		Potassiu	m lodate		411
COMPONENTS :			ORIGINAL MEASUREMENT	ːs:	
(1) Potassium chlor	rate; KClO ₃ ;	[3811-04-9]	Wright, R.		
(2) Ethanol; C ₂ H ₆ O	; [64-17-5]		J. Chem. Soc. <u>1927</u>	, 1334-6.	
(3) Water; H ₂ 0; [7	732-18-5]				
VARIABLES:			PREPARED BY:		
Concentration of ethanol			Hiroshi Miyamoto		
T/K = 293, 373					
EXPERIMENTAL VALUES:			- <u></u>		
t/°C	Concn of mass %	ethanol mol %	soly of I g/100g solvent	KC10 ₃ mo1 kg ⁻¹	
		(compiler)		(compiler)	
20	0	0	7.2 7.2		
			(Av)7.2	0.59	
	50	28	1.1 1.1		
			(Av)1.1	0.090	
100	0	0	56.8		
			56.0 (Av)56.4	4,60	
	50	28	14.0	4100	
			14.2 (Av)14.1	1.15	
		AUXILIARY	INFORMATION	<u></u>	
METHOD/APPARATUS/PRO At 20°C, KC103 and	CEDURE:	and to	SOURCE AND PURITY OF	F MATERIALS:	
stoppered tubes and	thermostated and the amount	. Weighed nt of solute	Nothing specified.		
dryness.					
At 100°C care had to against alteration					
mixed solvent by eve employed was as fol					
10 mm diameter and	5 cm ³ capacit;	y was sealed			
a 20 cm length of t meter. A sufficien	t quantity of	dry salt			
and about 3 cm ³ of a tube. The tube was	solvent were then bent ro			· · · · · · · · · · · · · · · · · · ·	
lay parallel with th off. The sealed U-	he test-tube	and sealed	Soly: rel error abo		
at 100°C for 4 hours	s. After sat	uration, the			
excess solid was brained, the wide limb	being left a	bout three	REFERENCES :		
quarters full of the The tubes were remov	e clear satur	ated sln.			
cooled to room temp	erature. The	wide limb			
was cut off above the solubility of s	alt was found	he sln. by evapora-			
tion to dryness and	weighing.	-			
······································					

.

COMPONENTS :	ORIGINAL MEASUREMENT	ːs:
(1) Potassium iodate; KIO ₃ ; [7758-05-6]	Ricci, J.E.; Nesse	, G.J.
(2) 1,4-Dioxane; C ₄ H ₈ O ₂ ; [123-91-1]	J. Am. Chem. Soc. :	1942, 64, 2305-11
·		<u>1942</u> , 04, 2303 11.
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = 298		
Concentration of 1,4-dioxane	Hiroshi Miyamoto	
EXPERIMENTAL VALUES:		
Concn of Dioxane	Soly of KIO_3^a	
mass % mol % (compiler)	mass %	mol dm^{-3}
0 0	8.472 ^b	0.4238
10 2.2	5.300	0.2598
20 4.9	3.172	0.1531
30 8.1	1.815	0.08770
40 12	0.8855	0.04273
50 17	0.4712	0.02277
60 23 70 32	0.1350 0.0384	0.00653 0.00186
80 45	0.0060	0.00029
90 65	0.0012	0.000059
100 100	0.0000	0.00000
soly of KIO ₃ = 0.4325 mol kg ⁻¹ = 0.7732 mole %		
AUXILIARY	INFORMATION	**********
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF	F MATERIALS:
Mixtures of dioxane and water of known pro-	"C.p. grade" potase	sium iodate was used.
portions were stirred with excess KIO ₃ in glass stoppered bottles for 2 to 7 days.	The dioxane was pur verified as describ	rified and its purity
Equilibrium was established from both under-		jed in fer i.
and super-saturation.		
Iodate was analyzed by reduction to iodide		
by sodium thiosulfate, the excess reagent		
being removed by acidification and boiling		
with dil H_2SO_4 . Except in high dioxane solvents, the resulting iodine solution was		
analyzed volumetrically at a pH of 9-10 by		
titrn with standard AgNO3 using eosin indica-		
tor. An appropriate blank was calcd from a	ESTIMATED EDDOD.	
series of standardizations using pure KIO ₃	ESTIMATED ERROR:	200
similarly treated. For very low solubili- ties the iodide was detd gravimetrically as	Soly: described abo Temp: nothing speci	
AgI. The densities of the satd slns were		
detd by weighing filtered samples of slns		
delivered from calibrated pipets. The	REFERENCES :	
values were not reported in the original paper.		cc1, J.E.; Sauter, C.G. c. <u>1939</u> , <i>61</i> , 3274.
	1	

COMPONENTS :				OPTCINAL W	FACIDBARD	100.
 Potassium chlorate; KCl03; [3811-04-9]]	ORIGINAL MEASUREMENTS: Schnellbach, W.; Rosin, J.		
(2) Glycine; C ₂ H ₅ NO ₂ ;	[56-40-6]		_	J. Am. Pharm. Assoc. <u>1931</u> , 20, 227-33.		
(3) Water; H ₂ O; [7732-18-5]					<u> </u>	
	,					
VARIABLES:				PREPARED B	Y:	
T/K = 298				Hiroshi M	liyamoto	and Mark Salomon
EXPERIMENTAL VALUES: Solubility at 25°			°C/g in 100) g solve	ent ^a	
		-		on time/day	•	
I Undersaturation	5 1.04	12	13	14	21 	42
II Undersaturation				1.06	1.04	
					1.02	
III Supersaturation		-	$1.0 \\ 1.0$		00	1.07 1.07
IV Supersaturation		1.10 .				1.06
		1.11 · 1.12 ·				1.06
^a According to the USP	XXI (198'	5), two els	vci	ne solution	ns are de	fined.
1						of C ₂ H ₅ NO ₂ calculated
on the dried bas						
	ion: not 1	less than 9	95.0	0 % and not	more th	an 105.0 % of $C_2H_5NO_2$.
^b The average of these indicates supersatura					riment I	V after 12 days which
The authors conclude		•				_
					-	.P. glycine sln at 25°C.
(2) One gram of potassium chlorate is solu glycine solution at 25°C.			uble in 75.	20 cm- (= 93.79 g) of 0.5.P.	
		AUVT1 T A	DV	INFORMATIO		······································
					·	
METHOD/APPARATUS/PROCED		pared by t	the			OF MATERIALS: quality potassium
undersaturation and the methods. Chlorate was	e supersat	uration				ine were used.
and the resulting chlor	ride deter	mined volu				
metrically by Volhard's metrically by precipits	ation as s	ilver chlo				
ide. The reduction was a weighed quantity of t			ing			
water in an Erlenmeyer a Bunsen valve. A mode	flask pro	vided with				
ferrous sulfate solution	on was add	led and the	e			
mixture heated. After was treated with nitric	c acid, ar	d excess (ESTIMATED	ERROR:	
mol dm ⁻³ silver nitrate was titrated with 0.1 m			te	Soly: σ =	0.005 (compilers).
solution. For gravimet			,	Temp: not	ning spe	ciried,
silver nitrate, etc. an	nd the res			REFERENCE	<u> </u>	
silver chloride weighed	1.			AST BRENCE		
				ł		
1				1		

COMPONENTS :		ORIGINAL MEASUREMENTS	
(1) Potassium io	late; KIO ₃ ; [7758-05-6]	Miyamoto, H.; Hasegaw	va, T.; Sano, H.
(2) N,N-Dimethyl [68-12-2]	formamide; C ₃ H7NO;	J. Solution Chem. in	press.
(3) Water: H ₂ O;	[7732-18-5]		
ARIABLES:		PREPARED BY:	
Solvent compositio	n	M. Salomon	
Temperature			
Se	blubilities in mol dm ⁻³ re	eported for 20°C, 25°C,	and 30°C
t/' mass % DMF	C = 20 KIO ₃ /mol dm ⁻³	t/°C mass % DMF	= 25 KIO ₃ /mol dm ⁻³
0	0.379	0	0.423
4.79	0.284	5.12	0.314
10.05	0.210	10.00	0.234
15.67	0.147	15.43	0.169
19.75	0.114	20.43	0.123
24.57	0.082	24.78	0.0923
30.22	0.055	29.71	0.0658
35.07	0.039	34.78	0.0454
	0.023	40.02	

Guaranteed grade dimethylformamide (Wako) was stored over BaO for two days, and then distilled three times under reduced pressure.

Doubly distilled water had an electrolytic conductance of 9.8 x $10^{-7}~{\rm S~cm^{-1}}.$

ESTIMATED ERROR: Soly: standard deviations for measurements in pure water are 0.0001 at 20°C, and 0.001 at 25 & 30°C. For mixed solvents σ = 0.0002 to 0.0001. Temp: not stated.

REFERENCES: 1. Miyamoto, H.; Shimura, N.; Sasaki, K.

- J. Solution Chem. <u>1985</u>, 14, 485.
- Ricci, J. E. J. Am. Chem. Soc. <u>1934</u>, 56, 290.

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Potassium iodate; KI03; [7758-05-6] N,N-Dimethylformamide; C3H7N0; 	Miyamoto, H.; Hasegawa, T.; Sano, H.
[68-12-2] (3) Water; H ₂ 0; [7732-18-5]	J. Solution Chem. in press.

EXPERIMENTAL VALUES: (Continued)

8 D.U.	t/°C = 30	wro (1 1 - 3
mass % DMF		KI03/mol dm ⁻³
0		0.475
5.53		0.345
9.81		0.268
14.71		0.201
20.10		0.144
25.03		0.103
29.79		0.074
35.02		0.051
40.33		0.033

For the binary $KI0_3-H_20$ system, measured densities of saturated solutions permits conversion from mol dm⁻³ to mol kg⁻¹ and mole fraction units.

t/°C	density/g cm ⁻³	c/mol dm ⁻³	m/mol kg ^{-1b}	х ^ь
20	1.064	0.379	0.386	0.00690
25	1.071 ^a	0.423	0.431	0.00771
30	1.078	0.475	0.487	0.00869

^aRef. (2)

,

^bCalculated by the compiler.

COMPONENTS: (1) Potassium iodate; H		ORTGINAT	MEASUREMENTS:	
(i) rorassium lodate: P	KIO3; [7758-05-6]		MEASUREMENTS:	T.t Sapo H
(2) Dimethylsulfoxide	•		tion Chem. in pr	
-	-	J. 3020	con chem. in pi	cess.
(3) Water; H ₂ 0; [7732-]	L8-5 J			
VARIABLES: Solvent composition		PREPARED	BY:	
Temperature		M. Salon	non	
-				
EXPERIMENTAL VALUES:	c			
Solubili	ty of KIO ₃ in water			
		Solubi	lity in mol dm	-3
mass X dimethylsulfoxide	t/°C	20	25	30
0		0.379	0.423	0.475
5.03		0.295	0.326	0.367
10.02		0.226	0.250	0.281
20.09		0.126	0.142	0.155
30.01		0.0649	0.0746	0.0832
40.03		0.0311	0.0354	0.0401
		Y INFORMATI	· · · · · · · · · · · · · · · · · · ·	
METHOD/APPARATUS/PROCEDU	RE:	SOURCE A Guarante	ND PURITY OF MAT ed grade KIO ₃ (Wako Pure Chemicals)
METHOD/APPARATUS/PROCEDU Experimental details give (1)	RE:	SOURCE A Guarante	ND PURITY OF MA ed grade KIO ₃ (ystallized two	Wako Pure Chemicals)
Experimental details give	RE:	SOURCE A Guarante was recr tilled w Guarante	ND PURITY OF MA ed grade KIO3 (ystallized two ater. ed grade dimeth illed three time	Wako Pure Chemicals)
Experimental details give	RE:	SOURCE A Guarante was recr tilled w Guarante was dist pressure Doubly d	ND PURITY OF MA ed grade KIO3 (ystallized two ater. ed grade dimeth illed three time	Wako Pure Chemicals) times from doubly dis- ylsulfoxide (Wako) es under reduced had an electrolytic
Experimental details give	RE:	SOURCE A Guarante was recr tilled w Guarante was dist pressure Doubly d	ND PURITY OF MA ed grade KIO3 (ystallized two ater. ed grade dimeth illed three time istilled water 1	Wako Pure Chemicals) times from doubly dis- ylsulfoxide (Wako) es under reduced had an electrolytic
Experimental details give	RE:	SOURCE A Guarante was recr tilled w Guarante was dist pressure Doubly d conducta ESTIMATE Soly: sti	ND PURITY OF MA ed grade KIO3 (ystallized two ater. ed grade dimeth illed three time istilled water 1 nce of 9.8 x 10	Wako Pure Chemicals) times from doubly dis- ylsulfoxide (Wako) es under reduced had an electrolytic
Experimental details give	RE:	SOURCE A Guarante was recr tilled w Guarante was dist pressure Doubly d conducta ESTIMATE Soly: str 0.0	ND PURITY OF MA ed grade KIO ₃ (ystallized two ater. ed grade dimeth illed three time istilled water 1 nce of 9.8 x 10 D ERROR: nd deviation be	Wako Pure Chemicals) times from doubly dis- ylsulfoxide (Wako) es under reduced had an electrolytic -7 S cm ⁻¹ .
Experimental details give	RE:	SOURCE A Guarante was recr tilled w Guarante was dist pressure Doubly d conducta ESTIMATE Soly: str 0.0 Temp: not	ND PURITY OF MA ed grade KIO3 (ystallized two ater. ed grade dimeth illed three time istilled water i nce of 9.8 x 10 D ERROR: nd deviation be 001. t stated.	Wako Pure Chemicals) times from doubly dis- ylsulfoxide (Wako) es under reduced had an electrolytic -7 S cm ⁻¹ .
Experimental details give	RE:	SOURCE A Guarante was recr tilled w Guarante was dist pressure Doubly d conducta ESTIMATE Soly: str 0.0 Temp: nor REFERENC 1. Miyamu	ND PURITY OF MA ed grade KIO3 (ystallized two ater. ed grade dimeth illed three time istilled water i nce of 9.8 x 10 D ERROR: nd deviation be 001. t stated.	Wako Pure Chemicals) times from doubly dis- ylsulfoxide (Wako) es under reduced had an electrolytic -7 S cm ⁻¹ . tween 0.0002 and
Experimental details give	RE:	SOURCE A Guarante was recr tilled w Guarante was dist pressure Doubly d conducta ESTIMATE Soly: str 0.0 Temp: nor REFERENC 1. Miyamu	ND PURITY OF MAY ed grade KIO3 () ystallized two ater. ed grade dimethy illed three time istilled water 1 nce of 9.8 x 10 D ERROR: nd deviation be 001. t stated. ES: oto, H.; Shimur;	Wako Pure Chemicals) times from doubly dis- ylsulfoxide (Wako) es under reduced had an electrolytic -7 S cm ⁻¹ . tween 0.0002 and

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Potassium iodate; KIO ₃ ; [7758-05-6]	Kolthoff, I.M.; Chantooni, M.K.	
(2) Methanol; CH40; [67-56-1]	J. Phys. Chem. <u>1973</u> , 77, 523-6.	
VARIABLES:	PREPARED BY:	
T/K = 298	Hiroshi Miyamoto	
EXPERIMENTAL VALUES:		
(1) Volumetric determination:		
The authors reported the solubility of iodometrically) to be 2.70 x 10^{-4} mol		
The solubility product of KIO3 in meth data assuming complete dissociation.	anol was calculated from the solubility	
The solubility product is given as fol	lows:	
$pK_{s0} = 7.2$	(authors)	
$K_{s0} = 6.3 \times 10^{-8} \text{ mol}^2$	dm ⁻⁶ (compiler)	
(2) Conductometric determination:		
The authors reported log $K_{SO} = -7.3_5$ f 2.7 ₃ x 10 ⁻⁵ S cm ⁻¹ . In these calculat the Debye-Huckel equation, and proba	ions the authors used $\Lambda^{\infty} = 99.2 \text{ S cm}^2 \text{ mol}^{-1}$,	
AUXILIAR	Y INFORMATION	
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
 The iodate content was determined iodometrically. No other information given. Details of the conductivity cell and 	KIO ₃ was dried in <i>vacuo</i> at 70°C for 3 how Matheson Spectroquality grade methanol wa distilled once over magnesium turnings.	
	The water content was 0.01 % by Karl Fischer Titration.	
method are given in ref. 1.		
method are given in ref. 1.		
method are given in ref. 1.		
method are given in ref. 1.	Fischer Titration.	
method are given in ref. 1.		
method are given in ref. 1.	Fischer Titration. ESTIMATED ERROR: The uncertainty in pK_{s0} is \pm 0.1 log unit Temp: not given.	
method are given in ref. 1.	Fischer Titration. ESTIMATED ERROR: The uncertainty in pK _{s0} is ± 0.1 log unit	
method are given in ref. 1.	<pre>Fischer Titration. ESTIMATED ERROR: The uncertainty in pK_{SO} is ± 0.1 log uni Temp: not given. REFERENCES: 1. Kolthoff, I.M.; Bruckenstein, S.; Chantooni, M.K. J. Am. Chem. Soc.</pre>	

.

COMPONENTS :	
(1) Potassium iodate; KI03; [7758-05-6]	ORIGINAL MEASUREMENTS: Kolthoff, I.M.; Chantooni, M.K.
<pre>(2) 6,7,9,10,17,18,20,21-Octahydrodibenzo [b,k] [1,4,7,10,13,16] hexaoxacyclo- octadecin(dibenzo-18-crown-6); C20H2406; [14187-32-7]</pre>	
(3) Methanol; CH40; [67-56-1]	
VARIABLES:	PREPARED BY:
Composition	Hiroshi Miyamoto and Mark Salomon
T/K = 298	
EXPERIMENTAL VALUES:	
Solubilities of KIO3 and dibenzo-18-crown-	6 (DB-18) in methanol at 25°C
KIO ₃ DB-18	electrolytic conductance of satd sin
mol dm^{-3} mol dm^{-3}	$10^5 \kappa/s cm^{-1}$
2.61×10^{-4} 0	2.30
4.66 x 10 ⁻³ 6.51 x 10 ⁻³	-3 24.6
0 1.38 x 10	-3a
^a Result quoted from reference 1.	
COMMENTS AND/OR ADDITIONAL DATA:	
	0_3) were determined conductometrically and found mol ⁻¹ dm ³ , respectively (L = DB-18).
1.12 x $10^5 \text{ mol}^{-1} \text{ dm}^3$. The selectivity for $K_f(LK^+)/K_f(LNa^+)$, was reported to equal 3.	ether-K ⁺ complex, $K_f(LK^+)$, was found to be the K ⁺ /Na ⁺ coordination with DB-18, in pure methanol [K ⁺] = 2.40 x 10 ⁻⁴ mol dm ⁻³ , $-8 \text{ mol}^2 \text{ dm}^{-6}$.
AUXILIA	RY INFORMATION
METHOD/APPARATUS/PROCEDURE: Solubilities of KI03 and DB-18 detd isother mally in pure methanol and methanol satd with DB-18. Satd slns prepd by adding 0.5 mmol of each compound to about 2 drops of a cohol, stirring, and decanting the liquid. To the residue about 10 ml of methanol was added, and the mixt magnetically stirred for 2 days. Two additional days of stirring di not affect the soly. The ether, DB-18, we detd spectrophotometrically in dichloroeth- ane. Quantitative transfer of the ether to dichloroethane was found to be complete after 4 extractions, and Beer's law was for lowed to at least 1.3 x 10 ⁻⁴ mol dm ⁻³ . KI03 was detd by 3 aq extractions from the satd sln and dichloroethane. The combined	three times from water and dried at atm pressure at 70°C. al- Aldrich dibenzo-18-crown-6 (DB-18) was re- crystallized 4 times from water and dried at atm pressure at 50°C; m.p. = 163°C, 1it, 164°C (2). Methanol (Fisher "spectroquality" grade) was distilled once from Mg turnings. - - 0 1- ESTIMATED ERROR: Soly: nothing specified.

(1)	NENTS: Potassium iodate; KIO ₃ ; [7758-05-6]	ORIGINAL MEASUREMENTS: Kolthoff, I.M.; Chantooni, M.K.
(2)	Dimethylsulfoxide(sulfinyl bis-methane); C ₂ H ₆ OS; [67-68-5]	J. Phys. Chem. <u>1973</u> , 77, 523-6.
WADTA	BLES:	DREDADED DV
	= 298	PREPARED BY: Hiroshi Miyamoto
EXPER	IMENTAL VALUES:	
(1)	Potentiometric determination:	
	The authors reported - $\log k_{s0}^{\circ} = 7.7$ from potentiometrically assuming $\alpha(10_3^{-}) = \alpha(10_3^{-})$	om -log $a(K^+) = 3.85$, which was determined (K^+) .
	The compiler computes $\mathring{K_{s0}} = 2.0 \times 10^{-8} \text{ m}$	$mol^2 dm^{-6}$ from this value.
(2)	Conductance determination:	
	and presumably the limiting law was used	om a measured specific conductivity of .4 S cm ² mol ⁻¹ (obtained from the literature), d to calculate the solubility. Activity partially extended" Debye-Huckel equation.
	The compiler calculates $K_{s0} = 4.0 \times 10^{-8}$	$3 \text{ mol}^2 \text{ dm}^{-6}$ from this value.
	AUXILIARY	INFORMATION
METHO	DD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
methy cally	The solubility product of KIO3 in di- ylsulfoxide was determined potentiometri- y from emf measurements made on the owing cell:	grade product, was purified as described in ref 3. The water content of the purified
K(g1)	/KIO ₃ (c ₁)//AgNO ₃ (c ₂)/Ag	solvent as found by Karl Fischer titration was less than 0.0005 %.
tions 0.01 salt ethyl	$KIO_{c}(c_{1})$ and AgNO ₃ (c ₂) are concentra- s of the saturated KIO ₃ solution and mol dm ⁻³ AgNO ₃ solution, and // is a bridge containing 0.01 mol dm ⁻³ tetra- lammonium perchlorate. The liquid	Electrodes were prepared electrolytically (ref 4).
son e	tion potential calculated by the Hender- equation (ref 1) is -5 mV, and was acted.	REFERENCES:
	IATED ERROR:	1. Ives, D.J.G.; Janz, G.J. Reference Electrodes. Academic Press. N.Y. <u>1961</u> ,
The u	uncertainty of pK_{s0} is \pm 0.1. Prature not given.	 p. 54. 2. Kolthoff, I.M.; Bruckenstein, S.; Chantooni, Jr., M.K. J. Am. Chem. Soc. <u>1961</u>, 83, 3927. 3. Kolthoff, I.M.; Reddy, T.B. Inorg. Chem.
		<u>1962</u> , 1, 189. 4. Ives, D.J.G.; Janz, G.J. Reference Electrodes. Academic Press. N.Y. <u>1961</u> , p. 179: Kolthoff, I.M.; Chantooni, M.K. J. Am. Chem. Soc. 1965. 87. 4428.

	_
COMPONENTS: (1) Potassium iodate; KI03; [7758-05-6]	ORIGINAL MEASUREMENTS: Hunt, H.; Boncyk, L.
(2) Ammonia; NH3; [7664-41-7]	J. Am. Chem. Soc. <u>1933</u> , 55, 3528-30.
(,,,,,,,,	,,
VARIABLES:	
T/K = 298	PREPARED BY: Hiroshi Miyamoto and Mark Salomon
1/K - 255	
EXPERIMENTAL VALUES:	.
The solubility of KIO ₃ in liquid ammonia	at 25°C was reported as
0.000 g	/100 g NH3
	-
Compilers' note: In a subsequent paper	
liquid ammonia as 3.044 x 10^{-5} mol kg ⁻¹ .	at 25° C. See the compilation of ref (2).
	······································
AUXILIARY METHOD/APPARATUS/PROCEDURE	INFORMATION SOURCE AND PURITY OF MATERIALS:
Two methods were used as described in (1).	Reagent grade KIO3 was recrystallized three times from water and then from "a suitable"
Method I. 25 ml test tubes with a constric- tion at the middle were employed. About 10-	anhydrous solvent. The salt was dried to
25 g NH ₃ were condensed in the bottom, and the dry salt contained in a small tube	constant weight in a vacuum oven. Purification of NH3 not specified, but
tightly covered with cotton cloth was added to the test tube; this small tube remained	probably similar to that described in (1). In (1) commercial anhyd ammonia was stored
in the upper part of the test tube as it could not pass the constriction in the mid-	over metallic sodium for several weeks before use.
dle of the test tube. The top of the test tube was drawn to a tip and sealed, and the	
tube inverted and placed in a thermostat at 25°C. Equilibrium between NH3 and the ex-	ESTIMATED ERROR: Soly: accuracy probably around $\pm 1-2$ %.
cess salt in the small covered tube requir- ed 1-3 weeks with periodic shaking. The	(compilers). Temp: 25.00 + 0.025°C accuracy established
test tube was then inverted and only the	by NBS calibration (see ref 1).
satd sin drained into the lower end (excess solid remained in the small tube covered	REFERENCES :
with the cotton cloth). The sln was frozen and sealed at the constriction,	1. Hunt, H.; J. Am. Chem. Soc. <u>1932</u> , 54,
and weighed. The seal was then broken and the NH3 boiled off, and the residue	3509. 2. Anhorn, V.J.; Hunt, H. J. Phys. Chem.
weighed. Method II. Excess NH3 was condensed on a	<u>1941</u> , 45, 351.
weighed amount of salt in a tube fitted	
with a stopcock. After thermostating at 25°C, NH ₃ was slowly permitted to escape	
through the stopcock until a crystal of solid appeared and remained undissolved	
upon prolonged shaking. Authors state that the error due to the	
condensation of gaseous NH3 was not signi- ficant since the dead space was kept to a	
minimum of about 30 cm ³ . However this amount of dead space was stated to limit	
the precision of the method to 0.5 %.	

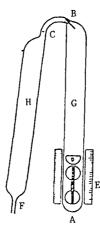
1

Potass	sium lodate 42'
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Potassium iodate; KIO ₃ ; [7758-05-6]	Anhorn, V.J.; Hunt, H.
(2) Potassium chloride; KC1; [7447-40-7]	J. Phys. Chem. <u>1941</u> , 45, 351-62.
(3) Liquid ammonia; NH3; [7664-41-7]	
VARIABLES:	PREPARED BY:
Concentration of KCl at 298.15 K	Hiroshi Miyamoto and Mark Salomon
EXPERIMENTAL VALUES:	
concentration of KCl	solubility of KIO3
$mo1 dm^{-3}$ mol kg^{-1}	10^5 mol kg^{-1}
0 0	3.0441
0 0	3.0441
0 0	3.0412
0 0 0 0	3.0461 3.0448
0 0	3.0446 3.044 (average value)
0.001907 0.003162	0.7439
0.002658 0.004407	0.8428
0.007624 ^a 0.01264	1.4238
^a Saturated	
^a Saturated	continued
AUXILIA	RY INFORMATION
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown	RY INFORMATION SOURCE AND PURITY OF MATERIALS: in Ammonia was stored over sodium and distd
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown the figure on the next page. A glass float	SOURCE AND PURITY OF MATERIALS: in Ammonia was stored over sodium and distd through glass wool into a reservoir prior to
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown the figure on the next page. A glass float in which an iron nail was sealed was used t	RY INFORMATION SOURCE AND PURITY OF MATERIALS: in Ammonia was stored over sodium and distd through glass wool into a reservoir prior to distn into the soly tube.
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown the figure on the next page. A glass float	RY INFORMATION SOURCE AND PURITY OF MATERIALS: in Ammonia was stored over sodium and distd through glass wool into a reservoir prior to distn into the soly tube. a AR grade KIO3 recrystallized three times from
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown the figure on the next page. A glass float in which an iron nail was sealed was used t stir the slns by engaging solenoid E. B is cotton plug in which a small glass tube was embedded to permit passage of NH3 vapors.	SOURCE AND PURITY OF MATERIALS: in Ammonia was stored over sodium and distd through glass wool into a reservoir prior to distn into the soly tube. AR grade KIO ₃ recrystallized three times fro conductivity water, dried at 180°C, ground to a powder and analyzed as in (3).
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown the figure on the next page. A glass float in which an iron nail was sealed was used t stir the slns by engaging solenoid E. B is cotton plug in which a small glass tube was embedded to permit passage of NH ₃ vapors. Both salts were placed in tube G which was	AY INFORMATION SOURCE AND PURITY OF MATERIALS: in Ammonia was stored over sodium and distd through glass wool into a reservoir prior to distn into the soly tube. a AR grade KIO ₃ recrystallized three times from conductivity water, dried at 180°C, ground to a powder and analyzed as in (3). KCl was crystallized three times from con-
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown the figure on the next page. A glass float in which an iron nail was sealed was used t stir the slns by engaging solenoid E. B is cotton plug in which a small glass tube was embedded to permit passage of NH3 vapors.	AY INFORMATION SOURCE AND PURITY OF MATERIALS: In Ammonia was stored over sodium and distd through glass wool into a reservoir prior to o distn into the soly tube. A R grade KIO3 recrystallized three times fro conductivity water, dried at 180°C, ground to a powder and analyzed as in (3). KCl was crystallized three times from con- ductivity water and dried at 110°C.
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown the figure on the next page. A glass float in which an iron nail was sealed was used to stir the slns by engaging solenoid E. B is cotton plug in which a small glass tube was embedded to permit passage of NH ₃ vapors. Both salts were placed in tube G which was then sealed at A, evacuated at F, and the entire apparatus heated in a flame. The ap paratus was evacuated for 10 h and then	AY INFORMATION SOURCE AND PURITY OF MATERIALS: In Ammonia was stored over sodium and distd through glass wool into a reservoir prior to o distn into the soly tube. A R grade KIO3 recrystallized three times fro conductivity water, dried at 180°C, ground to a powder and analyzed as in (3). KCl was crystallized three times from con- ductivity water and dried at 110°C.
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown the figure on the next page. A glass float in which an iron nail was sealed was used to stir the slns by engaging solenoid E. B is cotton plug in which a small glass tube was embedded to permit passage of NH ₃ vapors. Both salts were placed in tube G which was then sealed at A, evacuated at F, and the entire apparatus heated in a flame. The ap paratus was evacuated for 10 h and then flushed with dry air followed by flushing	AT INFORMATION SOURCE AND PURITY OF MATERIALS: in Ammonia was stored over sodium and distd through glass wool into a reservoir prior to distn into the soly tube. a AR grade KIO3 recrystallized three times from conductivity water, dried at 180°C, ground to a powder and analyzed as in (3). KCl was crystallized three times from con- ductivity water and dried at 110°C.
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown the figure on the next page. A glass float in which an iron nail was sealed was used to stir the slns by engaging solenoid E. B is cotton plug in which a small glass tube was embedded to permit passage of NH3 vapors. Both salts were placed in tube G which was then sealed at A, evacuated at F, and the entire apparatus heated in a flame. The af paratus was evacuated for 10 h and then flushed with dry air followed by flushing with NH3. Ammonia was distd from a reserve and condensed in tube G, and the apparatus	SOURCE AND PURITY OF MATERIALS: in Ammonia was stored over sodium and distd through glass wool into a reservoir prior to distn into the soly tube. AR grade KIO3 recrystallized three times from conductivity water, dried at 180°C, ground to a powder and analyzed as in (3). KCl was crystallized three times from con- ductivity water and dried at 110°C.
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown the figure on the next page. A glass float in which an iron nail was sealed was used t stir the slns by engaging solenoid E. B is cotton plug in which a small glass tube was embedded to permit passage of NH3 vapors. Both salts were placed in tube G which was then sealed at A, evacuated at F, and the entire apparatus heated in a flame. The ap paratus was evacuated for 10 h and then flushed with dry air followed by flushing with NH3. Ammonia was distd from a reservo and condensed in tube G, and the apparatus sealed at F. Equilibrium was established to	SOURCE AND PURITY OF MATERIALS: in Ammonia was stored over sodium and distd through glass wool into a reservoir prior to distn into the soly tube. AR grade KIO3 recrystallized three times from conductivity water, dried at 180°C, ground to a powder and analyzed as in (3). KCl was crystallized three times from con- ductivity water and dried at 110°C.
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown the figure on the next page. A glass float in which an iron nail was sealed was used to stir the slns by engaging solenoid E. B is cotton plug in which a small glass tube was embedded to permit passage of NH3 vapors. Both salts were placed in tube G which was then sealed at A, evacuated at F, and the entire apparatus heated in a flame. The af paratus was evacuated for 10 h and then flushed with dry air followed by flushing with NH3. Ammonia was distd from a reserve and condensed in tube G, and the apparatus	AT INFORMATION SOURCE AND PURITY OF MATERIALS: in Ammonia was stored over sodium and distd through glass wool into a reservoir prior to distn into the soly tube. A R grade KIO3 recrystallized three times from conductivity water, dried at 180°C, ground to a powder and analyzed as in (3). KCl was crystallized three times from con- ductivity water and dried at 110°C. ESTIMATED ERROR: Soly: for the binary system, standard dev is .0018 (compilers). No information
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown the figure on the next page. A glass float in which an iron nail was sealed was used to stir the slns by engaging solenoid E. B is cotton plug in which a small glass tube was embedded to permit passage of NH3 vapors. Both salts were placed in tube G which was then sealed at A, evacuated at F, and the entire apparatus heated in a flame. The ap paratus was evacuated for 10 h and then flushed with dry air followed by flushing with NH3. Ammonia was distd from a reserve and condensed in tube G, and the apparatus sealed at F. Equilibrium was established to thermostating at 25°C, and was approached from above and below with stirring every 2 The satd sln was decanted into tube H, and	AY INFORMATION SOURCE AND PURITY OF MATERIALS: in Ammonia was stored over sodium and distd through glass wool into a reservoir prior to distn into the soly tube. AR grade KIO3 recrystallized three times from conductivity water, dried at 180°C, ground to a powder and analyzed as in (3). KCl was crystallized three times from con- ductivity water and dried at 110°C. ESTIMATED ERROR: Soly: for the binary system, standard dev is .0018 (compilers). No information available for ternary systems.
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown the figure on the next page. A glass float in which an iron nail was sealed was used a stir the slns by engaging solenoid E. B is cotton plug in which a small glass tube was embedded to permit passage of NH ₃ vapors. Both salts were placed in tube G which was then sealed at A, evacuated at F, and the entire apparatus heated in a flame. The ap paratus was evacuated for 10 h and then flushed with dry air followed by flushing with NH ₃ . Ammonia was distd from a reserve and condensed in tube G, and the apparatus sealed at F. Equilibrium was established H thermostating at 25°C, and was approached from above and below with stirring every 2 The satd sln was decanted into tube H, and the distance of the sln from etch mark C	RY INFORMATION SOURCE AND PURITY OF MATERIALS: in Ammonia was stored over sodium and distd through glass wool into a reservoir prior to distn into the soly tube. a AR grade KI03 recrystallized three times from conductivity water, dried at 180°C, ground to a powder and analyzed as in (3). KCl was crystallized three times from con- ductivity water and dried at 110°C. b- b- b- cols (compilers). No information available for ternary systems. Temp: accuracy ± 0.005 K (authors).
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown the figure on the next page. A glass float in which an iron nail was sealed was used to stir the slns by engaging solenoid E. B is cotton plug in which a small glass tube was embedded to permit passage of NH3 vapors. Both salts were placed in tube G which was then sealed at A, evacuated at F, and the entire apparatus heated in a flame. The ap paratus was evacuated for 10 h and then flushed with dry air followed by flushing with NH3. Ammonia was distd from a reserve and condensed in tube G, and the apparatus sealed at F. Equilibrium was established to thermostating at 25°C, and was approached from above and below with stirring every 2 The satd sln was decanted into tube H, and	RY INFORMATION SOURCE AND PURITY OF MATERIALS: in Ammonia was stored over sodium and distd through glass wool into a reservoir prior to distn into the soly tube. a AR grade KI03 recrystallized three times from conductivity water, dried at 180°C, ground to a powder and analyzed as in (3). KCI was crystallized three times from con- ductivity water and dried at 110°C. b- b- conductivity water and dried at 110°C. b- b- coll (compilers). conformation available for ternary systems. Temp: accuracy ± 0.005 K (authors). REFERENCES: 1. Anhorn, V.J.; Hunt, H. Ind. Eng. Chem.
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown the figure on the next page. A glass float in which an iron nail was sealed was used to stir the slns by engaging solenoid E. B is cotton plug in which a small glass tube was embedded to permit passage of NH ₃ vapors. Both salts were placed in tube G which was then sealed at A, evacuated at F, and the entire apparatus heated in a flame. The apparatus was evacuated for 10 h and then flushed with dry air followed by flushing with NH ₃ . Ammonia was distd from a reserved and condensed in tube G, and the apparatus sealed at F. Equilibrium was established thermostating at 25°C, and was approached from above and below with stirring every 2 The satd sln was decanted into tube H, and the distance of the sln from etch mark C measured with a cathatometer. The ammonia was then dist back into tube G, cooled in a bath of solid CO ₂ -CHCl ₃ -CCl ₄ , and the tube	<pre>XY INFORMATION SOURCE AND PURITY OF MATERIALS: Ammonia was stored over sodium and distd through glass wool into a reservoir prior to distn into the soly tube. AR grade KIO3 recrystallized three times from conductivity water, dried at 180°C, ground to a powder and analyzed as in (3). KCl was crystallized three times from con- ductivity water and dried at 110°C. ESTIMATED ERROR: Soly: for the binary system, standard dev is .OO18 (compilers). No information available for ternary systems. Temp: accuracy ± 0.005 K (authors). REFERENCES: I. Anhorn, V.J.; Hunt, H. Ind. Eng. Chem. Anal. Ed. 1937, 9, 591. Destination </pre>
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown the figure on the next page. A glass float in which an iron nail was sealed was used a stir the slns by engaging solenoid E. B is cotton plug in which a small glass tube was embedded to permit passage of NH ₃ vapors. Both salts were placed in tube G which was then sealed at A, evacuated at F, and the entire apparatus heated in a flame. The apparatus was evacuated for 10 h and then flushed with dry air followed by flushing with NH ₃ . Ammonia was distd from a reservor and condensed in tube G, and the apparatus sealed at F. Equilibrium was established b thermostating at 25°C, and was approached from above and below with stirring every 2 The satd sln was decanted into tube H, and the distance of the sln from etch mark C measured with a cathatometer. The ammonia was then dist back into tube G, cooled in a bath of solid CO ₂ -CHCl ₃ -CCl ₄ , and the tube removed by breaking about 2 cm above the et	<pre>RY INFORMATION SOURCE AND PURITY OF MATERIALS: in Ammonia was stored over sodium and distd through glass wool into a reservoir prior to distn into the soly tube. AR grade KI03 recrystallized three times from conductivity water, dried at 180°C, ground to a powder and analyzed as in (3). KCl was crystallized three times from con- ductivity water and dried at 110°C. For the solution of the binary system, standard dev is . 0018 (compilers). No information available for ternary systems. Temp: accuracy ± 0.005 K (authors). REFERENCES: I. Anhorn, V.J.; Hunt, H. Ind. Eng. Chem. Anal. Ed. 1937, 9, 591. 2. Willard; Furman, N.H. Elementary Quantitative Analysis. D. Van Nostrand. </pre>
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown the figure on the next page. A glass float in which an iron nail was sealed was used a stir the slns by engaging solenoid E. B is cotton plug in which a small glass tube was embedded to permit passage of NH ₃ vapors. Both salts were placed in tube G which was then sealed at A, evacuated at F, and the entire apparatus heated in a flame. The ap- paratus was evacuated for 10 h and then flushed with dry air followed by flushing with NH ₃ . Ammonia was distd from a reserver and condensed in tube G, and the apparatus sealed at F. Equilibrium was established the thermostating at 25°C, and was approached from above and below with stirring every 2 The satd sln was decanted into tube H, and the distance of the sln from etch mark C measured with a cathatometer. The ammonia was then dist back into tube G, cooled in a bath of solid CO2-CHCl ₃ -CCl ₄ , and the tube removed by breaking about 2 cm above the et mark C. The KIO ₃ content (residue) in H wa detd by the method described in (1), and the	<pre>Source AND PURITY OF MATERIALS: Ammonia was stored over sodium and distd through glass wool into a reservoir prior to distn into the soly tube. AR grade KIO3 recrystallized three times from conductivity water, dried at 180°C, ground to a powder and analyzed as in (3). KCl was crystallized three times from con- ductivity water and dried at 110°C.</pre>
AUXILIA METHOD/APPARATUS/PROCEDURE: The U-shaped Pyrex soly apparatus is shown the figure on the next page. A glass float in which an iron nail was sealed was used to stir the slns by engaging solenoid E. B is cotton plug in which a small glass tube was embedded to permit passage of NH3 vapors. Both salts were placed in tube G which was then sealed at A, evacuated at F, and the entire apparatus heated in a flame. The ap- paratus was evacuated for 10 h and then flushed with dry air followed by flushing with NH3. Ammonia was distd from a reserver and condensed in tube G, and the apparatus sealed at F. Equilibrium was established to thermostating at 25°C, and was approached from above and below with stirring every 2 The satd sln was decanted into tube H, and the distance of the sln from etch mark C measured with a cathatometer. The ammonia was then dist back into tube G, cooled in a bath of solid CO2-CHC13-CC14, and the tube removed by breaking about 2 cm above the et mark C. The KIO3 content (residue) in H was	<pre>Source AND PURITY OF MATERIALS: Ammonia was stored over sodium and distd through glass wool into a reservoir prior to distn into the soly tube. AR grade KIO3 recrystallized three times from conductivity water, dried at 180°C, ground to a powder and analyzed as in (3). KCl was crystallized three times from con- ductivity water and dried at 110°C.</pre>

,

COMPONENTS:

(1) Potassium iodate; KIO₃; [7758-05-6]


(2) Potassium chloride; KC1; [7447-40-7]

(3) Liquid ammonia; NH₃; [7664-41-7]

ORIGINAL MEASUREMENTS: Anhorn, V.J.; Hunt, H. J. Phys. Chem. <u>1941</u>, 45, 351-62.

COMMENTS AND/OR ADDITIONAL DATA:

The solubility apparatus used is shown below.

METHOD/APPARATUS/PROCEDURE: (Continued)

tube H was then calibrated. For very dilute solutions, standard (aq) solutions of the nonsaturating salt were prepared by weight and placed in a cup D, and the water evaporated slowly at 50° C. The cup D was then placed on the float, the KIO3 added and the tube G sealed at A. The soly was then detd as described above. Densities of saturated solutions prepared by weight were measured pynometrically at 25° C, and the densities of saturated solutions detd above were obtained by graphical interpolation. The soly in the binary system was detd five times, and an unspecified number of times in ternary systems. The nature of the solid phase was not discussed.

Potassium Iodate		42:		
COMPONENTS :			ORIGINAL MEASUREMENTS:	
(1) Potassium io	date; KI0 ₃ ; [77	758-05-6]	Anhorn, V.J.; Hunt, H.	
(2) Sodium chlor	ide; NaCl; [764	47-14-5]	J. Phys. Chem. <u>1941</u> , 45, 351-62.	
(3) Liquid ammon	ia; NH ₃ ; [7664-	-41-7]		
VARIABLES:			PREPARED BY:	
Concentration of NaCl at 298.15 K		к	Hiroshi Miyamoto	
EXPERIMENTAL VALUE	S:		l	
Concen	tration of NaCl	L	Solubility of KIO3	
mol dm	-3	mol kg ⁻¹	10^5 mol kg^{-1}	
0		0	3.044 (av)	
0.0003	685	0.0006109	4.495	
0.0016		0.002744	5.489	
0.0035		0.005874	5.831	
0.0077	38	0.01283	6.188	
0.0306		0.05078	7.098	
0.0435		0.07214	7.377	
0.0937		0.1554	8.024	
0.1154		0.1913	8.233	
0.1554		0.2575	8.611	
0.2101 0.2746		0.3482 0.4551	8.913 9.145	
		AUXILIARY	INFORMATION	
METHOD/APPARATUS/P	ROCEDURE:		SOURCE AND PURITY OF MATERIALS:	
See the compilations system reported by			Amonia was stored over sodium and distd through glass wool into a reservoir prior distn into the soly tube. Analytical reagent grade KIO3 was recryst lized three times from conductivity water and dried at 180°C. The purity was teste by the method described in ref 1. Purifi HCl gas was passed into a saturated solut of analytical reagent grade NaCl. The pr cipitated NaCl was then crystallized from conductivity water and fused in a platinu crucible. The fused salt was ground to a fine powder in an agate mortar. ESTIMATED ERROR:	al- d ed ior e-
			See the KIO ₃ -KC1-NH ₃ compilation of the source paper.	
			Scott; Standard Methods of Chemical Analys D. Van Nostrand. New York. <u>1939</u> , p 372.	15

ł

•

Potassium Iodate

COMPONENTS:		ORIGINAL MEASUREMENTS:
(1) Potassium iodate; KIO ₃ ; [7758-05-6]		Anhorn, V.J.; Hunt, H.
(2) Ammonium chloride; NH4Cl; [12125-02-9]		J. Phys. Chem. <u>1941</u> , 45, 351-62.
(3) Liquid ammonia; NH ₃ ; [7664-	-41-7]	
VARIABLES :		PREPARED BY:
Concentration of NH4Cl at 298.15	бК	Hiroshi Miyamoto
EXPERIMENTAL VALUES:		
Concentration of NH40		Solubility of KIO3
mol dm ⁻³	mol kg ⁻¹	10 ⁵ mol kg ⁻¹
0 0.009398	0 0.001558	3.044 (average value) 5.7782
0.002220	0.003670	7.1681
0.004161	0.006898	8.7650
0.007543	0.01251	10.662
0.01035	0.01715	11.820
0.01822	0.03020	14.025
0.02243	0.03718	14.920
0.03251	0.05389	16.580
0.04568	0.07572	18.045
0.07695	0.1275	20.688 22.189
0.1060 0.1463	0.1758 0.2424	23.975
0.1635	0.2710	24.590
0.2004	0.3320	25.745
0.2657	0.4402	27.480
0.3800	0.6299	30.018
0.4330	0.7180	30.980
0.5728	0.9528	33.160
	AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
See the compilation of the KIO3-	KC1-NH3	Ammonia was stored over sodium and distd
system reported by Anhorn and Hu	· .	through glass wool into a reservoir prior
		to distn into the soly tube.
		Analytical reagent grade KIO3 was recrystal-
		lized three times from conductivity water
1		and dried at 180°C.
		The source of NH ₄ Cl is not given.
1		
1		ESTIMATED ERROR:
		See the KIO ₃ -KC1-NH ₃ compilation of the
1		source paper.
]		
		REFERENCES :
1		

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Potassium iodate; KIO ₃ ; [7758-05-6]	Anhorn, V.J.; Hunt, H.
(2) Potassium bromide; KBr; [7758-02-3]	J. Phys. Chem. <u>1941</u> , 45, 351-62.
(3) Liquid ammonia; NH ₃ ; [7664-41-7]	
VARIABLES:	PREPARED BY:
Concentration of KBr at 298.15 K	
Concentration of KBr at 290.15 K	Hiroshi Miyamoto
EXPERIMENTAL VALUES:	
Concentration of KBr	Solubility of KIO ₃
mol dm ⁻³ mol kg ⁻¹	$10^5 \text{ mol } \text{kg}^{-1}$
0 0	3.044 (average value)
0.002492 0.004131	0.7392
0.004468 0.007407	0.8180 0.8595
0.005864 0.009721 0.007025 0.01165	0.8595 0.8876
0.01170 0.01940	0.9062
0.02591 0.04295	1.0684
0.04867 0.08070	1.1350
0.07078 0.1173	1.1678 .
0.1195 0.1981 0.1549 0.2568	1.2090 1.2330
0.1347 0.1300	
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
See the compilation of the KIO3-KC1-NH3 system reported by Anhorn and Hunt.	Ammonia was stored over sodium and distd through glass wool into a reservoir prior to distillation into the solubility tube. Analytical reagent grade KIO ₃ was recrystal- lized three times from conductivity water an dried at 180°C.
	KBr was recrystallized three times from con ductivity water and dried at 110°C. The
	product was ground to a fine powder before final drying.
	ESTIMATED ERROR:
	See the KIO3-KC1-NH3 compilation of the source paper.
	REFERENCES :
•	

ł

Potassium lodate

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Potassium iodate; KIO3; [7758-05-6]	Anhorn, V.J.; Hunt, H.
(2) Potassium iodide; KI; [7681-11-0]	J. Phys. Chem. <u>1941</u> , 45, 351-62.
(3) Liquid ammonia; NH ₃ ; [7664-41-7]	
VARIABLES:	PREPARED BY:
Concentration of KI at 298.15 K	Hiroshi Miyamoto
EXPERIMENTAL VALUES:	
Concentration of KI	Solubility of KIO3
mol dm ⁻³ mol kg ⁻¹	10 ⁵ mol kg ⁻¹
0 0 0.001709 0.002834 0.004258 0.007058 0.005154 0.008534 0.01098 0.01819 0.01801 0.02985 0.03735 0.06191 0.03774 0.06254 0.05310 0.08801 0.08446 0.1400 0.1031 0.1709 0.1234 0.2046 0.2224 0.3693 0.3018 0.5021	3.044 (average value) 0.4238 0.4893 0.5165 0.5682 0.6188 0.7211 0.7370 0.7849 0.8868 0.9362 0.9886 1.1530 1.2140
AUXILIA	RY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
See the compilation of the KIO3-KC1-NH3 system reported by Anhorn and Hunt.	Ammonia was stored over sodium and distd through glass wool into a reservoir prior to distillation into the soly tube. Analytical reagent grade KIO3 was recrystal- lized three times from conductivity water and dried at 180°C. KI was recrystallized three times from con- ductivity water and dried at 110°C. The product was ground to a fine powder before final drying.
	See the KIO3-KC1-NH3 compilation of the source paper.
	REFERENCES :

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Potassium iodate; KI03; [7758-05-6]	Welsh, T.W.B.; Broderson, H.J.
(2) Hydrazine; N ₂ H ₄ ; [302-01-2]	J. Am. Chem. Soc. <u>1915</u> , 37, 816-24.
VARIABLES:	PREPARED BY:
Room temperature (compiler's assumption)	Mark Salomon and Hiroshi Miyamoto

EXPERIMENTAL VALUES:

The solubility of KIO3 in hydrazine at room temperature was given as

0.01 g/1cm³ N₂H₄

The authors stated that the chief object of this research was to obtain qualitative

and approximate quantitative data.

METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The solubility vessel was a glass tube to which a U-shaped capillary tube was attached to the bottom. A stopcock at the end of the capillarv permitted the adjustment of the rate of flow of dry nitrogen. About 1 cc of anhydrous hydrazine was placed in the tube, and small amounts of NaClO3 added from a weighing bottle. After each addition of NaClO3, a loosely fit- ting cork was placed in the top of the solubility tube. Nitrogen was bubbled through solution until the salt dissolved. The process was repeated until no more salt would dissolve. Temperature was not kept constant. The accuracy of this method is very poor. In addition, the authors stated that it was difficult to prevent the oxidation of hydrazine.	Anhydrous hydrazine was prepared by first partially dehydrating commercial hydrazine with sodium hydroxide according to the method of Raschig (1). Further removal of water was distilled over barium oxide after the method of de Bruyn (2). The form of distillation apparatus employed and the procedure followed in the respective