COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Ytterbium chloride; YbCl ₃ ; [10361-91-8]	Merbach, A.; Pitteloud, M.N.; Jaccard, P. Helv. Chim. Acta <u>1972</u> , 55, 44-52.
(2) Methanol; CH40; [67-56-1]	Pitteloud, M.N. <i>These</i> . Faculte des Sciences de l'Universite de Lausanne. <u>1971</u> .
VARIABLES:	PREPARED BI:
T/K = 298.2	T. Mioduski and M. Salomon
EXPERIMENTAL VALUES:	
	more colubility ^a
	_1
t/°C	mol kg ⁻¹
25	4.90
^a Initial salt is the adduct YbCl ₃ .4CH ₃ OH. E found to be YbCl ₃ .3.8CH ₃ OH.	quilibrated solid phase analyzed and
AUXILIARY	INFORMATION
METHOD /APPARATUS /PROCEDURE :	SOURCE AND PURITY OF MATERIALS.
Isothermal method as in (1,2). Mixtures were equilibrated for at least 4 days. Pro- longed operations were performed in a dry box. Ytterbium determined by titration with (NH ₄) ₃ H(EDTA) using a small amount of uro- tropine buffer and Xylenol Orange indicator. Chloride was determined by potentiometric titration with AgNO ₃ solution. Composition of the adduct YbCl ₃ .4CH ₃ OH confirmed by ¹ H NMR and X-ray diffraction.	Yb203 of at least 99.9% purity dissolved in HCl to produce the hexahydate. The adduct YbCl3.4CH3OH prepared by dissolving the hydrate in a small excess of o-methyl- formate followed by distillation and crystallization from methanol. Methanol was purified and dried by the Vogel method.
The reported solubilities are mean values of 2-4 determinations.	FSTIMATED ERDOR.
	Soly: precision ±0.5% as in (1) (compilers).
	Temp: precision probably at least \pm 0.05 K as in (1) (compilers).
	REFERENCES :
	 Brunisholz, F.; Quinch, J.P.; Kalo, A.M. Helv. Chim. Acta <u>1964</u>, 47, 14. Flatt, R. Chimia <u>1952</u>, 6, 62.

COMPONENTS -	ORTCINAL MEASUDEMENTS.
<pre>(1) Ytterbium chloride; YbCl₃; [10361-91-8]</pre>	Merbach, A.; Pitteloud, M.N.; Jaccard, P. Helv. Chim. Acta <u>1972</u> , 55, 44-52.
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	Pitteloud, M.N. These. Faculte des Sciences de l'Universite de Lausanne. <u>1971</u> .
VARIABLES:	PREPARED BY:
T/K = 298.2	T. Mioduski and M. Salomon
EXPERIMENTAL VALUES:	
	mean solubility ^a
t/°C	mol kg ⁻¹
25	4.26
^a Initial salt is the adduct YbCl ₃ .3C ₂ H ₅ OH. to be YbCl ₃ .3.6C ₂ H ₅ OH.	Equilibrated solid phase analyzed and found
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Isothermal method as in (1,2). Mixtures were equilibrated for at least 4 days. Pro- longed operations were performed in a dry box. Ytterbium determined by titration with $(NH_4)_3H(EDTA)$ using a small amount of uro- tropine buffer and Xylenol Orange indicator. Chloride was determined by potentiometric titration with AgNO ₃ solution. Composition of the adduct YbCl ₃ .3C ₂ H ₅ O confirmed by ¹ H NMR and X-ray diffraction. The reported solubilities are mean values of 2-4 determinations.	SOURCE AND PURITY OF MATERIALS: Yb ₂ O ₃ of at least 99.9% purity dissolved in HCI to produce the hexahydrate. The adduct YbCl ₃ .3C ₂ H ₆ O prepared by dissolving the hydrate in a small excess of o-ethylformate followed by distillation and crystalliza- tion from ethanol. Ethanol (Fluka) was used as received. Purity and absence of water was confirmed by NMR method. ESTIMATED ERROR:
	Soly: precision ±0.5% as in (1) (compilers).
	Temp: precision probably at least <u>+</u> 0.05K as in (1) (compilers).
	 REFERENCES: 1. Brunisholz, F.; Quinche, J.P.; Kalo, A.M. Helv. Chim. Acta <u>1964</u>, 47, 14. 2. Flatt, R. Chimia <u>1952</u>, 6, 62.

COMPONENTS: (1) Viterbium chloride: YhCl.: [10361-91-8] Sakharova, Yu.G.; Ezhova, T.A.							
(2) Ethanol: C ₀ H ₂ O; [64-17-5]			Zh. Neorg. Khim. 1976, 21, 551-4; Russ.				
(3) Water; H ₂ O; [7732-18-5]			J. Inor 296-8.	g. Chem. (En	gl. Transl.)	<u>1976</u> , 21,	
	2						
VARIABLES:				PREPAREI	D BY:		
Temperature				T. Miod	uski and M.	Salomon	
EVERAL	WAT HER .				<u></u>		
EXPERIMENTAL VALUES:							
	sample 1	sample 2	sampl	e 3	sample 4	mean solut	oilities
t/°C	g/100 g ^b	g/100 g	g/100	g	g/100 g	g/100 g	mol kg ^{-lc}
20	47.38	47.30	47.45		47.35	47.37	2.323
30	47.70	47.65	47.74		47.76	47.71	2.355
40	49.54	49.65	49.59)	49.63	49.60	2.540
50	51.95	52.10	51.90)	51.85	51.95	2.790
60	58.20	58.35	58.29)	58.40	58.31	3.610
^a It is not	clearly stated	whether the n	mixture	e is 96.8	mass % or 9	6.8 volume 5	& ethanol.
^b Solubiliti	es reported as	grams of hexa	ahydrat	e in 100) g of solver	nt.	
^c Molalities	calculated by	the compiler:	5.				
				THEODY			
METHOD APPA	RATUS / PROCEDUR	AUX.		INFORMAT	AND PUPITY O	C MATERIALS.	
Isothermal	method used.	Equilibrium w	as	YbC13.6	H ₂ 0 prepd by	dissolving	c.p. grade
reached aft	er 3-4 h. Ide approaching e	entical result quilibrium fr	s om	oxide i crystn.	in dil (1:3) The crysta	HCl followe als were drie	d by evapn and ed in a desic-
above and b	elow. Two of	the data poin	ts	cator over CaCl ₂ , P_2O_5 and NaOH. The crystals analyzed for the metal by titrn			
equilibrati	on, and the re	enaining two d	ata	with Trilon B, and for Cl by the Volhard			
points obta	ined after 4 h	n of equilibra	tion.	method. 155.2°(The hexany . 96.8% eth	anol prepd	by prolonged
The metal of	content in each	n aliquot take	n for ric	boiling of c.p. grade 93.5% ethanol with anhydr CuSO4 followed by distn. Ethanol			
titration v	vith Trilon B.	, y comp 101101101		concn detd refractometrically and			
Analyses of	the solids wi	lthdrawn at 20	°C,	ESTIMATED ERROR:			
40°C and 60°C showed the solid phase to be the hexahydrate: i.e. ethanol was not found			o be found	Soly: results apparently precise to within \pm 0.9 % (compilers).			se to within
in any of the solid phases.				Temp: nothing specified.			
{				REFEREN	CES:		
				ļ			

361

(1) Ytterbium chloride; YbCl3; [10361-91-8]	Merbach, A.; Pitteloud, M.N.; Jaccard, P. Helv. Chim. Acta <u>1972</u> , 55, 44-52.
(2) 2-Propanol; C ₃ H ₈ O; [67-63-0]	Pitteloud, M.N. These. Faculte des Sciences de l'Universite de Lausanne. <u>1971</u> .
VARIABLES:	PREPARED BY:
T/K = 298.2	T. Mioduski and M. Salomon
EXPERIMENTAL VALUES:	
	mean solubility ^a
t/°C	mol kg ⁻¹
25	3.6
^a Initial salt is the adduct YbCl ₃ .3C ₃ H ₇ OH. to be YbCl ₃ .nC ₃ H ₇ OH where $n = 3.5$ to 3.6.	Equilibrated solid phase analyzed and found
	ļ
	1
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method as in (1,2). Mixtures were equilibrated for at least 4 days. Pro- longed operations were performed in a dry box. Ytterbium determined by titration with (NH ₄) ₃ H(EDTA) using a small amount of uro- tropine buffer and Xylenol Orange indicator.	Yb ₂ 0 ₃ of at least 99.9% purity dissolved in HCl to produce the hexahydrate. The adduct YbCl ₃ .3C ₃ H ₈ 0 prepared by dissolving the hydrate in a small excess of o-methlformate followed by distillation and trans-solvation of the methanol complex with 2-propanol.
Chloride was determined by potentiometric titration with $AgNO_3$ solution. Composition of the adduct YbCl ₃ .3C ₃ H ₈ O confirmed by ¹ H NMR and X-ray diffraction.	Iso-propanol (Fluka) was used as received. Purity and absence of water was confirmed by NMR.
The reported solubilities are mean values	
of 2-4 determinations.	ESTIMATED ERROR: 10 5% on in (1) (compilere)
	Temp: precision probably at least +0.05K as
	in (1) (compilers).
	REFERENCES:
	1. Brunisholz, F.; Quinche, J.P.; Kalo, A.M. Helv. Chim. Acta <u>1964</u> , 47, 14. 2. Flatt, R. Chimia <u>1952</u> , 6, 62.

COMPONENTS:		ORIGINAL MEAS	JREMENTS:		
(1) Ytterbium chloride; Y [10361-91-8]	bC1 ₃ ;	Kirmse, E.M.			
[10301-31-0]		Tr. II Vses.	Konf. po Teor	. Rastvorov	
(2) Alkoxy-ethanols		<u>1971</u> , 200–6.			
VARIABLES:	:	PREPARED BY:			
T/K = 298		T. Mioduski a	and M. Salomon	L	
EXPERIMENTAL VALUES:					
		YbCl ₃ sol	ubility ^a		
solvent		mass %	mol kg ⁻¹	nature of the solid phase	
				- · · · · · · ·	
2-methoxyethanol; C _o H _o	0; [109-86-4]	8.6	0.337	YbCla.nCoHoOo	
38	, · · · ·			(n = 2-3)	
				. ,	
2-ethoxyethanol; $C_{\Delta}H_1$	0 ⁰ 2; [110-80-5]	9.1	0.358	YbC13,2C/H1002	
	0 2			5 4 10 2	
a Molalities calculated by	the compilers.				
1					
	AUXILIARY	INFORMATION			
METHOD / APPARATUS / PROCEDURE	:	SOURCE AND PU	RITY OF MATER	TALS:	
Experimental details not g	iven, but were	Nothing spec	ified but ba	sed on previous	
probably similar to previo	us works of the	work by the	authors, the	anhydrous salt	
author which are compiled	throughout this	was probably	prepared by	the method of	
volume.			altel (1).		
		ESTIMATED ERR	OR:		
		Nothing spec	ified.		
]			
		REFERENCES			
		1. Taylor M	D. • Carter, C	.P.	
	J. Inorg.	Nucl. Chem. 1	962, 24, 387.		
		1			

COMPONENTS: (1) Ytterbium chloride; YbCl ₃ ; [10361-91-8]	ORIGINAL MEASUREMENTS: Dzhuraev, Kh. Sh.; Mirsaidov, U.; Kurbanbekov, A.; Rakhimova, A.
(2) Diethyl ether; C ₄ H ₁₀ 0; [60-29-7]	Dokl. Akad. Nauk Tadzh. SSR <u>1976</u> , 19, 32-4.
VARIABLES:	PREPARED BY:
T/K = 293	T. Mioduski
EXPERIMENTAL VALUES:	······································
The solubility of YbCl ₃ in diethyl ether at	20°C was reported to be
0.08	5 mass %
The corresponding molality calculated by the	compiler is
3.04 x	$10^{-3} \text{ mol } \text{kg}^{-1}$
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Isothermal method employed. Equilibrium was attained within 24 h and was verified by	SOURCE AND PURITY OF MATERIALS: Anhydrous YbCl3 prepared by the ethanol solvate method (no details given).
constancy in the YbCl ₃ concentration. The saturated solution and the equilibrated solid phase were analyzed. Yb determined	Ethyl ether was dried with Na and distilled from LiAlH4 before use.
by complexometric titration in presence of urotropine buffer and methyl-thymol indica- tor. Chloride determined by titration with AgNO3. The solid phase corresponded to YbCl3.C4H100 (the etherate was dried under vacuum at 40°C prior to analysis).	
	ESTIMATED ERROR:
	Nothing specified.
	REFERENCES :

COMPONENTS:	UKIGINAL MEASUREMENTS:
(1) Ytterbium chloride; YbCl ₃ ;	Kirmse, E.M.; Zwietasch, K.J.
[10301-31-8]	7 Cham 1967 7 281
(2) 1 2-Diethoxyethane: $C_{cH_1}(0)$:	2. Chem. <u>1907</u> , 7, 201.
[629-14-1]	
VARIABLES:	PREPARED BY:
T/K = 298	T. Mioduski
EXPERIMENTAL VALUES:	
The solubility of YbCl ₂ in 1,2-diethoxyethan	e at 25°C was reported to be
······································	
1.15	maas %
ine corresponding motality calculated by the	complier is
1	
0.0416	mol kg ^{-1}
0.0410	
The composition of the solid phase was given	in terms of the Yb:Cl:ether ratio as
1.2.02	0.04
1:3.03	.0.94
	·····
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method used. The anhydrous mix-	Sources and purities of materials were
tures were equilibrated at 25°C for several	not given. The anhydrous chloride was ob-
days with frequent shaking.	tained by the method of Taylor and Carter
The solid phase was dried in a vacuum	(-/.
desiccator over P ₂ 05.	The solvent was prepared by the Williamson
	synthesis: i.e. by reaction of CoHeI with
Yb was determined by complexometric titra-	the monoethyleter of ethylene glycol.
tion using Xylenol Orange indicator.	
Chloride was determined by the Volhard	
titration method.	
	ESTIMATED ERROR:
	No estimate possible.
l	
	REFERENCES:
	1. Taylor, M.D.; Carter, C.P.
	J. INONG. NUCL. CNEM. <u>1962</u> , 24, 387.

365

Ytterbium Chloride

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Ytterbium chloride; YbCl ₃ ; [10361-91-8]	Baganz, E. Staatsexamenarbeit. Koethen Paedag. Institut. <u>1970</u> .
(2) 1-Methoxyhexane; C ₇ H ₁₆ 0; [4747-07-3]	Original data cited by
	Kirmse, E.M.; Dressler, H. Z. Chem. <u>1975</u> , 15, 239-40.
VARIABLES:	PREPARED BY:
Room temperature: $T/K = 293 - 298$	T. Mioduski
EXPERIMENTAL VALUES:	
The solubility of YbCl ₃ in 1-metho	whexane at 20-25 [°] C was reported as
18.3 r	nass %.
The corresponding molality calculat	ed by the compiler is
0.802 m	nol kg ⁻¹ .
The nature of the solid phase was r	not specified.
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solute-solvent mixtures were isothermally agitated until equilibrium was attained.	Nothing specified.
The anhydrous reagents were handled in a dry box containing $P_4 O_{10}$.	
Ytterbium was determined by complexometric titration using Xylenol Orange indicator.	
The reported solubility is a mean value based on four determinations.	
	ESTIMATED ERROR:
	Nothing specified.
	REFERENCES
	ALFERENCED;

<pre>COMPONENTS: (1) Ytterbium chloride; YbCl₃; [10361-91-8] (2) Ethers vARIABLES: Room temperature: T/K around 298 EXPERIMENTAL VALUES:</pre>		ORIGINAL ME Kirmse, E. J.; Oelsne Z. Chem. <u>1</u> Kirmse, E. Rastvorov. PREPARED BY T. Miodush	ORIGINAL MEASUREMENTS: Kirmse, E.M.; Zwietasch, K.J.; Tirschmann, J.; Oelsner, L.; Niedergeases, U. Z. Chem. <u>1968</u> , 8, 472-3. Kirmse, E.M. Tr. II Vses. Konf. po Teor. Rastvorov. <u>1971</u> , 200-6. PREPARED BY: T. Mioduski and M. Salomon		
solvent			mass %	mol kg ⁻¹	
1-ethoxy-2-methoxyethane;	C ₅ H ₁₂ O ₂ ;	[5137-45-1]	1.45	0.053	
di-n-propyl ether;	c ₆ H ₁₄ 0;	[111-43-3]	13.7	0.568	
l-ethoxybutane;	C6H140;	[628-81-9]	12.0	0.488	
1-methoxypentane;	C ₆ H ₁₄ 0;	[628-80-8]	43.5	2.756	
1,4-dioxane;	С4H802;	[123-91-1]	0.8	0.029	
	AUXILIA	RY INFORMATION	,		
METHOD/APPARATUS/PROCEDURE: The solute-solvent mixtures w mally agitated at 25°C or at ture. Authors state that the found for the solubility was mental error limits. Yb was determined by complexo titration. No other details given.	ere isother- room tempera- difference within experi- metric	SOURCE AND The anhyd method of - No other	PURITY OF M rous salt wa Taylor and information	ATERIALS: as prepared by the Carter (1). given.	
		ESTIMATED I Nothing s REFERENCES 1. Taylor, J. Inor	ERROR: specified. : M.D.; Carte g. Nucl. Che	er, C.P. 2m. <u>1962</u> , 24, 387.	

•

COMPONENTS	ORTGINAL MEASUREMENTS .
(1) Ytterhium chloride: YbClo:	Rossmanith, K.: Auer-Welshach, C.
[10361-91-8]	
ume	Monatsh. Chem. <u>1965</u> , 96, 602-5.
(2) Tetrahydrofuran; C ₄ H ₈ O;	
[109-99-9]	
VARIABLES:	PREPARED BY:
Room Temperature: T/K about 293	T. Mioduski
EXPERIMENTAL VALUES:	
The solubility of YbCl ₃ in tetrahydrofuran at	20°C (room temperature) was reported to be
1.08 10	0 ml of aclution
1.98 g per 10	JO MI OI SOLUCION
(0.0709 mol	dm ⁻³ , compiler).
	,,
	INFORMATION
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method employed. The solution	Sources and purities of initial materials
was equilibrated in an extractor with	not specified. YbCl3 was prepared by
agitation for 60-80 hours at room tempera-	conversion of the oxide by high temperature
ture.	by heating the product in a stream of dry
Ytterbium was determined by the oxalate	nitrogen, and then in vacuum to remove
method, and by titration with EDTA using	unreacted NH4C1.
Xylenol Orange indicator. The solvent was	
determined by difference.	Tetrahydrofuran was distilled from LiAlH ₄ .
Annydrous materials were handled in a dry	
nitrogen free of carbon dioxide.	
niciofen lice of carbon dioxide.	ESTIMATED ERROR:
The solid phase is YbCl ₃ .2.92C ₄ H ₈ 0.	Nothing specified.
	DEFEDENCES.
	ALLENENCES;
	Ann

Ytterbium Chloride					36	
COMPONENTS: (1) Ytterbium chloride; YbCl ₃ ; [10361-91-8] (2) Amines			ORIGINAL MEASUREMENTS: Kirmse, E.M. Tr. II Vses. Konf. po Teor. Rastvorov <u>1971</u> , 200-6.			
VARIABLES:			PREPARE	PREPARED BY:		
T/K = 298			T. Mio	T. Mioduski and M. Salomon		
EXPERIMENTAL VALUES:	<u></u>		<u> </u>	<u> </u>		
YbCl ₃ solubility ^a solvent mass % mol kg ⁻¹						
ethanamine;	C ₂ H ₇ N;	[75-04-	-7]	37.8	2.175	
diethylamine;	(C ₂ H ₅) ₂ NH;	[109-89] -7]	2.0	0.073	
1-propanamine;	с ₃ н9N;	[107-10)-8]	35.5	1.970	
2-propanamine;	iso-C3H9N;	[75-31-	-0]	8.1	0.315	
2-propen-1-amine; ^b	с ₃ н ₇ n;	[107-11	1-9]	34.2	1.860	
1-butanamine;	$n-C_4H_{11}N;$	[109-73	3-9]	38.7	2.260	
2-butanamine;	iso-C4 ^H 11 ^N ;	[13952-	-84-6]	20.2	0.906	
di-2-butylamine;	(sec-C ₄ H ₉) ₂ NH;	NH; [626-23		3.9	0.145	
^a Molalities calcula	ted by the compile	ers.				
^b The original paper simply specifies the solvent as C ₃ H ₅ NH ₂ , and upon request, the author kindly identified the solvent as allylamine.						
	Aľ	UXILIARY	INFORMA	TION		
METHOD/APPARATUS/PROCEDURE: S Experimental details not given, but were probably similar to previous works of the author which are compiled throughout this volume. Nature of solid phases not specified.			SOURCE Nothir work t probat and Ca	AND PURITY C ig specified by the author ly prepared irter (1).	F MATERIALS: , but based on previous c the anhydrous salt was by the method of Taylor	
			ECTIMA			
			Nothir	ig specified.		

REFERENCES:

 Taylor, M.D.; Carter, C.P. J. Inorg. Nucl. Chem. <u>1962</u>, 24, 387.

Mikheev, N.B.; Kamenskaya, A.N.;		
Konovalova, N.A.; Zhilina, T.A.		
Zh. Neorg. Khim. <u>1977</u> , 22, 1961–6; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1977</u> , 22, 955–8.		
PREPARED BY:		
T Miduski and M Salaman		
Starting with the solvate YBCl ₃ .3C((CH ₃) ₂ N) ₃ PO, the solubility at 25 \pm 3°C ^a was given as		
0.085 mol dm^{-3}		
^a Table 3 in the English translation of the source paper states the temperature to be 23 \pm 3°C. This is probably a typographical error as the text clearly states that all measurements were carried out at 25 \pm 3°C.		
INFORMATION		
SOURCE AND PURITY OF MATERIALS: Anhydrous YbCl ₃ prepared by modification of Taylor & Carter's method (1) by subliming NH4Cl from a mixture of YbCl ₃ with 6 moles of NH4Cl in a stream of inert gas at 200-400°C. The product contained less than 3% of YbOCl. The solvent was purified as in (2).		
ESTIMATED ERROR: Soly: precision \pm 0.01 mol dm ⁻³ at a 95% level of confidence (authors).		
Temp: precision \pm 3 K.		
 REFERENCES: 1. Taylor, M.D.; Carter, C.P. J. Inorg. Nucl. Chem. <u>1962</u>, 24, 387. 2. Fomicheva, M.G.; Kessler, Yu.M.; Zabusova, S.E.; Alpatova, N.M. Elektrokhimiya <u>1975</u>, 11, 163. 		

I COMPONENTS .		
Com onemie:	ORIGINAL MEASUREMENTS:	
(1) Ytterbium chloride; YbCl ₃ ;	Lyubimov, E.I.; Batyaev, I.M.	
[10361-91-8]	1	
	Zh. Prikl. Khim. 1972, 45, 1176-8	
(2) Tetrachlorostannate; SnCl ₄ ;	,,	•
[7646-78-8]		
(2) Phoenhamun arrichlarida; POClat		
(5) Phosphorus oxychioride, roor3,		
[10025-87-3]	1	
	·····	
VARIABLES:	PREPARED BY:	
T/K = 293	T. Mioduski	
Concentration of SnCl ₄		
EXPERIMENTAL VALUES:		
SnCl,:POCl, ratio SnCl, c	oncentration Ybo0s solubil	itv ^{a,b}
4 5 4 -	-3	-3
(by volume) mo	l dm moles Yb dm	
1:100 0.4	085 0.4	
1:50 0.	17 0.5 (0.1	1) I
1:25 0.	33 0.6	•
1:15	59 0.5	
1:10	78 0.5	
1.10 0:	0.0	
^a Solutions preheated to 220°C. Value in part	enthesis corresponds to preheating a	at 120°C.
b		
This is also the solubility of YbCl3 in the	SnC14-POC13 mixture because the ox:	ide is
quantitatively converted to the chloride ac	cording to	
$X_{holo} + 6P0$	$C_{1} = 2VbC_{1} + 3Pa0aC_{1}$	
15203 1 010	113 - 210013 + 51203014	
Thus the equilibrated solutions should actuate	ally be considered to be a four comp	ponent
system containing SnCl4, YbCl3, P203Cl4 and	$POC1_3$ (the compiler assumes $P_2O_3C1_2$	4 is
soluble).		
Authors state that the solubility of YbCl3 is	s enhanced by complex formation acco	ording to
-		
2YbCl ₃ + 3Si	$nCl_4 = Yb_2(SnCl_6)_3$	
	+ L 0.]	
AUXILIARY	INFORMATION	
AUXILIARY	INFORMATION	
AUXILIARY	INFORMATION SOURCE AND PURITY OF MATERIALS:	
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POClo + SpCl.	INFORMATION SOURCE AND PURITY OF MATERIALS: Yboo, of "the first sort" was ion	ited at
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ O ₃ of "the first sort" was ign: 950°C for 2 hours	ited at
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POC1 ₃ + SnC1 ₄ solutions were prepared by volume in a dry	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ 0 ₃ of "the first sort" was ign: 950°C for 2 hours.	ited at
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ 0 ₃ of "the first sort" was ign: 950°C for 2 hours.	ited at
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb203 of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnCl4 and POCl3 were	ited at dehydrated
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ O ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnC14 and POC1 ₃ were with P ₂ O ₅ and distilled under vacu	ited at dehydrated um.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POC1 ₃ + SnC1 ₄ solutions were prepared by volume in a dry box. The SnC1 ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ 0 ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnCl ₄ and POCl ₃ were with P ₂ 0 ₅ and distilled under vacu	ited at dehydrated uum.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ O ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnCl ₄ and POCl ₃ were with P ₂ O ₅ and distilled under vacu	ited at dehydrated jum.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili-	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ 0 ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnC1 ₄ and POC1 ₃ were with P ₂ 0 ₅ and distilled under vacu	ited at dehydrated jum.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre-	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb203 of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnC14 and POC13 were with P205 and distilled under vacu	ited at dehydrated uum.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre- heating to 120°C lowered the equilibration	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ 0 ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnC14 and POC1 ₃ were with P ₂ 0 ₅ and distilled under vacu	ited at dehydrated jum.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre- heating to 120°C lowered the equilibration time at 20°C to 2 hours.	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb203 of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnC14 and POC13 were with P205 and distilled under vacu	ited at dehydrated uum.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre- heating to 120°C lowered the equilibration time at 20°C to 2 hours.	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ O ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnCl ₄ and POCl ₃ were with P ₂ O ₅ and distilled under vacu	ited at dehydrated um.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre- heating to 120°C lowered the equilibration time at 20°C to 2 hours.	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ O ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnCl ₄ and POCl ₃ were with P ₂ O ₅ and distilled under vacu	ited at dehydrated um.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre- heating to 120°C lowered the equilibration time at 20°C to 2 hours. Yb was determined by colorimetric analysis, and in some cases by the oxalate method	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb203 of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnC14 and POC13 were with P205 and distilled under vacu	ited at dehydrated jum.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre- heating to 120°C lowered the equilibration time at 20°C to 2 hours. Yb was determined by colorimetric analysis, and in some cases by the oxalate method. The remoted colubilities are mean values	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb203 of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnC14 and POC13 were with P205 and distilled under vacu ESTIMATED ERROR: Soly: authors state the "coefficies	ited at dehydrated jum.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre- heating to 120°C lowered the equilibration time at 20°C to 2 hours. Yb was determined by colorimetric analysis, and in some cases by the oxalate method. The reported solubilities are mean values	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ 0 ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnC14 and POC1 ₃ were with P ₂ 0 ₅ and distilled under vacu ESTIMATED ERROR: Soly: authors state the "coefficie variance" to be less than 72	ited at dehydrated uum.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre- heating to 120°C lowered the equilibration time at 20°C to 2 hours. Yb was determined by colorimetric analysis, and in some cases by the oxalate method. The reported solubilities are mean values based on 3-5 parallel determinations.	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ O ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnCl ₄ and POCl ₃ were with P ₂ O ₅ and distilled under vacu ESTIMATED ERROR: Soly: authors state the "coefficient variance" to be less than 72 Temp: precision procumply + 0.2 h	ited at dehydrated uum.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre- heating to 120°C lowered the equilibration time at 20°C to 2 hours. Yb was determined by colorimetric analysis, and in some cases by the oxalate method. The reported solubilities are mean values based on 3-5 parallel determinations.	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ O ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnCl ₄ and POCl ₃ were with P ₂ O ₅ and distilled under vacu ESTIMATED ERROR: Soly: authors state the "coefficient variance" to be less than 79 Temp: precision presumably ± 0.2 K	ited at dehydrated jum.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ 0 ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre- heating to 120°C lowered the equilibration time at 20°C to 2 hours. Yb was determined by colorimetric analysis, and in some cases by the oxalate method. The reported solubilities are mean values based on 3-5 parallel determinations.	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ 0 ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnCl ₄ and POCl ₃ were with P ₂ 0 ₅ and distilled under vacu ESTIMATED ERROR: Soly: authors state the "coefficie variance" to be less than 77 Temp: precision presumably ± 0.2 F (compiler).	ited at dehydrated jum.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre- heating to 120°C lowered the equilibration time at 20°C to 2 hours. Yb was determined by colorimetric analysis, and in some cases by the oxalate method. The reported solubilities are mean values based on 3-5 parallel determinations.	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ 0 ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnCl ₄ and POCl ₃ were with P ₂ 0 ₅ and distilled under vacu ESTIMATED ERROR: Soly: authors state the "coefficient variance" to be less than 77 Temp: precision presumably ± 0.2 K (compiler). REFERENCES:	ited at dehydrated jum. ent of %.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre- heating to 120°C lowered the equilibration time at 20°C to 2 hours. Yb was determined by colorimetric analysis, and in some cases by the oxalate method. The reported solubilities are mean values based on 3-5 parallel determinations.	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ 0 ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnC14 and POC1 ₃ were with P ₂ 0 ₅ and distilled under vacu ESTIMATED ERROR: Soly: authors state the "coefficient variance" to be less than 77 Temp: precision presumably ± 0.2 F (compiler). REFERENCES:	ited at dehydrated uum.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre- heating to 120°C lowered the equilibration time at 20°C to 2 hours. Yb was determined by colorimetric analysis, and in some cases by the oxalate method. The reported solubilities are mean values based on 3-5 parallel determinations.	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ 0 ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnCl ₄ and POCl ₃ were with P ₂ 0 ₅ and distilled under vacu ESTIMATED ERROR: Soly: authors state the "coefficient variance" to be less than 77 Temp: precision presumably ± 0.2 K (compiler). REFERENCES:	ited at dehydrated pum.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ 0 ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre- heating to 120°C lowered the equilibration time at 20°C to 2 hours. Yb was determined by colorimetric analysis, and in some cases by the oxalate method. The reported solubilities are mean values based on 3-5 parallel determinations.	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ 0 ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnCl ₄ and POCl ₃ were with P ₂ 0 ₅ and distilled under vacu ESTIMATED ERROR: Soly: authors state the "coefficient variance" to be less than 77 Temp: precision presumably ± 0.2 K (compiler). REFERENCES:	ited at dehydrated jum.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ 0 ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre- heating to 120°C lowered the equilibration time at 20°C to 2 hours. Yb was determined by colorimetric analysis, and in some cases by the oxalate method. The reported solubilities are mean values based on 3-5 parallel determinations.	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ 0 ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnCl ₄ and POCl ₃ were with P ₂ 0 ₅ and distilled under vacu ESTIMATED ERROR: Soly: authors state the "coefficie variance" to be less than 77 Temp: precision presumably ± 0.2 K (compiler). REFERENCES:	ited at dehydrated jum.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre- heating to 120°C lowered the equilibration time at 20°C to 2 hours. Yb was determined by colorimetric analysis, and in some cases by the oxalate method. The reported solubilities are mean values based on 3-5 parallel determinations.	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ 0 ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnCl ₄ and POCl ₃ were with P ₂ 0 ₅ and distilled under vacu ESTIMATED ERROR: Soly: authors state the "coefficient variance" to be less than 79 Temp: precision presumably ± 0.2 K (compiler). REFERENCES:	ited at dehydrated uum.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ O ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre- heating to 120°C lowered the equilibration time at 20°C to 2 hours. Yb was determined by colorimetric analysis, and in some cases by the oxalate method. The reported solubilities are mean values based on 3-5 parallel determinations.	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ 0 ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnC14 and POC1 ₃ were with P ₂ 0 ₅ and distilled under vacu ESTIMATED ERROR: Soly: authors state the "coefficient variance" to be less than 77 Temp: precision presumably ± 0.2 F (compiler). REFERENCES:	ited at dehydrated uum.
AUXILIARY METHOD/APPARATUS/PROCEDURE: Isothermal method used. POCl ₃ + SnCl ₄ solutions were prepared by volume in a dry box. The SnCl ₄ content was verified by chemical analysis for Sn. This solution and Yb ₂ 0 ₃ were placed in sealed ampoules, heated to 20-250°C to increase the rate of solution and then rotated in an air thermostat at 20°C for 2-200 hours. Without preheating, equili- brium was established after 200 hours. Pre- heating to 120°C lowered the equilibration time at 20°C to 2 hours. Yb was determined by colorimetric analysis, and in some cases by the oxalate method. The reported solubilities are mean values based on 3-5 parallel determinations.	INFORMATION SOURCE AND PURITY OF MATERIALS: Yb ₂ 0 ₃ of "the first sort" was ign: 950°C for 2 hours. "Pure" grade SnCl ₄ and POCl ₃ were with P ₂ 0 ₅ and distilled under vacu ESTIMATED ERROR: Soly: authors state the "coefficient variance" to be less than 77 Temp: precision presumably ± 0.2 M (compiler). REFERENCES:	ited at dehydrated uum.

371