OMPONENTS :		ORIGINAL MEASUREMENTS:	
(1) 3,3-Dimethylpentane; C ₇ H ₁₆ ;		Price, L.C.	
[562-49-2] / 10		Am. Assoc. Petrol. Geol. Bull.	
(2) Water; H ₂ O; [7732-18-5]		<u>1976</u> , 60, 213-44.	
ARIABLES:		PREPARED BY:	
Temperature: 25-150.4°C		F. Kapuku	
XPERIMENTAL VALUES	:	I	
Solubility	of 3,3-dimethylpentane	in water at system p	oressure
t/°C	mg(l)/kg(2)	g(l)/l00 g sln (compiler)	$10^{6}x_{1}$ (compiler)
25.0	5.92 ± 0.06	0.000592	1.06
40.1	6.78 ± 0.20	0.000678	1.22
55.7	8.17 ± 0.46	0.000817	1.47
69.7	10.3 ± 0.7	0.00103	1.85
99.1	15.8 ± 0.7	0.00158	2.84
118.0	27.3 ± 0.4	0.00273	4.91
140.4	67.3 ± 1.7	0.00673	12.10
150.4	86.1 ± 1.8	0.00861	15.48
	AUXILIARY		
ETHOD/APPARATUS/PR		INFORMATION	
Room-temperature solubilities were determined by use of screw-cap test tubes. The (1) phase floated on top of (2) and insured saturation (in 2 to 4 days) of the aqueous phase. High-temperature solubility work was		SOURCE AND PURITY OF MATH	ERIALS :
Room-temperatur determined by u tubes. The (1) of (2) and insu to 4 days) of t High-temperatur carried out in	CCEDURE: ce solubilities were use of screw-cap test phase floated on top ured saturation (in 2 the aqueous phase. ce solubility work was the ovens of the gas	SOURCE AND FURITY OF MATH (1) Phillips Petrole 99+%. (2) distilled.	ERIALS; eum Company;
Room-temperatur determined by u tubes. The (1) of (2) and insu to 4 days) of t High-temperatur carried out in chromatograph. contained in 75 stainless steel	CCEDURE: ce solubilities were use of screw-cap test phase floated on top ured saturation (in 2 the aqueous phase. ce solubility work was the ovens of the gas The solutions were mL double ended sample cylinders	Source AND PURITY OF MATH (1) Phillips Petrole 99+%. (2) distilled.	ERIALS: eum Company;
Room-temperatur determined by u tubes. The (1) of (2) and insu to 4 days) of t High-temperatur carried out in chromatograph. contained in 75 stainless steel Modified Micro	CCEDURE: The solubilities were use of screw-cap test phase floated on top ured saturation (in 2 the aqueous phase. The solubility work was the ovens of the gas The solutions were the double ended sample cylinders. Linear Valves sealed	SOURCE AND PURITY OF MATH (1) Phillips Petrole 99+%. (2) distilled.	ERIALS; eum Company;
Room-temperatur determined by u tubes. The (1) of (2) and insu to 4 days) of t High-temperatur carried out in chromatograph. contained in 75 stainless steel Modified Micro the bottom of t lowed syringe a during sampling	CCEDURE: The solubilities were use of screw-cap test phase floated on top ured saturation (in 2 the aqueous phase. The solubility work was the ovens of the gas The solutions were the solutions were the solutions were the solutions were the solutions were the cylinder and al- uccess to the solution the sample is then	<pre>INFORMATION SOURCE AND FURITY OF MATH (1) Phillips Petrole 99+%. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. range of value</pre>	ERIALS: eum Company; es given above
Room-temperatur determined by u tubes. The (1) of (2) and insu to 4 days) of t High-temperatur carried out in chromatograph. contained in 75 stainless steel Modified Micro the bottom of t lowed syringe a during sampling transferred to equipped with c	CCEDURE: The solubilities were the of screw-cap test phase floated on top ired saturation (in 2 the aqueous phase. The solubility work was the ovens of the gas The solutions were the solutions were the cylinders. Linear Valves sealed the cylinder and al- iccess to the solution f. The sample is then the gas chromatograph lual flame ionization by details are given	SOURCE AND PURITY OF MATH (1) Phillips Petrole 99+%. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. range of value REFERENCES:	ERIALS: eum Company; es given above
Room-temperatur determined by u tubes. The (1) of (2) and insu to 4 days) of t High-temperatur carried out in chromatograph. contained in 75 stainless steel Modified Micro the bottom of t lowed syringe a during sampling transferred to equipped with d detectors. Mar in the paper.	CCEDURE: The solubilities were take of screw-cap test phase floated on top ured saturation (in 2 the aqueous phase. The solubility work was the ovens of the gas The solutions were the double ended the cylinder and al- the cylinder and al- the sample is then the gas chromatograph lual flame ionization by details are given	SOURCE AND PURITY OF MATH (1) Phillips Petrole 99+%. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. range of value REFERENCES:	ERIALS; eum Company; es given above
Room-temperatur determined by u tubes. The (1) of (2) and insu to 4 days) of t High-temperatur carried out in chromatograph. contained in 75 stainless steel Modified Micro the bottom of t lowed syringe a during sampling transferred to equipped with 6 detectors. Man in the paper.	CCEDURE: The solubilities were ase of screw-cap test phase floated on top med saturation (in 2 the aqueous phase. The solubility work was the ovens of the gas The solutions were the solution allows the solution solutions the solution solution the solution solution the solution solution solution solution the solution so	SOURCE AND FURITY OF MATH (1) Phillips Petrole 99+%. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. range of value REFERENCES:	ERIALS: eum Company; es given above
Room-temperatur determined by u tubes. The (1) of (2) and insu to 4 days) of t High-temperatur carried out in chromatograph. contained in 75 stainless steel Modified Micro the bottom of t lowed syringe a during sampling transferred to equipped with d detectors. Man in the paper.	CCEDURE: The solubilities were ase of screw-cap test phase floated on top med saturation (in 2 the aqueous phase. The solubility work was the ovens of the gas The solutions were is mL double ended the cylinder and al- magnetic state an	SOURCE AND PURITY OF MATH (1) Phillips Petrole 99+%. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. range of value REFERENCES:	ERIALS; eum Company; es given above

	ORIGINAL MEASUREMENTS:				
(1) 3,3-Dimethyipentane; C7 ^H 16; [562-49-2]	Krzyzanowska, T.; Szeliga, J.				
(2) Water; H ₂ O; [7732-18-5]	Nafta (Katowice) <u>1978</u> , 12, 413-7.				
	-				
VARIABLES:	PREPARED BY:				
One temperature: 25°C	M.C. Haulait-Pirson				
-					
EXPERIMENTAL VALUES:					
The solubility of 3,3-dimethylpentane in water at 25°C was reported					
to be 5.94 mg(l)/kg(2).					
The corresponding mass percent and mole fraction, x_1 , calculated					
by compiler are 5.94 x 10^{-4} g(l)/100 g sln and 1.07 x 10^{-6} .					
Editor's Note: Based on the results	for this and other hydrocarbon-water				
systems, uncertainity exists about w	nether the datum compiled here is				
independent of that of Price for the	same system (see previous page).				
Consequently, this system has not be	Consequently, this system has not been evaluated.				
AUXILIARY	INFORMATION				
AUXILIARY METHOD/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS:				
AUXILIARY METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2)	INFORMATION SOURCE AND FURITY OF MATERIALS: (1) not specified.				
AUXILIARY METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2) were prepared in two ways. First,	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified.				
AUXILIARY METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified.				
AUXILIARY METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1)	INFORMATION SOURCE AND FURITY OF MATERIALS: (1) not specified. (2) not specified.				
AUXILIARY METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C.	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified.				
AUXILIARY METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain	INFORMATION SOURCE AND FURITY OF MATERIALS: (1) not specified. (2) not specified.				
AUXILIARY METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea-	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified.				
AUXILIARY METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified.				
AUXILIARY METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified. ESTIMATED ERROR:				
AUXILIARY METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified. ESTIMATED ERROR: soly. 0.18 mg(1)/kg(2) (standard deviation from 7-9 determinations)				
AUXILIARY METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used	INFORMATION SOURCE AND FURITY OF MATERIALS: (1) not specified. (2) not specified. ESTIMATED ERROR: soly. 0.18 mg(1)/kg(2) (standard deviation from 7-9 determinations)				
AUXILIARY METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified. ESTIMATED ERROR: soly. 0.18 mg(1)/kg(2) (standard deviation from 7-9 determinations) REFERENCES:				
AUXILIARY METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified. ESTIMATED ERROR: soly. 0.18 mg(1)/kg(2) (standard deviation from 7-9 determinations) REFERENCES:				
AUXILIARY METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified. ESTIMATED ERROR: soly. 0.18 mg(1)/kg(2) (standard deviation from 7-9 determinations) REFERENCES:				
AUXILIARY METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified. ESTIMATED ERROR: soly. 0.18 mg(1)/kg(2) (standard deviation from 7-9 determinations) REFERENCES:				
AUXILIARY METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified. ESTIMATED ERROR: soly. 0.18 mg(1)/kg(2) (standard deviation from 7-9 determinations) REFERENCES:				