COMPONENTS:

- (1) Benzo[ghi]perylene; C₂₂H₁₂; [191-24-2]
- (2) Water; H₂O; [7732-18-5]

ORIGINAL MEASUREMENTS:

Mackay, D.; Shiu, W.Y.

J. Chem. Eng. Data 1977, 22, 399-402.

VARIABLES:

One temperature: 25°C

PREPARED BY:

M.C. Haulait-Pirson

EXPERIMENTAL VALUES:

The solubility of benzo[ghi]perylene in water at 25 °C was reported to be 0.00026 mg(1) dm⁻³ sln and $x_1 = 1.73 \times 10^{-11}$.

The corresponding mass percent calculated by the compiler is 2.6×10^{-8} g(1)/100 g sln.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

A saturated solution of (1) in (2) was vigorously stirred in a 250 mL flask for 24 hrs. and subsequently settled at 25°C for at least 48 hrs. Then the saturated solution was decanted and filtered and 50-100 mL extracted with approximately 5 mL of cyclohexane in a separatory funnel. After shaking for 2 hrs. the cyclohexane extract was removed for analysis. An Aminco-Browman spectrophotofluorometer (American Instruments Ltd.) was used for analysis. Many details are given in the paper.

SOURCE AND PURITY OF MATERIALS:

- (1) Aldrich Chemicals, Eastman Kodak, or K and K Laboratories, commercial highest grade; used as received.
- (2) doubly distilled.

ESTIMATED ERROR:

soly. ± 10⁻⁵ mg(1) dm⁻³ sln (maximum deviation from several determinations).

REFERENCES:

COMPONENTS:

- (1) Benzo[ghi]perylene; C₂₂H₁₂;
 [191-24-2]
- (2) Salt Water

ORIGINAL MEASUREMENTS:

Krasnoshchekova, R.Ya.; Pakhapill, Yu.A.; Gubergrits, M.Ya.

Khim. Tverd. Topl. 1977, 11, 133-6.

VARIABLES:

One temperature: 25°C

Salinity: 6 g/kg sln (ref. 1)

PREPARED BY:

M. Kleinschmidt and D. Shaw

EXPERIMENTAL VALUES:

The solubility of benzo[ghi]perylene in salt water was reported to be 0.21 $\mu q/L$.

The corresponding mass percent and mole fraction, x_1 , calculated by the compilers are 2.1 \times 10⁻⁸ g(1)/100 g sln and 1.4 \times 10⁻¹¹ assuming a solution density of 1.004 kg/L.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

of a 0.5 g/Lsolution of the hydrocarbon in acetone was distributed over the inside surface of a 1round-bottomed flask; the acetone was evaporated with gentle heating. 0.5 L water [or salt water] was added to the dried residue, and the solution was stirred for 6 hr and allowed to settle for 16-18 hr. upper layer (about 0.3 L) was taken for analysis. The solution was centrifuged twice at 7000 g to remove suspended particles. The hydrocarbon was extracted with benzene and concentrated by evaporation, then purified using thin-layer chromatography. Spectrometric analysis of an octane solution of the hydrocarbon was done using the quasilinear luminescence spectra.

SOURCE AND PURITY OF MATERIALS:

Not given.

ESTIMATED ERROR:

temp. \pm 1°C soly. \pm 0.048

type of error not specified

REFERENCES:

 Krasnoshchekova, R.Ya; Gubergrits, M.Ya. Neftekhimiya 1973, 13, 885.