COMPONENTS:	EVALUATOR:
<pre>(1) Copper; cu; [7440-50-8] Zinc; Zn; [7440-66-6] Silver; Ag; [7440-22-4] Lead; Pb; [7439-92-1]</pre> (2) Water; H ₂ O; [7732-18-5]	Appendix I The Solubility of Some Metallic Elements in Water

CRITICAL EVALUATION:

Those interested in the solubility of metallic mercury in water may want to compare the solubility of mercury with other metals in water. There are only a few papers that report studies of the solubility of unionized metallic elements in water. The results of two of these studies are given here (ref. 1, 2).

The determination of the solubility of an oxide-free pure metal in distilled, degassed, neutral water is a difficult experiment. The following data sheets report metallic element solubiliies in water of silver, copper, zinc, and lead. From the experiments of Krepelka and Toul (ref. 1), we conclude that when oxygen and carbon dioxide are rigoroursly excluded in experiments carried out in metallic vessels (which avoids alkali contamination from glass) the solubility of unionized silver in water is below the limit of detection of about 0.00002 g dm⁻³ used by the authors. We believe that the solubility values on the following data sheets are upper limits and the true metal atom solubility in water may be much smaller.

Reliable values of the solubility of the metallic elements in water would be of interest. New studies using modern analytical methods along with techniques to prepare ultra-pure oxide-free metals and bring them in contact with pure degassed neutral water would be desirable.

There are a number of papers in the literature that report metal solubilities in natural systems. Many of these are summarized in the Seidell-Linke Handbook (ref. 3), or can be found in *Chemical Abstracts*. These papers usually report the total metal in solution from a variety of sources after reaction with oxygen, carbon dioxide, and/or electrolyte. The reactions result in the metal surface coated with a mixture of solid oxides, hydroxides, and carbonates. The total metal concentration is the sum of the metal atom, metal ion, and metal ion complexes in solution. Various models are proposed to explain the total metal ion concentration relationship to the multiple equilibriums among the surface solids and the solution components. These studies are of great practical use for corrosion and environmental problems. However, they take us to far from the scope of the present volume to consider further.

REFERENCES:

- 1. Krepelka, H.; Toul, F. Coll. Czech. Chem. Comm. 1929, 1, 155.
- 2. Pariaud, J.; Archinard, P. Bull. Soc. Chim. France <u>1952</u>, 454; J. Chim. Phys. <u>1956</u>, 53, 765.
- Seidell, A.; Linke, W. F. Solubilities of Inorganic and Metal Organic Compounds, American Chemical Society, Washington, DC, Vol. I. 1958, Vol. II. 1965.

COMPONENTS :		ORIGINAL MEASUREMENTS:			
(1) Copper; Cu; [7440-	-50-8]	Pariaud, J.; Archinard, P.			
(2) Water; H ₂ O; [7732-	-18-5]	Bull. Soc. Chim. France <u>1952</u> , 454 - 6.			
		J. Chim. Phys. <u>1956</u> , 53, 765 - 9.			
VARIABLES:		PREPARED BY:			
<i>m/v - 303 15</i>		M. Iwamoto			
178 - 505.15					
EXPERIMENTAL VALUES:					
Time of Temperature Mixing	Mercury in ^a Solution -	Copper Solubility			
t/°C T/K ^b t/days	C 10 [°] c ₁ /g dm ⁻³ 1	oncentration Mole Molality Fraction Fraction $0^{\circ}c_{1}/mol dm^{-3}$ $10^{\circ}x_{1}$ $10^{\circ}m_{1}/mol kg^{-1}$			
30 303.15 6	170 160 165 170				
29	175 180 180				
	170 <u>+</u> 12 ^C	1.89 3.42 1.90			
The solubility and its uncertainty given in the authors second paper.					
· · · · · · · · · · · · · · · · · · ·	AUXILIARY	INFORMATION			
METHOD / APPARATUS / PROCEDURE :	<u></u>	COURCE AND BUDITY OF MATERIALS.			
Gelenizetuis method :		(1) Copport Block coppolytically			
Copper and triply dist	cilled degassed	pure.			
water were equilibrate days to insure satura	ed for up to 24 tion.	(2) Water. Triply distilled and			
The copper was oxidi (II) and complexed w.	red to conner	degassed.			
sorption was measured	ith dithizone. te complex ab- at 490 nm.	degassed.			
sorption was measured	ith dithizone. te complex ab- at 490 nm.	degassed. ESTIMATED ERROR:			
sorption was measured	ith dithizone. te complex ab- at 490 nm.	degassed. ESTIMATED ERROR: See uncertainty in table above.			
sorption was measured	ith dithizone. te complex ab- at 490 nm.	degassed. ESTIMATED ERROR: See uncertainty in table above. REFERENCES:			
sorption was measured	ith dithizone. te complex ab- at 490 nm.	degassed. ESTIMATED ERROR: See uncertainty in table above. REFERENCES:			
sorption was measured	ith dithizone. te complex ab- at 490 nm.	degassed. ESTIMATED ERROR: See uncertainty in table above. REFERENCES:			
sorption was measured	ith dithizone. te complex ab- at 490 nm.	degassed. ESTIMATED ERROR: See uncertainty in table above. REFERENCES:			

MIL-P

٠

COMPONENTS: 0			ORIGINAL MEASUREMENTS:		
(1) Zinc; Zn; [7440-66-6]			Pariaud, J.; Archinard, P.		
(2) Water; H ₂ O; [7732-18-5]			Bull. Soc. Chim. France <u>1952</u> , 454 - 6.		
			J. Chim. Phys. <u>1956</u> , 53, 765 - 9.		
VARIABLES:			PREPARED BY:		
<i>T/K</i> = 305.15			M. Iwamoto H. L. Clever		
EXPERIMENTAL VALUES:			J		
Temperature	Time of Mixing	Mercury in ^a Solution -	Zinc Solubility		
t/°C T/K ^b	t/days	10°c ₁ /g dm ⁻³	Concentration ^D Mole ^D Molality ^D Fraction $10^{5}c_{1}/mol dm^{-3} 10^{7}x_{1} 10^{5}m_{1}/mol kg^{-1}$		
25 298.15	17	710 725 715			
24 297.15	32	700 710 710			
32 ^đ 305.15	32	700 <u>+</u> 50 ^C	1.07 1.94 1.08		
^b Calculated by compilers. ^C The solubility and its uncertainty given in the authors' second paper. ^d [sic.]					
	<u> </u>	AUXILIARY	INFORMATION		
METHOD/APPARATU	S/PROCEDURE	:	SOURCE AND PURITY OF MATERIALS:		
Colorimetric method with dithizone. Zinc and triply distilled degassed water were equilibrated for up to 24 days to insure saturation. The zinc was oxidized to zinc(II) and complexed with dithizone. The mercury dithizonate complex absorp- tion was measured at 490 nm.		with dithizone. iilled degassed ted for up to 24 ation. ed to zinc(II) lithizone. The complex absorp- 490 nm.	 (1) Zinc. Electroanalytically pure. (2) Water. Triply distilled and degassed. 		
			ESTIMATED ERROR:		
			See uncertainty in table above.		
			REFERENCES :		

COMPONENTS:			ORIGI	NAL MEASURI	EMENTS:	
(l) Silve	r; Ag; [7440-22-4	1]	Kre	epelka, H	.; Toul, F	•
(2) Water	; H ₂ O; [7732-18-5	5]	<i>Co</i> 155	ll. Czech 5 - 64.	. Chem. Co	omm. <u>1929</u> , 1,
EXPERIMENTAL	VALUES:					
Temperatu	re	Time	Mass	or silve L0° <i>c</i> ₁ /g d	r Found m ⁻³	Method
t∕°C	T/K	t/days	Exp. I	Exp. II	Avg.	
I. Thi wate top trac at 1 neph	silver leaves wer in heavy walle with water and ses of air and car 8 to 20°C for the elometry.	ere broug ed, hard o sealed with thon diox: e days st	ght integlass, ith par ide. Th ated be	contact Erlenmey afin. The flasks low, the	with fre er flasks ne water c were shak n analyzed	shly distilled filled to the contained only en in the dark for silver by
18 - 20	291.15 - 293.15	7	15	9	12	Nephelometry
		14	22	20	21	- n
		180	37	35	36	n
II. The meth	water in contac od. The cell use	t with s d was	ilver	was anal	yzed for	Ag ⁺ by an emf
	Ag/H ₂ O//KC	21 (sat.),	//KCl (]	mol dm-	3)(Hg ₂ Cl ₂)	/Hg.
The the The betw give	Nernst equation Ag/H ₂ O electrode atmosphere was een the silver a n below, the comp	was used . The w carbon d and water plete set	to cal ater wa ioxide was n of emf	culate t s freshl free air ot state data are	he Ag ⁺ cor y distill . The ti d. Average given in	ncentration at ed before use. me of contact ge results are the paper.
18.95	292.10				6.3(4) ^a	Emf
18.22	291.37				6.0(9) ^a	L n
18.95	292.10				5.3(4) ^a	L 11
18.85	292.00				15. (7) ^a	l n
III. Expe with by s alka rigo foll silv tion	riments similar silver powder pr ulfur dioxide. T li leached from rously excluded owed by reducti er surface. The of the nephelom	to I abo repared by The exper- glass sur All si on with silver d etry meth	ove, bu y reduct iments faces. lver su hydroga issolve od.	t carrie ion of a were done Oxygen Irfaces v en gas t d was be	d out in s mmonical s e to avoid and carbon vere treat o insure low the l	silver vessels silver solution the effect of a dioxide were ed with steam an oxide free imit of detec-
18 - 20 ^b	291.15 - 293.15	7	-	-	-	Nephelometry
		21	_	-	-	π
IV. Same sure	e as III above, b silver surface	ut witho is oxide	ut the free.	hydrogen	reductio	n step to make
18 - 20 ^b	291.15 - 293.15	7 14	10 21	10 20	10 20	Nephelometry "
a _{Numbers}	in () are the nu	imber of o	34 determi	33 nations.	33 Standard	deviations are
0, 0.1, b _{Temperat}	u.7, and 1. inter	val. v authors	. Valu	es assume	d by comp	iler because of
temperat	ures used in fir	st experi	ment.			

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Silver; Ag; [7440-22-4]	Krepelka, H.; Toul, F.
(2) Water; H ₂ O; [7732-18-5]	Coll. Czech. Chem. Comm. <u>1929</u> , 1, 155 – 64.
VARIABLES:	PREPARED BY:
<i>T/K</i> = 291.15 - 293.15	H. L. Clever
EXPERIMENTAL VALUES:	
	•
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
See comments above each set of ex- periments reported on the previous page.	(1) Silver. Standard sample (ref.
1 5~30.	work. Melted again on pure CaO
Nephelometry. The water, separated	work. Melted again on pure CaO in an atmosphere of dry, pure hydrogen. Silver etched with
Nephelometry. The water, separated from the silver leaves, was evapor- ated from a quartz dish to a volume	work. Melted again on pure CaO in an atmosphere of dry, pure hydrogen. Silver etched with HNO ₃ , H ₂ O, and NH ₃ to increase surface area. Thoroughly washed
Nephelometry. The water, separated from the silver leaves, was evapor- ated from a quartz dish to a volume of 60 - 80 cm ³ , made up to a volume of 100 cm ³ , then compared with a	work. Melted again on pure CaO in an atmosphere of dry, pure hydrogen. Silver etched with HNO ₃ , H ₂ O, and NH ₃ to increase surface area. Thoroughly washed with H ₂ O, and dried at 110°C. Then rolled into thin leaves
Nephelometry. The water, separated from the silver leaves, was evapor- ated from a quartz dish to a volume of 60 - 80 cm ³ , made up to a volume of 100 cm ³ , then compared with a known standard containing a similar amount of silver in the presence of KBr.	work. Melted again on pure CaO in an atmosphere of dry, pure hydrogen. Silver etched with HNO_3 , H_2O , and NH_3 to increase surface area. Thoroughly washed with H_2O , and dried at 110°C. Then rolled into thin leaves between well cleaned steel rol- lers. Surface etched again af- ter each rolling.
Nephelometry. The water, separated from the silver leaves, was evapor- ated from a quartz dish to a volume of 60 - 80 cm ³ , made up to a volume of 100 cm ³ , then compared with a known standard containing a similar amount of silver in the presence of KBr. Emf. Method of Beans and Oakes	 work. Melted again on pure CaO in an atmosphere of dry, pure hydrogen. Silver etched with HNO₃, H₂O, and NH₃ to increase surface area. Thoroughly washed with H₂O, and dried at 110°C. Then rolled into thin leaves between well cleaned steel rol- lers. Surface etched again af- ter each rolling. (2) Water. Distilled water freed
Nephelometry. The water, separated from the silver leaves, was evapor- ated from a quartz dish to a volume of 60 - 80 cm ³ , made up to a volume of 100 cm ³ , then compared with a known standard containing a similar amount of silver in the presence of KBr. Emf. Method of Beans and Oakes (ref. 2).	 work. Melted again on pure CaO in an atmosphere of dry, pure hydrogen. Silver etched with HNO₃, H₂O, and NH₃ to increase surface area. Thoroughly washed with H₂O, and dried at 110°C. Then rolled into thin leaves between well cleaned steel rol- lers. Surface etched again af- ter each rolling. (2) Water. Distilled water freed from organic material by action of KMnO₄, then twice distilled,
Nephelometry. The water, separated from the silver leaves, was evapor- ated from a quartz dish to a volume of 60 - 80 cm ³ , made up to a volume of 100 cm ³ , then compared with a known standard containing a similar amount of silver in the presence of KBr. Emf. Method of Beans and Oakes (ref. 2).	 work. Melted again on pure CaO in an atmosphere of dry, pure hydrogen. Silver etched with HNO₃, H₂O, and NH₃ to increase surface area. Thoroughly washed with H₂O, and dried at 110°C. Then rolled into thin leaves between well cleaned steel rol- lers. Surface etched again af- ter each rolling. (2) Water. Distilled water freed from organic material by action of KMnO₄, then twice distilled, the second time in Pt directly into the container used in the experiment.
Nephelometry. The water, separated from the silver leaves, was evapor- ated from a quartz dish to a volume of 60 - 80 cm ³ , made up to a volume of 100 cm ³ , then compared with a known standard containing a similar amount of silver in the presence of KBr. Emf. Method of Beans and Oakes (ref. 2).	 work. Melted again on pure CaO in an atmosphere of dry, pure hydrogen. Silver etched with HNO₃, H₂O, and NH₃ to increase surface area. Thoroughly washed with H₂O, and dried at 110°C. Then rolled into thin leaves between well cleaned steel rol- lers. Surface etched again af- ter each rolling. (2) Water. Distilled water freed from organic material by action of KMnO₄, then twice distilled, the second time in Pt directly into the container used in the experiment.
Nephelometry. The water, separated from the silver leaves, was evapor- ated from a quartz dish to a volume of 60 - 80 cm ³ , made up to a volume of 100 cm ³ , then compared with a known standard containing a similar amount of silver in the presence of KBr. Emf. Method of Beans and Oakes (ref. 2).	 work. Melted again on pure CaO in an atmosphere of dry, pure hydrogen. Silver etched with HNO₃, H₂O, and NH₃ to increase surface area. Thoroughly washed with H₂O, and dried at 110°C. Then rolled into thin leaves between well cleaned steel rol- lers. Surface etched again af- ter each rolling. (2) Water. Distilled water freed from organic material by action of KMnO₄, then twice distilled, the second time in Pt directly into the container used in the experiment. ESTIMATED ERROR: The lower limit of detection by nephelometry is about 10 x 10⁻⁶ g dm⁻³.
Nephelometry. The water, separated from the silver leaves, was evapor- ated from a quartz dish to a volume of 60 - 80 cm ³ , made up to a volume of 100 cm ³ , then compared with a known standard containing a similar amount of silver in the presence of KBr. Emf. Method of Beans and Oakes (ref. 2).	 work. Melted again on pure CaO in an atmosphere of dry, pure hydrogen. Silver etched with HNO₃, H₂O, and NH₃ to increase surface area. Thoroughly washed with H₂O, and dried at 110°C. Then rolled into thin leaves between well cleaned steel rol- lers. Surface etched again af- ter each rolling. (2) Water. Distilled water freed from organic material by action of KMnO₄, then twice distilled, the second time in Pt directly into the container used in the experiment. ESTIMATED ERROR: The lower limit of detection by nephelometry is about 10 x 10⁻⁶ g dm⁻³.
Nephelometry. The water, separated from the silver leaves, was evapor- ated from a quartz dish to a volume of 60 - 80 cm ³ , made up to a volume of 100 cm ³ , then compared with a known standard containing a similar amount of silver in the presence of KBr. Emf. Method of Beans and Oakes (ref. 2).	 work. Melted again on pure CaO in an atmosphere of dry, pure hydrogen. Silver etched with HNO₃, H₂O, and NH₃ to increase surface area. Thoroughly washed with H₂O, and dried at 110°C. Then rolled into thin leaves between well cleaned steel rol- lers. Surface etched again af- ter each rolling. (2) Water. Distilled water freed from organic material by action of KMnO₄, then twice distilled, the second time in Pt directly into the container used in the experiment. ESTIMATED ERROR: The lower limit of detection by nephelometry is about 10 x 10⁻⁶ g dm⁻¹. REFERENCES: Krepelke, H. J. Am. Chem. Soc. <u>1920</u>, 42, 925.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Silver; Ag; [7440-22-4]	Pariaud, J.; Archinard, P.
(2) Water; H ₂ O; [7732-18-5]	Bull. Soc. Chim. France <u>1952</u> , 454 - 6.
	J. Chim. Phys. <u>1956</u> , 53, 765 - 9.
VARIABLES:	PREPARED BY:
<i>T</i> /K = 301.15	M. Iwamoto H. L. Clever
EXPERIMENTAL VALUES:	
Time of Mercu	rv in ^a Silver Solubility
Temperature Mixing Solut	ion Concentration ^b Mola ^b Molality ^b
$t/^{\circ}C T/K^{b} t/days 10^{\circ}c_{1}$	/g dm ⁻³ Fraction $10^7 c_1$ /mol dm ⁻³ $10^8 x_1$ $10^7 m_1$ /mol kg ⁻¹
25 298.15 1 0 3 10, 8 25,	15, 10 20, 20
28 301.15 18 28, 24 28,	25, 25 30
26	$\pm 7^{\circ}$ 2.41 4.36 2.42
	AUXILIARY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Colorimetric method with d Silver and triply distilled	dithizone. (1) Silver. Electroanalytically degassed pure.
days to insure saturation. The silver was oxidized to and complexed with dithiz silver dithizonate complex tion was measured at 490 nm	(2) Water. Triply distilled and degassed. silver(I) one. The x absorp-
	ESTIMATED ERROR:
	See uncertainty in table above.
	REFERENCES :

I

•

233

COMPONENTS:			ORIGINAL MEASUREMENTS:		
(1) Lead; Pb; [7439-92-1]			Pariaud, J.; Archinard, P.		
(2) Water; H ₂ O; [7732-18-5]			Bull. Soc. Chim. France <u>1952</u> , 454 - 6.		
			J. Chim. Phys. <u>1956</u> , 53, 765 - 9.		
VARIABLES:			PREPARED BY:		
<i>m/x</i> - 207 15			M. Iwamoto		
T/R = 297.15			n. h. cievel		
EXPERIMENTAL VAL	UES:				
	Time of	Mercury in ^a	Lead Solubility		
Temperature	Mixing	Solution	Concentration ^b Mola ^b Molality ^b		
t/°C T/K ^b	t/days	10°c ₁ /g dm ⁻³	Fraction $mole molality$ Fraction $10^{7}c_{1}/mol dm^{-3} 10^{8}x_{1} = 10^{7}m_{1}/mol kg^{-1}$		
24 297.15	15	310 310			
	30	310 315			
		310 <u>+</u> 18 ^C	1.50 2.71 1.50		
^a All of the	experimen	tal values are	given with an uncertainty of +18.		
bcalculated	hv compil	~~~			
Carcurated	ol combit	CLD.			
		AUXILIAR	INFORMATION		
METHOD/APPARATU	S/PROCEDURE	:	SOURCE AND PURITY OF MATERIALS:		
Colorimetric	method	with dithizone.	(1) Lead. Electroanalytically pure.		
Lead and tr water were e days to insu	iply dis quilibrat re satura	illed degassed ed for up to 24	(2) Water. Triply distilled and degassed.		
The lead was complexed wi cury dithizo was measured	oxidized th dithi nate com d at 490 n	to lead(V) and zone. The mer- plex absorption m.			
			ESTIMATED ERROR:		
			See uncertainty in table above.		
			REFERENCES		