378		LU	tettum	Chioria	5		
COMPONENTS: (1) Lutetium chloride; LuCl ₃ ; [10099-66-8]				ORIGINAL MEASUREMENTS: Sakharova, Yu.G.; Ezhova, T.A.			
 (1) Euterium chiofide; Euci₃; [10099-00-8] (2) Ethanol; C₂H₆0; [64-17-5] 				Zh. Neorg. Khim. <u>1976</u> , 21, 551–4; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1976</u> , 21,			
(3) Water; H ₂ 0; [7732-18-5]				J. Inorg. Chem. (Engl. Transl.) <u>1976</u> , 21, 296–8.			
VARIABLES :				PREPARE	D BY:		
Temperature				T. Mioduski and M. Salomon			
EXPERIMENTAL	VALUES:						
	solubility of	LuCl ₃ .6H ₂ 0 in	96.8	% с ₂ н ₅ он	a		
	sample 1	sample 2	samp1	e 3	sample 4	mean solub	oilities
t/°C	g/100 g ^b	g/100 g	g/100	g	g/100 g	g/100 g	mol kg ^{-lc}
20	53.30	53.20	53.28		53.26	53.26	2.926
30	54.86	54.70	54.75		54.80	54.78	3.111
40	57.10	56.90	56.95		57.05	57.00	3.404
50	61.60	61.48	61.52		61.45	61.51	4.104
60	68.35	68.20	68.39		68.18	68.28	5.528
		the compilers					
		AUXI	LIARY	INFORMAT	TION		
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Equilibrium was reached after 3-4 h. Identical results obtained by approaching equilibrium from above and below. Two of the data points in the table obtained after 3 hours of equili- bration, and the remaining two data points obtained after 4 h of equilibration. The metal content in each aliquot taken for analysis was determined by complexometric titration with Trilon B. Analyses of the solids withdrawn at 20°C, 40°C and 60°C showed the solid phase to be the hexahydrate: i.e. ethanol was not found in any of the solid phases.			<pre>SOURCE AND PURITY OF MATERIALS: LuCl₃.6H₂O prepd by dissolving c.p. grade oxide in dil (1:3) HCl followed by evapn and crystn. The crystals were dried in a desic- cator over CaCl₂, P₂O₅ and NaOH. The crystals analyzed for the metal by titrn with Trilon B, and for Cl by the Volhard method. The hexahydrate melted at 148.0 - 150.5°C. 96.8% ethanol prepd by prolonged boiling of c.p. grade 93.5% ethanol with anhydr CuSO₄ followed by distn. Ethanol concn detd refractometrically and pycnometrically.</pre> ESTIMATED ERROR: Soly: results apparently precise to within ± 0.9% (compilers). Temp: nothing specified. REFERENCES:				

COMPONENTS:		ORIGINAL MEASUREMENTS:		
<pre>(1) Lutetium chloride; LuCl₃; [10099 66-8]</pre>		Mikheev, N.B.; Kamenskaya, A.N. Konovalova, N.A.; Zhilina, T.A.		
(2)	Hexamethylphosphorotriamide; C ₆ H ₁₈ N ₃ OP; [680-31-9]	Zh. Neorg. Khim. <u>1977</u> , 22, 1761–6; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1977</u> , 22, 955–8.		
VARIABLES:		PREPARED BY:		
Room	temperature: $T/K = 298 \pm 3$	T. Mioduski and M. Salomon		
EXPER	RIMENTAL VALUES:			
Starting with the solvate $LuCl_3.3C((CH_3)_2N)_3PO$, the solubility at 25 \pm 3°C ^a was given as				

 $0.073 \text{ mol } \text{dm}^{-3}$

^aTable 3 in the English translation of the source paper states the temperature to be $23 \pm 3^{\circ}$ C. This is probably a typographical error as the text clearly states that all measurements were carried out at $25 \pm 3^{\circ}$ C.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Isothermal method. Salt and solvent were placed in a test-tube in a dry box, and the tube agitated at room temperature until equilibrium was reached. Aliquots were with drawn periodically and analyzed for the metal content. Rare earth concentration was deter- mined by complexometric titration, and by the radiometric method using the isotope Tm-170 (t_{1_2} = 169 d). Authors state that results for both methods agreed. Although not clearly stated, it appears that equili- brium was reached in several weeks to	at 200-400°C. The product contained less
several months. Solid phase samples washed three times with benzene or ether and dried on a steam bath in an argon atmosphere. The solid phase was analyzed and found to be	ESTIMATED ERROR: Soly: precision \pm 0.001 mol dm ⁻³ at a 95% level of confidence (authors). Temp: precision \pm 3 K.
LuC13.3C6H18N3OP.	REFERENCES ;
The solvate was analyzed for metal content by complexometric titration, for chloride by the Volhard method, and the solvent was ob- tained by difference. IR spectra confirm- ed the absence of water. Structural stud- ies of the solvate were also carried out by X-ray analysis.	 Taylor, M.D.; Carter, C.P. J. Inorg. Nucl. Chem. <u>1962</u>, 24, 387. Fomicheva, M.G.; Kessler, Yu.M.; Zabusova, S.E.; Alpatova, N.M. Elektrokhimiya <u>1975</u>, 11, 163.

	LOBTOTIVAL 1910			
COMPONENTS: (1) Lutetium chloride; LuCl ₃ ;		ORIGINAL MEASUREMENTS: Lyubimov, E.I.; Batyaev, I.M.		
<pre>[10099-66-8] (2) Tetrachlorostannate; SnCl4;</pre>	Zh. Prikl. Kh	Zh. Prikl. Khim. <u>1972</u> , 45, 1176-8.		
[7646-78-8]				
(3) Phosphorus oxychloride; POC [10025-87-3]	13;			
VARIABLES:	PREPARED BY:	PREPARED BY:		
T/K = 293 Concentration of SnCl ₄	T. Mioduski	T. Mioduski		
EXPERIMENTAL VALUES:				
SnCl ₄ :POCl ₃ ratio (by volume)	$SnCl_4$ concentration mol dm ⁻³	Lu ₂ 0 ₃ solubility ^{a,b} moles Lu dm ⁻³		
0	0	0.1		
1:100	0.085	0.3		
1:50	0.17	0.7 (0.1)		

1:25	0.33	0.9		
1:15	0.59	0.7		
1:10	0.78	0.8		
^a Solutions preheated to 220°C. ^b This is also the solubility of quantitatively converted to the	LuCl3 in the SnCl4-POCl3 mi			
-	$6POC1_3 = 2LuC1_3 + 3P_2$	0 ₃ C1 ₄		
Authors state the the solubility		- ·		
	-			
2Luci	$_{3}$ + $_{3}$ SnCl ₄ = Lu_{2} (SnCl ₆)	3		
	AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PUI	RITY OF MATERIALS:		
Isothermal method used. POCl ₃ + solutions were prepared by volum box. The SnCl ₄ content was veri	e in a dry 950°C for 2 h fied by			
chemical analysis for Sn. This Lu_20_3 were placed in sealed ampo to $20-250^{\circ}C$ to increase the rate	ules, heated with P_2O_5 and of solution,	SnC1 ₄ and POC1 ₃ were dehydrated distilled under vacuum.		
and then rotated in an air therm C for 2-200 hours. Without preh				
equilibrium was established afte Preheating to 220°C lowered the				
tion time at 20°C to 2 hours.	-4			
Lu was determined by colorimetri	. IESTIMATED ERK	OR:		
or by the oxalate method. The r solubilities are mean values bas	soly: authors	state the "coefficient of e" to be less than 7%.		
parallel determinations.		on presumably ± 0.2K (compiler)		
	REFERENCES ;	-		
	<u> </u>			