IUPAC-NIST Solubility Database
NIST Standard Reference Database 106


Glass Ball as Bullet Solubility System: 1,1,2,2-Tetrachloroethane with Water.

Components:
   (1) Water; H2O; [7732-18-5]  NIST Chemistry WebBook for detail
   (2) 1,1,2,2-Tetrachloroethane; C2H2Cl4; [79-34-5]  NIST Chemistry WebBook for detail

Evaluator:
   A. L. Horvath, Imperial Chemical Industries Limited, Runcorn, U.K.

Critical Evaluation:

        The 1,1,2,2-tetrachloroethane (1) and water (2) binary system is treated in two parts; part 1 is 1,1,2,2-tetrachloroethane (1) in water (2) and part 2 is water (2) in 1,1,2,2-tetrachloroethane (1).
     Part 1. The solubility of 1,1,2,2-tetrachloroethane (1) in water (2) has been studied by 19 groups of workers in the temperature range from 276.15 to 419.35 K. Despite the large number of investigations, the solubility values are very uncertain above 323.15 K.
     Most of the solubility measurements provide relatively consistent results with the exception of those by Hollo and Lengyel1 and Prosyanov et al.2 These data appear erratic when compared with other measurements. Furthermore, they appear inconsistent in that they do not show comparable effects with increasing temperature and are therefore rejected. The remaining solubility data of Wright and Schaffer,3 van Arkel and Vles,4 Othmer et al.,5 McGovern,6 Walraevens et al.,7 Chiou and Freed,8 Sato and Nakijima,9 Schwarz,10 Veith et al.,11 Banerjee et al,12 Schwarz and Miller,13  Leighton and Calo,14 McNally and Grob,15 Barr and Newsham,16 Howe et al.,17 Vogel,18 and Wright et al.19 were used to obtain the following mass percent (1) equation:

Solubility [100 w1] = 4.87975 – 3.0937 × 10–2 (T/K) + 5.20513 × 10–5 (T/K)2,

which shows a standard deviation of 4.54 × 10–2 in the temperature range from 276.15 to 323.15 K.
     The measurements and the curve obtained from the smoothing equation are shown in Fig. 11.  A solubility minimum appears at 297.18 K. Additional details concerning the solubility minimum for aqueous hydrocarbon systems are provided in the Preface.
     The recommended solubility values at 5 K intervals for 1,1,2,2-tetrachloroethane (1) in water (2) are presented in Table 1.

     Part 2. The solubility of water (2) in 1,1,2,2-tetrachloroethane (1) has been studied by 11 groups of workers, mostly at 298.15 K. The datum of Lees and Sarram20 is markedly lower than other results and is therefore rejected. The measurements of Othmer et al.,5 McGovern,6 and Zielinski21 are several per cent higher than the smoothed solubility values and are also rejected. The solubilities calculated from the distribution coefficients of Prosyanov et al.22 are in very poor agreement, giving no confidence in the values which are regarded as dubious.
     The remaining data of Staverman,23 Hutchison and Lyon,24 Johnson et al.,25 Johnson,26 Christian et al.,27 and Barr and Newsham16 were compiled or used for the smoothing equation. The fitting equation used was:

log10 x2 =  1.3175  –  974.642/(T/K)

This equation represents the combined data with a standard deviation of 3.36 × 10–2 in the 273-323 K temperature range.
     The recommended solubilities at 5 K intervals for water in 1,1,2,2-tetrachloroethane are given in Table 2.
     Measured values and the curve obtained from the smoothing equation for solubility expressed as log10 x 2 versus the reciprocal of absolute temperature are shown in Fig. 12.
     It may be noted that all studies show a general increase in solubility with temperature which is consistent with the theory of water solubility for halogenated hydrocarbons as discussed in the Preface. As a common practice, the temperature dependence of solubility is often plotted on a Cox chart, that is, log10 x 2 versus 1/(T/K), in which case a straight line usually represents the data, at least over some limited temperature range.

Experimental Data:   (Notes on the Nomenclature)

Table 1. Recommended solubility of 1,1,2,2-tetrachloroethane (1) in water (2)
t/°CT/K102 * Mass Fraction w1104 * Mole Fraction x1
5278.150.3023.25
10283.150.2933.15
15288.150.2873.09
20293.150.2843.06
25298.150.2833.05
30303.150.2853.07
35308.150.2893.11
40313.150.2963.18
45318.150.3063.29
50323.150.3183.42
Table 2. Recommended solubility of water (2) in 1,1,2,2-tetrachloroethane (1)
t/°CT/K102 * Mass Fraction w2102 * Mole Fraction x2
0273.150.06050.561
5278.150.07030.651
10283.150.08110.751
15288.150.09310.861
20293.150.1070.984
25298.150.1211.12
30303.150.1381.27
35308.150.1551.43
40313.150.1741.60
45318.150.1951.79
50323.150.2192.00
View Figure 1 for this Evaluation

View Figure 2 for this Evaluation

References: (Click a link to see its experimental data associated with the reference)

   1  Hollo, J.; Lengyel, T., Period. Polytech. 4, 125-40 (1960).
   2  Prosyanov, N.N.; Shalygin, V.A., Zel'venskii, Ya.D., Tr. Mosk. Khim.-Technol. Inst. 183 (1973).
   3  Wright, W.H.; Schaffer, J.M., Am. J. Hygiene 16, 325 (1932).
   4  van Arkel, A.E.; Vles, S.E., Recl. Trav. Chim. Pays-Bas 1936, 55, 407-11.
   5  Othmer, D.F.; White, R.C.; Truegar, E., Ind. Eng. Chem. 1941, 33(12), 1513.
   6  McGovern, E.W., Ind. Eng. Chem. 1943, 35, 1230-9.
   7  Walraevens, R.; Trouillet, P.; Devos, A., Int. J. Chem. Kinet. 6, 777-86 (1974)
   8  Chiou, C.T.; Freed, V.H., "Chemodynamic Studies on Bench Mark Industrial Chemicals"; National Technical Information Service: Springfield, Virginia, 1977; PB-274263.
   9  Sato, A.; Nakijima, T., Arch. Envir. Health 1979, 34, 69-75.
   10  Schwarz, F.P., Anal. Chem. 1980, 52, 10-15.
   11  Veith, G.D.; Macek, K.J.; Petrucelli, S.R.; Carroll, J., Proc. 3rd Ann. Symp. on Aquatic Toxicology, ASTM Publ. 707, Philadelphia, 1980, p. 116-29.
   12  Banerjee, S.; Yalkowsky, S.H.; Valvani, S.C., Environ. Sci. Technol. 1980, 14, 1227-9.
   13  Schwarz, F.P.; Miller, J., Anal. Chem. 1980, 52(13), 2162-4.
   14  Leighton, D.T.; Calo, J.M., J. Chem. Eng. Data 1981, 26, 382-5.
   15  McNally, M.E.; Grob, R.L., J. Chromatogr. 1984, 284, 105-16.
   16  Barr, R.S.; Newsham, D.M.T., Fluid Phase Equilibr. 1987, 35, 189-205.
   17  Howe, G.B.; Mullins, M.E.; Rogers, T.N., AFESC Tyndall Air Force Base, Report ESL-TR-86-66, Vol. 1, Florida, Sept. 1987, 86 pp. (AD-A188 571).
   18  Vogel, A.I., rev. by Furniss, B.S., et al. Vogel's Textbook of Practical Organic Chemistry, 5th ed. (Longman, London, 1989), p. 1442.
   19  Wright, D.A.; Sandler, S.I.; DeVoll, D., Environ. Sci. Technol. 1992, 26, 1828-31.
   20  Lees, F.P.; Sarram, P., J. Chem. Eng. Data 1971, 16, 41-4.
   21  Zielinski, A.Z., Chem. Stosowana 1959, 3, 377-84.
   22  Prosyanov, N.N.; Shalygin, V.A.; Zel'venskii, Ya.D., Tr. Mosk. Khim. Tekhnol. Inst. 1974, 81, 55-6.
   23  Staverman, A.J., Recl. Trav. Chim. Pays-Bas 1941, 60, 836-41.
   24  Hutchinson, C.A.; Lyon, A.M., Columbia University Report A-745, July 1, 1943.
   25  Johnson, J.R.; Christian, S.D., Affsprung, H.E., J. Chem. Soc. A. 1966, 77-8.
   26  Christian, S.D.; Affsprung, H.E.; Hunter, W.J.A.; Gillam, W.S.; McCoy, W.H., Solute Properties of Water, U. S. Office of Saline Water Research and Development Program, Report No. 301 1968, p. 71, 79.
   27  Tokoro, R.; Bilewicz, R.; Osteryoung, J., Anal. Chem. 58, 1964 (1986).