COMPONENTS:	EVALUATOR:
 Arsenic; As; [7440-38-2] Mercury; Hg; [7439-97-6] 	C. Guminski; Z. Galus Department of Chemistry University of Warsaw Warsaw, Poland July, 1985

CRITICAL EVALUATION:

The solubility of arsenic in mercury was speculated to be very low by Tammann and Hinnüber (1). Kozin estimated solubilities of 2.8×10^{-13} (2) and 1.6×10^{-9} at % (3) at 298 K. Gladyshev (4) reported on arsenic solubility of 1.6×10^{-9} at % at room temperature, a value identical to Kozin's second estimated solubility (3), but because no details of the experimental determination were presented for ref. (4) it is difficult to assess the validity of this result. Nevertheless, the data of Refs. (2-4) confirm that of (1). Strachan and Harris (5) reported a solubility determination of 0.646 at % at room temperature, but this value is much too high; the error in this determination is attributed to evaporation losses of arsenic during the analysis.

Kamenev and coworkers (6) reported that the saturated amalgam of arsenic should be in equilibrium with As_2Hg_3 ; however, the solubility could not be estimated from the experiments performed by these authors.

It is clear that further solubility measurements are needed in this system.

References

- 1. Tammann, G.; Hinnüber, J. Z. Anorg. Chem. 1927, 160, 249.
- 2. Kozin, L.F. Tr. Inst. Khim. Nauk Akad. Nauk Kaz. SSR 1962, 9, 101.
- Kozin, L.F. Fiziko-Khimicheskie Osnovy Amalgamnoi Metallurgii, Nauka, Alma-Ata, 1964.
- Gladyshev, V.P.; cited by Kozin, L.F.; Nigmetova, R.Sh.; Dergacheva, M.B. Termodinamika Binarnykh Amalgamnykh Sistem, Nauka, Alma-Ata, <u>1977</u>, p. 268.
- 5. Strachan, J.F.; Harris, N.L. J. Inst. Metals 1956-57, 85, 17.
- 6. Kamenev, A.I.; Mustafa, I.; Agasyan, P.K. Zh. Anal. Khim. 1984, 39, 1242.

Antimony

COMPONENTS:	EVALUATOR:
<pre>(1) Antimony; Sb; [7440-36-0] (2) Mercury; Hg; [7439-97-6]</pre>	C. Guminski; Z. Galus Department of Chemistry University of Warsaw Warsaw, Poland July, 1985

CRITICAL EVALUATION:

The solubility of antimony in mercury near room temperature has been shown to be low. Tammann and Hinnüber (1) determined a solubility of 4.8 x 10^{-5} at % at 291 K by EMF measurements, whereas Strachan and Harris (2) reported a solubility of 3.3 x 10^{-2} at %. These values are too low and too high, respectively, when compared to more reliable measurements which have been reported subsequently. At 293 K the following solubilities have been reported: 3.5×10^{-4} at % by Levitskaya and Zebreva (3), 3.6×10^{-4} at % by Zebreva and Kozlovskii (4), 1.1×10^{-3} at % by Zaichko and Zakharov (5), and 9×10^{-4} at by Lange and Bukhman (6). In refs. (4-6) voltammetry was used to determine the at % solubility of Sb by anodic oxidation of the amalgams of various concentrations, while in refs. (3) and (4) the determinations were made potentiometrically on the amalgam concentration cells. Verplaetse and coworkers (7) determined the solubility of Sb in Hg by cyclic and stripping voltammetry at 298 K and reported a value of 1.27 x 10^{-3} at %; this solubility is in good agreement with those reported above (5,6). Zaichko and Zakharov (8) also determined the antimony solubility by voltammetry, presumably at room temperature, and reported a value of 1×10^{-3} at %. Liebl (9) reported a solubility of 3.8 x 10^{-3} at % at room temperature, but no details of the coulometric method were described; the latter solubility is tenfold higher than that reported by Zebreva and Kozlovskii (4).

Zakharova and coworkers (10) determined the antimony solubility, probably at 298 K, by chronoamperometric oxidation of the amalgam, and reported a value of 1.0×10^{-3} at %. At 293 K Bukhman and Dragavtseva (11) reported a solubility of 6.8 $\times 10^{-4}$ at %. Ignateva and Dubova (12), without presenting experimental details and presumably at room temperature, reported a solubility of 6.6-7.0 $\times 10^{-4}$ at %. Kozin's (13) estimated solubility of 5 $\times 10^{-5}$ at % at 298 K is much too low. Toibaev (14) stated that the saturated antimony amalgam at 293 K should contain less than 9 $\times 10^{-4}$ at % antimony; the solubility measurements reported above appear to confirm the latter statement.

Jangg and coworkers (15,16) determined the solubility of antimony at high temperatures and showed that the saturated amalgam is in equilibrium with pure antimony; they also showed that there is complete miscibility at temperatures above 904 K. The extrapolation of the high temperature solubilities to 298 K yields a solubility near 10^{-3} at %. The high temperature measurements of Jangg and coworkers showed a tendency for the antimony to supersaturate; if this tendency extends to room temperature the lower values of the solubility would probably be more reliable, as reported by other workers discussed above.

The homogeneous amalgam is in equilibrium with pure Sb. However, as shown (17) on the inset in Fig. 1 there appears to be a break in the solubility curve near 473 K; the break suggests the peritectic formation of a compound, although this compound was not detected. The formation of Hg₃Sb₂ was reported by Ugai and Gordin (18).

Tentative values of the antimony solubility in mercury:

<u>T/K</u>	<u>Soly/at %</u>	<u>Reference</u>
293	4×10^{-4}	[3,4]
298	5×10^{-4a}	[3]
323	1.5×10^{-3}	[3,6]
373	2×10^{-2}	[16]
473	0.12	[16]
573	0.7 ^b	[15,16]
673	13 ^b	[15,16]
773	54 ^a	[15]
873	91	[15]

^aInterpolated value from cited references.

^bMean value from data of cited references.

(continued next page)

Antimony

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Antiments She [7/40, 26, 0]	Lance A A , Bukkman C B
(1) Antimony; SD; $[7440-36-0]$ (2) Mercury: Hg: $[7439-97-6]$	Elektrokhimiya 1974, 10, 391-5.
(2) mercury, mg, [7455 57 6]	<u>100/010/010/00/00 10/01</u> , 10,
VARIABLES:	PREPARED BY:
Temperature: 20-80°C	C. Guminski; Z. Galus
EVDEDIMENTAL VALUES.	
EAFERIMENTAL VALUES:	
Solubility of antimony in mercury:	
<u>t/°C</u>	Soly/at %
20	0.9×10^{-3}
40	1.75×10^{-3}
60	2.55×10^{-5}
80	3.4×10^{-5}
The enthalpy of solution of Sb at saturation	, calculated from the $(T/K)^{-1}$ dependence
of the solubility, was 21.1 kJ mol ⁻¹ .	
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Amalgams prepared by electrolysis of $Sh_2(SQ_1)_2$ solutions in 1-3 mol dm ⁻³ HoSQ.	Nothing specified.
at a mercury cathode. Sb content of amalgam	
determined by difference in Sb(III) concen- tration before and after electrolysis:	
Sb(III) concentration determined by bromate	
titration. Limiting anodic currents (i.e.,	
were measured for amalgams of varying Sb	
content. A plot of i _d vs. Sb content gave	
Sb content. A second break in the i_d vs.	
Sb content curve was observed for super-	ESTIMATED ERROR:
the authors to the oxidation of elemental	Soly: precision of method probably around 10% (compilers).
Sb in a two-phase amalgam.	Temp: nothing specified.
	REFERENCES :

175

• '

Antimon	Y
---------	---

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Antimony: Sb: $[7440-36-0]$	Bukhman, S.P.: Dragavtseva, N.A.
(2) Mercury; Hg; [7439-97-6]	Izv. Akad. Nauk Kaz. SSR, Ser. Khim. 1970, 20, No. 5, 23-31.
VARIABLES:	PREPARED BY:
Temperature: 20°C	C. Guminski; Z. Galus
EXPERIMENTAL VALUES:	
Solubility of antimony in mercury at 20°C was	s reported to be 6.8×10^{-4} at %.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The amalgam was prepared by electrolysis	Nothing specified.
and then was aged for one hour. The antimony content was determined by the	
"bromate method". Polarization curves (i vs. E) of the amalgam oxidation were	
recorded to determine the potential of the limiting current. In other experiments	
the potentiostatic curves (i vs. t) were	
current (0.3 V vs. NHE). There was a	
breakpoint in the curve when the amaigam became saturated with antimony.	
	ESTIMATED ERROR:
	than + 20% (compilers).
	Temp: nothing specified.
	REFERENCES ;

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Antimony, Sb; [7440-36-0] (2) Mercury; Hg; [7439-97-6]</pre>	Jangg, G.; Lihl, F.; Legler, E. Z. Metallk. <u>1962</u> , 53, 313-16.	
VARIABLES:	PREPARED BY:	

```
EXPERIMENTAL VALUES:
```

Liquidus temperatures of the antimony-mercury system:

<u></u>	<u>Soly/at %</u>
573.2	0.8
655.2	6.4
673.2	11.9
683.2	15.5
713.2	28,6
738.2	39.7
758.2	50.0
766.2	51.9
783.2	59.5
801.2	67.5
833.2	79.5
868.2	91.0
903.7	100

Antimony and mercury did not form any compound over the complete composition range, but a single eutectic was observed on the Hg-rich side; the eutectic temperature was within \pm 0.1 K from the freezing point of Hg.

AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The liquidus temperature was determined thermographically from cooling and heating curves of the amalgams which were sealed in an ampule of Supremaxglas. The under- cooling of the melt was minimized by a strong mechanical vibration of the sample on a vibrating table. The liquidus temperature was determined from the breakpoint in the temperature versus time plot.	Nothing specified.		
	ESTIMATED ERROR:		
	Soly: nothing specified.		
	Temp: precision \pm 5 K.		
	REFERENCES :		

78	Antimony
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Antimony; Sb; [7440-36-0]	Zebreva, A.I.; Kozlovskii, M.T.
(2) Mercury; Hg; [7439-97-6]	Collect. Czech. Chem. Commun. <u>1960</u> , 25, 3188–94.
VARIABLES:	PREPARED BY:
Temperature: 20°C	C. Guminski; Z. Galus
EXPERIMENTAL VALUES:	
measurements. The respective atomic % 3.5 x 10 ⁻⁴ and 3.7 x 10 ⁻⁴ at %.	solubilities calculated by the compilers are
AUX	ILIARY INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The antimony amalgam was prepared by electrolysis of $Sb_2(SO_4)_3$ on the mercu cathode. The solubility was determine polarography and potentiometry. In the former method the limiting current was linearly dependent on the concentration only up to the saturation point of the amalgam. In the case of potentiometry potential of the amalgam electrode was linearly dependent on the logarithm of antimony content for homogeneous solution in mercury. At saturation an inflect:	Mercury was chemically purified with Hg ₂ (NO ₃) ₂ then distilled under vacuum. Hg ₂ (NO ₃) ₂ then distilled under vacuum. Other chemicals were chemically pure. S on e y the s f the tion Ion
was observed in the curve of the latter relationship.	er Soly: nothing specified, but may be
• · · · · ·	greater than \pm 10% (compilers).

Temp: nothing specified.

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Antimony; Sb; [7440-36-0] (2) Mercury; Hg; [7439-97-6]</pre>	Jangg, G.; Palman, H. Z. Metallk. <u>1963</u> , 54, 364-9.
VARIABLES:	PREPARED BY:
Temperature: 96-453°C	C. Guminski; Z. Galus

EXPERIMENTAL VALUES:

The mass % solubility of antimony in mercury was presented graphically as a function of temperature. The data points were read off the curve and the solubilities converted to atomic % by the compilers.

.

<u>t/°C</u>	<u>Soly/mass %</u>	<u>Soly/at %</u>	<u>t/°C</u>	Soly/mass %	Soly/at %
96	0.012	0.020	272	0.19	0.31
130	0.020	0.033	300	0.38	0.62
150	0.026	0.043	310	0.84	1.3
190	0.054	0.089	333	1.2	2.0
200	0.074	0.12	340	2.0	3.2
210	0.080	0.13	350	3.0	4.8
240	0.091	0.15	375	6.5	10.3
250	0.12	0.19	400	9.2	14.3
260	0.13	0.21	425	13	20
			453	24	34

The saturated amalgam was reported to be in equilibrium with pure antimony.

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The heterogeneous amalgam was introduced into a specially constructed apparatus made of refractory chromium steel. Such steel apparatus could be used because the solu- billity of iron in mercury is very low and	SOURCE AND PURITY OF MATERIALS: Nothing specified.
blifty of from in mercury is very low and the Cr(III)-oxide film inhibits the wetting of the steel by mercury. After twelve hours of equilibration at the experimental temperature the amalgam was filtered through a sintered-iron frit under purified nitrogen pressure. Usually 3- to 4-fold filtration was necessary. The metal content of the filtered, saturated amalgam was then determined by an unspecified method. For experiments carried out below 320°C the amalgam was equilibrated in a glass vessel.	
	ESTIMATED ERROR: Soly: precision \pm 5%. Temp: precision \pm 2 K.
	REFERENCES :

180

Antimony

	,	,		
COMPONENTS :		ORIGINAL MEASUREMENTS:		
<pre>(1) Antimony; Sb; [7440-36-0] (2) Mercury; Hg; [7439-97-6]</pre>		Levitskaya, S.A.; Zebreva, A.I. Elektrokhimiya <u>1966</u> , 2, 92-6.		
VARIABLES:		PREPARED BY:		
Temperature: 20-80°C		C. Guminski; Z. Galus		
EXPERIMENTAL VALUES:				
Solubility of antimony in mercury	:			
<u>t/°C</u> <u>S</u>	oly/mol_dm	3 <u>Soly/at %^a</u>		
20 2	$.40 \times 10^{-4}$	3.6×10^{-4}		
40 8	$.24 \times 10^{-4}$	1.22×10^{-3}		
60 1	$.70 \times 10^{-3}$	2.52×10^{-3}		
80 2	$.76 \times 10^{-3}$	4.08×10^{-3}		
^a by compilers.				
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:		
The amalgam was prepared by elect	ro-	Nothing specified.		
reduction of Sb(III) at the mercu	ry the cell.			
	1			
$Sb_2(SO_4)_3$ (10 mol dm)+				
Sb(Hg) KNaC ₄ H ₄ O ₆ $(0.075 \text{ mol dm}^{-3})$	Sb(Hg) _x			
$+ H_2SO_4 (1 \text{ mol } dm^-)$				
	• • • • • • • • • • • •			
of the amalgam concentration up t	o the			
solubility limit. Beyond the lat EMF remained virtually constant.	ter the	ESTIMATED ERROR: Soly: nothing specified; precision may be no better than + 15% (compilers).		
		Temp: nothing specified.		
		REFERENCES :		
		· · · · · · · · · · · · · · · · · · ·		
		1		

181	
-----	--

, ·

Antimony		
COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) Antimony; Sb; [7440-36-0] (2) Mercury; Hg; [7439-97-6]</pre>	Verplaetse, H.; Donche, H.; Tammermann, E.; Verbeek, F. J. Electroanal. Chem. Interfacial Electrochem. <u>1978</u> , 93, 213-19.	
VARIABLES:	PREPARED BY:	
One temperature: 25°C	C. Guminski; Z. Galus	
EXPERIMENTAL VALUES:		
The solubility of antimony in mercury at 25°	C was reported to be 1.27×10^{-3} at %.	
The enthalpy of solution of Sb in Hg was rep	orted to be 16.7 kJ mol ^{-1} .	
	•	
	·	
AUXILIARY	INFORMATION	
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
Antimony amalgam was prepared by the	Mercury was purified by distillation. It	
electroreduction of Sb(III) on the hanging-	was then anodically dissolved and	
mercury and sitting-mercury drop electrodes. In the case of voltammetric oxidation of	thousand the state of the state	
Sb from the heterogeneous amalgam, the		
shape of the peak current was changed. The charge corresponding to the oxidation	All solutions were prepared with analytical grade reagents and double-	
curve where this deformation was just	distilled water.	
detectable was used to calculated the	· · ·	
ensure equilibrium in the amalgam the		
oxidation process was carried out some time	POTIMATED EDDOR.	
arter the preparation of the amaigam.	Solv: precision + 4%	
	Temp: nothing specified	
	Temp. Rothing Specified.	
	REFERENCES :	

.

Bismuth

COMPONENTS :	EVALUATOR:
 Bismuth; Bi; [7440-69-9] Mercury; Hg; [7439-97-6] 	C. Guminski; Z. Galus Department of Chemistry University of Warsaw Warsaw, Poland July, 1985

CRITICAL EVALUATION:

Tammann (1) reported on the first study of the Bi-Hg system by determining the solidification temperatures upon addition of small amounts of bismuth to mercury. He found that the melting point of mercury was depressed by 0.30 K at a bismuth concentration of 0.217 at %.

The liquidus has been determined over wide concentration ranges by several workers. Pushin (2) reported the first extensive study of this system by thermoanalysis over the range of 1.4 to 97.3 at % Bi; however, Pushin's bismuth solubility at concentrations below 5 at % is too high by comparison with later measurements. Petot-Ervas et al. (3,4) determined the liquidus in the range of 0.1 to 30 at % Bi by measuring the EMF of concentration cells and from 30 to 90 at % Bi by thermoanalysis. Nosek and Yan-Sho-Syan (5) used thermoanalysis to determine the solubility of bismuth over a temperature range of 269 to 533 K, but the solubilities reported by these authors are lower than those of (3). Predel and Rothacker (6) redetermined the Bi-Hg phase diagram, but the solubilities of bismuth determined by these authors in the middle range of the amalgam composition lie between those of (3,4) and of (5). It has been shown (4-6) that the equilibrium solid phase in this system is bismuth. In the opinion of the evaluators, the data of Petot-Ervas et al. (3,4) are the preferred solubilities.

The solubility of bismuth was determined over narrower temperature ranges by the following authors with satisfactory agreement with those of (3,4): Dergacheva and Kozin (7) employed EMF measurements to determine the solubilities between 298 and 348 K; Kozin and Nigmetova (8) also used the same technique with satisfactory results; Schenk et al. (9) employed thermoanalysis over the temperature range of 303 to 373 K; Heycock and Neville (10) reported four points in the Bi-rich region.

Single determinations of the solubility of bismuth near room temperature have been reported by several authors (11-14).

The reported solubilities of 0.84 at % at room temperature (15) and of 0.82 at % at 298 K (16) are too low and are rejected. Kozin's (17) estimated solubility of 2.8 at % at 298 K is too high. Campbell and Kartzmark (18) reported that they exactly confirmed the results of Pushin (2), but no data were presented by these authors.

The phase diagram for this system is shown in Fig. 1 (19).

Recommended (r) and tentative values of the solubility of bismuth in mercury:

<u>T/K</u>	<u>Soly/at %</u>	Reference
234.1	0.072	[4]
243	0.15	[4]
253	0.26 ^a	[4]
263	0.36	[4]
273	0.6 ^a	[4]
293	1.1	[3,4,12]
298	1.3 ^a	[3,4]
323	3.7 ^b	[3,4]
373	22	[3,4]
473	70 (r)	[2-4]

^aInterpolated value from cited references.

^bMean value from data of cited references.

(Continued next page)

Bismuth

183

34 Bismuth			
COMPONENTS: 0		ORIGINAL MEASUREMENTS:	
(1) Bismuth: Bi: [7440-69-9]		Tammann, G.	
(2) Mercury; Hg; [7439-97-6]		Z. Phys. Chem. 1889, 3, 441-9.	
VARIABLES:		PREPARED BY:	
1emperature: -39 C		C. Guminski; Z. Galus	
EVDEDINENTAL VALUEC.		L	
EXPERIMENTAL VALUES:	ананана А <i>П</i> (17	men slitter of bismuth.	
Meiting point depression of me	cury, Δ17κ, u	pon addition of bismuth:	
	Bi_C	lontent	
$\Delta T/K$	mass %	at %	
0.15	0.054	0.052	
0.30	0.109	0.104	
0.30	0.227	0.217	
^a by compi	lers		
	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	AUXILIARY	INFORMATION SOURCE AND PURITY OF MATERIALS:	
METHOD/APPARATUS/PROCEDURE: The melting points were determ thermometrically. No further were given.	AUXILIARY ined ietails	INFORMATION SOURCE AND PURITY OF MATERIALS: Nothing specified.	
METHOD/APPARATUS/PROCEDURE: The melting points were determ thermometrically. No further were given.	AUXILIARY ined ietails	INFORMATION SOURCE AND PURITY OF MATERIALS: Nothing specified.	
METHOD/APPARATUS/PROCEDURE: The melting points were determ thermometrically. No further were given.	AUXILIARY ined ietails	INFORMATION SOURCE AND PURITY OF MATERIALS: Nothing specified.	
METHOD/APPARATUS/PROCEDURE: The melting points were determ thermometrically. No further were given.	AUXILIARY ined details	INFORMATION SOURCE AND PURITY OF MATERIALS: Nothing specified.	
METHOD/APPARATUS/PROCEDURE: The melting points were determ thermometrically. No further were given.	AUXILIARY ined details	INFORMATION SOURCE AND PURITY OF MATERIALS: Nothing specified.	
METHOD/APPARATUS/PROCEDURE: The melting points were determ thermometrically. No further were given.	AUXILIARY ined details	INFORMATION SOURCE AND PURITY OF MATERIALS: Nothing specified.	
METHOD/APPARATUS/PROCEDURE: The melting points were determ thermometrically. No further were given.	AUXILIARY ined details	INFORMATION SOURCE AND PURITY OF MATERIALS: Nothing specified.	
METHOD/APPARATUS/PROCEDURE: The melting points were determ thermometrically. No further were given.	AUXILIARY ined details	INFORMATION SOURCE AND PURITY OF MATERIALS: Nothing specified. ESTIMATED ERROR: Soly: nothing specified.	

Bismuth

ORIGINAL	MEASURE
Hevcock	. с.т.:

COMPONENTS:			ORIGINAL MEASUREMENTS:	
(1) Bismuth;	Bi; [7440-	-69-9]	Heycock, C.T.; Neville, F.H.	
(2) Mercury; Hg; [7439-97-6]		-97-6]	J. Chem. Soc. <u>1892</u> , 888-914.	
VARIABLES:			PREPARED BY:	-
Temperature:	258-267°C		C. Guminski; Z. Galus	
EXPERIMENTAL VAL	LUES:			
Freezing point	of Bi-Hg	amalgams:		
	C	at.Hg/100 at.Bi	at % Hg ^a	
	266.65	-	0	
	266.17	0.225	0.224	
l	264.65	0.911	0.903	

3.17 4.11

3.27

4.29

^aby compilers

259.77

257.80

AUXILIARY INFORMATION		
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
The amalgams were prepared by thoroughly mixing weighed quantities of the metals at red heat after they had been sealed in evacuated hard-glass tubes. Freezing points of the amalgams were determined with carefully calibrated thermometers.	Nothing specified.	
	ESTIMATED ERROR:	
	Soly: nothing specified.	
	Temp: precision to better than ± 0.05 K.	
	REFERENCES :	

185

ē

n:

186		ł	Sismuth			
COMPONENTS:	an a		ORIGINAL	MEASUREMENT	ˈS :	
 Bismuth; Mercury; 	B1; [7440-69-9 Hg; [7439-97-6]	Pushin 2h. Ru 1902, Z. Ano.	, N.A. 88. Fiz. Khi 34, 856–904. rg. Chem. <u>19</u>	m., Obshch., Ser <u>03</u> , 36, 201–54.	. Khim.
VARIABLES:			PREPAREI) BY:		
Temperature:	18-262°C		C. Gum	inski; Z. Ga	lus	
EXPERIMENTAL V	ALUES:	·····	I			
Freezing poin	ts of bismuth a	malgams:				
±/°c	at % Hø	t∕°c	at % Hg	t/°C	at % Hg	
<u>07 0</u>	0.7	190 5	26.2	10/ 5	72.0	
261.7	2.1	182.0	40.0	104.5	75.0	
204	10.0	162.0	40.0	90.0	70.2	
240 5	10.0	156 7	4 5. 0	81.7	83.7	
240.5	15.7	142.7	56.0	68	89.4	
233	20.0	133.7	60.0	56	93.3	
219.2	22.3	125.0	64.2	~.44	95.8	
213.2	25.0	117.2	66.7	∿32	97.5	
205	28.9	113.0	68.6	∿18	98.6	
195.7	33.3					
		AUXILI	ARY INFORMAT	TON		
METHOD/APPARAT	US/PROCEDURE:		SOURCE	AND PURITY O	F MATERIALS;	
The amalgams were prepared by heating and mixing appropriate weights of each metal. Cooling curves were determined with the amalgams protected from oxidation by a surface film of paraffin or vaseline.		Nothir	ng specified.			
			ESTIMAT	ED ERROR:		
1			Soly:	nothing spe	cified.	
			Temp:	precision <u>+</u>	- U.5 K.	
			REFEREN	ICES ;		
						T

Distriction 187			
COMPONENTS:	ORIGINAL MEASUREMENTS:		
 Bismuth; B1; [7440-69-9] Mercury; Hg; [7439-97-6] 	Schenk, H.; Steinmetz, E.; Frohberg, M.G. Arch. Eisenhüttenw. <u>1963</u> , 34, 562-63.		
VARIABLES:	PREPARED BY:		
Temperature: 18-100°C	C. Guminski: Z. Galus		
	,		
EXPERIMENTAL VALUES:	·		
The solubility of bismuth in mercury was rep logarithm of solubility versus $1/(T/K)$. The by the compilers.	orted graphically as a plot of the data points were read from the curve		
<u>t/°C</u>	Soly/at %		
18	0.46 ^a		
30	1.15		
40	2.2		
49	3.3		
60	5.6		
69	8.7		
80	11.0		
90	16.2		
100	23.5		
(compilers).			
AUXILIARY	INFORMATION		
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
Bismuth particles were introduced into the mercury phase under argon atmosphere in small glass container. The container was placed in a thermostated bath. The amalgams were filtered through glasswool filter. The filtrate was analyzed by a complexometric method with Titriplex (from Merck). To test for saturation, the filtrations were made after various times from the moment of mixing of the metals.	Bismuth and mercury were chemically pure grade.		
	ESTIMATED ERROR:		
	Soly: nothing specified.		
	Temp: nothing specified.		
	REFERENCES :		

- .

11

88 Bismuth		
COMPONENTS :	ORIGINAL MEASUREMENTS:	
 Bismuth; Bi; [7440-69-9] Mercury; Hg; [7439-97-6] 	Nigmatullina, A.A.; Zebreva, A.I. Izv. Akad. Nauk Kaz. SSR, Ser. Khim. 1964, 14, No. 4, 18–22.	
VARIABLES:	PREPARED BY:	
Temperature: 20°C	C. Guminski; Z. Galus	
EXPERIMENTAL VALUES:	······	
AUXILIA	ARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: The amalgams were prepared by electrolysi and were used as the electrodes in a concentration cell. The concentration of one electrode was kept constant while the Bi concentration in the other amalgam electrode was varied. The curve of EMF vs. logarithm of the ratio of Bi concen- tration in the electrodes exhibited a breakpoint at amplear saturation	SOURCE AND PURITY OF MATERIALS: Nothing specified.	

ESTIMATED ERROR:

Soly:	precision	no	better	than	several
	percent.				

Temp:	precision	+	0.1	к.
-	-			

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Bismuth; B1; [7440-69-9] (2) Mercury; Hg; [7439-97-6]</pre>	Nosek, M.V.; Yan-Sho-Syan, G.V. Izv. Akad. Nauk Kaz. SSR, Ser. Khim. 1965, 15, No. 4, 26-32.
VARIABLES:	PREPARED BY:
Temperature: (-4)-265°C	C. Guminski; Z. Galus

.

EXPERIMENTAL VALUES:

.

The data were presented graphically as a phase diagram; the experimental liquidus points were read from the curve by the compilers.

t/°C Soly/at %	t/°C Soly/at %
$\begin{array}{cccc} -4 & 1.00 \\ 46 & 2.65 \\ 62 & 5.04 \\ 81 & 7.63 \\ 85 & 10.24 \\ 102 & 14.78 \\ 109 & 20.05 \\ 110 & 17.50 \\ 121 & 25.20 \\ 134 & 27.51 \\ 137 & 30.16 \\ 144 & 35.06 \\ 153 & 37.50 \\ 160 & 40.05 \\ 172 & 45.02 \\ 177 & 47.52 \\ 188 & 55.00 \\ 175 & 50.13 \end{array}$	196 57.49 205 60.16 209 65.09 210 69.82 213 67.56 227 75.04 228 77.41 233 80.16 241 84.98 242 87.56 248 89.91 260 94.95 265 97.34
AU	XILIARY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The liquidus was determined by therm analyses. For each composition, the alloy was heated to 573 K then coole a rate of 1-3 K per minute. A pyrom of the Kurnakov-type was used for th thermal analyses.	al Mercury was purified by chemical and electrochemical methods, then distilled twice under reduced pressure. eter e Bismuth was 99.998% pure.
	ESTIMATED ERROR:
	Soly: nothing specified.
	REFERENCES :

.

30 Bismuth			
COMPONENTS :		ORIGINAL N	ÆASUREMENTS:
(1) Bismuth; B1; [74	40-69-91	Predel,	B.: Rothacker, D.
(2) Mercury; Hg; [74	39-97-61	J. Less-	Common Met. 1966, 10. 392-401.
	-		
VARIABLES:		PREPARED	BY:
Temperature: (-16)-2	264°C	C. Gumir	nski; Z. Galus
EXPERIMENTAL VALUES:		ł	
The liquidus data wer were read for each te	re presented graphic emperature from the	cally as a phas curve by the c	se diagram; the solubilities compilers.
<u>t/°C</u>	Soly/at %	<u>t/°C</u>	Soly/at %
-16	0.9	125	40.6
- 6	1.3	132	44.5
17	1.4	162	55.2
35	3.0	178	63.7
38	4.0	194	72.1
42	5.0	208	77.4
57	8.5	225	84.2
75	16.6	238	88.1
90	22.	245	90.6
97	26.3	252	93.7
105	31.8	257	95.6
121	36.0	264	97.9
METUON /ADDADATIIS / PROCE	AUXIL	IARY INFORMATIC	DN
METHOD/AFFARA100/18002	DURE	SUURCE AL	D PURITI OF MALEALAD.
The amalgams were prepared from the pure metals in evacuated tubes. Temperatures on the liquidus curve were determined by differential thermal analysis.		e Both men s pure. y	rcury and bismuth were 99.9995%

ESTIMAT	ED ERROR:	
Soly:	nothing	specified.
Temp:	nothing	specified.

			BISH	luth	19
COMPONENTS :				ORIGINAL MEASUREMENTS:	
(1) Bismuth; B1; [7440-69-9]		 Petot-Ervas, G.; Allibert, M.; Petot, C.; Desrè, P.; Bonnier, E. Bull. Soc. Chim. Fr. 1969, 1477-81. 			
(2) Mercury	y; ng; [7439-97	-0]		 Desrè, P.; Bonnier, E. C.R. Acad. Sci., Ser. 2 1965, 261, 3406-9. 	
VARIABLES:				PREPARED BY:	
Temperature	: (-39)-240°C			C. Guminski; Z. Galus	
EXPERIMENTAL	VALUES:				
Solubility of	of bismuth in r	mercury:			
]	Electrochemical	Measuremen	nts	Thermal Analysis	
t∕°C	Soly/at %	t∕°C	Soly/a	t/°C Soly/at %	
-35.4	0.1	37	2	120 30	
-30.3	0.15	47	3	135 40	
-22.1	0.22	54	4	155 50	
-9.85	0.36	62	5	170 60	
-2.6	0.46	71	8	200 70	
17.6	0.97	79	11	240 90	
22.5	1.12	81	13		
32.4	1.75	86	15		
42.2	2.75	90	17		
50.85	4.0	96	20		
61.6	5.8	108	25		
69.5	7.7	118	30		
Eutectic po reported that	int was determ: at the equilibr	lned at 0.0 rium solid-y	72 ± 0.(phase co	004 at % Bi and -39.10 ± 0.04°C. It was onsisted of pure Bi.	
		AU	XILIARY	INFORMATION	
METHOD/APPARA	TUS/PROCEDURE:			SOURCE AND PURITY OF MATERIALS:	
Solubilities were determined by EMF measurements and by thermal analysis. EMF were determined with the concentration cell,		Nothing specified.			
Various elem Bil ₃ -KI, Bid and H ₂ O-LiC liquidus ter determined 1	ctrolytes were Cl3-ZnCl ₂ in g l eutectic mixi mperatures abo by thermal ana	used, inclu lycerine or cure. The ve 393 K we lysis.	uding: H ₂ O, re		
				ESTIMATED EPPOD.	

Soly: nothing specified; precision no better than few percent (compilers).

.

Temp: precision \pm 0.02 K.

192

Bismuth

152 Bish	iath i
COMPONENTS :	ORIGINAL MEASUREMENTS:
 Bismuth; Bi; [7440-69-9] Mercury; Hg; [7439-97-6] 	Dergacheva, M.B.; Kozin, L.F. Zh. Fiz. Khim. <u>1977</u> , 51, 417-20.
VARIABLES:	PREPARED BY:
Temperature: 25-75°C	C. Guminski; Z. Galus
EXPERIMENTAL VALUES:	
Solubility of bismuth in mercury:	
<u>t/°C</u>	oly/x(Bi)
25	0.0150
40	0.0244
65	0.0646
75	0.0860
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The amalgam was prepared electrolytically	Mercury was chemically purified and
and was used to construct the cell	distilled twice.
Bi(Hg) Bi(III) xBi(Hg)	Bismuth was 99.999% pure.
The concentration of Bi in the left-hand half-cell was kept constant, while that in the right-hand side was varied. At concentrations of the amalgam exceeding the saturation point, the EMF of the cell was independent of the amalgam concen- tration.	All other chemicals were specified as very pure.
	ESTIMATED ERROR:
	Soly: nothing specified. Precision of EMF measurement was $\pm 10^{-4}$ V.
	Temp: nothing specified.
	REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
 Bismuth; Bi; [7440-69-9] Mercury; Hg; [7439-97-6] 	Filippova, L.M.; Zhumakanov, V.Z.; Zebreva, A.I. Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol. <u>1978</u> , 21, 1450-3; <u>1980</u> , 23, 204-7.
VARIABLES:	PREPARED BY:
one cemperature: 25 C	U. Guminski, Z. Galus

EXPERIMENTAL VALUES:

The solubility of bismuth in mercury at 25°C was reported to be 1.55 \pm 0.05 at %.

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Heterogeneous amalgam was obtained by addition of bismuth to mercury. The amalgams were titrated with Hg and employing calorimetric end-point detection. The solubility was determined from the change in slope of the plot of the enthalpy of dilution as a function of bismuth content in the amalgams.	Nothing specified.
	ESTIMATED ERROR:
	Soly: nothing specified; precision no better than several percent (compilers). Temp: nothing specified.
	REFERENCES :