IUPAC-NIST Solubility Database
NIST Standard Reference Database 106


Glass Ball as Bullet Solubility System: 1,1,1-Trichloroethane with Water.

Components:
   (1) 1,1,1-Trichloroethane; C2H3Cl3; [71-55-6]  NIST Chemistry WebBook for detail
   (2) Water; H2O; [7732-18-5]  NIST Chemistry WebBook for detail

Evaluator:
   A. L. Horvath, Imperial Chemical Industries Limited, Runcorn, U.K.

Critical Evaluation:

        The 1,1,1,-trichloroethane (1) and water (2) binary system is treated in two parts; part 1 is 1,1,1-trichloro-ethane (1) in water (2) and part 2 is water (2) in 1,1,1-trichloroethane (1).
     Part 1. The solubility of 1,1,1-trichloroethane (1) in water (2) has been studied by 25 groups of workers over the temperature interval from 273.15 to 323.15 K. The experimental data of most investigators are sufficiently reliable to use in the smoothing equation. However, the data of some workers were not used for the smoothing equation for a variety of reasons. The measured solubility of McConnell et al.,1 Pearson and McConnell,2 Archer and Stevens,3 Coca and Diaz,4 Hutchinson et al.,5 and McNally and Grob6 are markedly lower than the solubility values calculated from the smoothing equation and are therefore rejected. The measurements of Schwarz and Miller7 and Warner et al.8 are several per cent higher than the smoothed solubility values and are also rejected.
     The remaining data of van Arkel and Vles,9 O'Connell,10 Walraevens et al.,11 Chiou and Freed,12 Sato and Nakijima,13 Schwarz,14 Veith et al.,15 Banerjee et al.,16 Leighton and Calo,17 Hunter-Smith et al.,18 Orlandini et al.,19 Lincoff and Gossett,20 Munz,21 Barr and Newsham,22 Gossett ,23 Howe et al.,24 and Wright et al.,25 were compiled or used for the smoothing equation. The combined data of 17 laboratories were used to obtain the following mass percent (1) equation:

Solubility [100 w1] = 1.09092 – 6.52776 × 10–3 (T/K) + 1.10747 × 10–5 (T/K)2,

which showed a standard deviation of 1.71 × 10–2 in the temperature range from 273 to 323 K.
     The measurements and the curve obtained from the smoothing equation are shown in Fig. 13.  A solubility minimum calculated from the above regression equation is 0.129 [100 w1] at 294.71 K. Additional details concerning the solubility minimum for aqueous hydrocarbon systems are discussed in the Preface.
     The recommended solubility values at 5 K intervals for 1,1,1-trichloroethane (1) in water (2) are presented in Table 1.

     Part 2. The solubility of water (2) in 1,1,1-trichloroethane (1) has been measured by 8 groups of workers with reasonably consistent results. The reported solubilities cover the temperature range from 273.15 to 323.15 K.
     All the available data for water solubility in 1,1,1-trichloroethane are considered for fitting a correlating equation with the following exclusions. Both results of Lees and Sarram26 and Archer and Stevens3 are rejected because they are significantly higher than later studies. The remaining data of 6 laboratories are in good agreement and the correlated values are recommended. These data of Staverman,27 Coca and Diaz,4 O'Connell,10 Ohtsuka and Kazama,28 Orlandini et al.,19 and Barr and Newsham,22 were used for the smoothing equation:

log10 x2 =  0.43885 –  909.536/(T/K).

This equation represents the combinad data with a standard deviation of 9.62 × 10–2 in the temperature range from 273 to 323 K. The recommended values of solubility at 5 K intervals for water (2) in 1,1,1-trichloroethane (1) are presented in Table 2.
     Measured values and the curve obtained from the smoothing equation for solubility expressed as log10 x2 versus the reciprocal of absolute temperature are shown in Fig. 14.
     The linear relation between the solubility expressed as log10 x2 versus 1/(T/K) is illustrated in Fig. 14. Such straight line plots are characteristic for water solubility in halogenated hydrocarbons as discussed in the Preface.

Experimental Data:   (Notes on the Nomenclature)

Table 1. Recommended solubility of 1,1,1-trichloroethane (1) in water (2)
t/°CT/K102 * Mass Fraction w1104 * Mole Fraction x1
0273.150.1341.81
5278.150.1321.78
10283.150.1301.76
15288.150.1291.74
20293.150.1291.74
25298.150.1291.74
30303.150.1301.76
35308.150.1311.77
40313.150.1331.80
45318.150.1351.82
50323.150.1381.87
Tabel 2. Recommended solubility of water (2) in 1,1,1-trichloroethane (1)
t/°CT/K102 * Mass Fraction w2103 * Mole Fraction x2
0273.150.01741.285
5278.150.01991.475
10283.150.02281.685
15288.150.02591.916
20293.150.02942.170
25298.150.03312.445
30303.150.03712.743
35308.150.04163.072
40313.150.04643.423
45318.150.05153.802
50323.150.05714.214
View Figure 1 for this Evaluation

View Figure 2 for this Evaluation

References: (Click a link to see its experimental data associated with the reference)

   1  McConnell, G.; Ferguson, D.M.; Pearson, C.R., Endeavour 1975, 34, 13-8.
   2  Pearson, C.R.; McConnell, G., Proc. Roy. Soc. B. 1975, 189, 305-32.
   3  Archer, W.L.; Stevens, V.L., Ind. Eng. Chem. Prod. Res. Dev. 1977, 16, 319-25.
   4  Coca, J.; Diaz, R. M., J. Chem. Eng. Data 25, 80-3 (1980)
   5  Hutchinson, T.C.; Hellebust, J.A.; Tam, D., et al. Hydrocarbons and Halogenated Hydrocarbons in the Aquatic Environment, Plenum Press, New York, 1980, p. 577-86.
   6  McNally, M.E.; Grob, R.L., J. Chromatogr. 1984, 284, 105-16.
   7  Schwarz, F.P.; Miller, J., Anal. Chem. 1980, 52(13), 2162-4.
   8  Warner, H.P.; Cohen, J.M.; Ireland, J.C., Determination of Henry's Law Constants of Selected Priority Pollutants, U. S. EPA Technical Report, PB87-212684, Cincinnati, OH., July 1987.
   9  van Arkel, A.E.; Vles, S.E., Recl. Trav. Chim. Pays-Bas 1936, 55, 407-11.
   10  O'Connell, W.L., Trans. Am. Inst. Mech. Eng. 1963, 226, 126-32.
   11  Walraevens, R.; Trouillet, P.; Devos, A., Int. J. Chem. Kinet. 6, 777-86 (1974)
   12  Chiou, C.T.; Freed, V.H., "Chemodynamic Studies on Bench Mark Industrial Chemicals"; National Technical Information Service: Springfield, Virginia, 1977; PB-274263.
   13  Sato, A.; Nakijima, T., Arch. Envir. Health 1979, 34, 69-75.
   14  Schwarz, F.P., Anal. Chem. 1980, 52, 10-15.
   15  Veith, G.D.; Macek, K.J.; Petrucelli, S.R.; Carroll, J., Proc. 3rd Ann. Symp. on Aquatic Toxicology, ASTM Publ. 707, Philadelphia, 1980, p. 116-29.
   16  Banerjee, S.; Yalkowsky, S.H.; Valvani, S.C., Environ. Sci. Technol. 1980, 14, 1227-9.
   17  Leighton, D.T.; Calo, J.M., J. Chem. Eng. Data 1981, 26, 382-5.
   18  Hunter-Smith, R.J.; Balls, P.W.; Liss, P.S., Tellus 35B, 170 (1983).
   19  Orlandini, M.; Fermeglia, M.; Kikic, I.; Alessi, P., Chem. Eng. J. 1983, 26, 245-50.
   20  Lincoff, A.H.; Gossett, J.M., in Gas Transfer at Water Surfaces by Brutsaert, W. and Jirka, G.H., Eds., D. Reidel Publ. Co., Dordrecht, 1984, p. 17-25.
   21  Munz, C.D., Ph. D. Thesis, Stanford University, Stanford, CA., 1985, 306 pp.
   22  Barr, R.S.; Newsham, D.M.T., Fluid Phase Equilibr. 1987, 35, 189-205.
   23  Gossett, J.M., Environ. Sci. Technol. 1987, 21, 202-8.
   24  Howe, G.B.; Mullins, M.E.; Rogers, T.N., AFESC Tyndall Air Force Base, Report ESL-TR-86-66, Vol. 1, Florida, Sept. 1987, 86 pp. (AD-A188 571).
   25  Wright, D.A.; Sandler, S.I.; DeVoll, D., Environ. Sci. Technol. 1992, 26, 1828-31.
   26  Lees, F.P.; Sarram, P., J. Chem. Eng. Data 1971, 16, 41-4.
   27  Staverman, A.J., Recl. Trav. Chim. Pays-Bas 1941, 60, 836-41.
   28  Ohtsuka, K.; Kazama, K., Sen't Seihin Shohi Kagaku Kaishi 22, 197-201 (1982).