COMPONENTS :	EVALUATOR:
(1) Toluene; C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia.
	May 1986

CRITICAL EVALUATION:

Quantitative solubility data for the system toluene (1) and water (2) have been reported in the references listed in Table 1.

TABLE 1: Quantitative Solubility Studies of theToluene (1) - Water (2) System

Reference	T/K	Solubility	Method
Jaeger (ref l)	353-573	(l) in (2)	synthetic
Fühner (ref 2)	289	(1) in (2)	titration
Uspenskii (ref 3)	283,295	mutual	titration, analytical
Rosenbaum and Walton (ref 4)	283-323	(2) in (1)	analytical
Gross and Saylor (ref 5)	303	(l) in (2)	interferometric
Tarassenkow and Poloshinzewa (ref 6,7)	264-366	(2) in (1)	synthetic
Booth and Everson (ref 8)	298	(l) in (2)	residue volume
Andrews and Keefer (ref 9) (ref 9)	298	(l) in (2)	spectrophotometric
Klevens (ref 10)	298	(1) in (2)	spectrophotometric
Bohon and Claussen (ref 11)	273-318	(1) in (2)	spectrophotometric
Morrison and Billet (ref 12)	298	(1) in (2)	analytical
Wing and Johnston (ref 13)	298	(2) in (1)	radiotracer
Caddock and Davis (ref 14)	293	(2) in (1)	radiotracer
Guseva and Parnov (ref 15,16)	363-497	(1) in (2) ^{<i>a</i>}	synthetic?
Jones and Monk (ref 17)	298	(2) in (1)	radiotracer
McAuliffe (ref 18)	298	(1) in (2)	GLC
Hoegfeldt and Bolander (ref 19)	298	(2) in (1)	Karl Fischer
Englin et al. (ref 20)	273-323	(2) in (1)	analytical
Connolly (ref 21)	553-583 ⁰	(l) in (2)	cloud point
Johnson et al. (ref 22)	298	(2) in (1)	Karl Fischer
McAuliffe (ref 23)	298	(l) in (2)	GLC
Gregory et al. (ref 24)	298	(2) in (1)	Karl Fischer
Benkovski <i>et al</i> . (ref 26)	303	(2) in (1)	Karl Fischer
Glasoe and Schultz (ref 28)	288-303	(2) in (1) ^a	Karl Fischer
Pierotti and Liabastre (ref 29)	278-318	(1) in (2)	GLC
Bradley et al. (ref 31)	298-328 ^b	(1) in (2)	spectrophotometric
Polak and Lu (ref 32)	273-298	mutual	GLC, Karl Fischer
		(Table 1	continued next page)

COMPONENTS: (1) Toluene; C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]		EVALUATOR: G.T. Hefter, Scho and Physical Scie University, Perth	ool of Mathematical ences, Murdoch a, W.A., Australia.
		May 1986	
CRITICAL EVALUATION: (CONTINUED)			
(Table 1 continued)			
Reference	T/K	Solubility	Method
Brown and Wasik (ref 33)	278-293	(1) in (2)	GLC
Krasnoshchekova and Gubergrits (ref 34)	298	(1) in (2)	GLC
Mackay and Shiu (ref 35)	298	(1) in (2)	GLC
Sada et al. (ref 36)	298	(1) in (2)	titration
Sutton and Calder (ref 37)	298	(l) in (2)	GLC
Price (ref 39)	298	(1) in (2)	GLC
Korenman and Aref'eva (ref 40,41)	293,298	(l) in (2)	titration
Krzyzanowska and Szeliga (ref 42)	298	(l) in (2)	GLC
Banerjee et al. (ref 43)	298	(l) in (2)	radiotracer
Schwarz (ref 44)	297	(1) in (2)	chromatographic
Rossi and Thomas (ref 45)	298	(1) in (2)	GLC
Sanemasa <i>et al</i> . (ref 46)	288-318	(1) in (2)	spectrophotometric
Sanemasa <i>et al</i> . (ref 47)	288-318	(1) in (2)	spectrophotometric
Sanemasa <i>et al</i> . (ref 48)	298	(1) in (2)	spectrophotometric

a Data also given for D₂O

b Pressure also varied, see Table 4

The original data in all of the publications listed in Table 1 are compiled in the Data Sheets immediately following this Critical Evaluation.

As indicated in the footnotes to Table 1, quantitative solubility data for toluene in heavy water (ref 15) and D_2O in toluene (ref 28), have been reported. However, since no other comparable data are available, no critical evaluation of the reliability of these data can be made. The interested user is referred to the relevant Data Sheets for experimental solubilities. Solubility values reported by Price (ref 30) were not available for inspection. Solubility data may also be calculated from the calorimetric data of Gill *et al.* (ref 38).

Critical point data have been reported by Alwani and Schneider (ref 25) and Roof (ref 27) and are discussed in section 3 below.

In the toluene-water system the mutual solubilities are sufficiently low to enable data reported in w/v fractions (or equivalent) to be converted to mass percent solubilities with reasonable precision by assuming solution densities to be the same as the pure solvents. These conversions are given (continued next page)

COMPONENTS:	EVALUATOR:
(1) Toluene; C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia.
	May 1986

CRITICAL EVALUATION: (continued)

in the Data Sheets and the data are included in this Evaluation. The data of Jaeger (ref 1), Booth and Everson (ref 8), Wing and Johnston (ref 13), Jones and Monk (ref 7) and Sada *et al.* (ref 36) given in v/v fractions have not been converted and so have been excluded from this Evaluation.

In the Tables which follow, values obtained by the Evaluator by graphical interpolation or extrapolation of the original measurements given in the Data Sheets are indicated by an asterisk (*). "Best" values have been obtained by simple averaging. The uncertainty limits (σ_n) attached to these values do not have statistical significance and should be regarded only as a convenient representation of the spread of values rather than as error limits. The letter (R) indicates "Recommended" data. Data are "Recommended" if two or more apparently reliable studies are in reasonable agreement (± 5% relative). All other data are regarded as "Tentative". For convenience, further discussion of this system will be divided into three parts.

1. THE SOLUBILITY OF TOLUENE (1) IN WATER (2)

The solubility of toluene in water has been investigated on numerous occasions (Table 1).

The large amount of data at 298K enables a particularly critical assessment of the reported values. Data have been rejected if they deviated significantly (> 3 σ_n) from the average value. Thus, at 298K, the value of Krasnoshchekova and Gubergrits (ref 34), which is markedly lower than all other values, and Bohon and Claussen (ref 11), Pierotti and Liabastre (ref 29), Korenman and Aref'eva (ref 41), Banerjee *et al.* (ref 43) and Schwarz (ref 44, 297K), which are higher, have all been rejected. The datum of Krzyzanowska and Szeliga (ref 42) has not been included in the Critical Evaluation because it does not appear to be independent of that of Price (ref 38).

At temperatures other than 298K, the data of Fühner (ref 2) and Uspenskii (ref 3) are markedly lower than all other values and are rejected. All other data are included in Table 2 except for the high temperature data which are discussed in section 3 below.

Agreement among the studies (ref 11,29,33,46,47) which report solubilities over a range of temperatures below 323K is disappointing (see Table 2 and Figure 1). For example, although the solubility data of Pierotti and Liabastre (ref 29) are usually markedly higher than Recommended values in well-characterised systems (e.g. benzene in water) their toluene results lie (continued next page)

```
_____
```

COMPONENTS :	EVALUATOR:
(1) Toluene, C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. May 1986

CRITICAL EVALUATION: (continued)

within the range of values reported by other workers. Even the averaged "Best" solubilities, which usually show a smoother variation with temperature than individual data sets, show a good deal of scatter (e.g. compare Figure 1 with the analogous diagram for benzene and water).

TABLE 2: Recommended (R) and Tentative Values of theSolubility of Toluene (1) in Water (2)

T/K	Solubility	values (± σ_n)	
	Reported values	"Best" va	lues
	10 ² g(1)/100g sln	10 ² (1)/100g sln	10 ⁴ <i>x</i> 1
273	6.60* (ref 11), 7.24 (ref 32)	6.9 ± 0.3	1.35
278	6.42* (ref ll), 6.36 (ref 29), 6.08* (ref 33)	6.3 ± 0.1	1.23
283	6.28* (ref 11), 6.32 (ref 29), 5.82* (ref 33), 5.24 (ref 46)	5.9 ± 0.4	1.15
293	6.18* (ref 11), 6.06 (ref 29), 5.67 (ref 33), 5.7 (ref 40), 5.45 (ref 46), 5.18* (ref 47)	5.7 ± 0.3	1.11
298	5.3 (ref 9), 5.00 (ref 10), 5.36 (ref 12), 5.38 (ref 18), 5.15 (ref 23), 5.47 (ref 31), 5.73 (ref 32), 5.20 (ref 35), 5.35 (ref 37), 5.54 (ref 39), 5.07 (ref 45), 5.57 (ref 46), 5.25 (ref 47), 5.19 (ref 48)	5.3 ± 0.2 (R)	1.04 (<i>R</i>)
303	5.7 (ref 5), 6.40 (ref 11), 6.5* (ref 29), 5.7* (ref 31), 5.73* (ref 46), 5.32* (ref 47)	5.9 ± 0.4	1.15
313	6.82* (ref 11), 6.7* (ref 29), 6.6* (ref 31), 6.12* (ref 46), 5.57 (ref 47)	6.4 ± 0.5	1.25
318	7.15* (ref 11), 6.72 (ref 29), 7.22 (ref 31), 6.35 (ref 46), 5.78 (ref 47)	6.6 ± 0.5	1.29
328	8.6 (ref 31)	8.6	1.68

ł

374

COMPONENTS :	EVALUATOR:
(1) Toluene; C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. May 1986
CRITICAL EVALUATION: (continued)	

(continuea)

TABLE 3:	Thermodynamic Functions Calculated	
-	from Solubility Data	

^{ΔH} sln kJ mol ⁻¹	ΔC _{p,sln} J K-l mol ⁻¹
2.3	292
35.3	-62
1.5	168
4.7	590
3.7	160
2.1	181
1.7	566
1.73 ± 0.04^{a}	263 ± 13^{a}
	$ \begin{array}{r} ^{\Delta H} sln \\ kJ mol^{-1} \\ 2.3 \\ 35.3 \\ 1.5 \\ 4.7 \\ 3.7 \\ 2.1 \\ 1.7 \\ 1.73 \pm 0.04^{a} \end{array} $

a Calorimetric data

2. THE SOLUBILITY OF WATER (2) IN TOLUENE (1)

A reasonable amount of data is available for the solubility of water in toluene over the temperature range 273-323K.

In spite of the difficulties of accurate analysis at the relatively low concentrations involved, the results are generally in good agreement and a number of "Best" values have been "Recommended" (Table 4).

Except for the low temperature (T < 313K) values of Tarassenkow and Poloshinzewa (ref 6,7) and the datum of Benkovski et al. (ref 26), which are markedly lower than all other values and are therefore rejected, all the available data are listed in Table 4. Selected data are also plotted in Figure 2 (on the next page but one).

COMPONENTS:	EVALUATOR:
(1) Toluene; C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. May 1986
CRITICAL EVALUATION: (Continued)	
TABLE 4: Recommended (R)Solubility of Wate	and Tentative Values of the er (2) in Toluene (1)
T/K Sol	ubility values
Reported values	"Best" values (± σ _n)
10 ² g(2)/100g sln	$10^{2}g(2)/100g sln \qquad 10^{3}x_{2}$
273 2.74 (ref 20), 2.28 (ref	32) 2.5 ± 0.2 1.3
283 4.26 (ref 3), 3.35 (ref 3.16 (ref 10)	4), 3.6 ± 0.5 1.8
293 5.1* (ref 3), 4.50 (ref 4.6 (ref 14), 4.60 (ref 4.7* (ref 28)	4), 4.7 ± 0.2 (R) 2.4 (R) 20),
298 5.6* (ref 3), 5.7 (ref 4 5.4 (ref 19), 5.3* (ref 5.72 (ref 22), 5.60 (ref 5.45 (ref 28), 5.43 (ref), 5.5 ± 0.1 (R) 2.8 (R) 20), 24), 32)
303 6.00 (ref 4), 6.15 (ref 6.15 (ref 28)	20), 6.1 ± 0.1 (R) 3.1 (R)
313 7.33 (ref 4), 7.3* (ref 7.50 (ref 20)	$6,7), 7.4 \pm 0.1 (R) 3.8 (R)$
323 9.53 (ref 4), 10.2* (ref 9.65 (ref 20)	6,7), 9.8 ± 0.3 (R) 5.0 (R)
333 15.0* (ref 6,7)	15 7.7
343 21.0* (ref 6,7)	21 11
353 28.7* (ref 6,7)	29 15

Despite the relatively small differences between the data of Tarassenkow and Poloshinzewa (ref 6,7) and the "Best" values of Table 4 (see Figure 2 on next page), application of the van't Hoff equation yields quite different values for ΔH_{sln} (31 and 21 kJ mol⁻¹) and $\Delta C_{p,sln}$ (-24 and +239 J K⁻¹ mol⁻¹, respectively). Comparison with similar reactions (e.g. water in benzene: $\Delta H_{sln}=24$ kJ mol⁻¹ and $\Delta C_{p,sln}=99$ J K⁻¹ mol⁻¹) suggests the "Best" values may be more reliable.

(continued next page)

COMPONENTS:	EVALUATOR:
(1) Toluene, C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. C.L. Young, Department of Physical Chemistry, University of Melbourne, Vic., Australia.
	May 1986

CRITICAL EVALUATION: (continued)

The phase behaviour of this system is similar to that of benzene + water. here are two critical loci, one starting at the critical point of water and eventually approaching high pressure. The second starts at the critical point of toluene and ends in a critical end point on a three phase line. The topology of the pressure -temperature projection is similar to that given for benzene + water except that the temperature at which the vapor pressures of the two pure components are equal is considerably lower than in the benzene + water system.

In the region above the three phase line on the pressure - temperature projection, the pressure is greater than the vapor pressure and then a maximum of two liquid phases is possible. There may be one or two liquid phases depending on the overall composition. To the left of the critical line starting at toluene it is possible to have one or two phases present depending on the overall composition.

Roof (ref 27) has determined the temperature and pressure of the critical end point in this system to be T = 558.1K, P = 10.10MPa.

Reference	p/MPa	T/K	Solubility
Guseva and Parnov (ref 15,16)	_a	363-497	(1) in (2)
Connolly (ref 21) Alwani and Schneider (ref 25) Roof (ref 27)	15-45 _ ^b _ ^b	553-583 _ ^b _ ^b	(1) in (2) _ ^b _ ^b
Bradley <i>et al.</i> (ref 31)	1,100	273-303	(l) in (2)

TABLE 5: Solubility Studies of the Toluene + Water System at Elevated Pressures

a Along three phase line b Critical point data only

REFERENCES

1. Jaeger, A. Brennst. Chem. <u>1923</u>, 4, 259.

2. Fühner, H. Chem. Ber. <u>1924</u>, 57, 510-5.

3. Uspenskii, S.P. Neft. Khoz. <u>1929</u>, 17, 713-7.

4. Rosenbaum, C.K.; Walton, J.H. J. Am. Chem. Soc. 1930, 52, 3568-73.

5. Gross, P.M.; Saylor, J.H. J. Am. Chem. Soc. 1931, 53, 1744-51.

(continued next page)

COMPONENTS :	EVALUATOR:
(1) Toluene; C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A. Australia. May 1986

CRITICAL EVALUATION: (continued)

```
REFERENCES (continued)
```

6.	Tarassenkov, D.N.; Polozhinzeva, E.N. Zh. Obshch. Khim. 1931, 1, 71-9.
7.	Tarassenkov, D.N.; Polozhinzeva, E.N. Chem. Ber. <u>1932</u> , 65, 184-6.
8.	Booth, H.S.; Everson, H.E. Ind. Eng. Chem. <u>1948</u> , 40, 1491-3.
9.	Andrews, L.J.; Keefer, R.M. J. Am. Chem. Soc. <u>1949</u> , 71, 3644-77.
10.	Klevens, H.B. J. Phys. Chem. <u>1950</u> , 54, 283-98.
11.	Bohon, R.L.; Claussen, W.F. J. Am. Chem. Soc. <u>1951</u> , 73, 1571-8.
12.	Morrison, T.J.; Billett, F. J. Chem. Soc. <u>1952</u> , 3819-22.
13.	Wing, J.; Johnston, W.H. J. Am. Chem. Soc. <u>1957</u> , 79, 864-5.
14.	Caddock, B.D.; Davies, P.L. J. Inst. Petrol. 1960, 46, 391-6.
15.	Guseva, A.N.; Parnov, E.I. <i>Radiokhimiya</i> <u>1960</u> , 5, 507-9.
16.	Guseva, A.N.; Parnov, E.I. Vestn. Mosk. Univ. Khim. <u>1963</u> , 18, 76-9.
17.	Jones, J.R.; Monk, C.B. J. Chem. Soc. <u>1963</u> , 2633-5.
18.	McAuliffe, C. <i>Nature</i> <u>1963</u> , 200, 1092-3.
19.	Hoegfeldt, E.; Bolander, B. Ark. Kemi <u>1964</u> , 21, 161-86.
20.	Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pyranishnikova, M.A. Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 42-6.
21.	Conolly, J.F. J. Chem. Eng. Data <u>1966</u> , 11, 13-6.
22.	Johnson, J.R.; Christian, S.C.; Affsprung, H.E. <i>J. Chem. Soc. A</i> <u>1966</u> , 77-8.
23.	McAuliffe, C. J. Phys. Chem. <u>1966</u> , 70, 1267-75.
24.	Gregory, M.D.; Christian, S.C.; Affsprung, H.E.; J. Phys. Chem. <u>1967</u> , 71, 2283-9.
25.	Alwani, A.; Schneider, G.M. Ber. Bunsenges. Phys. Chem. <u>1969</u> , 73, 294-301.
26.	Benkovski, V.G.; Nauruzov, M.H.; Bogoslovskaya, T.M. Tr. Inst. Khim. Nefti Prir. Solei Akad. Nauk Kaz. SSR <u>1970</u> , 2, 25-32.
27.	Roof, J.G. J. Chem. Eng. Data. <u>1970</u> , 15, 301-3.
28.	Glasoe, P.K.; Schultz, S.D. J. Chem. Eng. Data 1972, 17, 66-8.
29.	Pierotti, R.A.; Liabastre, A.A. U.S. Nat. Tech. Inform. Serv., PB Rep., <u>1972</u> , No.21163.
30.	Price, L.C. Ph.D. Dissertation, <u>1973</u> , University of California, Riverside (U.S.A.); quoted in ref 47.
31.	Bradley, R.S.; Dew, M.J.; Munro, D.C. High Temp. High Press. <u>1973</u> , 5, 169-76.
L	(Continued next page)

COMPO	NENTS:	EVALUATOR:		
(1)	Toluene; C ₇ H ₈ ; [108-88-3]	G.T. Hefter, School of Mathematical		
(2) 1	Water; H ₂ O; [7732-18-5]	University, Perth, W.A., Australia.		
		May 1986		
CRITI	CRITICAL EVALUATION: (continued)			
REFE	RENCES (continued)			
32.	32. Polak, J.; Lu, B.C-Y. Can. J. Chem. <u>1973</u> , 51, 4018-23.			
33.	3. Brown, R.L.; Wasik, S.P. J. Res. Natl. Bur. Stds. A <u>1974</u> , 78, 453-60.			
34.	4. Krasnoshchekova, R.Ya.; Gubergrits, M.Ya. Vodnye. Resursy. <u>1975</u> , 2, 170-3.			
35.	. Mackay, D.; Shiu, W.Y. Can. J. Chem. Eng. <u>1975</u> , 53, 239-41.			
36.	Sada, E.; Kito, S.; Ito, Y. J. C	Chem. Eng. Data <u>1975</u> , 20, 373-5.		
37.	. Sutton, C.; Calder, J.A. J. Chem. Eng. Data <u>1975</u> , 20, 320-2.			
38.	Gill, S.J.; Nichols, N.F.; Wadso, I. J. Chem. Thermodyn. <u>1976</u> , 8, 445-52.			
39.	9. Price, L.C. Am. Assoc. Petrol. Geol. Bull. <u>1976</u> , 6, 213-44.			
40.	Korenman, I.M.; Aref'eva, R.P. USSR Patent 553 534, 1977. 04.05; C.A. 87:87654.			
41.	Korenman, I.M.; Aref'eva, R.P. 2	h. Prikl. Khim. <u>1978</u> , 51, 957-8.		
42.	Krzyzanowska, T.; Szeliga, J. Na	fta (Katowice) <u>1978</u> , 34, 413-7.		
43.	Banerjee, S.; Yalkowski, S.H.; Va 14, 1227-9.	lvani, S.C. Env. Sci. Technol. <u>1980</u> ,		
44.	Schwarz, F.P. Anal. Chem. 1980,	52, 10-15.		
45.	Rossi, S.S.; Thomas, W.H. Env. S	ci. Technol. <u>1981</u> , 15, 715-6.		
46.	Sanemasa, I.; Araki, M.; Deguchi, 225-8.	T.; Nagai, H. <i>Chem. Lett</i> . <u>1981</u> ,		
47.	Sanemasa, I.; Araki, M.; Deguchi, <u>1982</u> , <i>55</i> , 1054-62.	T.; Nagai, H. Bull. Chem. Soc. Jpn.		
48.	Sanemasa, I.; Arakawa, S.; Araki, Jpn. <u>1985</u> , 57, 1539-44.	M.; Deguchi, T. Bull. Chem. Soc.		

ACKNOWLEDGEMENT

•

The Evaluator thanks Dr Brian Clare for the graphics and Dr Marie-Claire Haulait-Pirson for valuable comments. Section 3 was written jointly with C. L. Young, Department of Physical Chemistry, University of Melbourne, Australia.

COMPONENTS:		ORIGINAL MEASUREMENTS:
(1) Toluene; C-Ho; [108-88-3]		Jaeger, A.
(2) Water; H ₂ O; [773]	2-18-5]	Brennst. Chem. 1923, 4, 259.
	-	
VARIABLES:		PREPARED BY:
Temperature: 100-300	°C	A. Maczynski
		·····
EXPERIMENTAL VALUES.		
	Solubility of to	Luene in water
	t/°C	mL(1)/100 mL(2)
	150	0.2
	200	0.7
	250	2.8
	300	13.0
•		
	AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: SOURCE AND FURITY OF MATERIALS:		SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was	(1) not specified.
determined in sealed	glass tubes.	(2) not specified.
		(2)
		not specified.
		DEPENDING
		ALFEALNUES :
1		
1		

COMPONENTS .	OPTCINAL MEASUDEWENDS	
CUTFORENTS;	UNIGINAL READUREMENTS:	
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Fuhner, H.	
(2) Water; H ₂ O; [7732-18-5]	Ber. Dtsch. Chem. Ges. <u>1924</u> , 57, 510-5.	
VARIABLES:	PREPARED BY:	
One temperature: 16°C	A. Maczynski, Z. Maczynska and A. Szafranski	
EXPERIMENTAL VALUES:		
The solubility of toluene in water at 16°C was reported to be 0.047 g(1)/100 g sln. The corresponding mole fraction, x_1 , calculated by the compilers is 9.2 x 10^{-5} .		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
In a stoppered volumetric cylinder, pipetted volumes or weighed amounts of (1) were added with shaking to 50, 100, or 1000 cm ³ (2) until a completely clear solution was no longer obtained at the experimental temperature.	 source not specified; commercial grade; used as received, not specified. 	
	ESTIMATED ERROR:	
	Not specified.	
	REFERENCES:	

ţ

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Uspenskii, S.P.	
(2) Water; H ₂ O; [7732-18-5]	Neft. Khoz. <u>1929</u> , 11-12, 713-7.	
2		
VARIABLES:	PREPARED BY:	
Temperature: 10 and 22°C	A. Maczynski and Z. Maczynska	
EXPERIMENTAL VALUES:		
Solubility of tol	uene in water	
t/°C g(1)/100	g sln $10^5 x_1$ (compiler)	
10 0.0368 ±	0.0002 7.20	
22 0.0492 ±	0.0003 9.62	
Solubility of water in toluene		
t/°C g(2)/100	g sln $10^3 x_2$ (compiler)	
<u></u>		
22 0.0526 ±	0.0016 2.68	
AUXILIARY	INFORMATION	
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
The solubility of (1) in (2) was	(1) source not specified:	
determined by titration. The	b.p. 109.8°C at 752 mm Hg,	
mined by Clifford's (ref 1), method.	a_4^{22} 0.8636, a_4^{10} 0.8743.	
vessel with a saturated solution of	(2) not specified.	
and next the adsorbed (2) was		
weighed.		
	solv, see experimental values	
	above.	
	REFERENCES :	
	1. Clifford, C.W. Ind. Eng. Chem. <u>1921</u> , 13, 628.	
	· ·	

i

COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Rosenbaum, C.K.; Walton, J.H.	
(2) Water, H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1939</u> , 52, 3568-73.	
VARIABLES:	PREPARED BY:	
Temperature: 10-50°C	A. Maczynski and Z. Maczynska	

EXPERIMENTAL VALUES:

Solubility of water in toluene

g(2)/100 g (1)	$\frac{10^3 x_2}{2}$ (compiler)
0.0335	1.71
0.0450	2.30
0.0600	3.06
0.0733	3.74
0.0953	4.85
	g(2)/100 g (1) 0.0335 0.0450 0.0600 0.0733 0.0953

AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: The organic phase was first saturated by shaking with water in a flask at a high temperature and then allowing the flask to cool in a thermostat to the desired tem- perature, with the resulting separation of excess water. After one day or more the solution was allowed to react with added calcium hydride in dry solvent. Hydrogen was evolved and the gas volume was	 SOURCE AND PURITY OF MATERIALS: (1) source not specified; purified by keeping over mercury, refluxing with phosphorus pentoxide and fractionating; b.p. range 110.4-110.6°C (760 torr). (2) not specified. 	
read.	not specified.	
	REFERENCES:	

COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Gross, P.M.; Saylor, J.H.	
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1931</u> , 53, 1744-51.	
VARIABLES:	PREPARED BY:	
One temperature: 30°C	A. Maczynski and Z. Maczynska	
EXPERIMENTAL VALUES:		
The solubility of toluene in water at 30°C was reported to be 0.57 g(1)/kg(2) and 0.0062 mol(1)/kg(2). The corresponding mass percent and mole fraction, x_1 , calculated by the compilers are 0.057 g(1)/100 g solution and 1.12 x 10 ⁻⁴ .		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:		
Saturated solutions were prepared by shaking in a thermostat and were analyzed by means of an inter- ferometer. The instrument used was a combination liquid and gas interferometer made by Zeiss.	 (1) Baker's CP analyzed grade; distilled; b.p. 110.74 ± 0.02°C (2) distilled. 	
	ESTIMATED ERROR:	
	soly. 2.0% (from values of duplicate determinations)	
	REFERENCES :	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	Tarassenkow, D.N.; Poloshinzewa, E.N. Ber. Dtsch. Chem. Ges. <u>1932</u> , 65B, 184-6.
VARIABLES: Temperature: (-9)-93°C	PREPARED BY: A. Maczynski and Z. Maczynska

EXPERIMENTAL VALUES:

	Solubility of water in to	Juene
t/°C	g(2)/100 g sln	$10^{3}x_{2}$ (compiler)
-9	0.002	0.1
-3.5	0.005	0.3
10.5	0.020	1.0
18	0.034	1.7
30	0.053	2.7
38.5	0.070	3.6
48	0.097	4.9
60.5	0.153	7.8
68	0.201	10.2
76	0.254	12.9
84	0.312	15.8
93	0.413	20.8

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Alexejew's method was used (ref l). No additional details were reported in the paper.	(1) Kahlbaum, CP; dried over calcium chloride and distilled from sodium; purity not specified.
	(2) not specified.
	ESTIMATED ERROR:
	soly. ± 0.01% (not specified).
	REFERENCES :
	1. Alexejew, W. Wied. Ann. Physik <u>1886</u> , 28, 35.

	ODTOTIVAL NO CONDUCTION OF
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C_7H_8 ; [108-88-3]	Booth, H.S.; Everson, H.E.
(2) Water; H_2O ; $[7732-18-5]$	Ind. Eng. Chem. <u>1948</u> , 40, 1491-3.
VARIABLES:	PREPARED BY:
One temperature: $25.0^{\circ}C$ (298.2 K)	G.T. Hefter
EVDEDIMENTAL HALHES.	
EAFERIMENTAL VALUES:	_
The solubility of toluene in water at	25.0°C was reported to be 0.04 mL
(1)/100 mL (2).	
The solubility of (1) in 40.0% (w/w?)	aqueous sodium xylenesulfonate
solution was also reported to be 1.20	mL (1)/100 mL sulfonate sln.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A known volume of water, typically	(1) "Highest grade commercial sample
50 mL, was placed in a stoppered	available"; no other details
from 0 to 1.6 mL in steps of 0.02 mL.	given.
An excess of solute was added and the	(2) Distilled.
mixture allowed to come to equili- brium in a constant temperature bath	
then centrifuged. The amount of	
solute dissolved was determined by	
measured directly in the tube, from	
the total added.	
•	ESTIMATED ERROR:
	Not specified.
	REFERENCES

	387
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Andrews, L.J.; Keefer, R.M.
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1949</u> , 71, 3644-77.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of toluene in water at 0.053 g(l)/100 g sln.	25°C was reported to be
The corresponding mole fraction, x_1 , is 1.04 x 10 ⁻⁴ .	calculated by the compilers
	· · · · · · · · · · · · · · · · · · ·
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A mixture of (1) and (2) was rotated for twenty hours in a constant temp- erature bath at 25°C. A sample (5- 20 mL) of the aqueous phase was with- drawn and extracted with a measured volume of hexane (10-50 mL) by shak- ing in a glass-stoppered Erlenmeyer flask. Next, the absorbance of the hexane phase was measured against a hexane blank on the Beckman spectrophotometer.	 (1) Eastman Kodak Co. best grade; washed successively with con- centrated sulfuric acid, water, and dilute sodium hydroxide; dried, and distilled; b.p. l10.4°C. (2) not specified.
	ESTIMATED ERROR:
	not specified.
	REFERENCES:
	1

```
388
```

COMPONENTS .	ORTGINAL MEASUREMENTS .
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Klevens, H.B.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1950</u> , 54, 283-98.
VARIABLES:	PREPARED BY:
Temperature: 25°C	M.C. Haulait-Pirson
EVDEDTMENTAL VALUES.	
The solubility of toluene in water at	25°C was reported to be
0.500 g(l) dm^{-3} sln and 0.00543 mol(l	.) dm ⁻³ sln.
The corresponding mass percent and mo	ble fraction, x_1 , calculated
by the compiler assuming a solution of	lensity of 1.00 g/mL are
0.05 g(1)/100 g sln and 9.80 x 10^{-5} .	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was	(1) not specified.
determined by shaking small amounts of (1) in 1 liter of (2) for as long	(2) not specified.
as three months. Aliquots were	(-,
mined by spectra.	
	ESTIMATED ERROR:
	not specified.
	Spoolited.
	REFERENCES:

	389
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Bohon, R.L.; Claussen, W.F.
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1951</u> , 73, 1571-8.
VARIABLES:	PREPARED BY:
Temperature: 0.4-45.3°C	G.T. Hefter
EXPERIMENTAL VALUES:	
Solubility c	f Toluene in water
t/°C g(1) 	/100g sln^{a} $10^{4}x_{1}$ ompiler) (compiler)
0.4 3.6 10.0 11.2 14.9 15.9 25.0 25.6 30.0 30.2 35.2 42.8 45.3 ^a Solubilities of (1) in (2) were remeasurements. Solubilities were constructed by the stated cell "extinction coefficients" (absorption densities. This gave a solubility converted to g(1)/100g sln by assumble to g(1)/100g sln	0.0658 1.29 0.0646 1.26 0.0628 1.23 0.0624 1.22 0.0623 1.22 0.0621 1.21 0.0627b 1.23b 0.0625 1.22 0.0640 1.25 0.0642 1.25 0.0657 1.28 0.0701 1.37 0.0717 1.40
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A round-bottomed flask containing about 4 mL of (1) and 400 mL of (2) was evacuated, suspended in a thermostat, shaken for 24h and ther allowed to settle for at least anot 24h. Next, desired quantities of t water layer were syphoned into 6 glass-stoppered Erlenmeyer flasks. These 6 flasks had previously been tared, partially filled with a suitable amount of diluent water, and reweighed. Weighed portions of the samples were inserted into a quartz cuvette and measured in a Beckman DU spectrophotometer. Absorbances were corrected for adsorption of (1) onto the walls of the cuvette.	<pre>(1) Phillips Petroleum Co., 99+%, used as received. (2) Air-free conductivity water, no further details given. the ESTIMATED ERROR: Temp. ±0.02°C Soly. ±0.5% relative REFERENCES:</pre>

.

```
390
```

COMPONENTS .	OPTCINAL WEASUDEWENTS .
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Morrison, T.J.; Billett, F.
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Soc. <u>1952</u> , 3819-22.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski
PUPERTARY MALINEC.	······
EXPERIMENTAL VALUES:	
The solubility of toluene in water at 25°C was reported to be	
0.00582 mol(1)/1000 g(2).	
The corresponding mass percent and mole fraction, x_1 , calculated	
by compilers are 0.0536 g(1)/100 g sln and $x_1 = 1.05 \times 10^{-4}$.	
The compiler's calculations assume a	solution density of 1.00 g/mL.
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
After an excess of (1) had been	(1) source not specified; purest
shaken with about 1 dm ³ of (2) for about a week, a known volume of	obtainable material; distilled;
saturated solution was made slightly	pulley not specified.
alkaline, and a stream of pure air passed through to drive off the (1).	(2) not specified.
After passage through a silica tube	
to redness, the (2) was removed by	
concentrated sulfuric acid and calcium chloride and the carbon	
dioxide absorbed and weighed in	ESTIMATED ERROR:
usual in organic combustions were	temp. ± 0.1 K solv. ± 0.5% (mean of large numbers
taken.	of determinations)
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Wing, J.; Johnston, W.H.
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1957</u> , 79, 864-5.
VARIABLES:	PREPARED BY:
one temperature: 25°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	.
The solubility of water in toluene at 0.0334 mL(2)/100 mL sln.	25°C was reported to be
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
A small amount of (2) was equi- librated with 20 mL of (1) using a Teflon stirrer in a 100 mL flask in a Sargent constant temperature bath. At the end of two hours, the mixture was poured into a test tube immersed in the bath and the organic phase separated from water by gra- vitation. The determination of THO in the organic phase was done by isotopic dilution with a large excess of H_2O . The tritium activ- ities in the tritiated water samples were determined by the acetylene method described in ref 1.	 (1) source not specified, chemical grade; redistilled in a column of 50 theoretical plates; purity not specified. (2) Tracerlab, Inc., tritiated water with an activity of approximately 1 μCi/mL. ESTIMATED ERROR: temp. ± 0.02 K soly. 0.8% (st. dev. from 5 determinations).
	REFERENCES: 1. Wing, J; Johnson, W.H. Science <u>1955</u> , 121, 674.

,

392	
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Caddock, B.D.; Davies, P.L.
(2) Water; H ₂ O; [7732-18-5]	J. Inst. Petrol. <u>1960</u> , 46, 391-6
VARIABLES:	PREPARED BY:
One temperature: 20°C	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of water in toluene a $46 \text{ mg}(2)/100 \text{ g}(1)$.	t 20°C was reported to be
The corresponding mass percent and m by the compiler are $0.046 \text{ g}(2)/100 \text{ g}$	wole fraction, x_2 , calculated sln and 0.0023.
AUXILIAR	Y INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A sample of (1) was equilibrated	(1) not specified.
at 20°C with an air stream contain- ing a known amount of water vapor tagged with HTO. At equilibrium a sample of (1) was taken and its (2) content determined by liquid scin- tillation counting.	(2) not specified.

ESTIMATED ERROR:

temp. ± 0.01 K

REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Guseva, A.N.; Parnov, E.I.
(2) Water; H ₂ O; [7732-18-5]	Vestn. Mosk. Univ. Khim <u>1963</u> , 18, 76 - 9.
	Radiokhimiya <u>1963</u> , 5, 507-9.
VARIABLES:	PREPARED BY:
Temperature: 90-224°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	1
Solubility of toluen	e in water
$\frac{t/^{\circ}C}{$	$10^3 x_1$ (compiler)
90 0.42	0.83
114 0.823 147 1.640	1.619 3.248
169 2.387	4.737
207 4.113	8.314
224 5.072	10.336
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The measurements were made in sealed glass tubes. No details were reported in the paper.	(1) source not specified; n_D^{20} 1.4970.
	(2) doubly distilled.
	ESTIMATED ERROR:
	not specified.
	REFERENCES:
	1

394	
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Jones, J.R.; Monk, C.B.
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Soc. <u>1963</u> , 2633-5.
VARIABLES:	PREPARED BY:
Temperature: 25-35°C	A. Maczynski, Z. Maczynska and A. Szafranski
EVDEDIMENTAL VALUES.	· · · · · · · · · · · · · · · · · · ·
EARENIAL VALUES:	
Solubility of wat	er in toluene
<i>t/°C</i>	$10^4 \text{ mL}(2)/\text{mL}(1)$
25	4.0
30	4.8
35	5.9
••••••••••••••••••••••••••••••••••••••	
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND FURITY OF MATERIALS:
In a thermostatted glass-stoppered	(1) 'AnalaR' grade; repurified
flask 10-25 mL(1) was shaken for	by conventional methods, ref 1.
few mL of HTO equivalent to ca.	(2) not specified.
2 mc/mL) and decanted. A 5-mL	
5 mL H ₂ O in a 10-mL flask, sampled	
and assayed with a Nuclear Enter-	
tion counter. The two-stage process	
eliminates quenching effects (due to	ESTIMATED ERROR:
solvent, on the scintiliator.	s_{1}
	(average deviation)
	REFERENCES:

 Vogel 'Practical Organic Chemistry', Longmans, Green and Co., London, 1956.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	McAuliffe, C.
(2) Water; H ₂ O; [7732-18-5]	Nature (London) <u>1963</u> , 200, 1092-3.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski and Z. Maczynska
PURENTLENTAL VALUEC.	
EXPERIMENTAL VALUES.	
The solubility of toluene in water at	25°C was reported
to be 0.0538 g(1)/100 g sln.	
The corresponding mole fraction, x_1 ,	calculated by the compilers
is 1.05 x 10 °.	
1	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The saturated solution of (1) in	(1) Phillips Petroleum Co.; 99+%;
(2) was prepared by either shaking vigorously on a reciprocal shaker	used as received.
or stirring for several days with	(2) distilled.
A 0.05 mL or 0.10 mL sample of the	
hydrocarbon-saturated water was injected directly into a gas liquid	
chromatograph.	
	FETTMATED EDDAD.
	temp. ± 1.5 K
	soly. 0.0017 (standard deviation of mean)
	REFERENCES:

ł

```
396
```

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Toluene; C.H.; [108-88-3]	Hoegfeldt, E.; Bolander, B.	
(2) Water; H ₂ O; [7732-18-5]	Ark. Kemi, 1964, 21, 161-86.	
2		
VARTARLES :	PREDADED BY.	
One temperature: 25°C	A. Maczynski and Z. Maczynska	
EXPERIMENTAL VALUES:		
The solubility of water in toluene was reported to be		
$0.026 \text{ mol}(2) \text{ dm}^{-3} \text{ sln.}$		
The corresponding mass percent and m	ol fraction, x_2 , calculated	
by the compilers are $0.054 \text{ g}(2)/100$	g sln and 2.8 x 10^{-3} .	
The assumption that $1 \text{ dm}^3 \text{ sln} = 862$	g sln was used in the calculation.	
AUXILIARY	INFORMATION	
METHOD /APPARATUS /PROCEDURE :	SOURCE AND PURITY OF MATERIALS.	
The water determination was carried out according to	(1) Kebo; purity 99.0%; used as received.	
Johansson's modification of the Karl Fischer titration	(2) not specified.	
in ref 1, 2.		
	ESTIMATED ERROR:	
	temp. \pm 0.3 K	
	(type of error not specified)	
	REFERENCES :	
	 Hardy, C.J.; Greenfield, B.F.; Scargill, D. 	
	J. Chem. Soc. <u>1961</u> , 90.	
	Sv. Papperstidn. <u>1947</u> , 11B,	
	147.	

	397
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A.
(2) water; n ₂ 0; [//32-18-5]	Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 42-6.
VARIABLES:	PREPARED BY:
Temperature: 0-50°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	L ,
Solubility of wa	ter in toluene
t/°C g(2)/100 g slr	$10^3 x_2$ (compiler)
0 0.02704 10 0.0316 20 0.0460	1.382 1.61 2.35
40 0.0750 50 0.0965	3.14 3.82 4.92
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Component (1) was introduced into a thermostatted flask and saturated fo. 5 hr. with (2). Next, calcium hy- dride was added and the evolving hydrogen volume measured and hence the concentration of (2) in (1) was evaluated.	(1) not specified. r (2) not specified.
	ESTIMATED ERROR:
	Not specified.
	REFERENCES:

COMPONENTS :			ORIGINAL MEASUREMENT	S:
(1) Toluene; C ₇ H ₈ ; [108-88-3]		Connolly, J.F.		
(2) Water: H_0 : $[7732-18-5]$		I. Chem. Eng. Do	rta 1966, 11, 13-6	
(2) Materi M ₂ 0, [7,52 10-5]			<u></u> ,,	
VARIABLES:			PREPARED BY:	
Temperature	: 280-310°	c	A. Maczynski and	l Z. Maczynska
Pressure:	150-600 atm	n		
EXPERIMENTAL V	ALUES:			
	Sc	lubility of tol	uene in water	
t∕°C	p/atm	p/MPa	g(l)/100 g sln	<i>x</i> ₁
		(compiler)		(compiler)
280	150	15.2	6.8	0.0141
	250	25.3	6.8	0.0141
	600	60.8	5.8	0.0119
300	170	17.2	14.2	0.0313
	250	25.3	14.1	0.0311
305	160	30.4	14.0	0.0308
	180	18.2	19.0	0.0438
	200	20.3	19.5	0.0452
	250	25.3	19.0	0.0438
310	145	14.7	18.0	0.0411
	150	15.2	19.6	0.0455
	155	15.7	21.7	0.0514
	170	17.2	25.9	0.0578
	175	17.7	29.6	0.0759
	180	18.2	· 33.1	0.0882
	270	18.2 27 3	30.3 50.5	0.1002
	265	26.9	48.6	0.1560
				(continued)
		AUXILIARY	INFORMATION	
METHOD/APPARAT	US/PROCEDURE:		SOURCE AND PURITY OF	F MATERIALS:
Measurement	s were carr	ied out in a	(1) Phillips rea	gent grade;
100 mL stai	nless-steel	cell. The	better than	99.8 %;
brought to	aded with i temperature	.5 g (2) and . Mixing was	used as rece	lved.
started and	(1) was in	jected until	(2) distilled an	d deaerated.
either a cl	oud or a sm	all droplet		
top of the	phase appe	ared at the		
injected to	change pre	ssure, more		
(1) was injo	ected and t	he measure-		
ment was re	peaceu.		ESTIMATED ERROR:	
			temp. ± 0.02 K	
			pressure ± 2 atm	i.
			REFERENCES:	· · · · · · · · · · · · · · · · · · ·
			1	

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Connolly, J.F.		
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Eng. Data <u>1966</u> , 11, 13-6.		

Solupility of toluene in water

t/°C	p/atm	p/MPa	g(l)/100 g sln	<i>*</i> 1
		(compiler)		(compiler)
310	260 260 260 260 260 275 295 325 405 455	26.3 26.3 26.3 26.3 26.3 27.9 29.9 32.9 41.0 46.1	46.5 44.3 41.9 39.2 36.3 33.1 29.6 26.7 23.8 19.5 11.0	0.1452 0.1346 0.1236 0.1119 0.1002 0.0882 0.0759 0.0665 0.0575 0.0452 0.0411

```
400
```

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3] (3) Water; H ₂ O; [7732-18-5]	Johnson, J.R.; Christian, S.D.; Affsprung, H.E. J. Chem. Soc. A. <u>1966</u> , 77-8.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of water in toluene at 0.0274 mol(2) dm ⁻³ sln. The corresponding mass percent and moby the compilers are 0.0572 g(2)/100 The assumption that 1 dm ³ sln = 862 g	25°C was reported to be le fraction, x_2 , calculated g sln and 2.92 x 10^{-3} . sln was used in the calculation.
AUXILIARY	INFORMATION
ME THOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The apparatus described in ref l was used without modification. Samples were equilibrated in a constant-temperature water-bath maintained at 25 ± 0.1°C. Water solubilities were determined by using a Beckman Model KF-3 Aquameter.	 source not specified; certified or reagent grade; distilled through a 30-plate Oldershaw column. not specified.
	ESTIMATED ERROR: temp. ± 0.1 K soly. ± 0.0005 mol(2) dm ⁻³ sln (type of error not specified) REFERENCES: 1. Christian, S.P.; Affsprung, H.E.; Johnson, J.R.; Worley, J.D. J. Chem. Educ. <u>1963</u> , 40, 419.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	McAuliffe, C.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Szafranski
EXPERTMENTAL VALUES:	L
The solubility of toluene in water at	25°C was reported
to be 515 $g(1)/10$ $g(2)$.	le fraction. x., calculated
by the compilers are $0.0515 \text{ g}(1)/100$	g sln and 1.01 x 10^{-4} .
	-
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a 250-mL bottle, 10-20 mL of (1)	(1) Phillips Petroleum or
was vigorously shaken for 1 hr, or magnetically stirred for 1 day,	Columbia Chemical; used as received.
with 200 mL of (2) at 25°C. The	(2) distilled
allow droplets of undissolved (1)	
to separate. Absence of emulsion was checked microscopically. A	
sample of the hydrocarbon-saturated	
syringe and gas liquid chromato-	
ionization detector.	temp. ± 1.5 K
	soly. 17 $g(1)/10^{6} g(2)$ (standard deviation of mean)
	KEFEKENCES:

ł

```
402
```

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H _o ; [108-88-3]	Gregory, M.D.; Christian, S.D.;
(2) Water: H O: [7732-18-5]	Affsprung, H.E.
(2) madel, m ₂ 0, [7752 10-5]	J. Phys. Chem. <u>1967</u> , 71, 2283-9.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of water in toluene at	: 25°C was reported to be
0.0268 mol(2) dm sln.	
The corresponding mass percent and mo	ble fraction, x_2 , calculated
by the compilers are 0.0560 g(2)/100	g sln and 2.86 x 10^{-3} .
The assumption that $1 \text{ dm}^3 \text{ sln} = 863 \text{ g}$	sln was used in the calculation.
	1
	THEODMARTON
AUXILIANI	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A solution of (2) in (1) was ob-	(1) source not specified, reagent
tained using solute isopiestic equilibrator described in ref 1.	grade; fractionally distilled using a 30-plate Oldershaw.
Water concentration was determined	
with a Beckman KF-3 aquameter by the Karl Fischer analysis.	(2) not specified.
	ESTIMATED ERROR:
	temp. ± 0.05 K
	REFERENCES:
	<pre>1. Christian, S.D.; Affsprung, H.E.; Johnson, J.R.; Warley,</pre>
	J.D. J. Chem. Educ. <u>1963</u> ,

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Benkovski, V.G.; Nauruzov, M.H.; Bogoslovskava, T.M.
(2) Water; H ₂ O; [7732-18-5]	Dogostovskuju i m.
-	Tr. Inst. Knim. Nefti Prir. Solei Akad. Nauk Kaz. SSR <u>1970</u> , 2,
	25-32.
VARIABLES:	PREPARED BY:
One temperature: 303 K	A. Maczynski
EXPERIMENTAL VALUES:	
	202 K was reported to be
The solubility of water in toldene at $0.0273 a(2)/100 a slp_{-}$. SUS K Was reported to be
The corresponding mole fraction, x_{2} ,	value calculated by compiler
is 0.0739.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Equal volumes of (1) and (2) were	(1) source not specified; purified;
placed in a glass cylinder and	purity not specified.
sampled and analyzed by the Karl	(2) distilled.
Fischer method.	
	1
	ESTIMATED ERROR:
	Not crocific?
	NOC SPECIFIED
	REFERENCES :
ļ	

COMPONENTS :		ORIGINAL MEASUREMENTS:	
(1) Toluene; C ₇ H _o ; [1	08-88-3]	Glasoe, P.K.; Schu	iltz, S.D.
(2) Water; H ₂ O; [7732-18-5]		J. Chem. Eng. Dato	z, <u>1972</u> , <i>17</i> , 66-8.
2		-	
VARIABLES:		PREPARED BY:	
Temperature: 15-30°C		A. Maczynski and 2	2. Maczynska
EXPERIMENTAL VALUES:			
	Solubility of w	ater in toluene	,
		a(2)/100 g slp	10 ³ "
$t/^{\circ}C$ mol(2) dm ⁻³ sln	(compiler)	(compiler)
15 0.02	00 ± 0.0006	0.0413	2.11
30 0.02	61 ± 0.0004 93 ± 0.0004	0.0545	2.78 3.14
The compilers	calculations ass	sume a solution dens	ity of
0.862 g/mL.			
	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE	:	SOURCE AND PURITY OF MA	TERIALS:
Dried (1) was saturated allowing it to stand	ed with (2) by in contact with	(1) source not spe reagent grade;	cified; ; purified by
(2) in a closed system from atmospheric mois	m, protected ture.	distillation a molecular siev	and dried over
This two-phase system	was kept in a	(2) distilled in a	a pyrex system.
immersed in a constant	which was t temperature		
water bath.	(0) (1)		
The concentration of determined by the Kar	(2) in (1) was 1 Fischer	ESTIMATED ERROR:	
method.		soly. as indicated	above.
		(type of error not	specified)
		REFERENCES:	
		L	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Pierotti, R.A.; Liabastre, A.A.
(2) Water; H ₂ O; [7732-18-5]	"Structure and properties of water solutions." U.S. Nat. Tech. Inform. Serv., PB Rep., <u>1972</u> , No. 21163, 113 p.
VARIABLES:	PREPARED BY:
Temperature: 278.16-318.46 K	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	L
Solubility of tolu	ene (2) in water (1)
<u>T/K</u> g(1)/100	$\frac{10^3 x_1}{2}$
278.16 0.06357	± 0.0017 0.1243
283.06 0.06324	± 0.0016 0.1236
293.06 0.06606	± 0.0018 0.1292
298.16 0.06299	± 0.0013 0.1232
308.26 0.06721	± 0.0011 0.1314
318.46 0.06717	± 0.0020 0.1313
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
10 mL of (2) were placed along with 4-10 drops of (1) in 10 mL serum bottles, which were then tightly capped, and placed in the rotating basket and rotated for 24 hours. The bottles were then hand shaken to remove (1) droplets from the stoppers and then replaced in the bath with the tops down for an additional 24 hours. The solute concentrations were determined by use of a flame-ionization gas chromatograph. Many details about equipment, operating conditions and calculation are given in the paper.	 (1) Fisher Scientific Co., Chromatoquality; 99+mole%; used as received. (2) laboratory distilled water. ESTIMATED ERROR: soly.: standard deviation from at least 15 measurements are given above. REFERENCES:

COMPONENTS:			ORIGINAL MEASUREMENTS:	
(1) Toluene; C ₇ H ₈ ; [108-88-3]		Bradley, R.S.; Dew, M.J.; Munro, D.C.		
(2) Water; H ₂ O; [7732-18-5]		High Temp. High Pres	в. <u>1973</u> , 5, 169-76.	
	L			
VARIABLES:			PREPARED BY.	<u></u>
Temperature:	: 25-55°C		G.T. Hefter	
Pressure:	1-1200 ba	ar		
EXPERIMENTAL VA	LUES:		• <u></u>	
	b	Solubility of	toluene in water	4 a
t/°C	p/bar ²	mol/L sln	g(1)/100g sin (compiler)	(compiler)
25	1	0.00595	0.0547	1.07
45	1	0.00785	0.0722	1.68
45	1000	0.0121	0.111	2.17
55	1000	0.0131	0.121	2.37
Data at othe presented fo at various t	er pressure or the solul temperatures	3 are presented bility of (1) i 5 and pressures	in graphical form. n aqueous solutions •	Data are also of AgNO ₃ and KNO ₃
<u></u>				
METHOD/APPARATU		AUXILIARY	INFORMATION	····
	JS/PROCEDURE:	AUXILIARY	INFORMATION SOURCE AND PURITY OF N	MATERIALS ;
The solubil:	JS/PROCEDURE:	AUXILIARY	INFORMATION SOURCE AND PURITY OF N (1) Not specified	ATERIALS :
The solubil: room tempera	JS/PROCEDURE: ity of (1) ature and p	AUXILIARY in (2) at ressure was	INFORMATION SOURCE AND PURITY OF M (1) Not specified	MATERIALS :
The solubil: room tempera determined : cuvette place	JS/PROCEDURE: ity of (1) ature and p in a stoppe: red in a Un	AUXILIARY in (2) at ressure was red 1mm silica icam SP500	INFORMATION SOURCE AND PURITY OF M (1) Not specified (2) Distilled, ai	ATERIALS:
The solubil: room tempera determined : cuvette plac spectrophoto	JS/PROCEDURE: ity of (1) ature and particle in a stopped red in a Unitation ometer and stopped	AUXILIARY in (2) at ressure was red 1mm silica icam SP500 stirred	INFORMATION SOURCE AND PURITY OF M (1) Not specified (2) Distilled, an	ATERIALS: A r-free
The solubil: room tempera determined : cuvette plac spectrophoto magnetically	JS/PROCEDURE: ity of (1) ature and p in a stopped ced in a Un ometer and s y. Measured	AUXILIARY in (2) at ressure was red 1mm silica icam SP500 stirred nents were	INFORMATION SOURCE AND PURITY OF N (1) Not specified (2) Distilled, as	ATERIALS: A .r-free
The solubil: room tempera determined : cuvette plac spectrophoto magnetically made until a	JS/PROCEDURE: ity of (1) a ature and print in a stopper ced in a Unit ometer and so y. Measure a constant of The value	AUXILIARY in (2) at ressure was red 1mm silica icam SP500 stirred nents were concentration a was cross-	INFORMATION SOURCE AND PURITY OF M (1) Not specified (2) Distilled, ai	MATERIALS: 1 .r-free
The solubil: room tempera determined : cuvette plac spectrophoto magnetically made until a was reached checked aga:	JS/PROCEDURE: ity of (1) ature and particular in a stopper ced in a Unit ometer and so y. Measurer a constant of . The value inst a 2-L	AUXILIARY in (2) at ressure was red 1mm silica icam SP500 stirred nents were concentration a was cross- sample of	INFORMATION SOURCE AND PURITY OF M (1) Not specified (2) Distilled, ai	AATERIALS: A .r-free
The solubil: room tempera determined : cuvette plac spectrophoto magnetically made until a was reached checked agas saturated so	JS/PROCEDURE: ity of (1) a ature and particular in a stopper ced in a Unit ordeter and s y. Measurer a constant of the value inst a 2-L s olution which	AUXILIARY in (2) at ressure was red 1mm silica icam SP500 stirred nents were concentration a was cross- sample of ch had been	INFORMATION SOURCE AND PURITY OF N (1) Not specified (2) Distilled, ai	AATERIALS: I .r-free
The solubil: room tempera determined : cuvette plac spectrophoto magnetically made until a was reached checked aga: saturated so equilibrated	JS/PROCEDURE: ity of (1) a ature and particular in a stopped ced in a Unit ometer and a y. Measurer a constant of y. Measurer a constant of the value inst a 2-L olution which for some particular a for some particular constant of the some particular constant of the some particular constant of the some particular constant of the some particular const	AUXILIARY in (2) at ressure was red 1mm silica icam SP500 stirred nents were concentration a was cross- sample of ch had been nonths.	INFORMATION SOURCE AND PURITY OF N (1) Not specified (2) Distilled, and	MATERIALS: 1 .r-free
The solubil: room tempera determined : cuvette plac spectrophoto magnetically made until a was reached checked aga: saturated so equilibrated Solubilities	JS/PROCEDURE: ity of (1) : ature and p in a stoppe: ced in a Un ometer and s y. Measurer a constant o y. Measurer a constant o inst a 2-L s olution which a for some n s at higher	AUXILIARY in (2) at ressure was red 1mm silica icam SP500 stirred nents were concentration e was cross- sample of ch had been nonths. temperatures	INFORMATION SOURCE AND PURITY OF M (1) Not specified (2) Distilled, as ESTIMATED ERROR:	AATERIALS: A .r-free
The solubil: room tempera determined : cuvette plac spectrophoto magnetically made until a was reached checked aga: saturated so equilibrated Solubilities and pressure	JS/PROCEDURE: ity of (1) a ature and print in a stopper ced in a Unit ometer and a y. Measurer a constant of the value inst a 2-L olution which for some n s at higher	AUXILIARY in (2) at ressure was red 1mm silica icam SP500 stirred nents were concentration e was cross- sample of ch had been nonths. temperatures ilarly	INFORMATION SOURCE AND PURITY OF M (1) Not specified (2) Distilled, ai ESTIMATED ERROR: Not specified	AATERIALS: A .r-free
The solubil: room tempera determined : cuvette plac spectrophoto magnetically made until a was reached checked aga: saturated so equilibrated Solubilities and pressure determined : into the spectrum	JS/PROCEDURE: ity of (1) a ature and print in a stopper ced in a Unit ometer and s y. Measurer a constant of the value inst a 2-L colution which for some r s at higher es were sim in a specia actrophotom	AUXILIARY in (2) at ressure was red 1mm silica icam SP500 stirred ments were concentration e was cross- sample of ch had been nonths. temperatures ilarly l cell fitted ater. Many	INFORMATION SOURCE AND PURITY OF M (1) Not specified (2) Distilled, ai ESTIMATED ERROR: Not specified	4ATERIALS: 1 .r-free
The solubil: room tempera determined : cuvette place spectrophoto magnetically made until a was reached checked aga: saturated so equilibrated Solubilities and pressure determined : into the spe details of the spectrum of the spectrum details of the spectrum of the spectrum details of the spectrum of the spectrum of the spectrum details of the spectrum of the spec	JS/PROCEDURE: ity of (1) ature and partial in a stopped ced in a Uni- ometer and so y. Measures a constant of the value inst a 2-L so olution which for some no s at higher as were simm in a special actrophotomethe apparato	AUXILIARY in (2) at ressure was red 1mm silica icam SP500 stirred nents were concentration e was cross- sample of ch had been nonths. temperatures ilarly l cell fitted eter. Many us ar¢ given	INFORMATION SOURCE AND PURITY OF M (1) Not specified (2) Distilled, and ESTIMATED ERROR: Not specified	AATERIALS: I .r-free
The solubil: room tempera determined : cuvette plac spectrophoto magnetically made until a was reached checked aga: saturated so equilibrated Solubilities and pressure determined : into the spectrum details of t	JS/PROCEDURE: ity of (1) ature and print in a stopped red in a Unit ometer and so y. Measured a constant of the value inst a 2-L so olution which for some r s at higher as were sim in a special octrophotometer the apparator	AUXILIARY in (2) at ressure was red 1mm silica icam SP500 stirred ments were concentration was cross- sample of ch had been months. temperatures ilarly l cell fitted eter. Many us are given	INFORMATION SOURCE AND PURITY OF M (1) Not specified (2) Distilled, and ESTIMATED ERROR: Not specified REFERENCES:	AATERIALS; A .r-free
The solubil: room tempera determined : cuvette plac spectrophoto magnetically made until a was reached checked aga: saturated so equilibrated Solubilities and pressure determined : into the spe details of t in the paper	JS/PROCEDURE: ity of (1) ature and print in a stopper ced in a Uni- ometer and so y. Measurer a constant of y. Measurer a constant of y. Measurer a	AUXILIARY in (2) at ressure was red 1mm silica icam SP500 stirred nents were concentration e was cross- sample of ch had been nonths. temperatures ilarly l cell fitted eter. Many us are given	INFORMATION SOURCE AND PURITY OF N (1) Not specified (2) Distilled, ai ESTIMATED ERROR: Not specified REFERENCES:	ATERIALS: I .r-free
The solubil: room tempera determined : cuvette plac spectrophoto magnetically made until a was reached checked aga: saturated so equilibrated Solubilities and pressure determined : into the spect in the paper	JS/PROCEDURE: ity of (1) ature and p in a stoppe: ced in a Un ometer and s y. Measurer a constant o . The value inst a 2-L s olution which d for some n s at higher es were sim in a specia ectrophotom the apparatur.	AUXILIARY in (2) at ressure was red 1mm silica icam SP500 stirred ments were concentration e was cross- sample of ch had been months. temperatures ilarly l cell fitted eter. Many us are given	INFORMATION SOURCE AND PURITY OF M (1) Not specified (2) Distilled, and ESTIMATED ERROR: Not specified REFERENCES:	AATERIALS: 1 .r-free
The solubil: room tempera determined : cuvette plac spectrophoto magnetically made until a was reached checked aga: saturated so equilibrated Solubilities and pressure determined : into the species in the paper	JS/PROCEDURE: ity of (1) ature and p in a stoppe: ced in a Unit ometer and s y. Measure a constant of the value inst a 2-L s olution which d for some n s at higher es were simmin a specia ectrophotomouthe apparator	AUXILIARY in (2) at ressure was red 1mm silica icam SP500 stirred ments were concentration e was cross- sample of ch had been months. temperatures ilarly l cell fitted eter. Many us are given	INFORMATION SOURCE AND PURITY OF M (1) Not specified (2) Distilled, ai ESTIMATED ERROR: Not specified REFERENCES:	AATERIALS: A .r-free
The solubil: room tempera determined : cuvette place spectrophoto magnetically made until a was reached checked aga: saturated so equilibrated Solubilities and pressure determined : into the spect in the paper	JS/PROCEDURE: ity of (1) ature and print in a stoppe: ced in a Unit ometer and s y. Measurer a constant of the value inst a 2-L colution which d for some r s at higher es were sim in a specia ectrophotomethe apparator r.	AUXILIARY in (2) at ressure was red 1mm silica icam SP500 stirred ments were concentration e was cross- sample of ch had been nonths. temperatures ilarly l cell fitted eter. Many us are given	INFORMATION SOURCE AND PURITY OF M (1) Not specified (2) Distilled, ai ESTIMATED ERROR: Not specified REFERENCES:	AATERIALS: 1 .r-free

				407
COMPONENTS :			ORIGINAL MEASUREMENTS:	
(l) Toluene	; C ₇ H ₈ ; [108-88-3]		Polak, J.; Lu, B.CY.	
(2) Water; 1	H ₂ O; [7732-18-5]		Can. J. Chem. <u>1973</u> , 51, 4018-	-23.
VARIABLES:			PREPARED BY.	
Temperature	: 0-25°C		A. Maczynski and Z. Maczynska	
EXPERIMENTAL VA	MUES:		L	
	Solubility o	of to	Luene in water	
t/°C	mg(l)/kg(2)	g (] 	L)/100 g sln 10 [*] x ₁ (compiler) (compiler)	
0(a)	724 (c)		0.0724 1.42	
25 (b)	573 (c)		0.0573 1.12	
	Colubility (of wat	ter in toluene	
	SOUDILL'S		10^3	
t/°C	mg(2)/kg(1)	g (,	(compiler) (compiler)	
0(a)	228 (đ)		0.0228 1.17	
25 (b)	543(e)		0.0543 2.77	
See FST	IMATED ERKOR			
	AUX	ILIARY	INFORMATION	
METHOD/APPARAT	US/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:	
Approximate with (2) we Hypo-vial w teflon coat placed in a water bath. magneticall the bath fo the bath wi days, befor for analysi	ly 50 mL of (1) toge re placed in a 125 m hich was closed with ed rubber septum and constant-temperatur. The system was sti. y for 24 hr and left or 3 days or was kept thout stirring for 7 re samples were taken	ther L e rred in in	 Matheson, Coleman and Bel spectroquality grade reag shaken three times with distilled water. distilled. 	l, ent;
The solubil organic lay Karl Fische solubility water layer	ity of water in the ver was determined by er titration and the of hydrocarbon in th was determined by g	e as	temp. (a) \pm 0.02 K, (b) \pm 0.0 soly. (c) \pm 1.7%, (d) \pm 4.7%, (e) \pm 3.1% (from two or determinations))1 K three
chromatogra	арпу .		REFERENCES :	

COMPONENTS:	0	RIGINAL MEASUREMENTS:
(1) Toluene; C_7H_8 ; [108-88-3]		Brown, R.L.; Wasik, S.P.
(2) Water: H ₂ O: [7732-18-5]	<u> </u>	I. Res. Natl. Bur. Stds. 1974. 28
		AE2.60
	'	455-60.
VARIABLES:	I	PREPARED BY:
Temperature: 4.5-20.1°C		G.T. Hefter
(277.7-293.3 K)		
EVDEDINENTAL VALUES.		· · · · · · · · · · · · · · · · · · ·
Solubility of toluene in water:		
t/°C g(l)/100	g sln'	$10^4 x_1$ (compiler)
4.5 0.0612 ±	0.001	0 1.20
6.3 0.0601 ±	0.001	1 1.18
7.1 0.0586 ±	0.001	8 1.15
9.0 0.0587 ±	0.001	1 1.15
11.8 0.0573 ±	0.001	4 1.12
12.1 0.0575 +	0.001	2 1.13
15.1 0.0569 +	0 001	3 111
	0.001	
	0.001	
20.1 0.0366 ±	0.001.	L 1.11
AUX:	ILIARY I	NFORMATION
METHOD /APPARATUS / PROCEDURE :	Te	SOURCE AND PURITY OF MATERIALS.
Solubilities were calculated from	m	(1) 99.99 mole per cent purity;
partition coefficient measurement	ts	source and methods of purifi-
aqueous solution and its vapor us	sing	cation not specifica.
headspace chromatography		(2) Distilled.
The apparatus and the method of		
obtaining the partition coefficient	ents	
Basically, the hydrocarbon was in	ntro-	
duced as a vapor (to avoid emuls	ifi-	
cell containing about 45 cm ³ of y	on water.	
The vapor was subsequently analy	sed	ESTIMATED ERROR:
by gas chromatography using He as carrier. Possible sources of er	s the ! ror	Temperature: ±0.01°C
are discussed in detail although	the	Solubility: see Table above
source of vapor pressure data use	ed +	REFERENCES ·
given.	-	
		Ì
	1	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Krasnoshchekova, R.Ya.;
(2) Water; H ₂ O; [7732-18-5]	Gubergrits, M.Ia.
,	Vodnye. Resursy. <u>1975</u> , 2, 170-3.
11ADT ADT PC .	DEPART NY.
VARIADLES:	rkeraked BI:
One temperature: 25°C	A. Maczynski
EVDEDIMENTAL VALUES.	
EALERING VALUES.	
The solubility of toluene in water at	25°C was reported to be
$0.220 \text{ mg}(1) \text{ cm}^{-3} \text{ sln.}$	
The corresponding mass percent and mo	le fraction, x_1 , calculated
by the compiler are $0.022 g(1)/100 g$	sln and 4.3×10^{-5} .
The compiler's calculations assume a	solution density of 1.00 g/mL.
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was	(1) described in ref (1).
A Czech-made Chrom-2 chromatograph	(2) distilled.
L/Chromosorb G column operated at	
90-140°C.	
• ·	
	ESTIMATED ERROR:
	temp. ± 1 K
	REFERENCES :
	1. Krasnoshchekova, P.Ya.;
	$\frac{1973}{13}, 13, 885.$
1	

```
410
```

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene: C-Ho; [108-88-3]	Mackay, D.; Shiu, W.Y.
(2) Water: H_0 ; [7732-18-5]	Can. J. Chem. Eng. 1975, 53,
	239-41.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of toluene in water at 0.5195 g(1) dm ⁻³ . The corresponding mass percent and more by the compiler are 0.05195 g(1)/100 The compiler's calculations assume a	25°C was reported to be ble fraction, x_1 , calculated g sln and 1.015 x 10^{-4} . solution density of 1.00 g/mL.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was determined by gas chromatography. The gas chromatograph was Hewlett- Packard Model 5750 equipped with a hydrogen flame ionization detector. Many details are given in the paper.	 (1) Phillips Petroleum Co.; research grade; 99.9+%; used as received. (2) not specified.
	ESTIMATED ERROR: temp. ± 0.1 K soly. ± 0.0096 g(1) dm ⁻³ REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Sada, E.; Kito, S.; Ito, Y.
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Eng. Data <u>1975</u> , 20, 373-5.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of toluene in water a 0.5633 mL(1)/1000 mL(2).	t 25°C was reported to be .

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Sudan IV was used to dye (1). The experimental apparatus and procedure used in this work were similar to those of Sobotka and Khan (ref 1). To make the measurements more accurate, the apparatus used con- sisted of a 1-liter dissolution flask and a 2-mL microburet. The scale was calibrated in advance by use of mercury. The dissolution flask was immersed in a water bath controlled thermostatically at 25°C. To avoid condensation of (1)	<pre>SOURCE AND PURITY OF MATERIALS: (1) source not specified; reagent grade; used as received; purity not specified. (2) pure. ESTIMATED ERROR: temp, + 0,01 K</pre>
from the gas phase, the temperature of gas phase in the dissolution flask was kept 1°C higher than that of the liquid phase. The dissolu- tion flask and the microburet were connected tightly.	<pre>soly. less than 0.008 mL(1)/1000 mL</pre>

```
412
```

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Sutton, C.; Calder, J.A.
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Eng. Data 1975, 20, 320-2.
One temperature: 25°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of toluene in water a	t 25°C was reported to be
534.8 mg(l)/kg(2). The corresponding	g mass percent and mole fraction,
x_1 , calculated by the compilers are	0.05348 g(l)/100 g sln and
1.046×10^{-4} .	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND FURITY OF MATERIALS:
The concentration of (1) in (2) was determined by gas chroma- tography.	 (1) Aldrich Chemical Co. or Matheson Coleman and Bell 99+%.
	(2) distilled.
	ESTIMATED ERROR:
	temp. ± 0.1 K
	(the standard deviation of the
	mean for six replicates)
	<pre>toinwite Exkok: temp. ± 0.1 K soly. 4.9 mg(1)/kg(2) (the standard deviation of the mean for six replicates) REFERENCES:</pre>

(2) Water; H ₂ O; [7732-18-5] Am. Assoc. Petrol. Geol. Bull. 11 Solution Solution VARIABLES: PREPARED BY: One temperature: 25°C M.C. Haulait-Pirson EXPERIMENTAL VALUES: M.C. Haulait-Pirson The solubility of toluene in water at 25°C and at system pressure was reported to be 554.0 mg(1)/kg(2). The corresponding mass percent and mole fraction, x ₁ , calculated by the compiler are 0.0554 g(1)/100 g sln and 1.08 x 10 ⁻⁴ . METHOD/APPARATUS/FROCEDURE: Source AND PURITY OF MATERIALS: The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase in 2 to 4 days. Consider the stor and insured saturation of the (2) phase in 2 to 4 days. Chaily so were carried out by Sc 20 to 2571 rgs charatograph with dual-flame tioniation deteors, Many details are given in the paper. Source and Purity of MATERIALS: (1) Phillips Petroleum Company; 9544. 954. (2) distilled. ESTIMATED ERROR: ESTIMATED ERROR: temp. : 1 K soly. : 15 mg(1)/kg(2) REFERENCES: REFERENCES:	/ 0	
VARIABLES: PREFARED BY: One temperature: 25°C M.C. Haulait-Pirson EXPERIMENTAL VALUES: M.C. Haulait-Pirson The solubility of toluene in water at 25°C and at system pressure was reported to be 554.0 mg(1)/kg(2). The corresponding mass percent and mole fraction, x ₁ , calculated by the compiler are 0.0554 g(1)/100 g sln and 1.08 x 10 ⁻⁴ . AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase in 2 to 4 days. Analyses were carried out by GSC using a Hewlett-Packard model 5751 gas thromatograph with dual-flame ionization detectors. Many details are given in the paper. Soluce and public temps. 1 K soly. 1 15 mg(1)/kg(2) REFERENCES:	(2) Water; H ₂ O; [7732-18-5]	Ат. Аввос. Petrol. Geol. Bull. <u>1976</u> , 60, 213-44.
ORACLEST PREFARED SY: One temperature: 25°C M.C. Haulait-Pirson EXPERIMENTAL VALUES: M.C. Haulait-Pirson The solubility of toluene in water at 25°C and at system pressure was reported to be 554.0 mg(1)/kg(2). The corresponding mass percent and mole fraction, x ₁ , calculated by the compiler are 0.0554 g(1)/100 g sln and 1.08 x 10 ⁻⁴ . AUXILIARY INFORMATION METHOD/AFPARATUS/FROCEDURE: The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase floated on top of the water and insured saturation of the (2) phase in 2 to 4 days. Analyses were carried out by GSC using a Hewlett-Packard model 5751 gas chromatograph with dual-flame ionization detectors. Many details are given in the paper. Source AND FURITY OF MATERIALS; (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. ± 15 mg(1)/kg(2) REFERENCES; ESTIMATED ERROR:	1/107 AD1 CC.	
One temperature: 25°C M.C. Haulait-Pirson EXPERIMENTAL VALUES: M.C. Haulait-Pirson The solubility of toluene in water at 25°C and at system pressure was reported to be 554.0 mg(1)/kg(2). The corresponding mass percent and mole fraction, x ₁ , calculated by the compiler are 0.0554 g(1)/ 100 g sln and 1.08 x 10 ⁻⁴ . AUXILIARY INFORMATION METHOD/AFPARATUS/FROCEDURE: The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase floated on top of the water and nodel 5751 gas chromatograph with dual-flame ionization detectors. Many details are given in the paper. KETHORLES:	VARIABLES:	PREPARED BY:
EXPERIMENTAL VALUES: The solubility of toluene in water at 25°C and at system pressure was reported to be 554.0 mg(1)/kg(2). The corresponding mass percent and mole fraction, x ₁ , calculated by the compiler are 0.0554 g(1)/ 100 g sin and 1.08 x 10 ⁻⁴ . AUXILIANY INFORMATION METHOD/APPARATUS/FROCEDURE: Source AND PURITY OF MATERIALS: The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase floated on top of the water and insured saturation of the (2) phase in 2 to 4 days. Analyses were carried out by GSC using a lewlett-Packard model 5751 gas chromatograph with dual-flame ionization detectors. Many details are given in the paper. Source AND PURITY OF MATERIALS: SURCE AND PURITY OF MATERIALS: Sure Adaption of the (2) phase in 2 to 4 days. Analyses were carried out by GSC using a lewlett-Packard model 5751 gas chromatograph with dual-flame ionization detectors. Many details are given in the paper. ESTIMATED ERROR: LEMENCES:	One temperature: 25°C	M.C. Haulait-Pirson
The solubility of toluene in water at 25°C and at system pressure was reported to be 554.0 mg(1)/kg(2). The corresponding mass percent and mole fraction, x ₁ , calculated by the compiler are 0.0554 g(1)/100 g sln and 1.08 x 10 ⁻⁴ . AUXILIARY INFORMATION MUNILIARY INFORMATION Source and 1.08 x 10 ⁻⁴ . Source and 1.08 x 10 ⁻⁴ . MUNILIARY INFORMATION MUNILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: Source AND PURITY OF MATERIALS: The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase floated on top of the water and insured saturation of the (2) phase in 2 to 4 days. Analyses were carried out by GSC using a Hewlett-Packard model 5751 gas chromatograph with dual-flame ionization detectors. Many details are given in the paper. (2) distilled. ESTIMATED ERROR: LEMPLE ERROR: MEFERENCES:	EXPERIMENTAL VALUES:	₽ ≈≈≈≈
AUXILIARY INFORMATION METHOD/APPARATUS/FROCEDURE: The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase in 2 to 4 days. Analyses were carried ou by GSC using a Hewlett-Packard model 5751 gas chromatograph with dual-flame ionization detectors. Many de- tails are given in the paper. SOURCE AND PURITY OF MATERIALS; (1) Phillips Petroleum Company; Chemical Samples Company or Aldrich Chemical Company; 99+%. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. ± 15 mg(1)/kg(2) REFERENCES:	The solubility of toluene in water at was reported to be 554.0 mg(l)/kg(2) and mole fraction, x_1 , calculated by 100 g sln and 1.08 x 10^{-4} .	t 25°C and at system pressure . The corresponding mass percent the compiler are 0.0554 g(1)/
AUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase floated on top of the water and insured saturation of the (2) phase in 2 to 4 days. Analyses were carried out by GSC using a Hewlett-Packard model 5751 gas chromatograph with dual-flame ionization detectors. Many de- tails are given in the paper.(1) Phillips Petroleum Company; Chemical Samples Company or Aldrich Chemical Company; 99+%.(2) distilled.(2) distilled.ESTIMATED ERROR: temp. ± 1 K soly. ± 15 mg(1)/kg(2)REFERENCES:		
<pre>METHOD/APPARATUS/PROCEDURE: The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase floated on top of the water and insured saturation of the (2) phase in 2 to 4 days. Analyses were carried out by GSC using a Hewlett-Packard model 5751 gas chromatograph with dual-flame ionization detectors. Many de- tails are given in the paper. SOURCE AND PURITY OF MATERIALS: (1) Phillips Petroleum Company; Chemical Samples Company or Aldrich Chemical Company; 99+%. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. ± 15 mg(1)/kg(2) REFERENCES:</pre>	AUXILIARY	INFORMATION
<pre>The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase floated on top of the water and insured saturation of the (2) phase in 2 to 4 days. Analyses were carried out by GSC using a Hewlett-Packard model 5751 gas chromatograph with dual-flame ionization detectors. Many de- tails are given in the paper.</pre> (1) Phillips Petroleum Company; Aldrich Chemical Company; 99+%. (2) distilled. (2) distilled. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. ± 15 mg(1)/kg(2) REFERENCES;	METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
tails are given in the paper. ESTIMATED ERROR: temp. ± 1 K soly. ± 15 mg(1)/kg(2) REFERENCES:	The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase floated on top of the water and insured saturation of the (2) phase in 2 to 4 days. Analyses were carried out by GSC using a Hewlett-Packard model 5751 gas chromatograph with dual-flame ionization detectors. Many de-	 Phillips Petroleum Company; Chemical Samples Company or Aldrich Chemical Company; 99+%. distilled.
REFERENCES :	tails are given in the paper.	ESTIMATED ERROR: temp. ± 1 K soly. ± 15 mg(1)/kg(2)
		REFERENCES :
		1

ORIGINAL MEASUREMENTS:

Price, L.C.

COMPONENTS:

•

(1) Toluene; C₇H₈; [108-88-3]

```
414
```

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₂ H ₂ ; [108-88-3]	Korenman, I.M.; Aref'eva, R.P.
(2) Water; H ₂ O; [7732-18-5]	Patent USSR, 553 524, 1977.04.05 C.A. 87:87654
VARIABLES:	PREPARED BY:
One temperature: 20°C	A. Maczynski
	-
EXPERIMENTAL VALUES:	
The solubility of toluene in water at 0.57 g(1)dm ⁻³ (2). The corresponding mass percent and moby the compiler are 0.057 g(1)/100 g The compiler's calculations assume a	20°C was reported to be all fraction, x_1 , calculated sln and 1.11 x 10 ⁻⁴ . solution density of 1.00 g/mL.
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
About 100-500 mL(2) was placed in	(1) not specified.
a glass cylinder and 10-50 mg of	(2) not specified.
and (1) was microburetted until the indicator floated to form a colored thin layer on the cylinder wall 2-3 cm above the liquid layer. After each drop of (1), the mixture was vigorously mixed for 0.5-1.5 min	
	ESTIMATED ERROR:
	not specified.
	REFERENCES:

	41:
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Korenman, I.M.; Aref'eva, R.P.
(2) Water; H ₂ O; [7732-18-5]	Zh. Prikl. Khim. <u>1978</u> , 51, 957-8.
_	
VARIABLES:	PREPARED BY:
Temperature: 25°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of toluene in water at 0.65 g(1)dm ⁻³ sln. The corresponding mass percent and mo by the compilers are 0.065 g(1)/100 g The compilers' calculations assume a	25°C was reported to be ole fraction, x_1 , calculated y sln and 1.27 x 10^{-4} . solution density of 1.00 g/mL.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
About 200-500 mL(2) was placed in a	(1) not specified.
ground-joint glass cylinder and 20-50 mg of an insoluble indicator (dithizon, phenolphthalein, etc.) was added, and (1) was microburetted until the indicator floated to form a colored thin layer on the cylinder wall above the liquid layer. Blanks were made to determine the excess of (1).	(2) not specified.
	ESTIMATED ERROR:
	soly. \pm 0.01 g(1)dm ⁻³ sln (standard deviation from 6 determinations).
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Krzyzanowska, T.; Szeliga, J.
(2) Water; H ₂ O; [7732-18-5]	Nafta (Katowice), <u>1978</u> , 12, 413-7.
2	
VARIABLES:	PREPARED BY:
2510	
One temperature: 25°C	M.C. Haulalt-Pirson
EXPERIMENTAL VALUES:	
The solubility of toluene in water at	25°C was reported
to be 554.0 mg(1)/kg(2).	
The corresponding mass percent and mo	ble fraction, x_1 , calculated
by compiler are 0.0554 g(l)/100 g slr	h and 1.08×10^{-4} .
Editor's Note: Based on the results	for this and other hydrocarbon-water
systems, uncertainity exists about where the systems about where the system is a set of the system o	nether the datum compiled here is
independent of that of Price for the	same system.
	INFORMATION
	CONDER AND DIDITY OF MATERIALS.
The saturated solutions of (1) in	(1) not specified
(2) were prepared in two ways.	(i) not specified.
into 20 mL of (1) was injected into 20 mL of (2) and thermostatted	(2) not specified.
at 25°C. Second, the mixture of (1) and (2) as above was thermostatted	
at 70°C and then cooled to 25°C. The	
was three weeks. The solubility of	
Perkin-Elmer model F-11 gas chromat-	
ograph equipped with a 100-150 mesh Porasil column (70°C) and a flame	ESTIMATED ERROR:
ionization detector was used. Sat- urated solutions of heptane in (2)	solv. 11.0 mg(1)/kg(2) (standard
were used as standard solutions.	deviation from 7-9 determinations).
	REFERENCES:

DRIGINAL MEASUREMENTS: Banerjee, S.; Yalkowsky, S.H.; Valvani, S.C. Environ. Sci. Technol. <u>1980</u> , 14, 1227-9.
PREPARED BY: G.T. Hefter
as reported to be 1.68 x 10 ⁻² mol/L 1.00 kg/L the corresponding mass per ties, calculated by the compiler, are respectively.
INFORMATION
SOURCE AND PURITY OF MATERIALS: (1) ¹⁴ C-labelled toluene: New England Nuclear, used without further purification. (2) Distilled. (2) Distilled. ESTIMATED ERROR: Temperature: ±0.2 K Solubility: ±2.3% rel. (representing one std. dev.) REFERENCES:

418

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₀ ; [108-88-3]	Schwarz, F.P.
(2) Water; H_0 ; [7732-18-5]	Anal. Chem. <u>1980</u> , 52, 10-15.
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	
VARIABLES:	PREPARED BY:
One temperature: 23.5°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	Lanen and a second a
Solubility of toluene :	in water at 23.5°C
g(l)/100 g sln	10 ⁴ x ₁ (compiler)
0.0670 ± 0.0015	1.31
0.0660 ± 0.0006	1.29
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS;
An elution chromatography method was	(1) 99.9% purity used without
phase and (2) the mobile phase. A	
an inert support (chromosorb P)	(2) distilled
coated with a known amount of the liquid solute (1). This solute	
column was connected to a water	
gas regulator). Water was forced	
through the column by the pressure	
As the total volume of water flowing	ESTIMATED ERROR:
solute depleted zone, different in	temp. ± 1.5°C
color from the stationary phase, developed and increased in length.	soly. 1.5% (average std. dev.)
The solubility is calculated from	REFERENCES :
the column, i.e. length of the	
of water passed through the column.	
Many details about preparation of	
are given in the paper.	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Rossi, S.S.; Thomas, W.H.
(2) Water; H ₂ O; [7732-18-5]	Env. Sci. Technol. <u>1981</u> , 15, 715-6.
VARIABLES:	PREPARED BY:
One temperature: 25°C (298 K)	G.T. Hefter
EXPERIMENTAL VALUES:	
The solubility of toluene in distille	d water at 25°C was reported to be
506.7 μ g/g, corresponding to a mole f.	raction, x_1 , of 5.5 x 10 ⁻⁶ . The
corresponding mass per cent calculate	d by the compiler is 0.0507 g(l)/
100 g sln.	
7	
	INFORMATION
AUXILIANI	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
500 mL of water and an excess of (1)	(1) Burdick & Jackson; purified by
were equilibrated for at least 24 H	triple distillation in glass.
constant temperature (±0.1°C) gyrotary	(2) Doubly distilled in all-glass
shaker (200 rpm). After a 12 h sta-	apparatus; free of trace organics
tionary equilibration period, 100 mL	
through a glass-wool plug into a	
calibrated separatory funnel.	
Toluene was extracted (>99%) by	
passing known volumes through 0.6 x	
porous bonded C10 stationary-phase	
adsorbent and eluted with trichloro-	ESTIMATED ERROR:
fluoromethane. Toluene levels in	Temperature: ±0.1°C
eluates were determined on a Hewlett-	501001117 ; $\pm 6.1 \mu g/g$ (std. dev. fo)
equipped with a flame ionisation	
detector, and an electronic integrator	REFERENCES :
using a $\frac{1}{8}$ in x 8 ft stainless-steel	
column of 10% TCEP on 10/120 Chrom-	
(0.25 mm x 30 m). Hvdrocarbon con-	
centrations in eluates were addi-	
tionally determined by UC spectro-	
photometry.	

-	
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3] (2) Water: H ₂ O; [7732-18-5]	Sanemasa, I.; Araki, M.; Deguchi, T.; Nagai, H.
	Chem. Lett. <u>1981</u> , 225-8.
VARIABLES:	PREPARED BY:
Temperature: 15-45°C	M.C. Haulait-Pirson and G.T. Hefter
EXPERIMENTAL VALUES:	
Solubility of to	oluene in water
t/°C g(l)/L	$\underline{g(1)/100 \ g \ sln^a} \qquad \underline{10^4 x_1^a}$
15 0.533 ± 0.017	0.0533 1.04
25 0.557 ± 0.007	0.0559 1.09
35 0.587 ± 0.015	0.0590 1.16
45 0.635 ± 0.019	0.0641 1.25
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;
The apparatus used for attaining solubility equilibrium is described in detail in the paper. Liquid (1) and redistilled (2) were placed in a vessel and a thermostatted funnel	 analytical reagent grade used as purchased. redistilled.
respectively. The solute vapor, gen- erated by bubbling air through the liquid solute was introduced into the funnel and circulated by means of a pump. The circulation rate was 2 L/ min. Solubility equilibria were attained within 5 min. Then portions of 10 mL of the aqueous sln were	ESTIMATED ERROR:
transferred into funnels to which 10 mL of chloroform had been added. Experimental procedures involved in spectrophotometric measuring the	soly. : given above
chloroform extracts were not reported. The solubility runs were made such that the temperature of solute reser- voir was made to vary while that of solvent phase was held constant. The solubility obeys Henry's law at con- stant solvent temperature. Solubil- ity values were calculated from	REFERENCES: 1. CRC Handbook of Chemistry and Physics, R.C. Weast, Editor, CRC Press, Florida, 63rd edn., 1982, pF-11.

				421
COMPONENTS:		ORIGIN	AL MEASUREMENTS:	<u> </u>
(1) Toluene; C ₇ H ₈ ; [108-88-3]		Saner	masa, I.; Arak:	i, M.;
(2) Water; H ₂ O; [7732-18-5]		Degu	chi, T.; Nagai	, Н.
-		Bull.	Chem. Soc. Jpn.	<u>1982</u> , <i>55</i> , 1054-62.
VARIABLES:		PREPAR	ED BY:	
Temperature: 15-45°C		G.T.	Hefter	
EXPERIMENTAL VALUES:				
The solub	ility of	tolu	ene in water	
$t/^{\circ}C = 10^{3} \text{ mol}(1)/\text{dm}^{3}$	sln	a (1)/100 g sln	$10^4 x$
		5.	(compiler) ^a	$(compiler)^{a}$
15 5.58 ± 0.1	1		0.0514	1.01
25 5.71 ± 0.1	4		0.0526	1 03
35 5.88 ± 0.1	.6		0.0545	1.07
45 6.28 ± 0.1	0		0.0584	1.14
· · · · · · · · · · · · · · · · · · ·	AUXILIARY	INFORM	ATION	
METHOD/APPARATUS/PROCEDURE:		SOURCE	AND PURITY OF MA	ATERIALS:
The apparatus is similar to an	1	(1)	Analytical re	agent grade (Wako
earlier design (ref 2) and is	er.		Pure Chemical purity 99.0%,	Ind. Ltd.), stated used without
100-200 cm ³ of (2) and 10-20 c	m ³ of		further purif	ication.
but connected thermostatted fl	asks.	(2)	Redistilled;	no further details
After thermal equilibrium was lished a recirculating stream	estab- of air		given.	
was used to vaporize liquid (1) and			
containing (2). Five 10 cm^3 a	liquots			
were withdrawn into separatory funnels. The concentration of	7 E (1) in	ESTIM	ATED ERROR:	· _ · · · · · · · · · · · · · · · · · ·
(2) was then determined by ext	raction	solv	. see table. t	vne of error not
spectrophotometry. Standards	for the	spec	ified.	ype of circl not
spectrophotometry were prepare weight from pure liquid solute	se.	REFER	ENCES:	
			Kell C C	
			J. Chem. Eng. Dat	ta <u>1975</u> , 20, 97.
		2.	Sanemasa, I.; Deguchi, Y.; N <i>Chem. Lett</i> . <u>19</u>	Araki, M.; agai, H. <u>81</u> , 225-8.
		L		

COMPONENTS .	OPICINAL MEASUDEMENTS.
CORFORENTS :	ORIGINAL MEASUREMENIS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Sanemasa, I.; Arakawa, S.;
(2) Water; H ₂ O; [7732-18-5]	Araki, M.; Deguchi, T.
	Bull. Chem. Soc. Jpn. <u>1984</u> , 57,
	1539-44.
VARIABLES :	PREPARED BY:
One Temperature: 25°C	G.T. Hefter
-	
EXPERIMENTAL VALUES:	
The solubility of toluene in water at	25°C was reported to be 5.65 x 10^{-3}
$mol(1)/dm^3$ sln. Assuming a solution d	ensity of 1.00 kg/dm ³ this corresponds
to a solubility of $0.0521 \text{ g}(1)/100 \text{ g s}$	\sin, x , = 1.02 x 10 ⁻⁴ , calculated by
the compiler.	
-	
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The apparatus used is described in detail in ref 1. The method involves the introduction of solute vapor(1)	(1) Analytical reagent grade source and purity not stated, used without further purification.
into liquid (2) by bubbling air	(2) Deterined and modification
ing pump in a closed system. After	(2) Defonized and redistified; no further details given.
solubility equilibrium was attained	
solution was withdrawn and analysed	
by solvent extraction - UV spectro-	
photometry.	ESTIMATED EREOR.
	Not specified.
	REFERENCES :
	1. Sanemasa, I., Araki, M.;
	Bull. Chem. Soc. Jpn. 1982, 55,
	1054-62.

Components :			ORIGINAL MEASUREMENTS:	
(1) Toluene; C ₇ H ₈ ; [108-88-3]		8-88-3]	Guseva, A.N.; Parnov, E.I.	
(2) Deuterium D ₂ 0; [77	m oxide, (H 89-20-0]	leavy water);	Radiokhimiya <u>1963</u> , 5, 507-9.	
VARIABLES:			PREPARED BY:	
Temperature:	87-203°C		A. Maczynski	
EXPERIMENTAL VAI	UES:		<u></u>	
	Solub:	ility of toluer	ne in Deuterium oxide	
	t∕°C	$10^{3} x_{1}$	g(1)/100 g sln (compiler)	
	07	<u>⊥</u>	0.212	
	123	1.81	0.828	
	203	4.22 7.51	3.37	
		AUXILIARY	INFORMATION	
	C /DDACEDURE :	134 fre 2 atten-	CONDER AND DIDITY OF MATERIALS.	
METHOD/AFFARAID	S/FRUCEDURG.		SURVE AND FURITI OF PRIERIALS;	
The solubili determined is	ty of (l) i n sealed gl	in (2) was lass tubes.	(1) not specified.	
Details were	reported i	ln ref 1.	(2) distilled.	
			ESTIMATED ERROR:	
			Not specified.	
			REFERENCES:	
			1. Khazanova, P.E. Tr. Gos. in azotn. promyshl. <u>1954</u> , 4, 5	st.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Glasoe, P.K.; Schultz, S.D.
(2) Deuterium oxide, (heavy water); D ₂ O; [7789-20-0]	J. Chem. Eng. Data, <u>1972</u> , 17, 66-8.
VARIABLES:	PREPARED BY:
Temperature: 15-30°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
Solubility of deuter	ium oxide in toluene
$t/^{\circ}C$ mol(2) dm ⁻³ sln	$g(2)/100 g sln 10^3 x_2$ (compiler) (compiler)
15 0.0162 25 0.0213 30 0.0240	0.0372 1.71 0.0504 2.31 0.0560 2.57
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND FURITY OF MATERIALS:
Dried (1) was saturated with (2) by allowing it to stand in contact with (2) in a closed system, protected from atmospheric moisture. This two-phase system was kept in a pyrex storage bottle which was immersed in a constant temperature water bath.	 source not specified; reagent grade; purified by distillation and dried over molecular sieve, distilled in a pyrex system.
The concentration of (2) in (1) was determined by the Karl Fischer method.	ESTIMATED ERROR: soly ± 0.0004 mol(2) dm ⁻³ sln (type of error not specified)
	REFERENCES :

COMPONENTS:

(2) Seawater

EVALUATOR:

(1) Toluene; C₇H₈; [108-88-3]

D.G. Shaw Institute of Marine Science University of Alaska Fairbanks, Alaska USA

December 1982

CRITICAL EVALUATION:

The solubility of toluene (1) in seawater (2) at 298 K has been reported as follows:

Authors	Method	Salinity <u>g_salts/kg_sln</u>	10^2 g(1)/100 g sln
Mackay and Shiu (ref 2)	GLC	35.0	3.79
Sada et al. (ref 3)	Cloud Point	28.72	3.48
Sutton and Calder (ref 4)	GLC	34.5	3.793
Price (ref 5)	GLC	34.47	4.02
Rossi and Thomas (ref 6)	GLC	35	4.2

At 298 K and a salinity of 35 g salts/kg sln, the values of Mackay and Shiu, Sutton and Calder, and Price are in very good agreement. Each group of workers has also determined the solubility of toluene in pure water and obtained results within experimental error of the value recommended in this volume. Therefore, the mean of the reported values, $3.87 \times 10^{-2} \text{ g(1)}/$ 100 g sln, is accepted as the recommended value at the indicated temperature and salinity. Mackay and Shiu measured solubility over a range of salinities and reported their data in terms of the Setschenow equation. Their values may be used to interpolate solubilities at other salinities up to 200 g salts/kg sln.

Brown *et al.* (ref 1) determined the solubility of toluene in seawater at a salinity of 34.42 g salts/kg sln over the temperature range 273 to 293 K. Linear extrapolation by the evaluator of these results to 298 K gives a value of 3.80×10^{-2} g(1)/100 g sln. This suggests that the results of Brown *et al.* may be consistent with the recommended value. The values reported by Sada *et al.* and by Rossi and Thomas are in poorer agreement with the remaining data.

SOLUBILITY OF TOLUENE (1) IN SEAWATER (2) RECOMMENDED VALUE

<u>T/K</u>	g_salts/kg_sln	<u>g(l)/100 g sln</u>
298	35	3.87×10^{-2}

REFERENCES

Brown, R.L.; Wasik, S.P. J. Res. Natl. Bur. Stds. A <u>1974</u>, 78, 453-60.
 Mackay, D.; Shiu, W.Y. Can. J. Chem. Eng. 1975, 53, 239-42.

3. Sada, E.; Kito, S.; Ito, Y. J. Chem. Eng. Data <u>1975</u>, 20, 373-5.

- 4. Sutton, C.; Calder, J.A. J. Chem. Eng. Data 1975, 20, 320-2.
- 5. Price, L.C. Am. Assoc. Petrol. Geol. Bull. 1976, 60, 213-44.
- 6. Rossi, S.S.; Thomas. W.H. Environ. Sci. Technol. 1981, 15, 715-6.

Components :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Brown, R.L.; Wasik, S.P.
(2) Artificial seawater	J. Res. Natl. Bur. Stds. A. <u>1974</u> , 78. 453-60.
VARIABLES:	PREPARED BY.
Temperature: 0-20°C	G.T. Hefter and D.G. Shaw
Salinity: 34.42 g salts/kg sln	
EXPERIMENTAL VALUES:	
Solubility of toluene i	in artificial seawater
$t/^{\circ}C$ g(1)/100 g sln ^a	10 ⁵ x ₁ (compiler)
0.19 0.0449 (0.0006)	9.0
5.32 0.0429 (0.0007)	8.60
10.05 0.0416 (0.0008)	8.34
14.96 0.0405 (0.0008)	8.12
20.04 0.0397 (0.0008)	7.96
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Solubilities were calculated from partition coefficient measurements for the hydrocarbon between an aqueous solution and its vapor using	(1) 99.99 mole per cent purity; source and methods of purifi- cation not specified.
headspace chromatography.	(2) Prepared according to ref. 1. Purity not specified.
The apparatus and the method of ob- taining the partition coefficients are described in detail in the paper. The hydrocarbon was introduced as a vapor (to avoid emulsification) into a glass equilibration cell contain-	
ing about 45 cm ³ of water. The vapor was subsequently analysed by gas	ESTIMATED ERROR:
chromatography using He as the car-	Temperature: ±0.01 K
rier. Possible sources of error are discussed in detail although the	Solubility: see Table above
source of vapor pressure data used	REFERENCES :
to calculate solubilities are not given.	1. Sverdrup, H.U.; Johnson, M.W.; Fleming, R.H.; The Oceans, <u>1942</u> , Prentice-Hall, Englewood Cliffs, New Jersey p186.

	427	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Mackay, D.; Shiu, W.Y.	
(2) Sodium chloride; NaCl; [7647-14-5]	Can. J. Chem. Eng. <u>1975</u> , 53, 239-42.	
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
One temperature: 25°C Salinity: 0-200 g(2)/kg sln	M. Kleinschmidt and D. Shaw	
EXPERIMENTAL VALUES:		
The solubility of toluene in solution terms of the Setschenow equation: $\log(S_O/S) =$	s of sodium chloride is reported in K _s C _s	
where, S _o is the solubility of toluene in water (mg/L) S is the solubility of toluene in solution (mg/L) K _s is the Setschenow constant (L/mol) C _s is the concentration of sodium chloride (mol/L)		
evaluating the equation for S over th $K_{g} = 0.2052 \pm 0.0056$ (standard error)	e range of C_2 0-4 mol/L, with $S_0 = 519.5 \pm 9.6$.	
The corresponding mass percent and mole fraction, x_1 , at salinity = 35 g(2)/kg sln calculated by the compilers are 3.79 x 10^{-2} g(10)/100 g sln and 7.743 x 10^{-5} assuming a density of 1.025 kg/L.		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: Solubility was determined by vapor phase extraction and gas chromato- graphic analysis. This method does not require the preparation of saturated solutions and thus avoids one of the major sources of error of other methods.	<pre>SOURCE AND PURITY OF MATERIALS: (1) research grade, 99.9+%, from Phillips Petroleum Co. (2) and (3) not specified. (2) and (3) not specified. ESTIMATED ERROR: Temp. ±0.1 K Soly. 95% confidence limit is about 8% REFERENCES:</pre>	

. - -

COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Sada, E.; Kito, S.; Ito, Y.	
<pre>(2) Sodium chloride; NaCl; [7647-14-5]</pre>	J. Chem. Eng. Data <u>1975</u> , 20 373-5.	
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
One temperature: 25°C	M. Kleinschmidt and D. Shaw	
Salinity: 29 - 108 g(3)/kg sln		
EXPERIMENTAL VALUES:		
Solubility of toluene in aq	ueous sodium chloride solutions	
$\frac{\text{mol}(2)/L}{$	$1)/10^{3}$ L sln Mass%(1) ^a $10^{5}x_{1}^{a}$	
0.5011 28.72	0.410 0.0348 6.95	
0.9991 56.14	0.298 0.0248 5.06	
1.4933 82.66	0.223 0.0182 3.76	
	0.109 0.0136 2.87	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Experimental apparatus and procedure used similar to those in ref 2.	<pre>(1),(2): reagent grade, source</pre>	
Toluene stained with 0.1% by weight Sudan IV was added dropwise from a microburet into aqueous salt solution retained in a 1-L dissolu- tion flask which was kept at 25.00° ± 0.01°C in a thermostatically controlled water bath. The aqueous salt solution was violently stirred by a magnetic stirring device. Before saturation was reached, the Sudan IV was precipitated and floated on the surface as a solid. At satur- ation, the excess toluene appeared as immiscible red liquid droplets suspended in the aqueous solution. To ensure complete saturation, 24 hr was allowed for equilibration.	<pre>(3): not specified. (3): not specified. ESTIMATED ERROR: Soly 0.008 x 10⁻³ L (1)/L sln. REFERENCES: 1. Weast, R.C. CRC Handbook of Chemistry and Physics, 59th Ed. 1978, CRC Press, pp D299 - D300.</pre>	
	2. Sobotka, H.; Kahn, J. J. Am. Chem. Soc. <u>1948</u> , 53, 2935.	

	429
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Sutton, C.; Calder, J.A.
(2) Artificial seawater (ref 1)	J. Chem. Eng. Data <u>1975</u> , 20, 320-2.
VARIABLES:	PREPARED BY:
One temperature: 25.0°C	
One salinity: 34.5 g salts/kg sin	M. Kleinschmidt
EXPERIMENTAL VALUES:	
The solubility of toluene in artific	ial seawater is reported to be
379.3 mg(l)/kg sln. The correspondi	ng mass percent and mole fraction,
x_1 calculated by the compiler are 0.	$03793 g(1)/100 g sln and 7.61 x 10^{-5}$
assuming the artificial seawater com	position of ref 1.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A test tube containing (1) was	(1) from either Aldrich Chemical
thus allowing for equilibration	Bell, 99+% pure.
saturated solution was extracted	(2) made from doubly distilled
with hexane and analyzed by gas chromatography.	water and salts 99+% pure.
· · ·	ESTIMATED ERROR:
1	temp. ± 0.1 K
	soly. 2.8 (std. dev.)
	REFERENCES :
	L. Lyman, J.; Fleming, R.H.; J. Mar. Res. <u>1940</u> , 3, 135.

Į

430

COMPONENTS	OPICINAL MEASUPENENTS .	
COMPONENTS:	ORIGINAL MERSUREMENTS:	
(1) $m_{\rm ellipse}$ (10) $m_{$		
(1) Toluene; $C_{7}H_8$; [108-88-3]	Price, L.C.	
(2) Sodium chloride; NaCl;	Am. Assoc. Petrol. Geol. Bull.	
	<u>1976</u> , <i>60</i> , 213-44.	
(3) Water; H_2O ; [7732-18-5]		
VARTABLES .	DEEDADED BY.	
	I ALIARED DI.	
	M. Kleinschmidt and D. Shaw	
Salinity: 1-360 g(2)/kg sin		
EXPERIMENTAL VALUES:		
Solubility of Toluene in Aqueous NaCl		
Salinity Mass Dorg	Note fraction 10 ⁵	
$\frac{g(2)}{kg} \frac{g(1)}{100 g}$	sin (compilers)	
1.002 0.0526	10.3	
10.000 0.0490	9.65	
	8.04	
125.100 0.0182	3.85	
199.900 0.0106	2.34	
279.800 0.00538	1.24	
358.700 0.00372	0.890	
a		
"Artificial seawater, composition	not specified but probably	
similar to ref 1.		
	,	
	······	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Details given in source. (1) was	(1) commercial, $99 + 3$ pure	
equilibrated with NaCl solution for		
one month. An aliquot was analyzed	(1) Commercial, op a o part	
directly by gas chromatography.		
(
	ESTIMATED ERROR:	
	ESTIMATED ERROR:	
	ESTIMATED ERROR: Temperature ± 1 K	
	ESTIMATED ERROR: Temperature ± 1 K Solubility ± 10 relative %	
	ESTIMATED ERROR: Temperature ± 1 K Solubility ± 10 relative % REFERENCES:	
	ESTIMATED ERROR: Temperature ± 1 K Solubility ± 10 relative % REFERENCES:	
	ESTIMATED ERROR: Temperature ± 1 K Solubility ± 10 relative % REFERENCES: 1. Lyman, J.; Fleming, R.H.; J. Mar. Page 1940 3 135	
	ESTIMATED ERROR: Temperature ± 1 K Solubility ± 10 relative % REFERENCES: 1. Lyman, J.; Fleming, R.H.; J. Mar. Res. <u>1940</u> , 3, 135.	
	ESTIMATED ERROR: Temperature ± 1 K Solubility ± 10 relative % REFERENCES: 1. Lyman, J.; Fleming, R.H.; J. Mar. Res. <u>1940</u> , 3, 135.	
	ESTIMATED ERROR: Temperature ± 1 K Solubility ± 10 relative % REFERENCES: 1. Lyman, J.; Fleming, R.H.; J. Mar. Res. <u>1940</u> , 3, 135.	

	431	
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Rossi, S.S.; Thomas, W.H.	
(2) Seawater; natural; H ₂ O	Environ. Sci. Technol. <u>1981</u> , 15, 715-6.	
VARIABLES:	PREPARED BY:	
Temperature: $15 - 25^{\circ}C$	W.Y. Shiu, D. Mackay	
Salinity: 35 g/kg sin		
EXPERIMENTAL VALUES:		
Solubility of tolue	ne in seawater	
$\frac{Mass}{t/°C} \qquad \mu g(1)/g sln g(1)/1$	percent Mole fraction 00 g sln 10 ⁵ x ₁	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	041 8.2 041 8.2	
25 418.5 0.	042 8.4	
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Saturated solution was prepared by equilibrating seawater with an excess of hydrocarbon for 24 hrs.	toluene: from Burdick and Jackson, triple distilled in glass.	
in a constant temperature gyrotary shaker followed by 12 hrs. station-	n-hexane: doubly distilled in glass.	
ary period. A 100 mL-aliquot was	seawater: collected off Scripps pier and was filtered twice	
The concentrated hexane extract was	through 0.22 µm membrane and	
equipped with a flame ionization	then its salinity adjusted to	
carbon concentration.	ESTIMATED ERROR:	
· · · · · · · · · · · · · · · · · · ·	temp. ± 0.1 K	
	soly. ± 2%	
	REFERENCES :	