COMPONENTS:				ORIGINAL MEASUREMENTS:			
(1) Copper(II) oxide; CuO: [1317-38-0]				Nasanen, R.; Tamminen, V. J. Am. Chem. Soc.			
(2) Copper(II) perchlorate: $C_{\rm H}(C(0, 1))$				<u>1949</u> , 71, 1994-8.			
(4) copper(11) perchiorate; $Cu(CLO_4)_2$; [13770_18_8]					· · · · · ·		
(3) Sodium hydroxide: NaOH: [1310-73-2]							
(h) Notore H 0, (7722 10 5)							
(** mater, "20, [//32-10-3]							
VARIABLES:			-	PREPAR	PREPARED BY:		
Ionic strength of the solvent at 25°C.							
				T. P.	Dirkse		
EXPERIMENTAL VALUES: Solubility produc				t of Cu	0 at 25	°C. ^a	
/ ionic 1/2	2	2					
strength	^{10⁻Cu}	10 ⁻ C _{NaOH}	C _{NaCl}	.0,	pН	pKso	
				4			
0.097	0.694	0.199			5.55	19.68	
0.091	0.688	0.394			5.65	19.69	
0.085	0.683	0.587			5.87	19.73	
0.156	1.928	0.907		•	5.46	19.62	
0.151	1.900	1.161		•	5.53	19.61	
0.147	1.880	1.327		•	5.58	19.64	
0.145	1.872	1.398		•	5.61	19.63	
0.138	1.838	1.712		•	5.89	19.66	
0.137	1.831	1.760		•	6.02	19.63	
0.135	1.824	1.822		•	6.78	19.66	
0.247	1.263	0.362	0.04	40	5.55	19.60	
0.242	1.243	0.713	0.04	33	5.63	19.67	
a							
All concentrations are in mol dm ⁻ .							
The mean value of provide 19.65 giving 2.2 x 10 mold dm for K o. This was calculated from the relationship:							
$(1 - \pi)^2 (2 - 1)^2$							
OH- CuO' hydroxysalt' COU' S is the solubility product constant.							
which was derived by solving simultaneously the equations for the solubility							
product constant of CuO and of the cupric hydroxyperchlorate.							
METHOD/APPARATUS/PROCEDURE:					SOURCE AND PURITY OF MATERIALS:		
Mixtures of Cu(C10,), NaOH solution, and				A11 ma	All materials were of purified or reagent		
H ₂ 0 were prepar	ed, kept a	$t 25 \pm 0.1^{\circ}C$	and	grade	quality	. The Cu(Cl0,), was prepared	
occasionally st	irred. The	e pH of the s	solu-	from CuO and HC10,.			
tions was measu	red until :	it became cor	istant.	4			
The pH was measured with a glass electrode.							
In these solutions a cupric hydroxyperchlor-							
ate and CuO were equilibrium solid phases							
and from the K o of the basic perchlorate							
(which was dete	(which was determined separately), the pH						
ot the solution	, and the	concentration	n of	1			
The CIU- ion, the K o of CuU was calculated.							
tion that the Cu ²⁺ is seen on the assump-							
the same for all equilibria in the system				ESTIMATED ERROR:			
the same for all equilibria in the system.				No dotoile are given			
				no details are given.			
				1			
1				DEPERT	NCRE		
				REFERENCES:			
1				1			
				1			
				1			
1							
L				1			

.

.