COMPONENTS:	ORIGINAL MEASUREMENTS:	
 Cadmium ethanoate (cadmium acetate); (C₂H₃O₂)₂Cd; [543-90-8] Cesium ethanoate (cesium acetate); (C₂H₃O₂)Cs; [3396-11-0] 	Nadirov, E.G.; Bakeev, M.I. Tr. KhimMetall. Inst. Akad. Nauk Kaz. SSR 1974, 25, 129-141.	
VARIABLES:	PREPARED BY:	
Temperature.	Baldini, P.	
EXPERIMENTAL VALUES:	ب_ 	
t/ ^o C T/K ^a 100x ₂	Ź.	
228 501 40 242 515 45 249 522 50	250 - 250 -	
256 ^p 529 58 257 530 60 247 520 65		
235 508 70 221 494 75		
196 469 80 167 440 85	200	
174 447 90 178 451 95		
181 454 100	Ö E	
a T/K values calculated by the compiler. b 456 $^{\circ}$ C in the original table (compiler).	└─────└─ [│] 0 50 100×₂ 100 (C_H_0_)_Cd (C_H_0_)Cs	
Characteristic point(s): Eutectic, E, at 167 °C (164 °C according to Fig. 9 of the original paper; compiler) and $100x_2 = 85$ (authors).		
Intermediate compound(s): $(C_2H_3O_2)_7Cd_2Cs_3$, congruently melting at 257 exhibiting a polymorphic transition (at conductometry).	^O C (255 ^O C, thermographic analysis), and 130 ^O C, thermographic analysis; 133 ^O C,	
Note - The system was investigated at 40 \leq 10	$0x_2 \leq 100.$	
AUXILIARY I	NFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Visual polythermal method; temperatures measured with a Chromel-Alumel thermocouple and a PP potentiometer. Additional investigations were performed by means of thermographical analysis, electrical conductometry, and X-ray diffractometry.	Not stated.	
NOTE:		
The occurrence of the intermediate compound is supported by X-ray diffractometry, and seems reliable. According to the authors,		
this compound has a density of 2.472 g cm ⁻³ . Although the $T_{fug}(2)$ value (454 K) given in this paper is lower than the corresponding one from Table 1 of the Preface, i.e.,	ESTIMATED ERROR: Temperature: accuracy probably <u>+2</u> K (compiler).	
diagram should be considered as substantially correct.	REFERENCES:	

COMPONENTS:	EVALUATOR:
 Cadmium ethanoate (cadmium acetate);	Schiraldi, A.,
(C ₂ H ₃ O ₂) ₂ Cd; [543-90-8] Potassium ethanoate (potassium acetate);	Dipartimento di Chimica Fisica,
(C ₂ H ₃ O ₂)K; [127-08-2]	Universita´ di Pavia (ITALY).

This system was studied by Lehrman and Schweitzer (Ref. 1), Il'yasov (Ref. 2), Pavlov and Golubkova (Ref. 3), and Nadirov and Bakeev (Ref. 4), with significantly discrepant results.

Lehrman and Schweitzer (Ref. 1), and Pavlov and Goblubkova (Ref. 3) claim the existence of three congruently melting intermediate compounds, and four eutectics; however, both the coordinates of the eutectics, and the compositions and the fusion temperatures of the intermediate compounds given in either paper do not allow one to reconcile the phase diagram proposed in Ref. 1 with that reported in Ref. 3.

According to Il'yasov (Ref. 2), a single eutectic should exist [at 505 K (232 °C) and $100x_2^{=}$ 75] within the composition range he investigated, viz., $0 \leq 100x_1 \leq 43$ (the corresponding compositions given in the original paper refer to equivalent fractions of potassium ethanoate).

Finally, according to Nadirov and Bakeev (Ref. 4), a eutectic at either 461, or 469, or 476 K (188, 196, 203 °C, respectively) dependently on the method employed for the determination, and $100x_2 = 54$, and an intermediate compound, $(C_2H_3O_2)_8CdK_6$, incongruently melting at either 518, or 524, or 526 K (245C, 251C, 253 °C, respectively) dependently on the method employed for the determination, are the characteristic features of the system.

The general disagreement existing among the above mentioned authors seems not to be attributed to differences in the purity of the alkanoates they employed, although this factor might play some role in the case of Lehrman and Schweitzer (Ref. 1), inasmuch as they report a fusion temperature of component 2, $T_{fus}(2) = 565 \text{ K}$ (292 °C), which is significantly lower than the generally accepted value of about 579 K (578.7±0.5 K, in Table 1 of the Preface).

Indeed, it seems more likely that the formation of complex ions in the melt (Ref. 4) might affect the results obtained with techniques (e.g., the visual polythermal method) implying the observation of the system during cooling. Should these complex ions be sufficiently stable, the actual liquidus might be different as a consequence of largely different cooling rates.

Taking into account this possibility, the evaluator is inclined to consider as more reliable the phase diagram suggested by Nadirov and Bakeev (Ref. 4), as it is supported by results obtained with several investigation methods, including X-ray diffractometry which was employed to confirm the existence of the intermediate compound $(C_{2H_3O_2})_8$ CdK₆.

Some doubt, however, might subsist about the interpretation of the slope variation Nadirov and Bakeev (Ref. 4) observed in the plot electric conductivity vs. T, as due to an allotropic transition of potassium ethanoate at 467 K (194 $^{\rm O}$ C). According to Table 1 of the Preface, inter alia, a solid state transition in this salt is to be expected only at T_{trs}(2)= 422.2+0.5 K.

- (1) Lehrman, A.; Schweitzer, D.
- J. Phys. Chem. 1954, 58, 383-384.
- (2) Il'yasov, I.I.
 Zh. Obshch. Khim, 1962, 32, 347-349.
 (3) Pavlov, V.L.; Golubkova, V.V.
- Vestn. Kiev. Politekh. Inst. Ser. Khim. Mashinostr. Tekhnol. 1969, No. 6, 76-79. (4) Nadirov, E.G.; Bakeev, M.I.
 - Tr. Khim.-Metall. Inst. Akad. Nauk. Kaz. SSR 1974, 25, 129-141.

COMPONENTS:	ORTGINAL MEASUREMENTS:		
 (1) Cadmium ethanoate (cadmium acetate); (C₂H₃O₂)₂Cd; [543-90-8] (2) Potassium ethanoate (potassium acetate); acetate); (C₂H₃O₂)K; [127-08-2] 	Lehrman, A.; Schweitzer, D. J. Phys. Chem. <u>1954</u> , 58, 383-384.		
VARIABLES:	PREPARED BY:		
Temperature.	Baldini, P.		
EXPERIMENTAL VALUES:			
t/ ^o C T/K ^a 100x ₁	v		
292 565 0.0 289 562 10.0 246 519 20.0 183 ^b 456 20.0 195 468 30.0 202 475 33.3 196 469 35.0 188 ^b 461 35.0 203 476 38.0 213 486 40.0 217 490 41.0 221 494 42.86 216 489 44.44 206 479 48.0 210 483 50.0 205 478 52.0 202 475 55.0 187 ^b 460 55.0 190 463 60.0 220 493 70.0 a T/K values calculated by the compiler. b Eutectic temperatures (filled circles in the Characteristic point(s): Eutectic, E ₁ , at 187 °C (authors) and 100x ₂ = Eutectic, E ₂ , at 201 °C (authors) and 100x ₂ = Eutectic, E ₄ , at 183 °C (authors) and	41 (compiler). 41 (compiler). 54 (compiler). 64 (compiler). (authors). (authors).		
AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
A molten salt bath was employed to melt the mixtures placed in a 2.5x20 cm Pyrex tube. The beginning of crystallization (under stirring and by seeding) was observed visually and the corresponding temperature	Component 1: "C.P." material added with a few drops of glacial ethanoic acid and dried in an oven at 140 °C. Component 2: "Analytical Reagent" material dried at 140 °C for one week.		
was measured with a potentiometer (16 mV full scale) and a Copper-Constantane thermocouple (whose emf could be read to ± 0.02 mV), calibrated at the boiling points of water and benzophenone, and at the	ESTIMATED ERROR: Temperature: accuracy probably <u>+0.5 K</u> (compiler).		
fusion points of tin and potassium nitrate.			

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Cadmium ethanoate (cadmium acetate); (C₂H₃O₂)₂Cd; [543-90-8] Potassium ethanoate (potassium constate); 	ll'yasov, I.I. Zh. Obshch. Khim. <u>1962</u> , 32, 347-349.
(C ₂ H ₃ O ₂) ₂ K ₂ ; [127-08-2]	
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
$t^{\circ}C$ T/K^{a} $100x_{1}$	······
306 579 0 203 576 5	
292 565 15	
285 558 20 277 550 25	
263 536 30	· \
248 521 35 232 505 40	280 - 280 -
235 508 45	
237 510 50	٩
242 515 60	
a w/v volume colouisted by the counting	
1/K values calculated by the compiler.	240 -
	E
	$(C_2H_3O_2)_2K_2$ $(C_2H_3O_2)_2Cd$
Characteristic point(s):	
Eutectic, E, at 232 °C and $100 \pi_2$ = 60 (auth	or).
Note - The system was investigated at 0 \leq 100	$\mathbf{x}_1 \leq 60.$
AUXILIARY I	NFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Visual polythermal method.	Not stated.
	ESTIMATED ERROR:
	Temperature: accuracy probably <u>+</u> 2 K (compiler).
	REFERENCES:

COMPONENTS:				ORIGINAL MEASUREMENTS:		
 Cadmium ethanoate (cadmium acetate); (C₂H₃O₂)₂Cd; [543-90-8] Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] 				acetate Lum	Pavlov, V.L.; Golubkova, V.V. Vestn. Kiev. Politekh. Inst. Ser. Khim. Mashinostr. Tekhnol. <u>1969</u> , No. 6, 76-79.	
VARIABL	.ES:					PREPARED BY:
Tempera	iture.					Baldini, P.
EXPERIM	ENTAL	VALUES:			·	
t/°C	t/K ^a	100 x 1	t/ ^o C	T/K ^a	100 x₁	
300	573	5.0	152	425	49.9	
298	571	7.1	176	449	55.0	+
290	563	9.9	178	451	55.2	300 -
278	551	11.9	150 ^b	423	55.2	2
268	541	15.0	160	433	60.1	4
264	537	17.0	148 ^b	421	60.1	250 - 1
166 ^b	439	17.0	160	433	60.2	8
232	505	20.1	148 ^b	421	60.2	
166 ^D	439	20.1	192	465	65.1	
220	493	22.1	150	423	65.1	200 - 8 -
1660	439	22.1	198	471	66.9	168 / 1
164	437	25.0	220	493	69./	
170	439	25.1	220	493	70.1	150 - E,
200	473	3/ 0	262	42J 515	75 5	E ₂ E ₃
148b	475	34.9	242	511	77.0	
188	461	37.5	230	505	80.0	
178	451	39.9	230	503	82.0	0 50 100 _m 100
148 ^b	421	39.9	240	513	85.0	
164	437	45.1	242	515	85.3	
172	445	46.9	248	521	95.1	
188	461	49.9				
^a T/K values calculated by the compiler. ^b Eutectic temperatures. Characteristic point(s): Eutectic, E ₁ , at 166 °C and $100x_1 = 24$ (authors). Eutectic, E ₂ , at 148 °C and $100x_1 = 42$ (authors). Eutectic, E ₃ , at 150 °C and $100x_1 = 58$ (authors). Eutectic, E ₄ , at 230 °C and $100x_1 = 82$ (authors). Intermediate compound(s): (C ₂ H ₃ O ₂) ₄ CdK ₂ , congruently melting at 200 °C (authors). (C ₂ H ₃ O ₂) ₇ Cd ₃ K, congruently melting at 242 °C (authors).						
AUXILIARY INFORMATION			NFORMATION			
METHOD/	'APPARA'	TUS/PROCEL	URE:			SOURCE AND PURITY OF MATERIALS:
Visual polythermal method and time- temperature curves. Mixtures prepared in a glove-box.		Component 1 of analytical purity, dehydrated ($T_{fus}(1)=257-258^{\circ}C$, 530-531 K). Component 2 of analytical purity, heated at 110-140 °C to constant mass ($T_{fus}(2)=306-$				
ESTIMATED ERROR: 308°C, 579-581 K).			308°С, 579-581 К).			
Tempera	ture:	accurac	y prol	bably	+2 K	

(compiler).

COMPONENTS:	ORIGINAL MEASUREMENTS:		
 Cadmium ethanoate (cadmium acetate); (C₂H₃O₂)₂Cd; [543-90-8] Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] 	Nadirov, E.G.; Bakeev, M.I. Tr. KhimMetall. Inst. Akad. Nauk Kaz. SSR 1974, 25, 129-141.		
VARIABLES:	PREPARED BY:		
Temperature.	Baldini, P.		
EXPERIMENTAL VALUES:			
t/ ^o C T/K ^a 100x ₂	ل المسلم ا		
239 512 25 222 495 40 213 486 45 205 478 50 203 476 54 231 504 60 245 518 65 248 521 70 250 523 75 252 525 80 257 530 85 282 555 90 306 579 100 ^a T/K values calculated by the compiler.	$ \begin{array}{c} $		
Characteristic point(s):			
Eutectic, E, at 203 °C (visual polythermal method, initial crystallization), or 196 °C (thermographical analysis, fusion temperature), or 188 °C (conductometry, fusion temperature), and $100x_2$ = 54 (authors). Peritectic, P, at 253 °C (visual polythermal method), or 245 °C (thermographical analysis), or 251°C (conductometry, Fig.3 of the original paper), erroneously reported			
Intermediate compound: $(C_2H_2O_2)_0$ CdK _c , incongruently melting.			
Note 1 - The system has been investigated at	$25 \leq 100 \mathbf{x}_2 \leq 100$.		
Note 2 - At about 194 ^o C abrupt changes (to be related to a polymorphic transition; authors) occur in the electrical conductivity of the mixtures with $100x_2$ = 85, 90, 95.			
AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Visual polythermal method; temperatures measured with a Chromel-Alumel thermocouple and a PP potentiometer. Additional investigations have been performed by means of thermographical analysis, electrical conductometry, and X-ray diffractometry.	Not stated. ESTIMATED ERROR: Temperature: accuracy probably <u>+2</u> K (compiler).		

COMPONENTS:	EVALUATOR:
 (1) Cadmium ethanoate (cadmium acetate);	Schiraldi, A.,
(C ₂ H ₃ O ₂) ₂ Cd; [543-90-8] (2) Sodium ethanoate (sodium acetate);	Dipartimento di Chimica Fisica,
(C ₂ H ₃ O ₂)Na; [127-09-3]	Universita´ di Pavia (ITALY).

This system was studied by I1'yasov (Ref. 1), and Pavlov and Golubkova (Ref. 2). The former author claims the diagram to be of the simple eutectic type, with the invariant at 528 K (255 °C) and $100x_2$ = 68 (the eutectic composition is given in Ref. 1 as $100x_2$ = 52 since it refers to the equivalent fraction of component 2), whereas Pavlov and Golubkova suggest the existence of the intermediate compound $(C_2H_3O_2)_4$ CdNa₂, congruently melting at 527 K (254 °C), and, accordingly, of two eutectics, E_1 , E_2 , occurring at 496 K (223 °C) and $100x_2$ = 75, and at 507 K (234 °C) and $100x_2$ = 58, respectively.

Although the experimental data by Pavlov and Golubkova seem more detailed than those by Il'yasov, the evaluator has no arguments to definitely prefer the diagram shown in Ref. 2, ruling out that of Ref. 1.

As a comment, one may notice that the fusion temperature of the intermediate compound given in Ref. 2 is close to that of the eutectic reported in Ref. 1. This might suggest undercooling of Pavlov and Golubkova's samples. In any case, the existence of the intermediate compound suggested by the latter authors should be confirmed with X-ray diffractometry.

It is finally to be added that the fusion temperature of component 2 by Il'yasov (601 K) meets that listed in Table 1 of the Preface (601.3 ± 0.5 K), whereas the value by Pavlov and Golubkova (595 K) is significantly lower.

- (1) I1'yasov, I.I.
 Zh. Obshch. Khim. <u>1962</u>, 32, 347-349.
- Pavlov, V.L.; Golubkova, V.V.
 Vestn. Kiev. Politekh. Inst. Ser. Khim. Mashinostr. Tekhnol. 1969, No. 6, 76-79.

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Cadmium ethanoate (cadmium acetate); (C₂H₃O₂)₂Cd; [543-90-8] Sodium ethanoate (sodium acetate); (C₂H₃O₂)₂Na₂; [127-09-3] 	Il [*] yasov, I.I. Zh. Obshch. Khim. <u>1962</u> , 32, 347-349.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
t/ ^o C T/K ^a 100x ₁	ب []
328 601 0 318 591 10 315 588 15 309 582 20 297 570 30 287 560 35 277 550 40 261 534 45 259 532 50 264 537 55 267 540 60 267 540 65 ^a T/K values calculated by the compiler. Characteristic point(s): Eutectic, E, at 255 °C and $100x_2$ = 52 (auth Note - The system was investigated at 0 \leq 100	$side = \frac{1}{250} + \frac{1}{(C_2H_3O_2)_2Ne_2} + \frac{1}{(C_2H_3O_2)_2Cd} + \frac{1}{(C$
AUXILIARY I	NFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Visual polythermal method.	Not stated.
	ESTIMATED ERROR: Temperature: accuracy probably <u>+</u> 2 K (compiler). REFERENCES:
	1

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Cadmium ethanoate (cadmium acetate); (C₂H₃O₂)₂Cd; [543-90-8] Rubidium ethanoate (rubidium acetate); (C₂H₃O₂)Rb; [563-67-7] 	Nadirov, E.G.; Bakeev, M.I. Tr. KhimMetall. Inst. Akad. Nauk Kaz. SSR 1974, 25, 129-141.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
t/ ^o C T/K ^a 100x ₂	
236 509 40 233 506 50 231 504 60 228 501 65 217 490 70 215 488 75 206 479 80 192 465 84.1 179 452 86 198 471 87 214 487 90 231 504 95 237 510 100 ^a T/K values calculated by the compiler. Characteristic point: Eutectic, E, at 179 °C (visual polythermal method, initial crystallization), or 145 °C (fusion temperature by thermographical analysis), or 169 °C (fusion temperature by conductometry), and $100x_2^{=}$ 86 (authors). Intermediate compound: $(C_2H_3O_2)_4CdRb_2$, polythermal method), 192 °C (thermographical	incongruently melting at 219 °C (visual analysis), or 206 °C (conductometry).
Note - The system has been investigated at 40	$\leq 100 \mathbf{x}_2 \leq 100.$
AUXILIARY I	NFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Visual polythermal method; temperatures measured with a Chromel-Alumel thermocouple and a PP potentiometer. Additional investigations were performed by means of thermographical analysis and electrical conductometry.	Not stated.
NOTE:	
The occurrence of intermediate compounds in the binaries $C_{2H_3O_2}/Cd$, K and $C_{2H_3O_2}/Cd$, Cs was claimed by the same authors in the same paper, and supported with X-ray diffraction patterns: for the present system, on the contrary, no analogous evidence was given. Moreover, the exceedingly large differences among the eutectic temperatures obtained with different techniques is to be stressed.	ESTIMATED ERROR: Temperature: accuracy probably <u>+</u> 2 K (compiler). REFERENCES:
NOTE: The occurrence of intermediate compounds in the binaries C ₂ H ₃ O ₂ /Cd, K and C ₂ H ₃ O ₂ /Cd, Cs was claimed by the same authors in the same paper, and supported with X-ray diffraction patterns: for the present system, on the contrary, no analogous evidence was given. Moreover, the exceedingly large differences among the eutectic temperatures obtained with different techniques is to be stressed.	ESTIMATED ERROR: Temperature: accuracy probably <u>+</u> 2 1 (compiler). REFERENCES:

COMPONENTS:	EVALUATOR:
 (1) Cesium ethanoate (cesium acetate)	Schiraldi, A.,
(C ₂ H ₃ O ₂)Cs; [3396-11-0] (2) Potassium ethanoate (potassium acetate)	Dipartimento di Chimica Fisica,
(C ₂ H ₃ O ₂)K; [127-08-2]	Universita´ di Pavia (ITALY).

Results on this binary have been repeatedly reported by Diogenov et al. (Refs. 1-3) as a part of their investigations on ternary and reciprocal ternary systems. These authors, who carried out visual polythermal observations on the liquidus, define the system as of the eutectic type with the invariant at either 405 K (132 °C; Ref. 1), or 403 K (130 °C; Ref. 2), or 413 K (140 °C; Ref. 3), and $100x_2 = 28.5$. It is not clear whether the different eutectic temperatures given in Refs. 1-3 come from different sets of measurements or depend on adjustments suggested by the general topology of the particular ternary studied in each paper. A knee in the liquidus branch richer in component 1 (Ref. 1) has been interpreted by these authors as due to a phase transition occurring in this salt at 447 K (174 °C). Diogenov et al. also claimed in a previous paper (Ref. 4) the occurrence in component 2 of a phase transition at 565-566 K (292-293 °C).

The DTA investigations by Storonkin et al. (Ref. 5) give further support to the fact that the system is of the eutectic type although the temperature (412 K) and composition $(100x_2 = 32)$ of the invariant have been singled out by extrapolation of the two liquidus branches. According to Fig. 3 of the original paper (Ref. 5), the authors assume that the eutectic equilibrium covers the composition range from $100x_2 = 0$ to $100x_2 = 100$. They do not mention, however, the occurrence of any allotropic transition in either component: according to Table 1 this ought to be correct for what concerns component 1, whereas component 2 ought to undergo a phase transition at 422.2+0.5 K.

Storonkin et al. (Ref. 5) ascribe the differences between their and Diogenov et al.'s diagram to the higher purity of the salts they employed: indeed, the fusion temperature they report for component 1 $[T_{fus}(1)/K = 467]$ is much closer to that listed in Table 1 of the Parface (46211) and the fusion temperature they are the fusion temperature the salts they are the salts the salts they are the salts they are the salts they are the salts they are the salts the salts they are the salts the salts the salts they are the salts the of the Preface (463+1) than that given by Diogenov et al. (453).

As a conclusion, the following remarks should be taken into account.

(1) The phase transition temperature reported for cesium ethanoate by Diogenov et al. seems to be unreliable.

(ii) The phase transition temperature reported for potassium ethanoate in Ref. 4 (565-566 K) seems also to be unreliable, as it cannot be identified with any transition temperature found by other investigators (Ref. 6).

(iii) The eutectic temperature reported by Storonkin et al., viz., 412 K, seems satisfactorily supported by their DTA results, as well as the trend of the liquidus branch richer in cesium ethanoate. On the contrary, there is some doubt about the reliability of the other liquidus branch which, according to these authors, does not show any "knee" to be possibly matched with the expected (see above) phase transition of potassium ethanoate. Consequently, the eutectic composition (attained by extrapolation of the liquidus branches) cannot be considered more reliable than that reported by Diogenov.

(iv) Finally, the complete immiscibility in the solid state should be more carefully verified, e.g., by further DTA or DSC investigations extended to extreme compositions.

- (1) Nurminskii, N.N. and Diogenov, G.G.; Zh. Neorg. Khim. <u>1960</u>, 5, 2084-2087; Russ. J.
- Inorg. Chem. (Engl. Transl.) 1960, 5, 1011-1013 (*). (2) Diogenov, G.G. and Sergeeva, G.S.; Zh. Neorg. Khim. 1965, 10, 292-294; Russ. J. Inorg. Chem. (Engl. Transl.) 1965, 10, 153-154 (*).
- (3) Diogenov, G.G. and Morgen, L.T.; Fiz.-Khim. Issled. Rasplavov Solei, Irkutsk 1975, 59-61.
- (4) Diogenov, G.G.; Nurminskii, N.N. and Gimel'shtein, V.G.; Zh. Neorg. Khim. 1957, 2, 1596-1600; Russ. J. Inorg. Chem. (Engl. Transl.) 1957, 2(7), 237-245.
- (5) Storonkin, A.V.; Vasil'kova, I.V. and Tarasov, A.A.; Vestn. Leningr. Univ., Fiz., Khim. 1977, (4), 80-85.
- (6) Sanesi, M.; Cingolani, A.; Tonelli, P.L.; Franzosini, P.; Thermal Properties, in Thermodynamic and Transport Properties of Organic Salts, IUPAC Chemical Data Series No. 28 (Franzosini, P.; Sanesi, M.; Editors), Pergamon Press, Oxford 1980, 29-115.

COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Cesium ethanoate (cesium acetate); (C₂H₃O₂)Cs; [3396-11-0] (2) Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] 	Diogenov, G.G.; Sergeeva, G.S. Zh. Neorg. Khim. 1965, 10, 292-294; Russ. J. Inorg. Chem. (Engl. Transl.) 1965, 10, 153-154 (*).
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
The authors refer to Ref. 1 for the experimentation of the temperature.	mental values, although giving a different
Characteristic point(s):	
Eutectic, E, at 130 $^{\circ}$ C and 100 x_2 = 28.5 (authorse	ors).
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Visual polythermal method. Temperatures measured with a Chromel-Alumel thermocouple.	Not stated. Component 1: $t_{fus}(1)/^{\circ}C= 180$ (Fig. 1 of the original paper). Component 2: $t_{fus}(2)/^{\circ}C= 310$ (Fig. 1).
	ESTIMATED ERROR:
	(compiler).
	REFERENCES :
	(1) Nurminskii, N.N.; Diogenov, G.G. Zh. Neorg. Khim. 1960, 5, 2084-2087; Russ. J. Inorg. Chem., (Engl. Transl.) 1960, 5, 1011-1013.
1	

COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Cesium ethanoate (cesium acetate); (C₂H₃O₂)Cs; [3396-11-0] (2) Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] 	Diogenov, G.G.; Morgen, L.T. FizKhim. Issled. Rasplavov Solei, Irkutsk, <u>1975</u> , 59-61.
VARIABLES:	PREPARED BY:
Temperature.	Baldini. P.
EXPERIMENTAL VALUES:	
The authors refer to Ref. 1 for the experimenter of the experimenter of the temperature.	ental values, although giving a different
Characteristic point(s):	
Eutectic, E, at 140 °C and 100 \mathbf{x}_1 = 71.5 (authors	ors).
-	•
AUXILIARY I	NFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Visual polythermal method. Temperatures measured with a Chromel-Alumel thermocouple and a millivoltmeter.	Not stated. Component 1: t _{fus} (1)/ ⁰ C= 187 (Fig. 1 of the original paper).
	Component 2: $t_{fus}(2)/C=308$ (Fig. 1).
	ESTIMATED EDDOR.
	(compiler).
	REFERENCES:
	(1) Nurminskii, N.N.; Diogenov, G.G. Zh. Neorg. Khim. 1960, 5, 2084-2087; Russ. J. Inorg. Chem. (Engl. Transl.)
	1960, 5, 1011-1013.

COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Cesium ethanoate (cesium acetate); (C₂H₃O₂)Cs; [3396-11-0] (2) Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] 	Storonkin, A.V.; Vasil [*] kova, I.V.; Tarasov, A.A. Vestn. Leningr. Univ., Fiz., Khim. <u>1977</u> , (4), 80-85.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.

EXPERIMENTAL VALUES:

Data reported only in graphical form (see figure).

Characteristic point(s):

Eutectic, E, at 412 K and $100x_1 = 68$ (authors).

AUXILIARY INFORMATION SOURCE AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: DTA and "contact polythermal method" under Component 1 synthetized from Cs_2CO_3 and polarized light. IR spectra were also used ethanoic acid (T_{fus}(1)/K= 467; authors). Component 2 of analytical pur: to state the existence of intermediate Component 2 of analytical purity recrystallized twice from water and dried compound(s). under vacuum ($T_{fus}(2)/K = 584$; authors). The purity of both components was checked by thermographical analysis. The mixtures were prepared in a glove box. ESTIMATED ERROR: Temperature: probably +2 K accuracy (compiler). **REFERENCES:**

COMPONENTS:	EVALUATOR:
 (1) Cesium ethanoate (cesium acetate);	Franzosini, P.,
(C ₂ H ₃ O ₂)Cs; [3396-11-0] (2) Lithium ethanoate (lithium acetate);	Dipartimento di Chimica Fisica,
(C ₂ H ₃ O ₂)Li; [546-89-4]	Universita´ di Pavia (ITALY).

This binary was first studied as a side of the ternary $C_{2H_3O_2}/Cs$, Li, Rb (Ref. 1), and re-determined by the same group ten years later (Ref. 2). Due to more accurate experimental methods (DTA and X-ray diffractometry) employed in the latter paper (Ref. 2), the phase diagram therein shown seems much more reliable than the previous one (Ref. 1).

Accordingly, the system is to be considered as characterized (Ref. 2) by the occurrence of a single intermediate compound, $(C_{2}H_{3}O_{2})_{3}CsLi_{2}$, congruently melting at 563 K (290 °C), and by two eutectics, at 420 K (147 °C) and $100x_{1}$ = 77, and at 520 K (247 °C) and $100x_{1}$ = 12, respectively.

The main difference of this phase diagram with respect to that presented in the previous work (Ref. 1) is the lack of a further intermediate compound, $(C_{2H_3O_2})_2C_{SLi}$ (incongruently melting). Consequently to this lack, however, a large part of the phase diagram of the ternary $C_{2H_3O_2}/C_S$, Li, Rb (Ref. 1) ought to be redrawn, which, at the present time has not been done, at least as far as the evaluator knows.

The fusion temperatures of component 1 and component 2 as given in Refs. 1, 2 (458-459 K, and 561-563 K, respectively) are not far from those listed in Table 1 of the Preface (463+1 K, and 557+2 K, respectively). Moreover, no mention is made of the occurrence of phase transitions in either component, which is again in agreement with Table 1 of the Preface, although in disagreement with the fact that in other papers by the same group (see, e.g., Ref. 3) component 1 is described as undergoing a phase transition at 477 K (174 $^{\circ}$ C).

- (1) Diogenov, G.G.; Sarapulova, I.F. Zh. Neorg. Khim. <u>1964</u>, 9, 482-487; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1964</u>, 9(2), 265-267.
- (2) Sarapulova, I.F.; Kashcheev, G.N.; Diogenov, G.G. Nekotorye Vopr. Khimii Rasplavlen. Solei i Produktov Destrusktii Sapropelitov, Irkutsk <u>1974</u>, 3-10.
- (3) Nurminskii, N.N.; Diogenov, G.G.
 Zh. Neorg. Khim. 1960, 5, 2084-2087; Russ. J. Inorg. Chem. (Engl. Transl.) 1960, 5, 1011-1013 (*).

COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Cesium ethanoate (cesium acetate); (C₂H₃O₂)Cs; [3396-11-0] (2) Lithium ethanoate (lithium acetate); (C₂H₃O₂)Li; [546-89-4] 	Diogenov, G.G.; Sarapulova, I.F. Zh. Neorg. Khim. <u>1964</u> , 9, 482-487; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1964</u> , 9(2), 265-267 (*).
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
$t/^{\circ}C T/K^{a} 100x_{2} t/^{\circ}C T/K^{a} 100x_{2}$	
185 458 0 247 520 44.0 182 455 2.5 261 534 47.0 175 448 7.0 271 544 50.0 163 436 12.5 282 555 55.0 147 420 19.5 288 561 59.5 140 413 24.5 292 565 64.5 160 433 26.5 292 565 70.0 170 443 27.5 283 556 75.5 184 457 29.5 270 543 81.5 196 469 32.0 250 523 86.5 208 481 34.0 250 523 90.0 219 492 36.5 267 540 93.0 230 503 40.0 279 552 96.5 232 505 42.0 290 563 100.0 238 511 43.5 a T/K values calculated by the compiler. Characteristic point(s): Eutectic, E_1 , at 135 °C and $100x_1 = 76$ (auth Peritectic, P , at 233 °C and $100x_1 = 12$ (author Intermediate compound(s): $(C_2H_3O_2)_2CsLi$, incongruently melting. $(C_2H_3O_2)_3CsLi_2$, congruently melting at 293 °	ors). hors). C (according to the text and Fig. 2 of the
AUXILIARY I	NFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Visual polythermal method. Temperatures measured by means of a Chromel-Alumel thermocouple.	Not stated.
	ESTIMATED ERROR:
	Temperature: accuracy probably +2 K (compiler).
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Cesium ethanoate (cesium acetate); (C₂H₃O₂)Cs; [3396-11-0] (2) Lithium ethanoate (lithium acetate); (C₂H₃O₂)L1; [546-89-4] 	Sarapulova, I.F.; Kashcheev, G.N.; Diogenov, G.G. Nekotorye Vopr. Khimii Rasplavlen. Solei i Produktov Destruktsii Sapropelitov, Irkutsk, <u>1974</u> , 3-10.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
$t/^{o}C T/K^{a} 100x_{1} t/^{o}C T/K^{a} 100x_{1}$	
288 561 0 275 ^{bc} 548 50 284 ^{bc} 557 0 147 ^{bd} 420 50 253 526 10 247 520 55 252 ^{bc} 525 10 147 ^{bd} 420 55 247 ^{be} 520 10 182 455 70 268 541 20 172 ^{bc} 445 70 267 ^{bc} 540 20 148 ^{bd} 421 70 247 ^{be} 520 20 147 420 80 283 556 25 147 ^{bd} 420 80 283 ^{bc} 556 25 156 ^{bc} 429 85 246 ^{be} 519 25 147 ^{bd} 420 85 293 566 33 186 459 100 290 ^{bc} 563 33 185 ^{bc} 458 100 273 546 50 35 ^f 308 100 ^a T/K values calculated by the compiler. ^b Differential thermal analysis (filled circl c Initial fusion. ^d Eutectic stop (E ₁). ^e Eutectic stop (E ₂). ^f Solid state transition. Characteristic points: Eutectic, E ₁ , at 147 0 Eutectic, E ₂ , at 247 0	es C and $100x_1 = 77.0$ (authors). C and $100x_1 = 12.0$ (authors). ently melting at 293 °C (290 °C by DTA).
AUXILIARY I	NFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A thermographical analysis was performed with a Kurnakov pyrometer mod. 1959 (reference material: Al_2O_3). Only heating traces (at the heating rate of 5-6 °C/min) were recorded due to the tendency of the melts to undercool. Supplementary visual polythermal observations are also tabulated. X-ray diffraction patterns were used to obtain information on the intermediate compound.	Not stated. Component 1 undergoes a phase transition at t _{trs} (1)/ ⁰ C = 35.
	ESTIMATED ERROR:
	Temperature: accuracy probably <u>+</u> 2 K (compiler).
	REFERENCES:

COMPONENTS:	EVALUATOR:	
 (1) Cesium ethanoate (cesium acetate); (C₂H₃O₂)Cs; [3396-11-0] (2) Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] 	Schiraldi, A., Dipartimento di Chimica Fisica, Universita´ di Pavia (ITALY).	
CRITICAL EVALUATION:	L	
This binary was first investigated as a side of the ternary $C_{2H_3O_2}/Cs$, Na, Rb by Diogenov and Sarapulova (Ref. 1), who reported a eutectic at 388 K (115 °C) and $100x_1 = 68$, on the basis of visual polythermal observations.		
The liquidus by these authors shows a knee at about 585 K and $100x_1$ about 5, which might be identified with the phase transition of $(C_2H_3O_2)$ Na reported by Diogenov at 596 K (323 °C; Ref. 2), and by Gimel'shtein and Diogenov at 583-584 K (310-311 °C; Ref. 3). However, such figures do not meet any of the high temperature T_{trs} values by other authors (Ref. 4), which range between 511-513 and 527+15 K.		
Substantially analogous results, including the knee (for which no explanation is offered), have been reported also by Storonkin et al. (Ref. 5) for the liquidus branch richer in component 2. The other branch by these authors, however, lies significantly above the corresponding curve by Diogenov and Sarapulova: the difference has been attributed by Storonkin et al. to the higher purity of the cesium ethanoate they employed. According to the latter authors (Ref. 5), who carried out DTA determinations through		
most of the composition range, the eutectic temperature is 392 K, and the eutectic composition (which was obtained by extrapolation, due to the tendency to undercool of the melts of composition close to x_E) is $100x_1 = 64$.		
In the opinion of the evaluator, the followin	g points should be remarked.	
(1) Neither Ref. 1 nor Ref. 5 report the phase transition of sodium ethanoate observed by other authors (Ref. 4) at 510-530 K, i.e., well above the eutectic temperature of the binary.		
(11) No comment is explicitely made in either work on the apparent knee of the liquidus branch richer in component 2.		
(iii) No experimental support is given to rule out the occurrence of solid solutions in the regions of the phase diagram close to the pure components.		
 (iv) The phase transition of cesium ethan (Ref. 6) at 447 K is neither confirmed nor (Ref. 1) by the same group. 	oate observed by Nurminskii and Diogenov mentioned in the present investigation	
Accordingly, it seems justified to cast some doubts about the reliability of the upper part of the liquidus branch richer in component 2, whereas the eutectic temperature $(390+2 \text{ K})$ and composition $(100x_2 = 66+2)$ seem satisfactorily supported by the data available.		
REFERENCES:		
 Diogenov, G.G.; Sarapulova, I.F. Zh. Neorg. Khim. <u>1964</u>, 9, 1499-1502; 9,814-816. Diogenov, G.G. 	Russ. J. Inorg. Chem. (Engl. Transl.) 1964,	
Zh. Neorg. Khim. <u>1956</u> , 1(4), 799-805; 1(4), 199-205.	Russ. J. Inorg. Chem. (Engl. Transl.) 1956,	
 (3) Gimel'shtein, V.G.; Diogenov, G.G. Zh. Neorg. Khim. <u>1958</u>, 3, 1644-49; 3(7), 230-236. 	Russ. J. Inorg. Chem. (Engl. Transl.) 1958,	
(4) Sanesi, M.; Cingolani, A.; Tonelli, P.L.; Thermal Properties, in Thermodynamic a IUPAC Chemical Data Series No. 28 (Franz Press, Oxford, <u>1980</u> , 29-115.	Franzosini, P. nd Transport Properties of Organic Salts, osini, P.; Sanesi, M.; Editors), Pergamon	
(5) Storonkin, A.V.; Vasil'kova, I.V. and Tar Vestn. Leningr. Univ., Fiz., Khim. <u>1977</u> ,	asov, A.A. (4), 80-85.	

 ⁽⁶⁾ Nurminskii, N.N. and Diogenov, G.G.
 Zh. Neorg. Khim. <u>1960</u>, Z, 2084-2087; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1960</u>, 5, 1011-1013.

COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Cesium ethanoate (cesium acetate); (C₂H₃O₂)Cs; [3396-11-0] (2) Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] 	Storonkin, A.V.; Vasil'kova, I.V.; Tarasov, A.A. Vestn. Leningr. Univ., Fiz., Khim. 1977, (4), 80-85.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
	•

EXPERIMENTAL VALUES:

Data presented only in graphical form (see figure).

Characteristic point(s):

Eutectic, E, at 392 K and $100x_1 = 64$ (authors).

Note - Undercooling does not allow one to draw the liquidus with accuracy at compositions close to the eutectic.

AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
DTA and "contact polythermal method" under polarized light. IR spectra were also used to state the existence of intermediate compound(s).	Component 1 synthetized from Cs_2CO_3 and ethanoic acid $(T_{fus}(1)/K=467; authors)$. Component 2 of analytical purity recrystallized twice from water and dried under vacuum $(T_{fus}(2)/K=607; authors)$. The purity of both components was checked by thermographical analysis. The mixtures were prepared in a glove box.
	ESTIMATED ERROR:
	Temperature: accuracy probably +2 K (compiler).
	REFERENCES:

COMPONENTS:	EVALUATOR:
 (1) Cesium ethanoate (cesium acetate);	Schiraldi, A.,
(C ₂ H ₃ O ₂)Cs; [3396-11-0] (2) Rubidium ethanoate (rubidium acetate);	Dipartimento di Chimica Fisica,
(C ₂ H ₃ O ₂)Rb; [563-67-7]	Universita´ di Pavia (ITALY).

This binary was studied as a side of the ternary $C_{2H_3O_2/Cs}$, Na, Rb (Ref. 1), and of the reciprocal ternary Cs, $Rb/C_{2H_3O_2}$, NO₂ (Ref. 2), respectively.

Both papers give substantially analogous results, i.e., a liquidus with a minimum at 446 K (173 °C) and $100x_1 = 72$ (Ref. 1), and at 445 K (172 °C) and $100x_1 = 71$ (Ref. 2), respectively. It is, however, not clear whether the slight differences in the coordinates of the minimum as given in Ref. 1 and Ref. 2, respectively, come from different sets of determinations, or from a suitable adjustment improving the overall presentation of the ternary involved. It is also to be remarked that, although coming from the same group, a significant difference exists between the $T_{\rm fus}(2)$ values given in Ref. 1 (453.2 K) and Ref. 2 (460 K), the corresponding value given in Table 1 being 463±1 K.

Moreover, in neither paper the phase transition of rubidium ethanoate, occurring at either 489-493 K (Ref. 3), or 498<u>+</u>1 (Preface, Table 1) is explicitely mentioned, although, e.g., it might reasonably justify the knee observed at about 498 K (Ref. 1) in the liquidus branch richer in component 2.

The inspection of the liquidus of both ternaries mentioned above strongly supports the occurrence of solid solutions in the $C_{2H_3}O_2/Cs$, Rb side binary. However, the limits of the T, \mathbf{x}_2 field covered in the binary by these solutions seem poorly defined, in particular for what concerns the compositions close to pure component 2, and for temperatures close to the transition temperature of this salt. Thence, in the evaluator's opinion, an investigation of the solidus would be desirable, in order to attain more satisfactory information about these points.

- (1) Diogenov, G.G.; Sarapulova, I.F.
 Zh. Neorg. Khim. <u>1964</u>, 9, 1499-1502; Russ. J. Inorg. Chem. (Engl. Transl.)<u>1964</u>, 9, 814-816.
- (2) Diogenov, G.G.; Morgen, L.T. Fiz.-Khim. issled. Rasplavov Solei, Irkutsk, 1975, 62-64.
- (3) Gimel'shtein, V.G.; Diogenov, G.G.
 Zh. Neorg. Khim. 1958, 3, 1644-1649; Russ. J. Inorg. Chem. (Engl. Transl.) 1958, 3(7), 230-236.

COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Cesium ethanoate (cesium acetate); (C₂H₃O₂)Cs; [3396-11-0] (2) Rubidium ethanoate (rubidium acetate); (C₂H₃O₂)Rb; [563-67-7] 	Diogenov, G.G.; Sarapulova, I.F. Zh. Neorg. Khim. <u>1964</u> , 9, 1499-1502 (*); Russ. J. Inorg. Chem. (Engl. Transl.) <u>1964</u> , 9, 814-816.
VARIABLES:	PREPARED BY:
Temperature.	Baldini. P.
EXPERIMENTAL VALUES:	
t/ ^o C T/K ^a 100 x ₁	U
240.0 ^b 513.2 0 232.5 505.7 3.5 226.5 499.7 5.3 224.4 497.6 8.5 223.0 496.2 14.0 216.5 489.7 21.0 208.0 481.2 27.5 202.0 475.2 33.5 197.0 470.2 40.0 190.0 463.2 47.2 185.0 458.2 53.5 180.0 453.2 60.0 175.0 448.2 66.5 172.5 445.7 71.7 173.7 446.9 77.0 175.0 448.2 82.5 177.5 450.7 87.5 179.0 452.2 93.0 180.0 453.2 100.0 ^a T/K values calculated by the compiler. ^b 238 in Fig. 1 of the original paper (compiled)	$\frac{1}{180} - \frac{1}{(C_2H_3O_2)Rb} - \frac{100x_1}{(C_2H_3O_2)C_5}$
Continuous series of solid solutions with a (authors).	minimum, m, at 173 ^o C and 100x ₁ about 72
AUXILIARY I	NFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Visual polythermal method; temperatures measured with a Chromel-Alumel thermocouple.	"Chemically pure" materials, recrystallized twice and dehydrated by prolonged heating (Ref. 1).
	ESTIMATED ERROR:
	Temperature: accuracy probably <u>+</u> 2 K (compiler).
	REFERENCES:
	 (1) Diogenov, G.G.; Sarapulova, I.F. Zh. Neorg. Khim. 1964, 9, 1292-1294; Russ. J. Inorg. Chem. (Engl. Transl.) 1964, 9, 704-706.

	······································
COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Cesium ethanoate (cesium acetate); (C₂H₃O₂)Cs; [3396-11-0] (2) Rubidium ethanoate (rubidium acetate); (C₂H₃O₂)Rb; [563-67-7] 	Diogenov, G.G.; Morgen, L.T. FizKhim. Issled. Rasplavov Solei, Irkutsk, <u>1975</u> , 62-64.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
Characteristic point(s):	
Continuous series of solid solutions with a about 71 (compiler).	minimum, m, at 172 °C (authors) and $100x_1$
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Visual polythermal method; temperatures measured with a Chromel-Alumel thermo couple.	Not stated. Component 1: $t_{fus}(1)/^{\circ}C \approx 187$. Component 2: $t_{fus}(2)/^{\circ}C = 238$.
	ESTIMATED ERROR:
	Temperature: accuracy probably +2 K (compiler).
	REFERENCES:
	<u> </u>

	·····
COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Cesium ethanoate (cesium acetate); (C₂H₃O₂)Cs; [3396-11-0] (2) Zinc ethanoate (zinc acetate); (C₂H₃O₂)₂Zn; [557-34-6] 	Pavlov, V.L.; Golubkova, V.V. Visn. Kiiv. Univ., Ser. Khim., Kiev, 1972, No. 13, 28-30.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
The results are reported only in graphical form (see figure).	250 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
Characteristic point(s):	
Eutectic, E_1 , at 140 °C and 100 x_2 = 20 (authors). Eutectic, E_2 , at 104 °C and 100 x_2 = 45 (authors).	
Note - Glasses form at $50 \leq 100 \mathbf{x}_2 \leq 60$.	
Intermediate compound(s):	
$(C_2H_3O_2)_4Cs_2Zn$, congruently melting at 190 °(; (authors).
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The visual polythermal method as well as time-temperature curves were employed. The temperatures were measured with a Chromel-Alumel thermocouple checked at the freezing temperatures of Zn, $K_2Cr_2O_7$, Cd, Sn, and benzoic acid.	Component 1: obtained by reacting Cs_2CO_3 and ethanoic acid, and kept in a dessiccator in the presence of P_2O_5 until constant mass. Component 2: $(C_2H_3O_2)_2Zn.2H_2O$ of analytical purity dried to constant mass at 110 °C.
The formation of glasses in this system	
seems likely. Accordingly, one should expect marked undercooling over a large composition range which would make the results of visual polythermal observations less reliable than usual. The lack of any further experimental evidence (e.g., from X-ray diffractometry) justifies casting doubts about the actual existence of the intermediate compound(s).	ESTIMATED ERROR: Temperature: accuracy probably <u>+2 K</u> (compiler). REFERENCES:

COMPONENTS:	EVALUATOR:
 Potassium ethanoate (potassium acetate);	Spinolo, G.,
(C ₂ H ₃ O ₂)K; [127-08-2] Lithium ethanoate (lithium acetate);	Dipartimento di Chimica Fisica,
(C ₂ H ₃ O ₂)Li; [546-89-4]	Universita [~] di Pavia (ITALY).

The system potassium ethanoate - lithium ethanoate was investigated by Diogenov (visual polythermal analysis, 1956: Pochtakova (visual polythermal Ref. 1), analysis, 1965; Ref. 2), Sokolov and (visual polythermal analysis, Tsindrik supplemented with DTA, 1969; Ref. 3), and Gimel'shtein (DTA, supplemented with X-ray 1970, 1971; patterns, Refs. 4, 5, respectively).

Phase transitions are reported at 571 K (298 °C) by Diogenov (Ref. 1), at 331 and 428 K (58 and 155 °C, respectively) by Sokolov (Ref. 6, quoted in Refs. 2, 3), and at 428 K (155 °C) by Gimel'shtein (Ref. 5) for component 1; at 540 K (267 °C) by Diogenov (Ref. 1), and at 405 K (132 °C) by Gimel'shtein (Ref. 5) for component 2. In Table 1 of the Preface mention is made of a transition at 422.2+0.5 K for component 1, whereas no transition is reported for component 2.

Diogenov (Ref. 1) investigated the binary concerned here as a side system of the ternary $C_{2H_3O_2/K}$, Li, Na, and claimed the existence of two congruently melting intermediate compounds, i.e., $(C_{2H_3O_2})_2$ KLi and $(C_{2H_3O_2})_3$ KLi₂, respectively. The existence of the former, inferred by Diogenov from discontinuities observed in the liquidus of the binary itself and of two internal cuts of the ternary, was denied by all subsequent authors. In particular, no evidence of the existence of a crystallization field attributable to a 1:1 compound was found either by Pochtakova (Ref. 2) in her re-investigation of the ternary $C_{2}H_{3}O_{2}/K$, Li, Na, or by Sokolov and Tsindrik (Ref. 3), and Gimel'shtein (Ref. 4) in their studies of the topology of the reciprocal ternary K, $Li/C_{2H_3O_2}$, NO₃. The thermographical traces recorded by Gimel'shtein (and detailed in Ref. 5) support satisfactorily the assertion that in the mixtures of potassium and lithium ethanoates only the intermediate compound $(C_{2H_3O_2})_3 KLi_2$ does form, which melts congruently at 547+2 K (Refs. 2, 4, 5), and gives eutectics with each of the component salts.

In the figure, the visual data by Pochtakova (Ref. 2) are plotted, along with the thermographical ones obtained by Gimel'shtein (Ref. 5) to give a comprehensive and reasonably reliable representation of the liquidus, solidus, and subsolidus. The main discrepancies between the two authors occur in the fusion temperatures of the pure components:

T_{fus}(1)/K= 575, 585 (Refs. 2, 5, respectively);

 $T_{fus}(1)/K=557$, 565 (Refs. 2, 5, respectively). The more correct probably are those reported in Ref. 2, which are closer to $T_{fus}(1)/K=578.7\pm0.5$, and $T_{fus}(2)/K=557\pm2$, reported in Table 1 of the Preface. These discrepancies, however, do not affect substantially the overall features of the phase diagram.

- (1) Diogenov, G.G.; Zh. Neorg. Khim. <u>1956</u>, 1, 2551-2555 (*); Russ. J. Inorg. Chem. (Engl. Transl.) <u>1956</u>, 1(11), 122-126.
- (2) Pochtakova, E.I.; Zh. Neorg. Khim. <u>1965</u>, 10, 2333-2338 (*); Russ. J. Inorg. Chem. (Engl. Transl.) <u>1965</u>, 10, 1268-1271.
 (3) Sokolov, N.M.; Tsindrik, N.M.; Zh. Neorg. Khim. <u>1969</u>, 14, 584-590 (*); Russ. J. Inorg. Chem., (Engl. Transl.) <u>1969</u>, 14, 302-306.
 (4) Gimel shtein, V.G.
- Symposium, "Fiziko-Khimicheskii Analiz Solevykh Sistem", Irkutsk, 1970, 39-45. (5) Gimel'shtein, V.G.
- Tr. Irkutsk. Politekh. Inst. 1971, No. 66, 80-100.
- (6) Sokolov, N.M. Tezisy Dokl. X Nauch. Konf. S.M.I. 1956.

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] Lithium ethanoate (lithium acetate); (C₂H₃O₂)Li; [546-89-4] 	Diogenov, G.G. Zh. Neorg. Khim. 1956, 1, 2551-2555 (*); Russ. J. Inorg. Chem. (Engl. Transl.) 1956, 1(11), 122-126.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
$t/^{o}C T/K^{a} 100x_{2} t/^{o}C T/K^{a} 100x_{2}$	v
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \sum_{j=0}^{2} \sum_{i=1}^{300} \sum_{j=1}^{300} \sum_{i=1}^{300} \sum$
AUXILIARY I	NFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND FURITY OF MATERIALS:
Visual polythermal method; temperatures measured with a Chromel-Alumel thermocouple.	"Chemically pure" materials, recrystallized twice and dehydrated by prolonged heating. Components 1 and 2 undergo phase transitions at $t_{trs}(1)/^{0}C=298$ and $t_{trs}(2)/^{0}C=267$, respectively, according to Fig. 1 of the original paper (compiler).
	ESTIMATED ERROR:
	Temperature: accuracy probably <u>+</u> 2 K (compiler).
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:	
 (1) Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] (2) Lithium ethanoate (lithium acetate); (C₂H₃O₂)L1; [546-89-4] 	Sokolov, N.M.; Tsindrik, N.M. Zh. Neorg. Khim. <u>1969</u> , 14, 584-590 (*); Russ. J. Inorg. Chem. (Engl. Transl.) <u>1969</u> , 14, 302-306.	
VARIABLES:	PREPARED BY:	
Temperature	Baldini. P.	
EXPERIMENTAL VALUES:		
The results are reported only in graphical form (see figure). Characteristic point(s): Eutectic, E_1 , at 197 °C and $100x_1 = 62$ (author Eutectic, E_2 , at 234 °C and $100x_1 = 13$ (author Intermediate compound(s):	$(C_{2}H_{3}O_{2})K = (C_{2}H_{3}O_{2})L_{1}$	
(C ₂ H ₃ O ₂) ₃ KL1 ₂ , congruently melting (authors).		
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Visual polythermal method, supplemented with differential thermal analysis.	Commercial materials recrystallized. Component 1 undergoes phase transitions at $t_{trs}(1)/^{\circ}C=58$, 155 (Ref. 1) and melts at $t_{fus}(1)/^{\circ}C=301$. Component 2 melts at $t_{fus}(2)/^{\circ}C=284$.	
	ESTIMATED ERROR:	
	Temperature: accuracy probably <u>+</u> 2 K (compiler).	
	REFERENCES: (1) Sokolov, N.M. Tezisy Dokl. X Nauch. Konf. S.M.I. 1956.	

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] Lithium ethanoate (lithium acetate); (C₂H₃O₂)L1; [546-89-4] 	Gimel'shtein, V.G. Symposium, ["] Fiziko-Khimicheskii Analiz Solevykh Sistem", Irkutsk, <u>1970</u> , 39-45.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
Characteristic point(s):	
Eutectic, E_1 , at 197 ^O C and $100x_2 = 37.5$ (author). Eutectic, E_2 , at 234 ^O C and $100x_2 = 87$ (author).	
Intermediate compound(s):	
$(C_{2H_{3}O_{2}})_{3}$ KLi ₂ , congruently melting at 275 °C, and undergoing a phase transition at 65 °C (author).	
AUXILIARY I	NFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Thermographical analysis.	Not stated
Thermographical analysis.	Component 2 undergoes a phase transition at $t_{trs}(2)/^{o}C= 132$.
	ESTIMATED ERROR:
	Temperature: accuracy probably <u>+2</u> K (compiler).
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] Lithium ethanoate (lithium acetate); (C₂H₃O₂)L1; [546-89-4] 	Gimel'shtein, V.G. Tr. Irkutsk. Politekh. Inst. <u>1971</u> , No. 66, 80-100.
VARIARI FS.	PREPARED BY.
VARIADLES:	TREACED DI.
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
$t/^{\circ}C T/K^{a} 100x_{2} t/^{\circ}C T/K^{a} 100x_{2}$	
312 585 0 260 533 55.0	1
155 428 0 197 470 55 . 0	1
260 533 20.0 64 337 55.0	i .
196 469 20.0 260 533 75.0 157 430 20.0 224 507 75.0	
65 338 20.0 132 405 75.0	
225 498 42.5 66 339 75.0	,
198 471 42.5 275 548 95.0	
155 428 42.5 236 509 95.0	l de la constante de
65 338 42.5 132 405 95.0	
250 523 50.0 292 565 100	
63 336 50.0	
^a T/K values calculated by the compiler.	
The meaning of the data listed in the table reported in the critical evaluation.	becomes apparent by observing the figure
Characteristic point(s): Eutectic, E ₁ , at 197 °C and $100x_2$ 37.5 (author). Eutectic, E ₂ , at 237 °C (234 °C according to Fig. 4) and $100x_2$ 87.0 (author).	
Intermediate compound: (C ₂ H ₃ O ₂) ₃ KLi ₂ , congruently melting at 275 ^O C (author), and undergoing a phase transition at 65 ^O C (author).	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Differential thermal analysis (using a derivatograph with automatic recording of the heating curves) and room temperature X- ray diffractometry (using a URS-501M apparatus) were employed. NOTE: The coordinates of the characteristic points were stated by the author on the basis of his own DTA measurements, and of previous literature data (Refs. 1, 2). X-	Not stated. Component 1 melts at $t_{fus}(1)/{}^{0}C= 312$ (310 according to Fig. 4 of the original paper; compiler), and undergoes a phase transition at $t_{trs}(1)/{}^{0}C= 155$. Component 2 melts at $t_{fus}(2)/{}^{0}C= 292$ (291 according to Fig. 4 of the original paper; compiler), and undergoes a phase transition at $t_{trs}(2)/{}^{0}C= 132$.
ray patterns were taken at $100x_2 \approx 45$, 70.	ESTIMATED ERROR:
	Temperature: accuracy probably <u>+</u> 2 K (compiler).
	REFERENCES:
	 Pochtakova, E.I. Zh. Neorg. Khim. 1965, 10, 2333-2338. Sokolov, N.M.; Tsindrik, N.M. Zh. Neorg. Khim. 1969, 14, 584-590.

COMPONENTS:	EVALUATOR:	
 Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] 	Franzosini, P., Dipartimento di Chimica Fisica, Universita' di Pavia (ITALY).	
	<u> </u>	
CRITICAL EVALUATION:		
This system has been the most widely studied during the last 70 years. The opinions by the different authors are summarized hereafter.		
(1) <u>Baskov</u> (<u>1915</u> ; Ref. 1). $T_{fus}(1) = 568.2 \text{ K}$ (295.0 °C); $T_{fus}(2) = 593.2 \text{ K}$ (320.0 °C); continuous series of solid solutions with a minimum, m, at 496.2 K (223.0 °C) and $100x_2 = 46$ (method: thermal analysis; liquidus and solidus investigated).		
(2) Bergman; Evdokimova (1956; Ref. 2). $T_{fus}(1) = 575 \text{ K} (302 \text{ °C}); T_{fus}(2) = 599 \text{ K} (326 \text{ °C}); T_{trs}(2) = 527 \text{ K} (254 \text{ °C}); eutectic, E,$ at 497 K (224 °C) and 100 $x_2 = 45$ (method: visual polythermal analysis, supplemented with three DTA records; liquidus and solidus investigated).		
(3) <u>Diogenov; Erlykov (1958;</u> Ref. 3). $T_{fus}(1) = 583.5 \text{ K} (310.5 ^{\circ}\text{C});$ $T_{trs}(1) = 569 \text{ K} (296 ^{\circ}\text{C});$ $T_{fus}(2) = 610 \text{ K} (337 ^{\circ}\text{C});$ $T_{trs}(2) = 599 \text{ K} (326 ^{\circ}\text{C});$ continuous series of solid solutions with a minimum, m, at $501 \text{ K} (228 ^{\circ}\text{C})$ and $100 \text{ m}_2 = 45$ (method: visual polythermal analysis; liquidus only investigated).		
(4) <u>Golubeva; Bergman; Grigor'eva</u> (1958; Ref. Intermediate compound (C ₂ H ₃ O ₂) ₃ K ₂ Na, incong visual polythermal analysis).	4). ruently melting at 513 K (240 ^o C) (method:	
(5) Sokolov; Pochtakova (1958; Ref. 5). $T_{fus}(1) = 574 \text{ K (301 °C)}; T_{fus}(2) = 604 \text{ K (331}$ the authors from Ref. 2]; eutectic, E_1 , at E_2 , at 508 K (235 °C) and $100x_2 = 46.5$; congruently melting at 514 K (241 °C) (methodor) only investigated).	^o C); $[T_{trs} (2)= 527 \text{ K} (254 ^{\text{O}}\text{C});$ quoted by 513 K (240 $^{\circ}\text{C}$) and 100 $x_2=$ 38.5; eutectic, intermediate compound, (C ₂ H ₃ O ₂) ₅ K ₃ Na ₂ , d: visual polythermal analysis; liquidus	
(6) <u>Nesterova; Bergman</u> (1960; Ref. 6). $T_{fus}(1) = 579 \text{ K} (306 ^{\circ}\text{C}); T_{fus}(2) = 601 \text{ K} (328 100 \text{ m}_2 = 36.5; eutectic, E, at 505 \text{ K} (232 (C_2H_3O_2)_3K_2Na, incongruently melting (method: investigated).$	^o C); peritectic, P, at 511 K (238 ^o C) and ^o C) and $100x_2 = 50$; intermediate compound, visual polythermal analysis; liquidus only	
(7) <u>Il'yasov; Bergman (1960;</u> Ref. 7). $T_{fus}(1) = 579 \text{ K} (306 ^{\circ}\text{C}); T_{fus}(2) = 601 \text{ K} (328)$ $256 ^{\circ}\text{C}$) and $100x_2 = 35;$ eutectic, E, at 5 compound, $(C_2H_3O_2)_3K_2N_3$, incongruently mel liquidus only investigated).	^o C); peritectic, P, at 523-529 K (250- 13 K (240 ^o C) and $100x_2$ = 50; intermediate ting (method: visual polythermal analysis;	
(8) <u>Diogenov; Sarapulova</u> (<u>1964;</u> Ref. 8). $T_{fus}(1) = 583 \text{ K (310 °C);}$ $T_{fus}(2) = 608 K (333 (composition not reported); eutectic, E2, at intermediate compound, (C2H3O2)5K3Na2, cong analysis).$	5 ^O C); eutectic, E ₁ , at 513 K (240 ^O C) 508 K (235 ^O C) (composition not reported); ruently melting (method: visual polythermal	
(9) <u>Sokolov; Pochtakova</u> (<u>1967</u> ; Ref. 9). $T_{fus}(1) = 575 \text{ K} (302 ^{\circ}\text{C});$ $T_{fus}(2) = 604 \text{ K} (331 ^{\circ}\text{C});$ solid state transitions at 428 and 331 K (155 and 58 $^{\circ}\text{C}$) for component 1, at 511, 403, 391, and 331 K (238, 130, 118, and 58 $^{\circ}\text{C}$) for component 2; eutectic, E ₁ , at 513 K (240 $^{\circ}\text{C}$) and $100x_2 = 38.5$; eutectic, E ₂ , at 506 K (233 $^{\circ}\text{C}$) and $100x_2 = 46.5$; intermediate compound, (C ₂ H ₃ O ₂) ₅ K ₃ Na ₂ , congruently melting at 513-514 K (240-241 $^{\circ}\text{C}$) (method: thermographical analysis, supplemented with visual polythermal measurements and microscopic observations in polarized light).		
(10) <u>Diogenov; Chumakova</u> (<u>1975;</u> Ref. 10). $T_{fus}(1) = 575 K (302 °C);$ $T_{fus}(2) = 599 K (32)$ (composition not reported); eutectic, E, at intermediate compound, (C ₂ H ₃ O ₂) ₅ K ₃ Na ₂ , incong analysis).	6 ^o C); peritectic, P, at 513 K (240 ^o C) 510 K (237 ^o C) (composition not reported); ruently melting (method: visual polythermal	

COMPONENT	S:		EVALUATOR:		
(1) Potas (C ₂ H ₃ (2) Sodiu (C ₂ H ₃)	sium ethanoate (potassin O ₂)K; [127-08-2] m ethanoate (sodium ace) O ₂)Na; [127-09-3]	um acetate); tate);	Franzosini, Dipartimento Universita	P., di Chimica di Pavia (I'	Fisica, TALY).
CRITICAL	EVALUATION (cont.d):		<u> </u>		
(11) <u>Storonkin; Vasil'kova; Tarasov</u> (1977; Ref. 11). $T_{fus}(1) = 584 \text{ K (311 °C)}; T_{fus}(2) = 607 \text{ K (334 °C)}; eutectic, E, at 511 \text{ K (238 °C)} and 100x_2 = 46 (method: differential thermal analysis and "contact polythermal method" under polarized light, supplemented with IR spectroscopy).$					
Informati conflicti state tra	on from different so ng, possibly due – into nsitions are characteri:	ources on t er alia — to zed by a rema	he thermophy hygroscopicit rkable sluggi	sics of b y, and to shness.	oth components is the fact that solid
$T_{fus}(1)$ values ranging between 565 and 584 K, and $T_{fus}(2)$ values ranging between 592 and 610 K can be found in the literature (Ref. 12). The DSC data from Preface Table 1, i.e., $T_{fus}(1) = 578.7\pm0.5$ K and $T_{fus}(2) = 601.3\pm0.5$ K, are thought to be reasonably trustworthy, being supported by independent cryometric measurements by the same group (Ref. 12). Concerning in particular the T_{fus} data given in Refs. 1-11, the following remarks can be made. Poor reliability seems to be attached to the fusion temperatures from Refs. 1, 3, 8, 10, 11. Indeed: (1) Baskov (Ref. 1), who studied the system in 1915, might have not had at disposal high purity samples, thus obtaining too low T_{fus} values $[T_{fus}(1) = 568.2$ K; $T_{fus}(2) = 593.2$ K]; (i1) Diogenov et al.'s figures $[T_{fus}(1) = 563.5$ K (1958; Ref. 3), 583 K (1964; Ref. 8), and 575 K (1975; Ref. 10); $T_{fus}(2) = 610$ K (1958; Ref. 3), 608 K (1964; Ref. 8), and 599 K (1975; Ref. 10)] look as doubtful, due to excessive fluctuation; (i11) Storonkin et al.'s figures $[T_{fus}(1) = 584$ K; $T_{fus}(2) = 607$ K (1977; Ref. 11)] seem also to be doubtful and for the same reason, inasmuch as in previous papers Storonkin, Vasil'kova, and Potemin (1974; Ref. 13) gave $T_{fus}(2) = 604$ K. Instead, the agreement with T_{fus} data from Preface Table 1 is satisfactory for the most recent figures by Bergman et al. (Refs. 6, 7), and still acceptable for those by Sokolov and Pochtakova (Refs. 5, 9).					
 Salt	T _{trs} /K	Method	Year	Ref.	
с ₂ н ₃ 0 ₂ к	428, 331 565-566 569 423 (503, 433, 353) 428, about 348 422.2+0.5 413-423	Vis. pol. Vis. pol. Vis. pol. Dilat.,DTA 	1956 1957 1958 1966 1966 1972 1975 1975	15 16 3 17 18 19 Preface, T 20	 able 1
C ₂ H ₃ O ₂ Na	527 596 511-513, 403, 391, 331 599 583-584 527+15, 465+3, 414+10 337	Vis. pol. Vis. pol. Vis. pol. Vis. pol. Vis. pol. DSC DTA	1956 1956 1958 1958 1958 1975 1975	2 21 15 3 22 Preface, T. 23	able 1
Vis. pol. (): pr	: visual polythermal a ovisional data.	analysis; Di	lat.: dilato	metry;	
Potassium	ethanoate was submi	tted to X-r	av investigat	ion by Ha	tibarua and Parry

Potassium ethanoate was submitted to X-ray investigation by Hatibarua and Parry (Ref. 19), who obtained evidence for a monoclinic -> monoclinic transformation at about 348 K, and for a monoclinic -> orthorhombic transformation at 428 K. Allowance being made for some fluctuations in the T_{trs} values, it can be asserted that the occurrence of the former transition is supported by Sokolov's (Ref. 15), and Hazlewood et al.'s (Ref. 18) findings, while on the occurrence of the latter transition all the authors concerned agree, but for Diogenov et al. (Refs. 3, 16). These, in turn, are alone in claiming that component l undergoes a transformation at a temperature as high as 560-570 K: the evaluator, however, is inclined to think that the existence of the latter

COMPONENTS:	EVALUATOR:
 Potassium ethanoate (potassium acetate);	Franzosini, P.,
(C ₂ H ₃ O ₂)K; [127-08-2] Sodium ethanoate (sodium acetate);	Dipartimento di Chimica Fisica,
(C ₂ H ₃ O ₂)Na; [127-09-3]	Universita' di Pavia (ITALY).

CRITICAL EVALUATION (cont.d):

transformation is quite doubtful.

The number and location of solid state transitions in sodium ethanoate is still an open question, and the pertinent data are the most uncertain among those listed in Preface Table 1. It can only be said that the occurrence of a transition at 510-530 K seems to be reasonably supported (Refs. 2, 15, and Preface Table 1), whereas insufficient experimental evidence has been provided so far for the remaining transitions, including that reported by Diogenov et al. (Refs. 21, 3, 22) at 580-600 K.

Concerning the topology of the phase diagram, the evaluator is inclined not to take into account the findings by: (1) Baskov (Ref. 1), because reasonable doubts exist - as said above - about the purity of the salts he could have at disposal in 1915; (11) Diogenov et al. (Refs. 3, 8, 10), for both the above made remarks on the phase transformation temperatures they report, and their conflicting assertions on the phase relations (continuous series of solid solutions in Ref. 3; congruently melting intermediate compound in Ref. 8; incongruently melting intermediate compound in Ref. 10).

Storonkin et al. (Ref. 11) quoted in their paper Refs. 1-5, 7, 8, and - inter alia - asserted correctly that it is hard to state the composition of an incongruently melting intermediate compound on the only basis of visual observations carried out on the liquidus. They asserted also that: (i) due to undercooling of the molten mixtures of composition $50 \leq 100x_1 \leq 60$, no reliable information could be drawn from their liquidus on the formation of any intermediate compound; and (ii) their supplementary IR measurements gave no evidence of the existence of such compounds. Accordingly, they claimed the occurrence of a eutectic as the only invariant, and singled out its composition $(100x_2 = 46)$ by extrapolation of the part of the liquidus branches they were able to investigate. Storonkin et al. (Ref. 11), however, employed salts on the purity of which doubts - as said above - are not unreasonable, and were not aware of the more recent paper by Sokolov and Pochtakova (Ref. 9).

Bergman et al. in their oldest paper (Ref. 2) claimed the existence of a eutectic, but subsequently changed their mind (Refs. 4, 6, 7), and asserted that the incongruently melting compound $(C_{2H_3O_2})_{3K_2Na}$ was formed. It can be observed that the fusion temperatures of the pure components given in their most recent paper (Ref. 7), i.e., $T_{fus}(1)/K=579$ and $T_{fus}(2)/K=601$, are in excellent agreement with the corresponding values listed in Table 1 of the Preface $(578.7\pm0.5 \text{ K}, \text{ and } 601.3\pm0.5 \text{ K}, \text{ respectively})$, and that they make no mention of difficulties in measuring the liquidus. The composition they stated for the intermediate compound, however, was not supported by any investigation of the solidus, and poor reliability is to be attached to the peritectic temperature they suggested (511 K in Ref. 6; 523-529 K in Ref. 7).

Finally, Sokolov and Pochtakova (Refs. 5, 9) in their more recent paper (Ref. 9) employed thermographical analysis to support the assertion already made in Ref. 5 that the intermediate compound $(C_2H_3O_2)_5K_3Na_2$ is formed in the binary. They too seem not to have met special difficulties in measuring the liquidus.

In conclusion, the evaluator is inclined to think that:

- in the composition range $40 \le 100 \mathbf{x}_2 \le 100$ a eutectic exists at 508+3 K and $100 \mathbf{x}_2 = 48 \pm 2$;

- an intermediate compound is likely formed: it ought to have composition $(C_2H_3O_2)_5K_3Na_2$, and melt congruently (thus giving origin to a second eutectic in the composition range $0 \le 100x_2 \le 40$);

- limited mutual solubility exists on both sides of the diagram;

The second conclusion is based on Sokolov and Pochtakova's (Refs. 5, 9) information, which seems the most reliable at disposal so far, although being not fully free from criticisms (see, e.g., the above made remarks on the solid state transformations occurring in pure components).

The last assertion is supported by the findings of Sokolov and Pochtakova (Ref. 9), and Storonkin et al. (Ref. 11). Moreover, Braghetti et al. (Ref. 24) found for sodium

COMPONENTS:	EVALUATOR:		
 (1) Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] (2) Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] 	Franzosini, P., Dipartimento di Chimica Fisica, Universita' di Pavia (ITALY).		
CRITTCAL EVALUATION (cont d).	l		
CRITICAL EVALUATION (CONE.d):			
	limiting value		
Lim $(\Delta T/m) = 14.6 \text{ K molality}^{-1}$ $m \neq 0$			
(ΔT : experimental freezing point depression; m : molality of the solute), whereas the cryometric constant of potassium ethanoate is 18.0+0.3 K molality ⁻¹ (Ref. 24).			
REFERENCES:			
 Baskov, A.; Zh. Russk. FizKhim. Obshch. <u>1915</u>, 47, 1533-1535. Bergman, A.G.; Evdokimova, K.A. Izv. Sektora FizKhim. Anal., Inst. Obshchei i Neorg. Khim. Akad. Nauk SSSR <u>1956</u>, 27, 2006 216 			
(3) Diogenov, G.G.; Erlykov, A.M.	- Takhaal 1959 No 3 413-416		
(4) Golubeva, M.S.; Bergman, A.G.; Grigor'ev	a, E.A.		
(5) Sokolov, N.M.; Pochtakova, E.I. Zh. Obs	<u>958</u> , 41, 145-154. Ich. Khim. <u>1958</u> , 28, 1397-1404.		
 (6) Nesterova, A.K.; Bergman, A.G. Zh. Obshch. Khim. <u>1960</u>, 30, 317-320; Ru 	uss. J. Gen. Chem., Engl. Transl., 1960, 30,		
339-342 (*). (7) Il'yasov, I.I.; Bergman, A.G.			
Zh. Obshch. Khim. 1960, 30, 355-358. (8) Diogenov, G.G.; Sarapulova, I.F.			
Zh. Neorg. Khim. 1964, 9, 1292-1294 1964, 9, 704-706.	(*); Russ. J. Inorg. Chem., Engl. Transl.,		
 (9) Sokolov, N.M.; Pochtakova, E.I. Zh. Obshch. Khim. 1967, 37, 1420-1422. 			
(10) Diogenov, G.G.; Chumakova, V.P. FizKhim. Issled. Rasplayov Solei. Irku	(10) Diogenov, G.G.; Chumakova, V.P. FizKhum, Isaled, Basplayov Solei, Irkutak 1975, 7-12.		
(11) Storonkin, A.V.; Vasil kova, I.V.; Taras Vestn, Leningr, Univ. Fiz., Khim, 1977	ov, A.A. (4) 80-85		
(12) Sanesi, M.; Cingolani, A.; Tonelli, P.L.	; Franzosini, P.		
Thermal Properties, in Thermodynamic and Transport Properties of Organic Salts, IUPAC Chemical Data Series No. 28 (Franzosini, P.; Sanesi, M.; Editors), Pergamon			
Press, Oxford, <u>1980</u> , 29-115. (13) Storonkin, A.V.; Vasil'kova, I.V.; Potem	Press, Oxford, <u>1980</u> , 29-115. 3) Storonkin, A.V.; Vasil'kova, I.V.; Potemin, S.S.		
Vestn. Leningr. Univ., Fiz., Khim. 1974((14) Potemin, S.S.; Tarasov, A.A.; Panin, O.B	Vestn. Leningr. Univ., Fiz., Khim. 1974(16), 73-76.		
Vestn. Leningr. Univ., Fiz., Khim. <u>1973(1)</u> , 86-89.			
Tezisy Dokl. Nauch. Konf. S.M.I. 1956, a	Tezisy Dokl. Nauch. Konf. S.M.I. 1956, as quoted in Ref. 9.		
Zh. Neorg. Khim. <u>1957</u> , 2, 1596-1600; 27.7.237-245	Russ. J. Inorg. Chem. (Engl. Transl.) 1957,		
(17) Bouaziz, R.; Basset, J.Y.			
(18) Hazlewood, F.J.; Rhodes, E.; Ubbelohde,	A.R.		
Trans. Faraday Soc. <u>1966</u> , 62, 3101-3113. (19) Hatibarua, J.R.; Parry, G.S.			
Acta Cryst. <u>1972</u> , B28, 3099-3100. (20) Poppl, L.			
Proc. Eur. Symp. Thermal Anal., 1st, 197 (21) Diogenov. G.G.	6, 237-240.		
Zh. Neorg. Khim. <u>1956</u> , 1, 799-805; 1(4) 199-205	Russ. J. Inorg. Chem. (Engl. Transl.) 1956,		
(22) Gimel'shtein, V.G.; Diogenov, G.G.			
ZR. NEOFE. KNIM. <u>1958</u> , 3, 1644-1649; 3 (7), 230-236.	Zh. Neorg. Khim. <u>1958</u> , 3, 1644-1649; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1958</u> , 3(7), 230-236.		
(23) Roth, J.; Meisel, T.; Seybold, K.; Halmo J. Thermal Anal. <u>1976</u> , 10, 223-232.	 Roth, J.; Meisel, T.; Seybold, K.; Halmos, Z. J. Thermal Anal. <u>1976</u>, 10, 223-232. 		
(24) Braghetti, M.; Leonesi, D.; Franzosini, Ric. Sci. <u>1968</u> , 38, 116-118.	P.		

•
	T
COMPONENTS:	ORIGINAL MEASUREMENTS:
 Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] 	Baskov, A. Zh. Russk. FizKhim. Obshch. 1915, 47, 1533-1535.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
$t/^{o}C^{a}$ T/K^{b} $t/^{o}C^{c}$ T/K^{b} 100 x_{2}	
<pre>295.0 568.2 295.0 568.2 0.0 288.0^d 561.2 263.5 536.7 12.0 260.0 533.2 250.0 523.2 24.0 237.0 510.2 228.5 501.7 37.5 231.0 504.2 223.5 496.7 40.5 223.0 496.2 223.0 496.2 46.5 232.0 505.2 52.0 253.0^e 526.2 240.5 513.7 58.5 271.5 544.7 256.5 529.7 66.5 293.0 566.2 277.2 550.4 78.0 307.5 580.7 295.0 568.2 87.5 320.0 593.2 320.0 593.2 100.0 a Starting of crystallization. b T/K values calculated by the compiler. c End of crystallization. d 238.0 in the original text (correction compatible with Fig. 1 of the text; c compiler). e 233.0 in the original text (correction compatible with Fig. 1 of the text; c compiler). Characteristic point(s): Minimum, m, at 233 °C (author), or 223 °C</pre>	C (compiler), and 100 x ₂ = 46; none of the
cooling curves shows a eutectic stop (author	• NFORMATION
	SOURCE AND DUDITY OF MATERIALS.
MEINOD/AFFARATUS/FROCEDURE:	SOURCE AND FURITI OF MATERIALS:
Thermal analysis.	Materials dehydrated by heating, then cooled in a dessiccator before use.
	ESTIMATED ERROR: Temperature: accuracy not evaluable (complian).
	REFERENCES:

<u> </u>	
COMPONENTS:	ORIGINAL MEASUREMENTS:
 Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] 	Bergman, A.G.; Evdokimova, K.A. Izv. Sektora FizKhim. Anal., Inst. Obshchei i Neorg. Khim. Akad. Nauk SSSR 1956, 27, 296-314.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
$t^{0}C T/K^{a} 100x_{2} t^{0}C T/K^{a} 100x_{2}$	المحمد المحم
302 575 0.0 238 511 52.3 298 571 2.4 249 522 58.4 296 569 4.6 256 529 61.3 293 566 7.9 265 538 64.0 288 561 11.8 268 541 66.1 280 553 15.5 274 547 68.0 274 547 18.8 277 550 69.9 267 540 23.0 281 554 71.9 256 529 28.1 285 558 73.7 245 518 33.0 290 563 75.7 242 515 34.9 294 567 77.3 238 511 37.2 295 568 79.4 233 506 39.3 298 571 81.0 231 504 41.8 302 575 83.0 227 500 44.2 309 582 86.0 227 500 44.2 309 582 86.0 231 504 49.4 326 599 100 a T/K values calculated by the compiler. Characteristic point(s): Eutectic, E, at 224 °C and $100x_2$ = 45 (authors Note - DTA heating traces were recorded respectively) previously melted and cooled of temperature.). on three mixtures $(100x_2=5, 20, 80, quickly, in order to confirm the eutectic$
AUXILIARY I	NFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Visual polythermal method: the temperatures of starting crystallization were measured with a Nichrome-Constantane thermocouple and a millivoltmeter (17 mV full-scale).	"Chemically pure" $(C_2H_3O_2)K$ and $(C_2H_3O_2)Na\cdot 3H_2O$ were dried to constant mass. Component 2 undergoes a phase transition at $t_{trs}(2)/^{O}C=254$.
	ESTIMATED ERROR:
	Temperature: accuracy probably +2 K (compiler).
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] 	Diogenov, G.G.; Erlykov, A.M. Nauch. Dokl. Vysshei Shkoly, Khim. i Khim. Tekhnol. <u>1958</u> , No. 3, 413-416.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
$t^{0}C$ T/K^{a} 100 x_{1} $t^{0}C$ T/K^{a} 100 x_{1}	
337 610 0 229 502 52.0 336 609 1.2 228 501 52.7 332 605 3.3 229.5 502.5 55.5 326 599 4.5 231.5 504.5 57.5 326 599 7.5 235 508 60.0 321 594 10.5 237.5 510.5 62.0 316 589 13.7 242 515 64.0 310 583 17.0 250 523 68.5 305 578 19.9 254 527 70.0 296 569 23.2 264 537 75.0 289 562 26.0 274 547 80.0 282 555 28.5 282 555 84.5 274 547 31.0 284 557 85.5 266 539 37.3 292 568 89.5 250 523 40.6 295 568 91.7	$\begin{array}{c} \begin{array}{c} \begin{array}{c} & \\ & \\ & \\ \end{array} \\ 300 \\ \\ \\ 250 \\ \\ \\ \end{array} \\ \\ 250 \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
AUXILIARY I	• NFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Visual polythermal method.	Not stated. Component 1 undergoes a phase transition at $t_{trs}(1)/^{OC=}$ 296. Component 2 undergoes a phase transition at $t_{trs}(2)/^{OC=}$ 326.
	ESTIMATED ERROR: Temperature: accuracy probably +2 K (compiler).
	REFERENCES:

······	
COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] (2) Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] 	Golubeva, M.S.; Bergman, A.G.; Grigor'eva, E.A. Uch. Zap. Rostovskna-Donu Gos. Univ. 1958, 41, 145-154.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
-	
EXPERIMENTAL VALUES:	
Intermediate compound(s):	
$(C_{2}H_{3}O_{2})_{3}K_{2}Na$, melting with decomposition at	240 ^o C (authors).
AUXILIARY I	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Visual polythermal method; temperatures measured with a Chromel-Alumel thermocouple.	Materials of analytical purity recrystallized twice, and dehydrated before use.
	ESTIMATED ERROR:
	Temperature: accuracy probably +2 K (compiler).
	REFERENCES :

COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] (2) Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] 	Sokolov, N.M.; Pochtakova, E.I. Zh. Obshch. Khim. <u>1958</u> , 28, 1397-1404.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
t/°C T/K ^a 100 x_1 t/°C T/K ^a 100 x_1 331 604 0 38 511 55 322 595 5 238 511 57.5 315 588 10 241 514 60 307 580 15 240 513 61.5 299 572 20 242 515 62.5 291 564 25 246 519 65 282 555 30 251 524 67.5 273 546 35 255 528 70 264 537 40 263 536 75 258 531 42.5 272 545 80 254 527 45 282 555 85 247 520 47.5 290 563 90 244 517 50 298 571 95 238 511 52.5 301 574 100 235 508 53.5 ^a T/K values calculated by the compiler. Characteristic point(s): Peritectic, F, (eutectic in the compiler's op: Eutectic, E, at 235 °C and 100 x_1 = 53.5 (author Intermediate compound(s):	$\int_{1}^{1} \int_{0}^{1} \int_{0$
(-2x302/5x3xu2 (congruencity metring ut 241 0	
AUXILIARY II	NFORMATION
METHOD/APPARATUS/PROCEDURE: Visual polythermal method.	SOURCE AND PURITY OF MATERIALS: "Chemically pure" materials were employed. Component 2 undergoes a phase transition at t _{trs} (2)/°C= 254 (Ref. 1).
	ESTIMATED ERROR:
	Temperature: accuracy probably <u>+2 K</u> (compiler).
	REFERENCES: (1) Bergman, A.G.; Evdokimova, K.A. Izv. Sektora FizKhim. Anal. 1956, 27, 296-314.

COMPONENTS:	ORIGINAL MEASUREMENTS:	
 Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] 	Nesterova, A.K.; Bergman, A.G. Zh. Obshch. Khim. <u>1960</u> , 30 , 317-320; Russ. J. Gen. Chem. (Engl. Transl.), <u>1960</u> , 30, 339-342 (*).	
VARIABLES:	PREPARED BY:	
Temperature.	Baldini, P.	
EXPERIMENTAL VALUES:		
t/ ^o C T/K ^a 100x ₂		
306 579 0 290 563 5 283 556 10 276 549 15 267 540 20 259 532 25 250 523 30 241 514 35 237 510 40 235 508 45 232 505 50 243 516 55 253 526 60 263 536 65 273 546 70 ^a T/K values calculated by the compiler. Characteristic point(s): Peritectic, P, at 238 °C and $100x_2$ = 36.5 (authors) Intermediate compound(s): (C ₂ H ₃ O ₂) ₃ K ₂ Na, melting with decomposition (authors)	$\sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{j$	
AUXILIARY I	NFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Visual polythermal method; temperatures measured with a thermometer (accuracy: +0.5 °C). A glycerol bath was employed.	"Chemically pure", recrystallized materials were used. Component 2: t _{fus} (2)/ ^O C= 328 (Fig. 2 of the original paper).	
	ESTIMATED ERROR:	
	Temperature: accuracy <u>+</u> 0.5 K (authors).	
	REFERENCES:	

1				
COMPONENTS:	ORIGINAL MEASUREMENTS:			
 Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] 	Diogenov, G.G.; Sarapulova, I.F. Zh. Neorg. Khim. <u>1964</u> , 9, 1292-1294 (*); Russ. J. Inorg. Chem. (Engl. Transl.), <u>1964</u> , 9, 704-706.			
VARIABLES:	PREPARED BY:			
Temperature.	Baldini, P.			
EXPERIMENTAL VALUES:				
Characteristic point(s): Eutectic, E_1 , at 240 °C; composition not stated (authors). Eutectic, E_2 , at 235 °C; composition not stated (authors).				
(CoH2O2) K2Na2 (congruently melting, compiler	· · ·			
AUXILIARY 1	NFORMATION			
ME THOD/AP PARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
Visual polythermal method; temperature measured with a Chromel-Alumel thermocouple.	"Chemically pure" materials, recrystallized twice and dehydrated by prolonged heating at about 300 °C were employed. Component 1: $t_{fus}(1)/°C= 310$. Component 2: $t_{fus}(2)/°C= 335$ (authors).			
	ESTIMATED ERROR:			
	Not evaluable (compiler).			
	REFERENCES:			

<pre>COMPONENTS: (1) Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] (2) Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3]</pre>			ssium ad	ORIGINAL MEASUREMENTS: Sokolov, N.M.; Pochtakova, E.I. Zh. Obshch. Khim. <u>1967</u> , 37, 1420-1422.		
VARIAB	LES:		** .			PREPARED BY:
Tempera	ature.					Baldini, P.
EXPERIN	MENTAL V	ALUES:				
t/°C	t/K ^a	100 x 1	t/ ^o C	T/K ^a	100 x 1	
318 ^b 310 ^c 60 ^g 95 ^h 308 ^b 233 ^d 60 ^g 278 ^b 233 ^d 120 ^f 233 ^d 120 ^f 233 ^d 120 ^f 233 ^d 135 ^f 233 ^d 196 ^e 117 ^f 60 ^g 240 ^b 240 ^d 198 ^e	591 583 333 568 581 506 333 551 506 393 331 521 511 463 393 506 506 388 512 506 469 390 333 513 513 471	10 10 10 15 15 30 30 30 30 50 50 50 50 50 50 50 50 53.5 53.5	120 ^f 60 ^g 233 ^d 118 ^f 246 ^b 240 ^e 122 ^f 268 ^b 240 ^d 122 ^f 268 ^b 240 ^d 122 ^f 268 ^b 240 ^d 120 ^g 286 ^c 120 ^f 204 ^h 300 ^c 142 ^f 80 ^h 300 ^c 187 ^h	393 333 506 506 391 333 519 513 471 395 541 513 393 333 559 543 393 333 477 573 573 415 333 460	60 61.5 61.5 61.5 65 65 65 75 75 75 75 75 75 85 85 85 85 85 85 85 95 95 95 95 95	$ \begin{array}{c} $
<pre>a T/K values calculated by the compiler. b Temperatures of starting crystallization (authors). c Temperatures of ending crystallization (authors). d Eutectic temperatures (authors). e Solid-solid transition of the intermediate compound (authors). f Interaction of the intermediate compound with the solid solution rich in component 1 (authors). g Reaction 2[(C₂H₃O₂)₃K₂Na] = (C₂H₃O₂)₅K₃Na + (C₂H₃O₂)K (authors). h Limits of the solid solution regions (authors).</pre>						
Characteristic point(s): Eutectic, E_1 , at 240 °C and $100x_1 = 61.5$ (compiler). Eutectic, E_2 , at 233 °C and $100x_1 = 53.5$ (compiler). Intermediate compound: $(C_2H_3O_2)_5K_3Na_2$ congruently melting at 240 °C (compiler), or 241 °C according to the figure of the original paper.						
				AUXI	LIARY IN	FORMATION
METHOD/	'APPARAT	US/PROCED	URE:			SOURCE AND PURITY OF MATERIALS:
Thermographical analysis (with recording of the heating traces), supplemented with (not detailed) visual polythermal measurements, and microscopic observations on solid (previously melted) samples in polarized light.		ing of h (not ments, solid arized	"Chemically pure" materials employed. Component 1 melts at 302 °C and undergoes phase transitions at $t_{trs}(1)/°C= 58$, 155 (Ref. 1). Component 2 melts at 331 °C and undergoes phase transitions at $t_{trs}(2)/°C= 58$, 118, 130, 238 (Ref. 1).			
ESTIMAT	ED ERRO	R:				REFERENCES:
Tempera (compil	ture: ler).	accurac	y pro	bably	<u>+</u> 2 К	(1) Sokolov, N.M. Tezisy Dokl. X Nauch. Konf. S.M.I. <u>1956</u>

	I
COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] (2) Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] 	Diogenov, G.G.; Chumakova, V.P. FizKhim. Issled. Rasplavov Solei, Irkutsk, <u>1975</u> , 7-12.
	DDEDADED BV.
	Politici D
Temperature.	
EXPERIMENTAL VALUES:	
Eutectic, E, at 238 ^o C; composition not stated (authors). Peritectic, P, at 240 ^o C; composition not stated (authors).	
Intermediate compound(s):	
(C ₂ H ₃ O ₂) ₅ K ₃ Na ₂ , incongruently melting (author	· ·s)•
AUXILIARY 1	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Visual polythermal analysis.	Not stated. Component 1: $t_{fus}(1)/^{o}C= 302$. Component 2: $t_{fus}(2)/^{o}C= 326$ (Fig. 1 of the original paper).
	ESTIMATED ERROR:
	Temperature: accuracy probably <u>+2</u> K (compiler).
	REFERENCES:

•

COMPONENTS:	ORIGINAL MEASUREMENTS:		
 Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] 	Storonkin, A.V.; Vasil [*] kova, I.V.; Tarasov, A.A. Vestn. Leningr. Univ., Fiz., Khim. <u>1977</u> , (4), 80-85.		
VARIABLES:	PREPARED BY:		
Temperature.	Baldini, P.		

EXPERIMENTAL VALUES:

Data presented in graphical form (see figure).

Characteristic point(s):

Eutectic, E, at 511 K and $100x_1 = 54$ (authors), singled out by extrapolation.

AUXILIARY I	NFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
DTA and "contact polythermal method" under polarized light. IR spectra were used to deny the existence of any intermediate compound.	Both components of analytical purity recrystallized twice from water and dried under vacuum (T _{fus} /K= 584 and 607, respectively, authors). The purity of both components was checked with thermographical analysis. The mixtures were prepared in a glove box.
	ESTIMATED ERROR:
	Temperature: accuracy probably +2 K (compiler).
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] Lead ethanoate (lead acetate); (C₂H₃O₂)₂Pb; [15347-57-6] 	Lehrman, A.; Leifer, E. J. Amer. Chem. Soc. <u>1938</u> , 60, 142-144.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
t/ ^o C T/K ^a 100 x₂ t/^oC T/K^a 100	x ₂
292 565 0 193 466 50 278 551 13.6 180 453 55 259 532 20.1 177 450 58 227 500 25.9 162 435 60 221 494 28.3 159 432 62 174.9 ^b 448.1 28.3 169 442 65 181 454 30.6 148 ^c 421 65 183 456 33.7 169 442 66 182 455 39.7 164 437 71 180 453 44.3 134 407 78 180 453 44.6 132.2 ^b 405.4 78 190 463 47.4 168 441 83 169.5 ^b 442.7 47.4 188 461 90 194 467 50.6 204 477 100 ^a T/K values calculated by the compiler; ^b Eutectic temperatures (filled circles); ^c Metastable. Characteristic point(s): Eutectic, E ₁ , at 174.9 °C; composition no Eutectic, E ₃ , at 159.9 °C; and $100x_2 = 62$. Eutectic, E ₄ , at 132.2 °C; composition no Intermediate compounds: $(C_2H_3O_2)_4K_2Pb$, congrue $(C_2H_3O_2)_5KPb_2$, congrue	.8 .2 .0 .6 .5 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3
AUXILIARY I	NFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The mixtures (20-35 g) were weighed into 2.5x20 cm Pyrex tubes, then suspended in a bath of the molten eutectic of Ca, K, Li nitrates. When necessary to prevent decomposition, two drops of glacial ethanoic acid were added. Due to the tendency to supercool, it was preferred to take the temperatures of complete melting. Cooling curves were used to obtain a few eutectic temperatures. Temperatures were measured mainly with a Copper-Constantane thermocouple (checked at the boiling point of water, and at the melting points of Sn, KNO ₃ , and of the Sn-Pb eutectic mixture). In a few cases a mercury thermometer was employed.	Component 1: material of "chemically pure" grade, recrystallized from distilled water, then dried in an oven at 100 °C for one week, and at 140 °C for six hours before weighing. Component 2: material of "chemically pure" grade, recrystallized from distilled water acidified with ethanoic acid, then dried at 100 °C. ESTIMATED ERROR: Temperature: accuracy ±0.5 K (authors).
NOTE: It can be remarked that the fusion temperature of component 1 found by Lehrman and Leifer does not agree with recent literature data which range mostly between 574 and 584 K (Ref. 1).	REFERENCES: (1) Sanesi, M.; Cingolani, A.; Tonelli, P.L.; Franzosini, P. Thermal Properties, in Thermodynamic and Transport Properties of Organic Salts, IUPAC Chemical Data Series No. 28 (Franzosini, P.; Sanesi, M.; Editors), Pergamon Press, Oxford, <u>1980</u> , 29-115.

COMPONENTS:	EVALUATOR:
 Potassium ethanoate (potassium acetate);	Spinolo, G.,
(C ₂ H ₃ O ₂)K; [127-08-2] Rubidium ethanoate (rubidium acetate);	Dipartimento di Chimica Fisica,
(C ₂ H ₃ O ₂)Rb; [563-67-7]	Universita ⁻ di Pavia (ITALY).

CRITICAL EVALUATION:

This binary was first studied with the visual polythermal method by Diogenov and Sarapulova (Ref. 1). Subsequently, Sarapulova et al. (Ref. 2) carried out a thermographical analysis of the system, supplemented with a few visual observations, and X-ray diffractograms recorded on the pure components and five (previously melted) intermediate mixtures.

Only minor differences occur between the liquidus curves by either source. The fusion temperatures of the pure components, i.e., $T_{fus}(1) = 583$ K (Refs. 1, 2), and $T_{fus}(2) = 509$ K (visual; Refs. 1, 2) or 511 K (thermographical; Ref. 2) are acceptable, although somewhat lower than the corresponding values listed in Table 1 of the Preface, i.e., $T_{fus}(1) = 578.7 \pm 0.5$ K, and $T_{fus}(2) = 514 \pm 1$ K. Poorer agreement, on the contrary, exists between the solid state transition temperatures reported in Ref. 2 (i.e., 327 K and 428 K for component 1, and 488 K for component 2), and those listed in Table 1 of the Preface (i.e., 422.2\pm 0.5 K for component 1, and 498\pm 1 K for component 2).

On the basis of the X-ray patterns mentioned above, Sarapulova et al. (Ref. 2) assert that complete miscibility exists even at room temperature, although giving no information about the phase of component 1 they assume to be involved in these solid solutions.

In the evaluator's opinion, doubts are to be cast about the solid state transition at 327 K in component 1. Should it actually exist, the lower part of the diagram shown in Ref. 2 would require completion, whereas, in its absence, the picture of the phase relations would be substantially correct.

- (1) Diogenov, G.G.; Sarapulova, I.F.
 Zh. Neorg. Khim. 1964, 9, 1292-1294 (*); Russ. J. Inorg. Chem. (Engl. Transl.), 1964, 9, 704-706.
- (2) Sarapulova, I.F.; Kashcheev, G.N.; Diogenov, G.G. Nekotorye Vopr. Khimii Rasplavlen. Solei i Produktov Destruktsii Sapropelitov, Irkutsk, 1974, 3-10.

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Potassium ethanoate (potassium acetate); (C₂H₃O₂)K; [127-08-2] Zinc ethanoate (zinc acetate); (C₂H₃O₂)₂Zn; [557-34-6] 	Nadirov, E.G.; Bakeev, M.I. Tr. KhimMetall. Inst. Akad. Nauk Kaz. SSR 1974, 25, 115-128.
VARIABLES:	PREPARED BY:
Temperature	Baldini, P.
EXPERIMENTAL VALUES:	
$t^{o}C$ T/K^{a} 100 x_{1} $t^{o}C$ T/K^{a} 100 x_{1}	
236 509 0 229 502 60 222 495 10 236 509 65.5 201 474 20 238 511 70 169 442 30 241 514 75 188 461 35 245 518 80 209 482 40 247 520 85 213 486 45 263 536 90 217 490 50 292 565 94.6 219 492 52 306 579 100 222 495 55 ^a T/K values calculated by the compiler. Characteristic point(s): Eutectic, E, at 169 °C and $100x_1 = 30$. Peritectic, P, at 248 °C (visual polythermal $100x_1 = 88$ (according to Fig. 6 of the original Intermediate compound(s): $(C_2H_3O_2)_{10}K_8Zn$, incongruently melting (it conductometry).	$\frac{1}{280}$ $\frac{280}{200}$ $\frac{200}{(C_2H_3O_2)_2Z_n}$ $\frac{1}{(C_2H_3O_2)_2Z_n}$ $\frac{1}{(C_2H_3O_2)_K}$ $\frac{1}{(C_$
AUXILIARY I	NFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Visual polythermal analysis supplemented with conductometry and occasionally with X- ray investigations. Temperatures of initial crystallization measured with a thermocouple.	Component 1: material recrystallized three times and dried at 110-120 °C. Component 2: (C ₂ H ₃ O ₂) ₂ Zn.2H ₂ O of analytical purity, recrystallized twice and dried at 140 °C.
It can be observed that the fusion temperature of component 1 reported by Nadirov and Bakeev (579 K) is in fair agreement with the corresponding value listed in Table 1 of the Preaface (578.7±0.5 K), whereas the fusion temperature of component 2 (509 K) is noticeably lower than other recent data by different investigators (Ref. 1).	ESTIMATED ERROR: Temperature: accuracy probably <u>+</u> 2 K (compiler). REFERENCES: (1) Sanesi, M.; Cingolani, A.; Tonelli, P.L.; Franzosini, P. Thermal Properties, in Thermodynamic and Transport Properties of Organic Salts, IUPAC Chemical Data Series No. 28 (Franzosini, P.; Sanesi, M.; Editors), Pergamon Press, Oxford 1980, 29-115.

COMPONENTS:

 Lithium ethanoate (lithium acetate); (C₂H₃O₂)Li; [546-89-4]
 Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] EVALUATOR:

Franzosini, P., Dipartimento di Chimica Fisica Universita' di Pavia (ITALY).

CRITICAL EVALUATION:

This system was investigated by Diogenov (Ref. 1), by Pochtakova (Ref. 2), and again by Diogenov and Chumakova (Ref. 3) with substantially discrepant conclusions.

Diogenov, in his earlier paper (Ref. 1), claimed the existence of: (i) eutectic, E_1 , occurring at 499-500 K (226-227 °C), and (likely) $100x_1$ = 81.5 (the latter figure being quoted in Ref. 4, which is a later paper by the same author); (ii) eutectic, E_2 , occurring at 433 K (160 °C) and $100x_1$ = 57; and (iii) the intermediate compound $(C_2H_3O_2)_5Li_4Na$, congruently melting at 500 K (227 °C).

These results, however, were not confirmed in Ref. 3, where Diogenov and Chumakova reported approximately the same coordinates for E_1 , viz., 492-494 K (219-221 °C) and 100x₁ about 78, but completely different fusion temperature for E_2 , viz., either 486 K (213 °C; Fig. 2 of the original paper), or 449 K (176 °C; Fig. 4 of the original paper). Moreover they suggested for the intermediate compound a new formula, i.e., $(C_2H_3O_2)_4Li_3Na$.

Finally, it is to be noted that the fusion temperatures given in Refs. 1, 3 for component 2 differ by 11 K, and the phase transitions reported in Ref. 1, i.e., $T_{trs}(1)=530 \text{ K} (257 \text{ }^{\circ}\text{C})$, and $T_{trs}(2)=596 \text{ K} (323 \text{ }^{\circ}\text{C})$, do not meet any value of Table 1 of the Preface.

In conclusion, the poor reproducibility of the results by Diogenov's group does not allow one to take them into consideration for assessing the actual diagram of this system.

Conversely, Pochtakova's data (Ref. 2) seem more reliable, although among the phase transition temperatures of component 2 quoted by the author from Ref. 5, i.e., 331, 391, 403, and 511 K (58, 118, 130, and 238 $^{\circ}$ C, respectively), only two can be identified with those listed in Preface, Table 1. This disagreement, however, does not seem, in the evaluator's opinion, to involve heavily the reliability of the liquidus, due also to the fact that the fusion temperatures of both pure components (604 K for component 2, and 557 K for component 1, respectively) are close to those reported in Preface, Table 1 (601.3+0.5 and 557+2 K, respectively).

Accordingly, the phase diagram by Pochtakov can be accepted with some confidence: in particular, the composition of the congruently melting intermediate compound, i.e., $(C_2H_3O_2)_5Li_3Na_2$, seems satisfactorily defined by the dome exhibited by the liquidus.

- (1) Diogenov, G.G.
 Zh. Neorg. Khim. 1956, 1, 799-805(*); Russ. J. Inorg. Chem. (Engl. Transl.) 1956, 1 (4), 199-205.
- (2) Pochtakova, E.I.
 Zh. Neorg. Khim. 1965, 10, 1333-2338 (*); Russ. J. Inorg. Chem. (Engl. Transl.) 1965, 10, 1268-1271.
- (3) Diogenov, G.G.; Chumakova, V.P. Fiz.-Khim. Issled. Rasplavov Solei. Irkutsk. <u>1975</u>, 7-12.
- (4) Diogenov, G.G.
 Zh. Neorg. Khim. 1956, 1, 2551-2555; Russ. J. Inorg. Chem. (Engl.Transl.) 1956, 1 (11), 122-126 (*).
- (5) Sokolov, N.M. Tezisy Dokl. X Nauch. Konf. S.M.I. <u>1956</u>.

COMPONENTS:						ORIGINAL MEASUREMENTS:
 Lithium ethanoate (lithium acetate); (C₂H₃O₂)Li; [546-89-4] Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] 					ate); 2);	Pochtakova, E.I. Zh. Neorg. Khim. <u>1965</u> , 10, 2333-2338 (*); Russ. J. Inorg. Chem., Engl. Transl., <u>1965</u> , 10, 1268-1271.
VARIAB	BLES:					PREPARED BY:
Temper	ature					Baldini, P.
EXPERI	MENTAL	VALUES:				4
t/°C	T/K ^a	100x1	t/ ^o C	T/K ^a	100 x 1	
331 322 314 301 289 277 265 251 236 219 213 219 222 a T/K Charac Eutect Eutect Interm (C ₂ H ₃ O	$\begin{array}{c} 604\\ 595\\ 587\\ 574\\ 562\\ 550\\ 538\\ 524\\ 509\\ 492\\ 486\\ 492\\ 495\\ values\\ teristi\\ ic, E_1,\\ ic, E_2,\\ ediate\\ 2)5Li_3N\end{array}$	0 5 10 15 20 25 30 35 40 45 47.5 50 52.5 calculate c point(s at 219 at 213 ° compound(a ₂ , congr	224 227 224 223 222 229 234 241 259 273 284 d by the): C and 10 C and 10 s): uently r	$\begin{array}{c} 497\\ 500\\ 497\\ 496\\ 495\\ 502\\ 507\\ 514\\ 532\\ 546\\ 557\\ e \ comp1\\ 00x_1 = \ 6\\ 00x_1 = \ 4\\ melting \end{array}$	57.5 60 62.5 65 70 72.5 75 80 90 95 100 1er. 9 (author 7.5 (author 7.5 (author) 42.5 75 80 90 95 100	C (author).
AUXILIARY 1				AU	XILIARY I	NFORMATION
METHOD	/APPARA	TUS/PROCE	DURE:			SOURCE AND PURITY OF MATERIALS:
Visual	polyth	ermal met	hod.			Not stated. Component 2 undergoes phase transitions at t _{trs} (2)/ ^o C= 58, 118, 130, 238 (Ref. 1).
					ESTIMATED ERROR:	
						Temperature: accuracy probably <u>+</u> 2 K (compiler).
						REFERENCES:
						<pre>(1) Sokolov, N.M. Tezisy Dokl. X Nauch. Konf. S.M.I. 1956.</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Lithium ethanoate (lithium acetate); (C₂H₃O₂)Li; [546-89-4] (2) Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] 	Diogenov, G.G.; Chumakova, V.P. FizKhim. Issled. Rasplavov Solei, Irkutsk, <u>1975</u> , 7-12.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
Eutectic, E_1 , at 219 °C (Fig. 2 of the original paper) or 221 °C (Fig. 4); composition not stated (100x ₁ about 78 in compiler's graphical estimation from Fig. 4). Eutectic, E_2 , at 213 °C (Fig. 2 of the original paper) or 176 °C (Fig. 4); composition not stated (100x ₁ about 54 in compiler's graphical estimation from Fig. 4).	
Intermediate compound(s):	
$(C_2H_3O_2)_4Li_3Na$, congruently melting at 226 °C (authors).	
AUXILIARY 1	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Visual polythermal method.	Not stated. Component 1: $t_{fus}(1)/{}^{\circ}C = 291$ (Fig. 3 of the original paper). Component 2: $t_{fug}(2)/{}^{\circ}C = 326$ (Fig. 1 of the original paper).
	ESTIMATED ERROR:
	Temperature: accuracy probably <u>+</u> 2 K (compiler).
	REFERENCES:

AA11	7001	111 1 1/10	i A .	
LIM	PUN	HINT		
OULI	1 0 11			

 Lithium ethanoate (lithium acetate); (C₂H₃O₂)Li; [546-89-4]
 Rubidium ethanoate (rubidium acetate); (C₂H₃O₂)Rb; [563-67-7]

EVALUATOR:

Schiraldi, A., Dipartimento di Chimica Fisica, Universita' di Pavia (ITALY).

CRITICAL EVALUATION:

This system was studied twice by Diogenov's group, as a side of the ternary $C_{2H_3O_2}/Cs$, Li, Rb (Ref. 1), and as a side of the reciprocal ternary $C_{2H_3O_2}$, NO₃/Li, Rb (Ref. 2), respectively.

In both papers two eutectics are reported, viz., E_1 at 509 K (236 °C), and either $100x_1 = 88.5$ (Ref. 1), or $100x_1 = 88$ (Ref. 2), and E_2 at either 449 K (176 °C; Ref. 1), or 460 K (187 °C; Ref. 2), and $100x_1 = 26$.

In Ref. 1, however, Diogenov and Sarapulova report two intermediate compounds, i.e., $(C_2H_3O_2)_5Li_2Rb_3$ and $(C_2H_3O_2)_5Li_3Rb_2$ [congruently melting at 518 K (245 °C) and 582 K (309 °C), respectively], and consequently a third invariant, whilst Diogenov et al. report in Ref. 2 a single intermediate compound, $(C_2H_3O_2)_3Li_2Rb$ [congruently melting at 573 K (300 °C)].

Due to the detailed experimental evidence (obtained, inter alia, with X-ray diffractometry) given in Ref. 2, the evaluator thinks that the existence of the latter compound should be considered as reasonably assessed. On the contrary, the existence of both $(C_2H_3O_2)_5Li_2Rb_3$ and $(C_2H_3O_2)_5Li_3Rb_2$ does not seem adequately supported.

It is to be noticed that some discrepancies exist between the phase transition temperatures reported in Ref. 2 and those given in Table 1 of the Preface, viz., $T_{fus}(1)=564$ K (291 °C), to be identified with 557+2 K, $T_{trs}(1)=405$ K (132 °C), with no correspondence, $T_{fus}(2)=509$ K (236 °C), to be identified with 514+1 K, and $T_{trs}(2)=479$ K (206 °C), to be identified with 498+1 K. These discrepancies, however, do not imply significant changes in the liquidus by Diogenov et al. (Ref. 2): the evaluator is consequently inclined to consider the presentation by these authors as sufficiently reliable.

- (1) Diogenov, G.G.; Sarapulova, I.F.
 Zh. Neorg. Khim. <u>1964</u>, 9(2), 482-487; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1964</u>, 9, 265-267 (*).
- (2) Diogenov, G.G.; Erlykov, A.M.; Gimel'shtein, V.G.
 Zh. Neorg. Khim. 1974, 19, 1955-1960; Russ. J. Inorg. Chem. (Engl. Transl.) 1974, 19, 1069-1073 (*).

COMPONENTS:				ORIGINAL MEASUREMENTS:		
(1) Lithium ethanoate (lithium acetate);				acetate)	Diogenov, G.G.; Sarapulova, I.F.	
<pre>(C₂H₃O₂)L1; [546-89-4] (2) Rubidium ethanoate (rubidium acetate); (C₂H₃O₂)Rb; [563-67-7]</pre>				n acetat	Zh. Neorg. Khim. <u>1964</u> , 9(2), 482-487; Russ. J. Inorg. Chem., Engl. Transl., <u>1964</u> , 9, 265-267 (*).	
VARIABLES:						
Tempera	ture.					PREPARED BY:
						Baldini, P.
EXPERIM	IENTAL V	ALUES:				
t/oC	T/K ^a	100 x 1	t/oC	T/K ^a	100 x	1 ي
240	513	0	283	556	47.0	t,
234	507	3.5	288	561	48.5	-000
225	490 780	8.3	299	577	55 0	300 - 6 2 -
213	486	14.0	309	582	60.0	
208	481	16.5	309	582	64.0	$\left \begin{array}{c} \phi \\ \phi \end{array} \right\rangle \left\langle \phi \\ \phi $
203	476	18.5	307	580	67.5	¢ š8
195	468	21.0	298	571	74.0	250는 먼 \& -
187	460	23.0	289	562	78.0	
181	454	24.5	267	540	83.5	
203	430	20.5	227	515	88.0	
207	480	29.5	241	514	89.5	
213	486	30.5	246	519	90.5	6
224	497	32.0	258	531	92.0	E ₂
236	509	34.0	265	538	93.0	
242	523	37.5	2/2	545 555	94.5	0 50 100×, 100
273	555	44.5	290	563	100.0	(C_H_O_)R6 (C_H_O_)L;
a T/K v	values c	alculated	by the o	compiler	:.	232 232
Characteristic point(s): Eutectic, E ₁ , at 236		$^{\circ}$ C and 100x1= 88.5 (authors).				
Eutectic, E ₂ , at 176			ic, E ₂ ,	at 176	$^{\circ}$ C and $100x_1 = 26$ (authors).	
Interme	ediate c	ompound(s)	сс ₂ н ₃ 02 (с ₂ н ₃ 02	2)5L12Rb 2)5L13Rb	3, mel 2, con	ting at 245 °C (authors). gruently melting at 309 °C (authors).
AUXILIARY I					NFORMATION	
METHOD/APPARATUS/PROCEDURE:					SOURCE AND PURITY OF MATERIALS:	
Visual	polyth	ermal anal	ysis. 1	Cemperat	ures	Not stated.
thermod	ouple.	Ltin a	om	.omer Ar	.ume 1	
					į	
					ESTIMATED ERROR:	
					Temperature: accuracy probably <u>+2</u> K (compiler).	
						REFERENCES:

ł.

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Lithium ethanoate (lithium acetate); (C₂H₃O₂)Li; [546-89-4] Rubidium ethanoate (rubidium acetate); (C₂H₃O₂)Rb; [563-67-7] 	Diogenov, G.G.; Erlykov, A.M.; Gimel´shtein, V.G. Zh. Neorg. Khim. 1974, 19, 1955-1960; Russ. J. Inorg. Chem., Engl. Transl., 1974, 19, 1069-1073 (*).
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
The results are reported only in graphical form (see figure).	a solo

250 C_{2} C_{2} $C_{$

Characteristic point(s):

Eutectic, E_1 , at 236 ^oC and $100x_2=12$ (authors). Eutectic, E_2 , at 187 ^oC and $100x_2=74$ (authors).

Intermediate compound(s):

 $({\rm C_{2}H_{3}O_{2}})_{3}{\rm Li}_{2}{\rm Rb},$ congruently melting at 300 $^{\rm O}{\rm C}$ (authors).

AUXILIARY INFORMATION				
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
The data were obtained by visual polythermal and thermographical analysis (empty and filled circles in the figure, respectively), supplemented with a few X- ray diffraction patterns.	Not stated. Component 1 melts at 291 ^o C and undergoes a phase transition at 132 ^o C. Component 2 melts at 236 ^o C and undergoes a phase transition at 206 ^o C.			
	ESTIMATED ERROR:			
	Temperature: precision probably ± 2 K (compiler).			
	REFERENCES:			

COMPONENTS:	ORIGINAL MEASUREMENTS:		
 Lithium ethanoate (lithium acetate); (C₂H₃O₂)Li; [546-89-4] Zinc ethanoate (zinc acetate); (C₂H₃O₂)₂Zn; [557-34-6] 	Pavlov, V.L.; Golubkova, V.V. Visn. Kiiv. Univ., Ser. Khim., Kiev, <u>1972</u> , No. 13, 28-30.		
VARIABLES:	PREPARED BY:		
m			
Temperature.	Baldini, P.		
EXPERIMENTAL VALUES:	I		
The results are reported only in graphical form (see figure).	275		
	175		
Characteristic point(s):	0 100 X ₂ 100		
Eutectic, E, at 220 °C and $100x_2 = 75$ (authors). $(C_2H_3O_2)Li$ $(C_2H_3O_2)_2Zn$			
Note - Glasses form at $15 \leq 100 \mathbf{x}_2 \leq 30$.			
Intermediate compound(s):			
$(C_{2}H_{3}O_{2})_{3}LiZn$, congruently melting at 265 ^o C (authors). $(C_{2}H_{3}O_{2})_{5}LiZn_{2}$, incongruently melting at 240 ^o C (authors).			
AUXILIARY I	NFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Visual polythermal analysis as well as time-temperature curves were employed. The temperatures were measured with a Chromel-Alumel thermocouple checked at the freezing temperatures of Zn, $K_2Cr_2O_7$, Cd, Sn, and benzoic acid.	Component 1: either $(C_2H_3O_2)Li.2H_2O$ of analytical purity, or material obtained by reacting Li_2CO_3 and ethanoic acid; both materials dehydrated in an oven at 105- 110 °C. Component 2: $(C_2H_3O_2)_2Zn.2H_2O$ of analytical purity dried to constant mass at 110 °C.		
NOIE:			
The formation of glasses in this system is reasonable. Accordingly, one should expect a marked tendency of the molten mixtures to supercool, which might cause the polythermal observations to be less reliable than usual.	ESTIMATED ERROR: Temperature: accuracy probably +2 K		
	REFERENCES:		

COMPONENTS:	EVALUATOR:
 Magnesium ethanoate (magnesium acetate);	Schiraldi, A.,
(C ₂ H ₃ O ₂) ₂ Mg; [142-72-3] Sodium ethanoate (sodium acetate);	Dipartimento di Chimica Fisica,
(C ₂ H ₃ O ₂) ₂ Na ₂ ; [127-09-3]	Universita´ di Pavia (ITALY).

CRITICAL EVALUATION:

This system has been investigated only by Pochtakova (Ref. 1) who reports the results of visual polythermal observations supplemented with DTA investigations, both in numerical and graphical form.

The trend of the accessible part of the liquidus ($0 \leq 100x_1 \leq 70$) has been interpreted by the author as follows: the occurrence of the intermediate compound $(C_2H_3O_2)_4MgNa_2$, congruently melting at 533 K (260 °C), splits the diagram into two eutectic subsystems whose invariants are E₁, at 529 K (256 °C) and $100x_2$ = 40.0, and E₂, at 528 K (255 °C) and $100x_2$ = 57.5. The author suggests also that the intermediate compound undergoes an alpha-beta transition at 493 K (220 °C), and a lattice readjustment of the beta form at 373 K (100 °C).

For an evaluation of the reliability of the above conclusions, the following discrepancies between the text or tables and the original plot must be mentioned.

(1) In the experimental section of the paper two solid-solid transitions are reported for component 1 at 425 K (152 $^{\circ}$ C) and 449 K (176 $^{\circ}$ C), respectively, whilst the corresponding figures on the plot are 425 K (152 $^{\circ}$ C) and 445 K (172 $^{\circ}$ C).

(ii) The table summarizing the visual polythermal data reports two temperature values at $100x_1 = 50$, the first of which - possibly due to a misprint - probably corresponds to $100x_1 = 30$.

(iii) The table collecting the DTA results reports, at $100x_1 = 60$, five temperature values, one of which (236 O C) is neither included in the phase diagram nor otherwise discussed in the text.

(iv) No DTA evidence for the lattice readjustment at 373 K is provided at the composition of the intermediate compound.

(v) DTA measurements carried out at $100x_2 > 50$ did not allow the author to obtain evidence for either the transition of the intermediate compound at 493 K, or the lattice readjustment at 373 K.

(vi) DTA measurements carried out on the mixtures did not allow the author to obtain evidence for the solid state transitions of the pure components. It is however to be stressed that the transition temperatures of sodium ethanoate are quoted by the author from Ref. 2.

In conclusion the upper part of the phase diagram given in the paper seems to be supported adequately by the experimental results, whereas the system is still to be considered as largely unexplored below the eutectic lines.

- (1) Pochtakova, E.I. Zh. Obshch. Khim. <u>1974</u>, 44, 241-248.
- (2) Sokolov, N.M. Tezisy Dokl. X Nauchn. Konf. S.M.I. <u>1956</u>.

COMPON	ENTS:		ORIGINAL MEASUREMENTS:
<pre>(1) Magnesium ethanoate (magnesium acetate); (C2H2O2)2Mg; [142-72-3]</pre>		ethanoate (magnesium	Pochtakova, E.I. Zh. Obshch. Khim. <u>1974</u> , 44, 241-248.
(2) So (C	$2^{H_{3}O_{2}}/2^{M_{3}O_{2}}/2^{M_{3}O_{2}}/2^{N_{3}O_{2}}/2^{N_{3}O_{2}}$	anoate (sodium acetate); la2; [127-09-3]	
VARIAB	LES:		PREPARED BY:
Temper	ature.		Baldini, P.
EXPERI	MENTAL V	ALUES:	
t/ ^o C	T/K ^a	100x ₁	
331 329 326 324 320 321bc 255bd 313 310 306 297 290 288 284 275 269 261 255 255bc 255bc 255bc 255bc 255bc 255bc 255bc 255bc 255bc 256 257 260bc 259 258 260bc 259 258 260bc 259 258 260bc 258 257 258bc 258b	604 602 599 597 593 594 528 586 583 570 563 561 557 548 528 528 528 528 528 528 528 528 528 52	0 2.5 5 7.5 10 10 10 15 17.5 20 25 27.5 30 ¹ 32.5 35 37.5 40 42.5 42.5 42.5 42.5 42.5 42.5 45 47.5 50 50 50 50 50 50 50 50 55 56.5 57.5 60 60 60 60 60 60 60 60 60 60	es in the figure).
g Second transition of the system. h Third transition of the system.			
$_{1}$ 50 in the original text (corrected by the compiler).			
component 1.			

1	
COMPONENTS:	ORIGINAL MEASUREMENTS:
 Magnesium ethanoate (magnesium acetate); (C₂H₃O₂)₂Mg; [142-72-3] Sodium ethanoate (sodium acetate); (C₂H₃O₂)₂Na₂; [127-09-3] 	Pochtakova, E.I. Zh. Obshch. Khim. <u>1974</u> , 44, 241-248.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES: (continued)	+
Characteristic point(s):	
Eutectic, E_1 , at 256 ^o C (extrapolated, (differential thermal analysis), and $100x_1 = 0$	visual polythermal analysis), or 258 ^o C 60 (author).
Eutectic, E_2 , at 255 °C and 100 x_1 = 42.5 (aut)	nor).
Intermediate compound(s):	
$(C_{2}H_{3}O_{2})_{4}MgNa_{2}$, congruently melting at 260 °C	C (author).
AUXILIARY I	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Visual polythermal analysis, supplemented with differential thermal analysis.	Component 1: prepared (Ref. 1) by reacting the ("chemically pure") carbonate with a slight excess of ethanoic acid of analytical purity [phase transitions at $t_{trs}(1)/^{O}C=152$, 176]. Component 2: "chemically pure" material recrystallized and dried at 200 ^{O}C to constant mass [phase transitions at $t_{trs}(2)/^{O}C=238-240$, 130, 118, 58, Ref. 2].
	ESTIMATED ERROR:
	Temperature: accuracy probably <u>+</u> 2 K (compiler).
	REFERENCES:
	 Sokolov, N.M. Zh. Obshch. Khim. <u>1954</u>, 24, 1581-1593 Sokolov, N.M. Tezisy Dokl. X Nauch. Konf. S.M.I. <u>1956</u>.

COMPONENTS:	EVALUATOR:
 Sodium ethanoate (sodium acetate);	Schiraldi, A.,
(C ₂ H ₃ O ₂)Na; [127-09-3] Rubidium ethanoate (rubidium acetate);	Dipartimento di Chimica Fisica
(C ₂ H ₃ O ₂)Rb; [563-67-7]	Universita ⁻ di Pavia (ITALY).

CRITICAL EVALUATION:

This system was studied twice in Gimel'shtein's laboratory [Ref. 1: visual polythermal analysis (empty circles in the figure); Ref. 2: DTA (filled circles in the figure)] with substantially analogous results for the liquidus: an intermediate compound, $(C_2H_3O_2)_4NaRb_3$, congruently melting at 452-453 K (179 °C, Ref. 1; 180 °C, Ref. 2), forms eutectics with both pure components, at 418-419 K (145-146 °C) and 100x1= 38-38.5, and at 451-453 K (178-180 °C) and 100 x_1 = 23.5, respectively.

Discrepancies, however, exist between Ref.s 1 and 2 about the phase transition temperatures of the pure components.

As for component 1, Gimel'shtein and Diogenov (Ref. 1) report $T_{trg}(1)$ = 583-584 K (310-311 °C), while Gimel'shtein (Ref. 2) gives $T_{trs}(1)$ = 543 K (270 °C). The former figure exceeds largely the highest $T_{trs}(1)$ value listed in Table 1 of the Preface, viz., 527+15 K, while the latter one lies just above the upper uncertainty limit of Table 1 value.

As for component 2, 493 K (220 $^{\circ}$ C) and 479 K (206 $^{\circ}$ C) are reported in Ref. 1 and Ref. 2, respectively, as the transition temperature: the former value is close to, while the latter one is significantly lower than that listed in Table 1 of the Preface, viz., 498<u>+</u>1 K.

X-ray diffractometric results were claimed (Ref. 2) to support the existence of the intermediate compound, and to suggest that this should decompose into a solid solution just below 383 K (110 $^{\circ}$ C). The second assertion, however, does not seem convincing, inasmuch as it would imply a change in the solid from a state of miscibility at lower temperatures into a state of immiscibility at higher temperatures.

Finally, the assumption of the congruent fusion of the intermediate compound does not seem adequately supported: the shape of the liquidus could as well suggest the occurrence of a peritectic equilibrium, e.g., in connection with the incongruent fusion of the compound.

REFERENCES:

(2) Gimel'shtein, G.G.; Tr. Irkutsk. Politech. Inst. 1971, No. 66, 80-100.

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] Rubidium ethanoate (rubidium acetate); (C₂H₃O₂)Rb; [563-67-7] 	Gimel'shtein, V.G.; Diogenov, G.G. Zh. Neorg. Khim. 1958, 3, 1644-1649 (*); Russ. J. Inorg. Chem. (Engl. Transl.) 1958, 3 (7), 230-237.
VARIABLES:	PREPARED BY:
Temperature	Baldini, P.
EXPERIMENTAL VALUES:	
$t/^{o}C T/K^{a} = 100x_{1} t/^{o}C T/K^{a} = 100x_{1}$	
236 509 0 195 468 47	
222 495 5 216 489 52 218 491 9 234 507 57	300 - B-
210 483 14.5 248 521 62	کر
198 471 18.5 260 533 67	ا کر ا
186 459 22 271 544 72	
175 448 28 299 572 87	
166 439 31.7 308 581 93	
161 434 33.5 311 584 95.5	
145 418 38 315 588 96.5	
	Esq.
" T/K values calculated by the compiler.	
Characteristic point(s):	Δ Ε1,
$^{\text{Lutectic}}$, $^{\text{L}}_{1}$, at 145 °C (according to Fig.	0 50 $100x_1$ 100
according to Fig. 1 of the original paper,	
and not at 179 °C as reported in the text;	
compiler) and $100x_1 = 38$ (authors).	\sim 2 of the original paper, or at 179 °C
according to Fig. 1 of the original paper; co	mpiler) and $100x_1$ about 23.5 (compiler).
Intermediate compound(s):	
(C ₂ H ₃ O ₂) ₄ NaRb ₃ , congruently melting at 180 °C	(authors).
AUXILIARY I	NFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Visual polythermal analysis. Temperatures	Not stated.
measured with a Chromel-Alumel thermocouple	Component 1 undergoes a phase transition at
being hyproscopic, the method of additions	t _{trs} (1)/°C ⁼ 311 (310 °C according to Fig. 2)
with determination of the sample mass by	Component 2 undergoes a phase transition at
difference was employed in order to avoid	$t_{trs}(2)/^{o}C=220.$
hydration.	
	ESTIMATED ERROR:
	BILLING MUNIC
	Temperature: accuracy probably <u>+2</u> K (compiler).
	REFERENCES:

/	
COMPONENTS:	ORIGINAL MEASUREMENTS:
 Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] Rubidium ethanoate (rubidium acetate); (C₂H₃O₂)Rb; [563-67-7] 	Gimel'shtein, V.G. Tr. Irkutsk. Politekh. Inst. <u>1971</u> , No. 66, 80-100.
	PREDAREN RY.
	Poldini D
EXPERIMENTAL VALUES:	
$t/^{\circ}C T/K^{a} 100x_{2} t/^{\circ}C T/K^{a} 100x_{2}$	
328 601 0 108 381 70.0	
$\begin{bmatrix} 270 & 543 & 0 & 197 & 470 & 85.0 \\ 200 & 572 & 15.0 & 180 & 452 & 85.0 \\ \end{bmatrix}$	
271 544 15.0 110 383 85.0	
148 421 15.0 218 491 95.0	,
205 478 50.0 206 479 95.0	
146 419 50.0 178 451 95.0	
110 383 50.0 235 508 100	
144 417 70.0 206 479 100	
^a T /K values calculated by the compiler.	
Characteristic point(s):	
Eutectic, E_1 , at 178 °C and 100x ₁ = 23.5 (auth	or).
Eutectic, E_2 , at 146 °C and 100 x_1 38.5 (auth	nor).
Intermediate compound(s):	
$(C_{2H_{3}O_{2}})_{4}$ NaRb ₃ , congruently (compiler) mel transformation at 110 ^o C (author).	ting at 179 ^O C (author), and undergoing a
AUXILIARY I	NFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Differential thermal analysis (using a derivatograph with automatic recording of the heating curves) and room temperature X-ray diffractometry (using a URS-501M apparatus) were employed.	Not stated. Component 1 melts at $t_{fus}(1)/{}^{o}C=328$ (327 according to Fig. 7 of the original paper; compiler), and undergoes a phase transition at $t_{trs}(1)/{}^{o}C=270$. Component 2 melts at $t_{fus}(2)/{}^{o}C=235$ (236 according to Fig. 7 of the original paper; compiler), and undergoes a phase transition
NOTE - 1	at $t_{trs}(2)/^{o}C= 206$.
The meaning of the data listed in the table becomes apparent by observing the figure reported in the critical evolution	ESTIMATED ERROR:
reported in the critical evaluation.	STARIED SMOK.
NOTE -2	Temperature: accuracy probably <u>+2</u> K (compiler).
_	
The coordinates of the characteristic points were stated by the author on the basis of his own DTA measurements, and of previous literature data (Ref. 1). X-ray patterns were taken at $100x_1 = 27.5$.	REFERENCES: (1) Gimel ⁻ shtein, V.G.; Diogenov, G.G. Zh. Neorg. Khim. <u>1958</u> , 3, 1644-1649.

Сомра	NENTS	•
COLLE	JUCNIO	

EVALUATOR:

 Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3]
 Zinc ethanoate (zinc acetate); (C₂H₃O₂)₂Zn; [557-34-6] Schiraldi, A., Dipartimento di Chimica Fisica, Universita di Pavia (ITALY).

CRITICAL EVALUATION:

This system was studied by Lehrman and Skell (Ref. 1), Pavlov and Golubkova (Ref. 2), and Nadirov and Bakeev (Ref. 3).

A qualitative agreement exists between Refs. 1 and 2, as both of them report a phase diagram characterized by two eutectics, E_1 and E_2 , and the congruently melting intermediate compound $(C_{2H_3O_2})_{4Na_2Zn}$. Differences between these papers concern the coordinates of the eutectics: according to Ref. 1, E_1 should occur at 491-493 K (218-220 °C) and 100x₂ about 28, and E_2 at 548.5-551.8 K (175.3-178.6 °C) and 100x₂ about 54, whereas, according to Ref. 2, the invariants should be at 473 K (200 °C) and 100x₂= 25, and at 413 K (140 °C) and 100x₂= 50, respectively.

The phase diagram suggested in Ref. 3 shows in turn: (i) a single eutectic at either 415, or 421 K (either 142, or 148 °C, according to visual polythermal and conductometric investigations, respectively) and $100x_2 = 57$; (ii) a peritectic at either 480, or 477, or 484 K (either 207, or 204, or 211 °C, according to visual polythermal, conductometric, and thermographical results, respectively), and, possibly, $100x_2 = 33.3$; and (iii) the intermediate compound $(C_2H_3O_2)_4Na_2Zn$ reported here as incongruently melting.

In the evaluator's opinion, the discrepancies among the diagrams suggested by the different authors should be attributed mainly to different degrees of accuracy in the determination of the actual liquidus temperatures. In this connection, it is important to stress that Lehrman and Skell observed a tendency of the melts to supercool and, in particular, found at temperatures below 483 K extremely viscous melts "so that great difficulty was experienced in obtaining crystallization and reproducible melting points" (Ref. 1). Consequently, in the case of the present binary, poorly reliable results can be reasonably expected both by techniques implying observations performed on cooling (as visual polythermal analysis), and by techniques (as conductometry) implying observations performed on heating at constant rate. Accordingly, the diagrams by Pavlov and Golubkova (based only on visual polythermal observations), and by Nadirov and Bakeev (based mainly on visual polythermal and conductometric investigations) probably suffer from limited accuracy.

In conclusion, the evaluator is inclined to consider as more reliable the findings by Lehrman and Skell (who employed very small heating rates), viz.: (i) the presence of the intermediate compound $(C_2H_3O_2)_4Na_2Zn$, congruently melting at about 500 K; and (ii) the occurrence of two eutectics, E_1 at about 490 K and $100x_2$ about 28, and E_2 at about 550 K and $100x_2$ about 54.

- (1) Lehrman, A.; Skell, P.
 J. Am. Chem. Soc. <u>1939</u>, 61, 3340-3342.
- (2) Pavlov, V.L.; Golubkova, V.V.
 Visn. Kiiv. Univ., Ser. Khim., Kiev, 1972, No. 13, 28-30.
- (3) Nadirov, E.G.; Bakeev, M.I. Tr. Khim.-Hetall. Inst. Akad. Nauk Kaz. SSR <u>1974</u>, 25, 115-128.

1	
COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Sodium ethanoate (sodium acetate); (C₂H₃O₂)Na; [127-09-3] (2) Zinc ethanoate (zinc acetate); (C₂H₃O₂)₂Zn; [557-34-6] 	Lehrman, A.; Skell, P. J. Amer. Chem. Soc. <u>1939</u> , 61, 3340-3342.
VARIABLES:	PREPARED BY:
m	
Temperature	Baldini, P.
EXPERIMENTAL VALUES:	
t/°C T/K ^a $100x_2$ t/°C T/K ^a $100x_2$ 328.3 601.5 0 203.9 477.1 46.0 313.4 586.6 10.1 198.0 471.2 48.0 277.5 550.7 20.0 194.6 467.8 49.0 261.4 534.6 22.6 192.5 465.7 50.0 233.2 506.4 26.5 189.1 462.3 51.0 218.0 ^b 491.2 26.5 183.0 456.2 52.0 223.3 496.5 28.0 178.6 ^C 451.8 52.0 220.0 ^b 493.2 28.0 180.9 454.1 55.0 225.7 498.9 30.0 175.3 ^C 448.5 55.0 227.2 500.4 33.3 197.8 471.0 60.0 227.1 500.3 33.3 212.5 485.7 66.7 227.1 500.3 33.3 221.8 495.0 70.0 226.4 499.6 35.0 236.5 509.7 80.0 220.2 493.4 40.0 242.4 515.6 100.0 a T/K values calculated by the compiler. ^b Eutectic stop (E ₁); filled circles in the fill the formula of the formula	Figure. $C_2H_3O_2N_6 = (C_2H_3O_2)N_6 + (C_2H_3O_2)^2Z_1$ $C_2H_3O_2N_6 = (C_2H_3O_2)^2Z_1$ $C_2H_3O_2N_6 = (C_2H_3O_2)^2Z_1$ $C_3 = (C_2H_3O_2)^2Z_1$ $C_3 = (C_2H_3O_2)^2Z_1$
AUXILIARY 1	NFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The salts, contained into 2.5x20 cm Pyrex tube and added with 5 drops of glacial ethanoic acid, were heated in bath formed with the eutectic mixture of calcium, potassium, and lithium nitrates. The temperature of disappearance of the last crystal as the mixture was heated under stirring was measured with Copper- Constantane thermocouple and potentiometer. The fusion temperatures tabulated come from three or more determinations ranging within 1 K. The eutectic stops relevant to E_1 were measured by means of time - temperature cooling curves.	Materials of not stated source, recrystallized from dilute ethanoic acid, and dehydrated according to Ref. 1. ESTIMATED ERROR: Temperature: accuracy <u>+</u> 0.5 K (compiler).
	(1) Davidson, A.W.; McAllister J. Amer. Chem. Soc. <u>1930</u> , 52, 519-527.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Sodium ethanoate (sodium acetate); $(C_2H_3O_2)Na; [127-09-3]$ (2) Zinc ethanoate (zinc acetate); $(C_2H_3O_2)_2Zn; [557-34-6]$	Pavlov, V.L.; Golubkova, V.V. Visn. Kiiv. Univ., Ser. Khim., Kiev, <u>1972</u> , No. 13, 28-30.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	
EXPERIMENTAL VALUES: $ \frac{275}{9} \frac{1}{9} 1$	
AUXILIARY I	NFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Visual polythermal analysis as well as time-temperature curves were employed. The temperatures were measured with a Chromel-Alumel thermocouple checked at the freezing temperatures of Zn, $K_2Cr_2O_7$, Cd, Sn, and benzoic acid.	Component 1: (C ₂ H ₃ O ₂)Na.3H ₂ O of analytical purity recrystallized from water and dried in an oven at 110-120 °C to constant mass. Component 2: (C ₂ H ₃ O ₂) ₂ Zn.2H ₂ O of analytical purity dried to constant mass at 110 °C.
	ESTIMATED ERROR:
	Temperature: accuracy probably <u>+2</u> K (compiler).
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
	Neddrey E.C. & Beleast M.T.
$(C_{2H_2O_2})$ Na; [127-09-3]	Tr. KhimMetall. Inst. Akad. Nauk Kaz. SSR
(2) Zinc ethanoate (zinc acetate);	<u>1974</u> , 25 , 115-128.
$(C_{2H_{3}O_{2}})_{2Zn}; [557-34-6]$	
VARIABLES:	PREPARED BY:
Tomporature	Baldini P
	baldini, i.
EXPERIMENTAL VALUES:	
$t^{o}C T/K^{a} 100x_{1}$	ų [
236 509 0	÷ ÷
229 502 10	300 - 0 -
217 490 20	
174 447 35	
165 438 40	9
142 415 43	
177 450 50	γ_{α} β
189 462 55	
206 479 66.7	
214 487 70	à ở
234 507 75	
261 534 80	V I
279 552 85	E
298 5/1 90	0 50 100 <i>×</i> , 100
332 605 100	
a T/K values calculated by the compiler.	
Characteristic point(s):	
Eutectic, E, at either 142 ^o C (visual poly	thermal analysis), or
148 °C (conductometry), and $100x_1 = 43$.	
Peritectic, P, at either 207 °C (visual poly	thermal analysis), or
204 °C (conductometry), or 211 °C (thermogra	phical analysis), and
the coordinates of the peritectic might	be $206 {}^{\circ}\text{C}$ (visual
polythermal analysis; tabulated value) and 1	$00x_1 = 66.7$].
Intermediate compound(s):	
(C ₂ H ₃ O ₂),Na ₂ Zn, incongruently melting.	
AUXILIARY I	NFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Visual polythermal analysis supplemented	Component 1: "chemically pure" hydrated
thermographical investigations	$U_2H_3O_2Na$ recrystallized twice and dried at
Temperatures of initial crystallization	analytical purity, recrystallized twice and
measured with a thermocouple.	dried at 140 °C.
	ESTIMATED ERROR:
	Temperature: accuracy probably + 9 V
	(compiler).

COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Lead(II) ethanoate (lead acetate); (C₂H₃O₂)₂Pb; [15347-57-6] (2) Zinc ethanoate (zinc acetate); (C₂H₃O₂)₂Zn; [557-34-6] 	Petersen, J. Z. Elektrochem. <u>1914</u> , 20, 328-332.
VARIABLES:	PREPARED BY:
Temperature.	Baldini. P.
EXPERIMENTAL VALUES:	
The results are reported only in graphical form (see figure). Characteristic point(s): Eutectic, E, at 160 °C and 100x ₂ about 25 (author).	
AUXILIARY 1	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Mixtures contained in a glass tube and heated in a sulfuric acid bath. NOTE:	Not stated. Component 1: $t_{fus}(1)/{}^{\circ}C= 204$. Component 2: $t_{fus}(2)/{}^{\circ}C= 244$.
T _{fus} (1) and T _{fus} (2) are in reasonable agreement with the data by other authors (Ref. 1). The general features of the diagram seem to be reliable.	
	ESTIMATED ERROR:
	Temperature: accuracy not evaluable (compiler).
	REFERENCES: (1) Sanesi, M.; Cingolani, A.; Tonelli, P.L.; Franzosini, P.; Thermal Properties, in Thermodynamic and Transport Properties of Organic Salts, IUPAC Chemical Data Series No. 28 (Franzosini, P.; Sanesi, M.; Editors), Pergamon Press, Oxford, <u>1980</u> , 29-115.

I

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Rubidium ethanoate (rubidium acetate); $(C_2H_3O_2)Rb;$ [563-67-7] (2) Zinc ethanoate (zinc acetate); $(C_2H_3O_2)_2Zn;$ [557-34-6]	Nadirov, E.G.; Bakeev, M.I. Tr. KhimMetall. Inst. Akad. Nauk Kaz. SSR 1974, 25, 115-128.
VARIABLES:	PREPARED BY:
Temperature.	Baldini, P.
EXPERIMENTAL VALUES:	<u></u>
t/ ^o C T/K ^a 100x ₁	
236 509 0 223 496 10 219 492 15 212 485 20 198 471 30 182 455 35 159 432 40 173 446 45 187 460 50 196 469 55 204 477 60 209 482 65 217 490 70 223 496 75 230 503 80 232 505 85 235 508 90 236 509 93.7 237 510 100 ^a T/K values calculated by the compiler. Characteristic point(s): Eutectic, E, at either 159 °C (visual polythand $100x_1 = 40$	hermal analysis), or 163 °C (conductometry),
AUXILIARY 1	NFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Visual polythermal analysis supplemented with conductometry, and occasionally with thermographical and X-ray investigations. Temperatures of initial crystallization measured with a thermocouple.	Component 1: material recrystallized three times and dried at 110-120 °C. Component 2: (C ₂ H ₃ O ₂) ₂ Zn.2H ₂ O of analytical purity, recrystallized twice and dried at 140 °C.
NOTE 1:	
The mixtures at $55 \leq 100 x_1 \leq 80$ tend to form glasses.	
NOTE 2:	
The $T_{fus}(1)$ and $T_{fus}(2)$ values given here are lower than the corresponding values from Preface 1 [$T_{fus}(1)$ = 514 K] and from Ref. 1 [$T_{fus}(2)$ = 514-533 K], respectively. In Fig. 8 of the original paper the authors report an isothermal line at 404 K (131 °C) which is not discussed in the text. The ability to form glasses might imply poor reliability of the eutectic coordinates; however, the classification of the diagram as of the simple eutectic type might be	ESTIMATED EKKOR: Temperature: accuracy probably <u>+</u> 2 K (compiler). REFERENCES: (1) Sanesi, M.; Cingolani, A.; Tonelli, P.L.; Franzosini, P.; Thermal Properties, in Thermodynamic and Transport Properties of Organic Salts, IUPAC Chemical Data Series No. 28 (Franzosini, P.; Sanesi, M.; Editors),
as or the simple eutectic type might be accepted with some confidence.	(Franzosini, P.; Sanesi, M.; Editors), Pergamon Press, Oxford, <u>1980</u> , 29-115.