COMPONENTS:
(1) Ytterbium bromide; YbBr₃; [13759-89-2]
(2) 1,2-Diethoxyethane; C₆H₁₄O₂; [629-14-1]

VARIABLES:
T/K = 298

EXPERIMENTAL VALUES:

The solubility of YbBr₃ in 1,2-dimethoxyethane at 25°C was reported as 0.9 mass %.

The corresponding molality calculated by the compiler is 0.022 mol kg⁻¹

The nature of the solid phase was not specified.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:
Experimental details not given, but were probably similar to previous works of the author which are compiled throughout this volume.

Nature of solid phase not specified.

SOURCE AND PURITY OF MATERIALS:
Nothing specified, but based on previous work by the author the anhydrous salt was probably prepared by the method of Taylor and Carter (1).

ESTIMATED ERROR:
Nothing specified.

REFERENCES:
Ytterbium Bromide

COMPONENTS:
(1) Ytterbium bromide; YbBr₃; [13759-89-2]
(2) Tetrahydrofuran; C₄H₈O; [109-99-9]

ORIGINAL MEASUREMENTS:
Rossmannith, K.
Monatsh. Chem. 1966, 97, 1357-64.

VARIABLES:
Room Temperature: T/K = 294-296

PREPARED BY:
T. Mioduski

EXPERIMENTAL VALUES:

The solubility of YbBr₃ in tetrahydrofuran at 21-23°C was reported to be

0.25 g per 100 ml of solution

or

6.05 x 10⁻³ mol dm⁻³ (compiler)

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:
Isothermal method employed. The solution was equilibrated in an extractor with agitation for 60-80 hours at room temperature.

Ytterbium was determined by the oxalate method and by titration with EDTA using Xylenol Orange indicator. The solvent was determined by difference.

Anhydrous materials were handled in a dry box through which was passed a stream of nitrogen free of carbon dioxide.

The solid phase is YbBr₃.3C₄H₈O.

SOURCE AND PURITY OF MATERIALS:
Sources and purities of initial materials not specified. YbBr₃ was prepared by conversion of the oxide by high temperature reaction with an excess of NH₄Br followed by heating the product in a stream of dry nitrogen, and then in vacuum to remove unreacted NH₄Br.

Tetrahydrofuran was distilled from LiAlH₄.

ESTIMATED ERROR:
Nothing specified.

REFERENCES:
COMPONENTS:
(1) Ytterbium bromide; YbBr₃; [13759-89-2]
(2) 1,4-Dioxane; C₄H₈O₂; [123-81-1]

ORIGINAL MEASUREMENTS:
Kirmse, E.M.; Zwietasch, K.J.; Tirschmann, J.; Oelsner, L.; Niedergesaess, U.
Z. Chem. 1968, 8, 472-3.

VARIABLES:
Room Temperature: T/K around 298

PREPARED BY:
T. Mioduski

EXPERIMENTAL VALUES:
The solubility of YbBr₃ in p-dioxane at around 25°C was given as
1.7 mass %
The corresponding molality calculated by the compiler is
0.042 mol kg⁻¹
The nature of the solid phase was not specified.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:
The solute-solvent mixtures were isothermally agitated at 25°C or at room temperature. Authors state that the difference found for the solubility was within experimental error limits.

Yb was determined by complexometric titration.

No other details given.

SOURCE AND PURITY OF MATERIALS:
The anhydrous salt was prepared by the method of Taylor and Carter (1).
No other information given.

ESTIMATED ERROR:
Nothing specified.

REFERENCES:
1. Taylor, M.D.; Carter, C.P.
COMPONENTS:
(1) Ytterbium bromide; YbBr₃; [13759-89-2]
(2) Alkyl amines

ORIGINAL MEASUREMENTS:
Kirmse, E.M.

VARIABLES:
T/K = 298

PREPARED BY:
T. Mioduski and M. Salomon

EXPERIMENTAL VALUES:

<table>
<thead>
<tr>
<th>solvent</th>
<th>mass %</th>
<th>mol kg⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-propanamine; n-C₃H₇N;</td>
<td>34.5</td>
<td>1.276</td>
</tr>
<tr>
<td>2-propanamine; iso-C₃H₇N;</td>
<td>22.75</td>
<td>0.713</td>
</tr>
<tr>
<td>1-butane; n-C₄H₁₀N;</td>
<td>24.5</td>
<td>0.786</td>
</tr>
<tr>
<td>2-butane; sec-C₄H₁₀N;</td>
<td>33.9</td>
<td>1.243</td>
</tr>
<tr>
<td>di-2-butylamine; (sec-C₄H₉)₂NH;</td>
<td>0.4</td>
<td>0.0097</td>
</tr>
</tbody>
</table>

*Molalities calculated by the compilers.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:
Experimental details not given, but were probably similar to previous works of the author which are compiled throughout this volume.

Nature of solid phases not specified.

SOURCE AND PURITY OF MATERIALS:
Nothing specified, but based on previous work by the author, the anhydrous salt was probably prepared by the method of Taylor and Carter (1).

ESTIMATED ERROR:
Nothing specified.

REFERENCES: