in octane was measured at three laboratories. Clever, Battino, Saylor and Gross (1) report three solubility values between 287.25 and 312.15 K. Makranczy, Megyery-Balog, Rusz, and Patyi (2) and Wilcock, Battino and Danforth (3) each report one solubility value near 298 K.

The solubility value of Makranczy et al. (Ostwald coefficient  $5.7 \times 10^{-2}$  and mole fraction  $3.8 \times 10^{-4}$  at 298.15 K) is not recommended. It was reported to only two significant figures and it is 5.5 percent higher than the values from the other two laboratories.

The solubility values of Clever et al. and Wilcock et al. agree within 0.8 percent at 298.15 K. Without solubility values to compare at several temperatures it is not possible to recommend values of neon in octane solubility except for the mole fraction of  $3.595 \times 10^{-4}$  at 298.15 K and 101.325 kPa. However, we have combined the solubility data of Clever, et al. and Wilcock et al. in a one to one weight least squares fit to a Gibbs energy equation linear in temperature. The result gives a tentative set of solubility data and changes in thermodynamic properties.

The tentative values for the transfer of one mole of neon from the gas at a pressure of 101.325 kPa to the hypothetical unit mole fraction solution are

 $\Delta G^{\circ}/J \text{ mol}^{-1} = - RT \ln X_1 = 6,962.8 + 42.524 T$ 

Std. Dev.  $\triangle G^{\circ} = 27.6$ , Coef. Corr. = 0.9980

 $\Delta H^{\circ}/J \text{ mol}^{-1} = 6,962.8, \quad \Delta S^{\circ}/J \text{ K}^{-1} \text{ mol}^{-1} = -42.524$ 

The tentative solubility values and Gibbs energy as a function of temperature are in Table 1.

TABLE 1. The solubility of neon in octane. Tentative values of the mole fraction solubility at 101.325 kPa and the Gibbs energy change as a function of temperature.

Т/К	Mol Fraction $X_1 \times 10^4$	∆G°/J mol ⁻¹
288.15	3.285	19,216
293.15	3.45	19,429
298.15	3.62	19,641
303.15	3.79	19,854
308.15	3.97	20,067
313.15	4.14	20,279

 Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M. J. Phys. Chem. 1957, 61, 1078.

 Makranczy, J.; Megyery-Balog, K.; Rusz, L.; Patyi, L. <u>Hung. J. Ind.</u> Chem. 1976, 4, 269.

 Wilcock, R. J.; Battino, R.; Danforth, W. F.; Wilhelm, E. J. Chem. Thermodyn. 1978, 10, 817.

COMPONENTS:			ORIGINAL MEAS	UREMENTS:
1. Neon; Ne;	7440-01-9		Clever, H.L	.; Battino, R.;
2. Octane; C _{	3 ^H 18; 111-6	55-9	Saylor,	J.H.; Gross, P.M.
			J. Phys. Ch	<u>em</u> . 1957, <u>61</u> , 1078-1083.
VARIABLES:			PREPARED BY:	· · · · · · · · · · · · · · · · · · ·
	287.25 -			P.L. Long
P/kPa:	101.325	(1 atm)		- · - · - · · · · · · · · · · · · · · ·
EXPERIMENTAL VALU	JES:			
	T/K M		Bunsen Coefficient	Ostwald Coefficient
		x ₁ x 10 ⁴	α x 10 ²	L x 10 ²
	287.25	3.29	4.56	4.80
	298.35 312.15	3.58 4.14	4.91 5.58	5.36 6.38
Smoothed Data:				
		$\Delta G^{O} = 32.5,$	*	
	sta. Dev	$\Delta G = 32.5,$	coer. Corr.	= 0.998T
For the recomm	ended Gibb	s energy equa	tion and smo	othed values of the solu-
For the recomm	ended Gibb	s energy equa	tion and smo	
	ended Gibb	s energy equa evaluation of	tion and smo	othed values of the solu-
For the recomm bility see the METHOD:	The solv gas as it cm glass s The tot s solvent	AUXILIARY ent is satu- flows throug piral attached al pressure o vapor pressure	INFORMATION SOURCE AND PU 1. Neon. standa: used with results 2. Octane	othed values of the solu- ity of neon in octane. RITY OF MATERIALS: Matheson Co., Inc. Both rd and research grades wer ith no difference in s. . Humphrey-Wilkinson Inc. with H ₂ SO ₄ , washed, dried
For the recomm bility see the METHOD: Volumetric. rated with the an 8 mm x 180 to a gas buret solute gas plu is maintained absorbed.	The solv gas as it cm glass s . The tot s solvent at 1 atm a	AUXILIARY ent is satu- flows throug piral attached al pressure o vapor pressure	INFORMATION SOURCE AND PU 1. Neon. standa: used with results 2. Octane. Shaken	othed values of the solu- ity of neon in octane. WRITY OF MATERIALS: Matheson Co., Inc. Both rd and research grades wer ith no difference in s. . Humphrey-Wilkinson Inc. with H ₂ SO ₄ , washed, dried led.
For the recomm bility see the METHOD: Volumetric. rated with the an 8 mm x 180 to a gas buret solute gas plu is maintained absorbed. APPARATUS/PROCEDU The apparatu that of Morrise modifications	The solv gas as it cm glass s . The tot s solvent at 1 atm a	AUXILIARY ent is satu- flows throug piral attached al pressure of vapor pressure s the gas is dification of lett(1). The e addition of	INFORMATION SOURCE AND PU 1. Neon. standa: used wi results 2. Octane. Shaken distill	othed values of the solu- ity of neon in octane. RITY OF MATERIALS: Matheson Co., Inc. Both rd and research grades wer ith no difference in s. . Humphrey-Wilkinson Inc. with H ₂ SO ₄ , washed, dried led.
For the recomm bility see the METHOD: Volumetric. rated with the an 8 mm x 180 to a gas buret solute gas plu is maintained absorbed. APPARATUS/PROCEDU The apparatu	The solv gas as it cm glass s . The tot s solvent at 1 atm a	AUXILIARY ent is satu- flows throug piral attached al pressure of vapor pressure s the gas is dification of lett(1). The e addition of solvent, a reference uret for he solvent is on of the	INFORMATION SOURCE AND PU 1. Neon. Standa: used w: results 2. Octane. Shaken distill ESTIMATED ERR REFERENCES: 1. Morrisc J. Chem ibid.19	othed values of the solu- ity of neon in octane.

.

**ORIGINAL MEASUREMENTS:** COMPONENTS: 1. Neon; Ne; 7440-01-9 Wilcock, R.J.; Battino, R.; Danforth, W.F; Wilhelm, E. 2. Octane; C₃H₁₈; 111-65-9 J. Chem. Thermodyn. 1978, 10, 817-822. VARIABLES: PREPARED BY: т/к: 298.27 A.L. Cramer P/kPa: 101.325 (1 atm) **EXPERIMENTAL VALUES:** T/K Mol Fraction Bunsen Ostwald Coefficient Coefficient  $x_1 \times 10^4$  $\alpha \times 10^2$  $L \times 10^2$ 298.27 3,609 4.951 5.406 See the evaluation of neon + octane for recommended Gibbs equation and smoothed solubility values. The solubility value was adjusted to a partial pressure of neon of 101.325 kPa by Henry's law. The Bunsen coefficients were calculated by the compiler. AUXILIARY INFORMATION METHOD /APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: 1. The apparatus is based on the de-Neon. Matheson Co. Inc. sign of Morrison and Billett (1), and the version used is described by Purest commercially available grade. Battino, Evans, and Danforth (2). The degassing apparatus and procedure are 2. Octane. Phillips Petroleum Co. described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm³ of sol-vent is placed in a flask of such size minimum 99 mol per cent. that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N2 trap until the ESTIMATED ERROR: permanent gas residual pressure drops  $\delta T/K = 0.03$  $\delta P/mmHg = 0.5$  $\delta X_1/X_1 = 0.02$ to 5 microns. Solubility Determination. The degassed solvent is passed in a thin film down a glass spiral tube con-**REFERENCES**: taining the solute gas plus the sol-1.Morrison, T.J.; Billett, F. vent vapor at a total pressure of one J. Chem. Soc. 1948, 2033. atm. The volume of gas absorbed is found by difference between the ini-2.Battino, R.; Evans, F.D.; Danforth, W.F. J.Am.Oil Chem.Soc. 1968, 45, 830. tial and final volumes in the buret 3.Battino, R.; Banzhof, M.; Bogan, M.; system. The solvent is collected in a Wilhelm, E. tared flask and weighed. Anal. Chem. 1971, 43, 806.

COMPONENTS:	
	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M.
2. 3-Methylheptane; C ₈ H ₁₈ , 589-81-1	
	<u>J. Phys. Chem</u> . 1957, <u>61</u> , 1078 - 1083.
VARIABLES:	PREPARED BY:
T/K: 287.15 - 312.15 P/kPa: 101.325 (1 atm)	P. L. Long
EXPERIMENTAL VALUES:	
T/K Mol Fraction $X_1 \times 10^4$	BunsenOstwaldCoefficientCoefficient $\alpha \times 10^2$ L $\times 10^2$
287.15 3.47	4.85 5.10
298.15 3.66 312.15 4.18	5.05 5.51 5.66 6.47
Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = - RT \ln I$	-
Std. Dev. ∆G° = 46.3,	Coef. Corr. = 0.9969
$\Delta H^{\circ}/J \text{ mol}^{-1} = 5,652.7$	$\Delta S^{\circ}/J \mod K^{-1} \mod^{-1} = -46.652$
T/K Mol Fract $X_1 \times 10$	
283.15 3.31	
288.15 3.46 293.15 3.60	
298.15 3.74	
303.15 3.88 308.15 4.03	19,795 20,028
313.15 4.17	20,262
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The solvent is sat- urated with the gas as it flows through an 8 mm x 180 cm glass spiral	ed by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both
attached to a gas buret. The total pressure of solute gas plus solvent vapor pressure is maintained at 1 atm	were used with no difference in results.
as the gas is absorbed.	<ol> <li>3-Methylheptane. Humphrey- Wilkinson, Inc., New Haven, CN. Shaken with H₂SO₄, washed, dried over Na, distilled through a vacuum column.</li> </ol>
APPARATUS/PROCEDURE: The apparatus is a	ESTIMATED ERROR:
modification of that of Morrison and Billett(1). The modifications in- clude the addition of a spiral stor-	$\delta T/K = 0.05$ $\delta P/torr = 3$ $\delta X_1/X_1 = 0.03$
age for the solvent, a manometer for a constant reference pressure, and an extra buret for highly soluble gases. The solvent is degassed by a modifi- cation of the method of Baldwin and	REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033; <u>ibid</u> .1952, 3819.
Daniel (2).	<ol> <li>Baldwin, R. R.; Daniel, S. G. J. <u>Appl</u>. <u>Chem</u>. 1952, <u>2</u>, 161.</li> </ol>

COMPONENTS :	ODICINAL MELOUDING
	ORIGINAL MEASUREMENTS: Clever, H. L.; Battino, R.;
1. Neon; Ne; 7440-01-9	Saylor, J. H.; Gross, P. M.
2. 2,3-Dimethylhexane; C ₈ H ₁₈ ; 584-94-1	
	J. Phys. Chem. 1957, <u>61</u> , 1078 - 1083.
VARIABLES:	
т/к: 287.15 - 312.15	PREPARED BY: P. L. Long
P/kPa: 101.325 (1 atm)	
EXPERIMENTAL VALUES. T/K Mol Fraction	Bunsen Ostwald
	Coefficient Coefficient $\alpha \times 10^2$ L x $10^2$
287.15 3.28	4.61 4.85
298.15 3.66 312.15 4.00	5.09 5.56 5.47 6.25
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = -RT \ln$	$x_1 = 5,857.7 + 46.243 \text{ T}$
Std. Dev. ∆G° = 26.0,	Coef. Corr. = 0.9990
$\Delta H^{\circ}/J \text{ mol}^{-1} = 5.857.7$	$\Delta S^{\circ}/J K^{-1} mol^{-1} = -46.243$
T/K Mol Fract	tion $\Delta G^{\circ}/J \text{ mol}^{-1}$
$x_1 \times 10$	0 ⁴
283.15 3.19	
288.15 3.33 293.15 3.47	•
298.15 3.62	
303.15 3.76 308.15 3.90	19,876 20,108
313.15 4.05	20,339
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law.	o a partial pressure of neon of
The Bunsen coefficients were calculate	ed by the compiler.
AUXILIARY	INFORMATION
urated with the gas as it flows through an 8 mm x 180 cm glass spiral attached to a gas buret. The total pressure of solute gas plus solvent	were used with no difference in results.
vapor pressure is maintained at 1 atm as the gas is absorbed.	<ol> <li>2,3-Dimethylhexane. Humphrey- Wilkinson, Inc., New Haven, CT. Shaken with H₂SO₄, washed, dried over Na, distilled through a vacuum column.</li> </ol>
	ESTIMATED ERROR:
APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett(1). The modifications in-	$\begin{array}{l} \delta T/K = 0.05\\ \delta P/torr = 3\\ \delta X_1/X_1 = 0.03 \end{array}$
clude the addition of a spiral stor- age for the solvent, a manometer for	
a constant reference pressure, and an	REFERENCES:
extra buret for highly soluble gases. The solvent is degassed by a modifi- cation of the method of Baldwin and	1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033; ibid.1952, 3819.
Daniel (2).	2. Baldwin, R. R.; Daniel, S. G. J. Appl. Chem. 1952, 2, 161.

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M.
2. 2,4-Dimethylhexane; C ₈ H ₁₈ ; 589-43-5	
	J. Phys. Chem. 1957, 61, 1078 - 1083
VARIABLES:	PREPARED BY:
T/K: 287.35 - 312.15 P/kPa: 101.325 (1 atm)	PREPARED BY: P. L. Long
EXPERIMENTAL VALUES:	
T/K Mol Fraction X ₁ × 10 ⁴	Bunsen Ostwald Coefficient Coefficient $\alpha \times 10^2$ L x $10^2$
287.35 3.68	5.08 5.34
298.15 3.99 312.15 4.39	5.42 5.92 5.89 6.73
Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = -RT$	ln X ₁ = 5,303.5 + 47.287 T
Std. Dev. $\Delta G^\circ = 0.6$	, Coef. Corr. = 0.9999
$\Delta H^{\circ}/J \text{ mol}^{-1} = 5,303$	.5, $\Delta S^{\circ}/J K^{-1} mol^{-1} = -47.287$
T/K Mol Fra X ₁ x	action $\Delta G^{\circ}/J \text{ mol}^{-1}$ 10 ⁴
283.15 3.1	 56 18,693
288.15 3.1	70 18,929
	•
293.15 3. 298.15 3.	85 19,166
298.15 3. 303.15 4.	85 19,166 99 19,402 13 19,638
298.15 3.1	85       19,166         99       19,402         13       19,638         28       19,875
298.15 3.1 303.15 4.1 308.15 4.1	85 19,166 99 19,402 13 19,638 28 19,875 42 20,111 to a partial pressure of neon of
298.15 3. 303.15 4. 308.15 4. 313.15 4. The solubility values were adjusted 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calcula	85 19,166 99 19,402 13 19,638 28 19,875 42 20,111 to a partial pressure of neon of
298.15 3. 303.15 4. 308.15 4. 313.15 4. The solubility values were adjusted 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calcula AUXILIA METHOD: Volumetric. The solvent is sa	<pre>85 19,166 99 19,402 13 19,638 28 19,875 42 20,111 to a partial pressure of neon of ated by the compiler. RY INFORMATION at SOURCE AND PURITY OF MATERIALS:</pre>
298.15 3. 303.15 4. 308.15 4. 313.15 4. The solubility values were adjusted 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calcula AUXILIA METHOD: Volumetric. The solvent is sa urated with the gas as it flows	<pre>85 19,166 99 19,402 13 19,638 28 19,875 42 20,111 to a partial pressure of neon of ated by the compiler. RY INFORMATION at-SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both</pre>
298.15 3.1 303.15 4.1 308.15 4.2 313.15 4.2 The solubility values were adjusted 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calcula AUXILIA METHOD: Volumetric. The solvent is sa urated with the gas as it flows through an 8 mm x 180 cm glass spira attached to a gas buret. The total pressure of solute gas plus solvent	<pre>85 19,166 99 19,402 13 19,638 28 19,875 42 20,111 to a partial pressure of neon of ated by the compiler. RY INFORMATION at-SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in results.</pre>
298.15 3. 303.15 4. 308.15 4. 313.15 4. The solubility values were adjusted 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calcula AUXILIA METHOD: Volumetric. The solvent is sa urated with the gas as it flows through an 8 mm x 180 cm glass spira attached to a gas buret. The total	<pre>85 19,166 99 19,402 13 19,638 28 19,875 42 20,111 to a partial pressure of neon of ated by the compiler. RY INFORMATION at-SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in results. tm 2. 2,4-Dimethylhexane. Humphrey- Wilkinson, Inc., New Haven, CT.</pre>
298.15 3.1 303.15 4.1 308.15 4.2 313.15 4.2 The solubility values were adjusted 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculated METHOD: Volumetric. The solvent is saturated with the gas as it flows through an 8 mm x 180 cm glass spiral attached to a gas buret. The total pressure of solute gas plus solvent vapor pressure is maintained at 1 attached to a gas buret.	<pre>85 19,166 99 19,402 13 19,638 28 19,875 42 20,111 to a partial pressure of neon of ated by the compiler. RY INFORMATION at-SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in results. tm 2. 2,4-Dimethylhexane. Humphrey- Wilkinson, Inc., New Haven, CT.</pre>
298.15 3.1 303.15 4.1 308.15 4.2 313.15 4.2 The solubility values were adjusted 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculated METHOD: Volumetric. The solvent is saturated with the gas as it flows through an 8 mm x 180 cm glass spirated attached to a gas buret. The total pressure of solute gas plus solvent vapor pressure is maintained at 1 attached to a gas buret.	<pre>85 19,166 99 19,402 13 19,638 28 19,875 42 20,111 to a partial pressure of neon of ated by the compiler. RY INFORMATION at-SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in results. tm 2. 2,4-Dimethylhexane. Humphrey- Wilkinson, Inc., New Haven, CT. Shaken with H₂SO₄, washed, dried over Na, distilled through a vacuum column.</pre>
298.15 3. 303.15 4. 308.15 4. 313.15 4. The solubility values were adjusted 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculation MUXILIA METHOD: Volumetric. The solvent is saturated with the gas as it flows through an 8 mm x 180 cm glass spiration attached to a gas buret. The total pressure of solute gas plus solvent vapor pressure is maintained at 1 attached at 1 attached at 1 attached. APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett(1). The modifications in- clude the addition of a spiral stor-	85 19,166 99 19,402 13 19,638 28 19,875 42 20,111 to a partial pressure of neon of ated by the compiler. RY INFORMATION at-SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in results. tm 2. 2,4-Dimethylhexane. Humphrey- Wilkinson, Inc., New Haven, CT. Shaken with H ₂ SO ₄ , washed, dried over Na, distilled through a vacuum column. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta P/torr = 3$ $\delta X_1/X_1 = 0.03$
298.15 3. 303.15 4. 308.15 4. 313.15 4. The solubility values were adjusted 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calcula AUXILIA METHOD: Volumetric. The solvent is sa urated with the gas as it flows through an 8 mm x 180 cm glass spira attached to a gas buret. The total pressure of solute gas plus solvent vapor pressure is maintained at 1 at as the gas is absorbed. APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett(1). The modifications in-	85 19,166 99 19,402 13 19,638 28 19,875 42 20,111 to a partial pressure of neon of ated by the compiler. RY INFORMATION at-SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in results. 2. 2,4-Dimethylhexane. Humphrey- Wilkinson, Inc., New Haven, CT. Shaken with H ₂ SO ₄ , washed, dried over Na, distilled through a vacuum column. ESTIMATED ERROR: 6T/K = 0.05 6P/torr = 3 6X ₁ /X ₁ = 0.03 r REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033; Thid 1052 2010

COMPONENTS:		ORIGINAL MEASUREMENTS:
1. Neon; Ne;	7440-01-9	Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M.
	methylpentane; C ₈ H ₁₈ ;	
540-84-1	meenyipencane, c8"18,	
		<u>J. Phys. Chem. 1957, 61, 1078 - 108</u>
VARIABLES: T/K:	289.30 - 312.15	PREPARED BY: P. L. Long
P/kPa:	101.325 (1 atm)	
EXPERIMENTAL VALU	T/K Mol Fraction	
	$x_{1} \times 10^{4}$	Coefficient Coefficient $\alpha \times 10^2$ L x $10^2$
	289.30 4.32	5.90 6.25
	298.15 4.61	6.25 6.82
	312.15 4.96	6.60 7.54
Smoothed Data:	$\Delta G^{\circ}/J \text{ mol}^{-1} = - RT$	$\ln x_1 = 4,489.0 + 48.864 \text{ T}$
	Std. Dev. $\Delta G^\circ = 12$	7, Coef. Corr. = 0.9997
	$\Delta H^{\circ}/J \text{ mol}^{-1} = 4,489$	0.0, $\Delta S^{\circ}/J K^{-1} mol^{-1} = -48.864$
		$\Delta G^{\circ}/J \text{ mol}^{-1}$
	T/K Mol Fi X _l 3	$10^4$
		16 18,325
		30         18,569           44         18,813
		TO 010
	298.15 4.	.58 19,058
	303.15 4.	72 19,302
The solubility	303.15       4.         308.15       4.         313.15       5.	72         19,302           86         19,546           00         19,791
101.325 kPa (]	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law.	.72       19,302         .86       19,546         .00       19,791         Ito a partial pressure of neon of
101.325 kPa (]	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law. efficients were calcul	72       19,302         86       19,546         00       19,791         1 to a partial pressure of neon of
101.325 kPa (] The Bunsen coe	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law. efficients were calcul AUXILIA	72       19,302         86       19,546         00       19,791         1 to a partial pressure of neon of         .ated by the compiler.         ARY INFORMATION
101.325 kPa () The Bunsen coe METHOD: Volumetr urated with th	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law. efficients were calcul AUXILIA ric. The solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is solvent is	72       19,302         86       19,546         00       19,791         1 to a partial pressure of neon of         .ated by the compiler.         ARY INFORMATION         .ate-         SOURCE AND PURITY OF MATERIALS:         1. Neon. Matheson Co., Inc. Both
101.325 kPa () The Bunsen coe METHOD: Volumetr urated with th through an 8 m	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law. efficients were calcul AUXILIA ric. The solvent is a he gas as it flows m x 180 cm glass spir	72       19,302         86       19,546         900       19,791         1 to a partial pressure of neon of         .ated by the compiler.         ARY INFORMATION         Source AND PURITY OF MATERIALS:         1. Neon. Matheson Co., Inc. Both         standard and research grades
101.325 kPa () The Bunsen coe METHOD: Volumetr urated with th through an 8 m attached to a pressure of sc	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law. efficients were calcul AUXILIA ric. The solvent is solvent the gas as it flows m x 180 cm glass spir gas buret. The total plute gas plus solvent	72       19,302         86       19,546         90       19,791         4 to a partial pressure of neon of         .ated by the compiler.         ARY INFORMATION         Sat-         SOURCE AND PURITY OF MATERIALS:         1.       Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in results.
101.325 kPa () The Bunsen coe METHOD: Volumetr urated with th through an 8 m attached to a pressure of sc vapor pressure	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law. efficients were calcul AUXILIA ric. The solvent is s m x 180 cm glass spir gas buret. The total plute gas plus solvent a is maintained at 1 a	72       19,302         86       19,546         90       19,791         4 to a partial pressure of neon of         .ated by the compiler.         ARY INFORMATION         Sat-         SOURCE AND PURITY OF MATERIALS:         1.       Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in results.
101.325 kPa () The Bunsen coe METHOD: Volumetr urated with th through an 8 m attached to a pressure of sc	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law. efficients were calcul AUXILIA ric. The solvent is s m x 180 cm glass spir gas buret. The total plute gas plus solvent a is maintained at 1 a	72       19,302         86       19,546         90       19,791         ated by the compiler.         ARY INFORMATION         Sate         SOURCE AND PURITY OF MATERIALS:         1.       Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in results.         ttm       2.       2,2,4-Trimethylpentane. Enjay
101.325 kPa () The Bunsen coe METHOD: Volumetr urated with th through an 8 m attached to a pressure of sc vapor pressure	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law. efficients were calcul AUXILIA ric. The solvent is s m x 180 cm glass spir gas buret. The total plute gas plus solvent a is maintained at 1 a	72       19,302         86       19,546         90       19,791         1       to a partial pressure of neon of         .ated by the compiler.         ARY INFORMATION         Sat-         SOURCE AND PURITY OF MATERIALS:         1.         Neon.         Matheson Co., Inc.         Sata         Source used with no difference in results.         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .
101.325 kPa () The Bunsen coe METHOD: Volumetr urated with th through an 8 m attached to a pressure of sc vapor pressure	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law. efficients were calcul AUXILIA ric. The solvent is s m x 180 cm glass spir gas buret. The total plute gas plus solvent a is maintained at 1 a	72       19,302         86       19,546         90       19,791         ated by the compiler.         ARY INFORMATION         Sate         SOURCE AND PURITY OF MATERIALS:         1.       Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in results.         ttm       2.       2,2,4-Trimethylpentane. Enjay
101.325 kPa () The Bunsen coe METHOD: Volumetr urated with th through an 8 m attached to a pressure of sc vapor pressure	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law. efficients were calcul AUXILIA ric. The solvent is s m x 180 cm glass spir gas buret. The total plute gas plus solvent a is maintained at 1 a	72       19,302         86       19,546         90       19,791         ated by the compiler.         ARY INFORMATION         Sate         SOURCE AND PURITY OF MATERIALS:         1.       Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in results.         ttm       2.       2,2,4-Trimethylpentane. Enjay
101.325 kPa () The Bunsen coe METHOD: Volumetr urated with th through an 8 m attached to a pressure of so vapor pressure as the gas is	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law. efficients were calcul AUXILIA ric. The solvent is a be gas as it flows m x 180 cm glass spir gas buret. The total plute gas plus solvent is maintained at 1 a absorbed.	72       19,302         86       19,546         90       19,791         ato a partial pressure of neon of         .ated by the compiler.         ARY INFORMATION         Sat-         SOURCE AND PURITY OF MATERIALS:         1.       Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in results.         .tm       2.       2,2,4-Trimethylpentane. Enjay Co., New York. Used as receive
101.325 kPa () The Bunsen coe METHOD: Volumetr urated with th through an 8 m attached to a pressure of sc vapor pressure as the gas is	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law. efficients were calcul AUXILIA ric. The solvent is s m x 180 cm glass spir gas buret. The total plute gas plus solvent a is maintained at 1 a	<pre>72 19,302 86 19,546 00 19,791 4 to a partial pressure of neon of .ated by the compiler. ARY INFORMATION sat-SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in results. tm 2. 2,2,4-Trimethylpentane. Enjay Co., New York. Used as receive ESTIMATED ERROR:</pre>
101.325 kPa () The Bunsen coe METHOD: Volumetr urated with th through an 8 m attached to a pressure of sc vapor pressure as the gas is APPARATUS/PROCEDU modification o Billett(1). T	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law. efficients were calcul AUXILLA ric. The solvent is a be gas as it flows m x 180 cm glass spir gas buret. The total blute gas plus solvent is maintained at 1 a absorbed. RE: The apparatus is a of that of Morrison an the modifications in-	7219,3028619,546.0019,7911 to a partial pressure of neon of.ated by the compilerated by the compiler.ARY INFORMATION.at-SOURCE AND PURITY OF MATERIALS:1.Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in resultsatm2.2.2,2,4-Trimethylpentane. Enjay Co., New York. Used as receive.atm $\delta T/K = 0.05$ $\delta P/torr = 3$ $\delta X_1/X_1 = 0.03$
101.325 kPa () The Bunsen coe METHOD: Volumetr urated with th through an 8 m attached to a pressure of so vapor pressure as the gas is APPARATUS/PROCEDU modification o Billett(1). T clude the addi age for the so	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law. efficients were calcul AUXILI. AUXILI. ric. The solvent is a he gas as it flows m x 180 cm glass spir gas buret. The total blute gas plus solvent absorbed. RE: The apparatus is a of that of Morrison an he modifications in- tion of a spiral stor lyent, a manometer for	7219,3028619,5460019,7911 to a partial pressure of neon of.ated by the compiler.ARY INFORMATIONSat-SOURCE AND PURITY OF MATERIALS:1. Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in resultsatematical standard and research grades were used with no difference in resultsatematical standard and research grades were used with no difference in resultsatematical standard and research grades were used with no difference in resultsatematical standard and research grades were used with no difference in resultsatematical standard standard and research grades were used with no difference in resultsatematical standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard stand
101.325 kPa () The Bunsen coe METHOD: Volumetr urated with th through an 8 m attached to a pressure of so vapor pressure as the gas is APPARATUS/PROCEDU modification o Billett(1). T clude the addi age for the so a constant ref	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law. efficients were calcul AUXILI. AUXILI. ric. The solvent is solvent is solvent is solvent. The total plute gas plus solvent is maintained at 1 a absorbed. RE: The apparatus is a of that of Morrison and the modifications in- tion of a spiral stor lyent, a manometer for erence pressure, and	7219,3028619,5460019,7911 to a partial pressure of neon of.ated by the compiler.ARY INFORMATIONSat-SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in resultsatelSource and Purity of Materials: 1. Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in resultsatel2. 2,2,4-Trimethylpentane. Enjay Co., New York. Used as receive.atel $\delta T/K = 0.05$ $\delta P/torr = 3$ $\delta X_1/X_1 = 0.03$ .atelREFERENCES:
101.325 kPa () The Bunsen coe METHOD: Volumetr urated with th through an 8 m attached to a pressure of so vapor pressure as the gas is APPARATUS/PROCEDU modification o Billett(1). T clude the addi age for the so a constant ref	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law. efficients were calcul AUXILI. AUXILI. ric. The solvent is solvent is solvent is solvent. The total plute gas plus solvent is maintained at 1 a absorbed. RE: The apparatus is a of that of Morrison and that of Morrison and that of Morrison and that of Morrison and that of spiral stor lvent, a manometer for erence pressure, and r highly soluble gase	7219,3028619,546.0019,7911 to a partial pressure of neon of.ated by the compiler.ARY INFORMATION.ated SOURCE AND PURITY OF MATERIALS:1. Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in resultsated by the compilerated by th
101.325 kPa () The Bunsen coe METHOD: Volumetr urated with th through an 8 m attached to a pressure of so vapor pressure as the gas is APPARATUS/PROCEDU modification o Billett(1). T clude the addi age for the so a constant ref extra buret fo The solvent is cation of the	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law. efficients were calcul AUXILI. AUXILI. ric. The solvent is solvent is solvent is solvent. The total plute gas plus solvent is maintained at 1 a absorbed. RE: The apparatus is a of that of Morrison and the modifications in- tion of a spiral stor lyent, a manometer for erence pressure, and	7219,3028619,546.0019,7911 to a partial pressure of neon of.ated by the compiler.ARY INFORMATION.ated by the compilerated by the compiler. <t< td=""></t<>
101.325 kPa () The Bunsen coe METHOD: Volumetr urated with th through an 8 m attached to a pressure of so vapor pressure as the gas is APPARATUS/PROCEDU modification o Billett(1). Ti clude the addi age for the so a constant ref extra buret fo The solvent is	303.15 4. 308.15 4. 313.15 5. y values were adjusted atm) by Henry's law. efficients were calcul AUXILI. AUXILI. The solvent is solvent is solvent is maintained at 1 and absorbed. RE: The apparatus is and if that of Morrison and the modifications in- tion of a spiral stor lvent, a manometer for erence pressure, and r highly soluble gase degassed by a modifi	7219,3028619,546.0019,7911 to a partial pressure of neon of.ated by the compiler.ARY INFORMATION.ated SOURCE AND PURITY OF MATERIALS:1. Neon. Matheson Co., Inc. Both standard and research grades were used with no difference in resultsatel Source and Co., New York. Used as receive.atel ESTIMATED ERROR: $\delta P/torr = 3$ $\delta X_1/X_1 = 0.03$ .atel Co., New York. J.; Billett, F. J. Chem. Soc. 1948, 2033;

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Clever, H. L.; Battino, R. Saylor, J. H.; Gross, P. M.
2. Nonane; C ₉ H ₂₀ ; 111-84-2	
	<u>J. Phys. Chem</u> . 1957, <u>61</u> , 1078 - 1083
VARIABLES: T/K: 287.15 - 312.15	PREPARED BY:
P/kPa: 101.325 (1 atm)	P. L. Long
EXPERIMENTAL VALUES:	
T/K Mol Fraction	BunsenOstwaldCoefficientCoefficient $\alpha \times 10^2$ L x $10^2$
287.15 3.07	3.88 4.08
298.15 3.50 312.15 3.81	4.37 4.77 4.68 5.35
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = - RT \ln$	$X_{-} = 6_{-}336_{-}7 + 45_{-}083$ T
	T
	Coef. Corr. = 0.9968
$\Delta H^{\circ}/J \text{ mol}^{-1} = 6,336.7$	, $\Delta S^{\circ}/J K^{-1} mol^{-1} = -45.083$
$\frac{T/K}{X_1 \times 10}$	
283.15 2.99	- •
288.15 3.14 293.15 3.28	19,327 19,553
298.15 3.43	19,778
303.15 3.57 308.15 3.72	20,004 20,229
313.15 3.87	20,454
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate	
AUXILIARY	INFORMATION
	SOURCE AND PURITY OF MATERIALS:
urated with the gas as it flows through an 8 mm x 180 cm glass spiral	1. Neon. Matheson Co., Inc. Both
attached to a gas buret. The total	standard and research grades were used with no difference in
pressure of solute gas plus solvent vapor pressure is maintained at 1 atm	rogulte
as the gas is absorbed.	
ADDED NOTE.Makranczy, J.; Megyery-	2. Nonane. Phillips Petroleum Co., Bartlesville, OK. Used as
Balog, K.; Rusz, L.; Patyi, L. Hung. J.	received.
Ind. Chem. 1976, 4, 269 report an Ostwald coefficient of 0.047 at 298.15	
K for this system . The value was not	
used in the smoothed data fit above.	ESTIMATED ERROR:
APPARATUS/PROCEDURE: The apparatus is a	$\delta T/K = 0.05$
modification of that of Morrison and	$\delta P/torr = 3$
Billett(1) The modifications in-	
Billett(1). The modifications in- clude the addition of a spiral stor-	$\delta x_{1}/x_{1} = 0.03$
clude the addition of a spiral stor- age for the solvent, a manometer for	$\delta x_{1}^{\prime} / x_{1} = 0.03$
clude the addition of a spiral stor- age for the solvent, a manometer for a constant reference pressure, and an	$\delta X_1 / X_1 = 0.03$ REFERENCES:
clude the addition of a spiral stor- age for the solvent, a manometer for a constant reference pressure, and an extra buret for highly soluble gases. The solvent is degassed by a modifi-	δX ₁ /X ₁ = 0.03 REFERENCES: 1. Morrison, T. J.; Billett, F. <u>J. Chem. Soc</u> . 1948, 2033;
clude the addition of a spiral stor- age for the solvent, a manometer for a constant reference pressure, and an extra buret for highly soluble gases.	$\delta X_1 / X_1 = 0.03$ REFERENCES: 1. Morrison, T. J.; Billett, F.
clude the addition of a spiral stor- age for the solvent, a manometer for a constant reference pressure, and an extra buret for highly soluble gases. The solvent is degassed by a modifi- cation of the method of Baldwin and	δX ₁ /X ₁ = 0.03 REFERENCES: 1. Morrison, T. J.; Billett, F. <u>J. Chem. Soc</u> . 1948, 2033;

COMPONENTS: EVALUATOR: 1. Neon; Ne; 7440-01-9 H. L. Clever Chemistry Department 2. Decane; C10H22; 124-18-5 Emory University Atlanta, GA 30322 U.S.A. February 1978

CRITICAL EVALUATION:

The solubility of neon in decane was measured in three laboratories. Clever, Battino, Saylor and Gross (1) report three solubility values be-tween 289.05 and 312.15 K. Makranczy, Megyery-Balog, Rusz and Patyi (2) and Wilcock, Battino and Danforth (3) each report one solubility value near 298 K.

The solubility value of Makranczy et al. (Ostwald coefficient 4.5 x  $10^{-2}$  and mole fraction 3.6 x  $10^{-4}$  at 298.15 K) agrees well with the value of Clever et al., but it is reported to only two significant figures.

The solubility values of Clever et al. and Wilcock et al. differ by 3.9 percent at 298.15 K which is within the estimated error of the two laboratories. The Wilcock et al. solubility determination uses an improved de-gassing procedure, and improved control of temperature and pressure. Their solubility value should be considered the more reliable. It is a mole fraction of  $3.430 \times 10^{-4}$  at 298.27 K.

Without other solubility values to compare at several temperatures it is not possible to recommend values of solubility and thermodynamic changes. We have used the data of Clever <u>et al</u>. and Wilcock <u>et al</u>. on a one to one weight basis to obtain a tentative set of solubility data and changes in thermodynamic properties. The discussion above indicates the tentative solubility values may be 2 percent or more high.

The tentative values for the transfer of one mole of neon from the gas at a pressure of 101.325 kPa to the hypothetical unit mole fraction solution are

> $\Delta G^{\circ}/J \mod^{-1} = -RT \ln X_1 = 6,536.6 + 44.288 T$ Std. Dev.  $\Delta G^{\circ} = 44.2$ , Coef. Corr. = 0.9946  $\Delta H^{\circ}/J \text{ mol}^{-1} = 6,536.6, \quad \Delta S^{\circ}/J \text{ K}^{-1} \text{ mol}^{-1} = -44.288$

The tentative solubility values and Gibbs energy change as a function of temperature are in Table 1.

TABLE 1. The solubility of neon in decane. Tentative values of the mole fraction solubility at 101.325 kPa and the Gibbs energy change as a function of temperature.

T/K	Mol Fraction $X_1 \times 10^4$	ΔG°/J mol ⁻¹
288,15	3.17	19,298
288.15	3.33	19,298
298.15	3.48	19,741
303.15	3.63	19,962
308.15	3.79	20,184
313.15	3.95	20,405

Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M. J. Phys. Chem. 1. 1957, 61, 1078.

Makranczy, J.; Megyery-Balog, K.; Rusz, L.; Patyi, L. Hung. J. Ind. 2.

<u>Chem</u>. 1976, 4, 269. Wilcock, R. J.; Battino, R.; Danforth, W. F.; Wilhelm, E. J. <u>Chem</u>. <u>Thermodyn</u>. 1978, <u>10</u>, 817. 3.

		ORIGINAL MEASUREMENTS:	
<ol> <li>Neon; Ne;</li> </ol>	7440-01-9	Clever, H.L.; Battino, R.;	
2. Decane; C ₁	Haa: 124-18-5	Saylor, J.H.; Gross, P.M.	
	0-227		
		J. Phys Chem. 1957, 61, 1078-10	083.
VARIABLES:		PREPARED BY:	
T/K:	289.05 - 312.15	P.L. Long	
P/kPa:	101.325 (1 atm)		
EXPERIMENTAL VALU	ES:		
	T/K Mol Fraction	Bunsen Ostwald	
		Coefficient Coefficient $\alpha \times 10^2$ L x $10^2$	
	$x_1 \times 10^4$	$\alpha \times 10^{-1}$ L $\times 10^{-1}$	
	289.05 3.18	3.68 3.89	
	298.15 3.57	4.07 4.44	
	312.15 3.90	4.39 5.02	
Smoothed Data:	$\Delta G^{O}/J \text{ mol}^{-1} = - RT \ln$	X ₁ = 6460.8 + 44.500 T	
	Std. Dev. $\Delta G^{O} = 44.8$ ,	1	
	Stu. Dev. 46 - 44.8,	COEL. COLL 0.9983	
	fficients were calculat	ed by the compiler.	
	tion of neon + decane fo olubility values.	or the recommended Gibbs energy e	equatio
	olubility values.	or the recommended Gibbs energy e	equation
and smoothed s	olubility values.	INFORMATION	equatio
And smoothed so METHOD: Volumetric. rated with the an 8 mm x 180 to a gas buret solute gas plu	olubility values.	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. h standard and research grade were used with no difference f results.	Both es ce in n, Inc.
And smoothed so METHOD: Volumetric. rated with the an 8 mm x 180 to a gas buret solute gas plu is maintained a absorbed.	AUXILIARY The solvent is satu- gas as it flows throug cm glass spiral attached. The total pressure o s solvent vapor pressure at 1 atm as the gas is	<pre>SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. h standard and research grade were used with no difference f results. 2. Decane. Humphrey-Wilkinsor Shaken with H₂SO₄, washed, distilled. ESTIMATED ERROR:</pre>	Both es ce in n, Inc.
APPARATUS/PROCEDU The apparatu	AUXILIARY The solvent is satu- gas as it flows throug cm glass spiral attached. The total pressure o s solvent vapor pressure at 1 atm as the gas is	Y INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. standard and research grade were used with no difference f results. 2. Decane. Humphrey-Wilkinsor Shaken with $H_2SO_4$ , washed, distilled. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta P/torr = 3$ $\delta X_1/X_1 = 0.03$	Both es ce in n, Inc.
APPARATUS/PROCEDU The apparatu that of Morrisc a spiral storag manometer for a pressure, and a highly soluble	AUXILIARY The solvent is satu- gas as it flows throug cm glass spiral attached . The total pressure o s solvent vapor pressure at 1 atm as the gas is RE: ns is a modification of on and Billett(1). The	INFORMATION         SOURCE AND PURITY OF MATERIALS:         1. Neon. Matheson Co., Inc.         standard and research graded         were used with no difference         f         results.         2. Decane. Humphrey-Wilkinson         Shaken with $H_2SO_4$ , washed,         distilled.         ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta P/torr = 3$ $\delta X_1/X_1 = 0.03$ REFERENCES:         1. Morrison, T.J.; Billett, F.         J. Chem. Soc. 1948, 2033:	Both es ce in a, Inc. dried,

COMPONENTS: ORIGINAL MEASUREMENTS: Neon; Ne; 7440-01-9 Wilcock, R.J.; Battino, R.; 1. Danforth, W.F; Wilhelm, E. 2. Decane; C₁₀H₂₂; 124-18-5 J. Chem. Thermodyn. 1978, 10, 817-822 VARIABLES: PREPARED BY: T/K: 298.24 A.L. Cramer P/kPa: 101.325 (1 atm) **EXPERIMENTAL VALUES:** T/K Mol Fraction Bunsen Ostwald Coefficient Coefficient  $x_1 \times 10^4$  $\alpha \times 10^2$  $L \times 10^2$ 298.24 3.430 3.928 4.288 See the evaluation of neon + decane for recommended Gibbs energy equation and smoothed solubility values. The solubility value was adjusted to a partial pressure of neon of 101.325  $\ensuremath{kPa}$  by Henry's law. The Bunsen coefficients were calculated by the compiler. A preliminary report of this work appeared in Conf. Int. Thermodyn. Chim., {C.R.}, 4th 1975, 6, 122 - 128; Chem. Abstr. 1977, 86, 22375d. AUXILIARY INFORMATION METHOD /APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The apparatus is based on the de-1. Neon. Matheson Co. Inc. sign of Morrison and Billett (1), and Purest commercially available the version used is described by Battino, Evans, and Danforth (2). grade. The degassing apparatus and procedure are 2. Decane. Phillips Petroleum Co. described by Battino, Banzhof, Bogan, and Wilhelm (3). See neon + octane data sheet for 99 mol per cent minimum. more details. ESTIMATED ERROR:  $\delta T/K = 0.03$  $\delta P/mmHg = 0.5$  $\delta X_1 / X_1 = 0.02$ **REFERENCES**: 1.Morrison, T.J.; Billett, F. J. Chem. Soc. 1948, 2033. 2.Battino,R.;Evans,F.D.;Danforth,W.F. J.Am.Oil Chem. Soc. 1968, 45, 830. 3.Battino,R.;Banzhof,M.;Bogan, M.; Wilhelm,E. Anal. Chem. 1971, 43, 806.

COMPONENTS:	ODICINAL NEACUDELENTS
	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Makranczy, J.; Megyery-Balog, K.; Rusz, L.; Patyi, L.
2. Undecane; C ₁₁ H ₂₄ ; 1120-21-4	
	Hung. J. Ind. Chem. 1976, 4, 269-280.
VARIABLES:	PREPARED BY:
T/K: 298.15	
P/kPa: 101.325 (1 atm)	S. A. Johnson
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald
$x_{1} \times 10^{4}$	$\begin{array}{ccc} \text{Coefficient} & \text{Coefficient} \\ \alpha \times 10^2 & \text{L} \times 10^2 \end{array}$
$\frac{1}{298.15}$ 3.7	3.9 4.3
The mole fraction and Bunsen coefficie	ent were calculated by the compiler.
AUXILIARY	INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS:
Volumetric method. The apparatus of	Both the gas and liquid were analyti-
Bodor, Bor, Mohai, and Sipos (1) was used.	cal grade reagents of Hungarian or foreign origin. No further informa-
	tion.
APPARATUS/PROCEDURE:	ESTIMATED ERROR:
ALIMATOD/LAUGDURE;	$\delta x_1 / x_1 = 0.03$
	- 1
	DEEEDENCES .
	REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.;
	Sipos, G.
	Veszpremi Vegyip. Egy. Kozl. 1957, 1, 55;
	<u>Chem. Abstr</u> . 1961, <u>55</u> , 3175h.

COMPONENTS: ORIGINAL MEASUREMENTS: Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M. Neon; Ne; 7440-01-9 1. 2. Dodecane; C12H26; 112-40-3 J. Phys. Chem. 1957, 61, 1078 - 1083. VARIABLES: PREPARED BY: T/K: 289.05 - 312.15 P. L. Long P/kPa: 101.325 (1 atm) EXPERIMENTAL VALUES: T/K Mol Fraction Bunsen Ostwald Coefficient Coefficient  $X_1 \times 10^4$  $\alpha \times 10^2$  $L \times 10^2$ 2.81 289.05 2.77 2.93 298.15 3.24 3.18 3.47 3.39 312.15 3.50 3.87 Smoothed Data:  $\Delta G^{\circ}/J \mod^{-1} = - RT \ln X_1 = 6,855.7 + 44.092 T$ Std. Dev. ∆G° = 73.6, Coef. Corr. = 0.9899  $\Delta H^{\circ}/J \text{ mol}^{-1} = 6,855.7, \Delta S^{\circ}/J K^{-1} \text{ mol}^{-1} = -44.092$ ∆G°/J mol⁻¹ T/K Mol Fraction  $X_1 \times 10^{4}$ 288.15 19,561 2.84 293.15 2.99 19,781 20,002 298.15 3.13 303.15 20,222 3.28 20,443 308.15 3.43 313.15 3.58 20,663 The solubility values were adjusted to a partial pressure of neon of 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculated by the compiler. AUXILIARY INFORMATION METHOD: Volumetric. The solvent is sat-SOURCE AND PURITY OF MATERIALS: urated with the gas as it flows 1. Neon. Matheson Co., Inc. Both through an 8 mm x 180 cm glass spiral standard and research grades attached to a gas buret. The total pressure of solute gas plus solvent were used with no difference in results. vapor pressure is maintained at 1 atm as the gas is absorbed. 2. Dodecane. Humphrey-Wilkinson, Inc. Shaken with  $H_2SO_4$ , washed, dried over Na. ADDED NOTE. Makranczy, J.; Megyery-Balog, K.; Rusz, L.; Patyi, L. Hung. J. Ind. Chem. 1976, 4, 269 report an Ostwald coefficient of 0.040 at 298.15 K for this system. The value was not used in the smoothed data fit above. ESTIMATED ERROR: APPARATUS/PROCEDURE: The apparatus is a  $\delta T/K = 0.05$ modification of that of Morrison and  $\delta P/torr = 3$  $\delta X_1 / X_1 = 0.03$ Billett(1). The modifications include the addition of a spiral storage for the solvent, a manometer for **REFERENCES**: a constant reference pressure, and an Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033; ibid.1952, 3819. extra buret for highly soluble gases. 1. The solvent is degassed by a modification of the method of Baldwin and Daniel (2). 2. Baldwin, R. R.; Daniel, S. G. J. Appl. Chem. 1952, 2, 161.

COMPONENTS :	ORIGINAL MEASUREMENTS:		
1. Neon; Ne; 7440-01-9	Makranczy, J.; Megyery-Balog, K.;		
2. Tridecane; C ₁₃ H ₂₈ ; 629-50-5	Rusz, L.; Patyi, L.		
2. 111acoune, 01328, 010 00 0			
	<u>Hung. J. Ind. Chem</u> . 1976, <u>4</u> , 269-280.		
VARIABLES:	PREPARED BY:		
T/K: 298.15 P/kPa: 101.325 (1 atm)	S. A. Johnson		
-			
EXPERIMENTAL VALUES:			
T/K Mol Fraction	Bunsen Ostwald Coefficient Coefficient		
$x_{1} \times 10^{4}$	$\alpha \times 10^2$ L $\times 10^2$		
298.15 3.6	3.3 3.6		
The mole fraction and Bunsen coeffici	ent were calculated by the compiler.		
AUXILIARY	INFORMATION		
	INFORMATION		
ME THOD:	SOURCE AND PURITY OF MATERIALS:		
METHOD: Volumetric method. The apparatus of	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti-		
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or		
METHOD: Volumetric method. The apparatus of	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa-		
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or		
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa-		
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa-		
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa-		
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa-		
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa-		
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa-		
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa-		
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa- tion.		
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa- tion.		
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa- tion.		
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa- tion.		
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa- tion. ESTIMATED ERROR: $\delta X_1/X_1 = 0.03$ REFERENCES:		
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analytical grade reagents of Hungarian or foreign origin. No further information. ESTIMATED ERROR: $\delta X_1/X_1 = 0.03$ REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G.		
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analytical grade reagents of Hungarian or foreign origin. No further information. ESTIMATED ERROR: $\delta X_1/X_1 = 0.03$ REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G. Veszpremi Vegyip. Egy. Kozl.		
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analytical grade reagents of Hungarian or foreign origin. No further information. ESTIMATED ERROR: $\delta X_1/X_1 = 0.03$ REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G. Veszpremi Vegyip. Egy. Kozl. 1957, 1, 55;		
METHOD: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analytical grade reagents of Hungarian or foreign origin. No further information. ESTIMATED ERROR: $\delta X_1/X_1 = 0.03$ REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G. Veszpremi Vegyip. Egy. Kozl.		

COMPONENTS: ORIGINAL MEASUREMENTS: Clever, H. L.; Battino, R.; 1. Neon; Ne; 7440-01-9 Saylor, J. H.; Gross, P. M. Tetradecane; C14H30; 629-59-4 2. J. Phys. Chem. 1957, 61, 1078 - 1083. VARIABLES: PREPARED BY: T/K: 289.05 - 313.25 P. L. Long P/kPa: 101.325 (1 atm) EXPERIMENTAL VALUES: Mol Fraction Bunsen Ostwald T/K Coefficient Coefficient  $x_1 \times 10^4$ a x 10²  $L \times 10^2$ 289.05 3.00 2.66 2.82 3.24 2.90 3.16 298.15 313.25 3.63 3.16 3.62 Smoothed Data:  $\Delta G^{\circ}/J \mod^{-1} = - RT \ln X_1 = 5,920.3 + 46.956 T$ Std. Dev.  $\Delta G^{\circ} = 2.3$ , Coef. Corr. = 0.9999 $\Delta H^{\circ}/J \text{ mol}^{-1} = 5,920.3 \quad \Delta S^{\circ}/J \text{ K}^{-1} \text{ mol}^{-1} = -46.956$ Mol Fraction  $\Delta G^{\circ}/J \text{ mol}^{-1}$ X₁ x 10⁴ T/K 288.15 2.98 19,451 3.11 293.15 19,685 3.24 298.15 19,920 20,155 303.15 3.37 308.15 3.50 20,390 313.15 3.63 20,624 318.15 3.76 20,859 The solubility values were adjusted to a partial pressure of neon of 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculated by the compiler. AUXILIARY INFORMATION METHOD: Volumetric. The solvent is sat-urated with the gas as it flows SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both urated with the gas as it flows standard and research grades through an 8 mm x 180 cm glass spiral attached to a gas buret. The total were used with no difference in results. pressure of solute gas plus solvent vapor pressure is maintained at 1 atm 2. Tetradecane. Humphrey-Wilkinson, as the gas is absorbed. Inc. Shaken with H₂SO₄, washed, ADDED NOTE.Makranczy, J.; Megyerydried over Na. Balog, K.; Rusz, L.; Patyi, L. Hung. J. Ind. Chem. 1976, 4, 269 report an Ostwald coefficient of 0.033 at 298.15 K for this system. The value was not used in the smoothed data fit above. ESTIMATED ERROR: APPARATUS/PROCEDURE: The apparatus is a  $\delta T/K = 0.05$ modification of that of Morrison and  $\delta P/torr = 3$ Billett(1). The modifications in- $\delta X_1 / X_1 = 0.03$ clude the addition of a spiral storage for the solvent, a manometer for **REFERENCES**: a constant reference pressure, and an extra buret for highly soluble gases. 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033; ibid.1952, 3819. The solvent is degassed by a modification of the method of Baldwin and Daniel (2). Baldwin, R. R.; Daniel, S. G. 2. J. Appl. Chem. 1952, 2, 161.

COMPONENTS:			ORIGINAL MEASUREMENTS:
1. Neon; Ne;	7440-01-9		Makranczy, J.; Megyery-Balog, K.;
2. Pentadecane; C ₁₅ H ₃₂ ; 629-62-9		629-62-9	Rusz, L.; Patyi, L.
or			
Hexadecane	; C ₁₆ H ₃₄ ; 5	544-76-3	Hung. J. Ind. Chem. 1976, 4, 269-280.
VARIABLES:			PREPARED BY:
T/K: 2 P/kPa: ]	298.15 101.325 (1	atm)	S. A. Johnson
EXPERIMENTAL VALUES			• • • • • • • • • • • • • • • • • • •
	Т/К Мо	ol Fraction X ₁ x 10 ⁴	BunsenOstwaldCoefficientCoefficient $\alpha \times 10^2$ L $\times 10^2$
		Pentadecan	e; C ₁₅ H ₃₂ ; 629-62-9
	298.15	3.5	2.8 3.1
		Hexadecane	; C ₁₆ H ₃₄ ; 544-76-3
	298.15	3.2	2.5 2.7
	· · · · · · · · · · · · · · · · · · ·		ent were calculated by the compiler.
		AUXILIARY	INFORMATION
METHOD:		AUXILIARY	INFORMATION SOURCE AND PURITY OF MATERIALS:
METHOD: Volumetric meth Bodor, Bor, Moh used.		apparatus of	
Volumetric meth Bodor, Bor, Moh used.	nai, and Si	apparatus of	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa-
Volumetric meth Bodor, Bor, Moh	nai, and Si	apparatus of	SOURCE AND PURITY OF MATERIALS: Both the gas and liquid were analyti- cal grade reagents of Hungarian or foreign origin. No further informa- tion.

t

COMPONENTS:	EVALUATOR:
<ol> <li>Neon; Ne; 7440-01-9</li> <li>Cyclohexane; C₆H₁₂; 110-82-7</li> </ol>	H. L. Clever Chemistry Department Emory University
	Atlanta, Georgia 30322 U. S. A. January 1978

CRITICAL EVALUATION:

The solubility of neon in cyclohexane was measured at three laboratories. Lannung (1) reported seven solubility values between 288.15 and 303.15 K; Clever, Battino, Saylor and Gross (2) reported three values between 287.15 and 312.15 K; and Dymond (3) reported four solubility values between 292.97 and 310.50 K.

Each data set was smoothed by the method of least squares fit to a Gibbs energy equation linear in temperature. The Lannung and Dymond smoothed solubility values differed by 5 - 5.5 percent over the temperature range of 288.15 - 303.15 K, while the Clever, Battino, Saylor and Gross smoothed solubility values ranged lower than the Dymond data from 2.4 per cent at 288.15 K to 12 per cent at 313.15 K. The three data sets were combined in one least square fit to a Gibbs energy equation that was linear in temperature. No solubility value was over two standard deviations from the fit-ted equation, but of the 14 solubility values five were of greater magnitude than the fitted line and nine were of lesser magnitude. An arbitrary decision was made to drop the two lowest values both of which were from the same paper (2). The twelve data points were used to obtain the recommended equation.

The recommended thermodynamic values for the transfer of neon from the gas at 101.325 kPa (1 atm) to the hypothetical unit mole fraction solution are

> $\Delta G^{\circ}/J \text{ mol}^{-1} = - RT \ln X_1 = 9661.6 + 39.074 T$ Std. Dev. ΔG° = 63, Coef. Corr. = 0.9778

 $\Delta H^{\circ}/J \text{ mol}^{-1} = 9661.6, \Delta S^{\circ}/J K^{-1} \text{ mol}^{-1} = -39.074$ 

Table 1 contains the recommended values of the mole fraction solubility and the Gibbs energy at five degree intervals between 283.15 and 313.15 K.

TABLE 1. Solubility of neon in cyclohexane at 101.325 kPa. Recommended mole fraction solubility and Gibbs energy of solution as a function of temperature.

T/K	Mol Fraction ^a X _l x 10 ⁴	∆G°/J mol ⁻¹
283.15	1.500	20,725
288.15	1.615	20,921
293.15	1.730	21,116
298.15	1.845	21,312
303.15	1.970	21,507
308.15	2.095	21,702
313.15	2.225	21,898

^arounded to the nearest 0.005 x  $10^{-4}$ .

1.

Lannung, A. J. <u>Am. Chem. Soc. 1930, 52, 68.</u> Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M. <u>J. Phys. Chem</u>. 2. 1957, <u>61</u>, 1078.

3. Dymond, J. H. J. Phys. Chem. 1967, 71, 1829.

OMPONENTS:		ORIGINAL MEASUREMENTS:			
1. Neon; Ne; 7440-01-9		Lannung, A.	•		
2. Cyclohexane; C ₆ H ₁₂ ; 110-82-7					
		J. Am. Chen	<u>n. Soc</u> . 1930, <u>52</u>	2, 68 - 80.	
VARIABLES:			PREPARED BY:		
T/K: 2 Ne P/kPa: ]	288.15 - 303 101.325 (l a			P. L. Long	
EXPERIMENTAL VALU	ES:				
	T/K MO	l Fraction	Bunsen	Ostwald	
		$x_1 \times 10^4$	Coefficient $\alpha \times 10^2$	Coefficient L x 10 ²	
	288.15	$\frac{x_1 \times 10}{1.60}$	3.34	3.52	
	288.15	1.57	3.27	3.45	
	293.15	1.71	3.54	3.80	
	293.15	1.70	3.53	3.79	
	298.15	1.81	3.73	4.07	
	303.15	1.92	3.93	4.36	
	303.15	1.91	3.91	4.34	-
Smoothed Data:	∆G°/J mol	1 = - RT ln	$x_1 = 9,092.5$	5 + 41.164 T	
	Std. Dev.	∆G° = 16.9,	Coef. Corr.	. = 0.9979	
The solubility 101.325 kPa (1 The mole fracts	values were atm) by Hen	in cyclohexa adjusted to ry's law.	nne. 5 a partial p	e the critical e pressure of neor ficient were cal	n of
The solubility 101.325 kPa (1 The mole fracti	values were atm) by Hen	in cyclohexa adjusted to ry's law.	nne. 5 a partial p	pressure of neor	n of .
The solubility 101.325 kPa (1 The mole fracts	values were atm) by Hen	in cyclohexa adjusted to ry's law. ty and the C	nne. 5 a partial p	pressure of neor	n of
The solubility 101.325 kPa (1	values were atm) by Hen	in cyclohexa adjusted to ry's law. ty and the C	nne. > a partial p Ostwald coeff INFORMATION	pressure of neor	n of Lculated by
The solubility 101.325 kPa (1) The mole fract: the compiler. METHOD: Gas absorption. rated with solv volume absorbed between initial	values were atm) by Hen ion solubili . The gas i vent vapor. d is the dif l and final	in cyclohexa e adjusted to ry's law. .ty and the C AUXILIARY AUXILIARY .s presatu- The gas ference gas vol-	INFORMATION SOURCE AND PU I. Neon. Of heli	Pressure of neor ficient were cal WRITY OF MATERIALS: Linde's Liquid ned one percent	A of Loulated by
The solubility 101.325 kPa (1 The mole fract: the compiler. METHOD: Gas absorption. rated with solv volume absorbed	values were atm) by Hen ion solubili . The gas i vent vapor. d is the dif l and final unt of solve	in cyclohexa adjusted to ry's law. ty and the C AUXILIARY AUXILIARY The gas ference gas vol- int is deter-	INFORMATION SOURCE AND PU 1. Neon. Contair of heli 2. Cyclohe Shaken washed, led fro first c	Pressure of neor ficient were cal WRITY OF MATERIALS: Linde's Liquid ned one percent	Air Factory by volume Frères. 504, water 55. Distil-
The solubility 101.325 kPa (1 The mole fract: the compiler. METHOD: Gas absorption. rated with solv volume absorbed between initial umes. The amou mined by the we placed.	values were atm) by Hen ion solubili . The gas i vent vapor. d is the dif l and final unt of solve eight of mer	in cyclohexa adjusted to ry's law. .ty and the C AUXILIARY .s presatu- The gas ference gas vol- .nt is deter- cury dis-	INFORMATION SOURCE AND PU 1. Neon. Contair of heli 2. Cyclohe Shaken washed, led fro first c	PRITY OF MATERIALS: Linde's Liquid ned one percent ium. exane. Poulenc with fuming H ₂ S , dried over P ₂ O om P ₂ O ₅ with re- quarter. Distil . m.p. 6.3° C.	Air Factory by volume Frères. 504, water 55. Distil
The solubility 101.325 kPa (1 The mole fracti the compiler. METHOD: Gas absorption. rated with solv volume absorbed between initial umes. The amou mined by the we placed. APPARATUS/PROCEDU: modification of (1). A calibra manometer and b	values were atm) by Hen ion solubili . The gas i vent vapor. d is the dif l and final unt of solve eight of mer RE: The appar f that of vo ated, combin bulb is encl	in cyclohexa adjusted to ry's law. .ty and the C AUXILIARY .s presatu- The gas ference gas vol- ent is deter- cury dis-	INFORMATION SOURCE AND PU 1. Neon. Contair of heli 2. Cyclohe Shaken washed, led fro first o sodium.	PRITY OF MATERIALS: Linde's Liquid ned one percent ium. exane. Poulenc with fuming H ₂ S , dried over P ₂ O om P ₂ O ₅ with re- quarter. Distil . m.p. 6.3° C.	Air Factor by volume Frères. 504, water 55. Distil
The solubility 101.325 kPa (1 The mole fracti the compiler. METHOD: Gas absorption. rated with solu- volume absorbed between initial umes. The amou mined by the we	values were atm) by Hen ion solubili . The gas i vent vapor. d is the dif l and final unt of solve eight of mer RE: The appar f that of vo ated, combin bulb is encl . Mercury i n and confin degassed in lvent and th	in cyclohexa adjusted to ry's law. .ty and the C AUXILIARY .s presatu- The gas ference gas vol- .nt is deter- cury dis- cury d	INFORMATION Source AND PU 1. Neon. Contair of heli 2. Cyclohe Shaken washed, led fro first of sodium. ESTIMATED ERR REFERENCES: 1. v. Anta	PRITY OF MATERIALS: Linde's Liquid ned one percent ium. exane. Poulenc with fuming H2S , dried over P2C om P2O5 with re- quarter. Distil . m.p. 6.3° C.	Air Factor by volume Frères. 504, water 55. Distil- jection of led from

1

3

ł

0. C 124

COMPONENTS:			ORIGINAL MEASU	UREMENTS:
1. Neon; Ne; 7440-01-9		Clever, H. L.; Battino, R.;		
			Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M.	
VARIABLES:		J. Phys. Ch PREPARED BY:	<u>tem</u> . 1957, <u>61</u> , 1078 - 1083.	
	87.15 - 312 01.325 (1			. L. Long
EXPERIMENTAL VALUE	s:		1	
	-	1 Fraction $X_1 \times 10^4$	Bunsen Coefficient a x 10 ²	Ostwald Coefficient L x 10 ²
	287.15 298.15 312.15	1.65 1.74 2.02	3.46 3.59 4.10	3.64 3.92 4.69
Smoothed Data:				
	Std. Dev.	$\Delta G^{\circ} = 57.2,$	Coef. Corr.	= 0.9960
solubility of r	eon in cycl	ohexane.		critical evaluation of the
kPa (l atm) by			a partiai p	pressure of neon of 101.325
The Bunsen coef				
	······	AUXILIARY	INFORMATION	
METHOD: Volumet	ic. The so	lvent is sat	SOURCE AND PUL	RITY OF MATERIALS:
urated with gas an 8 mm x 180 c tached to a gas pressure is mai gas is absorbed	as it flow m glass spi buret. Th ntained at	vs through Fral at- ne total	1. Neon. search	Matheson Co. Both re- and standard grades were th no difference in re-
			2. Cyclohe Co. Us	exane. Phillips Petroleum sed as received.
APPARATUS/PROCEDU modification of Billett (1). Th clude the addit age for the so a constant refe	that of Mo ne modificat ion of a sp vent, a mar	orrison and cions in- piral stor- nometer for	ESTIMATED ERR	OR: $\delta T/K = 0.05$ $\delta P/torr = 3$ $\delta X_1/X_1 = 0.03$
extra buret for The solvent is cation of the r Daniel (2).	highly sol degassed by	uble gases. / a modifi-	J. <u>Chem</u> <u>ibid</u> . 2. Baldwir	on, T. J.; Billett, F. n. <u>Soc</u> . 1948, 2033; 1952, 3819. n, R. R.; Daniel, S. G. <u>1. Chem</u> . 1952, <u>2</u> , 161.

COMPONENTS:	ORIGINAL MEASUREMENTS:		
1. Neon; Ne; 7440-01-9	Dymond, J. H.		
2. Cyclohexane; C ₆ H ₁₂ ; 110-82-7			
	<u>J. Phys</u> . <u>Chem</u> . 1967, <u>71</u> , 1829 - 1831.		
VARIABLES:	PREPARED BY:		
T/K: 292.97 - 310.50 P/kPa: 101.325 (l atm)	M. E. Derrick		
EXPERIMENTAL VALUES:			
T/K Mol Fraction X ₁ x 10 ⁴	Bunsen Ostwald Coefficient Coefficient $\alpha \ge 10^2$ L $\ge 10^2$		
$\frac{1}{292.97}$ 1.79	3.71 3.98		
299.55 1.93	3.97 4.35		
304.75 2.04 310.50 2.20	4.17 4.65 4.47 5.08		
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = -RT \ln$	-		
Std. Dev. $\Delta G^\circ = 12.5$ ,	Coef. Corr. = 0.9992		
See the evaluation of neon + cyclohexa equation and smoothed solubility value			
The Bunsen and Ostwald coefficients we	ere calculated by the compiler.		
AUXILIARY	INFORMATION		
METHOD:	SOURCE AND PURITY OF MATERIALS:		
Saturation of liquid with gas at par- tial pressure of gas equal to 1 atm.	l. Neon. Matheson Co. Dried.		
crar properto or gab offer to r acent	2. Cyclohexane. Matheson, Coleman		
	and Bell chromatoquality reagent. Dried and fractionally frozen.		
	m.p. 6.45° C.		
APPARATUS/PROCEDURE:	ESTIMATED ERROR:		
Dymond-Hildebrand apparatus (1) using	$\delta x_1 / x_1 = 0.01$		
an all-glass pumping system to spray			
slugs of degassed solvent into the gas. Amount of gas dissolved calcu-	REFERENCES:		
lated from initial and final gas			
pressures.	<ol> <li>Dymond, J.; Hildebrand, J. H. Ind. Eng. Chem. Fundam. 1967, 6,</li> </ol>		
	130.		

COMPONENTS:	ORIGINAL MEASUREMENTS:	
	Clever, H. L.; Saylor, J. H.	
1. Neon; Ne; 7440-01-9	Gross, P. M.	
2. Methylcyclohexane; C ₇ H ₁₄ ;		
108-87-2	J. Phys. Chem. 1958, 62, 89 - 91.	
	<u> </u>	
VARIABLES:	PREPARED BY:	
T/K: 289.15 - 316.25	P. L. Long	
P/kPa: 101.325 (1 atm)		
EXPERIMENTAL VALUES:		
T/K Mol Fraction	Bunsen Ostwald	
$x_1 \times 10^4$	Coefficient Coefficient $\alpha \ge 10^2$ L $\ge 10^2$	
289.15 2.11	3.73 3.95	
303.15 2.34 316.25 2.82	4.09 4.54 4.85 5.62	
Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = - RT \ln$	$x_1 = 8,148.8 + 42.336 T$	
Std. Dev. ∆G° = 76.9,	Coef. Corr. = 0.9911	
	$\Delta S^{\circ}/J K^{-1} mol^{-1} = -42.336$	
T/K Mol Fract $X_1 \times 10$	$\Delta G^{\circ}/J \text{ mol}^{-1}$	
288.15 2.05		
293.15 2.17 298.15 2.30		
303.15 2.42 308.15 2.55	20,983	
308.15 2.55 313.15 2.69	21,195 21,406	
318.15 2.82	21,618	
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law.	o a partial pressure of neon of	
The Bunsen coefficients were calculate	ed by the compiler.	
AUXILIARY	INFORMATION	
METHOD: Volumetric. The solvent is sat-	SOURCE AND PURITY OF MATERIALS:	
urated with the gas as it flows	1. Neon. Matheson Co., Inc. Both	
through an 8 mm x 180 cm glass spiral attached to a gas buret. The total	standard and research grades were used with no difference in	
pressure of solute gas plus solvent	results.	
vapor pressure is maintained at 1 atm as the gas is absorbed.	2. Methylcyclohexane. Eastman	
	Kodak Co., white label, dried	
	over Na and distilled, corrected b.p. 100.95 to 100.97°, lit. b.p.	
	100.93°C.	
	,	
	ESTIMATED ERROR:	
APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and	$\delta T/K = 0.05$ $\delta P/torr = 3$	
Billett(l). The modifications in- clude the addition of a spiral stor-	$\delta X_1 / X_1 = 0.03$	
age for the solvent, a manometer for		
a constant reference pressure, and an extra buret for highly soluble gases.	REFERENCES: 1. Morrison, T. J.; Billett, F.	
The solvent is degassed by a modifi-	J. Chem. Soc. 1948, 2033;	
cation of the method of Baldwin and Daniel (2).	<u>ibid</u> .1952, 3819.	
	<ol> <li>Baldwin, R. R.; Daniel, S. G. J. <u>Appl. Chem</u>. 1952, <u>2</u>, 161.</li> </ol>	
	5. APP1. CHEM. 1952, 2, 101.	

2017 01000			
COMPONENTS:	ORIGINAL MEASUREMENTS:		
l. Neon; Ne; 7440-01-9	Wilcock, R. J.; Battino, R. Wilhelm, E.		
2. Cyclooctane; C ₈ H ₁₆ ; 292-64-8			
	<u>J. Chem</u> . <u>Thermodyn</u> . 1977, <u>9</u> , 111-115.		
VARIABLES:	PREPARED BY:		
T/K: 298.21 P/kPa: 101.325 (1 atm)	H. L. Clever		
EXPERIMENTAL VALUES:	۰		
T/K Mol Fraction	Bunsen Ostwald		
$x_1 \times 10^4$	Coefficient Coefficient $lpha  imes 10^2$ L x $10^2$		
$\frac{1}{298.21} \frac{1.372}{1.372}$	2.28 2.491		
The solubility value was adjusted t 101.325 kPa (1 atm) by Henry's law.	o a partial pressure of neon of		
The Bunsen coefficient was calculated	by the compiler.		
AUXILIARY	INFORMATION		
METHOD: The apparatus is based on the	SOURCE AND PURITY OF MATERIALS:		
design by Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2).	<ol> <li>Neon. Matheson Co., Inc. Mini- mum purity 99.99 mol per cent.</li> </ol>		
	2. Cyclooctane. Chemical Samples		
APPARATUS/PROCEDURE: Degassing. Up	Co. 99 mol per cent, fractionally distilled, n(Na D, 298.15 K) =		
to 500 cm ³ of solvent is placed in a	1 4562		
flask of such size that the liquid is about 4 cm deep. The liquid is rapid			
ly stirred and vacuum is applied in-			
termittently through a liquid N2 trap until the permanent gas residual			
pressure drops to 5 microns.	ESTIMATED ERROR:		
Solubility Determination. The de- gassed solvent passes in a thin film	$\delta T/K = 0.03$		
down a glass spiral containing the solute gas and solvent vapor at a	$\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.03$		
total pressure of one atm. The vol-	REFERENCES:		
ume of gas absorbed is measured in the attached gas buret, and the	1. Morrison, T. J.; Billett, F.		
solvent is collected in a tared flask			
and weighed.	2. Battino, R.; Evans, F. D.;		
	Danforth, W. F.		
· –	J. Am. <u>Oil</u> <u>Chem</u> . <u>Soc</u> . 1968, <u>45</u> , 830.		

.

I Noone Noe 7	MPONENTS:		ORIGINAL MEASUREMENTS:		
· · · ·	- · • •		Wilhelm	8.; Battino, R.; 1, E.	
<ol> <li><u>cis</u>-1,2-Dim</li> <li>2207-01-4</li> </ol>	aethylcyclo	ohexane; C ₈ H ₁₆	;		
			J. Chem. Th	<u>ermodyn</u> . 1976, <u>8</u> , 197-202.	
VARIABLES:			PREPARED BY:		
	297.88 - 101.325			H.L. Clever	
EXPERIMENTAL VALU	ES:				
	T/K M	Aol Fraction	Bunsen	Ostwald	
	<u></u>	$x_1 \times 10^4$	Coefficient	Coefficient L x 10 ²	
	297.88 298.14	2.25 2.21	3.56 3.49	3.88 3.81	
		AUXILIARY	INFORMATION		
METHOD/APPARATU			SOURCE AND PL	JRITY OF MATERIALS:	
The apparatu sign by Morriso the version use Battino, Evans Degassing. vent is placed that the liquid that the liquid The liquid is r vacuum is appli through a liqui permanent gas r to 5 microns.	ns is based on and Bill ad is desc: and Danfo: Up to 500 in a flas is about capidly st: ad interm: d N ₂ trap residual pr	E: 1 on the de- lett (1) and ribed by rth (2). cm ³ of sol- c of such size 4 cm. deep. irred, and ittently until the ressure drops	SOURCE AND PU 1. Neon. Chemica Inc. 9 2. <u>cis</u> -1,2 Chemica tionall	URITY OF MATERIALS: Either Air Products & als, Inc.,or Matheson Co., 99 mol % or better. 2-Dimethylcyclohexane. al Samples Co., frac- Ly distilled and stored c. n _D (298.15 K) 1.4337.	
The apparatu sign by Morriso the version use Battino, Evans Degassing. vent is placed that the liquid The liquid is r vacuum is appli through a liqui permanent gas r to 5 microns. Solubility I gassed solvent film down a gla taining the sol vent vapor at a atm. The volum found by differ tial and final	is is based on and Bill ad is desc: and Danfo: Up to 500 in a flas is about capidly st: capidly st: c	E: d on the de- lett (1) and ribed by rth (2). cm ³ of sol- c of such size 4 cm. deep. irred, and ittently until the ressure drops ion. The de- in a thin tube con- lus the sol- essure of one absorbed is een the ini-	SOURCE AND PU 1. Neon. Chemica Inc. 9 2. <u>cis</u> -1,2 Chemica tionall in dark ESTIMATED ERI REFERENCES: 1. Morrisc	Either Air Products & als, Inc.,or Matheson Co., 99 mol % or better. 2-Dimethylcyclohexane. al Samples Co., frac- ly distilled and stored c. n _D (298.15 K) 1.4337.	

-----

COMPONENTS :	ORIGINAL MEASUREMENTS:		
1. Neon; Ne; 7440-01-9	Geller, E.B.; Battino, R.;		
2. <u>trans</u> -1,2-Dimethylcyclohexane; C ₈ H ₁₆ ; 6876-23-9	Wilhelm, E.		
0 10	<u>J. Chem. Thermodyn</u> . 1976, <u>8</u> , 197-202.		
VARIABLES:	PREPARED BY:		
T/K: 298.11 P/kPa: 101.325 (1 atm)	H.L. Clever		
EXPERIMENTAL VALUES:	••••••••••••••••••••••••••••••••••••••		
T/K Mol Fraction	Bunsen Ostwald Coefficient Coefficient		
$x_1 \times 10^4$	$\frac{\alpha \times 10^2}{10^2} = \frac{10^2}{10^2}$		
298.11 2.65	4.26 4.66		
The solubility value was adjusted to a 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficient was calculated B			
AUXILIARY	INFORMATION		
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The apparatus is based on the de- sign by Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). Degassing. Up to 500 cm ³ of sol- vent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred and vacuum is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns.	<ol> <li>Neon. Either Air Products &amp; Chemicals, Inc., or Matheson Co., Inc. 99 mol % or better.</li> <li>trans-1,2-Dimethylcyclohexane.</li> </ol>		
Solubility Determination. The de- gassed solvent passes in a thin film	ESTIMATED ERROR: $\delta T/K = 0.03$		
down a glass spiral containing the solute gas plus the solvent vapor at a total pressure of one atm. The vol- ume of gas absorbed is measured in a buret system, and the solvent is collected in a tared flask and weighed.	$\delta P/mmHg = 0.5$		

COMPONENTS:		RIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9		eller, E.B.; Battino, R.; Wilhelm, E.
2. <u>cis</u> -1,3-Dimethylcyclohexane, 59 mol %; C ₈ H ₁₆ ; 638-04-0		
3. <u>trans</u> -1,3-Dimethylcycl mol %; C ₈ H ₁₆ ; 2207-03-	ohexane, 41 J. 6	. <u>Chem</u> . <u>Thermodyn</u> . 1976, <u>8</u> , 197-202.
VARIABLES:		REPARED BY:
T/K: 298.15 - 29 P/kPa: 101.325 (1		H.L. Clever
EXPERIMENTAL VALUES:		
Т/К Мо		Bunsen Ostwald
ł		efficient Coefficient α x 10 ² L x 10 ²
	$\frac{1}{1}$	'
298.15 298.40	2.72 2.70	4.18     4.56       4.15     4.53
The solubility value was a 101.325 kPa (l atm) by Hen		artial pressure of neon of
The Bunsen coefficient was	calculated by	the compiler.
	·	
	AUXILIARY IN	IFORMATION
METHOD/APPARATUS/PROCEDURE	: sc	OURCE AND PURITY OF MATERIALS:
The apparatus is based sign by Morrison and Bille the version used is descri Battino, Evans, and Danfor	tt (1) and bed by th (2).	<ol> <li>Neon. Either Air Products &amp; Chemicals, Inc., or Matheson Co., Inc. 99 mol % or better.</li> </ol>
See neon + 1,2 dimethyl data sheet for more detail	cyclohexane 2	<ol> <li><u>cis</u>-1,3-Dimethylcyclohexane. Chemical Samples Co., binary mix- ture, analysed by R. I. by auth- ors, used as received.</li> </ol>
	3	<ol> <li>trans-1,3-Dimethylcyclohexane. Chemical Samples Co., binary mix- ture, analysed by R. I. by auth- ors, used as received.</li> </ol>
	E	ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.03$
		<pre>REFERENCES: 1. Morrison, T.J.; Billett, F. J. Chem. Soc. 1948, 2033.</pre>
	2	<ol> <li>Battino, R.; Evans, F.D.; Danforth, W.F. J. Am. Oil Chem. <u>Soc</u>. 1968, <u>45</u>,</li> </ol>

COMPONENTS: 1. Neon: Ne:	7440-01-0		ORIGINAL MEAS	UREMENTS:	
. Neon; Ne; 7440-01-9		Wilhelm	B.; Battino, R.; M, E.		
2. <u>cis</u> -1,4-D: mol %; C ₈ 1		clohexane, 70 29-3			
3. <u>trans-1,4</u> - mol %; C ₈ 1	-Dimethyld H ₁₆ ; 2207-	cyclohexane, 30 -04-7	J. Chem. Th	<u>ermodyn</u> . 1976, <u>8</u>	, 197-202.
VARIABLES:			PREPARED BY:	<del></del>	
	298.14 101.325	(1 atm)		H.L. Clever	
EXPERIMENTAL VAL	LUES:				
		Mol Fraction	Bunsen	Ostwald	
				Coefficient	
		$x_1 \times 10^4$	α x 10 ²	L x 10 ²	
	298.14	2.66	4.10	4.48	
101.325 kPa (	l atm) by	Henry's law.		pressure of neon of	f
l'he Bunsen coe	efficients	s were calculate	a by the com	piler.	
		AUXILIARY	INFORMATION	<u></u>	-
METHOD / ADDADAD				TRITY OF MATERIALS.	
sign by Morris the version us Battino, Evans	tus is bas son and Bi sed is des s, and Dan	DURE: ed on the de- llett (1) and cribed by forth (2).	SOURCE AND PU 1. Neon. Chemica Inc. 99 2. cis-1,4	RITY OF MATERIALS: Either Air Product ls, Inc., or Mathe mol % or better. -Dimethylcyclohexa l Samples Co., bir	eson Co., ane.
The apparat sign by Morris the version us Battino, Evans	tus is bas son and Bi sed is des s, and Dan 1,2 dimet	DURE: ed on the de- llett (1) and scribed by forth (2). hylcyclohexane	SOURCE AND PU 1. Neon. Chemica Inc. 99 2. <u>cis</u> -1,4 Chemica ture, a	Either Air Product ls, Inc., or Mathe mol % or better.	eson Co., ane. nary mix-
The apparat sign by Morris the version us Battino, Evans See neon +	tus is bas son and Bi sed is des s, and Dan 1,2 dimet	DURE: ed on the de- llett (1) and scribed by forth (2). hylcyclohexane	SOURCE AND PU 1. Neon. Chemica Inc. 99 2. <u>cis</u> -1,4 Chemica ture, a ors, us 3. <u>trans</u> -1 <u>Chemica</u> ture, a ors, us	Either Air Product ls, Inc., or Mather mol % or better. -Dimethylcyclohexa l Samples Co., bir nalysed by R. I. H ed as received. ,4-Dimethylcyclohe l Samples Co., bir nalysed by R. I. H ed as received.	eson Co., nary mix- by auth- exane. nary mix-
The apparat sign by Morris the version us Battino, Evans See neon +	tus is bas son and Bi sed is des s, and Dan 1,2 dimet	DURE: ed on the de- llett (1) and scribed by forth (2). hylcyclohexane	SOURCE AND PU 1. Neon. Chemica Inc. 99 2. <u>cis</u> -1,4 Chemica ture, a ors, us 3. <u>trans</u> -1 Chemica ture, a	Either Air Product ls, Inc., or Mather mol % or better. -Dimethylcyclohexa l Samples Co., bir nalysed by R. I. H ed as received. ,4-Dimethylcyclohe l Samples Co., bir nalysed by R. I. H ed as received.	eson Co., nary mix- by auth- exane. nary mix-
The apparat sign by Morris the version us Battino, Evans See neon +	tus is bas son and Bi sed is des s, and Dan 1,2 dimet	DURE: ed on the de- llett (1) and scribed by forth (2). hylcyclohexane	SOURCE AND PU 1. Neon. Chemica Inc. 99 2. <u>cis</u> -1,4 Chemica ture, a ors, us 3. <u>trans</u> -1 Chemica ture, a: ors, us ESTIMATED ERR REFERENCES: 1. Morriso	Either Air Product ls, Inc., or Mather mol % or better. -Dimethylcyclohexa l Samples Co., bir nalysed by R. I. H ed as received. ,4-Dimethylcycloha l Samples Co., bir nalysed by R. I. H ed as received. COR:	eson Co., ane. hary mix- by auth- exane. hary mix- by auth- F.

COMPONENTS: **EVALUATOR:** H. L. Clever 1. Neon; Ne; 7440-01-9 Chemistry Department 2. Benzene; C₆H₆; 71-43-2 Emory University Atlanta, Georgia 30322 USA January 1978

## CRITICAL EVALUATION:

The solubility of neon in benzene was measured by Lannung (1), by Clever, Battino, Saylor and Gross (2), and by de Wet (3). The three sets of solubility data, when smoothed by a Gibbs energy function linear in temperature, agree within 5.5 per cent at 288.15 K, 6.1 per cent at 298.15 K, and 8.3 per cent at 308.15 K. On combining the three data sets on a one to one weight basis by the method of least squares in a Gibbs energy equation linear in temperature, only one solubility value at 298.35 K (2) was more than two standard deviations from the linear equation. That solubility value was excluded and the data fitted again to obtain the recommended equation.

The recommended thermodynamic values for the transfer of one mole of neon from the gas at 101.325 kPa (1 atm) to the hypothetical unit mole fraction solution are

 $\Delta G^{\circ}/J \mod^{-1} = - RT \ln X_1 = 10,467 + 40.301 T$ 

Std. Dev.  $\Delta G^{\circ} = 46$ , Coef. Corr. = 0.9945

 $\Delta H^{\circ}/J \text{ mol}^{-1} = 10,467, \Delta S^{\circ}/J K^{-1} \text{ mol}^{-1} = -40,301$ 

The recommended mole fraction solubilities at 101.325 kPa and the Gibbs energy changes at five degree intervals between 283.15 and 313.15 are in Table 1.

## TABLE 1. Solubility of neon in benzene at 101.325 kPa. Recommended mole fraction solubility and Gibbs energy of solution as a function of temperature.

т/к	Mol Fraction $X_1 \times 10^4$	∆G°/J mol ⁻¹
283.15	0.920	21,878
288.15	0.944	22,080
293.15	1.071	22,281
298.15	1.151	22,483
303.15	1.23	22,684
308.15	1,32	22,886
313.15	1.41	23,087

1.

Lannung, A. J. <u>Am. Chem. Soc.</u> 1930, <u>52</u>, 68. Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M. <u>J. Phys. Chem</u>. 2. 1957, <u>61</u>, 1078.

з. de Wet, W. J. J. S. Afr. Chem. Inst. 1964, 17, 9.

COMPONENTS:		ORIGINAL MEAS	SUREMENTS:	
		Lannung, A.		
1. Neon; Ne;	7440-01-9			
2. Benzene; C	₅ H ₆ ; 71-43-2			
		J. Am. Chen	<u>n. Soc</u> . 1930, <u>52</u> , 68 - 80	•
VARIABLES:		PREPARED BY:		
	283.15 - 310.15 101.325 (1 atm)		P. L. Long	
EXPERIMENTAL VALUE	S:			<u> </u>
-	T/K Mol Fraction	Dungan		
	·	Bunsen Coefficient	Ostwald Coefficient	
	$x_1 \times 10^4$	a x 10 ²	$L \times 10^2$	
	283.15 0.913	2.33	2.42	
	283.15 0.936	2.39	2.48	
	293.15 1.07 293.15 1.08	2.69 2.73	2.89 2.93	
	310.15 1.35	3.33	3.78	
-	310.15 1.33	3.28	3.72	
Smoothed Data:	$\Delta G^{\circ}/J \text{ mol}^{-1} = - RT \ln$	x ₁ = 10,010	) + 41.860 T	
	Std. Dev. $\Delta G^{\circ} = 24.2$ ,	Coef. Corr	= 0.9989	
of the solubil: The solubility 101.325 kPa (1	ity of neon in benzene. values were adjusted t atm) by Henry's law. ion solubility and the	o a partial	ee the critical evaluatio pressure of neon of ficients were calculated	
	AUXILIARY	INFORMATION		
METHOD:		SOURCE AND PI	JRITY OF MATERIALS:	
Gas absorption, rated with solv volume absorbed between initial umes. The amou	The gas is presatu- vent vapor. The gas d is the difference l and final gas vol- int of solvent is deter eight of mercury dis-	<ol> <li>Neon. tory. volume</li> <li>Benzen kularg m.p. 5</li> </ol>	Linde's Liquid Air Fac- Contained one percent b e helium. ne. Kahlbaum's "Zur Mole gewitchtsbestimmung", 5.48°C.	У
	E: The apparatus is a	ESTIMATED ERF		
	that of von Antropoff ted, combined all glas		K = 0.03	
	oulb is enclosed in an			
air thermostat.	Mercury is used as			
The solvent is ratus. The sol	a and confining liquid. degassed in the appa- lvent and the gas are until equilibrium is		cropoff, A. ectrochem. 1919, <u>25</u> , 269.	
		1		

COMPONENTS: ORIGINAL MEASUREMENTS: 1. Neon; Ne; 7440-01-9 Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M. 2. Benzene; C₆H₆; 71-43-2 J. Phys. Chem. 1957, 61, 1078 - 1083. VARIABLES: PREPARED BY: T/K: 287.15 - 312.15 P. L. Long EXPERIMENTAL VALUES: T/K Mol Fraction Bunsen Ostwald Coefficient Coefficient  $X_1 \times 10^4$  $\alpha \times 10^2$  $L \ge 10^2$ 287.15 0.95 2.41 2.53 298.35 1.07 2.68 2.93 3.53 312.15 1.43 4.03 Smoothed Data:  $\Delta G^{\circ}/J \mod^{-1} = -RT \ln X_1 = 12,400 + 34.049 T$ Std. Dev.  $\Delta G^{\circ} = 104$ , Coef. Corr. = 0.9715 For the recommended free energy equation see the critical evaluation of the solubility of neon in benzene. The solubility values were adjusted to a partial pressure of neon of 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculated by the compiler. AUXILIARY INFORMATION METHOD: Volumetric. The solvent is sat-SOURCE AND PURITY OF MATERIALS: urated with gas as it flows through 1. Neon. Matheson Co. Both rean 8 mm x 180 cm glass spiral attachsearch and standard grades were used with no difference in reed to a gas buret. The total pressure is maintained at 1 atm as the sults. gas is absorbed. Benzene. Jones and Laughlin Steel Co. Shaken with conc. 2. H₂SO₄, washed, dried over sodium, distilled ESTIMATED ERROR: APPARATUS/PROCEDURE: The apparatus is a modification of that of Morrison and Billett (1). The modifications in- $\delta T/K = 0.05$  $\delta P/torr = 3$ clude the addition of a spiral stor- $\delta X_{1}/X_{1} = 0.03$ age for the solvent, a manometer for a constant reference pressure, and an REFERENCES: Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033; Ibid. 1952, 3819. extra buret for highly soluble gases. 1. The solvent is degassed by a modification of the method of Baldwin and Daniel (2). Baldwin, R. R.; Daniel, S. G. 2. J. Appl. Chem. 1952, 2, 161.

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	de Wet, W. J.
2. Benzene; C ₆ H ₆ ; 71-43-2	
	J. S. Afr. Chem. Inst. 1964, <u>17</u> , 9 - 13.
VARIABLES:	PREPARED BY:
T/K: 291.45 - 304.35 P/kPa: 101.325 (1 atm)	P. L. Long
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald
$x_1 \times 10^4$	Coefficient Coefficient α x 10 ² L x 10 ²
291.45 1.07	2.70 2.88
298.95 1.17 304.35 1.23	2.92 3.20 3.07 3.42
	J.U/ J.34
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = - RT \ln$	X ₁ = 8003.8 + 48.537 т
Std. Dev. ΔG° = 9.8,	Coef. Corr. = 0.9995
For the recommended free energy equat solubility of neon in benzene.	ion see the critical evaluation of the
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law.	o a partial pressure of neon of
	· ••••••••••••••••••••••••••••••••••••
AUXILIARY	INFORMATION
METHOD: Volumetric. To degas, the solvent is placed in a large continuously evacuated bulb until the solvent boils freely with- out further release of dissolved gases.	SOURCE AND PURITY OF MATERIALS: 1. Neon. No source given. The gas purified over activated charcoal at liquid air temperature. Im- purities estimated to be less than 0.3 percent.
To saturate, the solvent is flowed in a thin film through a glass spiral containing the gas. The volume of gas absorbed is measured on an at- tached buret system.	<ol> <li>Benzene. No source given. Ben- zene distilled immediately before use.</li> </ol>
APPARATUS/PROCEDURE:	ESTIMATED ERROR:
The apparatus is a modification of that used by Morrison and Billett (1)	δ <b>T/K = 0.05</b>
and others (2). The degassed solvent	
	REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033; ibid. 1952, 3819.

	:		JATOR:
1. Neon;	Ne; 7440-01-9		. Clever
0	- ]   / [m - ]		istry Department
2. Metny 108-8	lbenzene (Toluene		y University Inta, Georgia 30322
108-0		U.S.	
	· · · · · · · · · · · · · · · · · · ·	Marc	ch 1978
CRITICAL EV	VALUATION:		
	solubility of neo 1) and by de Wet		e was measured by Saylor and
energy eq values ra	uation linear in	temperature. The nt higher at 288,	od of least squares to a Gibbs e de Wet smoothed solubility 15 to 12 percent higher at med values.
to obtain deviation	the recommended	equation. No poi	wo laboratories were combined nt fell as much as two standard fit toa Gibbs energy equation
			for the transfer of neon from the cal unit mole fraction solution
	$\Delta G^{\circ}/J \text{ mol}^{-1} = -1$	RT ln $X_1 = 7,767$ .	3 + 47.522 T
	Std. Dev. $\Delta G^\circ$ =	69, Coef. Corr	. = 0.9943
	$\Delta H^{\circ}/J \text{ mol}^{-1} = 7,$	767.3, Δs°/j K ⁻¹	$mol^{-1} = -47.522$
	ibbs energy of so		ction solubility at 101.325 kPa as a function of temperature
TABLE 1.		lubility and Gibb	ne at 101.325 kPa. Recommended s energy of solution as a func-
TABLE 1.	mole fraction so	lubility and Gibb ure.	s energy of solution as a func-
TABLE 1.	mole fraction so tion of temperat	lubility and Gibb ure. Mol Fraction ^a	S energy of solution as a func- <u>AG°/J mol⁻¹</u>
TABLE 1.	mole fraction so tion of temperat 	lubility and Gibb ure. Mol Fraction ^a $X_1 \times 10^4$	s energy of solution as a func-
TABLE 1.	mole fraction so tion of temperat T/K 288.15 293.15 298.15	Lubility and Gibbure. Mol Fraction ^a $X_1 \times 10^4$ 1.285	AG°/J mol ⁻¹ 21,461 21,699 21,936
TABLE 1.	mole fraction so tion of temperat T/K 288.15 293.15 298.15 303.15	Lubility and Gibture. Mol Fraction ^a $X_1 \times 10^4$ 1.285 1.360 1.435 1.510	AG°/J mol ⁻¹ 21,461 21,699 21,936 22,173
TABLE 1.	mole fraction so tion of temperat T/K 288.15 293.15 298.15 303.15 308.15	Lubility and Gibture. Mol Fraction ^a $X_1 \times 10^4$ 1.285 1.360 1.435 1.510 1.590	ΔG°/J mol ⁻¹ 21,461 21,699 21,936 22,173 22,411
TABLE 1.	mole fraction so tion of temperat T/K 288.15 293.15 298.15 303.15 308.15 313.15	Lubility and Gibbure. Mol Fraction ^a $X_1 \times 10^4$ 1.285 1.360 1.435 1.510 1.590 1.670	ΔG°/J mol-1 21,461 21,699 21,936 22,173 22,411 22,649
TABLE 1.	mole fraction so tion of temperat T/K 288.15 293.15 298.15 303.15 308.15 313.15 318.15	Lubility and Gibture. Mol Fraction ^a $X_1 \times 10^4$ 1.285 1.360 1.435 1.510 1.590 1.670 1.750	ΔG°/J mol-1 21,461 21,699 21,936 22,173 22,411 22,649 22,887
TABLE 1.	mole fraction so tion of temperat T/K 288.15 293.15 298.15 303.15 308.15 313.15	Lubility and Gibbure. Mol Fraction ^a $X_1 \times 10^4$ 1.285 1.360 1.435 1.510 1.590 1.670	AG°/J mol ⁻¹ 21,461 21,936 22,173 22,411 22,649
	mole fraction so tion of temperat T/K 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15	Lubility and Gibture. Mol Fraction ^a $X_1 \times 10^4$ 1.285 1.360 1.435 1.510 1.590 1.670 1.750 1.830 1.910	ΔG°/J mol-1 21,461 21,699 21,936 22,173 22,411 22,649 22,887 23,124
	mole fraction so tion of temperat T/K 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15	Lubility and Gibture. Mol Fraction ^a $X_1 \times 10^4$ 1.285 1.360 1.435 1.510 1.590 1.670 1.750 1.830 1.910	AG°/J mol ⁻¹ 21,461 21,999 21,936 22,173 22,411 22,649 22,887 23,124
a _{Values} 1. Saylo	mole fraction so tion of temperat T/K 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 rounded to neares	Lubility and Gibb ure. Mol Fraction ^a X ₁ x 10 ⁴ 1.285 1.360 1.435 1.510 1.590 1.670 1.750 1.830 1.910 t 0.005 x 10 ⁻⁴ .	AG°/J mol ⁻¹ 21,461 21,699 21,936 22,173 22,411 22,649 22,887 23,124 23,362 em. 1958, 62, 1334.
a _{Values} 1. Saylo	mole fraction so tion of temperat T/K 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 rounded to neares	Lubility and Gibb ure. Mol Fraction ^a X ₁ x 10 ⁴ 1.285 1.360 1.435 1.510 1.590 1.670 1.750 1.830 1.910 t 0.005 x 10 ⁻⁴ .	AG°/J mol ⁻¹ 21,461 21,699 21,936 22,173 22,411 22,649 22,887 23,124 23,362 em. 1958, 62, 1334.
a _{Values} 1. Saylo	mole fraction so tion of temperat T/K 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 rounded to neares	Lubility and Gibb ure. Mol Fraction ^a X ₁ x 10 ⁴ 1.285 1.360 1.435 1.510 1.590 1.670 1.750 1.830 1.910 t 0.005 x 10 ⁻⁴ .	AG°/J mol ⁻¹ 21,461 21,699 21,936 22,173 22,411 22,649 22,887 23,124 23,362 em. 1958, 62, 1334.
a _{Values} 1. Saylo	mole fraction so tion of temperat T/K 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 rounded to neares	Lubility and Gibb ure. Mol Fraction ^a X ₁ x 10 ⁴ 1.285 1.360 1.435 1.510 1.590 1.670 1.750 1.830 1.910 t 0.005 x 10 ⁻⁴ .	AG°/J mol ⁻¹ 21,461 21,699 21,936 22,173 22,411 22,649 22,887 23,124 23,362 em. 1958, 62, 1334.
a _{Values} 1. Saylo	mole fraction so tion of temperat T/K 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 rounded to neares	Lubility and Gibb ure. Mol Fraction ^a X ₁ x 10 ⁴ 1.285 1.360 1.435 1.510 1.590 1.670 1.750 1.830 1.910 t 0.005 x 10 ⁻⁴ .	AG°/J mol ⁻¹ 21,461 21,699 21,936 22,173 22,411 22,649 22,887 23,124 23,362 em. 1958, 62, 1334.
a _{Values} 1. Saylo	mole fraction so tion of temperat T/K 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 rounded to neares	Lubility and Gibb ure. Mol Fraction ^a X ₁ x 10 ⁴ 1.285 1.360 1.435 1.510 1.590 1.670 1.750 1.830 1.910 t 0.005 x 10 ⁻⁴ .	AG°/J mol ⁻¹ 21,461 21,999 21,936 22,173 22,411 22,649 22,887 23,124 23,362 em. 1958, 62, 1334.
a _{Values} 1. Saylo	mole fraction so tion of temperat T/K 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 rounded to neares	Lubility and Gibb ure. Mol Fraction ^a X ₁ x 10 ⁴ 1.285 1.360 1.435 1.510 1.590 1.670 1.750 1.830 1.910 t 0.005 x 10 ⁻⁴ .	AG°/J mol ⁻¹ 21,461 21,999 21,936 22,173 22,411 22,649 22,887 23,124 23,362 em. 1958, 62, 1334.
a _{Values} 1. Saylo	mole fraction so tion of temperat T/K 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 rounded to neares	Lubility and Gibb ure. Mol Fraction ^a X ₁ x 10 ⁴ 1.285 1.360 1.435 1.510 1.590 1.670 1.750 1.830 1.910 t 0.005 x 10 ⁻⁴ .	AG°/J mol ⁻¹ 21,461 21,999 21,936 22,173 22,411 22,649 22,887 23,124 23,362 em. 1958, 62, 1334.
a _{Values} 1. Saylo	mole fraction so tion of temperat T/K 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 rounded to neares	Lubility and Gibb ure. Mol Fraction ^a X ₁ x 10 ⁴ 1.285 1.360 1.435 1.510 1.590 1.670 1.750 1.830 1.910 t 0.005 x 10 ⁻⁴ .	AG°/J mol ⁻¹ 21,461 21,699 21,936 22,173 22,411 22,649 22,887 23,124 23,362 em. 1958, 62, 1334.

.

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Saylor, J. H.; Battino, R.
2. Methylbenzene (Toluene); C ₇ H ₈ ; 108-88-3	
	<u>J. Phys</u> . <u>Chem</u> . 1958, <u>62</u> , 1334 - 1337.
VARIABLES:	PREPARED BY:
T/K: 288.15 - 328.15 P/kPa: 101.325 (1 atm)	H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald
	Coefficient Coefficient $\alpha \times 10^2$ L x $10^2$
288.15 1.26	2.66 2.81
	2.94 3.21 3.35 3.84
313.15 1.62 328.15 1.91	3.35 3.84 3.89 4.67
Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = - RT \ln$	
Std. Dev. $\Delta G^\circ = 25.9$ ,	-
	$\Delta s^{\circ}/J K^{-1} mol^{-1} = -46.441$
·	· · · · · · · · · · · · · · · · · · ·
T/K Mol Fract X _l x 10	4 4
288.15 1.25	21,529
293.15 1.33	21,761 21,993
298.15 1.40 303.15 1.48	22,225
308.15 1.56	22,457
313.15 1.64	22,690
318.15 1.72	22,927
323.15 1.81 328.15 1.89	23,154 23,386
The solubility values were adjusted to kPa (1 atm) by Henry's law.	a partial pressure of neon of 101.325
The Bunsen coefficients were calculate	
	INFORMATION
METHOD: Volumetric. The solvent is sat-	1
urated with gas as it flows through an 8 mm x 180 cm glass spiral at- tached to a gas buret. The total	<ol> <li>Neon. Matheson Co., Inc. Research grade.</li> </ol>
pressure is maintained at 1 atm as	2. Toluene. Mallinckrodt. Reagent
the gas is absorbed.	grade. Shaken over conc. H ₂ SO ₄ ,
	water washed, dried over
	Drierite, distilled b.p. 110.40 - 110.60° C.
	ESTIMATED ERROR:
APPARATUS/PROCEDURE: The apparatus is a	
modification of that of Morrison and Billett(l). The modifications in-	$\delta T/K = 0.03$ $\delta P/torr = 1$
clude the addition of a spiral stor-	$\delta X_1 / X_1 = 0.04$
age for the solvent, a manometer for	
a constant reference pressure, and an	REFERENCES:
extra buret for highly soluble gases.	1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033;
The solvent is degassed by a modifi- cation of the method of Baldwin and	ibid. 1952, 3819.
Daniel (2).	2. Baldwin, R. R.; Daniel, S. G.
	J. Appl. Chem. 1952, 2, 161.
L	

CONDONENTS -	
COMPONENTS :	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	de Wet, W. J.
2. Methylbenzene (Toluene); C ₇ H ₈ ; 108-88-3	
	J. <u>S. Afr. Chem</u> . <u>Inst</u> . 1964, <u>17</u> , 9 - 13.
VARIABLES:	PREPARED BY:
T/K: 292.15 - 304.15 P/kPa: 101.325 (1 atm)	P. L. Long
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald
$x_1 \times 10^4$	Coefficient Coefficient $\alpha \times 10^2$ L x $10^2$
292.15 1.35	2.85 3.05
299.35 1.50	3.14 3.44
304.15 1.59	3.32 3.70
Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = -RT$ lr	ах, = 10,115 + 39.447 т
<pre>Std. Dev. ∆G° = 8.0,</pre>	Coef. Corr. = 0.9994
solubility of meon in toluene. The solubility values were adjusted t 101.325 kPa (1 atm) by Henry's law. The mole fraction solubility and the by the compiler.	
METHOD: Volumetric.	SOURCE AND PURITY OF MATERIALS:
To degas, the solvent is placed in a large continuously evacuated bulb until the solvent boils freely with- out further release of dissolved gases. To saturate, the solvent is flowed ir a thin film through a glass spiral	<ol> <li>Neon. No source given. The gas purified over activated charcoal at liquid air temperature. Im- purities estimated to be less than 0.3 percent.</li> </ol>
containing the gas. The volume of	use.
gas absorbed is measured on an at- tached buret system.	
	ESTIMATED ERROR:
tached buret system.	$\delta T/K = 0.05$ REFERENCES:

COMPONENTS:			ORIGINAL MEAS	UREMENTS:
1. Neon; Ne;	7440-01-9			; Battino, R.;
2. 1,2-Dimeth C ₈ H ₁₀ ; 95-	ylbenzene 47-6	( <u>o</u> -Xylene);	Wilhelm	, Е.
			J. Chem. Th	<u>ermodyn</u> . 1975, <u>7</u> , 515-52
VARIABLES:			PREPARED BY:	
P/k: P/kPa:	298.13 - 101.325			H.L. Clever
EXPERIMENTAL VALU	ES:		<b>_</b>	
	T/K	Mol Fraction	Bunsen	Ostwald
			Coefficient	
		$x_1 \times 10^4$	α x 10 ²	L x 10 ²
	298.13	1.412	2.61	2.849
	298.15 298.19	1.352	2.50	2.729
	298.19	1.395	2.58	2.816
		AUXILIARY	INFORMATION	
METHOD/APPARATU	JS/PROCEDU			JRITY OF MATERIALS:
The apparat sign by Morris the version us Battino, Evans Degassing. vent is placed that the liqui The liquid is vacuum is appl through a liqu permanent gas	tus is bas son and Bi sed is des s, and Dan Up to 50 d in a flas d is abou rapidly s ied intern id N ₂ trap	RE: ed on the de- llett (1) and cribed by forth (2). 0 cm ³ of sol- sk of such size t 4 cm deep. tirred, and mittently	SOURCE AND PL 1. Neon. Chemica Inc. 99 2. 1,2-Dim	DRITY OF MATERIALS: Either Air Products & ls,Inc., or Matheson Co., mol % or better. methylbenzene. Phillips um Co. Pure grade.
The apparat sign by Morris the version us Battino, Evans Degassing. vent is placed that the liqui The liquid is vacuum is appl through a liqu	tus is bas son and Bi sed is des s, and Dan Up to 50 l in a flas d is abour rapidly s ied intern id N ₂ trap residual p Determina- tis passes ass spira olute gas at a tota volume of fference I nal volume	RE: ed on the de- llett (1) and cribed by forth (2). 0 cm ³ of sol- sk of such size t 4 cm deep. tirred, and mittently o until the pressure drops tion. The de- d in a thin l tube con- and the l pressure of gas absorbed between the es in the ent is col-	SOURCE AND PU 1. Neon. Chemica Inc. 99 2. 1,2-Dim Petrole ESTIMATED ERI $\delta P$ REFERENCES: 1. Morriso	Either Air Products & ls,Inc., or Matheson Co., mol % or better. ethylbenzene. Phillips um Co. Pure grade.

COMPONENTS:	EVALUATOR:
<ol> <li>Neon; Ne; 7440-01-9</li> <li>1,3-Dimethylbenzene (m-Xylene); C₈H₁₀; 108-38-3</li> </ol>	H. L. Clever Chemistry Department Emory University Atlanta, Georgia 30322 U.S.A. USA
	March 1978

CRITICAL EVALUATION:

The solubility of neon in 1,3-dimethylbenzene was measured in two laboratories. Three solubility values between 291.65 and 305.25 K were reported by de Wet (1),and two solubility values at 298.17 and 298.18 K were reported by Byrne, Battino, and Wilhelm (2).

The de Wet solubility values at 299.25 K and the average of the Byrne, Battino and Wilhelm values at 298.17 and 298.18 K fall within the expected experimental error of 3 per cent. All data points were combined on a one to one weight basis to obtain the recommended Gibbs energy equation linear in temperature by the method of least squares.

The recommended thermodynamic values for the transfer of one mole of neon from the gas at 101.325 kPa (1 atm) to the hypothetical unit mole fraction solution are

 $\Delta G^{\circ}/J \text{ mol}^{-1} = - RT \ln X_1 = 10,187 + 38.421 T$ 

Std. Dev.  $\Delta G^{\circ} = 49$ , Coef. Corr. = 0.9670

 $\Delta H^{\circ}/J \mod^{-1} = 10,187, \Delta S^{\circ}/J K^{-1} \mod^{-1} = -38.421$ 

The recommended mole fraction solubilities at 101.325 kPa and the Gibbs energy changes at five degree intervals between 288.15 and 308.15 K are given in Table 1.

TABLE 1. Solubility of neon in 1,3-dimethylbenzene. Recommended mole fraction solubility and Gibbs energy of solution as a function of temperature.

т/к	Mol Fraction ^a $X_1 \times 10^4$	∆G°/J mol ⁻¹
288.15	1.400	21,259
293.15	1.505	21,451
298.15	1.615	21,643
303.15	1.730	21,835
308.15	1.845	22,027

^a rounded to the nearest  $0.005 \times 10^{-4}$ .

de Wet, W. J. J. S. Afr. Chem. Inst. 1964, 17, 9.
 Byrne, J. E.; Battino, R.; Wilhelm, E. J. Chem. Thermodyn. 1975, 7, 515.

COMPONENTS: ORIGINAL MEASUREMENTS:	
1. Neon; Ne; 7440-01-9 de Wet, W. J.	
2. 1,3-Dimethylbenzene (m-Xylene); C ₈ H ₁₀ ; 108-38-3	
$\frac{J. S. Afr. Chem. Inst. 1964,}{9 - 13.}$	<u>17</u> ,
VARIABLES: PREPARED BY:	
T/K: 291.65 - 305.25 P. L. Long P/kPa: 101.325 (1 atm)	
EXPERIMENTAL VALUES:	-
T/K Mol Fraction Bunsen Ostwald	
Coefficient Coefficient	
291.65 1.47 2.69 2.87 299.25 1.66 3.01 3.30	
305.25 1.77 3.19 3.56	
Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = - RT \ln X_1 = 10,161 + 38.493 T$	
Std. Dev. ∆G° = 22.5, Coef. Corr. = 0.9963	
For the recommended free energy equation see the critical evaluation solubility of neon in $\underline{m}$ -xylene.	n of the
The solubility values were adjusted to a partial pressure of neon o 101.325 kPa (1 atm) by Henry's law.	f
The mole fraction solubility and the Ostwald coefficients were calc	ulated
by the compiler.	
AUXILIARY INFORMATION	
METHOD: Volumetric. To degas, the solvent is placed in 1. Neon. No source given.	The das
a large continuously evacuated bulb purified over activated o	harcoal
until the solvent boils freely with- out further release of dissolved purities estimated to be	
gases. than 0.3 percent.	
To saturate, the solvent is flowed in 2. m-Xylene. No source give	
a thin film through a glass spiral m-Xylene distilled immedi	ately
containing the gas. The volume of before use. gas absorbed is measured on an at-	
tached buret system.	
ESTIMATED ERROR:	
APPARATUS/PROCEDURE: $\delta T/K = 0.05$ The apparatus is a modification of $\delta T/K = 0.05$	
that used by Morrison and Billett (1)	
and others (2). The degassed solvent is saturated with gas as it flows	
through a glass spiral containing the REFERENCES:	F
gas. The amount of solvent passed 1. Morrison, T. J.; Billett, through the spiral was such that J. Chem. Soc. 1948, 2033;	г.
10-25 ml of gas was absorbed. <u>ibid. 1952, 3819</u> .	
2. Clever, H. L.; Battino, F	
Saylor, J. H.; Gross, P. J. Phys. Chem. 1957, <u>61</u> ,	M. 1078.

COMPONENTS:	ORIGINAL MEASUREMENTS:		
1. Neon; Ne; 7440-01-9	Byrne, J. E.; Battino, R.;		
2. 1,3-Dimethylbenzene (m-Xylene); C ₈ H ₁₀ ; 108-38-3	Wilhelm, E.		
VARIABLES:	J. Chem. Thermodyn. 1975, 7, 515-522.		
T/K: 298.17 - 298.18	PREPARED BY:		
P/kPa: 101.325 (1 atm)	H. L. Clever		
EXPERIMENTAL VALUES:			
T/K Mol Fraction $X_1 \times 10^4$	Bunsen Ostwald Coefficient Coefficient $\alpha \times 10^2$ L x $10^2$		
298.17 1.654 298.18 1.570	3.00 3.277 2.85 3.109		
The Bunsen coefficients were calcula			
	to neon partial pressure of 101.325 kPa		
(1 atm) by Henry's law.	to neon partial pressure of 101.025 Ara		
AUXILIAR	Y INFORMATION		
	Y INFORMATION SOURCE AND PURITY OF MATERIALS:		
	SOURCE AND PURITY OF MATERIALS:		
METHOD: The apparatus is based on the design by Morrison and Billett(1) and the version used is described by	SOURCE AND PURITY OF MATERIALS: 1. Neon. Either Air Products and Chemicals, Inc., or Matheson Co.,		
METHOD: The apparatus is based on the design by Morrison and Billett(1) and the version used is described by Battino, Evans, and Danforth (2). APPARATUS/PROCEDURE: Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid i about 4 cm deep. The liquid is rapid ly stirred and vacuum is applied in- termittently through a liquid N2 tra until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The degassed solvent passes in thin film	SOURCE AND PURITY OF MATERIALS: 1. Neon. Either Air Products and Chemicals, Inc., or Matheson Co., Inc. 99 mole % or better. 2. m-Xylene. Phillips Petroleum Co., pure grade. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.02$		
METHOD: The apparatus is based on the design by Morrison and Billett(1) and the version used is described by Battino, Evans, and Danforth (2). APPARATUS/PROCEDURE: Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid i about 4 cm deep. The liquid is rapid ly stirred and vacuum is applied in- termittently through a liquid N2 tra until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The degassed solvent passes in thin film down a glass spiral at a total pres-	SOURCE AND PURITY OF MATERIALS: 1. Neon. Either Air Products and Chemicals, Inc., or Matheson Co., Inc. 99 mole % or better. 2. m-Xylene. Phillips Petroleum Co., pure grade. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.02$		
METHOD: The apparatus is based on the design by Morrison and Billett(1) and the version used is described by Battino, Evans, and Danforth (2). APPARATUS/PROCEDURE: Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid i about 4 cm deep. The liquid is rapid ly stirred and vacuum is applied in- termittently through a liquid N2 tra until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The degassed solvent passes in thin film down a glass spiral at a total pres- sure of one atm of solute gas plus solvent vapor. Solubility equilibriu is rapidly attained. The volume of	SOURCE AND PURITY OF MATERIALS: 1. Neon. Either Air Products and Chemicals, Inc., or Matheson Co., Inc. 99 mole % or better. 2. m-Xylene. Phillips Petroleum Co., pure grade. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.02$ REFERENCES:		
METHOD: The apparatus is based on the design by Morrison and Billett(1) and the version used is described by Battino, Evans, and Danforth (2). APPARATUS/PROCEDURE: Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid i about 4 cm deep. The liquid is rapid ly stirred and vacuum is applied in- termittently through a liquid N2 tra until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The degassed solvent passes in thin film down a glass spiral at a total pres- sure of one atm of solute gas plus solvent vapor. Solubility equilibriu	SOURCE AND PURITY OF MATERIALS: 1. Neon. Either Air Products and Chemicals, Inc., or Matheson Co., Inc. 99 mole % or better. 2. m-Xylene. Phillips Petroleum Co., pure grade. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.02$ REFERENCES: m 1. Morrison, T. J.; Billett, F.		

COMPONENTS: 1. Neon; Ne; 7440-01-9		1	
		ORIGINAL MEASU	JREMENTS: ; Battino, R.:
		Wilhelm	
<pre>2. 1,4-Dimethylbenzene (p-Xylene);         C₈H₁₀; 106-42-3</pre>			
		J. Chem. The	<u>ermodyn</u> . 1975, <u>7</u> , 515-522.
VARIABLES:		PREPARED BY:	
T/K: 298.12 - 298.21 P/kPa: 101.325 (1 atm)			H.L. Clever
EXPERIMENTAL VALUES:			
T/K	Mol Fraction	Bunsen	Ostwald
		Coefficient	
	$x_1 \times 10^4$	α x 10 ²	$L \times 10^2$
298.12	1.563	2.83	3.085
298.16 298.17	1.528 1.524	2.76 2.76	3.016 3.008
298.17 298.21	1.524	2.81	3.066
<u></u>			
	AUXILIARY	INFORMATION	
METHOD /APPARATUS/PROCEDU			RITY OF MATERIALS:
METHOD /APPARATUS/PROCEDU The apparatus is bas design by Morrison and and the version used is Battino, Evans, and Dar Degassing. Up to 50 vent is placed in a fla size that the liquid is deep. The liquid is ra and vacuum is applied i through a liquid N ₂ tra permanent gas residual to 5 microns.	JRE: Billett (1)' s described by nforth (2). 00 cm ³ of sol- ask of such s about 4 cm apidly stirred, intermittently ap until the	SOURCE AND PUI 1. Neon. Chemica Inc. 99 2. 1,4 Dim Petrole	RITY OF MATERIALS: Either Air Products & .ls, Inc., or Matheson Co., mol % or better. Methylbenzene. Phillips sum Co. Pure grade.

			ORIGINAL MEAS		
1. Neon; Ne;	7440-01-9		Lannung, A.		
2. Methanol (Methyl Alcohol); CH ₄ O; 67-56-1			J. Am. Chem. Soc. 1930, 52, 68-80.		
VARIABLES:	<u> </u>		PREPARED BY:		
T/K:	288.15 - 3		FREFARED BI.	P.L. Long	
	101.325 (1	atm)			
EXPERIMENTAL VALUES				0-1-1-1	
	•			Ostwald Coefficient L x 10 ²	
	288.15 293.15 293.15 303.15 310.15	0.742 0.780 0.773 0.841 0.881	4.13 4.32 4.28 4.60 4.78	4.36 4.64 4.59 5.11 5.43	
Smoothed Data:	ΔG ^O /J mol	l = - RT ln	$X_{1} = 5.781.5$	<u>і + 58,970 т</u>	
	Std. Dev. AH ^O /J mol ⁻	$\Delta G^{O} = 10.1,$ 1 = 5,781.5	Coef. Corr. , ∆S°/J K-1	= 0.9998 mol-l = -58.970	
	T,	/K Mol Fra	$\Delta G^{O}/3$	J mol -	
		X ×	10 -		
	293 298 303	.15     0.7       .15     0.7       .15     0.8       .15     0.8       .15     0.8       .15     0.8       .15     0.9	775     2       807     2       839     2       870     2	2774 3068 3363 3658 3953 1248	
The mole fracti by the compiler			Ostwald coef:	ficients were cald	culated
METUOD.			COURCE AND DU	DITAL OF MATERIAL C.	
METHOD: Gas absorpti saturated with volume absorbed tween initial a The amount of s the weight of m	solvent vap is the dif nd final ga olvent is d	or. The gas ference be- s volumes. etermined by	1. Neon. Factory by volu 2. Methand from f	reshly cut magnes: . First one-third	er cent stilled ium
APPARATUS/PROCEDUR The apparatu	-	fication of	ESTIMATED ERF	OR: δτ/κ = 0.03	
that of von Ant brated, combine and bulb is enc stat. Mercury bration and con solvent is dega	ropoff (l). d all glass losed in an is used as fining liqu	A cali- manometer air thermo- the cali- id. The apparatus.		ropoff, A. ctrochem. 1919, <u>2</u> :	<u>5</u> , 269.

COMPONENTS:	EVALUATOR:
l. Neon; Ne; 7440-01-9	H. L. Clever Chemistry Department
<pre>2. Ethanol (Ethyl Alcohol); C₂H₆O; 64-17-5</pre>	Emory University Atlanta, GA 30322 U.S.A.
	April 1978

CRITICAL EVALUATION:

The solubility of neon in ethanol was measured by Lannung (1) and by Krestov and Patsatsiya (2).

The Krestov and Patsatsiya data were reported as absorption coefficients which were equivalent to Bunsen coefficients at a gas partial pressure of (760-solvent vapor pressure) mmHg. The Krestov and Patsatsiya data were recalculated as mole fraction solubilities at 101.325 kPa (1 atm) assuming that the gas is ideal and that Henry's law is obeyed.

The mole fraction solubilities from each laboratory were smoothed by the method of least squares to a Gibbs energy function linear in temperature. The smoothed solubility values from the two laboratories agree within 2.0 per cent at 288.15 K and 1.6 per cent at 313.15 K. The agree-ment is well within the expected experimental error. All of the solubility values from both laboratories were used on a one to one weight basis to obtain the recommended Gibbs energy equation linear in temperature by the method of least squares.

The recommended thermodynamic values for the transfer of one mole of neon gas at 101.325 kPa to the hypothetical unit mole fraction solution are

> $\Delta G^{\circ}/J \mod^{-1} = - RT \ln X_1 = 6,123.8 + 55.307 T$ Std. Dev. ∆G° = 46.6, Coef. Corr. = 0.9963

 $\Delta H^{\circ}/J \text{ mol}^{-1} = 6,123.8, \Delta S^{\circ}/J K^{-1} \text{ mol}^{-1} = -55.307$ 

The recommended mole fraction solubilities at 101.325 kPa and the Gibbs energy changes between 283.15 and 313.15 K are given in Table 1.

TABLE 1. Solubility of neon in ethanol. Recommended mole fraction solubility and Gibbs energy of solution as a function of temperature.

т/к	Mol Fraction ^a $X_1 \times 10^4$	∆G°/J mol ⁻¹
283.15	0.960	21,784
288.15	1.000	22,061
293.15	1.045	22,337
298.15	1.090	22,614
303.15	1.135	22,890
308.15	1.185	23,167
313.15	1.230	23,443

^aRounded to the nearest 0.005 x  $10^{-4}$ 

Lannung, A. J. Am. Chem. Soc. 1930, 52, 68. Krestov, G. A.; Patsatsiya, K. M. Izv. Vyssh. Uchebn. Zaved., Khim. 2. Khim. Tekhnol. 1969, 12, 1333.

^{1.} 

		· · · · · · · · · · · · · · · · · · ·			
COMPONENTS:	440-01 0		ORIGINAL MEASUREMENTS:		
1. Neon; Ne; 7	440-01-9		Lannung, A.		
2. Ethanol (Ethyl Alcohol); C ₂ H ₆ O; 64-17-5					
			J. Am. Chem	. <u>Soc</u> . 1930,	<u>52</u> , 68-80.
VARIABLES:			PREPARED BY:		
T/K: 288.15 - 310.15				.L. Long	
Ne P/kPa:	101.325 (1	atm)	-		
EXPERIMENTAL VALUE	S:				
	T/K M	ol Fraction	Bunsen	Ostwald	
	-,		Coefficient	Coefficient	
	<u> </u>	$x_{1} \times 10^{4}$	α x 10 ²	L x 10 ²	
	288.15	0.987	3.81	4.02	
	288.15		3.80	4.01	
	293.15 293.15	1.04 1.06	3.98 4.07	4.27 4.37	
	298.15	1.09	4.17	4.55	
	310.15	1.18	4.43	5.03	
Smoothed Data:	∆G ⁰ /J mol	-1 = - RT ln	$x_1 = 5992.0$	+ 55.820 T	
		$\Delta G^{O} = 29.2,$ $^{-1} = 5992.0,$			0
		T/K Mol Fra	ction $\Delta G^O/J$	mo1 ⁻¹	
		I/K MOI HA X ₁ x		MOT	
		8.15 0.9 3.15 1.0	96 22 4 22	076 356	
		8.15 1.0	8 22		
		3.15 1.1	3 22	914	
		8.15 1.1 3.15 1.2		193 472	
The mole fraction by the compiler		ity and the O	stwald coeff:	icients were	calculated
· · · · · · · · · · · ·		AUXILIARY	INFORMATION		
METHOD:			SOURCE AND PUL	RITY OF MATERIA	1.5.
Gas absorpti	on. The g	as is pre-		Linde's Ligu	-
saturated with	solvent va	por. The gas	Factory	. Contained	1 per cent
volume absorbed	is the di	fference be-		me of helium	
tween initial a: The amount of s			2. Ethanol	Alcohol -	bsolutus, Ph.
the weight of m					e from freshly
· ·		•		d calcium ox	
APPARATUS/PROCEDUE	₹ <b>E</b> :		ESTIMATED ERR	DR:	
The apparatu		ification of		$\delta T/K = 0$	.03
that of von Ant:	ropoff (1)	. A cali-			
brated, combined and bulb is enc.					
	is used as		<b>REFERENCES</b> :		
bration and con:	fining liq	uid. The	1. v. Antro	opoff, A.	
solvent is dega	ssed in the	e apparatus.		trochem. 191	9, <u>25</u> , 269.
The solvent and					
together until ( established.	equilibriu	. 15			

COMPONENT	<u>.</u>			ORIGI	NAL MEASUREMENTS	•
	n; Ne; 74	40-01-9				tsatsiya, K.M.
2. Etha		hyl Alcohol);	с _{2^н6} о;	Izv.	Vyssh. Ucheb	<u>n. Zaved., Khim</u> . 69, <u>12</u> , 1333 - 1337.
VARIABLES: T/K: 283.15 -313.15		PREPA	RED BY: H. L.	Clever		
EXPERIMEN	TAL VALUES	:		t		····· <u>································</u>
т/к	Neon P/mmHg	Bunsen Coefficient $\alpha \times 10^2$		mHg) tion		P/kPa = 101.325 Ostwald Coefficient L x 10 ²
293.15	736.0 715.4 680.8 625.0	3.726 3.772 3.826 3.906	0.991 1.043 1.124 1.265		3.848 4.007 4.271 4.750	3.989 4.300 4.740 5.446
101.325 taken f Table a 760 mmH See the	luator ca kPa (760 rom Wilho bove were g. e data sho	on the critica ethanol. alculated the 0 mmHg). Ethan Dit and Zwolin e obtained by	solubilii nol vapor nski (2). subtracti	tion ty va pres The ing t	of the solubi lues at a pre sure and dens neon partial ne ethanol va	n see the page lity of neon in ssure of neon of ity values were pressures in the por pressure from s of water + ethanol
			AUXILIARY	INFORM	IATION	
METHOD:				SOURC	E AND PURITY OF	MATERIALS:
the app The a values total p of one some of Evaluat Bunsen	aratus of uthors la as Ostwal ressure o atm. Howe the auth or is cor coefficie pressure	is a modifica Ben-Naim and abel their so d coefficient on gas + solve ever, after re ors'other pap vinced that t ents measured a of (760 - so of They a	Baer (1) Lubility ts at a ent vapor eading bers, the these are at a gas olvent	•	No informat:	ion given.
	apor pressure) mmHg. They are so created in the Table above.		·			
vapor p	in the I			ESTIM	ATED ERROR: δα/α	x = 0.01 (Compiler)

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Battino, R.; Evans, F.D.;
2. 2-Methyl-l-propanol; C ₄ H ₁₀ O;	Danforth, W.F.; Wilhelm, E.
78-83-1	
	J. Chem. Thermodyn. 1971, 3, 743-751.
VARIABLES:	PREPARED BY:
T/K: 274.07 - 312.77 P/kPa: 101.325 (1 atm)	H.L. Clever
1/KIA. 101.525 (1 dcm)	n.n. cievei
EXPERIMENTAL VALUES:	L
T/K Mol Fraction	Bunsen Ostwald
v	Coefficient Coefficient α x 10 ² L x 10 ²
274.07 1.31	3.23 3.24
283.01 1.41 298.40 1.53	3.45 3.57 3.70 4.04
312.77 1.65	3.92 4.49
Smoothed Data: $\Delta G^{\circ} = -RT \ln X_1 = 41$	51.4 + 59.127 T
Std. Dev. $\Delta G^{\circ} = 15.5$ ,	
	$\Delta s^{\circ}/J \ \kappa^{-1} \ mol^{-1} = -59.127$
	action $\Delta G^{O}/J \text{ mol}^{-1}$
X ₁ ×	
273.15 1.3	
278.15 1. 283.15 1.	
288.15 1.4	44 21189
293.15 1.4	
298.15 1. 303.15 1.	
308.15 1.0	
313.15 1.0	
The solubility values were adjusted to	o a partial pressure of neon of
101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate	ed by the compiler.
	INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS;
A. Degasser (1). B. Absorption	1. Neon. The Matheson Co., Inc.
of gas in a thin film of liquid (2, 3).	Greater than 99 mol %.
(2) 5).	2. 2-Methyl-l-propanol. Fisher
APPARATUS/PROCEDURE:	Scientific Co. Certified (99 mol %).
Degassing. The solvent is sprayed	
into an evacuated chamber of an all	
glass apparatus; it is stirred and	
heated until the pressure drops to	
the vapor pressure of the liquid. Solubility Determination. The de-	
gassed liquid passes in a thin film	ESTIMATED ERROR:
down a glass spiral tube at a total	$\delta T/K = 0.03$
pressure of one atm of solute gas plus solvent vapor. The gas absorbed	$\delta P/mmHg = 0.5$
is measured in the attached buret	$\delta x_1 / x_1 = 0.015$
system, and the solvent is collected	REFERENCES :
in a tared flask and weighed.	1. Battino, R.; Evans, D.F.
	Anal. Chem. 1966, 38, 1627.
	2. Morrison, T.J.; Billett, F. J. Chem. Soc. 1948, 2033.
	3. Clever, H.L.; Battino, R.;
	Saylor, J.H.; Gross, P.M.
	J. Phys. Chem. 1957, 61, 1078.

COMPONENTS:		ORIGINAL MEASUREMENTS:
1. Neon; Ne;	7440-01-9	Wilcock, R.J.; Battino, R.; Danforth, W.F; Wilhelm, E.
2. 1-Octanol; C ₈ H ₁₈ O; 111-87-5		
		<u>J.Chem.Thermodyn</u> . 1978, <u>10</u> , 817-822.
VARIABLES:		PREPARED BY:
T/K: 298.08 P/kPa: 101.325 (1 atm)		A.L. Cramer
·	<u></u>	
EXPERIMENTAL VALUE	lS:	
	T/K Mol Fraction	Bunsen Ostwald
	$x_{1} \times 10^{4}$	Coefficient Coefficient $lpha  imes 10^2$ L x $10^2$
	<u> </u>	
	298.08 1.693	2.397 2.616
The solubility kPa by Henry's	value was adjusted to a	a partial pressure of neon of 101.325
The Bunsen coe	fficients were calculate	ed by the compiler.
A preliminary :	report of the work appea	ared in Conf. Int. Thermodyn. Chim.,
{C.R.}, 4th 19	75, <u>6</u> , 122 - 128; <u>Chem</u> .	Abstr. 1977, 86, 22375d.
		INFORMATION
METHOD / APPARATU	S/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparat sign of Morris	S/PROCEDURE: us is based on the de- on and Billett (1), and	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc.
The apparat sign of Morris the version us	S/PROCEDURE: us is based on the de- on and Billett (1), and ed is described by	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc.
The apparat sign of Morris the version us Battino, Evans The degassing	S/PROCEDURE: us is based on the de- on and Billett (1), and ed is described by , and Danforth (2). apparatus and procedure	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>1. Neon. Matheson Co. Inc. Purest commercially available grade.</li> <li>2. 1-Octanol. Eastman organic</li> </ul>
The apparat sign of Morris the version us Battino, Evans The degassing are described	S/PROCEDURE: us is based on the de- on and Billett (1), and ed is described by , and Danforth (2). apparatus and procedure by Battino, Banzhof,	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade.
The apparat sign of Morris the version us Battino, Evans The degassing are described 1 Bogan, and Will See neon + 0	S/PROCEDURE: us is based on the de- on and Billett (1), and ed is described by , and Danforth (2). apparatus and procedure by Battino, Banzhof,	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>1. Neon. Matheson Co. Inc. Purest commercially available grade.</li> <li>2. 1-Octanol. Eastman organic</li> </ul>
The apparat sign of Morris the version us Battino, Evans The degassing are described 1 Bogan, and Will	S/PROCEDURE: us is based on the de- on and Billett (1), and ed is described by , and Danforth (2). apparatus and procedure by Battino, Banzhof, helm (3).	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>1. Neon. Matheson Co. Inc. Purest commercially available grade.</li> <li>2. 1-Octanol. Eastman organic</li> </ul>
The apparat sign of Morris the version us Battino, Evans The degassing are described 1 Bogan, and Will See neon + 0	S/PROCEDURE: us is based on the de- on and Billett (1), and ed is described by , and Danforth (2). apparatus and procedure by Battino, Banzhof, helm (3).	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>1. Neon. Matheson Co. Inc. Purest commercially available grade.</li> <li>2. 1-Octanol. Eastman organic</li> </ul>
The apparat sign of Morris the version us Battino, Evans The degassing are described 1 Bogan, and Will See neon + 0	S/PROCEDURE: us is based on the de- on and Billett (1), and ed is described by , and Danforth (2). apparatus and procedure by Battino, Banzhof, helm (3).	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>1. Neon. Matheson Co. Inc. Purest commercially available grade.</li> <li>2. 1-Octanol. Eastman organic chemicals. Distilled.</li> </ul>
The apparat sign of Morris the version us Battino, Evans The degassing are described 1 Bogan, and Will See neon + 0	S/PROCEDURE: us is based on the de- on and Billett (1), and ed is described by , and Danforth (2). apparatus and procedure by Battino, Banzhof, helm (3).	<pre>SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Octanol. Eastman organic chemicals. Distilled.  ESTIMATED ERROR:</pre>
The apparat sign of Morris the version us Battino, Evans The degassing are described 1 Bogan, and Will See neon + 0	S/PROCEDURE: us is based on the de- on and Billett (1), and ed is described by , and Danforth (2). apparatus and procedure by Battino, Banzhof, helm (3).	<pre>SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Octanol. Eastman organic chemicals. Distilled.  ESTIMATED ERROR:</pre>
The apparat sign of Morris the version us Battino, Evans The degassing are described 1 Bogan, and Will See neon + 0	S/PROCEDURE: us is based on the de- on and Billett (1), and ed is described by , and Danforth (2). apparatus and procedure by Battino, Banzhof, helm (3).	<pre>SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Octanol. Eastman organic chemicals. Distilled.  ESTIMATED ERROR:</pre>
The apparat sign of Morris the version us Battino, Evans The degassing are described 1 Bogan, and Will See neon + 0	S/PROCEDURE: us is based on the de- on and Billett (1), and ed is described by , and Danforth (2). apparatus and procedure by Battino, Banzhof, helm (3).	<pre>SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Octanol. Eastman organic chemicals. Distilled.  ESTIMATED ERROR:</pre>
The apparat sign of Morris the version us Battino, Evans The degassing are described 1 Bogan, and Will See neon + 0	S/PROCEDURE: us is based on the de- on and Billett (1), and ed is described by , and Danforth (2). apparatus and procedure by Battino, Banzhof, helm (3).	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Octanol. Eastman organic chemicals. Distilled. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.02$ REFERENCES: 1.Morrison, T.J.; Billett, F. J. Chem. Soc. 1948, 2033.
The apparat sign of Morris the version us Battino, Evans The degassing are described 1 Bogan, and Will See neon + 0	S/PROCEDURE: us is based on the de- on and Billett (1), and ed is described by , and Danforth (2). apparatus and procedure by Battino, Banzhof, helm (3).	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Octanol. Eastman organic chemicals. Distilled. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.02$ REFERENCES: 1.Morrison, T.J.; Billett, F. J. Chem. Soc. 1948, 2033. 2.Battino,R.; Evans, F.D.; Danforth, W.F.
The apparat sign of Morris the version us Battino, Evans The degassing are described 1 Bogan, and Will See neon + 0	S/PROCEDURE: us is based on the de- on and Billett (1), and ed is described by , and Danforth (2). apparatus and procedure by Battino, Banzhof, helm (3).	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Octanol. Eastman organic chemicals. Distilled. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.02$ REFERENCES: 1.Morrison, T.J.; Billett, F. J. Chem. Soc. 1948, 2033. 2.Battino,R.; Evans, F.D.; Danforth, W.F. J.Am.Oil Chem. Soc. 1968, 45, 830. 3.Battino,R.; Banzhof, M.; Bogan, M.;
The apparat sign of Morris the version us Battino, Evans The degassing are described 1 Bogan, and Will See neon + 0	S/PROCEDURE: us is based on the de- on and Billett (1), and ed is described by , and Danforth (2). apparatus and procedure by Battino, Banzhof, helm (3).	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Octanol. Eastman organic chemicals. Distilled. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.02$ REFERENCES: 1.Morrison, T.J.; Billett, F. J. Chem. Soc. 1948, 2033. 2.Battino,R.; Evans, F.D.; Danforth, W.F. J.Am.Oil Chem. Soc. 1968, 45, 830.

COMPONENTS: 1. Neon; Ne; 7440-01-9	ORIGINAL MEASUREMENTS: Wilcock, R.J.; Battino, R.;		
	Danforth, W.F; Wilhelm, E.		
2. l-Decanol; C ₁₀ H ₂₂ O; 112-30-1	T Chem Whouse June 1079 10 917-922		
	<u>J.Chem.Thermodyn</u> . 1978, 10, 817-822.		
VARIABLES:	PREPARED BY:		
T/K: 298.09 P/kPa: 101.325 (1 atm)	A.L. Cramer		
EXPERIMENTAL VALUES:	A		
T/K Mol Fraction	Bunsen Ostwald		
	Coefficient Coefficient		
$x_1 \times 10^4$	$\alpha \times 10^2$ L $\times 10^2$		
298.09 1.978	2.316 2.527		
The solubility value was adjusted to a	a partial pressure of neon of		
101.325 kPa by Henry's law.			
The Bunsen coefficients were calculate	ed by the compiler.		
A preliminary report of the work appea	ared in Conf. Int. Thermodyn. Chim.,		
{C.R.}, 4th 1975, <u>6</u> , 122 - 128; <u>Chem</u> .			
(C.R.), 4th 1973, <u>0</u> , 122 – 128, <u>Chem</u> .			
AUXILIARY	INFORMATION		
AUXILIARY METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is based on the de-	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc.		
AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by	SOURCE AND PURITY OF MATERIALS:		
AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2).	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade.		
AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof,	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available		
AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3).	<pre>SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Decanol. Eastman Organic</pre>		
AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). See neon + octane data sheet for	<pre>SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Decanol. Eastman Organic</pre>		
AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). See neon + octane data sheet for	<pre>SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Decanol. Eastman Organic</pre>		
AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3).	<pre>SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Decanol. Eastman Organic</pre>		
AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). See neon + octane data sheet for	<pre>SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Decanol. Eastman Organic Chemicals. Distilled. ESTIMATED ERROR:</pre>		
AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). See neon + octane data sheet for	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>1. Neon. Matheson Co. Inc. Purest commercially available grade.</li> <li>2. 1-Decanol. Eastman Organic Chemicals. Distilled.</li> </ul>		
AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). See neon + octane data sheet for	<pre>SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Decanol. Eastman Organic Chemicals. Distilled.  ESTIMATED ERROR:</pre>		
AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). See neon + octane data sheet for	<pre>SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Decanol. Eastman Organic Chemicals. Distilled.  ESTIMATED ERROR:</pre>		
AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). See neon + octane data sheet for	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Decanol. Eastman Organic Chemicals. Distilled. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.02$ REFERENCES:		
AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). See neon + octane data sheet for	<pre>SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Decanol. Eastman Organic Chemicals. Distilled.  ESTIMATED ERROR:</pre>		
AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). See neon + octane data sheet for	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Decanol. Eastman Organic Chemicals. Distilled. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.02$ REFERENCES: 1.Morrison,T.J.; Billett, F. J. Chem. Soc. 1948, 2033. 2.Battino,R.;Evans,F.D.;Danforth,W.F.		
AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). See neon + octane data sheet for	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Decanol. Eastman Organic Chemicals. Distilled. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.02$ REFERENCES: 1.Morrison,T.J.; Billett, F. J. Chem. Soc. 1948, 2033. 2.Battino,R.; Evans, F.D.; Danforth, W.F. J.Am.Oil Chem. Soc. 1968, 45, 830.		
AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). See neon + octane data sheet for	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co. Inc. Purest commercially available grade. 2. 1-Decanol. Eastman Organic Chemicals. Distilled. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.02$ REFERENCES: 1.Morrison,T.J.; Billett, F. J. Chem. Soc. 1948, 2033. 2.Battino,R.;Evans,F.D.;Danforth,W.F.		

CONTRAINING			LODIGINAL MELONIA	
COMPONENTS: 1. Neon: Ne: 7	440-01-0		ORIGINAL MEASUREMENTS:	
			Lannung, A.	
2. Cyclohexanol; C ₆ H ₁₂ O; 108-93-0				
			<u>J. Am. Chem. Soc</u> . 1930, <u>52</u> , 68-80.	
VARIABLES:	200 15 210 15		PREPARED BY:	
T/K: 298.15 - 310.15 Ne P/kPa: 101.325 (1 atm)			P.L. Long	
EXPERIMENTAL VALUE	 S:		I	
	T/K Mol Fract	ion	Bunsen Ostwald	
			Coefficient Coefficient	
	X_10	4	$\frac{\alpha \times 10^2}{2}  L \times 10^2$	
	298.15 0.714		1.51 1.65	
	298.15         0.723           303.15         0.759		1.53 1.67 1.60 1.78	
	310.15 0.807		1.69 1.92	
	310.15 0.831		1.74 1.98	
Smoothed Data:	$\Delta G^{O}/J \text{ mol}^{-1} = -R'$	T ln	$X_1 = 8386.6 + 51.199 T$	
			L Coef. Corr. = 0.9956	
			$\Delta S^{O}/J K^{-1} mol^{-1} = -51.199$	
		-	ction $\Delta G^{O}/J \text{ mol}^{-1}$	
		i Fra X ₁ X		
	·	-		
	298.15 303.15	0.7	18 23652 60 23908	
	308.15	0.8	02 24164	
	313.15	0.8	45 24420	
The mole fraction by the compiler.		the O	stwald coefficients were calculated	
	of neon in cyclohe unsatisfactory and		reported by G. Cauquil <u>J</u> . <u>Chim</u> . <u>Phys</u> . uld not be used.	
	AUXI	LIARY	INFORMATION	
METHOD:			SOURCE AND PURITY OF MATERIALS:	
	on. The gas is pre		1. Neon. Linde's Liquid Air	
	solvent vapor. The is the difference		Factory, Contained 1 per cent by volume of helium.	
tween initial ar	nd final gas volume	es.		
	olvent is determine ercury displaced.	ed by	2. Cyclohexanol. "pur", Poulenc Freres, fractionated twice in	
			vacuo; used portion with $m.p. =$	
			23.6 - 23.9 °C.	
х.				
			ESTIMATED ERROR:	
APPARATUS/PROCEDUR				
	s is a modification copoff (1). A cali		$\delta T/K = 0.03$	
brated, combined	l all glass manomet	er		
	losed in an air the Is used as the cali		REFERENCES:	
bration and conf	ining liquid. The	e	1. v. Antropoff, A. <u>Z. Electrochem</u> . 1919, <u>25</u> , 269.	
	sed in the apparat the gas are shaker		2. <u>Diectiocnem</u> . 1919, 25, 209.	
together until $\epsilon$		ı		
established.				

COMPONENTS:			ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7	440-01-9		Lannung, A.
2. 2-Propanone (Acetone); C ₃ H ₆ O; 67-64-1			
			<u>J. Am</u> . <u>Chem</u> . <u>Soc</u> . 1930, <u>52</u> , 68-80.
VARIABLES:			PREPARED BY:
T/K: 288.15 - 298.15			P.L. Long
Ne P/kPa:	101.325 (1	atm)	1 1 20119
EXPERIMENTAL VALUE	ES:		
	T/K M	ol Fraction	Bunsen Ostwald
			Coefficient Coefficient
		$x_{1} \times 10^{4}$	$\alpha \times 10^2$ L $\times 10^2$
	288.15	1.39	4.28 4.52
	288.15	1.33	4.10 4.33
	293.15	1.49	4.56 4.89
	293.15	1.54	4.70 5.04
	293.15	1.41	4.30 4.61
	298.15 298.15	1.59	4.82 5.26 4.98 5.44
	298.15	1.48	4.50 4.91
Smoothed Data:	∆G°/J mol	- = - RT ln	х ₁ = 10072 + 39.025 т
			Coef. Corr. = 0.8611
	∆H ^O /J mol	$^{-1}$ = 10072, $\Delta$	$s^{o}/J \ \kappa^{-1} \ mol^{-1} = -39.025$
		r/K Mol Fra	ction $\Delta G^{O}/J$ mol ⁻¹
		X ₁ X	10 ⁴
	281	B.15       1.3         3.15       1.4         B.15       1.5	7 21317 7 21512
	29	B.15 1.5	
The mole fracti	on solubil:	ity and the O	stwald coefficients were calculated
by the compiler		-	
		AUXILIARY	INFORMATION
METHOD:			SOURCE AND PURITY OF MATERIALS:
Gas absorpti	on. The ga	as is pre-	1. Neon. Linde's Liquid Air
saturated with			
volume absorbed			by volume of helium.
tween initial a			
The amount of s			2. Acetone. Kahlbaum's "Zur Analyse." Used after tests
the weight of m	ercury aisp	placed.	showed absence of water, acid
			and aldehyde.
			and aldenyde.
			ESTIMATED ERROR:
APPARATUS / PROCEDU		- · · -	
The apparatu that of von Ant			$\delta T/K = 0.03$
brated, combine	d all glass	s manometer	
and bulb is enc			REFERENCES:
stat. Mercury	is used as	the cali-	
bration and con	IIINING LIQU	uid. The	1. v. Antropoff, A.
solvent is dega			Z. <u>Electrochem</u> . 1919, <u>25</u> , 269.
The solvent and together until			
lestablished.	edurtrurru		

COMPONENTS:	OPTOTNAL NEAGUDDATION
COMPONENTS: 1. Neon; Ne; 7440-01-9	ORIGINAL MEASUREMENTS: Clever, H.L.; Saylor, J.H.;
	Gross, P.M.
2. Undecafluoro(trifluoromethyl)-	
cyclohexane (Perfluoromethyl- cyclohexane); C ₇ F ₁₄ ; 355-02-2	
	J. Phys. Chem. 1958, 62, 89-91.
VARIABLES:	PREPARED BY:
T/K: 289.15 - 316.25 P/kPa: 101.325 (1 atm)	P.L. Long
17 Kra. 101.525 (1 aun)	T.T. Dong
EXPERIMENTAL VALUES:	I
T/K Mol Fraction	Bunsen Ostwald
	Coefficient Coefficient
$x_1 \times 10^4$	$\alpha \times 10^2$ L × $10^2$
289.15 10.8	12.5 13.2
303.15 11.5	13.2 14.6
316.25 12.2	13.6 15.7
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = - RT \ln In$	$X_1 = 3420.2 + 44.973 T$
Std. Dev. $\Delta G^{\circ} = 4.2$ , G	
	$\Delta S^{O}/J K^{-1} mol^{-1} = -44.973$
	action $\Delta G^{O}/J \text{ mol}^{-1}$
x ₁ ×	10 ⁴
288.15 10.	
293.15 11.	
298.15 11.	3 16829
303.15 11. 308.15 11	5 17054
308.15 11. 313.15 12.	5 17054 8 17279 0 17503
308.15 11.	5 17054 8 17279 0 17503
308.15 11. 313.15 12.	5       17054         8       17279         0       17503         3       17728
308.15 11. 313.15 12. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law.	5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of
308.15 11. 313.15 12. 318.15 12. 318.15 12. The solubility values were adjusted to	5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of
308.15 11. 313.15 12. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate	5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of 2 d by the compiler.
308.15 11. 313.15 12. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate	5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of
308.15 11. 313.15 12. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD:	5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of 2 by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS:
308.15 11. 313.15 12. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a	5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of 2 by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both
308.15 11. 313.15 12. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a modification of that used by Morrison and Billett (2). Modifications in-	<pre>5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of ed by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used.</pre>
308.15 11. 313.15 12. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a modification of that used by Morrison and Billett (2). Modifications in- clude the addition of a spiral solvent	5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of 2 d by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used.
308.15 11. 313.15 12. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a modification of that used by Morrison and Billett (2). Modifications in- clude the addition of a spiral solvent storage tubing, a manometer for con-	<pre>5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of ed by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used. 2. Perfluoromethylcyclohexane.</pre>
308.15 11. 313.15 12. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a modification of that used by Morrison and Billett (2). Modifications in- clude the addition of a spiral solvent	<pre>5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of ed by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used. 2. Perfluoromethylcyclohexane.</pre>
308.15 11. 313.15 12. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a modification of that used by Morrison and Billett (2). Modifications in- clude the addition of a spiral solvent storage tubing, a manometer for con- stant reference pressure, and an extra	<pre>5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of cd by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used. 2. Perfluoromethylcyclohexane. du Pont FCS-326, shaken with con- centrated H₂SO₄, washed, dried over Drierite and distilled.</pre>
308.15 11. 313.15 12. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a modification of that used by Morrison and Billett (2). Modifications in- clude the addition of a spiral solvent storage tubing, a manometer for con- stant reference pressure, and an extra	<ul> <li>5 17054</li> <li>8 17279</li> <li>0 17503</li> <li>3 17728</li> <li>a partial pressure of neon of</li> <li>a partial pressure of neon of</li> <li>a partial pressure of neon of</li> <li>by the compiler.</li> </ul> INFORMATION SOURCE AND PURITY OF MATERIALS: <ol> <li>Neon. Matheson Co., Inc. Both standard and research grades were used.</li> <li>Perfluoromethylcyclohexane. du Pont FCS-326, shaken with concentrated H₂SO₄, washed, dried over Drierite and distilled. b.p. 75.95 to 76.05° at 753 mm.,</li></ol>
308.15 11. 313.15 12. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a modification of that used by Morrison and Billett (2). Modifications in- clude the addition of a spiral solvent storage tubing, a manometer for con- stant reference pressure, and an extra	<pre>5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of cd by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used. 2. Perfluoromethylcyclohexane. du Pont FCS-326, shaken with con- centrated H₂SO₄, washed, dried over Drierite and distilled.</pre>
308.15 11. 313.15 12. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a modification of that used by Morrison and Billett (2). Modifications in- clude the addition of a spiral solvent storage tubing, a manometer for con- stant reference pressure, and an extra	<ul> <li>5 17054</li> <li>8 17279</li> <li>0 17503</li> <li>3 17728</li> <li>a partial pressure of neon of</li> <li>ed by the compiler.</li> <li>INFORMATION</li> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>I. Neon. Matheson Co., Inc. Both standard and research grades were used.</li> <li>2. Perfluoromethylcyclohexane. du Pont FCS-326, shaken with concentrated H₂SO₄, washed, dried over Drierite and distilled. b.p. 75.95 to 76.05° at 753 mm., lit. b.p. 76.14 at 760 mm.</li> </ul>
308.15 11. 313.15 12. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a modification of that used by Morrison and Billett (2). Modifications in- clude the addition of a spiral solvent storage tubing, a manometer for con- stant reference pressure, and an extra	<ul> <li>5 17054</li> <li>8 17279</li> <li>0 17503</li> <li>3 17728</li> <li>a partial pressure of neon of</li> <li>by the compiler.</li> </ul> INFORMATION SOURCE AND PURITY OF MATERIALS: <ol> <li>Neon. Matheson Co., Inc. Both standard and research grades were used.</li> <li>Perfluoromethylcyclohexane. du Pont FCS-326, shaken with concentrated H₂SO₄, washed, dried over Drierite and distilled. b.p. 75.95 to 76.05° at 753 mm., lit. b.p. 76.14 at 760 mm. ESTIMATED ERROR:</li></ol>
308.15 11. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a modification of that used by Morrison and Billett (2). Modifications in- clude the addition of a spiral solvent storage tubing, a manometer for con- stant reference pressure, and an extra gas buret for highly soluble gases. APPARATUS/PROCEDURE: (a) Degassing. 700 ml of solvent	5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of 2 by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used. 2. Perfluoromethylcyclohexane. du Pont FCS-326, shaken with con- centrated $H_2SO_4$ , washed, dried over Drierite and distilled. b.p. 75.95 to 76.05° at 753 mm., lit. b.p. 76.14 at 760 mm. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta P/mmHg = 3$
308.15 11. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a modification of that used by Morrison and Billett (2). Modifications in- clude the addition of a spiral solvent storage tubing, a manometer for con- stant reference pressure, and an extra gas buret for highly soluble gases. APPARATUS/PROCEDURE: (a) Degassing. 700 ml of solvent is shaken and evacuated while attached	5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of 2 by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used. 2. Perfluoromethylcyclohexane. du Pont FCS-326, shaken with con- centrated $H_2SO_4$ , washed, dried over Drierite and distilled. b.p. 75.95 to 76.05° at 753 mm., lit. b.p. 76.14 at 760 mm. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta P/mmHg = 3$
308.15 11. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a modification of that used by Morrison and Billett (2). Modifications in- clude the addition of a spiral solvent storage tubing, a manometer for con- stant reference pressure, and an extra gas buret for highly soluble gases. APPARATUS/PROCEDURE: (a) Degassing. 700 ml of solvent is shaken and evacuated while attached to a cold trap, until no bubbles are seen; solvent is then transferred	5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of 2 by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used. 2. Perfluoromethylcyclohexane. du Pont FCS-326, shaken with con- centrated $H_2SO_4$ , washed, dried over Drierite and distilled. b.p. 75.95 to 76.05° at 753 mm., lit. b.p. 76.14 at 760 mm. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta P/mmHg = 3$ $\delta X_1/X_1 = 0.03$
308.15 11. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a modification of that used by Morrison and Billett (2). Modifications in- clude the addition of a spiral solvent storage tubing, a manometer for con- stant reference pressure, and an extra gas buret for highly soluble gases. APPARATUS/PROCEDURE: (a) Degassing. 700 ml of solvent is shaken and evacuated while attached to a cold trap, until no bubbles are seen; solvent is then transferred through a 1 mm. capillary tubing, re-	5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of ed by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used. 2. Perfluoromethylcyclohexane. du Pont FCS-326, shaken with con- centrated H ₂ SO ₄ , washed, dried over Drierite and distilled. b.p. 75.95 to 76.05° at 753 mm., lit. b.p. 76.14 at 760 mm. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta P/mmHg = 3$ $\delta X_1/X_1 = 0.03$ REFERENCES:
308.15 11. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a modification of that used by Morrison and Billett (2). Modifications in- clude the addition of a spiral solvent storage tubing, a manometer for con- stant reference pressure, and an extra gas buret for highly soluble gases. APPARATUS/PROCEDURE: (a) Degassing. 700 ml of solvent is shaken and evacuated while attached to a cold trap, until no bubbles are seen; solvent is then transferred through a 1 mm. capillary tubing, re- leased as a fine mist into a continu-	5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of ed by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used. 2. Perfluoromethylcyclohexane. du Pont FCS-326, shaken with con- centrated H ₂ SO ₄ , washed, dried over Drierite and distilled. b.p. 75.95 to 76.05° at 753 mm., lit. b.p. 76.14 at 760 mm. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta P/mmHg = 3$ $\delta X_1/X_1 = 0.03$ REFERENCES: 1. Clever, H.L.; Battino, R.;
308.15 11. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a modification of that used by Morrison and Billett (2). Modifications in- clude the addition of a spiral solvent storage tubing, a manometer for con- stant reference pressure, and an extra gas buret for highly soluble gases. APPARATUS/PROCEDURE: (a) Degassing. 700 ml of solvent is shaken and evacuated while attached to a cold trap, until no bubbles are seen; solvent is then transferred through a 1 mm. capillary tubing, re- leased as a fine mist into a continu- ously evacuated flask. (b) Solvent is saturated with gas as it flows through	5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of 2 by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used. 2. Perfluoromethylcyclohexane. du Pont FCS-326, shaken with con- centrated $H_2SO_4$ , washed, dried over Drierite and distilled. b.p. 75.95 to 76.05° at 753 mm., lit. b.p. 76.14 at 760 mm. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta P/mmHg = 3$ $\delta X_1/X_1 = 0.03$ REFERENCES: 1. Clever, H.L.; Battino, R.; Saylor, J.H.; Gross, P.M.
308.15 11. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a modification of that used by Morrison and Billett (2). Modifications in- clude the addition of a spiral solvent storage tubing, a manometer for con- stant reference pressure, and an extra gas buret for highly soluble gases. APPARATUS/PROCEDURE: (a) Degassing. 700 ml of solvent is shaken and evacuated while attached to a cold trap, until no bubbles are seen; solvent is then transferred through a 1 mm. capillary tubing, re- leased as a fine mist into a continu- ously evacuated flask. (b) Solvent is saturated with gas as it flows through 8 mm x 180 cm of tubing attached to a	5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of 17503 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17777 17777 17777 17777 17777 17777 17
308.15 11. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a modification of that used by Morrison and Billett (2). Modifications in- clude the addition of a spiral solvent storage tubing, a manometer for con- stant reference pressure, and an extra gas buret for highly soluble gases. APPARATUS/PROCEDURE: (a) Degassing. 700 ml of solvent is shaken and evacuated while attached to a cold trap, until no bubbles are seen; solvent is then transferred through a 1 mm. capillary tubing, re- leased as a fine mist into a continu- ously evacuated flask. (b) Solvent is saturated with gas as it flows through	5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of 2 by the compiler. INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Both standard and research grades were used. 2. Perfluoromethylcyclohexane. du Pont FCS-326, shaken with con- centrated $H_2SO_4$ , washed, dried over Drierite and distilled. b.p. 75.95 to 76.05° at 753 mm., lit. b.p. 76.14 at 760 mm. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta P/mmHg = 3$ $\delta X_1/X_1 = 0.03$ REFERENCES: 1. Clever, H.L.; Battino, R.; Saylor, J.H.; Gross, P.M.
308.15 11. 313.15 12. 318.15 12. The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculate AUXILIARY METHOD: Volumetric. The apparatus (1) is a modification of that used by Morrison and Billett (2). Modifications in- clude the addition of a spiral solvent storage tubing, a manometer for con- stant reference pressure, and an extra gas buret for highly soluble gases. APPARATUS/PROCEDURE: (a) Degassing. 700 ml of solvent is shaken and evacuated while attached to a cold trap, until no bubbles are seen; solvent is then transferred through a 1 mm. capillary tubing, re- leased as a fine mist into a continu- ously evacuated flask. (b) Solvent is saturated with gas as it flows through 8 mm x 180 cm of tubing attached to a gas buret. Pressure is maintained at	5 17054 8 17279 0 17503 3 17728 0 a partial pressure of neon of 17503 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17728 17777 17778 17777 17778 17777 17777 17

,

			ORIGINAL MEASU	REMENTS:			
1. Neon; Ne; 7	440-01-9		Evans, F.D.	; Battino	, R.		
2. Hexafluorob	enzene; C	F ₆ ; 392-56-3					
			J. Chem. Th	ermodyn.	1971,	з,	753-760
				<u> </u>		-'	
				· · · · · · · · · · · · · · · · · · ·			
VARIABLES: T/K:	282.91 - 2	98.14	PREPARED BY:				
	101.325 (1		н	.L. Cleve	r		
		·· · · · ·	 		<del></del>		
EXPERIMENTAL VALUE		lol Fraction		0.7.1			
	T/K M		Coefficient	Coeffici	ent		
		$x_{1} \times 10^{4}$	α x 10 ²	L x 10	2		
	282.91	2.66	5.25	5.44			
	283.35	2.66 2.71 3.43	5.35	5.55 7.24			
	297.83 298.14	3.43	6.64 6.71	7.24			
Smoothed Data:	∆G ^O /J mol	$^{-1} = - RT ln$	$X_1 = 11850 +$	26.514 T			
		$\Delta G^{O} = 12.4,$					
	ΔH ^O /J mol	-1 = 11850, 4	AS ^O /J K ⁻¹ mol	$^{-1} = 26.5$	14		
	· _		action $\Delta G^{O}/J$				
		X ₁ X	10 ⁴	IIIOT			
	27 28	'8.15     2.4       '3.15     2.4	45 19	225			
			JJ 1.7	357			
	28	8.15 2.9	93 19	490			
	28 29	88.15     2.9       93.15     3.1       98.15     3.4	93 19 19 19				
The solubility	28 29 29	88.15     2.9       93.15     3.1       98.15     3.4	93 19 19 19 46 19	490 622 755	f neor	1 0	f
The solubility 101.325 kPa (1	28 29 29  values wer	88.15 2.9 3.15 3.1 88.15 3.4 re adjusted to	93 19 19 19 46 19	490 622 755	f neor	ı o	f
	28 29 29 values wer atm) by He	88.15       2.9         93.15       3.1         98.15       3.4         re adjusted to         enry's law.	93 19 19 19 46 19 5 a partial p	490 622 755 ressure o	f neor	ı o	f
101.325 kPa (1	28 29 29 values wer atm) by He	88.15       2.9         93.15       3.1         98.15       3.4         re adjusted to         enry's law.	93 19 19 19 46 19 5 a partial p	490 622 755 ressure o	f neor	1 0	f
101.325 kPa (1	28 29 29 values wer atm) by He	18.15       2.9         13.15       3.1         18.15       3.4         re adjusted to         enry's law.         vere calculate	93 19 19 19 46 19 5 a partial p	490 622 755 ressure o	f neor	1 O	f
101.325 kPa (1 The Bunsen coef METHOD:	28 29 29 values wer atm) by He Eficients w	AUXILIARY	93 19 19 19 46 19 50 a partial p ed by the com INFORMATION SOURCE AND PUR	490 622 755 ressure o piler. ITY OF MATE	RIALS:		
101.325 kPa (1 The Bunsen coef	values wer atm) by He fficients w	AUXILIARY	93 19 19 19 46 19 50 a partial p ed by the com INFORMATION SOURCE AND PUR 1. Neon.	490 622 755 ressure o piler.	RIALS: r Produ	licts	ő
101.325 kPa (1 The Bunsen coef METHOD: The apparatu sign by Morriso the version use	values wer atm) by He fficients w s is based on and Bill ed is descr	AUXILIARY	93 19 19 19 46 19 50 a partial p ed by the com INFORMATION SOURCE AND PUR 1. Neon. Chemica Inc. Be	490 622 755 ressure o piler. ITY OF MATE Either Ai 1s, Inc., tter than	RIALS: r Produ or Mat	icts	ő
101.325 kPa (1 The Bunsen coef METHOD: The apparatu sign by Morriso	values wer atm) by He fficients w s is based on and Bill ed is descr	AUXILIARY	93 19 19 19 19 19 26 19 20 a partial p 21 by the com INFORMATION SOURCE AND PUR 1. Neon. Chemica Inc. Be (usuall)	490 622 755 ressure o piler. ITY OF MATE Either Ai ls, Inc., tter than y 99.9+).	RIALS: r Produ or Mat 99 mol	icts thes	& on Co.,
101.325 kPa (1 The Bunsen coef METHOD: The apparatu sign by Morriso the version use Battino, Evans,	28 29 29 values wer atm) by He Eficients w ficients w sis based on and Bill ed is descr and Danfo	AUXILIARY	93 19 19 19 19 19 20 a partial p 20 a partial p 20 by the com INFORMATION SOURCE AND PUR 1. Neon. Chemica Inc. Be (usual) 2. Hexaflu Smeltin	490 622 755 ressure o piler. ITY OF MATE Either Ai ls, Inc., tter than y 99.9+). orobenzen g Co., Av	RIALS; r Produ or Mat 99 mol	acts thes sheri	& on Co., al
101.325 kPa (1 The Bunsen coef METHOD: The apparatu sign by Morriso the version use Battino, Evans, APPARATUS/PROCE Degassing.	28 29 29 values wer atm) by He fficients w fficients w sis based on and Bill ed is descr and Danfo EDURE: Up to 500	AUXILIARY AUXILIARY and the de- cent (1) and by by	93 19 19 19 19 19 46 19 50 a partial p ed by the comp INFORMATION SOURCE AND PUR 1. Neon. Chemica Inc. Be (usuall 2. Hexaflu Smeltin GC puri	490 622 755 ressure o piler. ITY OF MATE Either Ai 1s, Inc., tter than y 99.9+). orobenzen g Co., Av ty 99.7%,	RIALS: r Produ or Mat 99 mol e. Imp onmouth densit	oeri beri y a	on Co., al .K. t 25 ⁰ C
101.325 kPa (1 The Bunsen coef METHOD: The apparatu sign by Morriso the version use Battino, Evans, APPARATUS/PROCE Degassing. vent is placed	28 29 29 values wer atm) by He fficients w fficients w and Bill ed is descr and Danfo CDURE: Up to 500 in a flask	AUXILIARY and the de- cent (1) and cent (2). cm ³ of sol- con such	93 19 19 19 19 19 46 19 50 a partial p ed by the comp INFORMATION SOURCE AND PUR 1. Neon. Chemica Inc. Be (usuall 2. Hexaflu Smeltin GC puri 1.60596	490 622 755 ressure o piler. Itry OF MATE Either Ai. 1s, Inc., tter than y 99.9+). orobenzen g Co., Avo ty 99.7%, g cm ⁻³ .	RIALS: r Produ or Mat 99 mol e. Imp onmouth densit Purifi	oeri y a	on Co., al .K. t 25°C by
101.325 kPa (1 The Bunsen coef METHOD: The apparatu sign by Morriso the version use Battino, Evans, APPARATUS/PROCE Degassing. vent is placed size that the 1 deep. The liqu	28 29 29 values wer atm) by He fficients w fficients w sis based on and Bill ed is descr and Danfo EDURE: Up to 500 in a flask liquid is a bid is rapi	AUXILIARY and by and by ce adjusted to any's law. are calculate AUXILIARY and the de- ett (1) and bed by orth (2). cm ³ of sol- cof such bout 4 cm dly stirred,	93 19 19 19 19 19 46 19 50 a partial p ed by the comp INFORMATION SOURCE AND PUR 1. Neon. Chemica Inc. Be (usuall 2. Hexaflu Smeltin GC puri 1.60596	490 622 755 ressure o piler. ITY OF MATE Either Ai 1s, Inc., tter than y 99.9+). orobenzen g Co., Av ty 99.7%,	RIALS: r Produ or Mat 99 mol e. Imp onmouth densit Purifi	oeri y a	on Co., al .K. t 25°C by
101.325 kPa (1 The Bunsen coef METHOD: The apparatu sign by Morriso the version use Battino, Evans, APPARATUS/PROCE Degassing. vent is placed size that the 1	28 29 29 values wer atm) by He fficients w fficients w sis based on and Bill ed is descr and Danfo EDURE: Up to 500 in a flask iquid is a hid is rapi	ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY ANALLIARY	93 19 19 19 19 19 46 19 50 a partial p ed by the com INFORMATION SOURCE AND PUR 1. Neon. Chemica Inc. Be (usuall 2. Hexaflu Smeltin GC puri 1.60596 see: A	490 622 755 ressure o piler. ITY OF MATE Either Ai 1s, Inc., tter than y 99.9+). orobenzen g Co., Av ty 99.7%, g cm ⁻³ . nal. Chem	RIALS: r Produ or Mat 99 mol e. Imp onmouth densit Purifi	oeri y a	on Co., al .K. t 25°C by
101.325 kPa (1 The Bunsen coeff METHOD: The apparatu sign by Morriso the version use Battino, Evans, APPARATUS/PROCE Degassing. vent is placed size that the 1 deep. The liqu and vacuum is a through a liqui permanent gas r	28 29 29 values wer atm) by He fficients w fficients w sis based on and Bill d is descr and Danfo DURE: Up to 500 in a flask iquid is rapi applied int d N ₂ trap	28.15 2.9 3.15 3.2 28.15 3.4 re adjusted to re adjusted to re adjusted to re adjusted to avere calculate AUXILIARY 1 on the de- ett (1) and ribed by orth (2). cm ³ of sol- to f such addy stirred, rermittently until the	93 19 19 19 19 19 46 19 50 a partial p ed by the comp INFORMATION SOURCE AND PUR 1. Neon. Chemica Inc. Be (usuall 2. Hexaflu Smeltin GC puri 1.60596	490 622 755 ressure o piler. ITY OF MATE Either Ai 1s, Inc., tter than y 99.9+). orobenzen g Co., Av ty 99.7%, g cm ⁻³ . nal. Chem	RIALS: r Produ or Mat 99 mol e. Imp onmouth densit Purifi . 1968,	oeri y a	on Co., al .K. t 25°C by
101.325 kPa (1 The Bunsen coef METHOD: The apparatu sign by Morriso the version use Battino, Evans, APPARATUS/PROCE Degassing. vent is placed size that the 1 deep. The liqu and vacuum is a through a liqui permanent gas r to 5 microns. Solubility D	values wer atm) by He ficients w ficients w ats is based on and Bill ed is descr and Danfo DURE: Up to 500 in a flask iquid is a pid is rapi applied int d N ₂ trap cesidual pr Determinati	AUXILIARY and the de- and the	93 19 19 19 19 19 20 a partial p 20 a part	490 622 755 ressure o piler. ITY OF MATE Either Ai 1s, Inc., tter than y 99.9+). orobenzen g Co., Av ty 99.7%, g cm ⁻³ . nal. Chem R: ôT/K	RIALS; r Produ or Mat 99 mol e. Imp onmouth densit Purifi . 1968, = 0.03 = 0.5	acts thes beri y a ed <u>40</u>	on Co., al .K. t 25°C by
101.325 kPa (1 The Bunsen coef METHOD: The apparatu sign by Morriso the version use Battino, Evans, APPARATUS/PROCE Degassing. vent is placed size that the 1 deep. The liqu and vacuum is a through a liqui permanent gas r to 5 microns. Solubility D gassed solvent	values wer atm) by He fficients w fficients w ats is based on and Bill ed is descr and Danfo Up to 500 in a flask iquid is ap id is rapi applied int d N ₂ trap cesidual pr peterminati passes in	AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY AUXILIARY	93 19 19 19 19 19 20 a partial p 20 a part	490 622 755 ressure o piler. ITY OF MATE Either Ai 1s, Inc., tter than y 99.9+). orobenzen g Co., Av ty 99.7%, g cm ⁻³ . nal. Chem R: ôT/K	RIALS: r Produ or Mat 99 mol e. Imp onmouth densit Purifi . 1968, = 0.03	acts thes beri y a ed <u>40</u>	on Co., al .K. t 25°C by
101.325 kPa (1 The Bunsen coeff METHOD: The apparatu sign by Morriso the version use Battino, Evans, APPARATUS/PROCE Degassing. vent is placed size that the 1 deep. The liqui and vacuum is a through a liqui permanent gas r to 5 microns. Solubility D gassed solvent down a glass sp the solute gas	28 29 29 29 values wer atm) by He ficients w ficients w ficients w sis based on and Bill ed is descr and Danfo Up to 500 in a flask iquid is rapi applied int d N ₂ trap cesidual pr beterminati passes in piral tube plus the s	AUXILIARY and by a thin film containing containing colvent vapor	93 19 19 19 19 19 20 a partial p 20 a part	490 622 755 ressure o piler. ITY OF MATE Either Ai 1s, Inc., tter than y 99.9+). orobenzen g Co., Av ty 99.7%, g cm ⁻³ . nal. Chem R: ôT/K	RIALS; r Produ or Mat 99 mol e. Imp onmouth densit Purifi . 1968, = 0.03 = 0.5	acts thes beri y a ed <u>40</u>	on Co., al .K. t 25°C by
<pre>101.325 kPa (1 The Bunsen coef METHOD:     The apparatu sign by Morriso the version use Battino, Evans, APPARATUS/PROCE     Degassing. vent is placed size that the 1 deep. The liqu and vacuum is a through a liqui permanent gas r to 5 microns.     Solubility D gassed solvent down a glass sp the solute gas at a total pres</pre>	28 29 29 29 29 29 29 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	AUXILIARY and by any sirred, ce adjusted to any's law. AUXILIARY AUXILIARY and the de- and the de- a	93 19 19 19 19 19 46 19 50 a partial p ed by the comp INFORMATION SOURCE AND PUR 1. Neon. Chemica Inc. Be (usual) 2. Hexaflu Smeltin GC puri 1.60596 see: A ESTIMATED ERRO 8 REFERENCES: 1. Morrison	490 622 755 ressure o piler. ITY OF MATE Either Ai 1s, Inc., tter than y 99.9+). orobenzen g Co., Av ty 99.7%, g cm ⁻³ . nal. Chem R: $\delta T/K$ P/mmHg $\delta X_1/X_1$	RIALS; r Produ or Mat 99 mol e. Imp onmouth densit Purifi . 1968, = 0.03 = 0.5 = 0.015 Billett	acts ches beri y a .ed .ed	on Co., al .K. t 25°C by , 224.
101.325 kPa (1 The Bunsen coeff METHOD: The apparatu sign by Morriso the version use Battino, Evans, APPARATUS/PROCE Degassing. vent is placed size that the 1 deep. The liqu and vacuum is a through a liqui permanent gas r to 5 microns. Solubility D gassed solvent down a glass sp the solute gas at a total pres volume of gas a difference betw	values wer atm) by He fficients w fficients w s is based on and Bill ed is descr and Danfo DURE: Up to 500 in a flask iquid is rapi applied int d N ₂ trap residual pr beterminati passes in biral tube plus the s soure of on bsorbed is zeen the in	All states of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	93 19 19 19 19 19 46 19 50 a partial p ed by the comp INFORMATION SOURCE AND PUR 1. Neon. Chemica Inc. Be (usual) 2. Hexaflu Smeltin GC puri 1.60596 see: A ESTIMATED ERRO 8 REFERENCES: 1. Morrison	490 622 755 ressure o piler. ITY OF MATE Either Ai. 1s, Inc., tter than y 99.9+). orobenzen g Co., Av. ty 99.7%, g cm ⁻³ . nal. Chem R: $\delta T/K$ P/mmHg $\delta X_1/X_1$	RIALS; r Produ or Mat 99 mol e. Imp onmouth densit Purifi . 1968, = 0.03 = 0.5 = 0.015 Billett	acts ches beri y a .ed .ed	on Co., al .K. t 25°C by , 224.
101.325 kPa (1 The Bunsen coeff METHOD: The apparatu sign by Morriso the version use Battino, Evans, APPARATUS/PROCE Degassing. vent is placed size that the 1 deep. The liqui permanent gas r to 5 microns. Solubility D gassed solvent down a glass sp the solute gas at a total pres volume of gas a	values wer atm) by He ficients w ficients w s is based on and Bill d is descr and Danfo Up to 500 in a flask iquid is a pid is rapi applied int d N ₂ trap residual pr beterminati passes in plus the s sure of on bsorbed is reen the in	AUXILIARY and solve the system. and solve the system.	93 19 19 19 19 19 46 19 50 a partial p ed by the com INFORMATION SOURCE AND PUR 1. Neon. Chemica Inc. Be (usuall 2. Hexaflu Smeltin GC puri 1.60596 see: A ESTIMATED ERRO 8 REFERENCES: 1. Morrison J. Chem 2. Battino	490 622 755 ressure o piler. ITY OF MATE Either Ail 1s, Inc., tter than y 99.9+). orobenzen g Co., Av. ty 99.78, g cm ⁻³ . nal. Chem R: $\delta T/K$ P/mmHg $\delta X_1/X_1$ n, T.J.; 1 , Soc. 19 , R.; Evan	RIALS: r Produ or Mat 99 mol e. Imp onmouth densit Purifi . 1968, = 0.03 = 0.5 = 0.015 Billett 48, 203 ns, F.E	acts chess beri y a ed 40	on Co., al .K. t 25°C by , 224.
101.325 kPa (1 The Bunsen coef METHOD: The apparatu sign by Morriso the version use Battino, Evans, APPARATUS/PROCE Degassing. vent is placed size that the 1 deep. The liqu and vacuum is a through a liqui permanent gas r to 5 microns. Solubility D gassed solvent down a glass sp the solute gas at a total pres volume of gas a difference betw	values wer atm) by He ficients w ficients w sis based on and Bill ed is descr and Danfo DURE: Up to 500 in a flask iquid is a pid is rapi applied int d N ₂ trap residual pr beterminati passes in biral tube plus the s sure of on bsorbed is cen the in the in the b	AUXILIARY and solve the system. and solve the system.	93 19 19 19 19 19 46 19 50 a partial p ed by the com INFORMATION SOURCE AND PUR 1. Neon. Chemica Inc. Be (usuall 2. Hexaflu Smeltin GC puri 1.60596 see: A ESTIMATED ERRO REFERENCES: 1. Morrison J. Chem 2. Battino Danfo	490 622 755 ressure o piler. ITY OF MATE Either Ai ls, Inc., tter than y 99.9+). orobenzen g Co., Av ty 99.73, g cm ⁻³ . nal. Chem R: $\delta T/K$ P/mmHg $\delta X_1/X_1$ n, T.J.; I . Soc. 19	RIALS: r Produ or Mat 99 mol e. Imp onmouth densit Purifi . 1968, = 0.03 = 0.5 = 0.015 Billett 48, 203 ns, F.E	$\frac{1}{2}$	on Co., al .K. t 25°C by , 224.

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Saylor, J. H.; Battino, R.
	Li Lory of any Battino, K.
2. Fluorobenzene; C ₆ H ₅ F; 462-06-6	<u>J. Phys</u> . <u>Chem</u> . 1958, <u>62</u> , 1334-1337.
VARIABLES:	PREPARED BY:
T/K: 288.15 - 328.15 P/kPa: 101.325 (1 atm)	H.L. Clever
EXPERIMENTAL VALUES:	
	Bunsen Ostwald Coefficient Coefficient α x 10 ² L x 10 ²
······	
288.15 1.46 298.15 1.52	3.50 3.69 3.62 3.95
313.15 1.84 328.15 2.07	4.28 4.91 4.72 5.67
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = - RT \ln J$	-
Std. Dev. $\Delta G^{O} = 66.2$ ,	
	$\Delta S^{\circ}/J K^{-1} mol^{-1} = -48.254$
T/K Mol Fra	ction $\Delta G^{O}/J \text{ mol}^{-1}$
x ₁ x i	10 ⁴
288.15 1.4	
293.15 1.5 298.15 1.5	
303.15 1.6	6 21941 ·
308.15 313.15 1.8	
318.15 1.9	0 22665
323.15 328.15 2.0	
	TNEODWATTON
	INFORMATION
METHOD: The apparatus is based on the de- sign by Morrison and Billett (1) and the version used is described by	SOURCE AND PURITY OF MATERIALS; 1. Neon. Matheson Co., Research grade.
Clever, Battino, Saylor, and Gross (2).	2. Fluorobenzene. Eastman White label. Dried over P ₄ 0 ₁₀ , dis-
The solubility values were adjusted to a partial pressure of neon of 101.325 kPa (1 atm) by Henry's law.	tilled, b.p. 84.28-84.68 ^o C.
The Bunsen coefficients were calcu- lated by the compiler.	
	ESTIMATED ERROR:
APPARATUS/PROCEDURE: The degassed solvent is passed through a glass spiral tube containing the gas. The gas dissolves rapidly	$\begin{array}{rcl} \delta T/K &= 0.03\\ \delta P/mmHg &= 1\\ \delta X_1/X_1 &= 0.04 \end{array}$
and the saturated liquid flows into a buret system. The volume of gas dis- solved is determined by the increase	REFERENCES: 1. Morrison, T.J.; Billett, F.
in the solution level at constant pressure. The volume of liquid is	<u>J</u> . <u>Chem</u> . <u>Soc</u> . 1948, 2033.
determined in the burets. For low solubilities extra solvent is run	<ol> <li>Clever, H.L.: Battino, R.; Saylor, J.H.; Gross, P.M.</li> </ol>
through the buret system and weighed.	J. Phys. Chem. 1957, <u>61</u> , 1078.

CONTROLING			ODTOTIVAL	
COMPONENTS:			ORIGINAL MEASURE	
1. Neon; Ne; 744	j			; Hildebrand, J.H.
2. 1,1,2-Trichlo ethane (Free 76-13-1	oro-1,2,2 on 113);		<u>Trans</u> . Farada	ay <u>Soc</u> . 1970, <u>66</u> , 577-581.
VARIABLES:		·	PREPARED BY:	
	T/K: 279.25 - 298.15 Ne P/kPa: 101.325 (1 atm)			P. L. Long
EXPERIMENTAL VALUES:		<u></u>	l	
	т/к и	Mol Fraction	Bunsen	Ostwald
		$x_1 \times 10^4$	Coefficient a x 10 ²	
	279.25 283.81	4.22 4.37 4.46	8.11 8.34 8.48	8.29 8.67 8.91
	287.05	4.40	8.64	9.18
	292.37 294.55		8.76	9.38
	294.55 298.15	4.73 4.86	8.89 9.09	9.59 9.92
Smoothed Data:			$X_1 = 5160.2 +$	46.145 T
	Std. Dev.	∆G° = 5.5,	Coef. Corr.	= 0.9998
	∆H°/J mol	-1 = 5160.2,	∆s°/J K ⁻¹ m	$ol^{-1} = -46.145$
	т/	K Mol Frac X ₁ x 1		mol ⁻¹
278.15 4.17 283.15 4.34				
288.15 4.51 293.15 4.68				
	298.15 4.85		18,9	18
The Bunsen and	l Ostwald	coefficients	were calculat	ed by the compiler.
		AUXILIARY	INFORMATION	
METHOD: Saturation of 1 partial pressur l atm.	iquid wit e of gas	h gas at a equal to	1. Neon. Se	TY OF MATERIALS; ource not given. Purest ally obtainable, dried se.
			ethane.	ichloro-1,2,2-trifluoro- Matheson, Coleman and pectroquality.
APPARATUS/PROCEDURE			ESTIMATED ERROR	:
Dymond-Hildebra uses an all-gla	nd appara ss pumpin	g system to		$\delta X_1 / X_1 = 0.01$ (Evaluator)
spray slugs of a the gas. The a is calculated f pressures.	mount of	gas dissolved	1. Dymond,	J. H.; Hildebrand, J. H. . <u>Chem</u> . <u>Fundam</u> . 1967, <u>6</u> ,
			130.	

COMPONENTS: 1. Neon; Ne; 7440-01-9	ORIGINAL MEASUREMENTS: de Wet, W.J.
1	
<pre>2. 1,1,2,2-Tetrachloroethane; C₂H₂Cl₄; 79-34-5</pre>	
	<u>J. S. Afr. Chem. Inst</u> . 1964, <u>17</u> ,9-13.
VARIABLES:	PREPARED BY:
T/K: 291.45 - 304.95 P/kPa: 101.325 (1 atm)	P.L. Long
EXPERIMENTAL VALUES:	
	Bunsen Ostwald Coefficient Coefficient
$ x_1 \times 10^4 $	$\frac{\alpha \times 10^2}{L \times 10^2}$
291.45 1.39	2.96 3.16
298.85 1.50 304.95 1.61	3.17 3.47 3.40 3.80
Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = - RT \ln I$	
Std. Dev. $\Delta G^{O} = 8.6$ ,	
$\Delta H^{O}/J \text{ mol}^{-1} = 8026.4,$	$\Delta s / J K^{-1} mol^{-1} = -46.315$
T/K Mol Fr	action $\Delta G^{O}/J \text{ mol}^{-1}$
X ₁ ×	
	34 21372
293.15 1. 298.15 1.	41 21604 49 21835
303.15 1.	58 22067
308.15 1.	66 22299 .
The solubility values were adjusted t 101.325 kPa (l atm) by Henry's law.	o a partial pressure of neon of
The mole fraction solubility and Ostw by the compiler.	ald coefficients were calculated
AUXILIARY	INFORMATION
METHOD: Volumetric.	SOURCE AND PURITY OF MATERIALS:
To degas, the solvent is placed in a large continuously evacuated bulb until the solvent boils freely with- out further release of dissolved gases.	<ol> <li>Neon. No source given. The gas purified over activated charcoal at liquid air temperature. Impurities estimated to be less than 0.3 percent.</li> </ol>
To saturate, the solvent flows in a thin film through a glass spiral containing the gas. The volume of gas absorbed is measured on an attached buret system.	2. 1,1,2,2,-Tetrachloroethane. No source given. 1,1,2,2,-Tetra- chloroethane distilled imme- diately before use.
	ESTIMATED ERROR:
APPARATUS/PROCEDURE: The apparatus is a modification of that used by Morrison and Billett (1) and others (2). The degassed solvent	$\delta T/K = 0.05$
is saturated with gas as it flows through a glass spiral containing the	REFERENCES:
gas. The amount of solvent passing through the spiral is such that 10- 25 ml of gas was absorbed.	<ol> <li>Morrison, T.J.; Billett, F. J. Chem. Soc. 1948, 2033; <u>ibid</u>. 1952, 3819.</li> </ol>
-	<ol> <li>Clever, H.L.; Battino, R.; Saylor, J.H.; Gross, P.M. <u>J. Phys. Chem. 1957, 61</u>, 1078.</li> </ol>

ORIGINAL MEASUREMENTS: COMPONENTS: 1. Neon; Ne; 7440-01-9 Saylor, J.H.; Battino, R. 2. Chlorobenzene; C₆H₅Cl; 108-90-7 J. Phys. Chem. 1958, 62, 1334-1337. VARIABLES: PREPARED BY: T/K: 288.15 - 328.15 H.L. Clever P/kPa: 101.325 (l atm) EXPERIMENTAL VALUES: T/K Mol Fraction Bunsen Ostwald Coefficient Coefficient  $x_1 \times 10^4$  $\alpha \times 10^2$  $L \times 10^2$ 288.15 0.853 1.89 1.99 298.15 0.986 2.16 2.36 1.17 2.53 2.90 313.15 328.15 2.97 1.40 3.57  $\Delta G^{O}/J \text{ mol}^{-1} = - RT \ln X_{1} = 9630.0 + 44.457 T$ Smoothed Data: Std. Dev.  $\Delta G^{O} = 16.6$ , Coef. Corr. = 0.9998  $\Delta H^{O}/J \text{ mol}^{-1} = 9630.0, \Delta S^{O}/J \text{ K}^{-1} \text{ mol}^{-1} = -44.457$ Mol Fraction  $\Delta G^{O}/J \text{ mol}^{-1}$ T/K  $x_1 \times 10^4$ 22440 288.15 0.86 0.92 293.15 22663 0.98 298.15 22885 303.15 1.04 23107 1.11 308.15 23329 313.15 23552 1.18 318.15 23774 1.25 323.15 1.32 23996 328.15 1.40 24219 AUXILIARY INFORMATION METHOD: SOURCE AND PURITY OF MATERIALS: The apparatus is based on the de-1. Neon. Matheson Co., Research sign by Morrison and Billett(1) and grade. the version used is described by Clever, Battino, Saylor, and Gross (2) 2. Chlorobenzene, Eastman white label. Dried over P₄O₁₀, distilled, b.p. 131.67 - 131.71 °C. The solubility values were adjusted to a partial pressure of neon of 101.325 kPa (1 atm) by Henry's law. The Bunsen coefficients were calculated by the compiler. ESTIMATED ERROR: **APPARATUS / PROCEDURE :** δΤ/Κ = 0.03 The degassed solvent is passed δP/mmHg = 1 through a glass spiral tube containing = 0.04  $\delta X_1 / X_1$ the gas. The gas dissolves rapidly and the saturated liquid flows into a **REFERENCES**: buret system. The volume of gas dissolved is determined by the increase 1. Morrison, T.J.; Billett, F. in the solution level at constant J. Chem. Soc. 1948, 2033. pressure. The volume of liquid is determined in the burets. For low 2. Clever, H.L.; Battino, R.; Saylor, J.H.; Gross, P.M. J. Phys. Chem. 1957, <u>61</u>, 1078. solubilities extra solvent is run through the buret system and weighed.

CONTRACTOR				
COMPONENTS:	L. Neon; Ne; 7440-01-9			SUREMENTS: .H.; Battino, R.
			bayror, U.	, Dattino, K.
2. Bromobenzen	e; C ₆ ^H 5 ^{Br} ;	108-86-1		
			J. Phys. C	<u>Chem</u> . 1958, <u>62</u> , 1334-1337.
VARIABLES:	288.15 - 3	28.15	PREPARED BY:	
1/1:	200.15 - 5	20.13		H.L. Clever
P/kPa:	101.325 (1	atm)		
EXPERIMENTAL VALUE	S:			
	T/K M	ol Fraction	Bunsen	Ostwald
		x x 10 ⁴	Coefficient	Ostwald t Coefficient L x 10 ²
	288.15 298.15	0.706 0.771	1.52 1.64	1.60 1.79
	313.15	0.932	1.95	2.24
	328.15	1.07	2.21	2.66
Smoothed Data:	∆G ^O /J mol	$^{-1}$ = - RT ln	$X_1 = 8405.2$	2 + 50.394 T
		$\Delta G^{O} = 33.3,$	-	
Į				$no1^{-1} = -50.394$
	·		_	
			action $\Delta G^{O}$	/J mol -
		x ×	10*	
	28	8.15 0.6		22926
				23178 23430
				23430
	30	8.15 0.8	377 2	23934
		3.15 0.9 8.15 0.9		24186 24438
	32	3.15 1.0	)2 2	24690
	32	8.15 1.0		24942
		AUXILIARY	INFORMATION	
METHOD: The apparatu	is based	on the do-		PURITY OF MATERIALS; Matheson Co., Research
sign by Morriso	on and Bill	ett(1) and	grade.	-
the version use	d is descr	ibed by	2 Bromet	- 
Clever, Battino	, sayior,	anu Gross (2)	label.	penzene. Eastman, white . Dried over P ₄ 0 ₁₀ , dis-
mha galubilit	***	o odduot-2 to	+11100	4 10 1, b.p. 155.86 - 155.90 °C.
The solubility a partial press	warues wer sure of ne	e aujusted to on of	Ϋ́	
101.325 kPa (1				
The Bunsen coef		ere calcu-		
lated by the co	mpiler.			
		ESTIMATED ER	RROR:	
APPARATUS/PROCEDURE: The degassed solvent is passed			$\delta T/K = 0.03$	
through a glass	spiral tu	be containing	Ţ	$\begin{array}{llllllllllllllllllllllllllllllllllll$
the gas. The g and the saturat				
buret system.			REFERENCES:	·
solved is deter	mined by t	he increase	1. Morris	son, T.J.; Billett, F.
in the solution pressure. The	volume of		$\int \frac{J}{Che}$	em. <u>Soc</u> . 1948, 2033.
determined in t	he burets.	For low		r, H.L.; Battino, R.;
solubilities ex through the bur			Saylor	r, J.H.; Gross, P.M. ys. <u>Chem</u> . 1957, <u>61</u> , 1078.
chrough the bur	et system	anu wergneu.	U. Phy	yo. <u>Chem</u> . 1997, <u>01</u> , 1078.
			1	

COMPONENTS: 1. Neon; Ne; 7	440-01-9		ORIGINAL MEASUREMENTS: Saylor, J.H.; Battino, R.
			Saylor, U.M., Batcino, K.
2. Iodobenzene	; C ₆ H ₅ I; 591-50-4		
			J. Phys. Chem. 1958, 62, 1334-1337.
VARIABLES: T/K:	288.15 - 328.15		PREPARED BY:
			H.L. Clever
P/kPa:	101.325 (l atm)		
EXPERIMENTAL VALUE	S:		
	T/K Mol Frac	tion	Bunsen Ostwald Coefficient Coefficient
	v v l		$\alpha \times 10^2$ L × 10 ²
	<u></u>		**************************************
l	288.15 0.45 298.15 0.53	2 9	0.910 0.960 1.08 1.18
	313.15 0.62	1	
]	328.15 0.78	7	1.23 1.41 1.53 1.84
Smoothed Data:	$\Delta G^{O}/J \text{ mol}^{-1} = -$	RT ln	$x_1 = 10497 + 46.715 T$
			Coef. Corr. = 0.9963
1			$s^{o}/J \ \kappa^{-1} \ mol^{-1} = -46.715$
			$\frac{1}{100} \Delta G^{0}/J \text{ mol}^{-1}$
1	т/к м		
		X ₁ ×	
	288.15		
	293.15 298.15	0.4	89 24191 26 24425
	303.15	0.5	64 24659
	308.15 313.15	0 6	44 25126
	318.15	0.6	86 25359
	323.15 328.15	0.7 0.7	
			· · · · · · · · · · · · · · · · · · ·
	- <u></u>		······································
	AUX	<b>(ILIARY</b>	INFORMATION
METHOD:	·····		SOURCE AND PURITY OF MATERIALS:
	s is based on the n and Billett(1)		1. Neon. Matheson Co., Research
	d is described by		grade.
Clever, Batting	, Saylor, and Gro	ss (2)	2. Iodobenzene. Eastman, white label. Shaken with dil. ag.
			thiosulfate, washed with water,
	values were adjus ure of neon of	ted to	4 10
	atm) by Henry's 1	aw.	77.40 - 77.60 °C (20 mmHg).
The Bunsen coef	ficients were cal		
lated by the co	mpiler.		
			ESTIMATED ERROR:
APPARATUS/PROCEDUR	E: solvent is passe	a	$\delta T/K = 0.03$
through a glass	spiral tube cont	aining	$\begin{array}{rcl} \delta P/mmHg &= 1\\ \delta X_{1}/X_{1} &= 0.04 \end{array}$
the gas. The g	as dissolves rapi	dly	$\delta x_{1}/x_{1} = 0.04$
	ed liquid flows i The volume of gas		REFERENCES:
solved is deter	mined by the incr level at constan	ease	1. Morrison, T.J.; Billett, F.
	volume of liquid		<u>J</u> . <u>Chem</u> . <u>Soc</u> . 1948, 2033.
	he burets. For l tra solvent is ru		2. Clever, H.L.; Battino, R.; Saylor, J.H.; Gross, P.M.
	et system and wei		Saylor, J.H.; Gross, P.M. <u>J</u> . <u>Phys</u> . <u>Chem</u> . 1957, <u>61</u> , 1078.

COMPONENTS:		ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9		Powell, R.J.
2. Carbon Disulfide; CS ₂ ; 75	-15-0	<u>J. Chem. Eng. Data</u> 1972, <u>17</u> , 302-304.
VARIABLES:		PREPARED BY:
T/K: 298.15 P/kPa: 101.325 (1 atm	)	P.L. Long
EXPERIMENTAL VALUES:		· · · · · · · · · · · · · · · · · · ·
T/K Mol Fraction $x_1 \times 10^4$	Coeffici	$\begin{array}{llllllllllllllllllllllllllllllllllll$
298.15 0.59	2.18	2.38 ~8.0
313.15 K, but only the solubit slope $R(\Delta \log X_1/\Delta \log T)$ was giby the compiler from the slope	lity at 2 iven. Th e in the	surements were made between 288.15 and 298.15 K was given in the paper. The he smoothed data below were calculated form: -4) + (8.0/R) log (T/298.15)
with R = 1.9872 cal K ⁻¹ mol ⁻¹		, , , , , , , , , , , , , , , , , , , ,
with R = 1.9872 cal K mol m Smoothed Data:		Mol Fraction
Smoothed Data:	T/K M	$x_1 \times 10^4$
	273.15 278.15 283.15 288.15 293.15 298.15 303.15 cients we	0.41 0.45 0.48 0.51 0.55 0.59 0.63 ere calculated by the compiler.
	AUXILIARY	INFORMATION
METHOD:		SOURCE AND PURITY OF MATERIALS:
		<ol> <li>Neon. No source given. Research grade, dried over CaCl₂ before use.</li> <li>Carbon disulfide. No source given. Spectrochemical grade.</li> </ol>
APPARATUS/PROCEDURE: Dymond and Hildebrand (1) a which uses an all glass pumpir to spray slugs of degassed sol into the gas. The amount of g solved is calculated from the	ng system lvent gas dis-	
and final gas pressures. The is degassed by freezing and pu followed by boiling under redu pressure.	solvent mping iced	<ol> <li>Dymond, J.H.; Hildebrand, J.H. <u>Ind. Eng. Chem</u>. Fundam. 1967, <u>6</u>, 130.</li> </ol>

COMPONENTS :	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Dymond, J.H.
<pre>2. Sulfinylbismethane (Dimethyl Sulfoxide); C2H6OS (CH3SOCH3); 67-68-5</pre>	<u>J. Phys</u> . <u>Chem</u> . 1967, <u>71</u> ,1829-1831.
VARIABLES:	PREPARED BY:
T/K: 298.15 P/kPa: 101.325 (1 atm)	M.E. Derrick
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald
-	Coefficient Coefficient
$\qquad \qquad $	$\frac{\alpha \times 10^2}{2} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$
298.15 0.368	1.16 1.27
AUXILIARY	INFORMATION
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The liquid is saturated with the gas at a gas partial pressure of 1 atm. The apparatus is that described by Dymond and Hildebrand (1). The apparatus uses an all-glass pumping system to spray slugs of degassed solvent into the gas. The amount of gas dissolved is calculated from the initial and final gas pressure.	<ol> <li>Neon. Matheson Co. Dried.</li> <li>Dimethyl Sulfoxide. Matheson, Coleman, and Bell Co. Spectro- quality reagent, dried, and a fraction frozen out. Melting pt.: 18.37°C.</li> </ol>
	ESTIMATED ERROR:
	REFERENCES:
	<pre>1. Dymond., J.; Hildebrand. J.H. Ind. Eng. Chem. Fundam. 1967, <u>6</u>, 130.</pre>

COMPONENTS :			ORIGINAL MEAS	IIDEMENITC .		
1. Neon; Ne;	7440-01-	9	Friedman,			
		0 ₂ ; 75-52-5				
			<u>J</u> . <u>Am</u> . <u>Che</u>	<u>m. Soc</u> . 1954	, <u>76</u> , 3294-3	297
VARIABLES:			PREPARED BY:			
T/K: P/kPa:	298.00 101.325	(1 atm)		P.L. Long		
EXPERIMENTAL VALU	ES:			· · · · · · · · · · · · · · · · · · ·		
	Т/К	Mol Fraction	Bunsen	Ostwald		
	·		Coefficient			
		$x_{1} \times 10^{4}$	α x 10 ²	L x 10 ²		
	298.00			2.41 2.49		
		0.540	0.225	2.45 av.		
		AUXILIARY	INFORMATION			
METHOD: Gas absorpt essentially th and Herzberg ( cluded a magne stead of shakin sel, and balan against a colum electrical con ing the gas po atmosphere.	at employ l). Modi tic stirr ng the sa cing the nn of mer tacts ins	e method was red by Eucken fications in- ring device in- turation ves- gas pressure cury with stead of balanc	SOURCE AND PL 1. Neon. grade, spectr 2. Nitrom Distil 253 K.	RITY OF MATERIA Air Reductio 99.8 per cer oscopy. ethane. Sour led, dried by	on Co. Reager nt pure by ma rce not giver	iss
Gas absorpt. essentially the and Herzberg ( cluded a magne- stead of shakin sel, and baland against a colum electrical con- ing the gas pr atmosphere.	at employ 1). Modi tic stirr ng the sa cing the nn of mer tacts ins ressure a	e method was yed by Eucken fications in- ting device in- turation ves- gas pressure cury with tead of balanc gainst the	SOURCE AND PL 1. Neon. grade, spectr 2. Nitrom Distil 253 K.	Air Reductio 99.8 per cer oscopy. ethane. Soun led, dried by	on Co. Reager nt pure by ma rce not giver y filtering a	155
Gas absorpt. essentially the and Herzberg ( cluded a magner stead of shakin sel, and baland against a colum electrical con- ing the gas pr atmosphere.	at employ 1). Modi tic stirr ng the sa cing the nn of mer tacts ins ressure a RE: The s um. The	e method was yed by Eucken fications in- ting device in- turation ves- gas pressure cury with tead of balanc gainst the colvent was de- procedure, re-	SOURCE AND PL 1. Neon. grade, spectr 2. Nitrom Distil 253 K. - ESTIMATED ERF	Air Reduction 99.8 per cent oscopy. ethane. Sound led, dried by $\delta T/K = 0.$ $\delta P/mmHg = 0.$	on Co. Reager nt pure by ma rce not giver y filtering a .05 .3	159
Gas absorpt. essentially the and Herzberg ( cluded a magne- stead of shaking sel, and baland against a colum electrical con- ing the gas pro- atmosphere. APPARATUS/PROCEDUN gassed by vacuum peated 5-10 tim 5-15 s evacuat:	at employ 1). Modi tic stirr ng the sa cing the nn of mer tacts ins ressure a RE: The s m. The nes, was ion and r	e method was red by Eucken fications in- ting device in- turation ves- gas pressure cury with tead of balanc gainst the rolvent was de- procedure, re- to alternate apid stirring	SOURCE AND PL 1. Neon. grade, spectr 2. Nitrom Distil 253 K. - ESTIMATED ERF	Air Reduction 99.8 per cert oscopy. ethane. Sour led, dried by $\overline{\delta T/K} = 0$ .	on Co. Reager nt pure by ma rce not giver y filtering a .05 .3	159
Gas absorpt essentially the and Herzberg ( cluded a magner stead of shaking sel, and baland against a colum electrical con- ing the gas pr atmosphere. APPARATUS/PROCEDUN gassed by vacuum peated 5-10 tim 5-15 s evacuat: to produce cave	at employ 1). Modi tic stirr ng the sa cing the nn of mer tacts ins ressure a RE: The s m. The mes, was ion and r itation.	e method was red by Eucken fications in- ting device in- turation ves- gas pressure roury with tead of balanc gainst the rolvent was de- procedure, re- to alternate apid stirring In the solu-	SOURCE AND PL 1. Neon. grade, spectr 2. Nitrom Distil 253 K. - ESTIMATED ERF	Air Reduction 99.8 per cent oscopy. ethane. Sound led, dried by $\delta T/K = 0.$ $\delta P/mmHg = 0.$	on Co. Reager nt pure by ma rce not giver y filtering a .05 .3	159
Gas absorpt. essentially the and Herzberg ( cluded a magne stead of shakin sel, and baland electrical con- ing the gas pa atmosphere. APPARATUS/PROCEDUN gassed by vacuu peated 5-10 tir 5-15 s evacuat: to produce cave bility measurer with solvent va contact with ab	at employ 1). Modi tic stirr ng the sa cing the mn of mer tacts ins ressure a RE: The s ins. The mes, was ion and r itation. ment, gas pout 80 m vessel. ablished Solubilit	e method was red by Eucken fications in- turation ves- gas pressure cury with tead of balanc gainst the rolvent was de- procedure, re- to alternate apid stirring In the solu- , pre-saturated brought into 1 of solvent in Initial condi- by a time ex- y equilibrium	SOURCE AND PL 1. Neon. grade, spectr 2. Nitrom Distil 253 K. - - ESTIMATED ERF REFERENCES: 1. Euken, Z. Phys	Air Reduction 99.8 per cent oscopy. ethane. Sound led, dried by $\delta T/K = 0.$ $\delta P/mmHg = 0.$	on Co. Reager nt pure by ma rce not giver y filtering a .05 .3 .03	15:

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Saylor, J.H.; Battino, R.
2. Nitrobenzene; C ₆ H ₅ NO ₂ ; 98-95-3	
2. Nitrobenzene, C ₆ ₅ ₂ , 50-55 5	T Dave Cham 1059 62 1224-1227
	<u>J</u> . <u>Phys</u> . <u>Chem</u> . 1958, <u>62</u> , 1334-1337.
VARIABLES: T/K: 288.15 - 328.15	PREPARED BY:
	H.L. Clever
P/kPa: 101.325 (1 atm)	
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald Coefficient Coefficient
$x_1 \times 10^4$	$\alpha \times 10^2$ L × $10^2$
	0.698 0.736
298.15 0.509	1.12 1.22
313.15 0.575 328.15 0.676	1.24 1.42 1.44 1.73
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = - RT \ln In$	$X_{-} = 13274 + 38.974 T$
	-
Std. Dev. $\Delta G^{\circ} = 300.4$ , $\Delta H^{\circ} (I mol^{-1} = 13274)$	$AS^{/}J K^{-1} mol^{-1} = -38.974$
T/K Mol Fra	action $\Delta G^{O}/J \text{ mol}^{-1}$
<u> </u>	10
288.15 0.3 293.15 0.3	
298.15 0.4	435 24895
303.15 0.4 308.15 0.5	
313.15 0.5 318.15 0.6	
323.15 0.6	558 25869
328.15 0.7	710 26064
AUXILIARY	INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS;
The apparatus is based on the de-	1. Neon. Matheson Co., Research
sign by Morrison and Billett(1) and the version used is described by	grade.
Clever, Battino, Saylor, and Gross (2)	.2. Nitrobenzene. Eastman, white label. Distilled from P ₄ O ₁₀ ,
The solubility values were adjusted to a partial pressure of neon of	reduced pressure of 10 mm of Hg, b.p. 81.0 - 81.2°C.
101.325 kPa (1 atm) by Henry's law.	1
The Bunsen coefficients were calcu- lated by the compiler.	
APPARATUS/PROCEDURE:	ESTIMATED ERROR: $\delta T/K = 0.03$
The degassed solvent is passed	$\delta P/mmHg = 1$
through a glass spiral tube containing the gas. The gas dissolves rapidly	$\delta x_1 / x_1 = 0.04$
and the saturated liquid flows into a	REFERENCES :
buret system. The volume of gas dis- solved is determined by the increase	1. Morrison, T.J.; Billett, F. J. <u>Chem</u> . <u>Soc</u> . 1948, 2033.
in the solution level at constant pressure. The volume of liquid is	
determined in the burets. For low	2. Clever, H.L.; Battino, R.; Saylor, J.H.; Gross, P.M.
solubilities extra solvent is run through the buret system and weighed.	J. Phys. Chem. 1957, <u>61</u> , 1078.

COMPONENTS :	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Powell, R.J.
<ol> <li>Neon; Ne; 7440-01-5</li> <li>1,1,2,2,3,3,4,4,4-nonafluoro-N,N- bis(nonafluorobutyl)-1-butanamine (Perfluorotributylamine);C12F27N;</li> </ol>	<u>J. Chem. Eng. Data</u> 1972, <u>17</u> , 302-304.
311-89-7.	
VARIABLES:	PREPARED BY:
T/K: 298.15 P/kPa: 101.325 (1 atm)	P.L. Long
EXPERIMENTAL VALUES:	
T/K Mol Fraction Bunsen Coefficie $X_1 \times 10^4$ $\alpha \times 10^6$	$\begin{array}{c} \text{Ostwald} \\ \text{ent Coefficient} \\ \text{Coefficient} \\ \text{L x 10}^2 \\ \end{array} \begin{array}{c} \frac{\Delta \log X_1}{\Delta \log T} = N \\ \text{L x 10}^2 \end{array}$
298.15 16.79 10.5	11.5 2.76
The author states that solubility meass 313.15 K, but only the solubility at 21 slope $R(\Delta \log X_1/\Delta \log T)$ was given. The by the compiler from the slope in the s	98.15 K was given in the paper. The e smoothed data below were calculated
with $R = 1.9872$ cal $K^{-1}$ mol ⁻¹ .	/ '(2.70/K) i0g(i/298.15)
Smoothed Data:	
	ol Fraction
	$x_1 \times 10^4$
288.15 293.15	16.0 16.4
293.15	16.8
303.15 308.15	17.2 17.6
313.15	18.0
318.15	18.4
The Bunsen and Ostwald coefficients we	re calculated by the compiler.
AUXILIARY	INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS; 1. Neon. No source given. Research grade, dried over CaCl ₂ before use.
	<pre>2. Perfluorotributylamine. Minnesota Mining &amp; Manufacturing Co. Dis- tilled, used portion boiling be- tween 447.85-448.64 K which gave a single GLC peak. d_{298.15} = 1.880 g cm⁻³.</pre>
APPARATUS/PROCEDURE: Dymond and Hildebrand (1) apparatus which uses an all glass pumping system to spray slugs of degassed solvent in- to the gas. The amount of gas dis- solved is calculated from the initial	ESTIMATED ERROR: $\delta$ N/cal K ⁻¹ mol ⁻¹ = 0.1 $\delta X_1/X_1$ = 0.002 REFERENCES:
and final gas pressures. The solvent is degassed by freezing and pumping followed by boiling under reduced pressure.	<ol> <li>Dymond, J.H.; Hildebrand, J.H. <u>Ind. Eng. Chem. Fundam. 1967, 6</u>, 130.</li> </ol>

	ORIGINAL MEASUREMENTS:		
1. Neon; Ne; 7440-01-9	Wilcock, R.J.; McHale, J.L.; Battino, B.; Wilhelm, E.		
2. Octamethylcyclotetrasiloxane; C ₈ H ₂₄ O ₄ Si ₄ ; 556-67-2	<u>Fluid</u> <u>Phase</u> <u>Equilib</u> .1978, <u>2</u> , 225-230.		
VARIABLES:	PREPARED BY:		
T/K: 298.13	H.L. Clever		
P/kPa: 101.325 (1 atm)			
EXPERIMENTAL VALUES:			
T/K Mol Fraction X ₁ x 10 ⁴	Bunsen Ostwald Coefficient Coefficient		
	$\underline{\alpha \times 10^2} \underline{L \times 10^2}$		
298.13 9.19	6.609 7.213		
The solubility values were adjusted t kPa by Henry's law.	o a gas partial pressure of 101.325		
The Bunsen coefficients were calculat	ed by the compiler.		
AUXILIARY	INFORMATION		
AUXILIARY METHOD /APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS;		
METHOD /APPARATUS/PROCEDURE: The apparatus is based on the de-	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc.		
METHOD /APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc.		
METHOD /APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>1. Neon. Matheson Co., Inc. Minimum mole per cent purity 99.99.</li> <li>2. Octamethylcyclotetrasiloxane.</li> </ul>		
METHOD /APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3).	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>1. Neon. Matheson Co., Inc. Minimum mole per cent purity 99.99.</li> <li>2. Octamethylcyclotetrasiloxane. General Electric Co. Distilled density of 298.15 K was 0.9500</li> </ul>		
METHOD /APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of sol-	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>1. Neon. Matheson Co., Inc. Minimum mole per cent purity 99.99.</li> <li>2. Octamethylcyclotetrasiloxane. General Electric Co. Distilled</li> </ul>		
METHOD /APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of sol- vent is placed in a flask of such	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>1. Neon. Matheson Co., Inc. Minimum mole per cent purity 99.99.</li> <li>2. Octamethylcyclotetrasiloxane. General Electric Co. Distilled density of 298.15 K was 0.9500</li> </ul>		
METHOD /APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm of sol- vent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred,	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>1. Neon. Matheson Co., Inc. Minimum mole per cent purity 99.99.</li> <li>2. Octamethylcyclotetrasiloxane. General Electric Co. Distilled density of 298.15 K was 0.9500</li> </ul>		
METHOD /APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of sol- vent is placed in a flask of such size that the liquid is about 4 cm	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>1. Neon. Matheson Co., Inc. Minimum mole per cent purity 99.99.</li> <li>2. Octamethylcyclotetrasiloxane. General Electric Co. Distilled density of 298.15 K was 0.9500</li> </ul>		
METHOD /APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm of sol- vent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure	<pre>SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Minimum mole per cent purity 99.99. 2. Octamethylcyclotetrasiloxane. General Electric Co. Distilled density of 298.15 K was 0.9500 g cm⁻³. ESTIMATED ERROR:</pre>		
METHOD /APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm of sol- vent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de-	<pre>SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Minimum mole per cent purity 99.99. 2. Octamethylcyclotetrasiloxane. General Electric Co. Distilled density of 298.15 K was 0.9500 g cm⁻³. ESTIMATED ERROR:</pre>		
METHOD /APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of sol- vent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Minimum mole per cent purity 99.99. 2. Octamethylcyclotetrasiloxane. General Electric Co. Distilled density of 298.15 K was 0.9500 g cm ⁻³ . ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.02$		
METHOD /APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of sol- vent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass spiral tube con- taining the solute gas plus the sol-	<pre>SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Minimum mole per cent purity 99.99. 2. Octamethylcyclotetrasiloxane. General Electric Co. Distilled density of 298.15 K was 0.9500 g cm⁻³. ESTIMATED ERROR:</pre>		
METHOD /APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of sol- vent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass spiral tube con-	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Minimum mole per cent purity 99.99. 2. Octamethylcyclotetrasiloxane. General Electric Co. Distilled density of 298.15 K was 0.9500 g cm ⁻³ . ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.02$ REFERENCES: 1. Morrison, T.J.; Billett, F. J. Chem. Soc. 1948, 2033.		
METHOD /APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of sol- vent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass spiral tube con- taining the solute gas plus the sol- vent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Minimum mole per cent purity 99.99. 2. Octamethylcyclotetrasiloxane. General Electric Co. Distilled density of 298.15 K was 0.9500 g cm ⁻³ . ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.02$ REFERENCES: 1.Morrison, T.J.; Billett, F. J. Chem. Soc. 1948, 2033. 2.Battino,R.; Evans, F.D.; Danforth, W.F. J.Am.Oil Chem.Soc. 1968, 45, 830.		
METHOD /APPARATUS/PROCEDURE: The apparatus is based on the de- sign of Morrison and Billett (1), and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus and procedure are described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of sol- vent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass spiral tube con- taining the solute gas plus the sol- vent vapor at a total pressure of one atm. The volume of gas absorbed	SOURCE AND PURITY OF MATERIALS: 1. Neon. Matheson Co., Inc. Minimum mole per cent purity 99.99. 2. Octamethylcyclotetrasiloxane. General Electric Co. Distilled density of 298.15 K was 0.9500 g cm ⁻³ . ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.02$ REFERENCES: 1.Morrison, T.J.; Billett, F. J. Chem. Soc. 1948, 2033. 2.Battino,R.;Evans,F.D.;Danforth,W.F.		

CONDONINUTC		ODICINAL MELCON				
COMPONENTS:		ORIGINAL MEASUREMENTS:				
1. Neon; Ne; 7440-01	L-9	Karasz, F.E.; Halsey, G.D.Jr.				
2. Argon; Ar; 7440-3	37-1					
			J. Chem. Phys. 1958, 29, 173 - 179.			
			<u> </u>			
	<u></u>					
VARIABLES:	07 45	PREPARED BY:				
T/K: 83.91 - P/kPa: 5.333 -	- 18.665	Р. Ц	. Long			
(4 - 14	cmHg)					
EXPERIMENTAL VALUES:						
T/K	Henry's Constant		action			
	$10^{-4}$ K/cmHq	l cmHg	At Ne Pressure 76 cmHg			
		$x_1 \times 10^4$	$x_1 \times 10^4$			
	<u></u>					
83.91 84.54		0.119	9.04			
86.11		0.119 0.125	9.04 9.50			
86.89		0.128	9.73			
87.45	7.66	0.131	9.96			
against Ne mole frac 1/T plot. The compil graph to obtain the compiler calculated pressures of one and The Henry's constant Smoothed Data: For t $\Delta G^0/J$ Std.	tion dissolved in er took log K values of Henry's the mole fraction 76 cmHg from Henri is K/cmHg = $(P_1/cm)$	argon; the other les from the point constant given in solubility of new cy's law. htg)/X1. solubility values = 1,731.5 + 37 ef. Corr. = 0.995	n the Table above. The on in liquid argon at at 76 cmHg. .716 T 6			
	AUXILIARY	INFORMATION				
METHOD:		SOURCE AND PURITY O	F MATERIALS:			
A measured amount placed in the cell w amount of liquid arg was recorded as a fu amount of gas (isoth function of temperat	ith a measured on. The pressure nction of the erm) or as a ure (isostere).	received in o 2. Argon. Air Ro received in o the reference	duction Co. Used as glass sealed bulbs. eduction Co. Used as glass sealed bulbs for e. The actual solvent			
Only the results from runs are given above	m the isotherm	titanium meta	on purified with al.			
APPARATUS/PROCEDURE:		ESTIMATED ERROR:				
A stainless steel	cell with one		/K = 0.01 Hg = 0.002			
compartment for the compartment for pure	solution and one		$x_1 = 0.001$			
a reference. The cel that movement in one electromagnet agitat The argon vapor pres literature values (1	l was suspended so direction by an ed the solution. sure checked with	1. Mallett, M. W	n. 1950, <u>42</u> , 2045.			

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Ikels, K. G.
2. Olive Oil	
	Technical Report
	SAM-TDR-64-28, May 1964
VARIABLES:	PREPARED BY:
T/K: 310.75 Total P/kPa: 101.325 (1 atm)	P. L. Long
EXPERIMENTAL VALUES:	Ostupld
	Ostwald nt Coefficient
$\frac{\alpha \times 10^2}{310.75 \ 1.930 \ \pm \ .0}$	
The Bunsen coefficient uncertainty is	the standard deviation.
The Ostwald coefficient was calculate	d by the compiler.
AUXILIARY	INFORMATION
ME THOD:	SOURCE AND PURITY OF MATERIALS:
Van Slyke-gas chromatograph appa- ratus (1). Equilibration apparatus	<ol> <li>Neon. No source given. Research grade.</li> </ol>
was a standard Van Slyke instrument to which a small water manometer was	2. Olive oil.
attached. The sample material was	2. 011/6 011.
degassed in vacuo in the Van Slyke apparatus, gas was added, and the	
system agitated until equilibrium was reached. The saturated gas-liquid	
sample was passed from the Van Slyke	
apparatus to the gas chromatograph where the solubility was measured by	ESTIMATED ERROR:
the peak size. Known volumes of a reference gas were used before and	ESTIMATED ERROR:
after each run, The chromatograph	
was calibrated with water.	
	REFERENCES: 1. Ikels, K. G.
	SAM-TDR-64-1. February 1964.

COMPONENTS:       ORIGINAL MEASUREMENTS:         1. Neon; Ne; 7440-01-9       Battino, R.; Evans, F.         2. Olive Oil       J. Am. Oil Chem. Soc.         Battino, R.; Evans, F.       Danforth, W. F.         VARIABLES:       T/K: 297.67 - 328.00         P/kPa:       101.325 (1 atm)         FXPERIMENTAL VALUES:       PREPARED EY:         T/K       Mol Fraction       Bunsen       Ostwald         Coefficient       Coefficient       Coefficient       Coefficient         297.67       8.54       1.957       2.133         297.97       8.64       1.980       2.160         308.15       8.43       1.922       2.160         308.15       8.43       1.922       2.160         318.65       8.30       1.882       2.196         328.00       8.17       1.844       2.207         Smoothed Data:       AG°/J mol ⁻¹ = - RT In X ₁ = -1359.7 + 63.245 T       Std. Dev. AG° = 14.8, Coef. Corr. = 0.9998 $\Delta H^o/J mol^{-1} = -1359.7, \Delta S^o/J K^{-1} mol^{-1} = -6       T/K       Mol Fraction AG°/J mol^{-1}         293.15       8.68       17,497       303.15       8.38       18,445         303.15       8.38       18,445       318.15       8.31   $	D.;		
Danforth, W. F. 2. Olive Oil Danforth, W. F. 2. Olive Oil J. Am. Oil Chem. Soc. 830 - 833. VARIABLES: T/K: 297.67 - 328.00 P/kPa: 101.325 (1 atm) EXPERIMENTAL VALUES: T/K MOI Fraction $x_1 \times 10^4$ $x_1 \times 10^4$ $x_1 \times 10^4$ $x_1 \times 10^2$ Description $x_1 \times 10^4$ $x_1 \times 10^2$ $x_1 \times 10^2$ Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = - \operatorname{RT} \ln X_1 = -1359.7 + 63.245 \operatorname{T}$ Std. Dev. $\Delta G^{\circ} = 14.8$ , Coef. Corr. = 0.9998 $\Delta H^{\circ}/J \mod^{-1} = -1359.7$ , $\Delta S^{\circ}/J \operatorname{K^{-1}} \mod^{-1} = -6$ $\overline{X_1 \times 10^4}$ $\overline{X_1 \times 10^4}$ $X_1 \times 1$	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
VARIABLES: T/K: 297.67 - 328.00 P/kPa: 101.325 (1 atm) EXPERIMENTAL VALUES: T/K Mol Fraction Bunsen Ostwald Coefficient Coefficient $x_1 \times 10^4$ Coefficient Coefficient $x_1 \times 10^4$ Coefficient Coefficient $x_1 \times 10^2$ 2133 297.67 8.54 1.980 2.160 307.90 8.53 1.944 2.191 308.15 8.43 1.922 2.166 318.65 8.30 1.882 2.196 328.00 8.17 1.884 2.207 Smoothed Data: $\Delta G^o/J \mod^{-1} = - \operatorname{RT} \ln X_1 = -1359.7 + 63.245 \operatorname{T}$ Std. Dev. $\Delta G^o = 14.8$ , Coef. Corr. = 0.9998 $\Delta H^o/J \mod^{-1} = -1359.7$ , $\Delta S^o/J \operatorname{K}^{-1} \mod^{-1} = -6$ T/K Mol Fraction $\Delta G^o/J \mod^{-1}$ $x_1 \times 10^4$ 293.15 8.68 17,181 298.15 8.45 18,129 313.15 8.38 18,445 318.15 8.45 18,129 313.15 8.38 18,445 318.15 8.31 18,762 328.15 8.18 19,394 AUXILIARY INFORMATION METHOD: The apparatus is based on the SOURCE AND PURITY OF MATERN			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1968, <u>45</u> ,		
P/kPa: 101.325 (1 atm) EXPERIMENTAL VALUES: $\frac{T/K \text{ Mol Fraction Bunsen Coefficient Coefficient X 10^2 L x 10^2}{297.67 & 8.54 & 1.957 & 2.133 \\ 297.97 & 8.64 & 1.980 & 2.160 \\ 307.90 & 8.53 & 1.944 & 2.191 \\ 308.15 & 8.43 & 1.922 & 2.169 \\ 318.65 & 8.30 & 1.882 & 2.196 \\ 328.00 & 8.17 & 1.844 & 2.207 \\ Smoothed Data: \Delta G^{\circ}/J \text{ mol}^{-1} = - RT \ln X_1 = -1359.7 + 63.245 T \\ Std. Dev. \Delta G^{\circ} = 14.8, Coef. Corr. = 0.9998 \Delta H^{\circ}/J \text{ mol}^{-1} = -1359.7, \Delta S^{\circ}/J K^{-1} \text{ mol}^{-1} = -6 \\ \hline T/K & Mol Fraction \Delta G^{\circ}/J \text{ mol}^{-1} = -6 \\ \hline T/K & Mol Fraction \Delta G^{\circ}/J \text{ mol}^{-1} = -6 \\ \hline T/K & Mol Fraction \Delta G^{\circ}/J \text{ mol}^{-1} = -6 \\ \hline T/K & Mol Fraction \Delta G^{\circ}/J \text{ mol}^{-1} = -6 \\ \hline T/K & Mol Fraction \Delta G^{\circ}/J \text{ mol}^{-1} = -6 \\ \hline Mol Fraction X + 10^4 \\ \hline 293.15 & 8.68 & 17,181 \\ 308.15 & 8.31 & 18,129 \\ 313.15 & 8.38 & 18,445 \\ 318.15 & 8.31 & 18,762 \\ \hline 328.15 & 8.18 & 19,394 \\ \hline AUXILLARY INFORMATION \\ \hline METHOD: The apparatus is based on the SOURCE AND PURITY OF MATERN$	PREPARED BY:		
$\frac{T/K  Mol \ Fraction  Bunsen \\ X_1 \ x \ 10^4 \qquad \alpha \ x \ 10^2 \qquad Coefficient \\ X_1 \ x \ 10^4 \qquad \alpha \ x \ 10^2 \qquad L \ x \ 10^2 \\ \hline 297.67  8.54 \qquad 1.95_7 \qquad 2.13_3 \\ 297.97  8.64 \qquad 1.98_0 \qquad 2.16_0 \\ 307.90  8.53 \qquad 1.94_4 \qquad 2.19_1 \\ 308.15  8.43 \qquad 1.92_2 \qquad 2.16_9 \\ 318.65  8.30 \qquad 1.88_2 \qquad 2.19_6 \\ 328.00  8.17 \qquad 1.84_4 \qquad 2.20_7 \\ \hline Smoothed \ Data: \ \Delta G^\circ/J \ mol^{-1} = - RT \ ln \ X_1 = -1359.7 + \ 63.245 \ T \\ Std. \ Dev. \ \Delta G^\circ = 14.8,  Coef. \ Corr. = 0.9998 \\ \Delta H^\circ/J \ mol^{-1} = -1359.7, \ \Delta S^\circ/J \ K^{-1} \ mol^{-1} = -6 \\ \hline \hline T/K \qquad Mol \ Fraction \ \Delta G^\circ/J \ mol^{-1} \\ \hline 293.15 \qquad 8.60 \qquad 17,497 \\ 303.15 \qquad 8.60 \qquad 17,497 \\ 303.15 \qquad 8.53 \qquad 17,813 \\ 308.15 \qquad 8.45 \qquad 18,129 \\ 313.15 \qquad 8.38 \qquad 18,445 \\ 318.15 \qquad 8.31 \qquad 1.67.62 \\ \hline 323.15 \qquad 8.25 \qquad 19,078 \\ \hline 328.15 \qquad 8.18 \ 19,394 \\ \hline AUXILLARY \ INFORMATION \\ \hline METHOD: \ The \ apparatus \ is \ based \ on \ the \ SOURCE \ AND \ PURITY \ OF \ MATERN} \\ \hline$	r		
$\frac{X_{1} \times 10^{4}}{297.67 + 8.54 + 1.980} + \frac{Coefficient}{a \times 10^{2}} + \frac{Coefficient}{1 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + \frac{Coefficient}{2 \times 10^{2}} + $			
$\frac{X_1 \times 10^4}{297.67 & 8.54} \xrightarrow{\text{Coefficient}}_{\alpha \times 10^2} \xrightarrow{\text{Coefficient}}_{L \times 10^2} \xrightarrow{\text{L} \times 10^2}_{\frac{1 \times 10^2}{2.13_3}} \frac{2.13_3}{2.13_3}$ $\frac{297.97 & 8.64}{307.90 & 8.53} & 1.94_4 & 2.19_1}{308.15 & 8.43} & 1.92_2 & 2.16_9}$ $318.65 & 8.30 & 1.88_2 & 2.19_6}{328.00 & 8.17} & 1.84_4 & 2.20_7$ Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = - \operatorname{RT} \ln X_1 = -1359.7 + 63.245 \text{ T}$ Std. Dev. $\Delta G^{\circ} = 14.8$ , Coef. Corr. = 0.9998 $\Delta H^{\circ}/J \mod^{-1} = -1359.7$ , $\Delta S^{\circ}/J \operatorname{K}^{-1} \mod^{-1} = -6$ $\frac{1}{\frac{1}{293.15}} \times \frac{8.68}{8.68} \times \frac{17,181}{17,497} = -6$ $\frac{1}{303.15} \times \frac{8.68}{8.45} \times \frac{17,181}{18,129} = -6$ $\frac{1}{313.15} \times \frac{8.38}{8.45} \times \frac{18,445}{18,129} = -6$ $\frac{1}{313.15} \times \frac{8.38}{8.18} \times \frac{18,445}{18,129} = -6$ $\frac{1}{328,15} \times \frac{18,129}{328,15} = \frac{18,18}{19,394} = -6$ $\frac{1}{4} \times \frac{10^{4}}{1293.15} \times \frac{19,078}{328,15} = \frac{19,078}{328,15} = -6$ $\frac{1}{4} \times \frac{10^{4}}{17,181} \times \frac{10^{4}}{19,394} = -6$ $\frac{1}{4} \times \frac{10^{4}}{17,181} \times \frac{10^{4}}{19,394} = -6$ $\frac{1}{4} \times \frac{10^{4}}{17,181} \times \frac{10^{4}}{19,394} = -6$ $\frac{1}{4} \times \frac{10^{4}}{1293.15} \times \frac{10^{4}}{1293.15} \times \frac{10^{4}}{1293.15} \times \frac{10^{4}}{1293.15} \times \frac{10^{4}}{1293.15} \times \frac{10^{4}}{1293.15} \times \frac{10^{4}}{133.15} \times \frac{10^{4}}{19,394} = -6$ $\frac{1}{4} \times \frac{10^{4}}{1293.15} \times \frac{10^{4}}{1293.1$			
$\frac{297.97}{307.90} \begin{array}{c} 8.64 \\ 1.980 \\ 2.160 \\ 307.90 \\ 8.53 \\ 1.944 \\ 2.191 \\ 308.15 \\ 8.43 \\ 1.922 \\ 2.196 \\ 328.00 \\ 8.17 \\ 1.844 \\ 2.207 \\ \end{array}$ Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = - \operatorname{RT} \ln X_1 = -1359.7 + 63.245 \operatorname{T}$ Std. Dev. $\Delta G^{\circ} = 14.8$ , Coef. Corr. = 0.9998 $\Delta H^{\circ}/J \mod^{-1} = -1359.7$ , $\Delta S^{\circ}/J \operatorname{K}^{-1} \mod^{-1} = -6 \\ \hline \\ \hline \\ \hline \\ \hline \\ \begin{array}{c} T/K \\ 293.15 \\ 308.15 \\ 8.68 \\ 17,181 \\ 308.15 \\ 8.68 \\ 17,497 \\ 303.15 \\ 8.53 \\ 17,813 \\ 308.15 \\ 8.45 \\ 18,129 \\ 313.15 \\ 8.38 \\ 18,445 \\ 318.15 \\ 8.31 \\ 18,762 \\ 323.15 \\ 8.18 \\ 19,394 \\ \end{array}$ METHOD: The apparatus is based on the SOURCE AND PURITY OF MATERN	t		
$\frac{307.90}{308.15} \frac{8.53}{8.43} \frac{1.944}{1.922} \frac{2.191}{2.169}$ $\frac{308.15}{328.00} \frac{8.53}{8.30} \frac{1.882}{1.882} \frac{2.196}{2.207}$ Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = - \text{RT ln } X_1 = -1359.7 + 63.245 \text{ T}$ $\frac{\Delta G^{\circ}/J \text{ mol}^{-1} = -1359.7,  \Delta S^{\circ}/J \text{ K}^{-1} \text{ mol}^{-1} = -6$ $\frac{1}{17/K} \frac{\text{Mol Fraction}}{X_1 \times 10^4} \frac{\Delta G^{\circ}/J \text{ mol}^{-1}}{1} = -6$ $\frac{1}{17,181} \frac{293.15}{303.15} \frac{8.68}{8.53} \frac{17,181}{17,181}$ $\frac{308.15}{308.15} \frac{8.45}{8.45} \frac{17,181}{18,129}$ $\frac{313.15}{313.15} \frac{8.38}{8.38} \frac{18,445}{18,129}$ $\frac{313.15}{328.15} \frac{8.25}{8.18} \frac{19,394}{19,394}$ $4000000000000000000000000000000000000$			
$\frac{308.15}{318.65} = 8.43 \qquad 1.92_{2} \qquad 2.16_{9}^{2} \\ \frac{318.65}{328.00} = 8.17 \qquad 1.88_{2} \qquad 2.196 \\ \frac{328.00}{328.00} = 8.17 \qquad 1.84_{4} \qquad 2.207 \\ \text{Smoothed Data:} \qquad \Delta G^{\circ}/J \ \text{mol}^{-1} = -\text{RT ln } X_{1} = -1359.7 + 63.245 \ \text{T} \\ \text{Std. Dev. } \Delta G^{\circ} = 14.8, \qquad \text{Coef. Corr.} = 0.9998 \\ \Delta H^{\circ}/J \ \text{mol}^{-1} = -1359.7, \qquad \Delta S^{\circ}/J \ \text{K}^{-1} \ \text{mol}^{-1} = -6 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $			
$\frac{328.00}{328.00} \frac{8.17}{1.844} \frac{2.207}{2.207}$ Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = - \text{ RT ln } X_1 = -1359.7 + 63.245 \text{ T}$ Std. Dev. $\Delta G^{\circ} = 14.8$ , Coef. Corr. = 0.9998 $\Delta H^{\circ}/J \text{ mol}^{-1} = -1359.7$ , $\Delta S^{\circ}/J \text{ K}^{-1} \text{ mol}^{-1} = -6$ $\frac{T/K}{X_1 \times 10^4} \frac{\Lambda G^{\circ}/J \text{ mol}^{-1}}{X_1 \times 10^4}$ $\frac{293.15}{8.68} \frac{8.68}{17,497}$ $303.15}{8.53} \frac{17,481}{17,497}$ $303.15}{8.38} \frac{18,445}{18,129}$ $313.15}{8.38} \frac{18,445}{18,129}$ $313.15}{8.31} \frac{18,762}{323.15} \frac{8.25}{8.18} \frac{19,394}{19,394}$ $AUXILIARY INFORMATION$ METHOD: The apparatus is based on the SOURCE AND PURITY OF MATERN			
Std. Dev. $\Delta G^{\circ} = 14.8$ , Coef. Corr. = 0.9998 $\Delta H^{\circ}/J \text{ mol}^{-1} = -1359.7$ , $\Delta S^{\circ}/J \text{ K}^{-1} \text{ mol}^{-1} = -6$ T/K Mol Fraction $\Delta G^{\circ}/J \text{ mol}^{-1}$ 293.15 8.68 17,181 298.15 8.60 17,497 303.15 8.53 17,813 308.15 8.45 18,129 313.15 8.38 18,445 318.15 8.31 18,762 323.15 8.18 19,394 AUXILIARY INFORMATION METHOD: The apparatus is based on the SOURCE AND PURITY OF MATERN			
Std. Dev. $\Delta G^{\circ} = 14.8$ , Coef. Corr. = 0.9998 $\Delta H^{\circ}/J \text{ mol}^{-1} = -1359.7$ , $\Delta S^{\circ}/J \text{ K}^{-1} \text{ mol}^{-1} = -6$ T/K Mol Fraction $\Delta G^{\circ}/J \text{ mol}^{-1}$ 293.15 8.68 17,181 298.15 8.60 17,497 303.15 8.53 17,813 308.15 8.45 18,129 313.15 8.38 18,445 318.15 8.31 18,762 323.15 8.18 19,394 AUXILIARY INFORMATION METHOD: The apparatus is based on the SOURCE AND PURITY OF MATERN			
$\Delta H^{\circ}/J \text{ mol}^{-1} = -1359.7,  \Delta S^{\circ}/J \text{ K}^{-1} \text{ mol}^{-1} = -6$ $T/K \qquad Mol \text{ Fraction} \qquad \Delta G^{\circ}/J \text{ mol}^{-1}$ $293.15 \qquad 8.68 \qquad 17,181$ $298.15 \qquad 8.60 \qquad 17,497$ $303.15 \qquad 8.53 \qquad 17,813$ $308.15 \qquad 8.45 \qquad 18,129$ $313.15 \qquad 8.38 \qquad 18,445$ $318.15 \qquad 8.31 \qquad 18,762$ $323.15 \qquad 8.18 \qquad 19,394$ $AUXILIARY INFORMATION$ METHOD: The apparatus is based on the SOURCE AND PURITY OF MATERIAL			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.245		
293.15 8.68 17,181 298.15 8.60 17,497 303.15 8.53 17,813 308.15 8.45 18,129 313.15 8.38 18,445 318.15 8.31 18,762 323.15 8.25 19,078 328.15 8.18 19,394 AUXILIARY INFORMATION METHOD: The apparatus is based on the SOURCE AND PURITY OF MATERI			
298.15       8.60       17,497         303.15       8.53       17,813         308.15       8.45       18,129         313.15       8.38       18,445         318.15       8.31       18,762         323.15       8.25       19,078         328.15       8.18       19,394         AUXILIARY INFORMATION			
308.15       8.45       18,129         313.15       8.38       18,445         318.15       8.31       18,762         323.15       8.25       19,078         328.15       8.18       19,394         AUXILIARY INFORMATION			
313.15       8.38       18,445         318.15       8.31       18,762         323.15       8.25       19,078         328.15       8.18       19,394         AUXILIARY INFORMATION			
323.15 328.15 AUXILIARY INFORMATION METHOD: The apparatus is based on the SOURCE AND PURITY OF MATERI			
AUXILIARY INFORMATION METHOD: The apparatus is based on the SOURCE AND PURITY OF MATERI			
METHOD: The apparatus is based on the SOURCE AND PURITY OF MATERI			
and the version used is a modification 99.995 Min. Vol	o., Inc.		
of the apparatus of Clever, Battino, Saylor and Gross (2). 2. Olive oil. A. U	.S.P., Fisher		
Scientific Compan fatty acid.	y., 0.58% free		
B. Nutritional E	iochemicals		
APPARATUS/PROCEDURE: Degassing. Corp., 0.30% free The solvent is sprayed into an evacu- The density was m	oscurod and		
ated chamber of an all glass appara- fitted to the equ	ation p/g cm ⁻³		
tus; it is stirred and heated until = 0.9152 = 0.0004	bot/c. The aver		
pressure of the liquid. Solubility			
Determination. The degassed liquid passes in a thin film down a glass $\delta T/K = 0.$	03		
spiral tube at a total pressure of $\delta P/mmHg =$	0.5		
one atm of solute gas plus solvent $\delta X_1/X_1 =$ vapor. The gas absorbed is measured	0.01		
in the attached buret system, and the REFERENCES:			
solvent is collected in a tared flask and weighed. J. Chem. Soc. 1948	illett, F. , 2033.		
2. Clever, H. L.; Bat Saylor, J. H.; Gro J, Phys. <u>Chem</u> . 195	ss, P. M.		

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Neon; Ne; 7440-01-9	Ikels, K. G.
	TRETS, N. G.
2. Human Fat (pooled)	
	Technical Report
	SAM-TDR-64-28, May 1964.
VARIABLES: T/K: 310.75	PREPARED BY: P. L. Long
	II. DONY
Total P/kPa: 101.325 (1 atm) EXPERIMENTAL VALUES:	
EXTERIMENTAL VALUES:	
T/K Bunsen Coeffici α x 10	ent Coefficient
310.75 l.972 ±	0.0109 2.24
The Bunsen coefficient uncertainty is	the standard deviation.
The Ostwald coefficient was calculated	d by the compiler.
The optimity controlling was calculated	
AUXILIARY	INFORMATION
METHOD:	SOURCE AND PURITY OF MATERIALS:
Van Slyke-gas chromatograph appa-	1. Neon. No source given. Research
ratus (1). Equilibration apparatus was a standard Van Slyke instrument	grade.
to which a small water manometer was attached. The sample material was	
degassed in vacuo in the Van Slyke	
apparatus, gas was added, and the system agitated until equilibrium was	
reached. The saturated gas-liquid sample was passed from the Van Slyke	
apparatus to the gas chromatograph	
where the solubility was measured by the peak size. Known volumes of a	ESTIMATED ERROR:
reference gas were used before and after each run. The chromatograph was	
calibrated with water.	
	REFERENCES:
	1. Ikels, K. G.
	SAM-TDR-64-1, February 1964.

HELIUM AND NEON SOLUBILITIES ABOVE 2 BAR

Ceneral Remarks for High Pressure Solubility Studies on Mixtures Containing Helium or Neon

Mixtures containing helium often exhibit the phenomenon referred to as gas-gas immiscibility (1). This has led to a number of studies in which the solubility data of helium in a less volatile component are presented in a graphical form or are, in general of very low precision.

The following remarks on mixtures (a) studied primarily for investigating gas-gas immiscibility or (b) studied by only one or two groups of workers but at several temperatures and pressure, are included to increase the usefulness and comprehensibleness of the compiled tables.

## Helium and Dichlorodifluoromethane

This system was investigated by Tsiklis, Maslennikova and Goryunova (2) primarily to establish that it exhibited gas-gas immiscibility of the first kind. The data are of fairly low accuracy and are classified as tentative.

#### Helium + Carbon Monoxide

This system has been investigated by Parrish and Stewart (3) and by Sinor and Kurata (4). Although slightly different temperature ranges were used the data interpolated to the same temperatures are in good agreement. The two sets are therefore classified as tentative.

# Helium + Ethane

This system has been investigated by Nikitina and coworkers (5). There is little on which to base a meaningful evaluation and hence these data are classified as tentative.

## Helium + Propane

This system has only been investigated by Schindler and coworkers (6). There is little evidence on which to base a meaningful evaluation and hence these data are classified as tentative.

## Helium + Fluorine

The only data published on these systems are those of Cannon and Crane (7) which are not of high precision. They are classified as tentative.

#### Helium + Krypton

The only data published on this system are those of Kidnay  $et \ al$ . (8) which are classified as tentative. Other measurement on similar systems by this group are thought to be of good accuracy.

# Helium-4 + Deuterium

# Helium-3 + Deuterium

Hiza's data (9) are the only measurements on the solubility for these two systems and hence both sets of data are classified as tentative. Hiza's

data on the corresponding helium + hydrogen system appear to be reliable.

## Helium + Nitrous Oxide

The only data published on this system are those of Parrish and Stewart (3) which are classified as tentative.

## Helium + Xenon

The data of De Swaan Arons and Diepen (10) are bubble point-dew point data at fixed composition and are not in usual form of solubility data. They were determined to establish the existence of gas-gas immiscibility in this system and are classified as tentative.

Helium + Methanol

Helium + n-Hexane

Helium + Benzene

Helium + Sulfur dioxide

These systems were studied by Tsiklis and Khodeeva (11) but no tabulated data were given. The primary purpose of the investigation was to establish whether these systems exhibited gas-gas immiscibility. All four systems were found to exhibit gas-gas immiscibility of the first type. For the present purpose the data are rejected because of their limited nature and low precision.

# Helium + Ammonia

The data of Hiese (12) for this system are limited in scope but classified as tentative. The data of Tsiklis (13) are rejected as they are only reported in graphical form and were determined to establish if this system exhibited gas-gas immiscibility. The data of Ipatieff and Teodorovich (14) are also rejected as they were determined by an inadequate technique. The data of Zakharova and coworkers (15) are also rejected because they are presented in a graphical form.

#### Neon + Methane

This system has only been studied by Streett and Hill (16). Their data are classified as tentative in view of the fact that other data from this group, where comparison with other workers' data is possible, appears to be reliable. This system exhibits gas-gas immiscibility and the baro-tropic or phase inversion phenomenon (17).

# References

- Schneider, G. M., in Chemical Thermodynamics Vol. 2 Specialist Periodical Report, Chapter 4, ed. McGlashan, M. L., Chemical Society, London, <u>1978</u>.
- Tsiklis, D. S., Maslennikova, V. Ya. and Goryunova, N. P., *Zhur. Fiz.* Chem., <u>1967</u>, 41, 1804.

```
з.
 Parrish, W. R. and Stewart, W. G., J. Chem. Engng. Data, 1975, 20, 412.
 4.
 Sinor, J. E. and Kurata, F., J. Chem. Engng. Data, 1966, 11, 537.
 5.
 Nikitina, I. E., Skripka, V. G., Gubkina, G. F., Sirotin, A. G. and
 Ben'yaminovic, O. A., Gazov. Prom., 1970, 15, no. 6, 35.
 6.
 Schindler, D. L., Swift, G. W. and Kurata, F., Hydrocarbon Process.,
 1966, 45, no. 11, 205.
 7.
 Cannon, W. A. and Crane, W. E., Cryogenic Tech., 1968, 4, 178.
 Kidnay, A. J., Miller, R. C. and Hiza, M. J., Ind. Eng. Chem. Fundam.,
 8.
 1971, 10, 459.
 9.
 Hiza, M. J., Nat. Bur. Standards, Tech. Note 621, 1972.
10.
 De Swaan Arons, J. and Diepen, G. A. M., J. Chem. Phys., 1966, 44, 2322.
11.
 Tsiklis, D. S. and Khodeeva, S. M., Inzh.-Fiz. Zhur. Acad. Nauk.
 Belorus. S.S.R., 1958, no. 11, 62.
12.
 Heise, F., Ber. Bunsenges. Phys. Chem., 1972, 76, 938.
13.
 Tsiklis, D. S., Doklady Acad. Nauk. S.S.S.R., 1952, 86, 1159.
14.
 Ipatieff, V. V. and Teodorovich, V. P., Zhur. Obshchei Khim., 1932,
 2, 305.
15.
 Zakharova, A. V., Nikiforova, M. B. and Khazanova, N. E., Zhur. Fiz.
 Khim., 1969, 43, 750.
16.
 Streett, W. B. and Hill, J. L. E., Progr. Refrig. Sci. Technol.
 XIII Proc. Internat. Congr. Refria., 1971, 1, 309.
17.
 Rowlinson, J. R., Liquids and Liquid Mixtures 2nd Edition, p.218, 1969.
```

COMPO	DNENTS:		EVALUATOR:	
1.	Helium; He;	7440-59-7	Colin Young,	
			School of Chemistry,	
2.	Water; H ₂ O;	7732-18-5	University of Melbourne,	
			Parkville, Victoria 3052,	
			AUSTRALIA.	

CRITICAL EVALUATION:

The experimental data of Wiebe and Gaddy (1) and Pray et al. (2) are classified as tentative whereas those of Gardiner and Smith (3) are recommended. Since there is no overlap in the temperature range a detailed comparison of the data of Pray  $et \ al$ . (2) with those of the other two groups is not possible. However, the data of Pray et al. (2) are thought to be of considerably lower accuracy than those of Wiebe and Gaddy and Gardiner and Smith (3). The data of Wiebe and Gaddy (1) are probably less accurate than the more recent data of Gardiner and Smith (3). In the latter work a correction for the effect of the meniscus curvature was taken into account which, the authors claim, could account for a slight discrepancy between their values and the earlier values of Wiebe and Gaddy (1). There is little doubt that Gardiner and Smith (2) are correct in applying this meniscus correction. Unfortunately only some of the experimental data are presented in the work of Gardiner and Smith (3), however, smoothing equations were given and these are those recommended below.

The data of Enns *et al*. (4) are not in agreement with either the work of Wiebe and Gaddy (1) or that of Gardiner and Smith (3) and are rejected.

#### Smoothing Equations

323.15K  $x_{\text{He}} = 7.152 \times 10^{-6} P - 3.214 \times 10^{-9} P^2 + 3.3926 \times 10^{-12} P^3$ 373.15K  $x_{\text{He}} = 6.7624 \times 10^{-6} P - 2.5091 \times 10^{-9} P^2 + 2.4032 \times 10^{-12} P^3$ where P is pressure in units of bar (10⁵ Pa)

## References

- 1. Wiebe, R. and Gaddy, V. L., J. Am. Chem. Soc., <u>1935</u>, 57, 847.
- Pray, H. A., Schweickert, C. E. and Minnick, B. H., Ind. Eng. Chem., <u>1952</u>, 44, 1146.
- 3. Gardiner, G. E. and Smith, N. O., J. Phys. Chem., 1972, 76, 1195.
- 4. Enns, T., Scholander, P. F. and Bradstreet, E. D., J. Phys. Chem., <u>1965</u>, 69, 389.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Helium; He; 7440-59-7 (2) Water; H₂O; 7732-18-5</pre>	Wiebe, R. and Gaddy, V. L., J. Am. Chem. Soc., <u>1935</u> , 57, 847.
VARIABLES:	PREPARED BY:
Temperature, pressure	C. L. Young
EXPERIMENTAL VALUES:	
10 ³ Mole fraction T/K P/bar of helium in water, 10 ³ x _{He}	$10^3$ Mole fraction T/K P/bar of helium in water, $10^3 x_{\rm He}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
101.32       0.606         202.65       1.205         405.30       2.311         607.95       3.334         810.60       4.280	101.32 0.6926 202.65 1.3608 405.30 2.6128 348.15 810.60 4.826 1013.25 5.861
	INFORMATION
METHOD /APPARATUS/PROCEDURE: One pass flow method with two vessel adsorption train. Second vessel used as source of sample for analysis Pressure maintained with dead weight gauges. Measurements taken both for a high pressure and low pressure approach to equilibrium. Details in source and refs. 1 and 2.	<ol> <li>SOURCE AND PURITY OF MATERIALS;</li> <li>Purity 99.95 mole per cent; Bureau of Mines sample.</li> <li>No details given.</li> </ol>
	ESTIMATED ERROR: $\delta T/K = \pm 0.1;  \delta P/bar = \pm 0.5\%;$ $\delta x_{He} < 0.2\%$ (estimated by compiler). REFERENCES:
	<ol> <li>Wiebe, R., Gaddy, V. L. and Heins, C., J. Am. Chem. Soc., <u>1933</u>, 55, 947.</li> <li>Wiebe, R., Gaddy, V. L. and Heins, C., Ind. Eng. Chem., <u>1931</u>, 23, 401.</li> </ol>

COMPONENTS	:		ORIGINAL MEASUREMENTS:
(1) He	Lium; He; 744	40-59-7	Gardiner, G. E. and Smith, N. O.,
,	,, ,4		J. Phys. Chem., <u>1972</u> , 76, 1195.
(2) Wat	er; H ₂ O; 77	32-18-5	······································
(2) Wal	Ler; m ₂ 0; //.	32-10-3	
ARIABLES	······································		PREPARED BY:
AVIUDUUD	•		
Temperat	ure, pressure		C. L. Young
EXPERIMENT	TAL VALUES:		1 2.2
т/к	P/bar 10° Ma	ole fraction of in liquid, 10 ³	nellum ^x He
293.15	202.6	1.336	
298.15	202.6	1.323	
303.15	202.6	1.324	
308.15	202.6	1.329	
313.15	202.6	1.331	
	202.6	1.343	
323.15	101.3	0.692	
	202.6	1.363	
323.15	304.0	1.979	
	405.3	2.599	
323.15 323.15	506.6 607.9	3.236 3.745	
727.17	007.5	5.745	
не	7624×10 P7Da	ar - 2.5091×10 -	$(P/bar)^2 + 2.4032 \times 10^{-12} (P/bar)^3$ .
пе	7624×10 7758	ar - 2.5091×10 -	(P/bar) ² + 2.4032×10 ⁻¹² (P/bar) ³ .
he	7624×10 7758		(P/bar) ² + 2.4032×10 ⁻¹² (P/bar) ³ .
	PPARATUS/PROCI	AUXILIARY	
METHOD /A Large st	PPARATUS/PROCE	AUXILIARY EDURE: (~4.51).	SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity
METHOD /A Large st Pressure	PPARATUS/PROCI eel autoclave measured with	AUXILIARY EDURE: (~4.51). n Bourdon gauge.	SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity
METHOD /A Large st Pressure Temperat	PPARATUS/PROCI eel autoclave measured with ure measured w	AUXILIARY EDURE: (~4.51). n Bourdon gauge. vith iron-	SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity
METHOD /A Large st Pressure Temperat constant	PPARATUS/PROCI eel autoclave measured with ure measured v an thermocoup]	AUXILIARY EDURE: (~4.51). n Bourdon gauge. vith iron- Le. Cell	SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity 99.995 mole per cent.
METHOD /A Large st Pressure Temperat constant charged	PPARATUS/PROCH eel autoclave measured with ure measured v an thermocoupl with liquid, c	AUXILIARY EDURE: (~4.51). n Bourdon gauge. vith iron- le. Cell compressed gas	INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity 99.995 mole per cent.
METHOD /A Large st Pressure Temperat constant charged added.	PPARATUS/PROCH eel autoclave measured with ure measured v an thermocoupl with liquid, c After equilik	AUXILIARY EDURE: (~4.51). n Bourdon gauge. vith iron- le. Cell compressed gas prium attained	INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity 99.995 mole per cent.
METHOD /A Large st Pressure Temperat constant charged added. samples	PPARATUS/PROCH eel autoclave measured with ure measured v an thermocoupl with liquid, c After equilik removed and ar	AUXILIARY EDURE: (~4.51). n Bourdon gauge. vith iron- le. Cell compressed gas prium attained nalysed using	INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity 99.995 mole per cent.
METHOD /A Large st Pressure Temperat constant charged added. samples volumetr	PPARATUS/PROCH eel autoclave measured with ure measured v an thermocoupl with liquid, c After equilik removed and ar	AUXILIARY EDURE: (~4.51). n Bourdon gauge. vith iron- le. Cell compressed gas prium attained	INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity 99.995 mole per cent.
ÆTHOD /A Large st Pressure Temperat constant charged added. samples volumetr	PPARATUS/PROCH eel autoclave measured with ure measured v an thermocoupl with liquid, c After equilik removed and ar	AUXILIARY EDURE: (~4.51). n Bourdon gauge. vith iron- le. Cell compressed gas prium attained nalysed using	INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity 99.995 mole per cent.
METHOD /A Large st Pressure Temperat constant charged added. samples volumetr	PPARATUS/PROCH eel autoclave measured with ure measured v an thermocoupl with liquid, c After equilik removed and ar	AUXILIARY EDURE: (~4.51). n Bourdon gauge. vith iron- le. Cell compressed gas prium attained nalysed using	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity 99.995 mole per cent. 2. Distilled and deionized.</pre>
METHOD /A Large st Pressure Temperat constant charged added. samples volumetr	PPARATUS/PROCH eel autoclave measured with ure measured v an thermocoupl with liquid, c After equilik removed and ar	AUXILIARY EDURE: (~4.51). n Bourdon gauge. vith iron- le. Cell compressed gas prium attained nalysed using	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity 99.995 mole per cent. 2. Distilled and deionized. ESTIMATED ERROR:</pre>
METHOD /A Large st Pressure Temperat constant charged added. samples volumetr	PPARATUS/PROCH eel autoclave measured with ure measured v an thermocoupl with liquid, c After equilik removed and ar	AUXILIARY EDURE: (~4.51). n Bourdon gauge. vith iron- le. Cell compressed gas prium attained nalysed using	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity 99.995 mole per cent. 2. Distilled and deionized.</pre>
METHOD /A Large st Pressure Temperat constant charged added. samples volumetr	PPARATUS/PROCH eel autoclave measured with ure measured v an thermocoupl with liquid, c After equilik removed and ar	AUXILIARY EDURE: (~4.51). n Bourdon gauge. vith iron- le. Cell compressed gas prium attained nalysed using	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity 99.995 mole per cent. 2. Distilled and deionized. ESTIMATED ERROR:</pre>
METHOD /A Large st Pressure Temperat constant charged added. samples volumetr	PPARATUS/PROCH eel autoclave measured with ure measured v an thermocoupl with liquid, c After equilik removed and ar	AUXILIARY EDURE: (~4.51). n Bourdon gauge. vith iron- le. Cell compressed gas prium attained nalysed using	SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity 99.995 mole per cent. 2. Distilled and deionized. ESTIMATED ERROR: $\delta T/K = \pm 0.5;  \delta P/bar = \pm 0.05\%;$ $\delta x_{He} = \pm 0.4\%.$
METHOD /A Large st Pressure Temperat constant charged added. samples	PPARATUS/PROCH eel autoclave measured with ure measured v an thermocoupl with liquid, c After equilik removed and ar	AUXILIARY EDURE: (~4.51). n Bourdon gauge. vith iron- le. Cell compressed gas prium attained nalysed using	Y INFORMATION         SOURCE AND PURITY OF MATERIALS:         1. Matheson Co. sample, purity         99.995 mole per cent.         2. Distilled and deionized.         ESTIMATED ERROR: $\delta T/K = \pm 0.5;  \delta P/bar = \pm 0.058;$ $\delta x_{He} = \pm 0.48.$ REFERENCES:
METHOD /A Large st Pressure Temperat constant charged added. samples volumetr	PPARATUS/PROCH eel autoclave measured with ure measured v an thermocoupl with liquid, c After equilik removed and ar	AUXILIARY EDURE: (~4.51). n Bourdon gauge. vith iron- le. Cell compressed gas prium attained nalysed using	SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity 99.995 mole per cent. 2. Distilled and deionized. ESTIMATED ERROR: $\delta T/K = \pm 0.5;  \delta P/bar = \pm 0.05\%;$ $\delta x_{He} = \pm 0.4\%.$
METHOD /A Large st Pressure Temperat constant charged added. samples volumetr	PPARATUS/PROCH eel autoclave measured with ure measured v an thermocoupl with liquid, c After equilik removed and ar	AUXILIARY EDURE: (~4.51). n Bourdon gauge. vith iron- le. Cell compressed gas prium attained nalysed using	Y INFORMATION         SOURCE AND PURITY OF MATERIALS:         1. Matheson Co. sample, purity         99.995 mole per cent.         2. Distilled and deionized.         ESTIMATED ERROR: $\delta T/K = \pm 0.5;  \delta P/bar = \pm 0.058;$ $\delta x_{He} = \pm 0.48.$ REFERENCES:
METHOD /A Large st Pressure Temperat constant charged added. samples volumetr	PPARATUS/PROCH eel autoclave measured with ure measured v an thermocoupl with liquid, c After equilik removed and ar	AUXILIARY EDURE: (~4.51). n Bourdon gauge. vith iron- le. Cell compressed gas prium attained nalysed using	<pre>Y INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity 99.995 mole per cent. 2. Distilled and deionized. ESTIMATED ERROR:</pre>
METHOD /A Large st Pressure Temperat constant charged added. samples volumetr	PPARATUS/PROCH eel autoclave measured with ure measured v an thermocoupl with liquid, c After equilik removed and ar	AUXILIARY EDURE: (~4.51). n Bourdon gauge. vith iron- le. Cell compressed gas prium attained nalysed using	INFORMATION SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity 99.995 mole per cent. 2. Distilled and deionized. ESTIMATED ERROR: $\delta T/K = \pm 0.5;  \delta P/bar = \pm 0.05$ ; $\delta x_{He} = \pm 0.4$ %. REFERENCES: 1. O'Sullivan, T. D. and Smith,

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Helium; He; 7440-59-7	Pray, H. A. H., Schweichert, C. E.
(2) Water; H ₂ O; 7732-18-5	and Minnich, B. H., Ind. Eng. Chem., 1952, 44, 1147.
(2) Watter, M20, 7752-10-5	<u>1952</u> , 11, 1147.
VARIABLES:	PREPARED BY:
Temperature, pressure	C. L. Young
EXPERIMENTAL VALUES:	
10 ³ Mole fraction of T/K P/bar in water, 10 ³	helium ^x He
435.9 6.89 0.14 13.79 0.22	
20.68 0.27 533.1 6.89 0.29	
13.79 0.43	
20.68 0.71 27.58 0.99	
34.47 1.26 588.7 13.79 0.66	
20.68 1.18 27.58 1.78	
34.47 2.13	
AUXILIARY	INFORMATION
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Rocking equilibrium cell of 3 l capa- city. Pressure measured with dead	No details given.
weight gauge and temperature measured	no details given.
using chromel-alumel thermocouple. Cell contents equilibrated and liquid	
sample removed. The amount of dis- solved gas estimated volumetrically.	i i
······································	
	ESTIMATED ERROR:
	$\delta T/K = \pm 1;  \delta P/bar = \pm 1;  \delta x_{He} =$
	±1-5% (estimated by compiler).
	REFERENCES :

OMPONENTS:	ORIGINAL MEASUREMENTS:
1) Holium, Not 7740 50 7	Gardiner, G. E. and Smith, N. O.,
1) Helium; He; 7740-59-7	I Thus Cham 1972 76 1195
<ol> <li>Sodium chloride; NaCl; 7647-14-</li> </ol>	-5 5. Frys. crem., <u>1972</u> , 70, 1195.
3) Water; H ₂ O; 7732-18-5	
ARIABLES:	PREPARED BY:
emperature, pressure, composition	C. L. Young
XPERIMENTAL VALUES:	
Coeffici	ents in Smoothing Equation
T/K Solvent a × 10 ⁶	$-b \times 10^{-9}$ c $\times 10^{12}$
298.15 1.003m NaCl 5.694	1,273 0.239
4.067m NaCl 3.283	1.187 0.805
323.15 1.003m NaCl 5.627	1.875 1.967
4.067m NaCl 3.327 373.15 1.003m NaCl 5.262	1.346 0.757 1.351 1.299
4.067m NaCl 5.282 4.056	2.905 2.218
AUXILIA	RY INFORMATION
······································	RY INFORMATION SOURCE AND PURITY OF MATERIALS:
ETHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS: e 1. Matheson Co. sample, purity 99.99
ETHOD /APPARATUS/PROCEDURE: Large steel cell (4.5 l). Pressure measured with Bourdon gauge. Temperature measured with iron-	SOURCE AND PURITY OF MATERIALS: a 1. Matheson Co. sample, purity 99.99 mole per cent.
ETHOD /APPARATUS/PROCEDURE: arge steel cell (4.5 l). Pressurd measured with Bourdon gauge. Temperature measured with iron- constantan thermocouple. Cell	SOURCE AND PURITY OF MATERIALS: e 1. Matheson Co. sample, purity 99.99 mole per cent. 2. Baker analysed reagent.
ETHOD /APPARATUS/PROCEDURE: arge steel cell (4.5 l). Pressure measured with Bourdon gauge. Temperature measured with iron- constantan thermocouple. Cell charged with salt solution, com-	SOURCE AND PURITY OF MATERIALS: a 1. Matheson Co. sample, purity 99.99 mole per cent.
ETHOD /APPARATUS/PROCEDURE: arge steel cell (4.5 l). Pressure measured with Bourdon gauge. Temperature measured with iron- constantan thermocouple. Cell sharged with salt solution, com- pressed gas added. After equi- .ibrium attained, samples of liquid	SOURCE AND PURITY OF MATERIALS: e 1. Matheson Co. sample, purity 99.99 mole per cent. 2. Baker analysed reagent.
ETHOD /APPARATUS/PROCEDURE: warge steel cell (4.5 l). Pressure measured with Bourdon gauge. Temperature measured with iron- constantan thermocouple. Cell charged with salt solution, com- pressed gas added. After equi- librium attained, samples of liquid removed and analysed using volu-	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>a Matheson Co. sample, purity 99.99 mole per cent.</li> <li>2. Baker analysed reagent.</li> <li>3. Distilled and de-ionised.</li> </ul>
ETHOD /APPARATUS/PROCEDURE: warge steel cell (4.5 l). Pressure measured with Bourdon gauge. Temperature measured with iron- constantan thermocouple. Cell charged with salt solution, com- pressed gas added. After equi- tibrium attained, samples of liquid removed and analysed using volu- metric techniques. Details in ref	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>a Matheson Co. sample, purity 99.99 mole per cent.</li> <li>2. Baker analysed reagent.</li> <li>3. Distilled and de-ionised.</li> </ul>
ETHOD /APPARATUS/PROCEDURE: Large steel cell (4.5 l). Pressure measured with Bourdon gauge. Temperature measured with iron- constantan thermocouple. Cell charged with salt solution, com- pressed gas added. After equi- librium attained, samples of liquid removed and analysed using volu- metric techniques. Details in ref	SOURCE AND PURITY OF MATERIALS: e 1. Matheson Co. sample, purity 99.99 mole per cent. 2. Baker analysed reagent. 3. Distilled and de-ionised.
ETHOD /APPARATUS/PROCEDURE: heasured with Bourdon gauge. Temperature measured with iron- constantan thermocouple. Cell charged with salt solution, com- pressed gas added. After equi- librium attained, samples of liquid removed and analysed using volu- metric techniques. Details in ref	SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity 99.99 mole per cent. 2. Baker analysed reagent. 3. Distilled and de-ionised. ESTIMATED ERROR:
ETHOD /APPARATUS/PROCEDURE: Large steel cell (4.5 l). Pressure measured with Bourdon gauge. Temperature measured with iron- constantan thermocouple. Cell charged with salt solution, com- pressed gas added. After equi- librium attained, samples of liquid removed and analysed using volu- metric techniques. Details in ref	<pre>SOURCE AND PURITY OF MATERIALS: a l. Matheson Co. sample, purity 99.99 mole per cent. 2. Baker analysed reagent. 3. Distilled and de-ionised. ESTIMATED ERROR: δT/K = ±0.5; δP/bar = ±0.5%;</pre>
ETHOD /APPARATUS/PROCEDURE: Large steel cell (4.5 l). Pressure measured with Bourdon gauge. Temperature measured with iron- constantan thermocouple. Cell charged with salt solution, com- pressed gas added. After equi- librium attained, samples of liquid removed and analysed using volu- metric techniques. Details in ref	<pre>SOURCE AND PURITY OF MATERIALS: 1. Matheson Co. sample, purity 99.99 mole per cent. 2. Baker analysed reagent. 3. Distilled and de-ionised. ESTIMATED ERROR: δT/K = ±0.5; δP/bar = ±0.5%; δx_{He} = ±0.3%.</pre>
ETHOD/APPARATUS/PROCEDURE: Large steel cell (4.5 %). Pressure measured with Bourdon gauge. Temperature measured with iron-	SOURCE AND PURITY OF MATERIALS: a Source and Purity OF MATERIALS: a Matheson Co. sample, purity 99.99 mole per cent. 2. Baker analysed reagent. 3. Distilled and de-ionised. ESTIMATED ERROR: $\delta T/K = \pm 0.5$ ; $\delta P/bar = \pm 0.5$ ; $\delta x_{He} = \pm 0.3$ %. REFERENCES:
ETHOD /APPARATUS/PROCEDURE: Large steel cell (4.5 l). Pressure measured with Bourdon gauge. Temperature measured with iron- constantan thermocouple. Cell charged with salt solution, com- pressed gas added. After equi- librium attained, samples of liquid removed and analysed using volu- metric techniques. Details in ref	<pre>SOURCE AND PURITY OF MATERIALS: a Matheson Co. sample, purity 99.99 mole per cent. b Baker analysed reagent. J Distilled and de-ionised. ESTIMATED ERROR: δT/K = ±0.5; δP/bar = ±0.5%; δx_{He} = ±0.3%. REFERENCES: 1. O'Sullivan, T. D. and Smith, N. 6</pre>
ETHOD /APPARATUS/PROCEDURE: Large steel cell (4.5 l). Pressure measured with Bourdon gauge. Temperature measured with iron- constantan thermocouple. Cell charged with salt solution, com- pressed gas added. After equi- librium attained, samples of liquid removed and analysed using volu- metric techniques. Details in ref	SOURCE AND PURITY OF MATERIALS: a Source and Purity OF MATERIALS: a Matheson Co. sample, purity 99.99 mole per cent. 2. Baker analysed reagent. 3. Distilled and de-ionised. ESTIMATED ERROR: $\delta T/K = \pm 0.5$ ; $\delta P/bar = \pm 0.5$ ; $\delta x_{He} = \pm 0.3$ %. REFERENCES:

COMPONENT	cs:			ORIGINAL	MEASUREMENTS	:	
(l) He	l) Helium; He; 7440-59-7			Stephan, E. L., Hatfield, N. S.,			
(2) Uranyl Sulfate; UO ₂ SO ₄ ;1314-64-3			Peoples, R. S. and Pray, H. A. H.,				
			Battel	le Memorial	Institu	te Report	
(3) Water; H ₂ O; 7732-18-5				Battelle Memorial Institute Report BMI-1067, <u>1956</u> .			
VARIABLES	S:			PREPARED	BY:		
Temperature, pressure, composition				C. L. Young			
т/к	g Urani per lit	um P ⁺ /bar er	Solubility*	т/к	g Uranium per liter	P ⁺ /bar	Solubilit
435.92	40	35.4 35.2	0.618	533.15	100	29.6 26.2	0.91
	100	34.5 32.1	0.610 0.44		243	23.4 35.2	0.78 0.865
	100	30.0	0.415		473	31.7	0.77
	242	27.2	0.375	E74 00	4.0	29.0	0.725
	243	33.4 31.0	0.325 0.33	574.82	40	19.0 18.3	1.12 1.11
		29.3	0.31			13.8	0.835
533.15	40	26.5 27.6	0.26 1.13		100	10.3 19.0	0.62 0.975
		24.8	0.98		200	18.3	0.99
		24.5	1.06			17.2 15.5	0.90 0.81
			sure of heli at S.T.P. p		solution		
	-				solution		
	-			er g of			
	*	ml of helium	AUXILIARY	er g of INFORMATI		MATERIALS :	
Static liquid Pressur and tem couple. estimat Details estimat	* equilib equilib e measu peratur Comp ed by v in sou ed by s	ml of helium	AUXILIARY AUXILIARY Gas and hours. ordon gauge oith thermo- iquid thod. al pressure apor	er g of INFORMATI	:ON		
Static liquid Pressur and tem couple. estimat Details estimat	* equilib equilib e measu peratur Comp ed by v in sou ed by s	ml of helium US/PROCEDURE rium cell. rated for 18 red with Bou e measured w osition of 1 olumetric me rce. Parti ubtracting w	AUXILIARY AUXILIARY Gas and hours. ordon gauge oith thermo- iquid thod. al pressure apor	er g of INFORMATI	ION ND PURITY OF NO details		
Static liquid Pressur and tem couple. estimat Details estimat	* equilib equilib e measu peratur Comp ed by v in sou ed by s	ml of helium US/PROCEDURE rium cell. rated for 18 red with Bou e measured w osition of 1 olumetric me rce. Parti ubtracting w	AUXILIARY AUXILIARY Gas and hours. ordon gauge oith thermo- iquid thod. al pressure apor	er g of INFORMATI SOURCE A	ION ND PURITY OF	given.	
Static liquid Pressur and tem couple. estimat Details estimat	* equilib equilib e measu peratur Comp ed by v in sou ed by s	ml of helium US/PROCEDURE rium cell. rated for 18 red with Bou e measured w osition of 1 olumetric me rce. Parti ubtracting w	AUXILIARY AUXILIARY Gas and hours. ordon gauge oith thermo- iquid thod. al pressure apor	er g of INFORMATI SOURCE Α ESTIMATE δT/K =	ON ND PURITY OF No details D ERROR:	given. bar = ±0 3% (estin	.3;
Static liquid Pressur and tem couple. estimat Details estimat	* equilib equilib e measu peratur Comp ed by v in sou ed by s	ml of helium US/PROCEDURE rium cell. rated for 18 red with Bou e measured w osition of 1 olumetric me rce. Parti ubtracting w	AUXILIARY AUXILIARY Gas and hours. ordon gauge oith thermo- iquid thod. al pressure apor	er g of INFORMATI SOURCE Α ESTIMATE δT/K =	ND PURITY OF NO details D ERROR: $\pm 0.6; \delta P/$ pility) = $\pm$	given. bar = ±0 3% (estin	.3; nated by
Static liquid Pressur and tem couple. estimat Details estimat	* equilib equilib e measu peratur Comp ed by v in sou ed by s	ml of helium US/PROCEDURE rium cell. rated for 18 red with Bou e measured w osition of 1 olumetric me rce. Parti ubtracting w	AUXILIARY AUXILIARY Gas and hours. ordon gauge oith thermo- iquid thod. al pressure apor	er g of INFORMATI SOURCE A SOURCE A ESTIMATE δT/K = δ (solub	ND PURITY OF NO details D ERROR: $\pm 0.6; \delta P/$ pility) = $\pm$	given. bar = ±0 3% (estin	.3; nated by

COMPONENTS:	EVALUATOR:
l. Helium; He; 7440-59-7	Colin Young, School of Chemistry,
2. Methane; CH ₄ ; 74-82-8	University of Melbourne,
	Parkville, Victoria 3052,
	AUSTRALIA.

CRITICAL EVALUATION:

Measurements on this system have been reported in six publications. The measurements by Sinor *et al*. (1), Rhodes and coworkers (2), (3), Heck and Hiza (4) and Streett *et al*. (5) are in good agreement in the ranges of temperature and pressures where there is extensive overlap. The data of Streett *et al*. (5) are of lower accuracy than those of the other workers mentioned above but the range of pressure is more than an order of magnitude greater. All the above data are classified as tentative.

The data of Gonikberg and Fastowski appear to be somewhat high when compared with extrapolated and interpolated data obtained from the results of the five above studies and are therefore classified as doubtful.

#### References

- Sinor, J. E., Schindler, D. L. and Kurata, F., Am. Inst. Chem. Engnrs. J., 1966, 12, 353.
- Rhodes, H. L., De Vaney, W. E. and Tully, P. C., J. Chem. Engng. Data, <u>1971</u>, 16, 19.
- De Vaney, W. E., Rhodes, H. L. and Tully, P. C., J. Chem. Engng. Data, 1971, 16, 158.
- 4. Heck, C. K. and Hiza, M. J., Am. Inst. Chem. Engnrs. J., <u>1967</u>, 13, 593.
- 5. Streett, W. B., Erickson, A. L. and Hill, J. L. E., Physics Earth Planetary Interiors, <u>1972</u>, 6, 69.
- Gonikberg, M. G. and Fastowski, V. G., Acta Physicochimica U.R.S.S., <u>1940</u>, 13, 399.

COMPONEN	TS:		ORIGINAL	MEASUREMEN	NTS:		
(1) He	elium; He; 7440-	-59-7	Sinor, J. E., Schindler, D. L. and				
[ · ·			Kurata, F., Am. Inst. Chem. Engnrs.J.,				
(2) Me	thane; CH ₄ ; 74-	-82-8	$\frac{1966}{1}, 1$	2, 353.			
VARIABLE	S:		PREPARED	BY:			
Tempera	ture, pressure		с. г. ч				
Tempera	cure, pressure		C. D. 1	oung			
EXPERIME	NTAL VALUES:	<u></u>	1				
m /11		ction of helium	m /17		ole fraction		
T/K	<i>P/bar</i> in liquit ^{<i>x</i>} He	d, in vapor, ^Y He	т/к	P/Dar 1	n liquid, ^x He	in vapor, ^Y He	
93.15	17.2 0.000		153.15	55.2	0.0163	0.744	
55.15	34.5 0.001	1 0.992	199.19	68.95	0.0205	-	
	51.7 0.0016 68.95 0.0022			86.18 103.4	0.0266 0.0320	0.825 0.850	
	86.18 0.0026	5 –		120.7	0.0366	0.867	
	103.4 0.003 120.7 0.003		173.15	137.9 34.5	0.0404 0.0060	0.884 0.150	
112 15	137.9 0.0039	9 0.998		51.7	0.0189	0.361	
113.15	17.2 0.0013 34.5 0.0028			68.95 86.18	0.0322 0.0417	0.491 0.554	
	51.7 0.0042 68.95 0.005			103.4 120.7	0.0524 0.0618	0.632 0.674	
	86.18 0.0067	7 0.980		137.9	0.0712	0.713	
	103.4 0.0078 120.7 0.0090		188.15	51.7 68.95	0.0142 0.0428	0.058 0.169	
	137.9 0.0099	0.985		86.18	0.0678	0.253	
133.15	17.2 0.0024 34.5 0.0056			103.4 120.7	0.0906 0.1105	0.322 0.372	
	51.7 0.0086	5 –	100 15	137.9	0.1300	0.415	
	68.95 0.0116 86.18 0.0144		189.15 189.65	137.9 137.9	0.138 0.152	0.372 0.348	
	103.4 0.0169 120.7 0.0193		190.15 190.45	137.9 137.9	0.166 0.178	0.320 0.300	
	137.9 0.0214	0.952	190.65	037.9	0.183	0.287	
153.15	27.6 0.0058 41.4 0.0109		190.95	137.9	0.265	0.275	
		AUXILIARY					
, i	APPARATUS/PROCEI				OF MATERIALS:		
Static ( city) f	equilibrium cell itted with magne	L (0.1 & capa- tic stirrer.			ines sample r parts per m:		
Tempera	ture measured wi	th platinum	_	-	troleum pure		
	nce thermometer. d with Bourdon o		Dur		mole per cer		
charged	into cell, equi	librated;					
	d by G.C. Deta	es withdrawn and ails in source.					
			¢				
1							
			ESTIMATE	D EBBOD.			
					$P/bar = \pm 0.1$	;	
					whichever is	ne	
			$\delta y_{\rm He} =$	±1%.			
			REFERENC				

COMPONEN	TS:			ORIGINAL	MEASUREM	ENTS:		
		He; 7440-59-7 CH ₄ ; 74-82-8		Rhodes, H. L., DeVaney, W. E. and Tully, P. C., J. Chem. Engng. Data, 1971, 16, 19.				
VARIABLE Tempera	s: ture, p	ressure		PREPARED BY: C. L. Young				
EXPERIME	NTAL VALU	ES:		1				
т/к	P/bar	Mole fraction in liquid, ^x He	of helium in gas, ^y He	т/к	P/bar	Mole fractio in liquid, ^x He		
94.00 124.00	69.57 69.84 103.4 103.5 139.5 139.1 69.29 69.02 103.3 137.7 137.6 206.4 207.0 261.7 261.5 69.09 68.88 103.4 138.3 137.9 206.8 206.6 261.7 261.9	0.0022	0.9962 0.9968 0.9978 0.9544 0.9675 0.9744 0.9816 0.9849 0.7618 0.8314 0.8685 0.9048 0.9048	164.00	68.88 86.39 86.25 103.4 103.5 137.6 137.9 172.8 172.7 207.1 207.0 261.7 262.1 68.88 68.74 86.05 85.98 103.5 103.1 137.7 137.6 172.3 172.1 206.8 260.2	0.0238 0.0310 0.0378 0.0498 0.0609 0.0702 0.0836 0.0291 0.0396 0.0493 0.0493 0.0669 0.0820 0.0957	0.6300 0.6924 0.7341 0.7900 0.8253 0.8499 0.8761 0.4580 0.5386 0.5986 0.5986 0.6768 0.7280 0.7280 0.7642 0.8035	
			AUXILIARY	INFORMATI	ON			
Recircu Berylli recircu Tempera resistan pressure calibra	lating w um-coppe lated th ture meance ther nce ther e transo ted agai	JS/PROCEDURE: vapor flow appared windowed cells in ough external asured with pla cmometer and me ducer and Bourd inst a dead we cce and ref. 1	ll. Vapor l loop. atinum easured by dón gauge ight tester.	1. Ultr 99.9 2. Samp gen per	apure sa 9 mole p le conta	OF MATERIALS: umple purity per cent. ined oxygen es purity 99	and nitro-	
				$\delta x_{\text{He}} \simeq 0$ REFERENC 1. Tul Rhoo	$\pm 0.01;$ $\delta y_{He} = \pm$ $\Xi S:$ $Iy, P. C$ $des, H.$	δP/bar = ±0 0.0005. ., DeVaney, W L., Adv. Cryc <u>1</u> , 16, 88.	N. E. and	

COMPONENTS:						ORIGINAL MEASUREMENTS:				
(1)	He	lium;	He;	7440-59-7	,	Rhodes, Tully,	, н. L., Р. С.,	DeVaney, W. E J. Chem. Engng	. and . Data,	
(2)	Me	thane;	СН4;	74-82-8	3	<u>1971</u> , 1	16, 19.			
				-						
EXPE	RIME	ENTAL V			- 6 1 - 1 <del>i</del>			Mala franchian	of helde	
т/к		P/bar	in 1	iquid,	of helium in gas,	т/к	P/bar	Mole fraction in liquid,	in gas,	
				^ж Не	^у не			^x He	^y _{He}	
174.		259.8		0.1126	_	190.60	172.1	0.1899	-	
184.	00	68.88		-	0.2518		206.8	-	0.4503	
		68.85 86.18		0.0353	0.3400		207.1 262.0	0.2129	0.5351	
		86.25		0.0525	-		261.9	0.2395	-	
		103.4		_	0.4081	190.90	114.2	0.1562	0.2043	
		103.1		0.0681	-		118.8	-	0.2210	
		120.3		-	0.4617		118.3	0.1585	-	
		120.2		0.0820	-		123.8	-	0.2358	
		138.4		0.0957	0.5082		123.6 138.0	0.1620	- 0.2787	
		172.9		-	0.5769		137.9	0.1743	-	
		172.6		0.1187	-		172.3	-	0.3645	
		206.6		-	0.6271		172.2	0.2012	-	
		206.2		0.1376	-		207.0	-	0.4361	
		262.1		-	0.6877		206.6	0.2224		
189.0		262.0		0.1621	0.1399	191.06	261.9 137.8	0.2472	0.5228 0.2530	
102.0	00	68.95		0.0429	0.1399	191.00	137.8	0.1936	-	
		85.98		-	0.2138	191.10	207.1	-	0.4230	
		85.84		0.0680	-		206.8	0.2306	-	
		103.4		-	0.2769	191.37	172.5	-	0.3054	
		103.6		0.0909	-		172.4	0.2478	-	
		120.8		-	0.3306	191.40	176.1	0 2520	0.3113	
		120.4 137.9		0.1112 0.1284	0.4514		176.0 179.2	0.2526	0.3263	
		172.4		-	0.4834		179.0	0.2445	-	
		172.5		0.1585	-		192.7	-	0.3650	
190.	30	68.95		-	0.1019		193.0	0.2439	-	
		68.81		0.0511	-		206.9	-	0.3991	
		86.18			0.1673		206.2	0.2456	-	
		103.4		0.0819	0.2236		230.4 262.1	0.2532 0.2632	0.4471 0.4987	
		103.5		0.1086	-	191.68	207.0	-	0.3589	
		120.6		-	0.2753	171.00	206.7	0.2804	-	
		120.5		0.1316	_	192.00	236.4	-	0.3849	
		138.0		-	0.3211		236.1	0.3058	-	
		137.7		0.1508	-		238.0	-	0.3911	
		172.6		-	0.4000		237.9	0.3080	-	
		172.3 206.8		0.1806	0.4651		248.3 248.1	0.2998	0.4227	
		206.6		0.2054	-		262.0	0.2946	0.4557	
		262.1		0.2327	0.5464		262.1	0.2944	_	
190.0	60	68.88		0.0587	0.0873		261.8	-	0.4548	
		103.4		0.1182	0.2043	192.20	262.1		0.4288	
		137.9		-	0.3029	100.00	262.0	0.3153	-	
		137.8 172.6		0.1594	-	192.29	262.0	0.3417	0.4071	
		12.0		-	0.3850					

COMPONENT	rs:			ORIGINAL MEASUREMENTS:					
(1) He	lium;	He; 7440-59-7		Streett, W. B., Erickson, A. L., and					
(2) Me	thana	CH ₄ ; 74-82-8		Hill, J	. L. E.	, Physics Earth	h		
(2) Me	chane;	CH4; /4-82-8		Planeta:	ry Inte	riors, 1972, 6	, 69.		
VARIABLE	<u>S:</u>			PREPARED	RV •		<del>,,</del>		
Tempera	ture. r	pressure		C. L. Y					
rempera	curc, b				o ung				
EXPERIME	NTAL VALI	UES: Mole fraction	of helium			Mole fraction	of helium		
т/к	P/bar	in liquid, ^x He	in vapor, ^y He		P/bar	in liquid, ^x He	in vapor, ^y He		
94.92	62	0.0023	0.9931	130.16	482	0.0398	0.9858		
	152 172	0.0038 0.0050	0.9966 0.9973		643 850	0.0451 0.0488	0.9882 0.9903		
	204 ^a	0.006	0.998		973	0.0506	0.9924		
100.05	164	0.0056	0.9946		1102	0.0510	0.9935		
	207	0.0069	0.9954		1232	0.0508	0.9935		
	241 276	0.0077 0.0085	0.9954 0.9954		1378 1516	0.0519 0.0521	0.9940 0.9940		
	352	0.0098	0.9957		1791	0.0517	0.9956		
	413	0.0111	0.9963		2188 ^a	0.052	0.996		
105 00	458 ^a	0.012	0.997	139.85	482	0.0559	0.9763		
105.09	283 345	0.0111 0.0125	0.9946 0.9970		628 819	0.0618 0.0670	0.9800 0.9844		
	413	0.0140	0.9973		965	0.0691	0.9865		
	482	0.0144	0.9977		1102	0.0707	0.9876		
	551	0.0155	0.9979		1378	0.0709	0.9906		
	620 669 ^a	0.0163 0.017	0.9983 0.998		1929 2205	0.0693 0.0689	0.9938 0.9987		
110.07	276	0.0136	0.9948		2480	0.0660	0.9980		
	413	0.0170	0,9955		2619	0.0642	0.9959		
	489	0.0186	0.9970		2810 ^a	0.062	0.998		
	620 765	0.0209 0.0219	0.9977 0.9981	149.78	227 413	0.0500 0.0693	0.9286 0.9525		
	827	0.0228	0.9981		689	0.0867	0.9674		
	954 ^a	0.024	0.998		965	0.0939	0.9783		
130.16	353	0.0334	0.9820	TNFODMART	<u>1378</u>	0.0955	0.9844		
METHOD /	APPARAT	US/PROCEDURE:	AUXILIARY			OF MATERIALS:			
				1					
		vapor flow appa pump. Tempera		No details given.					
measure	d with	platinum resist	tance						
		Pressure measu							
		tance gauge.							
conduct	ivity.	gas analysed by Details in re	ef. 1.						
Conduct		SCOULD IN IC		l					
				1					
				ESTIMATEI	D ERROR:				
				δT/K = =	±0.02;	$\delta P/bar = \pm 5;$			
				δx _{He} , δι	$y_{\rm He} = \pm 3$	l mole per cent	t.		
				PEEDENC	FC.				
				REFERENCI					
				1. Stree	ett, W.	B. and Ericks	on, A. L.,		
				Physi	ics Eart	th Planetary In	iteriors,		
				1972	<i>, 5</i> , 35 [°]	7.			
					÷				
				<b>I</b>					
				L					

$\begin{array}{cccc} & & & & & & & & \\ \hline x_{\rm He} & & & & & \\ 149.78 & 1723 & & 0.0935 & & 0.9855 \\ 2067 & & 0.0897 & & 0.9903 \\ 3102 & & 0.0831 & & 0.9931 \\ \end{array}$	Hill, Planet	J. L. E ary Into P/bar 353	., Erickson, A ., Physics Ear eriors, <u>1972</u> , Mole fraction in liquid, ^x He	<pre>h f, 69. f, 69. f, of helium in vapor,</pre>
<pre>(2) Methane; CH₄; 74-82-8 EXPERIMENTAL VALUES:</pre>	Planet Im or, T/K	ary Into P/bar 353	eriors, <u>1972</u> , Mole fraction in liquid,	6, 69. n of helium in vapor,
EXPERIMENTAL VALUES: Mole fraction of heliu T/K P/bar in liquid, in vapo ^{<i>x</i>} He ^{<i>y</i>} He 149.78 1723 0.0935 0.9855 2067 0.0897 0.9903 3102 0.0831 0.9931	im or, T/K	<i>P/</i> bar 353	Mole fraction in liquid,	n of helium in vapor,
Mole fraction of heliu T/K P/bar in liquid, in vapo ^{<i>w</i>} He ^{<i>y</i>} He 149.78 1723 0.0935 0.9855 2067 0.0897 0.9903 3102 0.0831 0.9931	or, T/K	353	in liquid,	in vapor,
Mole fraction of heliu T/K P/bar in liquid, in vapo ^{<i>w</i>} He ^{<i>y</i>} He 149.78 1723 0.0935 0.9855 2067 0.0897 0.9903 3102 0.0831 0.9931	or, T/K	353	in liquid,	in vapor,
Mole fraction of heliu T/K P/bar in liquid, in vapo ^{<i>w</i>} He ^{<i>y</i>} He 149.78 1723 0.0935 0.9855 2067 0.0897 0.9903 3102 0.0831 0.9931	or, T/K	353	in liquid,	in vapor,
T/K P/bar in liquid, in vapo ^x He ^y He 149.78 1723 0.0935 0.9855 2067 0.0897 0.9903 3102 0.0831 0.9931	or, T/K	353	in liquid,	in vapor,
149.78 1723 0.0935 0.9855 2067 0.0897 0.9903 3102 0.0831 0.9931	187.81		ине	u
2067 0.0897 0.9903 3102 0.0831 0.9931	187.81			^y He
3102 0.0831 0.9931			0.2276	0.6906
3105 0.0821 0.3321		482 689	0.2519 0.2675	0.7736 0.8413
3488 ^a 0.080 0.994		965	0.2677	0.8861
159.84 276 0.0763 0.8610		1240	0.2612	0.9161
413 0.0953 0.9279		1654	0.2481	0.9412
551 0.1076 - 697 0.1149 0.9518	187.87	165 198	0.1407 0.1640	0.4932 0.5360
697 0.1149 0.9518 827 0.1200 0.9589		267	0.2077	0.5989
1034 0.1245 0.9670	189.97	689	0.2851	0.8216
1240 0.1258 0.9698		1034	0.2803	0.8877
1516 0.1247 0.9756		1385 1654	0.2687 0.2588	0.9207 0.9348
1791 0.1225 0.9796 2067 0.1192 0.9855		1929	0.2491	0.9478
2371 0.1143 -		2094	0.2464	0.9548
2480 0.1145 0.9899		2411	0.2365	0.9677
2757 0.1111 0.9903 3102 0.1066 0.9924		3102 3791	0.2123 0.1967	0.9810 0.9903
3446 0.1026 -		4135	0.1887	0.9941
3791 0.0979 0.9928	190.98	138	0.2177	0.2862
3881 0.1018 0.9817		145	0.1705	0.3195
4066 0.0961 0.9931 4080 0.0998 0.9899		159 168	0.1915 0.1950	0.3579 0.3560
4080 0.0998 0.9899 4163 0.0985 0.9913		241	0.2365	0.4927
4212 0.098 0.9927		276	0.2505	0.5411
4281 0.0972 0.9936		324	0.2653	0.5965
4308 ^a 0.098 0.994 180.08 35 0.0051 0.1123		719 965	0.2966 0.2932	0.8176 0.8698
180.08         35         0.0051         0.1123           46         0.0071         0.1589			0.2836	0.9038
60 0.0176 -	192.58	1240 248 ^b	0.375	0.375
69 0.0350 0.3715		276	0.3267	0.4563
103 0.0691 0.4961 138 0.0819 0.5863		310 340	0.3175	0.5463 0.5645
138 0.0819 0.5863 179 0.1038 0.6588		413	0.3147	0.6356
234 0.1329 0.7293		482	0.3198	0.6855
293 0.1499 0.7691		555	0.3204	0.7300
482 0.1849 0.6476		616	0.3198	0.7549
628 0.2011 0.8797 827 0.2119 0.9067		689 827	0.3186 0.3167	0.7720 0.8121
1034 0.2132 0.9263		1026 400 ^b	0.3062	0.8670
1344 0.2107 0.9442	194.52		0.450	0.450
1723 0.2028 0.9586 2067 0.1942 0.9674		434 455	0.3910 0.3807	0.5490 0.5850
2067 0.1942 0.9674 2412 0.1862 0.9705		486	0.3765	0.6229
2757 0.1778 0.9790		565	0.3592	0.6954
3102 0.1701 0.9817		709	0.3451	0.7707
3460 0.1633 0.980 2633 0.1605 0.9859		896 1034	0.3280 0.3222	0.8296 0.8591
3633 0.1605 0.9859 4135 0.1516 0.9889	198.33	1034 648 ^b	0.535	0.535
4156 0.1516 0.9859		689	0.4610	0.6380
4488 0.1459 0.9876		728	0.4439	0.6792
4839 0.140 0.9884		758	0.4270	0.7089 0.7282
5335 0.1335 0.9894 5777 0.1286 0.9905		792 847	0.4165 0.4034	0.7587
5845 0.1285 0.9917		1034	0.3662	0.8231
5893 0.1279 0.9923		1461	0.3345	0.8921
5976 0.1265 0.9930 0.1260 0.9933		1723	0.3157	0.9158
6059 0.1260 0.9933 6134_ 0.1257 0.9933		2067 2412	0.2956 0.2792	0.9358 0.9491
6134 $0.1257$ $0.99336167^{a} 0.125 0.993$		2757	0.2632	0.9596
•••				

COMPON	IENTS:			ORIGINAL MEASUREMENTS:				
(1) H	Ielium;	He; 7440-59-7		Streett, W. B., Erickson, A. L., and				
(2) M	ethane:	CH ₄ ; 74-82-8				., Physics Ear eriors, 1972,		
(2) 1	le chanc,	Cm47 /4 02 0		1 banet	ui y 1110	<u></u>	.,	
EVDEDTM	ENTAL V							
		Mole fraction			- 4	Mole fraction		
т/к	P/bar	in liquid,	in vapor,	T/K	<i>P/</i> bar	in liquid,	in vapor	
		^{<i>x</i>} He	^y He			^x He	^у Не	
198.33	3102	0.2501	0.9647	215.07	1689 ^b	0.662	0.662	
	3446 3791	0.2413 0.2314	0.9708 0.9767		1723 1757	0.5743 0.5457	0.7460 0.7723	
	3791	0.2224	0.9757		1791	0.5334	0.7879	
	3846	0.2243	0.9671		1929	0.4857	0.8317	
	4135	0.2280	0.9796		2067	0.4571	0.8557	
	4281	0.2110	0.9776		2412	0.4079	0.8937	
	4694	0.2012	0.980		2757	0.3737	0.9161	
	5115	0.1886	0.9826		3102	0.3534	0.9316	
	5659	0.1775	0.9843		3446	0.3320	0.9422	
	6134	0.1682	0.9867		3791	0.3127	0.9501	
	6624 7162	0.1622 0.1568	0.9884 0.990	221.10	4135 2081 ^b	0.2942 0.677	0.9565 0.677	
	7596	0.1518	0.9903	221.10	2116	0.6136	0.7431	
	70/9	0.1446	0.9903		2136	0.5980	0.7618	
	7996 ^a 1006 ^b	0.144	0.990		2170	0.5717	0.7825	
203.75		0.589	0.589		2205	0.5493	0.8015	
	1019	0.5316	-		2274	0.5259	0.8207	
	1048	0.4950	0.6770		2412	0.4806	0.8532	
	1102 1171	0.4687 0.4479	0.7256 0.7508		2757 3102	0.4308 0.3977	0.8911 0.9158	
	1240	0.4296	0.7896		3446	0.3681	0.9315	
	1447	0.3942	0.8352		3791	0.3454	0.9412	
	1723	0.3639	0.8813		4135 2427 ^b	0.3258	0.9493-	
	2067	0.3343	0.9165	225.84		0.687	0.687	
	2412	0.3116	0.9339		2439	0.6366	0.7373	
	2757	0.2991	0.9471		2480	0.5844	0.7879	
	3102 3446	0.2778 0.2625	0.9555 0.9623		2571 2647	0.5465 0.5210	0.8175 0.8358	
	3446 3791	0.2510	0.9623		2757	0.4983	0.8558	
	4135 _b	0.2415	-		3102	0.4985	0.8934	
210.62	1420 ^b	0.638	0.638		3446	0.4069	0.9124	
	1447	0.5426	0.7198		3791	0.3779	0.9289	
	1516	0.5151	0.7643		4135 2840 ^b	0.3541	0.9335	
	1654	0.4691	0.8193	231.83		0.698	0.698	
	1791	0.4400	0.8494		2843	-	0.7161	
	1929 2205	0.4182 0.3856	0.8698 0.8996		2860 2895	0.6325 0.5998	0.7667 0.7957	
	2412	0.3635	-		2964	0.5730	0.8201	
	2757	0.3385	-		3102	0.5336	0.8457	
	3102	0.3234	0.9412		3446	0.4666	0.8873	
	3446	0.3020	0.9515		3708	0.4463	0.9013	
	3743	0.2846	0.9592		3791	0.4322	0.9119	
	3791	0.2847	0.9589		4004 4135	0.4171	0.9163	
	3998 4135	0.2740 0.2719	0.9604 0.9647		4488	0.4013 0.3802	0.9249 0.9375	
	4287	0.2640	0.9647		4956	0.3564	0.9498	
	4700	0.2502	0.9707		5514	0.3319	0.9593	
	5115	0.2373	0.9740		5521	0.3332	0.9579	
	5576	0.2255	0.9758		6011	0.3135	0.9655	
	6072	0.2134	0.9804		6224	0.3091	0.9665	
	6562	0.2022	0.9838		6693	0.2950	0.9702	
	7031	0.1930	0.9858		7182	0.2816	0.9737	
	7582 8140	0.1831 0.1741	0.9871 0.9885		7754 8010	0.2674 0.2538	0.9766 0.9784	
	8375	0.1728	0.9887		8554	0.2330	0.9809	
	8547	0.1677	0.9892		9078	0.2330	0.9835	
	8967	0.1687	0.9897		9636	0.2247	0.9849	
	9208 9422 ^a	0.1591	0.9899		9761	0.2214	0.9853	
	9422	0.158	0.990		10133	0.2159	0.9858	

COMPO	NENTS:			ORIGINAL MEASUREMENTS:					
(1)	Helium;	He; 7440-59-	7	Hill,	J. L. E.	, Erickson, A. , Physics Eart	h		
(2)	Methane;	СН ₄ ; 74-82-	8	Planet	ary Inte	eriors, <u>1972</u> , 6	, 69.		
EXPER	MENTAL V	/ALUES:				<u></u>			
т/к	<i>P/</i> bar	Mole fractior in liquid,	of helium in vapor,		<i>P/</i> bar	Mole fraction in liquid,	of helium in vapor,		
-,	,	^x He	^y He	-,	•	^x He	^y _{He}		
239.95		0.706	0.706	256.49		0.5936	0.8501		
	3515 3557	0.6294 0.5971	0.8021 0.8201		5170	0.5686	0.8643		
	3653	0.5621	0.8431		5445	0.5281	0.8896		
	3791	0.5298	0.8635		5859 6335	0.4851	0.9111 0.9279		
	4135	0.4768	0.8963		6802	0.4482 0.4156	0.9339		
243.20		0.710	0.710		6893	0.4135	0.9339		
	3722	-	0.7490		7444	0.3833	0.9494		
	3756	0.6226	0.7951		7988	0.3605	0.9566		
	3791	0.6052	0.8130		8554	0.3404	0.9625		
	3832	0.5893	0.8258		9105	0.3229	0.9678		
	3859	0.5770	0.8352		9657	0.3074	0.9708		
	3914	0.5646	0.8446		10049,	0.2958	0.9737		
	3997	0.5451	0.8576	273.0	10049 6342 ^b	0.746	0.746		
	4135 _h	0.5179	0.8762		6417	0.6525	0.8342		
244.24	1 3791 ^b	0.712	0.712		6486	0.6272	0.8461		
	3805	0.6588	0.7735		6549	0.6131	0.8552		
	3859	0.6079	0.8136		6700	0.5899	0.8718		
	3997	0.5651	0.8426		6906	0.5593	0.8862		
	4135	0.5340	0.8639		7245	0.5220	0.9056		
	4488	0.4955	0.8921		7727	0.4836	0.9221		
244.24		0.4475	0.9157		8265	0.4508	0.9346		
	5514	0.4083	0.9324		8706	0.4299	0.9428		
	5996	0.3801	0.9420		8829	0.4210	0.9454		
	6555	0.3534	0.9546	200 0	9306 8175 ^b	0.4041	0.9484		
	7169 7720	0.3295	0.9622	290.0		0.753	0.753		
	8292	0.3111 0.2943	0.9678 0.9713		8292 8354	0.6337	0.8633		
	8829	0.2943	0.9749		8354 8423	0.6245 0.7072	0.8679 0.8740		
	9519	0.2666	0.9771		8478	0.600	0.8769		
	9912	0,2572	0.9794		8575	0.5874	0.8852		
	10064	0.2479	-		8753	0.5670	0.8933		
256.49	4811 ^b	0.732	0.732		9126	0.5344	0.9083		
	4913	0.6353	0.8208		9554	0.5028	0.9221		
	4970	0.6094	0.8365		10133	0.4703	0.9332		
	a Thre	e phase pressu	re ± 10 ba	r.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	^b Critical pressure ± 20 bar.								
	CIII	icai pressure	- 20 Dar.						
							ſ		

.

COMPONENT	S:			ORIGINAL 1	MEASUREM	ENTS:	
	•	He; 7440-01-9 CH ₄ ; 74-82-8		DeVaney Tully, 1971, 1	P. C.,	, Rhodes, H. I J. Chem. Engng	. and g. Data,
VARIABLES	5:	· · · · · · · · · · · · · · · · · · ·		PREPARED	BY:		
Tempera	ture, p	pressure		С. L. Y	oung		
EXPERIMEN	TAL VALU			L			
T/K	<i>P/</i> bar	Mole fraction in liquid, ^x He	of helium in vapor, ^y He	т/К	<i>P/</i> bar	Mole fraction in liquid, ^x He	of helium in vapor, ^y He
124.00	13.9213.9920.8127.5727.6434.4041.0841.3654.8755.0169.0213.7917.3020.8927.3627.7834.2034.5441.2341.5855.57168.8820.8924.27	0.0015 0.0024 0.0031 0.0035 0.0044 0.0060 0.0079 0.0001 0.0014 0.0028 0.0050 0.0072 0.0098 0.0148 0.0192 0.0006 0.0026	$\begin{array}{c} & & & - \\ 0 & .7996 \\ 0 & .8643 \\ 0 & .9155 \\ 0 & .9282 \\ 0 & .9452 \\ 0 & .9452 \\ 0 & .0644 \\ 0 & .2197 \\ 0 & .3321 \\ 0 & .4742 \\ 0 & .5640 \\ 0 & .6285 \\ 0 & .7121 \\ 0 & .0683 \\ \end{array}$	164.00 174.00 184.00	24.34 27.65 27.72 34.54 41.09 41.37 48.19 48.26 55.71 68.88 31.16 31.23 34.54 41.16 41.30 48.26 55.71 68.88 31.16 41.23 55.57 62.12 62.19 68.74 41.23 41.37 48.26	- 0.0046 0.0078 0.0108 - 0.0139 0.0181 0.0238 0.0027 0.0057 0.0105 - 0.0150 0.0200 0.0246 0.0291 0.0038 0.0122	0.1643 0.2380 
			AUXILIARY	INFORMATIO	ON		
Recircu Berylli recircu Tempera resista measure	lating um copp lated t ture me nce the d by pr	TUS/PROCEDURE: vapor flow apport through externates asured with play ermometer and pressure transdu . Details red	ll. Vapor al loop. Latinum pressure ucer and	1. Bure puri cent 2. Ultr. mole and	au of M ty bett • apure <u>o</u> per ce nitroge	Y OF MATERIALS; Mines high puri er than 99.999 grade at least ent (traces of en).	99.99
				$\frac{\delta x_{He}}{\text{REFERENCE}}$ 1. Tully Rhode	±0.01; δy _{He} = ES: y, P. C	δP/bar = ±0.0 ±0.005%. 2., DeVaney, W. L., Adv. Cryog	E. and

	elium; H	le; 7440-59-7		ORIGINAL MEASUREMENTS: DeVaney, W. E., Rhodes, H. L. and Tully, P. C., J. Chem. Engng. Data,
(2) Me	thane; (	CH4; 74-82-8		<u>1971</u> , <i>16</i> , 158.
EXPERIM	ENTAL V	ALUES:		
		Mole fraction		
T/K	<i>P/</i> bar	in liquid,	in vapor,	
		x He	^у не	
184.00	48.33		0.1039	-
	55.02	0.0196	-	
	55.57	-	0.1626	
	62.19	0.0280	-	
	62.26	-	-	
	68.95		0.2092	
186.00	48.26	0.0110	0.0699	
	48.13	0.0088	-	
	48.26	_	0.0398	
189.00	49.71	0.0100	-	
	49.78	-	0.0363	
	55.16 55.23	0.0196	-	
	62.19	0.0316	0.0679	
	62.33	0.0310	0.1064	
	68.95	0.0429	0.1064	
190.30	55.09	0.0215	-	
	55.16		0.0435	
	62.12	0.0368	-	
	62.26	-	0.0736	
	68.81	0.0511		
190.60	55.23	-	0.0331	
	55.30	0.0256	-	
	62.05	0.0429	-	
	62.12	-	0.0596	
	68.88	0.0587	-	

COMPONEN	rs:	·····		ORIGINAL	MEASUREMEN	TS:	
(1) He	lium; He;	; 7440-59-7		Heck, C. K. and Hiza, M. J.,			
		14; 74-82-8		Am. Inst. Chem. Engnrs. J., <u>1967</u> ,			
(2) 110	chuncy of	· 4 / / <del>1</del> · 02 · 0		<i>13</i> , 593	•		
VARIABLE	S:	<u> </u>	· · · · ·	PREPARED	BY:		
Tempera	ture, pres	sure		С. L. Y	oung		
EXPERIME	NTAL VALUES	le fraction	of holium	1	Mc	le fraction	of holium
т/к	P/bar in		in vapor, ^y He	т/к		^x He	in vapor, ^y He
94.97 ±0.02 124.85 ±0.03	$\begin{array}{c} 4.81\\ 10.18\\ 20.27\\ 40.28\\ 60.80\\ 69.91\\ 85.72\\ 91.50\\ 119.0\\ 144.5\\ 164.0\\ 182.8\\ 194.5\\ 11.35\\ 20.47\\ 40.73\\ 64.44\\ 86.63\\ 113.7\\ 144.4\\ 174.0\\ 204.0\\ 23.10\\ 39.72\\ 63.23\end{array}$	0.00012 0.00034 0.00069 0.00136 	0.9580 0.9810 0.9900 0.99405 0.99566 	139.83 ±0.03 169.81 ±0.05	82.88 113.5 144.3 174.3 201.6 32.93 56.03 58.77 67.79 83.09 108.6 116.1 143.8 170.8 198.5 20.42 35.67 41.54 71.23 90.99 102.8 103.4 133.1 164.8 193.0	0.0163 0.0214 0.0262 0.0304 0.0341 0.0640 0.0206 0.0217 0.0261 0.0352 0.0469 0.0499 0.0612 0.0716 0.0806 0.00151 0.00262 0.00304 0.00488 0.00679 0.00833 0.00978 0.0111	0.9055 0.9258 
				INFORMATI			<u></u>
METHOD /	APPARATUS	PROCEDURE :				F MATERIALS;	
METHOD /APPARATUS/PROCEDURE: Vapor recirculated through cell. Liquid and vapor samples analysed by gas chromatography. Pressure measu- red by Bourdon gauge and temperature measured with platinum resistance thermometer. Details in source and ref. 1.				<ol> <li>Bureau of Mines grade A sample 0.015 mole per cent neon.</li> <li>Two samples used, purities better than 99.8 mole per cent and 99.95 mole per cent (no difference de- tected in results using different samples).</li> </ol>			
				100 bar $\delta x_{\text{He}} \simeq$ $\pm 0.0000$ REFERENC 1. Herr	$\pm 0.05; \delta$ $) = \pm 0.03$ $\delta (1-y)_{He}$ 2 (whiche ES: ing, R. N	$P/bar = \pm 0.$ (above 100) $= \pm 3\% \text{ of val}$ ver is greating the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco	bar); lue or test). ck, P. L.,

COMPONE	NTS:			ORIGINAL MEASUREMENTS:			
		He; 7440-59-7 CH ₄ ; 74-82-8		Heck, C. K. and Hiza, M. J., Am. Inst. Chem. Engnrs. J., <u>1967</u> , 13, 593.			
EXPERIM	ENTAL V	ALUES:					
		Mole fraction	of helium				
T/K	<i>P/</i> bar		in gas,				
·	·	$x_{\rm He}$	^y He				
109.90			<u></u>	~			
±0.02	201.7	-	0.99279				
154.80	17.63	-	0.212				
±0.04	37.69	0.0103	-				
	43.67	0.0130	0.632				
	63.13	0.0189	-				
	79.64	-	0.785				
	80.55	0.0235	-				
	109.9	0.0319	-				
	110.3	-	0.838				
	144.9		0.871				
	173.9	0.0480	0.892				
104 02	203.9	0.0537	0.900				
	45.09 67.48	0.0352	0.0693 0.212				
±0.05	67.48 88.66	0.0352	0.331				
	89.17	0.0558	0.33I -				
	113.4	0.0773	0.436				
	154.4	0.111	0.519				
	180.4	0.126	0.562				
	205.3	0.137	0.592				

COMPONENTS:	ORIGINAL MEASUREMENTS:
<ol> <li>Helium; He; 7440-59-7</li> <li>Methane; CH₄;74-82-8</li> </ol>	Gonikberg, M. G. and Fastowski, V. G Acta Physicochimica URSS, <u>1940</u> , 13, 399.
VARIABLES:	PREPARED BY:
Temperature, pressure	C. L. Young
EXPERIMENTAL VALUES:	I
T/K P/bar Mole frac	tion of helium in liquid, $x_{\mathrm{He}}$
90.3 29.4 76.5 96.1 113.8 136.3 158.9 106.0 25.5 59.8 98.1 146.1 156.9	0.0013 0.0027 0.0032 0.0037 0.0046 0.0052 0.0019 0.0039 0.0063 0.0090 0.0097
	INFORMATION
METHOD/APPARATUS/PROCEDURE: Recirculating vapor flow apparatus. Method described in ref. 1. Sample analysed by adsorption on charcoal then removal of helium.	SOURCE AND PURITY OF MATERIALS: 1. Purity 99.8 mole per cent. 2. Purity 99.6 mole per cent.
	<pre>ESTIMATED ERROR: δT/K = ±0.1; δP/bar = ±1; δx_{He} = ±0.0003 (compiler). REFERENCES: 1. Sokolov, V. A. "Methods for investigation of natural gases." 1932 (Russian).</pre>

COMPON	ENTS:			ORIGINAL	MEASUREM	ENTS:	
(1)	Helium;	He; 7440-59	-7	Nikitir	ha, I. E	., Skripka, V	.G.,
(2)	Ethane	$C_{2}H_{6}; 74-84$	-0	Gubkina	, G. F.	, Sirotin, A.	G. and
(2)	Denanc,	02167 74 04	Ũ	Ben'yam	inovic,	O. A., Gazov.	Prom.,
				<u>1970</u> , 1	5, No.	6, 35.	
VARIAB				PREPARED			
Tempe	erature,	pressure		C. L. Y	oung		
EXPERI	MENTAL VA						
т/к	P/bai	Mole fraction in liquid,	n of helium in vapor,	т/к	<i>P/</i> bar	Mole fraction in liquid,	of helium in vapor,
	•	x _{He}	^y He	-,	-,	^x He	и чарог, ^у не
273.	15 29.4	0.00297	0.145	233.15	19.6	0.00315	0.569
	39.2		0.328		39.2	0.00681	0.784
	58.8 78.5		0.477 0.566		58.8 78.5	0.00947	0.857
	98.1		0.635		78.5 98.1	0.01158 0.01340	0.896 0.915
	117.7		0.696		117.7	0.01510	0.926
263.	15 19.6	0.00060	0.037	223.15	9.8	0.00108	0.389
	39.2		0.475		19.6	0.00315	0.681
	58.8		0.618		39.2	0.00626	0.849
	78.5 98.1	• ·	0.696 0.750		58.8	0.00852	0.906
	117.7		0.794		78.5 98.1	0.01027 0.01180	0.928 0.941
253.			0.188		117.7	0.01329	0.948
	39.2		0.581	213.15	4.9	0.00028	0.200
	58.8		0.714		9.8	0.00133	0.570
	78.5		0.779		19.6	0.00300	0.790
	98.1		0.821		39.2	0.00548	0.894
040	117.7		0.850		58.8	0.00740	0.932
243.1	L5 19.6 39.2		0.360		78.5	0.00897	0.949
	58.8		0.674 0.781		98.1 117.7	0.01035 0.01170	0.960 0.966
	78.5		0.842	193.15	4.9	0.00043	0.570
	98.1	0.01493	0.875	190.10	9.8	0.00105	0.835
	117.7	0.01679	0.894		19.6	0.00219	0.916
233.1	L5 9,8	0.00060	0.182		39.2	0.00408	0.957
			AUXILIARY	INFORMATIO	ИС		
METHOI	)/APPARA	TUS/PROCEDURE:		SOURCE AN	D PURITY	OF MATERIALS:	
		g vapor flow a	pparatus	1. Puri	ty 99.9	mole per cent	:.
			perature	2. Puri	tv 99.5	mole per cent	
measu	ired wit	h platinum res	istance		0, ,,,,,	more per cent	- •
		Liquid and					
		gas chromatogr nductivity det					
		ource and ref.					
Detui		ource and rer.	-d- 0				
				1			
				1			
				L			
				ESTIMATEI	ERROR:		
				δт/К =	±0.2;	$\delta P/bar = \pm 1$ %;	$\delta x_{rr} =$
				±0.5%;	δ(1-y _H	$e^{} = \pm 2.0\%$	пе
				REFERENCE	25:	<u></u>	
				1			
				1. Skri	pka, V.	G., Barsuk, S	. D.,
				Niki	tina, I	. E. and Ben'y	aminovic,
						v. Prom., 1964	
						······································	,,
				No.	4, 41.		
				1			

COMPONE	NTS:			ORIGINAL MEASUREMENTS:			
<ol> <li>Helium; He; 7440-59-7</li> <li>Ethane; C₂H₆; 74-84-0</li> </ol>				Nikitina, I. E., Skripka, V. G., Gubkina, G. F., Sirotin, A. G. and Ben'yaminovic, O. A., <i>Gazov. Prom.</i> , <u>1970</u> , <i>15</i> , No. 6, 35.			
EXPERIM	1ENTAL V	ALUES: Mole fraction	of bolium				
т/к	P/bar	in liquid, ^x He	in vapor, ^y He				
193.15	58.8 78.5	0.00560 0.00683	0.972 0.978				
	98.1	0.00797	0.983				
173.15	117.7 4.9	0.00911 0.00037	0.987 0.903				
	9.8 19.6	0.00072 0.00146	0.950 0.971				
	39.2	0.00273	0.986				
	58.8 78.5	0.00382 0.00479	0.992 0.994				
	98.1 117.7	0.00562 0.00642	0.995 0.996				
153.15	4.9	0.00022	0.975				
	9.8 19.6	0.00045 0.00090	0.986 0.993				
	39.2	0.00182	0.997				
	58.8 78.5	0.00258 0.00323	0.998 0.998				
	98.1 117.7	0.00385 0.00440	0.998 0.999				
133.15	4.9	0.00010	0.996				
	9.8 19.6	0.00021 0.00042	0.998 0.998				
	39.2 58.8	0.00084 0.00128	-				
	78.5	0.00170	-				
	98.1 117.7	0.00213 0.00257					
113.15	4.9	0.00004	-				
	9.8 19.6	0.00008 0.00017	-				
	39.2 58.8	0.00034 0.00050	-				
	78.5	0.00068	-				
	98.1 117.7	0.00085 0.00102	-				
				-			

.

COMPONEN	TS:			ORIGINAL	MEASUREMEN	TS •	
		e; 7440-59	-7	ORIGINAL MEASUREMENTS: Schindler, D. L., Swift, G. W. and Kurata, F., <i>Hydrocarbon Process.</i> , 1966, 45, no.11, 205.			
(2) Pr		C ₃ H ₈ ; 74-98	<i>c</i>				
(2) FI	opane,	c 3118, 74-98.	-6	1, 1	<i>o</i> , no.11,	205.	
VARIABLE	S:			PREPARED	BY:		
Tempera	ture, pro	essure		С. L. Y	oung		
EXPERIME	NTAL VALUE		n of helium	•		ole fraction	of helium
т/к		n liquid, ^x He	in gas, ^y He	т/к		^x He	in gas, ^y He
348.15	41.37 68.95	0.0132	0.221 0.432	273.15	96.53 124.1	0.0266	0.9444 0.9540
	96.53	0.0625	0.550		151.7	0.0392	0.9600
	124.1 151.7	0.0826 0.101	0.633 0.694		179.3 206.8	0.0449 0.0506	0.9646 0.9688
	179.3	0.118	0.694	248.15	206.8	0.0025	0.9688
	206.8	0.134	0.763		41.37	0.0080	0.9414
323.15	41.37 68.95	0.0150 0.0311	0.495 0.671		68.95 96.53	0.0133 0.0183	0.9642 0.9739
	96.53	0.0462	0.756		124.1	0.0230	0.9791
	124.1 151.7	0.0601	0.806 0.839		151.7 179.3	0.0274 0.0315	0.9822 0.9839
	179.3	0.0730 0.0847	0.839		206.8	0.0315	0.9839
	206.8	0.0953	0.874	223.15	13.79	0.0018	0.9387
298.15	13.79 41.37	0.0020 0.0139	0.253 0.721		41.37 68.95	0.0055 0.0089	0.9815 0.9884
	68.95	0.0246	0.831		96.53	0.0122	0.9905
	96.53	0.0343	0.879		124.1	0.0153	0.9913
	124.1 151.7	0.0435 0.0523	0.9047 0.9204		151.7 179.3	0.0182 0.0210	0.9920 0.9929
	179.3	0.0611	0.9304		206.8	0.0238	0.9942
273.15	206.8 13.79	0.0702 0.0030	0.9365 0.624	198.15	13.79 41.37	0.0011 0.0033	0.9820 0.9920
270.10	41.37	0.0117 0.0195	0.877 0.9255		68.95 96.53	0.0054 0.0074	0.9961 0.9971
<u></u>			AUXILIARY	INFORMATI	ON		
METHOD /	APPARATUS	S/PROCEDURE				F MATERIALS:	
			th magnetic	1. Mini	mum nurit	y 99.9988 mc	le per
stirrer	. Tempe	erature meas	sured with	cent	-	. <u>,</u>	
		ance thermored with Bour		2. Inst	rument gr	ade sample.	
			nelium added	]			
Samples	of both	phases anal	lysed by gas				
chromat in ref.		Details o	of apparatus				
th ret.	±•						
				ESTIMATE:		$P/bar = \pm 0.1$	5.
				1		$\begin{cases} r/bar = \pm 0.1 \\ \$;  \delta y_{He} = \pm \end{cases}$	
				Не		Не	··· =
				REFERENC	ES:	· · · · · · · · · · · · · · · · · · ·	
				Kura		Schindler, m. Inst. Che 357.	

COMPONEI	NTS:		I	ORIGINAL MEASUREMENTS:
		e; 7440-59-7 C₃H₀; 74-98-6		Schindler, D. L., Swift, G. W. and Kurata, F., <i>Hydrocarbon Process.</i> , <u>1966</u> , 45, no. 11, 205.
EXPERIM	ENTAL V	ALUES:		
T/K	P/bar	Mole fraction in liquid, ^x He	of helium in gas, ^y He	
198.15 173.15	124.1 151.7 179.3 206.8 13.79	0.0092 0.0110 0.0127 0.0143 0.00064	0.9978 0.9982 0.9984 0.9984	
1/3.15	41.37 68.95 96.53 124.1 151.7	0.0019 0.0031 0.0042 0.0052 0.0062	0.9972 0.9986 0.99932 0.99937 0.99940 0.99947	
123.15	179.3 206.8 13.79 41.37 68.95 96.95 124.1	0.0072 0.0081 0.00012 0.00033 0.00052 0.00070 0.00087	0.99960 0.99980 - - - -	
	151.7 179.3 206.8	0.0010 0.0012 0.0014	-	
				_

COMPO	ONENTS:			ORIGI	NAL MEASUREN	ENTC .	······
		He; 7440-59-7					V. Ya.
		·		Tsiklis, D. S., Maslennikova, V. Ya. and Goryunova, N. P., Zhur. Fiz.			
2.	2. Methane, dichlorodifluoro-;			1	n., <u>1967</u> , 4		-
	CCl	2F2; 75-71-8			·		
ľ							
VARI	ABLES:			PREPA	ARED BY:		
Tem	perature,	pressure		с. 1	. Young		
EXPE	RIMENTAL VA						
T/K	<i>P/</i> bar	Mole fraction in lower	n of helium in upper	т/к	<i>P/</i> bar	Mole fraction in lower	of helium in upper
-,	-,	phase,	phase,	-,	-,	phase,	phase,
		^x He	${}^{y}{}_{ ext{He}}$			$x_{ m He}$	y He
298	57		0.85	388	79	0.075	0.24
	126 134	0.05	- 0.934		81 93	-	0.243 0.275
	137 228	-	0.934		96	0.106	-
323	60	0.09	0.73		101 122	0.150	0.30
	126 138	0.06	- 0.865		126 135	-	0.408 0.435
	233	0.11	-		140	0.166	-
348	238 64	-	0.92 0.619		144 155	0.135 0.192	-
	132 134	0.12	_ 0.776		158 167	0.283	0.49
	241	0.16	-		173	-	0.517
	244 247	-	0.857 0.860		181 188	0.22	- 0.55
373	74	-	0.413		213	0.258	-
	143 148	0.13	0.64		221 241	_ 0.258	0.59
	199 245	0.212	0.70	391	251 110	0.308	0.667
	251	-	_	791	111		0.312
388	61 71	-	0.155 0.191		118 120	- 0.16	0.17
				THEOR		<u></u>	
			AUXILIARY				
METH	OD/APPARAI	US/PROCEDURE:		SOURC	E AND PURITY	OF MATERIALS:	
		lave apparatus. rence in which			Purity bet cent.	ter than 99.7 m	nole per
is d	escribed.	It is not cl	ear which			_	
	he severa used.	l apparatus des	cribed	2.	Technical	grade.	
				1			
ļ			i		ATED ERROR:		
						$\delta P/bar = \pm 1.0;$	δ <i>x</i> _{He} ′
				^{δy} He	$= \pm 0.01$ (	estimated by co	mpiler).
				BEFEI	RENCES :		
						. S., Technique	e of
						. S., lechnique nical Experimen	
					-	ltrahigh Pressu	
						ya, Moscow, 1 <u>9</u> 6	

COMPONENTS: (1) Helium; He; 7440-59-7 (2) Methane; dichlorodifluoro-; CCL ₂ F ₂ ; 75-71-8			Tsikl and G	.is, D. S Soryunova	UREMENTS: ., Maslennikova , N. P., <i>Zhur.</i> 41, 1804.		
EXPE: T/K	RIMENTAL V P/bar	<pre>/ALUES: Mole fraction in lower phase,</pre>	in upper		P/bar	Mole fraction in lower phase, ^x He	
391	122 135 150 160 197 203 220 223	- - 0.23 0.26 0.29 - 0.307	0.36 0.37 - - 0.515 0.563	391 395	235 240 279 286 316 321 333	0.323 0.645 0.562 0.464	0.57 0.615 0.566 0.684

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Helium; He; 7440-59-7	Heise, F., Ber. Bunsenges. Phys.
2. Ammonia; NH ₃ ; 7664-41-7	Chem., <u>1972</u> , 76, 936.
VARIABLES:	PREPARED BY:
Temperature, pressure	C. L. Young
Temperature, pressure	
EXPERIMENTAL VALUES:	• • • • • • • • • • • • • • • • • • •
Mole fraction of helium T/K P/bar in liquid, in vapor,	
^x _{He} ^y _{He}	
298.15 102.5 0.00304 - 104.25 - 0.8900	
194.35 0.00528 0.9358 313.15 210.05 0.00701 0.9031	
AUXILIARY	INFORMATION
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Static rocking equilibrium cell;	<ol> <li>Messer-Griessheim sample, purity better than 99.95 mole per cent.</li> </ol>
liquid and gas samples removed after equilibrium established. Samples analysed by freezing out ammonia in	2. Gerling and Holtz sample, purity
liquid nitrogen trap. Details in source and ref. 1.	better than 99.8 mole per cent as determined by gas chromato-
source and ref. 1.	graphy and mass spectrometry.
	ESTIMATED ERROR:
	$\delta T/K = \pm 0.1;  \delta P/bar = \pm 0.3 \text{ below } 100$
	bar; $\pm 0.6$ above 100 bar; $\delta x_{\text{He}} = \pm 2$ %
	(estimated by compiler). REFERENCES:
	1. Heise, F., Dissertation,
	Göttingen, <u>1971</u> .
	Göttingen, <u>1971</u> .

COMPONENTS :	EVALUATOR:
1. Helium; He; 7440-59-7	Colin Young, School of Chemistry, University of Melbourne, Parkville, Victoria 3052, AUSTRALIA.

CRITICAL EVALUATION:

There are seven sets of high pressure measurements on this system. The three sets of data by Streett and coworkers (1,2,3) are mutually consistent but cover different pressure ranges. The two sets of data by Skripka and coworkers (4,5) are in fair agreement but the later data by Skripka and Lobonova (5) are thought to be more reliable. There is good agreement between the data of Mullins and Ziegler (6), Sinor and Kurata (7) and Streett (1). Hence the data of Mullins and Ziegler (6), Sinor and Kurata (7), Streett (1), Streett and Erickson (2), Streett and Hill (3) are all classified as tentative. The solubility data of Skripka and Lobonova (5) are marginally higher than that of Streett (1) and are classified as doubtful as are the earlier data of Skripka and Dykhno (4).

## References

- 1. Streett, W. B., Trans. Faraday Soc., 1969, 65, 696.
- Streett, W. B. and Erickson, A., Physics Earth Planetary Interiors, 1972, 5, 357.
- 3. Streett, W. B. and Hill, J. L. E., Trans. Faraday Soc., <u>1971</u>, 67, 622.
- Skripka, V. G. and Dykhno, N. M., Trudy Vses. Nauch.-Issled. Inst. Kislorodn. Mashinostr., 1964, no. 8, 63.
- Skripka, V. G. and Lobonova, N. N., Trudy Vses. Nauch.-Issled. Inst. Kriog. Mashinostr., <u>1971</u>, no.13, 90.
- Mullins, J. C. and Ziegler, W. T., Int. Adv. Cryog. Engng., <u>1964</u>, 10, 171.
- 7. Sinor, J. E. and Kurata, F., J. Chem. Engng. Data, 1966, 11, 537

-	He; 7440-59-7		1					
(l) Helium; He; 7440-59-7 (2) Argon; Ar; 7440-37-1				Streett, W. B. and Erickson, A. L., Physics Earth Planetary Interiors, <u>1972</u> , 5, 357.				
			PREPARED	RV.				
ture, p	essure		С. Б. х	oung				
NTAL VALU		of helium			Mole fraction	of helium		
P/bar		in vapor, ^y He	T/K	<i>P/</i> bar		in vapor, ^y He		
3860 4274 4518 4683 ^a 3515	0.2941 0.2825 0.2744 0.270 0.4240	0.9353 0.9435 0.9472 0.949 0.8721	180.00	5796 5935 5996 6072 6293	0.6217 0.6002 0.5877 0.5731 0.5419	0.7835 0.7991 0.8104 0.8207 0.8419		
4001 4481 4963 5386	0.3904 0.3640 0.3429 0.3272 0.3191 0.317	0.8972 0.9135 0.9256 0.9342 0.9384 0.939	190.00	6555 7031 7516 7968 8010	0.5143 0.4772 0.4483 0.4265 0.424 0.715	0.8603 0.8818 0.8983 0.9079 0.910 0.715		
4067 ^D 4102 4142 4205 4280 4419 4625 4963 5452	0.682 0.6114 0.5893 0.5672 0.5541 0.5301 0.5020 0.4695 0.4324	0.682 - 0.7737 0.7958 0.8086 0.8262 0.8470 0.8689 0.8927		7937 8003 8079 8143 8357 8678 9002 9264 9312 ^a	0.6346 0.6193 0.6042 0.5949 0.5697 0.4265 0.5167 0.5033 0.500	0.7989 0.8086 0.8210 0.8280 0.8433 0.8605 0.8762 0.8821 0.883		
5935 6197 6638 6817a 5804 ^b	0.4051 0.3947 0.3760 0.368 0.702	0.9079 0.9171 0.9261 0.930 0.702	193.00	8514 ^D 8657 8685 8726 8768	0.719 0.6259 0.6124  0.5927	0.719 0.8073 0.8182 0.8264 0.8310		
		AUXILIARY	INFORMATIO	ON				
METHOD /APPARATUS/PROCEDURE: Recirculating vapor flow apparatus with magnetic pump. Temperature measured with platinum resistance thermometer. Pressure measured with manganin resistance gauge. Samples of liquid and gas analysed by thermal conductivity. Details in source.								
			$\delta T/K = \pm$ = ±1 mol compiler	±0.01; e perce :).	-			
	NTAL VALU P/bar 3860 4274 4518 4683 3515 4001 4481 4963 5386 5645 56665 4067 4102 4142 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 4205 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804 5804	P/bar in liquid, $x_{He}$ 3860       0.2941         4274       0.2825         4518       0.2744         4683a       0.270         3515       0.4240         4001       0.3904         4481       0.3640         4963       0.3429         5386       0.3272         5645       0.3191         5666a       0.317         4067b       0.682         4102       0.6114         412       0.5893         4205       0.5672         4280       0.5541         4419       0.5301         4625       0.5020         4963       0.4695         5452       0.4324         5935       0.4051         6197       0.3947         6638       0.3760         6817a       0.368         5804b       0.702	NTAL VALUES:         Mole fraction of helium         P/bar in liquid,       in vapor, $x_{He}$ $y_{He}$ 3860       0.2941       0.9353         4274       0.2825       0.9435         4518       0.2704       0.949         3515       0.4240       0.8721         4001       0.3904       0.8972         4481       0.3640       0.9135         4963       0.3429       0.9256         5386       0.3272       0.9342         5645       0.3191       0.9384         5666a       0.317       0.939         4067 ^b 0.682       0.682         4102       0.6114       -         4142       0.5893       0.7737         4205       0.5672       0.7958         4280       0.5541       0.8086         4419       0.5301       0.8262         4625       0.5020       0.8470         4963       0.4695       0.8689         5452       0.4324       0.8927         5935       0.4051       0.9079         6197       0.368       0.930         5804 <td>Mole fraction of helium P/bar in liquid, in vapor, T/K "He         T/K           "He         "He           3860         0.2941         0.9353         180.00           4274         0.2825         0.9435         180.00           4274         0.2825         0.9435         180.00           4274         0.2825         0.9435         180.00           4518         0.2744         0.9472           4683         0.270         0.949           3515         0.4240         0.8721           4001         0.3904         0.9256           5386         0.3272         0.9342           5645a         0.3191         0.9384           5666a         0.317         0.939           4067         0.682         0.682           4102         0.6114         -           -         4142         0.5893         0.7737           4280         0.5541         0.8086           4419         0.5301         0.8262           4625         0.5020         0.8470           4963         0.4695         0.8689           5452         0.4324         0.8927           5935         0.4051         0.9</td> <td>Mode fraction of helium P/bar in liquid, in vapor, $T/K$ $P/bar$ $me$ /td> <td>NTAL VALUES: Mole fraction of helium P/bar in liquid, in vapor, T/K       Mole fraction P/bar in liquid, in vapor, T/K       Mole fraction P/bar in liquid, in vapor, T/K         3860       0.2941       0.9353       180.00       5796       0.6217         4274       0.2825       0.9435       5935       0.6002         4683^a       0.270       0.949       6072       0.5711         4683^a       0.270       0.949       6052       0.5419         4001       0.3904       0.8972       6555       0.5433         4881       0.3640       0.9135       7031       0.4772         963       0.3429       0.9256       7516       0.4483         5386       0.3272       0.9344       8010^a       0.424         5665       0.319       0.939       190.00       7830^b       0.715         4102       0.6114       -       8003       0.6193         4120       0.5561       0.8086       8357       0.5549         4280       0.5541       0.8086       8357       0.5979         4281       0.4695       0.8689       9224       0.5033         5452       0.4324       0.8927       932^b       0.500         <td< td=""></td<></td>	Mole fraction of helium P/bar in liquid, in vapor, T/K "He         T/K           "He         "He           3860         0.2941         0.9353         180.00           4274         0.2825         0.9435         180.00           4274         0.2825         0.9435         180.00           4274         0.2825         0.9435         180.00           4518         0.2744         0.9472           4683         0.270         0.949           3515         0.4240         0.8721           4001         0.3904         0.9256           5386         0.3272         0.9342           5645a         0.3191         0.9384           5666a         0.317         0.939           4067         0.682         0.682           4102         0.6114         -           -         4142         0.5893         0.7737           4280         0.5541         0.8086           4419         0.5301         0.8262           4625         0.5020         0.8470           4963         0.4695         0.8689           5452         0.4324         0.8927           5935         0.4051         0.9	Mode fraction of helium P/bar in liquid, in vapor, $T/K$ $P/bar$ $me$	NTAL VALUES: Mole fraction of helium P/bar in liquid, in vapor, T/K       Mole fraction P/bar in liquid, in vapor, T/K       Mole fraction P/bar in liquid, in vapor, T/K         3860       0.2941       0.9353       180.00       5796       0.6217         4274       0.2825       0.9435       5935       0.6002         4683 ^a 0.270       0.949       6072       0.5711         4683 ^a 0.270       0.949       6052       0.5419         4001       0.3904       0.8972       6555       0.5433         4881       0.3640       0.9135       7031       0.4772         963       0.3429       0.9256       7516       0.4483         5386       0.3272       0.9344       8010 ^a 0.424         5665       0.319       0.939       190.00       7830 ^b 0.715         4102       0.6114       -       8003       0.6193         4120       0.5561       0.8086       8357       0.5549         4280       0.5541       0.8086       8357       0.5979         4281       0.4695       0.8689       9224       0.5033         5452       0.4324       0.8927       932 ^b 0.500 <td< td=""></td<>		

COMPONE	ENTS:			ORIGINAL MEASUREMENTS:			
1) He	lium; He	; 7440-59-7		Streett, W. B. and Erickson, A. L. Physics Earth Planetary Interiors,			
2) Arg	gon; Ar	; 7440-37-1		<u>1972</u> , 5, 357.			
EXPERIN	MENTAL V	ALUES:					
т/к	<i>P/</i> bar	Mole fractio in liquid,	n of helium in vapor,				
27	- / 542	^x He	^у не				
193.00	8967	0.5712	0.8461				
	9250 9567	0.5432 0.5208	0.8627 0.8750				
	9670 ^a 8974 ^b	0.520	0.878				
195.00		0.722	0.722				
	9151 9181	0.6026 0.6010	0.8250 0.8252				
	9216	0.5975	0.8252				
	9260	0.5951	0.8344				
	9346	0.5800	0.8442				
	9505	0.5622	0.8548				
	9884 9940a	0.5347 0.550	0.8706 0.872				
197.00	9360 ^b	0.723	0.723				
	9519	0.6204	0.8160				
	9554	0.6160	0.8210				
	9591 9636	0.6098 0.6034	0.8255				
	9784	0.5860	0.8289 0.8416				
	9981	0.5667	0.8522				
	10153 10204 ^a 9761 ^b	0.5533	0.8605				
199.00	10204~ 0761b	0.560	0.862				
199.00	9843	0.724 0.6497	0.724 0.7989				
	9870	0.6432	0.8020				
	9894	0.6368	0.8077				
	9933	0.6289	0.8120				
	10022 10043	0.6119 0.6056	0.8203 0.8244				
	10160	0.5941	0.8335				
	10408	0.5681	0.8512				
	10481 ^a	0.560	0.860				
^a Three	phase p	ressure ± 10	bar	-			
		sure ± 20 bar					

COMPONENTS:	ORIGINAL MEASUREMENTS:				
(1) Helium; He; 7440-59-7 (2) Argon; Ar; 7440-37-1	Mullins, J. C. and Ziegler, W. T., Internat. Adv. Cryogenic Engng., <u>1964</u> , 10, 171.				
VARIABLES:	PREPARED BY:				
Temperature, pressure	C. L. Young				
EXPERIMENTAL VALUES: Mole fraction of helium	Mole fraction of helium				
T/K P/bar in liquid, in vapor ^x He ^y He					
91.99 $81.26$ - $0.97053$ $91.99$ $61.10$ - $0.96384$ $92.00$ $40.67$ - $0.9496$ $91.95$ $20.18$ - $0.9084$ $91.96$ $121.39$ - $0.97465$ $97.50$ $121.66$ - $0.97465$ $97.50$ $121.66$ - $0.96417$ $97.50$ $101.40$ - $0.95970$ $97.51$ $81.06$ - $0.9530$ $97.51$ $61.05$ - $0.9412$ $97.51$ $40.57$ - $0.9179$ $97.52$ $20.29$ - $0.8522$ $97.50$ $61.00$ - $0.9416$ $86.02$ $81.20$ - $0.98351$ $86.02$ $61.10$ - $0.97989$ $86.03$ $40.04$ - $0.97195$ $86.02$ $121.66$ - $0.98726$ $86.01$ $121.82$ - $0.98724$ $86.00$ $101.71$ - $0.9873$ $86.02$ $121.59$ - $0.98727$ $108.01$ $121.59$ - $0.9229$ $108.01$ $101.40$ - $0.9123$ $108.04$ $81.06$ - $0.8966$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
METHOD /APPARATUS/PROCEDURE: Single pass flow apparatus. Two	INFORMATION SOURCE AND PURITY OF MATERIALS: 1 and 2: Purities better than				
compartment equilibrium cell. Tem- perature measured with platinum resistance thermometer; pressure measured with Bourdon gauge. Pure helium bubbled through liquid argon. Samples analysed by gas chromato- graphy. Details in source.	99.995 mole per cent.				
	ESTIMATED ERROR: $\delta T/K = \pm 0.03;  \delta P/bar = \pm 0.5\%;$ $\delta x_{He} \leq \pm 2\%;  \delta (1-y_{He}) \leq \pm 3\%.$				
	REFERENCES:				

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Helium; He; 7440-59-7	Sinor, J. E. and Kurata, F., J. Chem.
(2) Argon; Ar; 7440-37-1	Eng. Data, <u>1966</u> , <i>11</i> , 537.
(2)	
VARIABLES:	PREPARED BY:
Temperature, pressure	C. L. Young
EXPERIMENTAL VALUES: T/K P/bar Mole fraction of	helium in liquid, <i>x</i> _{He}
93.15 17.2 34.5	0.0015 0.0035
51.7	0.0052
68,95 86,18	0.0071 0.0087
103.4	0.0102
120.7	0.0114
137.9 113.15 17.2	0.0129 0.0025
34.5	0.0075
51.7 68.95	0.0119 0.0164
86.18	0.0210
103.4	0.0249
120.7 137.9	0.0287 0.0325
133.15 34.5	0.0068
51.7 68.95	0.0171 0.0276
86.18	0.0370
103.4 120.7	0.0461
137.9	0.0549 · · · · · · · · · · · · · · · · · · ·
148.15 51.7	0.0121
68.95 86.18	0.0393 0.0650
103.4	0.0895
120.7 137.9	0.1138 0.1380
AUXILIARY	INFORMATION
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Static equilibrium cell (0.1 & capa- city) fitted with magnetic stirrer. Temperature measured with platinum resistance thermometer. Pressure measured with Bourdon gauge. Contents charged into cell, equilibrated liquid samples withdrawn and analysed by G.C. Details in source and ref. 1.	
	ESTIMATED ERROR:
	$\delta T/K = \pm 0.02;  \delta P/bar = \pm 0.1;$ $\delta x_{He} = \pm 1\% \text{ or } \pm 0.0003 \text{ (whichever is greater)}$
	REFERENCES :
	<ol> <li>Sinor, J. E., Schindler, D. L. and Kurata, F., Am. Inst. Chem. Engnrs J., <u>1966</u>, 12, 353.</li> </ol>
i la la la la la la la la la la la la la	

COMPONENT	IS:			ORIGINAL	MEASUREN	MENTS:	
(l) H	elium;	He; 7440-59	-7			B., Trans.	Faraday
(2) A	rgon;	Ar; 7440-37	-1	Soc.,	<u>1969</u> ,	65, 696.	
	2			1			
VARIABLES	S:		<u></u>	PREPARED	BY:		
Temper	ature,	pressure		с. г.	Young		
						·····	
EXPERIMEN		Mole fractio	on of helium				ion of helium
т/к	<i>P/</i> bar	in liquid, ^x He	in vapor, ^Y He	T/K	<i>P/</i> bar	in liquid, ^x He	in vapor, ^Y He
91.34	14.2		0.8812	144.4	554.6	0.2984	0.7192
	41.3	0.0042	0.9461		620.3	-	0.6861
	68.6	0.0065	0.9666		628.9		-
	133.0	0.0118	0.9765	145 07	687.2		-
	204.7 273.6	0.0158 0.0196	0.9844 0.9861	145.97	243.0 308.1		0.5323 0.5667
	2/3.6		0.9861		308.1		0.5667
	366.0		0.9924		450.8		0.6261
130.08	32.5	0.0067	0.2716		548.0		0.6600
	57.1		0,5200		685.9		0.7032
	97.2	0.0380	-	146.90			0.4897
	141.3	0.0548	0.7480		288.8	0.2783	0.5086
	199.5	0.0794	0.7967		317.0		0.5187
	279.2	0.1032	0.8329		323.2		0.5240
	346.0	0.1200	0.8521		374.9		0.5363
	418.4	0.1348	0.8670		412.9		0.5543
	484.9 554.1	0.1454 0.1526	0.8779 0.8864		448.1 486.7	0.3754 0.3822	0.5551 0.5862
	619.3	0.1603	0.9013		536.9		0.6039
	685.5	0.1664	0.9061		616.9		0.6380
144.4	68.7	0.0328	0.3058		689.3		0.6655
	134.1	0.0967	0.4631	147.73			0.2581
	204.4	0.1570	0.5551		143.4		0.3466
	273.5	0.1999	0.6178		172.4		0.3853
	346.0	0.2381	0.6559		239.2		0.4158
	422.5	0.2669	0.6820		262.9	0.3678	0.3873
	486.7	0.2862	0.7020	TNEODWARTO			······
1000 /3			AUXILIARY	r			
		JS/PROCEDURE:				OF MATERIALS	;
		vapor flow a		No deta:	ils giv	ven.	
		aratus given asured with					
			Pressure				
		Bourdon gaug					
		phases analy					
thermal	conduc	tivity.					
		-					
				ESTIMATED	ERROR:		
				$\delta T/K = \pm$	:0.03;	$\delta P/bar = \pm$	0.1;
				$\delta x_{\rm Ho} = \pm$	0.0002	; $\delta y_{\text{He}} = \pm$	0.001
						compiler).	
						Compiler/	·····
				REFERENCE			aniaa 1055
			1	1. Stre 5, 2		. в., стуод	enics, <u>1965</u> ,

COMPONENTS:	ORIGINAL MEASUREMENTS:
(l) Helium; He; 7440-59-7	Skripka, V. G. and Dykhno, N. M., Trudy Vses. NauchIssled. Inst.
(2) Argon; Ar; 7440-37-1	Kriog. Mashinstr., <u>1964</u> , 8, 163.
VARIABLES:	PREPARED BY:
Temperature, pressure	C. L. Young
EXPERIMENTAL VALUES:	
	Mole fraction of helium
T/K P/bar P ⁺ /bar	in liquid, $x_{\rm He}$ in vapor, $y_{\rm He}$
90.5 6.03 4.66	0.0452 0.7392
11.08 9.72 16.14 14.77	0.092 0.8637 0.138 0.9043
21.21 19.84 26.26 24.90	0.138 0.190 0.230 0.9043 0.9043 0.9242 0.9382
P ⁺ partial pressure of helium	
AUXIL	IARY INFORMATION
AUXIL: METHOD /APPARATUS/PROCEDURE :	IARY INFORMATION SOURCE AND PURITY OF MATERIALS;
	SOURCE AND PURITY OF MATERIALS: 1. High purity containing no more than 0.008% hydrogen, 0.02% nitrogen, 0.005% oxygen and 0.07% hydrocarbons. 2. No details given.
METHOD /APPARATUS/PROCEDURE: Vapor flow apparatus with magnetic recirculating pump. Temperature measured with platinum resistance thermometer, pressure measured wit Bourdon gauge. Samples of gas an liquid analysed by gas phase inter	SOURCE AND PURITY OF MATERIALS: 1. High purity containing no more than 0.008% hydrogen, 0.02% nitrogen, 0.005% oxygen and 0.07% hydrocarbons. 2. No details given. ESTIMATED ERROR: $\delta T/K = \pm 0.02$ to 0.03; $\delta P$ less than 0.2 bar; $\delta x_{HO} \approx \delta y_{HO} = \pm 0.00001$ to
METHOD /APPARATUS/PROCEDURE: Vapor flow apparatus with magnetic recirculating pump. Temperature measured with platinum resistance thermometer, pressure measured wit Bourdon gauge. Samples of gas an liquid analysed by gas phase inter	<pre>SOURCE AND PURITY OF MATERIALS: 1. High purity containing no more than 0.008% hydrogen, 0.02% nitrogen, 0.005% oxygen and 0.07% hydrocarbons. 2. No details given. ESTIMATED ERROR: ôT/K = ±0.02 to 0.03; ôP less than</pre>
METHOD /APPARATUS/PROCEDURE: Vapor flow apparatus with magnetic recirculating pump. Temperature measured with platinum resistance thermometer, pressure measured wit Bourdon gauge. Samples of gas an liquid analysed by gas phase inter	SOURCE AND PURITY OF MATERIALS: 1. High purity containing no more than 0.008% hydrogen, 0.02% nitrogen, 0.005% oxygen and 0.07% hydrocarbons. 2. No details given. ESTIMATED ERROR: $\delta T/K = \pm 0.02 \text{ to } 0.03; \delta P \text{ less than}$ 0.2 bar; $\delta x_{\text{He}} \simeq \delta y_{\text{He}} = \pm 0.00001 \text{ to}$ 0.00002.

COMPONENT	rs:			ORIGINAL	MEASUREM	ENTS:	
(1) Helium; He; 7440-59-7 (2) Argon; Ar; 7440-37-1				Skripka, V. G. and Lobonova, N. N., Trudy Vses. NauchIssled. Inst. Kriog. Mashinostr., <u>1971</u> , 13, 90.			
VARIABLE	S:	······································		PREPARED	BY:		
Tempera	Temperature, pressure				oung		
EXPERIME	NTAL VALUES			L			
т/К		ole fraction liquid, ^x He	of hellum in vapor, ^y He	т/к		Mole fraction in liquid, ^{<i>x</i>} He	of helium in vapor, ^y He
90.67	9.8 19.6 29.4 39.2 49.0 58.8 68.6 78.5 88.3 98.1 107.9 117.7 127.5 137.3 147.1 156.9 166.7 176.5 186.3 196.1 205.9 215.7 9.8 19.6 29.4	0.0010 0.0021 0.0032 0.0043 0.0055 0.0066 0.0075 0.0088 0.0098 0.0109 0.0129 0.0129 0.0129 0.0138 0.0146 0.0154 0.0161 0.0161 0.0168 0.0175 0.0183 0.0190 0.0197 0.0204 0.0040 0.0061	- 0.9230 0.9380 0.9485 0.9565 0.9620 0.9650 0.9675 0.9695 0.9715 0.9740 0.9755 0.9770 0.9775 0.9770 0.9775 0.9770 0.9775 0.9780 0.9805 0.9815 0.9830 0.9845 - - 0.7815	102.95	39.2 49.0 58.8 68.6 78.5 88.3 98.1 107.9 117.9 127.5 137.3 147.1 156.9 166.7 176.5 186.3 196.1 205.9 215.7 9.8 19.6 29.4 39.2 49.0 58.8	0.0080 0.0099 0.0118 0.0137 0.0155 0.0174 0.0209 0.0226 0.0242 0.0258 0.0273 0.0287 0.0302 0.0315 0.0328 0.0342 0.0342 0.0354 0.0354 0.0005 0.0046 0.0085 0.0120 0.0153 0.0183	0.8300 0.8590 0.8790 0.9030 0.9110 0.9180 0.9245 0.9300 0.9350 0.9385 0.9420 0.9450 0.9450 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9570 0.9585 -
	<u></u>	<u> </u>	AUXILIARY	INFORMATI	ON		
METHOD /	APPARATUS	/PROCEDURE:		SOURCE A	ND PURITY	OF MATERIALS:	
with li gas. interfe with pl and pre	quid and Samples o rometry. atinum re	sistance the h Bourdon ga	rized with alysed by ce measured ermometer	per 2. High	cent.	sample purit	
				ESTIMATE $\delta T/K = \pm 0$ $\delta y_{He} = \pm 0$ REFERENC	±0.01; 0.0002.	$\delta P/\text{bar} = \pm 0.4$	4; δx _{He} ,

ORIGINAL MEASUREMENTS: COMPONENTS: Helium; He; 7440-59-7 Skripka, V. G. and Lobonova, N. N., (1) Trudy Vses. Nauch.-Issled. Inst. Kriog. Mashinostr., <u>1971</u>, 13, 90. (2) Argon; Ar; 7440-37-1 EXPERIMENTAL VALUES: Mole fraction of helium T/K P/bar in liquid, in vapor,  $x_{\rm He}$  $y_{\text{He}}$ 115.09 68.6 0.0216 0.7480 78.5 0.0247 0.7730 88.3 0.0278 0.7930 98.1 0.0310 0.8080 107.9 117.7 0.0341 0.8215 0.0370 0.8320 127.5 0.0400 0.8420 137.3 0.0428 0.8505 147.1 0.0456 0.8580 156.9 0.0483 0.8650 166.7 0.0503 0.8700 176.5 0.0533 0.8760 186.3 0.0557 0.8800 196.1 0.8840 0.0579 205.9 0.0600 0.8880 215.7 0.0621 0.8920

.

COMPONENTS:	<u>.                                    </u>			ORIGINAL	MEASUREME	NTS:		
(1) Helium	n; He;	7440-59-7		Streett, W. B. and Hill, J. L. E.,				
(2) Argon;	Ar;	7440-37-1				Soc., <u>1971</u> , 6		
VARIABLES:				PREPARED	BY:			
Temperature, pressure				с. г. т	oung			
EXPERIMENTAL								
т/к <i>Р/</i> ь		le fraction liquid, ^x He	of helium in vapor, ^y He		P/bar	Mole fraction in liquid, ^x He	of helium in vapor, ^Y He	
98.02 220 275 420 482 627 696 717 108.17 489 620 757 8965 1034 1103 1179 1206 1224 1241 1261 1277 120.01 344 613 744 896 1034	.6 .5 .2 .1 .4 .4 .1 .9 .7 .6 .5 .4 .4 .8 .0 .2 .5 .7 .0 .7 .7 .7	0.0229 0.0261 0.0347 0.0376 0.0430 0.0448 0.0452 0.0602 0.0669 0.0721 0.0762 0.0776 0.0784 0.0802 0.0813 0.0819 0.0823 0.0834 0.0841 0.0841 0.0841 0.0841 0.0841 0.0796 0.1078 0.1078 0.1078 0.1253	0.9740 0.9747 0.9802 0.9816 0.9817 0.9823 0.9834 0.9622 0.9670 0.9713 0.9754 0.9754 0.9774 0.9774 0.9774 0.9774 0.9774 0.9774 0.9774 0.9775 0.9117 0.9372 0.9426 0.9486 0.9528	120.01	1172.3 1310.1 1447.9 1585.7 1723.5 1861.3 1930.2 1999.1 2075.1 2111.6 358.7 482.3 620.1 757.9 896.7 1034.5 1241.2 1361.8 1585.7 1861.3 2068.0 2413.6 2620.3 2765.2 2827.0	0.1284 0.1286 0.1286 0.1315 0.1316 0.1316 0.1316 0.1316 0.1313 0.1310 0.1313 0.1310 0.1395 0.1557 0.1671 0.1754 0.1795 0.1836 0.1848 0.1856 0.1836 0.1848 0.1856 0.1836 0.1812 0.1769 0.1746 0.1732 0.1722	0.9557 0.9588 0.9629 0.9650 0.9678 0.9698 0.9705 0.9705 0.9705 0.9707 0.8555 0.8761 0.8912 0.9078 - 0.9360 0.9413 0.9492 0.9595 0.9595 0.9616 0.9692	
			AUXILIARY	INFORMATIC	)N			
METHOD /APPA	RATUS/I	PROCEDURE :		SOURCE AN	D PURITY	OF MATERIALS:		
with magnet ture. Tem platinum re Pressure me	ic pump peratur sistanc asured	or flow appa at ambient ce measured te thermomet with Bourdo and ref. 1.	tempera- with er. n gauge.	NO 0	details	given.		
				$\delta x_{He} = \delta$ REFERENCE 1. Stree	$y_{\text{He}} = 0$ $y_{\text{He}} = 0$ $z_{\text{S:}}$ $z_{\text{He}}$	δP/bar = ±0.5; .001. B., Cryogenics		
				5,27	•			

,

COMPONENTS:				ORIGINAL MEASUREMENTS:			
(1) H	elium; He	e; 7440-59-7		Street	t, W. B. Faradau	and Hill, J Soc., 1971,	L. E., 67. 622.
(2) A:	rgon; Ai	; 7440-37-1		114.001	r ur uuug		
EVDEDTM	ENTAL VA			ي حيد من المالية في المسافرين الم	<u></u>		
LYPERIN		Mole fraction	of helium			Mole fractio	n of helium
T/K	<i>P/</i> bar	in liquid,	in vapor	T/K	<i>P/</i> bar	in liquid,	in vapor,
		^x He	^y He			^x He	^y He
129.74		0.1720	0.9662	147.80		0.3050	0.4721
139.39	344.5 482.3	0.1765 0.2127	0.7502 0.7894		351.6 545.1	0.3641	- 0.5452
	620.1	0.2347	0.8157		585.7	0.4317	-
	757.9	0.2479	0.8353		610.0	-	0.5753
	896.7	0.2563	0.8520		627.2	0.4272	0.5985
	1034.5	0.2605	0.8659		641.3	0.4278	0.6052
	1172.3 1312.1	0.2629 0.2629	0.8775 0.8875		689.0 827.8	0.4232 0.4090	0.6315 0.6928
	1447.9	0.2611	0.8961		965.6	0.4054	0.7338
	1723.5	0.2581	0.9091	148.03	96.3	0.0854	0.2787
	1999.1	0.2529	0.9195		140.8	0.144	0.3556
	2275.8	0.2456	0.9280		179.3	0.1896	0.3901
	2551.4	0.2405	0.9333 0.9392		228.0	0.2400	0.4183
	2827.0 2895.9	0.2329	0.9406		262.4 658.6	0.3110 0.4559	0.3892 0.5981
	2964.8	0.2307	0.9419		723.5	0.4320	-
	3033.7	0.2306	0.9486		836.9	0.4241	0.6806
	3102.6	0.2285	0.9499		895.7	0.4122	0.7093
	3171.5 3240.4	0.2277	0.9509		1043.6	0.4087	0.7492
	3326.5	0.2261 0.2251	0.9513 0.9534		1172.3 1379.0	0.3984 0.3829	0.7822 0.8145
	3454.2	0.2238	0.9545		1654.6	0.3662	0.8466
	3581.8	0.2226	0.9556		1930.2	0.3506	0.8713
	3619.3	0.2224	0.9556		2068.0	0.3401	0.8818
145.00	2750.8	0.2805	-		2413.6	0.3261	0.8989
	3109.7	0.2685 0.2598	-		2736.8	0.3118	0.9099
	3447.1 3792.6	0.2398	0.9379		3102.6 3461.3	0.2983 0.2869	0.9253 0.9326
	4219.2	0.2480	0.9383	148.30	757.9	0.4982	-
146.90	220.9	0.2188	0.4957		793.4	0.4795	0.5796
	275.6	0.2584	0.5182		827.8	0.4527	0.6535
	344.5	0.3008	-		965.6	0.4308	0.7137
	434.7 496.5	0.3425 0.3576	0.5876 0.6127		1103.4 1241.2	0.4157 0.4054	0.7476 0.7751
	551.2	0.3717	0.6328		1654.6	0.3755	0.8347
	689.0	0.3817	0.6810	149.00	892.7	0.4855	0.6362
	827.8	0.3842	0.7282		958.5	_	0.6821
	965.6	0.3822	0.7571		1061.9	0.4385	0.7222
	1103.4 1241.2	0.3750 0.3696	0.7778 0.7976		1172.3 1379.0	0.4256 0.4045	0.7502 0.7932
	1379.0	0.3614	0.8203		1654.6	0.3826	0.8325
	1654.6	0.3479	0.8520		1930.2	0.3626	0.8604
	2068.0	0.3310	0.8818		2482.5	0.3319	0.8907
	2413.6	0.3174	-		2827.0	0.3189	0.9098
	2808.7 3102.6	0.3040 0.2942	0.9117 0.9208		3426.8 3792.6	0.2937 0.2851	0.9273 0.9372
147.30	344.5	0.3105	0.5349	150.02	3/92.6	0.5239	0.9372
	413.4	0.3546	0.5536	130.02	1103.4	0.4861	0.6708
	482.3	0.3839	0.5808		1254.4	0.4448	0.7389
	689.0	0.4089	0.6607		1379.0	0.4287	0.7698
	827.8	0.4045	0.7064		1516.8	0.4104	0.7921
147.80	213.8 265.6	0.2269 0.2653	0.4476 0.4604		1723.5	0.3955	0.8284
	203.0	0.2000	0.4004		2075.1	0.3691	0.8561

(cont.)

COMPONENTS:			ORIGINAL MEASUREMENTS:			
(l) He	lium; He;	7440-59-7	Streett; W. B. and Hill, J. L. E., Trans. Faraday Soc., 1971, 67, 622.			
(2) Ar	gon; Ar;	7440-37-1	11ano. Faraday 555., <u>1971</u> , 57, 522.			

EXPERIMENTAL VALUES:

т/к	P/bar	Mole fraction in liquid ^x He	of helium in vapor, ^y He		P/bar	Mole fraction in liquid, ^x He	of helium in vapor, ^Y He
150.02	2424	0.3491	0.8862	155.94	3786	0.3485	0.9065
	2765	0.3322	0.9039		4137	0.3399	0.9214
	3006	0.3204	0.9117	158.09	2220	0.5749	0.6943
	3447	0.3062	0.9247		2251	-	0.7187
Į	3793	-	0.9346		2276	0.5293	0.7471
	4137	0.2895	0.9425		2441	0.4964	0.7789
150.99	1179	0.5612			2482	0.4855	-
	1241	0.5057	0.6718		2800	0.4432	0.8260
	1310	0.4788	-		2992	0.4199	0.8454
ł	1379	0.4656	0.7122	159.90	2503	0.5978	0.6967
	1586	-	0.7800		2520	0.5776	0.7117
	1724	0.4169	0.8125		2551	0.5578	0.7297
155.94	1940	0.5616	0.7078		2599	0.5389	0.7539
)	1952	0.5554	0.7187		2662	0.5210	-
	1982	0.5427	0.7323		2751	0.5036	-
	2006	0.5345	0.7430		2827	0.4886	-
	2031	-	0.7539		2920	0.4755	0.8272
	2206	0.4821	0.7943		3013	-	0.8354
	2414	0.4476	0.8239		3103	0.4578	0.8431
	2758	0.4122	0.8573		3447	0.4211	0.8713
	3103	0.3853	0.8794		3793	0.4004	0.8862
	3447	0.3638	0.8938		4137	0.3761	0.9014

COMPONEN	TS:			ORIGINAL MEASUREMENTS:				
	Helium;	He; 7440-59-7 onoxide; CO; 6	20-08-0			and Stewart, . Data, <u>1975</u> ,		
(2) C	arbon n	onoxide, co, o	30-08-0					
VARIABLE	ES :			PREPARED BY:				
Temperature, pressure				С. L. Yc	oung			
EXPERIME	INTAL VALU	JES:		L		<u></u>	·	
т/К	P/bar	Mole fraction in liquid, ^x He	of helium in vapor, ^y He		P/bar	Mole fraction in liquid, ^x He	n of helium in vapor, ^y He	
79.50	41.2	0.0047	-	120.00	105.1 138.0	0.0767		
	69.1	0.0048 0.0077	-	80.00	11.9	0.1003	0.9204	
	69.4 102.7	0.0079 0.0115	-		13.7 28.8	-	0.9303 0.9636	
	103.4	0.0116	-		42.3	-	0.9636	
	134.9	0.0143	-		56.3	-	0.9787	
84.71	136.1 69.0	0.0146 0.0105	_		69.8 136.4	-	0.9821 0.9885	
-	69.4	0.0107	-	84.71	6.9	-	0.8709	
	102.9 103.9	0.0152 0.0152	-		7.0 15.2	-	0.8713 0.8946	
	135.3	0.0185	-		28.8	-	0.9395	
90.00	136.2 35.6	0.0186 0.0072	-		42.8	-	0.9563	
90.00	69.4	0.0141	-		56.4 70.9	-	0.9649 0.9703	
	103.6	0.0203	-		104.0	-	0.9777	
	135.6 136.9	0.0253 0.0254	-	90.00	14.6 26.7	-	0.8127 0.8918	
100.00	37.1	0.0116	-		40.1	-	0.9239	
	70.1 104.3	0.0227 0.0333	-		55.6	-	0.9413	
	136.9	0.0419	-		71.2 104.0	-	0.9515 0.9638	
120.00	36.5 69.9	0.0174 0.0478	-	100.00	137.6 13.4	-	0.9689 0.5471	
			AUXILIARY	INFORMATIC	N			
METHOD /	APPARAT	US/PROCEDURE :		SOURCE AN	D PURITY	OF MATERIALS:		
Vapor	recircu	lation system s	imilar to	1. No	details	s given.		
that i with B measur	n ref. ourdon ed with	l. Pressure m gauge. Temper platinum resis	easured ature tance	2. Ult	rapure	purity better per cent.	than	
vapor		Samples of li d by gas chroma urce.						
				$\begin{array}{l} \text{ESTIMATED} \\ {}^{\delta} \mathbf{T}/\mathbf{K} &= \pm \\ {}^{\delta} x_{\mathbf{He}} &\cong \delta \end{array}$	A A12.	$\delta P/\text{bar} = \pm 0.$ = 0.002 or ±2%	07; whichever	
				is great	er.			
				REFERENCE				
						G. and Hiza, Engng., <u>1970</u>		

COMPON	COMPONENTS:				MEASUREMENTS:	
				Parrish, J. Chem.	W. R. and Stewart, Engng. Data, <u>1975</u> ,	W. G., 20, 412.
г/к	P/bar	Mole fractio in liquid, [#] He	n of helium in vapor, ^y He			
100.0	27.4 27.9 29.3 39.0 41.4 57.0 69.8 70.2		0.7594 0.7596 0.7712 0.8195 0.8279 0.8668 0.8863 0.8863 0.8865	_		
L20.0	103.9 131.0 131.8 132.7 132.9 29.3 42.5 56.7 70.5 103.8 137.1		0.9154 0.9274 0.9275 0.9281 0.9282 0.2401 0.4053 0.5082 0.5806 0.6735 0.7256			

COMPONENTS:	ORIGINAL MEASUREMENTS:
COMENTS.	OLIGINAL MEASUREMENIS:
(l) Helium; He; 7440-59-7	Sinor, J. E. and Kurata, F., J. Chem.
(2) Carbon monoxide; CO; 630-08-0	Eng. Data, <u>1966</u> , 11, 537.
VARIABLES:	PREPARED BY:
Temperature, pressure	C. L. Young
	-
EXPERIMENTAL VALUES:	······································
T/K P/bar Mole fraction o	f helium in liquid, <i>x</i> _{He}
77.35 17.2 34.5	0.0030 0.0045
51.7 68.95	0.0062 0.0073
86.18	0.0094
103.4 120.7	0.0106 0.0122
137.9	0.0134
93.15 17.2 34.5	0.0042 0.0090
51.7	0.0135
68.95 86.18	0.0189 0.0221
103.4	0.0249
120.7 137.9	0.0300 0.0328
11.15 34.5 51.7	0.0164
68.95	0.0290 0.0396
86.18 103.4	0.0510 0.0605
120.7	0.0700
137.9 128.15 51.7	0.0781 0.0424
68.95	0.0693
86.18 103.4	0.0965 0.1214
120.7 137.9	0.1455
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Static equilibrium cell (0.1 & capa-	1. U.S. Bureau of Mines sample maxi-
city) fitted with magnetic stirrer. Temperature measured with platinum	mum impurity 12 parts per million. 2. Olin-Matheson sample purity 99.5
resistance thermometer. Pressure	mole per cent.
measured with Bourdon gauge. Contents charged into cell, equili-	
brated liquid samples withdrawn and	
analysed by G.C. Details in source and ref. 1.	
	ESTIMATED ERROR:
	$\delta T/K = \pm 0.02;  \delta P/bar = \pm 0.1; \\ \delta x_{He} = \pm 1 \$ \text{ or } \pm 0.0003 \text{ (whichever is}$
	He greater)
	REFERENCES:
	<ol> <li>Sinor, J. E., Schindler, D. L. and Kurata, F., Am. Inst. Chem. Engnrs. J., <u>1966</u>, 12, 353.</li> </ol>

COMPONENTS:	EVALUATOR:
<ol> <li>Helium; He; 7440-59-7</li> <li>Carbon dioxide; CO₂; 124-38-9</li> </ol>	Colin Young, School of Chemistry, University of Melbourne, Parkville, Victoria, 3052 AUSTRALIA.

CRITICAL EVALUATION:

The solubility of helium in carbon dioxide has been studied at high pressures by Tsiklis (1), MacKendrick *et al.* (2) and Burfield *et al.* The study of Tsiklis covered the temperature range 298 K to 353 K and its main aim was to discover the phase behaviour in order to establish that this mixture exhibits gas-gas immiscibility. It was found to exhibit gas-gas immiscibility of the first kind (3). Since only graphical data were presented, these are rejected for the present purposes.

The data of MacKenrick *et al.* (2), while not of the highest precision, appear to be self-consistent and are classified as tentative. The data of Burfield *et al.* (4) are slightly ( $\sim$  5%) lower than those of MacKendrick *et al.* and are classified as tentative.

## References

- 1. Tsiklis, D. S., Doklady Acad. Nauk S.S.S.R., 1952. 86, 1159.
- MacKendrick, R. F., Heck, C. K. and Barrick, P. L., J. Chem. Engng. Data 1968, 13, 352.
- Schneider, G. M., in Chemical Thermodynamics Vol. 2 Specialist Periodical Report, Chapter 4, ed. McGlashan, M. L., Chemical Society, London, <u>1978</u>.
- 4. Burfield, D. W., Richardson, H. P. and Guereca, R. A., Am. Inst. Chem. Engnrs. J., 1970, 16, 97.

COMPONENT	TS:			ORIGINAL MEASUREMENTS: Burfield, D. W., Richardson, H. P. and Guereca, R. A., Am. Inst. Chem. Engnrs. J., <u>1970</u> , 16, 97.			
		e; 7440-59-7 xide; CO ₂ ; 1	24-38-9				
VARIABLE	S:	<u> </u>		PREPARED	BY:	<del></del>	
Tempera	Temperature, pressure				oung		
EXPERIME	NTAL VALU	ES:					
T/K	P/bar	Mole fraction in liquid, ^x He			P/bar	Mole fraction in liquid, ^{<i>xx</i>} He	of helium in vapor ^y He
293.13	57.31 66.06 77.42 88.04 97.03 106.77 121.10 129.09 141.11 34.99 37.81 40.84 49.48 51.70 61.67 67.30 75.50	0.0069 0.0137 0.0190 0.0237 0.0303 0.0370 0.0427 0.0493 0.0000 0.0010 0.0010 0.0022 0.0029 0.0048	0.0000 0.0705 0.1380 0.2466 0.2843 0.3429 0.3889 0.4160 0.0000 0.0448 0.0941 0.1434 0.2225 0.3197 0.3630 0.4232	273.26	81.98 89.00 108.15 129.12 136.38 19.84 29.84 35.37 47.36 55.36 64.07 77.43 90.70 110.20 117.19 138.88	0.0210 0.0268 0.0293 0.0310 0.0000 0.0020 0.0041 0.0055 0.0070	0.4594 0.4983 0.5775 0.6394 0.6569 0.0000 0.2860 0.3494 0.5070 0.5723 0.6300 0.6836 0.7323 0.7876 0.7991 0.8183
Recircu with ma measure against tempera couple. analyse	lating v gnetic p d with f dead we ture mea Samp]	S/PROCEDURE: vapor flow app pump. Pressu transducer cal eight piston b asured with the les of coexist as spectromete rce.	re ibrated alance; ermo- ing phases	SOURCE AN 1. Bur tot mil 2. Pur cen ESTIMATE	ND PURITY eau of M al impur lion. ity bett t. D ERROR:	OF MATERIALS; Mines, Ultrapun rities 35 parts fer than 99.98	s per mole per
				δТ/К =	±0.05; to 0.00	$\delta P/bar = \pm 0.1;$ 005; $\delta y_{He} = \pm 0$	

COMPONE	COMPONENTS:				ORIGINAL MEASUREMENTS:			
					MacKendrick, R. F., Heck, C. K. and Barrick, P. L., J. Chem. Engng. Data, <u>1968</u> , 13, 352.			
VARIABL	ES:			PREPARED	RV ·			
	Temperature, pressure				foung			
EXPERIM	ENTAL VAL							
т/к	P/bar	Mole fraction in liquid, ^x He				lole fraction n liquid, ^x He	of helium in vapor, ^y He	
219.9 229.9 244.9	$\begin{array}{r} 9.93\\ 11.75\\ 16.52\\ 36.17\\ 90.38\\ 123.0\\ 145.4\\ 162.2\\ 193.3\\ 14.6\\ 14.8\\ 29.8\\ 45.4\\ 63.9\\ 91.0\\ 122.9\\ 160.1\\ 161.5\\ 194.3\\ 196.1\\ 19.76\\ 29.79\\ 40.12\\ 49.95\\ 52.79\end{array}$	- - - - - - - - - - - - - - - - - - 0.00581 0.00868 0.0103 0.0114 0.0141 0.00241 0.00241 0.00241 0.00529 0.00944 0.0129 0.0167 - - - - - - 0.0195 - - - - 0.00195 - - - - 0.00440 0.000443	0.372 0.460 0.621 0.817 0.9225 0.9419 0.9498 0.9543 0.9612 0.354 0.674 0.779 0.836 0.880 0.9118 0.9325 0.9407 0.198 0.441 0.570 0.653	244.9 259.9 274.9	$\begin{array}{c} 85.32\\ 99.20\\ 99.60\\ 108.8\\ 140.2\\ 157.1\\ 159.5\\ 176.7\\ 177.3\\ 190.5\\ 200.3\\ 202.2\\ 40.2\\ 45.3\\ 59.1\\ 61.6\\ 88.3\\ 104.0\\ 104.8\\ 141.7\\ 168.4\\ 197.1\\ 43.16\\ 46.31\\ 56.03 \end{array}$		0.784 0.810 0.823 0.864 0.874 0.883 0.893 0.322 0.383 0.515 0.529 0.653 0.708 0.771 0.801 0.824 0.109 0.149 0.247	
			AUXILIARY	INFORMATI	LON			
METHOD	/APPARAT	US/PROCEDURE:		SOURCE AND PURITY OF MATERIALS;				
METHOD /APPARATUS/PROCEDURE: Vapor recirculated through cell. Liquid and vapor samples analysed by gas chromatography. Pressure measu- red by Bourdon gauge and temperature with platinum resistance thermometer. Details in source and ref. 1 and 2.			· · ·		5 or better. or better.			
				$\delta T/K = bar) = \pm \delta x_{He} \approx$	0.3 (abov $\delta(1-y)_{He}$	<pre>P/bar = ±0.1 ve 100 bar); = ±5%.</pre>	(up to 100	
				Adv. 2. Span Barr	ing, R. M Cryogeni o, J. O.,	N. and Barric <i>ic Eng.</i> , <u>1965</u> , Heck, C. K. L., <i>J. Chem</i> . 13, 168.	<i>, 10</i> , 151. and	

COMPONE	ENTS:			ORIGINAL MEASUREMENTS:		
<ul> <li>(1) Helium; He; 7440-59-7</li> <li>(2) Carbon dioxide; CO₂; 124-38-9</li> </ul>				MacKendrick, R. F., Heck, C. K. and Barrick, P. L., J. Chem. Engng. Data, 1968, 13, 352.		
EXPERI	MENTAL V	ALUES:				
т/к	P/bar	Mole fraction in liquid, ^x He				
274.9		0.0162 0.0241 0.0371	0.461 0.527 0.618 - 0.695 0.696 0.736			
289.9	62.01 84.10 85.72	0.0184	0.0760			

.

COMPONEI	OMPONENTS:			ORIGINAL MEASUREMENTS:			
	Helium; He ³ ; h-Deuterium;	<pre>: 14762-55-1 n-D₂; 7782-39-0</pre>		M. J., Nat. 1 Note 621, <u>19</u>	Bur. Standards, 1 <u>2</u> .		
VARIABL	ES:		PREPARED BY:				
	cature, press	sure	C. L.				
	ENTAL VALUES:						
т/к	Mole P/bar	fraction of helium in liquid, ^x He ³	т/к	Mole P/bar	e fraction of helium in liquid, ^{°°} He ³		
20.00 22.00 24.00	0.2945 3.496 6.244 9.418 11.859 14.637 0.6082 5.078 7.553 9.722 12.432 16.338 1.1204 4.071 5.730 6.578 8.840 9.219 9.342	0.0000 0.0065(2) 0.0065(2) 0.0083(2) 0.0086(3) 0.0080 0.0072(5) 0.0086(8) 0.0090(5) 0.0104 0.0000 0.0060(5) 0.0104 0.0091(5) 0.0098(1) 0.0107 0.0109	24.00 26.00 28.00 30.00	11.301 13.769 13.927 1.8892 5.816 7.040 8.718 11.348 15.651 2.9820 9.457 11.876 15.010 4.4678 9.105 10.656 13.534 17.816	0.0114 0.0118 0.0124 0.0000 0.0090(8) 0.0106 0.0122 0.0142 0.0170 0.0000 0.0122 0.0158 0.0187 0.0000 0.0130 0.0155 0.0192 0.0257 (cont.)		
	<u></u>	AUXILIARY	INFORMAT	10N			
METHOD	/APPARATUS/P	ROCEDURE :	SOURCE A	AND PURITY OF MA	ATERIALS:		
METHOD /APPARATUS/PROCEDURE: Recirculating vapor flow apparatus with copper equilibrium cell. Re- circulating pump described in ref. 1. Temperature measured with platinum resistance thermometer and pressure measured with a double-revolution Bourdon gauge. Samples of gas and liquid analysed by gas chromatography using thermistor thermal conductivity detectors. Details in source and ref. 2.			per	cent He4.	ontaining 1.4 mole .2% HD and 0.02% H ₂ .		
			$\delta T/K = \delta x_{He^{3}},$ REFEREN 1. Hizz <i>Rev</i> 2. Dunc	CES: A, M. J. and Sci. Instr. Can, A. G. an	<pre>ar = ±0.004; or 0.001 whichever is greater. Duncan, A. G., , <u>1969</u>, 40, 513. d Hiza, M. J., g., <u>1970</u>, 15, 42.</pre>		

COMPON	ENTS:		ORIGINAL MEASUREMENTS:			
(1) H	elium; He ³ ;	14762-55-1	Hiza, H. J., Nat. Bur. Standards,			
(2) n-Deuterium; n-D ₂ ; 7782-39-0			Tech. Note 621, <u>1972</u> .			
(2) 11	beacer 1 mm,					
EXPERIN	MENTAL VALUES	:				
		le fraction of hel	ium			
Т/К	P/bar	in vapor, ^Y He³				
		•не•				
20.00	0.2945	0.0000				
	5.286 5.664	0.9284(7) 0.9305(8)				
	8.553	0.9488(8)				
	12.604	0.9597(5)				
24 00	15.844 1.1205	0.9641(3)				
24.00	3.682	0.0000 0.6501				
	8.343	0.8202				
	12.504	0.8635				
28.00	16.044 2.9820	0.8846 0.0000				
20.00	8.808	0.5813				
	12.404	0.6725				
30.00	14.603 4.4678	0.7078 0.0000				
30.00	7.501	0.3259				
	10.035	0.4531				
	13.321	0.5542				
	17.161	0.6192				

COMPONENT	rs:		ORIGINAL	MEASUREMENTS:		
(1) H	Helium; He ⁴ ;	7440-59-7	Hiza, M. J., Nat. Bur. Standards,			
		n-D ₂ ; 7782-39-0	1	Note, 621, 1		
	-Deuterrun;	n-D ₂ ; //82-39-0				
VARIABLE	S:		PREPARED BY:			
Temper	ature, pressu	ıre	с. г.	Young		
EXPERIMEN	NTAL VALUES: Mole	fraction of helium	ı	Mole	fraction of helium	
т/к	P/bar	in liquid,	т/к	P/bar	in liquid,	
		["] He ⁴			^x He ⁴	
20.00	0.0045	0.00000			0.0100	
20.00	0.2945 9.846	0.00000 0.0085(5)	26.00	12.069 13.983	0.0182 0.0200	
	13.420	0.0092(6)		17.375	0.0212	
	16.941 19.450	0.0099(7) 0.0101		19.664 20.154	0.0252 0.0247	
22.00	0.6082	0.00000	28.00	2,9820	0.0000	
	8.515	0.0099(2)		6.805	0.0103	
1	10.363 14.093	0.0106 0.0133		7.112 10.294	0.0109 0.0148	
[	17.285	0.0136		15.461	0.0236	
24 00	20.063	0.0154		18.795	0.0278	
24.00	1.1204 8.712	0.00000 0.0126		19.153 20.016	0.0277 0.0292	
	10.639	0.0143	30.00	4.4678	0.0000	
	13.841	0.0157		8.943	0.0136	
	17.127 20.257	0.0195 0.0200		11.604 14.210	0.0192 0.0249	
26.00	1.8892	0.00000		16.493	0.0290	
	8.643	0.0146		20.670	0.0367	
	9.329	0.0142		20.684	0.0341	
					(cont.)	
		AUXILIARY	INFORMATI	0N		
METHOD /	APPARATUS/PRO	CEDURE :	SOURCE AN	D PURITY OF MAT	ERIALS:	
		flow apparatus			lines A grade	
with c	opper equilib	rium cell. Re-	sam	ple.	-	
		scribed in ref. 1. d with platinum	2. USA	EC sample 1.1	2% HD and 0.02%	
		ter and pressure	H ₂ .			
		ble revolution				
Bourdon	n gauge. Sa analysed by	mples of gas and gas chromatography				
using	thermistor th	ermal conductivity	ļ			
detecto	ors. Detail	s in source and				
ref. 2	•					
			ESTIMATEI	FRROP.		
			δ π / κ =	±0.01: δP/b	$ar = \pm 0.004;$	
			δ ^x He ⁴	$\delta y_{\mathrm{He}^{4}} = \pm 3\%$	or 0.001 whichever is greater.	
			REFERENCE	S:		
			l. Hiza	a, M. J. and	Duncan, A. G., , 1969, 40, 513.	
			2. Dunc	can, A. G. an	d Hiza, M. J., g., <u>1970</u> , <i>15</i> , 42.	
			]			
			I			

COMPONENTS: (1) Helium; He⁺; 7440-59-7 (2) n-Deuterium; n-D₂; 7782-39-0 EXPERIMENTAL VALUES:

т/к	P/bar	Mole fraction of helium in vapor, ^y He ⁴
20.00	6.832 10.042 13.696 18.254	0.9397(1) 0.9542(5) 0.9607(8) 0.9651(1)
24.00	4.037 8.453 14.221 20.439	0.6857 0.8240 0.8783 0.8995
28.00	8.098 10.642 15.744 19.281	0.5564 0.6312 0.7116 0.7477
30.00	7.243 10.556 15.431 20.274	0.2095 0.4665 0.5873 0.6444

COMPONENTS:	ORIGINAL MEASUREMENTS:
COMPONENTS.	
(1) Helium; He; 7440-59-7	Cannon, W. A. and Crane, W. E., Cryogenic Tech., <u>1968</u> , 4, 178.
(2) Fluorine; F ₂ ; 7782-41-4	
VARIABLES:	PREPARED BY:
Temperature, pressure	C. L. Young
-	
EXPERIMENTAL VALUES:	
Mole fraction of T/K P/bar helium in liquid phase, ^x He	
77 4.5 0.0002 77 18.3 0.0007	
77 35.5 0.0013	
12020.80.001612031.20.0059	
AUXILIARY	INFORMATION
METHOD /APPARATUS/ PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
System equilibrated in stainless steel	
equilibrium cell (which was occasional- ly agitated). Samples of liquid	cent. 2. Sample purity 98.5 mole per cent
phase analysed by mass spectrometry.	passed through sodium fluoride
Details in source.	pellets to remove hydrogen fluoride.
	ESTIMATED ERROR:
	$\delta T/K = \pm 0.2;  \delta P/bar = \pm 0.3;$ $\delta x_{He} = \pm 0.0001  (\text{estimated by})$
	He compiler)
	REFERENCES :

COMPO	NENTS:			EVALUATOR:
1.	Helium-3;	He ³ ;	14762-55-1	Colin Young,
2.	Hydrogen;	H ₂ ;	1333-74-0	School of Chemistry, University of Melbourne, Parkville, Victoria 3052, AUSTRALIA.

There are two sets of data reported for this system. Matyash, Mank and Starkov (2) report one isotherm at 20.4 K up to 9.3 bar and a few points at higher and lower temperatures to indicate the temperature dependence. Hiza (1) has reported a more detailed study at 22.00 K to 28.00 K up to pressures of 15.4 bar. There is some discrepancy between the values of Matyash *et al.* (2) and those extrapolated to the same temperature using Hiza's data. Matyash *et al.*'s mole fraction of helium in the liquid phase is consistently lower than Hiza's extrapolated data particularly at lower pressures.

It is difficult to classify these data as both appear to be of high precision but in view of the accuracy of other studies by Hiza in the same publication (1) we classify Hiza's data as tentative and Matyash etal.'s (2) data as doubtful.

1. Hiza, M. J., Nat. Bur. Standards Techn. Note 621, 1972.

 Matyash, I. V., Mank, V. V. and Starkov, M. G., Ukr. Fiz. 2h., <u>1966</u>, 11, 497.

```
COMPONENTS:
 ORIGINAL MEASUREMENTS:
 1. Helium-3; He<sup>3</sup>; 14762-55-1
 Matyash, I. V., Mank, V. V. and
 Starkov, M. G., Ukran. Fiz. Zhur.,
 2. Hydrogen; H<sub>2</sub>; 1333-74-0
 1966, 11, 497.
VARIABLES:
 PREPARED BY:
 Temperature, pressure
 C. L. Young
EXPERIMENTAL VALUES:
 Mole fraction of helium-3
 T/K
 P/bar
 in liquid, x<sub>He<sup>3</sup></sub>
 17.2
 5.7
 0.0039
 7.4
 0.0041
 19.0
 4.3
 0.0036
 6.1
 0.0059
 0.0072
 8.1
 20.4
 2.0
 0.0019
 3.6
 0.0041
 4.3
 0.0051
 4.9
 0.0053
 8.1
 0.0092
 9.3
 0.0103
 23.0
 4.9
 0.0065
 24.0
 4.9
 0.0082
 AUXILIARY INFORMATION
METHOD :
 SOURCE AND PURITY OF MATERIALS:
Helium in liquid estimated by
 No details given.
measuring nuclear magnetic resonance
absorption.
 ESTIMATED ERROR:
 \delta T/K = \pm 0.1; \quad \delta P/bar = \pm 0.1;
 \delta x_{\rm He} = ±0.0003 (estimated by compiler)
 REFERENCES:
```

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Helium; He ³ ; 14762-55-1	Hiza, M. J., Nat. Bur. Standards Tech. Note 621, 1972.
(2) n-Hydrogen; n-H ₂ ; 1333-74-0	1972.
VARIABLES:	PREPARED BY:
Temperature, pressure .	C. L. Young
EXPERIMENTAL VALUES:	
Mole fraction of T/K P/bar helium in liquid,	
^{<i>x</i>} _{He} ³	
22.00 1.5824 0.0000	
8.298 0.0123 10.601 0.0151	
13.724 0.0201 15.134 0.0215	
24.00 2.565 0.0000	
7.967 0.0137 10.374 0.0176	
12.790 0.0221	
14.979 0.0285 26.00 3.9334 0.0000	
7.825 0.0113 10.435 0.0178	
13.621 0.0285	
15.375 0.0331 28.00 5.7295 0.0000	
9.301 0.0148 11.700 0.0227	
13.172 0.0280	
15.406 0.0368	
AUXILIARY	INFORMATION
METHOD /APPARATUS/PROCEDURE:	
Recirculating vapor flow apparatus.	SOURCE AND PURITY OF MATERIALS:
Copper equilibrium cell. Recircula-	He ⁴ .
ting pump described in ref. 1. Tem- perature measured with platinum resis-	2. Purified sample equilibrated for several months.
tance thermometer and pressure measu-	
red with a double-revolution Bourdon gauge. Samples of gas and liquid	
analysed by gas chromatography using thermistor thermal conductivity de-	
tectors. Details in source and ref.	
2.	
	ESTIMATED ERROR:
	$\delta T/K = \pm 0.01;  \delta P/bar = \pm 0.004; \\ \delta x_{He^3} = \pm 0.001.$
	He'
	REFERENCES :
	1. Hiza, M. J. and Duncan, A. G.,
	<i>Rev. Sci. Inst.</i> , <u>1969</u> , <i>40</i> , 513. 2. Duncan, A. G. and Hiza, M. J.,
	Adv. Cryog. Engng., <u>1970</u> , 15, 42.
~	

COMPO	NENTS:			EVALUATOR:
1.	Helium-4;	He ⁴ ;	7440-59-7	Colin Young,
				School of Chemistry,
2.	Hydrogen;	H ₂ ;	1333-74-0	University of Melbourne,
				Parkville, Victoria 3052,
				AUSTRALIA.

There are five sets of data on this system but no two sets are in complete accord. The unpublished data by Smith (1) at 17.4 K, 20.4 K and 21.7 K are consistent within a few percent of those of Streett *et al.* (2) only at 20.4 K. Smith's (1) data at 21.7 K appear quite erratic and there is a discrepancy of 30-50 percent between the data of Streett *et al.* (2) and those of Smith (1) at 17.4 K. Smith's data are therefore rejected.

The helium-4 + normal hydrogen data of Streett *et al.* (2), Sneed *et al.* (3) and the helium-4 + para hydrogen data of Sonntag *et al.* (4) are broadly consistent with the data of Hiza (5). However there appears to be some discrepancies of up to 20 percent in the mole fraction of helium in the liquid phase in the lower pressure range (below 10 bar). The consistency of the data of Streett *et al.* (2), Sneed *et al.* (3) and Sonntag *et al.* (4) should not be over-emphasised since the apparatus was essentially the same and all compositions were estimated by mass spectrometry in all three studies. The data of Streett *et al.* (2), Sneed *et al.* (3) Sonntag *et al.* (4) and Hiza (5) are all classified as tentative.

The only other data are those of Roellig and Giese (6) which are of lower precision than and not completely consistent with those measurements discussed in the previous paragraph and are therefore classified as doubtful.

## References

- 1. Smith, S. R., Ph.D. Thesis, Ohio State University, Columbus, 1952.
- Streett, W. B., Sonntag, R. E. and Van Wylen, G. J., J. Chem. Phys., 1964, 40, 1390.
- Sneed, C. M., Sonntag, R. E. and Van Wylen, G. J., J. Chem. Phys., <u>1968</u>, 49, 2410.
- Sonntag, R. E., Van Wylen, G. J. and Crain, R. W., J. Chem. Phys., <u>1964</u>, 41, 2399.
- 5. Hiza, M. J., Nat. Bur. Standards Techn. Note 621, 1972.
- 6. Roellig, L. O. and Giese, C., J. Chem. Phys., <u>1962</u>, 37, 114.

		ORIGINAL MEASUREMENTS:
(1) Helium	; He; 7440-59-7	Roellig, L. O. and Giese, L.,
· · · · · · · · · · · · · · · · · · ·	,, ,440-33-7	J. Chem. Phys., 1962, 37, 114.
(2) Hydroge	en; H ₂ ; 1333-74-0	
VARIABLES:		PREPARED BY:
Temperature	, pressure	C. L. Young
EXPERIMENTAL V	VALUES:	
т/к	$P^{\dagger}$ /bar	10 ² Mole fraction of helium
		in liquid, x _{He}
16.3±0.2	1.88±0.07	1.26±0.32
17.7±0.3	3.82±0.19	3.80±0.52
19.8±0.5 20.7±0.5	7.10±0.20 1.79±0.19	$11.05\pm0.50$ 0.69±0.40
20.7±0.5 21.6±0.5	3.72±0.19	3.01±0.61
22.3±0.4	7.74±0.18	8.35±0.74
26.8±0.2	2.01±0.15	0.59±0.06
27.3±0.3 28.6±0.3	4.38±0.26 6.59±0.40	$1.03\pm0.10$ 2.89±0.27
		AUXILIARY INFORMATION
	RATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Static glass with stirren sampling val of helium de vapor phase Bourdon gaug sition deter total amount in cell and	s equilibrium cell r and vapor and l lues. Partial p etermined from and and pressure meas	SOURCE AND FURITY OF MATERIALS: l fitted iquid No details given. ressure alysis of sured with le compo- edge of hydrogen apor or
Static glass with stirrer sampling val of helium de vapor phase Bourdon gaug sition deter total amount in cell and	s equilibrium cell r and vapor and l lues. Partial p etermined from and and pressure mean ge. Liquid samp rmined from knowle ts of helium and l composition of va	SOURCE AND PURITY OF MATERIALS: l fitted iquid No details given. ressure alysis of sured with le compo- edge of hydrogen apor or
Static glass with stirrer sampling val of helium de vapor phase Bourdon gaug sition deter total amount in cell and	s equilibrium cell r and vapor and l lues. Partial p etermined from and and pressure mean ge. Liquid samp rmined from knowle ts of helium and l composition of va	SOURCE AND PURITY OF MATERIALS: l fitted iquid No details given. ressure alysis of sured with le compo- edge of hydrogen apor or quid.
Static glass with stirren sampling val of helium de vapor phase Bourdon gaug sition deter total amount in cell and	s equilibrium cell r and vapor and l lues. Partial p etermined from and and pressure mean ge. Liquid samp rmined from knowle ts of helium and l composition of va	SOURCE AND FURITY OF MATERIALS: 1 fitted iquid No details given. alysis of sured with le compo- edge of hydrogen apor or quid. ESTIMATED ERROR:

COMPONENTS:	<u> </u>		ORIGINAL MEASUREMENTS:				
,_, .	He; 7440-59-7 n; H ₂ ; 1333-74-		Sneed, C. M., Sonntag, R. E. and Van Wylen, G. J., <i>J. Chem. Phys.</i> , <u>1968</u> , 49, 2410.				
VARIABLES:			PREPAREI	D BY:			
Temperature,	pressure		с. г.	Young			
EXPERIMENTAL VA	LUES:	<u>, , , , , , , , , , , , , , , , , , , </u>	1				
T/K P/ba	Mole fraction r in liquid, ^x He	of helium in vapor ^y He		<i>P/</i> bar	Mole fraction in liquid, ^x He	of helium in vapor, ^Y He	
15.50 26.6 34.5 41.4 51.8	0.0095 0.0112 0.0113 0.0118	0.971 0.970 0.973 0.975	26.00 27.80	103.4 23.6 34.5 51.6	0.144 0.066 0.102 0.166	0.736 0.530 0.558 0.567	
52.5 17.00 29.0 41.3 51.7 65.4	0.0120 0.0157 0.0166 0.0182	0.974 0.951 0.957 0.960		65.5 82.7 88.1 91.1 92.9	0.205 0.242 0.253 0.260	0.556 0.543 0.549 0.556	
82.8 20.40 34.5 41.4 51.8 65.5 82.8	0.0189 0.0196 0.0335 0.0356 0.0405 0.0432 0.0431	0.962 0.966 0.897 0.902 0.903 0.912 0.920	28.05	92.9 103.6 70.3 90.1 97.3 103.4 58.6	0.257 0.264 0.255 0.297 0.314 0.328 0.212	0.561 0.576 0.504 0.497 0.509 0.517 0.521	
103.4 23.00 41.4 51.6 65.5 82.7	0.0450 0.058 0.065 0.071 0.076	0.927 0.824 0.828 0.837 0.851	28.45	68.7 70.8 72.7 78.5 42.9	0.264 0.269 0.279 0.321 0.150	0.486 0.475 0.477 0.441 0.515	
103.4 26.00 41.3 52.1 65.5 82.9	0.078 0.092 0.111 0.138 0.157	0.867 0.688 0.695 0.705 0.716		51.7 59.6 63.2 64.9 66.7	0.191 0.252 0.276 0.297 0.363	0.496 0.474 0.441 0.416 0.376	
		AUXILIARY	INFORMAT	ION			
Recirculating with magnetic ture. Sampl spectrometry. with platinum	n resistance then sured using Bourd	t tempera- nass neasured rmometer.	1. Β 5. Μ ESTIMATI δT/K	ureau of ample. atheson ED ERROR: = ±0.01; = ±0.003 1.	$\delta P/\text{bar} = \pm 0$ .	le.	

COMPON	ENTS:			ORIGINAL MEASUREMENTS:					
<ol> <li>Helium; He; 7440-59-7</li> <li>Hydrogen; H₂; 1333-74-0</li> </ol>				Van Wy		Sonntag, R. E. J., J. Chem. P			
EXPERIN T/K	MENTAL V P/bar	ALUES: Mole fraction in liquid, ^x He			P/bar	Mole fraction in liquid, ^x He	of helium in vapor, ^y He		
29.00	29.8 36.3 41.4 51.7 52.0		0.457 0.469 0.465 0.380 0.365	29.80	28.4 34.5 38.6 40.1 40.3	0.195	0.387 0.390 0.358 0.327 0.317		

.

COMPONEN	TS:			ORIGINAL	MEASUREM	ENTS:		
		He; 7440-59- H ₂ ; 1333-7		Sonntag, R. E., Van Wylen, G. J. and Crain, R. W., <i>J. Chem. Phys.</i> , <u>1964</u> , <i>41</i> , 2399.				
VARIABLE	S: ature, pi	ressure		PREPARED BY: C. L. Young				
FYPERIME	NTAL VALUE	·····						
т/к	P/bar	Mole fractic			P/bar	Mole fraction in liquid, ^x He	of helium in vapor, ^y He	
20.40	$\begin{array}{c} 2.39\\ 3.48\\ 5.17\\ 6.89\\ 8.62\\ 10.34\\ 12.07\\ 13.79\\ 17.24\\ 17.24\\ 20.68\\ 27.58\\ 34.47\\ 34.47\\ 4.45\\ 5.17\\ 6.96\\ 8.62\\ 10.38\\ 12.07\\ 13.79\\ 17.24\\ 20.68\\ 27.58\\ 34.57\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5$	0.0023 0.0058 0.0060 0.0087 0.0102 0.0117 0.0155 0.0177 0.0225 0.0204 0.0225 0.0266 0.0294 0.0308 0.0316 0.0054 0.0055 0.0105 0.0138 0.0175 0.0227 0.0240 0.0240 0.0300 0.0365 0.0473	0.4940 0.6279 0.7280 0.7821 0.8083 0.8300 0.8471 0.8579 - 0.8664 0.8680 0.8872 0.8856 - 0.8599 0.4560 0.5220 0.6170 0.6700 0.7950 0.7910	23.00 26.00 29.00 31.00	34.47 6.96 10.34 13.79 17.24 20.68 27.58 34.47 9.79 12.03 13.79 17.34 20.72 27.61 34.54 13.79 17.13 17.24 20.68 22.34 22.89 24.13	0.0562 0.0079 0.0200 0.0303 0.0367 0.0390 0.0595 0.0637 0.0782 0.0810 0.0.9 0.0222 0.0305 0.0478 0.0633 0.1006 - - 0.0217 0.0440 0.0455 0.0752 0.0908 -	$\begin{array}{c} 0.8250\\ 0.2966\\ 0.4557\\ 0.5355\\ 0.5877\\ 0.5952\\ 0.6300\\ 0.6651\\ 0.6505\\ 0.6715\\ 0.6804\\ 0.1760\\ 0.2615\\ 0.3115\\ 0.3790\\ 0.4190\\ 0.4600\\ 0.4190\\ 0.4600\\ 0.1317\\ 0.2010\\ -\\ 0.2314\\ -\\ 0.2368\\ 0.2394 \end{array}$	
			AUXILIARY	INFORMATI	ON			
Recircu with ma ture. conduct with pl Pressur	ulating v agnetic p Samples tivity. Latinum p	esistance th ed with Bour	thermal measured ermometer.	1. No đ 2. Hydr	details cogen co 1% ortho	OF MATERIALS: given. ntained appro: -H ₂ , 99.79% pa		
				$\delta T/K = \delta x_{He}, \delta REFERENCE 1. Str$	$\pm 0.005;$ $5y_{He} = \pm$ ES:	δP/bar = ±0 0.001. . B., Cryogen		

COMPONENTS: (1) Helium; He; 7440-59-7 (2) Hydrogen; H ₂ ; 1333-74-0				ORIGINAL MEASUREMENTS: Sonntag, R. E., Van Wylen, G. J. and Crain, R. W., J. Chem. Phys., <u>1964</u> , 41, 2399.				
EXPERI	MENTAL V	VALUES:						
T/K	P/bar	Mole fraction in liquid, ^x He			P/bar	Mole fraction in liquid, ^x He	of helium in vapor, ^y He	
31.00 31.50	25.27 26.92 12.17 14.00 15.51	0.1812 0.0107	0.2353 0.1844 0.0634 0.1099 0.1402	31.50	17.24 18.96 20.68 21.72 22.89	0.0808 0.0928	0.1568 0.1697 0.1713 0.1870 0.1657	

1

•

ORIGINAL MEASUREMENTS: COMPONENTS: (1) Helium; He; 7440-59-7 Streett, W. B., Sonntag, R. E. and Van Wylen, G. J., J. Chem. Phys., (2) Hydrogen; H₂; 1333-74-0 1964, 40, 1390. VARIABLES: PREPARED BY: Temperature, pressure C. L. Young EXPERIMENTAL VALUES: Mole fraction of helium Mole fraction of helium P/bar in liquid, T/K P/bar in liquid, T/K in vapor, in vapor,  $x_{\rm He}$ ^xHe ^y_{He} ^yHe 15.50 0.9378 3.41 20.40 12.07 0.0154 0.8603 0.0029 0.9551 5.17 13.79 0.0167 0.8713 6.89 0.0046 0.9631 17.24 0.0205 0.8841 0.8897 0.0051 20.68 0.0236 8.62 0.9677 10.34 0.0055 0.9702 27.58 0.0296 0.9008 0.9714 12.07 0.0064 34.47 0.0339 0.9035 13.79 0.0071 0.9729 23,00 3.45 0.0038 0.3700 17.24 0.0082 0.9741 5.17 0.0075 0.5344 0.0087 20.68 0.9748 6.89 0.0115 0.6290 17.07 3.90 0.0036 0.8967 8.62 0.0136 0.6787 5.17 0.0043 0.9186 10.34 0.0172 0.9828 6.89 0.9785 0.0057 0.9330 12.07 0.0215 8.62 0.0072 0.9412 13.79 0.0239 0.9761 10.34 0.0080 0.9464 17.24 0.0291 0.9709 12.07 0.0089 0.9503 20.68 0.0355 0.9645 13.79 0.0100 0.9515 27.58 0,0458 0.9542 17.24 0.0114 0.9556 34.47 0.0546 0.9454 0.9582 26,00 0.9933 20.68 0.0131 5.58 0.0067 27.58 0.9590 0.9903 0.0151 6.89 0.0097 20.40 2.41 0.0034 0.5360 8,62 0.0143 0.9857 10.34 3.45 0.0041 0.6545 0.0192 0.9808 5.17 0.0061 0.7540 13.79 0.0286 0.9714 0.0084 0.0364 6.89 0.8030 17.24 0.9636 8.62 0.0105 0.8320 20.68 0.0476 0.9524 27.58 0.9336 10.34 0.0130 0.8480 0.0664 AUXILIARY INFORMATION METHOD / APPARATUS / PROCEDURE : SOURCE AND PURITY OF MATERIALS: Details of apparatus given in ref. 1. Recirculating vapor flow apparatus No details given. with magnetic pump at ambient tempera-ture. Samples of coexisting phases analysed by mass spectrometry. ESTIMATED ERROR:  $\delta T/K = \pm 0.02$  or less;  $\delta P/bar = \pm 0.03$ ;  $\delta x_{\rm He} = \pm 0.0002; \quad \delta y_{\rm He} = \pm 0.002$ (estimated by compiler). **REFERENCES**: 1. Streett, W. B., Cryogenics, 1965, 5, 27.

СОМРО	NENTS:			ORIGI	NAL MEA	SUREMENTS:	
		He; 7440-59-7 H ₂ ; 1333-74		Streett, W. B., Sonntag, R. E. and Van Wylen, G. J., <i>J. Chem. Phys.</i> , <u>1964</u> , 40, 1390.			
EXPERI	IMENTAL V	ALUES:					
т/к	<i>P/</i> bar	Mole fracti in liquid, ^x He	on of helium in vapor, ^y He		P/bar	Mole fractic in liquid, ^x He	on of helium in vapor, ^Y He
26.00 29.00	34.47 8.76 10.41 12.07 13.79 17.24	0.0848 0.0091 0.0150 0.0220 0.0307 0.0459	0.9152 0.9909 0.9850 0.9780 0.9693 0.9541	31.50	15.51 17.27 18.96 20.68 22.41 24.20	0.0361 0.0483 0.0626 0.0818 0.1047 0.1659	0.1564 0.1835 0.2030 0.2137 0.2149 0.1758
30.60	20.68 27.58 34.47 20.68 27.58 34.47	0.0621 0.0963 0.1335 0.0729 0.1324 0.1795	0.9379 0.9037 0.8665 0.3032 0.3260 0.3036	31.90	12.03 13.79 15.17 16.44 17.27 18.03	0.0081 0.0207 0.0317 0.0429 0.0499	0.0400 0.0831 0.1175 0.1386 0.1482 0.1562
31.00	12.17 13.72 17.24 20.68 22.41 24.13 25.86 27.58	0.0149 0.0251 0.0478 0.0749 0.0873 0.1103 0.1293	0.9851 0.9749 0.9522 0.9251 0.9127 0.8897 0.8707	32.50	19.00 19.96 20.68 21.27 13.00 13.79 15.17	0.0687 0.0871 0.1010 0.1202 0.0098 0.0168 0.0310	0.1619 0.1635 0.1588 - 0.9688 0.9520 0.9255
31.50	27.38 28.48 12.20 13.72	0.1564 0.2087 0.0127 0.0230	0.8436 0.7913 0.0767 0.1194		16.69 17.24 17.79	0.0509 0.0599 0.0675	- - -

(1) H		COMPONENTS:			ORIGINAL MEASUREMENTS:				
	lelium;	He; 7440-59-	-7	Streett	t, W. В	., Astrophysi	cal J.,		
(2) H	lydrogen;	; H ₂ ; 1333-	74-0	<u>1973</u> , <i>186</i> , 1107.					
/ARIABI	ES:			PREPARED	BY:	<u></u>			
ſemper	ature, p	pressure		С. г. у	Young				
EXPERIN	ENTAL VAL	UES:	······						
г/к	<i>P/</i> bar	Mole fraction in hydrogen rich phase, ^x He	in helium	т/к	P/bar	Mole fractio in hydrogen rich phase, ^x He	in helium		
26.00	5.9	0.0058	0.2637	27.80	124	0,2660	0.6295		
	8.7 13.1	0.0137	0.4290	28.47	145 145	0.3735	0.6770		
27.18	13.1 59	0.0258 0.1624	0.5700 0.6264	20.4/	145	0.3755	0.5833		
	70 83	0.1795 0.2015	0.6409 0.6513		159 172	0.3147	0.6150 0.6853		
	97	0.2142	0.6665		207	0.2347	0.7335		
	110 124	0.2157 0.2133	0.6775 0.7045	29.00	22 25	0.0664 0.0801	0.4498 0.4698		
	138	0.2061	0.7236		30	0.1059	0.4865		
	172 210	0.1846 0.1619	0.7734 0.8163		35 179	0.1335 0.3650	0.4913 0.5695		
	241	0.1461	0.8470		188	0.3271	0.6196		
	275 310	0.1314 0.1176	0.8686 0.8800		207 241	0.2839 0.2335	0.6815 0.7485		
	345	0.1079	0.8910		276	0.1999	0.7933		
	414 486	0.0897	0.923 0.944		345 414	0.1566 0.1270	0.8473 0.8715		
	552	0.0747 0.0640	0.963		468	0.1101	0.903		
	621 637	0.0549 0.0532	0.967 0.973		552 621	0.0911 0.0778	0.931 0.9495		
27.80	69	0.2092	0.5787		683	0.0689	0,963		
	83 103	0.2459 0.2721	0.5704 0.5973	31.00	755 299	0.0610 0.3574	0.969 0.6180		
			AUXILIARY	INFORMAT	ION				
METHOD	APPARATI	IS/PROCEDURE:		SOURCE A	ND PURIT	Y OF MATERIALS:			
		vapor flow a	oparatus	No	o detai	ls given.			
compon stainl	ents mad ess stee	le of special	ly selected ture measu-			-			
		re measured v tance gauge.							
of lig	uid and	gas analysed							
conduc	tivity.								
				ESTIMATE	D ERROR:				
				δт/К =	±0.02;	$\delta P/\text{bar} = \pm 0$	.18;		
				^o ^x He'	^y He = :	£0.0002.			
				REFERENC	CES:				
				1					
				REFERENC	CES:				

COMPO	NENTS:			ORIGINAL MEASUREMENTS:				
(1)	Helium; H	le; 7440-59-7			tt, W. 1 186, 1	B., Astrophysa 107.	ical J.,	
(2)	Hydrogen;	; H ₂ ; 1333-74	-0	<u>1575</u> , 1007, 1107.				
EXPERI	IMENTAL V	ALUES:						
T/K	P/bar	Mole fractic in hydrogen rich phase ^x He		n T/K	<i>P/</i> bar	Mole fractio in hydrogen rich phase ^x He	n of helium in helium rich phase ^y He	
31.00	311 371 412 483 552 621 689 758	0.2066 0.2234 0.1930 0.1521 0.1273 0.1074 0.0919 0.0831	0.6770 0.7960 0.8297 0.8735 0.908 0.902 0.948 0.954 0.968	61.50 70.30	3789 3668 3723 3864 4071 4282 4346 4482 4016	0.1445 0.393 0.362 0.311 0.261 0.232 0.222 0.197	0.911 0.754 0.778 0.810 0.844 0.870 0.982	
34.95	896 507 524 531 586 689 824 965 1103	$\begin{array}{c} -\\ 0.4455\\ 0.3614\\ 0.3413\\ 0.2780\\ 0.1877\\ 0.1419\\ 0.1137\\ 0.0899\end{array}$	0.908 0.6300 0.7105 0.7266 0.7880 0.841 0.887 0.946 0.946 0.964	77.61 84.82	4916 4491 4640 5192 5912 5516 5654 5864	0.157 0.4243 0.3527 0.3061 0.1944 0.1655 0.3711 0.3326 0.2843	0.914 0.7042 0.7715 0.8187 0.8980 0.905 	
38.88	1179 745 769 831 897 1036 1173 1380	0.0824 0.4301 0.3517 0.3051 0.2347 0.1851 0.1427 0.1095	0.968 0.7055 0.7563 0.7895 0.822 0.860 0.907	93.00	6205 6584 6984 6550 6902 7239 7564 7943	0.2403 0.2066 0.1756 0.4270 0.3578 0.2703 0.2360 0.2020	0.842 0.870 0.895 0.7330 0.7960 0.8357 0.864 0.885	
61.50	1493 2758 2785 2896 3110 3349 3527 3544	$\begin{array}{c} 0.0939\\ 0.3731\\ 0.3449\\ 0.2989\\ 0.2515\\ 0.2033\\ -\\ 0.1764 \end{array}$	0.957 0.7750 0.7912 0.821 0.850 0.882 0.901	100.00	8137 7598 7957 8274 8618 8977 9170 9377	0.1837 0.4351 0.3420 0.2876 0.2464 0.2185 0.2020 0.1870	0.889 0.7203 0.7850 0.8210 	

COMPONENT	:S:			ORIGINA	L MEASUREME	NTS:		
(1) He	lium; He ⁴ ; [.]	7440-59-7		Hiza.	M. T. No	t Bu	r. Standard	8
	Hydrogen; n·		-0		Note 621,			5
(2) 11-	nyurogen, n	-112; 1333-14	J	10011.	1000 021	1972	<b>_</b> •	
VARIABLES	5:			PREPARE	D BY:			
Tempera	ture, pressu	re		с. г.	Young			
							·····	
EXPERIMEN	VTAL VALUES:							
	Mole	fraction of	helium	L		Mole	fraction of	helium
т/к	P/bar	in liquid,	^x He ⁴	т/К	<i>P/</i> bar		in liquid,	^x He ⁴
20.00	0.9067	0.0000		26.00	3,9334	<u></u>	0.0000	
20.00	7.346	0.0110		20.00	8.481		0.0150	
	11.208 15.965	0.0172 0.0211			10.925 12.490		0.0238 0.0283	
	20.112	0.0244			13,959		0.0307	
22.00	1.5824 5.8606	0.0000 0.0107			16.024 18.050		0.0373 0.0430	
	9.777	0.0204		20.00	20.257		0.0471	
	14.655 20.623	0.0266 0.0343		28.00	5.730 8.356		0.0000 0.0141	
24.00	2.5648 7.388	0.0000 0.0155			11.707 11.793		0.0267 0.0264	
	10.908	0.0231			17.020		0.0458	
	16.547 20.067	0.0333 0.0411			19.981		0.0566	
	201007	010122				100	ont.)	
						,		
		A11		TNEODMA	TON			
				INFORMAT		07. 14.5	PDT 41 C .	
· ·	APPARATUS/PRC			ľ	AND PURITY			
	lating vapor pper equilibn		Re-		mple.	OIM	ines A grade	3
circula	ting pump des ture measured	scribed in re		(2) D	-	mplo	equilibrated	for
resista	nce thermomet	er and press	ure		everal mon		equilibrated	1 101
	d with a doub gauge. Sam			1				
liquid a	analysed by g	jas chromatog	raphy					
	hermistor the rs. Details							
ref. 2.		Dour oo u						
				ESTIMAT	ED ERROR:		<u> </u>	
				ł		δ <i>P/</i> ba	$r = \pm 0.004;$	
				$\delta x_{\rm He}$ 4'	δy _{He} =	±3% o	r 0.001 which is great	chever ter.
]				REFEREN	VCES:			
							uncan, A. G.	
							<u>1969</u> , 40, 5 Hiza, M. J.	
							., <u>1970</u> , <i>15</i> ,	

OMP	ONENTS:			ORIGINAL MEASUREMENTS:				
(1)	Helium	n; He; 7440-	59-7	Hiza, M. J., Nat. Bur. Standards, Tech. Note 621, <u>1972</u> .				
(2)	n-Hydr	ogen; n-H2;	1333-74-0	1864. 1000 001, <u>1972</u> .				
XPE	RIMENTA	L VALUES:						
	m /17	Mo: P/bar	le fraction of	helium				
	т/К	P/Dai	in vapor, y	He ⁴				
	20.00	0.9067	0.0000					
		6.233 10.414	0.8049 0.8630					
		15.062	0.8867					
	24.00	19.281 2.565	0.8953 0.0000					
		6.726 10.852	0.5301 0.6543					
		15.517	0.7161					
	26.00	20.202 3.9334	0.7506 0.0000					
	20100	8.735	0.4151					
		12.186 16.289	0.5335 0.5990					
	28.00	19.960 5.730	0.6218 0.0000					
	20.00	8.749	0,2259					
		11.931 16.095	0.3540 0.4374					
		20.343	0.4909					

· · · · · · · · · · · ·				
COMPON	ents:			ORIGINAL MEASUREMENTS:
(1) [,]	Helium;	He; 7440-59-	-7	Sneed, C. M., Sonntag, R. E. and Van Wylen, G. J., J. Chem. Phys.,
(2)	p-Hydrog	en; H ₂ ; 1333	3-74-0	<u>1968</u> , <i>49</i> , 2410.
1				
		<u> </u>		
VARIAB	rature, p	rassura		PREPARED BY: C. L. Young
10				0. 1. 10ung
EXPERI	MENTAL VALU	JES:		
	- 4	Mole fractio		
т/к	<i>P/</i> bar	in liquid, ^x He	in vapor ^Y He	,
				-
20.40	58.0 73.2	0.0461 0.0459	0.903	
	86.7 103.4	0.0442 0.0446	0.914 0.922	
27.80	19.7 34.5	0.049 0.104	0.482 0.546	
	51.7 65.6	0.170 0.227	0.548 0.530	
	82.5 89.4	0.281 0.293	0.509 0.493	
29.00	100.7 36.7	0.308 0.143	0.483 0.447	
	43.2 47.4	0.191 0.249	0.424	
	48.0	0.261	0.359	
	48.6	0.305	0.305	_
		<u> </u>		
10101100	(100100		AUXILIARI	INFORMATION SOURCE AND PURITY OF MATERIALS:
		US/PROCEDURE: vapor flow app	paratus	1. Bureau of Mines high purity
with n	nagnetic p	pump at ambien s analysed by	it tempera-	sample.
specti	cometry.	Temperature	measured	<ol> <li>Matheson ultrapure sample obtained as boil-off gas from equilibrated</li> </ol>
Pressi	ire measu	resistance the red using Bour rce.	don gauge.	liquid at 0.68 bar.
Detail	ls in soui	cce.		
				ESTIMATED ERROR:
				$\begin{array}{llllllllllllllllllllllllllllllllllll$
				REFERENCES:

COMPONENTS:			ORIGINAL N	MEASUREMENTS:			
	·	; 7440-59-7 r; 7439-90-9	Kidnay, A. J., Miller, R. C. and Hiza, M. J., Ind. Eng. Chem. Fundam., <u>1971</u> , 10, 459.				
VARIABLES:	· · · · ·		PREPARED I	BY:			
Temperatu	ire, pres	sure	С. L. Ус	oung			
EXPERIMENTAL	L VALUES:						
т/к	P/bar	Mole fraction of helium in liquid phase, x _{He}	т/К	P/bar Mole fraction of helium in liquid phase, $x_{ m He}$			
117.09 120.85	10.03 19.91 41.01 10.13 20.21 40.36 80.65	0.000252 0.000794 0.00155 0.000294 0.000806 0.00182 0.00376	150.00	10.380.00041720.570.0019720.570.0019740.820.0051881.870.0116115.110.0159			
129.60	121.4 4.77 10.22 20.42 20.42 42.04 80.25 120.6 120.6	0.00571 0.0000315 0.000507 0.00124 0.00144 0.00272 0.00521 0.00816 0.00824					
139.56	10.35 20.52 40.51 80.6 118.8	0.000526 0.00161 0.00364 0.00778 0.0116					
			INFORMATIC				
METHOD /APP				ND PURITY OF MATERIALS:			
Recircula Temperatu resistanc measured samples a	ting vap re measu te thermon with Bou nalysed J	or flow apparatus. red with platinum	1. Bure 2. Kryp puri per	eau of Mines Grade A sample. pton Research grade sample ity better than 99.9975 mole cent.			
			$\delta x_{\rm He} = \pm$ REFERENCE	<pre>±0.05; δP/bar = ±0.3%; ±1% (estimated by compiler) ES: can, A. G. and Hiza, M. J., Inst. Chem. Eng. J., <u>1970</u>, 16</pre>			

COMPO	NENTS:		EVALUATOR:
l. Helium; He;	7440-59-7	Colin Young,	
<b>+ •</b>	neradin, ne,		School of Chemistry,
2.	Neon; Ne;	7440-01-9	University of Melbourne,
	10011/ 110/		Parkville, Victoria 3052,
			AUSTRALIA.

There are only two published sets of results on this system. The temperature and pressure ranges of the data of Knorn (1) and Heck and Barrick (2) do not overlap appreciably. It is therefore difficult to establish the extent of agreement of the two sets of data solely on the basis of values in the overlapping range. Knorn's data are thought to be more accurate at low pressure. Both sets of data are classified as tentative.

## References

- 1. Knorn, M., Cryogenics, <u>1967</u>, 7, 177.
- 2. Heck, C. K. and Barrick, P. L., Adv. Cryog. Engng., <u>1966</u>, 12, 714.

COMPONEN	TS:			ORIGINA	MEASUREM	ENTS:	
(1) Helium; He; 7440-59-7 (2) Neon; Ne; 7440-01-9			Heck, C. K. and Barrick, P. L., Adv. Cryog. Engng., <u>1966</u> , 12, 714.				
VARIABLE	2S :	·····	· · · · · · · · · · · · · · · · · · ·	PREPAREI	D BY:	<u> </u>	
Temperature, pressure				С. L.	Young		
EXPERIME	NTAL VALU		- 6 1 1 2			N-7 - 7	
т/к	P/bar	Mole fraction in liquid, ^x He		л . т/к	P/bar	Mole fraction in liquid, ^x He	of helium in gas, ^y He
41.90	23.0 25.6 28.0 29.2 34.1 38.1 39.9	0.0100 0.0219 0.0307 0.0366 0.0602 0.0801 0.0993	0.0784 0.119 0.153 0.172 0.215 0.221 0.221	35.90	36.7 45.6 47.6 54.1 55.4 64.2	0.0562 0.0598 0.0831 0.103 0.111 0.134	0.613 0.633 0.637 0.631
38.88	42.3 15.9 23.3 28.6 37.3 49.8 58.0 61.5 63.8	0.173 0.0248 0.0416 0.0701 0.113 0.169 0.205	0.225 0.140 0.339 0.408 0.461 0.485 0.463 0.443 0.443	32.89	73.3 84.1 91.4 96.9 8.1 22.3 40.8 57.1 76.9	0.168 0.212 0.256 - 0.0271 0.0563 0.0870 0.1170	0.615 0.580 - 0.537 0.410 0.702 0.760 0.763 0.753
35.90	64.1 10.7 17.8 18.4 22.3 23.5 26.1 29.0 33.9	0.230 - 0.0195 0.0311 0.0372 -	0.239 0.458 0.538 - 0.587 0.605	29.91	90.8 91.7 116.5 138.7 141.0 160.2 6.9 15.3 30.5	0.143 0.205 0.272 0.356 0.0087 0.0279	0.735 0.661 0.661 0.575 0.658 0.798 0.854
		·······	AUXILIARY	INFORMAT	ION		
Vapor 1 Liquid gas chi measure	recircula and vapo romatogra ed by Bon easured w neter.	US/PROCEDURE: ated through ce or samples anal aphy. Pressur urdon gauge and with platinum r Details in sou	ysed by ed tempera- esistance	1. Im ma 2. Im ma 2. Im ma saturna $\delta T/K =$ $\delta x_{He} =$ REFEREN 1. He	purities inly nec purities inly hel ED ERROR: $\pm 0.05;$ $\pm 0.3$ bet $\delta y_{He} =$ CES: rring, R	of 80 parts p	up to 100 00 bar; ck, R. L.,
							,

(2) Ne T/K	-	e; 7440-59-7 e; 7440-01-9		Heck, C. K. and Barrick, P. L., Adv. Cryog. Engng., <u>1966</u> , 12, 714.
I/K	eon; No	e; 7440-01-9		Adv. Cryog. Engng., <u>1966</u> , 12, 114.
I/K				
		Mole fraction	of helium	
	P/bar	in liquid,	in gas,	
		x _{He}	^y He	_
29.91	50.4	0.0492	0.863	
	71.5	0.0734	0.855	
	90.9	0.0893	0.844	
	112.7 130.2	0.106 0.126	0.831	
	131.9	-	0.815	
	156.4	0.155	-	
	162.1	-	0.794	
	190.5	-	0.770	
	199.6	0.197	0 700	
26.95	203.4 2.8		0.760 0.625	
20.95	5.4	-	0.810	
	9.8	-	0.877	
	20.6	0.0111	0.9013	
	41.6	0.0291	0.9262	
	61.8	0.0420	-	
	62.0	0.0532	0.9220 0.9132	
	83.6 113.0	0.0532	0.9033	
	120.6	0.0723	-	
	142.1	-	0.8919	
	142.3	0.0824	- 0.885	
	172.3 194.9	0.0896 0.103	0.005	
	203.1	-	0.875	
				-

COMPONENTS	•			ORIGINAL MEASUREMENTS:
		7440-59-7		Knorn, M., Cryogenics, 1967, 7, 177.
(2) Neo:	n; Ne;	7440-01-9		
VARIABLES:	•			
				PREPARED BY:
Temperature, pressure				C. L. Young
EXPERIMENT	TAL VALUES:	Mole fract	ion of	
т/к	<i>P/</i> bar	helium		
		in liquid ^x He	^y He	
		пе	не	
24.71	6.1	0.0024	0.897	
	11.1	0.0041	0.931	
	16.2 21.3	0.0057 0.0073	0.944 0.950	
	26.3	0.0086	0.951	
26.00	31.4 6.1	0.0105 0.0029	0.951 0.842	
	11.1	0.0048	0.900	
	16.2 21.3	0.0068 0.0086	0.924 0.931	
	26.3	0.0107	0.936	
26.00	31.4 41.5	0.0130 0.0170	0.938 0.938	
	51.7	0.0204	0.937	
27.03	6.1 11.1	0.0030 0.0054	0.803	
	16.2	0.0076	0.900	· ·
	21.3 26.3	0.0106 0.0135	0.910 0.914	
	31.4	0.0150	0.915	
	41.5 51.7	0.0206 0.0255	0.914 0.913	
		-		-
			AUXILIARY	INFORMATION
METHOD /A	PPARATUS /	PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
Flow appa	aratus des	scribed in re	ef. 1.	No details given.
		ises analysed and gas int		
ferometer		und gub int		
				ESTIMATED ERROR: $\delta T/K = \pm 0.02;  \delta P/bar = \pm 0.01;$
				$\delta x_{\rm He} = \pm 0.002;  \delta y_{\rm He} = \pm 0.001;$
				REFERENCES:
				1. Schmidt, K., Kaltetechnik, 1966,
				18, 331.
				1

COMPON	ENTS:	EVALUATOR:
1.	Helium; He; 7440-59-7	Colin Young,
		School of Chemistry,
2.	Nitrogen; N ₂ ; 7727-37-9	University of Melbourne,
		Parkville, Victoria 3052,
		AUSTRALIA.

This is the most extensively studied system containing helium. The data of Kharakhorin (1) and Gonikberg and Fastowsky (2) appear to be higher than the data obtained by interpolation of more recent results and are both classified as doubtful.

The data of Tully *et al.* (3), Burch (4), De Vaney *et al.* (5), Rodewald *et al.* (6), Davis *et al.* (7) and Streett and coworkers (8), (9) and (10) are in reasonable agreement in overlapping ranges of pressure and temperature. The data of Streett and coworkers (8), (9) and (10) cover a much wider range of pressure than other data on this system. These six sets of data are classified as tentative.

The data of Skripka and Dykhno (11) are slightly lower than the data obtained by interpolation of the results given in references above and are therefore classified as doubtful.

The data of Davydov and Budnevich (12) are rejected as they are presented in small scale graphical form.

## References

- Kharakhorin, F. F., Zhur. Tech. Fiz., <u>1940</u>, 10, 1533 (Russian), Foreign Petrol. Tech., <u>1941</u>, 9, 397 (Eng. Trans.).
- Gonikberg, M. G. and Fastowsky, W. G., Acta Physicochimica U.R.S.S., 1940, 12, 67.
- Tully, P. C., De Vaney, W. E. and Rhodes, H. L., Adv. Cryog. Engng., <u>1971</u>, 16, 98.
- 4. Burch, R. J., J. Chem. Engng. Data, 1964, 9, 19.
- De Vaney, W. E., Dalton, B. J. and Meeks, J. C. Jr., J. Chem. Engng. Data, 1963, 8, 473.
- Rodewald, N. C., Davis, J. A. and Kurata, F., Am. Inst. Chem. Engnrs. J., 1964, 10, 937.
- Davis, J. A., Rodewald, N. and Kurata, F., Ind. Eng. Chem., <u>1963</u>, 55, no. 11, 36.
- 8. Streett, W. B., Chem. Eng. Prog. Symp. Ser. No. 61, 1967, 63, 37.
- 9. Streett, W. B. and Hill, J. L. E., J. Chem. Phys., <u>1970</u>, 52, 1402.
- 10. Streett, W. B. and Erickson, A. L., Physics Earth Planetary Interiors, <u>1972</u>, 5, 357.
- 11. Skripka, V. G. and Dykhno, N. M., Trudy Vses. Nauch.-Issled. Inst. Kriog. Mashinostr., 1964, 8, 163.
- Davydov, I. A. and Budnevich, S. S., Inzh. Fiz. Zhur., <u>1971</u>, 20, no. 6, 82.

COMPONEN	NTS:			ORIGINAL M	EASUREMENT	S:		
(l) Helium; He; 7440-59-7				Streett, W. B. and Hill, J. L. E.,				
(2) N	itrogen;	N ₂ ; 7727-3	57-9	J. Chem.	Phys., ]	<u>1970</u> , <i>52</i> , 14	102.	
VARIABL	ES :			PREPARED E			······································	
				C. L. Yo				
-	ature, pr			С. Б. 10		······		
EXPERIM	ENTAL VALUE		on of heliu			ole fraction		
т/к	P/bar	in liquid, ^x He	in vapor ^y He	, т/к	P/bar ir	n liquid, ^x He	in vapor, ^Y He	
77.48 87.82 95.47	344.5 548.2 686.0 820.7 931.2 130.7 272.6 410.4 548.2 693.1 827.8 958.5 1103.4 1216.9 1376.0 1516.8 1654.6 1789.4 1826.9 713.3 827.8 965.6 1103.4	0.0426 0.0542 0.0592 0.0623 0.0648 0.065 0.0366 0.0632 0.0805 0.0927 0.1010 0.1064 0.1074 0.1120 0.1132 0.1148 0.1153 0.1151 0.1153 0.115 0.1153 0.115 0.124 0.1429 0.1498 0.1546	0.9868 0.9814 - 0.9860 0.985 0.9550 0.9677 0.9709 0.9755 0.9773 0.9773 0.9792 0.9803 0.9822 0.9814 0.9837 0.9851 0.9851 0.9851 0.9851 0.9870 0.9870 0.9579 - 0.9539 0.9630	95.47	1379.0 1661.7 1930.2 2205.8 2482.5 2623.3 2068.0 2202.8 2340.6 2482.5 2620.3 713.3 827.8 965.6 1103.4 1234.1 1379.0 1661.7 1930.2 2205.8 2482.5 2623.3 2761.1 3058.0	0.1600 0.1606 0.1612 0.1616 0.1605 0.1591 0.1591 0.1557 0.1539 0.151 0.1557 0.1539 0.151 0.1822 0.1885 0.1948 0.1983 0.2000 0.2010 0.2003 0.1981 0.1981 0.1943 0.1903 0.1884 0.1862 0.1815	0.9665 0.9695 0.9715 0.9715 0.9715 0.9715 0.9722 	
	1234.1	0.1582	0.9704	INFORMATIO	3102.6	0.182	0.979	
MERUOD	/>>>>>					MATERIALS:		
Recircu with ma ture. conduct with pl Pressur	ulating v agnetic p Samples tivity. latinum re ce measure	S/PROCEDURE: apor flow ap ump at ambie analysed by Temperature esistance th ed with Bour ce and ref.	paratus nt tempera- thermal measured ermometer. don gauge.	N	o details			
				$\delta x_{\text{He}} \simeq \delta x_{\text{He}}$ REFERENCE:	$0.01; \delta^P$ $y_{He} = \pm 0.$ S: tt, W. B.	/bar = ±7; 001. , Cryogenic	8, <u>1965</u> ,	

COMPONENTS: ORIGINAL MEASUREMENTS: Streett, W. B. and Hill, J. L. E., (1)Helium; He; 7440-59-7 J. Chem. Phys., 1970, 52, 1402. (2)Nitrogen; N₂; 7727-37-9 EXPERIMENTAL VALUES: Mole fraction of helium Mole fraction of helium т/к P/bar in liquid, in gas, T/K P/bar in liquid, in gas,  $x_{\rm He}$ ₽He  $x_{\rm He}$  $y_{\rm He}$ 107.32 454.9 0.2052 0.8931 120.59 971.7 0.5570 0.7188 0.9029 0.2230 552.2 1010.2 0.5393 0.7399 689.0 0.9119 0.2411 1027.4 0.5346 0.7501 830.9 0.9185 0.2515 1089.2 0.5231 968.7 0.2581 0.9264 1120.7 0.5166 0.7712 1103.4 0.2614 0.9308 1224.0 0.5006 0.7977 1241.2 0.2628 0.9470 0.8182 1323.3 0.4890 1379.0 0.2628 0.9430 1523.9 0.4648 0.8490 0.9454 1516.8 0.2621 1775.2 0.4433 0.8714 1654.6 0.2600 0.9493 2062.0 0.4225 0.8926 1799.5 0.2589 0.9530 2402.4 0.3999 0.9098 1930.2 0.2561 0.9572 2719.6 0.3820 0.9236 2199.8 0.2509 0.9618 3102.6 0.3640 0.9358 3447.1 2482.5 0.2435 0.9647 0.3474 0.9438 3764.2 2751.0 0.2380 0.9670 0.3357 0.9491 3033.7 0.2316 0.9701 124.05 1613.1 0.6400 0.6970 3309.3 0.2257 0.9730 1657.7 0.5856 0.9759 3584.9 0.2207 1696.2 0.5782 0.7844 3964.8 0.2150 0.9796 1792.4 0.5517 0.8071 /053.0 0.2118 0.9827 1930.2 0.5225 0.8341 112.10 0.8589 0.5011 551.2 0.2808 2072.0 0.8503 689.0 0.3008 0.8723 2126.8 0.6185 0.7333 827.8 0.3111 0.8850 2161.3 0.6032 0.7694 965.6 0.3171 0.8943 2202.8 0.5919 0.7899 0.9031 1103.4 0.3197 2350.7 0.5554 0.8317 1241.2 0.3197 0.9098 2482.5 0.5265 0.8485 1351.7 0.3189 0.9174 2774.30.4911 0.8768 1516.8 0.3167 0.9238 3092.4 0.4600 0.8980 0.9344 1792.4 0.3124 3451.1 0.4354 0.9123 2068.0 0.3043 0.9423 3802.7 0.4126 0,9247 0.9497 0.2946 2344.7 4137.1 0.3945 0,9313 2620.3 0.2870 0.9540 130.00 2778.3 0.5988 2895.9 0.2785 0.9604 2830.0 0.5862 0.2708 3122.8 0,9630 2896.9 0.5733 _ 117.13 489.4 0.3545 0.7699 3047.9 0.5469 0.8124 620.1 0.3869 0.7914 3316.4 0.5126 0.8552 689.0 0.3970 0.8015 0.4716 0.8930 3726.7 0.4086 0.8198 827.8 4137.1 0.4450 0,9083 965.6 0.4091 0.8376 134.00 3481.5 0.6181 ---0.6085 1103.4 0.4072 0.8539 3515.8 1241.2 0.4034 0.8675 3596.0 0.5905 0.8139 1379.0 0.3984 0.8794 0.5819 3653.8 0.3922 1516.8 0.8841 3795.6 0.5620 0,8489 1654.6 0.3859 0.8986 4133.0 0.5184 0.8802 1792.4 0.3814 0.9069 136.50 3930.4 0.6400 0.7405 0.3677 2068.0 0.9211 4036.8 0.6073 0.7733 2344.7 0.3556 0.9304 4109.7 0.5910 0,7750 2551.4 0.3999 0.9367 2854.3 0.3355 0.9451 0.4905 119.60 562.4 0.6772 689.0 0.5011 0.7159 830.9 0.7429 0.5058 965.6 0.4938 0.7763 1106.5 0.4792 0.2082

COMPONENT	:S :			ORIGINAL M	EASUREMEN	TS:		
<pre>(1) Helium; He; 7440-59-7 (2) Nitrogen; N₂; 7727-37-9</pre>				Streett, W. B., and Erickson, A. L., Physics Earth Planetary Interiors <u>1972</u> , 5, 357.				
VARIABLES	S:			PREPARED B	SY:			
Tempera	ture, pr	essure		С. L. У	oung			
EXPERIMEN	NTAL VALUE	S: Nole fraction	of holium		M	olo fractio	n of helium	
т/К	P/bar i	n liquid, ^x He	in vapor, ^y He	т/к		n liquid, ^x He	in vapor ^y He	
112.10	2463 3102 3453 3798 4171 4505 4515 4710 4828 4839 4921 1005 1368 1969 2803 3446 3798 4149 4508 5112 5574 5652 5721 2420 2741 2782	$\begin{array}{c} 0.3035\\ 0.2866\\ 0.2780\\ 0.2694\\ 0.2603\\ 0.2517\\ 0.251\\ 0.2474\\ 0.2457\\ 0.2456\\ 0.244\\ 0.4224\\ 0.4106\\ 0.3835\\ 0.3248\\ 0.3126\\ 0.3051\\ 0.3003\\ 0.2757\\ 0.2660\\ \hline \end{array}$	0.9544 0.9644 0.9680 0.9716 0.975 0.9769 0.9763 0.9975 0.99975 0.99984 0.9979 0.8568 0.8754 0.9135 0.9441 0.9565 0.9602 0.9662 0.9665 0.9725 0.9725 0.9760 0.9765 0.977 0.8850 0.8950 0.9948	124.05	3123 3151 3598 4177 4672 5059 5522 6072 6603 6841 6962 4083 4563 4918 5600 6268 6736 7204 7681 7864 7913 7983 8051 8111 8175 4145	0.4294 - 0.4017 0.3768 - 0.3263 0.3122 0.3006 0.2948 0.290 0.4521 0.4247 0.4247 0.4073 0.3811 0.3578 0.3434 0.3247 0.3219 0.3164 0.3150 0.3143 0.3123 0.312	0.9206 0.9217 0.9289 0.9463 0.9539 0.9592 0.9642 0.9691 0.9695 0.9733 0.974 0.9157 0.9290 0.9406 0.9525 0.9602 0.9783 0.9781 0.9693 0.9680 	
				INFORMATIO				
Recircu with ma measure thermom magnani of liqu	lating v gnetic p d with p eter. n resist id and g	S/PROCEDURE: apor flow ap ump. Tempe latinum resi Pressure mea ance gauge. as analysed Details in	paratus rature stance sured with Samples by thermal	}	O PURITY C	OF MATERIALS:		
				δx _{He} ,δ	$\pm 0.01;$ $y_{\text{He}} = \pm 1$ ted by c	$\delta P/bar = \pm 1$ mole per compiler).	5; cent	

l

ORIGINAL MEASUREMENTS: COMPONENTS: Helium; He; 7440-59-7 Streett, W. B., and Erickson, A. L., (1) Physics Earth Planetary Interiors Nitrogen; N₂; 7727-37-9 1972, 5, 357. (2)P/bar Mole fraction of helium Mole fraction of helium T/K т/к P/bar in liquid, in liquid, in vapor, in vapor ^хне  $x_{\text{He}}$ ^yHe ^yHe 134.00 4851 0.4737 0.9141 144.00 5693 0.6121 0.8694 5383 0.4475 0.9255 5783 0.6019 0.8735 0.9399 0.8789 0.4124 5892 5884 0.5929 6386 0.3949 0.9473 5996 0.5826 0.8852 6954 0.3756 0.9534 6255 7617^b 0.5532 0.8987 7430 0.3611 154.00 0.755 0.755 7918 0.3483 0.9564 7734 0.6723 0.8805 0.3354 0.8643 0.9581 8209 7927 0.6388 8446 0.3324 0.960 8064 0.6210 0.8754 8824 0.3252 0.9666 8292 0.9192 0.6025 8974 9057^a 4163^b 0.3218 0,9693 8458 0.5851 0.8878 0.970 0.321 8692 0.5679 0.9147 138.00 0.734 0.734 8967 0.5480 0.9118 4250 0.6468 0.9292 9313 0.5295 0.9188 0.8159 4282 0.6307 9643 0.5136 0.9243 9808 8568^b 4251 0.6181 0.8447 0.9329 0.5042 4428 0.6051 0.8578 158.0 0.760 0.760 0.6938 4494 0.5926 0.8651 8581 0.8626 4563 0.5855 0.8706 8623 0.6880 0.8665 0.5733 0.8774 4651 0.8622 8664 0.6780 4983 0.5429 0.8938 8699 0.6744 0.8580 0.9089 5398 0.5093 8719 0.6699 0.8473 5877 0.4817 0.9234 8802 0.6512 0.8576 6355 0.4577 0.9345 8989 0.6316 0.8716 0.9349 6362 0.4540 9250 0.9041 0.6071 6913 0.4315 0.9391 9505 0.5871 0.8971 7427 0.4105 0.9430 0.9000 9726 0.5682 7948 0.3970 0.9505 9926 0.9096 0.559 8407 0.3802 0.9562 0.9138 10133 0.5461 8822 0.3716 0.9574 162.00 9574 0.767 0.767 9379 0.3597 9657 0.6887 0.8445 9557 9926^a 5356^b 0.9628 0.3566 9726 0.6719 0.852 9781 0.347 0.963 0.6639 0.8585 144.0 0.749 0.749 9912 0.6442 0.8699 5432 0.6653 0.8663 10064 0.6289 0.8789 5528 0.8529 0.6311 10201 0.6152 0.8861 0.6312 0.8634 5610 ^a Three-phase pressure ±10 bar. ^b Critical pressure ±20 bar.

COMPON	ENTS:			ORIGINAL	MEASUREM	ENTS:		
(l) Helium; He; 7440-59-7 (2) Nitrogen; N ₂ ; 7727-37-9				Kharakhorin, F. F., Zhur. Tekh. Fiz., <u>1940</u> , 10, 1533 (Russian); Foreign Petrol.Tech., <u>1941</u> , 9, 397 (Eng. Trans.).				
VARIAB	LES:	. <del></del>		PREPARED	BY:			
Tempe	rature, p	pressure		с. г.	Young			
EXPERI	MENTAL VAL			J	·····	<u> </u>		
т/к		Mole fraction in liquid, ^x He	of helium in vapor, ^y He	T/K	P/bar	Mole fraction in liquid, ^x He	of helium in vapor ^Y He	
68.0 77.3 90.1	$\begin{array}{r} 4.54\\ 11.77\\ 22.60\\ 49.14\\ 93.98\\ 96.97\\ 109.43\\ 146.41\\ 4.91\\ 11.75\\ 22.60\\ 34.35\\ 49.14\\ 59.38\\ 72.19\\ 79.03\\ 98.59\\ 112.88\\ 122.60\\ 146.92\\ 148.44\\ 160.30\\ 160.60\\ 4.90\\ 11.80\\ \end{array}$	$\begin{array}{c} 0.00107\\ 0.00195\\ 0.00370\\ 0.00885\\ 0.01145\\ 0.01145\\ 0.01160\\ 0.01240\\ 0.01480\\ 0.0098\\ 0.00300\\ 0.00460\\ 0.00730\\ 0.00460\\ 0.00730\\ 0.00960\\ 0.01125\\ 0.01520\\ 0.01525\\ 0.01525\\ 0.02030\\ 0.02100\\ 0.02325\\ 0.02545\\ 0.02550\\ 0.02715\\ 0.02740\\ 0.0003\\ 0.0038\\ \end{array}$	0.8325 0.9648 0.9745 0.9822 0.9860 0.9865 0.9880 0.9896 0.8060 0.9190 0.9600 0.9600 0.9659 0.9775 0.9800 0.9815 0.9822 0.9822 0.9830 0.9847 0.9853 0.9847 0.9853 0.9860 0.9874 0.1575 0.6320	90.1	18.75 19.35 22.60 29.38 30.40 34.45 41.64 49.14 58.77 68.65 74.98 84.61 88.66 102.84 107.91 137.80 167.69 181.07 195.25 207.21 217.34 23.406 35.464 50.460 74.778	$\begin{array}{c} 0.0054\\ 0.0084\\ 0.0110\\ 0.0112\\ 0.0130\\ 0.0135\\ 0.0162\\ 0.0208\\ 0.0227\\ 0.0234\\ 0.0283\\ \hline \\ 0.0283\\ \hline \\ 0.0372\\ 0.0382\\ 0.0437\\ 0.0500\\ 0.0505\\ 0.0563\\ 0.0600\\ 0.0618\\ 5 0.0085\\ 4 0.0220\\ 0.0330\\ \hline \end{array}$	0.8025 0.8070 0.8170 0.8500 0.8540 0.8695 0.9045 0.9045 0.9280 0.9295 0.9280 0.9295 0.9295 0.9415 0.9570 0.9595 0.9595 0.9610 0.9621 0.9623 0.5225 0.6165 0.7160	
			AUXILIARY	INFORMATI	LON			
METHOD	/АРРАВАТ	US/PROCEDURE:		SOURCE A	ND PURITY	OF MATERIALS:		
Vapor pump.	recircul Analys ermal con	ated using mag is of samples ductivity. D	of liquid	No det	ails giv	ven.		
				$\delta T/K = 6 bar$	, ±0.1 ( above 75 01; δy _H	$\delta P/bar = \pm 0.01$ between 6 and bar); $\delta x_{\rm He} =$ $z_{\rm P} = \pm 0.0002$ to	75 bar),	

COMPONENTS: ORIGINAL MEASUREMENTS: Kharakhorin, F. F., Zhur. Tekh. Fiz., <u>1940</u>, 10, 1533 (Russian); Foreign Petrol. Tech., <u>1941</u>, 9, 397 (Eng. Helium; He; 7440-59-7 (1) (2) Nitrogen; N₂; 7727-37-9 Trans.). Mole fraction of helium Mole fraction of helium *P/*bar т/к T/K P/bar in liquid, in vapor, in liquid, in vapor  $x_{\rm He}$  $x_{\text{He}}$  $y_{\text{He}}$  $y_{\rm He}$ 107. 98.285 0.0682 0.7685 111.5 69.91 0.0575 0.6120 0.0792 0.7900 73.46 0.0612 0.6155 115.511 153.000 0.1012 0.8235 92.21 0.0765 0.6800 111.5 19.66 0.0033 0.1390 118.04 0.0945 0.7195 0.0998 0.7315 0.0037 0.1510 20.47 122.10 22.49 0.0065 0.1925 127.16 0.1040 0.7395 135.78 0.1080 0.7575 24.62 0.0080 -142.36 0.1145 28.67 0.0140 -0.7640 39.03 0.0275 -177.01 0.1310 0.7805 0.0329 ; 0.5070 45.39 197.58 0.1395 0.7900 N, 57.00 0.0449 0.5655

COMPONENTS:			ORIGINAL M	EASUREME	ENTS:	
<ol> <li>Helium;</li> <li>Nitroge</li> </ol>	Tully, P. C., DeVaney, W. E., and Rhodes, H. L., Adv. Cryog. Engng., 1971, 16, 88.					
VARIABLES:			PREPARED B	Y :	<del></del>	
Temperature,	pressure		C. L. Yo	ung		
EXPERIMENTAL VAL		<u></u>	L			. <u></u>
T/K P/ba	Mole fraction r in liquid, ^x He		, т/к	P/bar	Mole fraction in liquid, ^x He	of helium in gas, ^y He
122.00       31.         34.       41.         41.       55.         68.       103.         137.       172.         193.       200.         203.       206.         208.       209.         209.       209.         123.00       34.         41.       55.         68.       103.         124.       138.         144.       148.         151.       151.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0480 0.0893 0.1608 0.2632 0.3319 0.4319 0.4780 0.4935 0.4858 0.4774 0.4699 0.4603 0.4529 0.4603 0.4529 0.4603 0.4529 0.4603 0.4529 0.4603 0.4529 0.4603 0.4529 0.4603 0.4529 0.4603 0.4529 0.4603 0.4529 0.4603 0.4529 0.46051 0.4051 0.4051 0.3984 0.3890 0.3678	123.00 123.20 123.275 124.00 124.10 124.40 124.80 125.00 125.05 125.30	153.2 138.0 138.2 34.5 41.1 55.2 68.9 82.7 96.5 103.6 106.1 106.9 107.5 108.1 103.6 68.8 68.9 37.7 41.2 55.0 68.9 70.5 71.7 68.9 55.2	$\begin{array}{c} 0.3400\\ 0.2558\\ 0.2875\\ 0.0095\\ 0.0253\\ 0.0599\\ 0.0926\\ 0.1296\\ 0.1729\\ 0.2045\\ 0.2202\\ 0.2267\\ 0.2350\\ 0.2267\\ 0.2350\\ 0.2560\\ 0.2163\\ 0.0998\\ 0.1102\\ 0.0159\\ 0.0258\\ 0.0671\\ 0.1228\\ 0.0671\\ 0.1228\\ 0.1360\\ 0.1575\\ 0.1312\\ 0.0744 \end{array}$	0.3400 0.3756 0.3497 0.0426 0.1014 0.1937 0.2504 0.2871 0.3033 0.2988 0.2886 0.2834 0.2829 0.2560 0.2788 0.2298 0.2298 0.2298 0.2298 0.2298 0.2298 0.2298 0.2298 0.2298 0.2788 0.2298 0.2788 0.2788 0.2788 0.2788 0.2788 0.2788 0.2788 0.2788 0.2788 0.2788 0.2788 0.2788 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.2798 0.1798 0.1737 0.1575 0.1677 0.1310
		AUXILIARY	INFORMATION	1		
Recirculating with berylling Vapor recircu loop. Tempe platinum resi pressure meas ducer and Bou	TUS/PROCEDURE: g vapor flow app im-copper window ilated through e erature measured stance thermome sured by pressur irdon gauge cali ad weight gauge.	ved cell. external with eter and e trans- brated	<ol> <li>Pure 10 pa</li> <li>Pure 50 pa</li> <li>ESTIMATED</li> </ol>	sample sample sample arts pe ERROR: 0.01; ⁹ He =	OF MATERIALS: containing le containing le million imput million imput δP/bar = ±0.1 ±0.004.	writy. ess than writy.

COMPONENTS: ORIGINAL MEASUREMENTS: Helium; He; 7440-59-7 (1) Tully, P. C., DeVaney, W. E., and Rhodes, H. L., Adv. Cryog. Engng., (2) 1968, 16, 88. Nitrogen; N₂; 7727-37-9 Mole fraction of helium Mole fraction of helium т/к P/bar in liquid, in gas, T/K P/bar in liquid, in gas,  $x_{\rm He}$ ^xне  $y_{\rm He}$  $y_{\rm He}$ 125.40 37.9 0.0158 0.0416 125.80 41.4 0.0289 0.0504 41.4 0.0264 0.0635 43.1 0.0356 0.0572 44.8 0.0458 53.1 0.0690 0.1181 0.0623 55.2 0.0787 0.1228 45.4 0.0510 0.0626 0.1242 57.2 0.0898 45.9 0.0585 0.0585 125.90 125.93 57.8 0.0975 0.1201 41.4 0.0305 0.0456 57.9 0.0995 0.1190 41.4 0.0431 0.0324 58.4 0.1092 0.1092 126.00 37.0 0.0130 0.0211 125.475 55.2 0.1116 0.0857

0.0333

125.80

38.1

0.0162

39.3

39.6

0.0232

0.0290

0.0318

0.0290

COMPONENTS			ORIGINAL MEASUREMENTS:	
<pre>(1) Helium; He; 7440-59-7 (2) Nitrogen; N₂; 7727-37-9</pre>			Burch, R. J., J. Chem. Engng. Data 1964, 9, 19.	
VARIABLES:			PREPARED BY:	
Temperature, pressure			C. L. Young	
EXPERIMENT	TAL VALUES:		I	
т/к	P/bar	l0 ² Mole fractio in liquid, 10 ² x _{He}	n of helium in vapor, 10 ³ y _{He}	
82.70	5.07 10.13 15.20 20.26 30.40 40.53	0.108 0.268 0.418 0.560 0.825 1.07	63.8 81.8 87.7 90.5 92.9 93.5	
10.66       1.31         113.13       20.26       0.340         25.33       0.930         30.40       1.47         40.53       2.51         50.66       3.54			94.8 8.47 20.2 28.4 40.4 49.9	
····			······································	
			INFORMATION	
METHOD /APPARATUS/PROCEDURE: Vapor passed once through magneti- cally stirred cell. Temperature measured using thermocouple and pressure measured with Bourdon gauge. Liquid and vapor samples analysed using mass spectrometer.			<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>1. Bureau of Mines sample purity better than 99,994 mole per cent.</li> <li>2. Airco prepurified sample purity better than 99,997 mole per cent. (Details in source.)</li> </ul>	
			ESTIMATED ERROR: $\delta T/K = \pm 0.2;  \delta P/bar = \pm 0.01 \text{ at } 5.07$ bar, = $\pm 0.07$ at other pressures; $\delta x_{\text{He}} \leq \pm 2$ % (Details in source).	
			REFERENCES :	

COMPONENTS:			ORIGINAL MEASUREMENTS:		
(1) Helium; He; 7440-59-7 (2) Nitrogen; N ₂ ; 7727-37-9			ORIGINAL MEASUREMENTS: Skripka, V. G. and Dykhno, N. M., Trudy Vses. NauchIssled. Inst. Kriog. Mashinostr., <u>1964</u> , 8, 163.		
VARIABLES:			PREPARED BY:		
Temperature, pressure			C. L. Young		
Towhergeare, higgare					
EXPERIME	NTAL VALUES:		Mole fractio	n of helium	
<u>т/к</u>	P/bar	<i>P[†]/bar</i>	in liquid, x _{He}	in vapor, y _{He}	
67.5	6.08 11.06 16.08 21.20 26.26	5.82 10.80 15.82 20.93 26.00	0.00068 0.00129 0.00181 0.00242 0.00301	0.9624 0.9777 0.9841 0.9874 0.9893	
72.0	6.17 11.12 16.13 21.20 26.08	5.63 10.58 15.59 20.66 25.54	0.00086 0.00167 0.00243 0.00321 0.00397	0.9214 0.9550 0.9677 0.9750 0.9783	
78.0	6.02 11.05 16.13 21.19 26.22	4.88 9.92 15.00 20.05 25.09	0.00104 0.00211 0.00314 0.00416 0.00521	0.8144 0.8999 0.9287 0.9452 0.9536	
84.0	6.07 11.06 16.18 21.19 26.20	3.98 8.98 14.09 19.10 24.12	0.00114 0.00252 0.00402 0.00536 0.00681	0.7967 0.8611 0.8905 0.9111	
90.3	6.01 11.06 16.13 21.20 26.25	2.23 7.29 12.35 17.42 22.47	0.00089 0.00277 0.00470 0.00658 0.00856	- 0.7392 0.7971 0.8345	
P ⁺	partial pres	sure of helium.			
		AUXILIARY	INFORMATION		
METHOD /	APPARATUS/PRO	CEDURE:	SOURCE AND PURITY OF MATE	RIALS:	
Vapor flow apparatus with magnetic re- circulating pump. Temperature measu- red with platinum resistance thermo- meter, pressure measured with Bourdon gauge. Samples of gas and liquid analysed by gas phase interferometry. Details in source.			<ol> <li>High purity conta than 0.008% hydro nitrogen, 0.005% hydrocarbons.</li> <li>Purity 99.5 mole main impurity.</li> </ol>	gen, 0.02% oxygen and 0.07%	
			ESTIMATED ERROR: $\delta T/K = \pm 0.02 \text{ to } 0.03;$ $0.2 \text{ bar; } \delta x_{\text{He}} \approx \delta y_{\text{He}}$ 0.00002.	$\delta P$ less than $\simeq \pm 0.00001$ to	
			REFERENCES:		

	:		ORIGINAL MEASUREMENTS:		
(1) Helium; He; 7440-59-7			Rodewald, N. C., Davis, J. A. and		
(2) Ni	trogen: Na:	7727-37-9	Kurata, F., Am. Inst. Chem. Engnrs. J., <u>1964</u> , 10, 937.		
(2) Nitrogen; N ₂ ; 7727-37-9		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>J.</i> , <u>1964</u> , <i>10</i> , 937.		
ARIABLES:			PREPARED BY:		
Tomporat					
Temperature, pressure			C. L. Young		
XPERIMENT.	AL VALUES:				
т/к	<i>P/</i> bar	Mole fractio	n of helium in gas,		
171	1/Dai	^x He	^y He		
77.2	13.8	0.0031	0.920		
	27.6	0.0062	0.955		
	41.4 55.2	0.0091 0.01175	0.968 0.975		
	68.9	0.0138	0.979		
59.3	13.8 27.6	0.0024 0.0046	0.973 0.980		
	41.4	0.0066	0.983		
	55.2 68.9	0.0083 0.0095	0.985 0.988		
54.9	13.8	0.0019	0.977		
	27.6	0.00365	0.981		
	41.4 55.2	0.0051 0.0063	0.985 0.988		
	68.9	0.0073	0.992		
			· · · · · · · · · · · · · · · · · · ·		
ετμορ /ΔΡ			INFORMATION		
	PARATUS/PROCE	DURE :	SOURCE AND PURITY OF MATERIALS:		
Static e neasured thermome vith Bou	quilibrium ce with platinu ter and press rdon gauge. easured for sa	DURE: 11 temperature m resistance			
Static e neasured thermome vith Bou points mo	quilibrium ce with platinu ter and press rdon gauge. easured for sa	DURE: 11 temperature m resistance ure measured Dew and bubble	SOURCE AND PURITY OF MATERIALS:		
Static e neasured thermome vith Bou points mo	quilibrium ce with platinu ter and press rdon gauge. easured for sa	DURE: 11 temperature m resistance ure measured Dew and bubble	SOURCE AND PURITY OF MATERIALS:		
Static e neasured thermome vith Bou points mo	quilibrium ce with platinu ter and press rdon gauge. easured for sa	DURE: 11 temperature m resistance ure measured Dew and bubble	SOURCE AND PURITY OF MATERIALS: No details given. ESTIMATED ERROR: $\delta T/K = \pm 0.7;  \delta P/bar = \pm 0.5$ ;		
Static e neasured thermome vith Bou points mo	quilibrium ce with platinu ter and press rdon gauge. easured for sa	DURE: 11 temperature m resistance ure measured Dew and bubble	SOURCE AND PURITY OF MATERIALS: No details given. ESTIMATED ERROR: $\delta T/K = \pm 0.7; \ \delta P/bar = \pm 0.5$ ; $\delta x_{He} = \pm 0.0005; \ \delta y_{He} = \pm 0.002$		

.

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Helium; He; 7440-59-7 Davis, J. A., Rodewald, N. and Kurata, F., Ind. Eng. Chem., 1963, No.11, 36. 55 (2) Nitrogen; N₂; 7727-37-9 VARIABLES: PREPARED BY: C. L. Young Temperature, pressure EXPERIMENTAL VALUES: Mole fraction of helium Mole fraction of helium Т/К in gas, T/K P/bar in liquid, P/bar in liquid, in gas,  $x_{\rm He}$  ${}^{y}{}_{\mathrm{He}}$  ${}^{y}{}_{\mathrm{He}}$  $x_{\rm He}$ 77.2 14.4 0.0031 77.2 51.4 0.0105 0.956 -0.977 0.0041 51.4 0.0112 17.9 _ 29.1 0.0067 -56.4 0.0109 0,981 0.974 29.1 56.4 0.0072 0.0112 0.945 0.962 36.2 0.0080 56.5 0.0124 56.5 36.2 0.0084 0.968 0.0129 0.975 0.0117 36.5 0.0093 0.947 60.8 0.989 36.5 0.0102 0.967 60.8 0.0120 0.974 0.974 42.6 0.946 0.0086 62.6 0.0124 42.6 0.0090 0.966 62.6 0.0131 0.975 44.3 0.0099 0.949 67.4 0.0129 0.977 0.973 44.3 0.0108 67.4 0.0133 0.974 49.7 0.0098 0.951 68.1 0.0134 0.981 49.7 0.974 0.0101 68.1 0.0146 0.976 AUXILIARY INFORMATION METHOD /APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: No details given. Static equilibrium cell temperature measured with platinum resistance thermometer and pressure measured with Bourdon gauge. Composition of vapor and liquid phases estimated from overall composition and amount of each phase. Details in source. ESTIMATED ERROR:  $\delta T/K = \pm 0.5; \quad \delta P/bar = \pm 0.2;$  $\delta x_{\rm He} = \pm 0.0002; \quad \delta y_{\rm He} = \pm 0.002$ (estimated by compiler) **REFERENCES**:

······			
COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Helium; He; 7440-59-7	Streett, W. B., Chem. Eng. Prog.		
(2) Nitrogen; N ₂ ; 7727-37-9	Symp. Ser. No. 61, <u>1967</u> , 63, 37.		
VARIABLES:	PREPARED BY:		
Temperature, pressure	C. L. Young		
EXPERIMENTAL VALUES:			
Mole fraction of helium T/K P/bar in liquid, in vapor, ^x He ^y He			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
AUXILIA	ARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Recirculating vapor flow with magner pump. Samples of phases analysed I thermal conductivity. Temperature measured with platinum resistance thermometer. Pressure measured wi Bourdon gauge. Details in source and ref. 1.	by		
	ESTIMATED ERROR: $\delta T/K = \pm 0.02;  \delta P/bar = \pm 0.1;  \delta x_{He} = \delta y_{He} = \pm 0.002 \text{ to } \pm 0.01 \text{ (at pressure above 500 bar).}$ REFERENCES:		
	<pre>1. Streett, W. B., Cryogenics, <u>1965</u>, 5, 27.</pre>		

COMPONENTS:

(1) Helium; He; 7440-59-7

(2) Nitrogen; N₂; 7727-37-9

## ORIGINAL MEASUREMENTS:

Streett, W. B., Chem. Eng. Prog. Symp. Ser. No. 61, <u>1967</u>, 63, 37.

EXPERIMENTAL VALUES:

т/к	P/bar	Mole fraction in liquid, ^x He	of helium in vapor, ^y He
119.86	507.1 515.7 524.3 534.7 540.9 552.6 569.2 580.9 606.0 655.7 689.5 757.0 827.4 221.7 277.9 348.9 415.8 449.9 484.7 503.7 669.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 680.9 758.4	0.5150 0.5240 0.5240 0.5345 0.5345 0.5435 0.5453 0.5453 0.5453 0.5514 0.5482 0.5470 0.5351 0.5269 0.2732 0.3312 0.3980 0.4513 0.4799 0.5093 0.5556 0.5841 0.5704 0.5671 0.5470	0.6244 0.6274 0.6278 0.6270 0.6270 0.6283 0.6331 0.6320 - 0.6686 0.7001 0.7302 0.6261 0.6393 0.6261 0.6393 0.6349 0.6349 0.6343 0.6524 0.6587 0.6977
120.40	830.8	0.5354	0.7261
	205.8	0.2616	0.5970
	310.3	0.3915	0.6051
	342.7	0.4377	0.5890
121.00	357.8	0.4665	0.5769
	67.6	0.0707	0.3628
	145.5	0.1937	0.5373
	206.5	0.2837	0.5686
	276.8	0.4039	0.5478
121.74	290.3	0.4743	0.5108
	67.2	0.0729	0.3356
	112.0	0.1522	0.4624
	146.9	0.2109	0.5039
	203.1	0.3120	0.5152
	214.8	0.3476	0.5020
	221.3	0.3680	0.4964
	224.1	0.3883	0.4896

COMPON	ENTS :			ORIGINAL	MEASUREME	NTS:	· · · · · · · · · · · · · · · · · · ·	
(1)	(1) Helium; He; 7440-59-7				DeVaney, W. E., Dalton, B. J. and			
(2)	2) Nitrogen; N ₂ ; 7727-37-9			Meeks, J. C. Jr., J. Chem. Engng.				
(2)	Ni Li Ogen;	M2, 7727	57.5	Data,	1963, <i>8</i> ,	473.		
VARIAB	I.FS.			PREPARED	. PV.	· · · · · · · · · · · · · · · · · · ·		
	rature, p	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		C. L.				
rempe.	racure, F	Jiessuie			roung			
EXPERI	MENTAL VAL	UES: Mole fraction	n of helium		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	lole fraction	n of helium	
т/к		in liquid,	in gas,	T/K		n liquid,	in gas,	
		$x_{ m He}$	$y_{\text{He}}$			^x He	^𝔥 He	
76.5	13.9	0.00265	0.9111	85.0	82.9	0.0223	0.9578	
ł	27.7	0.0034	0.9573 0.9702		96.3	0.0248	0.9626	
	41.4 55.7	0.0062 0.0091	0.9759		111.0 124.1	0.0290 0.0326	0.9626 0.9653	
	69.1	0.0107	0.9796		137.8	0.0359	0.9683	
	83.2	0.0131	0.9832	90.0	13.9	0.0041	0.6962	
	96.2 110.5	0.0152 0.0172	0.9826 0.9836		27.7 41.6	0.0097	0.8395	
	124.1	0.0172	0.9836		41.6 55.4	0.0133 0.0183	0.8799 0.9135	
	138.3	0.0213	0.9859		68.9	0.0224	0.9232	
80.0	13.9	0.0031	0.8793		82.8	0.0280	0.9336	
	27.5 41.3	0.0048 0.0075	0.9341		96.5	0.0315	0.9401	
	41.3 55.6	0.0114	0.9576 0.9652		110.8 123.9	0.0381 0.0412	0.9451 0.9467	
	69.0	0.0136	0.9702		137.9	0.0458	0.9511	
	83.2	0.0163	0.9722	95.0	13.9	0.0048	0.5495	
	96.2	0.0189	0.9769		27.8	0.0109	0.7703	
	110.5 124.2	0.0215 0.0244	0.9771 0.9769		41.7 55.4	0.0165 0.0220	0.8339	
	138.0	0.0266	0.9820		68.7	0.0272	0.8921	
85.0	13.9	0.0039	0.8088		83.0	0.0341	0.9008	
	27.9	-	0.8990		96.4	0.0404	0.9118	
	41.6 55.6	0.0102 0.0148	0.9282 0.9447		110.5 124.0	0.0464 0.0515	0.9214 0.9233	
	69.1	0.0175	0.9503		137.6	0.0561	0.9233	
			AUXILIARY	INFORMAT	ION			
METHOL	APPARAT	US/PROCEDURE				OF MATERIALS:		
		ibrium cell				ty 99.995 mc	ole per	
	er and co	pper constar	tan thermo-	cent	Ξ.			
couple		sure measure Samples of					spectrometry	
		d using gas		99.9	) mole pe	r cent.		
graphy		ils in sourc						
				1				
				ESTIMAT	ED ERROR:		·	
				δТ/К =	±0.5; δ	$P/bar = \pm 0.0$	07; $\delta x_{\text{He}} =$	
				1		<pre>&gt; 0.01, ±0.0</pre>	пе	
							"He	
				REFEREN	$\delta y_{\rm He} =$ CES:	±0.002.		
				1				
				•				

COMPONENTS:

- (l) Helium; He; 7440-59-7
- (2) Nitrogen; N₂; 7727-37-9

## ORIGINAL MEASUREMENTS:

DeVaney, W. E., Dalton, B. J. and Meeks, J. C. Jr., J. Chem. Engng. Data, <u>1963</u>, 8, 473.

EXPERIMENTAL VALUES:

I\K	P/bar	Mole fraction in liquid, ^x He	of helium in gas, ^y He
100.0	14.1 27.6 41.5 55.3 68.4 82.7 96.3 110.7	$\begin{array}{c} 0.0045 \\ - \\ 0.0197 \\ 0.0275 \\ 0.0345 \\ 0.0438 \\ 0.0507 \\ 0.0586 \end{array}$	0.3586 0.6294 0.7576 0.8106 0.8370 0.8591 0.8591 0.8677 0.8830
105.0	123.9 123.9 138.4 14.1 27.6 41.5 55.5 68.9 83.2 96.9	0.0627 0.0684 0.0027 0.0104 0.0213 0.0315 0.0412 0.0519 0.0613	0.8840 0.8933 0.1671 0.4957 0.6330 0.7139 0.7597 0.8086 0.8252
110.0	110.5	0.0726	0.8309
	124.0	0.0760	0.8379
	138.0	0.0828	0.8478
	27.6	0.0103	0.3400
	41.6	0.0241	0.5071
	55.4	0.0375	0.6084
	69.0	0.0496	0.6672
	82.8	0.0619	0.6964
115.0	96.7	0.0731	0.7350
	110.7	0.0820	0.7729
	124.5	0.0904	0.7883
	138.1	0.0983	0.7940
	27.6	0.0102	0.1860
	41.5	0.0252	0.3694
	55.2	0.0437	0.4712
	69.6	0.0597	0.5524
	82.7	0.0723	0.6109
120.0	96.7	0.0860	0.6489
	110.7	0.0962	0.6771
	124.3	0.1051	0.6993
	138.2	0.1068	0.7201
	41.5	0.0253	0.2211
	55.6	0.0495	0.3465
	69.5	0.0749	0.4197
	82.7	0.0915	0.4874
	96.5	0.1026	0.5210
	110.6	0.1190	0.5623
	124.0	0.1300	0.5813

COMPONENTS :				ORIGINAL MEASUREMENTS:				
(1) Helium; He; 7440-59-7				Gonikberg, M. G. and Fastowsky, W. G., Acta Physicochimica U.R.S.S., 1940,				
(2) N	litrogen;	; N ₂ ; 7727-3	37-9	12, 67.	-		· · · · · · · · · · · · · · · · · · ·	
VARIABLI	ES:			PREPARED	BY:		<u> </u>	
Temper	ature, p	pressure		С. L. У				
EXPERIM	ENTAL VALU	JES:						
т/К	P/bar	Mole fractio in liquid, ^x He	on of helium in vapor, ^y He	т/к		Mole fraction in liquid, [*] He	of helium in vapor, ^y He	
78.0	18.1 43.6 67 103 144 204 264 289	0.005 0.009 0.015 0.022 0.026 0.037 0.046 0.050	0.921 0.946 0.965 0.969 0.978 0.984 0.983	90.1 109	183 216 248 279 27.0 43.6 79 110	0.056 0.062 0.070 0.079 0.023 0.035 0.065 0.082	0.931 0.941 0.944 0.945 0.455 0.583 0.663 0.705	
90.1	20.3 34.4 58 93	0.006 0.011 0.021 0.035	0.733 0.829 0.887 0.902		136 177 228 244	0.106 0.131 0.159 0.167	0.755 0.766 0.797 0.814	
	154	0.049	0.923		280	0.183	0.825	
				INFORMATI	280			
METHOD	154		0.923 AUXILIARY		280 0N			
Recirc	154 /APPARAT ulating describ	0.049	0.923 AUXILIARY : pparatus.		280 ON ND PURITY	0.183		
Recirc	154 /APPARAT ulating describ	0.049 US/PROCEDURE vapor flow ap	0.923 AUXILIARY : pparatus.	SOURCE AN ESTIMATEI ST/K =	280 ON ND PURITY No det. D ERROR: ±0.1;	0.183 OF MATERIALS: ails given.		

COMPONENTS: ORIGINAL MEASUREMENTS: Parrish, W. R. and Stewart, W. G., (1) Helium; He; 7440-59-7 J. Chem. Engng. Data, 1975, 20, 412. (2) Nitrous oxide; N₂O; 10024-97-2 VARIABLES: PREPARED BY: C. L. Young Temperature, pressure . EXPERIMENTAL VALUES: Mole fraction of helium Mole fraction of helium т/к in liquid, in vapor, T/K P/bar in liquid, in vapor, P/bar  $x_{\rm He}$ ^уне ^{*x*}не  $y_{\rm He}$ 0.0052 103.3 195.0 _ 255.0 86.7 0.0147 _ 103.6 0,0052 ---87.4 0.0154 _ 136.4 0.0070 ----101.8 0.0186 137.8 0.0068 103.0 0.0182 _ 215.0 49.9 0.0029 - - - -103.2 0.0180 _ 51.8 0.0027 104.5 0.0184 -86.1 0,0054 104.7 -0.0185 235.0 51.2 0.0056 121.2 0.0209 -0.0055 51.6 121.7 0.0214 _ 84.8 0.0096 133.2 0.0241 -----86.2 0.0104 135.4 0.0246 _ 136.5 0.0170 136.2 0.0242 265.0 52.5 245.0 71.0 0.0098 0.0077 ----103.2 0.0157 52.8 0.0075 0.0155 103.7 71.6 _ 0.0127 131.3 0,0204 71.7 0.0128 133.9 0.0205 72.1 0.0122 -137.6 0.0209 0.0215 104.9 -137.8 0.0209 105.5 0.0222 -0.0291 255.0 38.8 0.0042 135.4 _ -38.9 0.0041 136.8 0.0299 58.2 ---0.0087 285.0 81.8 0.0173 58.3 0,0090 _ 94.3 0.0238 75.6 0.0127 94.6 _ 0.0233 _ 76.0 0.0130 114.6 0.0177 86.1 0.0145 116.9 0.0334 AUXILIARY INFORMATION SOURCE AND PURITY OF MATERIALS: METHOD /APPARATUS/PROCEDURE: Vapor recirculation system similar to 1. No details given. that in ref. 1. Pressure measured 2. Purity better than 98 mole per with Bourdon gauge. Temperature cent. Vapor over liquid vented measured with platinum resistance several times. thermometer. Samples of liquid and vapor analysed by gas chromatography. Details in source. ESTIMATED ERROR:  $\delta T/K = \pm 0.13; \quad \delta P/bar = \pm 0.07;$  $\delta x_{\text{He}} = \delta y_{\text{He}} = \pm 0.002 \text{ or } \pm 2\% \text{ which}$ ever is greater. **REFERENCES**:

COMPONENTS:				ORIGINAL MEASUREMENTS:			
<pre>(1) Helium; He; 7440-59-7 (2) Nitrous Oxide; N₂O; 10024-97-2</pre>			Parrish, W. R. and Stewart, W. G., J. Chem. Engng. Data, <u>1975</u> , 20, 412.				
т/к	<i>P/</i> bar	Mole fraction in liquid, ^x He		т/к	P/bar	Mole fraction in liquid, ^x He	
285.0	135.5 136.1	0.0414 0.0416	-	245.0	98.2 125.9	-	0.8211
235.0	136.7 19.7 35.6 52.0 69.3	0.0418 - - - -	- 0.4563 0.6855 0.7775 0.8269	255.0 265.0	50.0 70.1 103.8 128.5 41.6		0.5611 0.6628 0.7630 0.8042 0.3128
245.0	104.5 132.9 40.3 51.7 67.6	- - - -	0.8819 0.9055 0.6007 0.6780 0.7470		72.5 98.3 99.6 106.0 136.5	- - - -	0.5674 0.6628 0.6670 0.6828 0.7403

```
COMPONENTS:
 EVALUATOR:
 1. Helium; He; 7440-59-7
 Colin Young,
 School of Chemistry,
 2. Oxygen; O<sub>2</sub>; 7782-44-7
 University of Melbourne,
 Parkville, Victoria 3052,
 AUSTRALIA.
CRITICAL EVALUATION:
 There are few sets of data for this system.
 Herring and
Barrick(1) did not present tabulated data but gave the following smoothing
 equations for the mole fraction solubility
 x = D(P - P_{c}) + E(P - P_{c})^{2}
where P is the total pressure in units of atmosphere; P_{c} is the vapor
 pressure of oxygen in units of atmosphere and D and E are constants given
 in Table 1.
 Table 1. Constants given by Herring and Barrick (1)
 10<sup>3</sup>D
 -10<sup>6</sup>E
 T/K
 1.6908251
 70
 2.4356943
 76
 4.0101437
 4.0894999
 90
 8.8673682
 7.0547135
 23.268528
 20.804676
```

are classified as doubtful. The three other sets of data are all in reasonable agreement in the overlapping ranges of temperature and pressure. The solubility values of Skripka and Lobonova (2) are slightly greater than the values of Sinor and Kurata (3) at the highest pressures studied by the latter. The data of Skripka and coworker (2) and (4) and of Sinor and Kurata (3) are

In view of the lack of information regarding the degree of fit of such smoothing equations, these data should be regarded with some caution and

46.479906

74.331705

103.08746

## References

110 130

144

150

classified as tentative.

51.895458

97.089510

135.87904

- Herring, R. N. and Barrick, P. L., Internat. Adv. Cryogenic Engng., <u>1964</u>, 10, 151.
- Skripka, V. G. and Lobonova, N. N., Trudy Vses. Nauch.-Issled. Inst. Kriog. Mashinostr., 1971, 13, 90.
- 3. Sinor, J. E. and Kurata, F., J. Chem. Engng. Data, 1966, 11, 537.
- Skripka, V. G. and Dykhno, N. M., Trudy Vses. Nauch.-Issled. Inst. Kislorodn., <u>1964</u>, 8, 163

COMPONE	NTS:			ORIGIN	AL MEASURE	MENTS:	<u></u>
(1) (2)	Helium; Oxygen;	-		Trud	y Vses. 1	G. and Lobon NauchIssle nostr., <u>1971</u>	d. Inst.
		_					
VARIABL	ES:			PREPARI	ED BY:		<u></u>
Temp	erature,	pressure		с. г.	. Young		
EXPERIM	ENTAL VAL						· · · · · · · · · · · · · · · · · · ·
т/к	P/bar	Mole fraction in liquid, ^x He	of hellum in vapor, ^y He	т/к	P/bar	Mole fracti in liquid, ²⁷ He	ion of helium in vapor ^y He
65.12 77.81	9.8 19.6 29.4 39.2 49.0 58.8 68.6 78.5 88.3 107.9 117.7 127.5 137.3 147.1 156.9 166.7 176.5 186.3 196.1 205.9 215.7 9.8 19.6 29.4 39.2 49.0	0.0002 0.0003 0.0004 0.0005 0.0006 0.0009 0.0010 0.0013 0.0015 0.0016 0.0018 0.0020 0.0021 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0026 0.0030 0.0030 0.0032 0.0031 0.0032 0.0031 0.0032 0.0031 0.0032 0.0031 0.0032 0.0031 0.0032 0.0031 0.0032 0.0031 0.0032 0.0031 0.0032 0.0031 0.0032 0.0031 0.0032 0.0031 0.0031 0.0032 0.0031 0.0031 0.0032 0.0031 0.0032 0.0031 0.0032 0.0031 0.0031 0.0032 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.00	- - - - - - - - - - - - - - - - - - -	90.58	68.6 78.5 88.3 98.1 107.9 117.7 127.5 137.3 147.1 156.9 166.7 176.5 186.3 196.1 205.9 215.7	0.0023 0.0027 0.0031 0.0036 0.0041 0.0050 0.0055 0.0055 0.0058 0.0062 0.0070 0.0074 0.0079 0.0087 0.0087 0.0092 0.0087 0.0092 0.0006 0.0014 0.0021 0.0029 0.0037 0.0045 0.0054 0.0062 0.0054 0.0070	0.9925 0.9935 0.9940 0.9945 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9710 0.9750 0.9750
			AUXILIARY	INFORMA	TION		
Rockir with ] gas. interf with p	ng autoc Liquid a Sample Ferometr Slatinum Ced with	US/PROCEDURE: lave partially nd then pressu s of phases an y. Temperatu: resistance and Bourdon gauge	filled rized with alysed by re measured d pressure	SOURCE 1. H m 2. H m ESTIMAT	AND PURIT igh puri ole per igh puri ole per TED ERROR: = ±0.01; = $\delta y_{\rm He}$ =	cent. ty sample; cent.	purity 99.9 purity 99.8

COMPONENTS: ORIGINAL MEASUREMENTS: Skripka, V. G. and Lobonova, N. N., Trudy Vses. Nauch.-Issled. Inst. Helium; He; 7440-59-7 (1)Oxygen; 0,; 7782-44-7 Kriog. Mashinostr., <u>1971</u>, 13, 90. (2) Mole fraction of helium Mole fraction of helium in vapor, T/K P/bar in liquid, T/K P/bar in liquid, in vapor  $x_{\text{He}}$  $y_{\rm He}$  $x_{\rm He}$  y He 98.1 166.7 90.58 0.0080 0.9765 0.0262 0.9540 103.06 107.9 0.0087 0.9780 176.5 0.0275 0.9555 0.9800 0.9565 117.7 0.0095 186.3 0.0289 127.5 0.9810 196.1 0.9570 0.0103 0.0301 137.3 0.0111 0.9810 205.9 0.0313 0.9570 147.1 0.0119 0.9820 215.7 0.0323 0.9575 116.22 156.9 0.0127 0.9830 9.8 0.0005 19.6 166.7 0.0135 0.9830 0.0036 0.0143 0.9835 29.4 0.0067 0.5650 176.5 0.6700 186.3 0.0150 0.9835 39.2 0.0097 49.0 196.1 0.0155 0.9835 0.0128 0.7290 58.8 0.7680 205.9 0.0165 0.9835 0.0158 0.0172 215.7 0.9830 68.6 0.0188 0.7940 103.06 9.8 0.0012 -78.5 0.0216 0.8130 19.6 0.0030 88.3 0.0243 0.8280 98.1 29.4 0.0049 0.8300 0.0268 0.8410 39.2 0.0066 0.8640 107.9 0.0294 0.8520 49.0 0.0083 0.8905 117.7 0.0320 0.8610 58.8 0.0100 0.9060 127.5 0.0344 0.8690 0.9115 0.0118 0.8760 68.6 137.3 0.0370 0.0133 78.5 0.9230 147.1 0.0394 0.8815 88.3 0.0149 0.9295 156.9 0.0419 0.8865 98.1 0.0165 0.9350 166.7 0.0443 0.8910 107.9 0.0180 0.9390 176.5 0.0467 0.8950 0.0195 0.9430 186.3 0.0490 0.8985 117.7 127.5 0.0208 0.9460 196.1 0.0513 0.9020 0.9485 205.9 0.0536 137.3 0.0221 0.9055 147.1 0.0234 0.9510 215.7 0.0560 0.9085 0.0248 156.9 0.9520

COMPONENT	S:		ORIGINAL	MEASUREMENTS	
	elium; He; kygen; O ₂ ;		1		Kurata, F., <i>ata</i> , <u>1966</u> , <i>11</i> , 537.
VARIABLES	5:		PREPARED	BY:	
Tempera	ature, press	sure	C. L. Y	oung	
EXPERIMEN	NTAL VALUES:				
т/к	Mol P/bar	e fraction of heli in liquid, ^x _{He}		Mol P/bar	e fraction of helium in liquid, ^x He
77.35	17.2 34.5 51.7 68.95 86.18	0.0004 0.0014 0.0020 0.0025 0.0032	113.15	68.95 86.18 103.4 120.7 137.9	0.0154 0.0195 0.0232 0.0267 0.0302
93.15	103.4 120.7 137.9 17.2 34.5	0.0036 0.0043 0.0048 0.0014 0.0033	128.15	34.5 51.7 68.95 86.18 103.4	0.0086 0.0159 0.0237 0.0314 0.0384
	51.7 68.95 86.18 103.4 120.7	0.0053 0.0068 0.0083 0.0099 0.0114	143.15	120.7 137.9 51.7 68.95 86.18	0.0446 0.0508 0.0180 0.0330 0.0461
113.15	137.9 17.2 34.5 51.7	0.0127 0.0027 0.0074 0.0113		103.4 120.7 137.9	0.0598 0.0725 0.0860
		AUXILIAF	Y INFORMATIC	DN	
METHOD/A	PPARATUS/PR	OCEDURE •	SOURCE AN	D PURITY OF	MATERIALS:
Static city) f Tempera resista measure Compone equilib and ana	equilibrium itted with ture measur nce thermom d with Bour nts charged rated liquid	cell (0.1 & capa- magnetic stirrer. ed with platinum eter. Pressure don gauge.	1. U.S. mum 2. Lind per	Bureau of impurity l2	Mines sample, maxi- 2 parts per million. le purity 99.7 mole
				±0.02; δP/	/bar = ±0.1; 0003 (whichever is greater)
			Kurat	c, J. E., S	Schindler, D. L. and Inst. Chem. Engnrs. 953.

	ITS:		ORIGINAL MEASUREMENTS:	
(1) I	Helium; He;	7440-59-7	Skripka, V. G. and Dykhno, N. M	ſ.,
(2)	Oxygen; O ₂ ;	7700 44 7	Trudy Vses. NauchIssled. Inst	
	oxygen, o ₂ ,	7782-44-7	Kislorodn. Mashinostr., <u>1964</u> , 8	, 163
ARIABLE			PREPARED BY:	
rempera	ature, press	sure	C. L. Young	
XPERIME	ENTAL VALUES:		Mole fraction of helium	
г/к	P/bar	<i>P⁺/bar</i>	in liquid, $x_{He}$ in vapor, $y_{H}$	e
57.5	6.02	5,98	0.000126 0.9956	
	11.16	11.12	0.000228 0.9973	
	16.14	16.10	0.000336 0.9974	
	21.30 26.30	21.26 26.26	0.000433 0.9979	
72.0	20.30	20.20	0.000541 0.9983 0.000178 0.9828	
	11.26	11.17	0.000321 0.9904	
	16.22	16.13	0.000472 0.9929	
	21.29 25.99	21.20 25.90	0.000619 0.9943	
78.0	25.99	25.90	0.000759 0.9952 0.000240 0.9539	
	11.04	10.81	0.000427 0.9732	
	16.20	15.97	0.000622 0.9819	
	21.22	20.98	0.000822 0.9858	
4.0	26.26 6.01	26.03 5.48	0.000998 0.9881 0.000349 0.8939	
	11.05	10.53	0.000660 0.9418	
	16.02	15.49	0.000947 0.9606	
	21.19	20.66	0.001267 0.9687	
0.3	26.30 6.05	25.78 4.99	0.001592 0.9737	
0.5	11.05	9.99	0.000448 0.7791 0.000880 0.8804	
	16.13	15.07	0.001338 0.9178	
	21.14	20.07	0.001791 0.9352	
+ part	26.24 ial pressur	25.18 e of helium	0.002249 0.9472	
1	L		( INFORMATION	
TTUOD /	APPARATUS/P		SOURCE AND PURITY OF MATERIALS;	
		us with magnetic		
ecircu easure hermom ourdon	lating pump d with plat neter pressur gauge. S		<pre>than 0.008% hydrogen, 0.02% nitrogen, 0.05% oxygen and ( hydrocarbons. 2. Purity 99.5 mole per cent or</pre>	0.07% r
eromet	ry. Detai	ls in source.	better major impurities argo water vapor.	on and
			ESTIMATED ERROR: $\delta T/K = \pm 0.02 \text{ to } 0.03;  \delta P \text{ less to } 0.2 \text{ bar; } \delta x_{\text{He}} \simeq \delta y_{\text{He}} = \pm 0.00001$ 0.00002.	
			REFERENCES :	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Helium; He; 7440-59-7	De Swaan Arons, J. and Diepen, G.A.M.,
(2) Xenon; Xe; 7440-63-3	J. Chem. Phys., <u>1966</u> , 44, 2322.
VARIABLES:	PREPARED BY:
Temperature, pressure	C. L. Young
EXPERIMENTAL VALUES:	
T ⁺ /K P ⁺ /bar Mole fraction of helium	$T^+/K P^+/bar$ Mole fraction of helium
278.30 $51.7$ $0.0491$ $283.00$ $58.4$ $0.0491$ $285.35$ $62.2$ $0.0491$ $288.05$ $68.3$ $0.0491$ $289.30$ $73.7$ $0.0491$ $289.30$ $73.7$ $0.0491$ $289.40$ $76.7$ $0.0491$ $287.65$ $92.0$ $0.0491$ $287.65$ $92.0$ $0.0491$ $278.45$ $108.6$ $0.0491$ $278.90$ $59.9$ $0.1054$ $282.50$ $66.5$ $0.1054$ $285.45$ $73.4$ $0.1054$ $287.65$ $80.4$ $0.1054$ $287.65$ $80.4$ $0.1054$ $290.05$ $104.2$ $0.1054$ $290.05$ $104.2$ $0.1054$ $290.15$ $120.0$ $0.1054$ $287.65$ $150.5$ $0.1054$ $287.65$ $150.5$ $0.1054$ $287.65$ $150.5$ $0.1054$ $287.65$ $150.5$ $0.1054$ $287.65$ $150.5$ $0.1054$ $281.25$ $192.8$ $0.1054$ $281.25$ $70.2$ $0.1535$ $285.35$ $81.0$ $0.1535$	287.95 90.3 0.1535 289.45 98.9 0.1535 290.60 109.2 0.1535 291.40 127.7 0.1535 291.55 133.7 0.1535 291.65 139.4 0.1535 291.65 139.4 0.1535 290.25 205.1 0.1535 286.40 263.7 0.1535 286.40 263.7 0.1535 282.65 91.3 0.2385 285.40 101.6 0.2385 286.65 107.2 0.2385 288.55 118.2 0.2385 290.75 137.9 0.2385 292.15 163.5 0.2385 292.80 187.3 0.2385 292.80 187.3 0.2385 292.80 187.3 0.2385 292.80 187.3 0.2385 292.80 187.3 0.2385 292.90 189.6 0.2385 292.90 189.6 0.2385 293.40 354.5 0.2385 293.40 354.5 0.2385 293.40 354.5 0.2385 293.40 354.5 0.2385 293.40 354.5 0.2385 293.40 354.5 0.2385 293.40 354.5 0.2385 293.40 354.5 0.2385 293.40 354.5 0.2385 293.40 354.5 0.2385 294.00 253.2 0.2385 294.00 253.2 0.2385 294.00 253.2 0.2385 294.00 253.2 0.2385 294.00 253.2 0.2385 294.00 253.2 0.2385 294.00 253.2 0.2385 294.00 253.2 0.2385 294.00 253.2 0.2385 294.00 253.2 0.2385 294.00 253.2 0.2385 294.10 1433.5 0.2385 (cont.)
AUXILIARY	INFORMATION
METHOD /APPARATUS/PROCEDURE: Sample confined in glass vessel en- closed in autoclave. Sample agitated by electromagnetic stirrer. Pressure measured on pressure balance. Details in source and ref. 1.	<ul> <li>SOURCE AND PURITY OF MATERIALS:</li> <li>(1) Ohio Chemical and Surgical Equipment Co. purity 99.99 mole per cent.</li> <li>(2) Hoechst AG sample.</li> </ul>
	ESTIMATED ERROR: $\delta T/K = \pm 0.05;  \delta P/bar = \pm 0.01\%;$ $\delta x_{He}$ (maximum) = ±1%. REFERENCES: 1. van Hest, J.A.M. and Diepen, G.A.M., Symp. Phys. Chem., High Pressure, London, 1962, <u>1962</u> .

COMPONE	NTS:		ORIGINAL	MEASURE	MENTS:
(1) He	lium; He;	7440-59-7			J. and Diepen, G.A.M.,
(2) Xe	non; Xe;	7440-63-3	J. Chem.	Pnys,	<u>1966</u> , 44, 2322.
EXPERIME	ENTAL VALU	JES: Mole fraction			Mole fraction
т ⁺ /к	P ⁺ /bar	of helium	т ⁺ /к	P ⁺ /bar	of helium
278.25 282.10	83.3 95.1	0.2544 0.2544	299.10 302.05	465.4 574.3	0.5053 0.5053
285.70	110.3	0.2544	303.25	617.0	0.5053
289.25	134.2	0.2544	305.45	705.9	0.5053
289.40	135.8 153.3	0.2544 0.2544	310.40 315.90	910.1 1160.2	0.5053 0.5053
292.20	191.4	0.2544	320.60	1390.7	0.5053
292.35	196.7	0.2544	325.60	1651.4	0.5053
292.40 292.45	199.8 200.6	0.2544 0.2544	331.65 278.35	1965.8 181.7	0.5053 0.5587
292.55	205.1	0.2544	283.40	221.8	0.5587
293.80	285.8	0.2544	288.45	276.3	0.5587
293.80 293.45	314.7 373.6	0.2544 0.2544	293.25 298.30	351.5 469.8	0.5587 0.5587
293.45	432.4	0.2544	298.30 303.35	469.8	0.5587
291.00	573.6	0.2544	306.10	743.5	0.5587
289.60	705.1	0.2544	306.45	762.7	
287.95 288.50	973.8 1612.2	0.2544 0.2544	307.80 315.80	808.9 1133.1	0.5587 0.5587
278.30	93.8	0.3036	322.55	1426.9	0.5587
282.70	110.0	0.3036	329.30	1741.2	0.5587
287.95 290.85	140.0 171.0	0.3036 0.3036	333.75 278.45	1965.8 207.6	0.5587 0.6028
293.00	223.8	0.3036	283.70	254.2	0.6028
293.20	229.7	0.3036	287.55	296.0	0.6028
293.25 293.40	231.8 237.7	0.3036 0.3036	293.60 298.90	394.3 516.1	0.6028 0.6028
293.40	241.5	0.3036	305.15	713.3	0.6028
293.50	242.5	0.3036	311.15	942.4	0.6028
293.95	260.1	0.3036	313.80	1046.6	0.6028
295.20 295.25	317.0 320.2	0.3036 0.3036	317.30 324.80	1189.5 1504.8	0.6028 0.6028
296.70	491.2	0.3036	331.15	1786.2	0.6028
296.80	762.7	0.3036	336.65	2046.8	0.6028
297.70 281.60	1126.9 114.7	0.3036 0.3537	283.00 290.70	289.4 395.0	0.6518 0.6518
286.30	139.1	0.3537	297.60	532.2	0.6518
291.15	185.9	0.3537	303.00	676.9	0.6518
292.05 294.00	198.1 242.9	0.3537 0.3537	308.60 315.10	862.1 1105.6	0.6518 0.6518
294.00	302.3	0.3537	321.15	1349.5	0.6518
299.15	455.9	0.3537	321.15	1350.6	0.6518
302.75 305.95	762.7 1126.9	0.3537 0.3537	323.85	1462.9 1759.2	0.6518
309.78	1561.5	0.3537	330.75 336.50	2015.3	0.6518 0.6518
280.00	126.8	0.4053	278.20	265.8	0.6786
282.80	142.0 181.6	0.4053	284.20	331.2	0.6786
288.10	259.6	0.4053 0.4053	287.90 292.55	381.8 460.1	0.6786 0.6786
296.90	380.7	0.4053	298.50	586.3	0.6786
297.15	390.5	0.4053	303.20	711.3	0.6786
300.85 304.25	550.0 739.4	0.4053 0.4053	309.05 315.85	897.0 1145.4	0.6786 0.6786
309.15	1078.0	0.4053	321.70	1379.0	0.6786
313.75	1427.9	0.4053	328.50	1664.0	0.6786
317.80 279.55	1741.3 163.2	0.4053 0.5053	332.05 338.60	1820.4 2109.5	0.6786 0.6786
283.75	192.8	0.5053	278.30	290.1	0.7016
289.35	249.6	0.5053	283.40	348.2	0.7016
294.85	343.5	0.5053	289.55	437.5	0.7016
					(cont.)

.

ORIGINAL MEASUREMENTS: COMPONENTS: De Swaan Arons, J. and Diepen, G.A.M., Helium; He; 7440-59-7 (1)J. Chem. Phys., 1966, 44, 2322. Xenon; Xe; 7440-63-3 (2) EXPERIMENTAL VALUES: Mole fraction Mole fraction т+/к  $P^+/bar$ т+/к  $P^+/bar$ of helium of helium 1031.4 0.8270 303.20 0.7016 295.85 557.6 1250.4 710.2 0.7016 310.75 0.8270 302.05 0.8270 1420.2 311.10 991.2 0.7016 316.10 0.7016 318.35 1254.0 322.70 1651.4 0.8270 1875.0 324.95 1519.6 0.7016 328.85 0.8270 0.7016 2100.5 1903.0 0.8270 333.90 334.55 277.85 348.7 0.7534 278.55 717.5 9.8783 816.5 439.6 0.7534 0.8783 283.20 284.65 291.10 548.5 0.7534 288.80 942.7 0.8783 1104.9 0.8783 644.2 0.7534 295.25 295.85 0.7534 1310.4 774.2 302.55 0.8783 301.35 308.95 1509.1 0.8783 307.30 939.0 0.7534 314.80 1146.0 1701.8 0.8783 314.00 0.7534 322.50 1974.8 0.8783 319.70 1344.7 0.7534 0.7534 1314.1 324.85 1538.5 285.75 0.9275 0.9275 330.00 1741.2 0.7534 288.85 1400.0 1519.6 1965.8 0.7534 292.80 0.9275 335.35 1669.4 0.9275 282.05 551.6 0.8270 297.80 647.6 1849.6 0.8270 303.05 0.9275 287.30 2074.0 293.20 770.5 0.8270 308.95 0,9275 298.65 912.0 0.8270

COMPONENTS:	ORIGINAL MEASUREMENTS:
	ORIGINAL MEASUREMENTS:
(1) Helium; He; 7440-59-7	Grove, N. H., and Whitby, F. P.,
	J. Appl. Chem., 1960, 10, 101.
(2) Santowax R;	
VARIABLES:	PREPARED BY:
Temperature, pressure	C. L. Young
EXPERIMENTAL VALUES:	
T/K P/bar Solubility * Ostwald coefficie	ent
<u></u>	
506         1.81         5.3         0.114           511         2.58         6.3         0.097	
511 4.04 9.0 0.089	
598         2.13         9.3         0.189	
599         3.04         11.0         0.157           600         4.76         16.0         0.146	
674 2.43 12.7 0.236	
679 3.48 16.3 0.212	
679 5.41 24.3 0.203	
* Moles of helium per mg of Santov	wax R
	······
	INFORMATION
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Static cell with null pressure trans-	l. No details given.
ducer. Pressure measured with Bourdon gauge. Temperature measured	2. Analysis by infrared method showed
with thermocouple. Sample placed in	sample to be 11.8% σ-terphenyl, 56.3% m-terphenyl, 29.3% p-ter-
cell and gas added at room tempera-	phenyl, 2.6% diphenyl and higher
ture. Cell then heated to experi- mental temperature. Pressures on	polyphenyls. Obtained from
both sides of transducer kept	Monsanto Chemicals Ltd.
approximately equal. Details in source.	
source.	
	ESTIMATED ERROR:
	$\delta T/K = \pm 1;  \delta P/bar = \pm 0.01;$
	$\delta x_{\rm He} = \pm 10\%.$
	REFERENCES:
i i i	
•	

(2) Methane; CH,; 74-82-8       Progr. Refrig. Sci. Technol. XIII Proc. Internat. Congr. Refrig., $1972$ 1, 309.         /ARIABLES:       PREPARED BY: C. L. Young         CEXPERIMENTAL VALUES: Mole fraction of neon P/K       Pher in liquid, in vapor, Ne         Mole fraction of neon P/K       Mole fraction of neon Ne         95.26       20.3       0.0059         95.26       20.3       0.0059         112.27       344.5       0.0795       0.9684         34.5       0.0093       -       112.27       344.5       0.0795       0.9684         103.4       0.0222       -       964.6       0.1014       0.9690         137.8       0.0275       -       1102.4       0.0993       0.9738         175.3       0.0310       0.9889       1240.2       0.0919       0.9774         275.6       0.0399       0.9883       117.49       344.5       0.0919       0.9592	COMPONEN	TS:			ORIGINAL	MEASUREN	ENTS:	
(2) Nethane; Ch.; 74-52-5       Proc. Internat. Congr. Refrig., 197;         7, 309.       Proc. Internat. Congr. Refrig., 197;         7, 309.       Prepresentation of neon         Malastes:       Prepresentation of neon         Mole fraction of neon       Mole fraction of neon $N/K$ $P/bar$ in liquid, in vapor, $T/K$ $P/bar$ in liquid, in vapor, $T/K$ $P/bar$ 95.26       20.3       0.0059         103.4       0.0222         -       964.6       0.1014         0.0310       0.9883         175.3       0.0310       0.9883         175.3       0.0310       0.9881         174.5       0.0107       0.9714         205.7       0.0342       0.9801         134.5       0.0107       0.9712         689.0       0.1025       0.9512         205.6       0.0390       1324.3       0.067         137.4       0.0310       0.9801       1324.5       0.1017         137.4       0.0617       0.9261       1325.0       0.9502         213.4       0.0617       0.9201       1325.0       0.1125       0.9501         137.4 <t< td=""><td colspan="4" rowspan="2"></td><td colspan="4"></td></t<>								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Progr	. Refrig	. Sci. Techn	ol. XIII
ARIABLES:         PREPARED BY:           C. L. Young           EXPERIMENTAL VALUES: Mole fraction of neon //K         Mole fraction of neon //K         Mole fraction of neon //K $\gamma_{Ne}$ $\gamma_{Ne}$ $\gamma_{Ne}$ $\gamma_{Ne}$ 95.26         20.3         0.0059         -           47.6         0.0111         0.9902         689.0         0.1014         0.9670           68.9         0.0165         0.9914         826.8         0.1027         0.9760           103.4         0.0222         -         964.6         0.1050         0.9742           107.3         0.0310         0.9880         11240.2         0.09903         0.9732           175.3         0.0107         0.9710         689.0         0.1125         0.9561           102.4         0.0990         0.9744         51.2         0.1067         0.9551           0.2.91         34.5         0.0107         0.971         826.8         0.1225         0.9581           102.4         0.0275         -         1240.2         0.1137         0.9661           13.4         0.0275         -         1240.2         0.1137         0.9617           255.1         0.0178	(2) Me	cilane,	CII4, 74-02-0	,	Proc.	Interna	t. Congr. Re	frig., <u>1971</u> ,
Remperature, pressure         C. L. Young           XXPERIMENTAL VALUES: Mole fraction of neon $\frac{7K}{R}$ $\frac{7}{P/bar}$ in liquid, in vapor, $\frac{x_{Ne}}{V_{Ne}}$ $\frac{y_{Ne}}{V_{Ne}}$ $\frac{x_{Ne}}{K}$ $\frac{y_{Ne}}{V_{Ne}}$ $\frac{x_{Ne}}{V_{Ne}}$ $\frac{y_{Ne}}{V_{Ne}}$ $\frac{x_{Ne}}{V_{Ne}}$ $\frac{y_{Ne}}{V_{Ne}}$ $\frac{y_{NE}}{$					1, 30	9.		
Remperature, pressure         C. L. Young           XXPERIMENTAL VALUES: Mole fraction of neon $\frac{7K}{R}$ $\frac{7}{P/bar}$ in liquid, in vapor, $\frac{x_{Ne}}{V_{Ne}}$ $\frac{y_{Ne}}{V_{Ne}}$ $\frac{x_{Ne}}{K}$ $\frac{y_{Ne}}{V_{Ne}}$ $\frac{x_{Ne}}{V_{Ne}}$ $\frac{y_{Ne}}{V_{Ne}}$ $\frac{x_{Ne}}{V_{Ne}}$ $\frac{y_{Ne}}{V_{Ne}}$ $\frac{y_{NE}}{$	VARIABLE	s:			PPEPAPET			···=
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
Mole fraction of neon $K$ K p/bar in liquid, in vapor, $N_{\rm Ne}$ Mole fraction of neon $N_{\rm Ne}$ Mole fraction of neon $N_{\rm Ne}$ 95.2620.30.0059-112.27344.50.07950.968434.50.0093-551.20.09530.967747.60.01610.990268.00.10140.9690103.40.0222-964.60.10500.9720137.80.0275-1102.40.099800.9734206.70.03540.98891240.20.099800.9734205.60.03100.9889117.49344.50.99190.9552344.50.04100.988117.49344.50.99190.9552.02.9134.50.01070.9710686.00.11250.9589.02.9134.50.01070.9781964.60.12020.9619173.80.03420.98081102.40.12020.9619137.80.04230.98081102.40.12020.9619137.80.04230.98081102.40.12030.9661275.60.05280.98041653.60.11060.973925.120.06630.97601737.60.11770.9664137.80.0627-1515.80.11660.9739275.60.05710.97281730.60.10660.9367137.80.06230.97611730.60.10660.9367275.60.05710.97	Tempera	ture, p	oressure			. Young		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	EXPERIME	NTAL VAL		- of noon			Mole fracti	on of neon
95.26 20.3 0.0059 - 112.27 344.5 0.0795 0.9684 34.5 0.0093 - 551.2 0.0953 0.9677 47.6 0.0111 0.9902 689.0 0.1014 0.9690 68.9 0.0165 0.9914 826.8 0.1027 0.9766 103.4 0.0222 - 964.6 0.1050 0.9720 137.8 0.0316 0.9889 120.2 0.0980 0.9734 206.7 0.0354 0.9890 1224.3 0.097 0.975 275.6 0.0399 0.9883 117.49 344.5 0.0919 0.9552 68.9 0.0166 0.9817 826.8 0.1215 0.9568 103.4 0.0275 0.9828 964.6 0.1202 0.9664 103.4 0.0275 0.9828 964.6 0.1203 0.9664 103.4 0.0275 0.9828 964.6 0.1203 0.9664 103.4 0.0275 0.9828 102.4 0.1203 0.9664 103.4 0.0275 0.9828 102.4 0.1203 0.9664 103.4 0.0275 0.9828 105.4 0.1178 0.9664 103.4 0.0275 0.9828 105.4 0.1178 0.9664 103.4 0.0275 0.9828 105.4 0.1178 0.9664 103.4 0.0617 - 1515.8 0.1137 0.9701 551.2 0.0669 0.9806 1102.4 0.203 0.9640 266.7 0.0423 - 1240.2 0.1189 0.9664 413.4 0.0617 - 1515.8 0.1137 0.9735 12.27 34.5 0.0127 0.9507 551.2 0.1504 0.9357 12.27 34.5 0.0127 0.9507 551.2 0.1504 0.9357 12.27 34.5 0.0127 0.9508 126.61 413.4 0.1337 0.9357 12.27 34.5 0.0127 0.9507 551.2 0.1504 0.9358 13.7.8 0.0434 0.9728 826.8 0.1641 0.9401 172.3 0.0509 0.9732 964.6 0.1679 0.9425 206.7 0.0571 0.9728 1240.2 0.1638 0.9496 AUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION ESTIMATED ERROR: $\delta T/K = \pm 0.02; \delta P/bar = \pm 1; \delta T_{NC}, \delta T_{NC} = \pm 0.001 (estimated by Omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan of the omegan o$	т/к	P/bar	in liquid,		T/K	P/bar	in liquid,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$x_{\sf Ne}$	y Ne			^x Ne	y Ne
$\frac{47.6}{68.9}  0.0165  0.9914 \qquad 68.6  0.1027  0.9706 \\ 68.9  0.0165  0.9914 \qquad 826.8  0.1027  0.9706 \\ 103.4  0.0222  - \\ 1102.4  0.0993  0.9738 \\ 175.3  0.0310  0.9889  11240.2  0.0980  0.9744 \\ 206.7  0.0354  0.9890  1324.3  0.097  0.975 \\ 275.6  0.0399  0.988  551.2  0.1087  0.95581 \\ 0.2.91  34.5  0.0107  0.9710  669.0  0.1125  0.9604 \\ 103.4  0.0275  0.9828  964.6  0.1203  0.9664 \\ 206.7  0.0423  - \\ 275.6  0.0528  0.9808  1102.4  0.1289  0.9664 \\ 206.7  0.0423  - \\ 275.6  0.0528  0.9808  1102.4  0.1203  0.9664 \\ 13.4  0.0617  - \\ 551.2  0.0689  0.9804  1653.6  0.1107  0.9710 \\ 551.2  0.0689  0.9904  1553.8  0.1107  0.97701 \\ 569.0  0.0695  0.9796  1730.6  0.109  0.976 \\ 1771.1  0.071  0.979  126.61  43.4  0.1337  0.9355 \\ 137.8  0.0434  0.9728  826.8  0.1664  0.9366 \\ 137.8  0.0434  0.9728  826.8  0.1664  0.9366 \\ 137.8  0.0434  0.9728  826.8  0.1664  0.9366 \\ 137.8  0.0434  0.9728  1240.2  0.1638  0.9496 \\ 172.3  0.0591  0.9728  1240.2  0.1638  0.9496 \\ 172.3  0.0591  0.9728  1240.2  0.1638  0.9496 \\ 137.8  0.0434  0.9728  1240.2  0.1638  0.9496 \\ 172.3  0.0591  0.9728  1240.2  0.1638  0.9496 \\ 172.3  0.0591  0.9728  1240.2  0.1638  0.9496 \\ 172.3  0.0591  0.9728  1240.2  0.1638  0.9496 \\ 172.3  0.0591  0.9728  1240.2  0.1638  0.9496 \\ 172.3  0.0591  0.9728  1240.2  0.1638  0.9496 \\ 1740.2  0.0591  0.9728  1240.2  0.1638  0.9496 \\ 1740.2  0.0591  0.9728  1240.2  0.1638  0.9496 \\ 1740.2  0.0591  0.9728  1240.2  0.1638  0.9496 \\ 1740.2  0.0591  0.9728  1240.2  0.1638  0.9496 \\ 1740.2  0.0591  0.9728  1240.2  0.1638  0.9496 \\ 1740.2  0.0591  0.9728  1240.2  0.1638  0.9496 \\ 1740.2  0.001  0.9710  0.9728  0.001  0.9710  0.9728  0.001  0.9710  0.9728  0.001  0.9710  0.9728  0.001  0.9710  0.975  0.9755  0.9755  0.9555  0.9555  0.9555  0.9555  0.9555  0.9555  0.9555  0.9555  0.9555  0.9555  0.9555  0.9555  0.9555  0.$	95.26			-	112.27			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					117 40			
$\begin{array}{rcrcrc} 0.2.91 & 34.5 & 0.0107 & 0.9710 & 689.0 & 0.1125 & 0.9589 \\ 68.9 & 0.0196 & 0.9817 & 826.8 & 0.1215 & 0.9604 \\ 103.4 & 0.0275 & 0.9828 & 964.6 & 0.1202 & 0.9619 \\ 137.8 & 0.0342 & 0.9808 & 1102.4 & 0.1203 & 0.9662 \\ 275.6 & 0.0528 & 0.9820 & 1378.0 & 0.1178 & 0.9662 \\ 275.6 & 0.0528 & 0.9804 & 1653.6 & 0.1106 & 0.9739 \\ 689.0 & 0.0695 & 0.9961 & 1730.6 & 0.1106 & 0.9739 \\ 689.0 & 0.0695 & 0.9796 & 1.730.6 & 0.106 & 0.9735 \\ 771.1 & 0.071 & 0.979 & 126.61 & 413.4 & 0.1337 & 0.9357 \\ 12.27 & 34.5 & 0.0127 & 0.9507 & 551.2 & 0.1504 & 0.9356 \\ 137.8 & 0.0434 & 0.9728 & 826.8 & 0.1641 & 0.9401 \\ 172.3 & 0.0509 & 0.9732 & 964.6 & 0.1679 & 0.9425 \\ 206.7 & 0.0571 & 0.9728 & 1240.2 & 0.1638 & 0.9496 \\ \end{array}$					11/.49			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	102.91							
$\frac{137.8}{206.7} 0.0423 - 1240.2 0.1203 0.9640 \\ 206.7 0.0423 - 1240.2 0.1189 0.9662 \\ 275.6 0.0528 0.9820 1378.0 0.1178 0.9684 \\ 413.4 0.0617 - 1515.8 0.1137 0.9701 \\ 551.2 0.0689 0.9804 1653.6 0.1106 0.9739 \\ 689.0 0.0695 0.9796 1730.6 0.109 0.976 \\ 771.1 0.071 0.979 126.61 413.4 0.1337 0.9357 \\ 68.9 0.0245 0.9681 689.0 0.1606 0.9366 \\ 137.8 0.0434 0.9728 826.8 0.1641 0.9401 \\ 172.3 0.0509 0.9732 964.6 0.1679 0.9425 \\ 206.7 0.0571 0.9728 1240.2 0.1638 0.9496 \\ \hline MAXILLARY INFORMATION \\ \hline METROD/APPARATUS/PROCEDURE: ecirculating vapor flow apparatus witt agnetic pump at ambient temperature. amples analysed by thermal conductivity. Temperature measured with Bourdon gauge. etails in ref. 1. \\ \hline MAXILLARY INFORMATION \\ \hline METROD / APPARATUS / PROCEDURE: ecirculating vapor flow apparatus witt agnetic pump at ambient temperature. May see the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second$						826.8	0.1215	0.9604
$\frac{206.7 & 0.0423 & - & 1240.2 & 0.1189 & 0.9662 \\ 275.6 & 0.0528 & 0.9820 & 1378.0 & 0.1178 & 0.9684 \\ 413.4 & 0.0617 & - & 1515.8 & 0.1137 & 0.9701 \\ 551.2 & 0.0689 & 0.9804 & 1653.6 & 0.109 & 0.976 \\ 771.1 & 0.071 & 0.979 & 126.61 & 413.4 & 0.1337 & 0.9357 \\ 12.27 & 34.5 & 0.0127 & 0.9507 & 551.2 & 0.1504 & 0.9356 \\ 137.8 & 0.0434 & 0.9728 & 826.8 & 0.1641 & 0.9401 \\ 172.3 & 0.0509 & 0.9732 & 964.6 & 0.1679 & 0.9425 \\ 206.7 & 0.0571 & 0.9728 & 1240.2 & 0.1638 & 0.9496 \\ \hline \\ METHOD /APPARATUS/PROCEDURE: \\ ecirculating vapor flow apparatus with agnetic pump at ambient temperature. amples analysed by thermal conduc-ivity. Temperature measured with Bourdon gauge. etails in ref. 1. \\ \hline \\ ESTIMATED ERROR:  \delta T/K = \pm 0.021 \ \delta P/bar = \pm 1; \\ \delta x_{Ne}, \delta y_{Ne} = \pm 0.001 \ (estimated by compiler) \\ \hline \\ REFERENCES: \\ 1. Streett, W. B. and Jones, C. H.,  Adv. Cryogenic Engng., 1965, 11, \\ \hline \\ $								
$\frac{275.6}{413.4} 0.0528 0.9820 1378.0 0.1178 0.9684 \\ \frac{413.4}{113.4} 0.0617 - 1515.8 0.1137 0.9701 \\ 1551.2 0.0689 0.9804 1653.6 0.1106 0.9739 \\ 689.0 0.0695 0.9796 1730.6 0.109 0.976 \\ 771.1 0.071 0.979 126.61 413.4 0.1337 0.9357 \\ 12.27 34.5 0.0127 0.9507 551.2 0.1504 0.9350 \\ 68.9 0.0245 0.9681 669.0 0.1606 0.9366 \\ 137.8 0.0434 0.9728 226.8 0.1641 0.9401 \\ 172.3 0.0509 0.9732 964.6 0.1679 0.9425 \\ 206.7 0.0571 0.9728 1240.2 0.1638 0.9496 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $				0.9808				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-				
$551.2 & 0.0689 & 0.9804 &   1653.6 & 0.1106 & 0.9739 \\ 689.0 & 0.0695 & 0.9796 &   1730.6 & 0.109 & 0.976 \\ 1771.1 & 0.071 & 0.979 &   26.61 & 413.4 & 0.1337 & 0.9357 \\ 12.27 & 34.5 & 0.0127 & 0.9507 & 551.2 & 0.1504 & 0.9350 \\ 68.9 & 0.0245 & 0.9681 & 669.0 & 0.1606 & 0.9366 \\ 137.8 & 0.0434 & 0.9728 & 826.8 & 0.1641 & 0.9401 \\ 172.3 & 0.0509 & 0.9732 & 964.6 & 0.1679 & 0.9425 \\ 206.7 & 0.0571 & 0.9728 & 1240.2 & 0.1638 & 0.9496 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
12.27 34.5 0.0127 0.9507 551.2 0.1504 0.9350 68.9 0.0245 0.9681 689.0 0.1606 0.9366 137.8 0.0434 0.9728 826.8 0.1641 0.9401 172.3 0.0509 0.9732 964.6 0.1679 0.9425 206.7 0.0571 0.9728 1240.2 0.1638 0.9496 AUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION AUXILIARY INFORMATION ESTIMATED ERROR: ressure measured with Bourdon gauge. etails in ref. 1. ESTIMATED ERROR: $\delta T/K = \pm 0.02; \ \delta P/bar = \pm 1; \ \delta x_{Ne}, \ \delta y_{Ne} = \pm 0.001 \ (estimated by compiler)$ REFERENCES: 1. Streett, W. B. and Jones, C. H., Adv. Cryogenic Engng., 1965, 11,		689.0	0.0695	0.9796		1730.6	0.109	0.976 ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					126.61			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112.27							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$206.7  0.0571  0.9728 \qquad 1240.2  0.1638  0.9496$ $AUXILIARY INFORMATION$ WETHOD/APPARATUS/PROCEDURE: ecirculating vapor flow apparatus with agnetic pump at ambient temperature. amples analysed by thermal conduc-ivity. Temperature measured with latinum resistance thermometer. ressure measured with Bourdon gauge. etails in ref. 1. ESTIMATED ERROR: $\delta T/K = \pm 0.02;  \delta P/bar = \pm 1; \\ \delta x_{Ne},  \delta y_{Ne} = \pm 0.001 \text{ (estimated by compiler)}$ REFERENCES: 1. Streett, W. B. and Jones, C. H., Adv. Cryogenic Engng., <u>1965</u> , <i>11</i> ,								
METHOD /APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:ecirculating vapor flow apparatus with agnetic pump at ambient temperature. amples analysed by thermal conduc- ivity. Temperature measured with latinum resistance thermometer. ressure measured with Bourdon gauge. etails in ref. 1.SOURCE AND PURITY OF MATERIALS: No details given.ESTIMATED ERROR: $\delta T/K = \pm 0.02;  \delta P/bar = \pm 1;$ $\delta x_{Ne},  \delta y_{Ne} = \pm 0.001$ (estimated by compiler)REFERENCES: 1. Streett, W. B. and Jones, C. H., Adv. Cryogenic Engng., <u>1965</u> , 11,		206.7	0.0571	0.9728		1240.2	0.1638	0.9496
ecirculating vapor flow apparatus with agnetic pump at ambient temperature. amples analysed by thermal conduc- ivity. Temperature measured with latinum resistance thermometer. ressure measured with Bourdon gauge. etails in ref. 1.		<u> </u>		AUXILIARY	INFORMAT	ION		
agnetic pump at ambient temperature. amples analysed by thermal conduc- ivity. Temperature measured with latinum resistance thermometer. ressure measured with Bourdon gauge. etails in ref. 1. ESTIMATED ERROR: $\delta T/K = \pm 0.02; \ \delta P/bar = \pm 1; \ \delta x_{Ne}, \ \delta y_{Ne} = \pm 0.001 \ (estimated by compiler)$ REFERENCES: 1. Streett, W. B. and Jones, C. H., Adv. Cryogenic Engng., <u>1965</u> , 11,	METHOD /	APPARAT	US/PROCEDURE:	<u> </u>	SOURCE A	ND PURITY	OF MATERIALS:	<u></u>
amples analysed by thermal conduc- ivity. Temperature measured with latinum resistance thermometer. ressure measured with Bourdon gauge. etails in ref. 1. ESTIMATED ERROR: $\delta T/K = \pm 0.02; \ \delta P/bar = \pm 1; \ \delta x_{Ne}, \ \delta y_{Ne} = \pm 0.001 \ (estimated by compiler)$ REFERENCES: 1. Streett, W. B. and Jones, C. H., $Adv. Cryogenic Engng., \underline{1965}, 11,$					H No	detail	s given.	
ivity. Temperature measured with latinum resistance thermometer. ressure measured with Bourdon gauge. etails in ref. 1. $ESTIMATED ERROR: \delta T/K = \pm 0.02; \delta P/bar = \pm 1; \delta x_{Ne}, \delta y_{Ne} = \pm 0.001 \text{ (estimated by compiler)}$ $REFERENCES: 1. Streett, W. B. and Jones, C. H., Adv. Cryogenic Engng., 1965, 11,$	magneti	c pump	at ambient ten	perature.			-	
latinum resistance thermometer. ressure measured with Bourdon gauge. etails in ref. 1. $ESTIMATED ERROR: \delta T/K = \pm 0.02; \ \delta P/bar = \pm 1; \delta x_{Ne}, \ \delta y_{Ne} = \pm 0.001 \ (estimated by compiler) \\ REFERENCES: \\1. \ Streett, W. B. and Jones, C. H., Adv. Cryogenic Engng., 1965, 11,$						-		
ressure measured with Bourdon gauge. etails in ref. 1. $ESTIMATED ERROR: \delta T/K = \pm 0.02; \delta P/bar = \pm 1; \delta x_{Ne}, \delta y_{Ne} = \pm 0.001 \text{ (estimated by compiler)} \\ REFERENCES: \\ 1. Streett, W. B. and Jones, C. H., Adv. Cryogenic Engng., 1965, 11,$		-						
etails in ref. 1. ESTIMATED ERROR: $\delta T/K = \pm 0.02; \ \delta P/bar = \pm 1; \ \delta x_{Ne}, \ \delta y_{Ne} = \pm 0.001 \ (estimated by compiler)$ REFERENCES: 1. Streett, W. B. and Jones, C. H., Adv. Cryogenic Engng., <u>1965</u> , 11,								
ESTIMATED ERROR: $\delta T/K = \pm 0.02;  \delta P/bar = \pm 1;  \delta x_{Ne},  \delta y_{Ne} = \pm 0.001 \text{ (estimated by compiler)}$ REFERENCES: 1. Streett, W. B. and Jones, C. H., <i>Adv. Cryogenic Engng.</i> , <u>1965</u> , <i>11</i> ,				yuuye.				
$\delta T/K = \pm 0.02;  \delta P/bar = \pm 1;$ $\delta x_{Ne},  \delta y_{Ne} = \pm 0.001 \text{ (estimated by compiler)}$ REFERENCES: 1. Streett, W. B. and Jones, C. H., Adv. Cryogenic Engng., <u>1965</u> , 11,			•					
$\delta T/K = \pm 0.02;  \delta P/bar = \pm 1;$ $\delta x_{Ne},  \delta y_{Ne} = \pm 0.001 \text{ (estimated by compiler)}$ REFERENCES: 1. Streett, W. B. and Jones, C. H., Adv. Cryogenic Engng., <u>1965</u> , 11,					1			
$\delta T/K = \pm 0.02;  \delta P/bar = \pm 1;$ $\delta x_{Ne},  \delta y_{Ne} = \pm 0.001 \text{ (estimated by compiler)}$ REFERENCES: 1. Streett, W. B. and Jones, C. H., Adv. Cryogenic Engng., <u>1965</u> , 11,					1			
$\delta T/K = \pm 0.02;  \delta P/bar = \pm 1;$ $\delta x_{Ne},  \delta y_{Ne} = \pm 0.001 \text{ (estimated by compiler)}$ REFERENCES: 1. Streett, W. B. and Jones, C. H., Adv. Cryogenic Engng., <u>1965</u> , 11,								
$\delta T/K = \pm 0.02;  \delta P/bar = \pm 1;$ $\delta x_{Ne},  \delta y_{Ne} = \pm 0.001 \text{ (estimated by compiler)}$ REFERENCES: 1. Streett, W. B. and Jones, C. H., Adv. Cryogenic Engng., <u>1965</u> , 11,					DOTT VAM	ID EDDOD		
$\delta x_{\rm Ne}, \ \delta y_{\rm Ne} = \pm 0.001 \ (\text{estimated by} \\ \text{compiler})$ REFERENCES: 1. Streett, W. B. and Jones, C. H., <i>Adv. Cryogenic Engng.</i> , <u>1965</u> , <i>11</i> ,					1		8P/ham - +1	•
REFERENCES: 1. Streett, W. B. and Jones, C. H., Adv. Cryogenic Engng., <u>1965</u> , 11,								
REFERENCES: 1. Streett, W. B. and Jones, C. H., <i>Adv. Cryogenic Engng.</i> , <u>1965</u> , <i>11</i> ,					δ ^x Ne'	^{δy} Ne =		
1. Streett, W. B. and Jones, C. H., Adv. Cryogenic Engng., <u>1965</u> , 11,							comp	oiler)
Adv. Cryogenic Engng., <u>1965</u> , 11,						•		_
					1. Str	eett, W	. B. and Jone	es, C. H.,
					Adv	. Cryog	enic Engng.,	1965, 11,
555.					1			· · ·
						•		
					1			

ORIGINAL MEASUREMENTS: COMPONENTS: Streett, W. B. and Hill, J. L. E., Progr. Refrig. Sci. Technol. XIII Neon; Ne; 7440-01-9 (1)Proc. Internat. Congr. Refrig., 1971, (2) Methane; CH₄; 74-82-8 1, 309. EXPERIMENTAL VALUES: Mole fraction of neon Mole fraction of neon т/к P/bar in liquid, in vapor, T/K P/bar in liquid, in vapor,  $x_{Ne}$  $y_{Ne}$  $y_{Ne}$  $x_{Ne}$ 0.1592 1653.6 0.4137 126.61 1515.8 0.9557 154.05 0.8188 1791.4 0.1520 0.9611 1791.4 0.3954 0.8381 2067.0 0.1425 0.9680 2067.0 0.3595 0.8682 2411.5 2301.1 0.1329 0.9711 0.3266 0.8931 2394.3 0.129 0.973 2757.1 0.2985 0.9117 0.8873 139.08 344.5 0.1716 3101.6 0.9251 0.2710 0.9358 413.4 0.1922 0.8848 3446.1 0.2528 551.2 0.2237 0.8843 4135.1 0.2199 0.9496 689.0 0.2417 161.49 0.8842 83.1 0.0636 0.6389 0.2508 0.8874 826.8 103.4 0.0845 0.6716 964.6 0.2535 0.8934 137.8 0.1170 0.7023 1102.4 0.2543 0.8996 172.3 0.1546 0.7107 1240.2 0.2507 0.9059 206.7 0.1890 0.7110 1378.0 0.2463 0.9129 241.2 0.2276 0.7057 1653.6 0.2378 275.6 0.9226 0.2699 0.6905 0.9393 2067.0 0.2137 310.1 0.3139 0.6698 2411.5 0.1981 0.9486 344.5 0.3685 0.6356 2757.1 0.1848 0.9567 360.7 0.4100 0.5610 0.515 3100.5 0.1759 0.9615 371.9 0.515 0.967 0.167 3456.2 166.24 2536.2 0.655 0.655 148.08 413.4 0.2490 0.8230 0.5377 2619.3 0.3051 0.8097 0.7774 551.2 2660.8 0.5207 703.2 0.3417 0.8037 2722.6 0.4918 0.7966 826.8 0.3606 0.8070 2853.3 0.4652 0.8183 0.4507 964.6 0.3659 0.8163 2894.9 0.8279 1102.4 0.3634 0.8285 3032.7 0.4236 0.8479 1240.2 0.3539 0.8426 3480.5 0.3655 0.8840 1515.8 0.3342 0.8653 3825.0 0.3326 0.9031 0.8859 0.3173 1791.4 4135.0 0.3144 0.9168 2067.0 0.2926 0.9030 167.16 68.9 0.0534 0.5184 0.9187 2411.5 0.2756 103.4 0.0919 0.5931 2757.1 0.2462 0.9340 137.8 0.1344 0.6257 172.3 0.6505 3156.3 0.2234 0.9437 0.1788 3474.4 206.7 0.9505 0.2083 0.2198 0.6487 3790.6 0.1966 0.9502 234.1 0.2650 0.6250 0.1840 4135.1 0.9618 248.2 0.2959 0.6003 4272.9 0.179 0.964 0.5700 261.4 0.3301 152.95 274.5 0.455 0.455 413.4 0.3087 0.7673 0.3892 0.7345 551.2 170.17 2979.0 0.657 0.657 703.2 0.4835 0.6886 3067.1 0.7766 0.5700 0.6593 0.5133 826.8 3115.7 0.7918 909.9 0.5316 0.8064 0.6639 3170.5 0.4937 964.6 0.5240 0.6858 3308.3 0.4563 0.8300 0.5166 0.7057 1033.5 3446.1 0.4317 0.8480 1102.4 0.4964 0.7266 3517.0 0.3901 0.8790 1378.0 0.4418 0.7905 4135.1 0.3614 0.9499 1791.4 0.3820 0.8486 175.00 34.5 0.0072 0.1090 154.05 344.5 0.2685 0.7701 68.9 0.0550 0.3746 413.4 0.3142 0.7530 103.4 0.1050 0.4585 482.3 0.3649 0.7319 123.6 0.1445 551.2 0.4181 0.7032 0.4844 137.8 0.1660 620.1 0.4718 15?.0 0.4780 0.6642 0,1981 654.6 0.5055 165.2 0.2329 0.4595 0.582 675.8 0.582 172.2 0.2568 1226.0 0.620 0.630 175.3 0.2631 0.4319 1294.9 -0.7404 184.4 0.360 0.360 -1336.5 0.7532 180.50 4076.3 0.664 0.664 0.4818

0.7641

0.7805

0.7954

0.4606

0.4430

4162.4

4231.3

4356.0

0.5610

0.5220

0.4950

0.7688

0.8034

0.8290

1378.0

1446.9

1515.8

154.05

COMP	ONENTS:	EVALUATOR:
1.	Neon; Ne; 7440-01-9	Colin Young,
		School of Chemistry,
2.	Argon; Ar; 7440-37-1	University of Melbourne,
		Parkville, Victoria 3052,
		AUSTRALIA.

## CRITICAL EVALUATION:

This system has been studied by three groups of workers. The data of Streett and coworkers (1,2,3) are the most detailed and are in good agreement with the data of Trappeniers and Schouten (4) where the two sets of data overlap. The solubility values of Skripka and Dykhno (5) and Skripka and Lobonova (6) are somewhat higher than those obtained by Streett (1).

The data of Streett (1,2), Streett and Hill (3) and Trappeniers and Schouten (4) are classified as tentative whereas those of Skripka and Dykhno and Skripka and Lobonova are classified as doubtful.

## References

- 1. Streett, W. B., J. Chem. Phys., 1965, 42, 500.
- 2. Streett, W. B., J. Chem. Phys., 1967, 46, 3282.
- 3. Streett, W. B. and Hill, J. L. E., J. Chem. Phys., <u>1971</u>, 54, 5088.
- 4. Trappeniers, N. J. and Schouten, J. A., Physics, 1974, 73, 539.
- Skripka, V. G. and Dykhno, N. M., Trudy Vses. Nauch.-Issled. Inst. Kislorodn. Mashinostr., 1964, no. 8, 163.
- Skripka, V. G. and Lobonova, N. N., Trudy Vses. Nauch.-Issled. Inst. Kriog. Mashinostr., <u>1971</u>, no. 13, 90.

COMPONENTS :	ORIGINAL MEASUREMENTS:				
<pre>(1) Neon; Ne; 7440-01-9 (2) Argon; Ar; 7440-37-1</pre>	Skripka, V. G. and Dykhno, N. M., Trudy Vses. NauchIssled. Inst. Kriog. Mashinstr., <u>1964</u> , 8, 163.				
VARIABLES:	PREPARED BY:				
Temperature, pressure	C. L. Young				
Temperature, pressure	·				
EXPERIMENTAL VALUES:					
T/K P/bar P ⁺ /bar Mole fract	zion of neon in liquid, in vapor, ^x Ne ^y Ne				
90.5       6.06       4.66         11.10       9.70         16.15       14.75         21.21       19.18         26.19       24.79	0.0044 0.7242 0.0092 0.8589 0.0138 0.8903 0.0185 0.9098 0.0231 0.9220				
AIJXILTARY	INFORMATION				
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:				
Vapor flow apparatus with magnetic recirculating pump. Temperature measured with platinum resistance thermometer, pressure measured with Bourdon gauge. Samples of gas and liquid analysed by gas phase inter- ferometry. Details in source.	<ol> <li>High purity sample, purity 99.69 mole per cent, impurities helium and nitrogen.</li> <li>No details given.</li> </ol>				
	ESTIMATED ERROR: $\delta T/K = \pm 0.02$ to 0.03; $\delta P$ less than 0.2 bar; $\delta x_{He} \simeq \delta y_{He} = \pm 0.0001$ to 0.0002. REFERENCES:				

COMPONE	INTS:			ORIGINAL MEASUREMENTS:				
(1)	Neon;	Ne; 7440-01-9		Streett, W. B. and Hill, J. L. E.,				
(2)	Argon;	Ar; 7440-37-1		J. Ch	em. Phy	s., <u>1971</u> , 54	, 5088.	
(2)	nr gon,	,						
VARIABI	.ES:			PREPARE	D BY:			
Tempe	rature.	pressure		(	Young			
		F						
EXPERIM	ENTAL VA	LUES: Mole fraction	n of neon			Mole fracti	on of neon	
т/к	<i>P/</i> bar	in liquid,	in vapor, ^y Ne	т/к	P/bar		in vapor ^y Ne	
87.34	63.8	0.0542	0.9590	92.42	845.1	0.4369	0.7514	
	107.4 141.9	0.0856 0.1094	0.9485		896.7 934.2	0.4479 0.4591	0.7434 0.7384	
	210.8	0.1457	0.9485		954.2	0.4591	0.7342	
	273.6	0.1713	0.9186		1000.1	0.465	0.729	
	275.6	0.1766	0.9160	93.01	872.4	0.4868	0.7159	
	344.5	0.2019	0.9021		927.1	0.5069	0.6990	
	415.4	0.2243	0.8898		968.7	0.5223	0.6856	
	454.9	0.2373	0.8826		1010.2	0.5431	0.6711	
	491.4	0.2445	-		1017.3	0.5576 0.560	0.655	
	516.8 538.0	0.2518 0.252	0.874	93 25	606.9	0.3858	0.035	
90.47	558.3	0.3082	0.8379	55.25	693.1	0.4181	0.7525	
	622.2	0.3272	0.8284		757.9	0.4491	-	
	689.0	0.3420	0.8190		830.9	-	0.7102	
	757.9	0.3547	0.8131		896.7	0.5181	0.6835	
	823.8	0.365	0.808		927.1	-	0.6577	
91.52	686.0	0.3681	0.7967	02 40	941.3	0.5567	-	
	757.9 827.8	0.3837	0.7892 0.7827	93.48	793.4 862.3	0.4818 0.5339	0.6732	
	857.2	0.3982	0.7868		885.6	0.5672	0.6459	
	902.8	0.407	0,785	93.91	462.0	0.3305	0.8120	
92.42	361.7	0.2554	0.8610		555.3	0.3776	0.7802	
	486.4	0.3130	0.8280		651.5	0.4318	0.7427	
	585.7	0.3550	0.8023		706.2	0.4656	0.7171	
	631.3 765.0	0.3707 0.4161	0.7934 0.7654		772.1 796.4	0.5189 0.5572	0.6742	
	703.0		AUXILIARY	INFORMAT		0.0072		
METHOD		US/PROCEDURE:				Y OF MATERIALS	· · · · · · · · · · · · · · · · · · ·	
		vapor flow a	000200400	1	tails gi		i da se se se se se se se se se se se se se	
		pump at ambie		No de	carrs gr	ven.		
ture.		es analysed by						
conduc	tivity.							
		resistance th						
		ured using Bo	urdon gauge.					
Detail	s in re.	f. 1.						
				ESTIMAT	ED ERROR:	-		
				δт/К =	= ±0.2;	$\delta P/bar = \pm 0$	.5;	
				δx _{Ne} -	^{ε δy} Ne =	±0.001.		
				REFEREN	CES:	<u> </u>	<u> </u>	
				1. St	reett,	W. B., Cryog	enics, <u>1965</u> ,	
				э,	27.			
							ι	

COMPONENTS: ORIGINAL MEASUREMENTS: Neon; Ne; 7440-01-9 (1) Streett, W. B., J. Chem. Phys., 1967, 46, 3282. (2) Argon; Ar; 7440-37-1 VARIABLES: PREPARED BY: Temperature, pressure C. L. Young EXPERIMENTAL VALUES: Mole fraction of neon Mole fraction of neon T/K т/к P/bar in liquid, in vapor, P/bar in liquid, in vapor,  $x_{Ne}$ ^yNe  $x_{\rm Ne}$ ^yNe 95.82 103.3 0.0962 0.9245 110.78 122.0 0.8278 0.1448 140.0 0.9165 0.1290 201.0 0.2552 0.7852 208.6 0.1848 239.2 0.8925 0.3237 0.7423 276.1 0.2357 0.8650 272.7 0.4058 0.6781 0.4503 343.3 0.2842 0.8358 282.0 0.6379 417.1 0.3361 0.8046 286.1 0.4898 0.6034 0.3727 0.7733 477.8 121.36 75.2 0.0925 0.6773 566.1 0.4453 0.7109 99.6 0.1348 0.6991 593.6 0.4917 0.6795 141.3 0.2087 0.6906 606.7 0.5139 0.6642 169.6 0.2783 0.6561 0.5710 187.9 621.2 0.6105 0.3341 0.6122 101.94 114.8 195.1 0.3722 0.8903 0.1213 0.5811 132.0 0.1383 _ 197.9 0.3990 0.5575 206.2 0.2124 0.8543 129.93 93.1 0.1318 0.5572 275.1 0.2887 113.1 0.8104 0.1787 0.5610 344.7 0.7536 0.3776 129.3 0.2228 0.5463 0.2668 0.5195 382.7 0.4474 0.6932 141.3 396.1 0.5188 0.6362 148.9 0.3090 0.4849 151.7 0.3309 0.4573 AUXILIARY INFORMATION SOURCE AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: Recirculating vapor flow apparatus with magnetic pump at ambient tem-No details given. perature. Samples analysed by thermal conductivity. Temperature measured with platinum resistance thermometer. Pressure measured with Bourdon gauge. Details in ref. 1. ESTIMATED ERROR:  $\delta T/K = \pm 0.01; \quad \delta P/bar = \pm 0.1;$  $\delta y_{\rm Ne} = \pm 0.001.$  $\delta x_{\rm Ne} = \pm 0.001;$ (estimated by compiler) **REFERENCES:** Streett, W. B., Cryogenics, 1965, 1. 5, 27. 1

COMPONEN	ITS:			ORIGINAL	MEASUREME	NTS:	
	eon; Ne; gon; Ar;	7440-01-9 7440-37-1		Streett, W. B., <i>J. Chem. Phys.</i> , <u>1965</u> , 42, 500.			
VARIABLI		u	<u></u>	PREPARED		<u></u>	
Tempera	ature, pre	ssure		С. L. Y	oung		
	ENTAL VALUES	le fractio	n of neon	·	M	ole fractio	n of neon
т/к		liquid, ^x Ne	in vapor, ^y Ne	т/к		n liquid, ^x Ne	in vapor, ^y Ne
84.42	3.83 6.96 13.65 21.20 27.72 34.47 42.16 48.19 54.99 69.19	0.0024 0.0052 0.0111 0.0178 0.0229 0.0284 0.0348 0.0348 0.0408 0.0448 0.0549	0.7984 0.8888 0.9420 0.9505 0.9584 0.9662 0.9665 0.9668 0.9681 0.9693	95.82 101.94	54.81 69.40 7.45 14.27 21.37 28.17 34.82 41.61 48.57 55.23	0.0517 0.0652 0.0038 0.0112 0.0192 0.0262 0.0337 0.0408 0.0487 0.0562	0.9198 0.9228 0.4638 0.6947 0.7772 0.8191 0.8419 0.8592 0.8694 0.8760
95.82	7.48 14.13 21.13 27.72 34.44 41.64 48.16 55.22 68.88 4.76	0.0064 0.0118 0.0183 0.0241 0.0293 0.0361 0.0412 0.0475 0.0573 0.0020	0.8486 0.9107 0.9307 0.9445 0.9501 0.9552 0.9582 0.9605 0.9605 0.9623 0.4870	110.78	62.12 70.57 10.38 15.20 21.06 27.34 34.51 41.64 55.30 69.22	0.0635 0.0726 0.0039 0.0101 0.0171 0.0246 0.0337 0.0422 0.0593 0.0764	0.8819 0.8868 0.2863 0.4813 0.5993 0.6701 0.7200 0.7508 0.7871 0.8103
	10.55 14.82 22.44 28.48 35.13 41.58	0.0079 0.0123 0.0194 0.0258 0.0319 0.0387	0.7545 0.8157 0.8661 0.8892 0.8970 0.9064	121.36	20.27 29.13 36.27 42.37 58.05 69.88	0.0092 0.0224 0.0329 0.0417 0.0653 0.0833	0.2901 0.4540 0.5278 0.5747 0.6467 0.6728
	· · · · · · · · · · · · · · · · · · ·		AUXILIARY				
Recircu details measure thermom Bourdon	lating va given in d with pl eter. P gauge. analysed	atinum res: ressure mea	pparatus; Temperature istance asured using f coexisting	No de	ND PURITY tails gi	OF MATERIALS: ven.	
				$\delta x_{\text{Ne}} = \pm 0.002.$ REFERENC	±0.01; ±0.0002 ES: reett, W	δP/bar = ±0 to 0.0004; . B., Cryoge	
	1			5,	27.		

HN VOL 1-Y

|

i

ORIGINAL MEASUREMENTS: COMPONENTS: Streett, W. B., J. Chem. Phys., <u>1965</u>, 42, 500. (1) Neon; Ne; 7440-01-9 (2) Argon; Ar; 7440-37-1 EXPERIMENTAL VALUES: P/bar Mole fraction of neon
in liquid in vapor, T/K in vapor,  $x_{Ne}$  $y_{Ne}$ 26.44 34.85 129.93 0.0097 0.1703 0.3055 0.0237 42.92 0.0373 0.3877 49.54 0.0487 0.4335 56.19 72.39

0.4709

0.5277

0.0603

0.0898

COMPONE	NTS:			ORIGINAL	MEASUREM	ENTS:		
(1) N	eon; Ne	; 7440-01-9		Skripka, V. G. and Lobonova, N. N.,				
(2) A	raon. A	r; 7440-37-1		Trudy V	'ses. Na	uchIssled.	Inst.	
(2) A	1901 <i>,</i> 1	1, 1440 57 1		Kriog.	Mashino	str., <u>1971</u> ,	13, 90.	
VARIABL	.ES :			PREPARED	BY:			
Temper	ature, p	ressure		C. L. Y	oung			
EXPERIM	ENTAL VALU			1				
T/K	<i>P/</i> bar	Mole fracti in liquid,	on of neon in vapor,	т/к	<i>P/</i> bar	Mole fracti in liquid,	on of neon in vapor,	
	1 / Dui	^x Ne	^y Ne	1710	.,	^x Ne	^y Ne	
90.61	9.8	0.0092	-	99.75	68.6	0.0726	0.8925	
	19.6	0.0194	-		78.5	0.0832	0.8945	
	29.4	0.0296 0.0400	0.9245		88.3	0.0936	0.8960	
	39.2 49.0	0.0400	0.9340 0.9385		98.1 107.9	0.1044 0.1128	0.8960 0.8960	
	49.0 58.8	0.0604	0.9400		117.7	0.1260	0.8950	
	68.6	0.0706	0.9395		127.5	0.1370	0.8935	
	78.5	0.0809	0.9395		137.3	0.1480	0.8905	
	88.3	0.0911	0.9390		147.1	0.1590	0.8870	
	98.1	0.1005	0.9380		156.9	0.1705	0.8835	
	107.9	0.1095	0.9365		166.7	0.1815	0.8790	
	117.7	0.1185	0.9350	_	176.5	0.1920	0.8760	
	127.5 137.3	0.1275 0.1364	0.9330 0.9310		186.3 196.1	0.2025 0.2130	0.8720 0.8690	
	147.1	0.1452	0.9290	109.67	19.6	0.0140	0.0090	
	156.9	0.1538	0.9270	103.07	29.4	0.0273	-	
	166.7	0.1622	0.9245		39.2	0.0404	0.7305	
	176.5	0.1700	0,9220		49.0	0.0550	0.7580	
	186.3	0.1775	0.9200		58.8	0.0675	0.7800	
	196.1	0.1846	0.9180		68.6	0.0805	0.7955	
99.75	9.8	0.0079 0.0189	-		78.5	0.0930	0.8070	
	19.6 29.4	0.0296	-		88.3 98.1	0.1060 0.1190	0.8150 0.8180	
	39.2	0.0404	0.8635		107.9	0.1320	0.8190	
	49.0	0.0510	0.8780		117.7	0.1450	0.8000	
<del></del>	58.8	0.0620	0.8865		127.5	0.1594	0.8180	
	/			INFORMATI				
		US/PROCEDURE ave partiall				OF MATERIALS:	+17 99 7	
with 1	iquid and	d then press	urized with	<ol> <li>High purity sample, purity 99.7 mole per cent.</li> </ol>				
red wi	erometry th platin	of phases a . Temperatu num resistan sure measure	ure measu- ce thermo-	<ol> <li>High purity sample, purity 99.99 mole per cent.</li> </ol>				
		Details in						
				ESTIMATE				
					±0.01;	$\delta P/\text{bar} = \pm 0$	.4; δx _{Ne} =	
				REFERENC	ES:			
				<u> </u>				

COMPONE	ENTS:			ORIGINAL MEASUREMENTS:
		; 7440-01-9 ; 7440-37-1		Skripka, V. G. and Lobonova, N. N., Trudy Vses. NauchIssled. Inst. Kriog. Mashinostr., <u>1971</u> , 13, 90.
<u></u>				
EXPERIM	IENTAL V	ALUES: Mole fractio		
т/к	P/bar	in liquid,	in vapor,	
		^x Ne	^y Ne	
109.67	137.3	0.1736	0.8155	_
	147.1	0.1882	0.8125	
	156.9	0.2034	0.8080	
	166.7 176.5	0.2180 0.2328	0.8020 0.7950	
	186.3	0.2484	0.7830	
	196.1	0.2644	0.7695	
100 00	205.9	0.2814	-	
120.09	19.6 29.4	0.0110 0.0260	-	
	39.2	0.0400	0.5370	
	49.0	0.0555	0.5935	
	58.8	0.0700	0.6028	
	68.6 78.5	0.0860 0.1020	0.6510 0.6670	
	88.3	0.1180	0.6765	
	98.1	0.1350	0.6840	
	107.9	0.1530	0.6880	
	117.7 127.5	0.1720 0.1925	0.6880 0.6835	
	137.3	0.2140	0.6780	
	147.1	0.2360	0.6705	
	156.9	0.2610	0.6605	
	166.7 176.5	0.2870 0.3140	0.6490 0.6365	
	170.5	0.5140	0.0505	
·····	····			-

S:			ORIGINAL	MEASUREME	ENTS:	
<pre>(1) Neon; Ne; 7440-01-9 (2) Argon; Ar; 7440-37-1</pre>						
:	<u></u>		PREPARED	BY:		
ature, p	ressure		C. L.	Young		
			<u> </u>			
			т/к	P/bar	Mole fracti in liquid, ^x Ne	
36.02 45.94 60.03 81.55 96.68 101.46 107.54 111.80 25.65 35.04 45.70 55.91 71.06 86.26 101.42 116.61 126.74 138.69 142.000 143.96 148.07 153.13 18.76 25.68 35.68	$\begin{array}{c} 0.0140\\ 0.0342\\ 0.0755\\ 0.1137\\ 0.1594\\ 0.1753\\ 0.2037\\ 0.2334\\ 0.0086\\ 0.0232\\ 0.0413\\ 0.0593\\ 0.0413\\ 0.0593\\ 0.0896\\ 0.1169\\ 0.1497\\ 0.1837\\ 0.2114\\ 0.2432\\ 0.2641\\\\ 0.2963\\ 0.3302\\ 0.0810\\ 0.0168\\ 0.0326\\ \end{array}$	0.1252 0.2280 0.3457 0.3830 0.3930 0.3923 0.3793 0.3614 0.1559 0.3108 0.4143 0.4745 0.5280 0.5564 0.5564 0.5568 0.5568 0.5568 0.55642 0.5568 0.55642 0.5568 0.5568 0.5247 0.5042 0.4685 0.2488 0.4038 0.5247	103.04	66.03 81.35 101.53 126.80 152.12 177.45 192.63 202.74 10.62 20.43 50.98 91.32 152.15 212.90 273.69 334.48 364.87 374.99	0.0766 0.1012 0.1355 0.1801 0.2312 0.2958 0.3510 0.4274 0.0073	0.6176 0.6640 0.7042 0.7026 0.6910 0.6910 0.6492 0.6038 0.5335 0.5709 0.7522 0.8635 0.8853 0.8750 0.8431 0.8059 0.7440 0.6920 0.6549 0.7817 0.6593 0.6338 0.6578 0.8057 0.8908
		AUXILIARY	INFORMAT	ION		
high pre re measur and ter chermomet	essure equili red with dead nperature wit ter. Sample	l weight ch resis- es analysed	ESTIMATI T/K = better REFEREN 1. Tra	ED ERROR: = ±0.003; ^δ <i>x</i> _{Ne} CES: ppeniers	given. $\delta P/bar = \pm 0$ $\approx \delta y_{Ne} = \pm 0$ s, N. J. and	±0.1 or .0005. Schouten,
	<pre>eon; Ne gon; A gon; A gon; A gon; A finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite finite fin</pre>	<pre>eon; Ne; 7440-01-9 cgon; Ar; 7440-37-1 cgon; Ar; 7440-37-1</pre>	eon; Ne; 7440-01-9 rgon; Ar; 7440-37-1 ature, pressure TAL VALUES: Mole fraction of neon P/bar in liquid, in vapor, ^w Ne ^y Ne 36.02 0.0140 0.1252 45.94 0.0342 0.2280 60.03 0.0755 0.3457 81.55 0.1137 0.3830 96.68 0.1594 0.3930 101.46 0.1753 0.3923 107.54 0.2037 0.3793 111.80 0.2334 0.3614 25.65 0.0086 0.1559 35.04 0.0232 0.3108 45.70 0.0413 0.4143 55.91 0.0593 0.4745 71.06 0.0896 0.5280 86.26 0.1169 0.5564 101.42 0.1497 0.5678 16.61 0.1837 0.5642 126.74 0.2114 0.5568 138.69 0.2432 0.5390 142.00 0.2641 0.5247 143.96 - 0.5193 148.07 0.2963 0.5042 153.13 0.3302 0.4685 18.76 0.0810 0.2488 25.68 0.0168 0.4038 35.68 0.0326 0.5247 AUXILLARY PPARATUS/PROCEDURE: high pressure equilibrium cell re measured with dead weight and temperature with resis- hermometer. Samples analysed mal conductivity. Details in	son; Ne; 7440-01-9       Trappe         :gon; Ar; 7440-37-1       J. A.,         :mature, pressure       C. L.         TAL VALUES:       Mole fraction of neon         P/bar in liquid, in vapor, T/K       T/K         *Ne ^y Ne         36.02       0.0140       0.1252       121.32         45.94       0.0342       0.2280         60.03       0.0755       0.3457         81.55       0.1137       0.3830         96.68       0.1594       0.3923         101.46       0.1753       0.3923         107.54       0.2037       0.3108         103.04       0.559       0.4745         71.06       0.0896       0.5280         86.26       0.1169       0.5678         116.61       0.1837       0.5642         101.42       0.2641       0.5247         143.96       -       0.5193         18.76       0.0810       0.2488       92.84         18.76       0.0810       0.2488       92.84         25.68       0.0326       0.5247       No deget         AUXILIARY INFORMAT         PPARATUS/PROCEDURE:       No deget <td>Prioring Ne; 7440-01-9       Trappeniers, I         If an end of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second</td> <td>eon; Ne; 7440-01-9       Trappeniers, N. J. and Sc         :gon; Ar; 7440-37-1       Trappeniers, N. J. and Sc         :       PREPARED BY:         ture, pressure       C. L. Young         TAL VALUES:       Mole fraction of neon         Mole fraction of neon       T/K         ?/bar in liquid, in vapor,       T/K         36.02       0.0140       0.1252         121.32       50.78       0.0545         45.94       0.0342       0.2280         66.03       0.0765       0.3457         81.55       0.1137       0.3830         101.46       0.1753       0.3923         107.54       0.2037       0.3773         107.54       0.2037       0.3213         103.46       0.1753       0.3923         118.60       0.2334       0.3614       192.63         107.54       0.2037       0.3733       177.45         71.06       0.0966       0.5529       202.74       0.4274         35.04       0.0232       0.3108       103.04       10.621       0.0161         101.42       0.169       0.5642       122.90       0.2246         116.61       0.1337       0.5139       9</td>	Prioring Ne; 7440-01-9       Trappeniers, I         If an end of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	eon; Ne; 7440-01-9       Trappeniers, N. J. and Sc         :gon; Ar; 7440-37-1       Trappeniers, N. J. and Sc         :       PREPARED BY:         ture, pressure       C. L. Young         TAL VALUES:       Mole fraction of neon         Mole fraction of neon       T/K         ?/bar in liquid, in vapor,       T/K         36.02       0.0140       0.1252         121.32       50.78       0.0545         45.94       0.0342       0.2280         66.03       0.0765       0.3457         81.55       0.1137       0.3830         101.46       0.1753       0.3923         107.54       0.2037       0.3773         107.54       0.2037       0.3213         103.46       0.1753       0.3923         118.60       0.2334       0.3614       192.63         107.54       0.2037       0.3733       177.45         71.06       0.0966       0.5529       202.74       0.4274         35.04       0.0232       0.3108       103.04       10.621       0.0161         101.42       0.169       0.5642       122.90       0.2246         116.61       0.1337       0.5139       9

ORIGINAL MEASUREMENTS: COMPONENTS: Trappeniers, N. J. and Schouten, (1) Neon; Ne; 7440-01-9 J. A., Physica, <u>1974</u>, 73, 539. (2) Argon; Ar; 7440-37-1 EXPERIMENTAL VALUES: Mole fraction of neon T/K P/bar in liquid, in vapor,  $x_{\rm Ne}$  $y_{Ne}$ 50.77 92.84 0.0457 0.9350 91.31 0.0837 0.9420 126.81 0.1131 0.9345 0.9236 167.28 0.1435 207.81 0.1707 0.9110 253.49 0.1992 0.8948 304.10 0.2297 0.8791 354.76 0.2575 0.8635 405.39 648.56 0.2794 0.3818 0.8525 0.7832 952.55 0.4870 0.7195 1013.4 solid phase 0.7225

.

<ol> <li>Neon; Ne; 7440-01-9</li> <li>Colin Young, School of Chemistry,</li> <li>Krypton; Kr; 7439-90-9</li> <li>University of Melbourne, Parkville, Victoria 3052,</li> </ol>	COMPON	ENTS:	EVALUATOR:			
2. Krypton; Kr; 7439-90-9 University of Melbourne,	1.	Neon; Ne; 7440-01-9				
•••••••••••••••••••••••••••••••••••••••						
Parkville, Victoria 3052,	2.	Krypton; Kr; 7439-90-9	• •			
AUSTRALIA.						

CRITICAL EVALUATION:

There are three sets of measurement on this system. The first measurements by Trappeniers and Schouten (1) were presented in graphical form and were undertaken to establish that this system exhibits gas-gas immiscibility of the second kind (2). These data are rejected. The measurements by Miller *et al.* (3) are restricted to pressures up to 100 bar between 120 K and 150 K and the mole fraction of neon in the liquid phase is generally slightly greater than the value obtained by interpolation of the more extensive data reported by Trappeniers and Schouten in their second paper (4). Both sets of measurement in references (3) and (4) were made with apparatus capable of good precision results and therefore both are classified as tentative.

- 1. Trappeniers, N. J. and Schouten, J. A., Phys. Lett., 1968, A27, 340.
- Scheider, G. M., in Chemical Thermodynamics Vol. 2 Special Periodical Report, Chapter 4, ed. McGlashan, M. L., Chemical Society, <u>1978</u>.
- 3. Miller, R. C., Kidnay, A. J. and Hiza, M. J., J. Chem. Thermodynamics, <u>1972</u>, 4, 807.
- 4. Trappeniers, N. J. and Schouten, J. A., Physica, 1974, 73, 546.

COMPONEN	TS:		<u></u>	ORIGINAL MEASUREMENTS:			
(1) Ne	on; Ne:	; 7440-01-9		Trappeniers, N. J. and Schouten, J.			
(2) Kr	ypton;	Kr; 7439-90•	-9	A., Phy	sica, <u>19</u>	<u>74</u> , <i>73</i> , 548.	
VARIABLE	s:		· · · · · · · · · · · · · · · · · · ·	PREPARED	BY:	<u></u>	
Tempera	ature, p	ressure		с. г. т	oung		
EXPERIME	NTAL VALU	ES:	·····•	<b></b>	·	······································	
т/к	P/bar	Mole fracti in liquid, ^x Ne	on of neon in vapor, ^y Ne	Т/К		Mole fractio in liquid, ^x Ne	on of neon in vapor, ^y Ne
178.15 166.15 166.25 163.15	41.01 61.19 101.18 202.73 304.03 405.34 506.66 607.98 709.30 835.95 881.54	0.0354 0.0718 0.1186 0.1645 0.2660 0.3272 0.3850 0.4070 0.4531 0.0082 0.0200 0.0359 0.0618 0.1294 0.1927 0.2525 0.3109 0.3658	0.3731 0.5190 0.6378 0.6890 0.7023 0.6810 0.6532 0.6192 0.6001 0.5621 0.4055 0.5821 0.6834 0.7642 0.8125 0.8125 0.8124 0.7992 0.7799 0.7587 0.7343 0.6913 0.6598 0.6800 0.7160 0.4678	163.15	$\begin{array}{c} 41.01\\ 61.09\\ 101.17\\ 202.73\\ 304.06\\ 405.37\\ 506.69\\ 608.01\\ 709.33\\ 810.65\\ 1013.3\\ 114.6\\ 1215.9\\ 1317.2\\ 1418.6\\ 1621.2\\ 1874.5\\ 15.85\\ 25.92\\ 41.00\\ 61.17\\ 101.28\\ 202.74\\ 304.04\\ 405.33\\ \end{array}$	0.0335 0.0594 0.1224 0.1805 0.2329 0.2810 0.3253 0.3628	0.6257 0.7182 0.7901 0.8329 0.8330 0.8237 0.8116 0.7963 0.7836 0.7723 0.7553 0.7553 0.7553 0.7576 0.7655 0.7842 0.8092 0.5738 0.7204 0.8092 0.5738 0.7204 0.8092 0.8899 0.8829 0.8899 0.9074 0.9078 0.9035
			AUXILIARY				
METHOD/APPARATUS/PROCEDURE: Static high pressure equilibrium cell. Pressure measured with dead weight balance and temperature with resis- tance thermometer. Samples analysed by thermal conductivity. Details in source and ref. 1.				SOURCE A		OF MATERIALS: cails given.	
				$\delta T/K = \frac{\delta x_{Ne}}{\delta x_{Ne}}$ , $\delta y$ REFERENCE 1. Traj	y _{Ne} = ±0. CES: ppeniers,		

	; 7440-01-9				I. J. and Scl	
	Kr; 7439-90-	9	,,	iysica, <u>1</u>	<u>.974</u> , 73, 54	8.
ENTAL VA	ALUES:					
P/bar	Mole fractic in liquid, ^x Ne		т/к	P/bar	Mole fracti in liquid, ^x Ne	on of neon in vapor, ^Y Ne
506.66 607.97 709.30	0.1863 0.2071 0.2230	0.9002 0.8976 0.8958	123.17	131.88 182.51 253.38	- 0.0497 0.0629	0.9703 0.9717 0.9705
L519.9	0.2356 0.2594 0.2624 0.2579 0.0026 0.0057	0.8943 0.9003 0.9085 0.9168 0.6608 0.8122	164.92	354.65 456.03 1063.9 1114.6 1469.2 1519.9	0.0798 0.0896 0.5373 0.5873 0.5839 0.5630	0.9691 0.9693 0.6842 0.6645 0.6780 0.7000
25.91 40.99 61.06 101.28 202.70	0.0098 0.0158 0.0233 0.0371 0.0673	0.8775 0.9127 0.9331 0.9474 0.9526		1215.9 1317.2 1418.6	0.5392 0.5942 0.5910 0.5668 0.5778	0.6836 0.6469 0.6546 0.6948 0.6631
304.08 405.39 506.70 608.00 709.31	0.0916 0.1113 0.1252 0.1372 0.1461	0.9500 0.9490 0.9461 0.9449 0.9448	164.665	1246.4 1266.6 1286.8 1317.2 810.65	0.5817 0.5816 0.5827 0.5762 0.4303	0.6644 0.6637 0.6661 0.6706 0.7424
810.02 013.25 5.43 8.18	0.1519 0.1618 0.0015 0.0026	0.9455 0.9517 0.8217		1114.58 1215.90 1257.3 1266.7	0.5440 0.5710 0.5742 0.5770	0.6825 0.6670 0.6679 0.6892 0.6703
25.88 30.89 51.06 91.43	0.0089 0.0100 0.0162 0.0275	0.9354 0.9432 0.9597 0.9695		1337.5 1418.6 1519.9 1874.5	0.5700 0.5597 0.5393 0.4864	0.6793 0.6980 0.7208 0.7794
	<pre>P/bar 506.66 607.97 709.30 810.62 1215.9 1519.9 1519.9 1519.9 1519.9 15.84 25.91 40.99 61.06 101.28 202.70 304.08 405.39 506.70 608.00 709.31 810.02 1013.25 5.43 8.18 15.83 25.88 30.89 51.06</pre>	<pre>P/bar in liquid,</pre>	Mole fraction of neon in liquid,in vapor, in vapor, $x_{\rm Ne}$ 506.660.18630.9002607.970.20710.8976709.300.22300.8958810.620.23560.89431215.90.26240.90031519.90.26240.90851874.50.25790.91688.230.00260.660815.840.00570.812225.910.00980.877540.990.01580.912761.060.02330.9331101.280.03710.9474202.700.66730.9526304.080.09160.9500405.390.11130.9490506.700.12520.9461608.000.13720.9449709.310.14610.9448810.020.15190.94551013.250.16180.95175.430.0053-8.180.00260.821715.830.00530.903225.880.0890.935430.890.01000.943251.060.01620.9597	Mole fraction of neon $P/bar$ T/K $x_{Ne}$ $y_{Ne}$ 506.660.18630.9002123.17607.970.20710.8976123.17607.970.20710.8976123.17607.970.20710.8976123.17506.620.23560.89431215.91215.90.25940.90031215.90.26240.9085164.92164.921874.50.25790.91688.230.00260.660815.840.00570.812225.910.00980.877516.060.02330.9331101.280.03710.9474202.700.06730.9526164.685304.080.09160.9500405.390.11130.9490506.700.125250.310.14610.9448164.665810.020.15190.94551013.250.16180.9015-8.180.00260.821715.830.00530.903225.880.00890.935430.890.01000.943251.060.01620.9597	Mole fraction of neon $P/bar$ Mole fraction of neon in liquid, $x_{Ne}$ $y_{Ne}$ $x_{Ne}$ $y_{Ne}$ 506.660.18630.9002123.17131.88607.970.20710.8976182.51709.300.22300.8958253.38810.620.23560.8943354.651215.90.25940.9003456.031519.90.26240.9085164.921681114.68.230.00260.66081469.215.840.00570.81221519.925.910.00980.8775164.725101.280.03710.94741418.6202.700.06730.9526164.6851216.90.1130.94901266.6506.700.12520.94611286.8608.000.13720.94491317.2709.310.14610.9448164.665810.020.15190.94551114.581013.250.16180.95171215.905.430.0015-1257.38.180.00260.82171266.715.830.00530.90321297.025.880.00890.93541337.530.890.01000.94321418.651.060.01620.95971519.9	Mole fraction of neonMole fractiP/barin liquid,in vapor,T/KP/barin liquid, $x_{Ne}$ $y_{Ne}$ $x_{Ne}$ $x_{Ne}$ 506.660.18630.9002123.17131.88-607.970.20710.8976182.510.0497709.300.22300.8958253.380.0629810.620.23560.8943354.650.07981215.90.25940.9003456.030.08961519.90.26240.9085164.921063.91874.50.25790.91681114.60.58731874.50.25790.91681144.60.587318.230.00260.66081469.20.583915.840.00570.81221519.90.563025.910.00980.8775164.7251083.50.539240.990.01580.91271215.90.594261.060.02330.93311317.20.5910101.280.03710.94741418.60.5668202.700.06730.9526164.6851216.00.5778304.080.09160.95001246.40.5817608.000.13720.94491317.20.5762709.310.14610.9448164.665810.650.4303810.020.15190.94551114.580.54401013.250.16180.95171215.900.57105.430.0015-1257.3 <td< td=""></td<>

COMPONENTS: ORIGINAL MEASUREMENTS: Neon; Ne; 7440-01-9 (1) Miller, R. C., Kidnay, A. J. and Hiza, M. J., J. Chem. Thermodynamics, (2) Krypton; Kr; 7439-90-9 1972, 4, 807. VARIABLES: PREPARED BY: Temperature, pressure C. L. Young EXPERIMENTAL VALUES: T/K Mole fraction of neon in liquid phase,  $x_{\rm Ne}$ P/bar 120.00 10.31 0.00310 20.09 0.00653 32.53 0.0110 45.29 0.0152 61.5 0.0204 0.0264 81.9 100.3 0.0320 130.00 10.63 0.00341 20.98 0.00798 0.0160 40.02 54.3 0.0215 67.3 0.0264 102.4 0.0399 140.00 13.04 0.00443 23.81 0.0101 39.74 0.0181 0.0283 60.69 81.8 0.0385 0.0472 100.4 150.00 13.22 0.00380 26.24 0.0122 43.22 0.0221 61.3 0.0326 81.3 0.0455 102.3 0.0564 AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: Recirculating vapor-flow apparatus. No details given. Temperature measured with platinum resistance thermometer. Pressure measured with Bourdon gauge. Gas and liquid samples analysed by gas chromatography. Details in source and ref. 1 and 2. ESTIMATED ERROR:  $\delta T/K = \pm 0.01; \quad \delta P/bar = \pm 0.05;$  $\delta x_{\rm Ne} \simeq \delta y_{\rm Ne} = \pm 5\%$ . **REFERENCES:** Kidnay, A. J., Miller, R. C. and Hiza, M. J., Ind. Eng. Chem. Fund. <u>1971</u>, 10, 459. Duncan, A. G. and Hiza, M. J., A.I.Ch.E.J., <u>1970</u>, 16, 733. 1. 2.

COMPONENTS:		EVALUATOR:		
1.	Neon; Ne; 7440-01-9	Colin Young, School of Chemistry,		
2.	Nitrogen; N ₂ ; 7727-37-9	University of Melbourne, Parkville, Victoria 3052. AUSTRALIA.		

CRITICAL EVALUATION:

This system has been studied by three groups. The work of Burch (1) was restricted to two temperatures and relatively low pressures but is in good agreement with data obtained in the more extensive study of Streett (2.3). The early work of Skripka and Dykhno (4) was limited to pressures up to 25 bar and is probably of lower accuracy than the more recent work of Skripka and Lobonova (5). The work of Skripka and Lobonova (5) is in good agreement with the work of Streett (2,3) where the temperature and pressure ranges overlap. The data of Burch (1) and Skripka and Dykhno (4) are classified as restricted data of moderate accuracy whereas that of Streett (2,3) and Skripka and Lobonova (5) are classified as tentative. Because of partly overlapping but different ranges of temperature and pressure studied it is not desirable to classify either of the latter works as recommended at present.

- 1. Burch, R. J., J. Chem. Engng. Data, 1964, 9, 19.
- 2. Streett, W. B., Cryogenics, 1968, 8, 88.
- 3. Streett, W. B., Cryogenics, 1965, 5, 27.
- Skripka, V. G. and Dykhno, N. M., Trudy Vses. Nauch.-Issled. Inst. Kislorodn. Mashinostr., 1964, no. 8, 163.
- Skripka, V. G. and Lobonova, N. N., Trudy Vses. Nauch.-Issled. Inst. Kriog. Mashinostr., 1971, no. 13, 90.

COMPONENTS :	ORIGINAL MEASUREMENTS:				
<pre>(1) Neon; Ne; 7440-01-9 (2) Nitrogen; N₂; 7727-37-9</pre>	Burch, R. J., J. Chem. Eng. Data, <u>1964</u> , 9, 19.				
VARIABLES:	PREPARED BY:				
Temperature, pressure	C. L. Young				
EXPERIMENTAL VALUES:					
T/K P/bar 10 ² mole fracti	on of neon in liquid, in vapor, $10^2 x_{Ne}$ $10^2 y_{Ne}$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
AUXILIAR METHOD /APPARATUS/PROCEDURE:	Y INFORMATION SOURCE AND PURITY OF MATERIALS:				
Single pass flow method. Vapor passed through magnetically stirred cell. Temperature measured using thermocouple and pressure measured with Bourdon gauge. Liquid and vapor samples analysed using mass spectrometer.	<ol> <li>Airco spectroscopic sample purity better than 99.985 mole per cent.</li> <li>Airco prepurified sample purity better than 99.997 mole per cent. (Details in source.)</li> </ol>				
	ESTIMATED ERROR: $\delta T/K = \pm 0.2;  \delta P/bar = \pm 0.007 \text{ at } 5.066$ bar = $\pm 0.07$ at other pressures; $\delta x_{\text{Ne}} \leq \pm 2$ % (Details in source.)				
	REFERENCES:				

COMPONENT	rs:		ORIGINAL MEASUREMENTS:				
		440-01-9 2; 7727-37-9	Skripka, V. G. and Dykhno, N. M., Trudy Vses. NauchIssled. Inst. Kriog. Mashinstr., <u>1964</u> , 8, 163.				
VARIABLE	S:		PREPARED BY:				
Temper	ature, pres	sure	C. L. Young				
EXPERIME	NTAL VALUES:		N. 7 Current 1				
T/K	P/bar	P ⁺ /bar	Mole fraction of in liquid, x _{Ne}	in vapor, y _{Ne}			
67.4	6.03 11.08 16.10 21.22	5.77 10.82 15.84 20.95	0.0180 0.0343 0.0503 0.0663	0.9577 0.9733 0.9784 0.9805			
72.0	26.27 6.03 11.08 16.25 21.27	26.01 5.49 10.55 15.72 20.73	0.0837 0.0164 0.0315 0.0475 0.0620	0.9824 0.9052 0.9429 0.9570			
78.0	26.24 5.92 11.07 16.15	20.73 25.71 4.78 9.94 15.02	0.0772 0.0140 0.0287 0.0445	0.9620 0.9664 0.7933 0.8792 0.9092			
84.0	21.26 26.27 6.07 11.06	20.12 25.14 3.98 8.98	0.0595 0.0740 0.0114 0.0249	0.9242 0.9332 0.7753			
90.3	16.13 21.19 26.16 6.03 11.06	14.04 19.10 24.07 2.25 7.29	0.0390 0.0530 0.0670 0.0070 0.0219	0.8348 0.8655 0.8819			
,	16.24 21.25 26.26	12.46 17.47 22.48	0.0364 0.0521 0.0667	0.6953 0.7593 0.7948			
<i>P</i> ⁺ pa	rtial press	ure of neon					
		AUXILIARY	INFORMATION				
METHOD /	APPARATUS/PI	ROCEDURE :	SOURCE AND PURITY OF MATER	IALS:			
recirc measur thermo Bourdo liquid	ulating pump ed with pla meter, press n gauge. S analysed by	tus with magnetic p. Temperature tinum resistance sure measured with Samples of gas and y gas phase inter- ils in source.	<ol> <li>High purity sample mole per cent; in and nitrogen.</li> <li>Purity 99.5 mole p main impurity.</li> </ol>	npurities helium			
			ESTIMATED ERROR: $\delta T/K = \pm 0.02$ to 0.03; 0.2 bar; $\delta x_{Ne} \simeq \delta y_{Ne}$ 0.0002. REFERENCES:	$\delta P$ less than = ±0.0001 to			

COMPONENTS: ORIGINAL MEASUREMENTS: (1)Neon; Ne; 7440-01-9 Streett, W. B., Cryogenics, 1968, 8, 88. Nitrogen; N₂; 7727-37-9 (2) VARIABLES: PREPARED BY: Temperature, pressure C. L. Young EXPERIMENTAL VALUES: Mole fraction of neon Mole fraction of neon T/K P/bar in liquid, in vapor, T/K P/bar in liquid, in vapor, x_{Ne}  $y_{Ne}$  $x_{\rm Ne}$ ^yNe 79.9 147.1 66.13 86.19 0.5570 0.7209 0.2293 89.6 0.9634 0.7125 0.2546 148.5 0.5862 0.8498 99.9 0.2783 90.65 78.2 0.2316 127.6 0.9447 99.1 0.3061 0.8258 0.3527 111.7 0.8053 134.5 0.3638 160.6 0.4140 0.9061 132.7 0.4826 0.7409 184.7 0.4702 137.5 0.5278 0.8629 216.4 0.7765 0.2832 0.5689 100.78 89.0 0.7111 219.9 0.5946 103.4 0.3579 0.6793 77.35 101.3 0.2988 0.9196 111.0 0.4152 0.6396 135.5 0.4172 0.8691 114.1 0.4578 0.6027 0.5535 158.6 82.1 0.5261 0.7981 108.91 166.1 0.6004 0.7315 87.2 0.3113 0.5325 86.19 98.2 0.2984 0.8723 90.3 0.3404 0.5107 114.8 0.3640 0.8424 92.0 0.4892 114.34 0.2617 132.3 0.4438 0.8050 74.2 0.4029 141.7 0.5019 0.7669 AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: Recirculating vapor flow with magnetic No details given. Samples of phases analysed by pump. thermal conductivity. Temperature measured with platinum resistance thermometer and pressure measured with Bourdon gauge. Details in ref. 1. ESTIMATED ERROR:  $\delta T/K = \pm 0.02;$  $\delta P/\text{bar} = \pm 0.1;$ δx_{Ne} ≃  $\delta y_{\rm Ne} = \pm 0.0005$  (estimated by compiler) **REFERENCES**: 1. Streett, W. B., Cryogenics, 1965, 5, 27.

COMPONENTS:				ORIGINAL MEASUREMENTS:				
(1) Neon; Ne; 7440-01-9				Skripka, V. G. and Lobonova, N. N.,				
(2) Nitrogen; N ₂ ; 7727-37-9				Trudy Vses. NauchIssled. Inst.				
	-			Kriog. Mashinostr., <u>1971</u> , 13, 90.				
VARIABLES:				DEDADED DV.				
				PREPARED BY:				
Temperature, pressure				C. L. Young				
EXPERIME	NTAL VALU					· · · · · · · · · · · · · · · · · · ·		
т/к	P/bar	Mole fract: in liquid, ^x Ne	ion of neon in vapor, ^Y Ne	т/к	P/bar	Mole fracti in liquid, ^x Ne		
65.97	9.8	0.0029	0.977	89.68		0.0018		
	19.6 29.4	0.0058 0.0086	0.981 0.983		19.6 29.4	0.0042 0.0075	0.775 0.823	
	39.2	0.0114	0.983		39.2	0.0104	0.849	
	49.0 58.8	0.0143 0.0169	0.982 0.980		49.0 58.8	0.0135 0.0166	0.857 0.858	
	68.6	0.0195	0.978		68.6	0.0198	0.858	
	78.5 88.3	0.0219 0.0241	0.973 0.968		78.5 88.3	0.0231 0.0268	0.856 0.854	
	98.1	0.0261	0.962		98.1	0.0306	0.847	
	107.9 117.7	0.0278 0.0294	0.955 0.849		107.9 117.7	0.0344 0.0381	0.837 0.823	
77.69	9.8	0.0024	-	101.31	9.8	0.0004	-	
	19.6 29.4	0.0051 0.0079	0.925 0.942		19.6 29.4	0.0032 0.0061	0.606	
	39.2	0.0107	0.949		39.2	0.0091	0.663	
	49.0 58.8	0.0136 0.0168	0.950 0.948		49.0 58.8	0.0122 0.0156	0.698 0.715	
	68.6	0.0198	0.947		68.6	0.0191	0.725	
	78.5 88.3	0.0227 0.0257	0.944 0.939		78.5 88.3	0.0228 0.0271	0.729 0.724	
	89.1	0.0286	0.931		98.1	0.0319	0.704	
	107.9 117.7	0.0316 0.0347	0.921 0.910		107.9	0.0374	0.665	
			AUXILIARY	INFORMATI	ON			
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:								
Rocking autoclave partially filled 1. High purity same							rity 99.7	
with liquid and then pressurized with gas. Samples of phases analysed by				mole per cent.				
interferometry. Temperature measured				<ol> <li>High purity sample, purity 99.9 mole per cent.</li> </ol>				
with pl	latinum	resistance t easured with	hermometer Bourdon	1101	re her c	ent.		
gauge.	Detai	ls in source	•					
				ESTIMATE	ESTIMATED ERROR:			
						$\delta P/\text{bar} = \pm 0$	.4;	
				$\delta x_{\rm Ne} =$	$\delta x_{\rm Ne} = \delta y_{\rm Ne} = \pm 0.0002.$			
				REFERENCES:				
				1				

COMPONENTS: ORIGINAL MEASUREMENTS: (1)Neon; Ne; 7440-01-9 Streett, W. B., Cryogenics, 1965, 5, (2)Nitrogen; N₂; 7727-37-9 27. VARIABLES: PREPARED BY: Temperature, pressure C. L. Young EXPERIMENTAL VALUES: Mole fraction of neon Mole fraction of neon T/K P/bar т/к P/bar in liquid, in vapor, in liquid, in vapor,  $x_{\rm Ne}$  $y_{Ne}$ ^yNe x_{Ne} 66.13 3,90 0.9362 86.19 6.55 0.0116 0.5733 0.0198 6.93 0.9634 10.72 0.0242 0.7205 13.89 13.24 0.0387 0.9769 0.0334 20,82 0.0614 0.9810 14.27 0.0337 0.7810 20.44 0.8319 27.37 0.0828 0.9828 0.0512 34,58 0.1031 0.9820 28.34 0.0746 0.8628 34.47 41.33 0.1236 0.9825 0.0937 0.8753 48.16 0.1428 0.9816 41.51 0.1142 0.8852 0.1617 55,26 0.9804 48.06 0.1338 0.8897 62.40 0.1811 0.9780 55.57 0.1559 0.8928 0.2011 0.9749 69,98 62.40 0.1776 0.8930 77.50 5.48 0.0125 0.7738 71.02 0.2027 0.8912 0.0213 8.41 0.8592 90.65 9.31 0.0155 0.5431 15.17 12.34 0.0325 0.8951 0.0326 0.6929 12,65 0.0333 0.8978 21.13 0.0503 0.7597 16,55 0.0444 0.9142 28.54 0.0722 0.8017 20.68 0.0576 0.9271 35.09 0.0921 0.8231 27,85 0.0782 0.9386 41.37 0.1112 0.8358 34.44 0.0978 0.9428 48.61 0.1330 0.8450 41.58 0.1187 0.9460 55.40 0.1548 0.8502 48.33 0.1288 0.9464 62.50 0.1772 0.8514 0.1591 55,40 0.9456 69.46 0.2000 0.8512 62.05 0.1793 0.9444 100.78 21.93 0.0406 0.5291 69,22 0.1991 0.9418 30.58 0.6186 0.0674 86.19 4,48 0.0055 0.3957 43.78 0.1110 0.6878 AUXILIARY INFORMATION SOURCE AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: Recirculating vapor flow apparatus No details given. with magnetic pump at ambient temperature. Samples analysed by thermal conductivity. Temperature measured with platinum resistance thermometer. Pressure measured using Bourdon gauge. Details in source. ESTIMATED ERROR:  $\delta T/K = \pm 0.01$  except at 66.13K;  $\delta T/K =$  $\pm 0.02$  at 66.13K;  $\delta P/bar = \pm 0.01$ ;  $\delta x_{\rm Ne} = \pm 0.0002$  to 0.0004; ^{δy}Ne [−] ±0.002. **REFERENCES:** 

COMPONI	ENTS:			ORIGIN	IAL MEA	SUREMENTS:	
		: 7440-01-9 : N ₂ ; 7727-37	7-9	Street 27.	zt, W.	B., Cryogeni	cs, <u>1965</u> , 5,
EXPERIM	ENTAL V	ALUES:	<u> </u>				
с/к	P/bar	Mole fractio in liquid, ^x Ne		т/к	P/bar	Mole fracti in liquid, ^x Ne	
.00.78	53.71 63.30 68.71 24.13 32.96 40.33	0.1439 0.1768 0.1975 0.0330 0.0619 0.0884	0.7100 0.7217 0.7207 0.3153 0.4338 0.4892	114.34 117.61	28.27 35.06 41.99 48.13 58.47	0.2055 0.0218 0.0483 0.0776 0.1055 0.1622	0.4227 0.1242 0.2156 0.2766 0.3086 0.3294
.14.34	47.44 52.92 69.57 22.58 28.96 33.75 43.60 54.95	0.1105 0.1512 0.2033 0.0134 0.0354 0.0528 0.0914 0.1394	0.5242 0.5538 0.5630 0.1123 0.2313 0.2930 0.3747	120.64	61.02 63.09 66.88 32.44 39.68 46.54 53.30	0.1755 0.1962 0.2655 0.0257 0.0578 0.0987 0.1448	0.3269 0.2703 0.1016 0.1748 0.2073 0.2138
				<u> </u>			
						-	

COMPONI	ENTS:	EVALUATOR:
1.	Neon; Ne; 7440-01-9	Colin Young,
		School of Chemistry,
2.	Oxygen; O ₂ ; 7782-44-7	University of Melbourne,
		Parkville, Victoria 3052,
		AUSTRALIA.

## CRITICAL EVALUATION:

This system has been studied by Streett and Jones (1) and Skripka and coworkers (2,3). The study by Skripka and Dykhno (2) was over a limited range of pressure (up to 25 bar) and is probably of lower accuracy than the more recent work by Skripka and Lobonova (3). The data of Skripka and Lobonova (3) are only in fair agreement with the data of Streett and Jones (1). The solubility of neon reported by Skripka and Lobonova is generally greater than that reported by Jones and Streett (1) except at pressures below 50 bar where the opposite is usually true. Therefore the data of both Streett and Jones (1) and Skripka and Lobonova (3) are classified as tentative and that of Skripka and Dykhno (2) as doubtful.

## References

- 1. Streett, W. B. and Jones, C. H., Adv. Cryog. Engng., <u>1965</u>, 11, 356.
- Skripka, V. G. and Dykhno, N. M., Trudy Vses. Nauch.-Issled. Inst. Kislorodn. Mashinostr., <u>1964</u>, no. 8, 163.
- Skripka, V. G. and Lobonova, N. N., Trudy Vses. Nauch.-Issled. Inst. Kriog. Mashinostr., <u>1971</u>, no. 13, 90.

COMPONENTS:	ORIGINAL MEASUREMENTS:		
COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Neon; Ne; 7440-01-9 (2) Oxygen; $O_2$ ; 7782-44-7	Skripka, V. G. and Dykhno, N. M., Trudy Vses. NauchIssled. Inst. Kriog. Mashinostr., 1964, 8, 163.		
VARIABLES:	PREPARED BY:		
Temperature, pressure	C. L. Young		
EXPERIMENTAL VALUES:	Mole fraction of neon		
T/K P/bar P ⁺ /bar	in liquid, x _{Ne} in vapor, y _{Ne}		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00398 0.9940 0.00744 0.9961 0.01088 0.9966 0.01403 0.9967 0.01741 0.9968		
72.0 6.06 5.88 11.12 11.03 16.18 16.10 21.25 21.17	0.0041 0.9837 0.0078 0.9898 0.0112 0.9919 0.0146 0.9927		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0183       0.9932         0.0042       0.9606         0.0080       0.9755         0.0115       0.9814         0.0153       0.9858         0.0194       0.9872		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0044 0.0086 0.9477 0.0128 0.9611 0.0169 0.9685 0.0207 0.9724		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0046 0.8045 0.0092 0.8881 0.0140 0.9198 0.0183 0.9348 0.0226 0.9431		
P ⁺ partial pressure of neon			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Vapor flow apparatus with magnetic recirculating pump. Temperature measured with platinum resistance thermometer, pressure measured with Bourdon gauge. Samples of gas and liquid analysed by gas phase inter- ferometry. Details in source.	<ol> <li>High purity sample, purity 99.69 mole per cent; impurities helium and nitrogen.</li> <li>Purity 99.5 mole per cent or better; major impurities argon and water vapor.</li> </ol>		
	ESTIMATED ERROR: $\delta T/K = \pm 0.02 \text{ to } 0.03;  \delta P \text{ less than}$ $0.2 \text{ bar;}  \delta x_{\text{Ne}} \simeq \delta y_{\text{Ne}} = \pm 0.0001 \text{ to}$ 0.0002. REFERENCES:		

COMPONEN	NTS:	······	<u></u>	ORIGINAL	MEASUREME	NTS:		
(1) Neon; Ne; 7440-01-9					Streett, W. B. and Jones, C. H.,			
(2) Oxygen; O ₂ ; 7782-44-7				Adv. C	ryog. Eng	ng., <u>1965</u> ,	11, 356.	
VARIABL	ES:		<u></u>	PREPAREI	) BY:			
Temper	ature, p	ressure		С. L.	Young			
EXPERIM	ENTAL VALUE	S:		_!			<u></u>	
т/к		Mole fractic in liquid, ^x Ne	on of neon in vapor, ^Y Ne	Т/К		lole fractio n liquid, ^x Ne	on of neon in vapor, ^y Ne	
63.35	2.76 6.86 13.76 20.82 27.30 34.44 39.78 47.61 62.95 3.45 6.96 13.72 20.68 27.51 34.06 34.37 42.89 54.88 69.50 103.1 138.9 206.5 278.5 343.7	0.0016 0.0041 0.0078 0.0137 0.0154 0.0212 0.0232 0.0278 0.0295 0.0334 0.0029 0.0056 0.0109 0.0160 0.0216 0.0216 0.0257 0.0321 0.0491 0.0668 0.0822 0.1046 0.1228 0.1359 0.1359	0.9947 0.9977 0.9987 0.9987 0.9988 0.9990 0.9988 0.9985 0.9985 0.9984 0.9977 0.9345 0.9652 0.9802 0.9843 0.9865 0.9873 0.9864 0.9878 0.9866 0.9878 0.9878 0.9866 0.9878 0.9888 0.9878 0.9886 0.9878 0.9885 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9852 0.9866 0.9852 0.9878 0.9865 0.9866 0.9852 0.9878 0.9866 0.9852 0.9878 0.9866 0.9878 0.9866 0.9878 0.9866 0.9878 0.9866 0.9878 0.9866 0.9878 0.9866 0.9878 0.98778 0.9865 0.98778 0.9866 0.98778 0.98778 0.9878 0.9866 0.98778 0.98778 0.9866 0.98778 0.9866 0.98778 0.98778 0.98778 0.9866 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.98778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.99778 0.997788 0.997788 0.99778 0.99778 0.99778 0.997788 0.997788 0.99778	89.44 89.17 101.46	$\begin{array}{c} 2.76\\ 7.10\\ 13.98\\ 20.79\\ 27.68\\ 34.34\\ 45.02\\ 61.36\\ 107.2\\ 140.0\\ 171.2\\ 207.8\\ 243.4\\ 274.1\\ 307.9\\ 345.1\\ 2.92\\ 4.34\\ 7.76\\ 13.27\\ 21.30\\ 27.75\\ 34.78\\ 41.71\\ 48.37\end{array}$	0.0015 0.0058 0.0119 0.0178 0.0241 0.0298 0.0381 0.0501 0.0877 0.1096 0.1291 0.1499 0.1686 0.1841 0.1998 0.2151 0.0000 0.015 0.0050 0.0190 0.0190 0.0256 0.0322 0.0386 0.0468	0.6404 0.8550 0.9183 0.9391 0.9494 0.9547 0.9596 0.9634 0.9601 0.9540 0.9461 0.9361 0.9262 0.9177 0.9083 0.8987 0.0000 0.3098 0.6010 0.7493 0.8293 0.8293 0.8789 0.8994	
			AUXILIARY	INFORMAT	ION			
Recirc with m peratu therma measur thermo	ulating v agnetic p re. Sam l conduct ed with p meter. Bourdon o	S/PROCEDURE: yapor flow a pump at ambi uples analys ivity. T platinum res Pressure me gauge. Det	pparatus ent tem- ed by 'emperature istance asured	ESTIMATH δT/K = 100 ba	No deta ED ERROR: ±0.01; r) = ±0.7	DF MATERIALS: ils given. $\delta P/bar = \pm 0$ (above 100 $\phi = 0.002$ :	0.1 (up to bar);	
				±0.001 REFERENO	<u>to ±0.00</u> CES:		^{8y} Ne =	

COMPONENTS:				ORIGINAL MEASUREMENTS:			
(1) No	eon; Ne;	7440-01-9				and Jones, Engng., 1965,	
(2) 0:	xygen; C	) ₂ ; 7782-44-7		Aav. C	<i>ryoy</i> . r	<i>ngng.</i> , <u>1965</u> ,	11, 330.
EXPERIM	ENTAL V	ALUES:		<u>)</u>			
m /17	T) /h a va	Mole fractio		m /12	D /h a ra	Mole fractio	
т/К	P/bar	in liquid, ^x Ne	in vapor, ^Y Ne	т/К	P/bar	in liquid, ^x Ne	in vapor, ^y Ne
101.46	55.43		0.9050 0.9103	102.03	28.75 35.37		0.5531 0.6127
	68.81 104.8		0.9106 0.9133		42.37	0.0415	0.6549
	142.7	0.1398	0.9060		56.85	0.0608	0.7074
l	183.4 207.9	0.1801 0.2037	0.8916 0.8793		64.19 69.50		0.7249 0.7338
	241.3	0.2359	0.8620		90.87	0.1087	0.7554
	282.0 312.3	0.2756 0.3095	0.8374 0.8158		108.9 140.3	0.1359 0.1850	0.7611 0.7552
110.39	351.2 5.76	0.3540	0.7837 0.0000		176.9 209.6	0.2533 0.3358	0.7263
110.39	6.65		0.1447		227.9	0.4099	0.6624
	14.10 19.88	0.0095 0.0163	0.5525 0.6619	130.00	19.58 32.58		0.0757 0.3520
	27.03	0.0240	0.7334		37.82	0.0288	0.4128
	35.44 41.92	0.0324 0.0420	0.7801 0.8022		44.47 52.37		0.4692 0.5159
	55.74	0.0558	0.8296		57.00	0.0539	0.5376
	65.83 69.64		0.8404 0.8432		64.74 83.29		0.5648 0.6050
	108.8 140.0	0.1210 0.1594	0.8544 0.8484		107.6	0.1502	0.6227
	172.4	0.2008	0.8337		140.4 158.9	0.2269 0.2805	0.6064 0.5720
	209.5 245.0	0.2522 0.3088	0.8084 0.7730	146.36	170.3 44.33		0.5165 0.1190
	279.0	0.3765	0.7230	140.30	69.36	0.0767	0.2697
120.03	307.5 10.31	0.4931 0.0000	0.6420 0.0000		89.49 93.08		0,2949 0,2830
120.05	12.10	0.0023	0.1252	152.29	50.88	0.0147	0.0434
	16.31 21.48	0.0074 0.0144	0.3106 0.4454		55.50	0.0302	0.0752

COMPONEN	TS:			ORIGINAL	MEASUREME	ENTS:	
(1) Neon; Ne; 7440-01-9				Skripka, V. G. and Lobonova, N. N.,			
(2) Oxygen; O ₂ ; 7782-44-7				Trudy Vses. NauchIssled. Inst.			
						str., 1971,	
						····, <u></u> ,	
VARIABLE	:5 :	<u> </u>		PREPARED	BY:		
Tempera	ature, pr	essure		с. г.	Young		
EXPERIME	NTAL VALUES	3:		l <u></u>			<u></u>
т/к		Mole fracti in liquid, ^x Ne		т/к	P/bar	Mole fracti in liquid, ^x Ne	on of neon in vapor, ^y Ne
64.14 77.81	9.8 19.6 29.4 39.2 49.0 58.8 68.6 78.5 88.3 98.1 107.9 117.7 127.5 137.3 147.1 156.9 166.7 176.5 186.3 196.1 205.9 9.8 19.6 29.4 39.2	0.0035 0.0072 0.0120 0.0220 0.0280 0.0335 0.0390 0.0440 0.0470 0.0500 0.0555 0.0590 0.0620 0.0660 0.0690 0.0720 0.0750 0.0750 0.0790 0.0825 0.00825 0.0130 0.0200 0.0270		90.73	49.0 58.8 68.6 78.5 88.3 98.1 107.9 117.7 129.5 137.3 147.1 156.9 166.7 176.5 186.3 196.1 205.9 9.8 19.6 29.4 39.2 49.0 58.8 68.6 78.5	0.0340 0.0410 0.0485 0.0570 0.0640 0.0710 0.0770 0.0820 0.0880 0.0940 0.0985 0.1030 0.1125 0.1170 0.1210 0.1240 0.0240 0.0240 0.0330 0.0440 0.0550 0.0665 0.0780	0.9815 0.9815 0.9810 0.9790 0.9770 0.9770 0.9750 0.9730 0.9610 0.9610 0.9610 0.9570 0.9570 0.9550 - - - 0.9295 0.9305 0.9375 0.9380 0.9380
		**************************************	AUXILIARY	INFORMAT	ION		
METHOD/A	PPARATUS,	PROCEDURE:	<u></u>	SOURCE A	ND PURITY	OF MATERIALS:	
with li gas. interfe with pl	quid and Samples o rometry. atinum re ssure mea	of phases a	urized with nalysed by ure measured nermometer Bourdon	mo. 2. Hig	le per ce	y sample; p	-
				δт/К =	$\delta y_{\rm Ne} = \pm 0$	$\delta P/\text{bar} = \pm 0$ 0.002.	. 4 ;

<pre>(1) Neon; Ne; 7440-01-9 (2) Oxygen; O₂; 7782-44-7 EXPERIMENTAL VALUES:  T/K P/bar in liquid, in va</pre>	
Mole fraction of nT/KP/barin liquid, in va $x_{Ne}$ $y_N$ 90.7388.30.08950.93795.10.09950.935107.90.11000.933117.70.12000.931129.50.13000.929137.30.14000.926147.10.15100.922156.90.16250.918	
T/K P/bar in liquid, in va ^x Ne ^y N 90.73 88.3 0.0895 0.937 95.1 0.0995 0.935 107.9 0.1100 0.933 117.7 0.1200 0.931 129.5 0.1300 0.929 137.3 0.1400 0.926 147.1 0.1510 0.922 156.9 0.1625 0.918	
99.1         0.0995         0.935           107.9         0.1100         0.933           117.7         0.1200         0.931           129.5         0.1300         0.929           137.3         0.1400         0.926           147.1         0.1510         0.922           156.9         0.1625         0.918	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

## SYSTEM INDEX

Underlined page numbers refer to the start of the evaluation text and those not underlined to the start of the compiled tables for that system. The compounds are listed in the order as in the Chemical Abstract indexes, for example toluene is listed as benzene, methyl- and dimethylsulfoxide is listed as methane, sulfinylbis-.

A

```
Abdominal muscle, rat, see rat abdominal muscle
 105
Acetamide, N-methyl- + helium
Acetone, see 2-propanone
Acids (see under individual acids)
Alkali Halides (see under individual halides)
 <u>255</u>, 282
Ammonia + helium
 20,
Ammonium chloride (aqueous) + helium
 25
 141, 145
 chloride (aqueous) + neon
 tetrabutyl-, bromide, see 1-butanaminium,N,N,N-
 tributy1-, bromide
 tetraethyl-, bromide, see ethanaminium,N,N,N-
 triethyl-, bromide
tetramethyl-, iodide, see methanaminium,N,N,N-
 trimethyl-, iodide
Amsco + helium
 115
Apiezon GW oil + helium
 116
 Argon + helium
 + neon
в
 141, 158
Barium bromide (aqueous) + neon
 chloride (aqueous) + helium
 20, 27
 <u>141</u>, 157
 chloride (aqueous) + neon
 iodide (aqueous) + neon
 141, 159
 nitrate, see nitric acid, barium salt
 68,
Benzene + helium
 70, 255
 <u>214</u>, 215
 + neon
 bromo- + helium
 96
 bromo- + neon
 241
 chloro- + helium
 95
 chloro- + neon
 240
 1,2-dimethyl- + helium
 76
 1,2-dimethyl- + neon
 221
 1,3-dimethyl- + helium
 78
 77,
 1,3-dimethyl- + neon
 222, 223
 1,4-dimethyl- + helium
 80
 1,4-dimethyl- + neon
 225
 fluoro- + helium
 93
 fluoro- + neon
 237
 hexafluoro- + helium
 92
 hexafluoro- + neon
 236
 iodo- + helium
 97
 iodo- + neon
 242
 methyl- + helium
 74
 73,
 218, 219
 methyl - + neon
 106
 nitro- + helium
 246
 nitro- + neon
 perfluoro-, see benzene, hexafluoro-
1-Butanaminium, N, N, N-tributy1-, bromide (aqueous) + helium
 20,
 26
1-Butanamine,1,1,2,2,3,3,4,4,4-nonafluoro-N,N-bis (nonafluoro-
 butyl) - + helium
 107
1-Butanamine, 1, 1, 2, 2, 3, 3, 4, 4, 4-nonafluoro-N, N-bis (nonafluoro-
 108
 butyl)- + helium-3
iso-Butanol, see 1-propanol, 2-methyl-
tert-Butanol, see 2-propanol, 2-methyl-
Bromide, barium, see barium bromide
 calcium, see calcium bromide
 potassium, see potassium bromide
 sodium, see sodium bromide
```

Bromide, strontium, see strontium bromide tetrabutyl-ammonium, see l-butanaminium,N,N,N- tributyl-, bromide tetraethyl-ammonium, see ethanaminium,N,N,N- triethyl-, bromide Bromobenzene, see benzene, bromo-	
c	
Calcium bromide (aqueous) + neon chloride (aqueous) + neon iodide (aqueous) + neon nitrate, see nitric acid, calcium salt	$\frac{141}{141}$ , 152 $\frac{141}{141}$ , 151 $\frac{141}{153}$
Carbon dioxide + helium disulfide + helium disulfide + neon	298, 299 98 243
<pre>monoxide + helium Cesium chloride (aqueous) + neon nitrate, see nitric acid, cesium salt Chloride ammonium, see ammonium chloride barium, see barium chloride calcium, see calcium chloride cesium, see cesium chloride ferric, see iron chloride iron, see iron chloride lithium, see lithium chloride magnesium, see magnesium chloride potassium, see rubidium chloride rubidium, see rubidium chloride sodium, see sodium chloride strontium, see strontium chloride</pre>	254, 295 <u>141</u> , 171
Chlorobenzene, see benzene, chloro- Cyclohexane + helium + neon <u>cis</u> 1,2-dimethyl- + helium <u>trans</u> 1,2-dimethyl- + neon <u>trans</u> 1,2-dimethyl- + helium <u>trans</u> 1,2-dimethyl- + neon 1,3-dimethyl- + helium 1,3-dimethyl- + helium 1,4-dimethyl- + neon methyl + helium methyl + neon perfluoromethyl, see cyclohexane, undecafluoro (tmifluoromethyl)	59, 60 204, 205 64 210 65 211 66 212 67 213 62 208
<pre>(trifluoromethyl)- undecafluoro (trifluoromethyl)- + helium undecafluoro (trifluoromethyl)- + neon Cyclohexanol + helium + neon Cyclooctane + helium + neon Cyclotetrasiloxane, octamethyl- + helium</pre>	91 235 88 233 63 209 109
octamethyl- + neon	248
D	
Decane + helium	$\frac{51}{52}$ , 52
<pre>+ neon 1-Decanol + helium</pre>	$\frac{196}{87}, 197$ $\frac{232}{254}, 302$ $\frac{254}{304}, 304$
1,3-Dimethylcyclohexane, see cyclohexane, 1,3-dimethyl-	

388

```
1,4-Dimethylcyclohexane, see cyclohexane, 1,4-dimethyl-
 2,3-Dimethylhexane, see hexane, 2,3-dimethyl-
 2,4-Dimethylhexane, see hexane, 2,4-diemthyl-
1,1-Dimethylhydrazine, see hydrazine, 1,1-dimethyl-
1,2-Dimethylhydrazine, see hydrazine, 1,2-diemthyl-
Dimethylsulfoxide, see methane, sulfinylbis-
Disulfide carbon, see carbon disulfide
 55
Dodecane + helium
 200
 + neon
E
Electrolytes (see under individual electrolytes)
Ethanaminium, N,N,N-triethyl-, bromide (aqueous) + helium
 20,
 25
 254, 276
Ethane + helium
Ethane, 1,1,2,2-tetrachloro- + helium
 94
 1,1,2,2-tetrachloro- + neon
 239
 1,1,2-trichloro-1,2,2-trifluoro- + neon
 238
 82,
Ethanol + helium
 83
 + neon
 227,
 228
Ethanol (aqueous) + helium
 35
 + neon
 181
F
Fat, human, see human fat (pooled)
Ferric chloride, see iron chloride
Fluoride, potassium, see potassium fluoride
 254, 306
Fluorine + helium
Fluorobenzene, see benzene, fluoro-
Freon 12, see methane, dichlorodifluoro-
Freon 113, see ethane, 1,1,2-trichloro-1,2,2-trifluoro-
Fuel hydrogenated, see hydrogenated fuel
н
 42
Heptane + helium
 187
 + neon
 90
 hexadecafluoro- + helium
 46
 3-methyl- + helium
 3-methyl- + neon
 191
Hexadecafluoroheptane, see heptane, hexadecafluoro-
 58
Hexadecane + helium
 203
 + neon
Hexafluorobenzene, see benzene, hexafluoro-
 41, 255
Hexane + helium
 + neon
 186
Hexane, 2,3-dimethyl- + helium
 47
 2,3-dimethyl- + neon
 192
 2,4-dimethyl- + helium
 48
 193
 2,4-dimethyl- + neon
 252
Human Fat (pooled) + neon
 120
Human lung homogenate + helium
 113
Hydrazine + helium
 103
 + 1,1-dimethylhydrazine + helium
 101
 1,1-dimethyl- + helium
 102
 1,2-dimethyl- + helium
 100
 methyl- + helium
 20,
Hydrochloric acid + helium
 23
 141,
 + neon
 144
p-Hydrogen + Helium
 322
Hydrogen + Helium-3
 307,
 308
 + Helium-4
 311
 310,
Hydrogenated fuel + helium
 114
Hydroxide, potassium, see potassium hydroxide
Τ
 122
Infusion solution + helium
```

Iodide barium, see barium iodide calcium, see calcium iodide lithium, see lithium iodide potassium, see potassium iodide sodium, see sodium iodide tetramethyl-ammonium see methanaminium, N, N, N-trimethyliodide Iodobenzene, see benzene, iodo-141, 146 Iron chloride (aqueous) + neon ĸ  $\frac{254}{369}$ , 323 Krypton + helium + neon L 20, Lithium chloride (aqueous) + helium 29 chloride (aqueous) + neon <u>141</u>, 161, 173, 175, 178 20, iodide (aqueous) + helium 29 141, 176, 178 iodide (aqueous) + neon nitrate, see nitric acid, lithium salt Lung homogenate, Human, see Human Lung Homogenate М 141, 147 Magnesium chloride (aqueous) + neon nitrate, see nitric acid, magnesium salt sulphate, see sulfuric acid, magnesium salt 263, 264 Methane + helium + neon 255, 357 254, dichlorodifluoro- + helium 280 nitro- + helium 104 nitro- + neon 245 nitro- (aqueous) + helium 39 sulfinylbis- + helium 99 sulfinylbis- + neon 244 255 Methanol + helium 81, + neon 226 (aqueous) + neon 179 + sodium iodide + helium 20, 34 N-Methylacetamide, see acetamide, N-methyl-25 Methanaminium, N, N, N-trimethyl-, iodide (aqueous) + helium 20, Methylbenzene, see benzene, methyl-Methylcyclohexane, see cyclohexane, methyl-Methylcyclohexane, tetrafluorodeca-, see cyclohexane, undecafluoro (trifluoromethyl)-3-Methylheptane, see heptane, 3-methyl-Methylhydrazine, see hydrazine, methyl-2-Methyl-1-propanol, see 1-propanol, 2-methyl-2-Methyl-2-propanol, see 2-propanol, 2-methyl-N 324, 325 Neon + helium Nitrate barium, see nitric acid, barium salt calcium, see nitric acid, calcium salt cesium, see nitric acid, cesium salt lithium, see nitric acid, lithium salt magnesium, see nitric acid, magnesium salt sodium, see nitric acid, sodium salt 20, 23 Nitric acid + helium barium salt (aqueous) + neon <u>141</u>, 160 calcium salt (aqueous) + neon <u>141</u>, 154 cesium salt (aqueous) + neon <del>141</del>, 172 lithium salt (aqueous) + neon <u>141</u>, 162 <u>141</u>, 149 magnesium salt (aqueous) + neon 20, sodium salt (aqueous) + helium 33 sodium salt (aqueous) + neon 141, 166

Nitrobenzene, see benzene, nitro-	
Nitrogen + helium + neon	<u>328</u> , 329 373, 374
oxide, $N_2O_4$ + helium	$\frac{373}{111}$
Nitromethane, see methane, nitro-	055 046
Nitrous oxide + helium 1,1,2,2,3,3,4,4,4-Nonafluoro-N,N-bis (nonafluorobutyl)-1-	255, 346
butanamine, see l-butanamine, 1,1,2,2,3,3,4,4,4-nona-	
fluoro-N,N-bis (nonafluorobutyl)-	
Nonane + helium + neon	50 195
0	
Octamethylcyclotetrasiloxane, see cyclotetrasiloxane, octamethy	
Octane + helium + neon	$\frac{43}{188}, \frac{44}{189}$
1-Octanol + helium	86
+ neon Olive oil + helium	231 118
+ neon	250
Oil Apiezon GW, see Apiezon oil GW	
olive, see oilve oil silicone, see silicone oil	
Oxygen + helium	348, 349
+ neon	<u>380</u> , 381
P	
Pentadecane + helium	58
+ neon	203
Pentane + helium	40
+ neon 2,2,4-trimethyl- + helium	185 49
2,2,4-trimethyl- + neon	194
Perchloric acid + helium	<u>20</u> , 24
Perfluorobenzene, see benzene, hexafluoro- Perfluoroheptane, see heptane, hexadecafluoro-	
Perfluoromethylcyclohexane, see cyclohexane, undecafluoro	
(trifluoromethyl)-, Perfluorotributylamine, see 1-butanamine,1,1,2,2,3,3,4,4,4-	
nonafluoro-N,N-bis (nonafluorobutyl)-	
Potassium bromide (aqueous) + neon	$\frac{141}{20}$ , 169
chloride (aqueous) + helium chloride (aqueous) + neon 141, 1	$     \begin{array}{ccccccccccccccccccccccccccccccccc$
fluoride (aqueous) + neon	<u>141</u> , 174
hydroxide (aqueous) + helium	$\frac{20}{141}$ , 28
hydroxide (aqueous) + neon iodide (aqueous) + helium	$\frac{141}{20}$ , 167
iodide (aqueous) + neon 141, 1	70, 173, 177
Propane + Helium	<u>254</u> , 278 85
l-Propanol, 2-methyl- + helium 2-methyl- + neon	230
2-Propanol, 2-methyl- (aqueous) + helium	37
2-Propanone + helium + neon	89 234
R	
Rat abdominal muscle + helium	121
Rubidium chloride + neon	<u>141</u> , 174
S	
Santowax R + helium	356
Sea Water + helium-3	19
+ helium + neon	<u>16</u> , 17 1 <u>38</u> , 139
Silicone oil + helium	117
Sodium bromide (aqueous) + helium	<u>20</u> , 30

141, 164 Sodium bromide (aqueous) + neon chloride (aqueous) + helium chloride (aqueous) + neon iodide (aqueous) + neon
iodide (methanol) + helium 20, 34 nitrate, see nitric acid, sodium salt sulfate, see sulfuric acid, sodium salt 141, 156 Strontium bromide (aqueous) + neon chloride (aqueous) + neon 141, 155 Sulfate magnesium, see sulfuric acid, magnesium salt sodium, see sulfuric acid, sodium salt uranyl, see uranium, dioxosulfato-Sulfinylbismethane, see methane, sulfinylbis-Sulfur dioxide + helium 255 141, Sufluric acid, magnesium salt (aqueous) + neon 148 Sulfuric acid, sodium salt (aqueous) + helium 20, 32 т Tetrabutylammonium bromide, see 1-Butanaminium, N, N, Ntributy1-, bromide 1,1,2,2-Tetrachloroethane, see ethane, 1,1,2,2,-tetrachloro-Tetraethylammonium bromide, see ethanaminium, N,N,Ntriethyl-, bromide Tetradecane + helium 57 202 + neon Tetradecafluorocyclohexane, see methylcyclohexane, tetradecafluoro-Tetramethylammonium iodide, see methanaminium, N, N, N-trimethyl-, iodide Toluene, see benzene, methyl-Tributylamine, perfluoro, see 1-butanamine,1,1,2,2,3,3,4,4,4nonafluoro-N, N-bis (nonafluorobuty1)-1,1,2-Trichloro-1,2,2-trifluoroethane, see ethane,1,1,2-trichloro-1,2,2-trifluoro-Tridecane + helium 56 + neon 201 2,2,4-Trimethylpentane, see pentane, 2,2,4-trimethylr1 Undecafluoro (trifluoromethyl) cyclohexane, see cyclohexane, undecafluoro (trifluoromethyl)-Undecane + helium 54 + neon 199 Uranium dioxosulfato- (aqueous) + helium 262 Uranyl sulfate, see uranium, dioxosulfato-Urea (aqueous) + neon 183 W Ternary systems involving salt + water are listed under the salt Water-d2 + helium 14 + neon 137 Water + helium-3 15 + helium 5, 257, 1, 258 124, 127 + neon Х m-Xylene, see Benzene, 1,3-dimethylo-Xylene, see Benzene, 1,2-dimethylp-Xylene, see Benzene, 1,4-dimethyl-Xenon + helium 255, 353

## REGISTRY NUMBER INDEX

Underlined page numbers refer to evaluation text and those not underlined to compiled tables. 57-13-6 183-184 57-14-7 101,103 60-34-4 100 35-36, 82, 83-84, 181-182, 227, 228-229 64-17-5 67-56-1 20, 34, 81, 179-180, 226, 255 89, 234 67-64-1 67-68-5 99, 244 68-69, 70-72, <u>214</u>, 215-217 20, 25 <u>255</u>, <u>263</u>, 264-275, 357-358 70-72, 214, 215-217, 255 71-43-2 71-91-0 74-82-8  $\frac{254}{254}$ , 276-277  $\frac{254}{254}$ , 278-279 98, 243 74-84-0 74-98-6 75-15-0 75-52-5 104, 245 75-58-1 20, 25 75-65-0 37-38 75-71-8 <u>254</u>, 280-281 238 76-13-1 78-83-1 85, 230 79-16-3 105 79-34-5 94, 239 76, 221 106, 246 80, 225 <u>77</u>, 78-79, <u>222</u>, 223-224 95-47-6 98-95-3 106-42-3 108-38-3 108-86-1 96, 241 62, 208 73, 74-75, <u>218</u>, 219-220 95, 240 108-87-2 108-88-3 108-90-7 88, 233 108-93-0 40, 185 41, 186, <u>255</u> <u>59, 60-61, 204</u>, 205-207 <u>43</u>, 44-45, <u>188</u>, 189-190 <u>50</u>, 195 109-66-0 110-54-3 110-82-7 111-65-9 111-84-2 86, 231 111-87-5 87, 232 112-30-1 112-40-3 55, 200 51, 52-53, <u>196</u>, 197-198 298, 299-301 124-18-5 124-38-9 142-83-5 42, 187 63, 209 103, 113 292-64-8 302-01-2 311-89-7 107-108 335-57-9 90 355-02-2 91, 235 92, 236 93, 237 392-56-3 462-06-6 540-73-8 102 540-84-1 49, 194 544-76-3 58, 203 109, 248 47, 192 556-67-2 584-94-1 48, 193 46, 191 589-43-5 589-81-1

97, 242 591-50-4 67, 213 624-29-3 56, 201 629-50-5 57, 202 629-59-4 58, 203 629-62-9 254, 295-297 66, 212 54, 199 630-08-0 638-04-0 1120-21-4 1310-58-3 <u>20, 28, 141, 167</u> 262 1314-64-3  $\frac{307}{20}$ , 308-309,  $\frac{310}{20}$ , 311-322  $\frac{20}{64}$ , 210 1333-74-0 1643-19-2 2207-01-4 66, 212 67, 213 2207-03-6 2207-04-7 65, 211 254, 323, 369, 3 124-252, 357-385 6876-23-9 370-372 7439-90-9 7440-01-9 7440-37-1 110, 249, 283, 284-294, <u>359</u>, 360-368 1-14, 16-18, 20-107, 109-123, 254-301, 304-306, 310-356 7440-59-1 255 7446-09-5 20, 29, 141, 168, 177-178 20, 29, 141, 161, 173, 175, 178 7447-40-7 7447-41-8  $\frac{141}{20}$ , 148  $\frac{141}{20}$ , 24 7487-88-9 7601-90-3  $\overline{20}$ , 33, <u>141</u>, 166 7631-99-4  $\begin{array}{c} 20, & 23, & \underline{141}, & 144 \\ \underline{20}, & 29-3\overline{1}, & \underline{141}, & 163, & 173, & 176, & 187, & 261 \\ \underline{20}, & 30, & \underline{141}, & 164 \\ \underline{20}, & 30, & \underline{141}, & 164 \end{array}$ 7647-01-0 7647-14-5 7647-15-6 141, 1717647-17-8 7664-41-7 255, 282  $\begin{array}{c} \underline{20}, \ 30, \ \underline{141}, \ 170, \ 173, \ 177\\ \underline{20}, \ 34, \ \underline{141}, \ 165, \ 176, \ 178\\ \underline{20}, \ 23\\ \underline{20}, \ 23\\ \underline{141}, \ 165, \ 176, \ 178\\ \underline{20}, \ 23\\ \underline{20}, \ 23\\ \underline{141}, \ 165\\ \underline{141}, \ 165\\ \underline{176}, \ 178\\ \underline{176}, \$ 7681-11-0 7681-82-5 7697-37-2 <u>141</u>, 146 7705-08-0 7727-37-9 <u>328</u>, 329-345, <u>373</u>, 374-379  $\frac{1-4}{138}$ , 5-13, 15-33, 35-39, 120-123,  $\frac{124-126}{126}$ , 127-136, 138-184,  $\frac{257}{258}$ , 258-262 7732-18-5  $\frac{255}{20}$ ,  $353-\overline{355}$  $\overline{20}$ , 327740-63-3 7757-82-6 141, 169 7758-02-3 <u>254</u>, 302-305 7782-39-0  $\frac{254}{348}, 349-352, \underline{380}, 381-385$  $\underline{141}, 147$ 7782-41-4 7782-44-7 7786-30-3 <u>141</u>, 172 7789-18-6 14, 137 7789-20-0  $\frac{141}{141}$ , 174  $\frac{141}{152}$ 7789-23-3 7789-41-5 141, 162 7790-69-4 <u>141</u>, 172 7791-11-9 10022-31-8 141, 160  $\frac{1}{255}$ , 346-347  $\frac{141}{141}$ , 151  $\frac{141}{153}$ 10024-97-2 10043-52-4 10102-68-8 <u>141</u>, 154 10124-37-5  $\begin{array}{c} \underline{20},\ 27,\ \underline{141},\ 157\\ \underline{20},\ 29,\ \underline{141},\ 176,\ 178\\ \underline{141},\ 149 \end{array}$ 10361-37-2 10377-51-2 10377-60-3 <u>141</u>, 156 10476-81-0 141, 155 10476-85-4 10544-72-6 111  $\frac{141}{20}$ , 158  $\frac{20}{25}$ , 141, 145 10553-31-8 12125-02-9 141, 159 13718-50-8 14762-55-1 15, 19, 108, 254, 302-303, 307-309