COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Erbium chloride; ErCl₃; [10138-41-7]</pre>	Helv. Chim. Acta <u>1972</u> , 55, 44-52.		
(2) Methanol; CH ₄ O; [67-56-1]	Pitteloud, M.N. These. Faculte des Sciences de l'Universit de Lausanne. <u>1971</u> .		
VARIABLES:	PREPARED BY:		
T/K = 298.2	T. Mioduski and M. Salomon		
EXPERIMENTAL VALUES:			
	mean solubilities/mol kg ⁻¹		
t/°C	a b		
25	4.53 4.63		
^a Initial salt is the adduct ErCl ₃ .4CH ₃ OH. E found to be ErCl ₃ .4CH ₃ OH.	quilibrated solid phase analyzed and		
^b Solutions equilibrated with anhydrous ErCl ₃ but assumed by the compilers to be ErCl ₃ .4C	. Equilibrated solid phases not analyzed, $\rm H_{3}OH$.		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
equilibrated for at least 4 days. Prolonged	HCl to produce the hexahydrate. The salt		
operations were performed in a dry box.	was dehydrated as described in (3). The		
(NHA) H(EDTA) using a small amount of uro-	the hydrate in a small excess of o-methyl-		
tropine buffer and Xylenol Orange indicator.	formate followed by distillation and		
Chloride was determined by potentiometric	crystallization from methanol.		
of the adduct ErCl3.4CH30H confirmed by ¹ H	Methanol was purified and dried by the		
NMR and X-ray diffraction.	voget methodi		
The reported solubilities are mean values of			
2-4 determinations.	ESTIMATED ERROR:		
COMMENTS AND/OR ADDITIONAL DATA:	Soly: precision \pm 0.5% as in (1) (compilers).		
Reference (3) was incorrectly cited in the	as in (1) (compilers).		
7, 224 (this is the reference to a paper by	REFERENCES:		
J.H. Freeman and M.L. Smith which described	1. Brunisholz, F.; Quinche, J.P.; Kalo, A.M. Hafu Chim Acta 1966 47 16		
ment with thionyl chloride). Reference (3)	2. Flatt, R. Chimia 1952, 6, 62.		
was corrected by the compilers.	3. Taylor, M.D.; Carter, C.P. J. Inorg.		
	Nucc. Chem. <u>1962</u> , 24, 387 (see COMMENTS at left).		

COMPONENTS: (1) Erbium chloride; ErCl ₃ ; [10138-41-7]	EVALUATOR: Tomasz Mioduski Institute of Nuclear Research Warsaw, Poland
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	and Mark Salomon USA ET & DL Ft. Monmouth, NJ, USA

CRITICAL EVALUATION:

The solubility of erbium chloride in ethanol at 298.2 K has been reported in two publications (1,2), and the results are summarized in the following table.

initial solid	equilibrated solid	solubility/mol kg ^{-l}	(ref)
ErC13	ErCl ₃ ·C ₂ H ₅ OH	3.35	(1)
ErC13	not analyzed	3.48	(2)
ErC13.4C2H50H	ErC13.4.1C2H50H	3.41	(2)

The publication by Kirmse (1) does not contain experimental details or sources and purities of materials, but they probably were similar to those reported by Merbach et al. (2). For a full description of Kirmse's experimental methods, precision and sources of materials, see the INTRODUCTION to this volume. Kirmse prepared the anhydrous salt by the method of Taylor and Carter (3), and Merbach et al. propably used the method of Freeman and Smith (4). The experimental methods used by Merbach et al. were described in detail: high purity Er_2O_3 (>99.9 %) was used, the stoichiometry of the salts verified by both cation and anion chemical analysis and by X-ray diffraction, the absence of the oxychloride and the purity of the solvent were confirmed. Given these details the compilers have estimated an experimental precision of ± 0.5 % for the final results of Merbach et al. While it is difficult to determine the precision of Kirmse's data, the accuracy of these data are probably 2-3 % at best.

Merbach et al. (2) consider the difference in solubilities of the anhydrous chloride and the tetrasolvate to be due to the formation of small quantities of chloroalcoholates (dissolution of the anhydrous salt is highly exothermal). However Kirmse reports the solid phase to be the monosolvate when starting with the anhydrous salt. If in this case it is true that the "equilibrated" solid phase is the monosolvate, then we would have to conclude that either the monosolvate or the tetrasolvate is metastable. It would appear to the evaluators that the tetrasolvate is the stable solid phase which means that the solubility should be higher in the metastable monosolvate system. The data of Merbach et al. suggest this, but the data of Kirmse is contradictory. It is interesting to note that the average solubility for the "monosolvate" systems is 3.42 mol kg^{-1} which is essentially identical (within experimental error) to the value of 3.41 mol kg^{-1} reported by Merbach et al. for the tetrasolvate system.

In summary it appears that at 298.2 K the stable solid phase is the tetrasolvate, and that we can designate the *tentative* solubility in this system as 3.41 mol kg^{-1} . When solutions are equilibrated with anhydrous ErCl₃, it is not clear whether the resulting saturated solution contains a metastable monosolvate solid phase, or whether the solid phase is actually the stable tetrasolvate.

REFERENCES

1. Kirmse, E. M. Tr. II Vses Konf. po Teor. Rastvorov 1971, 200.

- Merbach, A.; Pitteloud, M.N.; Jaccard, P. Helv. Chum. Acta <u>1972</u>, 55, 44: Pitteloud, M.N. These. Faculté des Sciences de l'Université de Lausanne. 1971.
- 3. Taylor, M.D.; Carter, C.P. J. Inorg. Nucl. Chem. 1962, 24, 387.
- 4. Freeman, J.H.; Smith, M.L. J. Inorg. Nucl. Chem. 1958, 7, 224.

COMPONENTS:	FrClat		ORIGIN	AL MEASU	REMENTS:	
[10138-41-7]	51013,		Kirmse, E.M.			
(2) Alcohols			1971	, 200-6.	Kong. po 10	201. Kasivorov
		ĺ				
VARIABLES:			PREPAR	ED BY:		
T/K = 298			т. м	lioduski	and M. Salo	mon
EXPERIMENTAL VALUES:						
solvent				mass %	mol kg ⁻¹	nature of the solid phase
ethanol;	с _{2^н6} 0;	[64-17-5]]	47.8	3.347	$ErCl_3 \cdot C_2H_60$
2-methoxyethanol;	C ₃ H ₈ O ₂ ;	[109-86-4	4]	3.5	0.133	$ErC1_3.nC_3H_8O_2$ (n = 2-3)
2-ethoxyethanol;	c ₄ H ₁₀ 0 ₂ ;	[110-80-	5]	7.6	0.301	ErC1 ₃ .2C ₄ H ₁₀ 0 ₂
2						
Molalities calculate	d by the comp	ilers.				
		AUXILIARY	INFORM	ATION		
METHOD/APPARATUS/PROCE	OURE :		SOURCE	AND PUR	ITY OF MATE	RIALS:
Experimental details	not given, bu	t were	Noth	ing speci	lfied, but h	based on previous
author which are comp	iled througho	ut this	prob	ably prep	pared by the	e method of
volume.			Tayı	or and Ca	arter (1).	
			1			
			ESTIM	ATED ERRC	R:	
			Noth	ing speci	lfied.	
			DEFED	ENCRE		
			1. T	aylor, M.	D.; Carter,	C.P.
			J	. Inorg.	Nucl. Chem.	<u>1962</u> , 24, 387.
1			1			

COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Erbium chloride; ErCl ₃ ; [10138-41-7]	Merbach, A.; Pitteloud, M.N.; Jaccard, P. Helv. Chim. Acta <u>1972</u> , 55, 44-52.			
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	Pitteloud, M.N. <i>These</i> . Faculte des Sciences de l'université de Lausanne. <u>1971</u> .			
VARIABLES:	PREPARED BY:			
T/K = 298.2	T. Mioduski and M. Salomon			
EXPERIMENTAL VALUES:				
	mean solubilities/mol kg ⁻¹			
t/°C	a b			
25	3.41 3.48			
	5.40			
^a Initial salt is the adduct $ErCl_3.4C_2H_5OH.$ E found to be $ErCl_3.4.1C_2H_5OH.$	quilibrated solid phase analyzed and			
bSolutions equilibrated with anhydrous ErCl ₃ . but assumed by the compilers to be ErCl ₂ .4Col	Equilibrated solid phases not analyzed,			
AUXILIARY				
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
Isothermal method as in (1,2). Mixtures were equilibrated for at least 4 days. Prolonged operations were performed in a dry box. Erbium determined by titration with (NH4) ₃ H(EDTA) using a small amount of urotro- pine buffer and Xylenol Orange indicator. Chloride was determined by potentiometric titration with AgNO3 solution. Composition of the adduct ErCl ₃ .4C ₂ H ₅ O confirmed by ¹ H NMR and X-ray diffraction The reported solubilities are mean values of 2-4 determinations.	 Er2U3 of at least 99.9% purity dissolved in HCl to produce the hexahydrate. The salt was dehydrated as in (3). The adduct ErCl3.4C2H60 prepared by dissolving the hydrate in a small excess of o-ethylformate followed by distillation and crystalliza- tion from ethanol. Ethanol (Fluka) was used as received. Purity and absence of water was confirmed by NMR method. 			
	ESTIMATED ERROR: Soly: precision $\pm 0.5\%$ as in (1) (compilers).			
Reference (3) was incorrectly cited in the source paper as: J. Inorg. Nucl. Chem. <u>1958</u> , 7, 224 (this is the reference to a paper by J.H. Freeman and M.L. Smith which describes	Temp: precision probably at least ± 0.05K as in (1) (compilers).			
the preparation of anhydrous salts by treatment with thionyl chloride). Reference (3) was corrected by the compilers.	 Brunisholz, F.; Quinche, J.P.; Kalo, A.M. Helv. Chim. Acta <u>1964</u>, 47, 14. Flatt, R. Chimia <u>1952</u>, 6, 62. Taylor, M.D.; Carter, C.P. J. Inorg. Nucl Chem. <u>1962</u>, 24, 387 (see COMMENTS at left). 			

I

COMPONENTS :		ORIGINAL M	EASUREMENTS :			
(1) Erbium chloride; ErCl ₃ ; [10138-41-7]		Sakharova	Sakharova, Yu.G; Ezhova, T.A.			
(2) Ethanol; C ₂ H ₆ 0; [64-17-5]		Zh. Neorg I. Inora	3. Khim. <u>1976</u> , Chem. (Engl.	21, 551-4; Transl.) 19	Russ. 76, 21.	
(3) Water; H ₂ 0; [7732-18-5]		296-8.				
VARIABLES:	·	PREPARED B	Y:			
Temperature		T. Miodus	ski and M. Sal	omon		
EXPERIMENTAL VALUES:			-			
solubility of En	rC1 ₃ .6H ₂ 0 in 9	6.8 % с ₂ н ₅ он	3			
sample 1 sa	ample 2 s	ample 3	sample 4	mean solubi	lities	
t/°C g/100 g ^b g	/100 g g	g/100 g	g/100 g	g/100 g	mol kg ⁻¹⁰	
20 37.86 3	7.57 3	18.19	37.99	37.90	1.599	
30 37.38 3	7.68 3	37.61	37.47	37.53	1.574	
40 37.67 3	7.50 3	37.37	37.50	37.51	1.573	
50 38.58 3	8.84 3	38.62	38.78	38.70	1.654	
60 40.29 4	0.49 4	40.02	40.30	40.27	1.766	
^b Solubilities reported as grams of hexahydrate in 100 g of solvent. ^C Molalities calculated by the compilers.						
	AUXILIAR	Y INFORMATIO	N			
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Equi reached after 3-4 h. Identic obtained by approaching equil above and below. Two of the the table obtained after 3 ho libration, and the remaining obtained after 4 h of equilib The metal content in each ali analysis was determined by co titration with Trilon B.	source ANE ErCl3.6H2 oxide in crystn. cator ove crystals with Tril method. 165.0°C. boiling of anhydr Cu concn det pycnometr	Source AND FURIT OF MATERIALS: ErCl ₃ . $6H_2O$ prepd by dissolving c.p. grade oxide in dil (1:3) HCl followed by evapn and crystn. The crystals were dried in a desic- cator over CaCl ₂ , P_2O_5 and NaOH. The crystals analyzed for the metal by titrn with Trilon B, and for Cl by the Volhard method. The hexahydrate melted at 163.8 - 165.0°C. 96.8% ethanol prepd by prolonged boiling of c.p. grade 93.5% ethanol with anhydr CuSO ₄ followed by distn. Ethanol concn detd refractometrically and pycnometrically.				
Analyses of the solids withdr 40°C and 60°C showed the solid the hexahydrate: i.e. ethanol in any of the solid phases.	d ESTIMATED Soly: res ± 0 Temp: not	ESTIMATED ERROR: Soly: results apparently precise to within <u>+</u> 0.9 % (compilers).				
		REFERENCES	S:			

COMPONENTS: (1) Erbium chloride; ErCl ₃ ; [10138-41-7] (2) 2-Propanol; C ₃ H ₈ 0; [67-63-0] VARIABLES: T/K = 298.2 EXPERIMENTAL VALUES:	ORIGINAL MEASUREMENTS: Merbach, A.; Pitteloud, M.N.; Jaccard, P. Helv. Chim. Acta <u>1972</u> , 55, 44-52. Pitteloud, M.N. These. Faculte des Sciences de l'Universite de Lausanne. <u>1971</u> . PREPARED BY: T. Mioduski and M. Salomon mean solubilities/mol kg ⁻¹
t/°C	a b
25	0.84 0.83
 ^aInitial salt is the adduct ErCl₃.3C₃H₇OH. found to be ErCl₃.3.7C₃H₈O. ^bSolutions equilibrated with anhydrous ErCl₃ but assumed by the compilers to be ErCl₃.3C₃ 	Equilibrated solid phase analyzed and . Equilibrated solid phases not analyzed, 3 ^H 7 ^{OH} .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Isothermal method as in (1,2). Mixtures were equilibrated for at least 4 days. Pro- longed operations were performed in a dry box. Erbium determined by titration with (NH4) ₃ H(EDTA) using a small amount of uro- tropine buffer and Xylenol Orange indicator. Chloride was determined by potentiometric titration with AgNO3 solution. Composition of the adduct ErCl ₃ .3C ₃ H ₈ O confirmed by ¹ H NMR and X-ray diffraction. The reported solubilities are mean values of 2-4 determinations. COMMENTS AND/OR ADDITIONAL DATA: Reference (3) was incorrectly cited in the source paper as: J. Inorg. Nucl. Chem. <u>1958</u> , 7, 224 (this is the reference to a paper by J.H. Freeman and M.L. Smith which describes the preparation of anhydrous salts by treat- ment with thionyl chloride). Reference (3) was corrected by the compilers.	<pre>Source AND PURITY OF MATERIALS: Er₂O₃ of at least 99.9% purity dissolved in HCl to produce the hexahydrate. The salt was dehydrated as in (3). The adduct ErCl₃.3C₃H₈O prepared by dissolving the hydrate in a small excess of o-methyl- formate followed by distillation and trans-solvation of the methanol complex with 2-propanol. Iso-propanol (fluka) was used as received. Purity and absence of water was confirmed by NMR. ESTIMATED ERROR: Soly: precision ± 0.5% as in (1) (compilers). Temp: precision probably at least ± 0.05K as in (1) (compilers).</pre> REFERENCES: 1. Brunisholz, F.; Quinche, J.P.; Kalo, A.M. Helv. Chim. Acta 1964, 47 14. 2. Flatt, R. Chimia 1952, 6, 62. 3. Taylor, M.D.; Carter, C.P. J. Inorg. Nucl. Chem.1962, 24, 387 (see COMMENTS at left.

		1
COMPONENTS: (1) Erbium chloride; ErCl ₃ ; [10138-41-7]	ORIGINAL MEASUREMENTS: Kirmse, E.M.; Zwietasch, K.J.	
(2) 1,2-Diethoxyethane; $C_6H_{14}O_2$; [629-14-1]	Z. Chem. <u>1967</u> , 7, 281.	
[029-14-1]		
VARIABLES :	PREPARED BY:	{
T/K = 298	T. Mioduski	
EXPERIMENTAL VALUES:	I	
The solubility of ErCl3 in 1,2-diethoxyethan	e at 25°C was reported to be	
0.67	mass %	
The corresponding molality calculated by the	compiler is	
0.024	7 mol kg ⁻¹	
The composition of the solid phase was given	in terms of the Er:Cl:ether ratio as	1.54
1:2.9	3:1.86	2
	```	Ŷ.
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: Isothermal method used. The anhydrous mixtures were equilibrated at 25°C for several days with frequent shaking.	SOURCE AND PURITY OF MATERIALS: Sources and purities of materials not given. The anhydrous chloride was obtained by the method of Taylor and Carter (1).	
The solid phase was dried in a vacuum desiccator over $P_2O_5$ .	The solvent was prepared by the Williamson synthesis: i.e. by reaction of $C_{2H_5}I$ with	
Er was determined by complexometric titra- tion using Xylenol Orange indicator. Chloride was determined by the Volhard titration method.	the monoethylether of ethylene glycol.	
	ESTIMATED ERROR:	1
	No estimates possible.	
		1
	REFERENCES: 1. Taylor, M.D.; Carter, C.P. J. Inorg. Nucl. Chem. <u>1962</u> , 24, 387.	

COMPONENTS :	EVALUATOR:			
(1) Erbium chloride; ErCl ₃ ; [10138-41-7]	Tomasz Mioduski			
(2) 1,1'-Oxybis-propane (di-n-propyl ether); C ₆ H ₁₄ O; [111-43-3]	Institute of Nuclear Research Warsaw, Poland			
CRITICAL EVALUATION:				
The solubility of erbium chloride in di-n-pro- three publications by Kirmse et al. $(1-3)$ . (0.004 mol kg ⁻¹ ), and in (2,3) the solubility Reference (1) specifies the solid phase as En	ppyl ether at 298.2 K has been reported in In (1) the solubility was given as 0.1 mass % was given as 0.2 mass % (0.007 mol kg ⁻¹ ). $cc1_3 \cdot 0.47c_6H_{14}0$ .			
Since we believe all the solubility data in ( results must be rejected. This also means the phase cannot be assumed to be correct.	(1) to contain a large systematic error, these hat the composition of the equilibrated solid			
The solubility of 0.007 mol $kg^{-1}$ at 298.2 K m tentative solubility, and the precision of the	reported in (2,3) is designated as a his value is probably 10 % at best.			
REFERI	ENCES			
<ol> <li>Kirmse, E.M.; Zwietasch, K.J.; Tirschmann 1968, 1, 128.</li> </ol>	n, J. Wiss. Hefte, Paed. Inst. Koethen,			
2 Kirmse F.M. Wietasch K.I.; Tirschmann	I • Oelsper I. • Niedergessess II			
Z. Chem. <u>1968</u> , <i>§</i> , 472. 3. Kirmse, E.M. Tr. II Vses. Konf. po Teor.	Rastvorov <u>1971</u> , 200.			

COMPONENTS :	EVALUATOR:
<ul> <li>(1) Erbium chloride; ErCl₃; [10138-41-7]</li> <li>(2) 1-Ethoxybutane (ethyl n-butyl ether); C₆H₁₄0; [628-81-9]</li> </ul>	Tomasz Mioduski Institute of Nuclear Research Warsaw, Poland

# CRITICAL EVALUATION:

The solubility of erbium chloride in 1-ethoxybutane at 298.2 K has been reported in three publications by Kirmse et al. (1-3). In (1) the solubility was given as 0.3 mass % (0.011 mol kg⁻¹), and in (2,3) the solubility was given as 0.5 mass % (0.018 mol kg⁻¹). Reference (1) specifies the solid phase as ErCl₃·0.49C₆H₁₄O.

Since we believe all the solubility data in (1) to contain a large systematic error, these results must be rejected. This also means that the composition of the equilibrated solid phase cannot be assumed to be correct.

The solubility of 0.018 mol kg⁻¹ at 298.2 K reported in (2,3) is designated as a *tentative* solubility, and the precision of this value is probably 10 % at best.

## REFERENCES

- Kirmse, E.M.; Zwietasch, K.J.; Tirschmann, J. Wiss. Hefte, Paed. Inst. Koethen, <u>1968</u>, 1, 128.
- Kirmse, E.M.; Zwietasch, K.J.; Tirschmann, J.; Oelsner, L.; Niedergesaess, U. Z. Chem. <u>1968</u>, 8, 472.
- 3. Kirmse, E.M. Tr. II Vses. Konf. po Teor. Rastvorov 1971, 200.

**Erbium Chloride** 

COMPONENTS :	EVALUATOR:
(1) Erbium chloride; ErCl ₃ ; [10138-41-7]	Tomasz Mioduski
<pre>(2) 1-Methoxypentane (methyl n-amyl ether); C₆H₁₄0; [628-80-8]</pre>	Institute of Nuclear Research Warsaw, Poland

#### CRITICAL EVALUATION:

The solubility of erbium chloride in 1-methoxypentane at 298.2 K has been reported in three publications by Kirmse et al. (1-3). In (1) the solubility was given as 30.8 mass % (1.63 mol kg⁻¹), and in (2,3) the solubility was given as 33.5 mass % (1.84 mol kg⁻¹). Reference (1) reports the solid phase to be  $\text{ErCl}_3 \cdot 0.49C_6H_{14}O$ .

Since descriptions of experimental techniques and purities of materials were not given, it is not possible to determine the source of the differences in solubility values. However we can probably conclude that the data in (1) should be rejected.

The solubility data reported in (1) are in all cases significantly different than those subsequently reported by Kirmse (e.g. see the critical evaluations for  $\text{ErCl}_3$  in 1-ethoxy-butane and in di-n-propyl ether, and for  $\text{YCl}_3$  in 1-methoxypentane). It is interesting to also note that the solubility data reported in (3) are generally in agreement with those data reported by Merbach et al. (4) (e.g. see the critical evaluation for the  $\text{ErCl}_3 - \text{C}_2\text{H}_5\text{OH}$  system where the difference between Kirmse's result and Merbach's result is around 2%). On this basis the data in (1) are rejected which also means that the composition of the equilibrated solid phase cannot be assumed to be correct.

The solubility result of 1.84 mol kg⁻¹ at 298.2 K reported in (2,3) is designated as a *tentative* value, and the precision of this value is probably around 2 %.

#### REFERENCES

- Kirmse, E.M.; Zwietasch, K.J.; Tirschmann, J. Wiss. Hefte, Paed. Inst. Koethen, 1968, 1, 128.
- Kirmse, E.M.; Zwietasch, K.J.; Tirschmann, J.; Oelsner, L.; Niedergesaess, U.
   *Chem.* 1968, *8*, 472.
- 3. Kirmse, E.M. Tr. II Vses. Konf. po Teor. Rastvorov 1971, 200.
- 4. Merbach, A.; Pitteloud, M.N.; Jaccard, P. Helv. Chim. Acta 1972, 55, 44.

				·····	
COMPONENTS: ORIGINAL MEASUREMENTS:			V I. Timeshmann		
[10138-41-7]		J.	Kirmse, E.M.; Zwietasch, K.J.; Tirschmann, J.		
(2) Ethora		With Holto	Pand Inst	Kaathan	
(2) Ethers		<u>1968</u> , 1, 12	28-30.	Koeanen	
VARIABLES:		PREPARED BY:			
T/K = 298		T. Mioduski	and M. Salon	ion	
EXPERIMENTAL VALUES:					
			solubili	ty ^a	
aplyont			<i>1</i>		
Solvent			mass %	mor kg	
di-n-propyl ether;	C ₆ H ₁₄ 0;	[111-43-3]	0.1 ^b	0.004	
1-ethoxybutane;	с _{6^н14} 0;	[628-81-9]	0.3 ^c	0.011	
1-methoxypentane:	Санто;	[628-80-8]	30.8d	1,627	
	-0 14-7				
a	1 1				
Molalities calculate	a by the compilers.				
^b Solid phase is ErCl ₃	.0.47C ₆ H ₁₄ 0.				
^C Solid phase is ErCl ₃	.0.37c ₆ H ₁₄ 0.				
da					
Solid phase is ErCl3	$.0.49C_{6}H_{14}O.$				
		TNEOPMATION			
METHOD/APPARATUS/PROCE	DURE: d isothermally at 25°	SOURCE AND P	URITY OF MATE	RIALS: materials not	
until equilibrium was	reached. Er was	specified.	The anhydrou	s rare earth	
determined by complex Xylenol Orange indica	ometric titration using tor.	ng chloride wa Taylor and	s prepared by Carter (1).	the method of	
No other information	available.				
		ESTIMATED EP			
		Nothing spa	cified		
		REFERENCES:		<u> </u>	
		1. Taylor, J. Inono	m.D.; Carter, . Nucl. Chem.	0.P. 1962, 24. 387.	
		ł			

•

p		•			
COMPONENTS:		ORIGINAL MEASUREMENTS:			
(1) Erbium chloride; ErCl ₃ ; [10138-41-7]		Kirmse, E.M.; Zwietasch, K.J.; Tirschmann, J.; Oelsner, L.: Niedergesaess, U.			
		Z. Chem. <u>19</u>	<u>968</u> , 8, 472-3	•	
(2) Etners		Kirmse, E.M	M. Kond no T	act Bartuckou	
		17. 11 Vses. Kong. po Teor. Rastvorov. <u>1971</u> , 200-6.			
VARIABLES:	1 200	PREPARED BY:			
Room lemperature: 1/K around	1 298	T. Mioduski and M. Salomon			
EXPERIMENTAL VALUES:					
			P	a,b	
			ErCl ₃ solubility"		
solvent			mass %	mol kg -	
1-ethoxy-2-methoxyethane;	с ₅ н ₁₂ 0 ₂ ;	[5137-45-1]	0.9	0.033	
di-n-propyl ether;	C ₆ H ₁₄ O ₂ ;	[111-43-3]	0.2	0.007	
l-ethoxybutane;	С ₆ Н ₁₄ 0;	[628-81-9]	0.5	0.018	
1-methoxypentane;	C ₆ H ₁ ,0;	[628-80-8]	33.5	1.841	
1 4-dievener	C+H+0	[122-01-1]	0.7	0.026	
1,4-d10xalle;	C4H8C2;	[123-91-1]	0.7	0.020	
		THEODYATION	<u></u>		
	AUXILIARI	INFORMATION			
METHOD/APPARATUS/PROCEDURE:	ere isother-	SOURCE AND P	SOURCE AND PURITY OF MATERIALS:		
mally agitated at 25°C or at	room tempera-	method of Taylor and Carter (1).			
ture. Authors state that the found for the solubility was	e difference within experi-	No other information given.			
mental error limits.	-				
Er determined by complexometr	ic titration.				
No other details given.					
		ESTIMATED ER	ROR:		
		Nothing spec	cified.		
		REFERENCES :			
		1. Taylor, M.D.; Carter, C.P.			
		J. Inong	j. nuce. enem.	<u>1902</u> , 17, 307.	

COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) Erbium chloride; ErCl ₃ ;	Rossmanith, K.; Auer-Welsbach, C.		
(2) Tetrahydrofuran; $C_4H_80$ ;	Monatsh. Chem. <u>1965</u> , 96, 602-5.		
[109-33-3]			
VARIABLES:	PREPARED BY:		
Room Temperature: T/K about 293	T. Mioduski		
•			
EXPERIMENTAL VALUES:			
The solubility of ErCl ₃ in tetrahydrofuran a to be	at 20°C (room temperature) was reported		
0.786 g per	100 ml of solution		
(0.0287 mol	1 dm ⁻³ , compiler).		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Isothermal method employed. The solution	Sources and purities of initial materials		
agitation for 60 80 hours at room tempera-	conversion of the oxide by high temperature		
ture.	reaction with an excess of NH4Cl followed		
Erbium was determined by the oxalate	by heating the product in a stream of dry		
Xylenol Orange indicator. The solvent was	unreacted NH ₄ C1.		
determined by difference.	Totachudachuran was distilled from IiAlW.		
Anhydrous materials were handled in a dry	letranydroruran was distilled from LiAing.		
box through which was passed a stream of			
nitrogen free of carbon dloxide.	ESTIMATED ERROR.		
The solid phase is ErCl ₃ .3.47C ₄ H ₈ O.			
	Nothing specified.		
	REFERENCES :		

COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Erbium chloride; ErCl ₃ ; [10138-41-7]	Korovin, S.S.; Galaktionova, O.V.; Lebedeva, E.N.; Voronskaya, G.N.			
(2) Tributylphosphate; C ₁₂ H ₂₇ O ₄ P; [126-73-8]	Zh. Neorg. Khim. <u>1975</u> , 20, 908-14; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1975</u> , 20, 508-11.			
VARIABLES:	PREPARED BY:			
T/K = 298	T. Mioduski and M. Salomon			
EXPERIMENTAL VALUES:	l			
Composition of saturated solutions ^{a,b}				
mass % mol/kg sln ^C g dm ^{-3c}	moldm ^{-3c} molkg ⁻¹ density/g cm ⁻³			
41.3 1.43 530.0	1.94 2.57 1.36			
^a Solid phase is ErCl ₃ .				
^b Molality calculated by the compilers from	the experimental solubility of 41.3 mass %.			
^C It is <u>implied</u> that these data also correspond to the saturated solution. However the molality calculated from these data is 2.35 mol kg ⁻¹ . The compilers conclude that these data probably do not correspond to saturated solutions.				
AUXILIARY	INFORMATION			
METUOD ADDADATUS ADDOCEDUDE .	SOURCE AND DUDITY OF MATERIALS.			
Saturated solutions prepared isothermally with magnetic stirring. Equilibrium was attained after 25-30 d. The solution was centrifuged and an aliquot for analysis take and added to methanol and precipitated with	Anhydrous ErCl ₃ prepared by chlorination of the oxide with CCl ₄ vapor (1,2). Source and purity of materials not given. Er was analyzed gravimetrically, and Cl by Volhard's method.			
aq NH3. The pptd Er(OH)3 was washed re- peatedly and heated to the oxide for gravi- metric analysis. The solid phase was analys ed (no details given) for phosphorous and only the anhydrous ErCl3 was found.	Tributylphosphate (TBP) was purified "by the standard method." No additional details given.			
All operations were performed in a dry box through which a stream of argon was passed.				
The major objective of this work was to establish the nature of complexation be- tween TBP and ErCl3 in solution.	No estimate possible.			
	REFERENCES: 1. Korshunov, B.G.; Drobot, D.V.; Bukhtiyarov, V.V.; Shevtsova, Z.N. Zh. Neorg. Khim. <u>1964</u> , 9, 1427.			
	2. Novikov, G.I.; Tolmacheva, V.D. Zh. Prikl. Khim. <u>1965</u> , 38, 1160.			

COMPONENTS:		ORIGINAL MEAST	IREMENTS :		
(1) Erbium chloride; ErCl ₃ ;		Kirmse, E.M.	Kirmse, E.M.		
(10130-41-7)		Tr. II Vses. 1971, 200-6.	Tr. II Vses. Konf. po Teor. Rastvorov 1971. 200-6.		
(-,					
VARIABLES:		PREPARED BY:			
T/K = 298		T. Mioduski a	and M. Salomo	on	
EXPERIMENTAL VALUES:	<u> </u>				
			ErCl ₃ solut	oility ^a	
solvent			mass %	mol kg ¹	
diethylamine;	(C ₂ H ₅ ) ₂ NH; [	[109-89-7]	0.1	0.004	
2-propanamine;	iso-C ₃ H ₉ N; [	[75-31-0]	26.9	1.34 ₅	
2-propen-1-amine; ^b	с _{3^н7^N; [}	[107-11-9]	29.9	1.559	
l-butanamine;	n-C ₄ H ₁₁ N; [	[109-73-9]	27.9	1.414	
2-butanamine;	sec-C ₄ H ₁₁ N; [	[13952-84-6]	18.6	0.835	
di-2-butylamine;	(sec-C ₄ H ₉ ) ₂ N; [	[626-23-3]	1.0	0.037	
^b The source paper specifies the solvent as C _{3H5} NH ₂ . Upon request, the author kindly identified the solvent as allylamine.					
	AUXILIAR	INFORMATION			
METHOD/APPARATUS/PROCED Experimental details n probably similar to pr author which are compi volume. Nature of the solid ph	SOURCE AND PURITY OF MATERIALS: Nothing specified, but based on previous work by the author, the anhydrous salt was probably prepared by the method of Taylor and Carter (1). ESTIMATED ERROR: Nothing specified.				
		REFERENCES: 1. Taylor, M. J. Inorg.	D.; Carter, Nucl. Chem.	C.P. <u>1962</u> , 24, 387.	

341

342 Erbium	Chloride
<pre>COMPONENTS: (1) Erbium chloride; ErCl₃; [10138-41-7] (2) Hexamethylphosphorotriamide;     C₆H₁₈N₃OP; [680-31-9]</pre>	ORIGINAL MEASUREMENTS: Mikheev, N.B.; Kamenskaya, A.N.; Konovalova, N.A.; Zhilina, T.A. Zh. Neorg. Khim. <u>1977</u> , 22, 1961-6; Russ. J. Inrog. Chem. (Engl. Transl.) <u>1977</u> , 22, 955-8.
VARIABLES:	PREPARED BY:
Room temperature: T/K = 298 ± 3	T. Mioduski and M. Salomon
EXPERIMENTAL VALUES:	· · · · · · · · · · · · · · · · · · ·
Starting with the solvate $ErCl_3.3C((CH_3)_2N)_3P$	'O, the solubility at 25 $\pm$ 3°C ^a was given as
0.098	mol dm ⁻³
^a Table 3 in the English translation of the so 23 ± 3°C. This is probably a typographical measurements were carried out at 25 ± 3°C.	urce paper states the temperature to be error as the text clearly states that all
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Isothermal method. Salt and solvent were placed in a test-tube in a dry box, and the tube agitated at room temperature until equil	SOURCE AND PURITY OF MATERIALS: ErCl ₃ . 3C ₆ H ₁₈ N ₃ OP prepared by dissolving the hydrate in the solvent and heating to - 140-145°C for 5 m. The solvate was pptd

with ether, and dried over  $P_2O_5$  in a stream of dry nitrogen. Yield was about 90%.

by addition of abs ether, washed 7 times

The solvent was purified as described in (1)

radiometric method using the isotope Tm-170 ( t] = 169 d). Authors state that results for ²both methods agreed. Although not clearly stated, it appears that equilibrium was reached in several weeks to several months. Solid phase samples washed three times with ESTIMATED ERROR: Soly: precision  $\pm$  0.002 mol dm⁻³ at a 95% benzene or ether and dried on a steam bath in an argon atmosphere. The solid phase was level of confidence (authors). analyzed and found to be ErCl₃.3C₆H₁₈N₃OP. Temp: precision  $\pm$  3 K. The solvate was analyzed for metal content by complexometric titration, for chloride by the **REFERENCES:** Volhard method, and the solvent was obtained by difference. IR spectra confirmed the 1. Fomicheva, M.G.; Kessler, Yu.M.; Zabusova, S.E.; Alpatova, N.M. absence of water. Structural studies of the Elektrokhimiya <u>1975</u>, 11, 163. solvate were also carried out by X-ray analysis.

ibrium was reached. Aliquots were withdrawn

periodically and analyzed for the metal con-

mined by complexometric titration, and by the

tent. Rare earth concentration was deter-

COMPONENTS:		ORIGINAL MEA	ORIGINAL MEASUREMENTS:		
(2) Tetrachlaracter	ate: SnCl/.		Lyudimov, E.I.; Batyaev, I.M.		
[7646-78-8]	ate; shci4,	Zh. Prikl.	Khim. <u>1972</u> , 4	5, 1176-8.	
(3) Phosphorus oxych [10025-87-3]	loride; POCl ₃ ;				
VARIABLES:		PREPARED BY:			
SnCl ₄ concentration		T. Miodusk	i		
T/K = 293 and 333					
EXPERIMENTAL VALUES:				20	
SnCl ₄ :POCl ₃ ratio	SnCl ₄ concn	solubility of	f Er ₂ 0 ₃ /mol Er	dm ^{-5a}	
(by volume)	mol $dm^{-3}$	20°C ^b	20°C ^C	60°c ^d	
0	0	0.002		0.0001	
1:250	0.035		0.004	0.005	
1:100	0.085	0.000 (0.007)	0.000	0.006	
1.30	0.33	0.024	0.007	0.007	
1:15	0.59	0.024	0.006	0.005	
1:10	0.78	0.034	0,006	0.0055	
1:5	1.4			0.011	
	0.0			0.011	
1:1.5	3.0			0.011	
1:1	4.0 6.8		0.010	0.011	
nure SnCl	8.5	0.001			
Assuming P ₂ 0 ₃ Cl ₄ to be soluble, the equilibrated solutions would then constitute a four component mixture. ^b Preheated at 220°C for 2 hours. (120°C for the value in parenthesis). ^c Preheated at 60°C (time not specified).					
	AUXILIA	RY INFORMATION			
	DUDE				
METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Er ₂ O ₃ were placed in sealed ampoules, heat- ed to 120°C for 2 hours to increase the rate of solution, and then rotated in an air thermostat at 20°C for 2 hours. Without preheating, equilibrium was established after 200 hours. Preheating to 120°C low- ered the equilibration time at 20°C to 2 hours.		source AND I Er203 of " 950°C for 3 "Pure" grad drated with ate	SOURCE AND PURITY OF MATERIALS: Er ₂ O ₃ of "the first sort" was ignited at 950°C for 2 hours. "Pure" grade SnCl ₄ and POCl ₃ were dehy- drated with P ₂ O ₅ and distilled under vacuum.		
Er was determined by colorimetric analysis, and in some cases by the oxalate method. The reported solubilities are mean values based on 3-5 parallel determinations.		s, Soly: auth vari Temp: prec	Soly: authors state the "coefficient of variance" to be less than 7%. Temp: precision presumably ± 0.2K (compiler).		
The solubility of ErCl ₃ in pure POCl ₃ is small, but in the presence of SnCl ₄ the solubility increases due to complexation:		REFERENCES :			
$2\text{ErCl}_3 + 3\text{SnCl}_4 =$	Er ₂ (SnCl ₆ ) ₃				