- (1) Methane; CH₄; [74-82-8]
- (2) 2-Propanone or acetone; C₃H₆O; [67-64-1]

EVALUATOR:

H. Lawrence Clever
Department of Chemistry
Emory University
Atlanta, GA 30322 USA

1985, April

CRITICAL EVALUATION:

Horiuti (ref 1) measured seven values of the solubility of methane in 2-propanone between 196.55 and 303.15 K. Lannung and Gjaldbaek (ref 2) measured six values between 291.15 and 310.15 K. Both laboratories have the reputation of carrying out reliable measurements. The Lannung and Gjaldbaek mole fraction solubilities run about two percent larger than the Horiuti values over the common 291 -310 K temperature interval.

Both sets of data are classed as tentative. All data in both papers were combined in a linear regression to obtain the equation for the 193-313 K temperature interval of

 $\ln x_1 \approx -13.6388 + 11.385/(T/100 \text{ K}) + 3.2398 \ln (T/100 \text{ K})$ with a standard error about the regression line of 2.32 x 10^{-5} .

The equation gives temperature dependent values of the enthalpy and entropy changes for the transfer of one mole of methane from the gas at 0.101325 MPa to the infinitely dilute solution of:

T/K	$\Delta H_1^0/\text{kJ mol}^{-1}$	$\Delta S_1^0/J K^{-1} mol^{-1}$	$\Delta C_{p_1}^0/J K^{-1} mol^{-1}$
213.15	-3.72	-66.1	26.9
243.15	-2.92	-62.5	26.9
273.15	-2.11	-59.4	26.9
298.15	-1.43	-57.0	26.9

Smoothed values of the mole fraction solubility are in Table 1.

Table 1. The solubility of methane in 2-propanone. Tentative values of the mole fraction solubility as a function of temperature at a methane partial pressure of 0.101325 MPa.

T/K	10 ³ x ₁	T/K	10 ³ x ₁
193.15	3.655	283.15	1.938
203.15	3.221	288.15	1.913
213.15	2.893	293.15	1.891
223.15	2.642	298.15	1.872
233.15	2.447	303.15	1.855
243.15	2.293	308.15	1.840
253.15	2.172	313.15	1.827
263.15	2.075		
273.15	1.999		

A three constant smoothing equation for the Horiuti data only appears on the Horiuti data sheet. The two equations give negligably different solubility values between 193 and 253 K. From 283 to 313 K the equation above gives mole fraction solubility values that range from 0.94 to 1.73 percent larger than the equation based on only the Horiuti data.

- Horiuti, J. Sci. Pap. Inst. Phys. Chem. Res. (Jpn) 1931/32, 17, 125 - 256.
- 2. Lannung, A.; Gjaldbaek, J. C. Acta Chem. Scand. 1960, 14, 1124 8.

- (1) Methane; CH₄; [74-82-8]
- (2) 2-Propanone or acetone; C₃H₆O; [67-64-1]

ORIGINAL MEASUREMENTS:

Horiuti, J.

Sci. Pap. Inst. Phys. Chem. Res. (Jpn) 1931/32, 17, 125 - 256.

VARIABLES:

T/K: 196.55 - 303.15 p_1/k Pa: 101.325 (1 atm)

PREPARED BY:

M. E. Derrick H. L. Clever

EXPERIMENTAL VALUES:

d
ent
 3
6
9
3
3
2
5
1
3

The mole fraction and Bunsen coefficient values were calculated by the compiler with the assumption the gas is ideal and that Henry's law is obeyed. Smoothed Data: For use between 196.55 and 303.15 K.

 $\ln x_1 = -13.1623 + 10.8092/(T/100K) + 2.9683 \ln (T/100K)$ The standard error about the regression line is 5.85 x 10^{-6} .

T/K	Mol Fraction 10^3x_1	T/K	Mol Fraction 103x,
198.15 213.15 228.15 243.15	3.423 2.895 2.538 2.289	273.15 288.15 298.15 308.15	1.985 1.893 1.847 1.811
258.15	2.112		

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The apparatus consists of a gas buret, a solvent reservoir, and an absorption pipet. The volume of the pipet is determined at various meniscus heights by weighing a quantity of water. The meniscus height is read with a cathetometer.

The dry gas is introduced into the degassed solvent. The gas and solvent are mixed with a magnetic stirrer until saturation. Care is taken to prevent solvent vapor from mixing with the solute gas in the gas buret. The volume of gas is determined from the gas buret readings, the volume of solvent is determined from the meniscus height in the absorption pipet.

SOURCE AND PURITY OF MATERIALS:

- (1) Methane. Aluminum carbide was prepared from aluminum and soot carbon. The alumnium carbide was treated with hot water. The gas evolved was scrubbed to remove impurities, dried and fractionated. Final product had a density, p/g dm⁻³ = 0.7168±0.0003 at normal conditions.
 - (2) Acetone. Nippon Pure Chemical Co. or Merck. Extra pure grade. Recrystallized with sodium sulfite and stored over calcium chloride. Fractionated, boiling point (760 mmHg) 56.09°C.

ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta x_1/x_1 = 0.01$

- (1) Methane; CH₄; [74-82-8]
- (2) 2-Propanone or acetone; C₃H₆O;[67-64-1]

ORIGINAL MEASUREMENTS:

Lannung, A.; Gjaldbaek, J. C.

Acta Chem. Scand. 1960, 14, 1124 - 1128.

VARIABLES:

T/K = 291.15 - 310.15 $p_1/kPa = 101.325$ (1 atm) PREPARED BY:

J. Chr. Gjaldbaek

EXPERIMENTAL VALUES:

T/K	Mol Fraction 10 ³ x ₁	Bunsen Coefficient a/cm³(STP)cm-3atm-1	Ostwald Coefficient _L/cm ³ cm ⁻³
291.15	1.94	0.593	0.632
291.15	1.94	0.594	0.633
298.15	1.87	0.566	0.618
298.15	1.85	0.562	0.613
310.15	1.84	0.548	0.622
310.15	1.84	0.546	0.620

Smoothed Data: For use between 291.15 and 310.15 K.

 $\ln x_1 = -7.0633 + 2.3565/(T/100 \text{ K})$

The standard error about the regression line is 2.46×10^{-5} .

<i>T</i> /K	Mol Fraction 10 3 x 1
298.15 308.15	1.89 1.84

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

A calibrated all-glass combined manometer and bulb containing degassed solvent and the gas was placed in an air thermostat and shaken until equilibrium (1).

The absorbed volume of gas is calculated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent is determined by the weight of displaced mercury.

The values are at 101.325 kPa (1 atm) pressure assuming Henry's law is obeyed.

SOURCE AND PURITY OF MATERIALS:

- (1) Methane. Generated from magnesium methyl iodidie. Purified by fractional distillation. Specific gravity corresponds with mol wt 16.08.
- (2) 2-Propanone. Kahlbaum. "Zur analyse". Contained no water, aldehyde or acid.

ESTIMATED ERROR:

$$\delta T/K = \pm 0.05$$

 $\delta x_1/x_1 = \pm 0.015$

REFERENCES:

Lannung, A.
 J. Am. Chem. Soc. <u>1930</u>, 52, 68.

- (1) Methane; CH₄; [74-82-8]
- (2) 2-Propanone or acetone; C₃H₆O; [67-64-1]

ORIGINAL MEASUREMENTS:

Hronec, M.; Hagara, A.; Ilavský, J. Petrochemia 1983, 23 (2/3), 111-5.

VARIABLES:

T/K = 238 - 278 $p_t/kPa = 199 - 401$

PREPARED BY:

H. L. Clever

EXPERIMENTAL VALUES:

Temperature		Total Pressure	Mol Fraction	Kuenen Coefficient
t/°C	T/K	p _t /kPa	$10^{3}x_{1}$	S/cm^3 (STP) g^{-1}
-35	238	199	1.6	0.6
		300 401	3.4 8.0	1.3 3.1
			8.8	3.4
-15	258	199 300 401	0.21 1.8 5.2	0.08 0.7 2.0
5	278	401	3.6 2.6	1.4

The mole fraction solubility values were calculated by the compiler assuming ideal behavior.

Acetone vapor pressures given in the paper are:

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

A volumetric method described in the paper.

SOURCE AND PURITY OF MATERIALS:

- (1) Methane. Analyzed by GLC. Contained 2 % impurity which was mostly nitrogen.
- (2) Acetone. Contained 0.5 % water.

ESTIMATED ERROR:

- (1) Methane; CH_A; [74-82-8]
- (2) 2-Propanone or acetone; C₃H₆O; [67-64-1]

ORIGINAL MEASUREMENTS:

Yokoyama, C.; Masuoka, H.; Aral, K.; Saito, S.

J. Chem. Eng. Data <u>1985</u>, 30, 177-9.

VARIABLES:

T/K = 298.2, 323,2 $p_t/MPa = 1.06 - 11.75$ PREPARED BY:

H. L. Clever

EXPERIMENTAL VALUES:

Tempe	rature	Total	Mol Fr	action
t/°C	T/K	Pressure p_{t}/\mathtt{MPa}	Liquid	Vapor
			x	<u> </u>
25.0	298.2	1.71 2.28 3.55 4.51 5.49 7.08 8.19 9.16 10.10 11.68	0.0367 0.0434 0.0670 0.0911 0.1116 0.1443 0.1598 0.1866 0.1997 0.2287	0.9753 0.9789 0.9866 0.9871 0.9880 0.9873 0.9872 0.9870 0.9868 0.9853
50.0	323.2	1.06 1.50 2.07 3.07 4.28 5.00 5.98 7.05 8.25 9.59 10.73 11.75	0.0153 0.0223 0.0341 0.0509 0.0725 0.0822 0.0994 0.1200 0.1360 0.1647 0.1782 0.1950	0.9124 0.9363 0.9523 0.9627 0.9698 0.9707 0.9713 0.9718 0.9729 0.9729 0.9715 0.9711

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The equipment consists of an equilibration system and an analysis system. The procedures are essentially the same as those used by King et al. (ref 1) and Kubota et al. (ref 2). The equilibration system is in a thermostated water bath. The analysis system is in an air bath at 100 $^{\circ}$ C to avoid condensation problems.

Details of degassing, equilibration and sampling procedures were not given. The composition analysis was made by gas chromatograph and digital integrator. Calibration curves were obtained from mixtures of known composition.

SOURCE AND PURITY OF MATERIALS:

- (1) Methane. Takachiho Kagaku Co., Ltd. Used as received.
- (2) 2-Propanone. Dojin Yakugaku Ltd. Used as received.

A trace analysis of the components found no measurable impurities. The samples were used without further purification.

ESTIMATED ERROR:

- King, M.B.; Alderson, D.A.; Fallah, F.; Kassim, D.M.; Sheldon, J.R.; Mahmud, R. Chemical Engineering at Supercritical Conditions; Paulatis, M.E. et al., Editors, Ann Arbor Science, 1983, p. 31.
- Kubota, H.; Inatome, H.; Tanaka, Y.;
 Makita, T. J. Chem. Eng. Jpn. 1983, 16, 99.

- (1) Methane; CH_A ; [74-82-8]
- (2) Cyclopentanone; C₅H₈O; [120-92-3]

ORIGINAL MEASUREMENTS:

Gallardo, M. A.; López, M. C.
Urieta, J. S.; Gutierrez Losa, C.

IUPAC Conference of Chemical Thermodynamics, 1984, Paper No. 47.

VARIABLES:

$$T/K = 273.15 - 303.15$$

 $p_1/kPa = 101.3$

PREPARED BY:

H. L. Clever

EXPERIMENTAL VALUES:

Mol Fraction
10 4 x ₁
15.7
15.2
14.7
14.5
14.3

The authors fit their data to the equation

$$-\ln x_1 = 0.887 \ln (T/K) + 1.481$$

from which they obtained the thermodynamic ch ges

 $\Delta H_1^0/kJ \text{ mol}^{-1} = -2.20$ and

 $\Delta S_1^0/J K^{-1} mol^{-1} = -62.$

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The solubility apparatus was similar to that used by Ben-Naim and Baer (ref 1). It consisted of a gas buret, mercury manometer, and solution vessel. The solvent was degassed in the solution vessel. Measurements were carried out on the vapor saturated gas.

SOURCE AND PURITY OF MATERIALS:

- (1) Methane.Sociedad Espanol del Oxigeno. Stated to be 99.95 percent pure.
- (2) Cyclopentanone.

ESTIMATED ERROR:

$$\delta T/K = \pm 0.1$$

 $\delta x_1/x_1 = \pm 0.01$

REFERENCES:

 Ben-Naim, A.; Baer, S. Trans. Faraday Soc. <u>1963</u>, 59,2735.

(1) Methane; CH₄; [74-82-8]

(2) Cyclohexanone; C₆H₁₀O;

[108-94-1]

ORIGINAL MEASUREMENTS:

Guerry, D. Jr.

Ph.D. thesis, <u>1944</u> Vanderbilt University

Nashville, TN

Thesis Director: L. J. Bircher

VARIABLES:

T/K: 293.15, 298.15 P/kPa: 101.325 (1 atm) PREPARED BY:

H. L. Clever

EXPERIMENTAL VALUES:

т/к	Mol Fraction $x_1 \times 10^4$	Bunsen Coefficient a	Ostwald Coefficient L
293.15	16.1	0.349	0.375
298.15	16.1	0.347	0.379

The Ostwald coefficients were calculated by the compiler.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

A Van Slyke-Neill Manometric Apparatus manufactured by the Eimer and Amend Co. was used.

The procedure of Van Slyke (1) for Pure liquids was modified (2) so that small solvent samples (2 cm³) Could be used with almost complete recovery of the sample.

An improved temperature control system was used.

SOURCE AND PURITY OF MATERIALS:

- (1) Methane. Prepared by hydrolysis of crystaline methyl Grignard reagent. Passed through conc. H₂SO₄, solid KOH, and Dririte.
- (2) Cyclohexanone. Eastman Kodak Co. Purified, distilled, b.p. (754.5 mmHg) t/°C 155.19. Refractive index, density, and vapor pressure data are in the thesis.

ESTIMATED ERROR:

 $\delta T/K = 0.05$

- Van Slyke, D. D.
 J. Biol. Chem. 1939, 130, 545.
- 2. Ijams, C. C. Ph.D. thesis, <u>1941</u> Vanderbilt University

- (1) Methane; CH₄; [74-82-8]
- (2) Acetic acid, methyl ester or methyl acetate; C₃H₆O₂; [79-20-9]

ORIGINAL MEASUREMENTS:

Horiuti, J.

Sci. Pap. Inst. Phys. Chem. Res. (Jpn) 1931/32, 17, 125 - 256.

VARIABLES:

T/K: 196.55 - 303.15 p₁/kPa: 101.325 (1 atm) PREPARED BY:

M. E. Derrick H. L. Clever

EXPERIMENTAL VALUES:

T/K	Mol Fraction	Bunsen	Ostwald
	10 ³ x ₁	Coefficient α/cm³ (STP) cm ⁻³ atm ⁻¹	Coefficient L/cm3cm-3
196.55	3.284	1.052	0.7571
212.55	2.834	0.8901	0.6926
231.55	2.482	0.7614	0.6454
252.75	2.245	0.6704	0.6203
273.15	2.087	0.6068	0.6068
293.15	1.985	0.5620	0.6032
303.15	1.932	0.5395	0.5987

The mole fraction and Bunsen coefficient values were calculated by the compiler with the assumption the gas is ideal and that Henry's law is obeyed. Smoothed Data: For use between 196.55 and 303.15 K.

The 293.15 K value was omitted from the linear regression.

 $\ln x_1 = -11.2954 + 8.1182/(T/100K) + 2.1375 \ln (T/100K)$ The standard error about the regression line is 9.46 x 10^{-6} .

T/K	Mol Fraction	T/K	Mol Fraction
	10 ³ x ₁		10 ³ x ₁
198.15	3.226	273.15	2.080
213.15	2.826	288.15	1.997
228.15	2.544	298.15	1.955
243.15	2.340	303.15	1.937
258.15	2.191	_	

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The apparatus consists of a gas buret, a solvent reservoir, and an absorption pipet. The volume of the pipet is determined at various meniscus heights by weighing a quantity of water. The meniscus height is read with a cathetometer.

The dry gas is introduced into the degassed solvent. The gas and solvent are mixed with a magnetic stirrer until saturation. Care is taken to prevent solvent vapor from mixing with the solute gas in the gas buret. The volume of gas is determined from the gas buret readings, the volume of solvent is determined from the meniscus height in the absorption pipet.

SOURCE AND PURITY OF MATERIALS:

- (1) Methane. Aluminum carbide was prepared from aluminum and soot carbon. The aluminum carbide was treated with hot water. The gas evolved was scrubbed to remove impurities, dried and fractionated. Final product had a density, ρ/g dm⁻³ = 0.7168±0.0003 at normal conditions.
- (2) Methyl acetate. Merck. Extra pure grade. Dried with P₂O₅. Distilled several times. Boiling point (760 mmHg) 57.12°C.

ESTIMATED ERROR:

 $\delta T/K = 0.05$ $\delta x_1/x_1 = 0.01$

COMPONENTS: ORIGINAL MEASUREMENTS: Methane; CH; [74-82-8] Carbon dioxide; CO; [124-38-9] Rusz, L. Veszpremi. Vegyip. Egy. Kozl. 1968, 11, 169-180. 3. Hydrogen; H₂; [1333-74-0] 4. Nitrogen; N₂; [7727-37-9] 5. 4-Methyl-1,3-dioxolan-2-one, (Propylene carbonate); C4H6O3; [108-32-7] VARIABLES: PREPARED BY: Temperature, pressure C. L. Young EXPERIMENTAL VALUES: T/K Total pressure Gas Partial pressure Mole fraction p/atm p/Mpa p/atm p/MPa in liquid 283.2 10.6 1.07 CO 2 0.23 8.7 0.038 0.22 N₂ 2.1 0.21 0.0010 1.68 0.0076 6.0 0.61 CH₄ 0.0006 0.2 0.02 0.13 CO2 18.6 1.88 4.1 0.42 14.5 0.0620 N_2 3.5 0.35 0.73 0.0033 H_2 10.6 1.07 2.10 0.0095 CH, 0.4 0.04 0.24 0.0011 CO₂ 0.63 0.0828 25.4 2.57 6.2 19.8 N_2 4.7 0.48 1.05 0.0048 1.41 13.9 3.85 0.0172 H_2 0.06 1.14 0 CH₄ 0.6 0.10 0.0005 CO2 41.2 0.158 31.3 3.17 11.3 N_2 1.61 6.2 0.0073 2.74 12.9 1.31 H_2 0.0123 $C\tilde{H}_{4}$ 0.9 0.09 0.61 0.0028 CO₂ 38.6 3.91 14.2 1.44 56.5 0.205 N₂ 1.36 1.02 2.52 13.4 0.0114 Η, 10.1 2.83 0.0127 $\dot{CH_4}$ 0.9 0.09 0.32 0.0015 293.2 CO2 9.6 9.7 1.4 0.14 4.9 0.022 N_2 0.45 0.0020 2.8 0.28 H₂ 5.1 0.52 1.16 0.0053 0.11 CH₄ 0.3 0.03 0.0005 AUXILIARY INFORMATION METHOD APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: Volumetric method. Pressure measured when known amounts of gas were added ,in increments, to a known amount of liquid in a vessel of known dimensions. Exact procedure for calculating solubility not clear. ESTIMATED ERROR: REFERENCES:

ORIGINAL MEASUREMENTS:

- Methane; CH₄; [74-82-8]
 Carbon dioxide; CO₂; [124-38-9]
 Hydrogen; H₂; [1333-74-0]
 Nitrogen; N₂; [7727-37-9]
 4-Methyl-1,3-dioxolan-2-one, (Propylene carbonate); C₄ H₆ O₃; [108-32-7]

Rusz, L. Veszpremi. Vegyip. Egy. Kozl. 1968, 11, 169-180.

T/K	Total p/atm		Gas	Partial p/atm	pressure p/MPa	α	Mole fract
293.2	15.5	15.7	CO ₂	1.3	0.13	4.7	0.0210
			N_2	4.9	0.50	0.96	0.0044
			H_2	9.0	0.91	1.94	0.0088
			CH ₄	0.3	0.03	0.18	0.0008
	26.2	2.65	CO ₂	3.3	0.33	7.7	0.0339
			N_2	5.3	0.54	1.25	0.0057
			H ₂	17.1	1.73	4.45	0.0199
	•••		CH4	0.5	0.05	0.24	0.0011
	34.9	3.54	CO ₂	6.8	0.69	16.6	0.0703
			N ₂	11.2	1.13	1.75	0.0079
			H ₂	16.2	1.64	3.05	0.0137
			CH ₄	0.7	0.07	0.32	0.0015
	42.1	4.27	CO ₂	13.2	1.34	36.3	0.142
			N ₂	15.4	1.56	3.32	0.0149
			H ₂	12.5	1.27	3.15	0.0142
202 2		0 00	CH4	1.0	0.10	0.12	0.0005
303.2	8.8	0.88	CO ₂	1.2	0.12	3.4	0.0153
			N ₂	3.1	0.31	0.81	0.0037
			H ₂	4.4	0.45	1.22	0.0055
	21 2	2.15	CH ₄	0.1	0.01	0.16	0.0007
	21.2	2.15	CO ₂	2.8	0.28	5.6	0.0249
			N ₂	4.2	0.43 1.52	0.72	0.0033
			H ₂ CH ₄	15.0 0.2	0.02	3.55 0.19	0.0159
	30.4	3.08					0.00087
	30.4	3.08	CO ₂	7.4 7.1	0.75 0.72	14.8	0.0632
			N 2 H 2	15.6	1.58	2.20	0.0099
			CH 4	0.3	0.03	4.70 0.20	0.0210
	39.6	4.01	CO ₂	8.9	0.90	16.9	0.0009
	39.0	4.01	N ₂	9.3	0.94	1.92	0.0715
			H ₂	20.9	2.12	5.16	0.0087 0.0230
			CH 4	0.5	0.05	0.14	0.0006
	43.7	4.43	CO ₂	14.6	1.48	30.8	0.1231
	43.7	4.40	N ₂	14.2	1.44	3.15	0.0142
			H ₂	14.1	1.43	3.05	0.0142
			CH 4	0.8	0.08	0.25	0.0011
313.2	10.7	1.08	CO ₂	1.5	0.15	2.5	0.0113
,	10.,	2.00	N ₂	2.6	0.26	0.28	0.0013
			H ₂	6.4	0.65	1.55	0.0070
			CH 4	0.2	0.02	0.09	0.0004
	21.2	2.15	CO ₂	5.4	0.55	6.9	0.0305
			N ₂	4.8	0.49	0.84	0.0038
			H ₂	10.6	1.07	2.23	0.0101
			CH 4	0.4	0.04	0.31	0.0014
	29.1	2.95	CO ₂	7.4	0.75	9.6	0.0419
			N ₂	7.3	0.74	1.13	0.0051
			H ₂	13.9	1.41	3.65	0.0164

cont.

ORIGINAL MEASUREMENTS:

- 1. Methane; CH4; [74-82-8]

- 2. Carbon dioxide; CO₂; [124-38-9]
 3. Hydrogen; H₂; [1333-74-0]
 4. Nitrogen; N₂; [7727-37-9]
 5. 4-Methyl-1,3-dioxolan-2-one, (Propylene carbonate); C+H6O3; [108-32-7]

Rusz, L. Veszpremi. Vegyip. Egy. Kozl., 1968, 11, 169-180.

EXPERIMENTAL VALUES:

313.2 3.43 3.48 CO ₂ 9.3 0.94 15.4 0.0656 N ₂ 10.2 1.03 15.1 0.0068 H ₂ 14.1 1.43 2.74 0.0123 CH ₄ 0.7 0.07 0.12 0.0005 43.4 4.40 CO ₂ 15.2 1.54 23.4 0.0964 N ₂ 14.8 1.50 2.74 0.0123 H ₂ 12.5 1.27 3.38 0.0152 CH ₄ 0.9 0.09	T/K	Total p/atm	pressure p/Mpa	Gas	Partial p/atm	pressure p/MPa	α	Mole fraction in liquid
3.0007				N ₂ H ₂ CH ₄ CO ₂ N ₂	10.2 14.1 0.7 15.2 14.8	1.03 1.43 0.07 1.54 1.50	15.1 2.74 0.12 23.4 2.74	0.0068 0.0123 0.0005 0.0964 0.0123

 $^{ t t}$ mL of gas absorbed (reduced to 0 $^{ t t}$ C and 1 atmosphere) per g of solvent.

T/K	Total pre p/atm	ssure p/Mpa	a α	Mole fraction of methane,	
283.2	11.8	1.20	3.9	0.017	
	15.1	1.78	4.5	0.020	
	20.6	2.43	5.9	0.026	
	25.0	2.53	5.7	0.025	
293.2	10.8	1.09	2.9	0.013	
	15.6	1.58	3.7	0.017	
	21.6	2.19	6.7	0.030	
	25.6	2.59	7.5	0.033	
303.2	11.4	1.16	3.3	0.015	
	15.8	1.60	4.7	0.021	
	21.8	2.21	5.1	0.023	
	25.9	2.62	5.4	0.024	
313.2	13.7	1.39	2.8	0.013	
	20.0	2.03	4.5	0.020	
	24.8	2.51	6.4	0.028	
	28.0	2.84	6.3	0.028	

mL of gas absorbed (reduced to 0°C and 1 atmosphere) per g of solvent

AUXILIARY INFORMATION

Volumetric method. Pressure measured when known amounts of gas were added ,in increments, to a known amount of liquid in a vessel of known dimensions. Exact procedure for calculating solubility not clear.

METHOD /APPARATUS / PROCEDURE:

SOURCE AND PURITY OF MATERIALS:

ESTIMATED ERROR:

- 1. Methane; CH4; [74-82-8]
- Carbon dioxide; CO₂; [124-38-9]
 Nitrogen; N₂; [7727-37-9]
- 4. 1,2,3-Propanetriol, triacetate, (glycerol triacetate); C9 H14 O6; [102-76-1]

ORIGINAL MEASUREMENTS:

Makranczy, J.; Maleczkine, S. M.; Rusz, L. Veszpremi. Vegyip. Egy. Kozl. 1965, 9, 95-105.

VARIABLES:

Temperature, pressure

PREPARED BY: C. L. Young

EXPERIMENTAL VALUES:

T/K = 293.2

Total pressure /Mpa	Part P _{CO2} /MPa	ial pressum P _{CH₄} /Mpa	re p _{N2} /Mpa	^α co₂	^α CH ₄	Mole f:	$x_{ ext{CH}_4}$
10.6	6.3	3.1	1.0	24.7	1.3	0.194	0.012
16.4	10.2	4.6	1.6	34.6	3.1	0.252	0.029
24.2	12.7	8.2	3.3	51.0	12.6	0.332	0.109
29.0	17.4	7.5	4.1	76.0	9.1	0.425	0.081
41.8	19.8	16.0	6.0	92.5	14.6	0.474	0.124

 $\alpha=$ mL of gas absorbed (reduced to $0\,^{\circ}\,C$ and 1 atmosphere) per g of solvent

AUXILIARY INFORMATION

METHOD /APPARATUS / PROCEDURE:

Volumetric method. Pressure measured when known amounts of gas were added ,in increments, to a known amount of liquid in a $\,$ vessel of known dimensions. Exact procedure for calculating solubility not clear.

SOURCE AND PURITY OF MATERIALS:

ESTIMATED ERROR:

- 1. Methane; CH4; [74-82-8]
- 2. Carbon dioxide; CO₂; [124-38-9] 3. Nitrogen; N₂; [7727-37-9]
- 4. 2-[2-(methoxyethoxy)-ethoxy]ethanol acetate, (methoxytri-ethylene gylcol acetate); C₉ H₁₈ O₅; [3610-27-3]

ORIGINAL MEASUREMENTS:

Makranczy, J.; Maleczkine, S. M.; Rusz, L.

Veszpremi. Vegyip. Egy. Kozl. 1965, 9, 95-105.

VARIABLES:

Temperature, pressure

PREPARED BY:

C. L. Young

EXPERIMENTAL VALUES:

T/K = 293.2

Total		ial pressu				Mole fra	ctions
pressure /MPa	P _{CO2} /MPa	PCH 4/Mpa	P _{N 2} /Mpa	α CC ₂	α CH 4	^x CO₂	ж СН _ь
10.6	6.5	2.8	1.3	26.8	2.4	0.198	0.022
16.3	9.7	4.8	1.8	38.5	4.8	0.261	0.042
23.9	13.4	7.7	2.8	61.5	6.2	0.361	0.054
31.1	18.9	8.3	3.9	95.5	9.0	0.467	0.064
41.8	22.5	15.2	4.1	116.0	13.1	0.516	0.107

 $\alpha = mL$ of gas absorbed (reduced to 0 °C and 1 atmosphere) per g of solvent

AUXILIARY INFORMATION

METHOD APPARATUS / PROCEDURE:

Volumetric method. Pressure measured when known amounts of gas were added ,in increments, to a known amount of liquid in a vessel of known dimensions. Exact procedure for calculating solubility not clear.

SOURCE AND PURITY OF MATERIALS:

ESTIMATED ERROR:

- 1. Methane; CH4; [74-82-8]

- Methane; Cn; [74-82-8]
 Carbon dioxide; CO₂; [124-38-9]
 Nitrogen; N₂; [7727-37-9]
 2,2'-{1,2-ethanediylbis-(oxy)]bisethanol, (triethylene glycol); C₆H₁,O₄; [112-27-6]

ORIGINAL MEASUREMENTS:

Makranczy, J.; Maleczkine, S. M.; Rusz, L.

Veszpremi. Vegyip. Egy. Kozl. 1965, 9, 95-105.

VARIABLES:

Temperature, pressure

PREPARED BY:

C. L. Young

EXPERIMENTAL VALUES:

T/K = 293.2

Total pressure /MPa	Part P _{CO2} /MPa	ial pressu P _{CH4} /Mpa	re p _{N2} /Mpa	^α CO₂	^α CH ₄	Mole fra	ctions ^x CH ₄	
12.2	7.8	3.2	1.2	11.8	2.7	0.0732	0.0177	
18.4	11.8	4.4	2.2	18.5	2.9	0.1102	0.0190	
27.2	17.3	7.6	2.3	26.2	3.4	0.1492	0.0222	
36.2	24.1	9.1	2.9	37.6	6.9	0.2010	0.0441	1
41.7	26.7	11.4	3.6	44.2	8.1	0.2283	0.0514	

 α =mL of gas absorbed (reduced to 0° C and 1 atmosphere) per g of solvent

AUXILIARY INFORMATION

METHOD APPARATUS / PROCEDURE: SOURCE AND PURITY OF MATERIALS: Volumetric method. Pressure measured when known amounts of gas were added ,in increments, to a known amount of liquid in a vessel of known dimensions. Exact procedure for calculating solubility not clear. ESTIMATED ERROR: REFERENCES:

- 1. Methane; CH4; [74-82-8]
- 2. Carbon dioxide; CO₂; [124-38-9]
- 3. Nitrogen; N₂; [7727-37-9]
- 4. 4-Methyl-1,3-dioxolan-2-one,
 (propylene carbonate); C4H6O3;
 [108-32-7]

ORIGINAL MEASUREMENTS:

Makranczy, J.; Maleczkine, S. M.; Rusz, L.

Veszpremi. Vegyip. Egy. Kozl. 1965, g, 95-105.

VARIABLES:

Temperature, pressure

PREPARED BY:

C. L. Young

EXPERIMENTAL VALUES:

T/K = 293.2

Total pressure /MPa	Part P _{CO2} /MPa	ial pressu p _{CH,} /Mpa	re p _{N2} /Mpa	^α CO₂	^α CH ₄	Mole f x CO $_2$	ractions ^x CH,
8.7	4.4	3.6	0.7	14.3	1.3	0.060	0.0059
16.6	8.2	7.1	1.3	27.6	5.1	0.116	0.023
25.4	12.3	11.1	2.0	41.9	9.2	0.160	0.040
30.9	14.4	13.7	2.8	53.9	10.4	0.197	0.045
35.7	15.7	14.8	5.2	64.2	12.3	0.226	0.053

 α = mL of gas absorbed (reduced to 0° C and 1 atmosphere) per g of solvent

AUXILIARY INFORMATION

METHOD /APPARATUS / PROCEDURE:

Volumetric method. Pressure measured when known amounts of gas were added ,in increments, to a known amount of liquid in a vessel of known dimensions. Exact procedure for calculating solubility not clear.

SOURCE AND PURITY OF MATERIALS:

ESTIMATED ERROR:

REFERENCES:

ŧ

COMPONENTS:

1. Methane; CH₄; [74-82-8]

2. Carbon dioxide; CO; [124-38-9]

3. Nitrogen; N₂; [7727-37-9]

4. 2-[2-(Butoxyethoxy)-ethoxy]ethanol acetate, (butoxytriethylene gylcol acetate);

C₁₂H₂₄O₅;

VARIABLES:

Temperature, pressure

ORIGINAL MEASUREMENTS:
Makranczy, J.; Maleczkine, S. M.;
Rusz, L.
Veszpremi. Vegyiv. Egy. Kozl.
1965, 9, 95-105.

PREPARED BY:
C. L. Young

EXPERIMENTAL VALUES:

T/K = 293.2

Total pressure /MPa	Part P _{CO₂} /MPa	ial pressur P _{CH,} /Mpa	re p _{N2} /Mpa	α co₂	α CH ,	Mole fra ^x CO ₂	CH ₄	
10.8	6.7 10.5	3.1 4.3	1.0	26.3 38.2	2.9	0.225 0.297	0.031 0.058	
24.6 29.8 40.8	15.0 18.9 22.8	6.6 8.4 12.1	3.0 2.5 5.9	60.7 82.4 100.0	8.1 10.4 14.3	0.402 0.477 0.525	0.082 0.103 0.137	

 α = mL of gas absorbed (reduced to 0 $^{\circ}$ C and 1 atmosphere) per g of solvent

AUXILIARY INFORMATION

Volumetric method. Pressure measured when known amounts of gas were added ,in increments, to a known amount of liquid in a vessel of known dimensions. Exact procedure for calculating solubility not clear.

METHOD /APPARATUS / PROCEDURE:

ESTIMATED ERROR:

SOURCE AND PURITY OF MATERIALS:

COMPONENTS: 1. Methane; CH₄; [74-82-8] 2. 4-Methyl-1,3-dioxolan-2-one; (Propylene carbonate); C₄H₆O₃; [108-32-7] VARIABLES: ORIGINAL MEASUREMENTS: Lenoir, J-Y.; Renault, P.; Renon, H. J. Chem. Eng. Data, 1971, 16, 340-2. PREPARED BY: C. L. Young

EXPERIMENTAL VALUES:

T/K	Henry's constant HCH4/atm	Mole fraction at 1 atm* $^x\mathrm{CH}_4$
298.2	1140	0.000877
323.2	1340	0.000746
343.2	1430	0.000699

* Calculated by compiler assuming a linear function of $^{P}_{CH_{4}}$ vs $^{x}_{CH_{4}}$, i.e., $^{x}_{CH_{4}}$ (1 atm) = $^{1/H}_{CH_{4}}$.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

A conventional gas-liquid chromatographic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at 1 atm. pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.

- SOURCE AND PURITY OF MATERIALS:
- (1) L'Air Liquide sample, minimum purity 99.9 moler per cent.
- (2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent.

ESTIMATED ERROR:

 $\delta T/K = \pm 0.1$; $\delta H/atm = \pm 6$ % (estimated by compiler).

COMPONENTS: 1. Methane; CH4; [74-82-8] Parcher, J. F.; Bell, M. L.; 2. 4-Methyl-1,3-dioxolan-2-one, (Propylene carbonate); C4H6O3; Adv. Chromat. [108-32-7] 1984, 24, 227-246. VARIABLES: PREPARED BY: C. L. Young

T/K (t/°C)	Henry's law constant, H/atm	Mole fraction $^{ m a}$ extrapolated to $^{ m l}$ atm, $^{ m x}$ CH,
283.2 (10)	1500	0.00067
293.2 (20)	1400	0.00071
303.2 (30)	1300	0.00077
313.2 (40)	1400	0.00071

 $R d ln H/d(1/T) = +0.5 kcal mol^{-1} = 2 kJ mol^{-1}$.

AUXILIARY INFORMATION

Henry's law constant determined from
retention volume of gas on a chromato-
graphic column. Helium was used as
a carrier gas and a mass spectrometer
used as a detector. The measured
Henry's law constants were indepen-
dent of sample size, flow rate and
composition of injected sample.
Details given in ref. 1.

METHOD APPARATUS/PROCEDURE:

SOURCE AND PURITY OF MATERIALS:

No details given.

ESTIMATED ERROR:

 $\delta H/atm = \pm 200$.

REFERENCES:

Lin, P. J. and Parcher, J. F. J. Chromat. Sci. 1982, 20, 33.

^a Calculated by compiler assuming x = 1/H.

674	Other Organic Compou	nds Containing Ovy	vaen.
2. Hexadecan 3. 4-Methyl-	Other Organic Compou	ORIGINAL MEASUREM	ENTS: ; Bell, M. L.;
VARIABLES:		PREPARED BY:	. Young
EXPERIMENTAL VA	LUES: Mole fraction of Component 2	Henry's law constant, H/atm	Mole fraction a extrapolated to 1 atm, x_{CH_4}
293.2 (20)	0.30	460	0.00217
303.2 (30)		480	0.00208
313.2 (40)		470	0.00213
293.2 (20)	0.62	250	0.00400

AUXILIARY INFORMATION

257

270

retention volume of gas on a chromato-
graphic column. Helium was used as
a carrier gas and a mass spectrometer
used as a detector. The measured
Henry's law constants were indepen-

Henry's law constant determined from

METHOD APPARATUS / PROCEDURE:

Details given in ref. 1.

303.2

(30) 313.2

(40)

dent of sample size, flow rate and composition of injected sample.

ESTIMATED ERROR:

 $\delta x_{\mathrm{CH}_{\mathrm{L}}} = \pm 10\%$ (estimated by compiler).

No details given.

0.00389

0.00370

REFERENCES:

 Lin, P. J. and Parcher, J. F. J. Chromat. Sci. 1982, 20, 33.

SOURCE AND PURITY OF MATERIALS:

^a Calculated by compiler assuming x = 1/H.

- 1. Methane; CH₄; [74-82-8]
- 2. 4-Methyl-1,3-dioxolan-2-one,
 (Propylene carbonate);
 C₄H₆O₃; [108-32-7]

ORIGINAL MEASUREMENTS:

Shakhova, S.F.; Zubchenko, Yu.P.

Khim. Prom. 1973, 49, 595-6.

VARIABLES:

Temperature, pressure

PREPARED BY:

C.L. Young

XPERIMENTAL VALUES: T/K	P/10 ⁵ Pa	Mole fraction of methane in liquid, x _{CH4}	α ⁺ vol/vol	
298.15	43.67	0.0256	6.9	
	63.22 84.81	0.0363 0.0482	9.9 13.3	
	113.28	0.0584	16.3	
323.15	47.93	0.0270	7.3	
	73.56	0.0405	11.1	
	79.44	0.0430	11.8	
	88.76	0.0457	12.6	
	112.77	0.0567	15.8	
	146.11	0.0691	19.5	
	147.63	0.0691	19.5	

+ quoted in original, appears to be volume of gas at T/K = 273.15 and P = 1 atmosphere absorbed by unit volume of liquid at room temperature.

AUXILIARY INFORMATION

METHOD /APPARATUS / PROCEDURE:

Rocking autoclave. Mixture stirred by ball in rocking autoclave. Samples of liquid analysed by a Volumetric method. Details in ref. (1).

SOURCE AND PURITY OF MATERIALS:

- 1. Purity 97.8 mole per cent.
- 2. No details given.

ESTIMATED ERROR:

 $\delta T/K = \pm 0.1$; $\delta P/10^5 Pa = \pm 0.1$; $\delta x_{CH_4} = \pm 5$ %.

(estimated by compiler).

REFERENCES:

 Shakhova, S.F.; Zubchenko, Yu.P.; Kaplan, L.K.

Khim. Prom. 1973, 5, 108.

COMPONENTS: 1. Methane; CH₄; [74-82-8] 2. Oxybispropanol, (Dipropylene glycol); C₆H₁4O₃; [25265-71-8] VARIABLES: Temperature C. L. Young

EXPERIMENTAL VALUES:

T/K	Henry's constant $^{H}_{\mathrm{CH_{4}}}$ /atm	Mole fraction at 1 atm* $^x\mathrm{CH}_4$
298.2	1450	0.000690
323.2	1800	0.000556
343.2	2230	0.000448

* Calculated by compiler assuming a linear function of $^{P}_{CH_4}$ vs $^{x}_{CH_4}$, i.e., $^{x}_{CH_4}$ (1 atm) = $1/H_{CH_4}$.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

A conventional gas-liquid chromatographic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at latm. pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.

SOURCE AND PURITY OF MATERIALS:

- (1) L'Air Liquide sample, minimum purity 99.9 mole per cent.
- (2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent.

ESTIMATED ERROR:

 $\delta T/K = \pm 0.1$; $\delta H/atm = \pm 6$ % (estimated by compiler).

COMPONENTS: 1. Methane; CH₄; [74-82-8] 2. Benzenemethanol; (Benzyl alcohol); J. Chem. Eng. Data, 1971, 16, 340-2. C₇H₈O; [100-51-6] VARIABLES: PREPARED BY: C. L. Young

EXPERIMENTAL VALUES:

T/K	Henry's constant ${}^{H}_{\mathrm{CH}_{4}}/\!\!\!/\!\!\!\mathrm{atm}$	Mole fraction at 1 atm* x CH,
298.2	1030	0.000971

* Calculated by compiler assuming a linear function of $^{P}_{CH_{4}}$ vs $^{x}_{CH_{4}}$, i.e., $^{x}_{CH_{4}}$ (1 atm) = $^{1/H}_{CH_{4}}$.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

A conventional gas-liquid chromato-graphic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at latm. pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.

SOURCE AND PURITY OF MATERIALS:

- (1) L'Air Liquide sample, minimum purity 99.9 mole per cent.
- (2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent.

ESTIMATED ERROR:

 $\delta T/K = \pm 0.1$; $\delta H/atm = \pm 6$ % (estimated by compiler).

EXPERIMENTAL VALUES:

T/K	Henry's constant HCH ₄ /atm	Mole fraction at 1 atm* $^x\mathrm{CH_4}$
323.2	1990	0.000503

* Calculated by compiler assuming a linear function of $^{P}_{CH_{4}}$ vs $^{x}_{CH_{4}}$, i.e., $^{x}_{CH_{4}}$ (1 atm) = $^{1/H}_{CH_{4}}$.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

A conventional gas-liquid chromatographic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at l atm. pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.

SOURCE AND PURITY OF MATERIALS:

- (1) L'Air Liquide sample, minimum purity 99.9 mole per cent.
- (2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent.

ESTIMATED ERROR:

 $\delta T/K = \pm 0.1$; $\delta H/atm = \pm 6\%$ (estimated by compiler).

- 1. Methane; CH₄; [74-82-8]
- 1,2,3-Propanetriol, triacetate, (Glycerol triacetate); C₉H₁₄O₆; [102-76-1]

ORIGINAL MEASUREMENTS:

Shakhova, S.F.; and Zubchenko, Yu.P.

Khim. Prom. 1973, 49, 595-6.

VARIABLES:

Temperature, pressure

PREPARED BY:

C.L. Young

EXPERIMENTAL VALUES: T/K	<i>P</i> /10 ⁵ Pa	Mole fraction of methane in liquid, x _{CH4}	α ⁺ vol/vol	
298.15	35.87	0.0640	8.1	
	40.73	0.0706	9.0	
	50.97	0.0828	10.7	
	70.42	0.1070	14.2	
	75.59	0.1144	15.3	
	90.08	0.1306	17.8	
	104.56	0.1512	21.1	
343.15	62.31	0.0941	12.3	
	85.32	0.3970	78.0	
	95.14	0.4220	86.0	
	113.28	0.4614	101.5	
	114.80	0.4639	102.5	
	127.47	0.4882	113.0	

+ quoted in original, appears to be volume of gas at T/K = 273.15 and P=1 atmosphere absorbed by unit volume of liquid at room temperature.

AUXILIARY INFORMATION

METHOD /APPARATUS / PROCEDURE:

Rocking autoclave. Mixture stirred by ball in rocking autoclave. Samples of liquid analysed by a Volumetric method. Details in ref. (1).

SOURCE AND PURITY OF MATERIALS:

- 1. Purity 97.8 mole per cent.
- 2. No details given.

ESTIMATED ERROR:

 $\delta T/K = \pm 0.1$; $\delta P/10^5 Pa = \pm 0.1$; $\delta x_{CH_4} = \pm 5\%$. (estimated by compiler)

REFERENCES:

 Shakhova, S.F.; Zubchenko, Yu.P. Kaplan, L.K.

Khim. Prom. 1973, 5, 108.

- 1. Methane; CH4; [74-82-8]
- 2. 3-Methylphenol, (m-cresol);
 C7HaO; [108-39-4]

ORIGINAL MEASUREMENTS:

Simnick, J. J.; Sebastian, H. M.; Lin, H. M.; Chao, K. C. Fluid Phase Equilibria 1979, 3, 145-154.

VARIABLES:

Temperature, pressure

PREPARED BY:

C. L. Young

EXPERIMENTAI	. VALUES:		Mole fraction	
T/K	P/MPa	P/atm	in liquid,	in gas,
			[∞] CH ₄	y _{CH4}
462.25	2.08	20.5	0.0198	0.9579
	3.05	30.1	0.0288	0.9695
	5.11	50.4	0.0489	0.9785
	10.05	99.2	0.0930	0.9836
	15.28	150.8	0.1382	0.9840
	20.17	199.1	0.1768	0.9825
	25.27	249.4	0.2166	0.9806
542.65	2.00	19.7	0.0181	0.7435
	3.03	29.9	0.0301	0.8158
	5.06	49.9	0.0533	0.8764
	10.13	100.0	0.1111	0.9172
	15.15	149.5	0.1684	0.9262
	20.23	199.7	0.2199	0.9261
	25.20	248.7	0.2746	0.9214
623.25	3.07	30.3	0.0224	0.3912
	5.08	50.1	0.0538	0.5699
	10.18	100.5	0.1330	0.7057
	15.16	149.6	0.2136	0.7385
	20.35	200.8	0.3019	0.7333
	22.72	224.2	0.3579	0.7171
	25.33	250.0	0.4888	0.6857
663.35	5.12	50.5	0.0465	0.3265
	10.08	99.5	0.1477	0.4968
	12.91	127.4	0.2135	0.5198
	15.25	150.5	0.3207	0.4809

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Flow apparatus with both liquid and gaseous components continually passing into a mixing tube and then into a cell in which phases separated under gravity. Liquid sample removed from bottom of cell and vapor sample from top of cell. Composition of samples found by stripping out gas and estimating amount of solvent gravimetrically. Temperature measured with thermocouple and pressure with Bourdon gauge. Details in ref. (1).

SOURCE AND PURITY OF MATERIALS:

- Matheson sample, purity better than 99 mole per cent.
- Aldrich Chemical Co., minimum purity 99 mole per cent. Distilled.

ESTIMATED ERROR:

 $\delta T/K = \pm 0.2; \quad \delta P/MPa = \pm 0.02;$ $\delta x_{CH_4}, \quad \delta y_{CH_4} = \pm 2 *.$

REFERENCES:

 Simnick, J. J.; Lawson, C. C.; Lin, H. M.; Chao, K. C. Am. Inst. Chem. Engnrs. J. 1977, 23, 469.

- Methane; CH₄; [74-82-8]
 2,5,8,11,14 Pentaoxapentadecane, (Tetramethylene glycol dimethyl ether) C₁₀H₂₂O₅; [143-24-8]

ORIGINAL MEASUREMENTS:

Zubchenko, Yu.P.; Shakhova, S.F.

Tr.N.-i.i Proekt. In-ta Azot Prom-sti i Produktov Organ. Sinteza 1975, (33), 13-15.

VARIABLES:

PREPARED BY:

Pressure

C.L. Young

EXPERIMENTAL VALUES:			α+	Mole fraction of methane	
T/K	P/atm	P/MPa	vol/vol	in liquid, x _{CH4}	
313.15	24.2	2.45	6.18	0.0502	
	37.2	3.77	9.17	0.0727	
	54.3	5.50	13.2	0.101	
	69.9	7.08	17.1	0.127	
	83.3	8.44	20.1	0.147	
	84.0	8.51	20.4	0.148	
	85.7	8.68	20.7	0.150	

+ quoted in original paper, appears to be volume of gas at T/K = 273/15 and P =1 atmosphere absorbed by unit volume of liquid at room temperature.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Mixture stirred by ball in rocking autoclave. Sample of liquid analysed by a volumetric method. Details in ref. (1).

SOURCE AND PURITY OF MATERIALS:

- 1. Purity 97.8 mole per cent.
- 2. No details given.

ESTIMATED ERROR:

 $\delta T/K = \pm 0.1$; $\delta P/atm = \pm 0.1$ $\delta x_{\text{CH}_4} = \pm 5\%.$ (estimated by compiler).

REFERENCES:

1. Shakhova, S.F.; Zubchenko, Yu.P.; Kaplan, L.K. Khim. Prom. 1973, 5, 108.