IUPAC-NIST Solubility Database
NIST Standard Reference Database 106


Glass Ball as Bullet Solubility System: Tetrachloromethane (carbon tetrachloride) with Water

Components:
   (1) Water; H2O; [7732-18-5]  NIST Chemistry WebBook for detail
   (2) Tetrachloromethane (carbon tetrachloride); CCl4; [56-23-5]  NIST Chemistry WebBook for detail

Evaluator:
   A. L. Horvath, Imperial Chemical Industries Limited, Runcorn, U.K.

Critical Evaluation:

   The tetrachloromethane (1) and water (2) binary system is discussed in two parts; part 1 is tetrachloromethane (1) in water (2) and part 2 is water (2) in tetrachloromethane (1).

Part 1. The solubility of tetrachloromethane (1) in water (2) has been studied by 41 workers. The experimental data of most investigators in the 273 to 303 K temperature interval are sufficiently reliable to use in a smoothing equation. Even though a number of measurements above 308 K were reported, the solubility values in this temperature range are rather uncertain and are classified as doubtful.

The experimental work of several workers was not used for the smoothing equation for a variety of reasons. The measured solubility of Booth and Everson (refs. 1 and 2) and of Karger et al. (ref. 3) are markedly higher than the solubility values calculated from the smoothing equation. The measurements by Powell (ref. 4), Tettamanti et al. (ref. 5), Svetlanov et al. (ref. 6), Antropov et al. (ref. 7), Simonov et al. (ref. 8), Sato and Nakijima (ref. 9), Coca et al. (ref. 10), Balls (ref. 11), Yoshioka et al. (ref. 12), Howe et al. (ref. 13), and Wright et al. (ref. 14) are all several per cents lower than the smoothed solubility values and have also been rejected. The solubilities calculated from the distribution coefficients of Prosyanov et al. (ref. 15) are in very poor agreement, giving little confidence in their values which were regarded as dubious.

The remaining data from 26 laboratories were compiled or used for the smoothing equation. The data are also shown in Figure 1. The fitting equation obtained for mass per cent (1) is given by:

Solubility [100 w1] = 3.4653 – 0.0230285 T/K + 3.91621 × 10–5 (T/K)2

The equation represents the combined data points which yield a standard deviation of 5.8 × 10–3 in the 273 to 308 K temperature range.

The curve obtained from the smoothing equation shows a distinct minimum at 294 K, as seen in Figure 1. The existence of the minimum solubility is discussed in the Preface.

The recommended solubility values at 5 K intervals for tetrachloromethane (1) in water (2) are presented in Table 1.
Part 2. The solubility of water (2) in tetrachloromethane (1) has been reported by 37 laboratories since 1921. The solubility measurements cover the 273 to 373 K temperature range, see Figure 2. However, the data available above 323 K originate from only two investigators (refs. 16 and 17). The recommended solubility values are limited to the 283 to 307 K temperature interval.

Although data from all the workers show a general increase in solubility with temperature, the extent of the increase is variable above 313 K.

The data of Bell (ref. 18), Niini (ref. 19), and Fox and Martin (ref. 20) are substantially lower than all other studies and they have been rejected. The data of Eberius (ref. 21), Zielinski (ref. 22), Grigsby (ref. 23), Goldman (ref. 24), Ohtsuka and Kazama (ref. 25), and Kleeberg et al. (ref. 26) are significantly higher than the likely solubility and were also rejected. The remaining data mainly due to Clifford (ref. 27), Rosenbaum and Walton (ref. 28), Staverman (ref. 29), Hutchison and Lyon (ref. 30), McGovern (ref. 31), Donahue and Bartell (ref. 32), Rotariu et al. (ref. 33), Greinacher et al. (ref. 34), Desnoyer (ref. 35), Tettamanti et al. (ref. 5), Johnson et al. (refs. 36 and 37), Johnson (ref. 38), Christian et al. (ref. 39), Högfeldt and Fredlund (ref. 41), Simonov et al. (refs. 8, 41 and 42), Glasoe and Schultz (ref. 43), Antropov et al. (ref. 7), Kirchnerova (ref. 44), Kirchnerova and Cave (ref. 45), Coca et al. (ref. 10), Ksiazczak and Buchowski (ref. 46), Wu (ref. 17), and Orlandini et al. (ref. 47) are in good agreement, especially the values given in (refs. 31, 43, and 17).

The correlating equation for the combined solubilities of water in tetrachloromethane between 283 and 308 K is as follows:

Solubility [100 w2] = 0.301104 – 2.348078 × 10–3 (T/K) + 4.607143 × 10–6 (T/K)2

This equation yielded a standard deviation of 1.5 x 10-3 in the 273 to 308 K temperature range.

The recommended mass per cent solubility values at 5 K intervals for water in tetrachloromethane are presented in the Table 2.

Experimental Data:   (Notes on the Nomenclature)

Table 1. Tentative Solubility of Tetrachloromethane (1) in Water (2)
t/°CT/K102 * Mass Fraction w1104 * Mole Fraction x1
0273.150.09701.137
5278.150.08981.053
10283.150.08460.9916
15288.150.08130.9529
20293.150.08000.9376
25298.150.08130.9529
30303.150.08320.9752
35308.150.08781.029
Table 2. Recommended Solubility of Water (2) in Tetrachloromethane (1)
t/°CT/K102 * Mass Fraction w2104 * Mole Fraction x2
10283.150.005584.762
15288.150.006995.965
20293.150.008647.372
25298.150.010518.967
30303.150.0126110.757
35308.150.0149512.750
View Figure 1 for this Evaluation

View Figure 2 for this Evaluation

References: (Click a link to see its experimental data associated with the reference)

   1  Booth, H.S.; Everson, H.E., Ind. Eng. Chem. 1948, 40, 1491-3.
   2  Booth, H.S.; Everson, H.E., Ind. Eng. Chem. 1948, 40, 1491-3.
   3  Karger, B.L.; Chatterjee, A.K.; King, J.W., Tech. Rept. No. 3, Dept. of Chemistry, Northeastern Univ., Boston, Mass., May 10, 1971.
   4  Powell, J.F., Brit. J. Industr. Med. 1945, 2, 212-6.
   5  Tettamanti, K.; Nogradi, M.; Sawinsky, J., Periodica Polytech. 1960, 4, 201-18.
   6  Svetlanov, E.B.; Velichko, S.M.; Levinskii, M.I.; Treger, Yu.A.; Flid, R.M., Russ. J. Phys. Chem. 1971, 45, 488-90.
   7  Antropov, L.I.; Populyai, V.E.; Simonov, V.D.; Shamsutdinov, T.M., Russ. J. Phys. Chem. 1972, 46, 311-2 (VINITI No. 3739-71).
   8  Simonov, V.D.; Shamsutdinov, T.M.; Pogulyai, V.E.; Popova, L.N., Russ. J. Phys. Chem. 1974, 48, 1573-5.
   9  Sato, A.; Nakijima, T., Arch. Envir. Health 1979, 34, 69-75.
   10  Coca, J.; Diaz, R.M.; Pazos, C., Fluid Phase Equilibr. 1980, 4, 125-36.
   11  Balls, P.W., Ph. D. Thesis, Univ. of East Anglia, Norwich, U. K., July 1980, 375 pp.
   12  Yoshioka, Y.; Ose, Y.; Sato, T., Ecotoxicol. Environ. Saf. 1986, 12, 15-21.
   13  Howe, G.B.; Mullins, M.E.; Rogers, T.N., AFESC Tyndall Air Force Base, Report ESL-TR-86-66, Vol. 1, Florida, Sept. 1987, 86 pp. (AD-A188 571).
   14  Wright, D.A.; Sandler, S.I.; DeVoll, D., Environ. Sci. Technol. 1992, 26, 1828-31.
   15  Prosyanov, N.N.; Shalygin, V.A., Zel'venskii, Ya.D., Tr. Mosk. Khim.-Technol. Inst. 183 (1973).
   16  Prosyanov, N.N.; Shalygin, V.A.; Zel'venskii, Ya.D., Tr. Mosk. Khim. Tekhnol. Inst. 1974, 81, 55-6.
   17  Wu, X., Huaxue Shiji 1981, 221-4.
   18  Bell, R.P., J. Chem. Soc. 1932, 2905-11.
   19  Niini, A., Suomen Kemistilehti A 1938, 11, 19-20.
   20  Fox, J.J.; Martin, A.K., Proc. Roy. Soc. London, Ser. A, 1940, 174, 234-62.
   21  Eberius, E., Wasserbestimmung mit Karl-Fischer-Losung (Verlag, GMBH, Weinheim, 1954), p. 67.
   22  Zielinski, A.Z., Chem. Stosowana 1959, 3, 377-84.
   23  Grigsby, R.D. Self-Association and Hydration of N-Methylacetamide in Carbon Tetrachloride, Ph. D. Thesis, Univ. of Oklahoma, Norman, Oklahoma, 1966.
   24  Goldman, S., Can. J. Chem. 1974, 52, 1668-80.
   25  Ohtsuka, K.; Kazama, K., Sen't Seihin Shohi Kagaku Kaishi 22, 197-201 (1982).
   26  Kleeberg, H.; Klein, D.; Luck, W., A. P. Chem.-Ing.-Tech. 1987, 59, 409-11.
   27  Clifford, C.W., Ind. Eng. Chem. 1921, 13, 628-32.
   28  Rosenbaum, C.K.; Walton, J.H., J. Am. Chem. Soc. 1930, 52, 3568-73.
   29  Staverman, A.J., Recl. Trav. Chim. Pays-Bas 1941, 60, 836-41.
   30  Hutchinson, C.A.; Lyon, A.M., Columbia University Report A-745, July 1, 1943.
   31  McGovern, E.W., Ind. Eng. Chem. 1943, 35, 1230-9.
   32  Donahue, D.J.; Bartell, F.E., J. Phys. Chem. 1952, 56, 480-4.
   33  Rotariu, G.J.; Fraga, D.W.; Hildebrand, J.H., J. Am. Chem. Soc. 1952, 74, 5783.
   34  Greinacher, E.; Lüttke, W.; Mecke, R., Z. Elektrochem. 1955, 59, 23-31.
   35  Desnoyer, M., Dosage de l'Eau dand les Solvants Organiques par Absorption Infra-Rouge et Mesure des Constantes Dielectriques, Centre D'Etudes Nucleaires de Saclay, Report No. 1254, Saclay, France, June 23, 1959.
   36  Johnson, J.R.; Christian, S.D., Affsprung, H.E., J. Chem. Soc. 1965, 1-4.
   37  Johnson, J.R.; Christian, S.D., Affsprung, H.E., J. Chem. Soc. A. 1966, 77-8.
   38  Johnson, J.R. Self-Association and Hydration of Phenol in Several Organic Solvents, Ph. D. Thesis, Univ. of Oklahoma, Norman, Oklahoma, 1966.
   39  Christian, S.D.; Affsprung, H.E.; Hunter, W.J.A.; Gillam, W.S.; McCoy, W.H., Solute Properties of Water, U. S. Office of Saline Water Research and Development Program, Report No. 301 1968, p. 71, 79.
   40  Högfeldt, E.; Fredlund, F., Acta Chem. Scand. 1970, 24, 1858-60.
   41  Simonov, V.D., et al., Dokl. Neftekim. Sekt. Bashkir. Respub. Pravl. Vses. Khim. Obshchest. 1971, 346-51.
   42  Simonov, V.D., et al., Dokl. Neftekim. Sekt. Bashkir. Respub. Pravl. Vses. Khim. Obshchest. 1971, 346-51.
   43  Glasoe, P.K.; Schultz, S.D., J. Chem. Eng. Data 1972, 17, 66-8.
   44  Kirchnerova, J., Ph. D. Thesis, McGill Univ., Montreal, Quebec, April 1975, 280 pp.
   45  Kirchnerova, J.; Cave, G.C.B., Can. J. Chem. 1976, 54(24), 3909-16.
   46  Ksiazczak, A.; Buchowski, H., Fluid Phase Equilibr. 1980, 5, 131-40.
   47  Orlandini, M.; Fermeglia, M.; Kikic, I.; Alessi, P., Chem. Eng. J. 1983, 26, 245-50.