IUPAC-NIST Solubility Database
NIST Standard Reference Database 106


Glass Ball as Bullet Solubility System: 1,2-Dichloroethane with Water.

Components:
   (1) Water; H2O; [7732-18-5]  NIST Chemistry WebBook for detail
   (2) 1,2-Dichloroethane; C2H4Cl2; [107-06-2]  NIST Chemistry WebBook for detail

Evaluator:
   A. L. Horvath, Imperial Chemical Industries Limited, Runcorn, U.K.

Critical Evaluation:

        The 1,2-dichloroethane (1) and water (2) binary system is treated in two parts; part 1 is 1,2-dichloroethane (1) in water (2) and part 2 is water (2) in 1,2-dichloroethane (1).
     Part 1. The solubility of 1,2-dichloroethane (1) in water (2) has been studied by 38 groups of workers with reasonably consistent results. However, the experimental work of several investigators was not used for a variety of reasons. The measured solubility of Salkowski,1 Palatnik et al.,2 Ababi et al.,3 Coca and Diaz,4 Coca et al.,5 and Warner et al.6 are markedly higher than the solubility values calculated from the smoothing equation and are therefore rejected. Similarly, the data of Chiou et al.7 at 35oC and Howe et al.8 at 30oC are excluded. The data of Sato and Nakijima,9 Leighton and Calo,10 McNally and Grob,11 and Prosyanov et al.12  are several per cent lower than the smoothed solubility values and are rejected.  Also not used are the data of Baranaev et al.,24 measured at 1 atm total pressure. (The decreasing solubility between 345 and 371 K indicates that the data were determined at a constant pressure.) The temperature for the separation factors of Bakin53 was not stated so his reported data are also excluded from the regression analysis.
     The remaining data from 27 laboratories were compiled or used for the smoothing equation. The data analysis was conducted using all the measurements of Rex,13 Gross,14 Gross and Saylor,15 Doolittle,16 Lichascherstov et al.,17 van Arkel and Vles,18 McClure,19 McGovern,20 Chitwood,21 Udovenko and Fatkulina,22 Kudryavtseva and Krutikova,23 O'Connell,25 Johnson,26 Svetlanov et al.,27 Antropov et al.,28 Walraevens et al.,29 McConnell et al.,30 Pearson and McConnell,31 Chiou et al.,7 Earhart et al.,32 Veith et al.,33 Banerjee et al.,34 Takano et al.,35 Barr and Newsham,36 Howe et al.,8 Bobok et al.,37 and Wright et al.,38 all values within the temperature interval from 273 to 372 K, to obtain the following mass percent (1) equation:

Solubility [100 w1] = 17.9147 – 0.11684 (T/K) + 2.0003 <× 10–4 (T/K)2,

which yielded a standard deviation of 4.62 × 10–2.  The recommended solubility values at 5 K intervals for 1,2-dichloroethane (1) in water (2) are listed in Table 1.
     The measurements and the curve obtained from the smoothing equation are shown in Fig. 21.  A solubility minimum calculated from the above regression equation is 0.853 [100 w1] at 292.06 K. Additional details concerning the solubility minimum for aqueous hydrocarbon systems are discussed in the Preface.

     Part 2. The solubility of water (2) in 1,2-dichloroethane (1) has been studied by 27 groups of workers in the temperature interval from 253 to 381 K.
     Although all the measurements show a general increase in solubility with temperature, the extent of the increase is variable. The data of McClure,19 Ababi et al.,3 and Ödberg and Högfeldt52 are substantially higher than all other studies and are rejected. The data of Udovenko and Fatkulina,22 Zielinski,39 Chistyakov and Shapurova,40 Sellers,41 and Antropov et al.28 are markedly lower than the smoothed solubility values and are also rejected. The solubility calculated from the distribution coefficients of Prosyanov et al.42 are in very poor agreement, providing no confidence in their values which are regarded as dubious.
     The remaining data, mainly due to Doolittle,16 Staverman,43 McGovern,20 Davies et al.,44 Kudryavtseva and Krutikova,23 O'Connell,25 Johnson,26 Johnson et al.,45 Masterton and Gendrano,46 Christian et al.,47 Coca and Diaz,4 Coca et al.,5 Czapkiewicz et al.,48 Newsham,49 Ohtsuka and Kazama,50 Barr and Newsham,36 Bobok et al.,37 and Avet'yan et al.51 were compiled or used for the smoothing equation:

log10 x2 =  1.7624 – 1118.41/(T/K).

This equation represents the combined data values which gives a standard deviation of 3.34 × 10–2 in the temperature range from 253 to 381 K.
     The recommended solubility values at 5 K intervals for water (2) in 1,2-dichloroethane (1) are presented in Table 2.
     Measured values and the linear relationship between the solubility expressed as log10 x2 versus 1/(T/K) are plotted in Fig. 22. This linear relationship is a characteristic of water solubility in halogenated hydrocarbons. The phenomenon is discussed in some detail in the Preface.

Experimental Data:   (Notes on the Nomenclature)

Table 1. Recommended solubility of 1,2-dichloroethane (1) in water (2)
t/°CT/K102 * Mass Fraction w1103 * Mole Fraction x1
0273.150.9241.69
5278.150.8911.63
10283.150.8681.59
15288.150.8551.57
20293.150.8521.56
25298.150.8601.58
30303.150.8771.61
35308.150.9041.66
40313.150.9411.73
45318.150.9891.82
50323.151.0461.92
55328.151.1132.04
60333.151.1902.19
65338.151.2782.35
70343.151.3752.53
75348.151.4822.73
80353.151.5992.95
85358.151.7273.19
90363.151.8643.45
95368.152.0113.72
100373.152.1684.02
Table 2. Recommended solubility of water (2) in 1,2-dichloroethane (1)
t/°CT/K102 * Mass Fraction w2103 * Mole Fraction x2
-20253.150.04032.21
-15258.150.04362.69
-10263.150.05933.25
-5268.150.07123.90
0273.150.08504.65
5278.150.10085.51
10283.150.11886.49
15288.150.13927.60
20293.150.16248.86
25298.150.188410.26
30303.150.217511.83
35308.150.250013.58
40313.150.286215.52
45318.150.326217.66
50323.150.370520.02
55328.150.419222.60
60333.150.472825.43
65338.150.531428.51
70343.150.595331.85
75348.150.665235.48
80353.150.741139.40
85358.150.823543.62
90363.150.912748.16
95368.151.009053.02
100373.151.113158.02
105378.151.225463.80
110383.151.346269.73
View Figure 1 for this Evaluation

View Figure 2 for this Evaluation

References: (Click a link to see its experimental data associated with the reference)

   1  Salkowski, E., Biochem. Z. 1920, 107, 191-201.
   2  Palatnik, L.S.; Vinogorov, G.R.; Kagan, M.B.; Kuropiatnik, V.B., Zh. Fiz. Khim. 33, 1939-44 (1959).
   3  Ababi, V.; Popa, A.; Mihaila, Gh. Analele Stiint., Univ. Al. I. Cuza Iasi. Sect. IC. Chem. 1964, 10, 71-84.
   4  Coca, J.; Diaz, R. M., J. Chem. Eng. Data 25, 80-3 (1980)
   5  Coca, J.; Diaz, R.M.; Pazos, C., Fluid Phase Equilibr. 1980, 4, 125-36.
   6  Warner, H.P.; Cohen, J.M.; Ireland, J.C., Determination of Henry's Law Constants of Selected Priority Pollutants, U. S. EPA Technical Report, PB87-212684, Cincinnati, OH., July 1987.
   7  Chiou, C.T.; Freed, V.H., "Chemodynamic Studies on Bench Mark Industrial Chemicals"; National Technical Information Service: Springfield, Virginia, 1977; PB-274263.
   8  Howe, G.B.; Mullins, M.E.; Rogers, T.N., AFESC Tyndall Air Force Base, Report ESL-TR-86-66, Vol. 1, Florida, Sept. 1987, 86 pp. (AD-A188 571).
   9  Sato, A.; Nakijima, T., Arch. Envir. Health 1979, 34, 69-75.
   10  Leighton, D.T.; Calo, J.M., J. Chem. Eng. Data 1981, 26, 382-5.
   11  McNally, M.E.; Grob, R.L., J. Chromatogr. 1984, 284, 105-16.
   12  Prosyanov, N.N.; Shalygin, V.A., Zel'venskii, Ya.D., Tr. Mosk. Khim.-Technol. Inst. 183 (1973).
   13  Rex, A., Z. Phys. Chem. 1906, 55, 355-70.
   14  Gross, P.M., J. Am. Chem. Soc. 1929, 51, 2362-6.
   15  Gross, P.M.; Saylor, J.H., J. Am. Chem. Soc. 1931, 53, 1744-51.
   16  Doolittle, A.K., Ind. Eng. Chem. 27, 1169 (1935).
   17  Lichascherstov, M.; Alekejev, S.; Schalajewa, T., Nitrocellulose 6, 226 (1935).
   18  van Arkel, A.E.; Vles, S.E., Recl. Trav. Chim. Pays-Bas 1936, 55, 407-11.
   19  McClure, H.B., Ind. Eng. Chem. News Ed. 17, 149 (1939).
   20  McGovern, E.W., Ind. Eng. Chem. 1943, 35, 1230-9.
   21  Chitwood, B.G., Adv. in Chem. Ser., Am. Chem. Soc., 1952, 7, 91-9.
   22  Udovenko, V.V.; Fatkulina, L.G., Zh. Fiz. Khim. 26, 892 (1952).
   23  Kudryavtesva, G.T.; Krutikova, A.D., J. Appl. Chem. USSR 26, 1129 (1953).
   24  Baranaev, M.K.; Gilman, I.S.; Kogan, L.M.; Rodinova, N.P., J. Appl. Chem. USSR 27, 1031 (1954).
   25  O'Connell, W.L., Trans. Am. Inst. Mech. Eng. 1963, 226, 126-32.
   26  Johnson, J.R., Ph.D. thesis, University of Oklahoma, Norman, Oklahoma, 1966.
   27  Svetlanov, E.B.; Velichko, S.M.; Levinskii, M.I.; Treger, Yu.A.; Flid, R.M., Russ. J. Phys. Chem. 1971, 45, 488-90.
   28  Antropov, L.I.; Populyai, V.E.; Simonov, V.D.; Shamsutdinov, T.M., Russ. J. Phys. Chem. 1972, 46, 311-2 (VINITI No. 3739-71).
   29  Walraevens, R.; Trouillet, P.; Devos, A., Int. J. Chem. Kinet. 6, 777-86 (1974)
   30  McConnell, G.; Ferguson, D.M.; Pearson, C.R., Endeavour 1975, 34, 13-8.
   31  Pearson, C.R.; McConnell, G., Proc. Roy. Soc. B. 1975, 189, 305-32.
   32  Erhart, J.P.; Won, K.W.; Wong, H.V.; Prausnitz, J.M.; King, C.J., Chem. Eng. Progr. 73, 67 (1977).
   33  Veith, G.D.; Macek, K.J.; Petrucelli, S.R.; Carroll, J., Proc. 3rd Ann. Symp. on Aquatic Toxicology, ASTM Publ. 707, Philadelphia, 1980, p. 116-29.
   34  Banerjee, S.; Yalkowsky, S.H.; Valvani, S.C., Environ. Sci. Technol. 1980, 14, 1227-9.
   35  Takano, J.; Ishihara, Y.; Yasuoka, T.; Mitsuzawa, S., Nippon Kagaku Kaishi, 1985, 2116-9.
   36  Barr, R.S.; Newsham, D.M.T., Fluid Phase Equilibr. 1987, 35, 189-205.
   37  Bobok, D., Kossaczky, E.; Surovy, J., Coll. Czech. Chem. Commun. 54, 2848 (1989).
   38  Wright, D.A.; Sandler, S.I.; DeVoll, D., Environ. Sci. Technol. 1992, 26, 1828-31.
   39  Zielinski, A.Z., Chem. Stosowana 1959, 3, 377-84.
   40  Chistyakov, V.M.; Shapurova, V.V., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 1964, 7, 349-50.
   41  Sellers, P., Acta Chem. Scand. 25, 2295 (1971).
   42  Prosyanov, N.N.; Shalygin, V.A., Zel'venskii, Ya.D., Tr. Mosk. Khim.-Technol. Inst. 183 (1973).
   43  Staverman, A.J., Recl. Trav. Chim. Pays-Bas 1941, 60, 836-41.
   44  Davies, W.; Jagger, J.B.; Whalley, H.K., J. Soc. Chem. Ind. (London) 68, 26 (1949).
   45  Johnson, J.R.; Christian, S.D., Affsprung, H.E., J. Chem. Soc. A. 1966, 77-8.
   46  Masterton, W.L.; Gendrano, M.C., J. Phys. Chem. 1966, 70, 2895-8.
   47  Christian, S.D.; Affsprung, H.E.; Hunter, W.J.A.; Gillam, W.S.; McCoy, W.H., Solute Properties of Water, U. S. Office of Saline Water Research and Development Program, Report No. 301 1968, p. 71, 79.
   48  Czapkiewicz, J.; Czapkiewicz-Tulaj, B., J. Chem. Soc. Faraday I 76, 1663 (1980).
   49  Newsham, D.M.T., Measurement and Correlation of Thermodynamic Data for Chlorinated Hydrocarbons, UMIST, Manchester (January. 1981).
   50  Ohtsuka, K.; Kazama, K., Sen't Seihin Shohi Kagaku Kaishi 22, 197-201 (1982).
   51  Avet'yan, M.G.; Sonin, E.V.; Pimenov, I.F., Sov. Chem. Ind. 23, 18 (1991).
   52  Ödberg, L., Hogfeldt, E., Acta Chem. Scand. 23, 1330 (1969).
   53  Bakin, V.M., Russ. J. Phys. Chem. 45, 1870 (1971) (VINITI No. 2878-71).