(1) Lithium methanoate (lithium formate); L1CHO₂; [556-63-8]

(2) Lithium ethanoate (lithium acetate); $LiC_2H_3O_2$; [546-89-4]

ORIGINAL MEASUREMENTS:

Pochtakova, E.I.

Zh. Obshch. Khim. 1975, 45, 503-505.

VARIABLES:

Temperature.

PREPARED BY:

Baldini, P.

EXPERIMENTAL VALUES:

The results are reported only in graphical form (see figure).

Characteristic point(s):

Eutectic, E, at 240 $^{\circ}$ C and $100x_1 = 37.5$ (author).

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Visual polythermal analysis.

SOURCE AND PURITY OF MATERIALS:

Not stated.

Component 1 melts at $t_{fus}(1)/^{o}C=273$. Component 2 melts at $t_{fus}(2)/^{o}C=284$.

ESTIMATED ERROR:

Temperature: accuracy (compiler).

+2 K probably

- (1) Lithium methanoate (lithium formate);
- LiCHO₂; [556-63-8]
 (2) Lithium thiocyanate; LiCNS; [556-65-0]

ORIGINAL MEASUREMENTS:

Sokolov, N.M.; Dmitrevskaya, O.I. Zh. Neorg. Khim. 1969, 14, 286-296 (*); Russ. J. Inorg. Chem. (Engl. Transl.) 1969, 14, 148-155.

VARIABLES:

Temperature.

PREPARED BY:

Baldini, P.

EXPERIMENTAL VALUES:

t/°C	T/K ^a	100 x 2	t/°C	T/K ^a	100x ₂
273	546	0	156	429	48.5
259	532	5	157	430	50
247	520	10	167	440	55
235	508	15	180	453	60
222	495	20	192	465	65
210	483	25	204	477	70
198	471	30	216	489	75
187	460	35	227	500	80
176	449	40	238	511	85
163	436	45	266	539	100

a T/K values calculated by the compiler.

Characteristic point(s):

Eutectic, E, at 156 °C and $100x_2 = 48.5$ (authors).

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Visual polythermal analysis; solid state transition temperatures drawn from the curves obtained with automatic heating recording.

NOTE:

The fusion temperature of component (546 K) coincides with that listed in Preface, Table 1 where, however, a single solid state transformation of the same component is mentioned as occurring at 496+2 K (i.e., some 10 K lower than the highest Sokolov 5 8 1 and Dmitrevskaya's transition).

SOURCE AND PURITY OF MATERIALS:

Not stated.

Component 1 undergoes phase transitions at t_{trs}(1)/°C= 87, 115, 232. Component 2 undergoes a phase transition at

 $t_{trs}(2)/^{o}C = 202.$

ESTIMATED ERROR:

Temperature: accuracy probably +2 K (compiler).

- (1) Lithium methanoate (lithium formate);
 - LiCHO₂; [556-63-8]
- (2) Lithium nitrate; LiNO₃; [7790-69-4]

ORIGINAL MEASUREMENTS:

Tsindrik, N.M.

Zh. Obshch. Khim. 1958, 28, 830-834.

VARIABLES:

Temperature.

PREPARED BY:

Baldini, P.

EXPERIMENTAL VALUES:

t/°C	T/Kª	100×1	t/°C	T/K ^a	100 x 1
256	529	0	180	453	45
247 238	520 511	5 10	170 162	443 435	50 55
228	501	15	178	451	60
220 212	493 485	20 25	194 208	467 481	65 70
206	479	30	220	493	75
196 188	469 461	35 40	232	505	80

a T/K values calculated by the compiler.

Characteristic point(s):

Eutectic, E, at 162 °C and $100x_1 = 55$ (author).

Note - The system was investigated at $0 \le 100 x_1 \le 80$.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Visual polythermal analysis; temperatures measured with a Nichrome-Constantane thermocouple.

NOTE:

The extrapolated $T_{fus}(1)$ reported by the author (546 K) coincides with that listed in Table 1.

SOURCE AND PURITY OF MATERIALS:

Materials of analytical purity recrystallized twice (extrapolated $t_{fus}(1)/^{o}C=273$; author).

ESTIMATED ERROR:

Temperature: accuracy probably +2 K (compiler).

- (1) Lithium ethanoate (lithium acetate);
- LiC₂H₃O₂; [546-89-4] (2) Lithium thiocyanate; LiCNS; [556-65-0]

ORIGINAL MEASUREMENTS:

Sokolov, N.M.; Dmitrevskaya, O.I. Zh. Neorg. Khim. 1969, 14, 286-296 (*); Russ. J. Inorg. Chem. (Engl. Transl.) 1969, 14, 148-155.

VARIABLES:

Temperature.

PREPARED BY:

Baldini, P.

EXPERIMENTAL VALUES:

t/ºC	T/Kª	100 x ₁	t/°C	T/Kª	100 x 1
266	539	0	168	441	50
248	521	10	176	449	55
244	517	15	187	460	60
234	507	20	198	471	65
220	493	25	208	481	70
210	483	30	220	493	75
200	473	35	233	506	80
188	461	40	243	516	85
174	447	45	284 ^b	557	100
166	439	49			

a T/K values calculated by the compiler.
b The figure 266 given in the original table is apparently a misprint, being the fusion temperature of component 2; the figure 284 is taken from Fig. 1 of the original paper (compiler).

Characteristic point(s):

Eutectic, E, at 166 $^{\rm O}{\rm C}$ (authors) and $100{\rm x_2}$ = 51 (compiler).

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Visual polythermal analysis; solid state transition temperatures drawn from the heating curves obtained with automatic recording.

NOTE:

The eutectic composition is given as $100\mathbf{x}_2$ = 49 in the original text, but this figure is conflicting with both the data tabulated and Fig. 1b of the original paper.

SOURCE AND PURITY OF MATERIALS:

Not stated. Component 2 undergoes a phase transition at $t_{trs}(2)/^{0}C=$ 202.

ESTIMATED ERROR:

Temperature: accuracy probably ± 2 K (compiler).

- (1) Lithium ethanoate (lithium acetate); LiC₂H₃O₂; [546-89-4]
- (2) Lithium nitrate; LiNO3; [7790-69-4]

EVALUATOR:

Ferloni, P., Dipartimento di Chimica Fisica, Universita di Pavia (ITALY).

CRITICAL EVALUATION:

This binary was submitted to visual polythermal analysis by Diogenov (Ref. 1) as a side of the reciprocal ternary Li, $Na/C_2H_3O_2$, NO_3 , and by Diogenov et al. (Ref. 2), and Sokolov and Tsindrik (Ref. 3) as a side of the reciprocal ternary K, $Li/C_2H_3O_2$, NO_3 . All investigations were restricted to the liquidus.

The fusion temperature of component 1 given in Refs. 1, 2 (564 K) is 7 K higher than that (557 K) reported both in Ref. 3 and Table 1 of the Preface. Again for component 1, a solid state transformation is mentioned in Refs. 1, 2 as occurring at 536-538 K, whereas, in a subsequent paper by the same group (Ref. 4), a far different temperature (405 K) is reported. No information about the existence of any solid-solid transition in lithium ethanoate is known to the evaluator from any source (included Ref. 3 and Table 1), but Diogenov's group.

The diagrams shown in Refs. 1-3 are qualitatively similar, and characterized by the presence of a single eutectic at $100\mathbf{x}_2$ about 51. It is, however, a bit surprising that neither Sokolov and Tsindrik (Ref. 3, where Ref. 1 is quoted), nor Diogenov et al. (Ref. 2, where Ref. 1 is not quoted) have commented on the unusually large discrepancies existing between the eutectic temperatures they found (463 K and 449 K, respectively) and the previous value (418 K) by Diogenov (Ref. 1). These discrepancies might be related to the fact that component 1 tends to form glasses.

At any rate, the evaluator - due to the apparent lack of internal consistency of the measurements by Diogenov's group - is inclined to attach more reliability to the data from Ref. 3, although regretting that they are reported only in graphical form.

- (1) Diogenov, G.G.
 Zh. Neorg. Khim. 1956, 1, 799-805 (*); Russ. J. Inorg. Chem. (Engl. Transl.) 1956, 1
 (4), 199-205.
- (2) Diogenov, G.G.; Nurminskii, N.N.; Gimel'shtein, V.G. Zh. Neorg. Khim. 1957, 2, 1596-1600 (*); Russ. J. Inorg. Chem. (Engl. Transl.) 1957, 2(7), 237-245.
- (3) Sokolov, N.M.; Tsindrik, N.M. Zh. Neorg. Khim. 1969, 14, 584-590 (*); Russ. J. Inorg. Chem. (Engl. Transl.) 1969, 14, 302-306.
- (4) Diogenov, G.G.; Erlykov, A.M.; Gimel'shtein, V.G. Zh. Neorg. Khim. 1974, 19, 1955-1960; Russ. J. Inorg. Chem. (Engl. Transl.) 1974, 19, 1069-1073 (*).

COMPONENTS: ORIGINAL MEASUREMENTS: Diogenov, G.G. (1) Lithium ethanoate (lithium acetate); Zh. Neorg. Khim. 1956, 1, 799-805 (*); Russ. J. Inorg. Chem. (Engl. Transl.) 1956, LiC₂H₃O₂; [546-89-4] (2) Lithium nitrate; Lino₃; [7790-69-4] 1 (4), 199-205. VARIABLES: PREPARED BY: Temperature. Baldini, P. EXPERIMENTAL VALUES:

250

150

Ω

50 100x,

100

EXTERIMENTAL VALUES.						
t/°C	T/K ^a	100 x 1	t/ ^o C	T/Kª	100 x 1	
259	532	0	170	443	56	
254	527	5	183	456	60	
248	521	9	190	463	62.5	
241	514	14	206	479	68	
234	507	18.5	219	492	72.5	
227	500	22.5	233	506	77.5	
216	489	27.5	242	515	81	
204	477	32	250	523	84.5	
188	461	37.5	259	532	90	
176	449	41	264	537	92.5	
160	433	45	276	549	94	
150	423	50	283	556	96	
160	433	53	291	564	100	

Characteristic point(s):

- (1) Lithium ethanoate (1ithium acetate); LiC₂H₃O₂; [546-89-4]
- (2) Lithium nitrate; LiNO3; [7790-69-4]

ORIGINAL MEASUREMENTS:

Diogenov, G.G.; Nurminskii, N.N.; Gimel'shtein, V.G.

Zh. Neorg. Khim. 1957, 2, 1596-1600 (*); Russ. J. Inorg. Chem. (Engl. Transl.) 1957, 2(7), 237-245.

VARIABLES:

Temperature.

PREPARED BY:

Baldini, P.

EXPERIMENTAL VALUES:

t/°C	T/K ^a	100 x 1	t/°C	T/Kª	100 x 1
259	532	0	178 ^b	451	55
257	530	1.5	196	469	60
249	522	8.5	214	487	68
240	513	15.5	230	503	75
232	505	21	239	512	80
221	494	28.5	250	523	85
209	482	36	259	532	90
198	471	41.5	265	538	92.5
188	461	46.5	277	550	94
180	453	48	291	564	100
185	458	52.5			

a T/K values calculated by the compiler.
b This figure seems to be a misprint: the corresponding point is reported as a filled circle in the figure (compiler).

Characteristic point(s):

Eutectic, E, at 176 $^{\circ}$ C (authors) and $100x_2=51$ (compiler).

Note - The eutectic composition reported in the original paper $(100x_1=51)$ is not coherent with the tabulated data: in compiler's opinion, this might be due to a misprint.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Visual polythermal analysis.

SOURCE AND PURITY OF MATERIALS:

Source not stated. Component 1 undergoes a phase transition at $t_{trs}(1)/^{0}C=265$.

ESTIMATED ERROR:

Temperature: accuracy probably +2 K (compiler).

- (1) Lithium ethanoate (lithium acetate); LiC₂H₃O₂; [546-89-4]
- (2) Lithium nitrate; LiNO₃; [7790-69-4]

ORIGINAL MEASUREMENTS:

Sokolov, N.M.; Tsindrik, N.M. Zh. Neorg. Khim. 1969, 14, 584-590 (*); Russ. J. Inorg. Chem. (Engl. Transl.) 1969, 14, 302-306.

VARIABLES:

Temperature

PREPARED BY:

Baldini, P.

EXPERIMENTAL VALUES:

The results are reported only in graphical form (see figure).

Characteristic point(s):

Eutectic, E, at 190 $^{\circ}$ C (authors) and $100x_2$ about 51 (compiler).

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Visual polythermal analysis (compiler).

SOURCE AND PURITY OF MATERIALS:

Commercial materials recrystallized (compiler). Component 1: $t_{fus}(1)/^{o}C=$ 284. Component 2: $t_{fus}(2)/^{o}C=$ 258.

ESTIMATED ERROR:

Temperature: accuracy probably +2 K (compiler).

- (1) Lithium propanoate (lithium propionate);
- LiC₃H₅O₂; [6531-45-9] (2) Lithium thiocyanate; LiCNS; [556-65-0]

ORIGINAL MEASUREMENTS:

Sokolov, N.M. and Dmitrevskaya, O.I. Zh. Neorg. Khim. 1969, 14, 286-296 (*); Russ. J. Inorg. Chem. (Engl. Transl.) 1969, 14, 148-155.

VARIABLES:

Temperature.

PREPARED BY:

EXPERIMENTAL VALUES:

t/ºC	T/K ^a	100 x 2	t/°C	T/K ^a	100 x 2
329	602	0	196	469	45
326	599	5	197	470	50
313	586	10	196	469	55
294	567	15	193	466	60
268	541	20	210	483	65
245	518	25	224	497	70
220	493	30	237	510	75
204	477	35	243	516	80
194	467	37.5	260	533	90
195	468	40	266	539	100

a T/K values calculated by the compiler.

•

Characteristic point(s):

Eutectic, E_1 , at 194 °C and $100x_2$ 37.5 (authors). Eutectic, E_2 , at 193 °C and $100x_2$ 60 (authors).

Intermediate compound(s):

Li₂C₃H₅O₂CNS congruently melting at 197 °C (authors).

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Visual polythermal analysis; solid state transition temperatures drawn from the heating curves obtained with automatic recording.

SOURCE AND PURITY OF MATERIALS:

Not stated. Component 1 undergoes a solid state transition at $t_{\rm trs}(1)/^{\rm o}{\rm C}$ = 265. Component 2 undergoes a solid state transition at $t_{\rm trs}(2)/^{\rm o}{\rm C}$ = 202.

ESTIMATED ERROR:

Temperature: accuracy probably +2 K (compiler).

- (1) Lithium propanoate (lithium propionate); LiC₃H₅O₂; [6531-45-9]
- (2) Lithium nitrate; LiNO3; [7790-69-4]

ORIGINAL MEASUREMENTS:

Tsindrik, N.M.; Sokolov, N.M.
Zh. Obshch. Khim., 1958, 28, 1404-1410 (*);
Russ. J. Gen. Chem. (Engl. Transl.) 1958,
28, 1462-1467.

VARIABLES:

Temperature.

PREPARED BY:

Baldini, P.

EXPERIMENTAL VALUES:

t/ºC	T/K ^a	100 x 1	t/ ^o C	T/K ^a	100 x 1
256 252	529 525	0 5	253 252	526 525	45 50
246	519	10	252	525	55
240 234	513 507	15 20	252 250	525 523	60 65
232	505	21.5	244	517	70
234 238	507 511	22.5 25	266 280	539 553	75 80
244	517	30	307	580	90
248 252	521 525	35 40	329	602	100

a T/K values calculated by the compiler.

Characteristic point(s):

Eutectic, E_1 , at 244 °C and $100x_1 = 70$ (authors). Eutectic, E_2 , at 232 °C and $100x_1 = 21.5$ (according to the table, although reported as 22.5 in the text; compiler).

Intermediate compound(s):

 $\text{Li}_5(\text{C}_3\text{H}_5\text{O}_2)_2(\text{NO}_3)_3$, congruently melting at 252-253 °C.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Visual polythermal analysis.

SOURCE AND PURITY OF MATERIALS:

Component 1: prepared from propanoic acid and lithium hydrogen carbonate (Ref. 1), and recrystallized from n-butanol. Component 2: material of analytical grade recrystallized twice.

ESTIMATED ERROR:

Temperature: accuracy probably +2 K (compiler).

REFERENCES:

(1) Sokolov, N.M. Zh. Obshch. Khim. 1954, 24, 1150-1156.

- (1) Lithium butanoate (lithium butyrate);
- LiC₄H₇O₂; [21303-03-7] (2) Lithium thiocyanate; LiCNS; [556-65-0]

ORIGINAL MEASUREMENTS:

Sokolov, N.M.; Dmitrevskaya, O.I. Zh. Neorg. Khim. 1969, 14, 286-296 (*); Russ. J. Inorg. Chem. (Engl. Transl.) 1969, 14, 148-155.

VARIABLES:

Temperature.

PREPARED BY:

Baldini, P.

EXPERIMENTAL VALUES:

t/°C	T/K ^a	100 x 2	t/°C	T/K ^a	100 x 2
329	602	0	215	488	45
316	589	5	208	481	50
308	581	10	215	488	55
290	563	15	224	497	60
278	551	20	233	506	65
265	538	25	241	514	70
251	524	30	250	523	75
238	511	35	262	535	85
225	498	40	266	539	100

a T/K values calculated by the compiler.

Characteristic point(s):

Eutectic, E, at 208 $^{\circ}$ C and $100x_{2}$ = 50 (authors).

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Visual polythermal analysis; solid state transition temperatures drawn from the heating curves obtained with automatic recording.

SOURCE AND PURITY OF MATERIALS:

Not stated.

Component 1 undergoes a phase transition at $t_{trs}(1)/^{\circ}C=98$.

Component 2 undergoes a phase transition at $t_{trs}(2)/^{c} = 202$.

NOTE:

The fusion temperature of component 1 given by the authors (602 K) is noticeably higher than that (591.7+0.5 K) listed in Preface, Table 1 where, moreover, no solid state transformation is reported for lithium n-butanoate.

ESTIMATED ERROR:

Temperature: accuracy probably +2 K (compiler).

- (1) Lithium butanoate (lithium butyrate); LiC₄H₇O₂; [21303-03-7]
- (2) Lithium nitrate; LiNO3; [7790-69-4]

ORIGINAL MEASUREMENTS:

Tsindrik, N.M.; Sokolov, N.M. Zh. Obshch. Khim. 1958, 28, 1728-1733 (*); Russ. J. Gen. Chem. (Engl. Transl.) 1958, 28, 1775-1780.

VARIABLES:

Temperature.

PREPARED BY:

Baldini, P.

EXPERIMENTAL VALUES:

t/ºC	T/K ^a	100 x 1	t/°C	T/K ^a	100 x 1
256	529	0	216	489	45
248	521	5	228	501	50
242	515	10	238	511	55
238	511	12.5	248	521	60
232	505	15	258	531	65
232	505	17.5	268	541	70
232	505	20	278	551	75
230	503	25	288	561	80
230	503	30	298	571	85
226	499	35	308	581	90
224	497	40	329	602	100
220	493	42.5			

a T/K values calculated by the compiler.

Characteristic point(s):

Eutectic, E, at 216 $^{\circ}$ C and $100x_1$ = 45 (authors). Peritectic, P, at 232 $^{\circ}$ C and $100x_1$ = 15 (authors).

Intermediate compound(s):

Li₈C₄H₇O₂(NO₃)₇ (probable composition; authors), incongruently melting.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Visual polythermal analysis; temperatures of initial crystallization measured with a Nichrome-Constantane thermocouple and a millivoltmeter.

SOURCE AND PURITY OF MATERIALS:

Component 1: prepared from "chemically pure" carbonate and n-butanoic acid (Ref. 1); the solid recovered after evaporation was recrystallized from n-butanol.

Component 2: source not stated.

ESTIMATED ERROR:

Temperature: accuracy probably +2 K (compiler).

REFERENCES:

(1) Sokolov, N.M.
Zh. Obshch. Khim. 1954, 24, 1581-1593.