Hydrogen Sulfide in Non-aqueous Solvents

COMPO	NENTS:		ORIGINAL MEASUREMENTS:		
1.	Hydrogen sulfid	le; H ₂ S;	Bezdel, L.S.; Teodorovich, V.P.		
ł	[7783-06-4]		Gazovaya Prom. <u>1958</u> , No.8, 38 - 43.		
2.	Methanol; CH ₄ O;	[67-56-1]			
VARIA	BLES:		PREPARED BY:		
Monn	erature, pressu	2 0	P.G.T. Fogg		
Temp	eracure, pressu	Le	1.4.1. 1099		
EXPER	IMENTAL VALUES:	····			
т/к	P _{H2} S ^{/mmHg}	Volume of H ₂ S, to 273.15 K and dissolved by 1 kg	d 760 mmHg, in liquid phase*		
223	.2 15.80	5.67	0.00814		
	48.70	15.50	0.02194		
243		0.27	0.00039		
	3.16	0.37	0.00054		
	12.45	1.57	0.00227		
	11.20	1.84	0.00266		
	16.50	2.60	0.00375		
	17.50	2.56	0.00369		
	47.50	7.07	0.01013		
	49.20	7.17	0.01027		
	60.25	9.13	0.01304		
303		0.30 0.79	0.00043		
	40.30 41.70	0.79	0.00114 0.00114		
	catculated by (ine compiler. ,	60 mmHg = 1 atm = 1.013 bar.		
		AUXILIARY	INFORMATION		
METHO	DD /APPARATUS / PROCED	URE :	SOURCE AND PURITY OF MATERIALS:		
Pre-	-cooled mixtures	of H ₂ & H ₂ S were	1. dried with CaCl ₂ .		
	oled through CH ₃				
	-	ption vessel of			
	nme 200 cm ³ . Tem	-			
	rolled manually				
soli	d CO ₂ to butyl	alcohol in the			
ther	mostat and meas	ured by a pentane			
ther	mometer. After	6 - 8 h, 3 - 4			
samples of the liquid phase were					
withdrawn at 30 min intervals.			ESTIMATED ERROR:		
	se, together wit		$\delta T/K = \pm 0.5$		
were analysed by iodimetry.			(authors)		
The concentration at equilibrium was			REFERENCES :		
	fected by the p				
1	ial excess of H	25 in the			
solu	ution.				
		·····	l		

· ·		von-aqueous Solvents 23	
COMPONENTS:		ORIGINAL MEASUREMENTS:	
<pre>1.Hydrogen sulfide; H₂S; [7783-06-4] 2. Methanol; CH₄O; [67-56-1]</pre>		Yorizane, M.; Sadamoto, S.; Masuoka, H.; Eto, Y. <i>Kogyo Kagaku Zasshi</i> <u>1969</u> , 72, 2174-7.	
VARIABLES:		PREPARED BY:	
Temperature, pressure		C. L. Young	
EXPERIMENTAL VALUES:	······	L	
T/K P/atm	P/MP	Mole fraction of hydrogen sulfide a in liquid, ^{\$\mathcal{W}\$} H ₂ S	
273.15 2.0 4.0 6.0 7.5 8.0 9.1	0.20 0.41 0.61 0.76 0.81 0.92	0.199 0.329 0.453 0.484 0.608	
9.8 10.0 258.15 2.0 3.0 3.4 4.2 4.4 5.0	0.99 1.01 0.20 0.30 0.34 0.43 0.45 0.51	0.840 0.165 0.231 0.298 0.367 0.403	
5.4 5.8 248.15 2.0 2.5 3.0 3.4 4.0 4.3	0.55 0.59 0.20 0.25 0.30 0.34 0.40 0.43	0.585 0.662 0.203 0.290 0.327 0.465 0.582	
AUXI	LIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:	
Vapor-liquid equilibrium cell. Diagram given in source. (Original in Japanese.)		1. Purity 99.0 mole per cent.	
		ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta x_{H_2S} = \pm 0.001$ (estimated by compiler).	
		REFERENCES:	

COMPONE	ENTS:	<u></u>		ORIGINAL MEASUREMENTS:			
[75	drogen sulf: 783-06-4] drogen; H ₂ ;	ide; H ₂ S; [1333-74-0]		Yorizane, M.; Sadamoto, S.; Masuoka, H.; Eto, Y.			
3. Met	thanol; CH40	D; [67-56-1]		Kogyo Kagaku Zasshi <u>1969</u> , 72, 2174 - 2177.			
VARIABI	LES:			PREPA	RED BY:		
Tempera	ature, pres	sure, composi	tion:	Ρ.	G.T. Fogg		
EXPERIN	MENTAL VALU	ES:					
т/к	Total pressure /atm	Mole fraction of H ₂ in liquid	frac of H	ole ction 25 in guid	Mole fraction of H ₂ in gas	Mole fraction of H ₂ S in gas	
243.2	10	0.003 0.010 0.004 0.006	0.0	397 568 721 776	0.813 0.692 0.702 0.655	0.187 0.308 0.298 0.345	
	30	0.006 0.005 0.006	0.0	397 552 704	0.813 0.896 0.971	0.187 0.104 0.030	
	50	0.010 0.013 0.012	0.0	333 521 313	0.977 0.941 0.929	0.023 0.059 0.071	
273.2	10	0.003 0.006 0.002 0.003 0.002 0.002	0.000	043 107 205 379 517 588	0.925 0.813 0.702 0.400 0.237 0.163	0.075 0.187 0.298 0.600 0.763 0.837	
	30	0.007 0.007 0.009 0.009 0.007 0.009 0.010	0.	043 161 195 197 327 409 585	0.974 0.928 0.924 0.904 0.781 0.760 0.672	0.026 0.072 0.076 0.096 0.219 0.240 0.327	
	50	0.012 0.014 0.014 0.010 0.013 0.015 0.018	0.0000000000000000000000000000000000000	050 49 94 221 353 401 575	0.988 0.962 0.945 0.945 0.868 0.854 0.796	0.012 0.038 0.055 0.055 0.132 0.146 0.204	
		AUX	ILIARY :	INFORMA	TION		
	APPARATUS/				E AND PURITY		
Vapor-liquid equilibrium cell.					rity 99.0 mol	8.	
-	m given in :						
(Origin	nal in Japa:	nese)		EST	IMATED ERROR		
				REF	ERENCES		

COMPONENTS :	ORIGINAL MEASUREMENTS:		
 Hydrogen sulfide; H₂S; [7783-06-4] Methanol; CH₄0; [67-56-1] 	Short, I.; Sahgal, A.; Hayduk, W. J. Chem. Eng. Data <u>1983</u> , 28, 63-66.		
VARIABLES: T/K: 263.15, 298.15 P/kPa: 101.325	PREPARED BY: W. Hayduk		
EXPERIMENTAL VALUES:			
•	unsen Coefficient ² Mole Fraction ¹ cm^3 (STP) $cm^{-3}atm^{-1}$ 10 ⁴ x_1		
263.15 40.2 298.15 26.93	41.7368924.67276		
the following equations for ΔG° and $\Delta G^{\circ}/J \text{ mol}^{-1} = -RT \ln x_1 = 858.98 T$ $\ln x_1 = 2050.8/T - 10.468$ $\frac{T/K}{263.15} = \frac{10^{-4}\Delta G^{\circ}/J \text{ mo}}{5.776}$ $\frac{263.15}{273.15} = \frac{5.776}{6.635}$ $\frac{283.15}{283.15} = 7.494$ $293.15 = 8.353$ $298.15 = 8.783$			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
A volumetric method using a glass apparatus was employed. Degassed solvent contacted the gas while flowing as a thin film, at a constant rate, through an absorption spiral into a solution buret. A constant solvent flow was obtained by means of a calibrated syringe pump. The solution at the end of the spiral was considered saturated. Dry gas was maintained at atmosphe- ric pressure in a gas buret by mechanically raising the mercury level in the buret at an adjustable rate. The solubility was calculated from the constant slope of volume of gas dissolved and volume of solvent injected. Degassing was accomplished using a two stage vacuum process described by Clever et al. (1).	99.5 per cent. ESTIMATED ERROR: $\delta T/K = 0.1$ $\delta m/m = 0.01$		

£

ŀ

11fide; H ₂ S; 2H ₆ O; [64-17		Gerrard, W.			
	-)	I AnnI Ch			
	-5]	623-650	em. Biotechnol., <u>1972</u> , 22		
VARIABLES: Temperature			PREPARED BY: C.L. Young		
S:		l			
P*/mmHg	P*/kPa	Mole ratio	Mole fraction ⁺ of hydrogen sulfide in liquid, x _{H2S}		
769	102.5	0.078	0.072		
769	102.5	0.0725	0.0676		
769	102.5	0.054	0.051		
769	102.5	0.033	0.032		
769	102.5	0.018	0.018		
	AUXILIARY				
AUXILIARY METHOD/APPARATUS/PROCEDURE: Hydrogen sulfide was bubbled into a weighed amount of component 2. in a bubbler tube as described in detail in the source. The amount of gas absorbed at equilibrium and at the observed temperature and pressure was determined by weighing. Pressure was measured with a mercury manometer. The amount of gas absorbed at successively lower pressures was measured. Eventually the pressure was reduced to the vapor pressure of component 2. The refractive index and infrared spectrum of the liquid showed it to be essentially pure component 2.			ETY OF MATERIALS: components were purified ad by conventional methods DR: 2; $\delta x_{H_2S} = \pm 4\%$		
	769 769 769 769 769 769 80 90 90 90 90 90 90 90 90 90 90 90 90 90	<pre>P*/mmHg P*/kPa 769 102.5 769 102.5 769 102.5 769 102.5 769 102.5 769 102.5 769 102.5 769 102.5 769 102.5 Weighler Sure AUXILIARY PROCEDURE: de was bubbled into a of component 2. in a s described in detail The amount of gas uilibrium and at the rature and pressure by weighing. Pressure ith a mercury manometer gas absorbed at ower pressures was ntually the pressure the vapor pressure of The refractive index pectrum of the liquid</pre>	S: P*/mmHg P*/kPa Mole ratio 769 102.5 0.078 769 102.5 0.0725 769 102.5 0.054 769 102.5 0.033 769 102.5 0.018 by compiler 0.018 by compiler 0.018 by compiler 0.018 SOURCE AND PUR de was bubbled into a of component 2. in a s described in detail The amount of gas ullibrium and at the rature and pressure by weighing. Pressure ith a mercury manometer. gas absorbed at ower pressures was ntually the pressure of The refractive index SOURCE AND PUR SO		

COMPONENTS:	······	ľ	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen sulfide; H₂S; [7783-06-4] (2) 1-Butanol; C₄H₁₀O; [71-36-3]</pre>			Short, I.; Sahgal, A.; Hayduk, W. J. Chem. Eng. Data <u>1983</u> , 28, 63-66.		
VARIABLES:			PREPARED BY: W. Hayduk		
T/K	Ostwald Coefficie L/cm ³ cm ⁻³		unsen Coefficient ² cm ³ (STP)cm ⁻³ atm ⁻¹	Mole Fi	raction ¹
263.15 298.15 333.15	22.8 8.58 3.65		23.67 7.86 2.99	0.0315	(0.0875) ³ (0.0314) (0.0126)
∆G°∕J mo ln	$\frac{1^{-1} = -RT \ln x_{1} - x_{2}}{x_{1}} = 43.291 - 8.2$ ation for $\Delta G^{\circ} = 63$ $\frac{10^{-4} \Delta G^{\circ} / J \text{ mol}^{-1}}{5.261}$ $\frac{5.261}{6.147}$ 7.058 7.992	673.32 T 2056 ln T		/J mol ⁻¹ 949 929 93	$\frac{x_1}{0.0274}$ 0.0210 0.0162 0.0126
298.15	8.468	0.0314	INFORMATION		
METHOD/APPARATUS/PROCEDURE: A volumetric method using a glass apparatus was employed. Degassed solvent contacted the gas while flowing as a thin film, at a constant rate, through an absorption spiral into a solution buret. A constant solvent flow was obtained by means of a calibrated syringe pump. The solution at the end of the spiral was considered saturated. Dry gas was maintained at atmosphe- ric pressure in a gas buret by mechanically raising the mercury level in the buret at an adjustable rate. The solubility was calculated from the constant slope of volume of gas dissolved and volume of solvent injected. Degassing was accomplished using a two stage vacuum process described by Clever et al. (1).			purity 99.0 purity $\delta T/K = 0.1$	nic. Spec ty 99.5 per cified min per cent.	er Cent. nimum , R.; P.M.

COMBONIENEG			OBTOTIVAT MELA		
COMPONENTS: 1. Hydrogen su	lfide; H ₂ S;		ORIGINAL MEASUREMENTS: Gerrard, W.		
[7783-06-4]					
<pre>2. l-Octanol; C₈H₁₈O; [111-87-5]</pre>			J. Appl. Chem. Biotechnol., <u>1972</u> , 22, 623-650		
				Not 111	
VARIABLES:			PREPARED BY:		
Temperature			C.L. Young		
EXPERIMENTAL VALUES	5:		I		
т/к	P*/mmHg	P*/kPa	Mole ratio	Mole fraction ⁺ of hydrogen sulfide in liquid, ¤ _{H2} S	
265.15	755	100.7	0.105	0.095	
267.15	755	100.7	0.097	0.091	
273.15	755	100.7	0.080	0.074	
283.15	755	100.7	0.064	0.060	
293.15	755	100.7	0.054	0.051	
*total press	ure				
	<u>.</u>	AUXTLIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: Hydrogen sulfide was bubbled into a weighed amount of component 2. in a bubbler tube as described in detail in the source. The amount of gas absorbed at equilibrium and at the observed temperature and pressure was determined by weighing. Pressure was measured with a mercury manometer. The amount of gas absorbed at successively lower pressures was measured. Eventually the pressure was reduced to the vapor pressure of component 2. The refractive index and infrared spectrum of the liquid showed it to be essentially pure component 2.			1 and 2. C and atteste	<pre>ITY OF MATERIALS: omponents were purified d by conventional methods.</pre>	
			REFERENCES:		

1

ł

COMPONENTS: 0		ORIGINAL MEASUREMENTS:	
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	ļ	Lenoir, J-Y.; Renault, P.; Renon, H.	
2. Benzenemethanol (Benzy C ₇ H ₈ O; [100-51-6]	l alcohol);	J. Chem. Eng. Data, <u>1971</u> , 16, 340-2.	
VARIABLES:		PREPARED BY:	
		C. L. Young	
EXPERIMENTAL VALUES:			
T/K Hen	ry's constant		
	H ₂ S/atm	^{<i>x</i>} H ₂ S	
298.2	24.0	0.0417	
$x_{\rm H_2S}(1 \text{ atm}) = 1/H_{\rm H_2S}$		 -	
	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:	
Henry's law constant was from the retention time. applies to very low parti of gas and there may be a difference from that meas 1 atm. pressure. There i considerable uncertainty of Henry's constant since	a thermal used. The The value of calculated The value al pressures substantial ured at s also in the value surface	 (1) L'Air Liquide sample, minimum purity 99.9 mole per cent. (2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent. 	
adsorption was not allowe although its possible exi		ESTIMATED ERROR:	
noted.		$\delta T/K = \pm 0.1; \delta H/atm = \pm 6\%$ (estimated by compiler).	
		REFERENCES :	

1

,

COMPONENTS:		ORIGINAL MEASUREMENTS:
1. Hydroge	n sulfide; H ₂ S;	
[7783-0	6-4]	Lenoir, J-Y.; Renault, P.; Renon, H.
2. 1,2-Eth C ₂ H ₆ O ₂ ;	anediol, (Ethylene glycol); [107-21-1]	J. Chem. Eng. Data, <u>1971</u> , 16, 340-2
VARIABLES:		PREPARED BY:
		C. L. Young
EXPERIMENTAL	VALUES:	
	T/K Henry's consta	
	H_{H_2S}/atm	^x H ₂ S
	298.2 52.9	0.0189
* Calcula ^x H ₂ S ⁽¹	ated by compiler assuming a l atm) = $1/H_{H_2}S$	inear function of $P_{H_2S} vs x_{H_2S}$, i.e.,
}		
ł		
	AUXILIARY	INFORMATION
METHOD/APPAR	ATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
	ional gas-liquid chromato-	(1) L'Air Liquuide sample, minimum
	nit fitted with a thermal ity detector was used. The	purity 99.9 mole per cent. (2) Touzart and Matignon or
	as was helium. The value of aw constant was calculated	Serlabo sample, purity 99 mole per
from the :	retention time. The value o very low partial pressures	cent.
of gas an	d there may be a substantial e from that measured at	
1 atm. pr	essure. There is also	
of Henry'	ble uncertainty in the value s constant since surface	
	n was not allowed for its possible existence was	ESTIMATED ERROR:
noted.	-	$\delta T/K = \pm 0.1; \delta H/atm = \pm 6\%$ (estimated by compiler).
		REFERENCES :

	ONENTS:			ORIGINAL MEASUR	EMENTS:
1.	[7783-06-4]			Gerrard, W. J. Appl. Chem. Biotechnol., <u>1</u> 972, 22,	
2.	1,2-Ethaned [107-21-1]	diol; C ₂ H ₆ O ₂ ;		623-650.	m. Blotechnol., <u>1972</u> , 22,
VARI	ABLES:			PREPARED BY:	
	Temperature			C.L. Young	
	_				
EXPE	RIMENTAL VALUE	S:			
	т/к	P*/mmHg	P*/kPa	Mole ratio	Mole fraction ⁺ of hydrogen sulfide in liquid, x _{H2} S
	265.15	760	101.3	0.0365	0.0352
	267.15	760	101.3	0.033	0.032
	273.15	760	101.3	0.024	0.023
	283.15	760	101.3	0.017	0.017
	293.15	760	101.3	0.013	0.013
			AUXILIARY	INFORMATION	
METI	HOD/APPARATUS/I	PROCEDURE:	*******	SOURCE AND PUR	ITY OF MATERIALS:
Hydrogen sulfide was bubbled into a weighed amount of component 2. in a bubbler tube as described in detail in the source. The amount of gas absorbed at equilibrium and at the observed temperature and pressure was determined by weighing. Pressure was measured with a mercury manometer. The amount of gas absorbed at successively lower pressures was measured. Eventually the pressure			2. in a n detail of gas at the essure Pressure manometer. at s was ressure	and attested	omponents were purified d by conventional methods.
and show	was reduced to the vapor pressure of component 2. The refractive index and infrared spectrum of the liquid showed it to be essentially pure component 2.			ESTIMATED ERRO $\delta T/K = \pm 0.2$	R: $\delta x_{H_2S} = \frac{+}{4} $
				REFERENCES:	
				, and Endinoids ;	
				A	

ł

,

ł

COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Short, I.; Sahgal, A.; Hayduk, W. J. Chem. Eng. Data <u>1983</u> , 28, 63-66.	
(2) 1,2-Ethanediol (ethylene glycol); C ₂ H ₆ O ₂ ; [107-21-1]		
VARIABLES: <i>T</i> /K: 263,15-333.15	PREPARED BY:	
P/kPa: 101.325	W. Hayduk	
EXPERIMENTAL VALUES:		
-	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
263.15 13.34 298.15 5.36 333.15 3.44	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
$\Delta G^{\circ}/J \text{ mol}^{-1} = -RT \ln x_{1} = 12462 T$ $\ln x_{1} = 8146.8/T + 21.087 \ln Std. deviation for \Delta G^{\circ} = 28 \text{ J mol}^{-1}$	n T - 151.874	
$\frac{T/K}{10^{-4}\Delta G^{\circ}/J \text{ mol}^{-1}} \frac{10^{4}x_{1}}{10^{4}x_{1}}$	$\frac{10^{-4} \Delta G^{\circ} / J \text{ mol}^{-1}}{10^{4} x_{1}}$	
273.15 8.410 234.7 31 283.15 9.404 174.7 32	03.1511.21110.413.1512.0392.823.1512.7980.5033.1513.4971.80	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;	
A volumetric method using a glass apparatus was employed. Degassed solvent contacted the gas while flowing as a thin film, at a constant rate, through an absorption spiral into a solution buret. A constant solvent flow was obtained by means of a calibrated syringe pump. The solution at the end of the spiral was considered saturated. Dry gas was maintained at atmosphe- ric pressure in a gas buret by mechanically raising the mercury level in the buret at an adjustable rate. The solubility was calculated from the constant slope of volume of gas dissolved and volume of solvent injected. Degassing was accomplished using a two stage vacuum process described by Clever et al. (1).	99.8 per cent. ESTIMATED ERROR: $\delta T/K = 0.1$ $\delta r / r = 0.01$	
	l	