COMPONENTS:	EVALUATOR:
(l) Mercury; Hg; [7439-97-6] (2) Cycloalkanes	H. Lawrence Clever Chemistry Department Emory University Atlanta, Georgia 30322 USA <u>1985</u> , July

CRITICAL EVALUATION:

An Evaluation of the Solubility of Mercury in Cycloalkanes.

There are data on the solubility of mercury in six cycloalkanes. A. F. Voigt and co-workers (ref. 1 - 4) have measured all but one of the reported cycloalkane solubilities by a radioactive tracer technique. A single value is reported by Vogel and Gjaldbaek (ref. 5) by atomic absorption spectroscopy. The data on the six cycloalkanes are discussed below.

Mercury + Cyclohexane; C_6H_{12} ; [110-82-7]

There are four values of the solubility of mercury in cyclohexane at 298.15 K. They are:

(12.1 ± 0.3)	x 10 ^{-\$}	mol dm ⁻³	Spencer and Voigt (ref. 3)
(11.0 ± 0.2)	x 10 ^{-•}	mol dm ⁻³	Moser and Voigt (ref. 1)
9.7	x 10 ⁻⁶	mol dm ⁻³	Moser and Voigt (ref. 2)
(9.6 <u>+</u> 0.4)	x 10 ⁻⁸	mol dm ⁻³	Vogel and Gjaldbaek (ref. 5)

In addition, Spencer and Voigt (ref. 3) report five additional values in the 288.15 to 313.15 K interval. The Moser and Voigt (ref. 2) value was calculated from their cyclohexane/water distribution coefficient by the evaluator. It is of lesser reliability than the other values since it assumes unit activity coefficients and depends on the value chosen for the solubility of mercury in water.

The agreement among the values at 298.15 K is not as good as one would like. They differ by about 25 percent. Vogel and Gjaldbaek (ref. 5) took special care to see that the glassware surface of the sampling pipet was equilibrated with a saturated solution of mercury to prevent loss of mercury by adsorption on the surface and that colloidal mercury did not form in the sampled saturated solution. Their first precaution would result in a larger solubility and the second would result in a smaller solubility if adsorption of mercury by glass and colloidal mercury formation were problems. Vogel and Gjaldbaek suggest their smaller value formation were problems. is due to the precaution about colloidal mercury. Vogel and Gjaldbaek did four determinations of the solubility of mercury in cyclohexane by direct shaking without the precaution to remove colloidal mercury. The average solubility was $(12.4 \pm 1.5) \times 10^{-6}$ mol dm⁻³ which does agree with the Spencer and Voigt value. However, Vogel and Gjaldbaek also measured the solubility of mercury in octane and in 2,2,4-trimethylpentane. Their solubility values in these solvents agree well with the Spencer and Voigt values. At present, there is no reason why colloidal mercury would be a problem in cyclohexane but not with the octanes. It is a point that deserves futher experimental investigation. Vogel and Gjaldbaek also show that they obtain the same solubility value with an oxygen atmosphere or with a nitrogen atmosphere. They obtained equilibrium within 48 hours and found the same result after equilibrating for one month.

For this evaluation we prefer the Spencer and Voigt data because it is a self-consistent set of data over a 25 degree temperature interval. If Vogel and Gjaldbaek are correct, then the values from the Spencer and Voigt experiments should be reduced by about 20 percent. The six experimental values of Spencer and Voigt (ref. 3) and the one value of Moser and Voigt (ref. 1) were combined in a linear regression to obtain the equations for the 288.15 to 313.15 K interval.

 $\ln (c_1/\text{mol dm}^{-3}) = (1.6014 \pm 0.5296) - (38.6262 \pm 1.5886)/(T/100 \text{ K})$ with a standard error about the regression line of 4.9 x 10⁻⁷. $\ln x_1 = (0.2949 \pm 0.5246) - (39.5782 \pm 1.5740)/(T/100 \text{ K})$ with a standard error about the regression line of 5.3 x 10⁻⁹. $\ln (m_1/\text{mol kg}^{-1}) = (2.2128 \pm 0.5213) - (39.6850 \pm 1.5639)/(T/100 \text{ K})$ with a standard error about the regression line of 6.2×10^{-7} .

Smoothed data from the equations are in Table 1 below. Also in the table are the values of the enthalpy and entropy changes for the transfer of one mole of mercury from liquid mercury to the hypothetical unit concentration solution.

Table 1. Solubility of mercury in cyclohexane. Tentative values of $c_1/mol dm^{-3}$, $m_1/mol kg^{-1}$, and mole fraction, x_1 , solubility as a function of temperature.

 Т/К	Mercury Solubility				
	Concentration 10°c ₁ /mol dm ⁻³	Mole Fraction 10' <i>x₁</i>	Molality 10 ^{°m} 1/mol kg ⁻¹		
288.15 293.15 298.15 303.15 308.15 313.15	7.5 9.4 11.7 14.5 17.9 21.8	8.1 10.2 12.8 15.9 19.7 24.2	9.5 12.1 15.1 18.9 23.3 28.7		
Δ <i>H</i> 1 ^a	32.1 <u>+</u> 1.3	32.9 <u>+</u> 1.3	33.0 <u>+</u> 1.3		
Δ <i>S</i> ₁ ^b	13.3 <u>+</u> 4.4	2.5 <u>+</u> 4.4	18.4 <u>+</u> 4.3		

a units kJ mol⁻¹

Mercury + Methylcyclohexane; C₇H₁₄; [108-87-2] *cis*-1,2-Dimethylcyclohexane; C₈H₁₆; [2207-01-4] *trans*-1,2-Dimethylcyclohexane; C₈H₁₆; [6876-23-9] *cis*-1,4-Dimethylcyclohexane; C₈H₁₆; [624-29-3] *trans*-1,4-Dimethylcyclohexane; C₈H₁₆; [2207-04-7]

Spencer and Voigt (ref. 3 and 4) made the only measurements on these systems. The data are classed as tentative. The data were fit by a linear regression in the solubility units of concentration, $c_1/mol \ dm^{-3}$, mole fraction, x_1 , and molality, $m_1/mol \ kg^{-1}$ to a two constant equation. The constants of the equations and the smoothed data are given in Tables 2 - 7.

The solubility of mercury in the substituted cyclohexanes has a significantly more positive enthalpy of solution than in cyclohexane, but less positive enthalpy than for normal alkanes of the same carbon number. The enthalpy of solution of mercury in the substituted cyclohexanes is the same within experimental error for the five solvents. The solubility of mercury parallels closely for methylcyclohexane and the cis-1,2- and cis-1,4-dimethylcyclohexanes as a function of temperatures. The trans-1,2- and trans-1,4-dimethylcyclohexanes mercury solubilities parallel quite closely, but at about a 10 percent lower value than the solubility in the other three substituted cyclohexanes at a corresponding temperature.

b units J K⁻¹ mol⁻¹

Mercury in Hydrocarbons

COMPONENTS:			EVALUATOR:	EVALUATOR:		
(l) Mercury; Hg; [7439-97-6] (2) Cycloalkanes			H. Lawren Chemistry Emory Uni Atlanta,	H. Lawrence Clever Chemistry Department Emory University Atlanta, Georgia 30322 USA		
			<u>1985</u> , Jul	Ŷ		
CRITICAL EV	ALUATION:		······································			
Table 2.	Constants f K).	or the equation	on ln(c ₁ /mol	dm ⁻³) = A(1)) + A(2)/(T/100	
Compound	A	(1) <u>+</u> Error	A(2) <u>+</u> Err	or Si al Re	td. error Sout the Egression Line	
Methylcyc cis-1,2-E trans-1,2 cis-1,4-E trans-1,4	Clohexane3.DMC2.2-DMC2.DMC3.3-DMC2.	$\begin{array}{r} 6095 \pm 0.1461 \\ 6380 \pm 0.6568 \\ 9009 \pm 0.7042 \\ 3771 \pm 0.4927 \\ 9205 \pm 0.6169 \end{array}$	-45.4364 + -42.3938 + -43.5886 + -43.7188 + -43.7078 +	0.4285 1.9581 2.0979 1.4679 1.8378	1.33 x 10 ⁻⁷ 3.33 x 10 ⁻⁷ 3.76 x 10 ⁻⁷ 2.14 x 10 ⁻⁷ 3.30 x 10 ⁻⁷	
Table 3.	Solubility c concentratio	of mercury in n as a functio	cycloalkanes on of tempera	• Tentative ture at 0.1	values of the MPa.	
T/K	ستا ست سه جه هو چو جو کا مت حد نده دور	Concentratio	on, 10°c ₁ /mol	dm ⁻³ , in		
	Methyl- cyclohexane	cis-1,2- dimethyl- cyclohexane	trans-1,2- dimethyl- cyclohexane	cis-1,4- dimethyl- cyclohexane	trans-1,4- dimethyl- cyclohexane	
273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15	2.2 3.0 4.0 5.2 6.9 8.9 11.4 14.6	- 5.7 7.3 9.3 11.8 14.8	- - - 6.3 8.1 10.4 13.1	- 5.3 6.9 9.0 11.5 14.6	- - 4.8 6.2 8.0 10.2 12.8	
	37.8 <u>+</u> 0.4	35.2 <u>+</u> 1.6	36.2 <u>+</u> 1.7	37.2 <u>+</u> 1.2	36.3 <u>+</u> 1.5	
	30.0 <u>+</u> 1.2	21.9 <u>+</u> 5.5	24.1 <u>+</u> 5.8	28.1 ± 4.1	24.3 <u>+</u> 5.1	
8						

a units kJ mol⁻¹ b units J K⁻¹ mol⁻¹

Compound		A(1) <u>+</u> Error	A(2) <u>+</u> Eri	or	Std. error about the Regression Line
Methylcyc cis-1,2-E trans-1,2 cis-1,4-E trans-1,4	Lohexane DMC C-DMC DMC C-DMC	$\begin{array}{r} 2.0035 \pm 0.160 \\ 1.0312 \pm 0.706 \\ 1.2975 \pm 0.709 \\ 1.7676 \pm 0.509 \\ 1.3569 \pm 0.593 \end{array}$	$ \begin{array}{r} $	0.4716 2.1072 2.1139 1.5185 1.7669	1.98 x 10 ^{-*} 5.00 x 10 ^{-*} 5.56 x 10 ^{-*} 3.14 x 10 ^{-*} 4.78 x 10 ^{-*}
Table 5.	Solubility mole frac MPa.	y of mercury i tion solubili	n cycloalkanes ty as a funct	. Tentati ion of ten	ve values of ti perature at 0
 Т/К		Mole F	raction, 10 ⁷ x	, in	و الای ها ها ها جو دو ها هه بعد الله الله الله الله الله الله الله الل
	Methyl- cyclohexa	<i>cis-</i> 1,2- ne dimethy1-	trans-1,2- dimethy1-	cis-1,4- dimethyl-	trans-1,4- dimethy1-
		cyclohexane	cyclohexane	cyclohexa	ne cyclohexan
273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15	2.7 3.7 5.0 6.6 8.7 11.4 14.8 19.0	cyclohexane 	cyclohexane 	cyclohexa 	ne cyclohexano
273.15 278.15 283.15 293.15 293.15 298.15 303.15 308.15 	2.7 3.7 5.0 6.6 8.7 11.4 14.8 19.0 38.9 <u>+</u> 0.4	cyclohexane - - 8.0 10.3 13.2 16.8 21.2 4 36.1 ± 1.8	cyclohexane 	cyclohexa - - 7.6 10.0 12.9 16.65 21.3 38.0 ± 1.	ne cyclohexano

COMPONENTS:			EVALUATOR:	EVALUATOR:		
(l) Mercury; Hg; [7439-97-6] (2) Cycloalkanes		H. Lawrer Chemistry Emory Uni Atlanta,	H. Lawrence Clever Chemistry Department Emory University Atlanta, Georgia 30322 USA			
			<u>1985</u> , Jul	L y		
CRITICAL EV	ALUATION:		l			
Table 6.	Constants f	for the equation	on ln(m ₁ /mol	kg ⁻¹)= A(l)	+ A(2)/(T/100	
Compound		(1) <u>+</u> Error	A(2) <u>+</u> Err	or	Std. error about the Regression Line	
Methylcyc	lohexane 4	.2093 <u>+</u> 0.1477	-46.4212 ±	0.4331	1.67 x 10 ⁻⁷	
cis-1,2-D		-2107 ± 0.6326	-43.4077 +	- 1.8858 - 2.0210	4.03 x 10 ⁻⁷	
cis-1,4-D	MC 3	$.9300 \pm 0.5118$	-45.6200 ±	1.5245	4.72 x 10 2.80 x 10 ⁻⁷	
trans-1,4	-DMC 3	$.5862 \pm 0.6524$	-44.8727 <u>+</u>	1.9436	4.63 x 10 ⁻⁷	
				, in in in in in		
Table 7.	Solubility molality as	of mercury in ; a function of	cycloalkanes. temperature	Tentativ at 0.1 MPa	e values of	
<i>T/</i> K		Molality	, 10° <i>m</i> 1/mol k	g ⁻¹ , in		
	Methyl- cyclohexane	cis-1,2- dimethy1- cyclohexane	trans-1,2- dimethy1- cyclohexane	cis-1,4- dimethy1- cyclohexa	trans-1,4- dimethyl- ne cyclohexane	
273.15	2.8	-		-	-	
278.15	3.8	-	-	-	-	
288.15	6.8	7.1	6.3	6.8	6.2	
293.15	8.9	9.2	8.2	8.9	8.1	
298.15 303.15	11.0 15.1	11.8 15.0	10.6 13.5	11.5 14.8	10.5	
308.15	19.3	18.9	17.1	18.9	17.1	
Δ <i>H</i> ₁ ^a	38.6 <u>+</u> 0.4	36.1 <u>+</u> 1.6	36.8 <u>+</u> 1.7	37.9 <u>+</u> 1.	3 37.3 <u>+</u> 1.6	
Δ <i>S</i> 1 ^b	35.0 <u>+</u> 1.2	26.7 <u>+</u> 5.3	28.2 <u>+</u> 5.6	32.7 <u>+</u> 4.3	3 29.8 <u>+</u> 5.4	
a units kJ mol ⁻¹ b units J K ⁻¹ mol ⁻¹						
REFERENCE	S:					
1. Moser, Chem. 2	H. C.; Voig Abstr. <u>1958</u>	:, A. F. <i>USAEC</i> , 52, 10691h.	Report <u>195</u>	<u>7</u> , ISC-892	, 65 pp.	
2. Moser,	H. C.; Voig	t, A. F. J. Am	1. Chem. Soc.	<u>1957</u> , 79,	, 1837 - 9.	
3. Spence Spence	r, J. N.; Vo r, J. N. <u>Di</u> f	igt, A. F. J. J. ssertation, Iov	Phys. Chem. va State Univ	<u>1968</u> , 72, ersity, <u>19</u>	464 - 70. <u>67</u> .	
 Spence Voigt, 	r, J. N.; Vo: A. F. Pers	igt, A. F. J. J onal communica	Phys. Chem. tion.	<u>1968</u> , 72,	1913 - 7;	
5. Vogel, 9.	A.; Gjaldba	ek, J. C. Arch	h. Pharm. Che	m. Sci. Ed	. <u>1974</u> , 2, 25 -	

COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Mercury; Hg; [7439-97-6]	Moser, H. C.; Voigt, A. F.			
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	USAEC Report <u>1957</u> , ISC-892. Chem. Abstr. <u>1958</u> , <i>52</i> , 10691h.			
	DEDARED BY			
VARIABLES.	H. L. Clever			
T/K = 298.15	M. Iwamoto			
EXPERIMENTAL VALUES:				
Temperature Merc	cury Solubility			
<i>t</i> /°C <i>T</i> /K ^a Concentration 10° <i>c</i> 1/mol dm ⁻³	Mole Fraction ^a Molality ^a $10^{r}x_{1}$ $10^{s}m_{1}/mol kg^{-1}$			
25 298.15 11.0 <u>+</u> 0.2	12.0 14.2			
^a Calculated by compilers.				
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
A globule of Hg metal prepared from radioactive mercury(II) nitrate by reduction with hypophosphorous acid was equilibrated with 5 - 10 ml of liquid by shaking in a thermostat. Aliquotes of the liquid were with- drawn periodically for up to two weeks and the Hg concentration determined radiochemically	(1) Mercury and Mercury-203. Oak Ridge National Lab; recieved as 0.31 M Hg(NO ₃) ₂ in 1.56 HNO ₃ solution. Initial activity 50 millicuries g ⁻¹ ; half-life 48 days. Reduced to Hg by hypo- phosphorous acid; coagulated to a Hg droplet by addition of concentrated HI.			
The aliquot was diluted with ace- tone and equilibrated with Hg(NO ₃) ₂ carrier to exchange the radioactive mercury. The mercury was precipi- tated as HgS, mounted on a stainless steel planchet and counted with a	(2) Cyclohexane. Eastman Co. Spec- tro-Grade; shaken with concen- trated H ₂ SO ₄ and alkaline KMnO ₄ passed through a column of dry activated Al ₂ O ₃ and redistilled.			
Geiger-Mueller tube.	ESTIMATED ERROR:			
	$\delta T/K = \pm 0.1$			

COMPONENTS:	ORIGINAL MEASUREMENTS:			
<pre>(1) Mercury; Hg; [7439-97-6] Mercury-203; ** Hg; [13982-78-0] (2) Cyclohexane; C₆H₁₂; [110-82-7]</pre>	Moser, H. C.; Voigt, A. F. J. Am. Chem. Soc. <u>1957</u> , 79, 1837 - 9.			
VARIABLES:	PREPARED BY:			
T/K = 298.15	H. L. Clever			
EXPERIMENTAL VALUES:				
Temperature Distribution	Mercury Solubility			
$t/^{\circ}C T/K^{a}$ $E^{\circ}=c_{1}aq/c_{1}org 10^{\circ}c_{1}/mol$	tion ^a Mole Fraction ^a Molality ^a dm ⁻³ 10 ⁷ x ₁ 10 ⁶ m ₁ /mol kg ⁻¹			
25.0 298.15 0.031 9.7	10.5 12.5			
^a Calculated by compiler, assuming act	ivity coefficients are unity.			
The above mercury solubility value w solubility in water of 3.0 x 10 ⁻⁷ mol	as calculated using the free mercury			
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
The distribution of mercury-203 between aqueous and organic phases was measured. Dilute solutions of 0.01 molar HNO_3 containing a known amount of pure mercurous nitrate were shaken with an equal volume of organic liquid for about 12 hours. Both phases were analyzed for total mercury by first converting to Hg ²⁺ , precipitation as HgS, and counting in a thin window Geiger counter. In the aqueous phase the dispro- portionation Hg ²⁺ (aq) = Hg ²⁺ (aq) + Hg(aq) and possibly the dissociation Hg ²⁺ (aq) = 2 Hg ⁺ (aq) take place. It is assumed that only metallic Hg is extracted into the organic phase. The distribution of total Hg in the experies of determined page	 (1) Mercury and Mercury-203. Oak Ridge National Lab; obtained as a high specific activity solu- tion of mercury(II) nitrate con- taining isotope 203. In the 0.01 molar HNO₃ solution of mer- cury(I) nitrate, the authors estimate 96% mercury(II) is Hg²⁺ and 99% of the mercury(I) is Hg²⁺. At this acidity, there is no minimum hydrolysis and nitrato complex formation. (2) Cyclohexane. Eastman Spectro Grade. 			

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Mercury; Hg; [7439-97-6]; Mercury-203; ²⁰³Hg; [13982-78-0]</pre>	Spencer, J. N.; Voigt, A. F. J. Phys. Chem. <u>1968</u> , 72, 464 - 470.
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Spencer, J. N. <u>Dissertation</u> , Iowa State University, <u>1967</u> .
VARIABLES:	PREPARED BY:
T/K = 288.15 - 313.15	S. H. Johnson M. Iwamoto H. L. Clever
EXPERIMENTAL VALUES:	
Temperature Mercu	cy Solubility
t/°C T/K ^a Concentration Mo 10 [°] c ₁ /mol dm ⁻³ 10	Die Fraction ^a Molality ^a 1^{x_1} $10^{e_m_1/mol kg^{-1}}$
15 288.15 7.6 <u>+</u> 0.2	8.2 9.7
20 293.15 9.4 <u>+</u> 0.2	10.2 12.1
25 298.15 12.1 <u>+</u> 0.3	13.2 15.6
30 303.15 14.8 <u>+</u> 0.4	16.2 19.2
35 308.15 17.4 <u>+</u> 0.2	19.2 22.8
40 313.15 22.3 <u>+</u> 1.5	24.7 29.3
log $x_1 = (13.140 \pm .359)$ for the 288.15 to 313.15 temperate	$\log(T/K) - 38.405$ are interval.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A radioactive tracer method was used. A high activity sample of mercury-203 nitrate was added to mercury(II) nitrate, reduced to metallic mercury by hypophosphorous acid, coagulated into a drop, washed and dried. The mercury and solvent were shaken continuously in 25 ml glass stop- pered volumetric flasks in a thermo- stat for 24 hours. Aliquots of the equilibrated solution were counted by a conventional single channel scintilation counter. The window width was set to count only the photopeak at 279 kev. The solubil- ity values were the average of at least six determinations over a three day period.	 (1) Mercury and Mercury-203. The isotope decays by emission of a beta particle at an energy of 210 kev, accompanied by a gamma ray of 279 kev. The isotope half-life is 47 days. (2) Cyclohexane. Phillips Petroleum Co., Research Grade, used as received. ESTIMATED ERROR: δT/K = ±0.1; See random error reported by authors with concentration values above. REFERENCES:

l

COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Mercury; Hg; [7439-97-6];	Vogel, A.; Gjaldbaek, J. Chr.			
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Arch. Pharm. Chem. Sci. Ed. <u>1974</u> , 2, 25 - 9.			
VARTARIES -	DDEDADED BV.			
T/K = 298.15	H. L. Clever M. Iwamoto			
EXPERIMENTAL VALUES:	L			
Temperature Mercury	Solubility			
t/%	Mole Fraction ^a Kolalitud			
Exps. 10° c ₁ /mol dm	1^{-3} $10^{7}x_1$ $10^{6}m_1/\text{mol kg}^{-1}$			
25 298.15 24 9.6 \pm 0.4	10.4 12.4			
ADDITIONAL COMMENTS: The authors state that they found the same solubility after shaking mercury + solvent for 48 hours as for shaking times of up to one month. The authors also found the same solubility within experimental error when the solvent was saturated with oxygen and with nitrogen. The authors took special care to see that the glassware surface of the sampling pipet was equilibrated with the saturated solution of mercury. Special care was taken to see that colloidal mercury did not form in the solution. METHOD/APPARATUS/PROCEDURE: Source AND PURITY OF MATERIALS:				
The mercury was analyzed by cold vapor atomic absorption spectroscopy (ref. 1). The solvent was saturated with Hg in a special glass container in which a few grams of mercury was kept in a cellulose extraction thim- ble. The container was shaken at least 48 hours at 25°C. A 10.00 cm ³ sample of the satu- rated solution was taken. It was treated to convert the Hg to Hg ²⁺ and extracted into an aqueous phase. An aliquot of the aqueous phase was diluted, treated with tin(II) chloride to reduce the mercury, and the solution analyzed by cold vapor atomic absorption spectroscopy. The apparatus allowed measurements down to one part per billion of Hg. Similtaneous measurements were made under the same conditions of samples containing a known amount of mercury.	<pre>(1) Mercury. Source not given, pur- ified by distillation. (2) Cyclohexane. Merck; Uvasol grade spectroscopic quality, used without further purifica- tion. ESTIMATED ERROR:</pre>			

141

COMPO	NENTS :				ORIGINAL MEASU	IREMENTS	:		
(1)	Mercu Mercu	ry; Hg; ry-203;	[7439-97-6]; ²⁰³ Hg; [13982-7	78-0]	Spencer, J J. Phys. C	J. N.; Chem.	Voigt, A. <u>1968</u> , 72,	F. 464 -	470.
(2) Methylcyclohexane; C ₇ H ₁₄ ; [108-87-2]			Spencer, J <u>Dissertati</u> 1967.	J. N. Lon, Id	owa State I	Jniver	sity,		
VARIA	BLES:				PREPARED BY:				
	T/K =	273.15 -	308.15		S. H. Johr M. Iwamoto H. L. Clev	nson D Ver			
EXPER	IMENTAL	VALUES:		·					
	Temper	ature		lercur	y Solubility	 ?	م منه جي منه منه جو منه بين جه جه منه م	-	
	t∕°C	<i>T/</i> K ^a	Concentration 10°c1/mol dm ⁻¹	Mo 10	le Fraction ⁶	a Mola 10°n	ality ^a n ₁ /mol kg ⁻¹	- -	
	0	273.15	2.2 <u>+</u> 0.1		2.7		2.8		
	15	288.15	5.2 <u>+</u> 0.1		6.6		6.7		
	20	293.15	6.9 <u>+</u> 0.2		8.8		9.0		
	25	298.15	9.1 <u>+</u> 0.1		11.7		11.9		
	30	303.15	11.3 <u>+</u> 0.2		14.6		14.9		
	35	308.15	14.5 <u>+</u> 0.4		18.8		19.2		
	for th	log . 10g . ne 273.15	$x_1 = (16.011 \pm 100)$ to 308.15 temp	.226) peratu	log(T/K) - 4 re interval.	15.563			
AUXILIARY				INFORMATION					
METH	OD/APPA	RATUS/PROCI	EDURE:		SOURCE AND PU	RITY OF	MATERIALS:		
A radioactive tracer method was used. A high activity sample of mercury-203 nitrate was added to mercury(II) nitrate, reduced to metallic mercury by hypophosphorous acid, coagulated into a drop, washed and dried. The mercury and solvent were shaken continuously in 25 ml glass stop- pered volumetric flasks in a thermo- stat for 24 hours. Aliquots of the		 Mercury and Mercury-203. The isotope decays by emission of a beta particle at an energy of 210 kev, accompanied by a gamma ray of 279 kev. The isotope half-life is 47 days. Methylcyclohexane. Phillips Petroleum Co., Research Grade, used as received. 		The of a y of amma tope lips ade,					
equ by sci wic pho ity lea thr	ilibr a con ntila Ith w topea valu st s ee day	ated sol nvention tion cou as set t k at 279 es were ix deter y period.	ution were cou al single cha nter. The wi to count only kev. The solu the average o minations ov	inted innel ndow the ibil- of at er a	ESTIMATED ERF $\delta T/K = \pm 0.1$ ted by aut values above REFERENCES:	ROR: ; See hors ve.	random er: with conc	ror re entra	por- tion

	Tyurocarbons 143
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Mercury; Hg; [7439-97-6]; Mercury-203; ***Hg; [13982-78-0]</pre>	Spencer, J. N.; Voigt, A. F. J. Phys. Chem. <u>1968</u> , 72, 1913 - 7.
(2) <i>cis</i> -1,2-Dimethylcyclohexane; C ₈ H ₁₆ ; [2207-01-4]	Voigt, A. F. Personal communication
VARIABLES:	PREPARED BY:
T/K = 289.15 - 308.15	S. H. Johnson M. Iwamoto H. L. Clever
EXPERIMENTAL VALUES:	
Temperature Mercu	ry Solubility
t/°C T/K ^a Concentration Me 10°c ₁ /mol dm ⁻³ 1	ble Fraction ^a Molality ^a 1^{x_1} $10^{s_m} m_1/mol kg^{-1}$
16 289.15 5.8 <u>+</u> 0.1	8.1 7.25
20 293.15 7.5 <u>+</u> 0.2	10.6 9.4
25 298.15 9.57 <u>+</u> 0.14	13.56 12.08
30 303.15 12.0 <u>+</u> 0.2	17.1 15.2
35 308.15 14.4 <u>+</u> 0.9	20.6 18.4
^a Calculated by compilers.	
values from J. N. Spencer's resappear in the published paper. The authors smoothed their data at $\log x_1 = (14.57 \pm .)$ for the 289.15 to 308.15 temperate	earch notebook that do not cording to the equation: 73)log(T/K) - 41.93 are interval.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The method and procedure are re- ported in an earlier paper (ref. 1). A radioactive tracer method was used. A high activity sample of mercury-203 nitrate was added to mercury(II) nitrate, reduced to metallic mercury by hypophosphorous acid, coagulated into a drop, washed and dried. The mercury and solvent were shaken continuously in glass stoppered vol- umetric flasks in a thermostat for 24 hours. Aliquots of the equili- brated solution were counted by a conventional single channel scinti- lation counter. The window width was set to count only the photopeak at 279 kev. The solubility values were the average of at least six determinations over a 3 day period.	 SOURCE AND PURITY OF MATERIALS: (1) Mercury and Mercury-203. The isotope decays by emission of a beta particle at an energy of 210 kev, accompanied by a gamma ray of 279 kev. The isotope half-life is 47 days. (2) cis-1,2-Dimethylcyclohexane. Matheson Coleman and Bell. Distilled, refluxed twice with NaOH and hydroquinone to reduce peroxides. ESTIMATED ERROR: 5T/K = ±0.1; See random error reported by authors with concentration values above. REFERENCES: Spencer, J. N.; Voigt, A. F. J. Phys. Chem. <u>1968</u>, 72, 464.
At some temperatures the solubility increased with time unless the sys- tem was protected from light.	

COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Mercury; Hg; [7439-97-6]; Mercury-203; ²⁰³Hg; [13982-78-0]</pre>	Spencer, J. N.; Voigt, A. F. J. Phys. Chem. <u>1968</u> , 72, 1913 - 7.	
(2) <i>trans</i> -1,2-Dimethylcyclohexane; C ₈ H ₁₆ ; [6876-23-9]	Voigt, A. F. Personal communication	
VARIABLES:	S. H. Johnson	
T/K = 288.15 - 308.15	M. Iwamoto H. L. Clever	
EXPERIMENTAL VALUES:		
Temperature Mercur	y Solubility	
$t/^{\circ}C$ T/K^{a} Concentration Mo 10 $c_{1}/mol dm^{-3}$ 10	le Fraction ^a Molality ^a $7x_1$ 10 ^e m ₁ /mol kg ⁻¹	
15 288.15 4.8 <u>+</u> 0.2	6.9 6.2	
- 20 293-15 6-3 + 0-2	9.1 8.1	
$25 298.15 8.49 \ \pm \ 0.30$	12-34 11-00	
$30 303.15 10.6 \pm \ 0.1$	15.5 13.8	
<u> </u>	10.5 10.5	
^a Calculated by compilers.		
Professor Voigt provided the experimental molar solubility values from J. N. Spencer's research notebook that do not appear in the published paper.		
The authors smoothed their data according to the equation: $\log x_1 = (15.12 \pm .80) \log(T/K) - 43.29$ for the 288.15 to 308.15 temperature interval.		
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;	
The method and procedure are re- ported in an earlier paper (ref. 1). A radioactive tracer method was used. A high activity sample of mercury-203 nitrate was added to mercury(II) nitrate, reduced to metallic mercury by hypophosphorous acid, coagulated into a drop, washed and dried.	 Mercury and Mercury-203. The isotope decays by emission of a beta particle at an energy of 210 kev, accompanied by a gamma ray of 279 kev. The isotope half-life is 47 days. trans-1,2-Dimethylcyclohexane. Phillips Petroleum Co., Research Grade, used as received. 	
The mercury and solvent were shaken continuously in 25 ml glass stop- pered volumetric flasks in a thermo- stat for 24 hours. Aliquots of the equilibrated solution were counted by a conventional single channel scintilation counter. The window width was set to count only the photopeak at 279 kev. The solubil- ity values were the average of at least six determinations over a three day period.	ESTIMATED ERROR: $\delta T/K = \pm 0.1$; See random error repor- ted by authors with concentration values above. REFERENCES: 1. Spencer, J. N.; Voigt, A. F. J. Phys. Chem. <u>1968</u> , 72, 464.	

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Mercury; Hg; [7439-97-6]; Mercury-203; ²⁰³ Hg; [13982-78-0]	Spencer, J. N.; Voigt, A. F. J. Phys. Chem. <u>1968</u> , 72, 1913 - 7.	
(2) <i>cis-</i> 1,4-Dimethylcyclohexane; C ₈ H ₁₆ ; [624-29-3]	Voigt, A. F. Personal communication	
VARIABLES:	PREPARED BY:	
T/K = 288.15 - 308.15	S. H. Johnson M. Iwamoto H. L. Clever	
EXPERIMENTAL VALUES:		
Temperature Mercu	ry Solubility	
t/°C T/K ^a Concentration Mo 10°c ₁ /mol dm ⁻³ 10	Die Fraction ^a Molality ^a $10^{s} m_{1}^{mol} \text{ kg}^{-1}$	
15 288.15 5.2 <u>+</u> 0.3	7.4 6.6	
20 293.15 7.1 <u>+</u> 0.4	10.2 9.1	
25 298.15 9.20 <u>+</u> 0.18	13.26 11.81	
30 303.15 11.3 <u>+</u> 0.5	16.4 14.6	
35 308.15 14.5 <u>+</u> 0.5	21.1 18.8	
values from J. N. Spencer's research notebook that do not appear in the published paper. The authors smoothed their data according to the equation: $\log x_1 = (15.38 \pm .61)\log(T/K) - 43.96$ for the 288.15 to 308.15 temperature interval.		
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The method and procedure are re- ported in an earlier paper (ref. 1). A radioactive tracer method was used. A high activity sample of mercury-203 nitrate was added to mercury(II) nitrate, reduced to metallic mercury by hypophosphorous acid, coagulated into a drop, washed and dried.	 Mercury and Mercury-203. The isotope decays by emission of a beta particle at an energy of 210 kev, accompanied by a gamma ray of 279 kev. The isotope half-life is 47 days. cis-1,4-Dimethylcyclohexane. Matheson Coleman and Bell. Re- fluxed with NaOH and hydroqui- none, distilled twice to remove peroxides. 	
The mercury and solvent were shaken continuously in 25 ml glass stop- pered volumetric flasks in a thermo- stat for 24 hours. Aliquots of the equilibrated solution were counted by a conventional single channel scintilation counter. The window width was set to count only the photopeak at 279 kev. The solubil- ity values were the average of at least six determinations over a three day period.	<pre>ESTIMATED ERROR: δT/K = ±0.1; See random error repor- ted by authors with concentration values above. REFERENCES: 1. Spencer, J. N.; Voigt, A. F. J. Phys. Chem. <u>1968</u>, 72, 464.</pre>	

145

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Mercury; Hg; [7439-97-6]; Mercury-203; 203Hg; [13982-78-0]	Spencer, J. N.; Voigt, A. F. <i>J. Phys. Chem.</i> <u>1968</u> , 72, 1913 - 7.	
<pre>(2) trans-1,4-Dimethylcyclohexane; C₈H₁₆; [2270-04-7]</pre>	Voigt, A. F. Personal communication	
VARIABLES:	PREPARED BY:	
<i>T/</i> K = 288.15 - 308.15	S. H. Johnson M. Iwamoto H. L. Clever	
EXPERIMENTAL VALUES:		
Temperature Mercur	y Solubility	
<i>t/°C T/K^a</i> Concentration Mc 10 [°] c ₁ /mol dm ⁻³ 10	ble Fraction ^{a.} Molality ^a r_{x_1} 10 ^s m_1 /mol kg ⁻¹	
15 288.15 4.7 <u>+</u> 0.2	6.9 6.1	
20 293.15 6.2 <u>+</u> 0.2	9.1 8.1	
25 298.15 8.24 <u>+</u> 0.20	12.19 10.87	
30 303.15 10.4 <u>+</u> 0.4	15.5 13.8	
35 308.15 12.4 <u>+</u> 0.4	18.6 16.5	
^a Calculated by compilers. Professor Voigt provided the experimental molar solubility values from J. N. Spencer's research notebook that do not appear in the published paper. The authors smoothed their data according to the equation: $\log r_{1} = (15.06 \pm .73) \log(7/7) = .43.19$		
$\log x_1 = (15.06 \pm .73)\log(T/K) - 43.19$ for the 288.15 to 308.15 temperature interval.		
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: The method and procedure are re- ported in an earlier paper (ref. 1). A radioactive tracer method was used. A high activity sample of mercury-203 nitrate was added to mercury(II) nitrate, reduced to metallic mercury by hypophosphorous acid, coagulated into a drop, washed and dried. The mercury and solvent were shaken continuously in 25 ml glass stop- pered volumetric flasks in a thermo- stat for 24 hours. Aliquots of the equilibrated solution were counted by a conventional single channel scintilation counter. The window width was set to count only the photopeak at 279 kev. The solubil- ity values were the average of at least six determinations over a three day period.	 SOURCE AND PURITY OF MATERIALS: (1) Mercury and Mercury-203. The isotope decays by emission of a beta particle at an energy of 210 kev, accompanied by a gamma ray of 279 kev. The isotope half-life is 47 days. (2) trans-1,4-Dimethylcyclohexane. Matheson Coleman and Bell. Refluxed with NaOH and hydroquinone, distilled twice to remove peroxides. ESTIMATED ERROR: &T/K = ±0.1; See random error reported by authors with concentration values above. REFERENCES: 1. Spencer, J. N.; Voigt, A. F. J. Phys. Chem. <u>1968</u>, 72, 464. 	