		• • • • • • • • • • • • • • • • • • •		
COMPONENTS:		ORIGINAL MEASUREMENTS:		
(1) Rubidium iodate; RbI03; [13446-76-9]		Larson, W.D.; Renier, J.J.		
(2) Nitric acid; HNO ₃ ; [7697-37-2]		J. Am. Chem. Soc. <u>1952</u> , 74, 3184-5.		
(3) Water; H ₂ 0; [7732-18-5]				
-				
VARIABLES:		PREPARED BY:		
Concentration of HNO ₂ at 298.	15 K	Hiroshi Mivamoto a	nd Mark Salomon	
EXPERIMENTAL VALUES:		I		
Concn of HNO3		Soly of RbI03	Density	
mol kg ⁻¹	mol dm ⁻³	$mo1 dm^{-3}$	g cm ⁻³	
			8	
0	0	0.0919	1.0160	
0.05020	0.04977	0.1051	1.0216	
0.1511	0.1490	0.1297	1.0290	
0.2016	0.1985	0.1415	1.0337	
0.2516	0.2473	0.1533	1.0385	
0.2933	0.3984	0.1546	1.0414	
0.5006	0.4908	0.1495	1.0506	
	AUXILIARY	INFORMATION	4.4. <u></u>	
		SOURCE AND PURITY OF	F MATERIALS.	
METHOD/APPARATUS/PROCEDURE: Isothermal method. KN03 and excess RbI03 were placed in bottles either coated with paraffin wax or uncoated and rotated in a thermostat for at least 12 h. Results in coated or uncoated bottles were identical. At least two independent experiments were carried out for each KN03 concn, and two or more samples for analysis were taken from each saturated solution. Conventional volumetric analysis was used, and recrystallized KI03 was used as the primary standard. Duplicate analyses agreed to within about 1 part per 800 or 900. Nature of the solid phase(s) not specified.		RbIO3 prepared by addition of excess HIO3 to sln of Rb2CO3. The salt was washed by decantation 3 times with cold water, filter- ed and washed again. It was air-dried and stored over anhydrous CaCl2. Analysis for IO3 gave +99.9 % of theoretical. HIO3 pre- pared from "AR" grade I2O5 and water. "C.p." grade HNO3 was used.		
		ESTIMATED ERROR: Soly: precision in iodate analyses about ± 0.1 % (compilers). Temp: accuracy ± 0.05 K (authors).		
		REFERENCES:		

,

COMPONENTS :		ORIGINAL MEASUREMENTS:		
(1) Rubidium iodate; RbI03; [13446-76-9]		Larson, W.D.; Renier, J.J.		
(1) Nabialam Loadee, Noioj, [19440 /0 /]		Barbon, wibi, Kenzer, erer		
(2) Potassium nitrate; KN03; [7757-79-1]		J. Am. Chem. Soc. <u>1952</u> , 74, 3184-5.		
(3) Water: H_20 : $[7732-18-5]$	(3) Water: $H_{2}(1) = [7732 - 18 - 5]$			
VARIABLES:		PREPARED BY:		
Concentration of KNO3 at 298.15 K		Hiroshi Miyamoto and Mark	Salomon	
			···-·	
EXPERIMENTAL VALUES:				
Concn of KNO3	Solub	ility of RbIO3	Density	
mol kg ⁻¹	mot dm-3	10^{3} /mole fraction	g cm [−] 3	
uoi kg	MOT GIN	10 / more macrie	g cu	
0	0.0919	1.665	1.0160	
0.05001	0.0972	1.747	1.0196	
0.1004	0.1018	1.851	1.0236	
0.1511	0.1054	1.917	1.0285	
0.2021	0.1070	1.949	1.0318	
0.2547	0.1118	2.037	1.0370	
0.2940	0.1143	2.084	1.0396	
0.4069	0.1192	2.179	1.0475	
0.5025	0.1220	2.235	1.0538	
To determine the solubility at zero expression for the difference in so differing ionic strength,	ionic st lubilitie	rength, the authors used the s between two saturated solu	Debye-Huckel tions of	
$I_1^{\frac{1}{2}}I_2^{\frac{1}{2}}A^2 + (I_1^{\frac{1}{2}} +)$	$I_2^{\frac{1}{2}}$)A + 1	$- B(I_1^2 - I_2^2) / \log(L_2/L_1)^2 = 0$		
were calculated using 14 pairs of L_2/L_1 values, and the authors report A = 0.674 ± 0.026. Using this value of A, the solubility at zero ionic strenth was given as $c_0 = 0.06834 \text{ mol } dm^{-3}$, or $x_0 = (1.237 \pm 0.004) \times 10^{-3}$ mole fraction. ($w_0 = 1.759 \text{ mass } \%$, $m_0 = 0.06875 \text{ mol } kg^{-1}$: compilers)			a = 0.674 <u>+</u> given as fraction.	
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIA	ALS:	
Isothermal method. KN03 and excess RbI03 were placed in bottles either coated with paraffin wax or uncoated and rotated in a thermostat for at least 12 h. Results in coated or uncoated bottles were identical. At least two independent experiments were carried out for each KN03 concentration, and two or more samples for analysis were taken from each saturated solution. Conventional volumetric analysis was used, and recrystallized KI03 was used as the primary standard. Duplicate analyses agreed to within about 1 part per 800 or 900. Nature of the solid phase(s) not specified.		RbIO ₃ prepared by addition to sln of Rb ₂ CO ₃ . The sal decantation 3 times with c ed and washed again. It w stored over anhydrous CaCl IO ₃ gave +99.9 % of theore from "AR" grade I ₂ O ₅ and w grade KNO ₃ dried at 150°C	of excess HIO3 t was washed by old water, filter- as air-dried and 2. Analysis for tical HIO3 prepd ater. "C.p." for several hours.	
		temp: accuracy <u>+</u> 0.05 K (a	uthors).	

ī.

,

COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) Rubidium iodate; RbI03; [13446-76-9]	Lepeshkov, I.N.; Vinogradov, E.E.; Tarasova, G.N.		
 (2) Rubidium hydroxide; RbOH; [1310-82-3] (3) Water; H₂0; [7732-18-5] 	Zh. Neorg. Khim. <u>1976</u> , 21, 1353-6; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1976</u> , 21, 739-41.		
VARIABLES:	PREPARED BY:		
Composition at 298.2 K	Hiroshi Miyamoto		
EXPERIMENTAL VALUES: Composition of sa	turated solutions		
RbI03	RbOH Nature of the		
mass % mol % (compiler)	mass % mol % solid phase ^a (compiler)		
2.39 ^b 0.169 0.77 0.055 0.32 0.024 0.11 0.0092 0.06 0.0061 0.06 0.0072 0.09 0.014 0.05 0.0076 ^a A = RbI0 ₃ ; B = RbOH.2H ₂ 0 ^b For the binary system the compiler computes soly of RbI0 ₃ = 0.0940 mol kg ⁻¹	- - A 3.59 0.655 " 10.03 1.929 " 20.93 4.452 " 38.99 10.11 " 51.55 15.77 " 66.34 25.78 A+B 66.30 25.72 " 66.21 25.65 " 66.78 26.11 B the following:		
AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE: The solubility in the RbI03-RbOH-H20 system was studied by the isothermal method. Mix- tures were stirred in a water thermostat. Equilibrium was reached in 3-4 days. The concentration of hydroxide ion was found by titration with 0.1 mol dm ⁻³ HCl in the pre- sence of Methyl Orange. The IO3 content was detd by titration with sodium thiosulfate solution in the presence of sulfuric acid and KI. Rubidium was determined gravimetrically as the tetraphenylborate. The composition of the solid phases was found by Schreinemakers' method of residues.	SOURCE AND PURITY OF MATERIALS: "C.p." grade RbI03 was used. Commercial RbOH contains considerable amounts of Rb2C03 impurity which cannot be removed by recryst from water. The hydroxide was puri- fied by recryst in silver vessels in a stream of purified nitrogen as the temp was slowly increased to 250°C. COMMENTS AND/OR ADDITIONAL DATA: RbOH RbOH.20120		
ESTIMATED ERROR:			
Soly: nothing specified. Temp: precision ± 0.1 K.	H ₂ O RbIO ₃		

COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) Rubidium iodate; RbIO ₃ ; [13446-76-9]	Kirgintsev, A.N.; Shklovskaya, R.M.; Arkhipov, S.M.		
(2) Cesium iodate; CsIO ₃ ; [13454-81-4]	Izv. Akad. Nauk SSSR, Ser. Khim. <u>1971</u> , 2631-4; Bull. Acad. Sci. USSR, Div. Chem. Sci. <u>1971</u> , 2501-4.		
(3) Water; H ₂ 0; [7732-18-5]			
VARIABLES:	PREPARED BY:		
Composition at 298.2 K	Hiroshi Miyamoto		
EXPERIMENTAL VALUES:			
Composition of s	aturated solutions		
mass % mol % ^a	CsIO ₃ mass % mol % ^a		
2.31 ^b 0.163	0.0 0.0		
2.06 0.146	0.44 0.026		
	0.74 0.044		
1.37 0.0974			
1.13 0.0803	1.72 0.103		
0.87 0.062	1.78 0.107		
0.58 0.041	2.10 0.126		
0.28 0.020	2.26 0.136		
0.0 0.0	2.50 ^b 0.150		
soly of CsIO ₃ = 0.0833 mol	kg ⁻¹		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Isothermal relief of supersaturation method. Super saturated solutions were pre- pared, and the solid and liquid phases sep- arated. The mother liquor was equilibrated at 25°C for 24 hours. The number of moles of the anion was deter- mined by iodometric titration. Alkali metal contents were determined in the same sample by the method of flame photometry from three parallel analyses. The composition of the solid phases was established by the Schreinemakers' method	"C.p." grade RbIO ₃ and CsIO3 were recrystal- lized from double distilled water.		
of residues. The authors did not give a	ESTIMATED ERROR:		
phase diagram.	Soly: accuracy within \pm 3.5 % (authors). Temp: precision \pm 0.1 K.		
	BEFEBENCES -		

ŧ

,

ţ

ł

		- 12			
COMPONENTS:		ľ	ORIGINAL MEASUREMENTS:		
(1) Rubidium iodate; $Rb10_3$; $[13446-76-9]$ (2) Hafatum iodate; $Hf(10_2)$; $[19630-06-9]$			Shklovskaya, R.M.; Arkhipov, S.M. Kidyarov, B.I.; Poleva, G.V.; Vdovkina, T.E.		
(2) Harnium iodate; $HI(10_3)$	4; [19030-00-9	⁷¹	Zh. Neora, Khim, 1984, 29, 1346-8:		
(3) Water; H ₂ 0; [7732-18-5]			Russ. J. Ino 1984, 29, 77	rg. Chem. (Engl. Transl.) 3-4.	
VARIABLES:			PREPARED BY:		
T/K = 298.2					
			Mark Salomon		
EXPERIMENTAL VALUES: The R	bIO3 - Hf(IO3)	$\frac{1}{2}$	H ₂ O system a	t 25.0°C	
Composition of saturate	d solutions ^a	•	-		
RbIOn	Hf(I0 ₃),				
mass % mole % ma	iss % 1	mole	%	Nature of the solid phase	
0.	00037	7.59	x 10 ⁻⁶	Hf(10 ₃) ₄	
0.27 0.0187 0.	000074	1.52	x 10 ⁻⁶	solid solution based on Hf(IO)4	
0.52 0.0362 0.	000073	1.50	x 10 ⁻⁶	11 · · · · ·	
0.74 0.0516 $0.$	000073	1.49	x 10 ⁻⁶		
1.28 0.0896 0.	000072	1.49	x 10 ⁻⁶	11	
1.44 0.1099 0.	000072	1.50	x 10 ⁻⁶		
1.64 0.1152 $0.$	000072 1	1.48	$x 10^{-6}$		
1.99 0.1403 0.	000071	1.48	x 10 ⁻⁶	н	
2.22 0.1568 0.	000071 1	1.49	x 10 ⁻⁶	"	
$ \begin{array}{ c c c c c } 2.31^{b} & 0.1633 & 0. \\ 2.31^{b} & 0.1633 & 0. \\ \end{array} $	000070 1 000070 1	1.47 1.47	x 10 ⁻⁶ x 10 ⁻⁶	solid solution + RbIO ₃ "	
2.36 0.1670				RbIO3	
^a Mole % values calculated by the compiler.					
Eutonic solution.					
For binary systems, the compiler computes the following:					
solubility of $RbIO_3 = 0.0928 mol kg^{-1}$					
solubility of Hf	$(10_3)_4 = 4.21$	x 10) ⁻⁶ mol kg ⁻¹		
	AUXILIA	ARY I	NFORMATION		
METHOD/APPARATUS/PROCEDURE: Isothermal method used. Equilibrium required 25-30 days. Solid and liquid phases analyz- ed for Rb by emission spectrometry using solutions of Rb concentration between 0.1 - 100 µg cm ⁻³ in the presence of 2 % NaCl solution (added to suppress the ionization of Rb atoms). Preliminary experiments established that Hf does not influence the intensity of the emission of Rb. The concentration of Rb was therefore determined by comparing samples of saturated solution previously buffered with 2 % NaCl solution with standard Rb solutions also buffered with 2 % NaCl solution. For liquid phase samples, Hf was determined photometrically using Arsenazo III after reduction of I03 with hydroxylamine. For solid phase samples, Rb was analyzed as described above and iodate by iodometric titration. The Hf content was determined by difference.		ired yz- lf bles	SOURCE AND PU "Highly pure prepared from precipitated conditions do other inform	RITY OF MATERIALS: "RbI03 was used. Hf(I03)4 was m aqueous HI03 and freshly hydrated hafnium oxide under escribed previously (1). No ation given.	
		ed –	Soly: uncert: exceed Temp: precis: REFERENCES: 1. Deabriges Bull. Soc 1968, 52	ainty in analyses did not 3-8 rel %. ion given as ± 0.1 K. s, J.; Rohmer, R. c. Chim. France 1.	
Solid phase samples were identified by the method of residues and by X-ray diffraction. The maximum concentration of RbI03 in the solid solution is 2.6 %.		on.			

COMPONENTS:		0	RIGINAL MEASUREMEN	NTS:	
(1) Rubidium iodate; RbIO ₃ ; [13446-76-9]]	Tarasova, G.N.; Vinogradov, E.E.; Kudinov, I.B.		
<pre>(2) Neodymium iodate; Nd(IO₃)₃; [14732-16-2]</pre>			Zh. Neorg Khim. <u>1981</u> , 26, 2841-7;		
(3) Water; H ₂ 0; [7732	-18-5]		Russ. J. Inorg. (<u>1981</u> , 26, 1520-3	Chem. (Engl. Transl.) •	
VARIABLES:		P	PREPARED BY:	·····	
Composition at 298.2 K			Hiroshi Miyamoto		
EXPERIMENTAL VALUES:	Composition of s	atura	ted solutions at 2	 25.0°C	
Neodymium	Iodate	Rubid	ium Todate	Nature of the	
mass %	mol % r (compiler)	nass	% mol % (compiler)	solid phase ^a	
0.15 ^b	0.0040 -			Α	
<0.01	0.0003	1.11	0.0776	A+B	
	<0.0003	L.10	0.0769	**	
<0.01		2.19	0.155		
<0.01	<0.0003	2.56	0.181	"	
<0.01	<0.0003	2.48	0.176	**	
<0.01	<0.0003	2.46	0.174		
<0.01	<0.0003	2.18	0.154	"	
	2	2.40 ^b	0.170	В	
^a A = Nd(10 ₃) ₃ .2H ₂ 0;	$B = RbI0_3$				
^b For binary systems th	ne compiler compute	es the	e following:		
soly of RbIC) ₃ = 0.0944 mol kg ⁻	·1			
solv of Nd(1	r_{1} r_{2} r_{1} r_{2} r_{3} r_{4} r_{5} r_{5} r_{4} r_{5} r_{5} r_{4} r_{5} r_{5				
soly of $Nd(103)_3 = 2.2 \times 10^{-5} \text{ mol kg}^2$					
AUXILIARY INFORMATION					
METHOD/APPARATUS/PROCEDU	IRE:	1	SOURCE AND PURITY	OF MATERIALS:	
Mixtures of Nd(IO3)3, F	bIO3 and water wer	e	Neodymium iodate	was prep by reacting neo-	
stirred in a water then	mostat.		aymium oxide and	using all and provinitation	
Equilibrium was reached	in 30-35 days.		were stirred cont	inuously for 20 h at 80-90°	
for 10^{-1} and Nd^{3+1} ions	ases were analyzed	on-	C. Then the prec	ipitate was transferred to	
centration was determin	ed by titration wi	th	a filter, washed	repeatedly with hot water,	
sodium thiosulfate in t	he presence of sul	-	and dried at 110-	120°C. The authors state	
furic acid and KI. The	neodymium content		idate was checke	t the resulting neodymium	
was determined by compl	exometric titratio	n	the result was no	t given in the original	
with Methyl thymol blue	indicator		paper.	5	
The composition of the	solid phases was		Chemically pure g	rade RbIO ₃ was used.	
found by Schreinemakers	' method of residu	es.	ESTIMATED ERROR:		
			Soly: nothing spe	cified.	
			Temp: precision \pm	0.1 K.	
			REFERENCES :		

443

		OPTOTNAL NO AGUPPANTURA		
COMPONENTS:		ORIGINAL MEASUREMENTS:		
(1) Rubidium iodate; RD103; [13446-76-9]		Miyamoto, H.; Hasegawa, T.; Sano, H.		
<pre>(2) N,N-Dimethylformamide; C3H7N0; [68-12-2]</pre>		J. Solution Chem. in press.		
(3) Water; H ₂ 0; [7732-18-5]				
VARIABLES:		PREPARED BY:		
Solvent composition		N 0-1		
Temperature		M. Salomon		
EXPERIMENTAL VALUES:				
Solubilities in	n the Rb103-H ₂ 0	system at 20°C, 25°C, 30°C		
t/°C = 2	20	t/°C	= 25	
mass %		mass %		
dimethylformamide	RbIO ₃ /mol dm ⁻	dimethylformamide	RbI0 ₃ /mol dm ⁻³	
0	0.0805	0	0.0937	
4.79	0.0609	5.12	0.0703	
10.05	0.0465	10.00	0.0554	
19.75	0.0262	20.43	0.0311	
30.22	0.0139	29.71	0.0172	
41.99	0.0057	40.02	0.0079	
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIA	ALS:	
Same as in reference (1). Extra pure gravely be as in of excess HIO3 used as in of excess HIO3 heating. After was allowed to washed with comproduced a constored in the Guaranteed gravely was stored over distilled three Doubly distill conductance of ESTIMATED ERROR Soly: stnd deve Temp: not state REFERENCES: 1. Miyamoto, H J. Solution		Extra pure grade Rb ₂ CO ₃ and HIO ₃ used as received. RbI of excess HIO ₃ sln to aq Rt heating. After stirring for washed with cold water untip produced a constant soly. stored in the dark. Guaranteed grade dimethylfor was stored over BaO for two distilled three times under Doubly distilled water had conductance of 9.8 x 10 ⁻⁷ S ESTIMATED ERROR: Soly: stnd deviation betwee Temp: not stated REFERENCES: 1. Miyamoto, H.; Shimura, H J. Solution Chem. 1985,	d guaranteed grade 103 pptd by addn 12C03 sln while or 5 h, the sln 1 day, and the ppt 1 the dried salt The salt was brmamide (Wako) 0 days, and then 1 reduced pressure. an electrolytic 5 cm ⁻¹ . en 0.0002 and 0.001 1.; Sasaki, K. 14, 485.	

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Rubidium iodate; RbI0 ₃ ; [13446-76-9]	Miyamoto, H.; Hasegawa, T.; Sano	, Н.
(2) N,N-Dimethylformamide; C3H7N0; [68-12-2	2] J. Solution Chem. in press.	
(3) Water; H ₂ 0; [7732-18-5]		
EXPERIMENTAL VALUES: (Continued)		
t/°C	; = 30	
mass %		
dimethylformamide	RbI0 ₃ /mol dm ⁻³	
0	0.108	
5.53	0.0817	
9.81	0.0652	
20.10	0.0356	
29.79	0.0197	
40.33	0.0093	
For the binary $RbI0_3-H_20$ system, measured de version from mol dm ⁻³ to mol kg ⁻¹ and mole f	ensities of saturated solutions perm Fraction units.	its con-
t/°C density/g cm ⁻³ c/mo	pl dm ⁻³ m/mol kg ^{-1a}	χ ^a
20 1.014 0.	0.0805 0.0811	0.00146
25 1.018 0.	.0937 0.0943	0.00170
30 1.020 0.	108 0.109	0.00196

^aCalculated by the compiler.

t

COMPONENTS :	ORIGINAL M	EASUREMENTS:		
(1) Rubidium iodate; RbI0 ₃ ; [13446-76-9]	Miyamoto, H.; Hasegawa, T.; Sano, H.			
(2) Dimethylsulfoxide ; C ₂ H ₆ OS: [67-88-5]	J. Soluti	lon Chem. in	press.	
(3) Water; H ₂ 0; [7732-18-5]				
VARIABLES:	PREPARED E	BY :		
Solvent composition	M. Salomo	n		
		<u> </u>		
EXPERIMENTAL VALUES:				
RbIO ₃ soly/	mol dm ⁻³			
mass %				
dimethylsulfoxide t/°C	; =	20	25	30
0		0.0805	0.0937	0.108
5.03		0.0639	0.0751	0.0864
10.02		0.0505	0.0588	0.0688
20.09		0.0298	0.0355	0.0402
30.01		0.0163	0.0196	0.0225
40.03		0.0081	0.0095	0.0109
		-		
AUXILIARY	INFORMATIO	N		
METHOD/APPARATUS/PROCEDURE:	SOURCE ANI	D PURITY OF 1	ATERIALS :	
Same as in reference (1).	Extra pur HIO3 used	e grade Rb ₂ C as received	0 ₃ and guaran . RbI0 ₃ pptd	teed grade by addn
	of excess heating.	HIO3 sln to After stirr	aq Rb ₂ CO3 sl ing for 5 h,	n while the sln
	was allow washed wi	ed to settle th cold wate	for 1 day, a r until the d	nd the ppt ried salt
	produced stored in	a constant s the dark.	oly. The sal	t was
	Guarantee	d grade dime	thyl sulfoxid	e (Wako)
	pressure.	lled three t	imes under re	aucea
	Doubly di conductan	stilled wate ce of 9.8 x	r had an elec 10-7 S cm-1	trolytic
	ESTIMATED Soly: stn 0.0 Temp: not	ERROR: d deviation 01. stated	between 0.000	2 and
1	REFERENCE	S:		
	1. Miyam J. So	oto, H.; Shi lution Chem.	mura, H.; Sas <u>1985</u> , <i>14,</i> 48	aki, K. 5.
	L			

COMPONENTS:	ORIGINAL MEASUREMENTS:				
(1) Rubidium iodate; RbI03; [13446-76-9]	Kolthoff, I.M.; Chantooni, M.K.				
<pre>(2) 6,7,10,17,18,20,21-Octahydrodibenzo [b,k] [1,4,7,10,13,16] hexaoxacycloocta- decin (dibenzo-18-crown-6); C₂₀H₂₄O₆; [14187-32-7]</pre>	Anal. Chem. <u>1980</u> , 52, 1039-49.				
(3) Methanol: CH40: [67-56-1]					
VARIABLES:	PREPARED BY:				
$\pi/v = 208$	Udwashi Miwamata and Mark Calanan				
1/K - 290	HIROSHI MIYamoto and Mark Salomon				
EXPERIMENTAL VALUES:					
The solubility product of PBIOs in mo	then $1 \text{ ot } 25^{\circ}\text{C}$ is given as				
The solubility product of KB103 in me					
2.7 x 10	$-9 \text{ mol}^2 \text{ dm}^{-6}$				
COMMENTS AND/OR ADDITIONAL DATA:					
The formation constant for Phi+ /I -	crown ather) was also determined				
The formation constant for RDL. (L =	crown ether) was also determined.				
The authors reported					
log/K (PhI +)/m	$1^{-1} dm^3 b = 4.23$				
	JI GM J - 4.23				
AUXILIARY INFORMATION					
A Markson No. 1002 K ⁺ specific ion electrode	SOURCE AND PURITY OF MATERIALS:				
was used to measure Rb^+ activity after	distilled from Mg turnings.				
conditioning the electrode by soaking in	RbOH prepared by passing RbBr through a				
0.01 mol dm ⁻⁵ RbClO ₄ solution for 3-4 days.	column of Dowex IX-8 resin in the hydroxide				
"practically" Nernstian.	RbOH with HIO3, recrystallized three times				
	from water, and dried at 70°C.				
	ESTIMATED ERROR:				
	Nothing specified.				
	REFERENCES:				
	1				