COMPONENTS:
(1) Methane; CH_{4}; [74-82-8]
(2) 2-Propanone or acetone; $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$; [67-64-1]

EVALUATOR:

H. Lawrence Clever

Department of Chemistry
Emory University
Atlanta, GA 30322 USA
1985, April

CRITICAL EVALUATION:

Horiuti (ref l) measured seven values of the solubility of methane in 2-propanone between 196.55 and 303.15 K . Lannung and Gjaldbaek (ref 2) measured six values between 291.15 and 310.15 K . Both laboratories have the reputation of carrying out reliable measurements. The Lannung and Gjaldbaek mole fraction solubilities run about two percent larger than the Horiuti values over the common $291-310 \mathrm{~K}$ temperature interval.

Both sets of data are classed as tentative. All data in both papers were combined in a linear regression to obtain the equation for the 193 313 K temperature interval of
$\ln x_{1}=-13.6388+11.385 /(T / 100 \mathrm{~K})+3.2398 \ln (T / 100 \mathrm{~K})$
with a standard error about the regression line of 2.32×10^{-5}.
The equation gives temperature dependent values of the enthalpy and entropy changes for the transfer of one mole of methane from the gas at 0.101325 MPa to the infinitely dilute solution of:

T / K	$\Delta H_{1}^{0} / \mathrm{kJ} \mathrm{mol}^{-1}$	$\Delta S_{1}^{0} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$	$\Delta C_{p l}^{0} / J \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
213.15	-3.72	-66.1	26.9
243.15	-2.92	-62.5	26.9
273.15	-2.11	-59.4	26.9
298.15	-1.43	-57.0	26.9

Smoothed values of the mole fraction solubility are in Table 1.
Table 1. The solubility of methane in 2 -propanone. Tentative values of the mole fraction solubility as a function of temperature at a methane partial pressure of 0.101325 MPa .

T / K	$10^{3} x_{1}$	T/K	$10^{3} x_{1}$
193.15	3.655	283.15	1.938
203.15	3.221	288.15	1.913
213.15	2.893	293.15	1.891
223.15	2.642	298.15	1.872
233.15	2.447	303.15	1.855
243.15	2.293	308.15	1.840
253.15	2.172	313.15	1.827
263.15	2.075		
273.15	1.999		

A three constant smoothing equation for the Horiuti data only appears on the Horiuti data sheet. The two equations give negligably different solubility values between 193 and 253 K . From 283 to 313 K the equation above gives mole fraction solubility values that range from 0.94 to 1.73 percent larger than the equation based on only the Horiuti data.

REFERENCES:

1. Horiuti, J. Sci. Pap. Inst. Phys. Chem. Res. (Jpn) 1931/32, 17, 125-256.
2. Lannung, A.; Gjaldbaek, J. C. Acta Chem. Scand. 1960, 14, 1124-8.

COMPONENTS: (1) Methane; CH_{4}; [74-82-8] (2) 2-propanone or acetone; $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ [67-64-1]	ORIGINAL MEASUREMENTS: Horiuti, J. Sci. Pap. Inst. Phys. Chem. Res. (Jpn) 1931/32, 17, 125-256.
VARIABLES: $\begin{aligned} T / \mathrm{K}: & 196.55-303.15 \\ p_{1} / \mathrm{kPa}: & 101.325(1 \mathrm{~atm}) \end{aligned}$	FREPARED BY: M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES: T/K MOI Fraction $10^{3} x_{1}$ α / cm 196.55 3.496 212.55 2.909 232.15 2.463 251.35 2.187 273.15 1.982 293.15 1.877 303.15 1.822	

The mole fraction and Bunsen coefficient values were calculated by the compiler with the assumption the gas is ideal and that Henry's law is obeyed.
Smoothed Data: For use between 196.55 and 303.15 K .
$\ln x_{1}=-13.1623+10.8092 /(T / 100 \mathrm{~K})+2.9683 \ln (T / 100 \mathrm{~K})$
The standard error about the regression line is 5.85×10^{-6}.

T/K	Mol Fraction $10^{3} x_{1}$	T/K	$\begin{gathered} \text { Mol Fraction } \\ 10^{3} x_{1} \end{gathered}$
198.15	3.423	273.15	1.985
213.15	2.895	288.15	1.893
228.15	2.538	298.15	1.847
243.15	2.289	308.15	1.811
258.15	2.112		

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The apparatus consists of a gas buret, a solvent reservoir, and an absorption pipet. The volume of the pipet is determined at various meniscus heights by weighing a quantity of water. The meniscus height is read with a cathetometer.

The dry gas is introduced into the degassed solvent. The gas and solvent are mixed with a magnetic stirrer until saturation. Care is taken to prevent solvent vapor from mixing with the solute gas in the gas buret. The volume of gas is determined from the gas buret readings, the volume of solvent is determined from the meniscus height in the absorption pipet.

SOURCE AND PURITY OF MATERIALS:

(1) Methane. Aluminum carbide was prepared from aluminum and soot carbon. The alumnium carbide was treated with hot water. The gas evolved was scrubbed to remove impurities, dried and fractionated. Final product had a density, $/ \mathrm{g} \mathrm{dm}{ }^{-3}=0.7168 \pm 0.0003$ at normal conditions.
(2) Acetone. Nippon Pure Chemical Co. or Merck. Extra pure grade. Recrystallized with sodium sulfite and stored over calcium chloride. Fractionated, boiling point (760 mmHg) $56.09^{\circ} \mathrm{C}$.
ESTIMATED ERROR: $\delta T / K=0.05$

$$
\delta x_{1} / x_{1}=0.01
$$

REFERENCES:

COMPONENTS: (1) Methane; CH_{4}; [74-82-8] (2) 2-Propanone or acetone; $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$; [67-64-1]	ORIGINAL MEASUREMENTS: ```Lannung, A.; Gjaldbaek, J. C. Acta Chem. Scand. 1960, 14, 1124 - 1128.```
$\begin{aligned} \text { VARIABLES: } & \begin{aligned} T / \mathrm{K} & =291.15-310.15 \\ p_{1} / \mathrm{kPa} & =101.325 \quad(1 \mathrm{~atm}) \end{aligned} \end{aligned}$	PREPARED BY: J. Chr. Gjaldbaek
EXPERIMENTAL VALUES: Smoothed Data: For use between 291.1 $\ln x_{1}=-7.0633+2.3$ The standard error about the $$	
auxiliary information	
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined manometer and bulb containing degassed solvent and the gas was placed in an air thermostat and shaken until equilibrium (1). The absorbed volume of gas is calculated from the initial and fina amounts, both saturated with solvent vapor. The amount of solvent is determined by the weight of displaced mercury. The values are at 101.325 kPa (1 atm) pressure assuming Henry's law is obeyed.	SOURCE AND PURITY OF MATERIALS: (1) Methane. Generated from magnesium methyl iodidie. Purified by fractional distillation. Specific gravity corresponds with mol wt 16.08. (2) 2-Propanone. Kahlbaum. "Zur analyse". Contained no water, aldehyde or acid. ESTIMATED ERROR: $\begin{aligned} \delta T / K & = \pm 0.05 \\ \delta x_{1} / x_{1} & = \pm 0.015 \end{aligned}$
	REFERENCES: 1. Lannung, A. J. Am. Chem. Soc. 1930, 52, 68.

COMPONENTS : (1) Methane; CH_{4}; [74-82-8] (2) Cyclopentanone; $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}$; [120-92-3]	ORIGINAL MEASUREMENTS: Gallardo, M. A.; Lб́pez, M. C. Urieta, J. S.; Gutierrez Losa, C. IUPAC Conference of Chemical Thermodynamics, 1984, Paper No. 47.
VARIABLES: $\begin{aligned} T / K & =273.15-303.15 \\ p_{1} / \mathrm{kPa} & =101.3 \end{aligned}$	PREPARED BY: H. L. Clever
EXPERIMENTAL VALUES: The authors fit their data to the equation $-\ln x_{1}=0.887 \ln (T / K)+1.481$ from which they obtained the thermodynamic ch ges $\Delta H_{1}^{0} / \mathrm{kJ} \mathrm{mol}^{-1}=-2.20$ and $\Delta S_{1}^{0} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}=-62$.	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus was similar to that used by Ben-Naim and Baer (ref 1). It consisted of a gas buret, mercury manometer, and solution vessel. The solvent was degassed in the solution vessel. Measurements were carried out on the vapor saturated gas.	SOURCE AND PURITY OF MATERIALS: (1) Methane.Sociedad Espanol del Oxigeno. Stated to be 99.95 percent pure. (2) Cyclopentanone.
	ESTIMATED ERROR: $\begin{aligned} \delta T / K & = \pm 0.1 \\ \delta x_{1} / x_{1} & = \pm 0.01 \end{aligned}$
	REFERENCES: I. Ben-Naim, A.; Baer, S. Trans. Faraday Soc. 1963, 59,2735.

COMPONENTS: (1) Methane; CH_{4}; [74-82-8] (2) Cyclohexanone; $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$; [108-94-1]	ORIGINAL MEASUREMENTS: Guerry, D. Jr. Ph.D. thesis, 1944 Vanderbilt University Nashville, TN Thesis Director: L. J. Bircher
VARIABLES: T/K: $:$ 293.15, 298.15 $\mathrm{P} / \mathrm{kPa}:$ $101.325(1 \mathrm{~atm})$	PREPARED BY: H. L. Clever
EXPERIMENTAL VALUES:	Bunsen Coefficient α Ostwald Coefficient L 0.349 0.347 0.375 0.379 were calculated by the
auxiliary information	
METHOD/APPARATUS/PROCEDURE: A Van Slyke-Neill Manometric Apparatus manufactured by the Eimer and Amend Co. was used. The procedure of van slyke (1) for pure liquids was modified (2) so that small solvent samples ($2 \mathrm{~cm}^{3}$) could be used with almost complete recovery of the sample. An improved temperature control system was used.	
SOURCE AND PURITY OF MATERIALS: (1) Methane. Prepared by hydrolysis of crystaline methyl Grignard reagent. Passed through conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, solid KOH, and Dririte. (2) Cyclohexanone. Eastman Kodak Co. Purified, distilled, b.p. 1754.5 $\mathrm{mmHg}) \mathrm{t} /{ }^{\circ} \mathrm{C}$ 155.19. Refractive index, density, and vapor pressure data are in the thesis.	ESTIMATED ERROR: $\delta T / K=0.05$ REFERENCES: 1. Van Slyke, D. D. J. Bioz. Chem. 1939, 130, 545. 2. Ijams, C. C. Ph.D. thesis, 1941 Vanderbilt University

COMPONENTS: (1) Methane; CH_{4}; [74-82-8] (2) Acetic acid, methyl ester or methyl acetate; $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$; [79-20-9]	ORIGINAL MEASUREMENTS: Horiuti, J. Sci. Pap. Inst. Phys. Chem. Res. (Jpn) 1931/32, 17, 125-256.
VARIABLES: $\begin{aligned} T / \mathrm{K}: & 196.55-303.15 \\ p_{1} / \mathrm{kPa}: & 101.325 \text { (1 atm) } \end{aligned}$	PREPARED BY: M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES: The mole fraction and Bunsen coeffici piler with the assumption the gas is Smoothed Data: For use between 196.5 The 293.15 K value was omitted $\ln x_{1}=-11.2954+8.1182 /(T /$ The standard error about the	nsen ficient STP $) \mathrm{cm}^{-3} \mathrm{~atm}^{-1}$ Ostwald Coefficient $L / \mathrm{cm}^{3} \mathrm{~cm}^{-3}$ 052 0.7571 8901 0.6926 7614 0.6454 6704 0.6203 6068 0.6068 5620 0.6032 5395 0.5987 ent values were calculated by the comideal and that Henry's law is obeyed. 5 and 303.15 K. d from the linear regression. $100 \mathrm{~K})+2.1375 \mathrm{ln}(T / 100 \mathrm{~K})$ regression line is 9.46×10^{-6}.
AUXILIARY	InFORMATION
METHOD/APPARATUS/PROCEDURE: The apparatus consists of a gas buret a solvent reservoir, and an absorption pipet. The volume of the pipet is determined at various meniscus heights by weighing a quantity of water. The meniscus height is read with a cathetometer. The dry gas is introduced into the degassed solvent. The gas and solvent are mixed with a magnetic stirrer until saturation. Care is taken to prevent solvent vapor from mixing with the solute gas in the gas buret. The volume of gas is determined from the gas buret readings, the volume of solvent is determined from the meniscus height in the absorption pipet.	SOURCE AND PURITY OF MATERIALS: (1) Methane. Aluminum carbide was prepared from aluminum and soot carbon. The aluminum carbide was treated with hot water. The gas evolved was scrubbed to remove impurities, dried and fractionated. Final product had a density, $\rho / \mathrm{g} \mathrm{dm}^{-3}=0.7168 \pm 0.0003$ at normal conditions. (2) Methyl acetate. Merck. Extra pure grade. Dried with $\mathrm{P}_{2} \mathrm{O}_{5}$. Distilled several times. Boiling point (760 mmHg) $57.12^{\circ} \mathrm{C}$. ESTIMATED ERROR: $\begin{aligned} \delta T / K & =0.05 \\ \delta x_{1} / x_{1} & =0.01 \end{aligned}$

COMPONENTS:

1. Methane; CH_{4}; [74-82-8]
2. Carbon dioxide; CO_{2}; [124-38-9]
3. Hydrogen; H_{2}; [1333-74-0]
4. Nitrogen; N_{2}; [7727-37-9]
5. 4-Methyl-1,3-dioxolan-2-one, (Propylene carbonate); $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}$; [108-32-7]

EXPERIMENTAL VALUES:

T/K	Total p/atm	pressure p/Mpa	Gas	Partial p/atm	pressure p/MPa	α	Mole fractior in liquid
313.2	3.43	3.48	CO_{2}	9.3	0.94	15.4	0.0656
			N_{2}	10.2	1.03	15.1	0.0068
			H_{2}	14.1	1.43	2.74	0.0123
			CH_{4}	0.7	0.07	0.12	0.0005
	43.4	4.40	CO_{2}	15.2	1.54	23.4	0.0964
			N_{2}	14.8	1.50	2.74	0.0123
			H_{2}	12.5	1.27	3.38	0.0152
			CH_{4}	0.9	0.09	0.15	0.0007
a mL	of gas	absorbed	(r	d to $0^{\circ} \mathrm{C}$	and 1 a		

Veszpremi. Vegyip. Egy. KozZ.,
Veszpremi. 16 egyip.
$1968,11,169-180$.

ORIGINAL MEASUREMENTS:

Rusz, L.
Neszpremi. Vegyip. Egy. Kozz., 1968, 11, 169-180.
mL of gas absorbed (reduced to $0^{\circ} \mathrm{C}$ and 1 atmosphere) per g of solvent.

COMPONENTS: 1. Methane; CH_{4}; [74-82-8] 2. Carbon dioxide; CO ; [124-38-9] 3. Nitrogen; N_{2}; [7727-37-9] 4. 2-[2-(Butoxyethoxy)-ethoxy]ethanol acetate, (butoxytriethylene gylcol acetate); $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{5}$;	ORIGINAL MEASUREMENTS: Makranczy, J.; Maleczkine, S. M.; Rusz, L. Veszpremi. Vegyip. Egy. Kozi. 1965, 9, 95-105.
VARIABLES: Temperature, pressure	PREPARED BY: C. L. Young
EXPERIMENTAL VALUES: $\mathrm{P}_{\mathrm{CO}_{2}} / \mathrm{MPa} \quad \mathrm{P}_{\mathrm{CH}_{4}} / \mathrm{Mpa} \quad \mathrm{p}_{\mathrm{N}_{2}} / \mathrm{Mpa}$	$\alpha_{\mathrm{CO}_{2}} \quad \alpha_{\mathrm{CH}_{4}} \quad{ }^{\text {Mole fractions }} \mathrm{CO}_{2} \quad{ }^{2} \mathrm{CH}_{4}$
10.8 6.7 3.1 1.0 16.7 10.5 4.3 1.9 24.6 15.0 6.6 3.0 29.8 18.9 8.4 2.5 40.8 22.8 12.1 5.9	26.3 2.9 0.225 0.031 38.2 5.6 0.297 0.058 60.7 8.1 0.402 0.082 82.4 10.4 0.477 0.103 100.0 14.3 0.525 0.137
$\alpha=\mathrm{mL}$ of gas absorbed (reduced to $0^{\circ} \mathrm{C}$	C and 1 atmosphere) per g of solvent
AUXILIARY INFORMATION	
METHOD 'APPARATUS/PROCEDURE: Volumetric method. Pressure measured when known amounts of gas were added, in increments, to a known amount of liquid in a vessel of known dimensions. Exact procedure for calculating solubility not clear.	SOURCE AND PURITY OF MATERIALS:
	ESTIMATED ERROR:
	REFERENCES:

COMPONENTS: 1. Methane; CH_{4}; [74-82-8] 2. 4-Methyl-1,3-dioxolan-2-one; (Propylene carbonate); $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}$; [108-32-7]	ORIGINAL MEASUREMENTS: Lenoir, J-Y.; Renault, P.; Renon, H. J. Chem. Eng. Data, 1971, 16, 340-2.
VARIABLES :	PREPARED BY: C. L. Young
EXPERIMENTAL VALUES: * Calculated by compiler assuming a linear function of $P_{\mathrm{CH}_{4}}$ vs $x_{\mathrm{CH}_{4}}$. i.e., $x_{\mathrm{CH}_{4}}(1 \mathrm{~atm})=1 / H_{\mathrm{CH}_{4}}$.	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: A conventional gas-liquid chromatographic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at 1 atm. pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.	SOURCE AND PURITY OF MATERIALS: (1) L'Air Liquide sample, minimum purity 99.9 moler per cent. (2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent. ESTIMATED ERROR: $\delta T / \mathrm{K}= \pm 0.1 ; \delta H / \mathrm{atm}= \pm 6 \%$ (estimated by compiler).
	REFERENCES:

COMPONENTS: 1. Methane; CH_{4}; [74-82-8] 2. 4-Methyl-1,3-dioxolan-2-one, (Propylene carbonate); $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}$; [108-32-7]	ORIGINAL MEASUREMENTS: ```Parcher, J. F.; Bell, M. L.; Lin, P. J. Adv. Chromat. 1984, 24, 227-246.```
VARIABLES :	PREPARED BY: C. L. Young
EXPERIMENTAL VALUES:	law Mole fraction extrapolated to 1 atm,,$x_{\mathrm{CH}_{4}}$
	0.00067 0.00071 0.00077 mol $^{-1}=2 \mathrm{~kJ} \mathrm{~mol}^{-1}$. ssuming $x=1 / \mathrm{H}$.
auxiliary	information
METHOD-APPARATUS/PROCEDURE: Henry's law constant determined from retention volume of gas on a chromatographic column. Helium was used as a carrier gas and a mass spectrometer used as a detector. The measured Henry's law constants were independent of sample size, flow rate and composition of injected sample. Details given in ref. 1.	SOURCE AND PURITY OF MATERIALS: No details given. ESTIMATED ERROR: SH/atm $= \pm 200$. REFERENCES: 1. Lin, P. J. and Parcher, J. F. J. Chromat. Sci. 1982, 20, 33.

COMPONENTS: 1. Methane; CH_{4}; [74-82-8] 2. Hexadecane; $\mathrm{C}_{16} \mathrm{H}_{34}$; [544-76-3] 3. 4-Methyl-1,3-dioxolan-2-one, (Propylene carbonate); $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}$; [108-32-7]	```ORIGINAL MEASUREMENTS: Parcher, J. F.; Bell, M. L.; Lin, P. J. Adv. Chromat. 1984, 24, 227-246.```
Variables :	PREPARED BY: C. L. Young
EXPERIMENTAL VALUES:	Henry's lawconstant,$H / \mathrm{atm}$$\quad$Mole fraction extrapolated $1 \mathrm{~atm}, x_{\mathrm{CH}_{4}}$
293.2 0.30	460 0.00217
$\begin{aligned} & 303.2 \\ & (30)^{2} \end{aligned}$	$480 \quad 0.00208$
$\begin{aligned} & 313.2 \\ & (40)^{2} \end{aligned}$	470 0.00213
293.2 0.62	250 0.00400
$\begin{gathered} 303.2 \\ (30)^{2} \end{gathered}$	$257 \quad 0.00389$
$\begin{aligned} & 313.2 \\ & (40)^{2} \end{aligned}$ a Calculated by compiler as	$270 \quad 0.00370$ ssuming $x=1 / H$.
auxiliary	information
METHOD APPARATUS/PROCEDURE: Henry's law constant determined from retention volume of gas on a chromatographic column. Helium was used as a carrier gas and a mass spectrometer used as a detector. The measured Henry's law constants were independent of sample size, flow rate and composition of injected sample. Details given in ref. 1.	

COMPONENTS: 1. Methane; CH_{4}; [74-82-8] 2. 4-Methyl-I,3-dioxolan-2-one, (Propylene carbonate); $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}$; [108-32-7]	ORIGINAL MEASUREMENTS: Shakhova, S.F.; Zubchenko, Yu.P. Khim. Prom. 1973, 49, 595-6.
VARIABLES: Temperature, pressure	PREPARED BY: C.L. Young
EXPERIMENTAL VALUES: T/K $P / 10^{5} \mathrm{~Pa}$ Mo of	fraction α^{+} methane in vol/vol quid, $x_{\mathrm{CH}_{4}}$
	0.0256 6.9 0.0363 9.9 0.0482 13.3 0.0584 16.3 0.0270 7.3 0.0405 11.1 0.0430 11.8 0.0457 12.6 0.0567 15.8 0.0691 19.5 0.0691 19.5 to be volume of gas at phere absorbed by unit perature.
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE: Rocking autoclave. Mixture stirred by ball in rocking autoclave. Samples of liquid analysed by a volumetric method. Details in ref. (1).	SOURCE AND PURITY OF MATERIALS: 1. Purity 97.8 mole per cent. 2. No details given. ESTIMATED ERROR: $\begin{aligned} & \delta \mathrm{T} / \mathrm{K}= \pm 0.1 ; \delta P / 10^{5} \mathrm{~Pa}= \pm 0.1 ; \\ & \delta x_{\mathrm{CH}_{4}}= \pm 5 \% . \\ & \text { (estimated by compiler). } \end{aligned}$ REFERENCES: 1. Shakhova, S.F.; Zubchenko, Yu.P.; Kaplan, L.K. $\text { Khim. Prom. 1973, 5, } 108 .$

COMPONENTS: 1. Methane; CH_{4}; [74-82-8] 2. Oxybispropanol, (Dipropylene glycol); $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{3}$; [25265-71-8]	ORIGINAL MEASUREMENTS: $\begin{aligned} & \text { Lenoir،, J-Y.; Renault, P.; Renon, H. } \\ & \text { J. Chem. Eng. Data, 1971, 16, 340-2. } \end{aligned}$
VARIABLES: Temperature	PREPARED BY: C. L. Young
EXPERIMENTAL VALUES: * Calculated by compiler assuming a linear function of $P_{\mathrm{CH}_{4}}$ vs ${ }^{x_{\mathrm{CH}_{4}}}$, i.e., $x_{\mathrm{CH}_{4}}(1 \mathrm{~atm})=1 / H_{\mathrm{CH}_{4}}$.	
auxiliary information	
METHOD/APPARATUS/PROCEDURE: A conventional gas-liquid chromatographic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at 1 atm . pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.	SOURCE AND PURITY of MATERIALS: (1) L'Air Liquide sample, minimum purity 99.9 mole per cent. (2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent. ESTIMATED ERROR: $\delta \mathrm{T} / \mathrm{K}= \pm 0.1 ; \quad \delta H / \mathrm{atm}= \pm 6 \%$ (estimated by compiler).
	REFERENCES:

COMPONENTS: 1. Methane; CH_{4}; [74-82-8] 2. Benzenemethanol; (Benzyl alcohol); $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$; [100-51-6]	ORIGINAL MEASUREMENTS: $\begin{aligned} & \text { Lenoir, J-Y.; Renault, P.; Renon, H. } \\ & \text { J. Chem. Eng. Data, 1971, } 16,340-2 . \end{aligned}$
VARIABLES:	PREPARED BY: C. L. Young
EXPERIMENTAL VALUES: * Calculated by compiler assuming a linear function of $P_{\mathrm{CH}_{4}}$ vs $x_{\mathrm{CH}_{4}}$, i.e., $x_{\mathrm{CH}_{4}}(1 \mathrm{~atm})=1 / H_{\mathrm{CH}_{4}}$.	
aUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: A conventional gas-liquid chromatographic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at 1 atm. pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.	SOURCE AND PURITY OF MATERIALS: (1) L'Air Liquide sample, minimum purity 99.9 mole per cent. (2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent. ESTIMATED ERROR: $\delta T / K= \pm 0.1 ; \quad \delta H / a t m= \pm 6 \%$ (estimated by compiler).
	REFERENCES:

COMPONENTS: 1. Methane; CH_{4}; [74-82-8] 2. Phenol; $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$; [108-95-2]	ORIGINAL MEASUREMENTS: Lenoir, J-Y.; Renault, P.; Renon, H. J. Chem. Eng. Data, 1971, 16, 340-3.
VARIABLES :	PREPARED BY: C. L. Young
EXPERIMENTAL VALUES:	ant Mole fraction at 1 atm* ${ }^{x} \mathrm{CH}_{4}$ 0.000503 a linear function of $P_{\mathrm{CH}_{4}}$ vs $x_{\mathrm{CH}_{4}}$,
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: A conventional gas-liquid chromatographic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at 1 atm. pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.	SOURCE AND PURITY OF MATERIALS: (1) L'Air Liquide sample, minimum purity 99.9 mole per cent. (2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent. ESTIMATED ERROR: $\delta \mathrm{T} / \mathrm{K}= \pm 0.1 ; \delta H / \mathrm{atm}= \pm 6 \%$ (estimāted by compiler).
	REFERENCES :

COMPONENTS: 1. Methane: CH_{4}; [74-82-8] 2. 1,2,3-Propanetriol, triacetate, (Glycerol triacetate): $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{6}$; [102-76-1]	ORIGINAL MEASUREMENTS: Shakhova, S.F.; and zubchenko, Yu.P. Khim. Prom. 1973, 49, 595-6.
VARIABLES: Temperature, pressure	PREPARED BY: C.L. Young
EXPERIMENTAL VALUES: $\mathrm{T} / \mathrm{K} \quad P / 10^{5} \mathrm{~Pa}$	me fraction α^{+} methane in vol/vol
298.15 35.87 40.73 50.97 70.42 75.59 90.08 343.15 104.56 62.31 85.32 95.14 113.28 114.80 127.47 quoted in original, appear T/K $=273.15$ and $P=I$ atm volume of liquid at room t	0.0640 8.1 0.0706 9.0 0.0828 10.7 0.1070 14.2 0.1144 15.3 0.1306 17.8 0.1512 21.1 0.0941 12.3 0.3970 78.0 0.4220 86.0 0.4614 101.5 0.4639 102.5 0.4882 113.0 to be volume of gas at sphere absorbed by unit mperature.
AUXILIARY INFORMATION	
ME'THOD/APPARATUS/PROCEDURE: Rocking autoclave. Mixture stirred by ball in rocking autoclave. Samples of liquid analysed by a volumetric method. Details in ref. (1).	SOURCE AND PURITY OF MATERIALS: 1. Purity 97.8 mole per cent. 2. No details given.
	ESTIMATED ERROR: $\begin{aligned} & \delta \mathrm{T} / \mathrm{K}= \pm 0.1 ; ~ \\ & \delta \mathrm{P} / 10^{5} \mathrm{~Pa}= \pm 0.1 ; \\ & \left(x_{\mathrm{CH}_{4}}= \pm 5 \% .\right. \\ & \text { (estimated by compiler) } \end{aligned}$
	REFERENCES: 1. Shakhova, S.F.; Zubchenko, Yu.P. Kaplan, L.K. Khim. Prom. 1973, 5, 108.

COMPONENTS: 1. Methane; CH_{4}; [74-82-8] 2. 3-Methylphenol, (m-cresol); $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$; [108-39-4]	```ORIGINAL MEASUREMENTS: Simnick, J. J.; Sebastian, H. M.; Lin, H. M.; Chao, K. C. Fluid Phase Equilibria 1979, 3, 145-154.```
VARIABLES: Temperature, pressure	PREPARED BY: C. L. Young
 EXPERIMENTAL VALUES: T/K P / MPa $P / a t m$	Mole fraction of methane in liquid, in gas, \qquad ${ }^{\mathrm{CH}_{4}}$ \qquad $y_{\mathrm{CH}_{4}}$
462.25 2.08 20.5 3.05 30.1 5.11 50.4 10.05 99.2 15.28 150.8 20.17 199.1 25.27 249.4	0.0198 0.9579 0.0288 0.9695 0.0489 0.9785 0.0930 0.9836 0.1382 0.9840 0.1768 0.9825 0.2166 0.9806
542.65 2.00 19.7 3.03 29.9 5.06 49.9 10.13 100.0 15.15 149.5 20.23 199.7 25.20 248.7	0.0181 0.7435 0.0301 0.8158 0.0533 0.8764 0.1111 0.9172 0.1684 0.9262 0.2199 0.9261 0.2746 0.9214
623.25 3.07 30.3 5.08 50.1 10.18 100.5 15.16 149.6 20.35 200.8 22.72 224.2 25.33 250.0	0.0224 0.3912 0.0538 0.5699 0.1330 0.7057 0.2136 0.7385 0.3019 0.7333 0.3579 0.7171 0.4888 0.6857
663.35 5.12 50.5 10.08 99.5 12.91 127.4 15.25 150.5	0.0465 0.3265 0.1477 0.4968 0.2135 0.5198 0.3207 0.4809
AUXILIARY	information
METHOD/APPARATUS/PROCEDURE: Flow apparatus with both liquid and gaseous components continually passing into a mixing tube and then into a cell in which phases separated under gravity. Liquid sample removed from bottom of cell and vapor sample from top of cell. Composition of samples found by stripping out gas and estimating amount of solvent gravimetrically. Temperature measured with thermocouple and pressure with Bourdon gauge. Detaills in ref. (1).	SOURCE AND PURITY OF MATERIALS: 1. Matheson sample, purity better than 99 mole per cent. 2. Aldrich Chemical Co., minimum purity 99 mole per cent. Distilled. ESTIMATED ERROR: $\begin{aligned} & \delta \mathrm{T} / \mathrm{K}= \pm 0.2 ; \quad \delta P / \mathrm{MPa}= \pm 0.02 ; \\ & \delta x_{\mathrm{CH}_{4}}, \delta y_{\mathrm{CH}_{4}}= \pm 2 \% \end{aligned}$ REFERENCES: 1. Simnick, J. J.; Lawson, C. C.; Lin, H. M.; Chao, K. C. Am. Inst. Chem. Engnrs. J. 1977, 23, 469.

COMPONENTS: 1. Methane; CH_{4}; [74-82-8] 2. 2,5,8,11,14 - Pentaoxapentadecane, (Tetramethylene glycol dimethyl ether) $\mathrm{C}_{1}{ }_{0} \mathrm{H}_{2} \mathrm{O}_{5}$; [143-24-8]				ORIGINAL MEASUREMENTS: Zubchenko, Yu.P.; Shakhova, S.F. Tr.N.-i.i Proekt. In-ta Azot Prom-sti i Produktov Organ. Sinteza 1975, (33), 13-15.	
VARIABLES: Pressure				PREPARED BY: C.L. Young	
EXPERIMENTAL VALUES: T/K \quad P/atm		P / MPa	$\alpha+$vol/vol \quadMole fraction of methane in liquid,		
313.15	24.2 37.2 54.3 69.9 83.3 85.7 85 $+\quad$ quo vol la liq	2.45 3.77 5.50 7.08 8.44 8.51 8.68 in or of gas at roo	6.18 0.0502 9.17 0.0727 13.2 0.101 17.1 0.127 20.1 0.147 20.4 0.148 20.7 0.150 paper, appears to be $/ K=273 / 15$ and $P=$ bed by unit volume of perature.		
	METHOD/APPARATUS/PROCEDURE: Mixture stirred by ball in rocking autoclave. Sample of liquid analysed by a volumetric method. Details in ref. (1).				information
					SOURCE AND PURITY OF MATERIALS: 1. Purity 97.8 mole per cent. 2. No details given.
					ESTIMATED ERROR: $\begin{aligned} & \delta T / K= \pm 0.1 ; \delta P / \text { atm }= \pm 0.1 \\ & \delta x_{\mathrm{CH}_{4}}= \pm 5 \% . \\ & \text { (estimated by compiler). } \end{aligned}$
					REFERENCES: 1. Shakhova, S.F.; Zubchenko, Yu.P.; Kaplan, L.K. Khim. Prom. 1973, 5, 108.

