COMPONENTS: ORIGINAL MEASUREMENTS: Mercury(I) selenite; Hg₂SeO₃; Chukhlantsev, V.G.; Tomashevsky, G.P. [15855-76-2] 2a. Sulfuric acid; H₂SO₄; [7664-93-9] Zh. Anal. Khim. <u>1957</u>, 12, 296-301; 2b. Nitric acid; HNO₃; [7697-37-2] *J. Anal. Chem. USSR 1957, 12, 303-9. 3. Water; H₂O; [7732-18-5] VARIABLES: PREPARED BY: Sulfuric and nitric acid concentrations Mary R. Masson One temperature: 293 K EXPERIMENTAL VALUES: All concentrations are expressed in units of mol $\mbox{dm}^{-3}.$ [Hg⁺] pHg log $\alpha_{L(H)}$ p[SeO₃²⁻] Final Soln. Initial pK_{s0} pН pН 5.8×10^{-5} 1.3 x 10⁻⁴ 2.69 2.72 5.49 10.05 18.53 H₂SO₄ 4.24 2.06 2.20 3.89 6.20 10.39 18.17 HNO3 2.95 4.58 5.03 9.92 19.08 2.40 4.14 5.66 10.10 18.38 3.96 6.18 10.44 18.36 2.08 The average value is $K_{s0} = 3.8 \times 10^{-19} \text{ mol}^3 \text{dm}^{-9}$. $(pK_{c0} = 18.42)$ Notes. $[Se_{tot}] = [Hg^+]$ and $[Se0_3^{2-}] = [Se_{tot}]/\alpha_{L(H)}$ where $\alpha_{L(H)} = (1 + [H^+]/K_2 + [H^+]^2/K_1K_2)$ and the acid dissociation constants have the values $K_1 = 4 \times 10^{-3}$ and $K_2 = 1.0 \times 10^{-8}$ (ref. 1). (continued on next page) AUXILIARY INFORMATION SOURCE AND PURITY OF MATERIALS: METHOD APPARATUS/PROCEDURE: Solutions of nitric and sulfuric acids C.P.-grade reagents wereused. Mercury(I) selenite was prepared by mixing 0.1N were saturated with mercury(I) selenite by shaking in a thermostat at 20 ± 0.05 °C for 8 hr. The remaining solid phase was solutions of mercury(I) nutrate and sodium selenite in the cold. The precipitate was removed by centrifugation, then the pH was washed with water and dried at 20°C. measured ("Moskip" pH meter, to 0.01 pH Mercury was determined by titration with unit) and the mercury(I) concentration was ammonium thiocyanate, and selenium was determined by titration with 0.01N ammonium determined gravimetrically as the element thiocyanate. after precipitation with hydrazine. ESTIMATED ERROR: $\pm 2.2 \times 10^{-19}$. (The spread in the results is 0.91 of a log unit.) Temperature: ±0.05 K REFERENCES : 1. Rumpf, P. Compt. Rendu 1933, 197, 686.

r									
COMPONENTS: 1. Mercury(I	ORIGINAL MEASUREMENTS:								
2a. Sulfuric acid; H ₂ SO ₄ ; [7664-93-9]					Chukhlantsev, V.G.; Tomashevsky, G.P.				
2b. Nitric acid; HNO ₃ ; [7697-37-2]				Zh. Anal. Khim. <u>1957</u> , 12, 296-301; *J. Anal. Chem. <u>USSR</u> <u>1957</u> , 12, 303-9.					
3. Water; H									
COMMENTS AND/OR ADDITIONAL DATA:									
The authors were in error in treating the mercury(I)) ion as Hg^+ , instead of as Hg_2^{2+} , and									
in expressing K_{s0} as $[Hg^+]^2$. $[Se0_3^{2-}]$ instead of as $[Hg_2^{2+}]$. $[Se0_3^{2-}]$. The compiler hs									
recalculated the results in the correct form.									
Soln.	Initial pH	Final pH	[Hg ₂ ²⁺]	pHg ₂ ²⁺	log a _{L(H)}	p[Se03 ⁻]	^{pK} s0		
H ₂ SO ₄	2.69 2.06	2.72 2.20	2.9×10^{-5} 6.5×10^{-5}	4.54 4.19	5.49 6.20	10.05 10.39	14.59 14.58		
hno ₃	2.95 2.40 2.08	3.05 2.59 2.22	1.3×10^{-5} 3.6 x 10^{-5} 5.5 x 10^{-5}	4.89 4.44 4.26	5.03 5.66 6.18	9.92 10.10 10.44	14.81 14.54 14.70		
The average value is $K_{\rm s0} = 2.3 \times 10^{-15} {\rm mol}^2 {\rm dm}^{-6}$.									
$pK_{s0} = 14.64.$									

COMPONENTS :	ORIGINAL MEASUREMENTS:						
1. Mercury(1) setenite; Hg_2SeO_3 ; [1585576-2]	Redman, M.J.; Harvey, W.W.						
2. Water; H ₂ O; [7732-18~5]	J. Less-Common Met. <u>1967</u> , 12, 395-404.						
VARIABLES:	PRLPARED BY:						
One temperature, probably 293 or 298 K	Mary R. Masson						
A solution in contact with a precipitate of Hg_2SeO_3 was found to contain							
4.97 x 10^{-5} mol dm ⁻³ mercury(I) and 7 x 10^{-3} mol dm ⁻³ total selenite at pH 3.4, and							
4.57 x 10^{-4} mol dm ⁻³ mercury(I) and 1.3 x 10^{-5} mol dm ⁻³ total selenite at pH 2.2.							
Values for the solubility product can be calculated as follows (compiler).							
pH log $\alpha_{L(H)}$ [Setot] [SeO ₃ ²⁻] [Hg	(I)] $[Hg^{2+}] = \frac{K_{s0}}{ma^{12}} dm^{-6}$						
34464 7×10^{-3} 1.6×10^{-7} 4.97	$x 10^{-5} 2.48 \times 10^{-5} 4.0 \times 10^{-12} 11.40$						
2.2 6.21 <1.3 x 10^{-3} 2.98 x 10^{-10} 4.57	$x 10^{-4} 2.27 \times 10^{-4} < 1.8 \times 10^{-15} > 14.74$						
If it is assumed that the wrong pH values have been assigned to the two solutions, the							
values 12.97 and >13.17 can be calculated for pK_{s0} and 1.07 x 10^{-13} and <6.76 x 10^{-14}							
$mol^2 dm^{-6}$ for K_{s0} .							
The temperature of the determination is not s	tated.						
*Calculated with $K_1 = 4 \times 10^{-4}$ and $K_2 = 1 \times 10^{-8}$ (ref. 1).							
AUXILIARY INFORMATION							
METHOD APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:						
The results were obtained from the analysis of the filtrates obtained in two	Not stated.						
experiments. In one, the precipitation was							
other equivalent amounts were used.							
Mercury(I) was determined with dithizone after oxidation to mercury(II) with conc.							
nitric acid; and selenite was determined							
with 5,5 -diaminobenzidine.							
	ESTIMATED ERROR:						
	REFERENCES:						
	1. Rumpf, P. Compt. Rendu 1933, 197, 686.						
	· · ··································						