	ONENTS:		ORIGINAL MEASUREMENTS:
(1)	Benzenesulfonamide, 2-	-ámino-,	Kienle, R. H.; Sayward, J. M.,
	(orthanilamide); C ₆ H ₈	N ₂ 0 ₂ s;	J. Am. Chem. Soc. <u>1942</u> , 64, 2464-8
	[3306-62-5]		
2)	Water; H ₂ 0; [7732-18-	-5]	
AR	ABLES:		PREPARED BY:
	Temperature		R. Piekos
XPI	RIMENTAL VALUES:		
	t/ ^o C	g/100 g soln	mol kg ⁻¹ (compiler)
	23.0	0.65	0.038
	24.0	0.67	0.039
	26.0	0.75	0.044
	28.0	0.82; 0.82	0.048
	30.5	0.91	0.053
	33.0	1.01	0.0586
	34.0	1.05	0.0610
	35.5	1.11	0.0645
	37.0	1.20; 1.20	0.0697
	37.0	1.20 ^a	$+ \pm 0.024$ 0.0697 $> \pm 0.0014$
	37.0	1.18 ^b	0.0685
	37.05	1.19	0.0691
	42.0	1.46	0.0848
	46.0	1.70	0.0987
	50.0	2.00 ^b	0.116
	^a Equilibrium approacl	ned from below.	
	^b Duration less than 1		
		AUXILIARY	INFORMATION
		210711 D11111	INI ORDELLON
MET	HOD /APPARATUS / PROCEDURE	•	SOURCE AND PUBLITY OF MATERIALS:
	HOD/APPARATUS/PROCEDURE		SOURCE AND PURITY OF MATERIALS:
An	excess of solid was ro	tated with water	Orthanilamide, m.p. 155.2 ⁰ C, was prepd
An usu	excess of solid was ro ally overnight. Equil:	tated with water ibrium was approach-	Orthanilamide, m.p. 155.2 ⁰ C, was prepd by the authors. Titrn. with nitrite
An usu ed	excess of solid was rou ally overnight. Equil: from above. Sampling v	tated with water ibrium was approach- was accomplished by	Orthanilamide, m.p. 155.2 ⁰ C, was prepd by the authors. Titrn. with nitrite indicated that the compd was 100.0 <u>+</u> 0.3
An usu ed for	excess of solid was ro ally overnight. Equil: from above. Sampling cing the soln through	tated with water ibrium was approach- was accomplished by a filter into a	Orthanilamide, m.p. 155.2° C, was prepd by the authors. Titrn. with nitrite indicated that the compd was 100.0 ± 0.3 pure. Elemental analysis and mixed m.p
An usu ed for pyc	excess of solid was rot ally overnight. Equil: from above. Sampling t cing the soln through a nometer. From the pyce	tated with water ibrium was approach- was accomplished by a filter into a nometer the con-	Orthanilamide, m.p. 155.2° C, was prepd by the authors. Titrn. with nitrite indicated that the compd was 100.0 ± 0.3 pure. Elemental analysis and mixed m.p confirmed this value. Purity of the
An usu ed for pyc ten	excess of solid was rou ally overnight. Equil: from above. Sampling w cing the soln through a nometer. From the pyce ts were flushed into a	tated with water ibrium was approach- was accomplished by a filter into a nometer the con- volumetric flask.	Orthanilamide, m.p. 155.2° C, was prepd by the authors. Titrn. with nitrite indicated that the compd was 100.0 ± 0.3 pure. Elemental analysis and mixed m.p
An usu ed for Pyc ten Dup	excess of solid was rou ally overnight. Equil: from above. Sampling w cing the soln through nometer. From the pyce ts were flushed into a licate aliquots were an	tated with water ibrium was approach- was accomplished by a filter into a nometer the con- volumetric flask. cidified, iced	Orthanilamide, m.p. 155.2° C, was prepd by the authors. Titrn. with nitrite indicated that the compd was 100.0 ± 0.3 pure. Elemental analysis and mixed m.p confirmed this value. Purity of the
An usu ed for Pyc ten Dup bel	excess of solid was rou ally overnight. Equil: from above. Sampling w cing the soln through nometer. From the pyce ts were flushed into a licate aliquots were an ow 15°C and titrated w	tated with water ibrium was approach- was accomplished by a filter into a nometer the con- volumetric flask. cidified, iced ith 0.04 mol	Orthanilamide, m.p. 155.2° C, was prepd by the authors. Titrn. with nitrite indicated that the compd was 100.0 ± 0.3 pure. Elemental analysis and mixed m.p confirmed this value. Purity of the water was not specified.
An usu ed for pyc ten Dup bel dm	excess of solid was rou ally overnight. Equil: from above. Sampling w cing the soln through nometer. From the pyce ts were flushed into a licate aliquots were an	tated with water ibrium was approach- was accomplished by a filter into a nometer the con- volumetric flask. cidified, iced ith 0.04 mol	Orthanilamide, m.p. 155.2°C, was prepd by the authors. Titrn. with nitrite indicated that the compd was 100.0 ±0.3 pure. Elemental analysis and mixed m.p confirmed this value. Purity of the water was not specified. ESTIMATED ERROR: Temp: ±0.02°C (authors Soly: ±0.01 g/100 g soln (authors) or
An usu ed for pyc ten Dup bel dm	excess of solid was rousely overnight. Equil: from above. Sampling was cing the soln through nometer. From the pyce ts were flushed into a licate aliquots were an ow 15°C and titrated was ³ NaNO ₂ to first blue	tated with water ibrium was approach- was accomplished by a filter into a nometer the con- volumetric flask. cidified, iced ith 0.04 mol	Orthanilamide, m.p. 155.2°C, was prepd by the authors. Titrn. with nitrite indicated that the compd was 100.0 ±0.3 pure. Elemental analysis and mixed m.p confirmed this value. Purity of the water was not specified. ESTIMATED ERROR: Temp: ±0.02°C (authors Soly: ±0.01 g/100 g soln (authors) or
An usu ed for pyc ten Dup bel dm	excess of solid was rousely overnight. Equil: from above. Sampling was cing the soln through nometer. From the pyce ts were flushed into a licate aliquots were an ow 15°C and titrated was ³ NaNO ₂ to first blue	tated with water ibrium was approach- was accomplished by a filter into a nometer the con- volumetric flask. cidified, iced ith 0.04 mol	Orthanilamide, m.p. 155.2° C, was prepd by the authors. Titrn. with nitrite indicated that the compd was 100.0 ± 0.3 pure. Elemental analysis and mixed m.p confirmed this value. Purity of the water was not specified. ESTIMATED ERROR: Temp: $\pm 0.02^{\circ}$ C (authors Soly: ± 0.01 g/100 g soln (authors) or $\pm 0.012 \times 10^{-3}$ in mole fraction. The 2 value for 37° C indicated in results.
An usu ed for pyc ten Dup bel dm	excess of solid was rousely overnight. Equil: from above. Sampling was cing the soln through nometer. From the pyce ts were flushed into a licate aliquots were an ow 15°C and titrated was ³ NaNO ₂ to first blue	tated with water ibrium was approach- was accomplished by a filter into a nometer the con- volumetric flask. cidified, iced ith 0.04 mol	Orthanilamide, m.p. 155.2°C, was prepd by the authors. Titrn. with nitrite indicated that the compd was 100.0 ±0.3 pure. Elemental analysis and mixed m.p confirmed this value. Purity of the water was not specified. ESTIMATED ERROR: Temp: ±0.02°C (authors Soly: ±0.01 g/100 g soln (authors) or
An usu ed for pyc ten Dup bel dm	excess of solid was rousely overnight. Equil: from above. Sampling was cing the soln through nometer. From the pyce ts were flushed into a licate aliquots were an ow 15°C and titrated was ³ NaNO ₂ to first blue	tated with water ibrium was approach- was accomplished by a filter into a nometer the con- volumetric flask. cidified, iced ith 0.04 mol	Orthanilamide, m.p. 155.2° C, was prepd by the authors. Titrn. with nitrite indicated that the compd was 100.0 ± 0.3 pure. Elemental analysis and mixed m.p confirmed this value. Purity of the water was not specified. ESTIMATED ERROR: Temp: $\pm 0.02^{\circ}$ C (authors Soly: ± 0.01 g/100 g soln (authors) or $\pm 0.012 \times 10^{-3}$ in mole fraction. The 2 value for 37° C indicated in results.
An usu ed for pyc ten Dup bel dm	excess of solid was rousely overnight. Equil: from above. Sampling was cing the soln through nometer. From the pyce ts were flushed into a licate aliquots were an ow 15°C and titrated was ³ NaNO ₂ to first blue	tated with water ibrium was approach- was accomplished by a filter into a nometer the con- volumetric flask. cidified, iced ith 0.04 mol	Orthanilamide, m.p. 155.2° C, was prepd by the authors. Titrn. with nitrite indicated that the compd was 100.0 ± 0.3 pure. Elemental analysis and mixed m.p confirmed this value. Purity of the water was not specified. ESTIMATED ERROR: Temp: $\pm 0.02^{\circ}$ C (authors Soly: ± 0.01 g/100 g soln (authors) or $\pm 0.012 \times 10^{-3}$ in mole fraction. The 2 value for 37° C indicated in results.
An usu ed for pyc ten Dup bel dm	excess of solid was rousely overnight. Equil: from above. Sampling was cing the soln through nometer. From the pyce ts were flushed into a licate aliquots were an ow 15°C and titrated was ³ NaNO ₂ to first blue	tated with water ibrium was approach- was accomplished by a filter into a nometer the con- volumetric flask. cidified, iced ith 0.04 mol	Orthanilamide, m.p. 155.2° C, was prepd by the authors. Titrn. with nitrite indicated that the compd was 100.0 ± 0.3 pure. Elemental analysis and mixed m.p confirmed this value. Purity of the water was not specified. ESTIMATED ERROR: Temp: $\pm 0.02^{\circ}$ C (authors Soly: ± 0.01 g/100 g soln (authors) or $\pm 0.012 \times 10^{-3}$ in mole fraction. The 2 value for 37° C indicated in results.

• '

2	
 COMPONENTS: (1) Benzenesulfonamide, 2-amino- (or-thanilamide); C₆H₈N₂O₂S; [3306-62-5] (2) Phosphoric acid, disodium salt; Na₂HPO₄; [7558-94-4] (3) Phosphoric acid, monopotassium salt; KH₂PO₄; [7778-77-0] 	ORIGINAL MEASUREMENTS: Kienle, R. H.; Sayward, J. M. <i>J. Am. Chem. Soc.</i> <u>1942</u> , <i>64</i> , 2464-8.
(4) Water; H ₂ O; [7732-18-5] VARIABLES: One temperature: 37.0 [°] C; one pH: 6.9	PREPARED BY: R. Piekos
EXPERIMENTAL VALUES: Solubility of orthanilamide in a buffer solut of 1/15 M Na ₂ HPO ₄ with 44.8 cm ³ of 1/15 M KH ₂ from dissociation constants 0.03 ^a) at 37.0°C mol dm ⁻³ , compiler). ^a Not specified for which reactions were the compiler.	PO ₄ (pH 6.9 , ionic strength calculated is 1.19 g/100 cm ³ solution (6.91 $\times 10^{-2}$
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotatd with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pycnometer the contents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln to first blue on a starch - iodide paper.	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indicated that the compd was 100.0±0.3% pure. Elemental analysis and mixed mp confirmed this value. Source and purity of the remaining materi- als was not specified. ESTIMATED ERROR: Soly: ±0.01 g/100 g soln or ±0.012 x 10 ⁻³ in mole fraction (authors). Temp: ±0.02°C (authors). REFERENCES:

COMPONENTS :	OPTOTNAL MERCUPPIONING
OMPONENTS: (1) Benzenesulfonamide, 2-amino- (or-	ORIGINAL MEASUREMENTS: Kienle, R. H.; Sayward, J. M.
thanilamide); C ₆ H ₈ N ₂ O ₂ S; [3306-62-5]	J. Am. Chem. Soc. <u>1942</u> , 64, 2464-8.
(2) Hydrochloric acid; HC1; [7647-01-0]	<u></u>
(3) Potassium chloride; KC1; [7447-40-7]	
(4) Water; H ₂ O; [7732-18-5]	
2	
/ARIABLES:	PREPARED BY:
One temperature: 37.0 [°] C; one pH: 1.2	R. Piekos
XPERIMENTAL VALUES:	`
	repared by mixing together 25 cm ³ of 0.2 M KCl
	to 100 cm ³ with water (pH 1.2, ionic strength
calculated from dissociation constants 0.12	¹) at 37.0 [°] C is 1.92 g/100 cm ³ solution
(0.111 mol dm ⁻³ , compiler).	
^a Not specified for which reactions were the	dissociation constants calculated -
compiler.	
compiler.	
AUXILIARY	INFORMATION
	INFORMATION SOURCE AND PURITY OF MATERIALS:
ÆTHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
ÆTHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2 ⁰ C, was prepd by
ÆTHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili-	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2 [°] C, was prepd by the authors. Titrn with nitrite indicated
ETHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2 ⁰ C, was prepd by the authors. Titrn with nitrite indicated that the compd was 100.0 <u>+</u> 0.3% pure.
ETHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2 ⁰ C, was prepd by the authors. Titrn with nitrite indicated that the compd was 100.0 <u>+</u> 0.3% pure. Elemental analysis and mixed mp confirmed
ETHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2 ⁰ C, was prepd by the authors. Titrn with nitrite indicated that the compd was 100.0 <u>+</u> 0.3% pure.
ÆTHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling Was accomplished by forcing the soln through	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2 ⁰ C, was prepd by the authors. Titrn with nitrite indicated that the compd was 100.0 <u>+</u> 0.3% pure. Elemental analysis and mixed mp confirmed
ÆTHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc-	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indicated that the compd was 100.0 <u>+</u> 0.3% pure. Elemental analysis and mixed mp confirmed this value. Purity of the water was not
ETHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the contents were flushed into a volumetric flask. Duplicate aliquots were	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2 ^o C, was prepd by the authors. Titrn with nitrite indicated that the compd was 100.0 <u>+</u> 0.3% pure. Elemental analysis and mixed mp confirmed this value. Purity of the water was not specified. The source and purity of the remaining
ÆTHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the contents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indicated that the compd was 100.0 <u>+</u> 0.3% pure. Elemental analysis and mixed mp confirmed this value. Purity of the water was not specified. The source and purity of the remaining materials was not specified.
ÆTHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the contents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln to first	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indicated that the compd was 100.0±0.3% pure. Elemental analysis and mixed mp confirmed this value. Purity of the water was not specified. The source and purity of the remaining materials was not specified. ESTIMATED ERROR: Soly: ±0.01 g/100 g soln
ÆTHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the contents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indicated that the compd was 100.0 <u>+</u> 0.3% pure. Elemental analysis and mixed mp confirmed this value. Purity of the water was not specified. The source and purity of the remaining materials was not specified.
ÆTHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the contents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln to first	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indicated that the compd was 100.0 \pm 0.3% pure. Elemental analysis and mixed mp confirmed this value. Purity of the water was not specified. The source and purity of the remaining materials was not specified. ESTIMATED ERROR: Soly: \pm 0.01 g/100 g soln or \pm 0.012 x 10 ⁻³ in mole fraction
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the contents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln to first	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indicated that the compd was $100.0\pm0.3\%$ pure. Elemental analysis and mixed mp confirmed this value. Purity of the water was not specified. The source and purity of the remaining materials was not specified. ESTIMATED ERROR: Soly: ±0.01 g/100 g soln or $\pm0.012 \times 10^{-3}$ in mole fraction (authors). Temp: $\pm0.02^{\circ}C$ (authors).
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the contents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln to first	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indicated that the compd was $100.0\pm0.3\%$ pure. Elemental analysis and mixed mp confirmed this value. Purity of the water was not specified. The source and purity of the remaining materials was not specified. ESTIMATED ERROR: Soly: ±0.01 g/100 g soln or $\pm0.012 \times 10^{-3}$ in mole fraction
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the contents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln to first	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indicated that the compd was $100.0\pm0.3\%$ pure. Elemental analysis and mixed mp confirmed this value. Purity of the water was not specified. The source and purity of the remaining materials was not specified. ESTIMATED ERROR: Soly: ±0.01 g/100 g soln or $\pm0.012 \times 10^{-3}$ in mole fraction (authors). Temp: $\pm0.02^{\circ}C$ (authors).
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the contents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln to first	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indicated that the compd was $100.0\pm0.3\%$ pure. Elemental analysis and mixed mp confirmed this value. Purity of the water was not specified. The source and purity of the remaining materials was not specified. ESTIMATED ERROR: Soly: ±0.01 g/100 g soln or $\pm0.012 \times 10^{-3}$ in mole fraction (authors). Temp: $\pm0.02^{\circ}C$ (authors).
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the contents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln to first	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indicated that the compd was $100.0\pm0.3\%$ pure. Elemental analysis and mixed mp confirmed this value. Purity of the water was not specified. The source and purity of the remaining materials was not specified. ESTIMATED ERROR: Soly: ±0.01 g/100 g soln or $\pm0.012 \times 10^{-3}$ in mole fraction (authors). Temp: $\pm0.02^{\circ}C$ (authors).
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the contents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln to first	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indicated that the compd was $100.0\pm0.3\%$ pure. Elemental analysis and mixed mp confirmed this value. Purity of the water was not specified. The source and purity of the remaining materials was not specified. ESTIMATED ERROR: Soly: ±0.01 g/100 g soln or $\pm0.012 \times 10^{-3}$ in mole fraction (authors). Temp: $\pm0.02^{\circ}C$ (authors).
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the contents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln to first	SOURCE AND PURITY OF MATERIALS: Orthanilamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indicated that the compd was 100.0 \pm 0.3% pure. Elemental analysis and mixed mp confirmed this value. Purity of the water was not specified. The source and purity of the remaining materials was not specified. ESTIMATED ERROR: Soly: \pm 0.01 g/100 g soln or \pm 0.012 x 10 ⁻³ in mole fraction (authors). Temp: \pm 0.02°C (authors).

IPONENTS :		ORIGINAL MEASURE	MENTS:
 Benzenesulfonamid 	e, 2-amino- (or-		Sayward, J. M.
-	8 ^N 2 ^O 2 ^S ;[3306-62-5]		oc. <u>1942</u> , 64, 2464-8
2) Boric acid; H ₃ BO ₃	; [10043-35-3]		
	e; KC1; [7447-40-7]		
 Sodium hydroxide; 			
5) Water; H ₂ O; [7732 IABLES:	-18-5]		
		PREPARED BY:	
pH; ionic strengt	h	R. Piekos	
ERIMENTAL VALUES:	<u></u>		
		Solubility at 3	7.0 ⁰ C
pH of borate buffer	Ionic strength ^a g/100 cm	m ³ solution	10 ² mol dm ^{-3^b}
9.4 ^c	0.08 1	.34	7.78
9.7 ^d	0.09 1	. 39	8.07
btained by mixing to, 2.1 cm ³ of 0.1 M NaO btained by mixing to,	gether 50 cm ³ of a 0.1 H and diluting with wa	ter up to 100 cm M solution in b	oth H ₃ BO ₃ and KCl with
btained by mixing to, 2.1 cm ³ of 0.1 M NaO btained by mixing to,	gether 50 cm ³ of a 0.1 H and diluting with wa gether 50 cm ³ of a 0.1	ter up to 100 cm M solution in b	oth H ₃ BO ₃ and KCl with
Obtained by mixing to 2.1 cm ³ of 0.1 M NaO Obtained by mixing to	gether 50 cm ³ of a 0.1 H and diluting with wa gether 50 cm ³ of a 0.1 OH and diluting with w	ter up to 100 cm M solution in b	oth H ₃ BO ₃ and KCl with
btained by mixing to 2.1 cm ³ of 0.1 M NaO btained by mixing to 8.75 cm ³ of 0.1 M Na	gether 50 cm ³ of a 0.1 H and diluting with wa gether 50 cm ³ of a 0.1 OH and diluting with w AUXILIARY	ter up to 100 cm M solution in b ater up to 100 c INFORMATION	3. oth H ₃ BO ₃ and KCl with m ³ .
btained by mixing to 2.1 cm ³ of 0.1 M NaO btained by mixing to 8.75 cm ³ of 0.1 M Na HOD/APPARATUS/PROCED	gether 50 cm ³ of a 0.1 H and diluting with wa gether 50 cm ³ of a 0.1 OH and diluting with w AUXILIARY	ter up to 100 cm M solution in b ater up to 100 c INFORMATION SOURCE AND PURI	oth H ₃ BO ₃ and KCl with
btained by mixing to 2.1 cm ³ of 0.1 M NaO btained by mixing to 8.75 cm ³ of 0.1 M Nav HOD/APPARATUS/PROCED excess of orthanilar	gether 50 cm ³ of a 0.1 H and diluting with wa gether 50 cm ³ of a 0.1 OH and diluting with w AUXILIARY URE:	ter up to 100 cm M solution in b ater up to 100 c INFORMATION SOURCE AND PURI Orthanilamide	3. oth H ₃ BO ₃ and KCl with m ³ . TY OF MATERIALS:
btained by mixing to 2.1 cm ³ of 0.1 M NaO btained by mixing to 8.75 cm ³ of 0.1 M Na HOD/APPARATUS/PROCED excess of orthanilar e buffer soln usually	gether 50 cm ³ of a 0.1 H and diluting with wa gether 50 cm ³ of a 0.1 OH and diluting with w AUXILIARY URE: mide was rotated with y overnight. Equili-	ter up to 100 cm M solution in b ater up to 100 c INFORMATION SOURCE AND PURI Orthanilamide by the author	3. oth H ₃ BO ₃ and KCl with m ³ . TY OF MATERIALS: , mp 155.2 ^O C, was prepd
btained by mixing to 2.1 cm ³ of 0.1 M NaO btained by mixing to 8.75 cm ³ of 0.1 M Nav HOD/APPARATUS/PROCED excess of orthanilar e buffer soln usuall ium was approached f	gether 50 cm ³ of a 0.1 H and diluting with wa gether 50 cm ³ of a 0.1 OH and diluting with w AUXILIARY URE: mide was rotated with y overnight. Equili-	ter up to 100 cm M solution in b ater up to 100 c INFORMATION SOURCE AND PURI Orthanilamide by the author indicated tha	3 oth H ₃ BO ₃ and KCl with m ³ . TY OF MATERIALS: , mp 155.2 ^O C, was prepd s. Titrn with nitrite
btained by mixing to 2.1 cm ³ of 0.1 M NaO btained by mixing to 8.75 cm ³ of 0.1 M Nav HOD/APPARATUS/PROCED excess of orthanilar e buffer soln usuall ium was approached for s accomplished by for	gether 50 cm ³ of a 0.1 H and diluting with wa gether 50 cm ³ of a 0.1 OH and diluting with w AUXILIARY URE: mide was rotated with y overnight. Equili- rom above. Sampling rcing the soln through	ter up to 100 cm M solution in b ater up to 100 c INFORMATION SOURCE AND PURI Orthanilamide by the author indicated tha 0.3% pure. E	3. oth H ₃ BO ₃ and KCl with m ³ . TY OF MATERIALS: , mp 155.2 ^o C, was prepd s. Titrn with nitrite t the compd was 100.0 <u>+</u>
btained by mixing to 2.1 cm ³ of 0.1 M NaO btained by mixing to 8.75 cm ³ of 0.1 M Nav HOD/APPARATUS/PROCED excess of orthanilat e buffer soln usually ium was approached for s accomplished by for filter into a pycnome	gether 50 cm ³ of a 0.1 H and diluting with wa gether 50 cm ³ of a 0.1 OH and diluting with w AUXILIARY URE: mide was rotated with y overnight. Equili- rom above. Sampling rcing the soln through eter. From the pyc-	ter up to 100 cm M solution in b ater up to 100 c INFORMATION SOURCE AND PURI Orthanilamide by the author indicated tha 0.3% pure. E mixed mp conf	3 oth H ₃ BO ₃ and KCl with m ³ . TY OF MATERIALS: , mp 155.2 [°] C, was prepd s. Titrn with nitrite t the compd was 100.0 <u>+</u> lemental analysis and
btained by mixing to 2.1 cm ³ of 0.1 M NaO btained by mixing to 8.75 cm ³ of 0.1 M Nav WOD/APPARATUS/PROCED excess of orthanilar e buffer soln usuall; ium was approached for s accomplished by for filter into a pycnome	gether 50 cm ³ of a 0.1 H and diluting with wa gether 50 cm ³ of a 0.1 OH and diluting with w AUXILIARY URE: mide was rotated with y overnight. Equili- rom above. Sampling rcing the soln through eter. From the pyc- ere flushed into a	ter up to 100 cm M solution in b ater up to 100 c INFORMATION SOURCE AND PURI Orthanilamide by the author indicated tha 0.3% pure. E mixed mp conf	3. oth H ₃ BO ₃ and KCl with m ³ . TY OF MATERIALS: , mp 155.2°C, was prepd s. Titrn with nitrite t the compd was 100.0 <u>+</u> lemental analysis and irmed this value. Source the remaining materials
btained by mixing to, 2.1 cm ³ of 0.1 M NaO btained by mixing to, 8.75 cm ³ of 0.1 M Nav "HOD/APPARATUS/PROCED excess of orthanilar e buffer soln usuall; ium was approached f s accomplished by for filter into a pycnom meter the contents we lumetric flask. Dup re acidified, iced by	gether 50 cm ³ of a 0.1 H and diluting with wa gether 50 cm ³ of a 0.1 OH and diluting with w AUXILIARY URE: mide was rotated with y overnight. Equili- rom above. Sampling rcing the soln through eter. From the pyc- ere flushed into a licate aliquots elow 15°C and	ter up to 100 cm M solution in b ater up to 100 c INFORMATION SOURCE AND PURI Orthanilamide by the author indicated tha 0.3% pure. E mixed mp conf and purity of	3. oth H ₃ BO ₃ and KCl with m ³ . TY OF MATERIALS: , mp 155.2°C, was prepd s. Titrn with nitrite t the compd was 100.0 <u>+</u> lemental analysis and irmed this value. Source the remaining materials
btained by mixing to 2.1 cm ³ of 0.1 M NaO btained by mixing to 8.75 cm ³ of 0.1 M Nav 8.75 cm ³ of 0.1 M Nav CHOD/APPARATUS/PROCED excess of orthanilar e buffer soln usuall; ium was approached f: s accomplished by for filter into a pycnome meter the contents we lumetric flask. Dup re acidified, iced by	gether 50 cm ³ of a 0.1 H and diluting with wa gether 50 cm ³ of a 0.1 OH and diluting with w AUXILIARY URE: mide was rotated with y overnight. Equili- rom above. Sampling rcing the soln through eter. From the pyc- ere flushed into a licate aliquots elow 15°C and	ter up to 100 cm M solution in b ater up to 100 c INFORMATION SOURCE AND PURI Orthanilamide by the author indicated tha 0.3% pure. E mixed mp conf and purity of was not speci	3 oth H ₃ BO ₃ and KCl with m ³ . TY OF MATERIALS: , mp 155.2 ^o C, was prepd s. Titrn with nitrite t the compd was 100.0 <u>+</u> lemental analysis and irmed this value. Source the remaining materials fied.
Obtained by mixing to 12.1 cm ³ of 0.1 M NaO 12.1 cm ³ of 0.1 M NaO 12.1 cm ³ of 0.1 M NaO 12.75 cm ³ of 0.1 M Nav 12.75 cm ³ of 0.1 M Nav 13.75 cm ³ of 0.1 M Nav 14.75 cm ³ of 0.1 M Nav 15.75 cm ³ of 0.1 M Nav	gether 50 cm ³ of a 0.1 H and diluting with wa gether 50 cm ³ of a 0.1 OH and diluting with w AUXILIARY URE: mide was rotated with y overnight. Equili- rom above. Sampling rcing the soln through eter. From the pyc- ere flushed into a licate aliquots elow 15°C and ol dm ⁻³ NaNO ₂ soln	ter up to 100 cm M solution in b ater up to 100 c INFORMATION SOURCE AND PURI Orthanilamide by the author indicated tha 0.3% pure. E mixed mp conf and purity of was not speci ESTIMATED ERROR	 oth H₃BO₃ and KCl with m³. TY OF MATERIALS: , mp 155.2°C, was prepd s. Titrn with nitrite t the compd was 100.0<u>+</u> lemental analysis and irmed this value. Source the remaining materials fied. Soly: <u>+</u> 0.01 g/100 g
Obtained by mixing to 12.1 cm ³ of 0.1 M NaO 12.1 cm ³ of 0.1 M NaO 12.1 cm ³ of 0.1 M NaO 12.75 cm ³ of 0.1 M Nav 12.75 cm ³ of 0.1 M Nav 13.75 cm ³ of 0.1 M Nav 14.75 cm ³ of 0.1 M Nav 15.75 cm ³ of 0.1 M Nav	gether 50 cm ³ of a 0.1 H and diluting with wa gether 50 cm ³ of a 0.1 OH and diluting with w AUXILIARY URE: mide was rotated with y overnight. Equili- rom above. Sampling rcing the soln through eter. From the pyc- ere flushed into a licate aliquots elow 15°C and ol dm ⁻³ NaNO ₂ soln	ter up to 100 cm M solution in b ater up to 100 c INFORMATION SOURCE AND PURI Orthanilamide by the author indicated tha 0.3% pure. E mixed mp conf and purity of was not speci ESTIMATED ERROR soln or ±0.01	<pre>3. oth H₃BO₃ and KCl with m³. TY OF MATERIALS: , mp 155.2^oC, was prepd s. Titrn with nitrite t the compd was 100.0<u>+</u> lemental analysis and irmed this value. Source the remaining materials fied. Soly: <u>+</u> 0.01 g/100 g 2 x 10⁻³ in mole fraction</pre>
Obtained by mixing to 12.1 cm ³ of 0.1 M NaO 12.1 cm ³ of 0.1 M NaO 12.1 cm ³ of 0.1 M NaO 12.75 cm ³ of 0.1 M Nav 12.75 cm ³ of 0.1 M Nav 13.75 cm ³ of 0.1 M Nav 14.75 cm ³ of 0.1 M Nav 15.75 cm ³ of 0.1 M Nav	gether 50 cm ³ of a 0.1 H and diluting with wa gether 50 cm ³ of a 0.1 OH and diluting with w AUXILIARY URE: mide was rotated with y overnight. Equili- rom above. Sampling rcing the soln through eter. From the pyc- ere flushed into a licate aliquots elow 15°C and ol dm ⁻³ NaNO ₂ soln	ter up to 100 cm M solution in b ater up to 100 c INFORMATION SOURCE AND PURI Orthanilamide by the author indicated tha 0.3% pure. E mixed mp conf and purity of was not speci ESTIMATED ERROR soln or ±0.01	 oth H₃BO₃ and KCl with m³. TY OF MATERIALS: , mp 155.2°C, was prepd s. Titrn with nitrite t the compd was 100.0<u>+</u> lemental analysis and irmed this value. Source the remaining materials fied. Soly: <u>+</u> 0.01 g/100 g
32.1 cm ³ of 0.1 M NaO Obtained by mixing to 38.75 cm ³ of 0.1 M Na REAL STREET THOD/APPARATUS/PROCEDU A excess of orthanilar a buffer soln usuall tium was approached f	gether 50 cm ³ of a 0.1 H and diluting with wa gether 50 cm ³ of a 0.1 OH and diluting with w AUXILIARY URE: mide was rotated with y overnight. Equili- rom above. Sampling rcing the soln through eter. From the pyc- ere flushed into a licate aliquots elow 15°C and ol dm ⁻³ NaNO ₂ soln	ter up to 100 cm M solution in b ater up to 100 c INFORMATION SOURCE AND PURI Orthanilamide by the author indicated tha 0.3% pure. E mixed mp conf and purity of was not speci ESTIMATED ERROR soln or ±0.01	<pre>3. oth H₃BO₃ and KCl with m³. TY OF MATERIALS: , mp 155.2^oC, was prepd s. Titrn with nitrite t the compd was 100.0<u>+</u> lemental analysis and irmed this value. Source the remaining materials fied. Soly: <u>+</u> 0.01 g/100 g 2 x 10⁻³ in mole fraction</pre>

ORIGINAL MEASUREMENTS:
Kienle, R. H.; Sayward, J. M.
J. Am. Chem. Soc. <u>1942</u> , 64, 2464-8.
Ð
PREPARED BY:
R. Piekos
epared by mixing together 41.4 cm ³ of 0.2 M (pH 4.2 ionic strength calculated from .08 g/100 cm ³ solution dissociation constants calculated -
INFORMATION
SOURCE AND PURITY OF MATERIALS:
Orthanilamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indicated that the compd was $100.0\pm0.3\%$ pure. Elemental analysis and mixed mp confirmed this value. The source and purity of the remaining materials was not specified. ESTIMATED ERROR: Soly: ±0.01 g/100 g soln or $\pm0.012 \times 10^{-3}$ in mole fraction (authors). Temp: $\pm0.02^{\circ}C$ (authors). REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzenesulfonamide, 2-amino- (or-	Kienle, R. H.; Sayward, J. M.
thanilamide); C ₆ H ₈ N ₂ O ₂ S; [3306-62-5]	J. Am. Chem. Soc. <u>1942</u> , 64, 2464-8.
(2) 1,2-Benzenedicarboxylic acid, mono- potassium salt; C ₈ H ₅ KO ₄ ; [877-24-7]	
(3) Hydrochloric acid; HC1; [7647-01-0]	
(4) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
One temperature: 37.0°C; one pH: 2.2	R. Piekos
-	K. Plekos
EXPERIMENTAL VALUES:	
Solubility of orthanilamide in a buffer soln ;	prepared by mixing together 50 cm ³ of
0.1 M monopotassium 1,2-benzenedicarboxylate	with 49.5 cm^3 of 0.1 M HCl and
diluting up to 100 cm ³ with water (pH 2.2, io	
dissociation constants 0.06°) at 37.0° C is 1.	
dissociation constants 0.06) at 37.0 C is 1. (7.61 $\times 10^{-2}$ mol dm ⁻³ , compiler).	31 g/100 cm solution
$(7.61 \times 10^{-1} \text{ mol dm}^{-1}, \text{ compiler}).$	
^a Not specified for which reactions were the d compiler.	issociation constants calculated -
AUXILIARY	INFORMATION
AUXILIARY METHOD/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS;
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2 [°] C, was prepd by
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili-	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indi-
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indi- cated that the compd was 100.0 <u>+</u> 0.3% pure.
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili-	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indi- cated that the compd was 100.0 <u>+</u> 0.3% pure.
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indi- cated that the compd was 100.0 <u>+</u> 0.3% pure.
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indi- cated that the compd was 100.0 <u>+</u> 0.3% pure. Elemental analysis and mixed mp confirmed this value. The source and purity of
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the convents were flushed into a	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indi- cated that the compd was 100.0 <u>+</u> 0.3% pure. Elemental analysis and mixed mp confirmed this value. The source and purity of
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the contents were flushed into a volumetric flask. Duplicate aliquots were	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indi- cated that the compd was 100.0 <u>+</u> 0.3% pure. Elemental analysis and mixed mp confirmed this value. The source and purity of
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the conven's were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15 ^o C	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indi- cated that the compd was 100.0 <u>+</u> 0.3% pure. Elemental analysis and mixed mp confirmed this value. The source and purity of the remaining materials was not specified
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the convents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indi- cated that the compd was 100.0±0.3% pure. Elemental analysis and mixed mp confirmed this value. The source and purity of the remaining materials was not specified ESTIMATED ERROR:
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the conven's were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15 ^o C	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indi- cated that the compd was 100.0±0.3% pure. Elemental analysis and mixed mp confirmed this value. The source and purity of the remaining materials was not specified ESTIMATED ERROR: Solv: + 0.01 g/100 g
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the convents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indi- cated that the compd was 100.0 \pm 0.3% pure. Elemental analysis and mixed mp confirmed this value. The source and purity of the remaining materials was not specified ESTIMATED ERROR: Soly: \pm 0.01 g/100 g soln or \pm 0.012 x 10 ⁻³ in mole fraction
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the convents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indi- cated that the compd was 100.0±0.3% pure. Elemental analysis and mixed mp confirmed this value. The source and purity of the remaining materials was not specified ESTIMATED ERROR: Solv: + 0.01 g/100 g
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the convents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indi- cated that the compd was 100.0 \pm 0.3% pure. Elemental analysis and mixed mp confirmed this value. The source and purity of the remaining materials was not specified ESTIMATED ERROR: Soly: \pm 0.01 g/100 g soln or \pm 0.012 x 10 ⁻³ in mole fraction
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the convents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indi- cated that the compd was 100.0 \pm 0.3% pure. Elemental analysis and mixed mp confirmed this value. The source and purity of the remaining materials was not specified ESTIMATED ERROR: Soly: \pm 0.01 g/100 g soln or \pm 0.012 x 10 ⁻³ in mole fraction (authors). Temp: \pm 0.02°C (authors).
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the convents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indi- cated that the compd was 100.0 \pm 0.3% pure. Elemental analysis and mixed mp confirmed this value. The source and purity of the remaining materials was not specified ESTIMATED ERROR: Soly: \pm 0.01 g/100 g soln or \pm 0.012 x 10 ⁻³ in mole fraction (authors). Temp: \pm 0.02°C (authors).
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the convents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indi- cated that the compd was 100.0 \pm 0.3% pure. Elemental analysis and mixed mp confirmed this value. The source and purity of the remaining materials was not specified ESTIMATED ERROR: Soly: \pm 0.01 g/100 g soln or \pm 0.012 x 10 ⁻³ in mole fraction (authors). Temp: \pm 0.02°C (authors).
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the convents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indi- cated that the compd was 100.0 \pm 0.3% pure. Elemental analysis and mixed mp confirmed this value. The source and purity of the remaining materials was not specified ESTIMATED ERROR: Soly: \pm 0.01 g/100 g soln or \pm 0.012 x 10 ⁻³ in mole fraction (authors). Temp: \pm 0.02°C (authors).
METHOD/APPARATUS/PROCEDURE: An excess of orthanilamide was rotated with the buffer soln usually overnight. Equili- brium was approached from above. Sampling was accomplished by forcing the soln through a filter into a pycnometer. From the pyc- nometer the convents were flushed into a volumetric flask. Duplicate aliquots were acidified, iced below 15°C and titrated with a 0.04 mol dm ⁻³ NaNO ₂ soln	SOURCE AND PURITY OF MATERIALS: Orthanliamide, mp 155.2°C, was prepd by the authors. Titrn with nitrite indi- cated that the compd was 100.0 \pm 0.3% pure. Elemental analysis and mixed mp confirmed this value. The source and purity of the remaining materials was not specified ESTIMATED ERROR: Soly: \pm 0.01 g/100 g soln or \pm 0.012 x 10 ⁻³ in mole fraction (authors). Temp: \pm 0.02°C (authors).