IUPAC-NIST Solubility Database
NIST Standard Reference Database 106


Glass Ball as Bullet Solubility System: Benzene with Water

Components:
   (1) Water; H2O; [7732-18-5]  NIST Chemistry WebBook for detail
   (2) Benzene; C6H6; [71-43-2]  NIST Chemistry WebBook for detail

Evaluator:
   G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. June 1986.

Critical Evaluation:

   Quantitative solubility data for the system benzene (1) and water (2) have been reported in the references listed in Table 1.

Quantitative solubility data for the benzene-heavy water (D2O) system are given in the papers by Ben-Naim et al. (ref 73), in terms of the Ostwald absorption coefficient, and Backx and Goldman (ref 99). However, these data have not been determined under comparable conditions and thus no Critical Evaluation is possible. The interested user is referred to the relevant Data Sheets for experimental values. Solubility data may also be calculated from the calorimetric data of Gill et al. (ref 86). Bröllos et al. (ref 69) have also reported data on a critical locus in the D2O-benzene system (cf. Section 3 below).

Critical phenomena in the benzene-water system have been reported by Alwani and Schneider (ref 63), Roof (ref 70) and Scheffer (ref 108). These data are discussed along with the solubility data at elevated pressures in Section 3 below.

The extensive information available for the solubility of benzene in brine solutions is considered in a separate Critical Evaluation immediately following the benzene-water Data Sheets.

Apart from the papers by Roof (ref 70) and Scheffer (ref 108) Which did not contain sufficient information to justify their inclusion; and the work of Horiba (ref 3), Vermillion (ref 17), Thompson (ref 47) and Herz (ref 107) which were not available for inspection, the original data in all of the publications listed in Table 1 are compiled in the Data Sheets immediately following this Critical Evaluation. The data of Gobachev et al. (ref 109,110) are noted but arrived too late to be included in this Evaluation.

In the benzene-water system the mutual solubilities are sufficiently low at atmospheric pressures to enable data reported on w/v fractions (or equivalent) to be converted to mass percent solubilities with reasonable precision by assuming solution densities to be the same as the pure solvents. These conversions are given on the Data Sheets and data are included in this Evaluation. The data of Herz (ref 1), Jaeger (ref 7), Milligan (ref 8), Durand (ref 20,25), Booth and Everson (ref 22,27), Jones and Monk (ref 50) and Sada et al. (ref 84) given in v/v fractions have not been converted and so have been excluded.

For convenience, further discussion of this system will be divided into three parts: the solubility of benzene in water and of water in benzene at atmospheric pressure, and their mutual solubilities at higher temperatures and pressures.

In the Tables that follow, values obtained by the Evaluator by graphical interpolation of the original measurements compiled in the data sheets are indicated by an asterisk (*). The uncertainty limits (given as standard deviations, σn) attached to the mean "Best" values do not have statistical significance and should be regarded only as a convenient representation of the spread of values rather than as error limits. Where relevant, 95% confidence intervals have been calculated for the mass percentage solubilities, as error estimates using the t-distribution and are given along with the mean values. Errors estimated have not been included for the mole fraction solubilities because of space limitations but may be assumed to be the same (proportionately) as those given for the mass percentage solubilities. The letter (R) indicates "Recommended" data. Data are "Recommended" if σn is less than 5% (relative) of the average solubility. All other data are regarded as Tentative.


1. SOLUBILITY OF BENZENE (1) IN WATER (2) AT ATMOSPHERIC PRESSURE
Table 1 shows a plethora of studies of the solubility of benzene in water: 29 independent values have been reported at 298 K! Most of the data are in good agreement enabling solubilities to be "Recommended" over almost the entire liquid range at atmospheric pressure.

The data of Nine (ref 15), Stearns et al. (ref 21), McBain and Lissant (ref 31), Hayashi and Sasaki (ref 37), Kidchadker and McKetta (ref 46, atmospheric pressure data only), Udovenko and Aleksandrova (ref 53), Worley (ref 68), Pierotti and Liabastre (ref 72), Krasnoshchekova and Gubergrits (ref 82), Koreman and Aref'eva (ref 90,91), Schwarz (ref 98) and Sanemasa et al. (ref 100,101,103), reported mainly at 293 or 298 K, disagree markedly with other studies and have therefore been rejected.

The approximate solubility of Griswold et al. (ref 28), Taha et al. (ref 62) and Budantseva et al. (ref 85) have been excluded from consideration because of the abundance of more precise values.

All other data on the solubility of benzene in water are included in Table 2. Also included in Table 2 are mean "Best" values and the 95% confidence intervals.

Figure 1 plots the mean solubility values as a function of temperature. Using non-linear regression, these values can be fitted to an equation of the form:

s(g(1)/100g s1n) = 5.5773 - 4.6067 x 10-2T + 1.2504 x 10-4T2 - 1.0489 x 10-7T3 [1] (Range T: 273-343K, std. error of estimate = 0.0008 g(1)/100g sln., correlation coefficient = 0.9995).

A similar equation was obtained by Arnold et al. (ref 40) from a least squares treatment of their own data:

s(g(1)/100g sln) = 0.1784 - 7.436 x 10-4t + 1.906 x 10-5t2 + 1.217 x 10-7t3 [2] (Range t: 5-70οC, std. dev. 0.0028 g(1)/100g sln).

Solubilities calculated from equation (2) are generally 2% (relative) lower than those obtained from equation (1), i.e. within the limits of precision of Recommended values in Table 2.

Gill et al. (ref 86) present an alternative equation derived from calorimetric studies of the enthalpy and heat capacity of solution of benzene in water between 288 and 303 K.

ln{x1 (T) /x 1 (T+)} = (ΔCp,sln/R){ln(T/T+) + (T+/T) - 1} (ΔCp,s1n = 225 J K -1 mo1-1, T+ = 289.0 K, ln x1(T+) = -7.843)

where ΔCp,s1n is the infinite dilution heat capacity for benzene in water and T+ the temperature of the solubility minimum. Solubilities calculated from this equation are in good agreement (typically lower by 2% relative) with equation [1] over the range 288-303 K. However, they show a systematically increasing deviation at higher temperatures rising to -5.3% at 333 K, i.e. slightly outside the precision limits of the recommended values although well within the 95% confidence interval.

Consistent with these findings, application of the van't Hoff equation to the recommended solubilities (Table 2) gives ΔHs1n = 2.07 kJ mo1-1 and ΔCp,s1n = 232 J K-1 mo1-1 for the dissolution of benzene in water in good agreement with the experimental values of Gill et al. No evidence was found for any dependence of ΔCp,s1n on temperature.

Finally, it is worthwhile noting that Green and Frank (ref 96) have concluded from Henry's law measurements and other thermodynamic data that benzene dissolves in water in monomeric form. These authors also show that solubility determinations based on the measurement of benzene in the vapor-phase by UV spectrophotometry (e.g. ref 73) may be seriously in error.


2. THE SOLUBILITY OF WATER (2) IN BENZENE (1) AT ATMOSPHERIC PRESSURE
Despite the many studies of the solubility of water in benzene the reported values are in only fair agreement. This is probably a reflection of the difficulties of quantitating the relatively low water solubility. Thus, the absolute uncertainty in the averaged solubility of (2) in (1) is virtually independent of the magnitude of the solubility thereby increasing the relative uncertainty at lower solubilities.

The wealth of publications reporting solubility as a function of temperature (ref 2, 5, 6, 13, 19, 32, 56, 61, 81) enables a particularly critical appraisal of all reported solubilities. Hence data which might be acceptable in less well-investigated systems, have been rejected if they deviate significantly from averaged values. This procedure has a small effect on the mean value but often results in a substantial decrease in the uncertainty (σn).

On this basis the data of Clifford (ref 4), Rosenbaum and Walton (ref 11; data below 303 K retained), Tarassenkow and Poloshinzewa (ref 13; data above 283 K retained), Berkengeim (ref 18), Joris et al. (ref 23,24), Wing and Johnston (ref 39), Englin et al. (ref 56; data below 303 K retained), Budantseva et al. (ref 85) and Bittrich (ref 95) have been rejected. Most of these data are lower than the mean values. The approximate values of Griswold et al. (ref 28) and McCants et al. (ref 36) have also been excluded as more precise data are available. All other data are included in Table 3.

It is interesting to note that the average solubilities reported in the more recent studies (ref 58, 59, 61, 64, 68, 76, 78, 81, 87, 94, 102) tend to be somewhat higher than the overall average and with considerably smaller σn (see Table 3). The reasons for these differences are unclear but could be due to improved analytical or purification techniques. If only the more recent data are considered then the averaged values could be "Recommended" between 283 and 298 K. However, comparison of the earlier data (with ref 58 arbitrarily chosen as the cut off) with the more recent values by standard statistical procedures (t-test or F-test) indicates that these two data sets differ significantly (P < 0.05) only at 298 K and possibly 288 K. Further careful measurements are required to resolve this situation.

Figure 2 plots the mean solubility values as a function of temperature. These values can be fitted to an equation of the form:

s(g (2)/100g s1n) = -5.6667 + 6.3535 x 10-2 T - 2.4024 × 10-4 T2 + 3.0752 x 10-7 T3 (Range: T = 273 - 343 K, std. error of estimate = 0.001 g(2)/100g s1n, correlation coefficient = 0.9998).

A similar expression was obtained by Hill (ref 6) by fitting his own data:

s(g(2)/100g s1n) = 0.03294 + 6.449 x 10-4 t + 3.728 x 10-5 t2 (Range: t = 5 - 70°C).

Stavely et al. (ref 32) present an alternative equation, in terms of mole fraction, based on their data:

log x2 = 2.237 - (1427/T)

over the range T = 295 - 346 K.

Application of the van't Hoff equation to the mean values in Table 3 gives ΔHs1n = 24.0 kJ mo1-1 and ΔCp,sln = 89 J K-1 mo1-1 for the dissolution of water in benzene (R2 = 0.9995).



3. THE MUTUAL SOLUBILITIES OF BENZENE (1) AND WATER (2) AT ELEVATED PRESSURES

To clarify the relationship between the phases in equilibrium in this system it is convenient to consider the pressure-temperature projection of the pressure-temperature-composition diagram. On such a projection, phases with the same values of pressure and temperature but different composition will be located at the same point. Benzene + water has type III phase behavior, using Scott and von Konynenburg's classification (ref 105, 106). This type of phase behaviour is characterised by two critical loci, one starting at the critical point of the least volatile component, water in the present case, and eventually approaching high pressures. The other critical locus starts at the critical point of the other component and ends on a three phase (liquid-liquid-vapor) line at a critical end point. Type III phase behavior is illustrated in Figure 3. It is important to note that the three phase line on a pressure-temperature projection corresponds to three lines on the pressure-temperature-composition diagram. In the region above the three phase line on the pressure-temperature-projection, the pressure is greater than the vapor phase and a maximum of two liquid phases is possible. There may be one or two liquid phases depending on the overall composition. To the left of the critical line starting at the least volatile component it is also possible to have one or two phases present depending on the overall composition.

Solubility data for the benzene-water system at elevated pressures have been reported in the publications listed in Table 4.

As Table 4 shows, almost none of the solubility data collected at elevated pressures have been obtained under comparable conditions thus making evaluation of their reliability difficult. Although some of the data are in reasonable agreement (e.g. the value of 22 g(1)/100g s1n at 574.85 K and 14.6 MPa (ref 44) and 22.8 g(1)/100g s1n at 573.15 K and 14.7 MPa (ref 57), most are not. Thus the interpolated solubilities of ref 46 and 55 at 311K and 5 MPa are 0.336 and 0.187 g(1)/100g s1n respectively and other broadly comparable data (e.g. ref 55 and ref 57) are only in fair agreement. It should also be noted that the atmospheric pressure data of Kudchadker and McKetta (ref 46) are in poor agreement with the "Recommended" values in Tables 2 and 3.

Table 5 summarizes solubilities of benzene and water as a function of temperature and pressure. All values were obtained by double graphical interpolation (temperature and pressure) to produce data at convenient intervals. The interested user is referred to the original measurements in the Data Sheets for more comprehensive values. For the reasons given above all the values in Table 3 should be regarded as very tentative, subject to further investigations.

Figure 4 plots the mutual solubilities of benzene and water at elevated temperatures and pressures. The chief effect is to make the solution composition at the (projected) upper critical solution temperature more benzene-rich. This is because the solubility of benzene in water shows a smaller dependence on pressure than the solubility of water in benzene at temperatures near the UCST.

A number of workers (ref 47, 49, 102) have studied the solubility of benzene in water along the three-phase equilibrium locus (Figure 3). The data are summarized graphically in Figure 5 and are seen to be in only fair agreement (note that the solubility is represented logarithmically and that the data from ref 47 is only approximate, see Figure 5 caption). The interested user is referred to the relevant Data Sheets (ref 49,102) for experimental values.

The solubility of water in benzene along the three-phase equilibrium locus has also been reported by three groups (ref 38, 47, 102). The data are summarized graphically in Figure 6 and are seen to be in reasonable agreement. Again it should be noted that the data from ref 47 are approximate only, having been obtained graphically from ref 102. The interested user is referred to the relevant Data Sheets (ref 38, 102) for experimental values.

For the benzene + water system three workers have determined the temperature and pressure of the critical end point and these are given in Table 6. The values are in surprisingly good agreement.

Alwani and Schneider (ref 63) have reported detailed measurements in the high-pressure region to the left of the critical line starting at the critical point of benzene (Figure 3) . These data are for the one phase-two phase boundary and at the pressures and temperatures studied (Table 4), the phases are at liquid-like densities. These data are classified as Tentative as they were determined using as well-tested experimental method.



Experimental Data:   (Notes on the Nomenclature)

Table 1. Quantitative Solubility Studies of the Benzene (1) - Water (2) System
AuthorT/KT/KNoteReferenceSolubilityMethod
Herz295-1(1) in (2)densimetric
Groschuff278-350-2(2) in (1)titration
Clifford284-328-4(2) in (1)analytical
Hill273-5(2) in (1)cryoscopic
Hill278-343-6(1) in (2)analytical
Jaeger373-573-7(1) in (2)cloud-point
Milligan298-8(1) in (2)analytical
Barbundy342-9mutualcloud-point
Uspenski283, 295-10mutualtitration, analytical
Rosenbaum and Walton283-333-11(2) in (1)gasometric
Gross and Saylor303-12(1) in (2)interferometric
Tarassenkow and Poloshinzewa278-346-13(2) in (1)synthetic
Robertson279-14(2) in (1)cryoscopic
Niini293-15mutualrefractometric, pycnometric
Saylor et al.303-308-16(1) in (2)interferometric
Berkengeim283-323-18(2) in (1)Karl Fischer
Staveley et al.297-344-19(2) in (1)synthetic
Durand289-20, 25(1) in (2)synthetic
Stearns et al.298-21(1) in (2)turbidimetric
Booth and Everson298, 333-22, 27(1) in (2)residue volume
Joris et al.283-299-23, 24(2) in (1)radiotracer
Andrews and Keefer298-26(1) in (2)spectrophotometric
Griswold et al.298, 323-28mutualcloud-point
Klevens298-29(1) in (2)spectrophotometric
Bohon and Claussen273-316-30(1) in (2)spectrophotometric
McBain and Lissant298-31(1) in (2)synthetic
Staveley et al.295-346-32(2) in (1)synthetic
Donahue and Bartell298-33mutualinterferometric
McDevit and Long298-34(1) in (2)volumetric
Morrison and Billett298-35(1) in (2)analytical
McCants et al.311-36mutualtitration
Hayashi and Sasaki293, 298-37(1) in (2)titration
Umano and Hayano459-554-38(2) in (1)volumetric
Wing and Johnston298-39(2) in (1)radiotracer
Arnold et al.273-342-40(1) in (2)spectrophotometric
Brady and Huff298-41(1) in (2)vapor pressure
Pavia282-388-42(2) in (1)Karl Fischer
Alexander273-338-43(1) in (2)spectrophotometric
Rebert and Kay556-580a44mutualsynthetic
Caddock and Davies293-45(2) in (1)radiotracer
Kudchadker and McKetta311-411a46(1) in (2)not specified
Franks et al.290-336-48(1) in (2)spectrophotometric
Guseva and Parnov426-537a49(1) in (2)cloud-point
Jones and Monk298-308-50(2) in (1)radiotracer
McAuliffe298-51, 60(1) in (2)GLC
Schatzberg293-52(2) in (1)Karl Fischer
Udovenko and Aleksandrova293-353-53(1) in (2)not specified
Hoegfeldt and Bolander298-54(2) in (1)Karl Fischer
Thompson and Snyder311-477a55mutualanalytical
Englin et al.273-323-56(2) in (1)analytical
Connolly533-573a57(1) in (2)cloud-point
Johnson et al.298-58(2) in (1)Karl Fischer
Masterton and Gendrano298-59(2) in (1)Karl Fischer
Moule and Thurston282-323-61(2) in (1)radiotracer
Taha et al.298-62(1) in (2)vapor pressure
Alwani and Schneider523-636a63mutualsynthetic
Gregory et al.308-64(2) in (1)Karl Fischer
O' Grady561-566a65mutualvolumetric
Worley298-66(1) in (2)spectrophotometric
Burd and Braun359-473a67(2) in (1)GLC
Roddy and Coleman298-68(2) in (1)gravimetric
Corby and Elworthy293-71(1) in (2)spectrophotometric
Pierotti and Liabastre278-319-72(1) in (2)GLC
Ben-Naim et al.283-323-73(1) in (2)spectrophotometric
Bradley et al.298-328a74(1) in (2)spectrophotometric
Filyas568-75(2) in (1)not specified
Karlsson287-308-76(2) in (1)Karl Fischer
Leinonen and Mackay298-77(1) in (2)GLC
Polak and Lu273, 298-78mutualGLC
Sultanov and Skripka498-533a79, 89(2) in (1)not specified
Brown and Wasik278-293-80(2) in (1)GLC
Goldman283-313-81(2) in (1)Karl Fischer
Krasnoshchekova and Gubergrits298-82(1) in (2)GLC
Mackay and Shiu298-83(1) in (2)GLC
Sada et al.298-84(1) in (2)titration
Budantseva et al.293-85mutualGLC
Kirchnerova and Cave298-87(2) in (1)Karl Fischer
Price298-88(1) in (2)GLC
Korenman and Aref'eva293, 298-90, 91(1) in (2)titration
Krzyzanowska and Szeliga298-92(1) in (2)GLC
May et al.298-93(1) in (2)GLC
Singh and Sah303-94(2) in (1)titration
Bittrich et al.293-333-95mutualGLC
Bannerjee et al.298-97(1) in (2)radiotracer
Schwarz297-98(1) in (2)chromatographic
Sanemasa et al.288-318-100(1) in (2)spectrophotometric
Sanemasa et al.278-318-101(1) in (2)spectrophotometric
Tsonopoulos and Wilson313-473a102mutualGLC, Karl Fischer
Sanemasa et al.298-103(1) in (2)spectrophotometric
Table 2. Recommended (R) and Tentative Values of the Solubility of Benzene (1) in Water (2)
T/KT/KNoteReferenceSol. PowerSolubilitySolx10(**)Sol. NoteBest SolubilityBest Sol. Notex1 Powerx1x1 Note
273c5, 43, 78-0.153, 0.185, 0.168 g(1)/100g sln-a0.169 ± 0.013 (0.032) g(1)/100g slnb,c43.90b
278-30, 40, 43, 80-0.181*, 0.172, 0.182*, 0.185 g(1)/100g sln-a0.180 ± 0.005 (0.005) (R) g(1)/100g slnb44.15 (R)b
283-10, 30, 40, 43, 80-0.175, 0.180, 0.173*, 0.179*, 0.181* g(1)/100g sln-a0.178 ± 0.003 (0.004) (R) g(1)/100g slnb44.11 (R)b
288-30, 40, 43, 48, 80-0.178*, 0.173, 0.178*, 0.170*, 0.179* g(1)/100g sln-a0.176 ± 0.003 (0.004) (R) g(1)/100g slnb44.06 (R)b
293-30, 43, 43, 48, 80, 95-0.178*, 0.171, 0.178*, 0.172*, 0.177*, 0.179 g(1)/100g sln-a0.176 ± 0.003 (0.003) (R) g(1)/100g slnb44.06 (R)b
298-26, 29, 30, 33, 35, 37, 40, 41, 43, 48, 51, 60, 71, 77, 78, 83, 92, 93, 97-0.174, 0.186, 0.179, 0.182, 0.172, 0.180, 0.175*, 0.176, 0.180*, 0.173*, 0.178, 0.170, 0.177, 0.176, 0.178, 0.174, 0.174, 0.179, 0.175 g(1)/100g sln-a0.177 ± 0.004 (0.002) (R) g(1)/100g slnb44.09 (R)b
303-12, 16, 30, 43, 43, 48-0.185, 0.184, 0.184*, 0.177, 0.182*, 0.176* g(1)/100g sln-a0.181 ± 0.004 (0.005) (R) g(1)/100g slnb44.18 (R)b
308-16, 30, 40, 43, 48-0.190, 0.189*, 0.182, 0.187*, 0.181* g(1)/100g sln-a0.186 ± 0.004 (0.006) (R) g(1)/100g slnb44.30 (R)b
313-30, 40, 43, 48, 95, 10210.195*, 0.188, 0.194*, 0.188, 0.203, 0.192d4a0.193 ± 0.005 (0.006) (R) g(1)/100g slnb44.46 (R)b
318-40, 43, 48, 102-0.197, 0.203*, 0.196*, 0.201d g(1)/100g sln-a0.199 ± 0.003 (0.006) (R) g(1)/100g slnb44.60 (R)b
323-40, 43, 48, 102-0.205*, 0.212*, 0.205*,0.209d g(1)/100g sln-a0.208 ± 0.003 (0.006) (R) g(1)/100g slnb44.81 (R)b
328-40, 43, 48, 102-0.216*, 0.223*, 0.216*, 0.220d g(1)/100g sln-a0.219 ± 0.003 (0.006) (R) g(1)/100g slnb45.06 (R)b
333-40, 43, 48, 102-0.227*, 0.238*, 0.228*, 0.231d g(1)/100g sln-a0.231 ± 0.004 (0.007) (R) g(1)/100g slnb45.34 (R)b
338-40, 43, 48, 102-0.242*, 0.236*, 0.241*, 0.245d g(1)/100g sln-a0.241 ± 0.003 (0.006) (R) g(1)/100g slnb45.57 (R)b
343-9, 40, 102-0.281, 0.261*, 0.259d g(1)/100g sln-a0.267 ± 0.010 (0.03) (R) g(1)/100g slnb46.17b
Table 3. Recommended (R) and Tentative Value of the Solubility of Water (2) in Benzene (1)
T/KReferenceSolubilitySol. NoteBest SolubilityBest Sol. Notex2 Powerx2x2 Note
2732, 56, 780.029*, 0.0400, 0.0302 g(2)/100 g slna0.33 ± 0.005 (0.012) g(2)/100 g slnb31.4b
2782, 6, 14, 560.032*, 0.034*, 0.035, 0.042* g(2)/100 g slna0.036 ± 0.004 (0.006)b g(2)/100 g slnb31.6b
2832, 6, 10, 11, 18, 42, 56, 61, 810.038*, 0.042*, 0.051, 0.0451, 0.040, 0.0425*, 0.0446, 0.045, 0.0440 g(2)/100 g slna0.044 ± 0.003 (0.002) [0.0445 ± 0.0005] g(2)/100 g slnb31.9 [1.93]b
2882, 6, 10, 11, 13, 18, 42, 56, 61, 76, 810.045*, 0.052*, 0.057*, 0.050*, 0.043*, 0.046*, 0.0510*, 0.051*, 0.0530, 0.0533, 0.0522 g(2)/100 g slna0.050 ± 0.004 (0.003) [0.0528 ± 0.0005] g(2)/100 g slnb32.2 [2.29]b
2932, 6, 10, 11, 13, 15, 18, 32, 42, 45, 52, 56, 61, 76, 81, 950.055*, 0.064*, 0.064*, 0.0573, 0.054*, 0.059, 0.053, 0.053*, 0.0603, 0.052, 0.0532, 0.0582, 0.0635*, 0.0631, 0.0618, 0.0586 g(2)/100 g slna0.058 ± 0.006 (0.003) [0.062 ± 0.002] g(2)/100 g slnb32.5 [2.69]b
2982, 6, 11, 13, 19, 32, 33, 42, 54, 56, 58, 59, 61, 68, 76, 78, 81, 870.066*, 0.077*, 0.065*, 0.065*, 0.069*, 0.067*, 0.072, 0.0710*, 0.066*, 0.065, 0.0719, 0.0715, 0.0740*, 0.0747, 0.0725*, 0.0691, 0.0725, 0.0719 g(2)/100 g slna0.070 ± 0.004 (0.002) [0.0722 ± 0.0016] g(2)/100 g slnb33.0 [3.13]b
3032, 3, 13, 19, 32, 42, 61, 64, 76, 810.080*, 0.090*, 0.077*, 0.082*, 0.083*, 0.0828*, 0.0860*, 0.0854, 0.082, 0.082 g(2)/100 g slna0.083 ± 0.003 (0.002) (R) [0.084 ± 0.002] g(2)/100 g slnb33.60 (R) [3.64]b
3082, 6, 13, 19, 32, 42, 61, 64, 76, 810.095*, 0.1405*, 0.089*, 0.097*, 0.07*, 0.0970*, 0.102, 0.097, 0.102, 0.0979 g(2)/100 g slna0.098 ± 0.004 (0.003) (R) [0.099 ± 0.002] g(2)/100 g slnb34.23 (R) [4.30]b
3132, 6, 13, 19, 32, 42, 61, 81, 1020.114, 0.122*, 0.102, 0.114*, 0.114*, 0.112*, 0.118*, 0.110, 0.112 g(2)/100 g slna0.113 ± 0.005 (0.004) (R) g(2)/100 g slnb34.87 (R)b
3182, 6, 13, 19, 32, 42, 61, 1020.134*, 0.140*, 0.126, 0.135*, 0.135*, 0.131*, 0.138, 0.133c g(2)/100 g slna0.134 ± 0.004 (0.004) (R) g(2)/100 g slnb35.78 (R)b
3232, 6, 13, 19, 32, 42, 61, 1020.158*, 0.156*, 0.150*, 0.160*, 0.156*, 0.152*, 0.160*, 0.152ca0.156 ± 0.003 (0.003) (R) g(2)/100 g slnb36.74 (R)b
3282, 6, 13, 19, 32, 42, 1020.184, 0.173*, 0.175, 0.223, 0.210*, 0.201*, 0.203ca0.179 ± 0.006 (0.006) (R) g(2)/100 g slnb37.76 (R)b
3332, 6, 13, 19, 32, 42, 1020.213*, 0.198*, 0.203*, 0.223, 0.210*, 0.201*, 0.203c g(2)/100 g slna0.207 ± 0.008 (0.008) (R) g(2)/100 g slnb38.96 (R)b
3382, 6, 13, 19, 32, 42, 1020.246*, 0.230*, 0.234*, 0.256*, 0.242*, 0.226*, 0.233c g(2)/100 g slna0.238 ± 0.010 (0.010) (R) g(2)/100 g slnb310.0 (R)b
3432, 6, 9, 13, 19, 32, 1020.283*, 0.270*, 0.279*, 0.272*, 0.290*, 0.280*, 0.266c g(2)/100 g slna0.277 ± 0.008 (0.008) (R) g(2)/100 g slnb311.9 (R)b
Table 4. Solubility Studies of the Benzene-Water System at Elevated Pressures
AuthorT/KReferencePressurePressure NoteSolubility
Umano and Hayano459-55438-a(2) in (1)
Rebert and Kay560-5794412 - 16 MPa-mutual
Kudchadker and McKetta311-411460.1 - 6 MPa-(1) in (2)
Guseva and Parnov426-52749-b(1) in (2)
Thompson and Snyder311-477557, 36 MPa-mutual
Connolly533-5735710 - 80 MPa-(1) in (2)
Alwani and Schneider523-6366315 - 302 MPa-mutual
O'Grady561, 5666525 MPa-mutual
Burd and Braun359-473670.2 - 3 MPa-(2) in (1)
Bradley et al.298-328746 MPa-(1) in (2)
Filyas568751 MPa-(2) in (1)
Sultanov and Skripka498-53379, 895 - 79 MPa-(2) in (1)
Tsonopoulos and Wilson377-4851020 - 3amutual
Table 5. Tentative Values of the Mutual Solubilities of Benzene and Water at High Pressuresa
T/KPressureSolubilitySol. Note
3131 MPa0.26 g(1)/100 g slnb
31310 MPa0.20 g(1)/100 g sln-
31320 MPa0.22 g(1)/100 g sln-
31330 MPa0.23 g(1)/100 g sln-
3731 MPa0.40 g(1)/100 g sln-
37310 MPa0.41 g(1)/100 g sln-
37320 MPa0.50 g(1)/100 g sln-
37330 MPa0.56 g(1)/100 g sln-
4231 MPa1.0 g(1)/100 g sln-
42310 MPa1.1 g(1)/100 g sln-
42320 MPa1.1 g(1)/100 g sln-
42330 MPa1.3 g(1)/100 g sln-
4731 MPa3.0 g(1)/100 g sln-
47310 MPa3.3 g(1)/100 g sln-
47320 MPa3.5 g(1)/100 g sln-
47330 MPa3.2 g(1)/100 g sln-
5231 MPa6.5 g(1)/100 g slnc
52310 MPa6.6 g(1)/100 g slnc
52320 MPa6.9 g(1)/100 g slnc
52330 MPa6.5 g(1)/100 g slnc
3131 MPa0.10 g(2)/100 g sln-
31310 MPa0.10 g(2)/100 g sln-
31320 MPa0.09 g(2)/100 g sln-
31330 MPa0.09 g(2)/100 g sln-
3731 MPa0.60 g(2)/100 g sln-
37310 MPa0.60 g(2)/100 g sln-
37320 MPa0.55 g(2)/100 g sln-
37330 MPa0.55 g(2)/100 g sln-
4231 MPa1.7 g(2)/100 g sln-
42310 MPa1.7 g(2)/100 g sln-
42320 MPa1.6 g(2)/100 g sln-
42330 MPa1.6 g(2)/100 g sln-
4731 MPa4.5 g(2)/100 g sln-
47310 MPa4.4 g(2)/100 g sln-
47320 MPa4.4 g(2)/100 g sln-
47330 MPa4.2 g(2)/100 g sln-
5231 MPa--
52310 MPa13.2 g(2)/100 g slnd
52320 MPa11.5 g(2)/100 g slnd
52330 MPa10.2 g(2)/100 g slnd
Table 6. Critical End Point Properties of the Benzene-Water System
AuthorT/KPressure
Rebert and Kay541.59.404 MPa
Roof542.69.460 MPa
Scheffer541.09.39 MPa
View Figure 1 for this Evaluation

View Figure 2 for this Evaluation

View Figure 3 for this Evaluation

View Figure 4 for this Evaluation

View Figure 5 for this Evaluation

View Figure 6 for this Evaluation

Notes:
Table 1a  Pressure also varied, see Table 4
Table 2a  Values marked with an asterisk (*) have been graphically interpolated by the Evaluator from the authors' original data.
Table 2b  Obtained by averaging; figures in parentheses are the 95 % confidence intervals (t-test).
Table 2c  Refers to supercooled liquid (l).
Table 2d  Calculated from original authors; fitting equation over the range of their experimental investigation.
Table 3a  Values marked with an asterisk ( * ) have been graphically interpolated by the Evaluator from the authors' original data.
Table 3b  Figures in round parentheses ( ) are 95 % confidence intervals (t-test). Values in square parentheses [ ] are averages ± σn of the most recent determinations (ref 58, 59, 61, 64, 68, 76, 78, 81, 87, 94, 102).
Table 3c  Calculated from the original authors' fitting equation over the range of their experimental data.
Table 4a  Along three phase line.
Table 4b  Unspecified but presumably at pressures along the three phase line.
Table 5a  Data from ref 55 unless otherwise indicated.
Table 5b  Averaged value of ref 46, 55.
Table 5c  Data from ref 57.
Table 5d  Data from ref 79, 89.

References: (Click a link to see its experimental data associated with the reference)

   1  Herz, W., Ber. Dtsch. Chem. Ges. 1898, 31, 2669-72.
   2  Groschuff, E., von Z. Elektrochem. 1911, 17, 348-54.
   3  Horiba, S., Mem. Coll. Eng. Kyoto Imp. Univ. 1914, 1, 49; quoted in ref 80.
   4  Clifford, C.W., Ind. Eng. Chem. 1921, 13, 628-32.
   5  Hill, A.E., J. Am. Chem. Soc. 1922, 44, 1163-93.
   6  Hill, A.E., J. Am. Chem. Soc. 1923, 45, 1143-55
   7  Jaeger, A., Brennst. Chem. 1923, 4, 259.
   8  Milligan, L.H., J. Phys. Chem. 1924, 28, 494-7.
   9  Barbaudy, J., J. Chim. Phys. 1926, 23, 289-91.
   10  Uspenskii, S.P., Neft. Khoz. 1929, 11-12, 713-7.
   11  Rosenbaum, C.K.; Walton, J.H., J. Am. Chem. Soc. 1930, 52, 3568-73.
   12  Gross, P.M.; Saylor, J.H., J. Am. Chem. Soc. 1931, 53, 1744-51.
   13  Tarassenkow, D.N.; Poloshinzewa, E.N., Ber. Dtsch. Chem. Ges. 1932, 65B, 184-6.
   14  Robertson, J.B., South. African J. Sci. 1933, 30, 187-95.
   15  Niini, A., Suomen Kemistilehti A 1938, 11, 19-20.
   16  Saylor, J.H.; Stuckey, J.M.; Gross, P.M., J. Am. Chem. Soc. 1938, 60, 373-6.
   17  Vermillion, H.E., Ph.D. Thesis, 1939, Duke University, Durham, N.C. (U.S.A.); quoted in ref 80.
   18  Berkengeim, T.I., Zavod. Lab. 1941, 10, 592-4.
   19  Staveley, L.A.K.; Jeffes, J.H.E.; Moy, J.A.E., Trans. Faraday Soc. 1943, 39, 5-13.
   20  Durand, R., C.R. Hebd. Seances Acad. Sci. 1946, 223, 898-900.
   21  Stearns, R.S.; Oppenheimer, H.; Simon, E.; Harkins, W.D., J. Chem. Phys. 1947, 15, 496-507.
   22  Booth, H.S.; Everson, H.E., Ind. Eng. Chem. 1948, 40, 1491-3.
   23  Joris, G.G.; Taylor, H.S., J. Chem. Phys. 1948, 16, 45-51.
   24  Black, C.; Joris, G.G.; Taylor, H.S., J. Chem. Phys. 1948, 16, 537-43.
   25  Durand, R., C.R. Hebd. Seances Acad. Sci. 1948, 226, 409-10.
   26  Andrews, L.J.; Keefer, R.M., J. Am. Chem. Soc. 1949, 71, 3644-77.
   27  Booth, H.S.; Everson, H.E., Ind. Eng. Chem. 1949, 41, 2627-8.
   28  Griswold, J.; Chew, J.N.; Klecka, M.E., Ind. Eng. Chem. 1950, 42, 1246-51.
   29  Klevens, H.B., J. Phys. Chem. 1950, 54, 283-98.
   30  Bohon, R.L.; Claussen, W.F., J. Am. Chem. Soc. 1951, 73, 1571-8.
   31  McBain, J.W.; Lissant, K.J., J. Phys. Colloid. Chem. 1951, 55, 655-62.
   32  Staveley, L.A.K.; Johns, R.G.S.; Moore, B.C., J. Chem. Soc. 1951, 2516-23.
   33  Donahue, D.J.; Bartell, F.E., J. Phys. Chem. 1952, 56, 480-4.
   34  McDevit, W.F.; Long, F.A., J. Am. Chem. Soc. 1952, 74, 1773-7.
   35  Morrison, T.J.; Billett, F., J. Chem. Soc. 1952, 3819-22.
   36  McCants, J.F.; Jones, J.H.; Hopson, W.H., Ind. Eng. Chem. 1953, 45, 454-6.
   37  Hayashi, M.; Sasaki, T., Bull. Chem. Soc. Japan 1956, 29, 857-9.
   38  Umano, S.; Hayano, I., Kogyo Kagaku Zasshi 1957, 60, 1436-7.
   39  Wing, J.; Johnston, W.H., J. Am. Chem. Soc. 1957, 79(4), 864-5.
   40  Arnold, D.S.; Plank, C.A.; Erickson, E.E.; Pike, F.P., Chem. Eng. Data Ser. 1958, 3, 253-6.
   41  Brady, A.P.; Huff, H., J. Phys. Chem. 1958, 62, 644-9.
   42  Pavia, R.A., "The Solubility of Water in Benzene", M.S. Thesis, 1958, North Carolina State College, Raleigh, N.C., U.S.A.
   43  Alexander, D.W., J. Phys. Chem. 1959, 63, 1021-2.
   44  Rebert, C.J.; Kay, W.B., A. I. Ch. E. J. 1959, 5, 285-9.
   45  Caddock, B.D.; Davies, P.L., J. Inst. Petrol. 1960, 46, 391-6.
   46  Kudchadker, A.P.; McKetta, J.J., Petrol Refiner 1962, 41, 191-2.
   47  Thompson, W.H., M.S. Thesis, 1962, Pennaylvannia State University (U.S.A.); quoted in ref 102.
   48  Franks, F.; Gent, M.; Johnson, H.H., J. Chem. Soc. 1963, 2716-23.
   49  Guseva, A.N.; Parnov, E.I., Vestn. Mosk. Univ. Khim. 1963, 18, 76-9.
   50  Jones, J.R.; Monk, C.B., J. Chem. Soc. 1963, 2633-5.
   51  McAuliffe, C., Nature (London) 1963, 200, 1092-3.
   52  Schatzberg, P., J. Phys. Chem. 1963, 67, 776-9.
   53  Udovenko, V.V.; Aleksandrova, L.P., Zh. Fiz. Khim. 1963, 37, 52-6.
   54  Hoegfeldt, E.; Bolander, B., Ark. Kemi 1964, 21, 161-86.
   55  Thompson, W.H.; Snyder, J.R., J. Chem. Eng. Data 1964, 9, 516-20.
   56  Englin, B.A.; Plate, A.F.; Tugolukov, V.M. Pryanishnikova, M.A., Khim. Tekhnol. Topl. Masel 1965, 10, 42-6.
   57  Connolly, J.F., J. Chem. Eng. Data 1966, 11, 13-6.
   58  Johnson, J.R.; Christian, S.D., Affsprung, H.E., J. Chem. Soc. A. 1966, 77-8.
   59  Masterton, W.L.; Gendrano, M.C., J. Phys. Chem. 1966, 70, 2895-8.
   60  McAuliffe, C., J. Phys. Chem. 1966, 70, 1267-75.
   61  Moule, D.C.; Thurston, W.M., Can. J. Chem. 1966, 44, 1361-7.
   62  Taha, A.A.; Grigsby, R.D.; Johnson, J.R.; Christian, S.D.; Affsprung, H.E., J. Chem. Educ. 1966, 43, 432-5.
   63  Alwani, Z.; Schneider, G., Ber. Bunsenges. Phys. Chem. 1967, 71, 633-8.
   64  Gregory, M.D.; Christian, S.D.; Affsprung, H.E., J. Phys. Chem. 1967, 71, 2283-9.
   65  O'Grady, T.M., J. Chem. Eng. Data 1967, 12, 9-12.
   66  Worley, J.D., Can. J. Chem. 1967, 45, 2465-7.
   67  Burd, S.D. Jr.; Braun, W.G., Proc. Div. Refining., Am. Petrol. Inst. 1968, 48, 464-76.
   68  Roddy, J.W.; Coleman, C.F., Talanta 1968, 15, 1281-6.
   69  Bröllos, K.; Peter, K.; Schneider, G.M., Ber. Bunsenges. Phys. Chem. 1970, 74, 682-6.
   70  Roof, J.G., J. Chem. Eng. Data 1970, 15, 301-3.
   71  Corby, T.C.; Elworthy, P.H., J. Pharm. Pharmacol. 1971, 23 suppl. 39 S-48 S.
   72  Pierotti, R.A.; Liabastre, A.A., U.S. Nat. Tech. Inform. Serv., PB Rep., 1972, No. 21163, 113 p.
   73  Ben-Naim, A.; Wilf, J.; Yaacobi, M., J. Phys. Chem. 1973, 77, 95-102.
   74  Bradley, R.S.; Dew, M.J.; Munro, D.C., High Temp. High Press. 1973, 5, 169-76.
   75  Filyas, Yu., I. Sb. Nauch. Tr. Vses. Neftegazov. Nauch.-Issled. Inst. 1973, 45, 68-70.
   76  Karlsson, R.J., Chem. Eng. Data 1973, 18, 290-2.
   77  Leinonen, P.J.; Mackay, D., Can. J. Chem. Eng. 1973, 51, 230-3.
   78  Polak, J.; Lu, B.C.Y., Can. J. Chem. 1973, 51, 4018-23.
   79  Sultanov, R.G.; Skripka, V.G., Zh. Fiz. Khim. 1973, 47, 1035; Deposited doc. 1970; VINITI 5347-73.
   80  Brown, R.L.; Wasik, S.P., J. Res. Natl. Bur. Stds. A. 1974, 78, 453-60.
   81  Goldman, S., Can. J. Chem. 1974, 52, 1668-80.
   82  Krasnoschchekova, R.Ya.; Gubergrits, M.Ya., Vodnye. Resursy. 1975, 2, 170-3.
   83  Mackay, D.; Shiu, W.Y., Can. J. Chem. Eng. 1975, 53, 239-42.
   84  Sada, E.; Kito, S.; Ito, Y., J. Chem. Eng. Data 1975, 20, 373-5.
   85  Budantseva, L.S.; Lesteva, T.M.; Nemstov, M.S., Zh. Fiz. Khim. 1976, 50, 1344. Deposited doc. 1976, VINITI 437-76.
   86  Gill, S.J.; Nichols, N.F.; Wadso, I. J., Chem. Thermodyn. 1976, 8, 445-52.
   87  Kirchnerova, J.; Cave, G.C.B., Can. J. Chem. 1976, 54(24), 3909-16.
   88  Price, L.C., Am. Assoc. Petrol. Geol. Bull. 1976, 60, 213-44.
   89  Skripka, V.G., Tr. Vses. Neftegazov. Nauch. Issled. Inst. 1976, 61, 139-51.
   90  Korenman, I.M.; Aref'eva, R.P., Patent USSR, 553 524, 1977.04.05 C.A. 87:87654.
   91  Korenman, I.M.; Aref'eva, R.P., Zh. Prikl. Khim. 1978, 51, 957-8.
   92  Krzyzanowska, T.; Szeliga, J., Nafta (Katowice) 1978, 12, 413-7.
   94  Singh, R.P.; Sah, R., Indian, J. Chem. 1978, 16A, 692-4.
   95  Bittrich, H.J.; Gedan, H.; Feix, G., Z. Phys. Chem., Leipzig 1979, 260 1009-13.
   96  Green, W.J.; Frank, H.S., J. Solution Chem. 1979, 8, 187-96.
   97  Banerjee, S.; Yalkowsky, S.H.; Valvani, S.C., Environ. Sci. Technol. 1980, 14, 1227-9.
   98  Schwarz, F.P., Anal. Chem. 1980, 52, 10-15.
   99  Backx, P.; Goldman, S., J. Phys. Chem. 1981, 85, 2975-9.
   100  Sanemasa, I.; Araki, M.; Deguchi, T.; Nagai, H., Chem. Lett. 1981, 225-8.
   101  Sanemasa, I.; Araki, M.; Deguchi, T.; Nagai, H., Bull. Chem. Soc. Jpn. 1982, 55, 1054-62.
   102  Tsonopoulos, C.; Wilson, G.M., A. I. Ch. E. J. 1983, 29, 990-9.
   103  Sanemasa, I.; Arakawa, S.; Araki, M.; Deguchi, T., Bull. Chem. Soc. Jpn. 1984, 57, 1539-44.
   104  Alwani, Z.; Schneider, G.M., Ber. Bunsenges. Phys. Chem. 1969, 73, 294-301.
   105  Scott, R.L.; van Konynenburg, P.H., Phil. Trans. Roy. Soc., London 1980, A298, 495.
   106  Hicks, C.P.; Young, C.L., Chem. Rev. 1975, 75, 119.
   107  Herz, W., Boll. Chim. Pharm. 1915, 54, 37.
   108  Scheffer, F.E.C., Proc. Roy. Acad. Amsterdam 1913, 16, 404-18.
   109  Gorbachev, S.V.; Kondrat'ev, V.P.; Belousov, A.I.; Kopylov, V.V., Tr. Mosk. Khim. - Tekhnol. Inst. 1972, 71, 62-3.
   110  Gorbachev, S.V.; Kondrat'ev, V.P.; Kopylov, V.V., Tr. Mosk. Khim. - Tekhnol. Inst. 1972, 71, 64-5.