		ORIGINAL MEASUREMENTS:	
 1-Methylphenanthrene; C₁₅H₁₂; 		May, W.E.; Wasik, S.P.; Freeman, D.H.	
[832-69-6] [9 12 (2) Water; H ₂ O; [7732-18-5]		Anal. Chem. <u>1978</u> , 50, 997-1000.	175-9 and
	-		
VARIABLES:		PREPARED BY:	
Temperature: 6.6-29.9°C		A. Maczynski	
EXPERIMENTAL VAI	LUES:	I	
	Solubility of 1-methy:	lphenanthrene in water	
t/°C	μg(l)/kg(2)	10 ⁵ g(1)/100 g sln (compiler)	10 ⁸ x1 (compiler)
6.6	95.2 ± 0.2	0.952	0.892
8.9	114.0 ± 4.0	1.14	1.07
14.0	147.0 ± 1.0	1.47	1.38
19.2	193.0 ± 1.0	1.93	1.81
24.1	255.0 ± 5.0	2.55	2.39
25.0	269.0 ± 3.0	2.69	2.69
26.9	304.0 ± 1.0	3.04	2.85
29.9	355.0 ± 2.0	3.55	3.32
	AUXILIARY	INFORMATION	
METHOD/APPARATU:		INFORMATION SOURCE AND PURITY OF MATERI	ALS :
The dynamic chromatograp based on gen tions by pum column packe have been co (1) (generat centration o of the gener sured by a m	S/PROCEDURE: coupled column liquid hy (DCCLC) method was erating saturated solu- ping water through a d with glass beads that ated with the component or column). The con- f (1) in the effluent ator column was mea- modification of the		t; less 5. nO ₄ and NaOH n a column (Rohm and
The dynamic chromatograp based on gen tions by pum column packe have been co (1) (generat centration o of the gener sured by a m coupled colu graphic proc	S/PROCEDURE: coupled column liquid bhy (DCCLC) method was erating saturated solu- ping water through a d with glass beads that ated with the component or column). The con- f (1) in the effluent ator column was mea- codification of the mn liquid chromato- less that has been de-	 SOURCE AND PURITY OF MATERI (1) commercial product than 3% impurities (2) distilled over KMm and passed through packed with XAD-2 Hass, Philadelphia 	t; less 5. nO ₄ and NaOH n a column (Rohm and
The dynamic chromatograp based on gen tions by pum column packe have been co (1) (generat centration o of the gener sured by a m coupled colu	S/PROCEDURE: coupled column liquid bhy (DCCLC) method was erating saturated solu- ping water through a d with glass beads that ated with the component or column). The con- f (1) in the effluent ator column was mea- codification of the mn liquid chromato- less that has been de-	<pre>SOURCE AND PURITY OF MATERI (1) commercial product than 3% impurities (2) distilled over KMm and passed through packed with XAD-2 Hass, Philadelphia ESTIMATED ERROR:</pre>	t; less 5. nO ₄ and NaOH n a column (Rohm and
The dynamic chromatograp based on gen tions by pum column packe have been co (1) (generat centration o of the gener sured by a m coupled colu graphic proc	S/PROCEDURE: coupled column liquid bhy (DCCLC) method was erating saturated solu- ping water through a d with glass beads that ated with the component or column). The con- f (1) in the effluent ator column was mea- codification of the mn liquid chromato- less that has been de-	 SOURCE AND PURITY OF MATERI (1) commercial product than 3% impurities (2) distilled over KMm and passed through packed with XAD-2 Hass, Philadelphia 	t; less s. hO ₄ and NaOH h a column (Rohm and a, Pa).

COMPONENTS:	ORIGINAL MEASUREMENTS:			
<pre>(1) 1-Methylphenanthrene; C₁₅H₁₂; [832-69-9]</pre>	May, W.E.; Wasik, S.P.; Freeman, D.H.			
<pre>(2) Sodium Chloride; NaCl; [7647-14-5]</pre>	Anal. Chem. <u>1978</u> , 50, 997-1000.			
(3) Water; H ₂ O; [7732-18-5]				
VARIABLES:	PREPARED BY:			
One temperature: 25°C				
Salinity: 0-40 g(2)/kg sln	W.Y. Shiu and D. Mackay			
EXPERIMENTAL VALUES:				
The solubility of 1-methylphenanthrene in aqueous sodium chloride is				
reported in terms of the Setschenow equation:				
$log(S_0/S) = K_SC_S$				
where;				
S is the solubility of (1) in water (mg/L)				
S is the solubility of (1) in saline solution (mg/L)				
K_{c} is the Setschenow constant (L/mol)				
5				
C _s in the concentration of sodium chloride (mol/L)				
evaluating the equation for S over the range of $C_{s}^{0-0.7 \text{ mol/L}}$,				
$K_{s} = 0.211$ with $S_{o} = 0.269$.				
The corresponding mass percent and mole fraction x_1 , at salinity = 35 g(2)/kg sln calculated by the compilers are 1.95 x 10 ⁻⁵ g(1)/100 g sln				
				and 1.87×10^{-8} .
AUXILIARY INFORMATION				
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
A saturated solution of (1) was prepared by pumping salt water	(1) greater than 97% pure.			
through a "generation column" which was packed with glass beads coated	(2) reagent grade.			
with 1% by weight of (1). The	(3) distilled from potassium			
saturated solution was extracted with an "extractor column" packed	permanganate-sodium hydroxide and passed through an XAD-2			
with a superficially porous bonded C_{18} stationary phase, then a water-	column.			
acetonitrile solvent was passed through for extraction. The				
extract was introduced into a liquid chromatograph and the concen-	ESTIMATED ERROR:			
tration of (1) was measured with a UV detector.	$temp \pm 0.05$ °C			
	$ K \pm 0.018 S^{S} \pm 0.003 $			
	REFERENCES:			