COMPONENTS:		· · · · · · · · · · · · · · · · · · ·				
(1) Dysp	cosium chloride	; DyCl ₃ ;		AL MEASUREMENTS rova, Yu.G.; Ez		
[1002	25-74-8]	5	76 N	leorg. Khim. <u>197</u>	6 91 551-4	· RUAA
(2) Ethar	nol; C ₂ H ₆ 0; [6	4-17-5]	J. In	org. Chem. (Eng	l. Transl.)	<u>1976</u> , 21,
	; H ₂ 0; [7732-2		296-8	· ·		
(5) #400	, ¹ ₂ °, [//o ²					
VARIABLES:			PPEPAP	ED BY:		
	-			oduski and M. S	alomon	
Temperatu						
EXPERIMENTAL	VALUES:	<u> </u>				
	solubility o	f DyCl ₃ .6H ₂ 0 in	96.8 % C.H	L-OH ^a		
				-	mean solu	bilition
	sample 1	-	-	sample 4		
t/°C	g/100 g ^D	g/100 g	g/100 g	g/100 g	g/100 g	mol kg ^{-lc}
20	33.46	33.38	33.64	33.24	33.43	1.332
30	32.60	32.40	32.27	32.26	32.38	1.270
40	31.91	31.98	32.36	32.12	32.09	1.254
50	33.67	33.39	33.58	33.10	33.43	1.332
			34.87	35.10	34.91	1.423
60	35.04	34.00	54.07	55.10	54.71	1.425
						:
		AUXILI	ARY INFORM	ATION		
METHOD / APPAI	RATUS / PROCEDURE				MATERIALS:	
Isothermal 1	nethod used. E	; quilibrium was	SOURCE DyCl oxide	AND PURITY OF 3.6H ₂ 0 prepd by a in dil (1:3) H	IC1 followed	by evapn and
Isothermal reached after obtained by	nethod used. E er 3-4 h. Iden approaching eq	; quilibrium was tical results uilibrium from	SOURCE DyCl oxide cryst	AND PURITY OF 3.6H ₂ O prepd by a in dil (1:3) F cn. The crystals	Cl followed	by evapn and in a desic-
Isothermal reached after obtained by above and be	method used. E er 3-4 h. Iden approaching eq elow. Two of	; quilibrium was tical results uilibrium from the data points	SOURCE DyCl- oxide cryst caton stals	AND PURITY OF .6H ₂ 0 prepd by e in dil (1:3) H in. The crystals c over CaCl ₂ , P ₂ s analyzed for t	C1 followed were dried 05 and NaOH. the metal by	by evapn and in a desic- The cry- titrn
Isothermal a reached afte obtained by above and be in the table equilibration	method used. E er 3-4 h. Iden approaching eq elow. Two of e obtained afte on, and the rem	quilibrium was tical results uilibrium from the data points r 3 hours of aining two data	SOURCE DyCl- oxide cryst caton stals with	AND PURITY OF ,6H ₂ 0 prepd by in dil (1:3) H the crystals c over CaCl ₂ , P ₂ s analyzed for t Trilon B, and f	Cl followed were dried O5 and NaOH. he metal by for Cl by the	by evapn and in a desic- The cry- titrn volhard
Isothermal a reached afte obtained by above and be in the table equilibration	method used. E er 3-4 h. Iden approaching eq elow. Two of e obtained afte on, and the rem	quilibrium was tical results uilibrium from the data points r 3 hours of	SOURCE DyCl oxide cryst cator stals with metho 163.1	AND PURITY OF 3.6H ₂ 0 prepd by 2 in dil (1:3) H c over CaCl ₂ , P ₂ 3 analyzed for t Trilon B, and f bd. The hexahyd 1°C. 96.8% etha	Cl followed were dried 05 and NaOH. he metal by for Cl by the rate melted anol prepd by	by evapn and in a desic- The cry- titrn volhard at 161.8 - prolonged
Isothermal a reached afte obtained by above and be in the table equilibration points obtain The metal co	method used. E er 3-4 h. Iden approaching eq elow. Two of e obtained afte on, and the rem ined after 4 h ontent in each	quilibrium was tical results uilibrium from the data points r 3 hours of aining two data of equilibratior aliquot taken fo	SOURCE DyCl oxide cryst cator stals with metho 163.J boilt anhyd	AND PURITY OF 3.6H ₂ 0 prepd by 4 in dil (1:3) H 5 cover CaCl ₂ , P ₂ 5 analyzed for t Trilon B, and f bd. The hexahyd 1°C. 96.8% ethat ing of c.p. grad dr CuSO4 followe	ICl followed were dried 05 and NaOH. The metal by for Cl by the trate melted nol prepd by te 93.5% ethat	by evapn and in a desic- The cry- titrn e Volhard at 161.8 - p prolonged mol with Ethanol
Isothermal a reached afte obtained by above and be in the table equilibration points obtain The metal contained analysis was	method used. E er 3-4 h. Iden approaching eq elow. Two of e obtained afte on, and the rem ined after 4 h ontent in each	quilibrium was tical results uilibrium from the data points r 3 hours of aining two data of equilibration	SOURCE DyCl oxide cryst cator stals with nethol 163.J boilt anhyd concr	AND PURITY OF 3.6H ₂ 0 prepd by 4 in dil (1:3) F 5 over CaCl ₂ , P ₂ 5 analyzed for t Trilon B, and f od. The hexahyd 1°C. 96.8% ethat ing of c.p. grad	ICl followed were dried 05 and NaOH. The metal by for Cl by the trate melted nol prepd by te 93.5% ethat	by evapn and in a desic- The cry- titrn e Volhard at 161.8 - p prolonged mol with Ethanol
Isothermal r reached aft obtained by above and bu in the table equilibration points obtain The metal co analysis was titration with Analyses of	method used. E er 3-4 h. Iden approaching eq elow. Two of e obtained afte on, and the rem ined after 4 h ontent in each s determined by ith Trilon B. the solids wit	quilibrium was tical results uilibrium from the data points r 3 hours of aining two data of equilibration aliquot taken for complexometric hdrawn at 20°C,	SOURCE DyCl oxide cryst cator stals with metho 163.1 boilt anhyc concr pycno ESTIM	AND PURITY OF 1.6H ₂ 0 prepd by 2 in dil (1:3) H in. The crystals c over CaCl ₂ , P ₂ s analyzed for t Trilon B, and f od. The hexahyd 1°C. 96.8% ethat in CuSO4 followed n detd refractom ometrically.	ICl followed were dried 05 and NaOH. The metal by for Cl by the trate melted nol prepd by te 93.5% ethat	by evapn and in a desic- The cry- titrn e Volhard at 161.8 - p prolonged mol with Ethanol
Isothermal r reached aft obtained by above and bo in the table equilibration points obtain The metal co analysis was titration was Analyses of 40°C and 60	method used. E er 3-4 h. Iden approaching eq elow. Two of e obtained afte on, and the rem ined after 4 h ontent in each s determined by ith Trilon B. the solids wit °C showed the s	quilibrium was tical results uilibrium from the data points r 3 hours of aining two data of equilibration aliquot taken for complexometric hdrawn at 20°C, olid phase to be	SOURCE DyCl oxide cryst cator stals with metho 163.1 boil anhyce concr pycno ESTIM	AND PURITY OF .6H ₂ 0 prepd by e in dil (1:3) H in. The crystals c over CaCl ₂ , P ₂ s analyzed for t Trilon B, and f od. The hexahyd 1°C. 96.8% ethat ing of c.p. grad in CuSO ₄ followed a detd refractom ometrically. ATED ERROR: : results appared	ICl followed were dried 05 and NaOH. The metal by for Cl by the rate melted nol prepd by 93.5% ethat d by distn. metrically an ently precise	by evapn and in a desic- The cry- titrn e Volhard at 161.8 - prolonged mol with Ethanol d
Isothermal r reached aft obtained by above and by in the table equilibration points obtain The metal contained analysis was titration was Analyses of 40°C and 60 the hexahyd	method used. E er 3-4 h. Iden approaching eq elow. Two of e obtained afte on, and the rem ined after 4 h ontent in each s determined by ith Trilon B. the solids wit °C showed the s	quilibrium was tical results uilibrium from the data points r 3 hours of aining two data of equilibration aliquot taken for complexometric hdrawn at 20°C, olid phase to be nol was not four	SOURCE DyCl oxide cryst cator stals with metho 163.1 boilt anhyo concr pycno ESTIM	AND PURITY OF $3.6H_{20}$ prepd by $4.6H_{20}$ prepd by $4.6H_{20}$ prepd by $4.6H_{20}$ prepd by $4.3H_{20}$ prepd by $4.3H_{20}$ over CaCl ₂ , P ₂ $5.3H_{20}$ analyzed for the Trilon B, and for 1° C. 96.8% ethat 1° C. 96.8% ethat	ICl followed were dried 05 and NaOH. The metal by for Cl by the rate melted nol prepd by te 93.5% etha d by distn. metrically an ently precise liers).	by evapn and in a desic- The cry- titrn e Volhard at 161.8 - prolonged mol with Ethanol d
Isothermal m reached aft obtained by above and by in the table equilibration points obtain The metal contained analysis was titration with Analyses of 40°C and 60 the hexahyd	method used. E er 3-4 h. Iden approaching eq elow. Two of e obtained afte on, and the rem ined after 4 h ontent in each s determined by ith Trilon B. the solids wit °C showed the s rate: i.e. etha	quilibrium was tical results uilibrium from the data points r 3 hours of aining two data of equilibration aliquot taken for complexometric hdrawn at 20°C, olid phase to be nol was not four	SOURCE DyCl- oxide cryst cator stals with metho 163.1 boild anhyd concr pycnd ESTIM Soly Temp	AND PURITY OF $_{1}$.6H ₂ 0 prepd by $_{2}$ in dil (1:3) H in. The crystals $_{3}$ over CaCl ₂ , P ₂ $_{3}$ analyzed for t Trilon B, and f od. The hexahyd $_{1}^{\circ}$ C. 96.8% ethat $_{1}^{\circ}$ C. 96.8% ethat ing of c.p. grad $_{1}^{\circ}$ C. 96.8% ethat $_{2}^{\circ}$ C. 96.8% ethat $_{1}^{\circ}$ C. 96.8% ethat $_{2}^{\circ}$ C. 96.8% ethat $_{3}^{\circ}$ C. 96.8% ethat $_{3}^{\circ}$ C. 96.8% ethat $_{3}^{\circ}$ C. 96.8% ethat $_{4}^{\circ}$ C. 96.8% ethat $_{5}^{\circ}$ C. 96.8% ethat	ICl followed were dried 05 and NaOH. The metal by for Cl by the rate melted nol prepd by te 93.5% etha d by distn. metrically an ently precise liers).	by evapn and in a desic- The cry- titrn e Volhard at 161.8 - prolonged mol with Ethanol d
Isothermal r reached aft obtained by above and by in the table equilibration points obtain The metal contained analysis was titration was Analyses of 40°C and 60 the hexahyd	method used. E er 3-4 h. Iden approaching eq elow. Two of e obtained afte on, and the rem ined after 4 h ontent in each s determined by ith Trilon B. the solids wit °C showed the s rate: i.e. etha	quilibrium was tical results uilibrium from the data points r 3 hours of aining two data of equilibration aliquot taken for complexometric hdrawn at 20°C, olid phase to be nol was not four	SOURCE DyCl- oxide cryst cator stals with metho 163.1 boild anhyd concr pycnd ESTIM Soly Temp	AND PURITY OF $3.6H_{20}$ prepd by $4.6H_{20}$ prepd by $4.6H_{20}$ prepd by $4.6H_{20}$ prepd by $4.3H_{20}$ prepd by $4.3H_{20}$ over CaCl ₂ , P ₂ $5.3H_{20}$ analyzed for the Trilon B, and for 1° C. 96.8% ethat 1° C. 96.8% ethat	ICl followed were dried 05 and NaOH. The metal by for Cl by the rate melted nol prepd by te 93.5% etha d by distn. metrically an ently precise liers).	by evapn and in a desic- The cry- titrn e Volhard at 161.8 - prolonged mol with Ethanol d
Isothermal m reached aft obtained by above and by in the table equilibration points obtain The metal contained analysis was titration with Analyses of 40°C and 60 the hexahyd	method used. E er 3-4 h. Iden approaching eq elow. Two of e obtained afte on, and the rem ined after 4 h ontent in each s determined by ith Trilon B. the solids wit °C showed the s rate: i.e. etha	quilibrium was tical results uilibrium from the data points r 3 hours of aining two data of equilibration aliquot taken for complexometric hdrawn at 20°C, olid phase to be nol was not four	SOURCE DyCl- oxide cryst cator stals with metho 163.1 boild anhyd concr pycnd ESTIM Soly Temp	AND PURITY OF $_{1}$.6H ₂ 0 prepd by $_{2}$ in dil (1:3) H in. The crystals $_{3}$ over CaCl ₂ , P ₂ $_{3}$ analyzed for t Trilon B, and f od. The hexahyd $_{1}^{\circ}$ C. 96.8% ethat $_{1}^{\circ}$ C. 96.8% ethat ing of c.p. grad $_{1}^{\circ}$ C. 96.8% ethat $_{2}^{\circ}$ C. 96.8% ethat $_{1}^{\circ}$ C. 96.8% ethat $_{2}^{\circ}$ C. 96.8% ethat $_{3}^{\circ}$ C. 96.8% ethat $_{3}^{\circ}$ C. 96.8% ethat $_{3}^{\circ}$ C. 96.8% ethat $_{4}^{\circ}$ C. 96.8% ethat $_{5}^{\circ}$ C. 96.8% ethat	ICl followed were dried 05 and NaOH. The metal by for Cl by the rate melted nol prepd by te 93.5% etha d by distn. metrically an ently precise liers).	by evapn and in a desic- The cry- titrn e Volhard at 161.8 - prolonged mol with Ethanol d
Isothermal m reached aft obtained by above and by in the table equilibration points obtain The metal contained analysis was titration with Analyses of 40°C and 60 the hexahyd	method used. E er 3-4 h. Iden approaching eq elow. Two of e obtained afte on, and the rem ined after 4 h ontent in each s determined by ith Trilon B. the solids wit °C showed the s rate: i.e. etha	quilibrium was tical results uilibrium from the data points r 3 hours of aining two data of equilibration aliquot taken for complexometric hdrawn at 20°C, olid phase to be nol was not four	SOURCE DyCl- oxide cryst cator stals with metho 163.1 boild anhyd concr pycnd ESTIM Soly Temp	AND PURITY OF $_{1}$.6H ₂ 0 prepd by $_{2}$ in dil (1:3) H in. The crystals $_{3}$ over CaCl ₂ , P ₂ $_{3}$ analyzed for t Trilon B, and f od. The hexahyd $_{1}^{\circ}$ C. 96.8% ethat $_{1}^{\circ}$ C. 96.8% ethat ing of c.p. grad $_{1}^{\circ}$ C. 96.8% ethat $_{2}^{\circ}$ C. 96.8% ethat $_{1}^{\circ}$ C. 96.8% ethat $_{2}^{\circ}$ C. 96.8% ethat $_{3}^{\circ}$ C. 96.8% ethat $_{3}^{\circ}$ C. 96.8% ethat $_{3}^{\circ}$ C. 96.8% ethat $_{4}^{\circ}$ C. 96.8% ethat $_{5}^{\circ}$ C. 96.8% ethat	ICl followed were dried 05 and NaOH. The metal by for Cl by the rate melted nol prepd by te 93.5% etha d by distn. metrically an ently precise liers).	by evapn and in a desic- The cry- titrn e Volhard at 161.8 - prolonged mol with Ethanol d
Isothermal n reached afte obtained by above and by in the table equilibration points obtain The metal co- analysis was titration was Analyses of 40°C and 60 the hexahyd	method used. E er 3-4 h. Iden approaching eq elow. Two of e obtained afte on, and the rem ined after 4 h ontent in each s determined by ith Trilon B. the solids wit °C showed the s rate: i.e. etha	quilibrium was tical results uilibrium from the data points r 3 hours of aining two data of equilibration aliquot taken for complexometric hdrawn at 20°C, olid phase to be nol was not four	SOURCE DyCl- oxide cryst cator stals with metho 163.1 boild anhyd concr pycnd ESTIM Soly Temp	AND PURITY OF $_{1}$.6H ₂ 0 prepd by $_{2}$ in dil (1:3) H in. The crystals $_{3}$ over CaCl ₂ , P ₂ $_{3}$ analyzed for t Trilon B, and f od. The hexahyd $_{1}^{\circ}$ C. 96.8% ethat $_{1}^{\circ}$ C. 96.8% ethat ing of c.p. grad $_{1}^{\circ}$ C. 96.8% ethat $_{2}^{\circ}$ C. 96.8% ethat $_{1}^{\circ}$ C. 96.8% ethat $_{2}^{\circ}$ C. 96.8% ethat $_{3}^{\circ}$ C. 96.8% ethat $_{3}^{\circ}$ C. 96.8% ethat $_{3}^{\circ}$ C. 96.8% ethat $_{4}^{\circ}$ C. 96.8% ethat $_{5}^{\circ}$ C. 96.8% ethat	ICl followed were dried 05 and NaOH. The metal by for Cl by the rate melted nol prepd by te 93.5% etha d by distn. metrically an ently precise liers).	by evapn and in a desic- The cry- titrn e Volhard at 161.8 - prolonged mol with Ethanol d

COMPONENTS: (1) Dysprosium chlor [10025-74-8]	ide; DyCl ₃ ;	1	ORIGINAL ME Kirmse, E	EASUREMENTS:	
(2) Alkoxy-ethanols			Tr. II Vs <u>1971</u> , 200	es. Konf. po T)-6.	eor. Rastvorov
VARIABLES:			PREPARED BY	<u> </u>	
T/K = 298				ski and M. Salo	mon
EXPERIMENTAL VALUES:					
			DyCl _a s	olubility ^a	
solvent			5	mol kg ⁻¹	nature of the solid phase
2-methoxyethanol;	с ₃ н ₈ 0 ₂ ;	[109-86-4]	3.9	0.151	$DyC1_3 \cdot nC_3H_80_2$ (n = 2-3)
2-ethoxyethanol;	c ₄ H ₁₀ 0 ₂ ;	[110-80-5]	9.4	0.386	DyC1 ₃ .2C ₄ H ₁₀ 0 ₂
a _{Molalities} calculate	d by the com	pilers.			
		AUXILIARY	INFORMATION	I	
METHOD/APPARATUS/PROCE				PURITY OF MATE	
Experimental details probably similar to p author which are comp	revious work	s of the	work by t	he author, th	based on previous e anhydrous salt was e method of Taylor
volume.	fred enrough		and Carte		
			ESTIMATED	ERROR:	
			Nothing s	pecified.	
			REFERENCES	:	
			1. Taylor J. Ino	, M.D.; Carter rg. Nucl. Chem	, C.P. . <u>1962</u> , 24, 387.

COMPONENTS .	OBICINAL MEACUDEMINING
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Dysprosium chloride; DyCl₃; [10025-74-8]</pre>	Dzhuraev, Kh. Sh.; Mirsaidov, U.; Kurbanbekov, A.; Rakhimova, A.
(2) Diethyl ether (ethyl ether); C4 ^H 10 ⁰ ; [60-29-7]	Dokl. Akad. Nauk Tadzh. SSR <u>1976</u> , 19, 32-4.
VARIABLES:	PREPARED BY:
T/K = 293	T. Mioduski
EXPERIMENTAL VALUES:	L
The solubility of DyCl ₃ in diethyl ether at	20°C was reported to be
3.2 ×	: 10 ⁻² mass %
The corresponding molality calculated by the	comptler te
1.19 x	$10^{-3} \text{ mol kg}^{-1}$
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method employed. Equilibrium was attained within 24 h and it was verified by	Anhydrous DyCl ₃ prepared by the ethanol solvate method (no details given).
constancy in the Dy concentration. The sat-	•
urated solution and the equilibrated solid phase were analyzed. Dy determined by com-	Ethyl ether was dried with Na and distilled from $LiAlH_4$.
plexometric titration using urotropine buf-	
fuer and methyl-thymol blue indicator. Chloride determined by titration with AgNO3	
solution. The solid phase corresponded to	
DyCl ₃ .Et ₂ 0 (the etherate was dried under vacuum at 40°C prior to analysis).	•
• • • • • • • • • • • •	
	ESTIMATED ERROR:
	Nothing specified.
	REFERENCES :
]

COMPON	ENTS:	ORIGINAL MEASUREMENTS:
(1)	Dysprosium chloride; DyCl ₃ ; [10025-74-8]	Kirmse, E.M.; Zwietasch, K.J.
(2)	1,2-Diethoxyethane; C ₆ H ₁₄ 0 ₂ ; [629-14-1]	Z. Chem. <u>1967</u> , 7, 281.
VARIAE	BLES:	PREPARED BY:
T/K =	- 298	T. Mioduski
	MENTAL VALUES: solubility of DyCl ₃ in 1,2-diethoxyeth	ane at 25°C was reported to be
	•	.25 mass %
The c	corresponding molality calculated by the orresponding molality calculated by the order of the or	he compiler is D093 mol kg ⁻¹
The c		en in terms of the Dy:Cl:ether ratio as :2.91:1.70

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. The anhydrous mixtures were equilibrated at 25°C for several days with frequent shaking.	Sources and purities of materials not given. The anhydrous chloride was obtained by the method of Taylor and Carter (1).
The solid phase was dried in a vacuum desiccator over P205. Dy was determined by complexometric titra- tion using Xylenol Orange indicator. Chloride was determined by the Volhard titration method.	The solvent was prepared by the Williamson synthesis: i.e. by reaction of C_2H_5I with the monoethylether of ethylene glycol.
	ESTIMATED ERROR:
	No estimates possible.
	REFERENCES: 1. Taylor, M.D.; Carter, C.P. J. Inorg. Nucl. Chem. <u>1962</u> , 24, 387.

COMPONENTS :		ORIGINAL MEASUREMENTS:
(1) Dysprosiu [10025-74	m chloride; DyCl ₃ ; -8]	Kirmse, E.M.; Zwietasch, K.J.; Tirschmann, J.; Oelsner, L.; Niedergeases, U. Z. Chem. <u>1968</u> , <i>8</i> , 472-3.
(2) Ethers		Kirmse, E.M. Tr. II Vses. Konf. po Teor. Rastvorov <u>1971</u> , 200-6.
VARIABLES:		PREPARED BY:
Room Temperatu	re: T/K around 298	T. Mioduski and M. Salomon
EXPERIMENTAL VAL	LUES:	

			DyCl ₃ solu	ubility ^{a,b}
solvent			mass %	mol kg ⁻¹
1-ethoxy-2-methoxyethane;	с ₅ н ₁₂ 0 ₂ ;	[5137-45-1]	0.6	0.022
1-methoxypentane;	c ₆ H ₁₄ 0;	[628-80-8]	0.08	0.003
1,4-dioxane;	с ₄ н ₈ 0 ₂ ;	[123-91-1]	0.4	0.015

^aMolalities calculated by the compilers.

 $^{\rm b}{\rm Nature}$ of solid phases not specified.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solute-solvent mixtures were isothermal-	The anhydrous salt was prepared by the
ly agitated at 25°C or at room temperature.	method of Taylor and Carter (1).
Authors state that the difference found for	
the solubility was within experimental	No other information given.
error limits.	
Dy was determined by complexometric titra-	
tion.	
No other details given.	
	ESTIMATED ERROR:
	Nothing specified
	Nothing specified.
	1
	REFERENCES:
	1. Taylor, M.D.; Carter, C.P.
	J. Inorg. Nucl. Chem. <u>1962</u> , 24, 387.

Dyspros	sium Chloride	295
COMPONENTS: (1) Dysprosium chloride; DyCl ₃ ; [10025-74-8] (2) Tetrahydrofuran; C ₄ H ₈ 0; [109-99-9]	ORIGINAL MEASUREMENTS: Rossmanith, K.; Auer-Welsbach, C. Monatsh. Chem. <u>1965</u> , 96, 602-5.	
VARIABLES:	PREPARED BY:	
Room Temperature: T/K about 293	T. Mioduski	
	n at 20°C (room temperature) was reported 5 g per 100 ml of solution 20240 mol dm ⁻³ , compiler)	

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: Isothermal method employed. The solution was equilibrated in an extractor with agitation for 60-80 hours at room tempera- ture. Dysprosium was determined by the oxalate method and by titration with EDTA using Xylenol Orange indicator. The solvent was determined by difference.	SOURCE AND PURITY OF MATERIALS: Sources and purities of initial materials not specified. DyCl ₃ was prepared by conversion of the oxide by high temperature reaction with an excess of NH ₄ Cl followed by heating the product in a stream of dry nitrogen, and then in vacuum to remove unreacted NH ₄ Cl. Tetrahydrofuran was distilled from LiAlH ₄ .
Anhydrous materials were handled in a dry box through which was passed a stream of nitrogen free of carbon dioxide. The solid phase is DyCl ₃ .3.45C ₄ H ₈ O.	ESTIMATED ERROR: Nothing specified.
	REFERENCES :

		Byspiosid				
COMPONENTS :			ORIGINAL MEAS			
(1) Dyspros [10025-	sium chloride; DyCl -74-8]	.3;	Korovin, S.S.; Galaktionova, O.V.; Lebedeva, E.N.; Voronskaya, G.N.			
<pre>(2) Tributy1phosphate; C₁₂H₂₇O₄P; [126-73-8]</pre>		0 ₄ p;	Zh. Neorg. Khim. <u>1975</u> , 20, 908-14; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1975</u> , 20, 508-11.			
VARIABLES:			PREPARED BY:			
T/K = 298			T. Miodusk:	i and M. Salomo	n	
EXPERIMENTAL	VALUES:					
	Co	mposition of sa	turated solu	tions		
mass %	mol/kg sln	g dm ⁻³	mol dm^{-3}	mol kg ⁻¹ (compiler)	density/g cm ⁻³	
39.2	1.45	534.4	1.98	2.40	1.36	
		The solid ph	ase is DyCl ₃			
				····		
		AUXILIARY	INFORMATION			
	RATUS/PROCEDURE:			URITY OF MATERI		
	olutions prepared i ic stirring. Equil				by chlorination of (1,2). Source and	
attained af	ter 25-30 d. The s	olution was	purity of m	naterials not g	iven. Dy was	
	and an aliquot for methanol and prec		analyzed gr Volhard's m	avimetrically,	and C1 by	
aq NH3. The	e pptd Dy(OH)3 was	washed repeated				
•	ed to the oxide for The solid phase was	-	Tributylpho	sphate (TBP) w d method." No	as purified "by additional	
details give	en) for phosphorous yCl ₃ was found.		details giv			
-	ons were performed ch a stream of argo	-	PORTVINS	1000.		
U	-	-	ESTIMATED ER			
establish th	ojective of this wo ne nature of comple and DyCl ₃ in solut	xation	NO ESTIMATE	es possible.		
			REFERENCES:			
			Bukhtiya	ov, B.G.; Drobo arov, V.V.; She ug. Khim. <u>1964</u> ,	vtsova, Z.N.	
				G.I.; Tolmach L. Khim. <u>1965</u> ,		

COMPONENTS :	And the second sec				
				EASUREMENTS	:
(1) Dysprosium chlo [10025-74-8]	ride; DyCl ₃ ;		Kirmse, E.		
(2) Amines			1r. 11 Vst 1971, 200	28. Konf. pi -6.	o Teor. Rastvorov
VARIABLES:			PREPARED B		
T/K = 298			T. Miodus	ki and M. Sa	alomon
EXPERIMENTAL VALUES:	<u> </u>	I			<u></u>
					a
					ility ^a
solvent					mol kg ⁻¹
2-propanamine;					1.207
2-propen-l-amine; ^b	• 1				
1-butanamine;	$n-C_{4}H_{11}N;$	[109-	-73-9]	21.2	1.001
2-butanamine;	sec-C4H11N;	[1395	52-84-6]	15.4	0.677
	AUXIL		INFORMATIO		
METHOD/APPARATUS/PROC Experimental details probably similar to author which are com volume. Nature of solid phas	EDURE: not given, but wer previous works of t piled throughout th	e he	SOURCE ANI Nothing s work by) PURITY OF specified, 1 the author, prepared by	MATERIALS: but based on previous the anhydrous salt was y the method of Taylor

COMPONENTS :	ORIGINAL MEASUREMENTS:	
 Dysprosium chloride; DyCl₃; [10025-74-8] 	Mikheev, N.B.; Kamenskaya, A.N.; Konovalova, N.A.; Zhilina, T.A.	
<pre>(2) Hexamethylphosphorotriamide; C₆H₁₈N₃OP; [680-31-9]</pre>	Zh. Neorg. Khim. <u>1977</u> , 22, 1761-6; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1977</u> , 22, 955-8.	
VARIABLES:	PREPARED BY:	
Room temperature: $T/K = 298 \pm 3$	T. Mioduski and M. Salomon	
EXPERIMENTAL VALUES:		
Starting with the solvate $DyCl_3.3((CH_3)_2N)_3PO$, the solubility at 25 ± 3°C ^a was given as		
0.109 mol dm^{-3}		
^a Table 3 in the English translation of the source paper states the temperature to be $23 \pm 3^{\circ}$ C. This is probably a typographical error as the text clearly states that all measurements were carried out at $25 \pm 3^{\circ}$ C.		
	INFORMATION	
METHOD/APPARATUS/PROCEDURE: Isothermal method. Salt and solvent were placed in a test-tube in a dry box, and the tube agitated at room temperature until equil- ibrium was reached. Aliquots were withdrawn periodically and analyzed for the metal content. Rare earth concentration was deter- mined by complexometric titration, and by the radiometric method using the isotope Tm-170 ($t_1 = 169$ d). Authors state that results for ² both methods agreed. Although not clear-	SOURCE AND PURITY OF MATERIALS: DyCl ₃ . $3C_6H_{18}N_3$ OP prepared by dissolving the hydrate in the solvent and heating to 140-145°C for 5 m. The solvate was pptd by addition of abs ether, washed 7 times with ether, and dried over P ₂ O ₅ in a stream of dry nitrogen. Yield was about 90%. The solvent was purified as described in (1).	
ly stated, it appears that equilibrium was reached in several weeks to several months.		
Solid phase samples washed three times with benzene or ether and dried on a steam bath in an argon atmosphere. The solid phase was analyzed and found to be $DyCl_3 \cdot 3C_6H_{18}N_3OP$.	ESTIMATED ERROR: Soly: precision \pm 0.002 mol dm ⁻³ at a 95% level of confidence (authors). Temp: precision \pm 3 K.	
The solvate was analyzed for metal content by complexometric titration, for chloride by the Volhard method, and the solvent was obtained by difference. IR spectra confirmed the absence of water. Structural studies of the solvate were also carried out by X-ray analysis.	REFERENCES: 1. Fomicheva, M.G.; Kessler, Yu.M.; Zabusova, S.E.; Alpatova, N.M. Elektrokhimiya <u>1975</u> , 11, 163.	

	······································		
COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Dysprosium chloride; DyCl₃; [10025-74-8]</pre>	Lyubimov. E.I.; Batyaev, I.M. Zh. Prikl. Khim. <u>1972</u> , 45, 1176-8.		
<pre>(2) Tetrachlorostannate; SnCl₄; [7646-78-8]</pre>		, ,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
(3) Phosphorus oxychloride; POCl ₃ ; [10025-87-3]			
VARIABLES: T/K = 293	PREPARED BY:		
Concentration of SnCl ₄	T. Mioduski		
EXPERIMENTAL VALUES:			
	.4 concentration	Dy203 solubility ^{a,b}	
(by volume)	$mo1 dm^{-3}$	moles Dy dm ⁻³	
1:100	0.085	0.022	
1:50	0.17	0.023 (0.018)	
1:25	0.33	0.034	
1:15	0.59	0.023	
1:10	0.78	0.032	
^a Solutions preheated to 220°C. Value in par ^b This is also the solubility of DyCl ₃ in the quantitatively converted to the chloride ac $Dy_2O_3 + 6POCl_3 = 2DyCl_3$ Authors state that the solubility of DyCl ₃ f	SnCl4-POCl ₃ mixture bec cording to ₃ + 3P ₂ O ₃ Cl ₄	ause the oxide is	
2DyCl ₃ + 3SnCl ₄ =	Dy ₂ (SnCl6)3		
AUXILIARY INFORMATION			
 METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl₃ + SnCl₄ solutions were prepared by volume in a dry box. The SnCl₄ content was verified by chemical analysis for Sn. This solution and Dy₂O₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20° C for 2-200 hours. Without preheating, equilibrium was established after 200 hours. Preheating to 220°C lowered the equilibra- tion time at 20°C to 2 hours. Dy was determined by colorimetric analysis o by the oxalate method. The reported solu- bilities are mean values based on 3-5 parallel determinations. 	with P ₂ O ₅ and distille	rt" was ignited at POCl ₃ were dehydrated d under vacuum. e "coefficient of less than 7%.	