COMPONENTS:	EVALUATOR:
 (1) 1,4-Dibromobenzene; C₆H₄Br₂; [106-37-6] (2) Water; H₂0; [7732-18-5] 	A. Vesala, Department of Chemistry and Biochemistry, University of Turku. January 1979

CRITICAL EVALUATION:

There are only a few reported measurements dealing with the solubility of 1,4dibromobenzene in water. In the published papers on the subject, the determination of solubility is not the primary purpose of the work, a fact that may affect the precision of the reported results. Of the values reported, only that of Andrews and Keefer (1) refers to 298.2 K. The measured data reported by Hine, Haworth, and Ramsay (2) at 308.2 K lend some support to the value assigned at 298.2 K.

The experimental procedure employed by Andrews and Keefer is adequate for the determination in question. However, the time of equilibrium (about 20 hours as given in (3)) seems quite short in the absence of tests for solution equilibrium. It is reasonable to attribute most of the uncertainty in the reported solubility of 8.5 x 10^{-5} mol(1)/dm³ (7.0 x 10^{-5} molar at an ionic strength of 1.0 molar, a figure incorrectly cited for solubility in pure water in some papers). Support for the reliability of the value at 298.2 K is provided by the value of 1.12 x 10^{-4} mol(1)/kg(2) given by Hine et al. for 308.2 K. This value was obtained by employing a long equilibration (at least a week) and a direct spectrophotometric measurement. In fact, it seems reasonable that the latter measurements should be more reliable than those of Andrews and Keefer although the agreement between the two measurements is quite satisfactory. The increase in the solubility is about 30% for a temperature rise of 10 degrees from 298.2 K. This value as that for 1,4-dichlorobenzene in water in the same range of temperature as measured by Wauchope and Getzen (4).

The following is the tentative solubility of 1,4-dibromobenzene in water at 298.15 K:

T/K	10^{5} mol(1)/dm ³	$10^{2}g(1)/kg$	$10^{6}x(1)$
298.15	8.5	2.0	1.5

REFERENCES

1. Andrews, L. M.; Keefer, R. M. J. Am. Chem. Soc. 1950, 72(7), 3113-6.

2. Hine, J.; Haworth, H. W.; Ramsay, O. B. J. Am. Chem. Soc. 1963, 85(10), 1473-6.

3. Andrews, L. M.; Keefer, R. M. J. Am. Chem. Soc. 1949, 71(11), 3644-7.

4. Wauchope, R. D.; Getzen, F. W. J. Chem. Eng. Data 1972, 17(1), 38-41.

COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) 1,4-Dibromobenzene; C ₆ H ₄ Br ₂ ; [106-37-6]	Andrews, L. J.; Keefer, R. M. J. Am. Chem. Soc. <u>1950</u> , 72(7), 3113-6.		
(2) Water; H ₂ 0; [7732-18-5]			
VARIABLES:	PREPARED BY:		
One temperature	A. Vesala		
EXPERIMENTAL VALUES:			
$t/^{\circ}C = 10^{2}g(1)/dm^{3} a = 10^{5}mol(1)/dm^{3} b = 10^{6}x(1)^{b}$			
25.0 2.0 8.48	1.53		
a. Reported. b. Calculated by F. W. Getzen.			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: The saturation process was done in sealed Erlenguage flagks. The time used for the	SOURCE AND PURITY OF MATERIALS: C ₆ H ₄ Br ₂ : Commercial product (Eastman Kodak Co.), used as received.		
equilibration was 20 hours. Measured vol- umes of the saturated solutions were then	II ₂ 0: Source and purity not specified.		
extracted using measured volumes of hexane to remove the aromatic matter from the aqueous layer. The solute concentration was measured spectrophotometrically using a Beckman DU spectrophotometer (1).			
	ESTIMATED ERROR:		
	Temperature: ±0.2 K (evaluator).		
	REFERENCES: 1. Andrews, L. J.; Keefer, R. M. J. Am. Chem. Soc. <u>1949</u> , 71(11), 3644-7.		

COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) 1,4-Dibromobenzene; C₆H₄Br₂; [106-37-6]</pre>	Hine, J.; Haworth, H. W.; Ramsay, O. B. J. Am. Chem. Soc. <u>1963</u> , 85(10), 1473-6.	
(2) Water; H ₂ O; [7732-18-5]		
_		
VARIABLES:	DEEDADED BY.	
One temperature	A. Vesala	
EXPERIMENTAL VALUES:		
$t/^{\circ}C$ $10^{2}g(1)/dm^{3}a$ $10^{4}mol(1)/dm^{3}b$ $10^{6}x(1)^{a}$		
35.0 2.642 1.12	2.030	
a. Calculated by F. W. Getzen. b. Reported.		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: An excess of the aromatic compound was com- bined with 4.0 ml of water in a 5.0 ml ampoule which was then sealed. The sealed ampoule was rotated in a constant tempera- ture water bath for at least a week to estab- lish saturation. The undissolved solid was	SOURCE AND PURITY OF MATERIALS: C ₆ H ₄ Br ₂ : Source not specified; presumably commercial material, recrystal- lized to constant melting point in agreement with literature values. H.O: Source and purity not specified.	
of the solute in the saturated filtrate solution was determined by ultraviolet spectrophotometric measurements using a Beckman DU spectrophotometer. Several mea- surements were taken at intervals of at		
least a day in order to be sure that an equilibrium had been established.	ESTIMATED ERROR:	
	ported by authors).	
	Temperature: ±0.1 K (authors).	
	REFERENCES:	