COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Sodium chlorate; NaClO₃; [7775-09-9]	Isbin, H.S.; Kobe, K.A.
(2) 1,2-Ethandiol (ethylene glycol); C₂H₆O₂; [107-21-1]	J. Am. Chem. Soc. 1945, 67, 464-5.
VARIABLES:	PREPARED BY:
T/K = 298	Hiroshi Miyamoto
EXPERIMENTAL VALUES:	
The solubility of NaClO₃ in ethylene glycol at 25°C is	
16.0g/100g solvent	(authors)
1.50 mol kg⁻¹	(compiler)

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:
The solvent and excess solid were sealed in a soft glass test-tube and rotated for at least one week in a water thermostat at 25°C. All analyses were made on a weight basis by use of weighing pipets. Both the standard gravimetric determination of chloride and the volumetric method, using dichlorofluorescein as an indicator, were used. The chlorate was reduced to the chloride by boiling with excess sulfurous acid.

SOURCE AND PURITY OF MATERIALS:
Technical grade ethylene glycol (Carbide and Carbon Chem. Co) was used, and purified by fractionation. Analytical grade NaClO₃ was used.

ESTIMATED ERROR:
Soly: precision within 0.5 %.
Temp: precision ± 0.08 K.

REFERENCES:
Sodium Chlorate

COMPONENTS:
(1) Sodium chlorate; NaClO₃; [7775-09-9]
(2) 2-Aminoethanol(monoethanolamine) C₂H₇NO; [141-43-5]

ORIGINAL MEASUREMENTS:
Isbin, H.S.; Kobe, K.A.

VARIABLES:
T/K = 298

PREPARED BY:
Hiroshi Miyamoto

EXPERIMENTAL VALUES:
The solubility of NaClO₃ in monoethanolamine at 25°C is
19.7g/100g solvent
1.85 mol kg⁻¹

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:
The solvent and excess solid were sealed in soft glass test-tubes and rotated for at least one week in a water thermostat.
All analyses were made on a weight basis by use of weighing pipets. Both the standard gravimetric determination of chloride and the volumetric method, using dichlorofluorescein as an indicator, were used. The chlorate was reduced to the chloride by boiling with excess sulfurous acid.

SOURCE AND PURITY OF MATERIALS:
Technical grade monoethanolamine (Carbide and Carbon Chem Co) was used, and purified by careful fractionation.
Analytical grade NaClO₃ was used.

ESTIMATED ERROR:
Soly: precision within 0.5 %.
Temp: precision ± 0.08 K.

REFERENCES:
COMPONENTS:
(1) Sodium chlorate; NaClO₃; [7775-09-9]
(2) 2-Propanone (acetone); C₃H₆O; [76-64-1]

ORIGINAL MEASUREMENTS:
Miravitlles, Mille L.

VARIABLES:
T/K = 288, 293 and 298

PREPARED BY:
H. Herrera

EXPERIMENTAL VALUES:

<table>
<thead>
<tr>
<th>t/°C</th>
<th>mass %</th>
<th>mol kg⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.1038</td>
<td>0.009762</td>
</tr>
<tr>
<td>20</td>
<td>0.0961</td>
<td>0.009037</td>
</tr>
<tr>
<td>25</td>
<td>0.0943</td>
<td>0.008868</td>
</tr>
</tbody>
</table>

Solubility a

aMolalities calculated by H. Miyamoto

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:
Saturated solutions were prepared in an Erlenmeyer flask by mixing the dried acetone with an excess of halate for two hours. The solution was constantly stirred by bubbling dry air (air was dried by passing it through CaCl₂ while pumping it into the solution). Air going out from the flask after bubbling in the solution carried some acetone vapor during this operation. The solution temperature was kept constant by immersing the flask in a constant temperature water bath. After two hours, the air exit was closed. The resulting pressure forced the saturated solution from the Erlenmeyer through a tube filled with cotton (which acted as a filter) and was collected in a small flask. This flask was stoppered and weighed. The halate contained in the sample was weighed after complete evaporation of acetone. In all cases, weights were reported to the fourth decimal figure.

SOURCE AND PURITY OF MATERIALS:
Commercial redistilled acetone. This acetone was then dehydrated three times by leaving it in contact with calcium chloride for forty eight hours each time. Fresh CaCl₂ was used in each operation. Finally the dehydrated acetone was distilled at 56.3°C.

Source and purity of NaClO₃ not specified.

ESTIMATED ERROR:
Nothing specified.

REFERENCES:
COMPONENTS:
(1) Sodium chlorate; NaClO₃; [7775-09-9]
(2) 1,2-Ethanediamine(ethylene-diamine); C₂H₈N₂; [107-15-3]

ORIGINAL MEASUREMENTS:
Isbin, H.S.; Kobe, K.S.

VARIABLES:
T/K = 298

PREPARED BY:
Hiroshi Miyamoto

EXPERIMENTAL VALUES:

The solubility of NaClO₃ in ethylenediamine at 25°C is

- 52.8g/100g solvent
- 4.96 mol kg⁻¹

(authors)
(compiler)

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:
The solvent and excess solid were sealed in soft glass test-tubes and rotated for at least one week in a water thermostat at 25°C. All analyses were made on a weight basis by use of weighing pipets. Both the standard gravimetric determination of chloride and the volumetric method, using dichlorofluorescein as an indicator, were used. The chlorate was reduced to the chloride by boiling with excess sulfurous acid.

SOURCE AND PURITY OF MATERIALS:
Ethylenediamine was dehydrated and purified by the method given in ref. 1. Analytical grade NaClO₃ was used.

ESTIMATED ERROR:
Soly: precision within 0.5 %.
Temp: precision ± 0.08 K.

REFERENCES:
COMPONENTS:

1. Sodium chlorate; NaClO₃; [7775-09-9]
2. Tetrahydrothiophene 1,1-dioxide (sulfolane); C₄H₈O₂S; [126-33-0]

ORIGINAL MEASUREMENTS:

Starkovich, J.A.; Janghorbani, M.

VARIABLES:

T/K = 313.2

EXPERIMENTAL VALUES:

The authors reported results for two solubility determinations at 40°C:

\[
\begin{align*}
40 &\pm 2 \text{ mmol dm}^{-3} \\
33 &\pm 2 \text{ mmol dm}^{-3}
\end{align*}
\]

The mean of the two values is

\[
36 \pm 5 \text{ mmol dm}^{-3}
\]

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Excess salt and solvent were sealed in 5 ml glass ampules and equilibrated at 40°C for 250-300 hours with periodic shaking. 1 ml aliquots were transferred in the laboratory atmosphere to 1/2 dram polyethylene vials and sealed. These 1/2 dram vials were then sealed in 2 dram vials, and the chloride content determined by neutron activation (38Cl activity). Each sample was irradiated twice for 30 minutes at neutron fluxes of 2.8 x 10¹⁰ and 5.6 x 10⁹ neutrons cm⁻² sec⁻¹. A calibration plot of 38Cl activity vs chloride concentration was used for the analyses.

After each activation the 1/2 dram vials were placed in new 2 dram vials, and γ-radiation counted in a NaI(Tl) well detector coupled to a 400 channel analyzer. Both the 1.64 and 2.16 MeV peaks were used for the analyses, and were corrected for Compton scattering and decay. Where interferences were noted, only one γ-ray was used.

SOURCE AND PURITY OF MATERIALS:

Sulfolane (Shell Chemical Co.) was distilled twice under vacuum at temperatures less than 100°C. The purified solvent was found to contain less than 0.02 mass % water by Karl Fischer titration.

Reagent grade NaClO₃ was used.

ESTIMATED ERROR:

Soly: precision about ± 15 % (compiler).

Temp: precision ± 0.5 K.

REFERENCES:
COMPONENTS:
1. Sodium chlorate; NaClO₃; [7775-09-9]
2. Dimethylformamide; C₃H₇NO; [68-12-2]

ORIGINAL MEASUREMENTS:
Paul, R.C.; Sreenathan, B.R.

VARIABLES:
One temperature: 298.2 K

EXPERIMENTAL VALUES:

The solubility of NaClO₃ in HCON(CH₃)₂ was reported as 23.4 g/100 g solvent (2.198 mol kg⁻¹, compiler)

The solid phase is the anhydrous salt.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:
Isothermal method used. Excess salt and 10 ml of solvent were placed in a Pyrex test tube, sealed, and rotated in a constant temperature water-bath for 24-30 hours. The seal was broken in a dry box and the slurry quickly filtered. The authors state that the metal was estimated from a known quantity of the saturated (filtered) solution, but no details were given. The saturated solution was colorless, and the heat of solution estimated to be less than 10 kcal mol⁻¹ (42 kJ mol⁻¹); method used to estimate the heat of solution was not described.

SOURCE AND PURITY OF MATERIALS:
Dimethylformamide (Baker "analyzed" grade) was further purified as described in (1).
A.R. grade NaClO₃ was warmed and placed under vacuum for 6-8 hours.

ESTIMATED ERROR:
Soly: nothing specified.
Temp: precision ± 0.1 K.

REFERENCES:
COMPONENTS:
1. Sodium chlorate; NaClO₃; [7775-09-9]
2. Hydrazine; N₂H₄; [302-01-2]

ORIGINAL MEASUREMENTS:
Welsh, T.W.B.; Broderson, H.J.

VARIABLES:
Room temperature (Compiler's assumption)

PREPARED BY:
Mark Salomon and Hiroshi Miyamoto

EXPERIMENTAL VALUES:

The solubility of NaClO₃ in hydrazine at room temperature was given as:

\[0.66 \text{ g/l cm}^3 \text{ N}_2\text{H}_4 \]

The authors stated that the chief object of the research was to obtain qualitative and approximate quantitative data, and the temperature was not kept constant.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:
The solubility vessel was a glass tube to which a U-shaped capillary tube was attached to the bottom. A stopcock at the end of the capillary permitted the adjustment of the rate of flow of dry nitrogen. About 1 cc of anhydrous hydrazine was placed in the tube, and small amounts of NaClO₃ added from weighing bottle. After each addition of NaClO₃, a loosely fitting cork was placed in the top of the solubility tube. Nitrogen was bubbled through solution until the salt dissolved. The process was repeated until no more salt would dissolve. Temperature was not kept constant.

The accuracy in this method is very poor. In addition the authors stated that it was difficult to prevent the oxidation of hydrazine.

SOURCE AND PURITY OF MATERIALS:
Anhydrous hydrazine was prep'd by first partially dehydrating commercial hydrazine with sodium hydroxide according to the method of Raschig (1). Further removal of water by distillation from barium oxide after the method of de Bruyn (2). The distillation apparatus employed and the procedure followed in the respective distillation were those described by Welsh (3). The product was found on analysis to contain 99.7% hydrazine. The hydrazine was stored in 50 cm³ sealed tubes. Sodium chlorate was the ordinary pure chemical of standard manufacture.

ESTIMATED ERROR:
Soly: accuracy ± 50% at best (compilers).

REFERENCES: