COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Potassium bromate; KBrO ₃ ; [7758-01-2]	Gross, P.; Kuzmany, P.; Wald, M.
	I have theme from 1027 FO 2002 1
(2) Lithium chloride; LiCl; [7447-41-8]	J. Am. Chem. 30C. <u>1937</u> , 37, 2092-4.
(3) Ethanol: $C_{2}H_{6}O_{1}: [64-17-5]$	
(3) Lenandi, Szüge, (3) 1, 3)	
VARIABLES:	PREPARED BY:
Concentration of LiCI at 288.15 K	Hiroshi Miyamoto
EXPEDIMENTAL MALVES.	
EAFERIMENTAL VALUES:	
The solubility and solubility product of KB	r03 in 100 % ethanol ^a containing LiCl are:
	-
Concn LiCl Soly	KBr0 ₃
$10^4 c_1/mol dm^{-35}$ $10^4 c_2/mol dm^{-35}$	$-\log K_{s0}$ $-\log K_{s0}^{\circ}$
0.000 0.8088	8.184 8.251
1.191 0.8583	8.133 8.240
2.942 0.8947	8.097 8.244
5.769 0.9465	8.048 8.242
	/.98/ 8.248
	7 905 8 2/2
20.34 1.139	7.864 8.245
1.107	7.004 0.240
	7 0
The authors gave $a_4^{23} = 0.79359$ and $\varepsilon = 25$, / 6 ^D ·
h	
Initial LiCl concentration (see below).	
1	
$^{\rm C}$ log K ^o ₋₀ = log K _{c0} - 7.521 ² , where I is	the ionic strength.
30 30	
50 50	
50 50	
50 50	
50 50	
50 50	
30 30	
50 50	
AUXILIAR	INFORMATION
AUXILIAR METHOD /APPARATUS / PROCEDURE :	INFORMATION
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBr0o and ethanol containing LiCl wer	SOURCE AND PURITY OF MATERIALS:
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBr03 and ethanol containing LiCl wer placed in a glass flask, and the flask	INFORMATION SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recry- stallized twice. Ethanol was treated first
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBrO ₃ and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for	SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recry- stallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBrO3 and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12	SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recry- stallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBr03 and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium.	SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recry- stallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfamilic acid
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBrO ₃ and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered	SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recry- stallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N2. The boiling point was
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBrO ₃ and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered alcoholic solution was placed in a small	SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recry- stallized twice. Ethanol was treated first with lime, then with K0H, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N ₂ . The boiling point was 78.03°C. LiCl prepared from purified car-
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBrO3 and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered alcoholic solution was placed in a small flask and evaporated in a boiling water bat	SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBrO3 was recry- stallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N2. The boiling point was 78.03°C. LiCl prepared from purified car- bonate and HCl, and dried in a stream of
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBr0 ₃ and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered alcoholic solution was placed in a small flask and evaporated in a boiling water bat while N ₂ gas was forced through the liquid.	SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recry- stallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N2. The boiling point was 78.03°C. LiCl prepared from purified car- bonate and HCl, and dried in a stream of HCl. LiCl concentration determined gravi-
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBr0 ₃ and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered alcoholic solution was placed in a small flask and evaporated in a boiling water bat while N ₂ gas was forced through the liquid. The precipitated KBr0 ₃ was titrated iodo-	SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recry- stallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N2. The boiling point was 78.03°C. LiCl prepared from purified car- bonate and HCl, and dried in a stream of HCl. LiCl concentration determined gravi- metrically.
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBr03 and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered alcoholic solution was placed in a small flask and evaporated in a boiling water bat while N2 gas was forced through the liquid. The precipitated KBr03 was titrated iodo- metrically.	SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recry- stallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N2. The boiling point was 78.03°C. LiCl prepared from purified car- bonate and HCl, and dried in a stream of HCl. LiCl concentration determined gravi- metrically.
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBr0 ₃ and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered alcoholic solution was placed in a small flask and evaporated in a boiling water bat while N ₂ gas was forced through the liquid. The precipitated KBr0 ₃ was titrated iodo- metrically. Although not specifically stated, it appear that the LiCl concentrations in the above	SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBrO3 was recry- stallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N2. The boiling point was 78.03°C. LiCl prepared from purified car- bonate and HCl, and dried in a stream of HCl. LiCl concentration determined gravi- metrically.
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBr03 and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered alcoholic solution was placed in a small flask and evaporated in a boiling water bat while N2 gas was forced through the liquid. The precipitated KBr03 was titrated iodo- metrically. Although not specifically stated, it appear that the LiCl concentrations in the above table are <i>initial</i> concentrations.	 SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recrystallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N2. The boiling point was 78.03°C. LiCl prepared from purified carbonate and HCl, and dried in a stream of HCl. LiCl concentration determined gravimetrically. ESTIMATED ERROR:
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBr03 and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered alcoholic solution was placed in a small flask and evaporated in a boiling water bat while N2 gas was forced through the liquid. The precipitated KBr03 was titrated iodo- metrically. Although not specifically stated, it appear that the LiCl concentrations in the above table are <i>initial</i> concentrations.	SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recry- stallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N2. The boiling point was 78.03°C. LiCl prepared from purified car- bonate and HCl, and dried in a stream of HCl. LiCl concentration determined gravi- metrically. ESTIMATED ERROR: Soly: precision within 0.6 % (compiler). Town expedience is 0.0005 %
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBr03 and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered alcoholic solution was placed in a small flask and evaporated in a boiling water bat while N2 gas was forced through the liquid. The precipitated KBr03 was titrated iodo- metrically. Although not specifically stated, it appear that the LiCl concentrations in the above table are <i>initial</i> concentrations.	 SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recrystallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N2. The boiling point was 78.03°C. LiCl prepared from purified carbonate and HCl, and dried in a stream of HCl. LiCl concentration determined gravimetrically. ESTIMATED ERROR: Soly: precision within 0.6 % (compiler). Temp: precision ± 0.0025 K.
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBr03 and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered alcoholic solution was placed in a small flask and evaporated in a boiling water bat while N2 gas was forced through the liquid. The precipitated KBr03 was titrated iodo- metrically. Although not specifically stated, it appear that the LiCl concentrations in the above table are <i>initial</i> concentrations.	SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recry- stallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N2. The boiling point was 78.03°C. LiCl prepared from purified car- bonate and HCl, and dried in a stream of HCl. LiCl concentration determined gravi- metrically. ESTIMATED ERROR: Soly: precision within 0.6 % (compiler). Temp: precision ± 0.0025 K.
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBrO3 and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered alcoholic solution was placed in a small flask and evaporated in a boiling water bat while N2 gas was forced through the liquid. The precipitated KBrO3 was titrated iodo- metrically. Although not specifically stated, it appear that the LiCl concentrations in the above table are <i>initial</i> concentrations.	SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recrystallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N2. The boiling point was 78.03°C. LiCl prepared from purified carbonate and HCl, and dried in a stream of HCl. LiCl concentration determined gravimetrically. ESTIMATED ERROR: Soly: precision within 0.6 % (compiler). Temp: precision ± 0.0025 K.
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBrO3 and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered alcoholic solution was placed in a small flask and evaporated in a boiling water bat while N2 gas was forced through the liquid. The precipitated KBrO3 was titrated iodo- metrically. Although not specifically stated, it appear that the LiCl concentrations in the above table are <i>initial</i> concentrations.	SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recry- stallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N2. The boiling point was 78.03°C. LiCl prepared from purified car- bonate and HCl, and dried in a stream of HCl. LiCl concentration determined gravi- metrically. ESTIMATED ERROR: Soly: precision within 0.6 % (compiler). Temp: precision ± 0.0025 K.
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBrO3 and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered alcoholic solution was placed in a small flask and evaporated in a boiling water bat while N2 gas was forced through the liquid. The precipitated KBrO3 was titrated iodo- metrically. Although not specifically stated, it appear that the LiCl concentrations in the above table are <i>initial</i> concentrations.	<pre>SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recry- stallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N2. The boiling point was 78.03°C. LiCl prepared from purified car- bonate and HCl, and dried in a stream of HCl. LiCl concentration determined gravi- metrically. ESTIMATED ERROR: Soly: precision within 0.6 % (compiler). Temp: precision ± 0.0025 K. REFERENCES:</pre>
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBrO3 and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered alcoholic solution was placed in a small flask and evaporated in a boiling water bat while N2 gas was forced through the liquid. The precipitated KBrO3 was titrated iodo- metrically. Although not specifically stated, it appear that the LiCl concentrations in the above table are <i>initial</i> concentrations.	<pre>Y INFORMATION SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recry- stallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N2. The boiling point was 78.03°C. LiCl prepared from purified car- bonate and HCl, and dried in a stream of HCl. LiCl concentration determined gravi- metrically. ESTIMATED ERROR: Soly: precision within 0.6 % (compiler). Temp: precision ± 0.0025 K. REFERENCES:</pre>
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBrO3 and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered alcoholic solution was placed in a small flask and evaporated in a boiling water bat while N2 gas was forced through the liquid. The precipitated KBrO3 was titrated iodo- metrically. Although not specifically stated, it appear that the LiCl concentrations in the above table are <i>initial</i> concentrations.	<pre>Y INFORMATION SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recry- stallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N2. The boiling point was 78.03°C. LiCl prepared from purified car- bonate and HCl, and dried in a stream of HCl. LiCl concentration determined gravi- metrically. ESTIMATED ERROR: Soly: precision within 0.6 % (compiler). Temp: precision ± 0.0025 K. REFERENCES:</pre>
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBrO3 and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered alcoholic solution was placed in a small flask and evaporated in a boiling water bat while N2 gas was forced through the liquid. The precipitated KBrO3 was titrated iodo- metrically. Although not specifically stated, it appear that the LiCl concentrations in the above table are <i>initial</i> concentrations.	<pre>Y INFORMATION SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recry- stallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N2. The boiling point was 78.03°C. LiCl prepared from purified car- bonate and HCl, and dried in a stream of HCl. LiCl concentration determined gravi- metrically. ESTIMATED ERROR: Soly: precision within 0.6 % (compiler). Temp: precision ± 0.0025 K. REFERENCES:</pre>
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBrO3 and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered alcoholic solution was placed in a small flask and evaporated in a bolling water bat while N2 gas was forced through the liquid. The precipitated KBrO3 was titrated iodo- metrically. Although not specifically stated, it appear that the LiCl concentrations in the above table are <i>initial</i> concentrations.	<pre>Y INFORMATION SOURCE AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recry- stallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N2. The boiling point was 78.03°C. LiCl prepared from purified car- bonate and HCl, and dried in a stream of HCl. LiCl concentration determined gravi- metrically. ESTIMATED ERROR: Soly: precision within 0.6 % (compiler). Temp: precision ± 0.0025 K. REFERENCES:</pre>
AUXILIAR METHOD/APPARATUS/PROCEDURE: Solid KBrO3 and ethanol containing LiCl wer placed in a glass flask, and the flask rotated in a thermostat at 15.000°C for about 12 hours. The authors state that 12 hours are sufficient to insure equilibrium. For the analysis 25 cm ³ of the filtered alcoholic solution was placed in a small flask and evaporated in a boiling water bat while N2 gas was forced through the liquid. The precipitated KBrO3 was titrated iodo- metrically. Although not specifically stated, it appear that the LiCl concentrations in the above table are <i>initial</i> concentrations.	<pre>Source AND PURITY OF MATERIALS: Analytical reagent grade KBr03 was recry- stallized twice. Ethanol was treated first with lime, then with KOH, with silver oxide and with aluminum amalgam. Finally, it was distilled from water-free sulfanilic acid in a stream of N2. The boiling point was 78.03°C. LiCl prepared from purified car- bonate and HCl, and dried in a stream of HCl. LiCl concentration determined gravi- metrically. ESTIMATED ERROR: Soly: precision within 0.6 % (compiler). Temp: precision ± 0.0025 K. REFERENCES:</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Potassium bromate; KBr0 ₃ ; [7758-01-2]	Trimble, F.
<pre>(2) 2-Flurancarboxaldehyde (furfural); C₅H₄O₂; [98-01-1]</pre>	Ind. Eng. Chem. <u>1941</u> , 33, 660-2.
VARIABLES:	PREPARED BY:
T/K = 298	Hiroshi Miyamoto
EXPERIMENTAL VALUES:	
The solubility of KBrO ₃ in furfural at	25°C was given as:
0.01 mass %	(author)
$6 \times 10^{-4} \text{ mol kg}^{-1}$	(compiler)
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Furfural and an excess of solute were agitat-	Furfural used was purified by carefully fractionating the technical grade twice
bath. After agitation the mixture was fil-	under about 12 mm pressure (boiling point
tered at the same temperature as that employ-	- 54-55°C) through a well insulated 7-foot (2.13 meter) Hempel column packed with 7
For the determination of the amount of the	mm Rasching rings.
salt in furfural, about 40 grams of the solution were accurately weighed in a beaker.	C.p. grade KBrU ₃ was used.
and 100 cm ³ of water added; the resulting	
volume was reduced to about 10 cm ³ . The	
solution was transferred to a weighed	
to dryness. The residue contained in the	ESTIMATED ERROR: Soly: duplicates checked within 25 % of
crucible was moistened with a few drops of	each other.
700°C, and then weighed as the sulfate. All	Temp: nothing specified.
determinations were made in duplicate.	REFERENCES :
	1

.

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Potassium bromate; KBr0₃; [7758-01-2] N-Methylacetamide; C_{3H7}N0; [79-16-3] 	Dawson, L.R.; Berger, J.E.; Vaughn, J.W.; Eckstrom, H.C. J. Phys. Chem. <u>1963</u> , 67, 281-3.
VARIABLES:	PREPARED BY:
T/K = 313	Hiroshi Miyamoto and Mark Salomon
EXPERIMENTAL VALUES:	

The solubility of $KBr0_3$ in n-methylacetamide, $CH_3CONHCH_3, \; at \; 40^\circ C \; was given as$

 $0.03 \text{ mol } dm^{-3}$

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
An "approximate" solubility was determined by the conductivity method. About 0.5 to 1.0 gram of salt and 10 ml of solvent were placed in a large test tube, stoppered and covered with aluminum foil, and heated to 60°C. Upon cooling to 40°C, the occurence of pre- cipitation was assumed to indicate the exist- ence of a saturated solution. Conductivities were measured in duplicate in "the usual manner." Experimental details and the meas- ured electrolytic conductivities were not given.	N-Methylacetamide was prepared by reacting monoethylamine with glacial acetic acid and subsequent heating to distill off the water. The product was purified by fractional dis- tillation followed by five or more fraction- al freezing cycles. The electrolytic con- ductance of the purified solvent ranged from 0.5×10^{-5} to 2×10^{-5} cm ⁻¹ . Reagent grade KBrO3 was dried in a vacuum desiccator over anhydrous magnesium per- chlorate without further treatment.
The concentration of the salt in the saturated solution was determined from the experimental electrolytic conductivities, but details on the calculation were not given. Presumably the limiting law was used	ESTIMATED ERROR: Soly: authors "believe" the solubility to be accurate to within 5 %. Temp: not specified.
as in (1).	REFERENCES:
	 Dawson, L.R.; Wilhoit, E.D.; Holmes, R.R.; Sears, P.G. J. Am. Chem. Soc. <u>1957</u>, 79, 3004 (Λ[∞] values are given in this paper).

20VD0VDVD0	
(1) Petrocolum bromator VB=021 [7789-38-0]	UNIGINAL MEASUREMENTS:
(1) Focassium bromate, KBro3, [7783-38-0]	hunt, h.; boncyk, L.
(2) Ammonia; NH3; [7664-41-7]	J. Am. Chem. Soc. <u>1933</u> , 55, 3528-30.
VARIABLES:	PREPARED BY:
T/K = 298.15	Mark Salomon and Hiroshi Miyamoto
EXPERIMENTAL VALUES:	
The solubility of KBrO3 in liquid ammonia at	25°C was reported as
0.002 g/1	.00g NH3.
AUXILIARY IN	FORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Two methods were used as described in (1).	Reagent grade KBr03 was recrystallized three
Method I. 25 ml test tubes with a constric-	anhydrous solvent. The salt was dried to a
10-25 g NH3 were condensed in the bottom,	constant weight in a vacuum oven.
and the dry salt contained in a small tube	Purification of NH3 not specified, but
to the test tube: this small tube remained	In (1) commercial anhyd ammonia was stored
in the upper part of the test tube as it	over metallic sodium for several weeks
dle of the test tube. The top of the test	
tube was drawn to a tip and sealed, and the tube inverted and placed in a thermostat at	ESTIMATED ERROR:
25°C. Equilibrium between NH3 and the ex-	Soly: accuracy probably around $\pm 1-2$ % (compilers).
cess salt in the small covered tube required 1-3 weeks with periodic shaking. The test	Temp: 25 + 0.025°C accuracy established by
tube was then inverted and only the satd sln	NBS calibration as described in (1).
mained in the small tube covered with the	REFERENCES :
cotton cloth). The sln was frozen and	1 Hunt II + T Am Cham Soc 1022 Ed
The seal was then broken and the NH3 boiled	3509,
off, and the residue weighed.	
<u>Method II</u> . Excess NH ₃ was condensed on a weighed amount of salt in a tube fitted with	
a stopcock. After thermostating at 25°C,	
NH ₃ was slowly permitted to escape through the stoncock until a crystal of solid appear-	
ed and remained undissolved upon prolonged	
shaking.	
Authors state that the error due to the condensation of caseous NH2 was not signifi-	
cant since the dead space was kept to a mini-	
mum of about 30 cm ³ . However this amount of dead space was stated to limit the precision	
of the method to 0.5 %.	
1	1

,

257